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ABSTRACT

MODEL-DRIVEN ANALYTICS OF
ENERGY METER DATA IN SMART HOMES

SEPTEMBER 2014

SEAN BARKER

B.A., WILLIAMS COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy and Professor David Irwin

The proliferation of smart meter deployments has led to significant interest in

analyzing home energy use as part of the emerging ‘smart grid’. As buildings account

for nearly 40% of society’s energy use, data from smart meters provides significant

opportunities for both utilities and consumers to optimize energy use, minimize waste,

and provide insight into how modern homes and devices use energy. Meter data is

often difficult to analyze, however, owing to the aggregation of many disparate and

complex loads as well as relatively coarse measurement granularities. At utility scales,

analysis is further complicated by the vast quantity of data, which precludes the use

of computationally intensive techniques when monitoring hundreds or even thousands

of homes.

In this thesis, I present an architecture for enabling smart homes using smart

energy meters, encompassing efficient data collection and analysis to understand the
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behavior of home devices. I consider four primary challenges within this domain: (1)

providing low-overhead data collection and processing for many devices, (2) designing

models characterizing the energy use of modern devices, (3) using these models to

track the real-time behavior of known devices, and (4) automatic identification of

unknown devices in the home.

To enable practical smart homes, my proposed architecture combines low-cost, off-

the-shelf sensing equipment with a hybrid local and cloud-based processing backend.

To analyze data within the environment, I first characterize the basic device types

present in today’s homes (e.g., resistive, inductive, or non-linear) and distill the essen-

tial usage characteristics of each type. Using these characteristics, I construct a set

of models that more accurately represents real-world devices than previous simplistic

models. I then leverage this modeling framework to track the behavior of specific de-

vices, using a technique that runs in close to real-time and can scale to many devices.

Finally, I present a technique to automatically identify unknown devices attached to

smart outlets in homes, which relieves homeowners of the need to manually describe

devices in order to employ smart home optimizations.
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CHAPTER 1

INTRODUCTION

The management of energy in today’s environment of ever-increasing demand is

an issue with profound economic, environmental, and social impact. As homes and

office buildings represent over 70% of total grid electricity consumption today [14],

significant attention has been paid to ‘smart grid’ initiatives focused on reducing

or optimizing the energy consumption of buildings. This thesis discusses challenges

involved in designing energy-aware smart homes and proposes a model-based approach

to tackling these challenges.

1.1 Background and Motivation

Computing for sustainability—where real-world physical infrastructure leverages

sensing, networking, and computation to mitigate the negative environmental and

economic effects of energy use—has emerged as an important new research area. As

a result, in addition to improving the energy efficiency of information technology (IT)

infrastructure such as mobile devices, servers, and data centers, computing researchers

are expanding their focus to now include building energy efficiency. Since buildings

account for nearly 40% of society’s energy use [32], compared to an estimated 1-

2% for IT infrastructure [39], the emerging ‘smart grid’ has the potential to make a

significant impact on society’s energy footprint. Managing electricity is particularly

critical because buildings consume the vast majority (73%) of their energy in the form

of electricity [32].
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Existing management techniques typically employ sense-analyze-respond control

loops: various sensors monitor the building’s environment (including electricity) via

a smart meter, and transmit collected data in real-time to servers, which analyze it

to reveal detailed information about building devices and occupants, and finally re-

spond by automatically controlling electrical loads to optimize energy consumption.

However, research challenges exist at each stage of the control loop. Sensing at neigh-

borhood or utility-scales is complicated by the need for prohibitively large numbers

of sensors and the associated cost, invasiveness, and upkeep of such deployments.

Analysis is often difficult due to the desire to extract fine-grained information (e.g.,

the behaviors of individual devices) from the relatively coarse-grained data that is

generally available (e.g., as from a typical smart meter). When employed by utilities,

analysis techniques are further complicated by the need to process large quantities of

meter data efficiently. Finally, responding to observations made from analyses is often

complicated by practical concerns, such as the presence (or lack thereof) of actuating

capabilities within homes themselves. All of these challenges must be addressed to

truly design sustainable smart buildings capable of influencing and managing their

energy footprint.

This thesis addresses many of these challenges by combining a flexible architecture

for efficient energy data collection and processing in buildings with a set of analytic

techniques for interpreting this data. In particular, we focus specifically on the case

of residential homes, as homes tend to exhibit similar devices, patterns, and oppor-

tunities for energy optimization. In particular, we consider the following set of key

challenges concerning the design of smart homes:

1. How can we enable energy-aware smart homes capable of data collection and

analysis without excessive instrumentation overhead?

2. How can we understand the energy usage of a home as a function of the many

individual devices that make up a home?
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3. How can we apply this understanding to monitor and analyze the dynamic

behavior of smart homes?

1.2 Contributions

In this thesis, I present an architecture for energy-aware smart homes and a set of

model-driven techniques for analyzing smart meter data in such homes. The primary

components and contributions of this thesis are as follows:

• Architecture: A general-purpose architecture for monitoring and processing the

energy use of a home environment, focusing on low-cost, off-the-shelf home

automation (HA) devices to enable pervasive energy sensing.

• Modeling: A modeling framework enabling efficient, device-accurate models of

individual loads, based on an understanding and analysis of the essential load

types and characteristics of nearly all devices in a typical home environment.

• Tracking: A technique that employs the aforementioned modeling framework to

accurately track the behavior of individual, previously identified loads within

smart homes, in effect providing a ‘virtual energy meter’.

• Identification: A technique that automatically identifies devices attached to

‘smart outlets’, thereby relieving homeowners of the need to maintain a mapping

of devices to attached outlets in the home.

Each component is described in more detail below.

1.2.1 Architecture

In order to achieve energy optimizations in practice, homes must be able to both

collect and manage data about their own environments. The primary challenge here is

providing these capabilities without excessive overhead, both in terms of equipment

3



and installation costs (i.e., beyond what a typical ‘dumb’ home would contain). I

describe the design of a smart home architecture centered around an off-the-shelf home

energy meter, potentially coupled with smart outlets for finer-grained data collection.

In particular, I explore the use of low-bandwidth home automation (HA) devices

for fine-grained energy sensing. Data processing is split between a low-power home

controller and remote servers for long-term storage and more intensive processing.

Results of data analysis are returned to the home in order to perform optimizations

(e.g., reducing peak electricity use). Several real-world smart homes following the

proposed design comprise an ideal environment for the development and evaluation

of data analytics, as described below.

1.2.2 Modeling

The increasing availability of smart meter data in homes has led to significant

interest in analyzing this data to understand device behavior, occupant behavior, and

key contributors to overall energy use. As raw energy data is often difficult to interpret

without prior knowledge of how devices actually operate, most analysis techniques

rely on models of device behavior to interpret data from smart meters. Accurate

modeling is particularly important when the only data available is aggregated, as is

typically the case with a single energy meter providing energy data from the entire

house.

Most existing models, however, have been based on overly simplistic assumptions

of device operation. For example, most prior work assumes a device will turn on,

consume a stable level of power (or possibly one of several stable levels), and then

turn off. Through a detailed study of real-world device energy use, I demonstrate

that many types of devices do not consume energy in this straightforward way, and

therefore that more complex models are necessary to present truly device-accurate

models. I present a compact but expressive set of models based on fundamental elec-

4



trical characteristics (e.g., resistive, inductive, or non-linear loads) and demonstrate

how nearly all significant devices in today’s homes can be represented by one or more

of the fundamental model types. Furthermore, I demonstrate how these models in-

crease accuracy and enable more sophisticated analyses of real-world smart meter

data when compared to simpler models.

1.2.3 Tracking

Many energy optimizations that consumers and utilities would like to employ

(e.g., automatically shifting the operation of specific devices to decrease peak elec-

tricity consumption) require relatively up-to-date data from individual devices. For

example, an alert system that notifies homeowners of specific events of interest (e.g., a

dryer completing its cycle) requires real-time data from the device in question, either

through a dedicated energy meter attached to the device, or a way to extract this data

from aggregated smart meter data. However, existing analysis techniques for extract-

ing individual devices from aggregate meter data (typically known as non-intrusive

load monitoring) are not designed to operate online, and are therefore unsuitable for

these types of applications.

To address this issue, I present PowerPlay, an efficient, online approach to track-

ing the behavior of specific devices within a home, based on detecting recognizable

features from the device models previously proposed. The design of the features and

detectors employed allows for online operation on a low-power machine such as in

an individual home, or on a server when handling a utility-level quantity of data

(e.g., hundreds of homes simultaneously). In doing so, PowerPlay effectively provides

the illusion of a ‘virtual’ smart meter without actually requiring the installation of

additional meters. Furthermore, PowerPlay is highly resilient to background devices

operating within the same home, which preserves its effectiveness even when many

other (potentially unknown) devices are installed in the home. Using our smart home
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deployments, I demonstrate the accuracy, scalability, and efficiency of PowerPlay on

real smart meter data.

1.2.4 Identification

In homes containing smart outlets capable of individually monitoring connected

devices, the tracking problem described above is less significant – as individual device

data is available directly, there is no need to extract this data from the whole-house

data stream. However, this environment introduces new challenges – in particular, in

order to effectively make use of smart outlet data, the nature of the attached devices

should be known (e.g., type of device, device model, etc). Traditionally, this issue

is dealt with by manually maintaining a mapping of outlets to devices (e.g., outlet

#6 is attached to the kitchen refrigerator). Maintaining this mapping, however, is

difficult for the hundreds of devices that may be found in homes, and error prone

when attached devices change (such as a wall outlet that may have a vacuum cleaner

or laptop charger attached at different times).

To negate the need to maintain an outlet-to-device mapping, I present a technique

for performing ‘non-intrusive load identification’ (NILI) – that is, automatically iden-

tifying the device attached to an outlet based on the energy data from that outlet.

By training a classifier to detect specific device types and periodically processing

the most recent data from a smart outlet, a dynamic outlet-device mapping may be

automatically maintained without manual intervention.

Note that the NILI problem is essentially the inverse of the tracking problem

described previously; for tracking, the device of interest is known but its energy use

is not, while for identification, the energy use is known but the device itself is not.

Both problems are of interest depending on the level of smart home instrumentation

(i.e., whether smart outlets are present in addition to the whole-house smart meter).
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1.3 Outline

Chapter 2 provides a summary of related work in the areas of smart homes and

energy metering. In Chapter 3, I present the flexible smart home architecture enabling

energy-based optimizations and summarize the implementation of a real deployment

following this design. In the context of this data-driven architecture, Chapter 4

then presents a modeling framework for describing the energy use of commonplace

home devices. Using this framework, Chapter 5 describes a technique for tracking

specific devices in a smart home using only data from a whole-house energy meter.

Chapter 6 addresses the challenge of automatically identifying devices attached to

individual smart outlets when such outlets are available. Finally, Chapter 7 provides

an overview of this work and summarizes future directions.

7



CHAPTER 2

RELATED WORK

This chapter presents a survey of background work in smart homes, modeling,

and non-intrusive load monitoring (NILM).

2.1 Smart Home Monitoring and Control

Smart buildings use demand-side energy management to self-regulate their energy

footprint to reduce overall energy consumption and peak power usage, while better

aligning consumption with renewable generation [54]. Demand-side management re-

quires buildings to 1) continuously monitor the power consumption of electrical loads

and 2) remotely control when and how much power each load consumes, e.g., to en-

able automated demand response. Although load monitoring and control are closely

coupled in demand-side management, two disjoint sets of technologies have evolved

to perform these tasks in smart homes.

On the monitoring front, researchers have developed numerous techniques to en-

able fine-grain tracking of electric usage at various spatial and temporal dimensions,

e.g., [19, 23, 29, 35, 42]. Several past efforts focus on outlet-level monitoring, and

in some cases control, of electric loads using wireless technologies, such as 802.15.

These technologies are still expensive for typical homes, which may contain several

tens to hundreds of outlets. For instance, while not commercially available, ACme

meter components cost $85 plus time for assembly and calibration [28, 40], while

Tweet-a-watt components cost $60 per meter plus time for assembly [56]. Similarly,

the commercial PloggSE plug meter costs $215 per outlet [48]. Other problems in-
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clude upkeep, communication interference, and aesthetic concerns when deploying

large numbers of meters [24]. A less expensive option is to deploy a single sensor at

a home’s electric panel to monitor aggregate usage, and use NILM or load tracking

techniques to disaggregate individual loads. However, this approach alone is not suf-

ficient for developing such techniques, as it lacks the capacity for ground-truth data

necessary for evaluation. The collection of high-quality datasets has attracted the

interest of many researchers in sustainability [37, 2, 7] and represents another goal of

smart home deployments.

On the control front, Home Automation (HA) protocols, such as X10 and In-

steon [26, 27], were designed explicitly for remote load control. The protocols en-

able programatic actuation of outlets and switches hard-wired into a building and

controlled from a central server, via command-line or remote web/smartphone in-

terfaces, using the building’s powerlines for communication. HA protocols are also

mature standards: X10 was introduced in 1975 and Insteon in 2005. Many of these

protocols communicate over building power-lines, which has been proposed as a path

towards smart buildings [44]. Increasingly, monitoring and control capabilities can be

combined via ‘smart outlets’ such as the Belkin WeMo Insight Switch [59], which in-

tegrate sensing and actuation capabilities into a single outlet-like device. We consider

the challenge in Chapter 3 of augmenting HA protocols for high-resolution monitoring,

which requires compensating for very low bandwidths provided by these protocols.

The use of HA devices for outlet- and switch-level energy monitoring supplements

our proposed smart home architecture, which is based around a whole-house smart

meter and low-power controller for performing local data processing. Notably, in

contrast to HA protocols, many past efforts focus on outlet- and switch-level energy

monitoring using wireless technologies, such as Z-Wave, ZigBee, and WiFi. WiFi is

especially attractive due to existing WiFi networks and relatively high bandwidth for

fine-grained monitoring. Unfortunately, since outlet and switch boxes are embedded
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in walls and may be behind large appliances, wireless communication often exhibits

interference that severely degrades its performance and reliability.

2.2 Device Modeling

While recent work targets modeling for specific appliances, e.g., a particular brand

of refrigerator [54] or an HVAC chiller [9], it does not generalize to a broad range of

devices. While the problem of modeling devices is not exclusively useful in NILM

or load tracking applications, most prior work in modeling devices has been in the

context of performing NILM.

All NILM approaches inherently use some form of load models for devices. How-

ever, most existing approaches employ generic on-off load models that represent de-

vices as simple ‘step’ functions. These techniques typically use these simple models

to either i) detect changes in load power states by observing changes in building

power, [60] or ii) use Viterbi-style algorithms [17] to determine the most likely set of

“hidden” states, e.g., combinations of power states for multiple loads, from a sequence

of changes in building power [34]. The simplest edge-detector approaches [22, 23] rep-

resent devices using only two states – on and off.

The modeling work presented in Chapter 4 targets a more expressive modeling

framework based on understanding the electrical properties of common devices. As

nearly all devices fall into a few categories describing their electrical characteristics

(e.g., heating devices are resistive, motors are inductive, etc), I detail a compact yet

comprehensive set of models that is more accurate than prior models based on small

numbers of static states. This work represents a novel application of domain-specific

knowledge (i.e., fundamental properties of power systems) to the problem of modeling

appliances in homes.
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2.3 Non-Intrusive Load Monitoring

One of the highest profile types of smart meter data analysis is termed non-

intrusive load monitoring (or NILM), which refers to decomposing a house-level smart

meter trace into its component devices. Performing this decomposition provides useful

information such as (i) the percentage of energy use attributable to certain devices or

class of devices, and (ii) the operational patterns of specific devices. There has been

over two decades of work on NILM and recent surveys describe and contrast these

various approaches [4, 18, 60, 61]. The earliest approaches to NILM involved simple

edge-detection (i.e., matching on with off steps within a meter trace) [22, 23], while

more recent techniques use more sophisticated machine learning techniques such as

Factorial Hidden Markov Models [34, 37].

A key determinant of the type of technique that is best suited to perform NILM

depends on the sampling resolution of the energy meter. Prior approaches have tar-

geted a range of sampling resolutions by using meters that produce 10 million readings

every second [45] to 1 reading every hour [38]. Clearly, sampling the total power usage

thousands or millions of time every second produces very clearly discernible “signa-

tures” when each device turns on, allowing detection and identification of individual

loads [45]. As the sampling resolution becomes coarser, the readings represent the

mean power usage over larger and larger intervals, making it harder to discern the

turning on and off of individual loads. For instance, at a one hour granularity, it is

nearly impossible to detect that a light bulb was switched on for a few minutes during

that hour—since the reading indicates the average power usage of a larger collection

of loads that were active over the entire hour, making it harder to discern individual

loads. Today’s utility-grade smart meters provide minute-level sampling (a reading

every 5 minutes is typical) but there are indications that the next generation of smart

meters will provide sampling resolution of seconds [57].
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The work in load tracking presented in Chapter 5 differs from NILM in a few keys

ways, most notably by focusing on online operation and accurate per-load disaggre-

gation (i.e., effectively providing the abstraction of a ‘virtual’ smart meter) . Most

existing NILM techniques are designed to operate offline over large ranges of data

(e.g., 1 day) and output a complete energy breakdown, which is difficult due to the

number of distinct devices (often 100+) in the home. Furthermore, the per-device

accuracy of NILM often suffers when considering fine-grained timescales. The ap-

proach to tracking loads detailed in this work explicitly does not attempt to account

for every load in the home, but instead focuses on efficient, accurate extraction of a

small number of devices of interest in an online fashion.

2.4 Device Identification

Prior work on device identification has largely been in the context of whole-house

metering, and thus falls under the umbrella of NILM. Device identification from

outlet-level meters, or ‘non-intrusive load identification’ (NILI), however, has received

substantially less attention. Accurate load identification has been achieved using high-

frequency smart meters [51], but this granularity of data is not typically available from

off-the-shelf smart outlets. For lower frequency data, e.g., 1 Hz, the use of classifiers

for learning device labels has been proposed, but not extensively evaluated [63, 52],

particularly for previously unseen devices. Other approaches to device classification

have focused on explicit per-device training to generate ‘signatures’ that can be used

to detect devices in the future [53]. These techniques, however, rely on user-guided

training periods to recognize specific devices, as opposed to transparent recognition of

devices classes. In this work, we investigate the identification of devices using typical

meter data (i.e., 1 Hz) and consider both specific device identification (i.e., a specific

model of refrigerator) as well as general device type identification (i.e., any type of

refrigerator).
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CHAPTER 3

SMART HOME ARCHITECTURE

Any smart home requires two fundamental components: monitoring, in which

data about electrical usage and any other relevant environmental data is collected,

and analysis, in which this data is used to derive insights into the home’s energy use.

An optional third component is control, which refers to the ability of the home to

automatically actuate loads. While control enables the implementation of automatic

energy optimizations, such as rescheduling appliances, it is not necessary for other

types of applications, such as user recommendations and many types of analytics.

In this chapter, we describe a smart home architecture encompassing monitor-

ing and analysis, which provides a representative environment in which to explore

smart home applications. In particular, we discuss the challenges of providing high-

resolution energy monitoring using widely available home automation (HA) products,

such as Insteon devices, which allows for adding monitoring capabilities onto existing

control capabilities in smart homes. We also provide an overview of our own real-

world smart home deployment, which was implemented following this architecture

and has been live for over three years. Data gathered from our deployment provides

a virtual laboratory for the analytics discussed in Chapters 4 through 6 of this thesis.

While actuation and end-user applications (e.g., device scheduling policies) are also

important components of real-world smart homes, this thesis focuses only on data

analytics, which are necessary precursors to many smart home applications.
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3.1 Sensing and Processing Infrastructure

The general-purpose smart home architecture we consider consists of several com-

ponents within the home, which are pictured in Figure 3.1 and described below.

• A smart meter attached to the home’s electrical panel. The meter reads the

aggregate home energy usage via current transducers and streams power read-

ings every second to the gateway (described below). The meter may also collect

and transmit other types of data, such as reactive power, frequency, and volt-

age information. Numerous commercial power meters are available, such as the

TED 5000, BrulTech ECM-1240, Current Cost Envi, and eGauge. These meters

sense electricity usage using current transducers (CTs) wrapped around each

leg of a home’s split-phase input power.

• A gateway server operating the software platform for the home. This gateway

is the ‘brain’ of the smart home and processes and stores (at least temporarily)

data from all sensors in the home. The gateway also performs load analysis on

incoming data and load actuation based on customizable optimization policies.

While any machine may be used as a gateway server, well-suited choices include

‘plug’ computers such as the GuruPlug [20], which are compact, low-power, and

inexpensive ($100 or less).

• Off-the-shelf programmable switches and meters connected to appliances in the

home. The gateway communicates with the programmable switches via Power-

Line networking, which has been proposed for use in smart buildings [44] and

requires no additional infrastructure in the home. Outlet-level meters commu-

nicate by PowerLine or wirelessly and provide ground-truth data on individual

loads within the home. Both metering and programmability may be provided by

all-in-one “smart outlets”, which impart these capabilities to any attached de-
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Figure 3.1. In-home architecture of a smart home.

vice. Optionally, other types of sensors may also transmit data to the gateway,

such as motion sensors, door sensors, and weather stations.

While the basic components described above are ‘complete’, the architecture is

limited by the capabilities of the gateway server, which will typically be only a low-

power machine or even directly integrated into a smart meter. A low-power gateway

both limits the processing and data storage capabilities of the smart home. To remedy

this issue, we can easily extend the architecture with remote servers accessed over the

Internet, as illustrated in Figure 3.2. Here, each home communicates with a central

server or set of servers (possibly operated by the utility) and sends data to the central

server for long-term storage and analysis. An added benefit of this approach is that

the central server may run analytics over multiple homes at once, such as if a utility

wishes to calculate the total energy use of its customers’ air conditioners. Mechanisms

for control within homes themselves, may or may not be accessible, depending on the

level of control that homeowners wish to delegate to the utility.
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3.2 Real-World Deployment

We have implemented the smart home architecture detailed in Section 3.1 within

three real-world homes in order to drive our research (including, but not limited to,

the work detailed in the remainder of this thesis). The most fully instrumented home

is described below, while details on the other two are available in [7].

Our primary instrumented home is a two-story, 1700 square foot home with three

full-time occupants. The home has a total of eight rooms including its basement.

Major appliances include window air conditioning units, an electric dryer, a washing

machine, a heat recovery ventilation (HRV) unit, a dishwasher, a refrigerator, and

a freezer. The home has 35 wall switches, which primarily control room and closet

lighting; switches also control an exhaust fan in each bathroom and the garbage

disposal. The electrical panel has 26 individual circuits.

The smart home deployment is centered around a gateway in the form of an em-

bedded Linux server (a GuruPlug) that queries each sensor to collect data. Using an
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eGauge [15] smart meter installed in the mains panel (pictured in Figure 3.3, we col-

lect electricity data every second for the entire home as well as each individual circuit.

We have replaced 30 of the home’s 35 wall switches with units that transmit on-off-

dim events for the switches to the gateway server. We are able to derive the power

usage from the uninstrumented switches via the circuit data: the basements switches

are on dedicated circuits, the garbage disposal is on a circuit with only the dishwasher

(which has a dramatically different power profile), and the kitchen switch is on a cir-

cuit dedicated to kitchen lights, which has only one other already-instrumented load.

The home’s electrical wiring also aids our data collection. Each circuit is dedicated

to either lighting (monitored at wall switches), outlets (monitored by plug meters –

in effect providing smart outlets), or individual large appliances (monitored at the

mains panel). Our plug-level sensors are commodity Insteon iMeters [25] and Z-Wave

Smart Energy Switch meters [1], which use powerline and wireless communication,

respectively, to transmit readings to our smart home gateway. Since our wall switches

report on-off-dim events, rather than raw power, having the lighting on separate cir-

cuits makes it simple to correlate lighting events with power usage using the circuit

data. In addition to local storage on the gateway server, data from eGauges and

wall outlets is also transmitted nightly to a central server (as detailed in Section 3.1),

where it is archived for later retrieval and analysis.

As our analytic work is highly dependent on the quality of the energy data collected

by our deployment, we have conducted experiments to verify the accuracy of our

meters. The primary eGauge meter is rated to have less than 1% error for current

and voltage. Redundant monitoring of both the home’s aggregate data and every

circuit allows us to determine the relative error of the sensors, by comparing the

aggregate usage with the sum of all circuits’ usage. Figure 3.4 demonstrates that

over 90% of the per-second readings for the entire home and the sum of the circuits

is within 2% of each other, while over 99% of readings are within 4% of each other.
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Figure 3.3. CT installation at the mains panel.
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Figure 3.4. Error between Home A’s aggregate electricity data and the sum of all
the individual circuits

In addition to monitoring power usage in the home, our infrastructure has support

for tracking other metrics, such as solar generation and environmental data from

weather sensors (temperature, wind speed, etc.). Additional sensors also track events

within the home, such as motion detectors, door sensors, and thermostat sensors.

Our system has been continually monitoring hundreds of individual loads every

second for over three years in each of our three instrumented homes. Since our level

of instrumentation is time-consuming and expensive to replicate, we have made much

of our collected data available to benefit other researchers [7]. To date, this dataset
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has been downloaded by over 600 unique users in over 80 countries. This data has

also enabled our own smart home research, such as the analytic challenges discussed

in Chapters 4 through 6.

3.3 Combining Monitoring and Control

Many of the “smart home” devices available today (e.g., remotely controlled

switches and sensors), as well as much of our own deployment, fall under the umbrella

of “home automation” (HA). Once designed for hobbyists, HA has now become main-

stream and is widely used in smart buildings for actuation of outlets and switches,

using a building’s powerline for communication via protocols such as Insteon. These

protocols have a number of advantages that make them attractive for use in smart

homes, including widespread commercial availability, open standards, compatibility

with existing buildings using HA protocols, and the high reliability of the power-

line communication typically used. Despite these benefits, however, using HA-based

protocols for energy monitoring poses significant challenges:

Scalability. HA protocols were not designed to support continuous monitoring

traffic and often lack basic features such as collision avoidance, making high-resolution

energy monitoring challenging for even a small set of devices. Thus, a key research

challenge is scaling HA protocols to monitor large numbers of devices.

Accuracy. HA protocols are capable of monitoring power state changes for

switches and low resolution power usage for outlets. Thus, another key challenge

is accurately translating switch state change events and coarse outlet power data into

high resolution power usage measurements.

As many of our own outlet-level meters are Insteon devices, we have tackled this

challenge by designing “smart polling” techniques to enable reliable, high resolution

power monitoring using HA protocols. Here we provide an overview of the Insteon
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protocol as well as our polling techniques to enable high-resolution sensing in smart

homes using Insteon hardware.

3.3.1 Insteon Protocol

To support monitoring, Insteon-enabled wall switches send asynchronous notifi-

cations whenever someone toggles the switch, while the Insteon-enabled outlets must

be explicited queried for their power usage. The primary difficultly in using HA pro-

tocols such as Insteon for energy monitoring is their extreme bandwidth limitations.

While more recent powerline-based protocols, such as HomePlug, provide much more

bandwidth, they are not used for HA, and instead are targeted at high-bandwidth

data from Internet traffic. HomePlug is not typically embedded into standard wall

outlets and switches due to both cost and form factor constraints. We focus on In-

steon in our deployment, since it is an extension of the original X10 HA protocol with

greater reliability and higher bandwidth.

In the Insteon protocol, senders broadcast messages over a building’s powerline,

while receivers listen for messages and send acknowledgements upon receipt. All

Insteon devices also act as repeaters that automatically repeat messages they hear a

fixed number of times, alleviating the need for complex routing protocols to transfer

messages. The protocol also avoids flooding and collisions when repeating messages,

since all devices synchronize retransmissions using the 60Hz AC powerline frequency—

each transmission begins exactly 800 microseconds before the zero crossing and ends

exactly 1023 microseconds after the zero crossing.

The Insteon protocol supports two types of messages: 10 byte standard messages

and 24 byte extended messages, which require 6 and 13 zero crossings to transmit,

respectively. Since there are 120 zero crossings per second with 60Hz AC power, a

standard message takes 50ms to transmit and an extended message takes 108.33ms,

with no additional hops. While Insteon’s maximum theoretical bandwidth is 2880bps,
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in practice, messages typically travel three hops and return acknowledgements, which

reduces the maximum bandwidth by 16X to 180bps. In addition to repeated messages,

a sender that does not receive an acknowledgement within a timeout will retransmit

a message up to five times. Thus, actual bandwidth may be much less than 180bps

with three hops.

Finally, note that Insteon does not prevent multiple devices from sending dif-

ferent messages at the same time. While repeating messages avoids flooding and

collisions due to the synchronized retransmissions, Insteon has no collision avoidance

mechanism (likely due to its design towards low bandwidth control). At high mes-

sage rates, Insteon’s lack of backoff combined with its static number of multiple hops

and retransmissions per message results in repeated collisions, causing bandwidth

to abruptly collapse. Setting the query rate for outlets presents a tradeoff: a rate

too high will saturate the available bandwidth and result in the loss of either asyn-

chronous switch notifications or control commands, while a rate too low will result in

coarser and less accurate outlet power data. To understand this tradeoff, we experi-

ment with our smart home deployment by varying the rate of outlet queries, and then

determining both the percentage of queries lost (Figure 3.5) and the percentage of

switch notifications lost. For each data point, we issue outlet queries at the specified

interarrival time on the x-axis for 10 minutes, while turning wall switches on and

off 50 times, such that the time between toggling the switch is uniformly random

between 0 and 20 seconds. We also perform a similar experiment in isolation in a

separate building with no other devices attached to the powerline.

Each outlet query includes three standard Insteon messages and one extended mes-

sage: a standard query message from PLM → outlet, an extended response message

from outlet → PLM with the outlet’s current average power usage, and a standard

acknowledgement for each message. Based on the protocol specification, each out-
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let query should take 4*(0.05+0.05+0.1083+0.05) = 1.0333 seconds, including the

original message and the three additional hops.

Below, we use the specification to model the percentage of outlet queries we expect

to receive, and the percentage of switch notifications we expect to lose for different

query rates. We construct a simple model of the probability of losing a switch notifi-

cation (Slose) as a function of the interarrival time of outlet queries (Ti) and the length

of an individual query (Tq = 1.0333). For simplicity, our model assumes that when

transmissions collide, the transmission from the device physically closer to the PLM

is successful. In addition, our model assumes one retransmission due to powerline

noise, and no additional retransmissions due to collisions. Thus, the model divides

the length of an individual query (Tq) by two times the interarrival time between

queries (Ti), where the factor of two in the denominator approximates the effect of

one extra retransmission.

Slose =
Tq

2 ∗ Ti
=

0.5166

Ti
(3.1)

We also model the probability of receiving a query Qreceive as the function below.

If we issue queries at an interval greater than the query length, then we expect to

receive every query. For intervals less than the query length, we expect queries to

increasingly collide.

Qreceive =


1 : Ti > 1.0333

Ti
Tq

= Ti
1.0333

: Ti < 1.0333

Figure 3.5 shows that, as expected, issuing queries faster then the 1.0333 seconds

it takes to complete them rapidly degrades performance. In isolation, our results

show an abrupt drop in the percentage of outlet queries received once the interarrival

time hits the protocol’s saturation point at 1.0333 seconds. In isolation, the actual

drop is more sudden than our model, since the model does not account for multiple
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Figure 3.5. Insteon does not support high outlet query rates.

retransmissions of a lost message, which immediately collapses the available band-

width. Our smart home deployment also shows more query losses than our model

before the saturation point, which is likely due to i) additional losses from powerline

noise due to other devices and ii) collisions with switch notifications and the resulting

retransmissions.

Our results highlight the limitations of using Insteon for monitoring the energy

usage of many devices. Consider a simple approach to querying outlets that issues

one query every 10 seconds to a new outlet in round-robin fashion. Thus, given N

outlets in a building, this approach can query each outlet once every 10 ∗N seconds.

Since our home deployment currently uses thirty Insteon-enabled outlets, we are able

to measure each outlet’s power once every five minutes.

A five minute data resolution is not effective at monitoring the energy usage of

most types of devices. As we show in prior work [6], many non-linear electronic de-

vices, such as LCD televisions, exhibit rapid and significant changes in power, e.g.,

>100W every second, when turned on. Other high-power resistive and inductive de-

vices also exhibit complex patterns of power usage that change every second. Further,

since many devices, such as a microwave or toaster, have operating times much less

five minutes, this approach cannot detect their operation. In fact, the only devices

this simple approach can accurately detect are low-power resistive devices, which ex-
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hibit highly stable power usage, that are left on for more than five minutes. The only

prominent low-power resistive devices are incandescent light bulbs, which are slowly

being phased out. Of course, additional outlets will further decrease the power data

resolution.

In addition, even when employing such a low query rate, the probability of losing a

switch notification or a control command is still near 5%. Since the OS issues control

commands, losing them does not present a significant issue, since it can recognize

their loss at application-level and resend them. However, our simple approach to

monitoring would have no way to detect a lost switch notification, so it will miss 5%

of them at this query rate. Thus, our results motivate a more efficient approach to to

monitoring outlet power usage that judiciously controls the number of outlet queries.

3.3.2 Smart Outlet Polling

Insteon-enabled outlets must be polled in order to read the energy use of the at-

tached device, which results in many devices competing for limited global bandwidth.

The simplest polling approach is to continuously query Insteon-enabled outlets in a

round-robin fashion at a static query rate. While simple, this approach suffers the

most from bandwidth limitations, since devices that rarely change state (such as

lights) are polled at the same rate as highly variable devices (such as a washing ma-

chine). Instead, we employ several “smart polling” techniques to make better use of

bandwidth, as described below.

Frequency-based polling. The first technique we consider is a modification

of round-robin polling in which devices are polled at different rates. Highly active

devices may be polled more frequently in order to more accurately capture their

behavior, while mostly static devices may be polled infrequently. Here, we define

a device’s level of ‘importance’ as its frequency of energy state changes (i.e., power

increases or decreases) that the device exhibits over a typical day. Given the state
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change frequency for each outlet, our system polls each outlet at a rate proportional

to its frequency, scaled such that the system continuously polls at a fixed global query

rate (as in round-robin).

Event-driven polling. Our second technique makes use of a centralized “smart”

meter that monitors power for an entire building at high resolution. Such smart

meters are widely available commercially, and are increasingly being installed by

utilities: in 2011, nearly 500 utilities in the U.S. had collectively installed more than

37 million smart meters. In our deployment, we use an eGauge meter installed in

the electrical panel, which measures building-wide average power usage as well as

per-phase average voltage and frequency each second.

Given a centralized meter, event-driven polling analyzes live data from the meter

to poll on-demand when energy changes (events) occur. Since the meter records

aggregate energy, an energy event stemming from any individual device will be re-

flected in the aggregate data. When an event is detected, a frequency-based polling

round of individual outlets is conducted to attribute the event to a specific device,

and stopped once the matching energy change is found. As a result, in most cases,

only a subset of devices must be polled to identify the source of an event.

3.3.3 Smart Polling Evaluation

To evaluate the three polling approaches, we conduct a simulation study using

real-world, device-level data gathered from our deployment. Our sample dataset

consists of 24 hours of 1 Hz data from 22 distinct outlets. We replay this data while

simulating polling at a variable rate and measure the number of ‘events’ captured

in the resulting monitored traces, where an event is defined as a power change of at

least 10W. The percentage of events missed for each of the three polling approaches

is shown in Figure 3.6 as the polling interval is varied (here we assume that all polls

are completely successful).
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Figure 3.6. Frequency- and event-driven polling capture more energy events than
basic round-robin polling.

We immediately see that the naive round-robin approach misses significantly more

events (at least 2X) than the frequency-based or event-driven approaches. The poor

performance of round-robin is largely due to a small number of highly-variable devices,

such as a TV and washing machine. Smart polling compensate for these devices by

polling them much more rapidly, which ensures that most events continue to be

captured. Notably, frequency-based polling performs nearly as well as event-driven

polling despite its lack of a building-wide smart meter.

The key benefit of event-driven polling is that polling may be stopped completely

when no events are occurring. Figure 3.7 shows the aggregate bandwidth consumption

over the course of the (simulated) day using the event-driven approach. While round-

robin and frequency-based polling both poll continuously (effectively using 100% of

available bandwidth), the event-driven polling employs far fewer polls — less than

20% — to achieve the high accuracy seen in Figure 3.6. Thus, we expect the event-

driven approach to scale well to large number of devices.

3.4 Summary

This chapter presents a general-purpose architecture for designing smart homes

that provide robust capabilities for energy monitoring and data analysis. In particu-
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Figure 3.7. Event-driven polling drastically decreases the bandwidth required to
monitor a set of outlets.

lar, by combining a whole-house smart meter, a low-power home gateway server, and

optionally a set of smart outlets, we can provide an efficient, flexible, and low-cost

platform for smart home applications. We also discuss the challenges of providing

high-resolution energy monitoring using home automation protocols such as Insteon,

which are popular in smart homes but not generally designed for continuous monitor-

ing. We present an approach to leverage HA protocols for monitoring through “smart

polling” technqiues, and show that they outperform naive polling approaches in both

monitoring accuracy (increased by 2X) and total bandwidth consumption (decreased

by 80%).
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CHAPTER 4

APPLIANCE LOAD MODELING

The rapid deployment of digital smart meters by electric utilities has resulted in

the availability of substantial amounts of fine-grained electricity data for buildings and

homes. For example, Pacific Gas and Electric now operates over nine million smart

meters in California [46]. While today’s deployed smart meters typically measure

average power usage at intervals ranging from fifteen minutes to an hour, the gran-

ularity of data is trending downwards (e.g., some utilities already provide 5-minute

data [47]), and commodity meters are available that measure and transmit, via the

Internet, energy usage at intervals as small as every second [15, 55]. Combined with

the emergence of “big data” cloud storage systems, these smart meter deployments

are spurring renewed interest in analysis techniques for smart meter data. In this

chapter, we present a flexible modeling framework for describing the energy use of

modern devices that is more accurate than simpler models previously employed.

4.1 Background and Motivation

While prior research has made significant progress in deriving insights from smart

meter data [6], one issue that often limits accuracy is the use of general, and often

simplistic, load models. In particular, many prior techniques for analyzing and mod-

eling building electricity data characterize loads using simple on-off models, which

associate a small number of fixed power levels with the “on” state (often just one)

and either no power usage, or some minimal amount, with the “off” state.
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Figure 4.1. An LCD TV’s power usage varies rapidly, significantly, and unpre-
dictably while on, and does not conform to a simple on-off load model.

On-off models do have a number of advantages. For instance, they exactly capture

many simple loads, including light bulbs and other low-power resistive devices with

mechanical switches. In addition, on-off models allow researchers to describe buildings

as state machines that associate each building state with a fixed power level (implying

the set of loads that are on), and where state transitions occur whenever a load

turns on or off. Characterizing buildings as state machines admits a plethora of

analysis techniques. For instance, much prior work maps building state machines

to Hidden Markov Models (HMMs), and applies HMM-based techniques, such as

Viterbi’s algorithm [17, 58], to determine which loads are on in each state. In this

case, using only a few (often two) power states per load is advantageous, since it

minimizes the number of distinct power states for the entire building and reduces

the complexity of analyzing the resulting state machine. Of course, even with only

two power states per load, the number of building power states is still exponential

in the number of loads, i.e., 2n for n loads. Thus, even assuming simplistic on-off

load models, precise analysis may still be intractable, i.e., require enumerating an

exponential number of states.

Unfortunately, while on-off load models are simple, they are often inaccurate, since

they fail to capture the complex power usage patterns common to many loads. As a

simple motivating example, Figure 4.1 shows a time-series of an LCD TV’s electricity
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usage each second. In this case, the TV’s switched mode power supply (SMPS) causes

power variations as large as 120 watts (W) by rapidly switching between a full-on

and full-off state to minimize wasted energy. The magnitude of these variations is

effectively random—determined by the color and intensity of the TV’s pixels. An

on-off model clearly does not accurately capture the TV’s power usage. As a result,

modeling the TV as an on-off load may complicate higher-level analysis techniques

for smart meter data. For example, the TV may obscure the use of low-power loads,

such as a 60W light bulb, since its power usage varies rapidly by >60W.

Our premise is that simple on-off models discard a significant amount of informa-

tion that is potentially useful in analyzing data. As a result, here we focus explicitly

on accurately characterizing and modeling a variety of common household loads.

Our methodology is empirical: we i) gather fine-grained electricity usage data from

dozens of loads across multiple homes, ii) characterize their behavior by distilling a

small number of common usage attributes, and then iii) derive accurate load-specific

models based on these attributes. One of our contributions is to show that a small

number of model types, stemming from basic knowledge of power systems, accu-

rately describe nearly all household loads. Thus, one of our goals is to highlight how

many identifiable load attributes, which are well-known in power systems, manifest

themselves in electricity data collected by smart meters. Our hypothesis is that ac-

curate load models, which leverage domain knowledge from power systems, provide a

foundation for designing new electricity data analysis techniques. In evaluating our

hypothesis, we make the following contributions.

Empirical Data Collection and Characterization. We instrument a wide

variety of common electrical loads in multiple homes, and collect electricity usage

data for each load, every second, for over two years. We show empirically that homes

operate similar types of loads, e.g., lighting, AC motors, heating elements, electronic

devices, etc., which results in significant commonality in power usage profiles across
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loads. We then characterize the data to identify distinguishing attributes in per-

load power usage, forming the building blocks of our models. While many of these

attributes are well-known in power systems, we show how they manifest in sensor

data.

Data Modeling Methodology. We use our empirical characterization to con-

struct a small number of load-specific model types. We show that our basic models,

or a composition of them, capture nearly all household loads. Our models go beyond

on-off models, by capturing power usage characteristics that i) decay or grow over

time, ii) have frequent variations (as with the TV in Figure 4.1), iii) exhibit complex

repetitive patterns of simpler internal loads, and iv) are composites of two or more

simpler loads. We show that our models are significantly more accurate than on-off

models, decreasing the root mean square error by as much as 8X for representative

loads. Since our methodology is general, it is applicable to modeling other types of

loads as well beyond those described in this chapter.

4.2 Empirical Data Collection and Characterization

A typical home consists of dozens of electrical loads, including heating and cooling

equipment, lights, appliances of various kinds and electronic equipment. A partial

list includes:

• Heating, cooling, and climate control equipment such as a central air conditioner,

window air conditioner, space heater, electric water heater, dehumidifier, fan,

air purifier;

• Kitchen appliances such as an electric range, microwave, refrigerator, coffee

maker, toaster, blender, dishwasher;

• Laundry appliances such as a washing machine and dryer;

• Lighting including incandescent and fluorescent lights;
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• Miscellaneous electronic devices such as a television, audio receiver, radio, bat-

tery charger, laptop and desktop computer, and gaming console; and

• Other appliances such as a vacuum and carpet cleaner.

Since our methodology is empirical, we leverage data collected from our smart

home deployments (described previously in Chapter 3) to characterize various loads

based on a few elemental types, as described below.

4.2.1 Characterizing Different Types of Loads

Despite their tremendous variety, most residential loads fall into one of a few ele-

mental load types based on how they consume power in an alternating current (AC)

system. In particular, loads are categorized as either resistive, inductive, capacitive,

or non-linear based on how they draw current in relation to voltage, which in an AC

system varies along a smooth sinusoidal pattern. These categories reveal properties

of the loads that we leverage in our models. Since many researchers outside of power

systems may be unfamiliar with these load types, for each type of load we first review

its salient characteristics. We then empirically characterize data from multiple rep-

resentative loads of each type to observe how their specific characteristics manifest

themselves in the data.

Resistive Loads. Loads that consist of any type of heating element are resistive.

Incandescent lights, toasters, ovens, space heaters, coffee makers, etc., are examples

of common resistive loads in a home. Formally, if a load draws current along a

sinusoidal pattern in the same phase as the voltage, i.e., the maximum, minimum,

and zero points of the voltage and current sine waves align, then the load is purely

resistive.

Figure 4.2 depicts a time-series of the power usage for five different resistive loads

with heating elements: an incandescent light bulb, a toaster oven, a coffee maker, a

sandwich press, and a pod coffee maker, e.g., a Keurig or Tassimo. In general, the
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power usage of these loads resembles a “step” when turned on, with usage that remains

relatively stable and flat. The incandescent light acts as a nearly perfect resistive load

with a power usage equal to the bulb’s wattage. While the toaster oven, coffee maker,

sandwich press, and pod coffee maker act similar to the light bulb, they experience an

initial higher power usage that slowly decays to a relatively stable usage, highlighted

in Figure 4.2. The initial high power is due to the large inrush (or surge) current that

occurs as the device warms up and the resistance decreases, after which it stabilizes.

Observation 1: Resistive loads exhibit stable power usage when turned on, with

high-power heating elements exhibiting an initial surge followed by a slow decay to

stable power.

Inductive Loads. AC motors are the most common and widely-used examples

of inductive loads. Motors are the primary component of many household devices,

including fans, vacuum cleaners, dishwashers, washing machines, and compressors in

refrigerators and air conditioners. Formally, if a load draws current along a sinusoidal

pattern that peaks after the voltage sine wave, i.e., the current waveform lags the

voltage waveform, then the load is purely inductive.

Figure 4.3 depicts a time-series of the power usage for five inductive loads: a re-

frigerator, a freezer, a central air conditioner (A/C), a vacuum cleaner, and a window

A/C unit. All five loads operate AC motors. Unlike the resistive loads above, each

inductive load experiences a significant, but brief, initial power usage. The surge is

also due to inrush current that occurs when starting an AC motor, although it is

typically much higher than for heating elements. Intuitively, the underlying reason is

that, while heating elements heat up slowly, the rotor inside a motor must transition

from completely idle to full speed within seconds. Power usage then exhibits either a

decay or growth, depending on the motor’s operation, that eventually stabilizes. In

contrast to resistive loads, motors exhibit small variations even during this “stable”

phase. For instance, the refrigerator shown in Figure 4.3(a) exhibits small fluctuations
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Figure 4.2. Example resistive loads, demonstrating “step” behavior with a possible
initial surge and slow decay to a stable power level.

that repeat during each cycle of the compressor. The freezer, central A/C, vacuum

cleaner, and window A/C depicted in Figures 4.3(b), (c), (d), and (e) all show an ini-

tial spike followed by a sharper, smoother growth (central and window A/C) or decay

(freezer and vacuum), with small variations as the usage stabilizes. These patterns
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Figure 4.3. Example inductive loads, demonstrating significant surge current fol-
lowed by steady power growth or decay.

demonstrate that, unlike resistive loads, modeling inductive loads using simple on-off

step functions is problematic.
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Observation 2: Inductive loads with AC motors exhibit an initial power spike

followed by a growth or decay to a stable power level. The growth/decay rate is load-

dependent, with the stable power level also exhibiting fine-grained variations.

Capacitive Loads. Capacitive loads are the dual of inductive loads. Formally,

if a load draws current along a sinusoidal pattern that peaks before the voltage sine

wave, i.e., the current waveform leads the voltage waveform, then the load is purely

capacitive. While many loads have capacitive elements, they generally occur in addi-

tion to other resistive and inductive elements which dominate their overall behavior.

Thus, there are no significant capacitive loads in buildings, particularly when consid-

ering real (as opposed to reactive) power.

Non-linear Loads. Finally, any load that does not draw current along a sinu-

soidal pattern is called non-linear. Non-linear loads may also be resistive, inductive,

or capacitive based on when their current waveform peaks. The most predominant

non-linear (and largely inductive) loads are electronic devices, including computers

and TVs. The non-linear nature of these loads is primarily due to the use of switched-

mode power supplies (SMPSs). Fluorescent lights are another example of a non-linear

(inductive) load. Smaller electronic devices that convert AC to low-voltage DC, such

as battery chargers for portable devices and digital clocks, are also non-linear.

Figure 4.4 shows the power usage of five different non-linear loads: an LCD TV,

a Mac Mini desktop computer, a microwave oven, a duct heater for a heat recovery

ventilator (HRV), and a computer monitor. These loads exhibit significant power

fluctuations when active, but also have a stable floor or ceiling from which these

fluctuations derive. The LCD TV shown in Figure 4.4(a) exhibits a stable maximum

usage with random power reductions from this ceiling. These fluctuations result from

displaying a variety of color and pixel intensities on the screen. Not surprisingly, the

computer monitor in Figure 4.4(e) has a similar pattern of power usage. In contrast,

the desktop computer shown in Figure 4.4(b) has a stable minimum power draw,
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Figure 4.4. Example non-linear loads, demonstrating rapid and significant random
variations with possible ceilings and/or floors.

with random power spikes above this floor depending on its workload, e.g., causing

the CPU to ramp up, etc. Both the TV and desktop computer consist of a switched

mode power supply (SMPS) that regulate the power usage of the device and switch

between a full-on and full-off state to minimize wasted energy. The duct heater shown
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in Figure 4.4(c) demonstrates two regular modes of operation: an active heating

mode—with instantaneous intensity managed by the HRV controller—and a passive

mode. In both modes, there are large, random variations in power usage. In the active

state, there is also a clear stable maximum usage. Finally, the microwave shown in

Figure 4.4(d) has what initially appears to be a straightforward step, similar to the

resistive loads. However, zooming in shows the microwave’s non-linear behavior,

with rapid, albeit small, variations in the second-to-second usage, along with larger

periodic power shifts. These examples show that on-off models are inappropriate for

non-linear loads, since two power states cannot capture their wide range of power

variations.

Observation 3: Non-linear loads exhibit significant random variations in power

usage. These fluctuations are often range-bound and capped by a floor or ceiling in

the power level.

4.2.2 Composite Loads and Reactive Power

Composite Loads. Many household loads, particularly large appliances, are not

purely resistive, inductive or non-linear. Instead, these loads consist of multiple com-

ponents, each of which may be one of the simpler load types. For instance, a central

air conditioner may consist of a compressor, a fan to blow air into ducts, duct damp-

eners to control air flow, and central humidifiers to control humidity. A refrigerator,

which has a compressor that is an inductive load, may also consist of door lights,

an ice maker, and a water dispenser. Similarly, electric dryers, washing machines,

and dishwashers also consist of a motor—to spin clothes and circulate water via a

pump—and a heating element—to dry clothes or warm water. In addition, these

appliances often operate in repetitive cycles that activate each of their constituent

loads differently, such as washing, draining, and then drying for a dishwasher. Fig-

ure 4.5 depicts the power usage of a washing machine, a dryer, two dishwashers, and
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the HRV. As shown, these loads exhibit distinct behavior in different parts of their

cycle depending on which appliance component is in use. For example, based on the

observations above, distinguishing when a complex load, such as the dryer, activates

its heating element versus its motor is straightforward. Finally, an appliance may ac-

tivate its various components in sequence, in parallel, or both. For instance, a central

air conditioner may operate the compressor, the fan and the dampeners concurrently,

while a dishwasher may operate its motor, pump and heater in sequence.

Observation 4: Composite loads consist of simpler resistive, inductive and non-

linear loads that operate in parallel, in sequence, or both. As a result, composite loads

exhibit distinct behaviors in different operating regions of their active cycle.

Reactive Power. Finally, another important characteristic of the elemental load

types above is how they consume reactive power. While real power is the amount of

power delivered to a load, and is often referred to as simply electricity or power (with-

out the qualifier), reactive power is the amount of power generated, but not delivered,

to the load; it is also measured in units of watts, but written as voltage-amperes reac-

tive (VAR) to distinguish it from real power. Reactive power arises when a load draws

current out of phase with the voltage. Thus, only non-resistive loads generate reactive

power. At a high level, reactive power is the result of the instantaneous power (the

product of current and voltage) occasionally becoming negative within each AC cycle,

due to out-of-phase current and voltage. This state causes power to flow towards the

generator and away from the load. Reactive power is typically dissipated as heat in

power lines. For our purposes, reactive power provides additional useful information

for modeling, and many commodity power meters are capable of measuring it. As a

result, our models include both real and reactive power.

Figure 4.6 depicts companion graphs for selected loads that shows their reactive,

rather than real, power usage. Figure 4.6(a) shows that, similar to real power, a

resistive dimmable incandescent light produces a stable—zero if not dimmed—amount
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Figure 4.5. Example composite loads, demonstrating combinations of the simpler
loads above arranged in phases.

of reactive power when on, although the magnitude of the draw peaks at 50% dim

level and decreases as the light approaches either 0% or 100% dim level. Likewise, an

inductive load like the refrigerator in Figure 4.6(b) exhibits a spike followed by a flat

reactive draw; a non-linear load like the duct heater in Figure 4.6(c) has a rapidly
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Figure 4.6. Reactive power demonstrates the same types of patterns as real power
and can help in identifying different types of electrical loads.

varying power usage; and composite load like dishwasher 1 in Figure 4.6(d) operates

a sequence of simpler internal loads. In each case, the pattern of a load’s reactive

power usage follows its pattern of real power usage.

Observation 5: While the magnitude of reactive power differs from real power, a

load’s pattern of reactive power consumption is qualitatively similar to its real power

consumption.

To summarize, we observe that nearly every common household electric load is

a composition of one or more of the small number of resistive, inductive, and non-

linear loads described above, with heating elements and AC motors consuming the

majority of electricity in homes. Further, each type of elemental load exhibits similar

characteristics when active: heating elements have a stable power usage or one that
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decays slowly over time, AC motors have a spike in power on startup and then vary

their power usage smoothly over time, while SMPSs exhibit rapid and significant

power variations. As we discuss in the next section, the presence of only a few

elemental load types in homes simplifies model design, enabling us to accurately

capture their behavior using a few basic types of models.

4.3 Modeling Electric Loads

Based on our empirical observations from the previous section, we develop models

to capture key characteristics of each load type. We first present four basic model

types—on-off, on-off growth/decay, stable min-max, and random range— to describe

simple loads, and then use these models as building blocks to form compound cyclic

and composite models that describe more complex loads. Ideal models describe i) how

much real and reactive power a load uses when active, ii) how long a load is active,

and iii) when a load is active. However, in many cases, users manually control loads,

such that when a load is active and for how long is non-deterministic. For example, a

user may run a microwave any time for either ten seconds or ten minutes. For these

loads, we assume a random variable captures this non-determinism, and focus our

efforts, instead, on modeling how each load behaves when active.

Given each model type, we employ an empirical methodology to construct accurate

load-specific models: we leverage our observations of the load’s power usage as a

training set, and employ curve-fitting methods to map one of the model types onto

the time-series data. If the best model type is not clearly evident a priori, we fit

multiple models and then choose the one that yields the best fit. As described below,

depending on the model type, we may employ simple regression or more complex

curve-fitting methods, such as LMA [41], to construct a load-specific model for a

given model type. As discussed in Section 4.2, reactive power for loads exhibits
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Figure 4.7. An on-off growth/decay model closely matches the average power usage
measured each second for a variety of resistive and inductive loads.

similar behavior as real power, and thus constructing a model of a load’s reactive

power consumption uses the same methodology as above.

4.3.1 Basic Model Types

On-off Model. As discussed previously, prior work often relies on simple on-off

load models. An on-off model includes two states—an on state that draws some fixed

power pactive and an off state that draws zero, or some minimal amount of, power poff .

Conventional, non-dimmable incandescent lights are the canonical example of an on-

off load. Dimmable lights also conform to on-off models, although pactive depends

on the dim level. As shown in Figure 4.6(a), a N% dim level yields a proportionate
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reduction in real power usage. In addition, while real power is a simple linear function

of dim level, reactive power is a quadratic function that peaks at 50% dim level.

Constructing an on-off model is simple—we use regression to determine appropriate

values pactive and poff . In particular, we partition the time series of load power usage

into two mutually exclusive time-series, with data for the on and off periods, to

determine the best values of pactive and poff .

On-off Growth/Decay Model. An on-off growth/decay model is a variant of

the on-off model that accounts for an initial power surge when a load starts, followed

by a smooth increase or decrease in power usage over time. As discussed in Section 4.2,

AC motors are the most common example of a load exhibiting this behavior, e.g.,

refrigerator, central A/C, vacuum. Resistive loads with high-power heating elements,

such as the toaster or coffee maker, also conform to an on-off growth/decay model,

although the surge and the decay in these devices is far less prominent than in AC

motors. We characterize on-off decay models using four parameters: pactive, poff ,

ppeak, and λ. The first two parameters are the same as in on-off models, while ppeak

represents the level of inrush current when a device starts up and λ represents the

rate of growth or decay to the stable pactive power level. We model decay using an

exponential function as follows, where tactive is the length of the active interval.

p(t) =


pactive + (ppeak − pactive)e−λt, 0 ≤ t < tactive

poff , t ≥ tactive

Similarly, we model on-off growth as a logarithmic function (i.e., the inverse of

the exponential function) using starting power level pbase and growth parameter λ:

p(t) =


pbase + λ ln t, 0 < t < tactive

poff , t ≥ tactive
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We can optionally augment the growth model with an additional parameter pceil

to prevent unbounded growth that simply caps the maximum output of the model.

In the growth model, the surge current must also be modeled separately (such as in

the central A/C shown in Figure 4.7d). Here, we can simply add a parameter pspike

specifying the power at t = 0.

As with the on-off models above, the length of the active interval for on-off

growth/decay models is often not known a priori since it may depend on user behav-

ior. However, we have observed that in many cases users repeatedly operate devices

in the same way, e.g., a toaster that toasts a bagel every morning. In many cases, the

device determines tactive automatically, e.g., the compressor for a refrigerator or freezer

may turn on for an average of 20 minutes in each cycle. In these cases, we incorporate

the mean value of tactive into the model. Constructing an on-off growth/decay model

requires fitting an exponentially decaying (or logarithmically growing) function onto

the time-series data, in addition to determining ppeak, pactive, and poff . We employ

the LMA algorithm [41] to numerically find the exponential or logarithmic function

that best fits the data, i.e., based on a least-squares nonlinear fit.

Figure 4.7(a) shows the specific on-off decay model for a coffee maker in parallel

with its real power data. The figure demonstrates that the exponential decay is

a highly accurate approximation of the coffee maker’s power usage. In this case,

pactive = 905, ppeak = 990, poff = 0, and λ = 0.045. Likewise, Figures 4.7(b) and

(c) show on-off decay models and real power data for a toaster and a portion of a

dryer cycle. Finally, Figure 4.7(d) shows how well an on-off growth model fits the real

power data for the central A/C from Figure 4.3(c). For comparison, we also fitted

the lowest-error on-off model for each of the four representative device cycles pictured

in Figure 4.7. We then calculated the root mean square error (RMSE) for both the

on-off and on-off decay models for (a) each load’s duration, and (b) its first 30 seconds

of activity (including the ‘on’ event). As seen in Figure 4.8, the growth/decay model
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decreases the error in the on-off model by as much as 8X, particularly in the first 30

seconds where the on-off model is unable to capture the rapid decay behavior.

Stable Min-Max Model. While on-off and on-off decay models accurately cap-

ture the behavior of resistive and inductive loads, they are inadequate for modeling

non-linear loads. As seen in Section 4.2, many non-linear loads maintain a stable max-

imum or minimum power draw when active, but often vary randomly and frequently

from this stable state. These variations are due to the device rapidly regulating

their electricity usage to “match” the current needs of the device. Our stable min-

max model captures this behavior by first specifying a stable maximum or minimum

power when active, denoted by pactive. The power usage then deviates, or “spikes,”

up or down from this stable value at some frequency. The magnitude of each spike

is chosen uniformly at random between pactive and a specified maximum deviation,

denoted pspike. The inter-arrival times of the spikes are exponentially distributed with

mean λ. Thus, the stable min-max model is specified by the choice of pactive, pspike,

and λ (as well as whether pactive denotes a stable minimum or a stable maximum).

Empirically constructing a load-specific stable min-max model requires determin-

ing the stable power level pactive and characterizing the magnitude and frequency of

the power spikes. We employ simple regression to determine the stable power level
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pactive from the data, e.g., after filtering out the data for spikes and finding the fit

for pactive. The mean observed duration between spikes then yields the parameter λ.

Figure 4.9 shows our stable-max model for the LCD TV (from Figure 4.1) using a

maximum pactive of 160W and a λ of 10.82, which we derive from the TV’s real power

usage data. Importantly, as we discuss in Section 4.4, both the model and the raw

data have similar statistical properties, which simple filters can recognize by detecting

when power variations are significant, frequent, and symmetric, e.g., a decrease and

then immediate increase in power of similar magnitude.

Random Range. Finally, we found that some devices draw a seemingly random

amount of power within a fixed range when active. This is likely due to the fact that

taking average power readings each second is too coarse a frequency to capture the

device’s repetitive behavior. We model such loads by determining upper and lower

power usage bounds, denoted by pmax and pmin. When active, our model randomly

varies power within these bounds using a random walk. Note that the random range

model is similar to the stable min-max model in that both employ upper and lower

bounds on power usage. However, while the deviations in the stable min-max model

are spikes from a stable value, those in the random range model are power variations

within a range. The microwave is an example of a load that exhibits this behavior. As
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shown in Figure 4.4(d), when turned on, the power usage of the microwave fluctuates

continuously between 1400W and 1480W.

Random range models require determining the minimum and maximum of the

load’s range of power usage. We determine these values by simply choosing the

minimum and maximum power values observed in training data, or by deriving a

distribution of power values from the data and choosing a high and low percentile of

the distribution to be the minimum and maximum, pmin and pmax. We then model

the variations with a random walk within the range.

4.3.2 Compound Model Types

While the models above accurately capture the behavior of simple loads, many

loads, including large appliances, exhibit complex behavior from operating a variety

of smaller constituent loads. We devise two types of compound models for complex

loads that use the basic building blocks above.

Cyclic Model. Cyclic loads repeat one of the basic model types in a regular

pattern, often driven by timers or sensors. For example, the HRV heater employs

a timer that activates for 20 minutes each hour. Similarly, a refrigerator duty-cycle

is based on sensing its internal temperature, which rises and falls at regular inter-

vals and fits our model well, as shown in Figures 4.3(a) and (b). A cyclic model

augments a basic model by specifying the length of the active and inactive period,

tactive and tinactive, each cycle. Constructing cyclic models is straightforward, since

it only requires extracting the duration of the active and inactive periods from the

empirical data. We currently use the mean of the active and inactive periods from

the time-series observations to model tactive and tinactive.

Composite Model. Composite loads exhibit characteristics of multiple basic

model types either in sequence or parallel. Example composite loads include dryers,

washing machines, and dishwashers, as shown in Figure 4.5. Sequential composite
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loads operate a set of basic load types in sequence; we model them as simple piece-

wise functions that encode the sequence of basic load models, including how long

each load operates. For instance, a model for a dishwasher is a sequence of stages:

modeled as the operation of the motor (wash stage), pump (drain stage), motor (rinse

stage), pump (drain stage) and heater (dry stage), where each individual stage uses

an inductive or resistive load. Some loads also exhibit characteristics of two or more

basic models in parallel if two basic loads operate simultaneously. For example, a

refrigerator may simultaneously activate both a compressor and an interior light. We

model parallel composite loads by summing the power usage for two or more of the

basic model types. Finally, composite loads may also be cyclic, referred to as cyclic

composite loads, which repeat a pattern of individual model types at regular intervals.

Our methodology permits flexible compositions of sequential, parallel or cyclic loads.

Constructing load-specific composite models is more complex and requires addi-

tional manual inputs. For example, constructing a sequential composite model requires

manually partitioning and isolating load time-series data into individual sequences

that reflect the activation of the various load components. Each individual compo-

nent of the composite load is modeled using a basic model type. The composite model

is then simply a concatenation of these piecewise models in sequence (the duration

of each component may be specified in the model or left as a variable).

As an example, Figure 4.10 shows an extended operating cycle of the washing

machine with the annotations for different basic load model types in the sequence.

We represent these models as large piecewise functions of the basic models describing

each constituent load. In addition, many of the large appliances that have composite

models also have numerous operating states. For example, the washing machine and

dryer in one of our homes has over 25 different types of cycles. Ideally, a model

includes a different piecewise function for each cycle type. However, in the homes we
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monitor we have found that most residents operate devices using only a few states—in

most cases one.

Constructing parallel composite models poses additional challenges. Since the

time-series data for a load captures the power usage for all components that are

concurrently active, there is no straightforward general-purpose technique to extract

individual models from the composite time-series data. In practice, however, extract-

ing basic models is often possible through exogenous means. For instance, many loads

permit operating individual components to isolate them for profiling, e.g., such as a

running a dryer on tumble mode without any heat or using an air conditioner’s fan

without any cooling. After separately profiling a constituent load, such as the tumbler

or fan, it is possible to operate the compressor and the fan, and then infer the com-

pressor power usage by “filtering out” the tumbler or fan usage from the aggregate.

In some devices, such as a refrigerator, it also might be possible to deploy additional

sensors that monitor important events, such as a door opening that triggers lights,

to filter them out. Ideally, the model of a complex composite device would be pro-

vided by the device manufacturer, as the problem of identifying the components of a

composite device is largely orthogonal to the problem of modeling each component.

However, using the techniques described previously, it is generally possible to identify

the key components even without detailed knowledge of the internals of the device
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(though for many devices, substantial information on the components and operation

of the device is readily available, e.g., in an owner’s manual).

4.4 Case Study: Device-accurate Synthetic Building Data

Evaluating new techniques for analyzing electricity data requires actual building

data for testing. Unfortunately, while recording a building’s aggregate electricity

usage is simple, requiring only a single smart meter, recording detailed aspects of

the building’s environment is not. For instance, evaluating the accuracy of a NILM

algorithm, which disaggregates building electricity data into power data for individual

loads, requires power data from both the entire building and each of its constituent

loads. However, NILM’s entire purpose is to prevent the need for recording such

ground truth data at each load. As our own experience indicates, setting up even a

test infrastructure for collecting ground truth data is expensive, invasive, and time-

consuming, since it requires a power meter attached to each load in the home. While

there are a few data sets for select buildings available for NILM researchers to use in

evaluation [7, 37, 2], they typically do not instrument every load nor do they cover a

wide range of building types or load characteristics.

To address this problem, our first application uses our models to automatically

generate device-accurate synthetic electricity data for buildings. Being device-accurate

means that the synthetic trace data includes both the synthetic aggregate time-series

power data for a building, as well as time-series power data for each of the constituent

loads in the building generated using our models. While prior work targets generating

synthetic traces of the power usage for entire buildings [3], we are not aware of any

previous work that focuses on being device-accurate. Unlike real-world trace data

collected from specific buildings, the synthetic traces generated using our models will

provide researchers explicit control over the number and types of loads present in the

data, enabling them to control the statistical properties of the dataset and discover
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Figure 4.11. Aggregate home power from measured data (a) and from our corre-
sponding device models (b), along with a zoom-in comparison over 15 minutes.

which properties have the most influence on their results. Importantly, synthetic data

does not not require researchers to deploy a large number of per-load power meters.

Figure 4.11 shows an example of how our device-accurate synthetic building data

compares with data collected from a real building. To generate the synthetic trace

shown in Figure 4.11(b), we replace each occurrence of a given device in the ground-

truth data shown in Figure 4.11(a) (i.e., each period when a device is using power)

with our model of that device over the same time period. Figure 4.11(c) shows

a zoomed-in comparison of the two traces over a 15 minute period to graphically

illustrate their similarity. The ground-truth and model-based traces look qualitatively

similar, but they also have similar statistical properties: the real data (a) has an

average power of 1200W, a standard deviation of 1072W, and 5591 changes in power

>15W, while the synthetic data (b) has an average power of 1165W, a standard

52



deviation of 1073W, and 5833 changes in power >15W. Since the synthetic data is

composed of data from models of individual loads, it is useful for analysis techniques

that look for patterns in the aggregate usage data. By comparison, if we generate

on-off models that include at most 4 power states per load (as in recent work [37]),

there are only 1985 changes in power >15W, which eliminates many identifiable load-

specific characteristics useful in analysis.

4.5 Summary

We address the largely unexplored problem of general-purpose, load-accurate de-

vice modeling by proposing a flexible set of models based on the low-level electrical

characteristics of devices. We highlight how most devices can be represented as one or

more of our basic model types and evaluate our framework by comparing to simpler

on-off models used in most prior work to demonstrate our improved accuracy.
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CHAPTER 5

ONLINE LOAD TRACKING

One of the most desired type of smart meter data analysis is extracting the be-

havior of individual loads given only the aggregate energy trace outputted by a smart

meter. The modeling framework introduced in Chapter 4 enables accurate and ef-

ficient load tracking – i.e., extracting individual loads in an online fashion from an

aggregate energy trace. Here we present PowerPlay, a system for online load tracking

that is superior to traditional disaggregation techniques in scalability and fine-grained

load accuracy.

5.1 Background and Motivation

Device-level energy monitoring is of widespread use both to consumers (e.g., to

identify wasteful energy use in one’s home) and to utilities (e.g., to perform analyses

of consumer behavior under various circumstances). Timely and accurate knowledge

of per-load energy usage is a prerequisite for implementing many automated energy

optimization techniques [8, 12, 54]. However, gathering this information at large scales

remains problematic: embedding large numbers of networked sensors in every building

is either prohibitively expensive, invasive, or unreliable. An alternative approach is

to analyze data from smart meters to infer individual load usage, as smart meters

are being widely deployed by utilities [16]. We propose a new analysis technique,

which we call online load tracking, that monitors the operation of individual building

loads, i.e., when they turn on or off and their fine-grained energy usage, by analyzing
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smart meter data. In essence, “tracking” a particular load mimics having a network-

connected energy meter attached to it.

Tracking loads online, i.e., in real time as a smart meter generates new data, is

critical since many higher-level energy optimization techniques require such real-time

data. For example, an automated load scheduling policy that reduces a building’s

peak power demand by deferring one or more background loads must know the energy

usage of each background load to determine which of them to defer and for how

long [8]. As another example, a recommendation engine may monitor the energy

usage of a building’s interactive loads to push energy-efficiency recommendations to

occupants’ smartphones in real-time, directing them to take an immediate action to

better optimize their energy usage, e.g., such as turning off an idle coffee pot [5].

Essentially, online load tracking is useful for any application that requires attaching

a power meter to a load that transmits its average power usage every pre-specified

time interval in real time.

Online load tracking differs from traditional non-intrusive load monitoring (NILM)

in two primary ways. First, while NILM requires disaggregating an entire building’s

energy use, tracking addresses the simpler and more tractable problem of extracting

specific devices from a building that may include many unknown devices. Second,

tracking focuses on online operation, requiring low computational overhead to provide

acceptable performance. This focus differs from NILM, which primarily concerns of-

fline analysis and does not strongly consider systems performance issues (e.g., scaling

to hundreds of homes).

5.2 Tracking Overview and Approach

Our tracking system, called PowerPlay, builds on our modeling framework by de-

tecting a small number of identifiable load features in smart meter data. For each

model type, we select identifiable model features and then design efficient online meth-
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ods for tracking loads by detecting one or more of these features in smart meter data.

The primary components of PowerPlay are (i) a strategy for model-based feature se-

lection, (ii) techniques for efficiently detecting features with a smart meter trace, and

(iii) an implementation demonstrating the scalability of PowerPlay from single-home

tracking on a low-power device up to utility-scale tracking across hundreds of individ-

ual homes. We show that PowerPlay improves per-load accuracy by >2X compared

to a state-of-the-art disaggregation algorithm designed for offline analysis and easily

scales to large numbers of homes on commodity hardware.

Formally, we define the problem of online tracking for load pi as inferring its

average power usage pi(t) from a home’s total power usage P (t) recorded by its smart

meter over the period (t− τ, t]. Due to its online nature, computing each pi(t) must

complete within t+ ε for some value of ε. Observe that tracking a load’s power usage

pi(t) also indirectly reveals when it turns on and off. Load tracking targets individual

loads and does not attempt a full disaggregation, as is common with NILM techniques,

which try to infer pi(t) for all n building loads, such that
∑n
i=0 pi(t) = P (t). Further,

to the best of our knowledge, no prior NILM technique addresses online operation

with a timing constraint.

Of course, perfectly tracking all n loads would be equivalent to a complete and

accurate disaggregation. Since load tracking values system performance, as well as

the accuracy of a load’s inferred power readings, its goal is to both minimize ε and

maximize accuracy. In this case, we measure accuracy based on a load’s tracking

error factor δ, which is simply the error between a load’s actual and inferred power

usage, normalized by its total energy usage. If p̃i(t) denotes load pi’s actual power

usage at time t and pi(t) denotes its inferred power usage from load tracking at time

t, then we define the tracking error factor over T intervals as:

δ =

∑T
t=1 |p̃i(t)− pi(t)|∑T

t=1 p̃i(t)
(5.1)
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Here, the numerator is the sum of the absolute errors at each data point, and the

denominator is the load’s total energy usage over T . Lower values of δ are better;

an error factor of zero indicates perfect tracking. While there is no upper bound on

the tracking error factor, an error factor of one indicates that the reading-to-reading

errors are equal to the load’s energy usage. In general, a tracking error factor near

one is not considered good, since simply inferring a load’s energy usage to be zero at

each time t results in δ = 1. Note that this metric is a load-specific variant of the

“total energy correctly assigned” metric from prior work [37].

Of course, the sampling resolution of the smart meter affects both the accuracy

and efficiency of any online load tracking technique. We denote the meter’s data

resolution using the sampling time interval τ . A coarser (or longer) sampling interval

“averages out” features in P (t), eliminating identifiable attributes, while a finer (or

shorter) interval reveals more attributes, but also more data to process, as well as

more noise, e.g., due to sensing error, grid voltage variations, and non-identifiable

attributes common across many loads. Our work specifically targets consumer-grade

power meters, such as the TED [55], eGauge [15], and BrulTech, which commonly

provide a sampling resolution of one reading per second, e.g., τ=1 second.

PowerPlay employs a model-driven approach for load tracking, which ensures ac-

curacy and computational efficiency by decomposing tracking into multiple distinct

subproblems. Note that prior work on complete load disaggregation typically con-

flates these subproblems. The subproblems include (i) empirically modeling a load,

(ii) extracting features from the model, (iii) selecting the most identifiable features,

and, finally, (iv) detecting and tracking a load based on these features. Figure 5.1

depicts the basic workflow of each subproblem, which we, in turn, outline briefly

below.

1. Empirical Modeling. As previously detailed in Chapter 4, we first empirically

model each load’s energy usage based on properties of the four basic types of
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Figure 5.1. PowerPlay’s approach, which uses offline modeling and feature extrac-
tion for online load tracking.

electrical loads, i.e., resistive, inductive, capacitive, and non-linear. We assume

a load’s model accurately describes its energy usage when on.

2. Feature Extraction. After empirically modeling a load, we decompose it

into a set of features. Each feature captures a subset of the load’s pattern

of energy usage within the model: the set of features collectively represents a

concise description of how the load’s operation manifests itself in power data.

Intuitively, a load tracking algorithm must “search” for these features within a

home’s aggregate smart meter data to detect the presence of the load and track

it.

3. Identifiable Feature Selection. PowerPlay optimizes load tracking efficiency

by distilling a load’s full feature set into a subset of its most identifiable features.

Identifiable features are a load’s most prominent (and unique) features, such

that a tracking algorithm need only search for these identifiable features, rather
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than the full feature set, to detect and track a load with high confidence. Clearly,

the smaller the set of identifiable features, the more efficient online detection.

4. Online Load Tracking. The final step is to design a tracking algorithm that

detects a load’s identifiable features in the smart meter data in an online fashion.

The first three steps above, namely empirical modeling, feature extraction, and

identifiable feature selection, are one-time tasks performed offline, while PowerPlay’s

final detection and tracking step is continuous and online.

PowerPlay’s model-based, feature-driven tracking differs from low-level time-series

matching [31]. In essence, the time-series approach takes either a trace or model of

a load’s raw power usage when on and “matches” it against a recent window of

time-series data from a smart meter to determine whether it is “embedded” in the

data. Matching typically involves computing a time-series distance function, such as

Euclidean distance or Dynamic Time Warping [33], between the load’s raw power

usage and the most recent set of smart meter readings of equal size; a match then

occurs when the distance is less than a pre-defined threshold. Low-level time-series

matching is more expensive and less robust than using higher-level features for load

tracking.

We illustrate our approach using a face recognition analogy from computer vision.

Given the image of a face, the recognition problem is to find the same face in a large

library of images. One possible approach is to represent each image as a collection

of pixels and attempt to find the image with the most similar pixels. Here, pixel-

by-pixel matching is analogous to matching a set of points from a load’s time-series

power data against a building’s aggregate time-series data. However, the process is

error-prone, since the face in each library image may be in a different orientation or

lighting, or have different glasses, jewelry, hairstyle, etc. Similarly, a load’s time-series

may be long and complex, causing it overlap the operation of many other load’s in

the building that obscure its presence.
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An alternative approach is to extract the face’s key features, e.g., brown hair,

mustache, etc., and attempt to find faces with similar features. Matching against

features is a higher-level operation than matching pixels, and attempts to capture

the inherent characteristic of the problem domain (here, facial features) to perform

more accurate and efficient detection. In addition, one could either decompose the

face into a full set of facial features and try to match every feature, or select only a

subset of prominent facial features, e.g., red hair, freckles, and blue eyes, that allow

us to find matches with high confidence, but at a lower cost. PowerPlay exploits the

same intuition by extracting key features of a load’s model and then detecting them

in smart meter data.

5.3 Offline Feature Identification and Selection

We first describe the three offline steps in PowerPlay’s approach, namely modeling

a load, extracting a load’s features, and then selecting a subset of identifiable features

to track. As noted earlier, we intend these steps to be one-time operations that occur

offline. In the future, we envision manufacturers profiling each load and supplying its

model and features as part of its technical user manual. The information could also

be crowd-sourced. For example, The Power Consumption Database, which already

provides crowd-sourced information on maximum and idle power for a wide range of

loads, indexed by type, manufacturer, and model number [49], could also provide a

more detailed model of each load.

5.3.1 Modeling and Feature Extraction

As previously detailed in Chapter 4, electrical loads in an alternating current

(AC) system fall into one of four basic types—resistive, inductive, capacitive, or non-

linear—based on the phase difference between AC voltage and the load’s current

waveform. Loads behaves differently based on their load type: low-power resistive
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Figure 5.2. Features of the different basic electrical loads.

loads exhibit on-off behavior, inductive and high-power resistive loads exhibit spikes,

decays, and growths in power, and non-linear electronics exhibit bounded or stable

power oscillations. While basic loads directly exhibit one of these four behaviors,

complex appliances that operate multiple internal loads, e.g., a refrigerator with a

motor-based compressor and interior light bulb, exhibit a composition of these behav-

iors. Below, we enumerate the identifiable features from these loads that PowerPlay

tracks.

Stable Power Steps. The simplest feature is a discrete change in average power

from one stable value to another stable value. Most disaggregation algorithms that

analyze real power data, e.g., at sampling resolutions coarser than 60Hz in the U.S.,

consider stable power steps as the only identifiable feature. In reality, only a few

low-power resistive loads, such as incandescent lights, exhibit these simple steps and

stable power usage when on. As depicted in Figure 5.2(a), we consider a power step to

have three separate features: an on step up, an off step down, and a stable constant

power.

Power Growth, Decay, and Spikes. Rather than exhibiting discrete power

steps, many common loads experience smooth increases or decrease in power when

they turn on, or abrupt and sudden spikes in power. These loads include those that
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operate high-power heating elements and induction motors. When turned on, the

power usage of heating elements slowly decreases over time as additional heat de-

creases the resistance of the heating element. Similarly, the power usage of induction

motors spikes at startup due to the high power required to initially start the motor

from rest. As depicted in Figure 5.2(b), we consider power growths, decays, and

spikes as distinct features: spikes capture an initial power surge, while logarithmic

growths and exponential decays capture gradual increases or decreases in power.

Bounded Power Oscillations. Resistive and inductive loads are linear: they

do not change the current waveform. However, many loads are non-linear: they

draw current at specific times based on sophisticated electronic controllers. Thus,

these loads draw a seemingly random amount of power within a fixed range when

on. As depicted in Figure 5.2(c), we consider bounded power oscillations between

maximum and minimum power thresholds as a distinct feature resembling a random

walk between thresholds.

Stable Power Oscillations. Rather than have both an upper and lower thresh-

old, some non-linear loads only have a single threshold, either an upper threshold or a

lower threshold. As a result, these loads exhibit seemingly random power oscillations

from a stable power state. This behavior stems from a load regulating its power usage

to instantaneously “match” its needs. For example, a Switched Mode Power Supply

(SMPSs) rapidly switches between a full-on and full-off state to conserve energy, while

controllers for many heaters continuously vary their power usage to maintain a target

temperature. As depicted in Figure 5.2(d), stable power oscillations are a combi-

nation of the stable power feature and power spike feature that captures frequent

positive or negative random fluctuations from a stable power level.

Power Cycles. Many loads include timers that operate them periodically in a

repeating pattern, e.g., a dehumidifier may include a timer that turns it on for two

hours out of every four hours. Alternatively, some loads may include an environmental
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Figure 5.3. Annotated features from representative loads.

sensor that operates in a repeating pattern if the environment is stable, but slightly

changes in pattern if the environment changes. A cyclic feature captures the interval

and conditions at which the features repeat, and potentially their duration, e.g.,

the length of a stable power level or power oscillations. Note that most loads are

interactive and do not repeat at regular intervals or operate over a specified duration.

Summary. Since essentially every electrical load is either an induction motor,

heating element, non-linear electronics, or some combination thereof, the feature set

above is complete: every load exhibits one or more of the above features. Since the

feature set is small, we only require a small set of detection techniques to identify

these features in smart meter data, as described in Section 5.4. Of course, since com-

plex loads may (i) internally operate multiple simple loads in sequence, parallel, or

both or (ii) operate in a regular pattern, they may exhibit a variety of the features

above in an arbitrary order. For example, the washing machine previously shown in

Figure 4.10 contains an induction motor for tumbling clothes, a heating element to

heat water, and a pump to drain the water that each turn on in sequence during the
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wash cycle. Finally, note that the features above are parameterized for each specific

load, and may differ across two loads of the same type, e.g., two A/Cs from different

manufacturers may require different features and parameters. These parameters in-

clude the magnitude of any steps or spikes, the rate of growth or decay, the frequency

and average size of bounded or stable power oscillations, the average period, etc.

Thus, PowerPlay’s offline component not only extracts the features of a load, it also

determines the parameters for each feature. Figure 5.3 includes annotated features

in power usage data for a variety of common loads.

5.3.2 Selecting Identifiable Features

Since basic loads only include a few features, an online load tracking algorithm can

use all of their features to detect their presence. However, complex loads, such as the

washing machine in Figure 4.10, may exhibit an excessively large number of features.

The more features required to describe a load, the higher the cost of searching for

and detecting these features in an online load tracking algorithm.

Fortunately, searching for every feature of a complex load is often not necessary

for accurate detection; it is often sufficient to select a smaller subset of prominent

features to uniquely identify the load with high confidence. To understand why,

consider that, while the pattern of power usage for a particular load may be complex,

it is also highly distinctive, including numerous unique features in a certain ordering.

PowerPlay leverages this insight to only search for a smaller subset of identifiable

features to match complex loads, which improves both efficiency and scale.

Selecting identifiable features for a load is a one-time offline task, and presents

a tradeoff between accuracy and performance. A smaller set of identifiable features

improves the efficiency of detection, but decreases tracking’s accuracy. At present, we

construct a complex load’s set of identifiable features experimentally by iteratively

adding the next highest magnitude features, e.g., that include the largest changes in
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power, to the feature set and then executing our tracking algorithm on historical data

until the tracking error factor is below a pre-defined threshold, e.g., 0.10.

5.4 Online Load Tracking

In this section, we first describe PowerPlay’s online tracking algorithm and then

describe the various feature detection techniques the algorithm uses to detect the

features from Section 5.3. The right side of Figure 5.1 depicts this process.

5.4.1 Tracking Algorithm

PowerPlay’s tracking algorithm takes, as input, a set of loads to track, a set of

identifiable features for each load, and a continuous stream of data from a smart

meter. Feature detectors for each load operate over a moving window of data points

of size W , starting from the most recent data point in the time-series of a home’s

power readings. The window represents the minimum time period over which a feature

manifests itself. The output of the tracking algorithm acts as a set of virtual power

meters providing device-level power data for each tracked load.

PowerPlay orders the list of all identifiable features across all loads into three

sets, from most to least distinctive. The first set contains “noisy” features, namely,

all stable and bounded power oscillation features across all loads in the tracking set.

The second set contains the remaining basic features: steps, spikes, and decay/growth

features across all loads. The final set contains any cycle features for loads in the

tracking set. Given these ordered sets, the tracking algorithm then repeatedly exe-

cutes its main loop, which applies every feature detector (from all loads) in order, as

described in Section 5.4.2. Note that PowerPlay buffers any smart meter data that

arrives while executing its main loop, and reads and appends it to the home’s power

data time-series on the loop’s next iteration. The time taken to complete the main

loop defines PowerPlay’s online performance, i.e., the minimum ε it can support. For
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example, if the main loop takes 30 seconds to complete, then the tracking algorithm

can only output each load’s inferred power usage every 30 seconds. The exact value

of ε depends on available hardware resources, as well as the number of virtual power

meters to simulate – i.e., twice as many tracked loads will increase ε by roughly 2X.

PowerPlay first detects the “noisy” features, i.e., those that contain significant

power fluctuations. These features are detected, labeled, and filtered from the home’s

power data as described in Section 5.4.2. Detection and filtering of “noisy” features

first enables PowerPlay to more easily and accurately detect the remaining features,

as the residual filtered data has less noise after filtering. After filtering, PowerPlay

applies the remaining basic feature detectors (e.g., spikes, growth/decays, and steps)

to identify and label those features in the data. Finally, PowerPlay runs the cycle

feature detector over the list of labeled features to identify repeating patterns of

features – the cycle feature detector is unique in that its input is a set of labeled

features rather than raw time-series data, and as such is run last.

For each desired virtual power meter (i.e., load in the tracking set), PowerPlay

then examines the list of labeled, but unassigned, features found in the recent past

(over a window W ). If the identifiable features of the load are found in the window,

it assigns these features to the load and declares a load match. Upon assigning

features to a load, PowerPlay removes them from the list of unassigned features. For

composite loads, the set of features (over window W ) may need to occur in a certain

order (or within a certain time interval) to infer a load’s presence. Finally, whenever

PowerPlay detects a load based on its features, it updates the load’s inferred power

usage pi(t) using the filtered feature data and the load’s model, which captures the

load’s full power usage behavior. Algorithm 1 shows pseudo-code for our load tracking

algorithm.
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Algorithm 1: PowerPlay’s Load Tracking Algorithm

1 Inputs:
2 list of loads to track;
3 set of identifiable features per load;
4 Preprocessing:
5 group all features based on “noise”;
6 1st group: stable min-max and bound oscillations;
7 2nd group: spikes, growth/decays, and steps;
8 3rd group: cycles;
9 while true do

10 Read in new, unprocessed smart meter data from buffer;
11 Append new data to existing (filtered) power data time-series;
12 Execute every stable min-max and bounded oscillation feature detector on

filtered data;
13 if Match then
14 Identify and label feature;
15 Filter feature from power data time-series;

16 end
17 Execute each spike, growth/decay, and step detector on filtered data;
18 if Match then
19 Identify and label feature;
20 Filter feature from power data time-series;

21 end
22 Execute each cycle detector across labeled features;
23 if Match then
24 Identify and label cycle;
25 end
26 for each load in the tracking set do
27 if features present (in specified order) then
28 Identify load’s presence;
29 Reconstruct load’s inferred power time-series from:
30 filtered load features and full model;

31 end

32 end

33 end

5.4.2 Feature Detection

PowerPlay’s tracking algorithm relies on individual feature detectors to identify

the features described in Section 5.3, including power steps, spikes, growth/decay,

bounded oscillations, and stable min-max oscillations. We detail each of these feature

detectors below. Note that, as stated above, each feature i operates on prior data over

a window size Wi, starting from the most recent data, where the value of Wi is specific
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to feature i. As with other similar types of analyses, feature detectors transform raw

power readings into a series of changes in power, which we call power deltas or just

deltas, e.g., +50W, -30W, +25W, etc., before processing them. PowerPlay associates

each power delta, e.g., a +100W, with one and only one feature from a single load,

removing it from further consideration by other feature detectors.

Stable Oscillation Detector. This detector examines data for frequent power

oscillations from a stable minimum or maximum power level, such that for every

negative power delta there is a corresponding positive power delta (of near equal

magnitude) in the near future. More formally, it identifies a stable power oscillation

feature by scanning a recent window of data, while maintaining a stable power level

p, which it updates only if power deviates from p by at least T watts for at least D

seconds. The parameters T and D are specific to a particular device that exhibits this

feature. We consider changes in power that update p as background activity, which we

exclude from the stable power oscillation feature, while we label any other oscillations

within the window as part of the feature. Finally, we cluster nearby groups of labeled

points to indicate the time range the feature was present.

To filter the feature from the raw data, we remove from the data any oscillations

that do not result in an update to p, and then use them to reconstruct the feature’s

second-to-second energy usage due to its stable oscillation behavior, as detailed in

Algorithm 2 and illustrated in Figure 5.4. In determining the D parameter for each

load, the goal is to set it long enough to ensure changes in power are not random

oscillations due to some other load, but short enough to prevent filtering short-lived

loads. For T , the goal is to select a value large enough to capture the expected

oscillations without attributing the power usage of unrelated background loads to the

feature.

Bounded Oscillation Detector. The bounded oscillation detector examines

data for groups of deltas within a certain range that reverse themselves—change
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Figure 5.4. Detection of a stable oscillation feature.

from positive to negative—frequently within a given minimum window size (e.g., 60

seconds). In particular, the detector looks for a minimum proportion of reversals

within the window (e.g., 50%), extending the window size until the minimum propor-

tion is not met or several seconds have passed without a reversal (i.e., power use has

stabilized, indicating the device is off). Within the resulting window, power deltas

exceeding the bounded power range are filtered out, as these changes are presumably

caused by other devices. This filtering is analogous to the the first step of the stable

oscillation detector shown in Figure 5.4.

As an example, we might parameterize a bounded oscillation feature for a partic-

ular microwave by dictating that at least 50% of reversals over its time window are

within a 30W range. Thus, over the initial small window, e.g., 15s, there must be at

least 8 reversals to detect the feature, at which point the detector extends the win-

dow until (i) the minimum reversal percentage no longer holds, or (ii) a short period

passes, e.g., 10s, without any reversals. This approach serves to extend the window

as long as necessary without overly lengthening the window for long-running loads.

To extract the resulting feature, we pair active windows of reversals with matching

on and off power steps of the approximate expected size for the feature (e.g., 1000W

for a particular microwave), as illustrated in Figure 5.5.

Growth/Decay Detector. To detect a decay or growth feature, we identify

positive steps near a feature’s expected magnitude, representing possible ‘on’ events.

Since the expected decay or growth rate specifies a maximum per-second negative
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Algorithm 2: Stable Oscillation Detector

1 Inputs:
2 data window W = {w0, w1, . . . , wn};
3 threshold wattage T ;
4 threshold duration D;
5 p← w0;
6 sinceStable← 0;
7 for i from 0 to n do
8 if |wi − p| ≥ T then
9 sinceStable← sinceStable+ 1;

10 if sinceStable = D then
11 p← wi−D;
12 label(wi−D, BACKGROUND);
13 i← i−D;

14 end
15 else
16 label(wi, OSCILLATE);
17 end

18 end
19 else
20 sinceStable← 0;
21 end

22 end
23 for each wi in each OSCILLATE cluster C = {wm, wm+1, . . . , wm+k} do
24 if wi labeled OSCILLATE and not BACKGROUND then
25 output delta di = wi − wi−1;
26 end

27 end

step (for a decay) or positive step (for a growth), the detector then scans forward,

discarding all changes that exceed the expected maximum. The result of this process

is a filtered time-series that, assuming the data actually represents a growth or decay,

should approximately fit an exponential or logarithmic curve. The detector then

performs the standard Levenberg-Marquardt Algorithm (LMA) [41] to perform curve

fitting against the data. If the fit fails, or the derived decay/growth parameter is far

from the expected value, the detector moves on to the next possible ‘on’ event.

If the fit is successful, then the detector identifies the ‘off’ event for the device,

or, equivalently, the duration of the decay/growth. To do this, the detector gradually

extends the fitted curve while looking for an ‘off’ step of the expected magnitude,
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Figure 5.5. Example of bounded oscillation detector.
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Figure 5.6. Operation of the decay/growth detector.

based on the magnitude of the ‘on’ step plus the cumulative growth or decay of the

fitted curve, which increases with the length of the curve. The detector then chooses

the ‘off’ step within a bounded interval most closely matching the expected value.

In this case, bounding prevents a runaway search. After selecting the ‘off’ step, the

detector is able to trivially reconstruct the entire feature, based on the identified ‘on’

and ‘off’ events and the fitted curve between them. The process of fitting and filtering

a decay feature is shown in Algorithm 3 and illustrated in Figure 5.6.

Spike Detector. Power spikes manifest themselves across multiple seconds, ei-

ther due to variation in a load’s exact activation time, i.e., when it activates within

the one-second sampling interval, or due to a short ramp-up period, which is espe-

cially prevalent in high-wattage loads. Thus, the spike detector collapses consecutive

power steps in the same direction, e.g., up or down, into a single aggregate power

step. Once collapsed, we identify spikes by a large positive step, followed immediately

by a smaller, but still significant, negative step (currently, at least 30% of the positive

step). Importantly, the spike detector separates the spike itself from its load’s stan-

71



Algorithm 3: Growth/Decay Detector

1 Inputs:
2 data window W = {w0, w1, . . . , wn};
3 expected feature ‘on’ size s;
4 decay/growth parameter λ;
5 for each delta di = wi − wi−1, where di ≈ s do
6 fitData← (di);
7 for each delta dj = di+1, di+2, . . . do
8 if dj < maxChange(λ) then
9 append(fitData, dj);

10 end
11 else
12 append(fitData, lastOf(fitData));
13 end

14 end
15 λfit ← LMA Fit(fitData);
16 if λfit ≈ λ then
17 for fit length f from 0 to n do
18 if di+f ≈ −s+ totalChange(λ, f) then
19 output (di, f , di+f );
20 exit;

21 end

22 end

23 end

24 end

dard power step feature. For example, PowerPlay considers the series of changes in

power [0, 0, +500, -400, 0, 0] both a +100W power step feature with a 500W power

spike. Although the näıve step-only approach would output a +500W step and a

-400W step, the spike detector recognizes that this time-series most likely represents

a 100W inductive load, such as a 100W refrigerator. Since the magnitude of a spike is

highly influenced by when a load turns on within the sampling interval, we represent

the spike as a binary flag associated with the regular power step feature, e.g., the

+100W step in our refrigerator example.

Step Detector. While power steps are the simplest feature, we have found that

a trivial approach to identifying them—by detecting second-to-second power deltas

of a certain magnitude in the data stream—is often inaccurate for the same reason
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Figure 5.7. Operation of the cycle detector.

as above, e.g., loads turn on at different times within the sampling interval resulting

in wide variance in the step feature’s recorded power deltas. Thus, similar to the

spike detector above, we collapse multi-second power deltas in the same direction

into a single aggregate delta. Once collapsed, the detector simply compares a step’s

magnitude to a specific parameterized power step feature. Note that we exclude

power deltas previously assigned to other features—-most notably the frequent power

variations observed in the stable min-max and bounded oscillation features—since

they would generate large numbers of spurious power steps of potentially the same

magnitude as an actual load.

Cycle Detector. Cyclic loads exhibit one or more features in a regular pattern.

Unlike the detectors above, the cycle detector operates on a series of labeled features

(from the detectors above), and then i) identifies each potential cyclic feature from

the data and ii) chooses a sequence of the features that most closely matches the

cycle’s expected period length. Figure 5.7 illustrates the process, where the cyclic

feature is a spike.

To determine the best sequence of cyclic features of a particular type, we chose

an arbitrary cyclic feature of the type at time t1, then the next one closest to time

t2 = t1 + period, and so on for tk = tk−1 + period. To account for features missed by

its particular feature detector, we may also match tk to tk = tk−1 + 2 ∗ period. The

‘error’ of the resulting sequence of tk is computed as
∑
k |tk − tk−1 − period|, i.e., the

amount the sequence differs from the expected period. This error is computed for
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all sequences starting from each possible t1, and the detector selects as the predicted

cycle the sequence with the lowest total error.

For example, consider a refrigerator with a 30 minute period and a magnitude

range between 80W and 120W for its spikes at startup. Now suppose the detector

extracts all spikes (due to the refrigerator’s compressor) from the data, and of those

spikes, each one with a step between 80W and 120W occur at times [0m, 20m, 30m,

55m]. In this case, the detector labels events at 0m, 30m, and 55m as the ‘on’ events

of the refrigerator, while excluding the the event at 20m, as it is does not match the

expected period. While this is a brute-force approach, the relatively small number of

cyclic loads, ensures the process is not computationally expensive.

After determining the sequence of cycle ‘on’ events, we filter and reconstruct the

feature’s energy usage by filling in its corresponding load’s model starting from each

‘on’ event, as shown in the final step of Figure 5.7.

5.5 Implementation

We implement PowerPlay’s feature detectors and tracking algorithm as a library

in Perl. The input to PowerPlay’s tracking algorithm is a continuous stream of new

smart meter data, which PowerPlay buffers while executing its main loop. Thus, if

each iteration of the main loop takes ε time, then the next iteration will consider

the set of data points that arrive and are buffered over the previous ε. The tracking

algorithm also has, as input, the set of loads to detect and the corresponding set of

identifiable features (parameterized separately for each load) extracted offline. The

algorithm then outputs, for each load, its inferred per-second power usage over ε for

each iteration of the main loop, resulting in a separate time-series of power data for

each load in the tracking set.

We deploy PowerPlay in one of the real smart homes described in Chapter 3.

The extensive instrumentation present in our deployment is necessary to compare
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our results (computed from the home’s aggregate power data) with the ground truth

power data from each individual load.

Notably, we must manually model each load we track and extract its important

features ourselves in order to use PowerPlay. However, our hope is that by demon-

strating the usefulness of our models in analysis, we will motivate manufacturers to

use our methodology to derive models and extract features as part of a load’s design

and publicly release them.

5.6 Evaluation

We evaluate the accuracy and efficiency of PowerPlay’s online load tracking algo-

rithm in our home deployment. We first measure the computational overhead of load

tracking to quantify PowerPlay’s efficiency, which enables it to either track loads on

low-power embedded platforms, i.e., within a home, or scale to thousands of loads

(across many homes) on server platforms. We then evaluate PowerPlay’s accuracy by

quantifying the tracking error factor δ for various loads. In both cases, since there is

no prior work on load tracking, we compare PowerPlay to a complete disaggregation

algorithm (based on FHMMs) modified for online operation. In this case, we use

the same approach as Kolter and Johnson [37] to evaluate their Reference Energy

Disaggregation Dataset (REDD), which is similar to the technique by Kim et al. [34].

Since PowerPlay relies on load models computed offline, we manually model a

representative set of loads in our deployment home that collectively cover each feature

type. The set includes a toaster oven (steps, decays), a refrigerator and freezer (steps,

spikes, cycles), a heat recovery ventilator or HRV (stable oscillations), and a dryer

(bounded oscillations, cycles, steps, decays). PowerPlay then tracks these loads, i.e.,

infers their second-to-second power usage, in real time using per-second power data

for the home (supplied by the home’s smart meter). The home operates 92 distinct

loads.
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5.6.1 Tracking Efficiency

As Algorithm 1 indicates, PowerPlay operates online by continuously receiving

power readings each second and executing its main loop to perform feature detection

on the most recent window of data. Since PowerPlay stores recent data in mem-

ory, I/O overhead is negligible and efficiency is solely a result of the computational

overhead of the feature detectors.

This overhead determines both (a) the tracking delay (ε from Section 5.2) of the

system, where ε=1 second is perfect real-time tracking and ε=1 hour indicates the

system delays reporting a load’s power usage by one hour, and (b) the number of

loads (and homes) that a platform can effectively track. Note that, since PowerPlay’s

main loop detects features across all loads, increasing the number of loads, ignoring

parallelism, increases tracking delay across all loads. Thus, we measure the aggregate

number of loads PowerPlay can track, while maintaining a low tracking delay.

We perform the following experiments on a single-core server running Ubuntu

Linux (kernel version 3.2.0) with a 2.4GHz Xeon processor. Figure 5.8 plots the

tracking delay (ε) PowerPlay supports for each of our representative loads as a func-

tion of the tracking window size. For this experiment, we set a common window size

across all features and vary it, even though some features do not require large window

sizes for accurate detection. From the graph, we observe that the tracking delay is

modest across every load. For example, with an excessively long tracking window of

24 hours, PowerPlay completes in less than 3 seconds per load.

As expected, the more features a load exhibits, e.g., the dryer, the more compu-

tational overhead required to track it, and the longer the tracking delay. We also

observe that the tracking delay effectively varies linearly with the tracking window

size. As a result, shortening the window size linearly decreases the tracking delay. In

practice, we select the window size specifically for each feature. For example, while

cyclic features may require a few hours to manifest themselves (requiring a multi-hour
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Figure 5.8. PowerPlay’s tracking algorithm is efficient, with tracking delays of at
most a few seconds.

window), spikes and decays are typically evident within a few seconds (requiring a

window of only a few seconds). Of course, tracking most features requires signifi-

cantly less than a 24-hour window size, which typically results in sub-second tracking

delays.

Result: PowerPlay is able to track multiple loads in real-time, or near real-time, on

commodity servers.

As noted above, we also compare PowerPlay’s scalability with a complete disag-

gregation algorithm based on FHMMs. Here,we assume a server must track loads

across many homes, not just a single home. For example, utilities might apply load

tracking to large electrical loads, e.g., electric heaters and air conditioners, across

thousands of homes at grid scales to estimate their demand response capacity, e.g.,

how much they can reduce grid demand by deferring elastic loads. We quantify both

PowerPlay’s performance (with 24-hour and 4-hour tracking windows) and an FHMM

strawman modified for online operation. For our FHMM, we use the same parameters

as Kolter and Johnson use [37].

Since disaggregation using the FHMM is exponential in the number of building

power states (which is based on the number of loads and the number of power states
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per load), Kolter and Johnson model each load as having only four power states and

disaggregate at the level of individual circuits, rather than individual loads. Our

FHMM performs similarly: we model each load as having four power states and

disaggregate at the level of individual circuits. Since our home has only 25 circuits,

but operates 92 individual loads, our FHMM performance numbers for a complete

disaggregation are conservative.

Since the FHMM approach requires a sizable amount of data, e.g., 24 hours, for

complete disaggregation, it cannot operate on a small window size. As a result, our

modified FHMM executes a similar main loop as PowerPlay, but always disaggregates

the most recent 24 hours of data. We do not explore how to increase its efficiency

by modifying its algorithm to be incremental. Our strawman online FHMM incurs

an 86 second tracking delay to track the loads in Figure 5.8 for a single home. In

contrast, PowerPlay imposes only a 5.6 second and 0.6 second delay for the 24-hour

and 4-hour tracking windows, respectively, for the same home.

We also plot the scalability of each approach on a quad-core server running at

2.4GHz in Figure 5.9, where the number of independent homes we track is on the

x-axis. Note that tracking each home is an independent process that runs in parallel.

The graph demonstrates that the FHMM approach does not operate in real-time: even

tracking loads in a mere 10 homes imposes a tracking delay greater than 10 minutes.

PowerPlay performs much better with the same 24-hour time window, supporting

roughly 100 homes with a tracking delay of 2.5 minutes. The more realistic scenario,

with a smaller 4-hour time window, scales even better: PowerPlay tracks each of

the five loads in 1000 homes (or 5000 total loads) with a tracking delay of only 2.5

minutes.

Result: PowerPlay scales to support online tracking of many homes; in this case,

tracking 5000 loads across 1000 homes with a tracking delay of only 2.5 minutes.
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Figure 5.9. PowerPlay efficiency enables it to scale to many homes, while maintain-
ing a low tracking delay.

Finally, we also consider PowerPlay’s performance on embedded platforms that

track a set of loads within a home. This scenario is important, since we envision Pow-

erPlay potentially running on smart meters, themselves, or other types of commercial

meters. Recent work proposes such an embedded energy monitoring and analytics

platform [36]. To evaluate this case, we deploy PowerPlay on a low-power DreamPlug

computer with a 1.2GHz ARM processor and 512MB memory, costing less than $100.

We then tracked the same five loads as above in our deployment home. Our results

show that with a 4-hour tracking window, the tracking delay was just 18 seconds, with

individual load tracking times ranging from less than a second for the refrigerator to

four seconds for the toaster.

Result: PowerPlay is capable of online tracking of loads within a home on low-power

embedded platforms.

5.6.2 Tracking Accuracy

In addition to efficiency, load tracking must also be accurate to be useful. As

before, we compare PowerPlay’s accuracy in tracking multiple loads’ real-time power

usage with the FHMM approach, which performs a complete disaggregation. Note

that FHMMs require training data to build their own internal models. Here, we take

the conservative approach of training the FHMM on per-load data from the home that
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Figure 5.10. Both PowerPlay and the FHMM approach accurately assign the energy
used by loads each day.

we disaggregate, which improves its accuracy. In practice, this is not often possible,

since disaggregation is typically only useful in homes where such training data is not

available, requiring training data from different homes.

Disaggregation often focuses on inferring a breakdown of per-load energy usage

for a building over a long time period, e.g., an entire day or week. Figure 5.10 shows

the actual energy usage over an entire day for five loads, as well as the inferred energy

usage from PowerPlay and the FHMM disaggregation. We see that both PowerPlay

and FHMM accurately predict each load’s energy usage over long periods of time,

although the FHMM approach is less accurate for the heat recovery ventilator due to

its stable power oscillations. Even for lower-power loads, including the toaster, freezer,

and refrigerator, both approaches predict energy usage near that of the load’s actual

energy usage. Our results are consistent with prior work on the FHMM approach,

which performs as well, or better, than other prior approaches to disaggregation [34,

37].

Result: The accuracy of PowerPlay’s inferred energy usage for loads in the tracking

set over long periods is comparable to that of complete disaggregation via a FHMM.
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Figure 5.11. PowerPlay error factors when scaling up to highly noisy and complex
smart meter data.

Unfortunately, inferring energy usage over a long period is not appropriate for

online operation, and does not take into account when a load uses energy. We use

the tracking error factor δ from Section 5.2 to quantify per-load accuracy over time.

In Figure 5.11, we first quantify accuracy as we scale up the number of non-tracked

loads in a home, since more loads result in more (and less visible) features. In this

case, the x-axis is a rough measure of the data’s complexity, i.e., the number of power

deltas >15W. We create increasingly more complex smart meter datasets using our

home deployment by adding more circuits to each dataset. For example, the far

left side of the graph includes only one circuit (the one including the corresponding

tracked load) and each data point to the right represents a dataset with one more

additional circuit added to it. For each new circuit, we track the loads and compute

the error factor per load on the new dataset. Figure 5.11 plots the results for our

representative loads. Note that the x-axis is on a log scale, since a small number of

loads contribute the majority of the power deltas. For comparison, we also include

a second model of the freezer that only uses step features, to illustrate the effect of

removing all but the most trivial features present in PowerPlay.

81



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

    Toaster     Fridge     Freezer     Dryer     HRV

D
is

a
g

g
re

g
a

ti
o

n
 E

rr
o

r

Device

PowerPlay (single device only)
HMM (single device only)

(a) Self Input

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

    Toaster     Fridge     Freezer     Dryer

D
is

a
g

g
re

g
a

ti
o

n
 E

rr
o

r

Device

PowerPlay (all except HRV)
HMM (all except HRV)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

    Toaster     Fridge     Freezer     Dryer     HRV

D
is

a
g

g
re

g
a

ti
o

n
 E

rr
o

r

Device

PowerPlay (all circuits)
HMM (all circuits)

(b) Aggregate Data minus HRV (c) Aggregate Data

Figure 5.12. PowerPlay is more robust to noisy smart meter data than the FHMM-
based approach.

As expected, the error factors increase as we add more circuits and more complex-

ity to a home’s data. We also see that the freezer’s accuracy is nearly a factor of two

higher when including its full set of identifiable features, compared to restricting it

to only step features. However, beyond a complexity of 1000 power deltas, the error

factors stay roughly constant (with the exception of the refrigerator), even when the

complexity goes to 50,000 power deltas. The refrigerator’s accuracy decreases signif-

icantly when adding a complex load, e.g., in this case a heat recover ventilator that

exhibits stable power oscillations. The reason is that its cycle detector is unable to

select spikes that correspond to the refrigerator, due to the heat recovery ventilator

generating a large number of similarly-sized spikes at various intervals.

Figure 5.12 then examines three specific points from the previous graph and com-

pares them with the FHMM approach. In Figure 5.12(a), we use both PowerPlay

and the FHMM approach to track a load from data that only includes that load. As
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shown, the FHMM approach is nearly perfect, since its model is trained on the actual

data we disaggregate in this case. By comparison, PowerPlay shows some error due

to the fact that our models, while accurate, only include offline features and not at-

tributes based on when and how long the load operates. However, Figure 5.12(b) and

(c) shows the error factor for the same loads if we include every circuit both with (b)

and without (c) the complex heat recovery ventilator. Prior work on load disaggre-

gation has generally evaluated their algorithms at small scales, e.g., 5-10 individual

loads, that are not representative of the multitude of small and complex loads present

in a modern home. Our results demonstrate that PowerPlay performs well even as

the number and complexity of loads scales up.

The result shows that PowerPlay is significantly more accurate than the FHMM

approach for each load, with the exception of the clothes dryer. While PowerPlay

is not more accurate than the FHMM approach at small scales, as in (a), with less

“noisy” data, it is significantly more accurate as complexity increases. For example,

PowerPlay is nearly perfect at detecting the second-to-second power usage of the

toaster even within a highly complex trace. Part of the reason for this, as shown

in Figure 5.12(a), is that PowerPlay’s model of the toaster is highly accurate. In

general, the improvement in error factor for each load over the FHMM approach is

greater than 2X (and over 100X in the case of the toaster). Both PowerPlay and the

FHMM approach perform well on the clothes dryer because it is large compared to

the other loads (∼6kW peak power versus ∼kW peak power), such that the added

data complexity does not affect detection.

Figure 5.13 shows time-series power data for our representative loads, as well

as the inferred time-series using both PowerPlay and the FHMM-based approach.

The figures visually show PowerPlay’s per-load accuracy compared to FHMM-based

disaggregation.
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Figure 5.13. Online load tracking in PowerPlay generates an inferred time-series
of each tracked load’s power data (middle column) that is closer to the load’s actual
usage (left column) than a recent disaggregation algorithm based on Factorial Hidden
Markov Models (FHMM) [37, 34] (right column). This figure visually compares actual
power usage, PowerPlay’s inferred power usage, and the FHMM approach’s inferred
power usage for representative loads.
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Result: PowerPlay maintains a low per-load tracking error factor as the number of

loads, and their complexity, increases in a home. For the loads in our tracking set,

the error factor is generally a factor of two less than a state-of-the-art disaggregation

algorithm based on FHMMs.

5.6.3 Case Study: Demand Response Capacity

Lastly, we consider a real application of scalable, online load tracking, where a

utility uses it to monitor aggregate demand response capacity across a neighborhood

in real time. In this case, we assume the utility is only able to reduce demand by

deferring customers’ A/Cs, such that the demand response capacity at any point

in time is the amount of power consumed by each active A/C. Thus, to estimate

demand response capacity over time, the utility must know: i) what percentage of its

customers have active A/Cs? and ii) how much power are they consuming? Utilities

currently have no way to estimate such demand response capacity over time.

We assume a utility server collects smart meter data from each home, and runs

PowerPlay to track the power usage of customer A/Cs. For our case study, we consider

a 10-day period of our deployment home’s smart meter data, including a central A/C.

To simulate many homes across a neighborhood, we generate 100 virtual homes by

randomly time-shifting the A/C’s power usage within the smart meter data, which

results in 100 distinct homes with different time-varying A/C power usage. PowerPlay

then uses our model of the A/C (which includes a mix of the cycle, decay, and step

features) to track each home’s A/C power usage.

We use PowerPlay’s output to query the set of active A/Cs across homes over

time. For example, at a random point in time, 34 of the 100 homes had an active

A/C, with PowerPlay correctly identifying the status of each A/C with 96% accuracy.

In particular, PowerPlay detected 30 out of 34 active A/Cs and all inactive A/Cs,

demonstrating 88% recall and 100% precision. Of the 30 detected A/Cs, PowerPlay’s
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second-to-second inferred power readings differed from the A/Cs actual power usage

by an average of 104W (out of its 3kW average power). PowerPlay estimated the total

A/C power usage across the neighborhood, i.e., its demand response capacity, to be

78.1kW, which differs from the actual capacity of 87.9kW by 12%, with the difference

primarily due to the four undetected active A/Cs. Excluding the undetected A/Cs,

the total A/C power inferred by PowerPlay differed from the actual power by less

than 1%.

Result: PowerPlay enables new applications for online analytics on smart meter

data—in this case accurate, online estimation of the grid’s demand response capacity.

5.7 Summary

This chapter presents PowerPlay, a system for online load tracking that empha-

sizes both efficiency and accuracy. In essence, “tracking” a particular load creates a

virtual power meter for it, which mimics having a network-connected energy meter at-

tached to it. PowerPlay takes a model-driven approach to online load tracking, which

focuses on detecting a small number of identifiable load features in smart meter data.

We enumerate an identifiable set of features common across loads, and then design

methods to efficiently detect them in smart meter data. By using a high-level feature

abstraction, PowerPlay enhances computational tractability, enabling efficient and

accurate online load tracking. Our results show that PowerPlay is able to track loads

in near real-time, even on low-power embedded platforms, and improves per-load

accuracy by a factor of two compared to a FHMM-based disaggregation algorithm.
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CHAPTER 6

AUTOMATIC LOAD IDENTIFICATION

The tracking problem detailed in Chapter 5 is primarily of interest when only

aggregate whole-house data is available (as in the common case when a building-level

smart meter is the sole source of monitoring). When energy data from individual

devices is available directly (such as from “smart outlets”), this problem is less im-

portant, as devices can be trivially tracked by reading their associated energy data.

However, such an environment introduces new challenges, such as maintaining meta-

data about each monitored outlet (e.g., “outlet #8 is connected to a toaster”). Manu-

ally maintaining this information adds significant human overhead and is error-prone

when devices are moved; thus, automatic approaches are desirable. In this chapter,

we define this problem as performing “non-intrusive load identification” (NILI) and

details a technique for automatically identifying devices attached to smart outlets

using off-the-shelf classifiers.

6.1 Background and Motivation

Despite the substantial attention given to analysis techniques focusing only on

whole-house energy data, decreasing costs of embedded networked sensors has in-

creased the feasibility of outlet-level instrumentation and metering. If these trends

continue, we expect that buildings in the near future will be able to install “smart”

outlets, which monitor and transmit an outlet’s power usage in real time, for nearly

the same cost as conventional “dumb” outlets. Examples of smart outlet-level meters

that are now widely available include the Belkin WeMo Insight Switch [59], the In-
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steon iMeter Solo [25], the Budderfly controllable outlet [11], and the Z-Wave Smart

Energy Switch [62]. Typically, companies also provide dashboard software to collect

and record outlet-level data, and allow users to view it. As a whole, the mainstream

home automation sector, which includes both the low-cost smart sensors above, as

well as outlets capable of remote load control, is expected to grow by 60% from 2012

to 2018 [10].

While the widespread deployment of low-cost outlet-level meters will provide new

visibility into building energy consumption, this shift also raises new challenges related

to managing a large and diverse sensor deployment. In particular, since the meters

above are built into general-purpose outlets, rather than devices themselves, users

must manually identify each specific device plugged into each meter and then update

the outlet’s meta-data in the dashboard software any time someone plugs a new device

into an outlet. For example, if someone plugs a toaster into an outlet, a user must

manually associate the outlet with the toaster. The correct association is important,

since an particular device might also be associated with other useful attributes, such

as its degree of scheduling flexibility or its peak power consumption. While some static

outlets may power the same device for long periods of time, as with a refrigerator,

many outlets are dynamic and frequently changing due to the use of transient devices,

including laptops, vacuums, seasonal air conditioners, and niche kitchen appliances.

Even for static outlets attached to the same device, users must still correctly enter

the device’s name into the dashboard software during setup, which often requires

manually recording an obscure outlet identifier—often printed on the back of each

outlet—with each device prior to installation.

Such manual identification is both cumbersome and error-prone: users often do

not enter any per-outlet meta-data, and whatever meta-data they do enter is either

too general to be useful, e.g., “living room outlets,” or is never updated and quickly

becomes stale. Ultimately, meta-data errors reduce the usefulness of the data to
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automated management systems and operators. Thus, rather than require users to

manually enter device meta-data, we propose a technique for Non-Intrusive Load

Identification (NILI) that automatically identifies new devices plugged into smart

outlets without any user intervention.

Unlike the related problem of non-intrusive load monitoring (NILM), NILI has re-

ceived comparatively little attention. However, NILI is likely to remain relevant into

the future, since embedding sensing into general-purpose outlets is more cost-effective

than relying on sensors embedded into devices themselves. While the sensor meta-

data is constant in the latter case (since each sensor is tightly coupled to the device),

this approach requires a sensor for each device rather than a sensor for each outlet. In

addition, outlets are easily standardized during building construction and manage-

ment, while reliance on third-party manufacturers for device-level support is likely to

introduce additional complexities, such as differing sensor hardware capabilities, data

formats, and network protocols.

Our approach to NILI is based on the categorization of outlet-level timeseries

power data using standard classification techniques. We first perform training on a

set of input devices representing basic device types to construct the classifier, using

a set of features chosen to accurately distinguish between many devices. The input

classes may either be models for specific device types, e.g., a specific type of GE

refrigerator, or general models of broad device classes, e.g., a generic refrigerator

of any type. During runtime, we periodically ingest recent data from each smart

outlet to the classifier and then update the mapping in the outlet meta-data table

based on the classifier’s output, which specifies the type of device plugged into the

outlet. We then evaluate each classifier using a dataset of labeled device energy data

collected from several homes, and consider identification of both previously seen and

unseen devices. We find that our classifier can achieve classification accuracy of over
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90% on our sample dataset, even with a relatively small and straightforward set of

classification features.

6.2 Problem Statement and Approach

Formally, we define the NILI problem for a smart outlet Oi as inferring the name

of the device dj plugged into Oi at time t, given the outlet’s average power usage pi(t)

each (t − τ, t]. Equivalently, NILI computes the function Oi(t) ∈ {namej} ∀j and

t > 0, given pi(t). NILI assumes a table (“database”) of known devices and the key

energy characteristics (e.g., distinguishing features) of each device. The table may be

either general, including only coarse features that distinguish one type of device from

another, or highly specific, including detailed features that distinguish two different

models of the same device. In addition to the features, the table may also include

other meta-data associated with the device useful for a building management system,

such as a device’s peak power (which may also be a feature) or its degree of elasticity,

i.e., how far in the future a scheduler may shift its power usage without violating its

operating constraints, such as maintaining temperature within a specified guardband.

As might be expected, selecting the important features for each device is critical;

we discuss feature selection in the next section. A smart outlet’s sampling interval

τ also affects NILI accuracy. In general, a longer sampling interval “averages out”

features in pt(t), revealing fewer identifiable features and decreasing NILI’s accuracy,

while a shorter interval reveals more identifiable features and increases accuracy. Our

work specifically targets the consumer-grade smart outlets mentioned in the previous

section, which commonly provide a sampling resolution on the order of seconds, e.g.,

τ ∼ seconds.

Figure 6.1 depicts the software and hardware architecture for a building manage-

ment system that includes a NILI controller, which dynamically updates the meta-

data for each of the building’s outlets. Specifically, for each of 1 . . . k smart outlets,
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Figure 6.1. Software and hardware architecture for NILI-enabled smart building.

the controller continuously receives energy data transmitted by the outlet and ana-

lyzes it to determine the attached device and update the device name associated with

the outlet in the meta-data table. The table represents only the current mapping of

outlets to devices; our NILI controller also stores all prior mappings by annotating

each outlet’s timeseries of power data to record each time t a certain device attaches

or detaches from an outlet. These annotated data streams can then be used by

higher-level data-driven applications, e.g., such as schedulers [8] that use each load’s

power usage data to determine which loads to defer and when. These data-driven

applications require sensors attached to each device, and often implicitly assume a

static mapping (or tight coupling) between the sensor and the device. However, as

we discuss in Section 1, such a static mapping is usually not feasible in practice.

Our general approach to determining the device attached to each outlet is to train

a timeseries classifier on historical power data for each device. The classifier uses the

training data to learn an association between the device and the high-level features of

its timeseries power usage. Once trained, the classifier simply outputs a device name

for a fixed set of consecutive energy readings from each outlet. We represent a set

of consecutive energy readings as a series of three-tuples that specify a timestamp,
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outlet, and average power in watts over τ . Since the device name may change, the

controller periodically re-executes the classifier on new outlet data. The interval at

which the controller updates each outlet’s mapping may be either static, e.g., once

every 10 minutes, or dynamic, e.g., based on sudden changes in an outlet’s power

usage.

6.3 Identification Algorithm

Before classifying an outlet’s timeseries of energy readings, our NILI algorithm

first converts them into a small set of features that serve as inputs to the classifiers.

As discussed below, this process requires first preprocessing the raw timeseries data,

then extracting the necessary features for classification, and finally applying various

classifiers to the feature set.

Preprocessing. The raw input data consists of average power readings every τ

seconds from a smart outlet. We store these power readings, since the classifier oper-

ates over a rolling window of historical data. The length of the window necessary to

classify an outlet is device-dependent: some device behavior is distinctive enough to

classify within seconds of being turned on, e.g., a microwave, while other devices may

require multiple duty cycles to discern a distinctive pattern of usage, e.g., a refriger-

ator. To aid in feature extraction, we preprocess the raw timeseries by computing a

timeseries of energy deltas, or the difference between two consecutive power readings.

Analyzing energy deltas is common in NILM algorithms, since the size of a delta is

device dependent, e.g., a 60W power increase due to a light bulb being turned on,

and not affected by a building’s aggregate absolute energy usage.

Thus, storing and operating on energy deltas is useful for filtering background

noise due to the energy usage of a power strip or the smart outlet, itself. Additionally,

since consecutive deltas of the same direction, e.g., +40W followed immediately by

+20W) often result from changes in power usage occurring across a measurement

92



boundary, we collapse them in a single delta, e.g., +60W. Preprocessing the data to

consider such steps as single energy deltas provides a more accurate representation of

changes in device power usage, especially given that most energy deltas are zero, i.e.,

there is no change in power.

Feature extraction. Given a recent window of raw timeseries power data and

energy deltas from preprocessing, we next compute a feature vector that captures the

behavior of the device. While many features are possible given the input data, we

choose a compact set of features that are both intuitive and easily derived directly

from the input data.

1. Statistical Metrics. The simplest set of features consist of simple statistical

metrics of the timeseries power data, including the average power, variance,

maximum power, and minimum power over the input time interval. Since in-

frequently used devices often consume no power, thereby skewing the average

power towards zero, we exclude measurements under a threshold value to ensure

that we only taking into account periods when the device is operating.

2. Duty Cycle. The duty cycle feature is useful for distinguishing continuously

operating devices, e.g., an air conditioner, from devices that typically operate

only for short periods, e.g., a toaster. We capture a device’s duty cycle as

the proportion of time is operates over the input interval, called the ‘on ratio,’

calculated as the number of average power readings over the threshold wattage

above divided by the total number of readings.

3. Waveform. The most distinguishing feature of a device’s power usage is its

complete waveform, which represents a long sequence of specific changes in

power specific to the device. For example, inductive devices such as the re-

frigerator and freezer pictured previously in Figure 4.3 includes a large spike

followed by a decrease in power to a steady state. We indirectly capture the
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waveform as a feature by separating energy deltas into different bins, where

the size of each bin represents a distinct feature. We bin the energy deltas as

follows: for ten distinct bin sizes ranging from 5W to 500W (with most bin

sizes in the < 100W range), we filter the energy deltas to include only changes

in average power ranging from the bin size to 5 times the bin size (e.g., 25W to

125W).

For each bin size, we calculate three features, resulting in 30 features total,

as follows: (a) the number of changes in average power in the filtered set of

energy deltas, (b) the average time interval between steps in the filtered energy

deltas, and (c) the number of ‘spikes’ in the filtered energy deltas, where a

‘spike’ is defined as a positive step of at least 10 times the bin size, followed

immediately by a negative step of at least 30% of the magnitude of the positive

step. As discussed previously in Chapter 4, a spike is simply a large but very

brief period of energy use caused by the inrush current when a device turns on,

and prominently occurs in many kinds of motor-driven devices.

Classification. Finally, we pass the vector of computed device features to a

classifier, which returns the inferred device name. The classifier output may either be

a general device type, e.g., refrigerator, or a specific device model, e.g., a particular

refrigerator manufacturer and model. We evaluate the three different well-known

classification algorithms below.

1. Naive Bayes. We first consider a simple näıve Bayes algorithm for classifica-

tion. The key assumption made in näıve Bayes classifiers is the independence

of all features, i.e., each feature is conditionally independent of every other

feature given the class. Through the application of Bayes’ theorem, the condi-

tional distribution over the classes C, i.e., the device types, given the features

f1, f2, . . . , fn is defined by:
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P (C|f1, . . . , fn) ∝ p(C)
n∏
i=1

P (fi|C)

We use the standard implementation of the näıve Bayes’ classifier [30] used in

the Weka toolkit [21].

2. Decision Tree. We also consider a decision tree classifier [43], which is trained

by recursively partitioning the input space, then defining a local model in each

resulting region of the input space according to feature values. Although finding

the optimal data partitioning is NP-complete, greedy approximation algorithms

perform well and benefit from very low training overhead. In our experiments,

we use J48, an implementation of the C4.5 decision tree algorithm [50] used in

Weka.

3. Support Vector Machines. Finally, we consider a classifier using support

vector machines (SVMs), a more complex algorithm based around mapping the

input feature space into a second, linearly separable feature space using a kernel

function. We use the libSVM implementation [13] of SVMs supported through

Weka. Our reported results in Section 6.4 use a polynomial kernel of degree 2,

which was chosen after experimentation with several different kernels.

6.4 Evaluation

We evaluate our algorithm using 1-second data collected from our smart home

deployment (described in Chapter 3). We train our classifiers using a dataset gathered

from several dozen devices collected over a three month period. For each device over

the three month period, we first split the data into 24-hour blocks, then compute

a feature vector over each day-long period as described in Section 6.3. Thus, each

device results in roughly 90 instances used in training, though we exclude days in

which devices went completely unused.
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We consider two scenarios – identifying specific devices models, e.g., a specific

refrigerator, or identifying general device types, e.g., any refrigerator. The primary

advantage of the latter approach is the ability to generalize to previously unseen

devices; while the classifier can only output the specific models that it has observed

in training, returning device types allows classification of devices not represented in

the training dataset. In practice, we envision training a classifier on a very large

dataset of devices collected from many homes, then using that classifier on both

existing and new devices not present at the time of training. Although our evaluation

dataset is relatively small, i.e., 3 instances of most major appliance types, we consider

both approaches to illustrate the potential of unseen device identification.

Identification of previously seen devices. We first consider classification

performance when training on the complete dataset – i.e., identification of previously

seen devices. For each of the three classifiers—Naive Bayes, C4.5, and libSVM—we

perform 10-fold cross-validation on the dataset to quantify identification accuracy

both for specific devices and for device types. The results are shown in Figure 6.2.

We see that accuracy is quite high in all scenarios – both C4.5 and SVM demonstrate

accuracy of over 90% for device types, with näıve Bayes somewhat lower at roughly

70%. Performance on specific device identification is modestly lower than for general

device types. The difference stems from the ability of the classifier to generalize the

properties of the device types, e.g., a refrigerator, given a broader training dataset, as

well as the smaller number of possible classes. However, this different only amounts

to less than 10% in all cases.

Breakdown by device and type. The results in Figure 6.2 demonstrate the

overall performance of the classifiers, but classification accuracy may vary significantly

from device to device, due to the presence of unique characteristics, or lack thereof,

reflected in the feature vector. For example, refrigerators have a regular cyclic power

usage pattern, which typically results in a high ‘on ratio’, while most electronic loads
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Figure 6.2. Classification performance on the entire dataset, i.e., identifying previ-
ously seen devices, using 10-fold cross-validation. Both performance on specific device
instances and general device classes is shown.
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Figure 6.3. Individual device identification accuracy per device. Devices A and B
represent two instances of the same device type (with different specific models).

have highly erratic power consumption, due to the variable behavior of switch-mode

power supplies, which typically results in higher power variance than other types of

devices.

Figure 6.3 shows the individual, device-level classification accuracy for a subset of

our devices. As in Figure 6.2, the best performance for nearly all devices is observed

with the C4.5 or SVM classifiers, with accuracy of over 95% for many devices. The

performance of the näıve Bayes classifier, on the other hand, is inconsistent, with

some devices showing quite poor performance (many less than 50%) – in these cases,

the näıve Bayes classifier has difficulty distinguishing between multiple instances of
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Figure 6.4. General device type identification accuracy, broken down by type.

the same device type, e.g., multiple dishwashers or multiple dryers. As a result,

accuracy on one such instance of a given type remains high, while performance on

other instances of that type is low (as these instances are identified as the ‘dominant’

first instance).

Figure 6.4 shows the corresponding results broken down by device types, rather

than individual devices. Performance is more consistent in this case, although näıve

Bayes continues to show significantly lower performance for certain device classes,

such as dishwashers and clothes dryers. These types of devices exhibit more com-

plex behavior than most of the other device types, e.g., as indicated by the washing

machine’s average power trace in Figure 4.10, which implies that the simplistic näıve

Bayes classifier is not able to identify them as accurately as the more sophisticated

C4.5 and SVM classifiers.

Identification of previously unseen devices. Finally, we consider the case

where we wish to identify devices that have not been previously observed during

training. This approach limits us to identifying device types rather than specific

device models, as it is impossible to generate a class label that was not seen during

training. For this experiment, we trained our classifier on devices within two of the

three houses, then attempted to classify devices in the third house, which are not
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Figure 6.5. Accuracy of device type identification on previously ‘unseen’ devices,
along with accuracy when all devices are in the training dataset (‘seen’).

represented in the training data. As before, we report the 10-fold cross-validation

accuracy of identification.

Overall identification accuracy is shown in Figure 6.5. For comparison, these re-

sults are shown alongside results when all devices are included in training (reproduced

from Figure 6.2). Unsurprisingly, identification accuracy falls substantially, as we are

relying strictly on the ability of the classifier to distill the essential properties of the

device type rather than any specific device instance. Accuracy of both the C4.5 and

SVM classifier fall to below 60%. Interestingly, the näıve Bayes classifier degrades

substantially less (to 65%) and actually outperforms the other classifiers, reversing

the trend seen when identifying previously seen devices. This result suggests that

the simple näıve Bayes classifier more effectively generalizes the device type, but at

the expense of distinguishing specific instances of device types (as seen previously in

Figure 6.3). Furthermore, while the absolute result of 65% is not particularly high,

we stress that we are attempting to generalize the device type given a very limited set

of training instances (just two in most cases), so we view these results as encouraging

and would improve with more training data.

Finally, Table 6.1 shows the confusion matrix for the classification of unseen de-

vices using the C4.5 classifier (i.e., the third bar of Figure 6.5). We see that there

is a wide variation in the accuracy of identification of the various device types. For
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Dryer Fridge Washer MWave Electronics Light

Dryer 9 0 0 0 0 0

Fridge 1 99 0 34 21 45

Washer 44 0 5 5 0 0

MWave 3 1 0 53 0 1

Electronics 0 0 0 0 2 14

Light 0 0 0 0 0 86

Table 6.1. Confusion matrix for the decision tree classifier on unseen devices (rows
are actual, columns are predicted).

example, every light is correctly identified as a light (i.e., perfect recall), which is

understandable given the flat energy profile of nearly all lights. The same is true

of the microwaves, which as short-lived but high-power devices are easily identified.

The washing machines, on the other hand, are frequently misidentified as dryers –

both types are large, sporadically active devices with complex and highly variable

power signatures, and as such it is difficult for the classifier to distinguish the two. A

significant portion of the overall classifier error comes from the poor performance of

the Electronics device type (nearly all of which are identified as lights), likely due to

the fact that there are many different types of electronics displaying differing power

signatures. Regardless, we see that the classifier is generally able to accurately dis-

till device types with unique energy characteristics and use those characteristics to

identify unseen devices.

6.5 Summary

In this chapter, we considered the problem of Non-Intrusive Load Identification

(NILI), in which devices connected to outlet-level energy meters, i.e., smart outlets,

are automatically identified, alleviating the user from the cumbersome and error-

prone task of manually maintaining meta-data on specific devices and outlets. We

propose an approach to performing NILI that transforms energy time-series data into
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a compact set of intuitive features, then uses an off-the-shelf classifier to identify

unknown devices. Using a dataset of device energy traces collected from three homes,

our experiments demonstrate that we can achieve greater than 90% accuracy on

devices represented in training data. Furthermore, even with a small sample of devices

of a given type, e.g., refrigerators, we are often able to identify previously unseen

devices as particular types of devices, demonstrating the ability of the classifier to

generalize the properties of device types. As future work, we plan to consider other

features (for example, featured computed based directly on the models detailed in

Chapter 4) and a larger set of training devices to further evaluate NILI’s potential.
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CHAPTER 7

SUMMARY

7.1 Thesis Summary

This thesis has discussed techniques for analyzing energy meter data to provide

insights in next-generation smart homes. In particular, we have made the following

contributions:

Smart home architecture. First, we proposed a simple but flexible architec-

ture for smart homes, combining low-cost monitoring and analysis. We overviewed

our own real-world smart home deployment following this approach, which provides

the foundation for our analytics work. We also discussed the challenges of combin-

ing monitoring and control capabilities in smart homes using highly-available home

automation (HA) protocols.

Load modeling. Second, we presented a flexible modeling framework derived

from the core electrical properties of devices. Our modeling framework is able to

efficiently describe nearly all household loads using a compact set of basic models.

We derived our models from an empirical study of smart meter data and demonstrated

that our models are more accurate than simplistic ‘on-off’ device models used in prior

work.

Online load tracking. Third, we proposed technique for performing online load

tracking, which differs from traditional disaggregation in its focus on online opera-

tion, single-load accuracy, and system scalability. Our technique tracks devices using

parameterized models derived from our modeling framework, and uses a set of fea-

ture detectors to extract recognizable features (and the devices they represent) from
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within a noisy, aggregate smart meter trace. In doing so, we are able to present the

abstraction of a ‘virtual power meter’, which is useful for many types of applications.

We evaluated our system and found that it (a) is more accurate at fine timescales

than traditional disaggregation techniques, and (b) is capable of scaling to utility

scales (e.g., hundreds of homes) while maintaining nearly real-time operation.

Non-intrusive load identification. Fourth, we defined the problem of non-

intrusive load identification as automatically assigning meta-data (e.g., device names)

to smart outlets. We proposed a technique using off-the-shelf classifiers to automat-

ically identify devices attached to such outlets and demonstrated that we can ef-

fectively maintain a dynamic mapping of devices to outlets, which is important in

providing feedback to users and understanding how homes actually using energy.

7.2 Future Work

The work covered in this thesis naturally points towards several areas of future

work, several of which are outlined below.

Supplemental data sources. While this thesis has focused almost exclusively

on real power data for performing analytics, real-world environments (including our

own deployment) provide many different types of data that may be useful. For ex-

ample, most of the techniques described previously may potentially be enhanced by

considering both real and reactive power. Additionally, many types of environmental

data are readily available, such as occupancy information, door events (e.g., when

a door is opened or closed), and weather data (such as temperature and humidity).

These sources of information are often invaluable in predicting and explaining device

behavior (e.g., the interior temperature of a room will correlate very closely with the

operation of an air conditioner).

Models of user behavior. The device models described in Chapter 4 are ex-

plicitly designed to be user-agnostic – i.e., the model is specific to the device, but
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not to the user of the device. This approach has the benefit of allowing a model to

generalize across all usage patterns, but also means that these usage patterns are not

exploited even if they are highly predictive. As real-world device usage is a function

of both the device itself and of user patterns, considering both inputs explicitly (i.e.,

a model of the device and a model of user behavior) may lead to greater accuracy in

smart home analytics.

Applications of analytics. While analytics such as device tracking and iden-

tification are important components of automated smart homes, we ultimately wish

to realize useful end-user applications (such as lowering a homeowner’s electricity

bill via device rescheduling). The analytic techniques discussed in this thesis are

largely a prerequisite to these types of applications, and open the door towards many

interesting problems in smart buildings, such as device scheduling, identifying and

incentivizing energy savings, and preserving user privacy in the face of sophisticated

data collection and analysis.

In summary, this thesis has explored several important problems in enabling effi-

cient, automated data analysis in smart homes. Accurate and reliable analytics are a

key milestone towards realizing real-world smart homes, and the techniques proposed

here take several steps in this direction.
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