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ABSTRACT

CAUSAL DISCOVERY FOR RELATIONAL DOMAINS:
REPRESENTATION, REASONING, AND LEARNING

SEPTEMBER 2014

MARC E. MAIER

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David D. Jensen

Many domains are currently experiencing the growing trend to record and ana-

lyze massive, observational data sets with increasing complexity. A commonly made

claim is that these data sets hold potential to transform their corresponding domains

by providing previously unknown or unexpected explanations and enabling informed

decision-making. However, only knowledge of the underlying causal generative pro-

cess, as opposed to knowledge of associational patterns, can support such tasks.

Most methods for traditional causal discovery—the development of algorithms

that learn causal structure from observational data—are restricted to representations

that require limiting assumptions on the form of the data. Causal discovery has al-

most exclusively been applied to directed graphical models of propositional data that

assume a single type of entity with independence among instances. However, most

real-world domains are characterized by systems that involve complex interactions
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among multiple types of entities. Many state-of-the-art methods in statistics and

machine learning that address such complex systems focus on learning associational

models, and they are oftentimes mistakenly interpreted as causal. The intersection

between causal discovery and machine learning in complex systems is small.

The primary objective of this thesis is to extend causal discovery to such com-

plex systems. Specifically, I formalize a relational representation and model that can

express the causal and probabilistic dependencies among the attributes of interact-

ing, heterogeneous entities. I show that the traditional method for reasoning about

statistical independence from model structure fails to accurately derive conditional

independence facts from relational models. I introduce a new theory—relational d-

separation—and a novel, lifted representation—the abstract ground graph—that sup-

ports a sound, complete, and computationally efficient method for algorithmically

deriving conditional independencies from probabilistic models of relational data. The

abstract ground graph representation also presents causal implications that enable the

detection of causal direction for bivariate relational dependencies without parametric

assumptions. I leverage these implications and the theoretical framework of rela-

tional d -separation to develop a sound and complete algorithm—the relational causal

discovery (RCD) algorithm—that learns causal structure from relational data.
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CHAPTER 1

INTRODUCTION

Advances in machine learning and data mining have introduced powerful tools for

modeling observational data, but most of these algorithms merely identify statistical

associations. While associational models are useful for predicting values of unob-

served variables, they are limited in their utility. Informing actions and producing

explanations require modeling causal dependence rather than statistical association.

Researchers in a wide range of disciplines study complex systems and pose ques-

tions that require causal answers. Examples include (1) social scientists determining

if a particular reading program improves student test scores, (2) economists asking

if changing financial regulation will reduce fraud, and (3) medical researchers in-

vestigating how prescription drugs induce adverse health effects. In many cases, it

would be advantageous to answer these questions passively or retrospectively, without

intervention, because experimentation may be infeasible due to ethical or logistical

constraints. Even in domains in which experiments are feasible, leveraging observa-

tional data would allow experimental resources to be spent more effectively.

Over the past several decades, a growing community of researchers in computer

science, statistics, philosophy, and social science has focused on methods for discover-

ing causal dependencies from observational data. This work has uncovered a number

of basic methods, including algorithms for learning the structure of causal models and

fundamental principles necessary for valid causal reasoning. However, the vast ma-

jority of this work is limited to a single knowledge representation—directed graphical

models of propositional data—that is insufficient to describe many real-world do-
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mains. A relational representation is more expressive as it can describe systems of

interacting, heterogeneous entities (as opposed to a single entity type), but little

attention has been devoted to its connection with causality.

This thesis focuses on developing tools and algorithms to support the discovery

of causal knowledge in systems of interacting entities (i.e., inherently relational do-

mains). To do so, this research explores the intersection of causal inference, machine

learning, and knowledge representation. Specifically, it extends the basic framework

for traditional, propositional causal discovery by (1) formalizing a relational model

representation, (2) deriving its probabilistic and statistical implications, and (3) de-

veloping an algorithm that exploits those implications to learn causal structure. This

thesis describes three primary contributions that lead to independently useful capa-

bilities:

1. Representation: Drawing from prior work for representing causal dependen-

cies with Bayesian networks [122, 172] and relational representations, such as

probabilistic relational models [53], I formalize fundamental concepts of rela-

tional data and models that are sufficient to represent causality and reason

about conditional independence.

This formalization provides a language for modeling relational data. I provide a

complete characterization of the space of relational variables and dependencies,

which is useful for analyzing the joint space of some target relational domain. I

also introduce precise semantics for instantiating relational variables with data,

which informs practical implementations for data retrieval.

2. Reasoning: I show that the theory of d -separation for deriving conditional

independence facts from Bayesian network structure does not apply directly to

the structure of relational models. As a result, I develop the theory of rela-

tional d -separation and introduce a lifted representation—the abstract ground
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graph—that supports a sound and complete method for deriving the conditional

independencies encoded by relational models.

Although the internal representation that supports relational d -separation is

complex, it need not be exposed to end users. The inputs and outputs are rela-

tively simple concepts: The dependence structure and schematic of a relational

domain contain sufficient information to produce conditional independence facts

that should hold in the modeled data. Such a tool can enable practitioners

to posit a relational model, derive conditional independence implications, and

check those implications on their data to support or refute their model.

3. Learning: Leveraging the theory of relational d -separation and the abstract

ground graph representation, I present a sound and complete algorithm—the

relational causal discovery (RCD) algorithm—that learns causal models from

relational data. The completeness result hinges on a new method for iden-

tifying the direction of causality for bivariate relational dependencies with no

parametric assumptions. This contribution provides the relational analog to the

foundational work of the sound and complete PC algorithm for learning causal

Bayesian networks [172, 106].

The relational causal discovery algorithm is an automated approach to infer-

ring the causal structure present in a relational data set. The framework behind

RCD shows that the basic logic of PC can be extended to substantially more ex-

pressive data representations. Similar to how traditional d -separation supports

the PC algorithm, the reasoning capabilities of relational d -separation enable

RCD. Additionally, the method for orienting bivariate relational dependencies

demonstrates that relational data, when combined with relational d -separation,

enable powerful new ways to infer causal dependence. RCD should be viewed

as a tool for relational data that can provide practitioners with a joint structure
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that encodes all conditional independencies, which can be used to constrain

hypotheses for experimental validation and to design interventions to produce

change in their domain.

1.1 Motivation

The contributions outlined above are motivated by a variety of situations in which

analysts wish to understand and manage complicated systems of interacting compo-

nents. For example, consider a problem domain in which a company employs in-

dividuals, develops products, and is organized by different business units. For any

company, it would be beneficial to determine which factors influence the productivity

of employees, the viability of different products, and the overall revenue and budget

flowing throughout the organization. With this type of knowledge, executives could

make strategic decisions that affect the operation of their company. In other words,

a correctly learned causal model would allow managers to understand the underlying

dynamics of their company and guide actions that achieve desired outcomes. This ex-

ample helps motivate three main dimensions of this thesis, described in the following

three subsections.

1.1.1 Causal

A causal model can support a wider array of decisions than an associational model.

Associational and causal knowledge differ in their utility and the tasks they can ad-

dress. If two variables X and Y are statistically associated, then knowing the value

of X provides information about the value of Y. However, if Y is causally dependent

on X, then changing the value of X will result in a change in the distribution of

Y. Associational knowledge can be used to predict the values of unobserved vari-

ables, assuming that data instances are drawn from the same distribution used to

learn the model. In contrast, causal models can be used to predict the outcomes
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of interventions—actions that may deviate from the probability distribution used to

learn the model. Causality allows for reasoning about the consequences of actions,

and causal models provide better capabilities for generating explanations of observed

associations. If the executives wish to produce change in the company, then only a

causal model could support their decision-making.

Identifying statistical associations is strictly less challenging than causal discov-

ery because association underdetermines causation. This is due to the fact that an

observed association can stem from several different potential causal structures. If

X and Y are statistically associated, then it could be that X causes Y , Y causes X,

a third set of variables, Z, causes both X and Y , or even a third variable, Z, is a

common effect of X and Y , and by conditioning on Z (or sampling certain values),

dependence is induced between X and Y. Each causal structure implies different po-

tential actions. This thesis focuses on reasoning about conditional independence to

infer causal structure.

1.1.2 Relational

A relational representation can support learning models that are more accurate

than those expressible in a non-relational representation. Many real-world domains,

such as organizations, are complex, involving interactions among different classes of

entities. This type of data can be expressed by relational representations, as opposed

to propositional representations that only model a single entity class (e.g., employees).

Modeling relational data can provide more effective and accurate structure learning

than would be achieved by limiting the representation and jettisoning potentially

valuable information for causal discovery. This thesis focuses on a highly expressive

model representation: probabilistic models of relational data.

This thesis also discusses three key concepts that are rarely mentioned as sepa-

rate components for propositional models but are critical for relational models: the
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schema, the model, and the ground graph. The schema is a top-level description of the

entities and relationships (i.e., classes of interactions among entities) that occur in a

given domain, as well as the attributes that exist for those entities and relationships.

For propositional domains, there is a single type of entity with no relationships, and

consequently, the schema is typically implicit.

The model contains probabilistic dependencies among the attributes of entities

and relationships, constrained by the structure of the schema. Models of relational

data are much more expressive than their propositional counterparts because rela-

tional schemas are much less restrictive than propositional schemas. A model of

propositional data is restricted to dependencies among the variables of a single type

of entity. In contrast, a relational model can capture any dependence that follows

the relationships among different entity types (e.g., from variables on individuals to

variables on products they develop). This additional class of relational dependen-

cies enables complex dependence structures that improve causal modeling beyond

the more restrictive propositional representation. Section 5.5 provides empirical evi-

dence that causal discovery in relational representations leads to more accurate and

identifiable causal models than in propositional representations.

Both the schema and the model are templates. They describe the structure of

the data and the dependencies that hold among variables in the distribution that

generates the data. A third concept is the ground graph, which is an instantiation of

the model template to instances of random variables that belong to the sets of entity

and relationship instances in the data. The dependence structure that manifests in

ground graphs is an important property that supports reasoning about conditional

independence in relational models and will be revisited in Chapter 4.
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Figure 1.1: Dissertation landscape: The three dimensions addressed in this thesis
(causal, relational, and automated learning) can be characterized as extreme points
on three axes of complexity (model, data, and learning). The left plot depicts asso-
ciational models, and the right plot depicts causal models. The contributions of this
thesis are positioned on this chart with respect to current scientific practice.

1.1.3 Learning

A model that is learned from data can be more accurate than one that relies

exclusively on the knowledge of domain experts. The underlying dynamics of many

domains are unknown, especially when the system is non-deterministic and complex,

such as in large organizations. Current practice is to (largely) solicit the knowledge

of domain experts, but many systems are too complex or may operate in unexpected

ways. This thesis focuses on learning the causal structure of domains from observa-

tional data.

1.2 Landscape

The three dimensions listed in the previous section (causal, relational, and learn-

ing) can be placed on three different axes of complexity that help describe where the

contributions of this thesis lie with respect to the landscape of current scientific prac-

tice. The three axes are: model complexity, spanning associational and causal models;
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data complexity, spanning propositional and relational data; and learning complexity,

spanning manual and automated methods. Figure 1.1 relates these axes and provides

an example class of techniques for each point in this complexity space.

The simplest position involves a manual approach for describing associations in

propositional data. This could include a wide range of tools for descriptive statis-

tics or exploratory data analysis, such as identifying correlations between columns

in a data table loaded into statistical software. If the data include multiple linked

tables, perhaps involving the relationships among individual instances, then manual

approaches for discovering associations could include a range of social network ana-

lytic methods [157]. Analysis using descriptive statistics, such as degree distributions,

node centrality, graph clustering, and measures of homophily or social contagion, are

examples of this position, which covers a vast community.

Automated methods for learning associational models of propositional data have

been a major task in machine learning and data mining for the past several decades.

Algorithms for learning Markov random fields, Bayesian networks, and factor graphs

all fall into this category [84]. These methods have been very successful and widely

deployed in many real-world systems. Over the past 15 years, machine learning has

expanded to richer data representations, such as relational, which has led to the sub-

fields of statistical relational learning and inductive logic programming [57]. The goal

in these fields is to develop new algorithms (or extend propositional algorithms) to

capture the complexity of relational data. Notable representations and correspond-

ing learning algorithms include probabilistic relational models [85] and Markov logic

networks [143].

Beyond associations, causal knowledge has been the object of pursuit by many re-

searchers in a variety of disciplines, including the social sciences, behavioral sciences,

and life sciences. These researchers and practitioners often require causal knowledge

because their interests center on influencing policy or gaining a deep understanding
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of their domains. Many approaches used by these researchers are manual, typically

addressing a single potential cause or effect. While the applications may make restric-

tive assumptions, the methods employed have a strong mathematical and statistical

basis and can be quite powerful (e.g., regression analysis on a data table, inter-

preted causally [6]; multilevel modeling to incorporate a fixed, hierarchical relational

structure [51]). Improving the capabilities of regression analysis is an active area of

research, leading to some innovative methods, such as those involving Bayesian or

nonparametric regression. These analyses can also require complex forethought (e.g.,

experimental and quasi-experimental designs [160]). However, the work in this com-

plexity space is typically informal with respect to data and model representations,

often relying on implicit data complexity.

As described above, traditional causal discovery almost exclusively focuses on

automated learning of causal models from propositional data. The goal of this thesis

is to develop formal theory and algorithms to accurately represent, reason about,

and discover causal dependencies from relational data. This work can be regarded as

providing the theoretical foundations for extending causal discovery research to more

realistic settings.

There are several additional key distinctions concerning the objectives of this the-

sis with respect to other scientific endeavors. The overall goal is to learn causal

structure, which is a component of a larger setting. Parameter estimation, given a

model structure, fits appropriate parameters to each dependency. After fully spec-

ifying a model (structure and parameters), the task of inference applies the model

to new or future data. Both parameter estimation and inference receive considerable

attention in machine learning and statistics and are complementary tasks to structure

learning.

An alternative specification for the model complexity dimension could span con-

ditional and joint models. In this work, the intention is to represent, reason about,

9



and learn joint models. Conditional models are useful for predicting the value of a

single variable, but joint models can produce any conditional model and can predict

the state of an entire system of variables. However, almost all manual approaches

and many automated methods are devoted to conditional models or even single de-

pendencies. Joint models rely on conditional models (e.g., the joint distribution of a

Bayesian network factors into a product of conditional distributions), but joint models

facilitate causal discovery and causal reasoning. (Section 2.1.3 provides evidence.)

Our approach to structure learning employs the constraint-based paradigm, rely-

ing on local tests of conditional independence. (Section 2.3.1 provides details of a

widely used constraint-based algorithm.) An alternative approach to structure learn-

ing is the search-and-score paradigm, a technique that selects the most likely model by

searching across the space of possible models. Search-and-score algorithms accurately

model joint probability distributions but are typically computationally intensive. By

exploiting local computations, constraint-based algorithms can overcome some com-

plexity concerns, and they are generally more well-suited for causal discovery because

of the connection between conditional independence and causal structure.

Finally, the scope of this thesis is on purely automated techniques. Mixed-initiative

systems—algorithms that interact with users—may be the most effective approach to

causal discovery, similar to how computer-aided design systems can assist engineers.

However, the research in this thesis provides a necessary foundation that can enable

future interactive approaches to causal discovery.

1.3 Dissertation Structure

In the next chapter, we provide background material on traditional causal dis-

covery. The contributions of this thesis build on much of that material, especially

Bayesian network representation, the theory of d -separation, and the constraint-based

PC algorithm for learning causal structure from propositional, observational data.
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The organization of the background chapter mirrors the three main contributions of

this thesis on representation, reasoning, and learning for causality.

Chapter 3 describes the formal representations used for relational data and models

that are necessary to reason about conditional independence. Chapter 4 introduces

relational d -separation and the abstract ground graph representation to support rea-

soning about conditional independence in relational models. Chapter 5 presents the

implications of relational d -separation and abstract ground graphs for learning the

causal structure of relational models. Finally, Chapter 6 concludes by providing an

assessment of the broader implications of this work and offers potential high-impact

areas of future research that build on this dissertation.
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CHAPTER 2

BACKGROUND

Relational data and models are strictly more expressive than their propositional

counterparts. The vast majority of prior and current work on causal discovery focuses

on propositional domains but has led to a solid theoretical foundation on which the

contributions presented in this dissertation build. Therefore, it is necessary to provide

background on causal discovery from propositional data. This thesis can largely be

viewed as introducing major technical and theoretical extensions in the representa-

tion, reasoning, and learning of what researchers in causal discovery have previously

accomplished.

This background chapter parallels the three major chapters that present the contri-

butions of this dissertation. First, Section 2.1 reviews the primary representation—

Bayesian networks—used to encode causal knowledge, as well as alternative repre-

sentations for causality used by many practitioners. Then, Section 2.2 defines d -

separation, a useful theory that enables reasoning about the conditional indepen-

dence and causal implications of Bayesian networks. Finally, Section 2.3 describes

the constraint-based PC algorithm—one of the most influential causal discovery

algorithms—and alternative strategies and paradigms for learning causal structure

of propositional domains.

2.1 Representation

Propositional representations consist of a single entity type and its attributes.

Strong assumptions are made about the underlying distribution, most notably that
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sampled data instances are independent and identically distributed (IID). The first

condition assumes that the variables on any given data instance are marginally inde-

pendent of the variables of any other data instance. The second condition assumes

that every data instance is drawn from the same underlying joint probability distri-

bution. IID data—also referred to as propositional data1—are effectively represented

as a single table, where rows correspond to the independent instances and columns

are attributes of those instances.

These assumptions lead to a mathematical simplicity that has provided causal

discovery researchers with a useful testbed for developing theoretical foundations,

while simultaneously proving to be an effective modeling choice in practice. However,

many domains are not well characterized by a propositional representation, and in the

ensuing chapters, we remove these assumptions in an effort to model more complex,

realistic domains.

Our approach is similar to the main line of causal discovery research, especially

with respect to the underlying representation of directed graphical models. The fol-

lowing subsections define Bayesian networks and the assumptions that enable them

to represent causality, and we describe alternative, non-graphical approaches to mod-

eling causality that have been adopted by various communities.

2.1.1 Bayesian networks

Bayesian networks2 are widely used probabilistic graphical models of propositional

data that are capable of compactly representing a joint probability distribution [120].

Bayesian networks enable an array of useful tasks by supporting inference over a set

of variables, and they have been successfully applied to model many domains, ranging

1IID data are typically referred to as propositional because the data can be equivalently expressed
under propositional logic.
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Figure 2.1: A simple example of a Bayesian network with six random variables (nodes)
and seven dependencies (edges). The structure of the Bayesian network is paired with
a set of conditional probability distributions for each node (not pictured).

from bioinformatics [20] and medicine [61] to computer vision [142] and information

retrieval [45].

The structure of a Bayesian network is represented as a directed acyclic graph

G = (V,E), where V is a set of nodes corresponding to random variables and E ⊂

V×V is a set of edges encoding the probabilistic dependencies among the variables.

If there is an edge X → Y , we say that X is a parent of Y and Y is a child of X. The

set of parents for some node V is denoted by parents(V ). The nodes that can reach

V by a directed path are called ancestors and denoted by anc(V ), and the nodes that

V can reach by a directed path are called descendants and denoted by desc(V ). The

graph is acyclic when there are no directed paths from any node to itself.

Each random variable V ∈ V is also associated with a conditional probability

distribution P
(
V | parents(V )

)
, where parents(V ) ⊆ V\{V }. If the joint probability

distribution P (V) satisfies the Markov condition for G, then the joint distribution

can be factored as a product of the conditional distributions:

P (V) =
∏

V ∈V

P
(
V | parents(V )

)
.

2The term “Bayesian network” is considered by some researchers to be a misnomer as the models
themselves do not necessarily entail a Bayesian interpretation of probability. Consequently, they are
also referred to as “belief networks” or simply “Bayes nets.”
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The Markov condition states that every variable V ∈ V is conditionally independent

of its non-descendants given its parents. In other words,

P
(
V | V \ {V }

)
= P

(
V | parents(V )

)
.

The Markov condition can also be written as

V ⊥⊥ V \ desc(V ) | parents(V )

for all V ∈ V, where the notation ⊥⊥ denotes probabilistic independence (as intro-

duced by Dawid [34]).

The fact that Bayesian networks are propositional, encoding IID instances, is

implicit in that the joint probability of a set of instances is equal to the product of

the joint probability of each instance. Additionally, as stated by Russell and Norvig

(Chapter 14.6 [151]), “...Bayesian networks are essentially propositional: the set of

random variables is fixed and finite, and each has a fixed domain of possible values.

This fact limits the applicability of Bayesian networks.” This is one of the main reasons

for increasing the expressiveness of the underlying representation to relational (i.e.,

first-order logic), as we show in the ensuing chapters.

Näıvely specifying a joint distribution by hand would require an exponential num-

ber of states, but the Markov condition enables a Bayesian network to represent this

distribution with many fewer parameters. Consider the example Bayesian network

displayed in Figure 2.1, which consists of six nodes and seven edges. Using the chain

rule from probability theory, one can write the joint distribution as

P (A,B,C,D,E, F ) = P (A) · P (B|A) · P (C|A,B) · P (D|A,B,C) ·

P (E|A,B,C,D) · P (F |A,B,C,D,E)

In this example, if all variables are binary (i.e., have domain {0, 1}), then the joint

distribution would involve 26 = 64 states and 63 parameters. However, if the Markov

condition holds, then the Bayesian network can factor the joint distribution into a

15



product of smaller conditional probability distributions. For the example, the joint

distribution could be written as

P (A,B,C,D,E, F ) = P (C) · P (E) · P (D|C,E) · P (A|C,D) · P (B|A) · P (F |B,E)

Factored in this way, only 20 + 20 + 22 + 22 + 21 + 22 = 16 parameters would be

necessary to fully specify the model.

The Markov condition ties the structure of the model G to the set of conditional

independencies that hold over all compatible probability distributions P . All condi-

tional independence facts can be derived from the Markov condition and the structure

of G, but they may involve complex manipulations of the joint distribution and vari-

ous probability axioms. In Section 2.2.1, we describe d -separation, a set of graphical

rules that algorithmically derive conditional independence facts directly from the

graphical structure of the model. These two approaches (the Markov condition and

d -separation) have been shown to produce equivalent sets of conditional independence

facts from Bayesian networks [191, 47, 115].

With respect to directed graphical models, this thesis focuses on reasoning about

conditional independence given model structure and learning model structure from

observational data. Many researchers work on two complementary tasks: parameter

estimation and inference. If the structure of a Bayesian network is known, there

are various methods to estimate its parameters. These methods generally involve

maximum-likelihood estimation if the data set is complete, Bayesian estimation if

starting with a prior distribution, or expectation-maximization if some data values

are missing. The task of inference generally involves inferring the values of unobserved

variables under different settings. Methods for inference can be grouped into two main

classes: exact methods, such as variable elimination and clique tree propagation,

and approximate methods, such as belief propagation, Monte Carlo simulations, and

variational methods. We refer the reader to the accessible introductions to Bayesian
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networks by Charniak [19] and Darwiche [32], as well as the lengthier overviews by

Jensen [78] and Neapolitan [115].

2.1.2 Modeling causality with Bayesian networks

The definition of causality has been debated by philosophers since the time of

Aristotle, and there remain different viewpoints for a precise account of causation.

In this work, we champion Pearl’s and Spirtes et al.’s view of causality, which is a

combination of probabilistic and interventionist causation [122, 172]. Specifically, we

say that X causes Y (X → Y ) if the conditional distribution of Y changes upon

intervening on X. In Pearl’s notation, X causes Y if for some y in the domain of

Y and two different values x, x′ in the domain of X, P
(
Y = y | do(X = x)

)
6=

P
(
Y = y | do(X = x′)

)
, where the do operator corresponds to an intervention on X.

Additionally, we make no restrictions on which variables can be causes. This definition

of causality contrasts with deterministic causation (i.e., manipulating X necessarily

results in a change in the value of Y as opposed to its conditional distribution) and a

pure manipulation theory under which only manipulable variables can be causes [65].

This view of causality is compatible with using directed probabilistic graphical

models to represent causal dependencies. Directed acyclic graphs can be an appro-

priate representation because causal dependencies are predominantly irreflexive (X

does not cause itself), asymmetric (if X causes Y , then Y does not cause X), and

transitive (if X causes Y and Y causes Z, then X is causal for Z). Under a few for-

mal assumptions, Bayesian networks can be interpreted causally, with directed edges

corresponding to direct causal dependencies rather than mere probabilistic dependen-

cies. For the following definitions, let G = (V,E) be a causal Bayesian network and

let P be the joint probability distribution over V.

Definition 2.1.1 (Causal sufficiency) G is causally sufficient if, for all pairs of

variables X, Y ∈ V, all common causes are observed, measured, and included in V.
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For structure learning, if there exists a latent common cause of two variables, then

we may incorrectly conclude causal dependence between them instead of choosing the

correct, albeit unrepresented, causal model. This does not preclude any variable from

having a latent cause, only cases where two variables share the same latent cause.

Causal sufficiency is a relatively strong assumption, and there are techniques and

more complex representations that can relax or remove this assumption.

Causal sufficiency is also a necessary assumption for the causal Markov condition

to hold. The causal Markov condition is identical to the Markov condition, replacing

parents with direct causes and non-descendants with non-effects.

Definition 2.1.2 (Causal Markov condition) Given that V is causally sufficient,

P is Markov to G if each variable V ∈ V is conditionally independent of its graphical

non-effects given its graphical direct causes.

The causal Markov condition (and equivalently, d -separation) has been shown to

provide the correct connection between causal structure and probability distributions

by tying statistical (in)dependence with causal (in)dependence [154]. However, if

this assumption is violated, then two variables without a direct causal dependence

may remain statistically dependent even after conditioning on all their causes. For

example, conditioning on all common causes may not entirely explain the statistical

association between two variables that are derivatives of the same variable.

In addition, to connect the graphical causal dependencies with appropriate inter-

ventions, we also assume causal minimality. This assumption restricts G to be the

simplest structure that is Markov to P . The reason is that a probability distribution

P that is (causally) Markov to a graph structure G is also (causally) Markov to any

supergraph of G. Without this assumption, it would be possible to infer interventions

from G that have no effect on P [199]. This condition is entailed when assuming

the faithfulness condition (defined in Section 2.3) for structure learning, but it is

necessary for purely modeling causality.
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2.1.3 Alternative approaches to causality

The most recent and comprehensive theory for causal inference is the structural

causal theory developed by Pearl [121, 122, 123]. The cornerstone of this theory

is the causal Bayesian network described above. This approach is agnostic about

functional form and supports inference and counterfactual analysis (using the do-

calculus for representing interventions). The contributions made in this thesis only

require the principles found in the causal Bayesian network representation. Below,

we review alternative approaches to reasoning about or detecting causality, which are

all individually useful, but they can be represented, facilitated, and often improved

by the graphical models approach.

Many researchers focus on estimating the effects of individual dependencies in

observational data without reference to a structural, graphical model. For example,

propensity scores are a widely used method that enables matching treatment and con-

trol pairs of instances that would otherwise have the same propensity for treatment

[149]. Once matched, the effect of treatment on outcome can be measured given

that treatment is now essentially randomized for each pair. Conventional wisdom

is to use as many covariates to model treatment as possible; however, there exist

situations under which propensity score matching can increase bias if inappropriate

covariates are selected [125]. Propensity score matching is an effective, yet complex

statistical method for testing conditional independence and estimating causal effects,

but its application can be improved by using graphical models to identify relevant

and admissible covariates [124, 166, 168]. This is due to the fact that joint graph-

ical models render the dependencies among variables transparent, leading to more

effective reasoning about causal effects. Representing assumptions within a graphical

framework can provide information that may be necessary to reason over individual

dependencies.
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Approaches to estimating individual effects are broadly captured by the litera-

ture on experimental and quasi-experimental design developed by social scientists

[18, 160]. These approaches do not explicitly represent causal dependencies, but in-

stead focus on the techniques used to determine causality. Propensity score matching

can be viewed as a quasi-experimental design. Another example is the widely used

instrumental variable design [5]. Typically, a researcher identifies an instrumental

variable with two conditions: (1) it must be a cause of treatment and (2) it can

only affect the outcome through the treatment. This enables analysis of the effect

of treatment on outcome, even in the presence of latent common causes connecting

treatment and outcome. While instrumental variables present another effective way

to measure causal effects, their application often requires extensive domain knowledge

for identification. However, the graphical models approach facilitates their discovery

and can actually generalize the conditions under which they hold [16]. With the

transparent structural knowledge encoded by graphical models, the applicability and

robustness of instrumental variables, and likely most quasi-experimental designs, can

be improved.

Another approach is to perform a controlled, randomized experiment [39], long

considered the gold standard for estimating causal effects. Unfortunately, many do-

mains are not conducive to randomization or control because of ethical or logistical

concerns. While the results of experiments could be incorporated into a joint model,

one of the goals of this thesis is to learn a joint causal structure from observational

data. Typically the space is too large to run the necessary experiments to identify

every causal dependency, but structure learning could be viewed as a way to constrain

the hypothesis space and use experiments to validate important dependencies. Ad-

ditionally, recent work by Eberhardt has shown that without strong assumptions on

functional forms and the ability to execute ideal interventions—often simultaneously

on multiple variables—it may not be possible to rely on experiments to completely
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identify causal structure [37]. These results stand in contrast to the interventionist

view of causation, under which the very concept of causality is the ability to per-

form an intervention [65, 194]. Furthermore, determining which variables require

experimentation and control is facilitated by graphical models and its accompanying

framework for identifying interventions [122].

A widely adopted theory of randomized and non-randomized experiments is the

representation alternately referred to as the potential-outcome framework [150], Ru-

bin’s model [65], or the Neyman-Rubin model (since Neyman originally proposed

potential outcomes solely for randomized experiments [118]). This approach main-

tains that modeling the causal effect of a single experiment is of primary interest. The

potential-outcome framework has a strong connection to statistics, and it has clear

semantics for causal inference under certain assumptions. However, common usage of

these models assumes that all treatment variables can be manipulated. In contrast,

the graphical models approach enforces no restrictions on which variables can be a

cause since any variable has the potential to alter conditional probability distribu-

tions [122, 172]. In addition, the potential-outcome framework does not facilitate

reasoning about the effects of interventions in complex joint models whereas Pearl’s

do-calculus on graphical models does [122]. Finally, the potential-outcome approach

is too restrictive for the relational setting in this thesis because of its reliance on the

stable unit-treatment value assumption (SUTVA). SUTVA assumes that instances

are independent, which is one of the primary assumptions lifted by relational repre-

sentations. Although there have been some minor relaxations for interference models

(see Section 3.8.2), the potential-outcome framework appears too rigid to handle the

complexity of general relational data.

Most alternative approaches to modeling causality lack the transparency and al-

gorithmic tools afforded by using causal Bayesian networks. In the following two

sections we review one main capability for reasoning about independence in Bayesian
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networks (Section 2.2) and algorithms that learn the causal structure of Bayesian

networks (Section 2.3).

2.2 Reasoning

As noted in Section 2.1.2, the causal Markov condition provides a connection

between the causal structure of a directed acyclic graph G and conditional indepen-

dence occurring in represented probability distributions P . However, deriving the set

of conditional independencies from G based on the Markov condition is cumbersome,

requiring complex combinations of probability axioms. Fortunately, d -separation,

a set of graphical criteria, provides the foundation for algorithmic derivation of all

conditional independencies in G and entails the exact same set of conditional indepen-

dencies as the causal Markov condition [191, 47, 115]. In the following subsections, we

detail how to reason about conditional independence from model structure, and we

describe two useful tasks—identifying causal effects and causal structure learning—

that are enabled by this capability.

2.2.1 Defining d-separation

In the late 1980s, Pearl and his students devised a graphical theory, termed d -

separation, that was shown to induce the exact same set of conditional independen-

cies from a directed acyclic graph as the Markov condition. They presented proofs

of both soundness [191] and completeness [47], and they developed efficient algo-

rithms for checking independence [48, 49]. The main idea behind d -separation is to

connect probabilistic dependence with graphical connection and conditional indepen-

dence with graphical separation. The “d” stands for “directional” since the precise

conditions for connection and separation hinge on the direction of arrows along paths

in the graph structure.
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Figure 2.2: Graphical patterns of d -separating and d -connecting path elements among
disjoint sets of variables X and Y given Z. Paths for which there exists a non-collider
in Z or a collider not in Z are d -separating. Paths for which all non-colliders are not
in Z and all colliders (or a descendant of colliders) are in Z are d -connecting.

In the following definition, a path is a sequence of vertices following edges in either

direction. We say that a variable V is a collider on a path p if the two arrowheads

point at each other (collide) at V; otherwise, V is a non-collider on p.

Definition 2.2.1 (d-separation) Let X, Y, and Z be disjoint sets of variables in

directed acyclic graph G. A path from some X ∈ X to some Y ∈ Y is d-connected

given Z if and only if every collider W on the path, or a descendant of W, is a member

of Z and there are no non-colliders in Z. Then, we say that X and Y are d-separated

by Z if and only if there are no d -connecting paths between X and Y given Z.

Figure 2.2 depicts the graphical patterns found along paths that produce d -

separation or d -connection based on Definition 2.2.1. It can be helpful to think about

the flow of information (dependence) between the terminal nodes on each path. Con-

ditioning on a common cause or intermediate variable blocks the flow of information

along the path, removing any dependence. This matches the intuition behind the

Markov condition: Conditioning on a parent renders a variable independent of non-

descendants. This occurs in the first three d -separating path elements in Figure 2.2.
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The d -separation condition is actually more general, with any non-collider on the

path blocking dependence from flowing.

When conditioning on a collider or common effect, information is allowed to flow

through that variable. This phenomenon, referred to as “explaining away” or Berk-

son’s paradox [10], is best explained by Pearl’s well-known example [120], paraphrased

here. Assume that a car’s battery (B) and fuel level (F ) are marginally independent

events. Both B and F are causes of an engine’s ability to start (S), that is, we have

the directed graph B → S ← F. Imagine that you recently filled your gas tank, but

your car did not start. Since we observed the value of S (car did not start), knowledge

of F provides evidence of the state of the car’s battery (it’s most likely dead if we

assume there are no other causes of S). If we did not observe whether the engine

started, then we would have no reason to believe that the distribution of B is anything

but its marginal. More formally, P (B | F ) = P (B), but P (B | F, S) 6= P (B).

Applying d -separation to the example in Figure 2.1, we can identify more complex

patterns. For example, B and C are not marginally independent (B ⊥⊥/ C) because of

the d -connecting paths C → A→ B and C → D → A→ B. However, conditioning

on A renders them independent (B ⊥⊥ C | A) by blocking those two paths, and

the remaining path C → D ← E → F ← B contains colliders that are not in the

conditioning set. As stated, the graphical rules also extend to sets of variables. For

example, {C,D} ⊥⊥/ {B,F} | ∅, but {C,D} ⊥⊥ {B,F} | {A,E}.

At first glance, identifying conditional independence facts using the rules of d -

separation appears computationally intensive, testing a potentially exponential num-

ber of paths. However, Geiger et al. provide a linear-time algorithm based on breadth-

first search and reachability on G [49]. An alternative method, known as the “Bayes-

Ball” algorithm, provides a different intuition for how d -separation works, modeling

the passing of a ball (information) among the nodes in the graph [159]. A lesser known
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approach formulates the rules of d -separation into a logical language and provides an

equivalent linear-time algorithm based on model checking [180].

The work in Chapter 4 presents a major extension of d -separation to directed

graphical models of relational data. Since its inception, there have been several

other extensions of d -separation. It was originally formulated to handle deterministic

dependencies via a slight modification to the rules for colliders [49, 172]. Pearl and

Dechter noted that, as defined, d -separation could also apply to directed graphs with

cycles or feedback, as long as the variables were finite and discrete [126], but Neal

showed that it does not generalize to arbitrary functional systems with feedback

[114]. Recently, Winn worked out details for d -separation under context-specific

independence by adding factors, called gates, to directed graphs and modifying the

rules to account for the presence of these factors [193]. However, the most significant

and useful extension to d -separation has been its generalization to m-separation on

mixed graphical models, such as ancestral graphs [144]. A recent paper by Sadeghi and

Lauritzen further generalized m-separation to a hierarchy of ribbonless and loopless

graphs, for which directed, undirected, and mixed graphs are all special cases [153].

The work on m-separation appears to be a promising direction for extending relational

d -separation to more general model classes, but new relational representations would

need to be developed first.

2.2.2 Why d-separation is a useful theory

The conditional independence facts dervied by d -separation are guaranteed to hold

in every joint distribution the model represents and consequently, in any data instance

sampled from those distributions. The semantics of holding across all distributions is

the main reason why d -separation is useful, enabling two large classes of applications:

(1) Identification of causal effects : The theory of d -separation connects the causal

structure encoded by a Bayesian network to the set of probability distributions it can
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represent. On this basis, many researchers have developed accompanying theory that

describes the conditions under which certain causal effects are identifiable (uniquely

known) and algorithms for deriving those quantities from the joint distribution. This

work enables sound and complete identification of causal effects, not only with respect

to conditioning, but also under counterfactuals and interventions—via the do-calculus

introduced by Pearl [122]—and in the presence of latent variables [183, 69, 164].

(2) Constraint-based causal discovery algorithms : The theory of d -separation can

be leveraged to constrain the hypothesis space by eliminating models that are incon-

sistent with observed conditional independence facts. While many distributions do

not lead to uniquely identifiable models, this approach (under simple assumptions)

frequently discovers useful causal knowledge for domains that can be represented as

a Bayesian network. This approach to learning causal structure is referred to as the

constraint-based paradigm, and many algorithms that follow this approach have been

developed over the past 20 years. In Section 2.3, we review the PC algorithm [172]

and alternative methods for causal discovery of propositional data. In Chapters 4 and

5, we formalize the theory of relational d -separation and introduce a sound and com-

plete constraint-based algorithm—the relational causal discovery (RCD) algorithm

[99]—that learns causal models from relational data.

2.3 Learning

The goal of traditional causal discovery, as well as the objective of this thesis,

is to learn causal models from observational data. Specifically, the intention is to

learn a joint causal model because reasoning about single dependencies or conditional

models—the aim of many of the alternative methods described in Section 2.1.3—are

more effective given the structural knowledge encoded by a joint model. Additionally,

the goal in this thesis is to learn the causal structure of the model rather than its
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parameters, an important related task. Parameter estimation can also be improved

with accurate model structure.

Given this objective and the framework of causal Bayesian networks, we can now

describe the general approach for learning causal structure followed in this thesis.

Recall that the causal Markov condition and d -separation on a model structure G

entail which conditional independencies should appear in distributions P represented

by G. However, to infer causal structure by examining independencies that hold in P

(or data sampled from P), we need an assumption that relates those independencies

back to G. Many causal discovery algorithms rely on the following assumption:

Definition 2.3.1 (Faithfulness) P is faithful3 to G if there exist no conditional

independencies in P that are not entailed by the causal Markov condition on G.

The faithfulness assumption is essentially the converse of the causal Markov condi-

tion. If it does not hold, then causal dependencies in G may not manifest as statistical

dependence in P . For example, if the effects of two dependencies exactly cancel each

other out, then those dependencies would not be identifiable in the probability dis-

tribution.

In the following section, we describe the PC algorithm, which identifies the edges

in G that are consistent with observed conditional independencies in P and can deter-

mine the direction of causality for certain edges [172]. If P is assumed to be faithful to

G (and causally sufficient), then PC is known to be sound and complete, learning the

Markov, or likelihood, equivalent set of causal models. The relational causal discovery

algorithm described in Chapter 5 provides the equivalent result for relational models.

The final section presents alternative algorithms to PC for learning the structure of

Bayesian networks.

3This assumption is occasionally referred to as stability [122].
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(b) After d = 0
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B ⊥⊥ C | {A}
B ⊥⊥ D | {A}
B ⊥⊥ E | {A}
C ⊥⊥ F | {B}

(c) After d = 1

C
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FD

A ⊥⊥ E | {C,D}
A ⊥⊥ F | {B,E}
D ⊥⊥ F | {B,E}

(d) After d = 2

Figure 2.3: Example causal skeleton after different stages of Phase I of the PC algo-
rithm for the model in Figure 2.1.

2.3.1 The PC algorithm

The PC algorithm4 is arguably the most well-known constraint-based causal dis-

covery algorithm for propositional data [172]. The algorithm was devised 20 years

ago, and there are continual updates to TETRAD (http://www.phil.cmu.edu/

projects/tetrad/), and the R package pcalg [79], two open-source software pack-

ages that implement the PC algorithm and various other tools. The execution of

PC is separated into two distinct phases and produces a partially directed acyclic

graph (PDAG) that corresponds to the Markov equivalence class of statistically in-

distinguishable causal models. The causal structure is guaranteed to be sound and

complete under the three assumptions of causal sufficiency, the causal Markov condi-

tion, and faithfulness [106]. The algorithm also assumes perfect tests of conditional

independence, such as a d -separation oracle on P .

The first phase, skeleton identification, determines the undirected graphical struc-

ture that encodes the set of conditional independencies present in the data. An edge

between two variables indicates statistical dependence, whereas the absence of an

edge corresponds to marginal or conditional independence. PC begins with a fully

connected graph and iteratively tests all pairs of variables X and Y for marginal inde-

pendence followed by conditional independence over all possible sets of conditioning

4PC stands for Peter Clark, the first names of its original authors.
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Figure 2.4: The four edge orientation rules used in Phase II of the PC algorithm.

variables of increasing size d. If X ⊥⊥ Y | S for some set of conditioning variables S,

then PC removes the edge between X and Y. Figure 2.3 depicts an example of the

different stages of Phase I as applied to the true underlying model in Figure 2.1. Only

variables that remain connected are considered as possible conditioning variables—

as edges are removed, the set of potential conditioning variables becomes smaller.

Phase I finishes when all possible conditional tests of independence have been ex-

hausted (typically restricted to some maximum conditioning set size depth), and the

final undirected skeleton encodes the observed set of conditional independencies. Ad-

ditionally, for each pair of variables, the algorithm records the separating set (sepset)

that includes the variables that, when conditioned on, render the pair independent.

These separating sets are then used in the second phase of the algorithm.

The second phase, referred to as edge orientation, applies a set of rules that

uniquely determines the correct causal structure consistent with the conditional in-

dependencies in the skeleton. PC uses the following four rules for orienting edges

[106, 172]. These rules exploit the theory of d-separation and the assumption of

model acyclicity. The rules are also displayed pictorially in Figure 2.4.
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Definition 2.3.2 (Collider Detection) If X −Z − Y and Z /∈ sepset(X, Y ), then

orient as X → Z ← Y.

This rule exploits a concept used in d-separation (and the underlying phenomenon

in Berkson’s paradox)—two variables become dependent conditional on a common

effect. If a third variable Z does not render X and Y conditionally independent yet

exhibits association with both of them, it must be a collider. Collider detection is

exhaustively run before the remaining edge orientation rules.

Collider detection enables additional orientations. If 〈X,Z, Y 〉 is not oriented as

a collider, but X is a known cause of Z, then only a single causal model can explain

the association between Z and Y (namely, Z causes Y ).

Definition 2.3.3 (Known Non-Colliders) If X → Z − Y and 〈X,Z, Y 〉 is not a

collider, then orient as X → Z → Y.

The third rule stems from assuming the data are atemporal and that causality is

transitive. Orienting the dependency in the reverse direction would lead to a model

cycle.

Definition 2.3.4 (Cycle Avoidance) If X − Y and X → Z → Y , then orient as

X → Y.

The final rule, which does not have a particularly simple intuition, was introduced

by Meek to prove completeness of the orientation rules [106].

Definition 2.3.5 (Meek Rule 3) If W −X → Z, W −Y → Z, W −Z, and 〈X, Y 〉

are not neighbors, then orient as W → Z.

At the end of Phase II, PC produces a partially directed model because not all edge

orientations may be identifiable. However, given the assumptions, PC is guaranteed

to have identified the Markov equivalence class. In Figure 2.5, we show the resulting

model after applying these orientation rules. In this particular example, the skeleton

can be completely oriented and Meek Rule 3 does not activate.
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Figure 2.5: Resulting orientations after applying edge orientation rules during
Phase II of the PC algorithm. For this example, the skeleton can be completely
oriented because the Markov equivalence class consists of a single model.

2.3.2 Alternatives to the PC algorithm

The PC algorithm works remarkably well in practice, but simple implementations

can lead to structural errors on finite samples. As a result, researchers have proposed

many variants of PC that attempt to improve on its performance on real data. If the

assumptions made by the underlying conditional independence test used by PC (e.g.,

linear, Gaussian data for partial correlation tests) do not match the true functional

form of the generative distribution, then PC may introduce both false positives and

false negatives in its learned skeleton. Combining PC with more accurate statistical

tests is a common approach, such as leveraging Gaussian copulas [60] and kernel

conditional independence tests [201]. These variants do not attempt to modify the

general strategy employed by PC.

Aside from more accurate finite-sample tests, several researchers have proposed

modifications to how PC reasons about conditional independence decisions and pat-

terns in the skeleton. One often-cited error is based on the consistency of the skeleton

and separating sets. It is possible for PC to delete an edge between X and Y via a

separating set for which members may not appear on any path between X and Y.

This occurrence violates the implications of d -separation on the learned structured.

Steck and Tresp [175], Cheng et al. [21], and Abellán et al. [1] all use variations of the

so-called necessary path condition to remedy these inconsistencies. The Edge-Opt al-

31



gorithm by Fast attempts to resolve conflicts in the resulting partially directed graph

by maximizing the number of satisfied d -separation constraints [38]. Abellán et al.

also propose a method for revising the skeleton by removing the weakest edge in a

triple of mutually and marginally dependent variables [1].

The skeleton learned after Phase I of PC is also known to be dependent on the

order of the variables tested. A simple modification introduced by Colombo and

Maathhuis leads to a stable version of PC [26]. Instead of removing edges immediately

following the discovery of a separating set, they show that delaying the removal until

all tests of a given size are performed yields an order-independent skeleton. They also

propose similar modifications for edge orientation.

The modifications described above all retain the basic strategy of PC, but other

researchers have developed novel constraint-based methods that can learn more ac-

curate structures for finite samples. These algorithms typically alter how neighbors

are selected for consideration in conditioning sets or the order in which they are pro-

cessed. Some examples include grow-shrink [104], total conditioning [127], recursive

learning algorithms [196, 197], and light mutual min [97].

Beyond constraint-based algorithms, the search-and-score based paradigm has

been widely used to learn Bayesian network structure. These algorithms evaluate the

structure simultaneously with its parameters in some pre-defined model space. The

first prominent search-and-score algorithm, called K2, requires prior knowledge of the

order of variables in the network in order to learn network structure [28]. Algorithms

such as K2 use likelihood measures, typically penalized by structural complexity,

to heuristically navigate the search because learning the optimal Bayesian network

is an NP-complete problem [22]. Typically, search-and-score algorithms use greedy

hill-climbing search, but other optimizations to avoid local minima have also been

explored. Search spaces other than completely oriented Bayesian networks include the

space of Markov equivalence classes [23, 4, 30], a combination of skeletons and oriented
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models [174], and node orderings [181]. Search-and-score algorithms that learn a

Markov equivalence class, such as greedy equivalence search [23], are particularly

well-suited for causal discovery.

A third approach, referred to as hybrid algorithms, combines elements from the

constraint-based and search-and-score paradigms to improve efficiency and accuracy.

Examples include CB [167], sparse candidate (SC) [44], BENEDICT [3], max-min hill

climbing (MMHC) [188], and constrained optimal search (COS) [130].

Finally, many researchers have explored options for relaxing or removing the as-

sumptions leveraged by PC. The work by Ramsey et al. decomposes the faithfulness

assumption into violations with respect to the adjacency structure and orientations

[137]. Assuming a faithful skeleton, the conservative PC (CPC) algorithm [137] learns

a causal structure without assuming faithful orientations. Detecting violations of ad-

jacency faithfulness was proposed in the very conservative PC (VCPC) algorithm [94],

leading to networks with many edges marked as ambiguous. The generalization of

Bayesian networks and d -separation to maximal ancestral graphs and m-separation

has led to algorithms which remove the causal sufficiency assumption. The analog to

PC for this representation is the FCI algorithm, which has been shown to be sound

and complete in the presence of latent confounders [172, 198]. Finite sample improve-

ments of FCI have been proposed in the MBCS* [128], RFCI [27], and BCCD [25]

algorithms.

The RCD algorithm in Chapter 5 relies on the same assumptions as PC to prove

soundness and completeness, and this dissertation leaves finite sample strategies for

future work. The search-and-score and hybrid paradigms also offer interesting pos-

sibilities for an empirical comparison on real relational data sets. Extensions to

RCD based on relaxing or removing assumptions is another clear direction for fu-

ture research. Although not included in this dissertation, we are currently working

to incorporate relational blocking [141, 139] as a new operator for structure learning
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that can relax the causal sufficiency assumption (see Section 6.2 for more details). A

complete extension based on m-separation would require further development of our

relational representation, as well as a relational m-separation theory. In the following

chapter, we formally describe the representation that enables relational d -separation

and relational causal discovery.

2.4 Concluding Remarks

This chapter described three main concepts that reflect the three main contribu-

tions of this thesis. First, Bayesian networks and the assumptions leading to their

causal interpretation are important because directed graphical models and those as-

sumptions inform the relational model representation presented in Chapter 3. Second,

reasoning about conditional independence facts that hold in distributions represented

by a Bayesian network enable the approach taken by constraint-based algorithms that

learn causal structure. To that end, the theory of d -separation is critical, and we ex-

tend its semantics and graphical criteria to the theory of relational d -separation in

Chapter 4. Finally, details of the PC algorithm, and constraint-based methods in gen-

eral, are necessary because our approach to structure learning follows the same strat-

egy of identifying conditional independencies in data (or underlying distributions) and

inferring causal structure from those observed independencies. Specifically, Chapter 5

introduces the RCD algorithm, which follows the two-phase procedure employed by

PC and presents analogous soundness and completeness results under similar assump-

tions.
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CHAPTER 3

REPRESENTATION

Propositional representations, such as Bayesian networks, describe domains from

the perspective of a single entity type and assume that data instances are independent

and identically distributed. However, many real-world systems involve multiple types

of interacting entities with probabilistic dependencies that cross the boundaries of

those entities. Many researchers have focused on modeling such domains, which are

generally characterized as relational. Relational models are strictly more expressive

than propositional models because they capture a large class of dependencies that are

necessarily excluded from propositional models. In this chapter, we formalize con-

cepts of relational data and models that support the theory and methods underlying

the larger set of contributions in this thesis (e.g., reasoning about conditional inde-

pendence in relational models and constraint-based causal structure learning from

relational data).1

Over the past 15 years, researchers in statistics and computer science have devised

expressive classes of models to capture interactions among entity types and remove

the assumptions of independent and identically distributed instances [57]. Because

our primary task concerns causality, we focus on directed, acyclic graphical models

of relational data that encode conditional independence. Representations that model

marginal dependencies, such as relational dependency networks [117], and undirected

models, such as Markov logic networks (MLNs) [143], cannot have causal semantics

1Portions of this chapter are drawn from Maier et al. [100] with contributions from Katerina
Marazopoulou.
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by definition. The formal concepts of relational data and models described in this

chapter are most similar to probabilistic relational models (PRMs) [85] and directed

acyclic probabilistic entity-relationship (DAPER) models [63].

The main contributions presented in this chapter are:

• A sound and complete characterization of relational paths with precise seman-

tics of their instantiation to terminal sets (Section 3.3)

• A proof of the conditions under which two distinct relational paths may have a

non-empty intersection between their terminal sets (Section 3.4)

• A formalization of relational variables and dependencies as fundamental con-

cepts to support reasoning about conditional independence and constraint-based

structure learning (Section 3.5).

Beyond these contributions, we describe how the semantics of “bridge burning”

for terminal sets leads to a more expressive class of models than would otherwise be

induced in its absence (Section 3.7). We also provide background on four related

classes of models: Bayesian networks, those that are effectively subsumed by our

model class, those that are similar in expressive power, and an approach, referred

to as propositionalization, that reuses existing technology (Section 3.8). Finally, we

describe six limitations of our model class that present clear directions for future

extensions of this thesis (Section 3.9).

3.1 Example Relational Domains and Applications

The increasing complexity, availability, quantitative nature, and sheer volume of

data demand new methods for analysis. While it may be the de facto approach for

causal discovery to restrict model representation to propositional domains, we argue

that most real-world systems have underlying relational structure. Any domain that

36



involves interacting, heterogeneous entities can be characterized as relational. Some

examples include:

• Scholarly publishing is composed of researchers at various institutions that col-

laborate to write articles that cite other articles and are published at different

venues.

• Epidemiology studies individuals, their interactions, and different types of con-

tagions and treatments.

• Sports include athletes, their teams and coaches, referees, and competitive in-

teractions among players and teams.

• Social networks record the personal and professional interactions among indi-

viduals, companies, and events.

• Education research commonly investigates school districts, which encompass

different grade levels, classes, teachers, and students.

• Movie industry data consist of interactions among movies, actors, directors,

producers, studios, and critics that provide reviews.

• Organizations typically employ individuals, are divided into departments and

business units, and develop various products.

• Neuroscience studies the nervous system at various levels, such as the molecular,

cellular, system, and cognitive levels, where each may be composed of parts that

interact within and across those levels.

All these domains are large systems that involve modular, interacting components.

There are additional aspects beyond relational structure (e.g., temporal dynamics,

ontological categories of entities), but we concentrate on the main difference from

propositional domains: multiple entity types and the relationships among them.
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DEVELOPS

PRODUCT
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EMPLOYEE

Salary
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BUSINESS-UNIT

Revenue

Budget

FUNDS

Figure 3.1: Example relational schema for an organization consisting of employees
working on products, which are funded by specific business units within a corporation.

Many practical applications have also benefited from learning and reasoning with

relational models. Because this thesis focuses on directed graphical models of rela-

tional data, we identify several example applications that have recently used PRMs.2

Probabilistic relational models have been used successfully to analyze gene regu-

latory interactions [158], scholarly citations [178], ecosystems [31], biological cellular

networks [42], epidemiology [56], and security in information systems [170]. The struc-

ture and parameters of these models can be learned directly from a relational data set.

The model is typically used either to predict values of certain attributes (e.g., topics

of papers) or the structure is examined directly (e.g., to determine predictors of dis-

ease spread). A major goal in many of these applications is to promote understanding

of a domain or to determine causes of various outcomes. However, as with Bayesian

networks, to effectively interpret and reason about relational models causally, it is

necessary to understand their conditional independence implications. To that effect,

this chapter presents a formalization of relational concepts that support the larger

objectives of reasoning about independence and learning causal structure.

3.2 Relational Schemas and Skeletons

Relational data and models are typically defined at two levels: templates and

instantiations of those templates. This is an approach that we adapt for every rela-

2To date, PRMs are the most widely used general framework for representing directed graphical
models of relational domains. While more expressive, DAPER has only been presented as a language
for modeling relational data, with no practical learning algorithms developed.
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tional concept. A relational schema is a top-level description of what data exist in a

particular domain. Specifically (adapted from Heckerman et al. [62]):

Definition 3.2.1 (Relational schema) A relational schema S = (E ,R,A, card)

consists of a set of entity classes E = {E1, . . . , Em}; a set of relationship classes

R = {R1, . . . , Rn}, where each Ri = 〈Ei
1, . . . , E

i
ai
〉, with Ei

j ∈ E and ai is the arity for

Ri; a set of attribute classes A(I) for each item class I ∈ E ∪ R; and a cardinality

function card : R× E → {one, many}.

A relational schema can be represented graphically with an entity-relationship

(ER) diagram. We adopt a slightly modified ER diagram using Barker’s notation [8],

where entity classes are rectangular boxes, relationship classes are diamonds with

dashed lines connecting their associated entity classes, attribute classes are ovals

residing on entity and relationship classes, and cardinalities are represented with

crow’s foot notation.

Example 3.2.1 The relational schema S for the organization domain depicted in

Figure 3.1 consists of entities E = {Employee, Product, Business-Unit}; rela-

tionships R = {Develops, Funds}, where Develops = 〈Employee, Product〉,

Funds = 〈Business-Unit, Product〉 and having cardinalities card(Develops,

Employee)=many, card(Develops, Product)=many, card(Funds, Business-

Unit)=many, and card(Funds, Product)=one; and attributes A(Employee)=

{Competence, Salary}, A(Product)={Success}, and A(Business-Unit)={Budget,

Revenue}. �

A relational schema is a template for a relational skeleton (also referred to as a

data graph by Neville and Jensen [117]), an instantiation of entity and relationship

classes. Specifically (adapted from Heckerman et al. [62]):
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Figure 3.2: Example fragment of a relational skeleton. Roger and Sally are employees,
both of whom develop the Laptop product, but of the two, only Sally works on product
Tablet. Both products Laptop and Tablet are funded by business unit Devices. For
convenience, we depict attribute placeholders on each entity instance.

Definition 3.2.2 (Relational skeleton) A relational skeleton σ for schema S =

(E ,R,A, card) specifies a set of entity instances σ(E) for each E ∈ E and relationship

instances σ(R) for each R ∈ R. Relationship instances adhere to the cardinality

constraints of S: If card(R,E) = one, then for each e ∈ σ(E) there is at most one

r ∈ σ(R) such that e participates in r.

For convenience, we use the notation E ∈ R if entity class E is a component of

relationship class R, and, similarly, e ∈ r if entity instance e is a component of the

relationship instance r. We also denote the set of all skeletons for schema S as ΣS .

Example 3.2.2 The relational skeleton σ for the organization example is depicted

in Figure 3.2. The sets of entity instances are σ(Employee) = {Paul, Quinn, Roger,

Sally, Thomas}, σ(Product) = {Case, Adapter, Laptop, Tablet, Smartphone}, and

σ(Business-Unit) = {Accessories, Devices}. The sets of relationship instances are

σ(Develops) = {〈Paul, Case〉, 〈Quinn, Case〉, ... , 〈Thomas, Smartphone〉} and

σ(Funds)={〈Accessories, Case〉, 〈Accessories, Adapter〉, ... ,〈Devices, Smartphone〉}.

The relationship instances adhere to their cardinality constraints (e.g., Funds is a
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one-to-many relationship—within σ(Funds), every product has a single business

unit, and every business unit may have multiple products). �

3.3 Relational Paths and Terminal Sets

In order to specify a model over a relational domain, we must define a space of

possible variables and dependencies. Consider the example dependency [Product,

Develops, Employee].Competence→ [Product].Success from the model in Fig-

ure 3.4, expressing that the competence of employees developing a product affects

the success of that product. For relational data, the variable space includes not only

intrinsic entity and relationship attributes (e.g., success of a product), but also the

attributes on other entity and relationship classes that are reachable by paths along

the relational schema (e.g., the competence of employees that develop a product).

We define relational paths to formalize the notion of which item classes are reachable

on the schema from a given item class.3

Definition 3.3.1 (Relational path) A relational path [Ij, . . . , Ik] for schema S is

an alternating sequence of entity and relationship classes Ij, . . . , Ik ∈ E ∪R such that:

(1) For every pair of consecutive item classes [E,R] or [R,E] in the path, E ∈ R.

(2) For every triple of consecutive item classes [E,R,E ′], E 6= E ′.4

(3) For every triple of consecutive item classes [R,E,R′], if R = R′,

then card(R,E) = many.

Ij is called the base item, or perspective, of the relational path.

Condition (1) enforces that entity classes participate in adjacent relationship

classes in the path. Conditions (2) and (3) remove any paths that would invari-

ably reach an empty terminal set (see Definition 3.3.2 and Lemma 3.3.1 below). This

3Because the term “path” is also commonly used to describe chains of dependencies in graphical
models, we will explicitly qualify each reference to avoid ambiguity.
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definition of relational paths is similar to “meta-paths” and “relevance paths” in

similarity search and information retrieval in heterogeneous networks [176, 162]. Re-

lational paths also extend the notion of “slot chains” from the PRM framework [53] by

including cardinality constraints and formally describing the semantics under which

repeated item classes may appear on a path. Relational paths are also a specialization

of the first-order constraints on arc classes imposed on DAPER models [62].

Example 3.3.1 Consider the relational schema in Figure 3.1. Some example rela-

tional paths from the Employee perspective (with an intuitive meaning of what the

paths describe) include the following: [Employee] (an employee), [Employee, De-

velops, Product] (products developed by an employee), [Employee, Develops,

Product, Funds, Business-Unit] (business units of the products developed by an

employee), and [Employee, Develops, Product, Develops, Employee] (co-

workers developing the same products). Invalid relational paths include [Employee,

Develops, Employee] (because Employee=Employee and Develops ∈ R) and

[Business-Unit, Funds, Product, Funds, Business-Unit] (because Product

∈ E and card(Funds, Product) = one). �

Relational paths are defined at the level of relational schemas, and as such are

templates for paths in a relational skeleton. An instantiated relational path produces

a set of traversals on a relational skeleton. However, the quantity of interest is not

the traversals, but the set of reachable item instances (i.e., entity or relationship

instances). These reachable instances are the fundamental elements that support

model instantiations (i.e., ground graphs).

Definition 3.3.2 (Terminal set) For skeleton σ ∈ ΣS and ij ∈ σ(Ij), the terminal

set P |ij for relational path P = [Ij, . . . , Ik] of length n is defined inductively as

4This condition suggests at first glance that self-relationships (e.g., employees manage other
employees, individuals in social networks maintain friendships, scholarly articles cite other articles)
are prohibited. We discuss this and other model assumptions in Section 3.9.
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P 1|ij = [Ij]|ij = {ij}
...

P n|ij = [Ij, . . . , Ik]|ij =
⋃

im∈Pn−1|ij

{
ik |

(
(im ∈ ik if Ik ∈ R) ∨ (ik ∈ im if Ik ∈ E)

)

∧ ik /∈
n−1⋃

l=1

P l|ij
}

A terminal set of a relational path P = [Ij, . . . , Ik] consists of instances of class Ik,

the terminal item on the path. Conceptually, a terminal set is produced by traversing

a skeleton beginning at a single instance of the base item class, ij ∈ σ(Ij), following

instances of the item classes in the relational path, and reaching a set of instances

of class Ik. The term ik /∈ ⋃n−1
l=1 P

l|ij in the definition implies a “bridge burning”

semantics under which no item instances are revisited (ik does not appear in the

terminal set of any prefix of P ).5 The notion of terminal sets is a necessary concept

for grounding any relational model and has been described in previous work—e.g., for

PRMs [53] and MLNs [143]—but has not been explicitly named. We emphasize their

importance because terminal sets are also critical for defining relational d -separation,

and we formalize the semantics for bridge burning.

Example 3.3.2 We can generate terminal sets by pairing the set of relational paths

for the schema in Figure 3.1 with the relational skeleton in Figure 3.2. Let Quinn be

our base item instance. Then [Employee]|Quinn = {Quinn}, [Employee, Devel-

ops, Product]|Quinn = {Case, Adapter, Laptop}, [Employee, Develops, Prod-

uct, Funds, Business-Unit]|Quinn = {Accessories, Devices}, and [Employee, De-

velops, Product, Develops, Employee]|Quinn = {Paul, Roger, Sally}. The

bridge burning semantics enforce that Quinn is not also included in this last terminal

set. �

5The bridge burning semantics yield terminal sets that are necessarily subsets of terminal sets
that would otherwise be produced without bridge burning. Although this appears to be limiting,
it actually enables a strictly more expressive class of relational models. See Section 3.7 for more
details and an example.
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In the following lemma, we prove that Definition 3.3.1 for relational paths is

sound and complete with respect to producing non-empty terminal sets for at least

one relational skeleton. This effectively justifies the stated schematic conditions on

relational paths.

Lemma 3.3.1 Let S be a relational schema and [Ij, . . . , Ik] be a sequence of al-

ternating entity and relationship classes of S that satisfy participation constraints

(condition (1) of Definition 3.3.1). The relational path [Ij, . . . , Ik] satisfies condi-

tions (2) and (3) of Definition 3.3.1 if and only if there exists a relational skeleton

σ ∈ ΣS and an item instance ij ∈ σ(Ij) such that [Ij, . . . , Ik]|ij 6= ∅. More formally,

∃σ ∈ ΣS ∃ij∈σ(Ij)
(
[Ij, . . . , Ik]|ij 6= ∅

)

⇔
(
[ERE] 6∈ [Ij, . . . , Ik]

)
∧
(
[RER] ∈ [Ij, . . . , Ik]→ card(R,E) = many

)

Proof. Left-to-right ⇒: Assume that there exists a skeleton σ ∈ ΣS and item

instance ij ∈ σ(Ij) such that [Ij, . . . , Ik]|ij 6= ∅. We must show that [Ij, . . . , Ik] obeys

conditions (2) and (3), i.e., [Ij, . . . , Ik] does not contain any [ERE] patterns, and if

it contains an [RER] pattern, then card(R,E) = many.

• Assume for contradiction that [Ij, . . . , Ik] contains a pattern of the form [ERE].

From Definition 3.3.2 for terminal sets, it follows that if the terminal set of a

path is not empty, then the terminal set of every prefix of that path is not

empty:

[Ij, . . . , Ik]|ij 6= ∅ ⇒ [Ij, . . . , Im]|ij 6= ∅ for all [Ij, . . . , Im] ≤ [Ij, . . . , Ik]

By assumption, [Ij, . . . , Ik]|ij 6= ∅; therefore, the prefix [Ij, . . . , Im] that ends in

the ERE pattern also has a non-empty terminal set:
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[Ij, . . . , Ik]|ij 6= ∅ ⇒ [Ij, . . . , E,R,E]|ij 6= ∅

[Ij, . . . , Ik]|ij 6= ∅ ⇒ [Ij, . . . , E,R]|ij 6= ∅

[Ij, . . . , Ik]|ij 6= ∅ ⇒ [Ij, . . . , E]|ij 6= ∅

Let e ∈ σ(E) be an entity instance in the terminal set [Ij, . . . , E]|ij . Since

the terminal set [Ij, . . . , E,R]|ij is not empty, it follows that there exists a

relationship instance r = 〈. . . , e, . . .〉 such that r ∈ [Ij, . . . , E,R]|ij . However,

[Ij, . . . , E,R,E]|ij is also not empty; thus, there exists some e′ ∈ σ(E) such that

e′ ∈ [Ij, . . . , E,R,E]|ij , where e′ 6= e and e′ ∈ r. It follows that both e and e′

participate in the relationship instance r, which is a contradiction.

• Assume for contradiction that [Ij, . . . , Ik] contains a pattern of the form [R,E,R]

and card(R,E) = one.

[Ij, . . . , R]|ij 6= ∅ ⇒ ∃r = 〈e, . . .〉 ∈ [Ij, . . . , R]|ij

[Ij, . . . , R,E]|ij 6= ∅ ⇒ ∃e ∈ [Ij, . . . , R,E]|ij and e ∈ r

[Ij, . . . , R,E,R]|ij 6= ∅ ⇒ ∃r′ = 〈e, . . .〉 such that r′ ∈ [Ij, . . . , R,E,R]|ij

and r′ 6= r (bridge burning semantics)

From the first and third lines above, it follows that e participates in two in-

stances of R; therefore, card(R,E) must be many, which is a contradiction.

Right-to-left ⇐: Assume that [Ij, . . . , Ik] adheres to Definition 3.3.1 for rela-

tional paths. We must show that ∃σ ∈ ΣS ∃ij ∈ σ(Ij)
(
[Ij, . . . , Ik]|ij 6= ∅

)
. We can

construct such a skeleton σ according to the following procedure: For each entity class

E on the path, add a unique entity instance e to σ(E). Then, for each relationship

class R on the path, add a unique relationship instance r connecting the previously

created unique entity instances that participate in R, and add unique entity instances
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Figure 3.3: Schematic of two relational paths P1 and P2 for which Lemma 3.4.1
guarantees that some skeleton σ yields a non-empty intersection of their terminal
sets. The example depicts a possible constructed skeleton based on the procedure
used in the proof of Lemma 3.4.1.

for classes E ∈ R not appearing on the path. This process constructs an admissible

skeleton—all instances are unique and this process assumes no cardinality constraints

aside from those required by Definition 3.3.1. By construction, there exists an item

instance ij ∈ σ(Ij) such that [Ij, . . . , Ik]|ij 6= ∅. �

3.4 Intersection of Relational Paths

For a given base item class, it is common (depending on the schema) for distinct

relational paths to reach the same terminal item class. The following lemma states

that if two relational paths with the same base item and the same terminal item

differ at some point in the path, then for some relational skeleton and some base

item instance, their terminal sets will have a non-empty intersection. This property

is important to consider for relational d -separation.

Lemma 3.4.1 For two relational paths of arbitrary length from Ij to Ik that differ

in at least one item class, P1 = [Ij, . . . , Im, . . . , Ik] and P2 = [Ij, . . . , In, . . . , Ik] with

Im 6= In, there exists a skeleton σ ∈ ΣS such that P1|ij ∩P2|ij 6= ∅ for some ij ∈ σ(Ij).

Proof. Proof by construction. Let S be an arbitrary schema with two arbitrary

relational paths P1 = [Ij, . . . , Im, . . . , Ik] and P2 = [Ij, . . . , In, . . . , Ik] where Im 6= In.
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We will construct a skeleton σ ∈ ΣS such that the terminal sets for item ij ∈ σ(Ij)

along P1 and P2 have a non-empty intersection, that is, an item ik ∈ P1|ij ∩P2|ij 6= ∅

(roughly depicted in Figure 3.3). We use the following procedure to build σ:

1. Simultaneously traverse P1 and P2 from Ij until the paths diverge. For each

entity class E ∈ E reached, add a unique entity instance e to σ(E).

2. Simultaneously traverse P1 and P2 backwards from Ik until the paths diverge.

For each entity class E ∈ E reached, add a unique entity instance e to σ(E).

3. For the divergent subpaths of both P1 and P2, add unique entity instances for

each entity class E ∈ E .

4. Repeat 1–3 for relationship classes. For each R ∈ R reached, add a unique

relationship instance r connecting the entity instances from classes on P1 and

P2, and add unique entity instances for classes E ∈ R not appearing on P1 and

P2.

This process constructs an admissible skeleton—all instances are unique and this pro-

cess assumes no cardinality constraints aside from those required by Definition 3.3.1.

By construction, there exists an item ij ∈ σ(Ij) such that P1|ij ∩ P2|ij = {ik} 6= ∅. �

Example 3.4.1 Let P1 = [Employee, Develops, Product, Develops, Em-

ployee, Develops, Product], the terminal sets for which yield other products

developed by collaborating employees. Let P2 = [Employee, Develops, Prod-

uct, Funds, Business-Unit, Funds, Product], the terminal sets for which con-

sist of other products funded by the business units funding products developed by a

given employee. Intersection among terminal sets for these paths occurs even in the

small example skeleton. In fact, the intersection of the terminal sets for P1 and P2

is non-empty for all employees. For example, Paul: P1|Paul = {Adapter, Laptop}

and P2|Paul = {Adapter}; Quinn: P1|Quinn = {Tablet} and P2|Quinn = {Tablet,

Smartphone}. �
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3.5 Relational Variables, Dependencies, and Models

Given the definition for relational paths, it is simple to define relational variables

and their instances.

Definition 3.5.1 (Relational variable) A relational variable [Ij, ... , Ik].X consists

of a relational path [Ij, ... , Ik] and an attribute class X ∈ A(Ik).

As with relational paths, we refer to Ij as the perspective of the relational variable.

Relational variables are templates for sets of random variables (see Definition 3.5.2).

Sets of relational variables are the basis of relational d -separation queries, and con-

sequently they are also the nodes of the abstract representation that answers those

queries. There is an equivalent formulation in the PRM framework, although not ex-

plicitly named (they are simply denoted as attribute classes of K-related item classes

via slot chain K). As they are critical to relational d -separation, we provide this

concept with an explicit designation.

Example 3.5.1 Relational variables for the relational paths in Example 3.3.1 in-

clude intrinsic attributes, such as [Employee].Competence and [Employee].Salary,

and also attributes on related entity classes, such as

• [Employee, Develops, Product].Success,

• [Employee, Develops, Product, Funds, Business-Unit].Revenue, and

• [Employee, Develops, Product, Develops, Employee].Salary. �

Definition 3.5.2 (Relational variable instance) For skeleton σ ∈ ΣS and ij ∈

σ(Ij), a relational variable instance [Ij, ... , Ik].X|ij for relational variable [Ij, ... , Ik].X

is the set of random variables {ik.X | X∈A(Ik) ∧ ik∈ [Ij, ... , Ik]|ij ∧ ik∈σ(Ik)}.

To instantiate a relational variable [Ij, . . . , Ik].X for a specific base item instance

ij, we first find the terminal set of the underlying relational path [Ij, . . . , Ik]|ij and
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then take the X attributes of the Ik item instances in that terminal set. This produces

a set of random variables ik.X. These random variables also correspond to nodes in

the ground graph. As a notational convenience, if X is a set of relational variables,

all from a common perspective Ij, then we say that X|ij for some item ij ∈ σ(Ij) is

the union of all instantiations, {x | x∈X|ij ∧ X∈X}.

Example 3.5.2 Instantiating the relational variables from Example 3.5.1 with base

item instance Sally yields:

• [Employee].Competence|Sally = {Sally.Competence},

• [Employee, Develops, Product].Success|Sally =

{Laptop.Success, Tablet.Success},

• [Employee, Develops, Product, Funds, Business-Unit].Revenue|Sally =

{Devices.Revenue}, and

• [Employee, Develops, Product, Develops, Employee].Salary |Sally =

{Quinn.Salary, Thomas.Salary}. �

Given the definitions for relational variables, we can now define relational depen-

dencies.

Definition 3.5.3 (Relational dependency) A relational dependency

[Ij, ... , Ik].Y → [Ij].X is a directed probabilistic dependence from attribute class Y

to X through the relational path [Ij, ... , Ik].

Depending on the context, [Ij, . . . , Ik].Y and [Ij].X can be referred to as treatment

and outcome, cause and effect, or parent and child. A relational dependency consists of

two relational variables having a common perspective. The relational path of the child

is restricted to a single item class, ensuring that the terminal sets consist of a single

value. This is consistent with PRMs, except that we explicitly delineate dependencies
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DEVELOPS

PRODUCT

Success FUNDS

EMPLOYEE

Salary

Competence

BUSINESS-UNIT

Revenue

Budget

[PRODUCT, DEVELOPS, EMPLOYEE].Competence  [PRODUCT].Success

[BUSINESS-UNIT].Revenue  [BUSINESS-UNIT].Budget

[EMPLOYEE].Competence  [EMPLOYEE].Salary
[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Budget  [EMPLOYEE].Salary

[BUSINESS-UNIT, FUNDS, PRODUCT].Success  [BUSINESS-UNIT].Revenue

Figure 3.4: Example relational model. Employee competence causes the success of
products they develop, which in turn influences the revenue received by the business
unit funding the product. Additional dependencies involve the budget of business
units and employee salaries. The dependencies are specified by relational paths,
listed below the graphical model.

rather than define parent sets of relational variables. Note that relational variables

are not nodes in a relational model, but they form the space of parent variables for

relational dependencies. The relational path specification (before the attribute class

of the parent) is equivalent to a slot chain, as in PRMs, or the logical constraint on

a dependency, as in DAPER models.

Example 3.5.3 The dependencies in the relational model displayed in Figure 3.4

are: [Product, Develops, Employee].Competence→ [Product].Success (prod-

uct success is influenced by the competence of the employees developing the product),

[Employee].Competence→ [Employee].Salary (an employee’s competence affects

his or her salary), [Business-Unit, Funds, Product].Success → [Business-

Unit].Revenue (the success of the products funded by a business unit influences

the revenue of that unit), [Employee, Develops, Product, Funds, Business-

Unit].Budget → [Employee].Salary (employee salary is governed by the budget of

business units for which they develop products), and [Business-Unit].Revenue →

[Business-Unit].Budget (the revenue of a business unit influences its budget). �

We now have sufficient information to define relational models.
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Definition 3.5.4 (Relational model) A relational model MΘ has two parts:

1. The structure M = (S,D): a schema S paired with a set of relational depen-

dencies D defined over S.

2. The parameters Θ: a conditional probability distribution

P
(
[Ij].X | parents([Ij].X)

)

for each relational variable of the form [Ij].X, where Ij ∈ E ∪ R, X ∈ A(Ij)

and parents
(
[Ij].X

)
=
{

[Ij, . . . , Ik].Y | [Ij, . . . , Ik].Y → [Ij].X ∈ D
}

is the set

of parent relational variables.

The structure of a relational model can be represented graphically by superim-

posing dependencies on the ER diagram of a relational schema (see Figure 3.4 for an

example). A relational dependency of the form [Ij, . . . , Ik].Y → [Ij].X is depicted as

a directed arrow from attribute class Y to X with the specification listed separately.

Note that the subset of relational variables with singleton paths [I].X in the definition

corresponds to the set of attribute classes in the schema.

A common technique in relational learning is to use aggregation functions to trans-

form parent multi-sets to single values within the conditional probability distributions.

Typically, aggregation functions are simple, such as mean or mode, but they can be

complex, such as those based on vector distance or object identifiers, as in the ACORA

system [129]. Complementary to aggregation, we can also define combining rules, such

as noisy-or, as a method to combine multiple dependencies into a single conditional

probability distribution [113]. We omit both aggregation functions and combining

rules from our model specification by assuming they are internal to the definition of

conditional probability distributions.

This definition of relational models is consistent with and yields structures ex-

pressible as DAPER models [62]. These relational models are also equivalent to

PRMs, but we extend slot chains as relational paths and provide a formal semantics
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Paul.Competence

Paul.Salary

Quinn.Competence

Quinn.Salary

Roger.Competence

Roger.Salary

Sally.Competence

Sally.Salary

Thomas.Competence

Thomas.Salary

Case.Success
Adapter.Success Laptop.Success

Tablet.Success

Smartphone.Success

Accessories.Revenue

Accessories.Budget

Devices.Revenue

Devices.Budget

Figure 3.5: Example fragment of a ground graph. The success of product Laptop is
influenced by the competence of Roger, Sally, and Quinn. The revenue of business
unit Devices is caused by the success of all its funded products—Laptop, Tablet, and
Smartphone.

for their instantiation. These models are also more general than plate models because

dependencies can be specified with arbitrary relational paths as opposed to simple

intersections among plates [17, 58].

3.6 Ground Graphs

Just as the relational schema is a template for skeletons, the structure of a rela-

tional model can be viewed as a template for ground graphs: dependencies applied

to skeletons.

Definition 3.6.1 (Ground graph) The ground graph GGMσ = (V,E) for rela-

tional model structure M = (S,D) and skeleton σ ∈ ΣS is a directed graph with

nodes V =
{
i.X | I ∈ E ∪ R ∧ X ∈ A(I) ∧ i ∈ σ(I)

}
and edges E =

{
ik.Y →

ij.X | ik.Y, ij.X∈V ∧ ik.Y ∈ [Ij, . . . , Ik].Y |ij ∧ [Ij, . . . , Ik].Y → [Ij].X∈D
}

.

A ground graph is a directed graph with (1) a node (random variable) for each

attribute of every entity and relationship instance in a skeleton and (2) an edge from

ik.Y to ij.X if they belong to the parent and child relational variable instances,

respectively, of some dependency in the model. The concept of a ground graph

appears for any type of relational model, graphical or logic-based. For example,
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PRMs produce “ground Bayesian networks” that are structurally equivalent to ground

graphs, and Markov logic networks yield ground Markov networks by applying all

formulas to a set of constants [143]. The example ground graph shown in Figure 3.5

is the result of applying the dependencies in the relational model shown in Figure 3.4

to the skeleton in Figure 3.2.

Similar to Bayesian networks, given the parameters of a relational model, a pa-

rameterized ground graph can express a joint distribution that factors as a product

of the conditional distributions:

P (GGMΘσ) =
∏

I∈E∪R

∏

X∈A(I)

∏

i∈σ(I)

P
(
i.X | parents(i.X)

)

where each i.X is assigned the conditional distribution defined for [I].X (a process

referred to as parameter-tying).

Relational models only define coherent joint probability distributions if they pro-

duce acyclic ground graphs. A useful construct for checking model acyclicity is the

class dependency graph [53], defined as:

Definition 3.6.2 (Class dependency graph) The class dependency graph GM =

(V,E) for relational model structure M = (S,D) is a directed graph with a node

for each attribute of every item class V =
{
I.X | I ∈ E ∪ R ∧ X ∈ A(I)

}
and

edges between pairs of attributes supported by relational dependencies in the model

E =
{
Ik.Y → Ij.X | [Ij, . . . , Ik].Y → [Ij].X∈D

}
.

If the relational dependencies form an acyclic class dependency graph, then every

possible ground graph of that model is acyclic as well [53]. Given an acyclic relational

model, the ground graph has the same semantics as a Bayesian network [52, 62]. All

future references to acyclic relational models refer to relational models whose structure

forms acyclic class dependency graphs.
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By Lemma 3.4.1 and Definition 3.6.1, one relational dependency may imply de-

pendence between the instances of many relational variables. If there is an edge from

ik.Y to ij.X in the ground graph, then there is an implied dependency between all

relational variables for which ik.Y and ij.X are elements of their instances.

Example 3.6.1 The dependency [Employee].Competence→ [Employee].Salary

yields Roger.Competence → Roger.Salary in the ground graph of Figure 3.5 because

Roger.Competence ∈ [Employee].Competence|Roger. However, Roger.Competence

∈ [Employee, Develops, Product, Develops, Employee].Competence|Sally

(as is Roger.Salary, replacing Competence with Salary). Consequently, the rela-

tional dependency implies dependence among the random variables in the instances

of [Employee, Develops, Product, Develops, Employee].Competence and

[Employee, Develops, Product, Develops, Employee].Salary. �

These implied dependencies form the crux of the challenge of identifying indepen-

dence in relational models. Additionally, the intersection between the terminal sets

of two relational paths is crucial for reasoning about independence because a random

variable can belong to the instances of more than one relational variable. Since d -

separation only guarantees independence when there are no d -connecting paths, we

must consider all possible paths between pairs of random variables, either of which

may be a member of multiple relational variable instances. In Chapter 4, we define re-

lational d -separation and provide an appropriate representation, the abstract ground

graph, that enables straightforward reasoning about d -separation.

3.7 Bridge Burning Semantics

In this section, we provide an example to show that the bridge burning semantics

for terminal sets of relational paths yields a strictly more expressive class of rela-

tional models than semantics without bridge burning. The bridge burning semantics
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produces terminal sets that are necessarily subsets of terminal sets which would oth-

erwise be produced without bridge burning. Paradoxically, this enables a superset of

relational models.

(1)

A B

X Y

(2) [B,A, B, A].X → [B].Y
[B,A].X → [B].Y

(a) Relational model

A1

A3

A2

B1

B3

B2

(b) Relational skeleton

X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

(1)

Bridge burning

No bridge burning

X1 Y1

X2 Y2

X3 Y3

(2) (1) & (2)

X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

Identical to

(c) Ground graphs

Figure 3.6: Example demonstrating that bridge burning semantics yields a more ex-
pressive class of models than semantics without bridge burning. (a) Relational model
over a schema with two entity classes and two attributes with two possible relational
dependencies (relationship class omitted for simplicity). (b) Simple relational skele-
ton with three A and three B instances. (c) Bridge burning semantics yields three
possible ground graphs with combinations of dependencies (1) and (2), whereas no
bridge burning yields two possible ground graphs. The bridge burning ground graphs
subsume the ground graphs without bridge burning.

Recall Definition 3.3.2 for the terminal set for a relational path. The final condi-

tion in the inductive definition (ik /∈ [I1, . . . , Ij]|i1 for j = 1 to k − 1) encodes bridge

burning. The item ik is only added to the terminal set if it is not a member of

55



the terminal set of any previous subpath. For example, let P be the relational path

[Employee, Develops, Product, Develops, Employee]. This relational path

produces terminal sets that include the employees that work on the same products

(that is, co-workers). Instantiating this path with the employee Quinn, P |Quinn, pro-

duces the terminal set {Paul, Roger, Sally}. Since Quinn ∈ [Employee]|Quinn, the

bridge burning semantics excludes Quinn from this set. This makes intuitive sense as

well—Quinn should not be considered her own colleague.

A relational model is simply a collection of relational dependencies. Each rela-

tional dependency is primarily described by the relational path of the parent relational

variable (because, for canonically specified dependencies, the relational path of the

child consists of a single item class). The relational path specification is used in

the construction of ground graphs, connecting variable instances that appear in the

terminal sets of the parent and child relational variables.

To characterize the expressiveness of relational models, we can inspect the space of

representable ground graphs by choosing an arbitrary relational skeleton and a small

set of relational dependencies. We show with a simple example that the bridge burning

semantics for a model over a two-entity, bivariate schema yields more possible ground

graphs than without bridge burning. (We omit the relationship class for simplicity.)

In Figure 3.6(a), we present such a model with two possible relational dependencies

labeled (1) and (2). Figure 3.6(b) provides a simple relational skeleton involving

three A and three B instances (relationship instances are represented as dashed lines

for simplicity). As shown in Figure 3.6(c), the bridge burning semantics leads to

three possible ground graphs, one for each combination of the dependencies (1), (2),

and both (1) and (2) together. Without bridge burning, only two ground graphs

are possible because dependency (2) completely subsumes dependency (1) with those

semantics.
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This example generalizes to arbitrary dependencies. The terminal sets of relational

paths that repeat item classes subsume subpaths under the semantics without bridge

burning. This leads to fewer possible relational models, which justifies our choice of

semantics for terminal sets of relational paths.

3.8 Related Representations

To compare the class of relational models considered in this chapter, we examine

four sets of related representations. First, we revisit Bayesian networks and describe

them as a proper subset of relational models. The second set of model classes consists

of those that are effectively subsumed in their expressive power. The third set of model

classes consists of those belonging to the statistical relational learning community,

with similar expressive power to our model class. Finally, we describe an approach

that reduces the expressiveness of a relational representation down to a propositional

setting via a process referred to as flattening or propositionalization.

3.8.1 Bayesian networks

Relational representations are strictly more expressive than the propositional rep-

resentation used in Bayesian network modeling [120].6 As described in Section 2.1,

Bayesian networks form the basis for much of the fundamental research on causal

reasoning and discovery [122, 172]. Bayesian networks describe domains from the

perspective of a single entity class; thus, they can only produce schemas with |E| = 1

(one entity class) and |R| = 0 (no relationship classes). The variables on the entity,

however, can include propositionalized variables from the perspective of the given

entity, as we describe below in Section 3.8.4.

6This reflects traditional Bayesian networks that model propositional data. Other generalizations
of Bayesian networks, such as dynamic Bayesian networks, can model sequential and temporal data
for which the IID assumption does not hold (e.g., hidden Markov networks and two-slice temporal
Bayesian networks) [112].
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The relational skeleton of a Bayesian network consists of a set of disconnected

entity instances, all drawn from the same entity class. Consequently, the skeleton has

a simple one-to-one mapping with the representation as a table: Each entity instance

corresponds to a single row, and each variable is a column. In the organization ex-

ample with E = {Employee}, each employee would be an entity instance, and no

instances of other entity types or relationships would appear in the skeleton. Because

all variables in a Bayesian network are defined for a single entity class with no rela-

tionships, the relational path specification becomes trivial and, hence, implicit. All

relational paths, relational variables, and relational dependencies are defined from a

single perspective with singleton paths (e.g., [Employee]). The ground graph of a

Bayesian network, similar to the skeleton, has a very regular structure. The ground

graph consists of a set of identical copies of the model structure, one for each instance

in the skeleton. For a Bayesian network, d -separation can be applied directly to the

model structure because there is no variability in its ground graphs (in contrast to

relational models, as we show in Chapter 4).

3.8.2 Subsumed model representations

This thesis focuses on a broad class of models that generalizes various other ap-

proaches, mostly drawn from statistics, to modeling conditional and joint distributions

over data. The expressive power of these other models is mostly subsumed by the

relational models we consider.

The primary advantage of multilevel, hierarchical, and random effects models is

to relax this assumption of a single entity class [51, 67, 169]. Most applications

of multilevel models are usually restricted to simple relational models that involve a

hierarchy of types. For example, an education domain may consist of districts, schools,

classrooms, and students. A multilevel model can include variables of entities higher

in the hierarchy that may have effects on variables of entities lower down (e.g., school-
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level variables, such as teacher quality and academic climate, correlate with student-

level variables, such as achievement and demographics, as presented in the study by

Lee and Bryk [93]). In contrast to Bayesian networks and relational models, the focus

of multilevel models is to model a conditional probability distribution rather than a

joint distribution. These models are commonly restricted to linear parameterizations,

but they can be extended to non-linear functional forms.

There has also been growing attention to models that relax the stable unit-

treatment value assumption (SUTVA), incorporating interference or spillover effects

[148, 70, 179, 15, 103, 186]. These models relax the assumption of instance indepen-

dence in domains where it is known that the treatment of one instance may affect

the outcome of another—a scenario typically prohibited in the potential-outcome

framework—to estimate an unbiased average treatment effect [150, 65]. For exam-

ple, in epidemiology studies, vaccinating one individual may have indirect effects on

unvaccinated individuals that come in contact with the vaccinated individual. [190]

Many applications involving interference models focus on the conditional distribution

of outcome given treatment, covariates, and the treatment on other instances that

may affect a particular unit. These types of models are relational in that they consist

of a single entity class and, usually, a single self-relationship (e.g., social networks of

individuals).

Finally, there are explicit models of network data, such as the p1 model [66] and

p∗ or exponential random graph models (ERGMs) [41, 147]. These are generally

models of a unipartite graph with a single entity type and one relationship type. The

central aim of these models is to capture the evolution of network structure, modeling

the existence of links between nodes. ERGMs are useful for describing models that

can produce certain network properties, such as degree distributions and clustering

coefficients. However, they are now commonly extended to model directed graphs,

bipartite networks, homophily of node attributes, and various dependence structures.

59



The causal interpretation of existence is still in flux (see Section 3.9), which is the

primary reason why our class of models does not currently include dependencies

involving existence.

Each of these models assumes a fixed relational schema, whereas for relational

models in general, the goal is to represent arbitrary probabilistic dependencies among

variables of heterogeneous, interacting entities. In the following section, we discuss

various alternatives that provide similar expressive power.

3.8.3 Similar model representations

Many researchers have focused on modeling relational domains, and consequently,

there are numerous alternative representations. This thesis focuses on directed,

acyclic, graphical models for two main reasons: (1) to facilitate an extension to

the graphical criterion of d -separation in order to reason about conditional indepen-

dence and (2) to represent and learn causal structure. We have already stated that

our model class is most similar to PRMs and DAPER models. In this section, we

describe models with similar expressive power.

Probabilistic first-order logic models can express the model class we described in

the preceding sections. However, we found it simpler to define and prove relevant

theoretical properties for relational d -separation in a representation most similar to

Bayesian networks (see Chapter 4). Examples of first-order logic models include

Bayesian logic programs [81], parametrized Bayesian networks [134], Bayesian logic

[109], multi-entity Bayesian networks [89], and relational probability models [151].

The results in this thesis could feasibly generalize to these representations.

Although undirected models can encode the same set of conditional independencies

as a directed model (through a process known as “moralization”), they are unable to

represent causal dependencies, which are directed by defintion. Therefore, we exclude

models such as relational Markov networks [177] and Markov logic networks [143] from

60



our consideration. The results on relational d -separation could be transferred to these

representations, but algorithms for learning causal structure are not applicable.

There are certainly useful aspects to these representations (otherwise there would

not be sustained research in this area). As we describe in Section 3.9, reasonable fu-

ture directions include adapting some of these features for reasoning and learning. For

a more complete survey that contrasts the subtle differences among these relational

representations, see the taxonomy presented by Milch and Russell [110].

3.8.4 Propositionalizing relational data

Most techniques in classical statistics and machine learning operate over a single

data table, often referred to as propositional data. There have been two main, com-

peting approaches to model the relational data described in this chapter: (1) develop

new algorithms to handle the increased representational complexity or (2) transform

the data into a single table and rely on existing algorithms. The latter approach

involves a process called propositionalization, which flattens relational data into a

propositional representation [87].

Propositionalization is the process of projecting a set of tables (typically one for

each entity and relationship type) down to a single data table. This procedure is

defined with respect to a single perspective—one of the original entity or relation-

ship types—from which the other tables are summarized. The additional constructed

features are meant to capture relational aspects of the data, placing the complexity

on transformation rather than on learning. Propositionalization creates all variables

ahead of time, decoupling feature construction from learning, as opposed to dynami-

cally generating variables as in most relational learning algorithms.

There are many different approaches and systems for propositionalization, but

they can be generally divided into three classes: (1) those constructing Boolean

clauses over related concepts as typically used in the inductive logic programming
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SELECT t1.id, t1.salary, t2.success, t3.revenue

FROM ( SELECT E.id, E.salary

FROM Employee E) t1,

( SELECT E.id, P.success

FROM Employee E, Develops D, Product P

WHERE E.id = D.e id AND D.p id = P.id) t2,

( SELECT E.id, B.revenue

FROM Employee E, Develops D, Product P

Funds F, Business-Unit B

WHERE E.id = D.e id AND D.p id = P.id AND

P.id = F.p id AND F.b id = B.id) t3

WHERE t1.id = t2.id AND t2.id = t3.id

Figure 3.7: Sketch of a relational database query that joins the instances of
three relational variables having the common perspective Employee used to pro-
duce the data instances shown in Table 3.1. The three relational variables are
(1) [Employee].Salary, (2) [Employee, Develops, Product].Success, and (3)
[Employee, Develops, Product, Funds, Business-Unit].Revenue.

(ILP) community (e.g., LINUS [91], RSD [92]), (2) those using database aggregations

over sets of related values as used in the knowledge discovery in databases (KDD)

community (e.g., ACORA [129]), and (3) those characterized by both (e.g., Relaggs

[88]). Rattigan [139] formalizes propositionalization as a graph sampling procedure

operating over ground graphs.

For the organization domain example, consider data about only employees (E =

{Employee}). Variables would include intrinsic attributes, such as salary, but could

also include variables describing other related entities, all from the employee perspec-

tive. That is, we could construct a single table for employees that includes columns

for the success of developed products, the revenue of all business units they work

under, etc. In Figure 3.7, we show an example SQL-like query that would produce

such data, and the resulting data set applied to the example in Figure 3.2 is shown

in Table 3.1.7

7Modeling propositionalized data with Bayesian networks still requires the IID assumption, which
is often violated since variables of one instance can influence variables of another. For example, ac-
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Employee [Employee].Salary [Employee,
Develops,
Product].Success

[Employee, Develops,
Product, Funds, Bus-
iness-Unit].Revenue

Paul {Paul.Salary} {Case.Success} {Accessories.Revenue}
Quinn {Quinn.Salary} {Case.Success,

Adapter.Success,
Laptop.Success}

{Accessories.Revenue,
Devices.Revenue}

Roger {Roger.Salary} {Laptop.Success} {Devices.Revenue}
Sally {Sally.Salary} {Laptop.Success,

Tablet.Success}
{Devices.Revenue}

Thomas {Thomas.Salary} {Tablet.Success,
Smartphone.Success}

{Devices.Revenue}

Table 3.1: Propositional table consisting of employees, their salaries, the success of
products they develop, and the revenue of the business units they operate under.
Producing this table requires joining the instances of three relational variables, all
from a common perspective—Employee.

Historically, there has been a debate surrounding the efficacy of propositionaliza-

tion. The disadvantages focus on statistical concerns, including the prevalence of au-

tocorrelation [76, 80] and degree disparity bias [77], both of which can increase Type I

errors. (Alternative tests that avoid such bias are discussed by Rattigan and Jensen

[140].) The advantages center around not needing to develop new algorithms given the

vast number of deployed propositional learning algorithms. Flattening data invari-

ably leads to some loss of the relational information, but it is generally assumed that

predictive accuracy—a common measure for tasks involving propositionalization—

achieves equivalent levels of performance. However, the accuracy varies depending on

the propositionalization approach.

While statistical issues can also lead to serious causal concerns (e.g., statistical

conclusion validity [160]), there are other potential problems with propositionalization

for causal discovery rather than prediction. In a prior paper, we outline four such

cording to the model in Figure 3.4, the competence of collaborating employees influences the success
of products, which affects the revenue of business units, which affects its budget, thereby influencing
an employee’s salary. As a result, modeling relational data with a propositional representation may
unnecessarily lose valuable information, especially in the context of causal reasoning and accurate
estimation of causal effects.
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issues that can occur when reasoning about causality in the absence of statistical

errors [98]. These problems include (1) unnecessarily creating latent variables and

violating causal sufficiency, (2) inducing selection bias via relationship existence, (3)

violating the causal Markov condition by deriving multiple variables from the same

underlying relational variable, and (4) not specifying certain acyclicity constraints.

3.9 Model Assumptions and Related Work

The class of relational models considered in this thesis, while strictly more ex-

pressive than Bayesian networks, has limitations in its current formalization. In this

section, we highlight these assumptions and discuss how related and future work could

address them.

3.9.1 Self-relationships

Self-relationships are relationship classes that involve the same entity class more

than once. Relational schemas, as defined in Definition 3.2.1, can express these types

of relationships. Only the definition of relational paths—which govern the space of

variables and dependencies—requires unique entity class names within [E,R,E] triples

(see condition (2) of Definition 3.3.1). However, a common procedure in entity-

relationship modeling is to map entity names to unique role indicators within the

context of a self-relationship, such as manager/subordinate, friend1/friend2, or citing-

paper/cited-paper [136]. This approach does not duplicate entity instances in the

skeleton or ground graph; it only modifies their reference names within the relational

path, requiring extended semantics for terminal sets. Incorporating self-relationships

is a straightforward extension, but for simplicity, we omit this additional layer of

complexity.
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3.9.2 Relational autocorrelation

In contrast to self-relationships, relational autocorrelation is a statistical depen-

dency among the values of the same attribute class frequently found in relational

data sets [76]. Various models and learning algorithms have been developed to cap-

ture these types of dependencies, such as RDNs [117], PBNs with an extended normal

form [156], and PRMs with dependencies that follow guaranteed acyclic relationships

[53]. Our formalism, and equivalently PRMs (without guaranteed acyclic relation-

ships), can represent a class of models for apparent autocorrelation. Any relational

dependency that yields a common cause for grounded variables of the same attribute

class—essentially any dependency that crosses a many cardinality—produces rela-

tional autocorrelation. The only autocorrelations not accounted for involve latent

causes or those produced by temporal processes (e.g., feedback).

3.9.3 Context-specific independence

Context-specific independence (CSI) introduces independence of some variable

and its parents, depending on the values of other variables. This can be achieved

within the specification of conditional probability distributions as if-then-else state-

ments of logical conditions, such as in DAPER models [62] or RPMs [151], encoded

as regularities in conditional probability tables [14], or represented with the recent

graphical convention of gates [111]. However, this introduces a notion of indepen-

dence that cannot be inferred from model structure via traditional d -separation.

Thus far, there have been two extensions to d -separation that support reasoning

about CSIs: (1) Boutilier et al. [14] use d -separation on a manipulated Bayesian net-

work by deleting certain dependencies given some context, and (2) Winn [193] adds

rules to d -separation to reason over additional paths that are introduced by gates.

An alternative and more general approach to encoding CSIs is to develop an ontology

for which (in)dependencies hold depending on the type of entity or relationship. For
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example, PRMs with class hierarchies allow a hierarchy of entity types where the de-

pendency structure can vary depending on the type [55]. Rules of inheritance derived

from object-oriented programming are used to define a coherent joint probability dis-

tribution. This aligns with our formalism, as relational schemas can be viewed as an

ontology defined at a particular level. However, the semantics of d -separation under

inheritance has not been developed and is a profitable direction of future research.

3.9.4 Causes of entity and relationship existence

Without a generative model of relational skeletons, the relational models are not

truly generative as the skeleton must be generated prior to the attributes. However,

the same issue occurs for Bayesian networks: Relational skeletons consist of discon-

nected entity instances, but the model does not specify how many instances to create.

Some relational model classes do attempt to learn and represent unknown numbers

of entity instances, such as Blog [109], or uncertain relationship instances, such

as PRMs with existence uncertainty [54]. However, reasoning about the connection

between conditional independence and existence is an open problem. For relation-

ship existence, selection bias (conditioning) occurs when testing marginal dependence

between variables across a particular relationship [102]. For entity existence, some

researchers argue that existence cannot be represented as a variable or predicate [135],

while others represent them as predicates [89]. Therefore, we currently choose sim-

ple processes for generating skeletons, allowing us to focus on relational models of

attributes and leaving structural causes and effects as future work.

3.9.5 Causal sufficiency

The relational models we consider assume that all common causes of observed

variables are also observed and included in the model—an assumption commonly re-

ferred to as causal sufficiency. Many researchers have developed methods for learning

and inference by explicitly modeling unobserved variables—typically termed latent
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variable models [11]—or inferring the presence of latent entity classes—for example,

latent group models [116]. However, only ancestral graphs, acyclic directed mixed

graphs (ADMGs), and summary graphs do so in order to preserve an underlying

conditional independence structure [144, 146, 192]. These models are paired with

the theory of m-separation, which is a generalization of d -separation for Bayesian

networks. The generalization of ancestral graphs, ADMGs, or summary graphs to

relational models requires extensive theoretical exploration; therefore, we leave this

as an important direction for future work. Given that a primary motivation for d -

separation is to support constraint-based causal discovery, any relational extension

to algorithms that learn causal models without assuming causal sufficiency, such as

FCI [173, 198] and its variants [24, 27], MBCS* [128], and BCCD [25], would require

such an extension to m-separation.

3.9.6 Temporal and cyclic models

Currently, the relational model is assumed to be acyclic (with respect to the

class dependency graph), and consequently, atemporal. Model-level cycles typically

result from temporal processes for which grounding across time would yield an acyclic

ground graph, such as in dynamic Bayesian networks [36, 112]. However, cycles

can also be due to temporal processes where the interaction occurs at a faster rate

than measurement. As a result, there has been considerable attention devoted to

models that explicitly encode cyclic dependencies, such as the work by Spirtes [171],

Pearl and Dechter [126], Richardson [145], Dash [33], Schmidt and Murphy [155], and

Hyttinen et al. [72]. Our formalism currently prohibits any relational dependency

that has a common attribute class for the cause and effect, regardless of the relational

path constraint. Relaxing this assumption would require either explicitly modeling

temporal dynamics or enabling feedback loops. We reserve temporal dynamics and

feedback as another important avenue for future research.
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3.10 Concluding Remarks

Despite the limitations described in Section 3.9, we characterized a highly ex-

pressive class of models in this chapter. The relational models we consider strictly

generalize Bayesian networks to capture multiple types of entities, the relationships

among them, and the probabilistic dependencies among their attributes. This model

class is suitable for representing relational causal dependencies under the same as-

sumptions used to interpret Bayesian networks causally.

While this relational model class is very similar to PRMs, we formalized certain

aspects that will be useful in the subsequent chapters on reasoning and learning.

Aside from modifying the syntax of slot chains to relational paths (and proving their

sound and complete characterization), we developed a formal semantics for instan-

tiating relational paths and relational variables. We introduced new terms for their

instantiated sets, as these sets are critical for reasoning about instance-level paths

of dependence and for proving theoretical properties of our approach in the follow-

ing chapters. We also showed the conditions under which intersections may occur

between pairs of relational variables and showed that our bridge burning semantics

introduces a more expressive space of models than its absence.

The next chapter presents a graphical and algorithmic approach for deriving con-

ditional independencies from relational models analogous to traditional d -separation

for Bayesian networks. Even though the current chapter is classified as “representa-

tion,” our approach to solving relational d -separation in the next chapter relies on a

new representation called the abstract ground graph.
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CHAPTER 4

REASONING

The ability to reason about which conditional independencies hold for a given

model is fundamental to identifying causal effects and supporting constraint-based

causal discovery algorithms. As described in Section 2.2.2, the theory of d -separation

provides graphical rules that can algorithmically derive all conditional independence

facts that hold in distributions represented by a Bayesian network. In this chapter,

we show that d -separation may not correctly infer conditional independence when

applied directly to the graphical structure of a relational model.1

We introduce the notion of relational d-separation—a graphical criterion for deriv-

ing conditional independence facts from relational models—and define its semantics

to be consistent with traditional d -separation (i.e., it claims independence only when

it is guaranteed to hold for all model instantiations). We present an alternative,

lifted representation—the abstract ground graph—that enables an algorithm for de-

riving conditional independence facts from relational models. We show that this

approach is sound, complete, and computationally efficient, and we provide an em-

pirical demonstration of effectiveness across synthetic causal structures of relational

domains.

The main contributions presented in this chapter are:

• A formal definition of d -separation for relational models that is analogous to

d -separation for Bayesian networks (Section 4.3)

1Portions of this chapter are drawn from Maier et al. [100] with contributions from Katerina
Marazopoulou.
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• The abstract ground graph—a lifted representation that abstracts all possible

ground graphs of a given relational model structure, as well as proofs of the

soundness and completeness of this abstraction (Section 4.4)

• Proofs of soundness and completeness for a method that answers relational d -

separation queries in the limit (Section 4.5), as well as for finite bounds on the

length of relational paths (Section 4.6)

We also provide an empirical comparison of relational d -separation to traditional

d -separation applied directly to relational model structure, showing that, not only

would most queries be undefined, but those that can be represented yield an incorrect

judgment of conditional independence up to 50% of the time (Section 4.7). Finally, we

offer additional empirical results on synthetic data that demonstrate the effectiveness

of relational d -separation with respect to complexity and consistency (Section 4.8). In

Chapter 5, we introduce a sound and complete algorithm for learning causal structure

from relational data that is supported entirely by the theoretical foundation presented

herein.

4.1 Example

Consider a corporate analyst who was hired to identify which employees are ef-

fective and productive for some organization. If the company is structured as a

pure project-based organization (for which company personnel are structured around

projects, not departments), the analyst may collect data as described by the relational

schema underlying the model in Figure 4.1. The schema denotes that employees can

collaborate and work on multiple products, each of which is funded by a specific

business unit. The analyst has also obtained attributes on each entity—competence

of employees, the success of each product, and the revenue of business units. The

relational skeleton in Figure 3.2, which describes an organization with five employees,

five products, and two business units, is consistent with this schema.
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DEVELOPS

PRODUCT

Success FUNDS

EMPLOYEE

Competence

BUSINESS-UNIT

Revenue

⊥⊥Competence Revenue }| { Success

Figure 4.1: A simple relational model for the organization domain that produces
an incorrect judgment about conditional independence when d -separation is applied
to the model structure. This model näıvely claims that employee competence is
independent of business unit revenue conditioned on product success.

Assume that the organization operates under the model depicted in Figure 4.1 (a

subset of the dependencies of the model in Figure 3.4). Under this model, the success

of a product depends on the competence of employees that develop it, and the revenue

of a business unit is influenced by the success of products that it funds. If this were

known by the analyst (who happens to have experience in graphical models), then it

would be conceivable to spot-check the model and test whether some of the conditional

independencies encoded by the model are reflected in the data. The analyst thus

näıvely applies d -separation to the model structure in an attempt to derive conditional

independencies to test. However, applying d -separation directly to the structure of

relational models may not correctly derive conditional independencies, violating the

Markov condition. If the analyst were to discover significant and substantive effects,

he may believe the model structure is incorrect and needlessly search for alternative

dependencies to explain these effects.

Näıvely applying d -separation to the model in Figure 4.1 suggests that employee

competence is conditionally independent of the revenue of business units given the

success of products:

Employee.Competence ⊥⊥ Business-Unit.Revenue | Product.Success

To see why this approach is flawed, we must consider the ground graph. A necessary

precondition for inference is to apply a model to a data instantiation, which yields
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Competence

Competence

Tablet

⊥⊥Roger.Competence Devices.Revenue }| { Laptop.Success

Figure 4.2: A fragment of the ground graph that illustrates a relationally d -
connecting path (highlighted with bold arrows). When conditioning on Lap-
top.Success, Roger.Competence remains dependent on Devices.Revenue because of
a path through Sally.Competence and Tablet.Success.

a ground graph to which d -separation can be applied (ground graphs were described

in Section 3.6). For a Bayesian network, a ground graph consists of replicates of

the model structure for each data instance. In contrast, a relational model defines a

template for how dependencies apply to a data instantiation, resulting in a ground

graph with varying structure.

Using the relevant subset of the ground graph from Figure 3.5, we can see that,

for a single employee, simply conditioning on the success of developed products can

activate a path through the competence of other employees who develop the same

products—we call this a relationally d-connecting path.2 For example, Roger’s com-

petence remains d -connected with Device’s revenue when conditioning solely on the

2The indirect effect attributed to a relationally d -connecting path is often referred to as inter-
ference, a spillover effect, or a violation of the stable unit treatment value assumption (SUTVA)
because the treatment of one instance (employee competence) affects the outcome of another (the
revenue of another employee’s business unit).
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success of Laptops (see Figure 4.2). Checking d -separation on the ground graph in-

dicates that to d -separate an employee’s competence from the revenue of funding

business units, we should not only condition on the success of developed products,

but also on the competence of other employees who work on those products (e.g.,

Roger.Competence ⊥⊥ Devices.Revenue | {Laptop.Success, Sally.Competence}).

This example also demonstrates that the Markov condition can be violated when

d -separation is directly applied to the structure of a relational model. In this case,

the Markov condition according to the model structure in Figure 4.1 implies that

P (Competence, Revenue | Success) =

P (Competence | Success)P (Revenue | Success),

that revenue is independent of its non-descendants (competence) given its parents

(success). However, the ground graph shows the opposite, for example,

P (Roger.Competence, Devices.Revenue | Laptop.Success) 6=

P (Roger.Competence |Laptop.Success) P (Devices.Revenue | Laptop.Success).

In fact, for this model, d -separation produces many other incorrect judgments of

conditional independence. Through simulation, we found that only 25% of the pairs

of variables can even be described by direct inspection of this model structure, and

of those (such as the above example), 75% yield an incorrect conclusion. This is a

single data point of a larger empirical evaluation presented in Section 4.7. Those

results provide quantitative details of how often to expect traditional d -separation to

fail when applied to the structure of relational models.

4.2 Semantics and Alternatives

The example in Section 4.1 provides a useful basis to describe the semantics im-

posed by relational d -separation and the characteristics of our approach. There are

two primary concepts:
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(1) All-ground-graphs semantics : It might appear that, since the standard rules

of d -separation apply to Bayesian networks and the ground graphs of relational mod-

els are also Bayesian networks, that applying d -separation to relational models is

a non-issue. However, applying d -separation to a single ground graph may result

in potentially unbounded runtime if the instantiation is large (i.e., since relational

databases can be arbitrarily large). Further, and more importantly, the semantics of

d -separation require that conditional independencies hold across all possible model

instantiations. Although d -separation can apply directly to a ground graph, these

semantics prohibit reasoning about a single ground graph.

The conditional independence facts derived from d -separation hold for all distribu-

tions represented by a Bayesian network. Analogously, the implications of relational

d -separation should hold for all distributions represented by a relational model. It

is simple to show that these implications hold for all ground graphs of a Bayesian

network—every ground graph consists of a set of disconnected subgraphs, each of

which has a structure that is identical to that of the model. However, the set of dis-

tributions represented by a relational model depends on both the relational skeleton

(constrained by the schema) and the model parameters. That is, the ground graphs

of relational models vary with the structure of the underlying relational skeleton (e.g.,

different products are developed by varying numbers of employees). As a result, an-

swering relational d -separation queries requires reasoning without respect to ground

graphs.

(2) Perspective-based analysis : Relational models make explicit one implicit choice

underlying nearly any form of data analysis. This choice—what we refer to here as

a perspective—concerns the selection of a particular unit or subject of analysis. For

example, in the social sciences, a commonly used acronym is UTOS, for framing an

analysis by choosing a unit, treatment, outcome, and setting. Any method, such as

Bayesian network modeling, that assumes IID data makes the implicit assumption
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that the attributes on data instances correspond to attributes of a single unit or per-

spective. In the example, we targeted a specific conditional independence regarding

employee instances (as opposed to products or business units).

The concept of perspectives is not new, but it is central to statistical relational

learning because relational data sets may be heterogeneous, involving instances that

refer to multiple, distinct perspectives. The inductive logic programming commu-

nity has discussed individual-centered representations [40], and many approaches to

propositionalizing relational data have been developed to enforce a single perspective

to rely on existing propositional learning algorithms (see Section 3.8.4). An alterna-

tive strategy is to explicitly acknowledge the presence of multiple perspectives and

learn jointly among them. This approach underlies many algorithms that learn the

types of probabilistic models of relational data applicable in this work, e.g., learning

the structure of probabilistic relational models [43], relational dependency networks

[117], or parametrized Bayesian networks [156].

Often, data sets are derivative, leading to little or no choice about which perspec-

tives to analyze. However, for relational domains, from which these data sets are

derived, it is assumed that there are multiple perspectives, and we can dynamically

analyze different perspectives. In the example, we chose the employee perspective,

and the analysis focused on the dependence between an employee’s competence and

the revenue of business units that fund developed products. However, if the question

were posed from the perspective of business units, then we could conceivably condition

on the success of products for each business unit. In this scenario, reasoning about

d -separation at the model level would lead to a correct conditional independence

statement. Some (though fairly infrequent) d -separation queries produce accurate

conditional independence facts when applied to relational model structure (see Sec-

tion 4.7). However, the model is often unknown, a perspective may be chosen a priori,

and a theory that is occasionally correct is clearly undesirable. Additionally, to sup-
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port constraint-based learning algorithms, it is important to reason about conditional

independence implications from different perspectives.

One plausible alternative approach would be to answer d -separation queries by

ignoring perspectives and considering just the attribute classes (i.e., reason about

Competence and Revenue given Success). However, it remains to define explicit

semantics for grounding and evaluating the query based on the relational skeleton.

There are at least three options:

• Construct three sets of variables, including all instances of competence, rev-

enue, and success variables : Although the ground graph has the semantics of a

Bayesian network, there is only a single ground graph—one data sample [195].

Consequently, this analysis would be statistically meaningless. Having a single

data sample is the primary reason why relational learning algorithms dynami-

cally generate propositional data for each instance of a given perspective.

• Test the Cartesian product of competence and revenue variables, conditioned on

all success variables : Testing all pairs invariably leads to independence. More-

over, these semantics are incoherent; only reachable pairs of variables should be

compared. For propositional data, variable pairs are constructed by choosing

attribute values, e.g., height and weight, within an individual. The same is

true for relational data: Only choose the success of products for employees that

actually develop them, following the underlying relational connections.

• Test relationally connected pairs of competence and revenue variables, condi-

tioned on all success variables : Again, this appears plausible based on tra-

ditional d -separation, but every instance in the table conditions on the same

set of success values. Therefore, this is akin to not conditioning because the

conditioning variable is a constant.
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Employee's competence Success of products developed by an employee Revenue of business units that fund products developed by an employee

Success of other products funded by business units that fund products developed by an employee

Success of other products developed by co-workers

Co-workers' competence

Success of other products developed by co-workers

 
�

Success of other products funded by business units that fund products developed by an employee

Figure 4.3: Example abstract ground graph from the perspective of employees. Nodes
are labeled with their intuitive meaning.

We argue that the desired semantics are essentially the explicit semantics of

perspective-based queries. Therefore, we advocate perspective-based analysis as the

only statistically and semantically meaningful approach for relational data and mod-

els.

Our approach to answering relational d -separation queries incorporates the two

aforementioned semantics. In Section 4.4, we describe a new, lifted representation—

the abstract ground graph—that is provably sound and complete in its abstraction

of all ground graphs for a given relational model. As their name suggests, abstract

ground graphs abstract all ground graphs of a relational model, representing any

potential relationally d -connecting path (recall the example d -connecting path that

only manifests in the ground graph). A relational model has a corresponding set of

abstract ground graphs, one for each perspective (i.e., entity or relationship class in

its underlying schema), and can be used to reason about relational d -separation with

respect to any given perspective. Figure 4.3 shows a fragment of an abstract ground

graph from the employee perspective for the model in Figure 4.1. For this example,

the nodes are depicted with their intuitive meaning rather than their actual syntax.

Representational details and accompanying theory are presented in Section 4.4.
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4.3 Relational d-separation

Conditional independence facts are correctly entailed by the rules of d -separation,

but only when applied to the graphical structure of Bayesian networks. Every ground

graph of a Bayesian network consists of a set of identical copies of the model structure.

Thus, the implications of d -separation on Bayesian networks hold for all instances in

every ground graph. In contrast, the structure of a relational model is a template

for ground graphs, and the structure of a ground graph varies with the underlying

skeleton (which is typically more complex than a set of disconnected instances). Con-

ditional independence facts are only useful when they hold across all ground graphs

that are consistent with the model, which leads to the following definition:

Definition 4.3.1 (Relational d-separation) Let X, Y, and Z be three distinct

sets of relational variables with the same perspective B ∈ E∪R defined over relational

schema S. Then, for relational model structure M, X and Y are d -separated by Z

if and only if, for all skeletons σ ∈ ΣS , X|b and Y|b are d -separated by Z|b in ground

graph GGMσ for all b ∈ σ(B).

For any relational d -separation query, it is necessary that all relational variables in

X, Y, and Z have the same perspective (otherwise, the query would be incoherent).3

For X and Y to be d -separated by Z in relational model structure M, d -separation

must hold for all instantiations of those relational variables for all possible skeletons.

This is a conservative definition, but it is consistent with the semantics of d -separation

on Bayesian networks—it guarantees independence, but it does not guarantee depen-

dence. If there exists even one skeleton and faithful distribution represented by the

relational model for which X ⊥⊥/ Y | Z, then X and Y are not d -separated by Z.

3This trivially holds for d -separation in Bayesian networks as all “propositional” variables have
the same implicit perspective.
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Given the semantics specified in Definition 4.3.1, answering relational d -separation

queries is challenging for several reasons:

D-separation must hold over all ground graphs : The implications of d -separation

on Bayesian networks hold for all possible ground graphs. However, the ground graphs

of a Bayesian network consist of identical copies of the structure of the model, and it

is sufficient to reason about d -separation on a single subgraph. Although it is possible

to verify d -separation on a single ground graph of a relational model, the conclusion

may not generalize, and ground graphs can be arbitrarily large.

Relational models are templates : The structure of a relational model is a directed

acyclic graph, but the dependencies are actually templates for constructing ground

graphs. The rules of d -separation do not directly apply to relational models, only

to their ground graphs. Applying the rules of d -separation to a relational model

frequently leads to incorrect conclusions because of unrepresented d -connecting paths

that are only manifest in ground graphs.

Instances of relational variables may intersect : The instances of two different

relational variables may have non-empty intersections, as described by Lemma 3.4.1.

These intersections may be involved in relationally d -connecting paths, as in the

example in Section 4.1. As a result, a sound and complete approach to answering

relational d -separation queries must account for these paths.

Relational models may be specified from multiple perspectives : Relational mod-

els are defined by relational dependencies, each specified from a single perspective.

However, variables in a ground graph may contribute to multiple relational variable

instances, each defined from a different perspective. Thus, reasoning about implied

dependencies between arbitrary relational variables, such as the one described in Ex-

ample 3.6.1, requires a method to translate dependencies across perspectives.

79



4.4 Abstract Ground Graphs

The definition of relational d -separation and its challenges suggest a solution

that abstracts over all possible ground graphs and explicitly represents the poten-

tial intersection between pairs of relational variable instances. We introduce a new

lifted representation, called the abstract ground graph, that captures all dependencies

among arbitrary relational variables for all ground graphs, using knowledge of only

the schema and the model. To represent all dependencies, the construction of an ab-

stract ground graph uses the extend method, which maps a relational dependency to

a set of implied dependencies for different perspectives. Each abstract ground graph

of a relational model is defined with respect to a given perspective and can be used

to reason about relational d -separation queries for that perspective.

Definition 4.4.1 (Abstract ground graph) An abstract ground graph AGGMB =

(V,E) for relational model structure M = (S,D) and perspective B ∈ E ∪ R is a

directed graph that abstracts the dependencies D for all ground graphs GGMσ, where

σ ∈ ΣS .

The set of nodes in AGGMB is V = RV ∪ IV , where

• RV is the set of all relational variables of the form [B, . . . , Ij].X

• IV is the set of all pairs of relational variables that could have non-empty

intersections (referred to as intersection variables):

{
RV1 ∩ RV2 | RV1,RV2∈RV ∧ RV1 = [B, . . . , Ik, . . . , Ij].X

∧ RV2 = [B, . . . , Il, . . . , Ij].X ∧ Ik 6= Il
}

The set of edges in AGGMB is E = RVE ∪ IVE , where
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• RVE ⊂ RV × RV is the set of edges between pairs of relational variables:

RVE =
{

[B, . . . , Ik].Y → [B, . . . , Ij].X | [Ij, . . . , Ik].Y → [Ij].X ∈ D ∧

[B, . . . , Ik] ∈ extend([B, . . . , Ij], [Ij, . . . , Ik])
}

• IVE ⊂ IV ×RV ∪ RV × IV is the set of edges inherited from both relational

variables involved in every intersection variable in IV :

IVE =
{
Ŷ → [B, . . . , Ij].X | Ŷ = P1.Y ∩ P2.Y ∈ IV ∧

(P1.Y → [B, . . . , Ij].X ∈ RVE ∨

P2.Y → [B, . . . , Ij].X ∈ RVE )
}

⋃

{
[B, . . . , Ik].Y → X̂ | X̂ = P1.X ∩ P2.X ∈ IV ∧

([B, . . . , Ik].Y → P1.X ∈ RVE ∨

[B, . . . , Ik].Y → P2.X ∈ RVE )
}

The extend method is described in Section 4.4.1. Essentially, the construction of

an abstract ground graph for relational model structureM and perspective B ∈ E∪R

follows three simple steps: (1) Add a node for all relational variables from perspective

B.4 (2) Insert edges for the direct causes of every relational variable by translating

the dependencies in D using extend. (3) For each pair of potentially intersecting

relational variables, create a new node that inherits the direct causes and effects from

both participating relational variables in the intersection. Then, to answer queries of

the form “Are X and Y d -separated by Z?”, simply (1) augment X, Y, and Z with

their corresponding intersection variables that they subsume and (2) apply the rules
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of d -separation on the abstract ground graph for the common perspective of X, Y,

and Z. Since abstract ground graphs are defined from a specific perspective, every

relational model produces a set of abstract ground graphs, one for each perspective in

its underlying schema.

Example 4.4.1 Figure 4.4 shows the abstract ground graph AGGM,Employee for the

organization example from the Employee perspective with hop threshold h = 6. As

in Section 4.1, we derive an appropriate conditioning set Z in order to d -separate in-

dividual employee competence (X = {[Employee].Competence}) from the revenue

of the employee’s funding business units (Y = {[Employee, Develops, Prod-

uct, Funds, Business-Unit].Revenue}). Applying the rules of d -separation to

the abstract ground graph, we see that it is necessary to condition on both product

success ([Employee, Develops, Product].Success) and the competence of other

employees developing the same products ([Employee, Develops, Product, De-

velops, Employee].Competence). For h = 6, augmenting X, Y, and Z with their

corresponding intersection variables does not result in any changes. For h = 8, the

abstract ground graph includes a node for relational variable [Employee, Devel-

ops, Product, Develops, Employee, Develops, Product, Funds, Business-

Unit].Revenue (the revenue of the business units funding the other products of

collaborating employees) which, by Lemma 3.4.1, could have a non-empty intersec-

tion with [Employee, Develops, Product, Funds, Business-Unit].Revenue.

Therefore, Y would also include the intersection with this other relational variable.

However, for this query, the conditioning set Z for h = 6 happens to also d -separate

at h = 8 (and any h ∈ N0). �

4In theory, abstract ground graphs can have an infinite number of nodes as relational paths may
have no bound. In practice, a hop threshold h ∈ N0 is enforced to limit the length of these paths.
Hops are defined as the number of times the path “hops” between item classes in the schema, or
one less than the length of the path.
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[EMPLOYEE].Competence [EMPLOYEE, DEVELOPS, PRODUCT].Success [EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT, FUNDS, PRODUCT].Success

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE, DEVELOPS, PRODUCT].Success

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE].Competence

[EMPLOYEE, DEVELOPS, PRODUCT, DEVELOPS, EMPLOYEE, DEVELOPS, PRODUCT].Success
 
�

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT, FUNDS, PRODUCT].Success

Figure 4.4: The abstract ground graph for the organization domain model in Fig-
ure 4.1 from the Employee perspective with hop threshold h = 6. This abstract
ground graph includes one intersection node.

Using the algorithm devised by Geiger et al. [49], relational d -separation queries

can be answered in O(|E|) time with respect to the number of edges in the abstract

ground graph. In practice, the size of an abstract ground graph depends on properties

of the relational schema and model (e.g., the number of entity classes, the types of

cardinalities, the number of dependencies—see the experiment in Section 4.8.1), as

well as the hop threshold limiting the length of relational paths. For the example

in Figure 4.4, the abstract ground graph has 7 nodes and 7 edges (including 1 in-

tersection node with 2 edges); for h = 8, it has 13 nodes and 21 edges (including

4 intersection nodes with 13 edges). Abstract ground graphs are invariant to the

size of ground graphs, even though ground graphs can be arbitrarily large—that is,

relational databases have no maximum size.

4.4.1 Inserting edges in abstract ground graphs: The extend method

Internal to the construction of abstract ground graphs is the extend method, which

we now formally define. At a high level, this method translates dependencies specified

in a relational model into dependencies in its abstract ground graphs.

Definition 4.4.2 (Extending relational paths) Let Porig and Pext be two rela-

tional paths for schema S. The following three functions extend Porig with Pext :
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extend(Porig , Pext) =
{
P =P 1,no−i+1

orig +P i+1,ne
ext | i∈pivots(reverse(Porig), Pext) ∧

isValid(P )
}

pivots(P1, P2) = {i | P 1,i
1 = P 1,i

2 }

isValid(P ) =





True if P does not violate Definition 3.3.1

False otherwise

where no is the length of Porig ; ne is the length of Pext ; P
i,j corresponds to 1-based

i-inclusive, j-inclusive subpath indexing; + is concatenation of paths; and reverse is

a method that reverses the order of the path.

The extend method constructs a set of valid relational paths from two input re-

lational paths. It first finds the indices (called pivots) of the item classes for which

the input paths (reverse(Porig) and Pext) have a common starting subpath. Then,

it concatenates the two input paths at each pivot, removing one of the duplicated

subpaths (see Example 4.4.2). Since d -separation requires blocking all paths of de-

pendence between two sets of variables, the extend method is critical to ensure the

soundness and completeness of our approach. The abstract ground graph must cap-

ture all paths of dependence among the random variables in the relational variable

instances for all represented ground graphs. However, relational model structures are

specified by relational dependencies, each from a given perspective and with outcomes

that have singleton relational paths. The extend method is called repeatedly during

the creation of an abstract ground graph, with Porig set to some relational path and

Pext drawn from the relational path of the treatment in some relational dependency.

Example 4.4.2 During construction of the abstract ground graph AGGM,Employee

depicted in Figure 4.4, the extend method is called several times. First, all relational

variables from the Employee perspective are added as nodes. Next, extend inserts
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Porig Pext
i1 ikim

im'

ij

I1 IkIm

Im

Ij

Figure 4.5: Example construction of a relational skeleton for two relational paths
Porig = [I1, . . . , Im . . . , Ij] and Pext = [Ij, . . . , Im . . . , Ik], where item class Im is re-
peated between Im and Ij. This construction is used within the proof of Lemma 4.4.1.

edges corresponding to direct causes. Consider the node for [Employee, Develops,

Product].Success. The construction of AGGM,Employee calls extend(Porig , Pext)

with Porig = [Employee, Develops, Product] and Pext = [Product, De-

velops, Employee] because [Product, Develops, Employee].Competence→

[Product].Success ∈ D. Here, extend(Porig , Pext) = {[Employee], [Employee,

Develops, Product, Develops, Employee]}, which leads to the insertion of two

edges in the abstract ground graph. Note that pivots(reverse(Porig), Pext) = {1, 2, 3},

and the pivot at i = 2 yields the invalid relational path [Employee, Develops,

Employee]. �

4.4.2 Theoretical properties of the extend method

We also describe two important properties of the extend method with the fol-

lowing two lemmas. The first lemma states that every relational path produced by

extend yields a terminal set for some skeleton such that there is an item instance also

reachable by the two original paths. This lemma is useful for proving the soundness of

our abstraction: All edges inserted in an abstract ground graph correspond to edges

in some ground graph.

Lemma 4.4.1 Let Porig = [I1, . . . , Ij] and Pext = [Ij, . . . , Ik] be two relational paths

with P = extend(Porig , Pext). Then, ∀P ∈ P there exists a relational skeleton σ ∈ ΣS

such that ∃i1 ∈ σ(I1) such that ∃ik ∈ P |i1 and ∃ij ∈ Porig |i1 such that ik ∈ Pext |ij .
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Proof. Let P ∈ P be an arbitrary valid relational path, where P = P 1,no−c+1
orig +P c+1,ne

ext

for pivot c. There are two subcases:

(a) c = 1 and P = [I1, . . . , Ij, . . . , Ik]. This subcase holds generally for any

skeleton. Proof by contradiction. Let σ be an arbitrary skeleton, choose i1 ∈ σ(I1)

arbitrarily, and choose ik ∈ P |i1 arbitrarily. Assume for contradiction that there is

no ij in the terminal set Porig |i1 such that ik would be in the terminal set Pext |ij ;

that is, ∀ij ∈ Porig |i1 ik /∈ Pext |ij . Since P = [I1, . . . , Ij, . . . , Ik], we know that ik is

reached by traversing σ from i1 via some ij to ik. But the traversal from i1 to ij

implies that ij ∈ [I1, . . . , Ij]|i1 = Porig |i1 , and the traversal from ij to ik implies that

ik ∈ [Ij, . . . , Ik]|ij = Pext |ij . Therefore, there must exist an ij ∈ Porig |i1 such that

ik ∈ Pext |ij .

(b) c > 1 and P = [I1, . . . , Im, . . . , Ik]. Proof by construction. We build a rela-

tional skeleton σ following the same procedure as outlined in the proof of Lemma 3.4.1.

Add instances to σ for every item class that appears on Porig and Pext . Since

P = [I1, . . . , Im, . . . , Ik], we know that ik is reached by traversing σ from i1 via

some im to ik. By case (a), ∃im ∈ [I1, . . . , Im]|i1 such that ik ∈ [Im, . . . , Ik]|im . We

then must show that there exists an ij ∈ [Im, . . . , Ij]|im with im ∈ [Ij, . . . , Im]|ij . But

constructing the skeleton with unique item instances for every appearance of an item

class on the relational paths provides this and does not violate any cardinality con-

straints. If any item class appears more than once, then the bridge burning semantics

are induced. However, adding an additional item instance for every reappearance of

an item class enables the traversal from ij to im and vice versa. An example of this

construction is displayed in Figure 4.5. This is also a valid relational skeleton because

Porig and Pext are valid relational paths, and by definition, the cardinality constraints

of the schema permit multiple instances in the skeleton of any repeated item class.

By this procedure, we show that there exists a skeleton σ such that there exists an

ij ∈ Porig|i1 such that ik ∈ Pext|ij . �
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I1

Im

Ik

Ij

Il

In

Porig
P'orig

Pext

I1

Im

Ik

Ij

In
Pext

Figure 4.6: Schematic of the relational paths expected in Lemma 4.4.2. If item
ik is unreachable via extend(Porig , Pext), then there must exist a P ′orig of the form
[I1, . . . , Im, . . . , In, . . . , Ij].

Example 4.4.3 Let σ be the skeleton shown in Figure 3.2, let Porig = [Employee,

Develops, Product], let Pext = [Product, Develops, Employee], and let i1 =

Sally ∈ σ(Employee). From Example 4.4.2, we know that P = extend(Porig , Pext) =

{[Employee], [Employee, Develops, Product, Develops, Employee]}. We

also have [Employee]|Sally = {Sally} and [Employee, Develops, Product, De-

velops, Employee]|Sally = {Quinn, Roger, Thomas}. By Lemma 4.4.1, there

should exist an ij ∈ Porig |i1 such that Sally and at least one of Quinn, Roger, and

Thomas are in the terminal set Pext |ij . We have Porig |Sally = {Laptop, Tablet}, and

Pext |Laptop = {Quinn, Roger, Sally} and Pext |Tablet = {Sally, Thomas}. So, the lemma

clearly holds for this example. �

Lemma 4.4.1 guarantees that, for some relational skeleton, there exists an item

instance in the terminal sets produced by extend that also appears in the terminal

set of Pext via some instance in the terminal set of Porig . It is also possible (although

infrequent) that there exist items reachable by Porig and Pext that are not in the termi-

nal set of any path produced with extend(Porig , Pext). The following lemma describes

this unreachable set of items, stating that there must exist an alternative relational

path P ′orig that intersects with Porig and, when using extend, catches those remaining

items. This lemma is important for proving the completeness of our abstraction: All

edges in all ground graphs are represented in the abstract ground graph.
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Lemma 4.4.2 Let σ ∈ ΣS be a relational skeleton, and let Porig = [I1, . . . , Ij] and

Pext = [Ij, . . . , Ik] be two relational paths with P = extend(Porig , Pext). Then, ∀i1 ∈

σ(I1) ∀ij ∈Porig |i1 ∀ik ∈Pext |ij if ∀P ∈ P ik /∈ P |i1, then ∃P ′orig such that Porig |i1 ∩

P ′orig |i1 6= ∅ and ik ∈ P ′|i1 for some P ′ ∈ extend(P ′orig , Pext).

Proof. Proof by construction. Let i1 ∈ σ(I1), ij ∈ Porig |i1 , and ik ∈ Pext |ij be

arbitrary instances such that ik /∈ P |i1 for all P ∈ P.

Since ij ∈ Porig |i1 and ik ∈ Pext |ij , but ik /∈ P |i1 , there exists no pivot that yields a

common subsequence in Porig and Pext that produces a path in extend that can reach

ik. Let the first divergent item class along the reverse of Porig be Il and along Pext

be In. The two paths must not only diverge, but they also necessarily reconverge at

least once. If Porig and Pext do not reconverge, then there are no reoccurrences of an

item class along any P ∈ P that would restrict the inclusion of ik in some terminal

set P |i1 . The sole reason that ik /∈ P |i1 for all P ∈ P is the bridge burning semantics

specified in Definition 3.3.2.

Without loss of generality, assume Porig and Pext reconverge once, at item class

Im. So, Porig = [I1, . . . , Im, . . . , Il, . . . , Ij] and Pext = [Ij, . . . , In, . . . , Im, . . . , Ik] with

Il 6= In, as depicted in Figure 4.6. Let P ′orig = [I1, . . . , Im, . . . , In, . . . , Ij], which is a

valid relational path because [I1, . . . , Im] is a subpath of Porig and [Im, . . . , In, . . . , Ij]

is a subpath of Pext .

By construction, ij is in the intersection: ij ∈ Porig |i1 ∩ P ′orig |i1 . If P ′ =

[I1, . . . , Im, . . . , Ik] ∈ extend(P ′orig , Pext) with pivot at Im, then ik ∈ P ′|i1 . �

Example 4.4.4 Although Lemma 4.4.2 does not apply to the organization domain

as currently represented, it could apply if either (1) there were cycles in the relational

schema or (2) the path specifications on the relational dependencies included a cycle.

Consider additional relationships between employees and products. If employees could

be involved with products at various stages (e.g., research, development, testing,

marketing), then there would be alternative relational paths for which the lemma
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might apply. The proof of the lemma provides abstract conditions describing when

the lemma applies. �

4.5 Soundness and Completeness of Relational d-Separation

The correctness of our approach to relational d -separation relies on several facts:

(1) d -separation is valid for directed acyclic graphs; (2) ground graphs are directed

acyclic graphs; and (3) abstract ground graphs are directed acyclic graphs that rep-

resent exactly the edges that could appear in all possible ground graphs. It follows

that d -separation on abstract ground graphs, augmented by intersection variables, is

sound and complete for all ground graphs.5 Additionally, we show that since relational

d -separation is sound and complete, it is also equivalent to the Markov condition for

relational models. Using the previous definitions and lemmas, the following sequence

of results proves the correctness of our approach to identifying independence in rela-

tional models.

Theorem 4.5.1 The rules of d-separation are sound and complete for directed acyclic

graphs.

Proof. Due to Verma and Pearl [191] for soundness and Geiger and Pearl [47] for

completeness. �

Theorem 4.5.1 implies that (1) all conditional independence facts derived by d -

separation on a Bayesian network structure hold in any distribution represented by

that model (soundness) and (2) all conditional independence facts that hold in a

faithful distribution can be inferred from d -separation applied to the Bayesian network

that encodes the distribution (completeness).

5In Section 4.6, we provide proofs of soundness and completeness for abstract ground graphs and
relational d -separation, both of which are limited by practical hop threshold bounds.
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Lemma 4.5.1 For every acyclic relational model structure M and skeleton σ ∈ ΣS ,

the ground graph GGMσ is a directed acyclic graph.

Proof. Due to both Heckerman et al. [62] for DAPER models and Getoor [52] for

PRMs. �

By Theorem 4.5.1 and Lemma 4.5.1, d -separation is sound and complete when ap-

plied to a ground graph. However, Definition 4.3.1 states that relational d -separation

must hold across all possible ground graphs, which is the reason for constructing the

abstract ground graph representation.

Theorem 4.5.2 For every acyclic relational model structureM and perspective B ∈

E∪R, the abstract ground graph AGGMB is sound and complete for all ground graphs

GGMσ with skeleton σ ∈ ΣS .

Proof. Let M = (S,D) be an arbitrary acyclic relational model structure and let

B ∈ E ∪ R be an arbitrary perspective.

Soundness: To prove that AGGMB is sound, we must show that for every edge

Pk.X → Pj.Y in AGGMB, there exists a corresponding edge ik.X → ij.Y in the

ground graph GGMσ for some skeleton σ ∈ ΣS , where ik ∈ Pk|b and ij ∈ Pj|b for

some b ∈ σ(B). There are three subcases, one for each type of edge in an abstract

ground graph:

(a) Let [B, . . . , Ik].X → [B, . . . , Ij].Y ∈ RVE be an arbitrary edge in AGGMB

between a pair of relational variables. Assume for contradiction that there exists no

edge ik.X → ij.Y in any ground graph:

∀σ∈ΣS ∀b∈σ(B) ∀ik∈ [B, . . . , Ik]|b ∀ij∈ [B, . . . , Ij]|b
(
ik.X → ij.Y /∈GGMσ

)

By Definition 4.4.1 for abstract ground graphs, if [B, . . . , Ik].X → [B, . . . , Ij].Y ∈

RVE , then the model must have dependency [Ij, . . . , Ik].X → [Ij].Y ∈ D such

that [B, . . . , Ik] ∈ extend([B, . . . , Ij], [Ij, . . . , Ik]). So, by Definition 3.6.1 for ground
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graphs, there is an edge from every ik.X to every ij.Y , where ik is in the terminal set

for ij along [Ij, . . . , Ik]:

∀σ ∈ ΣS ∀ij ∈ σ(Ij) ∀ik ∈ [Ij, . . . , Ik]|ij
(
ik.X → ij.Y ∈ GGMσ

)

Since [B, . . . , Ik] ∈ extend([B, . . . , Ij], [Ij, . . . , Ik]), by Lemma 4.4.1 we know that

∃σ ∈ ΣS ∃b ∈ σ(B) ∃ik ∈ [B, . . . , Ik]|b ∃ij ∈ [B, . . . , Ij]|b
(
ik ∈ [Ij, . . . , Ik]|ij

)

Therefore, there exists a ground graph GGMσ such that ik.X → ij.Y ∈ GGMσ, which

contradicts the assumption.

(b) Let P1.X ∩P2.X → [B, . . . , Ij].Y ∈ IVE be an arbitrary edge in AGGMB be-

tween an intersection variable and a relational variable, where P1=[B, . . . , Im, . . . , Ik]

and P2 = [B, . . . , In, . . . , Ik] with Im 6= In. By Lemma 3.4.1, there exists a skeleton

σ ∈ ΣS and b ∈ σ(B) such that P1|b ∩ P2|b 6= ∅. Let ik ∈ P1|b ∩ P2|b and assume

for contradiction that for all ij ∈ [B, . . . , Ij]|b there is no edge ik.X → ij.Y in the

ground graph GGMσ. By Definition 4.4.1, if the abstract ground graph has edge

P1.X ∩ P2.X → [B, . . . , Ij].Y ∈ IVE , then either P1.X → [B, . . . , Ij].Y ∈ RVE

or P2.X → [B, . . . , Ij].Y ∈ RVE . Then, as shown in case (a), there exists an

ij ∈ [B, . . . , Ij]|b such that ik.X → ij.Y ∈ GGMσ, which contradicts the assump-

tion.

(c) Let [B, . . . , Ik].X → P1.Y ∩ P2.Y ∈ IVE be an arbitrary edge in AGGMB be-

tween a relational variable and an intersection variable, where P1 =[B, . . . , Im, . . . , Ij]

and P2 = [B, . . . , In, . . . , Ij] with Im 6= In. The proof follows case (b) to show that

there exists a skeleton σ ∈ ΣS and b ∈ σ(B) such that for all ik ∈ [B, . . . , Ik]|b there

exists an ij ∈ P1 ∩ P2|b such that ik.X → ij.Y ∈ GGMσ.

Completeness: To prove that the abstract ground graph AGGMB is complete,

we show that for every edge ik.X → ij.Y in every ground graph GGMσ where σ ∈ ΣS ,

there is a set of corresponding edges in AGGMB. Specifically, the edge ik.X → ij.Y

yields two sets of relational variables for some b ∈ σ(B), namely Pk.X = {Pk.X | ik ∈
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Pk|b} and Pj.Y = {Pj.Y | ij ∈ Pj|b}. Note that all relational variables in both

Pk.X and Pj.Y are nodes in AGGMB, as are all pairwise intersection variables:

∀Pk.X, P ′k.X ∈ Pk.X
(
Pk.X ∩ P ′k.X ∈ AGGMB

)
and ∀Pj.Y, P ′j .Y ∈ Pj.Y

(
Pj.Y ∩

P ′j .Y ∈ AGGMB

)
. We show that for all Pk.X ∈ Pk.X and for all Pj.Y ∈ Pj.Y

either (a) Pk.X → Pj.Y ∈ AGGMB, (b) Pk.X ∩ P ′k.X → Pj.Y ∈ AGGMB, where

P ′k.X ∈ Pk.X, or (c) Pk.X → Pj.Y ∩ P ′j .Y ∈ AGGMB, where P ′j .Y ∈ Pj.Y.

Let σ ∈ ΣS be an arbitrary skeleton, let ik.X → ij.Y ∈ GGMσ be an arbitrary

edge drawn from [Ij, . . . , Ik].X → [Ij].Y ∈ D, and let Pk.X ∈ Pk.X, Pj.Y ∈ Pj.Y be

an arbitrary pair of relational variables.

(a) If Pk ∈ extend(Pj, [Ij, . . . , Ik]), then Pk.X → Pj.Y ∈ AGGMB by Defini-

tion 4.4.1.

(b) If Pk /∈ extend(Pj, [Ij, . . . , Ik]), but ∃P ′k ∈ extend(Pj, [Ij, . . . , Ik]) such that

P ′k.X ∈ Pk.X, then P ′k.X → Pj.Y ∈ AGGMB, and Pk.X ∩ P ′k.X → Pj.Y ∈ AGGMB

by Definition 4.4.1.

(c) If ∀P ∈ extend(Pj, [Ij, . . . , Ik])
(
P.X /∈ Pk.X

)
, then by Lemma 4.4.2, ∃P ′j such

that ij ∈ P ′j|b and Pk ∈ extend(P ′j , [Ij, . . . , Ik]). Therefore, P ′j .Y ∈ Pj.Y, Pk.X →

P ′j .Y ∈ AGGMB, and Pk.X → P ′j .Y ∩ Pj.Y ∈ AGGMB by Definition 4.4.1. �

Theorem 4.5.2 guarantees that, for a given perspective, an abstract ground graph

captures all possible paths of dependence between any pair of variables in any ground

graph. The details of the proof provide the reasons why explicitly representing inter-

section variables is necessary for ensuring a sound and complete abstraction.

Theorem 4.5.3 For every acyclic relational model structureM and perspective B ∈

E ∪ R, the abstract ground graph AGGMB is directed and acyclic.

Proof. LetM be an arbitrary acyclic relational model structure, and let B ∈ E ∪R

be an arbitrary perspective. It is clear by Definition 4.4.1 that every edge in the

abstract ground graph AGGMB is directed by construction. All edges inserted in
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any abstract ground graph are drawn from the directed dependencies in a relational

model. Since M is acyclic, the class dependency graph GM is also acyclic by Defini-

tion 3.6.2. Assume for contradiction that there exists a cycle of length n in AGGMB

that contains both relational variables and intersection variables. By Definition 4.4.1,

all edges inserted in AGGMB are drawn from some dependency inM, even for nodes

corresponding to intersection variables. Retaining only the final item class in each

relational path for every node in the cycle will yield a cycle in GM by Definition 3.6.2.

Therefore, M could not have been acyclic, which contradicts the assumption. �

Theorem 4.5.3 ensures that the standard rules of d -separation can apply directly to

abstract ground graphs because they are acyclic given an acyclic model. We now have

sufficient supporting theory to prove that d -separation on abstract ground graphs is

sound and complete. In the following theorem, we define W̄ as the set of nodes aug-

mented with their corresponding intersection nodes for the set of relational variables

W: W̄ = W ∪ ⋃W∈W{W ∩W ′ | W ∩W ′ is an intersection node in AGGMB}.

Theorem 4.5.4 Relational d-separation is sound and complete for abstract ground

graphs. Let M be an acyclic relational model structure, and let X, Y, and Z be

three distinct sets of relational variables for perspective B ∈ E ∪ R defined over

relational schema S. Then, X̄ and Ȳ are d-separated by Z̄ on the abstract ground

graph AGGMB if and only if for all skeletons σ ∈ ΣS and for all b ∈ σ(B), X|b and

Y|b are d-separated by Z|b in ground graph GGMσ.

Proof. We must show that d -separation on an abstract ground graph implies d -

separation on all ground graphs it represents (soundness) and that d -separation facts

that hold across all ground graphs are also entailed by d -separation on the abstract

ground graph (completeness).

Soundness: Assume that X̄ and Ȳ are d -separated by Z̄ on AGGMB. Assume

for contradiction that there exists an item instance b ∈ σ(B) such that X|b and Y|b
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are not d -separated by Z|b in the ground graph GGMσ for some arbitrary skeleton

σ. Then, there must exist a d -connecting path p from some x ∈ X|b to some y ∈ Y|b
given all z ∈ Z|b. By Theorem 4.5.2, AGGMB is complete, so all edges in GGMσ are

captured by edges in AGGMB. So, path p must be represented from some node in

{Nx | x ∈ Nx|b} to some node in {Ny | y ∈ Ny|b}, where Nx, Ny are nodes in AGGMB.

If p is d -connecting in GGMσ, then it is d -connecting in AGGMB, implying that X̄

and Ȳ are not d -separated by Z̄. So, X|b and Y|b must be d -separated by Z|b.

Completeness: Assume that X|b and Y|b are d -separated by Z|b in the ground

graph GGMσ for all skeletons σ for all b ∈ σ(B). Assume for contradiction that X̄

and Ȳ are not d -separated by Z̄ on AGGMB. Then, there must exist a d -connecting

path p for some relational variable X ∈ X̄ to some Y ∈ Ȳ given all Z ∈ Z̄. By

Theorem 4.5.2, AGGMB is sound, so every edge in AGGMB must correspond to

some pair of variables in some ground graph. So, if p is d -connecting in AGGMB,

then there must exist some skeleton σ such that p is d -connecting in GGMσ for some

b ∈ σ(B), implying that d -separation does not hold for that ground graph. So, X̄

and Ȳ must be d -separated by Z̄ on AGGMB. �

Theorem 4.5.4 proves that d -separation on abstract ground graphs is a sound and

complete solution to identifying independence in relational models. Theorem 4.5.1

also implies that the set of conditional independence facts derived from abstract

ground graphs is exactly the same as the set of conditional independencies that all

distributions represented by all possible ground graphs have in common.

Corollary 4.5.1 X̄ and Ȳ are d-connected given Z̄ on the abstract ground graph

AGGMB if and only if there exists a skeleton σ ∈ ΣS and an item instance b ∈ σ(B)

such that X|b and Y|b are d-connected given Z|b in ground graph GGMσ.

Corollary 4.5.1 is logically equivalent to Theorem 4.5.4. While a simple re-

statement of the previous theorem, it is important to emphasize that relational d -
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separation claims d -connection if and only if there exists a ground graph for which

X|b and Y |b are d -connected given Z|b. This implies that there may be some ground

graphs for which X|b and Y |b are d -separated by Z|b, but the abstract ground graph

still claims d -connection. This may happen if the relational skeleton does not enable

certain underlying relational connections. For example, if the relational skeleton in

Figure 3.2 included only products that were developed by a single employee, then

there would be no relationally d -connecting path in the example in Section 4.1. If

this is a fundamental property of the domain (e.g., there are products developed by

a single employee and products developed by multiple employees), then revising the

underlying schema to include two different classes of products would yield a more

accurate model, implying a larger set of conditional independencies.

Additionally, we can show that relational d -separation is equivalent to the Markov

condition on relational models.

Definition 4.5.1 (Relational Markov condition) Let X be a relational variable

for perspective B ∈ E ∪ R defined over relational schema S. Let nd(X) be the

non-descendant variables of X, and let pa(X) be the set of parent variables of X.

Then, for relational modelMΘ, P
(
X | nd(X), pa(X)

)
= P

(
X | pa(X)

)
if and only if

∀x∈X|b P
(
x | nd(x), pa(x)

)
= P

(
x | pa(x)

)
in parameterized ground graph GGMΘσ

for all skeletons σ ∈ ΣS and for all b ∈ σ(B).

In other words, a relational variable X is independent of its non-descendants given

its parents if and only if, for all possible parameterized ground graphs, the Markov

condition holds for all instances of X. For Bayesian networks, the Markov condition is

equivalent to d -separation [115]. Because parameterized ground graphs are Bayesian

networks (implied by Lemma 4.5.1) and relational d -separation on abstract ground

graphs is sound and complete (by Theorem 4.5.4), we can conclude that relational

d -separation is equivalent to the relational Markov condition.
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4.6 Hop Thresholds

For practical implementations, the size of the abstract ground graphs should be

limited by a domain-specific threshold. In this section, we examine the effect of

choosing a particular hop threshold (i.e., a singular hop threshold for all relational

paths that are represented in an abstract ground graph).

First, we introduce the notion of (B, h)-reachability, which describes the conditions

under which an edge in a ground graph is represented in an abstract ground graph.

Definition 4.6.1 ((B, h)-reachability) Let GGMσ be the ground graph for some

relational model structure M and skeleton σ ∈ ΣS . Then, ik.X → ij.Y ∈ GGMσ

is (B, h)-reachable for perspective B and hop threshold h if there exist relational

variables Pk.X = [B, . . . , Ik].X and Pj.Y = [B, . . . , Ij].Y such that length(Pk) ≤ h+1,

length(Pj) ≤ h+1, and there exists an instance b ∈ σ(B) with ik ∈ Pk|b and ij ∈ Pj|b.

In other words, the edge ik.X → ij.Y in the ground graph is (B, h)-reachable if

an instance of the base item b ∈ σ(B) can reach ik and ij in at most h hops.

Example 4.6.1 Consider the ground graph shown in Figure 3.5. Let perspec-

tive B be Employee, and let the hop threshold h = 6. Let ik.X → ij.Y be

the edge Laptop.Success → Devices.Revenue in the ground graph. This edge is

(B, h)-reachable because of the following: Set Pk.X = [Employee, Develops,

Product].Success , Pj.Y = [Employee, Develops, Product, Funds, Business-

Unit].Revenue, and let b = Sally ∈ σ(Employee). We have length(Pk) = 3 < 7,

length(Pj) = 5 < 7, Laptop ∈ Pk|Sally, and Devices ∈ Pj|Sally. �

Since Definition 4.6.1 pertains to edges reachable via a particular perspective B

and hop threshold h, it relates to the reachability of edges in abstract ground graphs.

We denote abstract ground graphs for perspective B, limited by a hop threshold h as

AGGMBh. Definition 4.6.1 implies that (1) for every edge in ground graph GGMσ,
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we can derive a set of abstract ground graphs for which that edge is (B, h)-reachable,

and (2) for every abstract ground graph AGGMBh, we can derive the set of (B, h)-

reachable edges for a given ground graph. Given (B, h)-reachability, we can now

express the soundness and completeness of abstract ground graphs.

Theorem 4.6.1 For every acyclic relational model structure M, perspective B ∈

E ∪ R, and hop threshold ha ∈ N0, the abstract ground graph AGGMBha is sound up

to hop threshold ha for all ground graphs GGMσ with skeleton σ ∈ ΣS .

Proof. Soundness means that for every edge [B, . . . , Ij].X → [B, . . . , Ik].Y in the

abstract ground graph AGGMBha , there exists a skeleton σ ∈ ΣS , a base item instance

b ∈ σ(B), an instance ij ∈ [B, . . . , Ij]|b, and an instance ik ∈ [B, . . . , Ik]|b such that

ij.X → ik.Y is a (B, ha)-reachable edge in GGMσ. The proof is identical to the proof

of soundness for Theorem 4.5.2. �

Theorem 4.6.2 For every acyclic relational model structure M, perspective B ∈

E ∪ R, and hop threshold hr ∈ N0, the abstract ground graph AGGMBha is complete

up to hop threshold hr for all ground graphs GGMσ with skeleton σ ∈ ΣS , where

ha = max(hr + hm, hr + 2hm − 2) and hm is the maximum number of hops for a

dependency in M.

Proof. Let M = (S,D) be an arbitrary acyclic relational model structure, let B ∈

E ∪ R be an arbitrary perspective, and let hr ∈ N0 be an arbitrary hop threshold.

To prove that the abstract ground graph AGGMBha is complete up to hop thresh-

old hr, we show that for every (B, hr)-reachable edge ik.X → ij.Y in every ground

graph GGMσ with σ ∈ ΣS , there is a set of corresponding edges in AGGMBha . Specif-

ically, the (B, hr)-reachable edge ik.X → ij.Y yields two sets of relational variables

for some b ∈ σ(B), namely Pk.X = {Pk.X | ik ∈ Pk|b ∧ length(Pk) ≤ hr + 1} and

Pj.Y = {Pj.Y | ij ∈ Pj|b ∧ length(Pj) ≤ hr + 1}, by Definition 4.6.1. Note that all
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relational variables in both Pk.X and Pj.Y are nodes in AGGMBha . We show that

for all Pk.X ∈Pk.X and for all Pj.Y ∈Pj.Y either (a) Pk.X → Pj.Y ∈ AGGMBha ,

(b) Pk.X ∩ P ′k.X → Pj.Y ∈ AGGMBha or Pk.X ∩ P ′k.X → P ′j .Y ∈ AGGMBha ,

where ik ∈ P ′k|b and ij ∈ P ′j|b, or (c) Pk.X → Pj.Y ∩ P ′j .Y ∈ AGGMBha or

P ′k.X → Pj.Y ∩ P ′j .Y ∈ AGGMBha , where ik ∈ P ′k|b and ij ∈ P ′j|b.

Let σ ∈ ΣS be an arbitrary skeleton, let ik.X → ij.Y ∈ GGMσ be an arbitrary

(B, hr)-reachable edge drawn from [Ij, ... , Ik].X→ [Ij].Y ∈ D where length([Ij, ... , Ik])

≤ hm + 1, and let Pk.X ∈ Pk.X, Pj.Y ∈ Pj.Y be an arbitrary pair of relational

variables. There are three cases:

(a) Pk ∈ extend(Pj, [Ij, . . . , Ik]). Then, length(Pk) ≤ (hr + 1) + (hm + 1) − 1 =

hr + hm + 1 ≤ ha + 1. Therefore, Pk.X is a node in the abstract ground graph, and

Pk.X → Pj.Y ∈ AGGMBha by Definition 4.4.1.

(b) Pk /∈ extend(Pj, [Ij, . . . , Ik]), but ∃P ′k ∈ extend(Pj, [Ij, . . . , Ik]) such that ik ∈

P ′k|b. Then, length(P ′k) ≤ (hr+1)+(hm+1)−1 = hr+hm+1 ≤ ha+1. Therefore, P ′k is

a node in the abstract ground graph, P ′k.X → Pj.Y ∈ AGGMBha , and Pk.X∩P ′k.X →

Pj.Y ∈ AGGMBha by Definition 4.4.1.

(c) For all Pk ∈ extend(Pj, [Ij, . . . , Ik]), it is the case that ik /∈ Pk.X|b. Then

by Lemma 4.4.2, there exists a P ′j such that ij ∈ P ′j|b and there exists a P ′′k ∈

extend(P ′j , [Ij, . . . , Ik]). Given the way P ′j is constructed, its length is bounded by:

length(P ′j) ≤ length(Pj) + length([Ij, . . . , Ik])− 3 ≤

(hr + 1) + (hm + 1)− 3 = hr + hm − 1

P ′′k intersects with Pk since they both reach ik, and the length of P ′′k is bounded by:

length(P ′′k ) ≤ length(P ′j) + length([Ij, . . . , Ik])− 1 ≤

(hr + hm − 1) + (hm + 1)− 1 = hr + 2hm − 1

Also by Lemma 4.4.2, we know that Pj and P ′j intersect. Since length(P ′′k ) ≤

hr + 2hm − 1 ≤ ha + 1, P ′′k is a node in the abstract ground graph, P ′′k .X → P ′j .Y ∈
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AGGMBha P
′′
k .X → P ′j .Y ∩Pj.Y ∈ AGGMBha , and Pk.X∩P ′′k .X → P ′j .Y ∈ AGGMBha

by Definition 4.4.1.

From the above three cases, it follows that to guarantee completeness up to hr,

the abstract ground graph must contain nodes up to the hop threshold ha = max(hr+

hm, hr + 2hm − 2). �

Theorems 4.6.1 and 4.6.2 guarantee that if an abstract ground graph is constructed

with a hop threshold of ha from perspective B, it captures all paths of dependence in

all ground graphs, where (1) the variables along those paths are reachable in hr hops

from instances of B, and (2) the underlying dependencies are bounded by a threshold

of hm.

In the following, we say that d -separation holds up to a specified hop threshold

h if there are no d -connecting paths involving relational variables of length greater

than h+ 1.

Theorem 4.6.3 Relational d-separation is sound and complete for abstract ground

graphs up to a specified hop threshold. LetM be an acyclic relational model structure,

and let hm be the maximum number of hops for a dependency in M. Let X, Y, and

Z be three distinct sets of relational variables for perspective B ∈ E ∪ R defined over

relational schema S, and let hr be the maximum number of hops of relational variables

in X,Y, and Z. Then, X̄ and Ȳ are d-separated by Z̄ on the abstract ground graph

AGGMBha if and only if for all skeletons σ ∈ ΣS and for all b ∈ σ(B), X|b and

Y|b are d-separated by Z|b up to hop threshold hr in ground graph GGMσ, where

ha = max(hr + hm, hr + 2hm − 2).

Proof. We must show that d -separation on an abstract ground graph implies d -

separation on all ground graphs it represents (soundness) and that d -separation facts

that hold across all ground graphs are also entailed by d -separation on the abstract

ground graph (completeness).
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Soundness: Assume that X̄ and Ȳ are d -separated by Z̄ on AGGMBha . Assume

for contradiction that there exists a skeleton σ ∈ ΣS and an item instance b ∈ σ(B)

such that X|b and Y|b are not d -separated by Z|b in the ground graph GGMσ. Then,

there must exist a d -connecting path p from some x ∈ X|b to some y ∈ Y|b given all

z ∈ Z|b such that every edge of p is (B, hr)-reachable. By Theorem 4.6.2, AGGMBha

is (B, hr)-reachably complete, so all (B, hr)-reachable edges in GGMσ are captured by

edges in AGGMBha . Thus, path p must be represented from some node in {Nx | x ∈

Nx|b} to some node in {Ny | y ∈ Ny|b}, where Nx, Ny are nodes in AGGMBha . If p

is d -connecting in GGMσ, then it is d -connecting in AGGMBha , which implies that

X̄ and Ȳ are not d -separated by Z̄. Therefore, X|b and Y|b must be d -separated by

Z|b.

Completeness: Assume that X|b and Y|b are d -separated by Z|b in the ground

graph GGMσ for all skeletons σ ∈ ΣS and for all b ∈ σ(B). Assume for contradiction

that X̄ and Ȳ are not d -separated by Z̄ on AGGMBha . Then, there must exist a

d -connecting path p for some relational variable X ∈ X̄ to some Y ∈ Ȳ given all

Z ∈ Z̄. By Theorem 4.6.1, AGGMBha is (B, ha)-reachably sound, so every edge in

AGGMBh must correspond to some pair of variables in some ground graph. Thus, if

p is d -connecting in AGGMBha , then there must exist some skeleton σ such that p

is d -connecting in GGMσ for some b ∈ σ(B), which implies that d -separation does

not hold for that ground graph. Therefore, X̄ and Ȳ must be d -separated by Z̄ on

AGGMBha . �

4.7 Näıve Relational d-Separation Is Frequently Incorrect

If the rules of d -separation for Bayesian networks were applied directly to the

structure of relational models, how frequently would the conditional independence

conclusions be correct? In this section, we evaluate the necessity of our approach—

relational d -separation executed on abstract ground graphs. We empirically compare
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the consistency of a näıve approach against our sound and complete solution over a

large space of synthetic causal models. To promote a fair comparison, we restrict the

space of relational models to those with underlying dependencies that could feasibly

be represented and recovered by a näıve approach. We describe this space of models,

present a reasonable approach for applying traditional d -separation to the structure

of relational models, and quantify its decrease in expressive power and accuracy.

4.7.1 Defining a näıve approach

Consider the following limited definition of relational paths, which itself limits

the space of models and conditional independence queries. A simple relational path

P = [Ij, . . . , Ik] for relational schema S is a relational path such that Ij 6= · · · 6= Ik.

The sole difference between relational paths (Definition 3.3.1) and simple relational

paths is that no item class may appear more than once along the latter. This

yields paths drawn directly from a schema diagram. For the example in Figure 3.1,

[Employee, Develops, Product] is simple whereas [Employee, Develops,

Product, Develops, Employee] is not.

Additionally, we define simple relational schemas such that, for any two item

classes Ij, Ik ∈E ∪ R, there exists at most one simple relational path between them

(i.e., no cycles occur in the schema diagram). The example in Figure 3.1 is a simple

relational schema. The restriction to simple relational paths and schemas yields

similar definitions for simple relational variables, simple relational dependencies, and

simple relational models. The relational model in Figure 3.4 is simple because it

includes only simple relational dependencies.

A first approximation to relational d -separation would be to apply the rules of

traditional d -separation directly to the graphical representation of relational models.

This is equivalent to applying d -separation to the class dependency graph GM (see

Definition 3.6.2) of relational model M. The class dependency graph for the model
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in Figure 3.4 is shown in Figure 4.7(a). Note that the class dependency graph ignores

path designators on dependencies, does not include all implications of dependencies

among arbitrary relational variables, and does not represent intersection variables.

Although the class dependency graph is independent of perspectives, testing any

conditional independence fact requires choosing a perspective. All relational variables

must have a common base item class; otherwise, no method can produce a single

consistent, propositional table from a relational database. For example, consider

the construction of a table describing employees with columns for their salary, the

success of products they develop, and the revenue of the business units they operate

under. This procedure requires joining the instances of three relational variables

([Employee].Salary, [Employee, Develops, Product].Success, and [Employee,

Develops, Product, Funds, Business-Unit].Revenue) for every common base

item instance, from Paul to Thomas. See, for example, the resulting propositional

table for these relational variables and an example query in Table 3.1 and Figure 3.7,

respectively. An individual relational variable requires joining the item classes within

its relational path, but combining a collection of relational variables requires joining

on their common base item class. Fortunately, given a perspective and the space of

simple relational schemas and models, a class dependency graph is equivalent to a

simple abstract ground graph.

Definition 4.7.1 (Simple abstract ground graph) For simple relational model

M = (S,D) and perspective B ∈ E ∪ R, the simple abstract ground graph AGGs
MB

is the directed acyclic graph (V,E) that abstracts the dependencies D among simple

relational variables. The nodes consist of simple relational variables
{

[B, ... , Ij].X | B 6= · · · 6= Ij
}

,

and the edges connect those nodes
{

[B, ... , Ik].Y → [B, ... , Ij].X | [Ij, . . . , Ik].Y → [Ij].X ∈ D

∧ [B, ... , Ik] ∈ extend([B, ... , Ij], [Ij, ... , Ik]) ∧ [B, ... , Ik].Y, [B, ... , Ij].X ∈ V
}

.
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EMPLOYEE .Competence PRODUCT.Success BUSINESS-UNIT.Revenue

EMPLOYEE. Salary BUSINESS-UNIT.Budget

(a)

[EMPLOYEE].Competence [EMPLOYEE, DEVELOPS, PRODUCT].Success [EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[EMPLOYEE, DEVELOPS, PRODUCT, FUNDS, BUSINESS-UNIT].Budget[EMPLOYEE].Salary

[PRODUCT, DEVELOPS, EMPLOYEE].Competence [PRODUCT].Success [PRODUCT, FUNDS, BUSINESS-UNIT].Revenue

[PRODUCT, FUNDS, BUSINESS-UNIT].Budget[PRODUCT, DEVELOPS, EMPLOYEE].Salary

[BUSINESS-UNIT, FUNDS, PRODUCT, DEVELOPS, EMPLOYEE].Competence [BUSINESS-UNIT, FUNDS, PRODUCT].Success [BUSINESS-UNIT].Revenue

[BUSINESS-UNIT].Budget[BUSINESS-UNIT, FUNDS, PRODUCT, DEVELOPS, EMPLOYEE].Salary

(b)

Figure 4.7: For the model in Figure 3.4, (a) the class dependency graph and (b) three
simple abstract ground graphs for the Employee, Product, and Business-Unit
perspectives.

Simple abstract ground graphs only include nodes for simple relational variables

and necessarily exclude intersection variables. Lemma 3.4.1—which characterizes the

intersection between a pair of relational paths—only applies to pairs of simple rela-

tional paths if the schema contains cycles, which is not the case for simple relational

schemas by definition. As a result, the simple abstract ground graph for a given

schema and model contains the same number of nodes and edges, regardless of per-

spective; the nodes simply have path designators redefined from the given perspective.

Figure 4.7(b) shows three simple abstract ground graphs from distinct perspectives

for the model in Figure 3.4. As noted above, simple abstract ground graphs are

qualitatively the same as the class dependency graph, but they enable answering re-

lational d -separation queries, which requires a common perspective in order to be

semantically meaningful.

The näıve approach to relational d -separation derives conditional independence

facts from simple abstract ground graphs (Definition 4.7.1). The sound and com-
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plete approach described in this paper applies d -separation—with input variable sets

augmented by their intersection variables—to “regular” abstract ground graphs, as

described by Definition 4.4.1. Clearly, if d -separation on a simple abstract ground

graph claims that X is d -separated from Y given Z, then d -separation on the reg-

ular abstract ground graph yields the same conclusion if and only if there are no

d -connecting paths in the regular abstract ground graph. Either X and Y can be

d -separated by a set of simple relational variables Z, or they require non-simple rela-

tional variables—those involving relational paths with repeated item classes.6

4.7.2 Evaluating the necessity of abstract ground graphs

To evaluate the necessity of regular abstract ground graphs (i.e., the additional

paths involving non-simple relational variables and intersection variables), we com-

pared the frequency of equivalence between the conclusions of d -separation on simple

and regular abstract ground graphs. The two approaches are only equivalent if a

minimal separating set consists entirely of simple relational variables.7

Thus, for an arbitrary pair of relational variables X and Y with a common per-

spective, we test the following on regular abstract ground graphs:

1. Is either X or Y a non-simple relational variable?

2. Are X and Y marginally independent?

3. Does a minimal separating set Z d -separate X and Y, where Z consists solely

of simple relational variables?

4. Is there any separating set Z that d -separates X and Y ?

6The theoretical conditions under which equivalence occurs are sufficiently complex that they
provide little utility as they essentially require reconstructing the regular abstract ground graph and
checking a potentially exponential number of dependency paths.

7If X and Y are d -separated given Z, then Z is a separating set for X and Y. A separating set
Z is minimal if there is no proper subset of Z that is also a separating set.
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If the answer to (1) is yes, then the näıve approach cannot apply since either X or

Y is undefined for the simple abstract ground graph. If the answer to (2) is yes, then

there is equivalence; this is a trivial case because there are no d -connecting paths for

Z = ∅. If the answer to (3) is yes, then there is a minimal separating set Z consisting

of only simple relational variables. In this case, the simple abstract ground graph is

sufficient, and we also have equivalence. If the answer to (4) is no, then no separating

set Z, simple or otherwise, renders X and Y conditionally independent.

We randomly generated simple relational schemas and models for 100 trials for

each setting using the following parameters:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, fixed at one less than the number of entities,

ensuring simple, connected relational schemas. Relationship cardinalities are

chosen uniformly at random.

• Number of attributes for each entity and relationship class, randomly drawn

from a shifted Poisson distribution with λ = 1.0 (∼ Pois(1.0) + 1).

• Number of dependencies in the model, ranging from 1 to 10.

Then, for all pairs of relational variables with a common perspective limited by a

hop threshold of h = 4, we ran the aforementioned tests against the regular abstract

ground graph, limiting its relational variables by a hop threshold of h = 8.

This procedure generated a total of almost 3.6 million pairs of relational variables

to test. Approximately 56% included a non-simple relational variable; the näıve ap-

proach cannot be used to derive a conditional independence statement in these cases,

requiring the full abstract ground graph in order to represent these variables. Of the

remaining 44% (roughly 1.6 million), 82% were marginally independent, and 9% were

not conditionally independent given any conditioning set Z. Then, of the remaining
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Figure 4.8: The majority (56%) of generated relational d -separation queries are not
representable with the näıve approach. Of the 44% that are representable (involving
only simple relational variables), 82% are marginally independent and 9% are depen-
dent. Pairs of relational variables in the remaining 9% are conditionally independent
given a non-empty separating set (X ⊥⊥ Y | Z, where Z 6= ∅). We test whether the
conditioning set consists solely of simple relational variables. If so, then the näıve
approach to relational d -separation is equivalent to d -separation on fully specified ab-
stract ground graphs. This graph plots the frequency of equivalence across schemas
with increasing numbers of entity classes (1–4) for varying numbers of dependencies
(1–10). For schemas with more than one entity class, the frequency of equivalence
decreases as the number of dependencies increases. Shown with 95% confidence in-
tervals.
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9% (roughly 145,000), we can test the frequency of equivalence for conditional in-

dependence facts with non-empty separating sets—the proportion of cases for which

only simple relational variables are required in a minimal separating set Z.

Figure 4.8 shows this frequency for schemas of increasing numbers of entity classes

(1–4) for varying numbers of dependencies in the causal model (1–10). Since relational

schemas with a single entity class and no relationships describe propositional data,

the simple abstract ground graph is equivalent to the full abstract ground graph,

which is also equivalent to the model itself. In this case, the näıve approach is

always equivalent because it is exactly d -separation on Bayesian networks. For truly

relational schemas (with more than one entity class and at least one relationship

class), the frequency of equivalence decreases as the number of dependencies in the

model increases. Additionally, the frequency of equivalence decreases more as the

number of entities in the schema increases. For example, the frequency of equivalence

for nine dependencies is 60.3% for two entities, 51.2% for three entities, and 43.2%

for four entities.

We also learned statistical models that predict the number of equivalent and

non-equivalent statements in order to identify key factors that affect the frequency

of equivalence. We found that the number of dependencies and size of the rela-

tional model (regulated by the number of entities and many cardinalities) dictate

the equivalence. As a relational model deviates from a Bayesian network, we should

expect more d -connecting paths in the regular but not simple abstract ground graph.

This property also depends on the specific combination of dependencies in the model.

Section 4.7.3 presents details of this analysis.

This experiment suggests that applying traditional d -separation directly to a rela-

tional model structure will frequently derive incorrect conditional independence facts.

Additionally, there is a large class of conditional independence queries involving non-

simple variables for which such an approach is undefined. These results indicate that
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fully specifying abstract ground graphs and applying d -separation augmented with

intersection variables (as described in Section 4.3) is critical for accurately deriving

most conditional independence facts from relational models.

4.7.3 Experimental details: Equivalence of a näıve approach

The main goal of this experiment is to quantify how often traditional d -separation

applied directly to relational model structures produces incorrect conditional inde-

pendence facts. This provides a rough measurement for the additional representa-

tional power of relational d -separation on abstract ground graphs. Here, we present

an analysis of which factors influence the number of equivalent and non-equivalent

conditional independence judgments between both approaches (näıvely applying tra-

ditional d -separation versus relational d -separation).

Specifically, we show here the results of running log-linear regression to predict the

number of equivalent and non-equivalent judgments for varying schemas and models.

We first applied lasso for feature selection [184] to minimize the number of predictors

while maximizing model fit. We also standardized the input variables by dividing by

two standard deviations, as recommended by Gelman [50]. Since the predictor for

the number of dependencies is log-transformed, the standardization of that variable

occurs after taking the logarithm.

In predicting the (log of the) number of equivalent conditional independencies,

the following variables were significantly and substantively predictive (in order of

decreasing predictive power):

• Interaction between the log of the number of dependencies and the number of

entities (positive)

• Log of the number of dependencies (positive)

• Interaction between the log of the number of dependencies and the number of

many cardinalities (negative)
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Predictor Coefficient Partial Semipartial
log(# dependencies) × # entities 1.38 0.232 0.085

log(# dependencies) 1.14 0.135 0.044
log(# dependencies) × # many cardinalities -0.71 0.092 0.028

# entities × # relational variables -0.32 0.044 0.013

Table 4.1: Number of equivalent conditional independence judgments: estimated
standardized coefficient, squared partial correlation coefficient, and squared semipar-
tial correlation coefficient for each predictor.

Predictor Coefficient Partial Semipartial
# many cardinalities × # entities -2.22 0.207 0.064
log(# dependencies) × # entities 0.90 0.165 0.048

# many cardinalities 3.24 0.128 0.036
log(# dependencies) × # many cardinalities 1.47 0.127 0.036

Table 4.2: Number of non-equivalent conditional independence judgments: estimated
standardized coefficient, squared partial correlation coefficient, and squared semipar-
tial correlation coefficient for each predictor.

• Number of entities (negative)

• Interaction between the number of entities and the number of relational vari-

ables in the AGG (negative)

The fit for the equivalent model has an R2 = 0.721 for n = 4, 000, and Table 4.1

contains the standardized coefficients as well as the squared partial and semipartial

correlation coefficients for each predictor. For lasso, λ = 0.0076 offered the fewest

predictors while increasing the model fit by at least 0.01.

In predicting the (log of the) number of non-equivalent conditional independencies,

the following variables were significantly and substantively predictive (in order of

decreasing predictive power):

• Interaction between the number of many cardinalities and the number of enti-

ties (negative)
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• Interaction between the log of the number of dependencies and the number of

entities (positive)

• Number of many cardinalities (positive)

• Interaction between the log of the number of dependencies and the number of

many cardinalities (positive)

The fit for the non-equivalent model has an R2 = 0.755 for n = 4, 000, and Ta-

ble 4.2 contains the standardized coefficients and the squared partial and semipartial

correlation coefficients for each predictor. For lasso, λ = 0.0155 offered the fewest

predictors while increasing the model fit by at least 0.01.

4.8 Experiments

To complement the theoretical results, we present three experiments on synthetic

data. The primary goal of these empirical tests is to demonstrate the feasibility of

applying relational d -separation in practice. The experiment in Section 4.8.1 de-

scribes the factors that influence the size of abstract ground graphs and thus the

computational complexity of relational d -separation. The experiment in Section 4.8.2

evaluates the growth rate of separating sets produced by relational d -separation as

abstract ground graphs become large. The results indicate that minimal separat-

ing sets grow much more slowly than abstract ground graphs. The experiment in

Section 4.8.3 tests how the expectations of the relational d -separation theory match

statistical conclusions on simulated data. As expected from the proofs of correctness

in Section 4.5, the results indicate a close match, aside from Type I errors and certain

biases of conventional statistical tests on relational data.
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4.8.1 Abstract ground graph size

Relational d -separation is executed on abstract ground graphs. Consequently, it

is important to quantify the size of abstract ground graphs and identify which factors

influence their size. We randomly generated relational schemas and models for 1,000

trials of each setting using the following parameters:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, ranging from 0 to 4. The schema is guaranteed

to be fully connected and includes at most a single relationship between a pair

of entities. Relationship cardinalities are selected uniformly at random.

• Number of attributes for each entity and relationship class, randomly drawn

from a shifted Poisson distribution with λ = 1.0 (∼ Pois(1.0) + 1).

• Number of dependencies in the model, ranging from 1 to 15.

This procedure generated a total of 450,000 abstract ground graphs, which in-

cluded every perspective (all entity and relationship classes) for each experimental

combination. We measure size as the number of nodes and edges in a given abstract

ground graph. Figure 4.9(a) depicts how the size of abstract ground graphs varies

with respect to the number of many cardinalities in the schema (fixed for models

with 10 dependencies), and Figure 4.9(b) shows how it varies with respect to the

number of dependencies in the model. Recall that for a single entity, abstract ground

graphs are equivalent to Bayesian networks.

To determine the most influential factors of abstract ground graph size, we ran

log-linear regression using independent variables that describe only the schema and

model. Detailed results are provided in Section 4.8.4. This analysis indicates that (1)

as the number of entities, relationships, attributes, and many cardinalities increases,

the number of nodes and edges grows at an exponential rate; (2) as the number of
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Figure 4.9: Variation of abstract ground graph size as (a) the number of many
cardinalities in the schema increases (dependencies fixed at 10) and (b) the number
of dependencies increases. Shown with 95% confidence intervals.

dependencies in the model increases, the number of edges increases linearly, but the

number of nodes remains invariant; and (3) abstract ground graphs for relationship

perspectives are larger than entity perspectives because more relational variables can

be defined.

4.8.2 Minimal separating set size

Because abstract ground graphs can become large, one might expect that sepa-

rating sets could also grow to impractical sizes. Fortunately, relational d -separation

produces minimal separating sets that are empirically observed to be small. We ran

1,000 trials of each setting using the following parameters:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, fixed at one less than the number of entities.

Relationship cardinalities are selected uniformly at random.

• Total number of attributes across entity and relationship classes, fixed at 10.
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Figure 4.10: Minimal separating sets have reasonable sizes, growing only with the
size of the schema and the model density. In this experiment, 99.9% of variable pairs
have a minimal separating set with five or fewer variables.

• Number of dependencies in the model, ranging from 1 to 10.

For each relational model, we identified a single minimal separating set for up to

100 randomly chosen pairs of conditionally independent relational variables. This

procedure generated almost 2.5 million pairs of variables.

To identify a minimal separating set between relational variables X and Y, we

modified Algorithm 4 devised by Tian et al. [182] by starting with all parents of X̄

and Ȳ, the variables augmented with the intersection variables they subsume in the

abstract ground graph. While the discovered separating sets are minimal, they are not

necessarily of minimum size because of the greedy process for removing conditioning

variables from the separating set. Figure 4.10 shows the frequency of separating set

size as both the number of entities and dependencies vary. In summation, roughly

83% of the pairs are marginally independent (having empty separating sets), 13% have

separating sets of size one, and less than 0.1% have separating sets with more than

five variables. The experimental results indicate that separating set size is strongly

influenced by model density, primarily because the number of potential d -connecting

paths increases as the number of dependencies increases.
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4.8.3 Empirical validity

As a practical demonstration, we examined how the expectations of the relational

d -separation theory match the results of statistical tests on actual data. We used

a standard procedure for empirically measuring internal validity of algorithms. In

this case, we (1) randomly generated a relational schema, (2) randomly generated a

relational model structure for that schema, (3) parameterized the model structure,

(4) generated synthetic data according to the model structure and parameters, (5)

randomly chose relational d -separation queries according to the known ground-truth

model, and (6) compared the model theory (i.e., the d -separation conclusions) against

corresponding statistical tests of conditional independence.

For steps (1) and (2), we randomly generated a relational schema S and relational

model structure M for S for 100 trials using the following settings:

• Number of entity classes, ranging from 1 to 4.

• Number of relationship classes, fixed at one less than the number of entities.

Relationship cardinalities are selected uniformly at random.

• Number of attributes for each entity and relationship class, randomly drawn

from a shifted Poisson distribution with λ = 1.0 (∼ Pois(1.0) + 1).

• Number of dependencies in the model, fixed at 10.

Dependencies were selected greedily, choosing each one uniformly at random, subject

to a maximum of 3 parent relational variables for each attribute [Ij].X and enforcing

acyclicity of the model structure.

For step (3), we parameterized relational models using simple additive linear equa-

tions with independent, normally distributed error and the average aggregate for rela-

tional variable instances. For each attribute [Ij].X, we assign a conditional probability

distribution
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∑

[Ij ,...,Ik].Y ∈parents([Ij ].X)

(
β · avg([Ij, . . . , Ik].Y )

)
+ 0.1ε

if [Ij].X has parents, where

β =
0.9

|parents([Ij].X)|

to provide equal contribution for each direct cause and ε ∼N(0, 1) (error drawn from

a standard normal distribution). If [Ij].X has no parents, its value is just drawn from

ε.

For step (4), we first generated a relational skeleton σ (because the current model

space assumes that attributes do not cause entity or relationship existence) and then

populated each attribute value by drawing from its corresponding conditional distri-

bution. Each entity class is initialized to 1,000 instances. Relationship instances were

constructed via a latent homophily process, similar to the method used by Shalizi

and Thomas [161]. Each entity instance received a single latent variable, marginally

independent from all other variables. The probability of any relationship instance

was drawn from

e−αd

1 + e−αd
,

the inverse logistic function, where d = |LE1 −LE2|, the difference between the latent

variables on the two entities, and α = 10, set as the decay parameter. We also

scaled the probabilities in order to produce an expected degree of five for each entity

instance when the cardinality of the relationship is many. Since the latent variables

are marginally independent of all others, they are safely omitted from abstract ground

graphs; their sole purpose is to generate relational skeletons that provide a greater

probability of non-empty intersection variables as opposed to a random underlying

link structure. We generated 100 independent relational skeletons and attribute values

(i.e., 100 instantiated relational databases) for each schema and model.
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Figure 4.11: The proportion of significant trials for statistical tests of conditional
independence on actual data. (Left) Evaluating queries that the model claims to
be d -separated produces low rates of significant effects. (Right) Queries that the
model claims are d -connected produce high rates of significant effects. Note that
the generative process yields denser models for 2 entity classes since the number of
dependencies is fixed at 10.

Step (5) randomly chose up to 100 true and false relational d -separation queries

for a given model.8 Since we have the ground-truth model, we can evaluate with our

approach (abstract ground graphs and relational d -separation) whether these queries

are true (d -separated) or false (d -connected). Each query is of the form X ⊥⊥ Y | Z

such that X and Y are single relational variables, Z is a set of relational variables,

Y has a singleton relational path (e.g., [Ik].Y ), and all variables are from a common

perspective. These queries correspond to testing potential direct causal dependencies

in the relational model, similar to the tests used by constraint-based methods for

learning relational models, such as RPC [102] and RCD [99].

Finally, step (6) tested conditional independence for all such 〈X, Y,Z〉 d -separation

queries using linear regression (because the models were parameterized linearly) for

each of the 100 data instantiations. Specifically, we tested the t-statistic for the

8Depending on the properties of the schema and model, it may not always be feasible to identify
100 true or false d -separation statements.
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Figure 4.12: The average strength of effect of each query (measured as squared partial
correlation) on actual data. (Left) Evaluating queries that the model claims to be
d -separated or conditionally independent produces low average effect sizes. (Right)
Queries that the model claims are d -connected or dependent produce high average
effect sizes.

coefficient of avg(X) in the equation Y = β0 + β1 · avg(X) +
∑

Zi∈Z βi · avg(Zi). For

each query, we recorded two measurements:

• The average strength of effect, measured as squared partial correlation—the

proportion of remaining variance of Y explained by X after conditioning on Z

• The proportion of trials for which each query was deemed significant at α = 0.01

adjusted using Bonferroni correction with the number of queries per trial

Figure 4.11 shows the distribution of the proportion of significant trials for both true

(left) and false (right) queries for varying numbers of entities. Figure 4.12 shows

the corresponding average strength of effects for true (left) and false (right) queries.

The graph uses a standard box-and-whisker plot with values greater or less than 1.5

times the inner quartile range—the difference between the upper and lower quartiles—

marked as outliers.

In the vast majority of cases, relational d -separation is consistent with tests on

actual data (i.e., most d -separated queries have low effect sizes and are rarely deemed
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significant, whereas most d -connected queries have high effect sizes and are mostly

deemed significant). For approximately 23,000 true queries, 14.9% are significant in

more than one trial, but most are insubstantive, with only 2.2% having an average

effect size greater than 0.01. There are three potential reasons why a d -separation

in theory may appear to be d -connected in practice: (1) Type I error; (2) high

power given a large sample size; or (3) bias. A small number of cases exhibit an

interaction between aggregation and relational structure (i.e., degree or the cardinality

of relational variable instances). This interaction violates the identically distributed

assumption of data instances, which produces a biased estimate of effect size for simple

linear regression. Linear regression does not account for these interaction effects,

suggesting the need for more accurate statistical tests of conditional independence

for relational data.

4.8.4 Experimental details: Abstract ground graph size

The goal of the experiment in Section 4.8.1 is to determine which factors influence

the size of abstract ground graphs because the computational complexity of relational

d -separation depends on their size. Specifically, we show here the results of running

log-linear regression to predict the size of abstract ground graphs for varying schemas

and models. We first applied lasso for feature selection [184] to minimize the number

of predictors while maximizing model fit. We also standardized the input variables

by dividing by two standard deviations, as recommended by Gelman [50]. Since the

predictor for the number of dependencies is log-transformed, the standardization for

that variable occurs after taking the logarithm.

In predicting the (log of the) number of nodes, the following variables were signif-

icantly and substantively predictive (in order of decreasing predictive power):

• Number of relationships (positive)
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Predictor Coefficient Partial Semipartial
# relationships 3.24 0.452 0.150

# many cardinalities × isEntity=F 3.09 0.349 0.109
# entities -2.11 0.359 0.102

# many cardinalities × isEntity=T 2.51 0.216 0.053
# many cardinalities × # relationships -0.88 0.100 0.020

# attributes 0.23 0.024 0.004

Table 4.3: Number of nodes in an abstract ground graph: estimated standardized
coefficient, squared partial correlation coefficient, and squared semipartial correlation
coefficient for each predictor.

• Interaction between many cardinalities and an indicator variable for whether

the abstract ground graph is from an entity or relationship perspective (positive)

• Number of entities (negative)

• Interaction between number of many cardinalities and relationships (negative)

• Total number of attributes (positive)

The fit for the nodes model has an R2 = 0.818 for n = 450, 000, and Table 4.3

contains the standardized coefficients as well as the squared partial and semipartial

correlation coefficients for each predictor. For lasso, λ = 0.0095 offered the fewest

predictors while increasing the model fit by at least 0.01.

In predicting the (log of the) number of edges, the following variables were signif-

icantly and substantively predictive (in order of decreasing predictive power):

• Log of the number of dependencies (positive)

• Number of relationships (positive)

• Interaction between many cardinalities and an indicator variable for whether

the abstract ground graph is from an entity or relationship perspective (positive)

• Number of entities (negative)
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Predictor Coefficient Partial Semipartial
log(# dependencies) 1.44 0.440 0.165

# relationships 3.86 0.395 0.138
# many cardinalities × isEntity=F 4.27 0.356 0.123

# entities -2.78 0.353 0.115
# many cardinalities × isEntity=T 3.52 0.231 0.067

# many cardinalities × # relationships -1.35 0.127 0.031

Table 4.4: Number of edges in an abstract ground graph: estimated standardized
coefficient, squared partial correlation coefficient, and squared semipartial correlation
coefficient for each predictor.

• Interaction between number of many cardinalities and relationships (negative)

The fit for the edges model has an R2 = 0.789 for n = 450, 000, and Table 4.4

contains the standardized coefficients and the squared partial and semipartial correla-

tion coefficients for each predictor. For lasso, λ = 0.0164 offered the fewest predictors

while increasing the model fit by at least 0.01.

4.9 Concluding Remarks

Chapter 3 upgraded Bayesian networks for propositional data to directed graph-

ical models of relational data. As it turns out, even though the ground graphs of

relational models have the same semantics as Bayesian networks, the conditional in-

dependencies implied by traditional d -separation on the structure of relational models

does not necessarily transfer to all ground graphs. In fact, the comparison in Sec-

tion 4.7 showed that up to 50% of näıvely derived conditional independencies are

incorrect. Thus, we introduced the notion of relational d -separation that, analogous

to traditional d -separation, only claims independence if it holds in all ground graphs

(Section 4.3). For Bayesian networks, this requirement is trivial because of the one-to-

one structural correspondence between model structure and ground graph instances.

Such a correspondence fails to hold for relational models.
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As a result, we introduced the abstract ground graph—a new representation that

encodes the dependence implications of relational models among all relational vari-

ables for any perspective (Section 4.4). The abstract ground graph is aptly named

because it abstracts all possible ground graphs. This enables the sound and com-

plete derivation of conditional independence facts from relational models in the limit

(Section 4.5) and for finite relational paths (Section 4.6).

In the next chapter, we present the first sound and complete algorithm for learning

causal structure from relational data. This algorithm leverages the theoretical foun-

dation developed in this chapter. Specifically, the theory of relational d -separation

connects conditional independence with relational causal structure, and the abstract

ground graph provides an underlying representation to reason about causal structure.
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CHAPTER 5

LEARNING

Research in causal discovery has led to the identification of fundamental prin-

ciples and methods for causal inference, including a complete algorithm—the PC

algorithm—that identifies all possible orientations of causal dependencies from ob-

served conditional independencies [122, 172, 106]. Completeness guarantees that no

other method, under the same assumptions, can infer more causal dependencies from

observational data. However, much of this work, including the completeness result,

applies only to propositional data and Bayesian networks.

As described throughout Chapter 3, there are more expressive classes of models,

including probabilistic relational models [53] and the one formalized in Section 3.5,

that remove the assumption of independent and identically distributed instances re-

quired by Bayesian networks. These relational models represent systems involving

multiple types of interacting entities with probabilistic dependencies among them.

Most algorithms for learning the structure of relational models focus on statistical as-

sociation. The first algorithm we developed that does address causality for relational

data—the relational PC (RPC) algorithm [102]—is not complete and is susceptible

to orientation errors, as we show in Section 5.5. Consequently, prior to this work,

there had been no relational analog to the completeness result for Bayesian networks.

The theory of relational d -separation (see Chapter 4) connects the causal struc-

ture of a relational model and probability distributions, similar to how d -separation

connects the structure of Bayesian networks and probability distributions. In this
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chapter, we present the implications of abstract ground graphs and relational d -

separation for learning causal models from relational data.1

The main contributions presented in this chapter are:

• A powerful new constraint visible in the abstract ground graph—the relational

bivariate orientation (RBO) rule—that can identify the direction of causality for

bivariate dependencies (yielding models with up to 72% additional oriented de-

pendencies) without assumptions on the underlying distribution (Section 5.2.1)

• Relational extensions to edge orientation rules that have previously only been

applied to directed acyclic graphs of propositional data (Section 5.2.2)

• A new algorithm, called relational causal discovery (RCD), that leverages the

theory of relational d -separation and the abstract ground graph representation

to learn causal models from relational data (Section 5.3)

• Proofs of soundness and completeness (enabled by the RBO rule) of the RCD

algorithm under causal sufficiency (Sections 5.2.3, 5.2.4, and 5.3.2)

We also show the effectiveness of RCD with an implementation that uses a re-

lational d -separation oracle and compare it to several alternative algorithms (Sec-

tion 5.5). Finally, we demonstrate the applicability of RCD on real-world datasets

drawn from the movie industry (Section 5.6.1) and scholarly citations (Section 5.6.2).

5.1 A Causal Implication of Abstract Ground Graphs

The abstract ground graph representation presents an opportunity to derive new

edge orientation rules for algorithms that learn the structure of relational models.

There are unique orientations of edges that are consistent with a given pattern of

1Portions of this chapter are drawn from Maier et al. [99] with contributions from Katerina
Marazopoulou and David Arbour.
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Figure 5.1: (a) Two models of a bivariate relational domain with opposite directions
of causality for a single dependency (relationship class omitted for simplicity); (b) a
single dependency implies additional dependencies among arbitrary relational vari-
ables, shown here in a fragment of the abstract ground graph for B’s perspective; (c)
an example relational skeleton; and (d) the ground graphs resulting from applying
the relational model to the skeleton.

association that can only be recognized in an abstract ground graph. In contrast to

bivariate IID data, it is simple to establish the direction of causality for bivariate

relational data.

5.1.1 Abstract example

Consider the two bivariate, two-entity relational models depicted in Figure 5.1(a).

The first model implies that values of X on A entities are caused by the values of Y

on related B entities. The second model implies the opposite, that values of Y on

B entities are caused by the values of X on related A entities. For simplicity, the

relationship class is depicted as a dashed line between entity classes and relational

paths are omitted.

Figure 5.1(b) illustrates a fragment of the abstract ground graph (for hop thresh-

old h=4) that each of the two relational models implies. As expected, the directions of

the edges in the two abstract ground graphs are counterposed. Both models produce

observable statistical dependencies for relational variable pairs 〈[B].Y, [B,A].X〉 and
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STARS-IN

MOVIEACTOR

[MOVIE, STARS-IN, ACTOR].Popularity  [MOVIE].Success

Popularity Success

(a)

[ACTOR, STARS-IN, MOVIE].Success

[ACTOR].Popularity
   [ACTOR, STARS-IN, MOVIE, 
        STARS-IN, ACTOR]. Popularity

(b)

[MOVIE, STARS-IN, ACTOR].Popularity

[MOVIE].Success
   [MOVIE, STARS-IN, ACTOR, 
         STARS-IN, MOVIE]. Success

(c)

Figure 5.2: (a) An example relational model involving actors and movies with a single
relational dependency stating that actor popularity causes movie success. Abstract
ground graphs from (b) the Actor perspective and (c) the Movie perspective.

〈[B,A].X, [B,A,B].Y 〉. However, the relational variables [B].Y and [B,A,B].Y have

different observable statistical dependencies: In the first model, they are marginally

independent and conditionally dependent given [B,A].X, and in the second model,

they are marginally dependent and conditionally independent given [B,A].X. As a re-

sult, we can uniquely determine the direction of causality of the single dependence by

exploiting relational structure. (There is symmetric reasoning for relational variables

from A’s perspective, and this result is also applicable to one-to-many data.)

To illustrate this fact more concretely, consider the small relational skeleton shown

in Figure 5.1(c) and the ground graphs applied to this skeleton in Figure 5.1(d). In

the first ground graph, we have y1 ⊥⊥ y2 and y1 ⊥⊥/ y2 |x1, but in the second ground

graph, we have y1 ⊥⊥/ y2 and y1 ⊥⊥ y2 |x1. These opposing conditional independence

relations uniquely determine the correct causal model.
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5.1.2 Real example

Consider a data set containing actors with a measurement of their popularity

(e.g., price on the Hollywood Stock Exchange2) and the movies they star in with a

measurement of success (e.g., box office revenue). A simple analysis might detect

a statistical association between popularity and success, but the models in which

popularity causes success and success causes popularity may be statistically indis-

tinguishable.3 This is a reasonable decision assuming there are no other variables

to investigate, no prior knowledge of the domain, no temporal information, and no

asymmetries in the conditional distributions to exploit.

Instead of being restricted to popularity-success variable pairs, a relational rep-

resentation enables inspection of the varying connections among actor and movie

instances. From the perspective of actors, we can ask whether one actor’s popularity

is conditionally independent of the popularity of other actors appearing in common

movies, given the success of those movies. Similarly, from the perspective of movies,

we can ask whether the success of a movie is conditionally independent of the success

of other movies with common actors, given the popularity of those actors. With con-

ditional independence, we now can determine the orientation for a single relational

dependency.

These additional tests of conditional independence manifest when inspecting re-

lational data with abstract ground graphs (recall Section 4.4). If actor popularity

indeed causes movie success, as shown in the relational model in Figure 5.2(a), then

the popularity of actors appearing in the same movie would be marginally indepen-

dent. This produces a collider from the actor perspective and a common cause from

the movie perspective, as shown in Figures 5.2(b) and (c), respectively. Conversely,

2www.hsx.com

3In reality, the dependence between actor popularity and movie success is likely to be complex—
temporal and involving feedback. However, it is also plausible that the set of movies may consist
entirely of independent films starring well-known actors or blockbusters starring newcomers.
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if movie success caused actor popularity, then the success of movies would be a com-

mon cause of an individual actor’s popularity as well as the popularity of other actors

appearing in common movies. The abstract ground graphs would exhibit a common

cause from the actor perspective and a collider from the movie perspective. With

this representation, it is straightforward to identify the orientation of such a bivariate

dependency.

These examples illustrate two central ideas. First, abstract ground graphs en-

able a new constraint on the space of causal models: relational bivariate orientation.

The abstract ground graph is the underlying representation used by RCD, and the

conditional independence facts derived from it form the crux of the relational bi-

variate orientation rule. Additionally, the rules used by the PC algorithm can also

be adapted to orient the edges of abstract ground graphs (Section 5.2.2). Second,

this constraint-based approach—testing for conditional independencies and reason-

ing about them to orient causal dependencies—is the primary strategy of the RCD

algorithm (Section 5.3).

5.2 Edge Orientation

Edge orientation rules, such as those used by the PC algorithm, use patterns of

dependence and conditional independence to infer the direction of causality consistent

with those patterns [172]. In this section, we introduce the relational bivariate orien-

tation rule (Section 5.2.1) and describe how the PC orientation rules can orient the

edges of abstract ground graphs (Section 5.2.2). We also prove that these orientation

rules are individually sound and collectively complete for causally sufficient relational

data (Sections 5.2.3 and 5.2.4).
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5.2.1 Bivariate edge orientation

The examples from Section 5.1 describe the application of relational bivariate

orientation (RBO). The abstract ground graph representation presents an opportunity

to orient dependencies that cross relationships with a many cardinality. RBO requires

no assumptions about functional form or conditional densities, unlike the recent work

by Shimizu et al. [163], Hoyer et al. [68], Peters et al. [132], and Zhang and Hyvärinen

[200] to orient bivariate dependencies. See Section 5.7.2 for a summary of these model

classes and their corresponding technique for detecting the direction of causality. The

only required assumptions for RBO are that the underlying causal model is acyclic—

which restricts the space of dependencies to those without direct or indirect feedback

cycles—and causal sufficiency.

In the remainder of this section, let IW denote the item class on which attribute

W is defined, and let X − Y denote an undirected edge.

Definition 5.2.1 (Relational Bivariate Orientation) LetM be the structure of

a relational model, and let G be a partially directed abstract ground graph forM and

perspective IX . If [IX ].X−[IX ... IY ].Y is in G, card([IY ... IX ]) = many, and [IX ].X ⊥

⊥ [IX ... IY ... IX ].X | Z, then (1) if [IX ... IY ].Y ∈ Z, orient as [IX ].X← [IX ... IY ].Y ;

(2) if [IX ... IY ].Y 6∈ Z, orient as [IX ].X→ [IX ... IY ].Y.

RBO is illustrated in Figure 5.3. Given Definition 5.2.1, if [IX ... IY ].Y is a col-

lider for perspective IX , then [IY ... IX ].X is a common cause for perspective IY ,

assuming card([IY ... IX ]) = many = card([IX ... IY ]). If card([IX ... IY ]) = one and

card([IY ... IX ]) = many, then RBO applies only to the abstract ground graph with

perspective IX . In the example in Figure 5.2(b), [Actor, Stars-In, Movie].Success

is a collider for the Actor perspective.

RBO is akin to detecting relational autocorrelation [76] and checking whether a

distinct variable is a member of the set that eliminates the autocorrelation. It is also
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[IX ... IY ].Y ∈ sepset([IX ].X, [IX ... IY ... IX ].X)?

[IX ... IY ].Y

[IX ].X [IX ... IY ... IX ].X

NO

YES [IX ... IY ].Y

[IX ].X [IX ... IY ... IX ].X

[IX ... IY ].Y

[IX ].X [IX ... IY ... IX ].X

Figure 5.3: The relational bivariate orientation rule is conditional on whether
[IX ... IY ].Y is in the separating set of [IX ].X and [IX ... IY ... IX ].X.

different than the collider detection rule (see Section 5.2.2) because it can explicitly

orient dependencies as a common cause when the unshielded triple does not present

itself as a collider. In Section 5.5, we quantify the extent to which RBO provides

additional information beyond the standard PC edge orientation rules.

5.2.2 Orienting the edges of abstract ground graphs

We adapt the rules for orienting edges in a Bayesian network, as used by PC

[172] and characterized theoretically by Meek [106] (see Section 2.3.1), to orient re-

lational dependencies at the level of abstract ground graphs. Figure 5.4 displays the

four rules4—Collider Detection (CD), Known Non-Colliders (KNC), Cycle Avoidance

(CA), and Meek Rule 3 (MR3)—as they would appear in an abstract ground graph.

A relational model has a corresponding set of abstract ground graphs, one for

each perspective, but all are derived from the same relational dependencies. Recall

from Section 4.4 that a single dependency supports many edges within and across the

set of abstract ground graphs. Consequently, when a rule is activated for a specific

abstract ground graph, the orientation of the underlying relational dependency must

be propagated within and across all abstract ground graphs.

4An additional rule is described by Meek [106], but it only activates given prior knowledge.
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[B, . . . , IY ].Y �∈ sepset([B, . . . , IX ].X, [B, . . . , IZ ].Z)

[B, . . . , IY ].Y

[B, . . . , IX ].X [B, . . . , IZ ].Z

[B, . . . , IY ].Y

[B, . . . , IX ].X [B, . . . , IZ ].Z

(a) Collider Detection (CD)

[B, . . . , IY ].Y

[B, . . . , IX ].X [B, . . . , IZ ].Z

[B, . . . , IY ].Y

[B, . . . , IX ].X [B, . . . , IZ ].Z

(b) Known Non-Colliders (KNC)

[B, . . . , IX ].X

[B, . . . , IW1 ].W1

[B, . . . , IY ].Y

· · · [B, . . . , IWk
].Wk

[B, . . . , IX ].X

[B, . . . , IW1 ].W1

[B, . . . , IY ].Y

· · · [B, . . . , IWk
].Wk

(c) Cycle Avoidance (CA)

[B, . . . , IX ].X

[B, . . . , IY ].Y

[B, . . . , IZ ].Z

[B, . . . , IW ].W

[B, . . . , IX ].X

[B, . . . , IY ].Y

[B, . . . , IZ ].Z

[B, . . . , IW ].W

(d) Meek Rule 3 (MR3)

Figure 5.4: Schematics of the four PC orientation rules as applied to an abstract
ground graph from perspective B.

5.2.3 Soundness of orientation rules

An orientation rule is sound if any orientation not indicated by the rule introduces

either (1) an unshielded collider in some abstract ground graph, (2) a directed cycle

in some abstract ground graph, or (3) a cycle in the relational model (adapted from

the definition of soundness given by Meek [106]).

Theorem 5.2.1 Let G be a partially oriented abstract ground graph from perspective

B with correct adjacencies and correctly oriented unshielded colliders by either CD or

RBO. Then, KNC, CA, MR3, and the purely common cause case of RBO, as well as

the embedded orientation propagation, are sound.
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Proof. The proof for KNC, CA, and MR3 is nearly identical to the proof given by

Meek [106]. Where unambiguous or unnecessary, we omit specifying relational paths.

KNC: Assume for contradiction that Y−Z is oriented as Y ←Z. Then, X→Y ←Z

is an unshielded collider in G.

CA: Assume for contradiction that X−Y is oriented as X←Y. Then, X→W1→

· · ·→Y →X is a directed cycle in G.

MR3: Assume for contradiction that X ← Z. Then, CA would have oriented

Y →X and W→X. But this creates a new unshielded collider: Y →X←W .

Orientation propagation: Let [B... IX ].X → [B... IY ].Y be an oriented edge in

G. By the definition of abstract ground graphs, this edge stems from a relational

dependency [IY ... IX ].X→ [IY ].Y. Let [B... IX ]′.X−[B... IY ].Y be an unoriented edge

in G where [B... IX ]′ is different than [B... IX ], but the edge is supported by the same

underlying relational dependency. Assume for contradiction that the edge is oriented

as [B... IX ]′.X ← [B... IY ].Y. Then, there must exist a dependency [IX ... IY ].Y →

[IX ].X in the model, which yields a cycle. The argument is the same for abstract

ground graphs from different perspectives.

RBO common cause case: Given Definition 5.2.1, no alternate perspective would

have oriented the triple as a collider, and B = IX . Let [IX ].X − [IX ... IY ].Y −

[IX ... IY ... IX ].X be an unoriented triple in G. Assume for contradiction that the

triple is oriented as [IX ].X → [IX ... IY ].Y ← [IX ... IY ... IX ].X. This creates a new

unshielded collider. Assume for contradiction that the triple is oriented as [IX ].X→

[IX ... IY ].Y → [IX ... IY ... IX ].X or equivalently, the reverse direction. This implies a

cycle in the model. �

5.2.4 Completeness of orientation rules

A set of orientation rules is complete if it produces a maximally oriented graph.

Any orientation of an unoriented edge must be consistent with a member of the
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Markov equivalence class. Lemma 5.2.1 describes a useful property that enables the

proof of completeness to reason directly about the remaining unoriented edges.

Lemma 5.2.1 Let G be a partially oriented abstract ground graph, with correct adja-

cencies and oriented unshielded colliders. Let Go be the result of exhaustively applying

KNC, CA, MR3, and the purely common cause case of RBO, all with orientation

propagation. In Go, if P.X→P ′.Y −P ′′.Z, then P.X→P ′′.Z.

Proof. Much of this proof follows from Meek [106].

The following properties hold:

• X 6= Z; otherwise, RBO would have oriented P ′.Y ←P ′′.Z.

• P.X must be adjacent to P ′′.Z; otherwise, KNC would have oriented P ′.Y →

P ′′.Z.

• P.X←P ′′.Z does not hold; otherwise, CA would have oriented P ′.Y ←P ′′.Z.

Therefore, we have a structure of the form P.X→P ′.Y −P ′′.Z and P.X−P ′′.Z.

The orientations of Go induce a partial ordering on the vertices of Go: V1 < V2

if V1 is an ancestor of V2. Let P ′.Y be a minimal vertex with respect to that partial

ordering such that there is no ancestor V in Go that also has an incoming edge and

an adjacency.

We show that P.X → P ′′.Z through exhaustive enumeration of the cases under

which P.X→P ′.Y was oriented. The first four cases follow directly from the proof

given by Meek [106].

(1) KNC oriented P.X→P ′.Y. Then, there exists a node P ′′′.W such that P ′′′.W→

P.X and P ′′′.W 6∈ adj (P ′.Y ). P.X has an incoming edge (from P ′′′.W ) and an

adjacency P.X−P ′′.Z and is an ancestor of P ′.Y. This is a contradiction since

P ′.Y is minimal.
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(2) CD or RBO (as a collider) oriented P.X→P ′.Y. Then, there exists a node P ′′′.W

such that P ′′′.W→P ′.Y and P ′′′.W 6∈ adj (P.X).

• If P ′′′.W 6∈ adj (P ′′.Z), then KNC would have oriented P ′.Y →P ′′.Z. There-

fore, P ′′′.W and P ′′.Z must be adjacent.

• If P ′′′.W−P ′′.Z, then MR3 would have oriented P ′′.Z→P ′.Y.

• If P ′′′.W←P ′′.Z, then CA would have oriented P ′.Y ←P ′′.Z.

• If P ′′′.W→P ′′Z, then KNC would have oriented P ′′.Z→P.X and CA would

have oriented P ′′.Z→P ′.Y.

(3) MR3 oriented P.X→P ′.Y. This case is similar to case (2).

(4) CA oriented P.X → P ′.Y. Then, there exists a node P ′′′.W such that P.X →

P ′′′.W→P ′.Y. P ′′′.W ∈ adj (P ′′.Z); otherwise, KNC would have oriented P ′.Y →

P ′′.Z. The edge P ′′′.W−P ′′.Z must be oriented; otherwise, P ′.Y would not be

minimal. If P ′′′.W ← P ′′.Z, then CA would have oriented P ′.Y ← P ′′.Z. If

P ′′′.W→P ′′.Z, then CA would have oriented P.X→P ′′.Z.

(5) RBO oriented P.X→ P ′.Y from the IY perspective as a common cause. Then,

P ′ = [IY ], P = [IY ... IX ], and P ′′ = [IY ... IZ ]. Also, [IY ... IX ... IY ].Y must be in

Go with [IY ... IX ].X → [IY ... IX ... IY ].Y. By Definition 5.2.1, card([IY ... IX ]) =

one and card([IY ... IX ]) = many.

The relational path [IY ... IZ ] and its reverse have cardinality one; otherwise, RBO

would have oriented [IY ].Y −[IY ... IZ ].Z. We show that [IY ... IX ].X−[IY ... IZ ].Z

cannot remain unoriented.

This edge exists by the construction of abstract ground graphs: (a) [IY ... IX ] ∈

extend([IY ... IZ ], [IZ ... IX ]) and (b) [IY ... IZ ] ∈ extend([IY ... IX ], [IX ... IZ ]). The

paths [IX ... IZ ] and [IZ ... IX ] underlie the dependency between X and Z. Facts (a)

and (b) impose constraints on the relational schema and abstract ground graphs.
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There are four cases for (a) depending on the relationship between [IY ... IZ ] and

[IZ ... IX ], with equivalent cases for (b).

(i) [IY ... IZ ] and [IZ ... IX ] overlap exactly at IZ . Then, the path from IX to IZ

must have cardinality many. This implies that, from the IZ perspective,

RBO would have oriented X to Z.

(ii) [IY ... IM ... IZ ] and [IZ ... IM ... IX ] overlap up to some item class IM . This is

equivalent to case (i), except IM appears on the path from IX to IZ .

(iii) [IZ ... IX ] is a subpath of the reverse of [IY ... IZ ]. Then, the path from IZ to

IY must have cardinality many, which is a contradiction.

(iv) The reverse of [IY ... IZ ] is a subpath of [IZ ... IX ]. This is equivalent to case

(i), except IY appears on the path from IX to IZ .

(6) Orientation propagation oriented P.X → P ′.Y. Then, there exists an edge for

some perspective that was oriented by one of the orientation rules. From that

perspective, the local structure matches the given pattern, and from cases (1)–(5),

X→Z was oriented. By definition, P.X→P ′′.Z. �

Meek [106] provides two additional definitions and two lemmas (repeated below),

which are used for proving completeness.

Definition 5.2.2 (Chordal graph) An undirected graph is chordal if and only if

every undirected cycle of length four or more has an edge between two nonconsecutive

vertices on the cycle.

Definition 5.2.3 (Consistent ordering) Let G be an undirected graph, α a total

order on the vertices of G, and Gα the induced directed graph (A→ B is in Gα if

and only if A < B with respect to α). A total order α is a consistent ordering with

respect to G if and only if Gα has no unshielded colliders.
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Lemma 5.2.2 Only chordal graphs have consistent orderings.

Lemma 5.2.3 Let G be an undirected chordal graph. For all pairs of adjacent vertices

A and B in G, there exist consistent total orderings α and γ such that A→B in Gα

and A←B in Gγ.

We now have sufficient background theory to prove the main completeness result

for the relational edge orientation rules.

Theorem 5.2.2 Given a partially oriented abstract ground graph, with correct adja-

cencies and oriented unshielded colliders, exhaustively applying KNC, CA, MR3, and

RBO all with orientation propagation results in a maximally oriented graph G.

Proof. Much of this proof follows from Meek [106]. Let Eu and Eo be the set of

unoriented edges and oriented edges of G, respectively. The following two claims

suffice to prove the theorem.

Claim 1 No orientation of edges in Eu creates a cycle or unshielded collider in G

that includes edges from Eo.

Proof. Assume there exists an orientation of edges in Eu that creates a cycle

using edges from Eo. Without loss of generality, assume that the cycle is of

length three.

(1) If A→B→C is in Eo and A−C is in Eu, then CA would have oriented

A→C.

(2) If A→B←C or A←B→C is in Eo and A−C is in Eu, then no orientation

of A−C would create a cycle.

(3) If A→B is in Eo and B−C−A is in Eu, then by Lemma 5.2.1 we have

A→C and no orientation of B − C would create a cycle.
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Assume there exists an orientation of edges in Eu that creates an unshielded

collider using edges from Eo.

(1) Assume A→ B is in Eo, B−C is in Eu, and A is not adjacent to C. If

B ∈ sepset(A,C), then KNC would have oriented B→C; otherwise, CD

would have oriented C→B.

(2) Assume A→B is in Eo and B−C and A−C are in Eu. By Lemma 5.2.1,

A→C must be oriented. �

Claim 2 Let Gu be the subgraph of G containing only unoriented edges. Gu is the

union of disjoint chordal graphs.

Proof. Assume that Gu is not the union of disjoint chordal graphs. Then, there

exists at least one disjoint component of Gu that is not a chordal graph. From

Lemma 5.2.2, every total ordering of Gu is not consistent. Let A→B←C be

an unshielded collider induced by some ordering on Gu. There are two cases:

(1) A and C are adjacent in G. The edge must be oriented; otherwise, it would

appear in Gu. Both orientations of A−C imply an orientation of A and B,

or C and B, by Lemma 5.2.1.

(2) A and C are not adjacent in G. Then, A−B−C is an unshielded triple in

G. Either CD or RBO would have oriented the triple as a collider, or the

triple is inconsistent with the total ordering on Gu. �

Since G is chordal, by Lemma 5.2.3, it follows that no orientation of the unoriented

edges in G creates a new unshielded collider or cycle. �
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5.3 The Relational Causal Discovery Algorithm

The relational causal discovery (RCD) algorithm is a sound and complete algo-

rithm for learning causal models from relational data.5 RCD employs the high-level,

constraint-based strategy of the PC algorithm, operating in two distinct phases [172].

RCD is similar to the relational PC (RPC) algorithm, which also learns causal rela-

tional models [102]. The differences between RPC and RCD are threefold:

(1) The underlying representation for RCD is a set of abstract ground graphs.

(2) RCD employs a new causal constraint—the relational bivariate orientation rule.

(3) RCD is sound and complete.

RPC also reasons about the uncertainty of relationship existence, but RCD as-

sumes a prior relational skeleton (i.e., that there are no causes of the existence of

entities or relationships). The remainder of this section describes the algorithmic

details of RCD, and we provide an example trace of RCD’s execution in Section 5.3.1

and prove its correctness in Section 5.3.2.

Algorithm 1 provides pseudocode for RCD. Initially, RCD enumerates the set of

potential dependencies, in canonical form, with relational paths limited by the hop

threshold (line 1). Phase I continues similarly to PC, removing potential dependencies

via conditional independence tests with conditioning sets of increasing size drawn

from the power set of neighbors of the effect variable (lines 4–11). Every identified

separating set is recorded, and the corresponding potential dependency and its reverse

are removed (lines 9–10).

5Code available at kdl.cs.umass.edu/rcd.
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ALGORITHM 1: RCD(schema, depth, hopThreshold , P )

1 PDs ← getPotentialDeps(schema, hopThreshold)
2 N ← initializeNeighbors(schema, hopThreshold)
3 S ← {}

// Phase I
4 for d← 0 to depth do
5 for X → Y ∈ PDs do
6 foreach condSet ∈ powerset(N [Y ] \ {X}) do
7 if |condSet | = d then
8 if X ⊥⊥ Y | condSet in P then
9 PDs ← PDs \ {X → Y, Y → X}

10 S[X, Y ]← condSet
11 break

// Phase II
12 AGGs ← buildAbstractGroundGraph(PDs)
13 AGGs, S ← ColliderDetection(AGGs, S)
14 AGGs, S ← BivariateOrientation(AGGs, S)
15 while changed do
16 AGGs ← KnownNonColliders(AGGs)
17 AGGs ← CycleAvoidance(AGGs)
18 AGGs ← MeekRule3(AGGs)
19 return getCanonicalDependencies(AGGs)

The second phase of RCD determines the orientation of dependencies consistent

with the conditional independencies discovered in Phase I. First, Phase II constructs a

set of undirected abstract ground graphs, one for each perspective, given the remain-

ing dependencies. RCD then iteratively checks all edge orientation rules, as described

in Section 5.2. Phase II of RCD is also different from PC and RPC because it searches

for additional separating sets while finding colliders and common causes with CD and

RBO. Frequently, unshielded triples X−Y −Z may have no separating set recorded

for X and Z. For these pairs, RCD attempts to discover a new separating set, as in

Phase I. These triples occur for one of three reasons:

(1) Since X and Z are relational variables, the separating set may have been discov-

ered from an alternative perspective.
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Figure 5.5: (a) Example relational causal model with five dependencies. (b) The
output of RCD after Phase I recovers the correct causal skeleton. (c) After collider
detection, RCD orients two dependencies. (d) After relational bivariate orientation,
RCD orients two more dependencies. (e) The known non-collider rule is activated by
virtue of RBO, yielding a fully oriented causal model.

(2) The total number of hops in the relational paths for X, Y , and Z may exceed

the hop threshold—each dependency is subject to the hop threshold, but a pair

of dependencies is limited by twice the hop threshold.

(3) The attributes of relational variables X and Z are the same, which is necessarily

excluded as a potential dependency by the assumption of an acyclic model.

5.3.1 Example trace of RCD

In this section, we trace the operation of RCD on a simple relational domain (a

symbolic version of the model in Figure 3.4) and describe how RBO is used to orient
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edges that would otherwise remain unoriented, as well how RBO enables the activa-

tion of additional orientation rules. Consider the relational model in Figure 5.5(a).

There are three entity classes (A, B, and C) connected by a many-to-many rela-

tionship class R1 and a many-to-one relationship class R2. The model includes five

attributes for which there is a chain of four dependencies: X on A causes Y on B,

which causes Z on C, which causes V also on C, which finally causes W on A. There

is a fifth dependency for which X on A causes W on A. All relational paths under-

lying these dependencies are as expected, following the simplest path between entity

classes.

After the first phase of RCD, the algorithm recovers the correct causal skeleton, as

depicted in Figure 5.5(b). RCD also records that [C,R2, B,R1, A].X is independent

of [C].V given [C].Z. Thus, RCD can immediately orient X → W ← Z as a collider,

as shown in Figure 5.5(c). Without access to the RBO rule, RCD would not be able

to further orient the model.

Since RCD can orient bivariate dependencies that cross many cardinalities, RBO

correctly orients the X → Y and Y → Z dependencies, as shown in Figure 5.5(d).

RCD orients the former dependency because [B,R1, A,R1, B].Y is independent of

[B].Y given [B,R1, A].X, which it discovers in Phase II. RCD orients the latter de-

pendency because [B,R2, C].Z does not appear in the separating set for [B].Y and

[B,R1, A,R1, B].Y , as just discovered.

Finally, a new unshielded triple—〈Y, Z, V 〉—that is known to not be a collider

(because it has not already been oriented as such) with Y → Z oriented enables the

KNC rule to activate. The Z → V edge is oriented correctly, made possible by the

additional orientations from RBO, shown in Figure 5.5(e). The final model learned

by RCD is completely oriented.
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5.3.2 Soundness and completeness of RCD

Given the algorithm description and the soundness and completeness of the edge

orientation rules, we prove that RCD is sound and complete. The proof assumes

causal sufficiency and a prior relational skeleton (i.e., no causes of the relational

structure).

Theorem 5.3.1 Given a schema and probability distribution P , RCD learns a cor-

rect maximally oriented model M assuming perfect conditional independence tests,

sufficient hop threshold h, and sufficient depth.

Proof sketch. Given sufficient h, the set of potential dependencies PDs includes

all true dependencies in M, and the set of neighbors N includes the true causes for

every effect relational variable. Assuming perfect conditional independence tests, PDs

includes exactly the undirected true dependencies after Phase I, and S[X, Y ] records

a correct separating set for the relational variable pair 〈X, Y 〉. However, there may

exist non-adjacent pairs of variables that have no recorded separating set (for the three

reasons mentioned above). Given the remaining dependencies in PDs , we construct

the correct set of edges in AGGs using the methods described in Chapter 4. Next, all

unshielded colliders are oriented by either CD or RBO, with correctness following from

Spirtes et al. [172] and relational d -separation. Whenever a pair 〈X, Y 〉 is missing a

separating set in S, it is either found as in Phase I or from a different perspective.

RCD then produces a maximally oriented model by the soundness (Theorem 5.2.1)

and completeness (Theorem 5.2.2) results of the remaining orientation rules. �

5.4 Evaluating the Results of Causal Discovery Algorithms

Algorithms that learn joint models of statistical associations attempt to maximize

the probability that a model fits an input data set. In contrast, most causal discovery

algorithms attempt to learn the causal structure of a set of variables. Since the goal
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of causal discovery focuses on the learned structure as opposed to the model param-

eters, these algorithms require a fundamentally different set of evaluation techniques

than have been commonly employed in statistics and machine learning (e.g., held-out

likelihood, cross-validated accuracy). Evaluation is more challenging in this setting

because it may require knowledge of the true generative model, and it also requires

new measures of structural accuracy.

5.4.1 Evaluation approaches

Empirical evaluation begins with the choice of a data set, and for causal discovery,

there are at least four general approaches. One approach is to synthetically generate

causal models from some distribution over the space of model structures. For Bayesian

networks, it is possible to sample uniformly at random from the space of all directed

acyclic graphs [107, 73] or given structural constraints, such as induced width [74].

For relational models, no similar result has been achieved, but in Section 5.5, we

employ a simple greedy approach to generate model structures. Generating synthetic

causal structures is useful because it provides a controlled, systematic method to

internally validate causal discovery algorithms. However, this approach assumes that

the generated models are somehow representative of causal structures found “in the

wild.”

Another option is to generate data from models that have been encoded by domain

experts and used in practice or to use real data for which the generative structure

is known. Widely used models for evaluating Bayesian network learning include the

ALARM network for monitoring patient vitals [9], the Asia network for describing

lung disease and visits to Asia [90], and the Hailfinder weather forecast system [2].

Similarly, the growing literature on methods for bivariate causal discovery uses a

variety of real-world domains with a single known causal dependency, such as the Old

Faithful geyser data set [7]. Evaluating on realistic causal structures is important,
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but reporting results on only several examples does not offer a rigorous investigation

of an algorithm’s efficacy.

In a similar vein, several researchers have published results that compare the de-

pendencies learned from observational data with those that have been experimentally

validated. This approach has been mostly applied to biological networks for which

experiments are relatively cheap (e.g., yeast gene expression [71] and protein inter-

actions [152]). This is particularly attractive because it simultaneously presents a

valuable use case and convincing evaluation. Furthermore, this approach does not

necessarily require knowledge of the complete ground truth model: If the domain

presents the opportunity to intervene, it may be possible to compare the predictive

accuracy of the learned model against the true post-interventional distribution. Un-

fortunately, this option is rarely used because it may require extensive collaboration

with practitioners and is limited to domains that are easily manipulated. It is also

not currently viable in the relational setting because developing the precise semantics

of interventions remains an open research question.

A fourth alternative is to apply causal discovery algorithms to real-world data sets

with no ground truth. One concern for the relational setting is that the size of data

sets (i.e., the number of variables and sample size) will lead to intractable runtimes.

The evaluation for this approach centers around a practical demonstration—that

causal discovery algorithms can be implemented in practice and to scale. This does

not provide a comprehensive investigation of causal accuracy, but it can lead to anec-

dotal evidence of learned dependencies. We apply this approach to two real domains

in Section 5.6.

5.4.2 Evaluation measures

The output of causal discovery algorithms is typically a (partially) directed acyclic

graph that represents the learned causal structure. Various measures have been de-
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veloped to compare the learned and true model structures. The majority of these

measures focus on characterizing structural errors or structural accuracy (see the

survey conducted by de Jongh and Drużdżel [35]).

The most basic measures count the number of mistakes made by the algorithm.

In their evaluation of modifications to the PC algorithm, Abellán et al. compute the

number of missing links and the number of added links in the learned model as they

vary sample size [1]. Colombo et al. also use these measures (among others), but

present their values as the significance level threshold α is varied to analyze how

sensitive the learned skeleton is to Type I errors [26]. These measures reflect the

magnitude of the errors, but they do not characterize worst-case performance, and

they restrict the focus to errors made during skeleton identification.

The measures originally used to evaluate the PC algorithm deconstruct errors into

four classes: edge commission and omission and orientation commission and omission

[172]. An edge (orientation) commission occurs when the algorithm introduces an edge

(orientation) that does not exist in the true model. Conversely, an edge (orientation)

omission occurs when the algorithm fails to include an edge (orientation) that does

exist in the true model. These measures are also presented as relative percentages,

normalized by the total number of possible errors of each kind.

In Section 5.5, we use measures similar to commission and omission, influenced

by the evaluation of information retrieval systems: precision and recall. Instead of

relevant and retrieved documents, we consider edges and orientations. We define

skeleton precision, skeleton recall, oriented precision, and oriented recall as follows:

skeleton precision =
|{learned edges} ∩ {true edges}|

|{learned edges}|

skeleton recall =
|{learned edges} ∩ {true edges}|

|{true edges}|
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oriented precision =
|{learned orientations} ∩ {true orientations}|

|{learned orientations}|

oriented recall =
|{learned orientations} ∩ {true orientations}|

|{true orientations}|

In contrast with normalized commission, the denominator for precision is the number

of learned edges or orientations as opposed to the total number of edges that could

have been learned. This yields a measure of accuracy that is not biased toward zero.

There are also measures that aggregate low-level errors into a summary statistic.

The F1 score is the harmonic mean of precision and recall. Another commonly used

measure extends the classic Hamming distance from information theory to graph

structures, and it is appropriately named the structural Hamming distance (SHD).

SHD is the minimum number of edge insertions, deletions, and flips necessary to

transform the learned graph into the true Markov equivalence pattern (as opposed

to the true, fully directed model). SHD was defined by Tsamardinos et al. in their

extensive empirical evaluation of MMHC [188], similarly defined by Acid and de

Campos [4], and modified to assign smaller penalties to orientation errors by Perrier

et al. [130]. Colombo et al. also present the mean and variance of SHD across various

trials and as a function of α [26]. Aggregate measures are useful for summarizing

performance, but they do not provide a means to examine specific errors in the way

that precision and recall do.

More recently, novel approaches have been developed that depart from the tradi-

tional focus on structural accuracy to the causal implications of learned structure. If

no errors were introduced by the algorithm, then the causal implications (defined by

interventional distributions) of the learned model would be consistent with the true

model. However, some structural errors (e.g., missing edges, incorrect orientations)

may have no effect on the causal implications, and some errors are more deleterious

145



than others. To that end, Peters and Bühlmann devised an analog to structural Ham-

ming distance called structural intervention distance (SID) [131]. SID is equal to the

number of interventional distributions across all pairs of variables that differ between

the learned and true model. While this begins to evaluate the actual underlying goal

of causal discovery, it requires identifiability results of Pearl’s do-calculus and inter-

ventional distributions, specifically the characterization of adjustment sets shown by

Shpitser et al. [165]. There is currently no relational analog to these concepts or SID.

Another recent measure compares the estimated causal effects of the learned model

against the results of actual experiments. This approach, called intervention-calculus

when the DAG is absent (IDA), computes a lower bound on each causal effect [96].

Given these bounds, all pairs of variables can be ranked by the size of their causal effect

and compared to the true ranking. Currently, there has been just a single domain—

single interventions on yeast gene expression data [71]—for which this method has

been applied [95, 26]. While their applicability is limited to domains that can be

manipulated, both the IDA and SID evaluation approaches are on the general path

toward providing convincing evidence to the larger community that causal discovery

algorithms are practical and broadly applicable.

5.5 Synthetic Experiments

The proofs of soundness and completeness offer a qualitative measure of the ef-

fectiveness of RCD—no other method can learn a more accurate causal model from

observational data. To complement the theoretical results, we provide a quantita-

tive measure of RCD’s performance and compare that against the performance of

alternative constraint-based algorithms.

We evaluate RCD against two alternative algorithms. The first algorithm is RPC

[102]. This provides a comparison against state-of-the-art causal structure learning for

relational data. The second algorithm is the PC algorithm executed on relational data
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that has been propositionalized from a specific perspective—termed Propositionalized

PC (PPC). Propositionalization reduces relational data to a single, propositional

table [87]. (See Section 3.8.4 for more details.) For each perspective, we include all

relational dependencies that contain no repeated item classes in the relational paths.

We then take the best and worst perspectives for each trial by computing the average

F1 score of its skeleton and oriented models.

We generated 1,000 random causal models over randomly generated schemas for

each of the following combinations: entities (1–4); relationships (one less than the

number of entities) with cardinalities selected uniformly at random; attributes per

item drawn from Pois(λ=1)+1; and relational dependencies (1–15) limited by a hop

threshold of 4 and at most 3 parents per variable. This procedure yielded a total

of 60,000 synthetic models. Note that this generates simple Bayesian networks when

there is a single entity class. We ran RCD, RPC, and PPC for each perspective, using

a relational d -separation oracle with hop threshold 8 for the abstract ground graphs.

We compared the learned causal models with the true causal model. For each

trial, we recorded the precision (the proportion of learned edges in the true model)

and recall (the proportion of true edges in the learned model) for both the undirected

skeleton after Phase I and the partially oriented model after Phase II. (See Section 5.4

for a discussion on evaluating causal discovery algorithms.) Figure 5.6 displays the

average across 1,000 trials for each algorithm and measure. We omit error bars as

the maximum standard error was less than 0.015.

All algorithms learn identical models for the single-entity case because they reduce

to PC when analyzing propositional data. For truly relational data, algorithms that

reason over relational representations are necessary for accurate learning. RCD and

RPC recover the exact skeleton, whereas the best and worst PPC cases learn flawed

skeletons (and also flawed oriented models), with high false positive and high false

negative rates. This is evidence that propositionalizing relational data may lead to
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Figure 5.6: Skeleton and oriented precision and recall for the RCD and RPC algo-
rithms, as well as the best and worst perspective for PPC as a baseline. Results are
averaged over 1,000 models for each setting.

inaccurately learned causal models. (See Section 3.8.4 for an extended discussion

about propositionalization.)

For oriented models, the RCD algorithm vastly exceeds the performance of all

other algorithms. As the soundness result suggests, RCD achieves an oriented preci-

sion of 1.0, whereas RPC introduces orientation errors due to reasoning over the class

dependency graph and missing additional separating sets. For recall, which is closely

tied to the completeness result, RCD ranges from roughly 0.56 (for 1 dependency

and 2 entities) to 0.94 (for 15 dependencies and 4 entities). While RPC and PPC

cannot orient models with a single dependency, the relational bivariate orientation

rule allows RCD to orient models using little information. RCD also discovers more

of the underlying causal structure as the complexity of the domain increases with

respect to both relational structure (more entity and relationship classes) and model

density.
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Figure 5.7: Frequency of edge orientation rules in RCD, with RBO last (above) and
first (below).

To quantify the unique contribution that RBO provides, we applied RBO as the

final orientation rule in Phase II and recorded the frequency with which each edge

orientation rule is activated (see Figure 5.7). As expected, RBO never activates for

the single-entity case because all paths have cardinality one. For truly relational

domains, RBO orients between 11% and 100% of the oriented edges. However, this

does not fully capture the broad applicability of RBO. Therefore, we also recorded

the frequency of each edge orientation rule when RBO is applied first in Phase II

of RCD. In this case, for at least two entity classes, RBO orients between 58% and

100% of the oriented edges.

Finally, we recorded the number of conditional independence tests used by the

RCD and RPC algorithms. RCD learns a more accurate model than RPC, but at

the cost of running additional tests of independence during Phase II. Fortunately,

these extra tests do not alter the asymptotic complexity of the algorithm, requiring

on average 31% more tests.
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5.6 Practical Demonstration

In Sections 5.6.1 and 5.6.2 below, we present models that RCD learned from

relational data drawn from the movie industry and scholarly publishing. To do so,

we implemented a practical version of RCD that replaces the relational d -separation

oracle with conditional independence tests from a finite sample.

Accurate tests of conditional independence for relational data remains an open

research area. In Section 4.8.3, the experiment validating relational d -separation con-

veyed just one type of relational bias present in standard statistical tests. The work

by Rattigan outlines several known statistical biases of relational data and describes

potential hypothesis tests that address those problems [139]. As an initial demonstra-

tion, we impose a restrictive assumption—that all variables are drawn from normal

distributions and linear models—and use linear regression and t-tests of coefficients

to determine conditional independence. We also default to the average aggregation

function for relational variables. More realistic implementations of RCD can replace

linear regression with conditional independence tests that rely on fewer assumptions

and search across different aggregators.

We also introduce two thresholds for judging conditional independence. First,

RCD uses the standard α threshold for determining whether a p-value is significant.

This controls for Type I errors, with a default setting of α = 0.01. Unlike other

implementations of constraint-based methods, we also set an effect size threshold

that governs whether a significant dependence is also substantive. Because sample

sizes are typically large enough to attain high statistical power and produce statisti-

cally significant test values, it can be important to filter out dependencies with weak

effects. This is similar to the Bayesian approach used in the BCCD algorithm that

ranks independence statements by their likelihood [25], or more generally, score-based

approaches that penalize additional structure. Varying the effect size threshold (and
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re-running RCD) can facilitate comparison of learned models with different structural

densities.

5.6.1 Movie industry

We applied RCD to the MovieLens+ database, a combination of the UMN Movie-

Lens database (www.grouplens.org); box office, director, and actor information col-

lected from IMDb (www.imdb.com); and average critic ratings from Rotten Tomatoes

(www.rottentomatoes.com). Of the 1,733 movies with this additional information,

we sampled 10% of the user ratings yielding roughly 75,000 ratings. For testing

conditional independence, RCD checks the significance of coefficients in linear regres-

sion and uses the average aggregation function for relational variables. The RCD-

generated model is displayed in Figure 5.8.

We ran RCD with a hop threshold of 4, maximum depth of 3, and an effect

size threshold of 0.01. Because constraint-based methods are known to be order-

dependent [26], we ran RCD 100 times and used a two-thirds majority vote to deter-

mine edge presence and orientation. Out of approximately 690 potential dependen-

cies, RCD discovered 27 having no separating set. One interesting dependency is that

the average number of films that actors have starred in affects the number of films the

director has directed—perhaps well-established actors tend to work with experienced

directors. Also, note that genre is a composition of binary genre attributes.

5.6.2 Scholarly citations

We applied RCD to PubMed (http://www.ncbi.nlm.nih.gov/pubmed), a data

set consisting of biomedical articles, their authors, and their citations to and from

other articles in PubMed. The data also contain the publishing venue and author

institution of each paper. We computed additional relational features concerning

author impact, as measured by h-index [64], venue impact [46], and paper topics

(e.g., similarity to other papers in the same venue, entropy of the topic distribution).
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Figure 5.8: RCD-learned model of MovieLens+.

We randomly sampled 10,000 papers, retaining their 53,000 authors and 333 dis-

tinct venues. These authors are associated with roughly 2,300 institutions. Because

citations are only within PubMed and the sample of papers, we only retained 530

citations. Similar to the analysis of MovieLens+, RCD used linear regression, the

average aggregation function, a hop threshold of 4, maximum depth of 3, and effect

size threshold of 0.01. The RCD-generated model is displayed in Figure 5.9.

Out of approximately 1,200 potential dependencies, RCD discovered 14 depen-

dencies for which no separating set could be found. One interesting dependency is

that the impact factor of a venue influences the maximum h-index of the authors of a

paper. This could be due to prominent journals publishing papers by prolific authors.

Several dependencies with high effect sizes involve the temporal sequence of citations

(i.e., the number of citations after year one affects a paper’s second year citations,

etc.).
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Figure 5.9: RCD-learned model of PubMed.

5.7 Related Work

Aside from propositionalizing relational data and using existing techniques as

described in Section 3.8.4 (which may succumb to fundamental problems for causal

discovery), there are at least two distinct related research areas with similar aspects

to RCD. First, many relational representations and corresponding structure learning

algorithms have been proposed in the statistical relational learning literature. Second,

a class of methods for orienting bivariate dependencies from propositional data has

been gaining attention over the past eight years.

5.7.1 Statistical relational learning

To the best of our knowledge, the only structure learning algorithms for relational

data that explicitly reason about causality are RCD and its predecessor, relational

PC (RPC). RPC was the first to attempt to learn causal models [102], but we have

shown that it is not complete, mainly due to the absence of the RBO rule. We have
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also shown that RPC is not sound in its second phase, as it may introduce orientation

errors, even in the large sample limit, due to its reliance on class dependency graphs

as opposed to abstract ground graphs. Although RPC was developed to additionally

reason about relationship existence uncertainty—a capability beyond RCD—it was

not grounded theoretically.

All other relational structure learning algorithms focus on modeling statistical

associations and optimizing the fit of the joint distribution. The class of relational

models over which RCD learns is similar to probabilistic relational models (PRMs).

All PRM learning algorithms follow the search-and-score paradigm, with unknown

causal implications [43]. For learning Bayesian networks, in the sample limit with

a known node ordering, it can be shown that constraint-based methods, using inde-

pendence tests of conditional cross entropy, learn identical models to search-and-score

methods, using Kullback-Leibler divergence [29]. However, even relaxing the node or-

dering assumption produces results for which “...conditional independence searching

can be more refined than using scoring metrics” (quotation from Cowell’s conclu-

sions [29]). Evaluating alternative paradigms for causal relational learning is open for

future research.

There are also various algorithms for learning the structure of undirected models

of relational data that avoid the acyclicity requirement of directed acyclic models but

cannot represent causality. The relational Markov network was the first such model

with an accompanying structure learning algorithm [177], but it was soon outclassed

by Markov logic networks (MLNs). MLNs were introduced to express more complex

distributions, and many researchers have focused on developing methods for learning

and inference in these models. Of particular note are the first dedicated structure

learning algorithm (aside from the simplistic inductive logic programming methods

used orignally) developed by Kok and Domingos [82], the bottom-up approach taken
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by Mihalkova and Mooney [108], and the improved approach of Kok and Domingos

that finds structural motifs [83].

5.7.2 Methods for orienting bivariate dependencies

The relational bivariate orientation rule can detect the direction of causality be-

tween a pair of relational variables with no assumptions on the underlying functional

form. For propositional data, there is no analogous result if we do not impose addi-

tional distributional assumptions. However, a growing set of results on additive noise

models enables the identification of bivariate orientations. For the pairs of variables

that cannot be oriented with RBO, these approaches could conceivably be integrated

with the RCD algorithm.

The additive noise model is a large subset of all functional parameterizations

of Bayesian networks. Under these models, it can be shown that the direction of

causality for a statistical dependence between two random variables X and Y can be

uniquely identified if the error term of one variable, say ηX , is independent of the other

variable, say Y , but the reverse does not hold. Specific forms of additive noise models

were introduced by Shimizu et al. for linear models with non-Gaussian noise [163],

Hoyer et al. for nonlinear additive noise models [68], Tillman et al. for weakly additive

noise models [185], Zhang and Hyvärinen for post-nonlinear models [200], and Peters

et al. for discrete additive noise models [132]. Recently, the first consistency results

were proven under the additive noise model, but there are no known finite sample

convergence rates [86].

To learn models with more than two variables under this setting, Peters et al.

extend the notion of additive noise models to identifiable functional model classes

(IFMOCs) [133]. This work extends all the bivariate additive noise models mentioned

above to the multivariate, conditional setting, and they develop a causal discovery

algorithm that can completely identify causal structure if the true generating model is
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an IFMOC. Although the consistency of this approach remains unproven, this general

research direction could present an opportunity for learning causal relational models

in combination with RCD.

5.8 Concluding Remarks

Relational d -separation and the abstract ground graph representation from Chap-

ter 4 provide a new opportunity to develop theoretically correct algorithms for learn-

ing causal structure from relational data. In this chapter, we presented the relational

causal discovery (RCD) algorithm and proved it sound and complete for discovering

causal models from causally sufficient relational data (Section 5.3). The completeness

result is enabled by the causal implications of abstract ground graphs. Specifically,

relational bivariate orientation (RBO), which can detect the orientation of bivariate

dependencies, only manifests when examining the implications of relational models

with abstract ground graphs (Section 5.2.1). Powered by RBO, the RCD algorithm

achieves recall of oriented relational models over a previous state-of-the-art algorithm

that is 18% to 72% greater on average.

The primary objective of this thesis is to extend causal discovery to expressive rep-

resentations that more closely model real-world domains. While this goal has certain

theoretical and practical challenges, it is necessary for effective causal discovery. The

experiment in Section 5.5 provides evidence that native representations and learn-

ing algorithms for relational data retain valuable information for causal discovery.

Furthermore, rich representations lead to new approaches for discovering additional

causal constraints—the RBO rule is just a single example. In prior work, we have

shown that relational blocking is another useful method for causal discovery [141], and

it is likely that representations that are more expressive than relational will present

more such opportunities.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The increasing connectedness across different levels and aspects of society and the

ability for computer systems to record individual interactions has led to an availability

of massive, complex data sets for seemingly any domain. The knowledge and insights

buried within these data sets can transform public interests and commercial prospects.

Such is the allure and promise of the so-called “Big Data” movement: The technology

to compile, process, and analyze massive, complex data sets will revolutionize industry

and society by yielding more informed decision-making.

In many respects, these goals can be achieved by detecting patterns of associa-

tion. Applications that rely on improved sensing, such as computer vision, voice-

recognition, or certain aspects of robotics, are driven by large sets of observational

data and complex models of association. However, to produce substantial change in

real domains that are studied by researchers in many disciplines (e.g., social science,

medicine, defense science, behavioral science, economics), merely identifying associ-

ation cannot explain observations or produce meaningful, actionable knowledge to

support decision-making. This requires causal models, and the tools and algorithms

to learn and reason about these models need to be developed and improved. In the

following sections, I review the contributions made in this thesis toward that goal and

offer several directions for future research that continue this progression.
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6.1 Summary of Contributions

Traditional causal discovery in propositional representations has provided a solid

theoretical and, to some extent, practical foundation. However, propositional repre-

sentations can only model the attributes of a single type of entity, which is too re-

strictive for many relational, real-world systems that involve the interactions among

multiple types of entities. The work presented in this thesis extends the represen-

tation, reasoning, and learning for causal discovery in domains that are inherently

relational.

Chapter 3 described a formal representation for relational models, focusing on the

precise semantics for instantiating relational paths and variables with a specific rela-

tional skeleton. These concepts form the basis for representing causal dependencies,

and they enable the theory for deriving conditional independence facts.

Chapter 4 presented the theory of relational d -separation upon showing that tra-

ditional d -separation for Bayesian networks fails to correctly derive all conditional

independencies for a relational model. I introduced the abstract ground graph rep-

resentation, which lies between the model and ground levels, in order to capture

all paths of dependence among relational variables. I showed that abstract ground

graphs enable the sound and complete derivation of the conditional independencies

encoded in a relational model.

Chapter 5 developed a sound and complete constraint-based structure learning al-

gorithm, called relational causal discovery (RCD). This algorithm leverages the con-

nection between conditional independence and relational causal structure provided

by relational d -separation, and takes advantage of the implications of the abstract

ground graph representation. RCD employs a new orientation rule—relational bi-

variate orientation (RBO)—that can identify the causal direction of dependencies

between pairs of relational variables, with no parametric assumptions, and enables

the completeness proofs of RCD.
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6.2 Future Work

While this thesis deals primarily with the theoretical foundation for relational

causal discovery, it provides capabilities that should be further developed for real-

world applications. I describe several possible directions that can extend this work

to more effective and practical causal discovery.

Devise accurate methods for testing conditional independence. The effec-

tiveness of constraint-based algorithms, such as RCD, hinge on the accuracy of its

tests of conditional independence. For example, Tsamardinos and Borboudakis show

that permutation tests can improve the accuracy of learned Bayesian networks be-

cause sample-specific reference distributions are more accurate than the asymptotic

limiting distributions of conventional tests [187]. If the statistical tests require para-

metric assumptions that are not met, then the recovered structure will likely include

false positive and negative edges. For demonstrative purposes, we implemented a

simple test of independence (using linear regression) in RCD, but more robust tests

are necessary for real-world applications.

There is a large body of research on developing hypothesis tests, but most ap-

proaches focus on two-sample, bivariate tests of dependence, and there is almost no

research on tests for relational data. A few recent approaches for testing propositional

data, such as the Bayesian multiresolution test for continuous variables [105], kernel

tests [59, 201], and conditional correlation independence [138], appear promising for

relational extensions. The structured kernel test for non-IID data [202] and the tests

devised by Rattigan [139] should also be investigated as potential candidates.

Develop and compare alternative constraint-based strategies and causal

discovery paradigms. Many different constraint-based strategies have been devel-

oped to fix certain classes of errors that can be introduced by PC under finite samples

(see Section 2.3.2). These strategies could conceivably be extended to relational struc-

ture learning. Additionally, the search-and-score and hybrid paradigms have not been
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explored for learning causal structure of relational models. While learning PRMs has,

thus far, been limited to search-and-score, those algorithms currently choose a single

model. In contrast, a relational extension to greedy equivalence search (GES) [23]

would learn a Markov equivalence class as RCD does. A broad set of algorithms that

learn relational causal structure would enable a large-scale empirical analysis that

could be conducted to compare performance under various finite-sample scenarios.

Incorporate blocking to relax causal sufficiency. One assumption made by

RCD to provide soundness and completeness is that the data are causally sufficient,

involving no latent common causes. In recent work, we showed that relational block-

ing—a generalization of blocking designs, twin studies, and multilevel models—is

easily expressed within a relational representation [141, 139]. Blocking is a funda-

mentally new operator that exploits relational structure to provide constraints on the

space of causal relational models in the presence of latent confounders. Blocking is

different from tests of conditional independence because it (1) reduces variability and

increases statistical power, (2) relaxes causal sufficiency by controlling for observed

and latent variables, and (3) does not induce dependence when conditioning on com-

mon effects. In work that is currently under submission, we formalize blocking using

the relational d -separation theory, integrate it with conditional independence tests in

RCD, and show that it can relax causal sufficiency while increasing efficiency (i.e.,

reducing the number of tests necessary to recover causal structure).

Incorporate Bayesian priors and evidence. The output of RCD and other

constraint-based algorithms is a single causal structure, and its execution is entirely

data-driven. Recent work by Borboudakis and Tsamardinos has shown that expert

prior knowledge of causal dependencies and paths can be incorporated into struc-

ture learning algorithms [12, 13]. Additionally, Claassen and Heskes developed a

constraint-based algorithm that uses a posterior score to rank dependencies by some

Bayesian confidence [25]. These approaches can guide structure learning with expert
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judgments and control the output by its sensitivity to effect sizes, which should be

beneficial in practical settings.

Increase the expressiveness of the underlying representation. The over-

arching theme of this thesis is to extend traditional causal discovery to the more

expressive relational representation. However, there are additional data complexities

beyond relational structure that would be useful to model for causal discovery. The

representational limitations described in Section 3.9 all present useful research direc-

tions for extending representation, reasoning, and learning. Specifically, extending

our model class to explicitly represent latent variables, existence of entity and rela-

tionship instances, ontologies over entity and relationship classes, temporal dynamics,

and feedback is important future work, especially in the context of learning causal

models of realistic domains.

6.3 Broader Impact

Beyond future technical directions, the contributions of this thesis provide a foun-

dation that has the potential to produce innovative theory, systems, and applications

that could have an impact on a wide range of important domains. Below, I present

several implications of this research that have a potential broad impact in other fields

and real domains.

Correct analyses of previous real-world studies. The results in Chapter 4 point

to potential flaws in the design and analysis of some real-world studies. If researchers

of social or economic systems choose inappropriate data and model representations,

then their analyses may omit important classes of dependencies. Specifically, the rela-

tional d -separation theory implies that choosing a propositional representation from

an inherently relational domain may lead to serious errors. An abstract ground graph

from a given perspective defines the exact set of variables that must be included in

any propositionalization. The absence of any relational variable (including intersec-
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tion variables) may unnecessarily violate causal sufficiency, which could result in the

inference of a causal dependency where conditional independence was not detected.

This thesis indicates that researchers should carefully consider how to represent their

domains in order to accurately reason about conditional independence, and it may be

possible to correct previous studies that claimed to uncover significant effects where

independence should have been observed.

Generalize interventions under interference. The relational d -separation theory

connects relational causal structure with conditional independence. As with tradi-

tional d -separation, this could be developed further into a theory for identifying the

causal effects of relational interventions. Specifically, Pearl’s do-calculus—a series

of three rules for manipulating probability distributions based on simple interven-

tions (setting a variable’s value) [122]—could be transferred to relational or network

interventions [189]. This has the potential to revolutionize and generalize how inter-

ventions are performed and measured in epidemiological studies, network marketing,

and other domains. Current approaches have focused on models of interference using

the potential-outcome framework with minor relaxations of the stable-unit treatment

value assumption for simple social networks [179]. With a relational representation,

we could generalize interventions under interference to arbitrary relational effects.

Characterize preexisting quasi-experimental designs and identify new de-

signs using expressive representations. Quasi-experimental designs (QEDs) are

a suite of techniques that emulate control and randomization in order to support

causal conclusions [160]. Although routinely used by social scientists, identifying ap-

plicable QEDs is a painstaking manual process, and the literature includes dozens of

types of designs with many variations (e.g., instrumental variable designs, regression

discontinuity designs, interrupted time-series designs). Moreover, QEDs can only be

identified and applied to data with a rich underlying representation, but researchers

who employ them do not rely on explicit data or model representations. This presents
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an opportunity to characterize and leverage new methods for causal discovery that are

only applicable in relational, or more expressive, representations. This thesis provides

evidence that new designs for learning causal constraints, such as relational bivariate

orientation (RBO), can be discovered in expressive representations.

Our experience manually applying different QEDs to real-world complex systems,

including Stack Overflow [119, 141], Wikipedia [101], and IMDb [75], indicates that

many QEDs utilize the same underlying basic operations. QEDs attempt to eliminate

alternative causal models by controlling for various effects, but the methods in which

they do so appear to be limited to a small set of operators. The design space can

mostly be characterized by instances of blocking, conditioning, and sampling [101].

Relational blocking (described in Section 6.2) is one example of a QED that can be

graphically characterized with a relational representation and can be integrated with

a causal structure learning algorithm. Another example is the instrumental variable

design generalized by Brito and Pearl that uses graphical conditions for Bayesian

networks [16]. The constraint-based approach used in this thesis for learning joint

causal models is particularly extensible and conducive to incorporating new, modular

operators based on these designs.

Build mixed-initiative systems for computer-aided causal discovery. The

focus of this thesis is on a purely automated methodology, but a long-term goal is

to build interactive, mixed-initiative systems that enable an expert to be actively

involved in the learning process. This extends well beyond incorporating prior knowl-

edge, allowing a user to influence the execution of the system based on interme-

diate discoveries. Computer-aided causal discovery for social scientists and other

researchers could dramatically change the way scientific research is conducted and

causal knowledge is shared.

Learn causal models of high-impact real-world domains. With the growing

ability to record complex data in many domains, there is a great opportunity to apply

163



causal discovery with expressive underlying representations. The research presented

in this thesis and its near-term extensions have the potential to inform our under-

standing and produce positive change in systems involving social networks, health

care and medicine, economic and commercial enterprises, energy and transportation

networks, and defense interests. Similar to how Bayesian networks have improved

the probabilistic reasoning capabilities of diagnostic systems, learning and deploying

expressive causal models in real domains could advise and inform new policies as

society increasingly relies on advanced technology.
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[1] Abellán, Joaqúın, Gómez-Olmedo, Manuel, and Moral, Seraf́ın. Some varia-
tions on the PC algorithm. In Proceedings of the Third European Workshop on
Probabilistic Graphical Models (2006), pp. 1–8. 31, 32, 144

[2] Abramson, Bruce, Brown, John, Edwards, Ward, Murphy, Allan, and Win-
kler, Robert L. Hailfinder: A Bayesian system for forecasting severe weather.
International Journal of Forecasting 12, 1 (1996), 57–71. 142

[3] Acid, Silvia, and de Campos, Luis M. A hybrid methodology for learning belief
networks: BENEDICT. International Journal of Approximate Reasoning 27, 3
(2001), 235–262. 33

[4] Acid, Silvia, and de Campos, Luis M. Searching for Bayesian network structures
in the space of restricted acyclic partially directed graphs. Journal of Artificial
Intelligence Research 18 (2003), 445–490. 32, 145

[5] Angrist, Joshua D., and Krueger, Alan B. Instrumental variables and the search
for identification: From supply and demand to natural experiments. Journal of
Economic Perspectives 15, 4 (Fall 2001), 69–85. 20

[6] Angrist, Joshua D., and Pischke, Jörn-Steffen. Mostly Harmless Econometrics:
An Empiricist’s Companion. Princeton University Press, Princeton, NJ, 2009.
9

[7] Azzalini, Adelchi, and Bowman, Adrian W. A look at some data on the Old
Faithful geyser. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 39, 3 (1990), 357–365. 142

[8] Barker, Richard. CASE Method: Entity Relationship Modeling. Addison-
Wesley, Boston, MA, 1990. 39

[9] Beinlich, Ingo A., Suermondt, Henri J., Chavez, R. Martin, and Cooper, Gre-
gory F. The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks. In Proceedings of the Second European
Conference on Artificial Intelligence in Medicine (1989), pp. 247–256. 142

[10] Berkson, Joseph. Limitations of the application of fourfold table analysis to
hospital data. Biometrics Bulletin 2, 3 (June 1946), 47–53. 24

165



[11] Bishop, Christopher M. Latent variable models. In Learning in Graphical
Models, Michael I. Jordan, Ed. MIT Press, Cambridge, MA, 1999, pp. 371–403.
67

[12] Borboudakis, Giorgos, and Tsamardinos, Ioannis. Incorporating causal prior
knowledge as path-constraints in Bayesian networks and maximal ancestral
graphs. In Proceedings of the Twenty-Ninth International Conference on Ma-
chine Learning (2012), pp. 1799–1806. 160

[13] Borboudakis, Giorgos, and Tsamardinos, Ioannis. Scoring and searching
over Bayesian networks with causal and associative priors. In Proceedings of
the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (2013),
pp. 102–111. 160

[14] Boutilier, Craig, Friedman, Nir, Goldszmidt, Moises, and Koller, Daphne.
Context-specific independence in Bayesian networks. In Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelligence (1996), pp. 115–
123. 65

[15] Bowers, Jake, Fredrickson, Mark M., and Panagopoulos, Costas. Reasoning
about interference between units: A general framework. Political Analysis 21,
1 (2013), 97–124. 59

[16] Brito, Carlos, and Pearl, Judea. Generalized instrumental variables. In Pro-
ceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence
(2002), pp. 85–93. 20, 163

[17] Buntine, Wray L. Operations for learning with graphical models. Journal of
Artificial Intelligence Research 2 (1994), 159–225. 52

[18] Campbell, Donald, and Stanley, Julian. Experimental and Quasi-Experimental
Designs for Research. Rand McNally, Chicago, IL, 1966. 20

[19] Charniak, Eugene. Bayesian networks without tears. AI Magazine 12, 4 (1991),
50–63. 17

[20] Chen, Xue-wen, Anantha, Gopalakrishna, and Wang, Xinkun. An effective
structure learning method for constructing gene networks. Bioinformatics 22,
11 (2006), 1367–1374. 14

[21] Cheng, Jie, Bell, David A., and Liu, Weiru. Learning belief networks from data:
An information theory based approach. In Proceedings of the Sixth International
Conference on Information and Knowledge Management (1997), pp. 325–331.
31

[22] Chickering, David Maxwell. Learning Bayesian networks is NP-complete. In
Proceedings of the Fifth International Workshop on Artificial Intelligence and
Statistics (1996), pp. 121–130. 32

166



[23] Chickering, David Maxwell. Optimal structure identification with greedy search.
Journal of Machine Learning Research 3, 3 (2002), 507–554. 32, 33, 160

[24] Claassen, Tom, and Heskes, Tom. A logical characterization of constraint-based
causal discovery. In Proceedings of Twenty-Seventh Conference on Uncertainty
in Artificial Intelligence (2011), pp. 135–144. 67

[25] Claassen, Tom, and Heskes, Tom. A Bayesian approach to constraint based
causal inference. In Proceedings of Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence (2012), pp. 207–216. 33, 67, 150, 160

[26] Colombo, Diego, and Maathuis, Marloes H. Order-Independent Constraint-
Based Causal Structure Learning. arXiv preprint arXiv:1211.3295 (2013). 32,
144, 145, 146, 151

[27] Colombo, Diego, Maathuis, Marloes H., Kalisch, Markus, and Richardson,
Thomas S. Learning high-dimensional directed acyclic graphs with latent and
selection variables. The Annals of Statistics 40, 1 (2012), 294–321. 33, 67

[28] Cooper, Gregory F., and Herskovits, Edward. A Bayesian method for the induc-
tion of probabilistic networks from data. Machine learning 9, 4 (1992), 309–347.
32

[29] Cowell, Robert G. Conditions under which conditional independence and scor-
ing methods lead to identical selection of Bayesian network models. In Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
(2001), pp. 91–97. 154

[30] Daly, Rónán, and Shen, Qiang. Learning Bayesian network equivalence classes
with ant colony optimization. Journal of Artificial Intelligence Research 35
(2009), 391–447. 32

[31] D’Ambrosio, Bruce, Altendorf, Eric, and Jorgensen, Jane. Ecosystem analysis
using probabilistic relational modeling. In Proceedings of the International Joint
Conference on Artificial Intelligence Workshop on Learning Statistical Models
from Relational Data (2003). 38

[32] Darwiche, Adnan. Bayesian networks. Communications of the ACM 53, 12
(2010), 80–90. 17

[33] Dash, Denver. Restructuring dynamic causal systems in equilibrium. In Proceed-
ings of the Tenth International Workshop on Artificial Intelligence and Statis-
tics (2005), pp. 81–88. 67

[34] Dawid, A. Philip. Conditional independence in statistical theory. Journal of
the Royal Statistical Society. Series B (Methodological) 41, 1 (1979), 1–31. 15

167
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[131] Peters, Jonas, and Bühlmann, Peter. Structural Intervention Distance (SID)
for Evaluating Causal Graphs. arXiv preprint arXiv:1306.1043 (2013). 146

[132] Peters, Jonas, Janzing, Dominik, and Schölkopf, Bernhard. Causal inference
on discrete data using additive noise models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 33, 12 (2011), 2436–2450. 128, 155

[133] Peters, Jonas, Mooij, Joris M., Janzing, Dominik, and Schölkopf, Bernhard.
Identifiability of causal graphs using functional models. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (2011),
pp. 589–598. 155

[134] Poole, David. First-order probabilistic inference. In Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence (2003), vol. 3,
pp. 985–991. 60

[135] Poole, David. Logical generative models for probabilistic reasoning about ex-
istence, roles and identity. In Proceedings of the Twenty-Second National Con-
ference on Artificial Intelligence (2007), pp. 1271–1277. 66

[136] Ramakrishnan, Raghu, and Gehrke, Johannes. Database Management Systems,
2nd ed. McGraw-Hill, Inc., New York, NY, 2002. 64

[137] Ramsey, Joseph, Spirtes, Peter, and Zhang, Jiji. Adjacency-faithfulness and
conservative causal inference. In Proceedings of the Twenty-Second Conference
on Uncertainty in Artificial Intelligence (2006), pp. 401–408. 33

[138] Ramsey, Joseph D. A Scalable Conditional Independence Test for Nonlinear,
Non-Gaussian Data. arXiv preprint arXiv:1401.5031 (2014). 159

[139] Rattigan, Matthew J. Leveraging Relational Representations for Causal Dis-
covery. Ph.D. thesis, University of Massachusetts Amherst, 2012. 33, 62, 150,
159, 160

[140] Rattigan, Matthew J., and Jensen, David. Leveraging d-separation for relational
data sets. In Proceedings of the Tenth IEEE International Conference on Data
Mining (2010), pp. 989–994. 63

[141] Rattigan, Matthew J., Maier, Marc, and Jensen, David. Relational blocking
for causal discovery. In Proceedings of the Twenty-Fifth National Conference
on Artificial Intelligence (2011), pp. 145–151. 33, 156, 160, 163

[142] Rehg, James M., Murphy, Kevin P., and Fieguth, Paul W. Vision-based speaker
detection using Bayesian networks. In Proceedings of the Thirteenth IEEE Con-
ference on Computer Vision and Pattern Recognition (1999), pp. 110–116. 14

176



[143] Richardson, Matthew, and Domingos, Pedro. Markov logic networks. Machine
Learning 62, 1–2 (2006), 107–136. 8, 35, 43, 53, 60

[144] Richardson, Thomas, and Spirtes, Peter. Ancestral graph Markov models. The
Annals of Statistics 30, 4 (2002), 962–1030. 25, 67

[145] Richardson, Thomas S. Feedback Models: Interpretation and Discovery. Ph.D.
thesis, Carnegie Mellon University, 1996. 67

[146] Richardson, Thomas S. A factorization criterion for acyclic directed mixed
graphs. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence (2009), 462–470. 67

[147] Robins, Garry, Pattison, Pip, Kalish, Yuval, and Lusher, Dean. An introduction
to exponential random graph (p*) models for social networks. Social Networks
29 (2007), 173–191. 59

[148] Rosenbaum, Paul R. Interference between units in randomized experiments.
Journal of the American Statistical Association 102, 477 (2007), 191–200. 59

[149] Rosenbaum, Paul R., and Rubin, Donald B. The central role of the propensity
score in observational studies for causal effects. Biometrika 70, 1 (1983), 41–55.
19

[150] Rubin, Donald B. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology 66, 5 (October
1974), 688–701. 21, 59

[151] Russell, Stuart, and Norvig, Peter. Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall, 2010. 15, 60, 65

[152] Sachs, Karen, Perez, Omar, Pe’er, Dana, Lauffenburger, Douglas A., and Nolan,
Garry P. Causal protein-signaling networks derived from multiparameter single-
cell data. Science 308, 5721 (2005), 523–529. 143

[153] Sadeghi, Kayvan, and Lauritzen, Steffen. Markov properties for mixed graphs.
Bernoulli 20, 2 (2014), 676–696. 25

[154] Scheines, Richard. An introduction to causal inference. In Causality in Crisis?
Statistical Methods and the Search for Causal Knowledge in the Social Sciences,
Vaughan R. McKim and Steven P. Turner, Eds. University of Notre Dame Press,
1997, pp. 185–199. 18

[155] Schmidt, Mark, and Murphy, Kevin. Modeling discrete interventional data using
directed cyclic graphical models. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence (2009), pp. 487–495. 67

[156] Schulte, Oliver, Khosravi, Hassan, and Man, Tong. Learning directed relational
models with recursive dependencies. Machine Learning 89, 3 (2012), 299–316.
65, 75

177



[157] Scott, John, and Carrington, Peter J., Eds. The SAGE Handbook of Social
Network Analysis. SAGE Publications, London, 2011. 8

[158] Segal, Eran, Taskar, Ben, Gasch, Audrey, Friedman, Nir, and Koller, Daphne.
Rich probabilistic models for gene expression. Bioinformatics 17, suppl 1 (2001),
S243–S252. 38

[159] Shachter, Ross D. Bayes-Ball: The rational pastime (for determining irrelevance
and requisite information in belief networks and influence diagrams). In Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
(1998), pp. 480–487. 24

[160] Shadish, William R., Cook, Thomas D., and Campbell, Donald T. Experimental
and Quasi-Experimental Designs for Generalized Causal Inference. Houghton
Mifflin, Boston, MA, 2002. 9, 20, 63, 162

[161] Shalizi, Cosma R., and Thomas, Andrew C. Homophily and contagion are
generically confounded in observational social network studies. Sociological
Methods & Research 40, 2 (2011), 211–239. 115

[162] Shi, Chuan, Kong, Xiangnan, Yu, Philip S., Xie, Sihong, and Wu, Bin. Rel-
evance search in heterogeneous networks. In Proceedings of the Fifteenth In-
ternational Conference on Extending Database Technology (2012), pp. 180–191.
42

[163] Shimizu, Shohei, Hoyer, Patrik O., Hyvärinen, Aapo, and Kerminen, Antti.
A linear non-Gaussian acyclic model for causal discovery. Journal of Machine
Learning Research 7 (2006), 2003–2030. 128, 155

[164] Shpitser, Ilya, and Pearl, Judea. Complete identification methods for the causal
hierarchy. Journal of Machine Learning Research 9 (2008), 1941–1979. 26

[165] Shpitser, Ilya, VanderWeele, Tyler J., and Robins, James M. On the validity of
covariate adjustment for estimating causal effects. In Proceedings of the Twenty-
Sixth Conference on Uncertainty in Artificial Intelligence (2010), pp. 527–536.
146

[166] Shrier, Ian. Letter to the editor. Statistics in Medicine 27 (2008), 2740–2741.
19

[167] Singh, Moninder, and Valtorta, Marco. An algorithm for the construction of
Bayesian network structures from data. In Proceedings of the Ninth Conference
on Uncertainty in Artificial Intelligence (1993), pp. 259–265. 33
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