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ABSTRACT

EFFICIENT ROUTING AND SCHEDULING IN
WIRELESS NETWORKS

SEPTEMBER 2014

ANAND SEETHARAM

B.E., JADAVPUR UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jim Kurose

The temporal and spatial variation in wireless channel conditions, node mobil-

ity make it challenging to design protocols for wireless networks. In this thesis, we

design efficient routing and scheduling algorithms which adapt to changing network

conditions caused by varying link quality or node mobility to improve user-level per-

formance.

We design and analyze routing protocols for static, mobile and heterogeneous

wireless networks. We analyze the performance of opportunistic and cooperative for-

warding in static mesh networks showing that opportunism outperforms cooperation;

we identify interference as the main cause for mitigating the potential gains achiev-

able with cooperative forwarding. For mobile networks, we quantitatively analyze the

tradeoff between state information collection (sampling frequency and number of bits

per sample) and power consumption for a fixed source-to-destination goodput con-

straint. For heterogeneous networks comprising of both static and mobile nodes, we

vii



propose a greedy algorithm (adaptive-flood) which dynamically classifies individual

nodes as routers/flooders depending on network conditions and demonstrate that it

achieves performance equivalent to, and in some cases significantly better than, that

of network-wide routing or flooding alone.

Last, we consider an application-level wireless streaming scenario where multiple

clients are streaming different videos from a cellular base station. We design a greedy

algorithm for efficiently scheduling multiple video streams from a base station to

mobile clients so as to minimize the total number of application-playout stalls. We

develop models for coarse timescale wireless channel variation to aid network and

application-layer protocol design.
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CHAPTER 1

INTRODUCTION

The temporal and spatial variation in wireless channel conditions makes it chal-

lenging to design protocols for wireless networks. In order to develop efficient and

robust protocols, it is essential to understand the inherent characteristics of wire-

less networks such as connectivity, coverage and varying channel conditions. Factors

such as multipath fading, shadowing and path loss cause wireless channel variabil-

ity at different timescales (in the milliseconds, seconds and tens of seconds timescale

respectively). Node mobility also plays an important role in determining wireless

channel variability. Changes in network connectivity and topology caused by node

mobility and fluctuating channel conditions mean that protocols have to make design

decisions based on partial or outdated network state information. These variations,

however, present opportunities to leverage the dynamic (varying) nature of these net-

works to improve application-level performance. The goal of this thesis is to design

efficient routing and scheduling algorithms that adapt to changing network conditions

caused by varying link quality or node mobility to improve user-level performance.

The last decade has witnessed the growth and deployment of diverse networks such

as mesh, ad-hoc, WiFi and 4G (LTE/WiMAX) for various commercial and military

purposes. One major question still remains unanswered: How can one adapt and

leverage wireless channel variability to improve the application-level performance of

clients using these networks? We seek to answer this question by developing efficient

protocols that take advantage of wireless channel properties (such as multipath fading

and shadowing) to make important decisions related to routing, resource scheduling

and network state information collection for a wide range of wireless networks, both
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static and mobile. We also develop models for coarse timescale wireless channel

variation to aid network and application-layer protocol design. In this context, we

study the following problems.

1.1 How to Route in Wireless Networks?

In the first part of this thesis, we develop and analyze routing protocols for static,

mobile and heterogeneous networks. We study static multi-hop wireless mesh net-

works, modeling and analyzing two classes of routing protocols - opportunism and

cooperation, under varying channel conditions and in the presence of interfering trans-

mitters. The broadcast nature of wireless networks allows a much richer set of ap-

proaches to be taken when forwarding packets between source and destination than

traditional hop-by-hop forwarding along pre-specified paths. These strategies fall

into two broad categories - opportunistic forwarding, which exploits relay diversity

by opportunistically selecting an overhearing relay as a forwarder, and cooperative

forwarding, which relies on the synchronized transmissions of relays to reinforce re-

ceived signal strengths. Our objective is to understand which among these two ap-

proaches provides higher performance (throughput) in presence of multiple competing

and interfering network flows. We observe that opportunism outperforms coopera-

tion and identify interference resulting from the larger number of transmissions under

cooperative forwarding as a cause for mitigating the potential gains achievable with

cooperative forwarding.

Mobility in wireless networks introduces additional sources of channel variation

and makes routing even more challenging. Frequent changes in network topology

require additional control overhead for gathering link state information needed for

determining routes. We therefore analyze the tradeoff between the amount of sig-

naling overhead incurred in path selection in a MANET with time-varying wireless

channels and the application-level goodput and end-to-end power expended on the se-

lected path. In dynamic network scenarios, increased overhead increases the accuracy

2



of link state estimates used in path selection but decreases the amount of bandwidth

available for application use. We develop an information-theoretic, bounding ap-

proach to quantify the signaling overhead. Specifically, we investigate (i) the time

granularity at which link state is sampled and communicated, and (ii) the minimum

number of bits needed to encode this link state information, such that the expected

power consumption within a sampling interval is minimized subject to a fixed source-

destination goodput constraint. We formulate an optimization problem that provides

a numerically computable solution to these questions, and quantitatively demonstrate

that short sampling intervals incur significant overhead while long intervals fail to take

advantage of the temporal correlation in link state. Additionally, we find that using

small number of bits per sample does not provide sufficient information about the net-

work, while using too many bits provide little additional information at the expense

of increased overhead.

In practice, mobility and connectivity characteristics observed in real-world mea-

surements are often heterogeneous : while some nodes may have few or highly dy-

namic links, there are also well-connected nodes forming sizable connected compo-

nents [41,89]. In heterogeneous networks comprised of both stable and highly dynamic

components, it is likely that neither routing nor flooding alone may perform partic-

ularly well. Stateful protocols such as OLSR are suitable for networks connected by

stable paths, but are outperformed by stateless flooding in sparse and rapidly chang-

ing networks. Therefore, our goal is to design a protocol that adapts seamlessly and

dynamically to changing network conditions and provides superior performance over

the full range of network operating conditions. Rather than design a new protocol

for routing in heterogeneous mobile networks from scratch, we utilize an approach

that leverages prior work by operating nodes individually as routers or flooders and

switching mode in response to changing network conditions. We present a greedy al-

gorithm (adaptive-flood) that dynamically and individually classifies nodes as routers

or flooders. Nodes classified as routers forward data according to the forwarding
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table computed by the native routing protocol, and those classified as flooders broad-

cast their traffic to all neighbors. Our simulations show that by effectively adapting

the individual operations of nodes as routers/flooders, adaptive-flood achieves perfor-

mance equivalent to, and in some cases significantly better than, that of network-wide

routing or flooding alone.

1.2 How to Schedule Video Streams in Cellular Networks?

In the second part of this thesis, we explore a video streaming application for

cellular networks and develop a scheduling algorithm to enhance the users’ viewing

experience. To aid network and application-layer protocol design, we also develop a

Markov chain model for shadowing to capture its effect on received power. Shadowing

is the variation in signal strength at the seconds timescale caused by large objects

(e.g., buildings, trees) between the transmitter and receiver.

We investigate scheduling algorithms for transmitting multiple video streams from

a base station to mobile clients with the objective of minimizing the number of

application-playout stalls. We present an epoch-by-epoch framework to fairly allocate

wireless transmission slots to streaming videos. First, we show that the problem of

allocating slots fairly is NP-complete, even for a constant number of videos and then

present a fast lead-aware greedy algorithm for the problem. Our greedy algorithm

is optimal when the channel quality of a user remains unchanged within an epoch.

Our experimental results, based on public MPEG-4 video traces and wireless channel

traces that we collected from a WiMAX test-bed, show that the lead-aware greedy

approach results in a fair distribution of stalls across clients when compared to other

algorithms, and result in similar or fewer average number of stalls per client.

Efficient application-layer protocol design relies heavily on models which effec-

tively capture variations in wireless channel conditions. We develop and study the

effectiveness of a finite-state Markov chain model that captures variations due to

shadowing, which occur at coarser time scales. Our work is in contrast to prior work,
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which has focused primarily on channel modeling on a short, per-packet timescale

(millisecond). The Markovian model is constructed by partitioning the entire range

of shadowing into a finite number of intervals. We determine the Markov chain tran-

sition matrix in two ways: (i) via an abstract modeling approach in which shadowing

effects are modeled as a log-normally distributed random process affecting the received

power, and the transition probabilities are derived as functions of the variance and

autocorrelation function of shadowing; (ii) via an empirical approach, in which the

transition matrix is calculated by directly measuring the changes in signal strengths

(collected over a WiMAX and a multi-hop mesh network). We validate the abstract

model by comparing its steady state and transient performance predictions with those

computed using the empirically derived transition matrix and those observed in the

actual traces themselves.

1.3 Thesis Contributions

Having provided an overview of this thesis, we enumerate the main contributions

of our research.

1. We construct Markovian models to analyze the performance of opportunistic

and cooperative forwarding. We show that opportunism outperforms cooper-

ation and identify interference as the main cause for mitigating the potential

gains achievable with cooperative forwarding.

2. We quantitatively analyze the tradeoff between state information collection

(sampling frequency and number of bits per sample) and power consumption for

a fixed source-to-destination goodput constraint. We demonstrate that small

number of bits per sample carry very little information about the network while

large number of bits per sample carry marginal additional information. Simi-

larly, we find that short sampling intervals incur significant overhead while long

intervals fail to take advantage of the temporal correlation in link state.
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3. For heterogeneous ad-hoc networks comprising of both static and mobile nodes,

we propose a greedy algorithm (adaptive-flood) that dynamically classifies indi-

vidual nodes as routers/flooders depending on network conditions and demon-

strate that it achieves performance equivalent to, and in some cases significantly

better than, that of network-wide routing or flooding alone.

4. We design a greedy algorithm for scheduling multiple video streams from a base

station to mobile clients and show that our approach is fair and is successful in

minimizing the number of application-playout stalls.

5. To aid application-layer protocol design, we design a Markovian model to cap-

ture the effect of shadowing on the received power. We develop analytical and

empirical approaches to compute its transition matrix and show via experiments

that the steady state and transient state performance of the Markovian model

is close to that observed from real traces.

The rest of this thesis is structured as follows. In the first part of this thesis, we

investigate routing protocols for static, mobile and heterogeneous networks. We com-

pare opportunistic and cooperative forwarding for static mesh networks in Chapter 2.

We investigate the tradeoff between network state information collection and power

consumption in mobile networks in Chapter 3. Heterogeneous networks are studied

in Chapter 4, where we develop a greedy algorithm for classifying individual nodes as

routers/flooders and show its superior performance. In the second part of this thesis,

we study the problem of scheduling multiple videos (simultaneously being streamed

from a base station to different mobile clients) so as to minimize the total number

of application-playout stalls in Chapter 5 and propose a greedy algorithm to address

this issue. In Chapter 6, we present a Markovian model to model power variations

in wireless networks. Finally, in Chapter 7, we summarize the contributions of this

thesis and discuss future research directions. Throughout this thesis, we discuss re-
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lated work in each of the individual chapters, in context of the research challenges

addressed in that chapter.
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CHAPTER 2

OPPORTUNISM VERSUS COOPERATION

2.1 Introduction

Unlike wireline networks, the broadcast nature of wireless communication allows

a much richer variety of approaches for forwarding packets between a source and

destination than traditional hop-by-hop forwarding along pre-specified paths. In par-

ticular, multiple nodes (in addition to the intended next-hop recipient) can overhear

transmissions in a wireless network and serve as ad hoc relays to assist forwarding.

Recently, two approaches have emerged that seek to exploit wireless channel char-

acteristics when forwarding packets between source and destination in a multi-hop

wireless setting:

(1) Opportunistic Forwarding: Because of the broadcast nature of the wireless

medium, several neighboring nodes may overhear transmissions, even if none of

them is the intended next-hop or final destination. A suitable relay can often be

selected opportunistically among these overhearing nodes to forward the packet

downstream, until it reaches its final destination [9, 13, 15,18,58,59,72,106].

(2) Cooperative Forwarding: In properly synchronized and coded networks, the

signal strengths of multiple simultaneous transmissions of the same packet can

be additive. Thus, if multiple nodes have received the same packet and can

synchronize their forwarding transmissions of that packet, the signal strengths at

downstream receivers will be increased, thus improving the reception probability

at these downstream nodes [28,51,77].

Although opportunistic forwarding and cooperative forwarding are well-known in the

literature, their analysis and comparison in a network setting is rather limited. One
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of the challenges is to find a simple and analyzable model that realistically captures

important characteristics of the wireless medium, such as signal interference strength

and random fading. Most extant work either focuses on link-level analysis in one-hop

networks using a complex channel fading model (e.g., [51,77]), or multi-hop network-

level analysis using a very simple channel fading model (e.g., [13,17]). Moreover, it is

also important that multiple competing flows and their interaction/interference with

each other be considered and understood.

In this chapter, we compare the performances of idealized and representative op-

portunistic and cooperative forwarding strategies under common (and realistic) as-

sumptions. We note that the opportunistic and cooperative forwarding strategies

studied in this chapter are simple and the performance of both schemes can be en-

hanced by careful design decisions. We stress that our goal here is not to propose new

protocols or investigate a specific opportunistic or cooperative transmission protocol

in detail. Instead, our more fundamental goal is to characterize and understand the

differences between these two approaches to forwarding in various multi-hop wireless

scenarios with multiple competing flows. Our contributions are as follows:

(1) We derive closed-form formulas for the packet reception probability in the pres-

ence of cooperative transmitters, interfering transmitters, and random fading.

These results are subsequently used to study the performance (throughput) of

opportunistic and cooperating forwarding strategies in multi-hop wireless net-

works with random fading.

(2) We then analyze a simple n-hop linear network supporting a single flow (e.g., a

wireless network along a road) under opportunistic and cooperative forwarding.

We observe that in the single flow case, cooperation outperforms opportunism.

This result is intuitive; in the single flow case there is no interference among

packets and as there are larger number of transmitters in cooperative forward-

ing, the downstream packet probability reception is greater than opportunistic

9



forwarding. Studying a single flow case in this special setting provides useful

insights and helps us appreciate the results for multiple competing flows.

(3) We develop a Markovian model to determine the throughput achievable by

opportunistic and cooperative forwarding for a general network with multi-

ple competing flows. We analyze this model for a simple topology and show

that opportunistic forwarding can achieve higher throughput than cooperative

forwarding. We study larger-scale networks via simulation and observe that

opportunism outperforms cooperation on average. The worse performance of

cooperative forwarding can be largely attributed to the higher interference due

to multiple competing flows. Lastly, we develop a fixed-point model for ef-

ficiently, but approximately computing the throughput of the Markov model,

allowing performance comparisons in larger-scale networks.

Together, our results indicate that the relatively simple (and lower control overhead)

opportunistic forwarding strategies are preferable to more complex cooperative coun-

terparts in large networks with multiple competing flows. Our results also highlight

the importance of considering multiple flows, since insights gained from single flow

scenarios do not always carry over to the more complex multi-flow scenario, where

interference among flows becomes important.

The rest of this chapter is organized as follows. We describe the forwarding strate-

gies in detail in Section 2.3 and the wireless communication model in Section 2.4. We

analyze a linear network supporting a single flow in Section 2.5. For multiple flows

and general topologies, we present a Markovian model in Section 2.6, which we use to

study a simple diamond topology, together with simulations on random topologies.

In Section 2.7, we provide the fixed-point iteration for solving the Markov model.

We discuss the effect of correlated channels on the performance of opportunistic and

cooperative forwarding in Section 2.8 and conclude the chapter in Section 2.9.
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2.2 Related Work

The first work proposing opportunistic forwarding is [13]. Since then, several

strategies have been proposed to improve the performance of opportunistic forward-

ing [18, 59, 72, 106]. Research efforts have also theoretically analyzed the benefits of

opportunism, including [58], where the authors performed a Markovian analysis to

determine the expected number of network-wide link-layer transmissions needed to

transfer a packet from source to destination in a wireless mesh network. [58] mostly

assumes that link success probabilities are provided a priori and does not consider

random fading in a SINR model, an important component of our models. Also, [17]

provides a recursive relation for estimating the minimum number of required op-

portunistic transmissions. Similarly, [15] proposes an analytical model to study the

performance (expected transmission count) of opportunistic routing protocols. [9]

quantifies the average end-to-end delay obtained by using opportunistic schemes and

demonstrates that it is about half that obtained using typical shortest path routing.

None of these works consider a realistic SINR model with random fading.

A considerable amount of research has also considered cooperation in wireless

networks [51, 64, 77]. [77] and [51] summarize much of this prior work in cooperative

diversity and demonstrate how cooperation improves network performance. [68] is

one of the few papers that describes an implementation of cooperative forwarding. It

demonstrates that by properly synchronizing sender transmissions to symbol bound-

aries, it is possible to outperform opportunistic routing in the absence of interference

for a simple topology. Most past research on cooperation has been in the context of

the physical layer, with only a few efforts exploring how cooperation interacts with

higher network layers [77] and in the presence of multiple interfering flows. In [28]

the authors discuss how to effectively schedule cooperative transmissions for multiple

access scenarios by helping sources with poor channels to the destination use relays

that have better channel quality. We note that our work differs from prior work in

that we address primarily the network-layer concern (with multihop forwarding), with
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the goal of comparing opportunistic forwarding and cooperative forwarding – using a

simple model of SINR with random fading, and in a multihop setting.

2.3 Forwarding Strategies

This section describes the two forwarding strategies compared in this chapter

– opportunistic forwarding and cooperative forwarding. We focus on generic and

representative instantiations of these strategies.

(a) Opportunistic Forwarding: If the packet cannot reach the destination in one hop,

it is relayed by the overhearing node closest to the destination1. This proceeds in

multiple steps, until the packet reaches the destination. In the literature, there

are proposals [13,55] to address implementation details, such as how to select the

appropriate relay when multiple nodes overhear the transmission2. We abstract

away these details, and focus on analyzing this idealized implementation in order

to shed insight into the main advantage offered by opportunism - the ability to

opportunistically select a relay that is closest to the destination.

(b) Cooperative Forwarding: To exploit the additive property of wireless signals,

multiple overhearing relays can transmit the packets towards the destination,

when proper synchronization (e.g., by GPS) among multiple transmitters is

feasible. This is the key innovation introduced in a cooperative strategy. We

assume that a flow maintains a list of relays associated with it. When a node

belonging to a list of relays of a particular flow overhears the transmission from

the flow, it will be assigned as a relay. In the case of multiple network flows,

we do not assume that nodes are allowed to coordinate their transmissions

1In more sophisticated settings, it can be relayed by the node that has the best estimate channel
condition (in some metrics [72]) to the destination. We focus on the simplest setting for our analysis.

2One solution is to use a very low-data rate, reliable out-of-band control channel to transmit the
ACKs among overhearing relays [13], while the relays can be selected in a way to ensure that they
can overhear ACKs among themselves [72].
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with other nodes that receive packets from other flows, as this would involve

prohibitively high overhead. In this case, competing flows are essentially treated

as interference.

A more sophisticated variant of cooperative forwarding is:

(c) Selective Cooperative Forwarding: Although cooperation can reinforce signal

strength, it can also increase the interference level to other simultaneous flows.

A more refined strategy is not to assign all nodes as relays, but to instead select

only a small subset of nodes that are closest to the destination or have advan-

tageous wireless channel conditions when transmitting towards the destination.

This is essentially a hybrid strategy of both opportunistic and cooperative for-

warding. For convenience of analysis, we focus on a simple selective cooperative

forwarding strategy that only assigns two nodes as relays that are closest to the

destination among the overhearing nodes in the list of potential relays.

2.4 Wireless Communication Model

In order to compare the performance of different forwarding strategies, we use

the following channel model to account for SINR and random fading. We proceed in

multiple steps. Let us assume that there are C nodes in the network.

(a) Single Transmission: Let us first consider the simplest case with a single

transmission between node i and node j (∀ i, j =1 to C, i ̸= j). Denote by Si,j the

signal-to-noise ratio from transmitter i to receiver j:

Si,j ,
|xi,j|2Pd−α

i,j

N0
(2.1)

where N0 is a constant background noise, |xi,j|2 is the Rayleigh fading coefficient (the

flat fading channel is modeled as a Gaussian random process xi,j [107]), di,j is the

distance between i and j, α is the path loss exponent, and P is the transmission power

at i. Note that di,j ≥ 1 and α ≥ 2.
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We assume that parameters N0, α,P, di,j are constants – either known or measured

a priori. On the other hand, |xi,j|2 is a random variable, assumed to be exponentially

distributed3 with normalized mean 1. We assume that |xi,j|2 are i.i.d. between

different node pairs. We also assume that there is no temporal correlation i.e., |xi,j|2

is i.i.d. in different time slots between nodes i and j. We discuss how to relax this

assumption in Section 2.8. The probability that Si,j ≥ s (where s > 0) is

P{Si,j ≥ s} = exp
(−sN0

Pd−α
i,j

)
(2.2)

We model the physical layer coding scheme by assuming that a received packet can be

decoded successfully when Si,j ≥ β for a certain threshold β. An important quantity

is the packet reception probability that j can successfully receive the packet from i,

denoted by:

Pi,j , P{Si,j ≥ β} (2.3)

(b) Cooperative Synchronized Transmissions: We next consider a set of coopera-

tive transmitters T = {i1, ..., im} that can synchronize their transmissions such that

the signal-to-noise ratio at receiver j is the sum of the individual signal-to-noise ratios

from the transmitters (see Figure 2.1 (a)). Note that j cannot belong to T . The total

signal-to-noise ratio ST,j from transmitters T to j is:

ST,j ,
∑

r∈T |xr,j|2Pd−α
r,j

N0
(2.4)

Since the individual signal-to-noise ratio is an exponential random variable, the to-

tal signal-to-noise ratio is the sum of exponential random variables. Let fT,j(s) be the

probability density function of ST , which is a convolution of functions fi1,j(s), ..., fim,j(s),

defined by:

3In narrowband Rayleigh fading channel, the power of a signal with envelope as Rayleigh distri-
bution is an exponential random variable [96].
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fT,j(s) , fi1,j(s)~ · · ·~ fim,j(s) (2.5)

where fi1,j(s) , N0

Pd−α
i,j

exp
(

−sN0

Pd−α
i,j

)
is the probability density function of individual

signal-to-noise ratio Si,j.

The probability that j can successfully receive the packet from a set of transmitters

T is given by PT,j , P{ST,j ≥ β}. Deriving a general formula for PT,j for an arbitrary

set of transmitters T is challenging. Hence, we assume that di′,j ̸= di,j for every pair

of transmitters i, i′ and any node receiver j. This significantly simplifies the proofs

on the convolution of exponential distribution functions (see Lemma 1). This mild

assumption, likely satisfied by real topologies, is useful to simplify the expression of

PT,j.

Lemma 1. Denote f~m(s) as the probability density function of the sum of m inde-

pendent exponential random variables with distinct means (λ1, ..., λm).

f~m(s) =
( m∏

r=1

λr

) m∑
r=1

exp(−sλr)∏m
r′=1:r′ ̸=r(λr′ − λr)

(2.6)

Proof. See [11].

We remark that the general case with non-distinct values λr are called hypoexpo-

nential random variables [1]. There are formulas in [5,32] for hypoexponential random

variables, which appear too complicated for the analysis of network-level performance.

Hence, we will rely on Lemma 1 under the assumption of distinct values of λr.

Lemma 2. The probability that j can successfully receive the packet from a set of

transmitters T is:

PT,j =
∑
r∈T

exp
(

−βN0

Pd−α
r,j

)
∏

r′∈T\{r}

(
1−

( dr,j
dr′,j

)α) (2.7)

Proof. Based on Lemma 1, see Appendix A.1.

(c) Competing Interfering Transmissions: Lemma 2 only considers the case of

cooperative synchronized transmitters. To address the case of competing interfering
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Figure 2.1. (a) Cooperative synchronized transmission (b) Competing interfering
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transmissions (e.g., Figure 2.1 (b)), let I be the set of simultaneously competing

transmitters. The signal-to-interference-and-noise ratio SI
i,j from transmitter i to

receiver j in the presence of a set of interfering transmitters I is defined as:

SI
i,j ,

|xi,j|2Pd−α
i,j

N0 +
∑

k∈I |xk,j|2Pd−α
k,j

(2.8)

It is clear that i ̸= j and that i and j cannot belong to I. The probability that j

can successfully receive the packet from transmitter i is given by P I
i,j , P{SI

i,j ≥ β},

which can be obtained from the following lemma.

Lemma 3.

P I
i,j =

∑
k∈I

exp
(

−βN0

Pd−α
i,j

)
(
1 + β

( di,j
dk,j

)α) ∏
k′∈I\{k}

(
1−

( dk,j
dk′,j

)α) (2.9)

Proof. See Appendix A.2 for proof.

(d) Mixed Cooperative & Interfering Transmissions: Last, we consider the general

case with a set of cooperative transmitters T and a set of simultaneously competing

transmitters I. The signal-to-interference-and-noise ratio SI
T,j from a set of cooper-

ative transmitters T to j in the presence of a set of interfering transmitters I is:

SI
T,j ,

∑
r∈T |xr,j|2Pd−α

i,j

N0 +
∑

k∈I |xk,j|2Pd−α
k,j

(2.10)

Note that T ∩ I = ∅ and j cannot belong to T or I. The probability that j can

successfully receive the packet from a set of cooperative transmitters T in spite of
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Figure 2.2. An n-hop linear network.

interfering transmitters I is given by P I
T,j , P{SI

T,j ≥ β}, which can be obtained by

the following lemma, derived using Lemmas 2-3.

Lemma 4.

P I
T,j =

∑
r∈T

∑
k∈I

exp
(−βN0

Pd−α
r,j

)
(
1+β(

dr,j
dk,j

)α
) ∏
r′∈T\{r}

(
1-(

dr,j
dr′,j

)α
) ∏
k′∈I\{k}

(
1-(

dk,j
dk′,j

)α
)

2.5 Networks with Single Flow

Section 2.4 provides single-transmission/reception models for wireless networks

with random fading. We now use this model to construct simple recurrence relations

for source-destination paths and compare the performance of opportunistic to coop-

erative forwarding strategies in a linear network. We observe that in the single flow

case (where there is no network interference), the throughput provided by cooper-

ative forwarding is greater than that provided by opportunistic forwarding. In the

following, we consider the single packet case4 - the source sends no new packet until

the packet reaches the destination.

2.5.1 Opportunistic Forwarding

In Figure 2.2, we consider only one flow in a n-hop linear network, where s is the

source, t is the destination, and s = r0, r1, ..., rn−1, rn = t are the relays. Assume that

4We discuss the multiple packet case in Chapter 7
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the distance between ri−1 and ri (∀ i, j= 1 to n) in the linear network is d, and denote

by p , exp
(−βN0

Pd−α

)
the packet reception probability for a transmission over one hop.

Hence, the probability that i can successfully transmit packets to j when they are n

hops apart is given by:

Pi,j = exp
( −βN0

P(nd)−α

)
= pn

α

(2.11)

For convenience of analysis, we assume α is an integer.

There are two quantities of interest. One quantity is the throughput of the lin-

ear network. Denote by Nop[n] the expected number of transmissions required by

opportunistic forwarding to reach the destination from the source in a n-hop linear

network. We obtain:

Nop[1] =
1
p

Nop[n] = pn
α

+
n−1∑
i=1

n∏
j=i+1

(1− pj
α

)pi
α

(1 +Nop[n− i])

+
n∏

j=1

(1− pj
α

)(1 +Nop[n])

(2.12)

To write a recursive equation for Nop[n] (2.12), we have to consider three cases: 1)

With probability pn
α
, the source can reach the destination in one transmission. 2)

With probability
∏n

j=i+1(1 − pj
α
)pi

α
, the source can reach the node that is (n − i)

hops away from the destination in one transmission, from which the expected number

of transmissions to reach the destination is Nop[n− i]. 3) Otherwise, with probability∏n
j=1(1− pj

α
), the source cannot reach any other nodes.

Because there is only a single flow, the throughput is:

Top[n] =
1

Nop[n]
(2.13)

Another quantity of interest denoted by Hop[n] is the average number of hops

traversed in one transmission, given that the destination is n hops away. We obtain

the recurrence equation:
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Hop[1] = p

Hop[n] = npn
α

+ (1− pn
α

)Hop[n− 1]
(2.14)

We can solve Hop[n] in closed form.

Lemma 5.

Hop[n] =
n∑

j=1

jpj
α
( n∏

ℓ=j+1

1− pℓ
α
)

(2.15)

When n ≥ 2,

Hop[n] = p+ 2p2
α − p1+2α + 3p3

α

+O(p1+3α) (2.16)

Proof. See Appendix A.3.

Theorem 1. The throughput is upper bounded by:

Top[n] ≤
1

n
Hop[n] (2.17)

Proof. See Appendix A.4.

In general, we observe that the upper bound is tight (see Figure 2.3).
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Figure 2.3. (p = 0.8) The throughout Top[n] is tightly bounded by 1
n
Hop[n].

2.5.2 Cooperative Forwarding

Next, we consider cooperative forwarding using all overhearing relays to transmit

the packets to the destination.
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We consider the idealized case of perfect cooperative forwarding, where we can use

all the relays between the source and farthest overhearing relay in the linear network

for cooperative forwarding. Thus, in Figure 2.2, if rk overhears the packet, then we

assume all relays r1, ..., rk−1 also overhear the packets. We aim at bounding the gap

between opportunistic forwarding and cooperative forwarding. Hence, it suffices to

consider perfect cooperative forwarding in order to establish an upper bound on this

gap.

Assuming perfect cooperation, let Hco[n] be the average number of hops reached

in one transmission by cooperative forwarding, given that the destination is n hops

away.

Theorem 2. The expected number of hops a packet can reach in one time slot by

cooperative forwarding is related to that of opportunistic forwarding by:

Hco[n] = O(
√
n) ·Hop[n] (2.18)

Proof. See Appendix A.5.

In this section, we have seen that cooperative forwarding provides higher perfor-

mance (at most sub-linear, i.e.,
√
n improvement) than opportunistic forwarding in

the single-flow, linear-network case. As we will see in subsequent sections, where

we consider multiple competing flows within the network, transmission interference

among flows (which is not present in the single flow case) becomes a critical factor.

This will mitigate the advantages of cooperative forwarding found in this section,

suggesting that the relative advantages of opportunistic and collaborative forwarding

depend strongly on network topology and assumptions about traffic flows.

2.6 Networks with Multiple Flows

Having studied the single flow case for a linear network in the previous section,

we next consider a general setting with an arbitrary network topology and multiple
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flows. The major difference between the single flow and the multiple flow case is

the increased interference due to competing flows. We formulate Markovian models

for analyzing the different forwarding strategies in the multiple flow scenario, using

the packet reception probabilities from Section 2.4. Using these models, we study a

simple topology, and show that opportunistic forwarding can outperform cooperative

forwarding in the absence of inter-flow cooperation. For more general networks we use

simulation and observe that opportunism outperforms cooperation on average. Thus,

we conclude that interference mitigates the potential gains of cooperative forwarding.

2.6.1 Opportunistic Forwarding

First, we present the Markov model for opportunistic forwarding in a general net-

work topology and multiple flows; we then evaluate this model for a simple diamond

network. We denote a set of flows by F . Each flow f ∈ F has a list of participating

nodes denoted by Pf = (vs(f), v1, ..., vd(f)), where vd(f) is the destination and vs(f) is

the source. Each succeeding node in Pf (e.g., vi) has a higher priority than its pre-

ceding nodes (i.e., vj for all j < i) for forwarding the packet, until the packet reaches

vd(f). Formally, we denote “vi ≻f vj” to represent that vi has a higher priority than

vj in Pf .

We denote the state of the network as r , (rf ∈ Pf : f ∈ F ), where rf is the

active relay for flow f for the next forwarding operation. Recall that P I
T,j is the packet

reception probability at j from a set of cooperative transmitters T in the presence of

interfering transmitters I. We denote by Pr,r′ the state transition probability from

state r to state r′, where (r′f ≻f rf or r′f = rf ) and r′f ̸= vd(f), for at least one flow

f ∈ F . Let r¬f , {rf ′ : f ′ ∈ F\{f}}. We obtain:

Pr,r′ ,
∏
f∈F

P
r¬f
rf ,r

′
f
·

∏
v∈Pf :v≻f r

′
f

(1− P
r¬f
rf ,v) (2.19)
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Namely, Pr,r′ is the packet reception probability that every flow f can receive a packet

from rf to r′f , subject to the condition that the set of succeeding nodes {v ∈ Pf :

v ≻f r′f} that cannot receive the packet.

Recall that we assume that the flow’s source transmits a new packet after the

successful delivery of a packet to the the flow’s destination. Therefore when a flow

reaches state rf = vd(f) (i.e., the packet reaches the destination), the state transition

in the next time step will correspond to the states reachable from the source with

their respective probabilities.

We remark that Eqn. (2.19) contains two prohibited cases: 1) two packets cannot

be received by the same receiver at the same time; and 2) a node cannot be receiving

and transmitting at the same time. Because we assume β > 1, Eqn. (2.19) will give

zero transition probability for the above two cases.

The stochastic behavior of the network is characterized by the Markov chain

defined by state transition probability Pr,r′ for every pair of states (r, r′). We then

can evaluate the stationary distribution π(r) for each state of the network r, which

satisfies the following balance equation:

∑
r′′

π(r) ·Pr′′,r =
∑
r′

π(r′) ·Pr,r′ (2.20)

subject to
∑

r π(r) = 1.

The throughput of each flow f , Top(f), is given by:

Top(f) =
∑

r:rf=vd(f)

π(r) (2.21)

2.6.2 Cooperative Forwarding

For cooperative forwarding, we denote the state of the network as R , (Rf ⊆

Pf : f ∈ F ), where Rf is a set of cooperative transmitters of flow f . Let R¬f ,∪
f ′∈F\{f}Rf ′ . The state transition probability PR,R′ , where Rf ⊆ R′

f for at least one

f ∈ F and vd(f) ̸∈ Rf , is given by:
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PR,R′ ,
∏
f∈F

∏
v∈R′

f\Rf

P
R¬f
Rf ,v
·

∏
v′∈Pf\R′

f

(
1− P

R¬f
Rf ,v′

)
(2.22)

Similarly, Eqn. (2.22) also contains the prohibited cases, to ensure that (1) two packets

cannot be received by the same receiver at the same time; and (2) a node cannot be

receiving and transmitting at the same time.

The stationary distribution is denoted by π(R), and the throughput of flow f ,

Tco(f), is given by:

Tco(f) =
∑

R,R′:vd(f)∈R′
f

π(R) ·PR,R′ (2.23)

2.6.3 Selective Cooperative Forwarding

Selective cooperative forwarding only assigns the two closest nodes to the destina-

tion that currently have a copy of the packet as relays . We again denote the state of

the network as R, where Rf ⊆ Pf is a set of potential transmitters of flow f that have

received the packet. The two nodes r1, r2 ∈ Rf are selected, such that r1 ≻f r2 ≻f r

for all r ∈ Rf\{r1, r2}. Hence, we denote the two selected relays by a set r(Rf ).

Let If (r(R)) ,
∪

f ′∈F\{f} r(Rf ′). The state transition probability PR,R′ , where

Rf ⊆ R′
f for at least one f ∈ F and vd(f) ̸∈ Rf , is given by:

PR,R′ ,
∏
f∈F

∏
v∈R′

f\Rf

P
If (r(R))

r(Rf ),v
·

∏
v′∈Pf\R′

f

(
1− P

If (r(R))

r(Rf ),v′

)

2.6.4 Analysis of a Simple Diamond Network

Using the Markov models defined in Secs. 2.6.1 and 2.6.2, we compare the perfor-

mance of opportunistic forwarding and cooperative forwarding with two flows in the

diamond network depicted in Figure 2.4. There are two flows: s1 → t1 and s2 → t2.

Relay r can contribute to either flow, depending on if it can overhear the flow. We

assume β > 1, and by Eqn. (2.10) a node can receive a packet from only one flow at

a time.

The forwarding operations for opportunistic forwarding and cooperative forward-

ing respectively generate the Markov chains in Figure 2.5. Each state corresponds to
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a subset of transmitters that can forward the packet. In opportunistic forwarding,

relay r can forward the packet for a flow during a time slot, provided that it received

a packet previously. In cooperative forwarding, both source and relay will participate

in forwarding. Hence, both Markov chains have the same structure, but different

state transition probabilities.

Figure 2.4. Simple diamond network

s1 r s2

t2

t1

s1 r s2

t2

t1

s1 r s2

t2

t1

pa

pb

pc

pd

1-pc 1-pa-pd 1-pb

πA πB πC

s1 r s2

t2

t1

s1 r s2

t2

t1

s1 r s2
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t1
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pb

pc
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1-pc 1-pa-pd 1-pb

πA πB πC

(a) Opportunistic

(b) Cooperative

Figure 2.5. Markov chains for the forwarding operations in a diamond network.

(a) Opportunistic Forwarding: The stationary distribution is:

πA =
pbpd

papc + pbpc + pbpd
, πB =

pbpc
papc + pbpc + pbpd

πC =
papc

papc + pbpc + pbpd

(2.24)

where the state transition probabilities can be expressed in terms of the packet re-

ception probabilities:
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2
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2 

t
1 

P
s2
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s
1 r s2 

t
2 

t
1 

P
s2
{s1,r},t1

= p2
α
2

(1+β)(1−2
α
2 )

+ p

(1+β·2−
α
2 )(1−2

−α
2 )

Table 2.1. Packet reception probabilities for transmissions (without interference) in
bold arrows, for transmissions (with interference) in dashed arrows.

pa = (1− P s2
s1,t1)P

s2
s1,r

pd = pa

pb = P s2
r,t1 pc = pb

(2.25)

In Table 2.1, we compute all the packet reception probabilities using Lemmas 2-4.

Consider α = 2. The throughput of flow s1 → t1 using opportunistic forwarding

is given by:
Ts1→t1

op , πAP
r
s1,t1

+ πBP
s2
s1,t1 + πCP

s2
r,t1

=
p2(p(2+3β+β2)+4(1+3β+2β2)−p3(2+β)−p2(2+4β))

2(1+2β)((1+β)2−p3(2+β)+p(2+3β+β2))

(2.26)

(b) Cooperative Forwarding: The state transition probabilities can be expressed

in terms of the packet reception probabilities by Lemmas 2-4 (see Table 2.1):

pa = (1− P s2
s1,t1)P

s2
s1,r

pd = pa

pb = P s2
{s1,r},t1 pc = pb

(2.27)

The throughput of flow s1 → t1 using cooperative forwarding is given by:

Ts1→t1
co , πAP

{r,s2}
s1,t1 + πBP

s2
s1,t1 + πCP

s2
{s1,r},t1

=
p2 (−3 + 2p2 − 4β)

(1 + 2β) (2p2 − 3(1 + β))

(2.28)

Theorem 3. The throughput of opportunistic forwarding is superior to that of coop-

erative forwarding:

Ts1→t1
op ≥ Ts1→t1

co (2.29)

Proof. See the Appendix A.6.

25



We also plot the throughput of a flow using opportunistic forwarding and cooper-

ative forwarding in the case of two competing flows in Figure 2.6. This corroborates

our intuition that cooperation can degrade performance due to the increased amount

of interference generated by the larger number of simultaneous transmitters.
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Figure 2.6. Throughput of opportunistic forwarding and cooperative forwarding in
a diamond network.

2.6.5 Simulations for Random Networks

Having studied a simple diamond network via a Markovian analysis, we next use

simulation to study larger network settings. As we will see, the insights gained in the

small scale setting generally apply in this more general setting. We consider 50 nodes

uniformly distributed in a 100 × 100 area. We select 4 distinct source-destination

pairs (referred to as a ‘configuration’) at random from the 50 nodes. We simulate the

link quality between different pairs of nodes for every time slot using the Rayleigh

fading channel model. The simulation begins by all 4 sources transmitting packets.

A node is able to receive a packet if the SINR between the transmitter and itself

is above a threshold. The opportunistic and cooperative routing protocols govern

the nodes that transmit packets in the next time slot. When a packet reaches the

corresponding destination, the source starts transmitting a new packet. We conduct

this simulation for 5000 time slots and keep track of the number of packets received

at the destination to calculate the throughput. We refer to the simulation of a given

‘configuration’ as a ‘run’.
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Recall that our earlier results revealed that interference among different flows

played an important factor in determining performance. Thus, when presenting

throughput comparisons in this section, we would like to quantify such interference

among packets flowing from source to destination along “paths” between given sets

of source-destination pairs. Note, however, that there is no well-defined notion of a

deterministic “path” along which packets flow for either opportunistic or cooperative

forwarding. Thus we characterize the level of interference among flows by taking 10

points equidistantly-spaced between a flow’s source and destination for each flow. Let

L(f) denote the set of these 10 points for flow f . We consider the distance between

all pairs of such points i, j in the following manner:

Intf-Metric ,
∑
f∈F

∑
f ′∈F\{f}

∑
i∈L(f)

∑
j∈L(f ′)

d−α
i,j (2.30)

Intf-Metric provides a coarse measure of the interference (as caused by the nearness

of potentially interfering nodes for different flows). Higher value of Intf-Metric indi-

cates a greater amount of interference in the network. In Figure 2.7 we plot the

difference in throughput between the opportunistic and cooperative strategies versus

the Intf-Metric for a β of 4. The figure is obtained by conducting 100 ‘runs’, each

time with a different ‘configuration’. Points above the line drawn at Throughput

Difference=0 indicate the cases where opportunism performs better than cooperation

while the points below the line depict the opposite. The results in Figure 2.7 indicate

that on average the performance of opportunism is better than that of cooperation

and this is true for a wide range of Intf-Metric values.

2.7 Fixed-point Model

Section 2.6 provided a Markovian model of multiple flows in a general network

setting. However, the number of states increases exponentially with the number

of flows in this model. Hence, evaluating the stationary distribution of the model

quickly becomes intractable. Thus, in this section we introduce a fixed-point model
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Figure 2.7. Throughput difference between opportunism and cooperation in random
networks.

to simplify the evaluation. We will show that the throughput obtained from the fixed-

point model is a lower bound to the actual throughput of the Markov model. In order

to establish this model as a lower bound, we assume that the sets of participating

nodes among distinct flows are disjoint (i.e., Pf ∩ Pf ′ = ∅).

Our approach is to model each flow independently and capture their dependence

by accounting for interference between flows within each flow model. This gives rise to

a set of fixed-point equations for the stationary distributions, which can be obtained

via efficient iterative methods.

2.7.1 Opportunistic Forwarding

The state of a flow f ∈ F is specified by the active relay r ∈ Pf that overhears

the transmission and has the highest priority among the overhearing participating

nodes. We next describe a set of fixed-point equations for individual flows.

First, suppose that the stationary distribution of a node j ∈ Pf to become an

active relay is given by π̂f (j). Then, the expected interference to j from all other

flows w.r.t. stationary distributions π̂¬f , {π̂f ′ : f ′ ∈ F\{f}} becomes:

Îfj (π̂¬f ) =
∑

f ′∈F\{f}

∑
i∈Pf ′

π̂f ′(j) · E[|xi,j|2] · Pd−α
i,j

=
∑

f ′∈F\{f}

∑
i∈Pf ′

π̂f ′(j) · Pd−α
i,j

(2.31)
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where the fading coefficient |xi,j|2 is an i.i.d. exponential random variable with nor-

malized mean 1. Note that Îfj (π̂) does not depend on π̂f , but only on {π̂f ′ : f ′ ∈

F\{f}}.

Suppose that the interference from other flows remains stationary and has distri-

bution π̂¬f . Then the packet reception probability that j can successfully receive the

packet from i in flow f w.r.t. π̂¬f is given by:

P̂ f
i,j(π̂¬f ) , P

{ |xi,j|2Pd−α
i,j

N0 + Îfj (π̂¬f )
≥ β

}
= exp

(−β(N0 + Îfj (π̂¬f )
)

Pd−α
i,j

)
(2.32)

Next, we focus on the Markov model of an individual flow. In such a model, we

denote by P̂f
r,r′(π̂¬f ) the state transition probability from an active relay r ∈ Pf to

another active relay r′ ∈ Pf such that (r′ ≻f r or r′ = r) and r ̸= vd(f), w.r.t. π̂¬f :

P̂f
r,r′(π̂¬f ) , P̂ f

r,r′(π̂¬f ) ·
∏

v∈Pf :v≻f r′

(
1− P̂ f

r,v(π̂¬f )
)

(2.33)

Denote the stationary distribution of this model as π̂f . It satisfies the following

balance equations for all r ∈ Pf :

∑
r′′∈Pf

π̂f (r) · P̂f
r′′,r(π̂¬f ) =

∑
r′∈Pf

π̂f (r
′) · P̂f

r,r′(π̂¬f ) (2.34)

subject to
∑

v∈Pf
π̂f (v) = 1.

Eqns. (2.31)-(2.34) form a set of fixed-point equations for (π̂f : f ∈ F ). Solving

the fixed-point (π̂f : f ∈ F ) can be achieved by an iterative method. We first assume

a certain distribution (π̂0
f : f ∈ F ). Then we obtain π̂1

f from Eqns. (2.31)-(2.34)

w.r.t. π̂0
¬f , for all f ∈ F . We repeat the process for t steps, until π̂t

f has a small

deviation from π̂t−1
f .

The throughput of the fixed-point model is defined by:

T̂op(f) = π̂f (vd(f)) (2.35)
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Theorem 4. The throughput obtained from the fixed-point model is a lower bound to

the actual throughput of the Markov model:

Top(f) ≥ T̂op(f) (2.36)

Proof. See the Appendix A.7.

2.7.2 Cooperative Forwarding

The fixed-point model for cooperative forwarding is similar to that of opportunistic

forwarding. But the state of a flow is specified by the set of cooperative transmitters

R ⊆ Pf . By Lemma 2, the packet reception probability that j can successfully receive

the packet from the set of cooperative transmitters R in a flow f is given by:

P̂ f
R,j(π̂¬f ) =

∑
r∈R

exp
(

−β(N0+Îfj (π̂¬f ))

Pd−α
r,j

)
∏

r′∈R\{r}

(
1−

( dr,j
dr′,j

)α) (2.37)

Note that the state of flow is R, a subset of cooperative transmitters. Then the

stationary distribution of a node j ∈ Pf is given by:

π̂f (j) =
∑

R⊆Pf :j∈R

π̂f (R) (2.38)

In the Markov model of an individual flow f , the state transition probability PR,R′

from R ⊆ Pf to R′ ⊆ Pf such that R ⊆ R′ and vd(f) ̸∈ R, is defined by:

P̂f
R,R′(π̂¬f ) ,

∏
v∈R′\R

P̂ f
R,v(π̂¬f ) ·

∏
v′∈Pf\R′

(
1− P̂ f

R,v′(π̂¬f )
)

(2.39)

To solve the fixed-point (π̂f : f ∈ F ), we rely on a similar iterative approach as for

the case of opportunistic forwarding. The throughput obtained from the fixed-point

model can be shown as a lower bound to the actual throughput of the Markov model,

using the same argument as in Theorem 4.
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2.7.3 Selective Cooperative Forwarding

The case of selective cooperative forwarding is similar to basic cooperative for-

warding, except with a modification to consider the two best relays instead all relays.

Specifically, let the two best relays be r1, r2 ∈ R for flow f , such that r1 ≻f r2 ≻f r

for all r ∈ R\{r1, r2}. We denote the two selected relays by a set rf (R). The packet

reception probability that j can successfully receive the packet from the set of coop-

erative transmitters R in a flow f is given by P π̂
rf (R),j. And the stationary distribution

of a node j ∈ Pf is given by:

π̂f (j) =
∑

R⊆Pf :j∈rf (R)

π̂f (R) (2.40)

The state transition probability PR,R′ from R ⊆ Pf to R′ ⊆ Pf such that R ⊆ R′

and vd(f) ̸∈ R, is defined by:

P̂f
R,R′(π̂¬f ) ,

∏
v∈R′\R

P̂ f
rf (R),v(π̂¬f ) ·

∏
v′∈Pf\R′

(
1− P̂ f

rf (R),v′(π̂¬f )
)

(2.41)

To solve the fixed-point (π̂f : f ∈ F ), we rely on a similar iterative approach as for

the case of opportunistic forwarding. The throughput obtained from the fixed-point

model can be shown as a lower bound to the actual throughput of the Markov model,

using the same argument as in Theorem 4.

2.7.4 Comparison of Fixed Point and Simulation

We compare the performance of our models with the simulation results. For these

simulations we consider a 5× 5 grid topology and consider opportunistic forwarding

and selective cooperative forwarding. The simulation procedure is similar to the

one outlined in Section 2.6.5. For the model we iteratively solve the fixed point

equations in Section 2.7.1 and 2.7.3 for the opportunistic and selective cooperative

forwarding strategies. Results in Figure 2.8 are obtained considering 5 parallel flows,

each moving vertically downwards in the grid. Flows are given ids ranging from 1
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to 5 starting from one end of the grid to the other. As expected, we find that for

both schemes Flows 1 and 5 have maximum and comparable throughput as they

experience the minimum amount of interference from other flows. Flow 3 has the

minimum throughput because it is situated in the middle and experiences maximum

interference. Moreover the throughput of opportunism is greater than cooperation.

This is primarily due to increased interference in the cooperative case because of

greater number of transmitters. We note that although the throughput obtained by

our fixed-point model is lower than that obtained by simulation the relative ordering

between opportunistic and cooperative forwarding is preserved.
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Figure 2.8. Comparison between simulation and fixed-point model

2.8 Discussion

In this chapter so far, we assumed that fading is i.i.d. (uncorrelated) in different

time slots. This assumption will hold true only for fast fading where the coherence

time is smaller than the duration of a time slot. In the case of slow fading, where the

i.i.d. assumption will not hold, cooperation is likely to have additional benefits over

opportunism because of multiple transmitters.

References [108,109] take into account fading correlation and show how a Markov

model for a block error process is a good approximation. The authors assume a flat

fading channel modeled as a complex Gaussian process (xij) (|xij|2 is the Rayleigh

fading coefficient). The fading correlation is modeled in a standard fashion as a mod-

ified Bessel function of the first kind and zeroth order. They consider the packet
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reception model similar to ours (i.e., SNR > β). They then show using information

theory that a Markov model for a success/failure process in case of packet trans-

mission is a good approximation. We denote the parameters of the Markov chain

as M =

a b

c d

. The authors calculate expressions for a, b, c, d [108, 109]. Here

c denotes the P [success|failure] (Equation 47 in [109]) and this is calculated by

taking fading correlation into account. Let c1, c2 and c3 denote the probability of

successfully receiving a packet by a node located 1-hop , 2-hop and 3-hop away from

the transmitter respectively (considering correlated fading), given that the previous

transmission to that node was a failure.

We next analytically show how to model greedy opportunistic forwarding con-

sidering correlated fading for a simple linear network (the approach can be easily

generalized to N-hop linear networks). Modeling cooperative forwarding (as opposed

to opportunistic forwarding) considering correlated fading as a Markov chain may not

be possible (it is just not sufficient to know whether the previous transmission was

successful or not; it is necessary to know the signal strength values of the previous

transmissions). Additionally, one has to consider the summation of two complex ran-

dom variables and it is not apparently clear what that sum should be. We leave the

problem of analyzing cooperative forwarding for correlated fading as future work.

2.8.1 Greedy Opportunistic Forwarding Under Correlated Fading

Let us consider a simple linear network of four nodes similar to Figure 2.2. When

we assume that fading is i.i.d. among the different time slots, we can model oppor-

tunistic forwarding using a Markov chain. There are three states in the Markov chain

namely A = {1, 0, 0, 0}, B = {0, 1, 0, 0} and C = {0, 0, 1, 0} where 1 denotes that a

node has a packet and 0 denotes that the node does not have a packet. We do not

need a fourth state denoting that the packet is received at destination t because in the

next time slot, s will transmit a new packet and hence one can assume a transition
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to state A if t receives the packet. Therefore, if there are n nodes in the network the

state space will be n− 1.

When we relax the i.i.d. assumption, the state space will increase to 2(n − 1).

Each state will now be split into two states. Let us consider state A. We split this one

state into two states A1 = {1, 0, 0, 0} and A2 = {1∗, 0, 0, 0}. Each node can effectively

be in three states:

• 0 denotes that the node does not have a packet.

• 1 denotes that a node is going to transmit a packet for the first time, i.e., it will

receive an independent fade to all nodes downstream.

• 1∗ denotes that a node transmitted in the previous time slot and none of the

nodes downstream received the packet, i.e., it has a bad fade to all nodes down-

stream.

Note that this simple classification is sufficient. For example, if node s transmits

in a time slot and one of the nodes downstream (say node r2) receives the packet,

then node s will not transmit in the next time slot (greedy opportunism). The

states of the Markov Chain are A1 = {1, 0, 0, 0}, A2 = {1∗, 0, 0, 0}, B1 = {0, 1, 0, 0},

B2 = {0, 1∗, 0, 0}, C1 = {0, 0, 1, 0}, C2 = {0, 0, 1∗, 0}. We can now write the transition

matrix PM as



p3 q1q2q3 p1q2q3 0 p2q3 0
c3 (1− c1)(1− c2)(1− c3) c1(1− c2)(1− c3) 0 c2(1− c3) 0
p2 0 0 q1q2 p1q2 0
c2 0 0 (1− c1)(1− c2) c1(1− c2) 0
p1 0 0 0 0 q1
c1 0 0 0 0 1− c1


(2.42)

where p1, p2 and p3 denote the 1-hop , 2-hop and 3-hop packet reception probabilities

respectively, considering i.i.d. fading while q1, q2 and q3 are corresponding probabil-

ities of the packet not being received. Let π denote the steady state distribution of
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the Markov chain. The throughput T is calculated as T = p3πA1 + c3πA2 + p2πB1 +

c2πB2 + p1πC1 + c1πC2 .
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Figure 2.9. Comparing greedy opportunistic routing for correlated and i.i.d. fading

Figure 2.9 shows the comparison of greedy opportunistic routing for correlated

and uncorrelated fading. In the figure, rho denotes the correlation coefficient be-

tween successive fading samples. We observe from the figure that the throughput of

opportunistic routing for correlated fading is lower than that for uncorrelated fad-

ing. This result corresponds with our intuition - in greedy opportunistic routing,

it is always the case that among the nodes which have a copy of a packet, the one

closest to the destination transmits the packet. If a transmitting node (say s) has

a bad channel to nodes closer to the destination than itself, then the transmission

will be unsuccessful and s will have to retransmit the packet. But in case of cor-

related fading, unlike the uncorrelated channel case, the channel is likely to remain

bad in the future as well, with the effect that the future transmissions will also be

unsuccessful. When s has a good channel to the nodes closer to the destination than

itself, the transmission is likely to be successful. But in the next time slot, s will not

get the chance to transmit again as some other node closer to the destination will

transmit the packet. As greedy opportunistic routing fails to take advantage of good

channel conditions, the its performance is poorer for correlated fading in comparison

to uncorrelated fading.
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2.9 Conclusion

In this chapter, we used modeling and analysis to investigate the performance

benefits of using opportunism and cooperation in wireless networks assuming i.i.d.

fading in successive time slots. Our goal here was to compare the performance of

idealized and representative opportunistic and cooperative forwarding strategies using

generic models and under common realistic assumptions. We began with a single

flow linear network, and observed that cooperation outperforms opportunism. We

then considered the case of more general network topologies with multiple flows and

observed that unlike the linear network case, opportunism outperformed cooperation

on average (assuming uncorrelated fading channels). We identified the interference

resulting from the larger number of transmissions under cooperative forwarding as a

cause for mitigating the potential gains achievable with cooperative forwarding.
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CHAPTER 3

OPTIMIZING CONTROL OVERHEAD FOR
POWER-AWARE ROUTING

3.1 Introduction

The overhead of gathering state/control information (e.g., link states, node loca-

tions, queue lengths) can be significant in a mobile ad-hoc wireless network (MANET)

when bandwidth is limited and network structure and state may change frequently.

In such dynamic scenarios, it may still be advantageous to collect state information,

provided that this information leads to better decisions that more than compensate

for the additional overhead incurred. For example, the decrease in available path

bandwidth as a result of state gathering overhead may be more than compensated

for by the choice of better paths for routing data packets. Efficient bandwidth use is

not the only metric of concern in ad hoc networks; since nodes are typically battery

powered, minimizing power consumption is also important.

Understanding the tradeoff between the cost incurred in state information col-

lection in a network and the resulting performance is a fundamental, yet largely

unexplored problem. In this chapter, we analyze this tradeoff between the amount of

state information collected (at what precision?, how often?) and overhead incurred,

and the resulting performance in wireless networks while providing goodput guaran-

tees. We develop an information-theoretic, bounding approach to analyze the tradeoff

between the amount of signaling overhead incurred in path selection in a MANET

with time-varying wireless channels and the application-level goodput and end-to-end

power expended on the selected path.
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We consider a network of n nodes with multiple source-destination pairs. We

assume each source has m disjoint paths to the destination with k links on each path

and that time is divided into intervals. At the beginning of every interval, each source

collects ‘noisy’ estimates about the links in the network. By ‘noise’ we refer to the

quantization error arising from finite precision representation of link states. The link

state estimates in our model characterize the (time-varying) effect of shadowing on

the received power.

We use the information-theoretic rate-distortion approach to quantify the noise

in the link measurements - as we use more bits to encode time-varying link state, the

fidelity of the estimates increase, but the control overhead also increases. Moreover,

we assume each source also desires to achieve a fixed amount of goodput, which

is defined as the total throughput (including control and data) minus the control

overhead. The source selects a path i among the m paths such that the expected

power consumed in that interval is minimized. The problem we address can be then

stated in the following manner.

At what time granularity should links be sampled and at what rate (bits) should

link values be encoded such that the expected power consumed in any interval is min-

imized subject to a fixed source-to-destination goodput constraint? We formulate an

optimization problem that provides a numerically computable solution to these ques-

tions. The optimization problem takes as input the desired goodput, and leverages the

distribution and autocorrelation of the shadowing process to determine the optimum

value of the sampling interval and the number of bits per sample such that minimum

power (for data and control) is consumed. Our optimization problem is solved off-line

and provides network operators a tool for determining optimal operating points (state

update frequency, number of bits per sample).

As expected, our evaluation quantitatively demonstrates that short sampling in-

tervals incur significant overhead while long intervals fail to take advantage of the

temporal correlation in link state. We also observe that using a small number of
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bits per sample does not provide sufficient information about the network while us-

ing too many bits provides little additional information at the expense of increased

overhead. Additionally, we simulate a network with varying link states and compare

the performance of the numerical and simulation results.

The rest of the chapter is organized as follows. We discuss related work in Sec-

tion 3.2 and provide a brief overview of rate-distortion in Section 3.3. In Sections 3.4

and 3.5 we describe our network model and the optimization problem respectively.

We then provide a solution for the optimization problem in Sections 3.6 and 3.7.

We present the numerical and simulation results in Sections 3.8 and 3.9 respectively

and finally conclude the chapter in Section 3.10.

3.2 Related Work

Theoretical studies characterizing the overhead of routing protocols in MANETs

has been done by Abouzeid et. al [93, 97, 104, 105]. Zhou and Abouzeid [105] math-

ematically analyze the overhead of reactive routing protocols and estimate the over-

head associated with route discovery and route failure. They validate their numerical

results via simulations of regular and random topologies. Information-theoretic tech-

niques have been used to obtain lower bounds on memory requirements and routing

overhead for hierarchical proactive routing in mobile ad hoc networks in [104]. The

tradeoff between network properties such as connectivity, unpredictability and re-

source contention and state (control or data or both) information collection has been

studied by Manfredi et. al [60].

Our work is closest to [93] where the authors use rate-distortion techniques for

analyzing the protocol overhead of link state MANET routing. They derive lower

bounds on the minimum bit rate at which a node must receive link state information

in order to route data packets with a guaranteed delivery ratio. We differ from the

above mentioned works because we consider the path selection problem and analyze

the tradeoff between the signaling overhead (state update frequency and the number
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of bits per sample) and power consumption in time-varying channels while providing

goodput guarantees.

Most prior work has adopted simulation-based techniques to study the overhead

of routing protocols in mobile wireless networks [21, 40]. Simulation has been used

to study the performance of AODV and OLSR protocols in both VANETs [40] and

MANETs [21]. Viennot et. al [22] perform a simple analysis of the control traffic

for reactive and proactive protocols in MANETs considering parameters such as the

average degree per node, the average number of routes created/sec and then compare

analytical and simulation results for AODV, DSR and OLSR.

Power consumption in wireless networks is also a well explored field [12,56]. In [12]

the authors consider the problem of joint routing, scheduling and power control in

wireless networks and provide an approximate algorithm with performance guaran-

tees to address it. Liu et.al [56] study the optimal power allocation scheme which

maximizes the throughput with delay and average power consumption constraints.

The primary difference between existing literature on power optimization and our

work is that we model state gathering overhead/costs and are interested in determin-

ing the optimal sampling frequency and number of bits for encoding samples so as to

minimize the power dissipation while maintaining a fixed goodput.

3.3 Background

We begin with a brief overview of information-theoretic rate-distortion theory. A

thorough description of this approach is available in [24]. Our goal here is to introduce

the reader to this technique and describe its application to our problem.

Rate distortion theory describes the minimum rate (bits) required to achieve a

particular distortion, where distortion is defined as the expected distance between a

random variable and its reconstruction from its representation in bits (i.e., quantiza-

tion). The theory also tells us that given a sequence of n i.i.d. random variables it is
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possible to achieve a lower rate at a given distortion if we represent the sequence of

the n variables jointly instead of considering them individually.

Let X be the (source/encoded) alphabet and X̂ be the (receiver/decoded) al-

phabet. Similarly, let Xn and X̂n denote the encoded and decoded sequences and

denote f and g as the encoding and decoding functions respectively. The distor-

tion d(x, x̂) is a measure of the cost of representing the symbol x by the symbol

x̂. The distortion between two sequences xn and x̂n is denoted by d(xn, x̂n) is

defined as d(xn, x̂n) = 1
n

n∑
i=1

d(xi, x̂i). For a given encoding and decoding scheme,

D = E[d(Xn, g(f(Xn))] where the expectation is calculated over X.

The rate distortion function R(D) for an i.i.d. source X with distribution p(x) and

bounded distortion function d(x, x̂) is equal to the associated information rate distor-

tion function R(I)(D) and is defined by equation (3.1).

R(D) = R(I)(D) = min
p(x̂|x):E[d(X,X̂)≤D]

I(X; X̂) (3.1)

where I(X; X̂) is the mutual information between X and X̂ and the minimization

is taken over all possible distributions p(x̂|x). R(D) thus represents the minimum

number of bits required to encode each symbol X, given that the entire sequence Xn

is encoded. The rate distortion function thus tells us that there exists some f and g

such that the expected distortion is bounded by D if rate R(D) is employed.

3.4 Network Model

In this section, we describe our network model and assumptions. We consider

a network of n nodes with multiple source-destination pairs where each source has

m disjoint paths to the destination with k links on each path. We assume time is

divided into intervals of duration Ts and at the beginning of every interval, each

source receives ‘noisy’ estimates about the links in the network.
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In our model these link state estimates characterize the (time-varying) effect of

shadowing on the received power. Shadowing is assumed to be a lognormally dis-

tributed random process (in dB it is normally distributed) [70]. Consider any sam-

pling interval and let t be a time of interest in that interval, 0 ≤ t < Ts. Let us

consider the ith path and the jth link along this path at some time t.

Let Lij(t) be the lognormal shadowing process and X ′
ij(t) = 10 log10 Lij(t) be

its value in dB. X ′
ij(t) is assumed to be a stationary Gaussian random process with

mean µ = 0 and autocorrelation function RX′(τ) = σ′2e−λτ [38]. The autocorrelation

coefficient function (ρ′(τ)) for any stationary random process X ′(t) may be defined

as ρ′(τ) =
RX′ (τ)−µ2

RX′ (0)−µ2 . Thus for the shadowing process, the autocorrelation coefficient

function is given by : ρ′(τ) = e−λτ .

For ease of analysis we express lnLij(t) = ln 10
10

X ′
ij(t) = Xij(t) replacing the

logarithm to base 10 with the natural logarithm. Hence, Xij(t) is also Gaussian

random process with mean 0 and autocorrelation function RX(τ) = σ2e−λτ where

σ2 = ( ln 10
10

)2σ′2. Therefore, the autocorrelation coefficient function(ρ(τ)) of X(t) is

given by ρ(τ) = ρ′(τ). The correlation of Xij(t) indicates how the link state varies

during the sampling interval, given its value at the beginning of the sampling interval.

Knowledge of the correlation is essential for computing the expected power expended

in an interval.

At the beginning of the sampling interval, the source receives X̂ij(0), which are

‘noisy’ estimates of Xij(0). As Xij(0) are drawn from a continuous distribution, en-

coding them exactly will require an infinite number of bits. The ‘noise’ therefore

corresponds to the quantization error and thus X̂ij(0) are finite precision representa-

tion of Xij(0). The number of bits used to encode the values of Xij(0) determines the

closeness of X̂ij(0) to Xij(0); thus, the inaccuracy in X̂ij(0) decrease as more bits are

used for encoding. If ϵ is the noise or quantization error then, X̂ij(0) = Xij(0) + ϵ.

We model ϵ as Gaussian noise with mean 0 and variance σ2
e [61]. We consider that

all the link state values are encoded together and sent to the source. We use rate-
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distortion techniques [24] to upper bound σ2
e . In particular, define the distortion as

the squared-error distortion, d(x, x̂) = (x − x̂)2. Then σ2
e = E[(X̂ij(0) −Xij(0))

2] ≤

D. The rate distortion function R(D) for any N(0, σ2) source with squared-error

distortion is given in [24]:

R(D) =


1
2
log2

σ2

D
0 ≤ D ≤ σ2

0 D > σ2

(3.2)

Equation (3.2) thus represents the minimum number of bits required to encode each

shadowing sample. It is also clear that X̂ij(0) is a Gaussian random variable with

mean 0 and variance σ2
D given by σ2

D = σ2
e + σ2.

We assume that the path loss and thus the distance between any two pairs of

nodes in the network is the same. Later in Section 3.7 we discuss how to relax this

assumption.

3.5 Minimum Power Problem

In this section, we describe the Minimum Power Problem. Each source desires

a goodput G. Let Cb and Ct be the control overhead and the overall throughput

(combined control and data) respectively. Therefore we have Ct = G + Cb. At the

beginning of each sampling interval, the source collects noisy link state estimates.

The source desires to minimize the expected power spent in any interval to achieve

goodput G. Based on the noisy link state estimates collected, the source calculates

the expected power consumed (for data and control) along each of the M paths to

the destination in that sampling interval. It then selects the path i for which the

expected power consumed is least. Note that we do not consider the power expended

in the sampling process itself.

The goal of the Minimum Power Problem is to determine Ts (the sampling dura-

tion) and D (the measure of distortion) such that over all possible instantiations of
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link estimates the expected power consumed (for transmitting both control and data)

in any sampling interval to achieve a goodput requirement G is minimized.

Let Qi be the expected power dissipated along the ith path in a sampling interval,

given the sampling interval Ts, the distortion D and the link state estimates X̂ij(0)

at the beginning of the interval. The source selects the path that dissipates the mini-

mum expected power in the sampling interval and thus the Minimum Power Problem

can be formally stated as,

Objective: min
Ts,D

E[min
i
Qi]

subject to the constraint:

Ct − Cb = G

3.6 Power Consumption and Control Overhead

In this section, we begin by modeling the transmit power expended along each path

needed to achieve a fixed throughput during the sampling interval. We then model

the control overhead as a function of the total number of links in the network and the

rate distortion function. These models for power, control overhead and shadowing

are then used to obtain an approximate solution to the Minimum Power Problem in

Section 3.7.

3.6.1 Power Consumption

The transmitted power Pi(t) along the i
th path at time t to achieve a total through-

put Ct (data and control) is obtained by summing the per-link power of each hop. Let

PW
ij (t) be the transmit power on the jth link along the ith path at time t when W and

B are the transmission rate at any node and the available channel bandwidth in Hz

respectively. We assume a homogeneous network with equal path loss between any

two nodes; let d denote the distance between any two nodes in the network. Further

let us consider a reference distance d0 and let Pt(d0) and Pr(d0) be the transmit and
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received power between two nodes separated by d0. Shannon’s formula [24] in Eqn.

(3.3) relates the transmission rate, the shadowing, the AWGN and the power.

W = B log2(1 +
PW
ij (t)Lij(t)

FN0

) (3.3)

where N0 is the noise, F = Pt(d0)
Pr(d0)

( d
d0
)α and α is the path loss exponent. Hence we can

transform the above equation in the following manner:

PW
ij (t) =

2W/B − 1

Lij(t)
FN0 (3.4)

There is a subtle point to be noted here. Although the transmission rate is W ,

the source can only achieve a lower throughput Ct, as the wireless medium is a shared

resource - if multiple nodes transmit together, interference and packet loss can occur.

We assume that there is a scheduling algorithm that determines the time periods

during the sampling interval when each source gets the opportunity to transmit.

Each source transmits for only a fixed fraction of time during a sampling interval,

e.g., it is allocated a fixed number of transmission slots in an interval. Let T1 be the

amount of time a source transmits in an interval of duration Ts.

0 T
s
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T
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δT

δT

Figure 3.1. Power transmitted in a sampling interval

We abstract away the scheduling details and define the scheduling factor as S = T1

Ts
.

S depends on the scheduling algorithm and the number of nodes and is a parameter in

our model. Further, we consider a MANET with fast moving nodes (e.g., a military
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MANET) such that Ct is much smaller than W . We also note that any arbitrary

value of Ct is not achievable, e.g., the achievable Ct is bounded by results such as the

Gupta-Kumar result [39].

Each source transmits for a duration T1 in a sampling interval. Abstracting away

the scheduling details, we assume that the source transmits at rate W uniformly for

small durations (δT ) throughout the sampling interval and the time between two

consecutive transmissions is Ts

T1
δT . This is shown in Figure 3.1. The bars in the figure

depict time periods when transmissions take place. This abstract modeling approach

is necessary as one cannot assume that the source transmits continuously at rate W

for a duration T1 in the sampling interval. This would lead to an incorrect estimate of

the expected power expended during the sampling interval, because the effects of the

correlation of the shadowing process would be incorrectly accounted for if an interval

T1 is considered instead of Ts.

Our objective is to derive an expression for Pij(t), the transmit power on the jth

link required to achieve a constant throughput (Ct) for the entire sampling interval

Ts similar to Eqn. (3.4). We model Pij(t) by:

Pij(t) =
a

Lij(t)
FN0 (3.5)

The value of a should be such that the total energy consumed and the total number

of bits transmitted in the sampling interval are the same when transmitting at W for

time T1 and at Ct for time Ts. Ensuring that the total number of bits transmitted in

both cases are the same, leads to Eqn. (3.6).

W = Ct
Ts

T1

=
Ct

S
(3.6)

We must also ensure that the total energy consumed is equal. Consider any two

consecutive transmission time periods, i.e., points A and B in Figure 3.1. We assume
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that as δT is very small, the shadowing value remains constant during the time

interval Ts

T1
δT . Therefore we have,

a = (2W/B − 1)
T1

Ts

= (2Ct/SB − 1)S (3.7)

Substituting Eqn. (3.7) in Eqn. (3.5) we obtain the expression for Pij(t). The total

power Pi(t) expended along the ith path is the sum of the per-link power of each hop

and thus:

Pi(t) =
k∑

j=1

Pij(t) =
k∑

j=1

2Ct/SB − 1

Lij(t)
SFN0 (3.8)

3.6.2 Control Overhead

Following [93], we model the minimum overhead for gathering link state informa-

tion as,

Cb =
n(n− 1)

2

R(D)

Ts

(3.9)

The rationale behind this abstract model is that the total number of links must be

less than n(n−1)
2

(the total number of links is O(n2)), and that a source must know

the state of all network links to compute its best path to the destination.

3.7 Solving the Optimization Problem

In this section, we approximately solve the Minimum Power Problem. We begin

by expressing Pi(t) (Eqn 3.8) as:

Pi(t) =
k∑

j=1

CYij(t) (3.10)

where C = (2Ct/SB−1)SFN0 and Yij(t) =
1

Lij(t)
. Therefore, Yij(t) is also a lognormal

random process and we have lnYij(t) = −Xij(t).
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Recall that Qi is the expected power consumed along the ith path in a sampling

interval, given the sampling duration Ts, the distortion D and the link state estimates

X̂ij(0). Note that the centralized solution to the optimization problem only has

estimated, finite-precision X̂ij(0)
′s available to it and not the true values Xij(0). Qi

can be formally expressed as,

Qi =
1

Ts

Ts∫
0

E[Pi(t)|X̂i1(0)X̂i2(0).....X̂ik(0);Ts, D]dt (3.11)

Note that Ts and D are model parameters and are not random variables: we thus

omit them while expressing conditional expectations. The expression for Qi can be

rewritten as,

Qi =
1

Ts

Ts∫
0

E
[
E[Pi(t)|Xi1(0), .....Xik(0)]|X̂i1(0), .....X̂ik(0)

]
dt (3.12)

The above simplification can be done because given Xij(0), Pi(t) is independent of

X̂ij(0), i.e., the underlying process itself does not depend on the observation X̂ij(0).

We first determine Hi = E[Pi(t)|Xi1(0), .....Xik(0)] which can be done in the following

way (Eqn. (3.13)). At any given time t, Xij(t)|Xij(0) is a Gaussian random variable

with mean µx(t) = ρ(t)Xij(0) and variance σ2
x(t) = σ2 (1− ρ2(t)) [26]. Hence at any

given time t, Yij(t)|Xij(t) is a lognormal random variable with mean e−µx(t)+
σ2
x(t)

2 [2].

Hi = C

k∑
j=1

E[Yij(t)|Xi1(0), .....Xik(0)]dt = C

k∑
j=1

A(t)e−ρ(t)Xij(0)dt (3.13)

where A(t) = e
σ2

2
(1−ρ2(t)). Substituting Eqn. (3.13) in Eqn. (3.12) we have,

Qi =
C

Ts

k∑
j=1

Ts∫
0

E[A(t)e−ρ(t)Xij(0)|X̂ij(0)]dt =
C

Ts

Ts∫
0

A(t)e
ρ2(t)σ2

e
2

k∑
j=1

e−ρ(t)X̂ij(0)dt

(3.14)
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Equation (3.14) uses the fact that the quantization error ϵ is independent of X̂ij(0).

Moreover, at any given time t, ρ(t)ϵ is a Gaussian random variable with mean 0 and

variance ρ2(t)σ2
e . Therefore, at any given time t, eρ(t)ϵ is a lognormal random variable

with mean e
ρ2(t)σ2

e
2 [2].

We can still further simplify the expression for Qi. We approximate the sum of

lognormal random variables by a lognormal random variable [33]. In Eqn. (3.14),

at any given time t, Y ′
ij(t) = e−ρ(t)X̂ij(0) is a lognormal random variable with mean

µy′(t) = e
ρ2(t)σ2

D
2 and variance σ2

y′(t) = (eρ
2(t)σ2

D − 1)eρ
2(t)σ2

D . Therefore, Y ′
i (t) =

k∑
j=1

Y ′
ij(t) is approximated by a lognormal random variable with mean µ1(t) = kµy′

and variance σ2
1(t) = kσ2

y′ . Let Zi(t) be the Gaussian variable corresponding to

Y ′
i (t). We can express its variance σ2

z(t) = ln
[
eρ

2(t)σ2
D−1

k
+ 1

]
and mean µz(t) =

ln k+
ρ2(t)σ2

D

2
− σ2

z(t)
2

[33]. Further, let A1(t) = A(t)e
ρ2(t)σ2

e
2 = e

ρ2(t)σ2
e+σ2(1−ρ2(t))

2 . We then

express Eqn. (3.14) as,

Qi =
C

Ts

Ts∫
0

A1(t)
k∑

j=1

Y ′
ij(t)dt ≈

C

Ts

Ts∫
0

A1(t)e
Zi(t)dt (3.15)

We define H ′ = min
i
Qi. H

′ can be expressed as,

H ′ = min
i

C

Ts

Ts∫
0

A1(t)e
Zi(t)dt ≥ C

Ts

Ts∫
0

A1(t)e
−max{−Zi(t)}dt (3.16)

The inequality is due to the fact that minimum of a summation is greater than the

summation of the minimum. For solving the Minimum Power Problem we then need

to determine E[H ′] which can be written as,

E[H ′] >
C

Ts

Ts∫
0

A1(t)E[e−max{−Zi(t)}]dt (3.17)

The next step is to determine the distribution of U = max{−Zi(t)}. It is clear that

{−Zi(t)} are i.i.d. Gaussian random variables with mean −µz(t) and variance σ2
z(t).
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The maximum of i.i.d. Gaussian random variables follows a Gumbel distribution

asymptotically, as m the number of paths goes to ∞ with scaling factor am = σz(t)√
2 lnm

and location factor bm = σz(t)(
√
2 lnm − ln lnm+ln(4π)

2
√
2 lnm

) − µz(t) respectively [14]. Let

us consider the random variable V such that lnV = U . V follows a log-Gumbel

distribution with the same parameters as U [42]. Therefore as Zi(t) are Gaussian, the

mean of the log-Gumbel distribution exists and it follows a gamma function multiplied

by an exponential.

But, we are interested in U ′ = −U , which follows a negative Gumbel distribution.

Define lnV ′ = U ′. It can be easily shown that E[V ′] = e−bmΓ(1 + am).

E[H ′] ≈ C

Ts

Ts∫
0

A1(t)E[eU
′
]dt =

C

Ts

Ts∫
0

A1(t)e
−bmΓ(1 + am)dt (3.18)

E[H ′] computed from Eqn. (3.18) will be an approximation to E[min
i
Qi]. The opti-

mization problem thus reduces to min
Ts,D

C
Ts

Ts∫
0

A1(t)e
−bmΓ(1+ am)dt, which can be easily

computed numerically.

Equation (3.18) holds for the equal path loss scenario. But if this assumption

is relaxed, the above analysis holds with minor modification until Eqn. (3.17) - we

only need to model the Gaussian variable Zi(t) to take into account the different

values of C for the different links resulting from the unequal path loss assumption.

If the Minimum Power Problem is to be solved in an unequal path loss scenario, one

can obtain the distribution of max{−Zi(t)} numerically (which is easy as Zi(t) are

Gaussian) and then determine E[H ′]. However, note that such a procedure will be

computationally expensive.

3.8 Evaluation

In this section, we present numerical results obtained by solving the optimization

problem using Eqn. (3.18). We first study the tradeoff between the sampling interval
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Figure 3.2. Numerical: number of bits per sample versus sampling interval tradeoff
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Figure 3.3. Simulation: number of bits per sample versus sampling interval tradeoff

and the number of bits per sample for a specific set of parameters and then proceed

to investigate the impact of the various parameters on this tradeoff. We consider a

network of 100 nodes with G = 75Kbps, B = 10MHz, S = 0.05 and λ = 1
5
sec. The

variance of shadowing is 25 dB. Further, we assume m = 5 and k = 5, i.e., the source

has 5 disjoint paths with 5 links each. The results are obtained by increasing the

number of bits per sample at a granularity of 0.5. In order to facilitate the comparison

between G and Cb, we note that when R(D) = 2 and Ts = 1sec, Cb ≈ 10Kbps (Eqn.

(3.9)). We also use this same configuration when we study the effect of the different

parameters on the sampling interval and number of bits per sample (except for the

parameter under investigation).

Figure 3.2 shows the variation of the transmit power with the number of bits

per sample for different values of sampling interval. We observe that with a small

number of bits per sample (very little information about network link state), the

expected power consumed is high irrespective of the length of the sampling interval.
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In particular, when the number of bits per sample is 0 (equivalent to choosing a

path at random), the power consumed is high. Conversely, when the number of bits

per sample is high, the additional information is of marginal use in determining the

minimum power path, but the overhead expended in transmitting these control bits

is high.

We are interested in obtaining the global minima of the power consumed consid-

ering the entire range of the sampling interval and number of bits per sample. We

observe that for the parameter values considered, the optimal value of the sampling

interval is 1 second and the number of bits per sample is 1.5. Although the results in

Figure 3.2 are obtained for S = 0.05, similar figures were obtained for other values of

S. In the throughput range of interest (when Ct is small), the factor (2Ct/SB − 1) in

(Eqn. (3.8)) linearizes, making the power almost independent of S and vary linearly

with Ct.
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Figure 3.4. Variation of number of bits per sample and sampling interval with
number of nodes and shadowing correlation ( 1

λ
)
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Figure 3.5. Variation of number of bits per sample and sampling interval with
goodput and number of links per path

We next study the impact of the various parameters (number of nodes, shadowing

correlation ( 1
λ
), goodput, number of links in a path, number of paths) on the tradeoff

between the number of bits per sample and the sampling interval. As these results

are obtained by increasing the sampling interval and the number of bits per sample

at a granularity of 0.5, the graphs are discontinuous.

Figures 3.4(a) and 3.4(b) show the variation of the number of bits per sample and

the sampling interval with the number of nodes. We observe that as the number of

nodes increases, the number of bits per sample decrease and the sampling interval

increases. This is intuitive since as the number of nodes in the network increases, the

control overhead also increases (roughly as O(n2)). Therefore, when the number of

nodes is low the optimum decision is to have a small sampling interval (i.e., to sample

the network frequently) and encode the samples using a greater number of bits. On

the other hand when the number of nodes is large, increased overhead results in the

optimum sampling interval being high and number of bits per sample being low. Note
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that when the number of nodes is very high, the optimal strategy is to select a path

at random - this corresponds to the case when the number of bits per sample is equal

to zero in Figure 3.4(a).

We study the variation of the number of bits per sample and the sampling in-

terval with the correlation of the shadowing process ( 1
λ
) in Figures 3.4(c) and 3.4(d)

respectively. Figures 3.4(c) and 3.4(d) show that both the number of bits per sample

and the sampling interval increase with the shadowing correlation. This is because

as shadowing correlation increases, the optimal configuration takes advantage of this

by sampling at a lower frequency (longer sampling interval). Simultaneously, the

number of bits per sample also increases, since the decrease in overhead due to a

longer sampling interval provides the network an opportunity to gather high fidelity

samples.

Figures 3.5(a) shows that with increasing goodput, the number of bits per sample

increases. This is because as the goodput is much larger than the overhead, additional

bits can be used to encode link state values. At the same time, Figure 3.5(b) shows

that as the goodput increases the sampling interval decreases, which can also be

attributed to the fact that the overhead is smaller in comparison to the goodput.

In Figures 3.5(c) and 3.5(d), we observe that the number of bits per sample and

the sampling interval increases with the number of links in a path. As the number of

links in a path increases, the probability that at least one of these links is in a bad

state (i.e., requiring high power to meet the goodput requirement) increases. Because

of the exponential dependence of power on link quality, the power consumed along

the entire path will be dominated by the bad links. Further, as the error in estimating

the expected power over a path in an interval increases with the number of links in

it, it is advantageous to use more bits for encoding the samples, so that the correct

decision is taken i.e., that path with the minimum power is chosen. The increased

overhead resulting from the larger number of bits used can then be compensated for

by choosing a larger sampling interval.
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We also studied the variation of transmit power with the number of paths and

found that the number of bits per sample decreases and then becomes zero. As the

number of paths increases, the chance of selecting a good path goes up and thus the

number of bits per sample decreases. When there are many available paths, selecting

a path at random suffices and there is no need to collect state information.

3.9 Simulation

In this section, we report on our use of simulations using Eqn. (3.14) to drive

the simulation, to validate our numerical results. Specifically, we study the impact

of the inequality in Eqn. (3.16) and the two main assumptions of the model - (i)

approximating the sum of lognormals by a lognormal and (ii) approximating the

maximum of i.i.d. Gaussian random variables by a Gumbel distribution - on the

accuracy of our numerical results.

We consider the same set of parameters used in the numerical evaluation. For

a particular value of sampling interval and number of bits per sample, we generate

shadowing measurements (from a Gaussian distribution) for all links to emulate the

link state values collected at the beginning of the sampling interval. We determine

the expected power consumed for the entire interval along each of the m paths and

then select the path for which the expected power consumed is minimum. For each

pair of values of sampling interval and number of bits per sample, we repeat this

process 500 times to obtain the mean power consumed.

Simulation results depicting the tradeoff between the number of bits per sample

and sampling interval with the transmit power are shown in Figure 3.3 and should

be comparable to the numerical results in Figure 3.2. As in the case of our numerical

evaluation, the simulation results also show that the expected power decays rapidly

with an increasing number of bits per sample and then begins increasing again.

We note that the power consumption is higher in case of simulation, particularly

so for a small number of bits per sample (approaching 0). This is because our nu-
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merical analysis is an approximation that becomes better as the number of bits per

sample increases. A careful examination of Figures 3.2 and 3.3 reveals that when the

number of bits per sample is 0, the expected power consumed increases for numer-

ical evaluation and decreases for simulation with increasing sampling interval. The

intuitive explanation as to why the expected power decreases with an increase in the

sampling interval in case of a real system (i.e., in our simulation) is the following.

Let us consider for the sake of simplicity that paths are of two types - good and

bad; paths are classified as good when the power consumed at the beginning of the

sampling interval is low and bad when it is high. The expected power consumed in any

sampling interval is thus the additive sum of the conditional expected power consumed

given a path of a specific quality (good or bad), multiplied by the probability that

the selected path is of the specified quality. The above fact holds true irrespective of

the duration of the sampling interval.

Let us next consider the probability of selecting a good or bad path. As shadowing

is Gaussian distributed, the probability of a path being good or bad is the same and

is independent of the sampling interval. As the number of bits per sample is zero

(equivalent to selecting a path at random), the chance of selecting good and bad

paths is the same. Further, because of the exponential dependence of power on

path quality, expected power expended during a sampling interval is higher when the

selected path is bad in comparison to when it is good.

So far we have only considered the effect of path quality on expected power con-

sumption. We will now reason about the impact of the sampling interval on expected

power consumption. When the selected path is bad, expected power expended during

a sampling interval will be higher for a shorter sampling interval than for a longer

sampling interval since shadowing correlation decays exponentially. Similarly, when

a good path is selected, expected power expended during the sampling interval will

be lower for a shorter sampling interval.
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But, the positive difference in the expected power expended between small and

large sampling interval when the selected path is bad, is not compensated for by the

negative difference in expected power expended between them when the selected path

is good. Thus, when the number of bits per sample is zero, expected power consumed

when the sampling interval is small is higher than when the sampling interval is long.

Note that although there is a mismatch between the numerical and simulation

results when the number of bits per sample is small, our goal is not to study any

specific scenario, but rather to determine the optimal sampling interval and the num-

ber of bits per sample. From our simulation, we find that the minimum expected

power is consumed for bits per sample=2.5 and sampling interval=2 seconds, which

is comparable to the numerical results (bits per sample=1.5; sampling interval=1

second). Hence we conclude that the approximations in Section 3.7 help in modeling

the system accurately. We have also studied the tradeoff between the number of bits

per sample and sampling interval for a network with unequal path loss via simulation

and observed that a tradeoff similar to the equal path loss case.

3.10 Conclusion

In this chapter, we formulated an optimization problem to determine the frequency

at which a source should gather link state estimates and the number of bits used

to encode these estimates such that the expected power consumed over a sampling

interval is minimized subject to goodput constraints. We observed that long sampling

intervals fail to take advantage of the temporal correlation of link state estimates while

short sampling intervals incur significant overhead. Similarly, small number of bits

per sample provide very little information about the network state while large number

of bits provide marginal additional information. Our work can be viewed as a first

step for providing network designers a tool for determining optimal operating points

(state update frequency, number of bits per sample).
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CHAPTER 4

ROUTING WITH ADAPTIVE FLOODING IN
HETEROGENEOUS MOBILE NETWORKS

4.1 Introduction

Uncertainty and change in network connectivity are fundamental characteristics

of mobile ad hoc networks (MANETs). A variety of forwarding strategies have been

proposed for such scenarios, ranging from stateful routing protocols [65] to flooding

[91]. Recently, [60] showed that in mobile networks with homogeneous node mobility

and link characteristics, stateful routing protocols such as OLSR [46] perform well

in dense and stable networks, whereas flooding is preferable in sparse and rapidly

changing networks. However, mobility and connectivity characteristics observed in

real-world measurements are often heterogeneous : while some nodes may have few or

highly dynamic links, there are also well-connected nodes forming sizable connected

components [41, 89]. In such networks with both stable and dynamic components,

it is likely (and we will see) that neither routing nor flooding alone may perform

particularly well in a given scenario.

We propose a simple approach towards forwarding in heterogeneous mobile net-

works: based on local link characteristics as well as network-wide considerations, de-

termine which nodes should forward according to the forwarding table computed by the

native routing protocol, and which nodes should locally broadcast their traffic to all

neighbors. Our work is driven by the intuition that nodes with particularly reliable

and stable links should be well-suited to operate as routers, since the next-hop to-

wards a given destination determined by the native routing algorithm would continue

to work well in the future. Conversely, a node with highly dynamic or unreliable links
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might better operate as a flooder, exploiting the broadcast nature of omni-directional

antennas to forward a packet to all neighbors in a single transmission; packet copies

can then be forwarded from one or more of those neighbors (either via routing or

flooding by that neighbor) towards the destination. Our simple approach leverages

the vast amount of past research on both routing and flooding in mobile networks

with minimal changes to existing protocols. From a performance standpoint, we will

show that our approach not only matches the performance of network-wide routing

or flooding in stable or dynamic settings, respectively, but also performs better than

either of them in heterogeneous scenarios.

In our approach, we have a single decision to make for each node — should it

operate as a router or flooder — in such a way as to maximize global network goodput.

Despite its apparent simplicity, this is a challenging problem. First, available link

state information may be stale due to mobility and variability inherent in wireless

links. Second, while it is tempting to think that classifying a node as a router or

flooder only requires local information, flooding at one node increases network traffic

at downstream nodes (due to increased number of packet copies that are created

and thus will be routed, or broadcast forwarded, towards the destination) and may

ultimately reduce overall goodput due to congestion. In addition, one node being

a flooder may affect the usefulness of turning another node into a flooder, implying

subtle dependencies in the decision process.

We present a simple greedy algorithm (adaptive-flood) to determine which nodes

should operate as routers and which nodes should operate as flooders. The algorithm

assumes that an underlying native routing protocol is available and then iteratively

selects those nodes as candidate flooders that maximize the overall expected network

goodput. The algorithm selects nodes as flooders in decreasing order in which they

contribute to maximizing expected network-wide goodput; it stops when converting

any of the remaining routers into a flooder would result in a decrease in expected

goodput. Practically, this means that each node needs to determine only one piece
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of information, namely whether to unicast packets to the next-hop neighbor specified

in its forwarding table, or to locally flood each packet to all neighbors.

We make the following contributions in this chapter. First, we present our adaptive-

flood algorithm to determine which nodes should operate as routers and which nodes

should operate as flooders (Section 4.4). Second, we show via simulation that

adaptive-flood outperforms network-wide routing or flooding. In particular, at low

network loads flooding outperforms routing while at high network loads, performance

is reversed. In contrast, adaptive-flood matches or outperforms both baseline ap-

proaches over most or all of the range of loads in varied settings (Section 4.5). From

these results, we conclude that routing combined with adaptive flooding is a promising

solution to solve challenges inherent in mobile networking.

The rest of this chapter is organized as follows. We discuss related work in

Section 4.2. We formalize the problem and the underlying network model in Sec-

tion 4.3 and describe the adaptive-flood algorithm for router/flooder classification in

Section 4.4. The performance of these algorithms is evaluated via simulation pre-

sented in Section 4.5. We finally conclude this chapter in Section 4.6.

4.2 Related Work

Several past research efforts [7, 60, 69] have addressed the challenge of classify-

ing MANETs based on connectivity and predictability – concerns that are of central

importance to us in this chapter. [60] proposes a framework for organizing the de-

cision space of communication strategies (i.e., determining whether the network as

a whole should operate by flooding, routing, or store-carry-and-forward) in a ho-

mogeneous MANET based on connectivity and unpredictability so as to maximize

goodput. Similar approaches for classifying networks (as connected, intermittently

connected or disconnected) based on connectivity (i.e., presence of paths) and mo-

bility (i.e., contact time, meeting) have been investigated [7,69]. In contrast to prior
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work where classification has been done for the network as a whole, we develop per-

node classification strategies (route or flood) in order to maximize goodput.

A number of past efforts have sought to exploit characteristics such as connectiv-

ity, predictability and mobility of wireless networks to design forwarding protocols

that enhance performance. Epidemic routing [91,100] and multicopy routing [85] are

designed for sparsely-connected networks and use a store-carray-and-forward mecha-

nism and packet replication to battle poor connectivity. [10,25] make assumptions on

the mobility pattern and network topology to design forwarding protocols for inter-

mittently connected networks. A survey of different forwarding strategies designed

for MANETs and DTNs is available in [3, 102]. None of this past research, how-

ever, investigate the question of which nodes should flood/route in a MANET with

time-varying connectivity.

Our work is closest to [89], which proposes a routing protocol, R3, that provides

robust performance in diverse and varying connectivity regimes. They identify packet

replication as the key factor governing performance for networks at opposite ends

of the connectivity spectrum (meshes and DTN). R3 replicates packets along two

paths for each flow, pruning one of the paths in the event of network congestion.

They also propose the SWITCH protocol, in which nodes make decisions locally

and flood packets only when the designated next hop for that packet is unavailable.

SWITCH performs close to R3 in their evaluation. Our work differs from R3 in

that we determine which nodes should flood/route in a network-wide context, taking

multiple flows into account when making a routing/flooding decision and and may

perform packet broadcast (rather than 2-replication [89]) at any node within the

network, rather than only at the source, as in R3. Our algorithm also differs from

SWITCH in that we determine which nodes should flood over an epoch of time, not

just flood when a next-hop neighbor towards a destination in is unavailable.

A significant amount of past research has been devoted to demonstrating the

capacity scaling of both flat and hybrid MANETs [39, 54, 99]. Similarly several for-
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Notation Definition
N set of all nodes
E set of all edges
F set of flows
F list of flooders
Ni neighbors of node i
fs, fd source and destination node of flow f
N is the list of Ni, ∀i ∈ N
Hif next hop forwarder for node i for flow f
H next hop forwarder matrix
pij link success probability between nodes i and j
P link success probability matrix
Φij traffic originating from i and destined for j
Φ traffic matrix

Table 4.1. Notation

warding strategies (routing, flooding and hybrid) aimed at improving goodput have

been proposed and extensively studied for both MANETs and DTN [10,21,65]. Our

work differs from existing literature in that we are not proposing a new forwarding

protocol from scratch for a particular setting; rather we study the problem of enhanc-

ing network goodput by selectively classifying a subset of nodes as flooders and the

remaining as routers.

4.3 Network Model

Let us begin by defining our network scenario and the router/flooder classification

problem. We consider a network with |N | nodes. Let F be the set of flows in

the network. The source and destination for any flow f are denoted by fs and fd

respectively. A summary of our notation is available in Table 4.1.

Time Periods. Time is slotted and we introduce two intervals beyond the mini-

mal interval defined as one time slot. Specifically, packet transmissions occur at each

time slot, node mobility takes place at the beginning of each interval, which is a

period of several time slots, and finally, routing tables are updated at the beginning

of every epoch, which is a period of multiple intervals.
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Link State Information. We assume that during each epoch, state information

characterizing the connectivity between nodes is collected. Let us consider any two

nodes i and j and informally consider pij as the probability of successfully trans-

mitting a packet directly from node i to node j (we will substantially sharpen this

definition of pij in Section 4.5, where we use simulation to assess the performance of

our greedy algorithms). The link quality can vary both due to the wireless channel

and mobility of the nodes during the epoch, but we abstract away these details via

the pij link characterization. P is the matrix of pij’s and is referred to as the link

success probability matrix.

We next represent the network as a graph G(N,E) where E denotes the set of all

edges in the graph; an edge exists if pij > 0.

Routing and flooding. We consider a simple case where P is the only state

information available at the beginning of an epoch and is used for determining routes.

At the beginning of each epoch, we assume that routes are calculated using Dijkstra’s

shortest path algorithm where an edge between node i and j has link weight 1/pij.

Note that any other routing algorithm could be used; we use Dijkstra’s algorithm for

simplicity. Hif denotes the next hop neighbor for node i for flow f , as obtained by

the routing algorithm.

Each node in the network can either act as a router or a flooder, but cannot

perform both actions preferentially based on the destination of the packet. If node

i operates as a router, it forwards packets according to Hif ; otherwise it floods all

packets. Let Ni be a list denoting the neighbors of i (node j is said to be a neighbor

of i if pij > 0). If i operates as a flooder, it sends the same packet to every node

in Ni. To prevent packets from circulating in the network in loops, nodes perform

duplicate packet transmission suppression.

Traffic and Capacity. We assume that node i transmits data at a rate of Ci

packets per time slot. Therefore all outgoing links from i can carry data at the

maximum rate of Ci. Ci and pij together capture the capacity constraint for the link
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ij. Φij is the amount of traffic originating at node i and destined for node j; Φ is the

corresponding the traffic matrix.

Overall network goodput. We define a flow’s goodput as the number of unique

packets received at the destination for the flow per time slot. The overall network

goodput is the sum of goodputs for the different flows.

Based on this model, we define the problem to be solved by the classification

algorithm at the beginning of every epoch as follows.

Given the above network model and the forwarding tables from the routing algo-

rithm, classify certain routers as flooders so as to maximize overall network goodput.

We note that our algorithm for solving this problem pre-supposes the presence of

a native routing algorithm that executes periodically, following the execution of the

native routing algorithm; our work thus falls squarely in the network control plane.

We discuss alternate approaches for maximizing overall goodput in Chapter 7.

4.4 Router/Flooder Classification Algorithm

In this section, we propose a simple greedy algorithm (adaptive-flood) for router/flooder

classification. Our algorithm, which operates in the MANET control plane (e.g.,

would execute following the periodic execution of the network’s native stateful rout-

ing algorithm), classifies each network node as a router or as a flooder. Nodes classified

as routers will unicast-route packets according to forwarding tables computed by the

MANET’s native stateful routing algorithm; nodes classified as flooders will locally

flood a packet to all one-hop neighbors, who will then in turn unicast-route or flood

(depending on their own classification) that packet. We note that similar to stateful

routing protocols such as OLSR, our router/flooder classification algorithms can be

run locally given broadcast link state updates, as discussed shortly. We then compare

the performance of adaptive-flood with two baseline approaches: routing (where all

network nodes operate as routers and forward packets to next hop neighbors based

on the MANET’s native routing algorithm, which we assume is based on Dijkstra’s
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algorithm) and flooding (where all network nodes operate as flooders and forward

every packet to all their neighbors). Flooders perform duplicate suppression so as to

not forward the same packet twice.

Adaptive-flood is an iterative greedy algorithm that turns one router into a flooder

at each iteration, selecting that router whose change to a flooder would result in the

maximum increase in expected network goodput. The algorithm terminates when

turning any remaining router into a flooder would result in a decrease in expected

total goodput. The details of the algorithm are given in Algorithm 1.

Adaptive-flood begins with all network nodes initially classified as routers. It takes

as input the graph G(N,E) whose edges are all initially unweighted. It then computes

the expected total (over all source/destination pairs) goodput for the F flows by

calling the total-goodput() function. In Algorithm 1, GF is the expected total network

goodput when there are F flooders. During each iteration in adaptive-flood (lines

4–14), the expected total goodput is calculated if router s were to be turned into the

flooder, given the current list of routers and flooders. The algorithm then selects that

particular router (F ′) that gives the maximum increase in expected total goodput if

it were to be turned into a flooder (lines 6–10). This router is then added to the list

of flooders F . The algorithm terminates when either all routers have been classified

as flooders or if converting any of the remaining routers into a flooder (individually)

results in a decrease in expected total goodput. When a router is added to F , the

usefulness (in terms of goodput) of converting some other router into a flooder can

change, since converting a node into a flooder can change the incoming traffic rates

at other network nodes.

Calculating the effect of a router-to-flooder change on total network

goodput. The total-goodput() function computes the overall (over all flows) goodput,

given a list of routers and a list of flooders and the next-hop forwarding matrix H

computed via Dijkstra’s algorithm. Doing so is challenging for two reasons. First,

link capacities are finite and buffer overflows will occur when the incoming traffic rate

65



exceeds a node’s capacity to send that traffic on its going link(s). Second, given the

presence of flooding nodes in the network, multiple copies of the same packet may be

received at a node, and via duplicate suppression, only a single copy of that packet

will be forwarded. Thus, traffic input rates to nodes need not equal their output rate,

even in the absence of congestion losses due to limited link capacities.

Modeling the effects of finite buffer overflow. We model buffer overflow by

adopting a fluid model in which nodes probabilistically drop packets if the expected

incoming traffic rate exceeds that node’s outgoing transmission capacity, Ci. Let ai

denote the probability that a packet is successfully received and forwarded through

node i, assuming no losses due to transmission errors. We refer to ai as the packet-

passage probability at node i. Let Ri be the incoming traffic rate at node i.

ai = min{1, Ci

E[Ri]
} (4.1)

Thus, when the expected incoming traffic rate is less than link capacity, all arriving

packets are successfully forwarded by that node, (ai = 1). When the expected incom-

ing traffic rate exceeds the outgoing rate, arriving packets are successfully forwarded

by that node with probability Ci

E[Ri]
. We note that this simple model of congestion is

used only for calculating goodput in our control plane algorithm, adaptive-flood. The

MANET’s data plane itself performs packet dropping due to buffer overflow according

to its native policy; our model calculations of goodput only affect the control-plane

router/flooder classification.

Modeling multiple copies of a packet, duplicate suppression. When one

or more network nodes are classified as flooders, multiple copies of the same packet

in flow f may arrive at a node due to upstream flooders. Duplicate copies would

be suppressed, resulting in only a single copy being forwarded to the node’s output

interface. Therefore the set of nodes and links traversed by a given flow’s packets
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will form a directed acyclic graph (rather than a path) between the flow’s source and

destination nodes.

The calculate-DAG algorithm (Line 34 of Algorithm 1) maintains two lists: the

observed list - O and the explore list - X. For every flow f , DAG construction

begins from the source fs. X and O initially contain only fs and fd respectively (line

36). The while loop in line 37 then iterates until the explore list is empty. At every

iteration of the while loop, the node (m) at the head of X (line 38) is considered

(in the first iteration the node is fs). Recall that when the calculate-DAG function

is called, there are F flooders in the network. Therefore m can be either a router

or a flooder. In either case (lines 41–44 for a flooder; lines 46–48 for a router), we

update the weights of the links from m to its one or more neighbors and add each

neighbor to the explore list if it is not already on the explore or observed list. In lines

(50-52) we construct the graph Df by determining the set of edges in it. Note that

our construction of Df allows for the existence of isolated nodes in it.

Total-goodput() function. The total-goodput() function (Line 16 of Algo-

rithm 1) returns the total goodput for the F flows in the network, given the list

of flooders (F ). The total network goodput is calculated by summing the goodput

for the individual flows in the network (Lines 30–32). To calculate the goodput of in-

dividual flows, it is necessary to determine a flow’s DAG and also the packet-passage

probabilities at all network nodes.

Even though packets for a given flow traverse a DAG, when there are multiple

flows in the network, it is possible that some node j will receive traffic from node i and

vice versa. In this case, since ai depends on Ri which includes traffic arriving from

j, and aj depends on Rj which includes traffic arriving from i, we’ll need to compute

the packet-passage probabilities via a set of simultaneous equations. Lines 21–29 in

Algorithm 1 are a fixed point iteration for calculating the packet-passage probabilities,

a⃗. The algorithm begins with an initial feasible packet-passage probability (⃗a0) (in

our case 0). For each flow f , the fixed-point iteration then uses a⃗l−1 at iteration l to
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calculate the incoming rate at every node (line 23 via the calculate-incoming-rate()

function). I⃗f is a vector of the incoming rates at different nodes for flow f , while Ifs

denotes the incoming rate for flow f at node s. The fixed point iteration then uses

the incoming rates to compute the packet-passage probabilities to be used in iteration

l + 1 (line 26), a⃗l. The fixed-point iteration converges when the maximum absolute

difference between the packet-passage probabilities in two successive iterations are all

below a threshold τ (line 27).

total-goodput() then computes the total goodput and returns this value to the

adaptive-flood algorithm (Lines 30–32). Note that the goodput for flow f is simply

the incoming traffic for flow f at node fd; the calculate-goodput() function is thus

very similar to the calculate-incoming-rate() function and returns Iffd .

Calculate-incoming-rate() function. All that remains to be discussed is how

I⃗f , the incoming traffic rate at node i, is determined in line 23 of total-goodput(). The

primary complication here is that multiple copies of the same packet in flow f may

arrive at a node due to upstream flooders in flow f ’s DAG. We adopt an approximate

approach for computing I⃗f , the incoming traffic rate at node i, as follows. To compute

I⃗f the algorithm first determines the DAG (Df ) traversed by that flow’s packets (lines

19–20 in Algorithm 1). The algorithm then performs a topological sort Vf for Df .

For a directed acyclic graph, the topological ordering provides a linear ordering of its

vertices such that for every directed edge from vertex u to vertex v, u comes before

v in the ordering. The source fs and destination fd are the first and last nodes in

this ordering (Vf ). We then pass Df and Vf as parameters to the calculate-incoming-

rate() function (line 23 in Algorithm 1). Note that Df and Vf are calculated only once

in the total-goodput() function because the list of flooders does not change between

iterations of the while loop in line 21 in Algorithm 1.

We next evaluate the probability of a packet reaching the nodes in Vf in order

in the calculate-incoming-rate() function. To determine the probability of a flow f ’s

packet (which has been flooded one or more times upstream in flow f ’s DAG) reaching
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Static Nodes Mobile Nodes

Node Movement

Figure 4.1. Topology: 18 node network

node i, we assume that the probabilities of i receiving that packet on its incoming

DAG links are independent of one another. This is clearly an approximation, since

two input links at i may share common upstream nodes in the DAG. Let αif be the

probability that a packet reaches node i for flow f . Let us consider any node j in Vf

and let Uj denote the list of the nodes in Vf appearing before j in this ordering. We

approximate the probability of a packet reaching j by:

αjf = 1−
∏
i∈Uj

(1− αifpijai) (4.2)

Equation (4.2) takes into account the fact that the packet can be received along

multiple incoming links. It is also takes the successful link transmission probabilities

and the packet-passage probabilities into account. Traversing Vf in order ensures that

when the algorithm calculates αjf for node i, αjf of all nodes j in Uj has already been

computed. Φfsfdαjf thus denotes the incoming rate (Ifj) at node j and the goodput

(gf ) for flow f is given by Φfsfdαfdf .

4.5 Simulation Results

In this section, we report on simulations comparing the performance of the adaptive-

flood algorithm with pure network-wide routing and flooding. We find that adaptive-

flood captures the best of both approaches (routing and flooding), achieving perfor-

mance equivalent to (and sometimes better than) that of network-wide routing or

flooding alone.
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(a) Delivery ratio (scenario 1)
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(b) Delivery ratio (scenario 2)
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(c) Delivery ratio (scenario 3)

Figure 4.2. Delivery ratio with different sets of flows for an 18 node network

4.5.1 Simulation Scenarios

Our simulations are conducted on a grid topology with r rows and c columns.

An example topology with 18 nodes is shown in Figure 4.1; this specific topology

was used to generate the results in Figure 4.2. In Figure 4.1, the nodes colored

white are stationary while the ones colored black are mobile. Thus there are two

regions with stationary nodes separated by an intervening mobile region. We chose

this topology in order to stress-test and study our algorithms, ensuring that we could

create controlled scenarios in which source-destination flows pass through both static

and mobile regions. We also present results for a larger 48-node topology later in this

section. At the beginning of the simulation, there is one node per grid location.

Recall that we have assumed a time-slotted system and consider three time periods

of different granularity - slots, intervals and epochs. A slot is the time required for

a packet transmission to occur. Any node can transmit directly only to nodes in the

four adjacent grid positions. When a node operates as a router and has a packet

to forward, the packet will be delivered to the next-hop node if that designated

next-hop node is located in any one of the adjacent positions; otherwise it will be

dropped. When a node operates as a flooder, its transmitted packet can be received

by neighbors located in any of the four adjacent grid positions.

An interval consists of multiple slots. A mobile node moves equi-probably to any

of the adjacent positions on the grid (up, down, left or right) at the beginning of an

interval. However, mobile node movement is confined to the mobile region (the black
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region in Figure 4.1). Multiple nodes may be in the same grid location during some

intervals. If a mobile node is at the border of the mobile region and its movement

would take it out of mobile region, it reflects and moves in the opposite direction.

Recall that the time period of the longest duration is an epoch, consisting of

multiple intervals. Unicast routes are calculated using Dijkstra’s algorithm at the

beginning of each epoch. The adaptive-flood algorithm also executes at this time

granularity, classifying nodes as routers and flooders. In Dijktsra’s algorithm, link

weight values are equal to 1/pij, where pij is the fraction of intervals in the previous

epoch that node i and j were in adjacent or the same grid positions; the value of

pij between two adjacent stationary nodes i and j is thus always 1. The link success

probability matrix P is populated at the beginning of the epoch, before Dijkstra’s

algorithm is executed. In order to focus on mobility, we assume all variation in link

quality (i.e., the ability of one node to send to another) is only due to mobility.

Since our goal is to investigate the performance gains of the adaptive-flood algo-

rithm (containing both routing and flooding nodes) and will be compared against

pure routing and pure flooding, we make several simplifying assumptions in the sim-

ulator. We do not model the effect of interference in the network, assuming that a

node can receive multiple packets in the same time slot (one along each of its in-

coming links); this would be possible when a node has multiple interfaces operating

on different channels, when a node has multiple directional antennae, and in some

CDMA settings. A node can, however, send only one packet in one time slot. If a

node is a router, the packet will be received and processed only by the designated

next hop; if it is a flooder, its transmitted packet can be received by all its neighbors

present in adjacent grid positions. In our simulation, we model data plane forwarding

only; since adaptive-flood and routing all take advantage of common link state control

information, we do not explicitly simulate link state transfer.

All nodes have a single finite buffer of size 300 packets, and packets arriving to a

full buffer are dropped. Each data point in our simulation is obtained for the same
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number of total exogenous packet arrivals (15000 packets). The number of intervals

is 30 and the number of slots per interval is 10. The number of epochs is adjusted so

that the expected number of arrivals is 15000 exogenous packets.

We first report results for an 18-node network in Figure 4.1 for different sets of

network flows. In each case, we vary the exogenous arrival rate and study two different

performance metrics: overall network goodput and delivery ratio. As discussed earlier,

a flow’s goodput is the average number of unique packets delivered to the destination

per time slot; the delivery ratio is the ratio of the total number of unique packets

delivered to the total number of exogenous packet arrivals for the entire duration of

the simulation. The arrival rate is the expected total number of exogenous packet

arrivals per time slot at a source node. For each flow, each source node has the same

probability of generating an exogenous packet arrival at the beginning of a time slot.

We multiply this probability by the total number of flows to obtain the exogenous

packet arrival rate. We increase the arrival rate by increasing the probability of an

exogenous packet arrival. We report results as mean values obtained after multiple

runs; the length of the error bars denotes twice the standard deviation of the delivery

ratio.

We study three scenarios (with different sets of flows) for the 18-node network.

• Scenario 1: We consider mostly short (2-hop) flows. Every node in the static

region has a single 2-hop flow destined to a randomly chosen other node in the

same static region (12 flows in all). There are also 3 single-hop flows in the

mobile region.

• Scenario 2: We have 12 flows in the static regions, as before. There are also

12 short flows originating from, and destined to, the mobile region and 3 flows

originating from one static region and destined to the other static region.
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• Scenario 3: In contrast to the other two cases, we have 25 flows in all, (some

destined from one static region to other, some within the mobile region and

some between mobile and static regions).

In the first scenario, most flows are confined to the static region; in the second

there is a mix of flows in the static and mobile region; while in the third scenario, flows

either cross, or are destined to, the mobile region. Hence, the main difference among

the three scenarios is that the overall reliability of routes decreases, progressing from

the first scenario to the third. Consequently, one would intuitively expect routing to

generally outperform flooding in the first scenario, while the opposite would occur in

the third scenario.

4.5.2 Simulation Results: Comparing Routing, Flooding and Adaptive-

flood

Comparison of pure routing and flooding. Figure 4.2 shows the delivery

ratio of the different algorithms for the above three scenarios. For scenario 1 (Figure

4.2(a)), we observe that pure (i.e., network-wide) routing performs comparable to

pure flooding in the low arrival rate regime but then outperforms pure flooding as

the arrival rate increases. The difference in delivery ratio at low arrival rate is due

to the fact that in case of pure routing, packets are dropped in the mobile region; in

the case of pure flooding, packet duplication via flooding ensures that at least one

copy of most packets get delivered to the destination. The reason for the relatively

poorer performance of flooding at higher arrival rates is that as the network becomes

congested, duplicate packets cause other packets to be discarded at intermediate

routers, resulting in decreased goodput.

In scenario 2 (Figure 4.2(b)), we observe that pure flooding outperforms pure

routing at low arrival rates, while the relative performance ordering is reversed at

higher arrival rates. Since approximately half of the flows are in the mobile region

(and these flows have less reliable paths), pure routing has a low delivery ratio at low

73



arrival rates. Once again, increased congestion results in poor performance of flooding

at higher arrival rates. In scenario 3 (Figure 4.2(c)), as end-end path reliability is

low, pure routing performs poorly, marginally overtaking pure flooding as the arrival

rate increases. The three scenarios thus demonstrate situations when pure routing

outperforms pure flooding, and vice versa.

Adaptive-flood outperforms both pure flooding and pure routing. Next,

we turn our attention to the performance of our adaptive-flood algorithm1. The

shaded regions in Figure 4.2 indicate the arrival rate regime where the adaptive-

flood outperforms both routing and flooding. It is evident from the figure that while

flooding and routing perform well at low and high arrival rates respectively, the

adaptive-flood algorithm achieves performance equivalent to (and better in the shaded

regions) than that of pure routing or flooding alone. For example in Figure 4.2(b),

the performance of adaptive-flood exceeds that of both routing and flooding in the

shaded region, for arrival rates between 2 and 6 arrivals per time slot. The superior

performance of the adaptive-flood algorithm can be attributed to the fact that it

dynamically adapts the number of flooders selected based on the arrival rate. For

example in Figure 4.2(b), the algorithm selects around 10 nodes as flooders when the

arrival rate is 2 and selects 2.11 nodes on average as flooders when the arrival rate is 12.

We noted that adaptive-flood also often selects stationary nodes as flooders. Turning

stationary nodes into flooders can present multiple entry points into the mobile region.

Also if a given stationary node is congested because of a large number of flows through

it, turning other stationary nodes into flooders can help find additional paths for these

flows, thus increasing goodput.

Performance results for 48-node network with large number of flows.

We also conducted experiments on a larger 48-node network, with nodes arranged in a

1In some cases, packet-passage probabilities in the fixed point iteration in the calculate-goodput
function of adaptive-flood algorithm do not converge to a fixed point, often oscillating between two
sets of values. In such cases we select one of the sets of values and use it to determine the total
goodput.
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Figure 4.3. Delivery ratio and goodput for a 48 node network

grid with 4 rows and 12 columns. In this network each node originates flows destined

to every other node. The static and mobile areas thus consist of 4*4 grids. Figures

4.3(a) and 4.3(b) shows the delivery ratio and goodput for this network with all nodes

sending packets to all other nodes. We observe that the adaptive-flood algorithm

outperforms pure routing and flooding both in terms of delivery ratio and goodput.

Interestingly, although the delivery ratio decreases with increasing exogenous arrival

rate, the goodput increases since the absolute number of packets delivered increases

with higher arrival rate. We also conducted experiments for the 18-node network

scenario, where each node originates flows destined to every other node and observed

similar results.

4.6 Conclusion

We have studied the problem of forwarding in heterogeneous mobile networks that

comprise both stable as well as highly dynamic components and in which uniform

routing or flooding at all network nodes does not perform well. Instead of designing

a new protocol, we leveraged past efforts and proposed a simple greedy algorithm

(adaptive-flood) that individually determines for each node whether it should operate

as a router or a flooder based on considerations such as link quality, the amount

of traffic traversing it, and the effect of turning a router into a flooder on overall

goodput. We demonstrated via simulation that our adaptive-flood algorithm yields
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performance equivalent to, and often significantly better than, that of baseline routing

or flooding alone. In future, we plan to investigate the performance gains achievable

by preferentially routing or flooding packets based on their destination.
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Algorithm 1 adaptive-flood router/flooder classification
1: function F = adaptive-flood(G,P,Φ,N,H,F , τ)
2: F = [ ]
3: GF = total-goodput(F,G,P,Φ,N,H,F , τ)
4: while |F | ̸= |N | do
5: F ′ = [ ]
6: for all s ̸∈ F do
7: T = F + [s]
8: GT = total-goodput(T,G,P,Φ,N,H,F , τ)
9: if GT > GF then
10: F ′ = s, GF = GT

11: if F ′ == [ ] then
12: return F
13: else
14: F = F + [F ′]
15: return F

16: function GF = total-goodput(F,G,P,Φ,N,H,F , τ)
17: a⃗0 = 0, l = 1
18: for all f ∈ F do
19: Df = calculate-DAG(f, F,G,N,H)
20: Vf = topological-sort(Df )
21: while (true) do
22: for all f ∈ F do
23: I⃗f = calculate-incoming-rate(Df , Vf ,Φ,P, f, a⃗l−1)
24: for all s ∈ N do
25: Rs =

∑
f∈F

Ifs

26: als = min{1, Cs

Rs
}

27: if max |⃗al − a⃗l−1| < τ then
28: return false
29: l = l + 1
30: for all f ∈ F do
31: gf = calculate-goodput(Df , Vf ,Φ,P, f, a⃗l)
32: GF =

∑
f∈F

gf

33: return GF

34: function Df = calculate-DAG(f, F,G,N,H)
35: wij = 0, ∀i, j ∈ N , E′ = ∅
36: X = [fs], O = [fd]
37: while X ̸= [ ] do
38: [m] = head(X)
39: O = O + [m]
40: if m ∈ F then
41: for all i ∈ Nm do
42: if i ̸∈ O and i ̸∈ X then
43: X = X + [i]
44: wmi = 1
45: else
46: if Hmf ̸∈ O and Hmf ̸∈ X then
47: X = X + [Hmf ]
48: wmi = 1
49: X = X − [m]
50: for all wij = 1 do
51: add edge {i, j} to E′

52: Df = (N,E′)
53: return Df
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CHAPTER 5

QUALITY OF EXPERIENCE MANAGEMENT OF
MULTIPLE VIDEO STREAMS

5.1 Introduction

With the deployment of broadband wireless networks, the popularity of multime-

dia content on mobile devices is expected to significantly increase. A large portion of

multimedia traffic is forecasted to be recorded videos such as movies, YouTube videos,

and TV shows [20]. The inherent variability of both the wireless channel and the bit

rate of compressed videos makes streaming videos on wireless networks a challenging

task. This work investigates how multiple Variable Bit Rate (VBR) videos can be

scheduled over a time-varying wireless channel while still maintaining a good QoE at

the mobile clients.

A wireless video streaming system consists of a video server connected to a base

station over a high bandwidth wired backbone link and clients at Mobile Stations

(MS) that communicate with the Base Station (BS) using a wireless channel (Fig-

ure 5.1). The server stores pre-encoded videos, and upon receiving requests, streams

videos to the requesting clients. A video stream is composed of a sequence of frames

that the client buffers and plays according to their playout times. If a frame is not

received by its playout time, the client degrades the quality of the displayed video

and/or may stall the video to wait for more frames to arrive. Here we consider sys-

tems that stall in response to delayed frames. Namely, we consider the general case

of VBR videos being streamed with the rate available to each wireless client varying

over time.
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Figure 5.1. A video streaming system

In this chapter, we consider a wireless video streaming system where multiple

mobile clients are streaming different VBR videos from a base station. Our goal is to

develop a fair packet scheduling algorithm at the base station, for packet transmission

over the wireless channel that minimizes playout stalls across all mobile clients. We

assume that time is divided into slots and scheduling decisions are taken at begin-

ning of an epoch (which consists of multiple slots). Prior work [29, 49] that studies

the impact of video quality on user behavior demonstrate quantitatively (based on

real world datasets) that frequent stalling can result in users abandoning their video

streams. The number of stalls per client thus appears to be a good metric to capture

the quality of user experience and minimizing it can lead to reduced user abandon-

ment.

We formulate this problem as an optimization problem that takes into account

the varying rate of the video streams and wireless channel at the clients and al-

locates slots so as to maximize the minimum playout lead among all videos in an

epoch. Our contributions are as follows. (a) We show that the optimization prob-

lem of maximizing the minimum lead is NP-complete even for two videos. (b) We

develop a fast application-playout lead aware greedy scheduling algorithm that is

sub-optimal for wireless channels, but show that this algorithm is optimal when the

channel quality of a user does not vary within an epoch, even with different users

possibly having different channel quality. (c) Finally, we conduct trace-driven sim-

ulations with publicly available MPEG-4 video traces, and wireless channel quality
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traces that we collected from a WiMAX test-bed. Our simulations demonstrate that

the greedy algorithm achieves a fair distribution of stalls across clients while main-

taining a low average number of stalls per client. In particular, when the wireless

network is average-provisioned as compared to the total average bit rate of the videos

(a case that is interesting in practice), the greedy algorithm reduces the number of

stalls by a factor of 3, when compared to other algorithms in our simulations. We

also study the sensitivity of the greedy algorithm against changes in epoch duration,

client’s stall-recovery scheme, different video traces and poor channel conditions.

The rest of this chapter is organized as follows. We provide an overview of related

work in Section 5.2. Sections 5.3 and 5.4 describe the video streaming system

characteristics and scheduling problem formulation respectively. Hardness results are

stated in Section 5.5, followed by the greedy algorithm in Section 5.6. The evaluation

framework and experimental results are described in Section 5.7 and Section 5.8

respectively. We discuss the adaptability and scalability of the greedy algorithm in

Section 5.9 and conclude the chapter in Section 5.10.

5.2 Related Work

Although compression techniques reduce the mean bit rate of video streams, it

introduces considerable rate variability over several time scales [35, 71]. Resource

allocation for VBR video streaming has been studied extensively for wired networks.

Smoothing video transmission is one of the primary techniques used for reducing

the effect of bit rate variability. By pre-fetching some of the initial video frames

before their display times, smoothing techniques can minimize the effect of bit rate

variability under various resource constraints, such as peak bit rate, client buffer size,

and initial playout delay [50,63,80,83].

Rate allocation for multiple video streams is a well studied problem [37,57,75,86,

103]. [75] investigates minimizing rate variability when transmitting multiple video

streams given the client buffer size in a high-speed wired network. In the RCBR
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service introduced in [37], the rate of each video is renegotiated at the end of each in-

terval to provide statistical QoS guarantees. [103] presents a call-admission scheme at

a statistical multiplexer and bounds the aggregate loss probability. A linear program-

ming model is proposed in [86] to compute a globally optimized smoothing scheme to

stream multiple videos. [57] derives bounds on the dropped frames, delay and buffer

requirement that can be obtained by statistically multiplexing VBR streams at the

video server by using a two-tiered bandwidth allocation. Although our algorithm per-

forms periodic rate allocation among multiple video streams, our work differs from

the above papers in two crucial aspects: our primary objective of fairly managing

playout stalls across the videos, and our focus on time-varying wireless channel.

Scheduling algorithms for improving user QoE in cellular networks have also been

designed ( [82,88] and the references therein). Our work is closely related to [82,88],

where the authors have proposed greedy algorithms for optimizing Mean Opinion

Score (MOS) for resource allocation in wireless networks (3G and LTE). The main

difference between our work and the above mentioned papers is the user QoE metric

- we specifically consider video stalling whereas they mainly consider MOS. Another

aspect that we consider in this work which is not explored in [82, 88] is that we

demonstrate the hardness of our scheduling problem. In [44], the authors consider

the problem of transmitting multiple VBR videos to mobile clients, but the work

focusses on maximizing bandwidth utilization while reducing energy consumption

and does not address the issue of video playout stalling.

Our work is closest to the work presented in [52, 53] for managing stalls. Given

the initial playout delay and the receiver buffer size, [53] determines upper and lower

bounds on the probability of stall-free display of a video. [52] develops an analytical

framework to find the stall distribution while streaming a VBR video over a wireless

channel. However, unlike our work, both papers consider a single video stream.

Gracefully degrading the quality of the displayed video when network conditions

deteriorate is an active area of research. Scalable video coding for [67, 78, 87] and
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Figure 5.2. (a) Playback, receiver and playout curves of a video stream (b) Epochs,
intervals, slots

prioritization of packets [45] are two such methods used for video streaming. Recently,

there have been measurement studies on the quality of videos streamed over deployed

WiMAX networks [84]. The authors in [43] compare video streaming over a WiMAX

network and a wired broadband network (with equal reserved rates), and demonstrate

that with fine-tuning of network parameters, performance over WiMAX is comparable

to the wired networks in terms of the network QoS metrics. Recently, in [92], authors

have investigated the impact of WiMAX network parameters on the end-user’s QoE

in video streaming. However, none of these papers consider mechanisms to multiplex

video streams.

5.3 Network Model

In this section, we describe the video streaming system and our wireless channel

model.

5.3.1 Streaming System Characteristics

We consider a video streaming system similar to [52], as shown in Figure 5.1. We

assume that the server simultaneously and separately streams n videos v1, . . . , vn to

n clients 1, . . . , n via the base station. A video object is composed of a sequence of

frames that are displayed at a constant frame rate by the client. However, since the
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size of each frame varies significantly, the required transmission rate of a video varies

with time.

For a video vi, its playback curve pi(t) specifies the cumulative data needed in the

first t time units of the video playout, in order to play the video without interruptions.

Thus, pi(t) is the sum of the sizes of the first tF frames of the video, where F denotes

the frame rate. The playback curve is a characteristic of a video and is independent

of the underlying channel.

For a client i, its receiver curve Gi(t) specifies the cumulative amount of data it has

received by time t. The cumulative amount of data played out by time t is given by

its playout curve Oi(t). Note that Gi(t) and Oi(t) depend on the channel conditions

and transmission scheme at the base station, and Oi(t) additionally depends on the

buffering scheme of the client. In particular, unlike the playback curve, the playout

curve may vary between different streaming instances of the same video. Figure 5.2(a)

shows an example playback, receiver, and playout curve for a client. The notation

used in this chapter is summarized in Table 5.1.

We assume that clients have sufficient buffer space to buffer frames that have

been received but not yet displayed. If the next frame to be displayed is not received

within its playout time, the client stalls playout for a certain duration during which

it continues to buffer data received from the server. It resumes playout based on its

stall-recovery buffering scheme. Common buffering schemes include: (i) waiting for a

fixed amount of time, (ii) waiting for a fixed amount of future playout data, and (iii)

waiting for a fixed number of future playout frames.

5.3.2 Timing Consideration

We assume a broadband wireless system (such as WiMAX/LTE) in which schedul-

ing decisions are taken at the time granularity of epochs. Epochs are divided into

intervals (Figure 5.2(b)). The duration of an interval is small enough so that the

channel state does not change significantly within an interval. Intervals are divided
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Notation Definition
n number of clients
pi, Gi, Oi playback, receiver and playout curves (respectively)
R,A channel rate vector and transition matrix (respectively)
N in

ep , N
sl
in, N

sl
ep #intervals/epoch, #slots/interval and #slots/epoch (respectively)

Ii initial probability distribution of channel state
F frames played out per second
Yi, Vi #bits and #complete frames (respectively) transmitted in epoch
Li lead at the end of the epoch
Φi inverse playback curve
rij #bits that can be transmitted to client i in slot j

Table 5.1. Notation (note: subscript i refers to client i and # denotes ‘number of’)

into a fixed number of (transmission) slots that are allocated to clients. The base

station can transmit to at most one client in a slot. Depending on channel conditions,

each client receives a certain bit rate in the allocated slots. Following [52], we assume

that the wireless channel is error-free due to an error control mechanism such as ARQ.

5.3.3 Channel Model

We model the wireless channel between each client and the base station (i.e., bit

rate received at the client), as a discrete-time Markov chain. We assume that the

Markov chain changes state at the beginning of an interval. The possible channel

states are identified by the transmission rates R = (r1, r2, . . . , rK) (R is also called

the rate vector). Here ri denotes the number of bits that can be transmitted in a time

slot when the channel is in state i [52]. As the Markov chain changes state at the

beginning of each interval, the bit rate for a client remains the same in all slots within

an interval. Let A denote the transition matrix of the Markov chain. We assume A is

available at the server, with each client’s channel modeled as an independent Markov

chain.
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5.4 Modeling the Scheduling Problem

Our goal in this chapter is to design a scheduling algorithm that executes periodi-

cally (at the beginning of each epoch) at the base station. Informally, the goal of the

scheduling algorithm is to transmit video data to clients (some clients being allocated

more transmission slots in an interval than others) in order to minimize playout stalls

among all clients; we will precisely formulate this optimization problem shortly.

Minimizing the number of stalls within an epoch directly is difficult as it can incur

high complexity. To determine whether a client will stall or not during an epoch, it

is necessary to determine the probability of the client receiving a specific number of

bits during that epoch. Computing this probability is hard as one has to deal with

summation of dependent random variables (the number of bits received in an interval

for a client follows a Markov chain). We discuss this issue further, later in this section.

To motivate our strategy for allocating base station transmission slots to clients,

we note that a client’s current buffer size (in bits) indicates its vulnerability to stalling;

the smaller the buffer, the more likely is the occurrence of a stall. However, for

VBR videos, a client’s current buffer size may be an inaccurate indicator of this

vulnerability, since it does not consider the amount of data needed to play the next

few frames. On the other hand, the playout lead of the video, i.e., the duration of

additional time a client can play the video using only its currently buffered data,

takes into account the VBR nature of the video.

Therefore, in our scheme the server attempts to prevent stalls by fairly maximizing

the playout lead among all receivers. To ensure that stalls are evenly distributed

across all videos, slots are allocated such that the minimum lead among all clients

is maximized. In contrast, if the scheduler goal were to maximize the minimum

current buffer size (in bits), it would refrain from allocating bits to a client with large

buffer, with the effect that this client could stall multiple times in succession if that

large number of bits corresponded to short amount of played-out video. Indeed, we
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will see later that using current buffer size as the optimization metric can result in

non-uniform allocation of stalls.

To implement this scheduling algorithm, we assume that at the beginning of each

epoch, clients communicate their channel state to the server, as already done in

numerous wireless standards. Clients also communicate their playout lead to the

server. The initial state of the client’s channel and the transition matrix of the

Markov chain is used to determine the expected rate available to clients in different

intervals during an epoch.

We do not consider client channel state during previous epochs while schedul-

ing slots for the current epoch. As the server obtains fresh client channel state at

the beginning of each epoch along with client playout lead, considering client chan-

nel information from previous epochs does not provide any additional value given

a Markovian channel model. We also do not consider subsequent epochs because

wireless channel prediction for longer than an epoch may not be accurate.

Preliminaries. Let N in
ep and N sl

in denote the number of intervals in an epoch and

the number of slots in an interval respectively. Thus the total number slots in an

epoch is N sl
ep = N in

epN
sl
in. Each video is played at the constant rate of F frames per

second.

Consider the ith client in a particular epoch. Let Ii be the state vector denoting

the probability distribution of channel states at the ith client at the beginning of the

epoch. Then, given the Markov channel model, the probability distribution of the

channel state at the client at the beginning of the kth interval in the epoch is IiA
k.

Let Xik be the random variable denoting the number of bits that can be transmit-

ted to client i in any slot of the kth interval. Then, its expectation E[Xik] is the dot

product of IiA
k and the channel transmission rate vector R. Suppose that the server

assigns sik slots to client i in the kth interval. Then the random variable Yi for the

number of bits transmitted to client i in this epoch can be expressed as
∑N in

ep

k=1 sikXik.

From linearity of expectation, E[Yi] =
∑N in

ep

k=1 sikE[Xik] =
∑N in

ep

k=1 sikIiA
kR.
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Before proceeding further, we discuss briefly why determining the probability of

client i stalling (pi) in an epoch is computationally expensive. Let ci be the amount

of data that client i has to receive by the end of the epoch to avoid stalling. Then

pi = 1 − P [Yi > ci] = 1 − P [
∑N in

ep

k=1 sikXik > ci]. It is difficult to determine the

above probability because Xik are dependent random variables. To determine the

probability of a client stalling, it is necessary to determine the joint distribution of

(Xi1, Xi2, .....XiN in
ep
) which is computationally expensive.

Playout Lead. The playout lead of a client at any given time is the additional

duration of time that its video can be played out using the data available in its buffer;

it is equal to the number of complete frames in the client buffer divided by the frame

rate F . Let li denote the playout lead of client i at the beginning of an epoch. Let oi

denote the total amount of time for which the video has been played out at the client

i (calculated from the playout curve). Let gi be the time for which the data received

at the client can be played out (calculated from the playout curve). Thus li = gi− oi,

is a known constant value at the beginning of the epoch. Note that oi and gi account

for the data consumption at the client and the amount of data received during the

previous epoch, respectively. In Figure 5.2(a), the green bar denotes the playout lead

for the video at time t.

Let Li be a random variable denoting the playout lead of the video at the end of

an epoch (assuming that the video stalls during the epoch), and Vi be the random

variable denoting the number of additional frames that can be completely received

by the end of the current epoch. Then, Li = li + (Vi/F ).

Inverse Playback Curve. For an epoch, we now define a deterministic function

that maps the number of bits received to the number of complete frames received.

The inverse playback curve Φi for each video i is defined as follows: if b bits are

transmitted to video i in this epoch, then the number of complete frames that are

received increases by Φi(b) at the end of the epoch. Thus, Vi = Φi(Yi). (Note that

partially transmitting a frame does not increase the lead of the video.)
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Estimating expected playout lead. We know that Li = li + (Vi/F ). As

li is a known constant at the beginning of an epoch, E[Li] = li + E[Vi]/F . Now

E[Vi] = E[Φi(Yi)]. Unfortunately, since the video frame sizes can vary, the mapping

Φi from bits to frames is non-linear, and hence, we approximate E[Vi] ≈ Φi(E[Yi]).

The main benefit of this approximation is that computation of Φi(E[Yi]) is simple,

making the execution of our greedy algorithm in Section 5.6 fast. Thus the expected

lead is estimated as E[Li] ≈ li + (1/F )Φi(E[Yi]) = li + (1/F )Φi(
∑N in

ep

k=1 sikIiA
kR).

The Video Scheduling Problem: Our aim, at the beginning of an epoch, is

to assign slots with the goal of maximizing the minimum expected lead at the end of

the epoch. This problem can be expressed as follows:

Objective: maxmin{E[L1], . . . , E[Ln]}

subject to the constraints:

1.
∑n

i=1 sik = N sl
in, ∀k ≤ N in

ep

2. sik ≥ 0 , ∀i ≤ n,∀k ≤ N in
ep

(5.1)

5.5 Hardness Result

We now investigate the multiplexing problem described in the previous section.

We formulate it as a combinatorial problem and call it Lead-based Multiple Video

Transmission (LMVT) problem. (We assume that all slots from all intervals of an

epoch are numbered sequentially from 1 to N sl
ep.)

Inputs. At the beginning of an epoch, the ith client has an initial lead of li

seconds i.e., its buffer contains data corresponding to the F ∗ li frames received after

the last played frame. Let rij be the expected number of bits that can be transmitted

to client i in slot j. Thus if slot j belongs to interval k, then rij = IiA
kR. For ease

of presentation, we also call rij the rate of client i in slot j.

The LMVT Problem. Given the above inputs, we need to find a slot allocation

that maximizes the minimum lead among all clients at the end of the epoch. Here,

‘lead’ refers to the expected playout lead in Eqn. (5.1). A slot allocation for an epoch

essentially specifies for each slot, the client to which that slot is allocated.
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We now show that the following decision version of LMVT is NP-complete: given

a constant L, does there exist a slot allocation such that all videos have a lead of at

least L seconds at the end of the epoch?

Lemma 6. The decision version of the LMVT problem is NP-complete.

Proof. Clearly the decision version of LMVT is in NP. We show that the problem is

NP-complete by reducing subset-sum [23] to LMVT. The decision version of subset-

sum is as follows: given a set S of positive integers {x1, . . . , xP}, and a positive integer

B, does there exist a subset S ′ ⊆ S such that the sum of elements in S ′ is exactly

B [23]. Let Π denote the index set {1, . . . , P} and let Y =
∑

j∈Π xj. It is assumed

B < Y , otherwise the subset-sum instance is trivial to solve.

For an instance of subset-sum, we construct an instance of LMVT as follows. Let

Π be the set of slots in the epoch with one slot per interval. Let there be two videos

v1 and v2. Let the set S map to the rates available in each slot as follows. Let xj

be the rate available to both the videos in slot j i.e., xj = r1j = r2j. Let the initial

lead for both the videos be zero and both play at the rate of 1 frame/second. Let

the inverse playback curve of v1, Φ1(b), be a function which is 0 for b < B, and 1 for

b ≥ B. An example of such a video is one that contains a single frame of size B bits.

Similarly, let Φ2(b) be a function which is 0 for b < Y −B, and 1 for b ≥ Y −B. Let

the required minimum lead L for each video be 1.

We now show that the above instance of subset-sum has a solution if and only if

the constructed instance of LMVT has a solution.

Subset-sum to LMVT : Suppose the subset-sum problem instance has a solution given

by a subset S ′ of S. We construct a solution for the instance of LMVT as follows: for

each j ∈ Π, if xj ∈ S ′ then we allocate the slot j to video v1, else we allocate the slot

to video v2. In either case, xj bits are transmitted in slot j for the allocated video.

Since, the sum of all elements in S ′ is B, this allocation results in transmission of B
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bits and Y − B bits for v1 and v2, respectively. Thus, both videos have a lead 1 at

the end of the epoch.

LMVT to Subset-sum: For the reverse direction, assume that we have a solution of

LMVT in which both the video have a lead of 1. Thus, v1 and v2 are transmitted at

least B bits and Y − B bits, respectively. In the solution, suppose that Π1 ⊆ Π be

the set of slots that are allocated to v1, and the remaining slots are allocated to v2.

Note that, for each j ∈ Π1, the number of bits transmitted to v1 is r1j = xj. Since

at least B bits are transmitted to v1, B ≤
∑

j∈Π1
r1j =

∑
j∈Π1

xj. Similarly, for video

v2, Y − B ≤
∑

j∈Π\Π1
r2j =

∑
j∈Π\Π1

xj. However by construction,
∑

j∈Π xj = Y , so∑
j∈Π1

xj = B and
∑

j∈Π\Π1
xj = Y − B. Thus, the subset {xj : j ∈ Π1} of S is a

solution of the subset-sum instance.

For a constant number of videos, we have designed a pseudo-polynomial time al-

gorithm to optimally solve LMVT using dynamic programming. The time complexity

of the dynamic programming algorithm is high; it is exponential in the number of

videos.

Lemma 7. For a constant number of videos, there is a pseudo-polynomial time algo-

rithm to optimally solve LMVT.

Let us now present an optimal dynamic programming algorithm for LMVT. We

present a brief description of the algorithm here while a detailed proof is presented

in Appendix B.1.

We begin by introducing a simple definition. A transmission vector (or Tx-vector)

is an n-tuple < a1, . . . , an >, where the ith element indicates the number of bits to be

transmitted to video i. For a Tx-vector T , we denote by T [i] the ith element of T . For

a given number of total slots, say z, and a Tx-vector T , we say that T is z-feasible

if there is a slot allocation such that, for each 1 ≤ i ≤ n, video vi receives a total of

T [i] bits in the allocation.
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Our dynamic programming algorithm iterates over the number of slots m that

varies from 1 to N sl
ep and determines the feasible Tx-vectors. In each iteration (say

for slot m), the algorithm does the following. 1) It computes the m-feasibility of

the Tx-vectors based on the (m − 1)-feasibility of a subset of Tx-vectors (computed

in the previous step). 2) For each feasible Tx-vector for slot m, then computes

the minimum lead considering all videos. 3) For each feasible Tx-vector T , stores an

allocation pointer to the Tx-vector from the previous step from which its m-feasibility

was computed.

Finally, in the iteration when m = N sl
ep, we maintain a pointer to determine the

N sl
ep-feasible vector with the maximum value of its min-lead among all the N sl

ep-feasible

vectors. Thus, at the end of algorithm, we obtain a pointer to a N sl
ep-feasible Tx-vector

T ′ with the maximum value of min-lead, and we follow the N sl
ep allocation pointers

from T ′ to < 0, . . . , 0 > to obtain an optimal slot allocation.

5.6 A Lead-Aware Greedy Algorithm

We now present a fast lead-aware greedy algorithm for the LMVT problem. The

algorithm is optimal for LMVT when channel conditions remain constant within an

epoch, but different users may have different channel quality (as shown in Lemma 8

below). Later in our simulations, we numerically evaluate the algorithm for the

general case when the channel conditions of users may vary.

Lead-Aware Greedy Algorithm: Starting with the initial playout leads of the videos

and all the slots in the epoch to be allocated, the greedy algorithm allocates slots one

by one (Algorithm 2) as follows. In each iteration, the algorithm selects a video i with

the minimum expected lead, such that video i has the lowest id among the videos

with the minimum lead. Then the algorithm allocates client i a slot j in which client

i has the highest rate r among all available (yet to be scheduled) slots. Before moving

to the next iteration, slot j is marked unavailable for all videos, and the expected lead

of client i is increased corresponding to the transmission of r bits to video i using the
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inverse playback curve Φi (line 12 of Algorithm 2). The algorithm iterates until there

are no available slots in the epoch. Note that, the client with the minimum lead that

is selected by the algorithm may change between any two slot allocations. Hence, the

algorithm allocates slots one by one even though each client’s channel condition does

not change within an interval.

Algorithm 2 A greedy algorithm (executed at the beginning of each epoch)

1: function initialization
2: AvailableSlots← {1, . . . , Nsl

ep}; j ← 1
3: ∀ client i: leadi ← initial lead of i; Ii ← initial state distribution; rcvbitsi ← 0
4: ∀ client i: compute the inverse playback curve Φi for this epoch
5: ∀ client i: for 1 ≤ k ≤ N in

ep do {for all intervals in epoch}
6: while j < kNsl

in do {for all slots in interval}
7: rij ← IiA

kR; j ← j + 1

8: function greedy algorithm: while AvailableSlots ̸= 0 do
9: select a client with the lowest id i s.t. (∀q ≤ n, leadi ≤ leadq)
10: select a slot j s.t. (j ∈ AvailableSlots) and (∀x ∈ AvailableSlots, rij ≥ rix)
11: allocate slot j to client i; rcvbitsi ← rcvbitsi + rij
12: leadi ← initial lead of video i + Φi(rcvbitsi)

F
13: remove j from AvailableSlots

Complexity analysis. The total number of slots considering all epochs and

intervals is given by N sl
ep. We now evaluate the runtime of the greedy algorithm in

Algorithm 2.

Time Complexity: Initialization

Lines 5 -7 : O(max(nN sl
ep, nN

sl
inK

2)). This is because the matrix multiplication

(IiA
kR) will require O(K2) time.

Time Complexity: Greedy algorithm

Line 9: O(n)

Line 10 O(N sl
ep)

Lines 11-13 O(1) (assuming constant computation time for Φ(.))

Lines 9-13 O(N sl
ep) +O(n) = O(max(N sl

ep, n)) = O(N sl
ep) (as N

sl
ep > n usually)
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Lines 8-13 are executed (N sl
ep) times and thus the greedy algorithm takes O(N sl

ep
2
).

Total Time Complexity : O(max(N sl
ep

2
, nN sl

inK
2)). We provide further details in Ap-

pendix B.2.

To motivate our choice of the above greedy algorithm, we now show that the

algorithm is optimal for LMVT when each client’s channel condition does not change

within an epoch (but different clients may have different rates).

Lemma 8. If the rate of each client does not change within an epoch, the greedy

algorithm yields an optimal solution for LMVT.

The sketch of the proof is as follows. As the rate of a client i does not change

within an epoch, each slot allocated to the client i provides a constant number of bits,

say ri. The greedy algorithm simply chooses the client i that has the lowest id among

the clients with the minimum lead, and selects the next available slot and allocates

it to i. The proof of optimality is by induction on the number of allocated slots and

is shown in Appendix B.3.

As a special case of the above lemma, when the transmission channel is of Constant

Bit Rate (CBR), i.e., the rate of slots do not change within an epoch or across the

users, e.g., in a wired link, the greedy algorithm is optimal.

Corollary 1. For a CBR channel, the greedy algorithm yields an optimal solution

for LMVT.

5.7 Experimental Setup

5.7.1 Scheduling Algorithm: Parameters

To evaluate our epoch-by-epoch scheduling strategy based on playout lead we need

to specify the epoch duration, interval size and the number of slots in an interval.

Recall that in our scheduling strategy, epochs are divided into intervals, which are

subdivided into slots (Figure 5.2(b)).
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For ensuring a smooth viewing experience, it is undesirable to have small or large

epochs as the former will result in frequent glitches while the latter will significantly

delay playout. Hence in our experiments we consider epochs to be in the seconds

timescale. We perform our experiments considering an epoch duration of 10 seconds

(except Figure 5.6 where we vary the epoch duration). We choose an interval duration

to be 1 second in our experiments because we want to capture channel variation due to

path loss and shadowing effects. The fast fading behavior of the channel will average

out for video frames (as their transmission time is typically large with respect to the

fast fading timescale). In our experiments, we vary the number of slots in an interval.

By varying the number of slots in an interval we can vary the total resource (in terms

of bandwidth) available at the base station because the rates in our Markov model

correspond to the number of bits received in a slot.

The main objective of our experiments is to demonstrate that the proposed greedy

algorithm is able to achieve its goal of minimizing the number of stalls across a broad

range of epoch durations, interval sizes and number of slots per interval. Determining

the optimal epoch duration, the interval size or the number of slots in an interval so

as to maximize viewer satisfaction is beyond the scope of this work.

We assume the following buffering scheme at the client - if the client does not have

enough data to playout for the whole duration of the epoch, it stalls for the entire

epoch. We also assume that the clients have infinite large buffers to store all received

packets.

5.7.2 Trace-Driven Experiments

To demonstrate the efficacy of the greedy algorithm, we perform trace-driven

experiments. Our evaluation uses two types of traces:

(i) VBR Video Traces that provide the variation in the frame sizes of videos for

emulating video playouts.
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(ii) User-Level Wireless Channel Traces that provide the rates achieved by different

users in every interval of each epoch.

5.7.2.1 VBR Video Traces

We use the publicly available MPEG-4 VBR Video Traces [8, 79] in our experi-

ments. The videos play out at a constant frame rate of 30 frames per second. We

perform experiments with video traces encoded in Common Intermediate Format

(CIF) and Quarter CIF (QCIF). All evaluation is performed in a scenario where 8

different videos are being simultaneously streamed to 8 different users over the shared

wireless infrastructure. Unless mentioned otherwise, all results are reported for CIF

videos. A brief description of the 8 CIF video traces used, is given in Table 5.2. The

duration of the videos used in our experiments is approximately 27 minutes. Detailed

information about the CIF and QCIF traces is available in [79].

5.7.2.2 User-Level Wireless Channel Traces

Signal Strength Measurement. The wireless channel traces we use were ob-

tained from signal strength measurements over a (802.16e) WiMAX network deployed

in WINLAB at Rutgers University. The WiMAX base station is installed in WIN-

LAB. During our trace collection, the base station continuously transmitted data

packets, and signal strength (RSSI) was recorded at the receiver (a laptop) under

vehicular and pedestrian mobility. As our interval duration is 1 second, we obtain

signal strength quality one second apart from each another. To eliminate any fast

fading effects, we consider the average signal strength at the beginning of each second.

A brief description of the parameters of the WiMAX network used in our trace col-

lection is given in Table 5.3. The vehicular mobility traces were collected by driving

a car around the campus multiple times while the pedestrian mobility experiments

were performed by walking around the same campus. We conducted 4 vehicular and

4 pedestrian mobility experiments, each of duration approximately 10 minutes. As
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the base station only has a range of 500m, the entire range was effectively covered by

these experiments.

RSSI-Rate Mapping. To obtain a mapping between the RSSI values and the

rates achieved, we use the mapping between the modulation and coding schemes

(MCS) and the SINR values for a WiMAX network provided in [6]. A common ap-

proach is to divide the SINR regime into a number of ranges and for each range there

exists an MCS that maximizes throughput. The MCS indicate the rates achievable

in practice. Six different rates are achievable in practice and they have the following

ratio [1, 1.5, 2, 3, 4, 4.5] [6]. As mentioned earlier, our base station reports RSSI values,

which is similar to the SINR values reported in [6]. The minimum and maximum val-

ues of RSSI measured in our experiments are -85 dBm and -37 dBm and we map them

to the corresponding SINR values in [6]. We use linear extrapolation to determine

the mapping between RSSI ranges and the rates achieved. We use the RSSI-rate

mapping to generate the rate traces (i.e., traces indicating the rates achieved over

time) for the vehicular and pedestrian mobility experiments. We then generate 8

different User-Level Wireless Channel Traces (each 27 minutes long) emulating the

real channel conditions (separately for vehicular and pedestrian mobility) from the

rate traces.

Markov Chain Model. Our Markov channel model has 6 different states cor-

responding to the rates achieved. The states of our Markov model correspond to the

number of bits successfully transmitted in a slot. The vector of transmission rates is

taken to be R = [1, 1.5, 2, 3, 4, 4.5]∗50000 bits for the CIF videos. SNR based Markov

chain models describing the wireless channel have been well studied in literature. [27]

provides a detailed description of the various models available in literature. Similarly

the use of SNR to bit rate mapping is also common [28], [29]. We determine the

transition matrix of the Markov chain empirically (from the rate traces) by counting

the number of transitions from one state (say i) to other states and then normalizing

them by the total number of transitions from state i.
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Name of video Mean bit rate
(Mbps)

Mean frame size
(Kb)

Standard deviation
(Kb)

Star Wars IV 0.42 14 17.6
Lord of the Rings I 0.65 21.6 22.7
Tokyo Olypmics 1.06 35.4 39.4
Matrix I 0.41 13.4 17.1
Matrix II 0.61 20.2 25.5
Matrix III 0.52 17.1 20.5
NBC News 1.33 44 34
Silence of the Lambs 0.44 14.7 22.2

Table 5.2. CIF video trace statistics

Parameter Value

PHY OFDMA

Carrier Frequency 2.59 GHz

Channel Bandwidth 10 MHz

Frame duration 5 ms

Transmission power 30 dbm

Antenna model Sector

Fragmentation/Packing ON

ARQ OFF

Table 5.3. WiMAX system parameters

We note here that after about 40 steps (i.e., 40 seconds), the probability dis-

tribution obtained from any starting state using the transition matrix reaches very

close (5%) to the steady state distribution for both vehicular and pedestrian mobility

scenarios. Therefore, the transition matrix does not reach steady state during the du-

ration of an epoch (which is 10 seconds) and is thus useful as a prediction mechanism

for making scheduling decisions.

5.8 Results

In this section, we present and discuss results for the various experiments con-

ducted. We compare the performance of the greedy algorithm against two baseline

approaches: the equal-split and the weighted-split algorithms. In the equal-split ap-

proach, we divide the number of slots available in every interval equally among all
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Figure 5.3. Vehicular mobility: distribution of stalls with variation of wireless
channel resource (slots) for CIF videos
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(b) Fairness

Figure 5.4. Pedestrian mobility:distribution of stalls with variation of wireless chan-
nel resource (slots) for CIF videos

the users. In the weighted-split the total number of slots in any interval is divided

in proportion to the mean bit rate of the individual video streams. While allocat-

ing the slots, these two algorithms neither consider the playout lead nor the wireless

channel variability, and hence, we expect them to be unfair, and have lower overall

performance compared to our greedy strategy.

To emphasize the importance of making scheduling decisions based on playout

lead, we also consider a variant of our greedy algorithm from Section 5.6 (we denote

our algorithm from Section 5.6 by greedy-time). We consider a greedy-bit algorithm

which is similar to our greedy-time algorithm except for one crucial aspect: it allocates

the next slot to the video with the minimum lead in terms of playout bits (buffer

size) instead of playout time. To avoid cluttering the plots with many lines, we show
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(b) Fairness

Figure 5.5. Mixture of vehicular and pedestrian mobility: distribution of stalls with
variation of wireless channel resource (slots) for CIF videos

only a few results for the greedy-bit algorithm. The greedy-bit approach ignores

the variability in the frame sizes (i.e., burstiness) of a video with the result that it

allocates fewer resources to a video experiencing a burst, thereby unfairly making it

stall for longer durations.

5.8.1 Distribution of Stalls

In this subsection we study stall distribution as a function of the number of slots

in an interval (keeping the interval duration constant). Using the steady state prob-

abilities of the Markov model, one can compute the expected number of bits received

per slot.

5.8.1.1 Vehicular Mobility

Figure 5.3 shows the variation of the average number of stalls for four scheduling

algorithms: equal-split, weighted-split, greedy-bit and greedy-time. Table 5.4 pro-

vides the expected bit rate in the steady state for different values of the number of

slots per interval. In our experiment, the mean bit rate of the 8 CIF videos is approx-

imately 5.4 Mbps. Thus, from Table 5.4, we note that 34, 58 and 82 slots per interval

correspond to the wireless channel being under-provisioned, average-provisioned and

over-provisioned, respectively for the vehicular mobility scenario.
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In terms of the average number of stalls per video, both the greedy algorithms

perform better than the equal-split and the weighted-split approaches for the average

and over-provisioned scenarios. With respect to fairness, the standard deviation of

the number of stalls shows that in terms of evenly distributing the stalls among the

videos, our greedy-time algorithm performs significantly better than other algorithms.

We observe that the greedy-bit algorithm is unfair in distributing stalls (Figure 5.3),

and so we will not consider this algorithm further.

To highlight the performance of the greedy-time algorithm, we present results for

the average number of stalls experienced for the mildly over-provisioned case (64 and

70 slots) in Table 5.5. The mildly over-provisioned case is the scenario of interest in

practice and we observe that the greedy-time algorithm reduces the number of stalls

by a factor of 3 to 4 when compared to equal-split and weighted-split. Overall, we

observe that the greedy-time multiplexing algorithm gives the best performance both

in terms of reducing the average number of stalls per video and evenly distributing

the stalls among the videos.

5.8.1.2 Pedestrian Mobility

We also conducted experiments under pedestrian mobility and the results are

shown in Figure 5.4. We observe that the greedy-time algorithm again outperforms

the equal and weighted split algorithms in terms of both average number of stalls and

fairness.

5.8.1.3 Mix of Vehicular and Pedestrian Mobility

In practical situations, we will usually have a mix of pedestrian and vehicular

users, streaming different videos from the base station. Figure 5.5 shows the simu-

lation results considering 4 vehicular and 4 pedestrian users. We observe that the

greedy-time algorithm outperforms the other two schemes. Interestingly, in Figure

5.5(b), the weighted split algorithm has higher standard deviation when compared

to the vehicular (Figures 5.3(b) and 5.4(b)). This is because unlike the vehicular
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Table 5.4. Expected steady state bit rate for a given number of slots

Number of Slots Expected Bit Rate (Mbps)
34 3.23
58 5.7
82 8.0

Table 5.5. Average number of stalls per video for an average-provisioned network

Scheme Number of Stalls Number of Stalls
(Slots 64) (Slots 70)

Equal Split 10.25 7.25
Weighted Split 9.875 7.75
Greedy-time 2.75 1.875

and pedestrian mobility cases, where all users have similar channel quality, in Figure

5.5(b) we have both pedestrian and vehicular users and the weighted split approach

(which divides the number of available slots proportional to the mean bit rate of the

videos without taking the channel conditions into account) results in unfair distribu-

tion of stalls. In contrast to this, the greedy-time heuristic continues to distribute

the stalls fairly. We note that similar to Figure 5.3(b), the greedy-bit algorithm is

unfair in distributing the stalls for the experiments conducted in sections 5.8.1.2 and

5.8.1.3 as well. In the remaining sections we only present the results for the vehicular

mobility case.

5.8.2 Sensitivity to Epoch Duration

In the experiments presented thus far, the epoch duration was fixed at 10 seconds.

In Figure 5.6, we present the variation in the average number of stalls per video as a

function of the epoch duration. The number of slots in an interval is 64. We observe

that the average number of stalls for the greedy-time algorithm decreases slightly as

the epoch duration increases. As the epoch duration increases, the number of stalls

for the other schemes decreases faster in comparison to the greedy scheme. This

is because as the greedy scheme starts with a significantly lower number of stalls,

increasing epoch duration does not benefit it much. We note, however, the total stall

duration averaged over all videos increases with increasing epoch duration.
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Figure 5.6. Sensitivity to epoch duration
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(b) Fixed buffered playout
data (FPD)
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Figure 5.7. Sensitivity to different buffering schemes

5.8.3 Sensitivity to Buffering schemes

Recall that in the results presented above, we have assumed a client stall-recovery

buffering scheme in which the client stalls for the entire epoch when there is not

enough buffered data available for playout for the whole epoch. However, the media

players at the clients may have a different buffering scheme. Following [52], we now

consider the three common buffering schemes:

• Fixed Buffering Delay (FBD): Once a stall occurs, resume playout only after a

fixed duration of time.

• Fixed Buffered Playout Data (FPD): Once a stall occurs, resume playout only

after a fixed amount of data is received.
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(a) QCIF set 1: average stalls
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(b) QCIF set 1: fairness

Figure 5.8. Vehicular mobility: distribution of stalls with variation of wireless
channel resource (slots) for QCIF videos

• Fixed Buffered Playout Time (FPT): Once a stall occurs, resume playout only

after the receiver has accumulated enough data corresponding to a fixed playout

duration.

We performed experiments to determine whether our algorithm’s performance is

sensitive to different client buffering schemes. Figures 5.7(a), 5.7(b), and 5.7(c)

show the variation of the average number of stalls for the FBD, FPD and FPT

buffering schemes, respectively. In these simulations we again considered 64 slots in

each interval. In terms of playout stalls, the greedy-time algorithm still outperforms

the other schemes irrespective of the buffering scheme adopted by the player at the

client. We also observed that the greedy-time algorithm performs better in terms of

evenly distributing the stalls across the videos.

5.8.4 Sensitivity to Different Video Traces

We also conducted experiments with two sets of 8 QCIF video traces, available

from [8, 79]. We show results for one set of QCIF videos here. The results, plotting

the average number of stalls and the standard deviation of stalls versus the number of

slots in an interval, are shown in Figure 5.8. Given the low mean bit rate requirement

of the QCIF videos, all the rates in the Markov channel model, i.e., the number of bits

received in a slot, were scaled down by 10. This scaling down is done to investigate
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algorithm performance near the average provisioned and mildly over provisioned cases,

which are the scenarios that are interesting in practice. For QCIF videos, we observe

that the greedy-time algorithm outperforms the other approaches in terms of fairness,

but its performance is similar to the weighted split algorithm in terms of average

number of stalls. Note that when the number of slots in an interval is larger than 65

(this corresponds to the highly overprovisioned case), the other algorithms slightly

outperform the greedy algorithm. The total number of stalls experienced by any

video in this case is only 0 or 1; the difference between the algorithms is that some

videos experience a stall in case of the greedy algorithm while no stalls occur for the

other algorithms.

5.8.5 Sensitivity to Poor Channel Condition

A potential drawback of maximizing the minimum playout lead is the case where

some clients have poor channel condition for a protracted period of time. Maximizing

the minimum playout lead in this situation can degrade entire system performance.

One way to tackle this issue is to restrict the maximum number of slots that can be

allocated to any user.

For simulations we consider a vehicular mobility scenario where two out of eight

clients have poor channel quality: these clients transition only between the lowest

two rates of the Markov model with probability 0.5. Since we do not have real world

traces mimicking this kind of channel behavior we create synthetic traces for these

two users. For generating the synthetic traces we assume that in any interval, each of

two users can be in one of the two lowest rates with probability 0.5. Figure 5.9 shows

the result for this simulation. The plot x-Thd in the figure signifies our greedy-time

algorithm with the modification that the maximum number of slots allowed for any

client is xTotalSlots
n

, where n is the number of videos.

We observe that if there is no restriction on the maximum number of slots allocated

for a client (i.e., our original greedy-time algorithm), the algorithm performs worse
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Figure 5.9. Effect of poor channel quality

than the baseline approaches with respect to the average number of stalls when the

number of slots is small and has superior performance for the overprovisioned case.

We can observe from Figure 5.9 that clearly there is a tradeoff in the performance

of the greedy-time algorithm between the number of slots in an interval and the

threshold imposed. The greedy-time algorithm with a low threshold performs best

when the number of slots is small, while the opposite is true when the number of

slots is large. As expected, as the threshold is increased, the performance of the

greedy-time algorithm tends to the original algorithm with no threshold. In terms of

standard deviation, as expected the Greedy (Original) algorithm performs best with

the standard deviation increasing as we impose a lower threshold. Overall we observe

that the 2.0x-Thd greedy algorithm performs the best for the scenario chosen in this

experiment.

5.9 Discussion

In this section, we discuss issues related to the adaptability and scalability of

the greedy algorithm. In this chapter, we have only considered video streaming

applications, but our algorithm can also be adapted for the case when there is other

concurrent traffic through the base station. The other applications will consume a

fraction of the base station resources (time slots in this case); the QoE requirement
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of these applications being different from video streaming, our greedy algorithm can

execute on the remaining timeslots (after timeslots required by other applications

have been allocated). Since our approach operates using the slots available to video,

it would find application in any scheme (even dynamic) in which a provider coarsely

partitioned slots among applications.

Our greedy algorithm can also be adapted to work with two dimensional (time-

slot and sub-carrier) allocation of data - as such the model can be enriched by having

a separate Markov chain for the wireless channel on each subcarrier. The expected

rate received in the various time slots for the different subcarriers can be determined

using the Markov chains. Note that our greedy algorithm assumes that channel

quality remains unchanged within an interval. So long this assumption holds, the

greedy algorithm can be applied (it does not matter whether slots within an interval

are divided in time domain, frequency domain or both).

We have also not considered the scenario where users can join/depart in the middle

of an epoch. Our algorithm can easily be adapted to this situation. Users departing

from the system will cause resources (slots) allocated to them for that epoch to be

unused. This issue can be dealt with by randomly allocating the freed slots in the

epoch among the different clients. If a new user joins in the middle of an epoch, this

user will not have data sent to it during that epoch because all slots have already been

allocated to other users a priori. This will cause an additional delay (with maximum

duration of one epoch) to the new user. However in the beginning of the next epoch,

this user will be given preference by the greedy algorithm (and thereby more slots

allocated to it) as it will have playout lead equal to zero.

In this chapter, we addressed the problem of streaming stored video to various

clients. The stored video might be considered as videos cached at devices at the edge

of the telecommunication network. The video playback curve is just the set of frame

sizes. This information regarding frame sizes can be made easily available at the base

station. For example, Netflix manifest files already contain this information on a
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per-chunk basis, where a chunk is approximately 4 seconds of data [4]. As the frame

rate is only 30 frames/sec, the amount of information that is to be stored per video is

not quite small (in the order of a few Mbits). Hence the memory required for storing

video playout information is small. The runtime of the algorithm O(N sl
ep

2
) and thus

the greedy algorithm is easily scalable. Nowadays computational power is available

at the base station [19] and thus base stations should be able to periodically execute

the low complexity greedy algorithm.

Another issue might be the communication overhead for the greedy algorithm.

Though overhead is not explicitly modeled here, the information required to be com-

municated by each client at the beginning of an epoch is only the playout lead and

the current channel state (which is only a few bytes of information per client).

5.10 Conclusion

In this chapter, we investigated scheduling schemes for transmitting multiple video

streams from a base station to mobile clients. We showed that the problem of allo-

cating slots fairly is NP-complete even for a constant number of videos. We then

presented a greedy algorithm based on a criterion of maximizing the minimum play-

out lead to manage stalls for multiple video streams transmitted over a time-varying

bandwidth-constrained wireless channel. We demonstrated that the greedy algorithm

is fair and is also capable of minimizing the average number of playout stalls.
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CHAPTER 6

A MARKOVIAN MODEL FOR COARSE TIMESCALE
CHANNEL VARIATION

6.1 Introduction

A large number of finite-state Markov chain models have been proposed to study

the wireless channel quality and the received signal strength, beginning with the

early Gilbert and Elliot two-state Markov channel [31, 36]. Variation in received

signal strength over a wireless channel is caused by three main factors: multipath

fading, path loss and shadowing. Among these three effects, fading is caused by

constructive or destructive effects of multipath waves and changes in the order of

milliseconds depending on the speed of the receiver and the frequency of transmission.

Conversely, shadowing and path loss cause fluctuations in the signal level in the order

of seconds and tens of seconds respectively. Path loss is the deterministic distance-

dependent component of the received power. Superimposed on path loss is shadowing

- a random process that captures variations in the received signal caused by changes

in the environment (buildings, foliage and motion in the surroundings). Informally,

shadowing is the variation in signal strength at a coarse timescale (few seconds) that

is independent of the distance between the transmitter and receiver.

We focus on shadowing in this chapter and develop and validate a Markov chain to

model the effects of shadowing on the received signal strength, that occur on the order

of seconds. This shadowing model can be used in analyzing performance of wireless

network protocols (e.g., for route adaptation, or for video transmission) that adapt

their behavior in response to link-level changes at the timescale of seconds. We discuss

applications of coarse-timescale channel modeling in detail in Section 6.2. The un-
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derlying physical channel model assumes that the variation in received signal strength

due to shadowing is a lognormally-distributed random variable with zero mean [70]

and has an exponential autocorrelation function [38]. An exponential autocorrelation

function in turn implies that shadowing follows a First Order Autoregressive AR(1)

process [95]. The AR(1) process is a Markov process [95] because the current value

of the process at time t depends only the value at t− 1. These assumptions together

enable the construction of a Markov chain model that captures the impact of shadow-

ing on received power. We divide the entire range of shadowing into a finite number

of intervals with each interval corresponding to a state in the Markov chain. We then

determine the transition matrix of the Markov chain, investigating two methods for

determining this transition matrix:

• Model-based transition matrix. In this method we derive mathematical expres-

sions for the transition probabilities of the Markov chain using the properties

of shadowing (log-normal distribution and exponential autocorrelation). This

approach is parsimonious in nature as the transition probabilities depend only

on the variance (σ2) and the exponent (ρ) of the exponential autocorrelation

function of shadowing. We refer to the transition matrix derived using this

approach as the analytical one.

• Empirical transition matrix. The transition matrix can also be determined by

conducting real world experiments, collecting received signal strength measure-

ments, extracting the shadowing values and then determining the transitions

from one state to the other. We refer to the transition matrix derived using this

approach as the empirical one.

We test the assumptions and the performance of our model using signal strength

measurements collected over an 802.16e (WiMAX) network and multi-hop wireless

mesh network (TFA network at Rice University). We use hypothesis testing to assess

the stationarity (via Augmented Dickey-Fuller (ADF) Test, Philip-Pheron (PP) Test)
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of the signal strength measurements and the log-normal assumption (via Kolmogorov-

Smirov (KS) goodness of fit test) of shadowing.

We observe that the signal strength measurement traces collected over bothWiMAX

and TFA network are stationary. We find that that the log-normal assumption of

shadowing holds true for the WiMAX experiments. Interestingly, we observe that

though the shadowing samples obtained from the TFA network appear to follow a

normal distribution visually, they fail the KS test. The main reason for the traces

collected over the TFA network to fail the KS test is the large number of samples

collected; this results in the critical value for the KS test to reject the null hypothesis

to be small. Our experiments show that the exponential autocorrelation assumption

is not validated for the WIMAX network traces, while it approximately holds true

for the TFA network traces.

We then determine the values of the analytical and empirical transition matri-

ces using the measurements collected. Finally we compare the results (steady state

occupancies and the transient behavior of the Markov chain) obtained by the two

approaches with the observed shadowing-state distributions and find that they are

quite close to one another even though some of the assumptions are not corroborated

by empirical measurements.

The rest of this chapter is organized as follows. In Section 6.2, we discuss re-

lated work. We describe our Markov chain model in Section 6.3 and describe two

approaches for deriving its transition matrix in Section 6.4. The test the validity of

the assumptions of the model in Section 6.5 while a comparison of the experimental

and analytical results are presented in Section 6.6. We finally conclude the chapter

in Section 6.7.

6.2 Related Work and Applications

There is a great deal of research on developing Markov chain models for wireless

channels, with the earliest work in this area being the simple, two-state model pro-
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posed by Gilbert and Elliot [31,36]. We discuss several of these previous works here,

focusing on those that are most closely related to our own work and highlighting

our contributions. In [94] a range of signal-to-noise ratio (SNR)values represents a

state in the Markov chain. Based on this assumption the authors provide analytical

expressions for the state transition probabilities and error probabilities in each state.

In [108] the authors investigate the accuracy of a first-order Markov model for the

success/failure of data blocks. A detailed survey of various channel models along with

a description of their evolution over time is available in [73]. Our work differs from

these existing Markov chain models for wireless channels in the sense that we con-

centrate on modeling channel variations at a much coarser time granularity, typically

in the order of a few seconds and use shadowing to construct our model. We also

validate our assumptions and results obtained from the model using data collected

via real world experiments in a variety of different settings.

We next survey literature specifically focused on characterizing the properties of

shadowing. A thorough description of the different random processes causing varia-

tion in the received signal strength over the wireless channel is available in [70, 90].

The log-normal nature of shadowing has been reported in [70, 101] and other prior

work. [38] is the seminal paper modeling shadowing autocorrelation as an exponen-

tial function. Recent research has proposed refined versions of the autocorrelation

depending on the environment. In [101] the authors propose a new autocorrelation

model for shadowing in urban environments based on data collected in a Chinese

city. The correlation properties of shadowing for an indoor channel have been stud-

ied in [47, 81]. The authors in [47] observed that shadowing is very environment

specific and that correlation can be found in well-separated links if their environ-

ment is similar. Oesteges et. al perform an empirical characterization of the received

power over a wireless channel in [62] for the outdoor-to-outdoor and indoor-to-indoor

environment. They introduce several new aspects specific to multi-user distributed

channels and also suggest that shadowing be divided into two components: a static
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and a dynamic one. Most previous work on shadowing has focused primarily on the

underlying process and on studying and characterizing the different properties (dis-

tribution, autocorrelation, cross-correlation) of shadowing itself. Only few prior work

leverage these properties and use it for modeling or prediction purposes. In [48] the

authors exploit the exponential autocorrelation assumption of shadowing to model it

as a linear system and then design a Kalman filter to predict the variation of shad-

owing. Our work is unique in that we construct a Markov chain model assuming

the log-normal distribution and exponential autocorrelation of shadowing and then

validate our model with real data collected over different types of wireless networks.

Before describing our Markov chain model in detail we first discuss several ap-

plications where coarse-timescale channel prediction is potentially valuable; this will

help motivate the application of the results of this work. The first application is the

scheduling of multiple video streams over a LTE/WiMAX network with the objective

of minimizing the number of playout jitters. Let us assume a simple time slotted

scheme in which a video stalls if there is not enough data to play out in a timeslot.

Such a model would require channel estimation from one timeslot to the other. Fur-

ther to facilitate a smooth viewing experience the timeslots should be in the order of

seconds instead of milliseconds to avoid experiencing large number of small glitches.

Bulk transfer of data in energy constrained mobile sensor nodes would be facili-

tated by coarse timescale prediction as it would provide ample time to the nodes to

boot up from sleep when the channel is good and then transmit their data. Discon-

nection prediction and topology management in mobile ad-hoc networks would also

be aided by channel quality prediction at a coarse time granularity. Rate control on a

block of data is gaining popularity and a successful implementation of a block based

scheme would require a coarse timescale channel model to predict channel variations

from one block to the next (a block can take 1-2 seconds to be transmitted) coupled

with a fine grained tracking of signal strength fluctuations within a block.
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6.3 A Shadowing-based Channel Model

In this section, we describe the Markov chain model for shadowing and discuss its

applicability in mobile wireless systems. Previous theoretical and practical studies

indicate that the average received power varies logarithmically with the distance

between the transmitter and receiver; this is the deterministic path loss component of

the received power. Superimposed on the path loss is log-normally distributed random

shadowing, which takes into account the fact that the received signal strength at the

same transmitter-to-receiver separation can vary due to changes in the environmental

surroundings.

Let d, α, d0 be the transmitter-to-receiver separation, the path loss coefficient

and the close-in reference distance respectively. The received power Pr(d) in [dBm]

considering log-normal shadowing [70] is given by

Pr(d)[dBm] = P̄r(d0)− 10αlog
d

d0
+X (6.1)

where P̄r(d0) is the average received power at the reference distance d0, the second

term reflects the logarithmic dependence of received power on distance, and X is

the shadowing - a zero-mean Gaussian random variable with variance σ2 in [dB].

Therefore, Eqn. (6.1) demonstrates the effect of shadowing on received power.

Shadowing (in dB) [70] is assumed to be N(0, σ2) while both its spatial and

temporal autocorrelation functions are assumed to be exponential [38, 98, 101]. Let

Xi and Xi+n be the shadowing samples at time i and i + n respectively. There are

n samples between i and i + n and let the time difference between two consecutive

samples be δt. The temporal autocorrelation between Xi and Xi+n is given by,

ρn =
E[XiXi+n]

σ2
= e−

nδt
τ (6.2)

If the autocorrelation between two successive samples is denoted by ρ = e−
δt
τ , we

have ρn = ρn. We denote ρ as the autocorrelation coefficient.
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An exponential autocorrelation function implies that the random process is a first-

order autoregressive AR(1) process [95]. Therefore the shadowing samples form an

AR(1) process [98], and we can write the following equation

Xi = ρXi−1 + (1− ρ)ei (6.3)

where ei is white noise and is ∼ N(0, σ2
e). Furthermore ei and Xi−1 are independent

of each other. Xi being an AR(1) process also implies that shadowing is a Markovian

process [95]. This is evident from Eqn. (6.3) as well, since Xi depends only on Xi−1.

Our Markov chain model for shadowing is constructed as follows. The entire range

of shadowing is partitioned into a finite number of intervals (N), where each state of

the Markov chain corresponds to one such interval. Let us assume that the shadowing

range is divided in the following way; (A0, A1....AN) where A0 and AN correspond to

−∞ and ∞ respectively, as shadowing is Gaussian distributed. Let Yi denote that

the X value is between Ai−1 and Ai. Therefore, the set {Yi} denotes the states of the

Markov chain. The goal is to derive the state transition matrix of the Markov chain,

i.e., the transition probabilities Pij from range Yi to range Yj, ∀i, j ∈ N . We describe

approaches for numerically computing the transition matrix in Section 6.4.

In this section, we constructed a Markov chain model that captures the effects

of shadowing on the received power. We note that the overall variation in received

power can only be captured by modeling both the variation in the distance and in

shadowing, as evident in Eqn. (6.1). However, if we assume that the distance remains

constant during the time interval of interest, changes in the signal strength can be

represented by modeling the effects of shadowing alone. The distance/average signal

strength may well change more slowly, and can be updated at the sender based on

feedback from the receiver at a coarser timescale. This may be a valid assumption

for most applications, especially for those with lower mobility operating over ad-hoc

and cellular networks.
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6.4 Determining the Transition Matrix

In this section, we describe the analytical and empirical approaches for determin-

ing the transition matrix of the Markov model for shadowing.

6.4.1 Analytical Approach

From the previous section, we know that shadowing (X) is normally distributed

and that it is a Markov process (Eqn. (6.3)). We now determine the state transition

probabilities (P ′
ijs,) and begin by stating the following lemma.

Lemma 9. Two consecutive shadowing samples are jointly Gaussian

Proof. From Eqn.(6.3), ei and Xi−1 are independent and both are themselves Gaus-

sian. Hence ei and Xi−1 are jointly Gaussian. From the Cramer-Wold Device it is

known that Xi and Xi−1 will be jointly Gaussian if any linear combination of them

is Gaussian. Any linear combination of Xi and Xi−1 can be represented as

Z = αXi + βXi−1 = (αρ+ β)Xi−1 + α(1− ρ)ei (6.4)

ei and Xi−1 are jointly Gaussian which means that Z is Gaussian. Hence using the

Cramer-Wold Device we have that Xi and Xi−1 are jointly Gaussian.

To calculate the transition probability Pij, we must determine the probability of

transitioning from range Yi to range Yj at any time step k. Xk and Xk−1 being

jointly Gaussian implies that Xk+1|Xk ∼ N(ρxk, σ
2(1− ρ2)). Moreover we have that

Xk ∼ N(0, σ2). Therefore, we have

Pij = P (Xk+1 ∈ Yj|Xk ∈ Yi)

=
P ({Xk+1 ∈ Yj} ∩ {Xk ∈ Yi})

P ({Xk ∈ Yi})

=

∫
Yi
(
∫
Yj
fXk+1|Xk

(x2|x1)dx2)fXk
(x1)dx1∫

Yi
fXk

(x1)dx1

(6.5)
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As the distributions of Xk+1|Xk and Xk are Gaussian,
∫
Yj
fXk+1|Xk

(x2|x1)dx2 and∫
Yi
fXk

(x1)dx1 can easily be calculated using error functions. The absolute value of

Pij can then be numerically calculated, as the integral in the numerator can be easily

solved using a mathematical package like MATLAB, once the values of ρ and σ have

been determined.

6.4.2 Empirical Approach

The transition matrix can also be determined by performing signal strength mea-

surements at the receiver for experiments conducted over any desired network. The

first task is to extract the shadowing values by eliminating the deterministic dis-

tance dependent path loss. We then determine the states of the Markov chain to

which each of the shadowing values correspond to. Therefore, we have the sequence

of states through which the Markov chain has progressed. The subsequent step is

to determine the number of transitions from each state to the others by observing

the sequence of states. For example, suppose there are 6 states in all and that the

sequence of states is {......2, 4, 6, 2, 4......}. The subsequence {2, 4} means thats we

increment the number of transitions from state 2 to state 4 by one. The next transi-

tions are from states 4 to 6, 6 to 2 followed by another transition from 2 to 4. Once

all the transitions have been considered, we use the relative values of the numbers of

transitions from state i to state j for all states j to determine the empirical transition

probabilities from state i to all states j, Pij.

We determine the parameters (σ, ρ) needed for the analytically-determined tran-

sition matrix and the directly observed transition probabilities Pi,j in the empirical

transition matrix from experiments conducted over a WiMAX network and a large

multi-hop wireless network (TFA network). From the received power measurements

we first extract the shadowing values. The variance and autocorrelation coefficient

of the shadowing values are then determined, which are used to obtain the transition
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matrix analytically. The shadowing values are also used to obtain the empirical tran-

sition matrix by observing the transitions between successive shadowing samples.

6.5 Validating the Model

In the preceding sections, we developed a Markov chain model for channel predic-

tion based on changes in the received signal strength due to shadowing. Our goal in

this section and the next is to conduct real world experiments and extract the shad-

owing samples to (i) corroborate the underlying model assumptions - that shadowing

follows a normal distribution and that the autocorrelation of shadowing has an expo-

nential decay, (ii) determine the transition matrix of the Markov chain analytically

and empirically, from the data collected, and (iii) compare the analytically and em-

pirically obtained transition matrices, and the channel performance predictions made

via the Markov chain models using these transition matrices to assess the ultimate

usefulness of our model.

6.5.1 Experimental Setup

We test the validity of the model assumptions and the performance of our model

with data collected over different types of networks (WiMAX and TFA network).

6.5.1.1 WiMAX Experiments

We collected data under varying levels of user mobility (pedestrian and vehicular)

for experiments carried out over a 802.16e (WiMAX) network as described in Chapter

5. We obtained signal strength quality one second apart from each another by elimi-

nating the fading effects (described in Chapter 5). While collecting the signal strength

measurements, the distance variation from the outdoor base station was captured us-

ing a GPS device attached to the laptop. The GPS device provides latitude and

longitude information, which was then converted to 2D-Cartesian coordinates. The

height of the base station from the ground was also measured and the transmitter-
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to-receiver distances were calculated from this information. The shadowing samples

were extracted by observing the deviation of the received power samples from the

log distance relation. In all, three vehicular and two pedestrian traces were collected,

each having a duration of approximately 8 minutes.

6.5.1.2 TFA Network Experiments

We also evaluate the performance of our model using data collected over the TFA

network [16,34]. The TFA network is a large multi-hop wireless network deployed in

Southeast Houston by Rice University. The nodes are equipped with 802.11b wireless

cards. The TFA network is a multi-tier architecture consisting of the access tier and

the backhaul tier. The clients connect to the access points (APs) in the access tier

while the backhaul tier wirelessly interconnects the APs to forward client traffic to

and from the wired gateways. The TFA network consists of 17 nodes which span a 3

sq. km area. The coordinates (latitude and longitude) of the different APs are also

provided [34].

The researchers at Rice University conducted a large number of experiments and

have made the traces publicly available through the website [34]. We use the data

trace collected by them via the following experiment [34]. In this experiment, the

authors employ wardriving (which is the act of searching WiFi networks in a moving

vehicle using a portable computer), where a vehicle collects beacons from APs while

passing the streets of the neighborhood. The vehicle follows arbitrary paths and this

process is repeated 15 times on different days. Their data trace has the following

information (latitude, longitude, signal strength and unix time) where latitude and

longitude correspond to the GPS coordinates of the receiver in the vehicle. From this

data trace we obtain signal strength measurements from every AP on a per second

timescale. The distance between the receiver and the different APs every second can

also be determined using the GPS measurements. We then subtract the path loss

118



from the signal strength measurements to extract the shadowing values. We obtain

this information for each of the 17 APs that we found in this data trace.

As mentioned above, the receiver collects beacons transmitted by the various APs

as the authors drive the vehicle in the neighborhood of the APs. The APs transmit

beacons using WiFi (802.11b) and therefore the vehicle frequently moves out their

limited transmission range. As a result of poor connectivity between the vehicle and

any AP, the data collected for any AP is not a continuous time series and there are

frequently missing data points.

6.5.2 Stationarity Testing

We tested the stationarity of the WiMAX and TFA network traces using hypoth-

esis testing. The most popular methods used for wide sense stationarity testing are

the ADF Test (Augmented Dickey-Fuller Test) [27, 74], the PP Test (Philips-Perron

Test) [66] and the Variance Ratio Test.

The ADF Test and PP Test can be used to assess the null hypothesis of a unit

root in a univariate time series against the alternate hypothesis that the data is from

an AR process (i.e., wide sense stationary). Here by root, we mean the roots of

the characteristic equation of the AR(p) process. The main difference between the

ADF Test and the PP Test is that the PP Test is non-parametric, i.e., it corrects for

any serial correlation and heteroskedasticity in the errors non-parametrically. In an

AR(p) process, p is referred to as the ‘lag’. The Variance Ratio Test assesses the null

hypothesis that the data is from a random walk. For all the three tests if the null

hypothesis is rejected, then one can conclude that the data is stationary.

The ADF Test and the PP Test are most suited for our study as they can be

directly used to determine whether the data is stationary or not, while the Variance

Ratio Test tests whether the data has a particular type of ‘non-stationary’ behavior.

We used the ‘adftest’, ‘pptest’, ‘vratiotest’ functions available in the econometrics

toolbox in MATLAB to perform these tests.
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WiMAX Measurements. We have 3 vehicular and 2 pedestrian mobility traces,

each consisting of approximately 500 samples. For the ‘adftest’ and the ‘pptest’ we

tested with large range of lag values and observed that the null hypothesis is rejected

for all values of lag for vehicular mobility traces at 5% and 1% levels of significance.

For pedestrian mobility traces the null hypothesis is rejected for values of lag less

than or equal to 10 and is accepted for lag values greater than 10 at 5% level of

significance. But very large values of lag are not of concern to us, as we model the

shadowing process as an AR(1) process. At 1% level of significance we observed that

the null hypothesis is accepted at lag values greater than 4. The Variance Ratio Test

rejects the null hypothesis that the data is from a random walk at 5% and 1% levels

of significance. The hypothesis testing results suggest that the WiMAX measurement

traces (vehicular and pedestrian mobility) are stationary.

TFA Network Measurements. We observed that for the ADF Test, all 17

APs reject the null hypothesis for lag values below 40 at both 5% and 1% levels

of significance. For lag values greater than 40 and less than 100, all APs except 2

reject the null hypothesis at 5% level of significance. Similarly, for lag values greater

than 40 and less than 100, all APs except 3 reject the null hypothesis at 1% level of

significance. For the PP test we observed that for lag values less than 100, all APs

reject the null hypothesis at 5% and 1% level of significance. For the Variance Ratio

Test, we observed that all APs except 1 reject the null hypothesis of a random walk.

The hypothesis testing results suggest that the TFA Network measurement traces are

stationary.

6.5.3 Normality Testing

We use the Kolmogorov-Smirnov goodness of fit (KS test) to determine the nor-

mality of shadowing for the traces collected. Let σ2
sam denote the variance of the

collected samples. The null hypothesis is the following: The samples are drawn from

a normal distribution having mean 0 and variance σ2
sam.
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WiMAX Measurements. Our tests failed to reject the null hypothesis at any

acceptable level of significance for both the vehicular and pedestrian mobility traces.

The smoothed probability distribution obtained for one of the vehicular traces using

the kernel density estimation method and the corresponding normal distribution are

shown in Figure 6.1(a). The standard deviation for this trace is 4.4 dB.
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(a) WiMAX: vehicular mobility
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(b) TFA Network: Quince
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(c) TFA Network: Woodridge

Figure 6.1. Distribution of shadowing

TFA Network Measurements. We observe that though shadowing for most of

the APs looks Gaussian visually, they fail to pass the KS test at acceptable levels of

significance. Let us consider Figures 6.1(b) and 6.1(c) to appreciate this observation.

These figures show the distribution of shadowing for two different APs (Quince and

Woodridge) along with the normal distribution obtained with mean 0 and variance

σ2
sam. To avoid cluttering the chapter with similar kinds of graphs in the remaining

sections we will show results only for these two APs. We note that other APs also

report similar results. While studying the transient behavior (Section 6.6.2.2) we

found that Woodridge reported the highest total variation between the analytical

and true occupancy (0.178) for the 2-step distribution.

The main reason for the APs to fail the KS test is the large number of samples

collected; this results in the critical value for the KS test to reject the null hypothesis

to be small. Moreover, in the experiments conducted, the authors drove their vehicle

a large number of times in the same region and collected a lot of samples. Therefore,

it is possible that there are more samples from a certain location as opposed to

another, thereby biasing the data collected. Some areas around the access point may
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not be accessible by road and hence would not be covered by the this data trace.

Interestingly, a study done by researchers at Rice [16] reports results for a smaller

dataset that the authors collect over this network. In this paper they claim that

shadowing is Gaussian (but they do it visually and do not use the KS test).

6.5.4 Exponential Autocorrelation Testing

WiMAX Measurements. The temporal autocorrelation function of shadowing

for the three different vehicular traces along with the mean of these three traces

is shown in Figure 6.2(a). We observe that the autocorrelation function does not

follow an exponential decay when the traces are considered individually. The data for

pedestrian mobility in Figure 6.2(b) similarly shows that the autocorrelation function

for these traces is not exponential. Moreover, while we observed that the average

autocorrelation is roughly exponentially for the case of vehicular mobility, this is not

the case for pedestrian mobility.
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Figure 6.2. Autocorrelation of shadowing

TFA Network Measurements. The measurements taken from the TFA net-

work are not continuous time measurements, as mentioned earlier. We ignore the

missing data points and consider the available data as a time series. Our goal here

is to determine whether the autocorrelation decays sharply and is approximately ex-

ponential; for smaller values of time lag the autocorrelation is more accurate than

larger values of time lag. We show the autocorrelation function for 4 APs in Figure
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6.2(c). We observe visually that the autocorrelation is roughly exponential for the

TFA Network measurements unlike the WiMAX measurements.

6.6 Results

In this section, we construct the Markov chain by dividing shadowing into the

following intervals {−∞,−σsam,−σsam

2
, 0, σsam

2
, σsam,∞}. The size of the intervals is

chosen in this manner so that there are sufficient data points in each interval. As

shadowing follows a normal distribution, the probability of receiving shadow samples

becomes very small as we move away from the mean and so we consider the interval

beyond σsam or −σsam as an open interval.

We then determine the transition matrix analytically and empirically for the

WiMAX and TFA network traces using the approaches outlined in Section 6.4. Hav-

ing determined the transition matrices, the ensuing step is to examine the closeness

of the system state behavior (e.g., steady state and transient behavior), as calculated

via one of the Markov chain models, and as observed empirically.

To have a better understanding of the closeness of the different distributions we

quantify them in terms of the total variation [76]. The total variation between a

probability distribution P and a probability distribution Q with n outcomes is given

by,

Total V ariation =
1

2

n∑
i=1

|pi − qi| (6.6)

We first discuss the results obtained for the WiMAX network and then the TFA

network.

6.6.1 WiMAX Network

We compute the standard deviation and autocorrelation coefficient needed to de-

termine the analytic transition matrix. Table 6.1 lists these values for the vehicular

and pedestrian traces. As expected, the values for the vehicular trace are close to one

another while the same is true for the pedestrian traces. Tables 6.2 and 6.3 show the
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Standard Deviation Autocorrelation Coefficient

Vehicular
Trace 1 4.4 0.84
Trace2 4.3 0.83
Trace 3 4.6 0.86

Pedestrian
Trace 1 3.6 0.84
Trace 2 3.6 0.87

Table 6.1. Standard deviation and autocorrelation coefficient

State 1 State 2 State 3 State 4 State 5 State 6
State 1 0.6433 0.2334 0.0983 0.0211 0.0023 0.0001
State 2 0.2471 0.3290 0.2811 0.1169 0.0235 0.0024
State 3 0.0815 0.2202 0.3374 0.2519 0.0915 0.0175
State 4 0.0175 0.0915 0.2519 0.3374 0.2202 0.0815
State 5 0.0024 0.0235 0.1169 0.2811 0.3290 0.2471
State 6 0.0001 0.0023 0.0211 0.0983 0.2334 0.6433

Table 6.2. Vehicular mobility: analytical transition matrix

analytical and empirical transition matrix respectively for the vehicular trace whose

distribution is characterized in Figure 6.1(a).

6.6.1.1 Steady State Behavior

In this subsection, we obtain the steady state distributions using the analytical and

empirical transition matrices. We then compare them with the empirically observed

shadowing-state occupancies (True Occupancy). The True Occupancy is calculated

by counting the number of shadowing samples in each interval and then normalizing

State 1 State 2 State 3 State 4 State 5 State 6
State 1 0.6883 0.2078 0.0909 0 0 0.0130
State 2 0.2381 0.3651 0.3016 0.0794 0 0.0159
State 3 0.0619 0.1649 0.4948 0.1856 0.0515 0.0412
State 4 0.0380 0.0633 0.2152 0.4304 0.1519 0.1013
State 5 0 0.0192 0.0577 0.2885 0.3846 0.2500
State 6 0 0.0244 0.0488 0.0854 0.1829 0.6585

Table 6.3. Vehicular mobility: empirical transition matrix
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(b) Trace 2
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(c) Trace 3

Figure 6.3. WiMAX-vehicular mobility: comparison of analytical and empirical
steady state distribution of the Markov chain with the observed occupancy
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(b) Trace 2

Figure 6.4. WiMAX-pedestrian mobility: comparison of analytical and empirical
steady state distribution of the Markov chain with the observed occupancy

them by the total number of samples. Figures 5.3 and 5.4 show the steady state

behavior for the three vehicular and two pedestrian traces respectively. We observe

that in terms of the steady state distribution, the parsimonious analytical approach

and the empirical method match the true occupancies very closely; figures 5.3 and 5.4

show good agreement in the model-predicted and observed steady state shadowing

values.

6.6.1.2 Transient Behavior

Having studied and validated the steady state behavior in the previous subsection,

we focus on the transient state analysis here. We begin by determining the empirically

observed distribution of transitioning to the different shadowing states as a function

of the number of time steps (starting from any state). For example, from the traces
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Mean Variance Mean Variance
(2 step) (2 step) (5 step) (5 step)

Trace 1
Anal 3.19 1.99 3.35 2.64
Emp 3.21 1.88 3.34 2.67
True 3.08 1.57 3.2 2.28

Trace 2
Anal 3.19 1.99 3.35 2.63
Emp 3.17 1.95 3.30 2.77
True 3.29 1.89 3.5 2.88

Trace 2
Anal 3.17 1.8 3.3 2.54
Emp 3.29 1.94 3.42 2.66
True 3.16 1.19 3.47 2.47

Table 6.4. Vehicular mobility: transient state behavior

Mean Variance Mean Variance
(2 step) (2 step) (5 step) (5 step)

Trace 1
Anal 3.18 1.93 3.33 2.6
Emp 2.86 2.0 3.1 2.75
True 2.78 1.06 2.86 1.57

Trace 2
Anal 3.15 1.74 3.30 2.52
Emp 3.12 1.79 3.33 2.78
True 3.06 0.92 3.07 1.05

Table 6.5. Pedestrian mobility: transient state behavior

collected, we calculate the probability of transitioning to the other states after 2 time

steps starting from say, state 3. We once again refer to this as the True Occupancy.

The transition probability distribution as a function of the number of time steps is

also obtained from the analytical and empirical transition matrices. As the number

of time steps increase the transient behavior will approach steady state.

We study the transient behavior of the Markov chain by comparing the first and

second moments (the mean and variance) of the distributions obtained by the various

approaches. We assign numerical values 1 through 6 for the different states of the

Markov Chain. The states of the Markov chain being abstract, the absolute values

of the mean and variance do not have any physical interpretation. The goal of this

analysis is to compare the moments obtained by the different methods to determine
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Anal-
True

Emp-
True

Anal-
True

Emp-
True

(2 step) (2 step) (5 step) (5 step)
Trace1 0.15 0.10 0.06 0.08
Trace2 0.22 0.11 0.11 0.06
Trace3 0.13 0.14 0.07 0.05

Table 6.6. Vehicular mobility: total variation

the closeness of the distributions. For sake of conciseness we represent the 2 and

5 time step transitions from state 3 in Tables 6.4 and 6.5 for the vehicular and

pedestrian traces respectively. From Table 6.4 we observe that the mean and variance

obtained by the analytical and empirical methods are close to true occupancies for the

vehicular mobility scenario. For the pedestrian mobility scenario, the performance of

the analytical and empirical methods are comparable to one another. But unlike the

vehicular mobility case, their performance is not that close to the True Occupancy. We

also studied the transition probability distribution from the other states graphically

for the vehicular and pedestrian traces and similarly observed that performance of the

empirical and analytical approaches were comparable but were sometimes not that

close to the True Occupancy.

Tables 6.6 and 6.7 present the 2 and 5 time step total variation between the

analytical and true occupancies as well as the empirical and true occupancies for

the vehicular and pedestrian traces respectively. We observe from these tables that

the total variation is small, which implies that the distributions are close to each

other. Once again, we observe that the vehicular mobility results are better than

the pedestrian mobility case. We would like to note here that the after about 25

steps, the probability distribution obtained by the analytical and empirical transition

matrices from any state reaches very close (5%) to the steady state distribution for

all the vehicular and pedestrian mobility cases.
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Anal-
True

Emp-
True

Anal-
True

Emp-
True

(2 step) (2 step) (5 step) (5 step)
Trace1 0.21 0.20 0.20 0.16
Trace2 0.22 0.21 0.31 0.33

Table 6.7. Pedestrian mobility: total variation

6.6.2 TFA Network

We study the steady state and transient state performance of our Markov Chain

model with data collected over the TFA network. From Section 6.4, we know that

in order to calculate the analytical transition matrix we first need to determine the

variance and autocorrelation coefficient of shadowing. By using these two parameters

we obtain the analytical transition matrix for the different APs. While determining

the empirical transition matrix we ensure that inaccuracies are not introduced due to

the temporal discontinuity in the traces. For example, if we have shadowing samples

ranging from t = 1 to t = 10 and then again from t = 15 we neglect the state

transition from t = 10 to t = 11 due to unavailability of this data. We then continue

parsing the trace from time t = 15.
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(b) Woodridge

Figure 6.5. TFA network: comparison of analytical and empirical steady state
distribution of the Markov chain with the observed occupancy
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(b) Woodridge

Figure 6.6. TFA network: comparison of analytical and empirical transient state
(2-step) distribution of the Markov chain with the observed occupancy

6.6.2.1 Steady State Behavior

We compare the steady state performance of the analytical transition matrix, the

empirical transition matrix and the True Occupancy for all the APs, but we show the

results for only Quince and Woodridge in Figures 6.5(a) and 6.5(b) respectively. It is

evident from Figure 6.5 that the heights of the bars for the three approaches are similar

to each other which indicates that their steady state distributions are comparable to

one another. We once again quantify the closeness of the distributions by the total

variation. We observe that the mean total variation between the analytical and True

Occupancy is 0.055 between the empirical and True Occupancy is 0.073 considering

the traces from the 17 different APs.

6.6.2.2 Transient State Behavior

For the transient state analysis we once again look at the 2-step and 5-step distri-

butions for the three methods, starting from any initial state for all the traces. Figures

6.6(a) and 6.6(b) depict the 2 -step transient distribution for Quince and Woodridge

starting from state 1. The purpose of these graphs is just to let the readers visually

appreciate how the transient state performance of the analytical, empirical and True

Occupancy compare against one another. It can be observed from Figure 6.6 that

after 2 steps the probability of transitioning to nearby states is higher than that to

states further away.
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We also study the mean and variance of the distributions of the three approaches as

a function of the number of time steps. Our observations for the TFA network traces

are similar to the WiMAX traces; we find that the mean and variance of the analytical

and empirical approaches match closely. The means of the analytical and empirical

methods are similar to the True Occupancy, but sometimes their variances differ a

bit from the True Occupancy. Quantifying the closeness, we observe that considering

all APs the difference between the means for the 2 step and 5 step distributions for

the (analytical/empirical) methods and the True Occupancy is approximately 7%

and 12% respectively. The difference between their variances at 2 step and 5 steps is

however around 27% and 33% respectively. We observed that the mean total variation

between the analytical and True Occupancy and that between the empirical and True

Occupancy considering all APs is 0.13 and 0.09 respectively for the 2 step distribution.

The same values for the 5-step distribution are 0.2 and 0.17 respectively.

Our analysis of the steady state and transient behavior for WiMAX and TFA

network traces shows that the Markov chain model has good agreement between the

model-predicted and true distributions, though the assumption of shadowing having

an exponential autocorrelation function is violated, in particular for the WiMAX

traces.

6.7 Conclusion

In conclusion, we can say that we developed and validated a finite-state Markov

chain channel model to capture wireless channel variations due to shadowing. We ob-

tained the Markov chain transition matrix in two ways: (i) via a parsimonious mod-

eling approach in which shadowing effects are modeled as a log normally distributed

random variable affecting the received power, and the transition probabilities are

derived as functions of the variance and autocorrelation function of shadowing; (ii)

via an empirical approach, in which the Markov chain transition matrix is calculated

by directly measuring the changes in signal strengths collected in WiMAX network
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and a multi-hop wireless network. Our experimental evaluation shows that the log-

normal assumption of shadowing and the exponential autocorrelation assumption do

not always hold true. Nonetheless, the Markov chain model showed good agreement

between the model-predicted and observed values of shadowing for both the steady

state and transient behavior.
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CHAPTER 7

CONCLUSION

7.1 Thesis Summary

This thesis examined efficient routing and scheduling algorithms which exploit

wireless channel variability to improve user-level performance.

We used modeling and analysis in Chapter 2 to investigate the performance ben-

efits of opportunistic and cooperating forwarding in presence of multiple interfering

transmissions. Rather than proposing new protocols or investigating the performance

of specific opportunistic or cooperative transmission protocols, our goal was to com-

pare the performance of idealized and representative opportunistic and cooperative

forwarding strategies under common realistic assumptions. We began with a single

flow linear network, and observed that cooperation outperforms opportunism. We

then considered the case of more general network topologies with multiple flows and

observed that unlike the linear network case, opportunism outperforms cooperation

on average. We identified the interference resulting from the larger number of trans-

missions under cooperative forwarding as a cause for mitigating the potential gains

achievable with cooperative forwarding.

Next, in Chapter 3 we investigated the tradeoff between state information collec-

tion (sampling frequency and number of bits per sample) and power consumption for

a fixed source-to-destination goodput constraint. We formulated this problem as an

optimization problem and observed that long sampling intervals fail to take advan-

tage of the temporal correlation of link state estimates while short sampling intervals

incur significant overhead. Similarly, using small number of bits per sample provides
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very little information about the network state while large number of bits provides

marginal additional information.

In Chapter 4, we studied the problem of data forwarding in heterogeneous net-

works that comprise of both stable as well as highly dynamic components and in which

uniform routing or flooding at all network nodes does not perform well. We proposed

a greedy algorithm (adaptive-flood) that dynamically classifies individual nodes as

routers/flooders depending on network conditions with the objective of increasing

the overall network goodput. We demonstrated via simulation that adaptive-flood

achieves performance equivalent to, and in some cases significantly better than, that

of network-wide routing or flooding alone.

A video streaming application was studied in Chapter 5, where we investigated

the problem of scheduling different users streaming different video streams from a

base station. We demonstrated that the problem is hard and proposed a lead-aware

greedy algorithm for allocating channel resources (time slots) to different users. Real

VBR video and wireless network traces were used to evaluate the performance of the

greedy algorithm; we observed that the greedy algorithm has lower average number

of application playout stalls and lower standard deviation when compared to other

algorithms.

To aid application and network layer protocol design, we designed a Markovian

model to capture the effect of shadowing on the received power in Chapter 6. We

developed analytical and empirical approaches to compute the transition matrix of

the Markov chain. We used signal strength measurements collected over a WiMAX

network and a multi-hop wireless network and showed via experiments that the steady

state and transient state performance of the Markovian model is close to that observed

from real traces.
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7.2 Future Work

This thesis outlined techniques for enhancing wireless network performance by

designing efficient routing and scheduling algorithms for varied networks. The work

done here can be extended in different ways and provides new avenues for future

research. We outline some possible research directions here.

Consider the work on opportunism versus cooperation in Chapter 2. In this work,

we have assumed that for any link i.i.d. fading samples are obtained at the begin-

ning of each time slot. In realistic environments, fading will be correlated from one

time slot to the next [108]. We demonstrated how to model opportunistic forwarding

for correlated channels for a small linear network. A direction of future research is

to develop models for analyzing opportunistic and cooperative forwarding for large

general networks in presence of interference assuming correlated multipath fading.

Another challenging topic for future research is to account for the intra-flow and

inter-flow effect when there are multiple concurrent packets within a flow. This could

potentially be done by considering a minimum spatial separation (‘guard zone’) be-

tween concurrently transmitting nodes such that their transmissions cause minimum

self-interference for that flow. A potential complexity here will be to determine the

size of the guard zone. Too large a guard zone will decrease the pipelining efficiency,

whereas too small a guard zone would result in high interference. Another challenge

is to compare opportunistic and cooperative forwarding in the presence of compet-

ing flows, with optimized (centrally or distributed) scheduling. The practical, but

important, question of the overhead needed to achieve this coordination in practice,

and whether this additional complexity is warranted by the increase in performance

is also a question for future research.

In Chapter 3, we made several assumptions such as equal link-level path loss

between different pairs of nodes, Gaussian quantization noise and exponential au-

tocorrelation of shadowing. An immediate extension of our work is to relax these

assumptions and study their impact on the sampling interval versus number of bits
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per sample tradeoff. We are also interested in understanding the functional relation-

ship between the sampling interval and the number of bits per sample. In the present

formulation, we assumed that link values are encoded anew at the beginning of each

sampling interval. We are interested in exploring the sampling interval versus number

of bits per sample tradeoff by relaxing this assumption by leveraging the correlation

of the underlying shadowing process and differentially encoding the link samples from

one interval to the other. In our current work we considered a single source having

multiple disjoint paths to a destination. A possible extension is to consider overlap-

ping paths and multiple interfering sources. Some techniques and ideas related to

modeling interference from Chapter 2 may be borrowed to address this question.

Let us next consider the data forwarding problem in heterogeneous networks in

Chapter 4. As an extension of this work, we plan to evaluate the performance of

adaptive-flood on general network topologies and on real network traces. While we

studied the problem of classifying individual nodes as flooders/routers, we are also

interested in exploring the case of preferentially routing/flooding data packets based

on destinations. We assumed the presence of an underlying native routing algorithm

and our router/flooder classification algorithm executed after routes had been deter-

mined. A different perspective for approaching this problem would be to take into

account the mobility and link quality variations in the past, use it to predict future

connectivity and then base the data forwarding strategy at individual nodes on these

predictions. The plethora of prior work in mobility modeling [73] can be leveraged

to predict future node mobility and connectivity. Goodput is not the only metric

of concern in wireless networks - an equally important metric is delay and designing

data forwarding strategies for heterogeneous networks with the objective of minimiz-

ing overall delay is an avenue for future research. Finally, considering different classes

of data traffic and determining operation mode for individual nodes (flooder/router)

so as to optimize performance is another challenging problem to address.
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For the problem of scheduling multiple videos streams simultaneously from a base

station in Chapter 5, a future research direction is to implement and test the per-

formance and scalability of the greedy algorithm on a real testbed. Some of the

challenges that can arise in such an implementation is accounting for delays in col-

lecting state information from the different users, tuning the greedy algorithm to

work in real time, especially when there is limited computational capability at the

base station. An alternate approach for maximizing user QoE with respect to stalls is

to schedule users so as to minimize the probability of stalling within an epoch instead

of maximizing the minimum playout lead. The optimization problem can also be

enriched by adding constraints related to the channel quality of the users. We have

performed some preliminary investigation demonstrating the effect of bad channel

quality on user experience. In this work, we assumed that the videos being streamed

are available at the base station. Closely coupled with this problem is the problem of

determining what videos to store, how to update stored video content over time and

how to serve users whose requested video streams are currently not available at the

base station. Designing scheduling algorithms for real-time videos instead of stored

ones is another future research direction.

The Markov model described in Chapter 6 does not capture the effect of path

loss on the received power and hence can be used for received power prediction,

only in scenarios where the path loss is assumed to be constant in the time period

of interest. Therefore as an extension of this work, we plan to explore the coarse

timescale power prediction problem. Filtering techniques such as Kalman Filter [48]

or Particle Filter [30] could be used to capture the effect of both path loss and

shadowing on the received power. To construct such a filter one might model the

state variables of the filter to be the received power, the distance between sender and

receiver and the shadowing. Constructing a hidden Markov model to capture the

effect of path loss and shadowing on the received power is also a direction of future
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research. Testing the application-level performance improvement (e.g., in the video

streaming application) by using these models is also a direction of future research.
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APPENDIX A

CHAPTER 2

A.1 Proof of Lemma 2

Proof. By Lemma 1, substitute λr =
N0

Pd−α
r,j

,

PT,j =

∫ ∞

β

f~m(s)ds

=
(∏

r∈T

λr

)∑
r∈T

exp(−βλr)

λr

∏
r′∈T\{r}(λr′ − λr)

=
(∏

r∈T

dαr,j

)∑
r∈T

exp
(

−βN0

Pd−α
r,j

)
dαr,j

∏
r′∈T\{r}(d

α
r′,j − dαr,j)

(A.1)

A.2 Proof of Lemma 3

Proof. First, we write SI
i,j =

Ŝi,j

N0+ŜI,j
where Ŝi,j and ŜI,j are Si,j and SI,j respectively,

when N0 = 1. Hence, SI
i,j ≥ β, if and only if Ŝi,j ≥ βN0 and

Ŝi,j
β
− N0 ≥ ŜI,j.

Denote f̂i,j(s) and f̂I,j(s) as the probability density functions of Ŝi,j, and ŜI,j

respectively.

By Lemma 1, we obtain:

P I
i,j =

∫ ∞

βN0

f̂i,j(b)

∫ b
β
−N0

0

f̂I,j(s)dsdb

=

∫ ∞

βN0

λie
−bλi

∫ b
β
−N0

0

(∏
k∈I

λk

)∑
k∈I

e−sλk∏
k∈I\{k}

(λk′ − λk)
dsdb

where λi =
1

Pd−α
i,j

and λk =
1

Pd−α
k,j

.
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Further calculation shows that

∫ ∞

βN0

e−bλi

∫ b
β
−N0

0

e−sλkdsdb =
e−βN0λi

λiλk + βλ2
i

(A.2)

Therefore,

P I
i,j =

(∏
k∈I

λk

)∑
k∈I

e−βN0λi

(λk + βλi)
∏

k′∈I\{k}
(λk′ − λk) (A.3)

A.3 Proof of Lemma 5

Proof. Eqn. (2.15) follows from Lemma 10, by substituting p[i] = ipi
α
and q[i] =

1 − pi
α
. When n ≥ 2, we expand the terms in Eqn. (2.15) for the first few terms.

Then, we obtain:

Hop[n] =
3∑

j=1

jpj
α
( 2∏

ℓ=j+1

1− pℓ
α
)
+O(p4

α

)

= p+ 2p2
α − p1+2α + 3p3

α
+O(p1+3α)

(A.4)

Lemma 10. Consider a more general recurrence eqn.:

Fp,q[1] = p[1], Fp,q[n] = p[n] + q[n]Fp,q[n− 1] (A.5)

where p[n] and q[n] are general functions of n. Then, we solve Fp,q[n] by:

Fp,q[n] =
n∑

j=1

p[j]
( n∏

ℓ=j+1

q[ℓ]
)

(A.6)
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Proof. First, it is easy to see Fp,q[1] = p[1] from Eqn. (A.6). Next, we substitute

Eqn. (A.6) into Eqn. (A.5).

p[n] + q[n]Fp,q[n− 1]

= p[n] + q[n]
n−1∑
j=1

p[j]
( n−1∏

ℓ=j+1

q[ℓ]
)

= p[n] +
n−1∑
j=1

p[j]
( n∏

ℓ=j+1

q[ℓ]
)

=
n∑

j=1

p[j]
( n∏

ℓ=j+1

q[ℓ]
)
= Fp,q[n]

(A.7)

Hence, Eqn. (A.6) is a solution to Eqn. (A.5).

A.4 Proof of Theorem 1

Proof. Recall that Hop[n] to be the expected number of hops that one transmission

can reach, when the destination is n hops away. Then, Hop[n] satisfies Eqn. (2.14),

because with probability pn
α
, the source can reach the destination in one transmission,

otherwise it reaches some node before the destination as if the destination is (n− 1)

hops away, from which the expected number of hops is Hop[n− 1].

To see n/Hop[n] ≤ Nop[n], we note that

Hop[n] > Hop[n− 1] > ... > Hop[1] (A.8)

There are a decreasing expected number of hops that opportunistic forwarding can

reach by sequential transmissions. Hence, n/Hop[n] is always smaller than the actual

expected number of transmissions Nop[n].

A.5 Proof of Theorem 2

We first define some notations. Let Tm = {s, r1, ..., rm−1} be a group of cooperative

transmitters. Using Eqn. (2.7) and substitute dr,t = rd, then we obtain the probability
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that destination t can successfully receive the packet from a set of transmitters Tm

is:

PTm,t[n] =
m−1∑
r=0

p(n+r)α∏m−1
r′=0:r′ ̸=r

(
1−

(
r+n
s+n

)α) (A.9)

Denote by P suc
co [n] the probability that the packet successfully reaches the destination

in one time slot via cooperative forwarding. Since m ≤ n,

P suc
co [n] ≤ PTn,t[n] (A.10)

Proof. First, by Lemma 11, P suc
co [n] = O

(
np3n

)
. There always exist some constants

C and c, such that P suc
co [n] ≤ Cpcn, because n−1 ≫ pϵn for any small ϵ.

Next, consider Fp,q[n], the general form of the expected number of hops a packet

can reach in one time slot, as defined in Eqn. (A.5). Note that Fp,q[n] ≥ Fp′,q′ [n]

if p[j] ≥ p′[j] and p[j] + q[j] = 1 = p′[j] + q′[j] for all j. This can be shown by

mathematical induction on Eqn. (A.5), and under the assumption that 0 < Fp,q[n] ≤

n.

We consider H̃co[n], which is the solution to the following recurrence equation:

H̃co[n] = nPTn,t[n] + (1− PTn,t[n])H̃co[n− 1],

H̃co[1] = PT1,t[1]
(A.11)

We note that 0 < H̃co[n] ≤ n.

By Lemma 11, Hco[n] ≤ H̃co[n]. Hence, we obtain:

Hco[n] ≤
n∑

j=1

Cjpcj
( n∏
ℓ=j+1

1− Cpcℓ
)

=
n∑

j=1

C
√
j ·

√
jpcj

( n∏
ℓ=j+1

1− Cpcℓ
)

≤ C√
c

√
n

n∑
j=1

√
cjp(

√
cj)2

( n∏
ℓ=j+1

1− p(
√
cℓ)2

)
= O(

√
n) ·Hop[n]

(A.12)
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Lemma 11. Consider α = 2. When p < 1
4
,

P suc
co [n] ≤ PTn,t[n] = O

(
np3n

)
(A.13)

Proof. Define Ar , p(n+r)2/
∏m−1

r′=0:r′ ̸=r

(
1−

(
r+n
s+n

)2)
. We assume that m is even, for

convenience of analysis.

PTm,t[n] =
m−1∑
r=0

Ar =

m/2∑
r′=0

A2r′(1 +
A2r′+1

A2r′
) (A.14)

Note that

Ar+1

Ar

=
p(n+r+1)2

∏m
r′=0:r′ ̸=r

(
1−

(
r+n
r′+n

)2)
p(n+r)2

∏m
r′=0:r′ ̸=r+1

(
1−

(
r+1+n
r′+n

)2)
=

p(2n+2r+1)

(
1−
(

r+n
r+1+n

)2
)

(
1−
(

r+1+n
r+n

)2
) m∏

r′=0:r′ ̸=r,r+1

1−
(

r+n
r′+n

)2

1−
(

r+1+n
r′+n

)2

= −p(2n+2r+1)(n+r)2

(1+n+r)2

m∏
r′=0:r′ ̸=r,r+1

(r−r′)(2n+r+r′)
(1+r−r′)(1+2n+r+r′)

=
−p(2n+2r+1)(n+ r)(2n+ r)(m− r)

(1 + n+ r)(1 + r)(1 +m+ 2n+ r)

(A.15)

Note that (n+r)(2n+r)(m−r)
(1+n+r)(1+r)(1+m+2n+r)

≤ 2nm
m+2n

. Since m ≤ n, p(2n+2r+1) 2nm
m+2n

< 1.

Hence, we can bound PTm,t by:

PTm,t[n] ≤
m/2∑
r=0

(
1− p(2n+2r+1)(n+ r)(2n+ r)(m− r)

(1 + n+ r)(1 + r)(1 +m+ 2n+ r)

)
·

2r∏
r′=0

(
p(2n+2r′+1) 2nm

m+ 2n

)
≤

m/2∑
r=0

(
p(2n+4r+1) 2nm

m+ 2n

)
= O

( mnp2n

m+ 2n

)
(A.16)

Also, further calculation shows that

A0 =
pn

2∏m−1
s=1

(
1−

(
n

s+n

)2) = O(4npn
2

) (A.17)
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Hence,

PTm,t[n] = O
(mnp2n4npn

2

m+ 2n

)
(A.18)

Consider p < 1
4
, and m ≤ n, when p is small:

PTn,t[n] = O
(
np3n

)
(A.19)

A.6 Proof of Theorem 3

Proof. By substitution, we obtain:

T
s1→t1
op

T
s1→t1
co

=
(2p2−3(1+β))(p(2+3β+β2)+4(1+3β+2β2)−p3(2+β)−p2(2+4β))

2(−3+2p2−4β)((1+β)2−p3(2+β)+p(2+3β+β2))

Because 0 ≤ p ≤ 1,

(
p (2 + 3β + β2) + 4 (1 + 3β + 2β2)− p3(2 + β)

−p2(2 + 4β)
)
−
(
(1 + β)2 − p3(2 + β) + p (2 + 3β + β2)

)
= 3 + 10β + 7β2 − 2p2(1 + 2β) ≥ 1 + 6β + 7β2

(2p2 − 3(1 + β))− 2 (−3 + 2p2 − 4β)

= 3− 2p2 + 5β ≥ 1 + 5β

Therefore, we obtain
T

s1→t1
op

T
s1→t1
co

≥ 1

A.7 Proof of Theorem 4

Proof. First, we consider the actual Markov chain of multiple flows defined in Sec-

tion 2.6.1. We recall that the stationary distribution of the actual Markov chain of

multiple flows is π over the set {r : rf ∈ Pf}. Note that π is the fixed-point to
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Eqns. (2.19)-(2.20). Let R be the random set of active relays that are transmitting

for the flows. Let the random total interference level to node j be:

Ij(R) ,
∑

r∈R\{j}

|xr,j|2 · Pd−α
r,j (A.20)

Let P f
i,j be the packet reception probability from node i to j, where j belongs to flow

f . Since the set of active relays is random, P f
i,j is a random variable, with expected

value

E[P f
i,j] = E

[
P
{

|xi,j |2Pd−α
i,j

N0+Ij(R)
≥ β

}]
= E

[
exp

(−β
(
N0+Ij(R)

)
Pd−α

i,j

)]
(A.21)

The throughput of a flow can be obtained by averaging over time. By the ergodicity

of the Markov model, it is equivalent to averaging over the stationary distribution.

Let the stationary distribution of each state j of flow f be πf (j) ,
∑

r:rf=j π(r), and

1(r → vd(f)) be the indicator function that there is a state transition from r to vd(f)

for flow f at a timeslot.

Top(f) =
∑

r∈Pf\{vd(f)}

πf (r) · Eπ

[
1(r → vd(f))

]
=

∑
r∈Pf\{vd(f)}

πf (r) · Eπ

[
P f
r,vd(f)

·
∏

v∈Pf :v≻f r

(
1− P f

r,v

)]
=

∑
r∈Pf\{vd(f)}

πf (r) · Eπ[P
f
r,vd(f)

] ·
∏

v∈Pf :v≻f r

(
1− Eπ[P

f
r,v]

)

The last equality is due to the assumption of independent random fading among pairs

of nodes (i.e., fading coefficient |xi,j|2 is an i.i.d. random variable for any pair of nodes

i, j).
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Second, recall that (π̂f : f ∈ F ) is the fixed-point to Eqns. (2.31)-(2.34), which

is also a fixed-point to Eqn. (2.34) and the following equation:

P̂r,r′(π̂) ,
∏
f∈F

P̂ f
rf ,r

′
f
(π̂¬f ) ·

∏
v∈Pf :v≻f r

′
f

(
1− P̂ f

rf ,v
(π̂¬f )

)
(A.22)

Note that Eqns. (A.22) & (2.34) are comparable to Eqns. (2.19)-(2.20) for stationary

distribution π.

The throughput can be given by:

T̂op(f) =
∑

r∈Pf\{vd(f)}

π̂f (r) ·Pf
r,vd(f)

(π̂¬f )

=
∑

r∈Pf\{vd(f)}

π̂f (r) · P̂ f
r,vd(f)

(π̂¬f ) ·
∏

v∈Pf :v≻f r

(
1− P̂ f

r,v(π̂¬f )
)

Next, we compare Eπ̃[P
f
r,r′ ] and P̂ f

r,r′(π̃¬f ) under a certain distribution π̃ over r.

Since exp(−x) is a convex function, by Jensen’s inequality,

Eπ̃[P
f
i,j] = Eπ̃

[
exp

(−β
(
N0+Ij(R)

)
Pd−α

i,j

)]
= ≥ exp

(−β
(
N0+Eπ̃ [Ij(R)]

)
Pd−α

i,j

)
(A.23)

Then, by the definition of P f
i,j(π̃¬f ), we have Eπ̃[Ij(R)] = Îfj (π̃¬f ). This implies

Eπ̃[P
f
i,j] ≥ P f

i,j(π̃¬f ) (A.24)

If Eπ̃[P̂
f
i,j] ≥ P̂ f

i,j(π̃¬f ) for any pair of nodes i, j and any distribution π̃, then every

forwarding operation carries a lower packet reception probability in the latter case.

Hence, the latter case must have decreased throughput under the respective fixed-

point:

Top(f) ≥ T̂op(f) (A.25)
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APPENDIX B

CHAPTER 5

B.1 Algorithm for proof of Lemma 7

In this section, we present an optimal dynamic programming based algorithm for

LMVT. If the number of videos is a constant, the algorithm runs in time that is

pseudo-polynomial in terms of the input. We first introduce an assumption and some

notations for the algorithm.

Preliminaries. In this algorithm, we assume that the server is allowed to transmit

any bij ≤ rij number of bits to the video i in slot j. (Recall that, rij is the rate of

video i in slot j.) We can modify a solution in which the server transmits bij < rij

bits to video i in slot j, to another solution in which the server transmits rij bits in

slot j to video i, without decreasing the objective value. Thus, the optimal value of

a given problem instance remains the same with and without this assumption.

A transmission vector (or Tx-vector) is a an n-tuple < a1, . . . , an >, where the ith

element indicates the number of bits to be transmitted to video i. For a Tx-vector

T , we denote by T [i] the ith element of T . For a given number of total slots, say z,

and a Tx-vector T , we say that T is z-feasible if there is a slot allocation such that,

for each 1 ≤ i ≤ n, video vi receives a total of T [i] bits in the allocation. Let F (z, T )

denote the predicate whether Tx-vector T is z-feasible. Define F (0, T ) to be true if

T =< 0, . . . , 0 >, and false, otherwise. For any pair of Tx-vector T1 and T2, we define

the relation T1 ≼ T2 to be true if and only if T1[i] ≤ T2[i] for every 1 ≤ i ≤ n. Note

that, the maximum number of bits that can be transmitted to a video vi in the epoch

is Q(
∑Nsl

ep

j=1 rij), and we denote this value by bmax
i . This maximum value is achieved

when all slots are allocated to vi. (Recall that N
sl
ep denotes the total number of slots
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in an epoch, and let the slots in an epoch be numbered from 1 to N sl
ep.) Finally, for

any Tx-vector T , and for each 1 ≤ i ≤ n, let W T
i denote a Tx-vector that is identical

to T except that W T
i [i] is maximum(T [i]− rim, 0).

Algorithm. In our algorithm, using dynamic programming we find a Tx-vector

T (and its corresponding slot allocation) that is N sl
ep-feasible, and which has the

highest objective value. We first note that for any N sl
ep-feasible Tx-vector T , T ≼<

bmax
1 , . . . , bmax

n >, since bmax
n is the maximum number of bits that can be transmitted

to a video vi in the epoch.

We present our algorithm in two steps. First, we present an algorithm that finds

the z-feasibility of all Tx-vectors < 0, . . . , 0 >≼ T ≼< bmax
1 , . . . , bmax

n >, for all

1 ≤ z ≤ N sl
ep. Then we extend the algorithm to compute the min-lead values for the

Tx-vectors, and select a vector that has the maximum value of min-lead.

We first state the following straightforward lemma.

Lemma 12. For any pair of Tx-vectors T1 and T2 such that T1 ≼ T2, and for any

z ≥ 0, if T2 is z-feasible then T1 is also z-feasible.

The above lemma holds because a slot allocation corresponding to z-feasibility of

T2 can be easily modified to a slot allocation corresponding to z-feasibility of T1 by

appropriately reducing the number of transmitted bits in the former allocation. We

omit this straightforward proof. Next we present a lemma that immediately gives our

dynamic programming algorithm.

Lemma 13. For m ≥ 1, F (m,T ) is true if and only if at least one of the n predicates

F (m− 1,W T
i ), 1 ≤ i ≤ n is true.

Proof. Suppose F (m − 1,W T
i ) is true for some 1 ≤ i ≤ n. Then, there is a slot

allocation using m − 1 slots such that for every 1 ≤ j ≤ n, video vj is transmitted

W T
i [j] bits. Consider a slot allocation for m slots that is identical to that for W T

i until

slot m − 1, and the mth slot is allocated to vi with minimum(rim, T [i]) transmission
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bits. Then, in this new slot allocation, every video is transmitted the number of bits

specified in Tx-vector T . Thus, F (m,T ) is true.

For the converse, suppose F (m,T ) is true for some T and m ≥ 1, and hence, there

is a slot allocation for T using m slots. Consider the video, say vi, to which slot m

is allocated. Let b denote the number of bits that are allocated in slot m. Then, by

removing the allocation for slot m in T , we obtain an allocation using m− 1 slots for

a Tx-vector T ′ that is identical to T except that T ′[i] = T [i]− b. Thus, F (m− 1, T ′)

is true. Since, b ≤ rim, W
T
i ≼ T ′. Then, from Lemma 12, F (m − 1,W T

i ) is also

true.

Finding feasible Tx-vectors. Our dynamic programming algorithm iterates over

the number of slots m that varies from 1 to N sl
ep. In a step of the iteration, the algo-

rithm computes F (m,T ) from F (m−1, ∗) using Lemma 13, for all T ≼< bmax
1 , . . . , bmax

n >.

Also, within a step of the iteration, F (m, ∗)s are computed in arbitrary but fixed or-

der of the Tx-vectors, since their values are dependent only on F (m− 1, ∗)s that are

computed in the previous step of the iteration.

Finding feasible Tx-vectors with maximum value of its min-lead. Recall

that, we approximated the (expected) lead of a video E[Li] by gi − oi + Φi(E[Yi]),

where Yi is the number of bits transmitted to client i in the epoch, and Φi is the inverse

playback curve of the video for client i. Before starting our algorithm, we pre-compute

the inverse playback curve for each video. Then, upon computing each entry F (∗, T )

in the above dynamic programming algorithm, if F (∗, T ) is true then (1) we compute

the min-lead of T by computing the lead of each video i using gi − oi +Φi(T [i]), and

(2) we store an allocation pointer to a Tx-vector W T
i that is true for T (in Lemma 13).

Finally, in the iteration when m = N sl
ep, we maintain a pointer to a N sl

ep-feasible vector

with the maximum value of its min-lead among all the N sl
ep-feasible vectors seen so

far (and the pointer is updated after each F (N sl
ep, ∗) computation). Thus, at the end

of algorithm, we obtain a pointer to a N sl
ep-feasible Tx-vector T ′ with the maximum
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value of min-lead, and we follow the N sl
ep allocation pointers from T ′ to < 0, . . . , 0 >

to obtain an optimal slot allocation.

Time and space requirements. For each of the N sl
ep slots, there are at most∏n

i=1 b
max
i Tx-vectors. Thus, there are D = N sl

ep

∏n
i=1 b

max
i entries in the dynamic pro-

gramming table. To compute each entry F (m,T ), we need to lookup n entries in the

table, and to compute the min-lead for each entry, we compute n lead values. Thus,

the time-complexity of the above algorithm is O(nD). We store the boolean feasi-

bility value, min-lead value and the allocation pointer for each entry in the dynamic

programming table. The size of the allocation pointer is at most D, and we can safely

assume that the maximum value of lead is less than D. Thus the space-complexity

of the algorithm is O(Dlog(D)).

B.2 Time Complexity of Greedy Algorithm

We elaborate here on the time complexity of the initialization of the greedy al-

gorithm. At the beginning of each epoch when the greedy algorithm is executed, it

is necessary to determine the expected rate received by clients in the different slots.

For the kth interval, the algorithm multiplies matrices IiA
k with R, and therefore it

incurs a time complexity of O(K2). Note that to compute IiA
k the algorithm has

to only multiply IiA
k−1 with A. The matrix multiplication has to be performed for

each interval and for each client incurring an overall complexity of O(nN sl
inK

2). Fur-

ther, the algorithm has to assign rij for every client in each time slot which incurs a

time complexity of O(nN sl
ep). Hence the total complexity of the initialization step is

O(max(nN sl
ep, nN

sl
inK

2)).

We note that the total time complexity of the implementation (both initialization

and greedy function) can be further improved by keeping only a single variable for

all rij in an interval for a user and using better data structures such as heaps.
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B.3 Proof of Lemma 8

Proof. As the rate of a client i does not change within an epoch, each slot that is

allocated to the client i provides a constant number of bits, say ri. In this setting, the

greedy algorithm simply chooses the client i that has the lowest id among the clients

with the minimum lead, and selects the next available slot and allocates it to i. The

proof of optimality is by induction on the number of allocated slots.

For the induction, we first introduce some notation and observations. At any

point in the execution of the LMVT algorithm, the lead of a client can only change

on receiving sufficient slots for the client’s next video frame, and therefore, the client’s

lead can change only by a multiple of 1/F . For any LMVT solution (slot allocation

to clients) X, let lXi denote the lead of client i in solution X, and let lXmin = mini{lXi }

be the minimum lead in X. Let sl(X, j) denote the number of slots allocated to

client j in solution X. Note that for a solution Y and client k, if lXj > lYk then

sl(X, j) > sl(Y, k), on the other hand, if sl(X, j) ≥ sl(Y, k) then lXj ≥ lYk .

Base Case: If only 1 slot is available, the greedy algorithm allocates it to a client

with the minimum lead and therefore the minimum lead is maximized.

Induction Step: Let us assume that the greedy algorithm yields an optimal solution

G for every d ≤ c slots. Let G(c + 1) be the solution given by the greedy algorithm

for c + 1 slots. We must prove that G(c + 1) is optimal. To show by contradiction,

let us assume that there exists an alternate solution S(c + 1) ̸= G(c + 1) that is

optimal for c+1 slots, and S(c+1) has a higher minimum lead than G(c+1). Thus,

l
S(c+1)
min > l

G(c+1)
min (i.e., l

S(c+1)
min ≥ l

G(c+1)
min + 1/F ) [Observation A0]. Let client i have the

lowest id among the clients with the minimum lead in G(c). After the (c+ 1)th slot

is allocated to i by the greedy algorithm, we have one of the following two cases:

Case 1: Minimum lead changes, i.e., l
G(c+1)
min > l

G(c)
min .
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Let j be a client with the minimum lead in G(c+1), i.e., l
G(c+1)
min = l

G(c+1)
j (j need

not be different from i). Then l
S(c+1)
j ≥ l

S(c+1)
min > l

G(c+1)
min = l

G(c+1)
j [Observation A].

Thus, j is allocated at least one more slot in S(c+1) than in G(c+1). Let us remove

a slot from j in S(c + 1) to obtain a solution S(c) for c slots. Since we have only

removed one slot from j in S(c + 1) to obtain S(c), l
S(c)
j ≥ l

S(c+1)
j − 1/F ≥ l

G(c+1)
j

[Observation B], and l
S(c)
min = min{lS(c)j , l

S(c+1)
min } ≥ l

G(c+1)
j (where the last inequality

follows from inequalities A and B). Thus, we have l
S(c)
min ≥ l

G(c+1)
j = l

G(c+1)
min > l

G(c)
min

which is a contradiction since G(c) is optimal for c slots.

Case 2: Minimum lead remains unchanged at some value z, i.e., l
G(c+1)
min = l

G(c)
min = z.

Observe that this can happen either when (a) i has not received data constituting

an entire frame and therefore its lead has not advanced (b) i received data constituting

one or more frames and its lead advanced but there is another client j such that

l
G(c)
j = l

G(c)
i = z.

We first consider the case when z = 0. As l
S(c+1)
min ≥ z + 1/F > 0 (from A0), in

S(c + 1) every client is allocated enough slots for at least its first frame, Thus, for

each client j, the minimum number of slots needed for the first frame, say sl′j, is less

or equal to than sl(S(c + 1), j), and therefore,
∑

j sl
′
j ≤ c + 1. Now consider the

execution of the greedy algorithm until the minimum lead (over all videos) becomes

greater than 0. The algorithm selects a client j, in the increasing order of their client

id, and allocates client j enough slots for its first frame, i.e., sl′j, and then moves

to the next frame. Therefore, given c + 1 ≥
∑

j sl
′
j slots, the greedy algorithm will

allocate sufficient slots to each client for its first frame, and hence, the allocation will

have a minimum lead of at least 1/F . Thus, l
G(c+1)
min ≥ 1/F , a contradiction.

We now consider the case when z > 0. Let us look back in time to the point in

the greedy algorithm’s execution when the minimum lead in G has last changed. Let

us assume that this occurred δ slots back, i.e., l
G(c−δ)
min = z−1/F and l

G(c−δ+1)
min = . . . =

151



l
G(c+1)
min = z [Observation C]. Thus, in the solution G(c+1− δ), there must have been

a set of clients P each with lead z.

Consider the period of execution of the greedy algorithm while going from G(c+

1 − δ) to G(c + 1). In this period, the algorithm must have assigned slots only to

clients in P . Also, no client in P would have received slots more than what is required

for its next one frame (because on receiving slots required for one frame, the client’s

lead increases, and it does not remain a client with the minimum lead) [Observation

C1]. Let P1 be the set of clients in P that have received sufficient slots for their

next frame in this period, and P2 be the remaining set of clients in P (that have not

received enough slots for their next frame in this period). We note that P2 cannot

be an empty set, otherwise, the lead of G(c+ 1) would be higher than G(c+ 1− δ).

Let q be any client in P2. Then l
G(c+1)
q = z. Since, from our initial assumptions,

l
S(c+1)
min > l

G(c+1)
min = z, l

S(c+1)
q ≥ l

S(c+1)
min > z = l

G(c+1)
q [Observation D]. Also, for any

client j in P1, l
G(c+1)
j = z + 1/F (since it has received slots for the next frame)

[Observation D1]. As, l
S(c+1)
j ≥ l

S(c+1)
min > l

G(c+1)
min = z, we have, l

S(c+1)
j ≥ z + 1/F =

l
G(c+1)
j [Observation E].

To show a contradiction, let us modify the solution S(c + 1) by removing δ + 1

slots to obtain a solution S(c − δ) for c − δ slots as follows. For every client j in P ,

we remove any sl(G(c+ 1), j)− sl(G(c+ 1− δ), j) slots from its slot allocation, and

in addition, we remove one more slot from one (arbitrarily chosen) client, say w, in

P2. (The removed slots add up to δ+ 1 because δ slots were allocated by the greedy

algorithm to obtain G(c + 1) from G(c + 1 − δ).) We now show that the minimum

lead in S(c − δ) is higher than the minimum lead in G(c − δ), thus resulting in a

contradiction (because G(c − δ) is optimal for c − δ slots). Let q be the client with

the minimum lead S(c− δ). We consider four possible cases.
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(1) q is not in P . In this case, no slots were removed from q to obtain S(c − δ)

from S(c + 1), and so q had the minimum lead in S(c + 1) as well. Therefore,

l
S(c−δ)
q = l

S(c+1)
min > l

G(c+1)
min = z > l

G(c−δ)
min (from A0 and C).

(2) q belongs to P1. Note that, since a process in P1 receives the minimum number

of slots that is required for its lead to be z + 1/F in G(c + 1) (from C1 and D1),

and l
S(c+1)
q ≥ l

S(c+1)
min ≥ l

G(c+1)
min + 1/F = z + 1/F (from A0), q receives equal or more

slots in S(c+ 1) than in G(c+ 1). Then, sl(S(c− δ), q) = sl(S(c+ 1), q)− (sl(G(c+

1), q)− sl(G(c+1− δ), q)) ≥ sl(G(c+1), q)− (sl(G(c+1), q)− sl(G(c+1− δ), q)) =

sl(G(c+ 1− δ), q). Therefore, l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F (where the

last inequality follows from C).

(3) q belongs to P2 but is distinct from w. Since q ∈ P2, l
S(c+1)
q > l

G(c+1)
q (from

D), and therefore sl(S(c + 1), q) > sl(G(c + 1), q). Now, sl(S(c − δ), q) = sl(S(c +

1), q)−(sl(G(c+1), q)−sl(G(c+1−δ), q)) > sl(G(c+1), q))−(sl(G(c+1), q)−sl(G(c+

1− δ), q)) = sl(G(c+1− δ), q). Therefore, l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z−1/F

(where the last inequality follows from C).

(4) q = w. Since q ∈ P2, l
S(c+1)
q > l

G(c+1)
q (from D), and therefore sl(S(c+1), q) >

sl(G(c+1), q). Now, sl(S(c− δ), q) = sl(S(c+1), q)− (sl(G(c+1), q)− sl(G(c+1−

δ), q))−1 > sl(G(c+1), q))−(sl(G(c+1), q)−sl(G(c+1−δ), q))−1 ≥ sl(G(c+1−δ), q).

Therefore, l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F (where the last inequality

follows from C).
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