
USING FORMAL METHODS TO VERIFY TRANSACTIONAL
ABSTRACT CONCURRENCY CONTROL

A Dissertation Presented

by

TREK PALMER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 25, 2014

School of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003

c© Copyright by Trek Palmer 2014

All Rights Reserved

USING FORMAL METHODS TO VERIFY TRANSACTIONAL
ABSTRACT CONCURRENCY CONTROL

A Dissertation Presented

by

TREK PALMER

Approved as to style and content by:

J. Eliot B. Moss, Chair

Jack Wileden, Member

Neil Immerman, Member

George Avrunin, Member

Lori A. Clarke, Professor and Chair
School of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003

ABSTRACT

USING FORMAL METHODS TO VERIFY TRANSACTIONAL
ABSTRACT CONCURRENCY CONTROL

August 25, 2014

TREK PALMER

Bachelor’s of Science, UNIVERSITY OF NEW MEXICO

Master’s of Science, UNIVERSITY OF NEW MEXICO

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. Eliot B. Moss

Concurrent application design and implementation is more important than ever in to-

day’s multi-core processor world. Transactional Memory (TM) [33] has emerged as a

promising technique for vastly simplifying the task of implementing concurrent applica-

tions. Transactional semantics in a programming language context has the potential to

greatly improve the correctness of concurrent code, and improve the productivity of those

that write it. However, standard transactional memory systems have several deficiencies.

It is difficult to integrate transactional and non-transactional code, the TM run-time may

make sub-optimal decisions that can significantly impact performance, and some actions

(such as I/O) are inherently non-transactional. To remedy these shortcomings, several ex-

tensions to ordinary closed-nested TM have been proposed [51, 19]. Each has its own

particular advantages and disadvantages. However, these techniques each need some extra

information to ‘glue’ the non-transactional operation into a transactional context. At the

iv

most general level, non-transactional code must be decorated in such a way that the TM

run-time can determine how those non-transactional operations commute with one another,

and how to ‘undo’ the non-transactional operations in case the run-time needs to abort a

software transaction.

The TM run-time trusts that these programmer-provided annotations are correct. There-

fore, if an implementor needs to employ one of these transactional ‘escape hatches’, it is

crucially important that their concurrency control annotations be correct. However, reason-

ing about the commutativity of data structure operations is often challenging, and increas-

ing the burden on the programmer with a proof requirement does not simplify the task of

concurrent programming. There is a way to leverage the structure that these TM extensions

require to reduce greatly the burden on the programmer. If the programmer could describe

the abstract state of the data structure and then reason about it with as much machine as-

sistance as possible, then there would be much less opportunity for error. Abstract state

is preferable to a more concrete state, because it permits the programmer to use different

concrete implementations of the same abstract data type. Also, some TM extensions such

as open nesting [51] can handle concrete state conflicts without programmer intervention

(making the abstract state the appropriate state for reasoning about commutativity). A solu-

tion to the problem of specifying and verifying the concurrency properties of abstract data

structures is the subject of this thesis.

We will describe a new language, ACCLAM, for describing the abstract state of a data

structure and reasoning about its concurrency control properties. This thesis also describes

a tool that can process ACCLAM descriptions into a machine verifiable form (they are con-

verted to a SAT problem). We will also provides a more detailed overview of transactional

memory and the more popular extensions, a detailed semantic description of ACCLAM

and a set of example data structure models and the results of processing those examples

with the language processing tool.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . xiv

LIST OF FIGURES . xix

CHAPTER

1. INTRODUCTION . 1

2. TRANSACTIONAL SEMANTICS . 4

2.1 Transactions as Abstractions . 4

2.1.1 Transactions as Histories . 5
2.1.2 Read sets and Write sets . 6

2.2 Concurrency Control . 7

2.2.1 Synchronization . 8
2.2.2 Transaction Failure . 9

2.3 Deadlock Detection and Avoidance . 10
2.4 Nesting Transactions . 10

2.4.1 Closed Nesting . 12
2.4.2 Open Nesting . 13

2.4.2.1 Abstract Concurrency Control . 16

3. TRANSACTIONAL MEMORY . 18

3.1 Transactional Memory . 18
3.2 Data tracking . 19
3.3 Closed Nesting . 20

vi

3.4 Open Nesting . 21
3.5 Transactional Boosting . 22
3.6 TM implementation . 23
3.7 Integrating Transactional and Non-transactional Systems 24

4. RELATED WORK . 26

4.1 Transactional Memory . 26
4.2 Database Research . 28
4.3 Formal Methods and Program Analysis . 30

4.3.1 Program Analysis: Dynamic Methods . 31
4.3.2 Program Analysis: Static Methods . 32
4.3.3 Abstract Data Types . 34
4.3.4 Model Checking . 36

5. ABSTRACT STATE SPECIFICATION LANGUAGE . 38

5.1 Problem Domain . 38
5.2 ACCLAM’s Audience . 39
5.3 Language Overview . 40

5.3.1 Language Pipeline . 40

5.4 Notable Features . 41

5.4.1 Top-level Declarations . 41
5.4.2 Statements and Expressions . 56
5.4.3 Atoms and Literals . 61
5.4.4 Model Inheritance . 62

5.4.4.1 Conflicts in Sub Models . 62
5.4.4.2 Overriding Methods . 62
5.4.4.3 Invariants . 63
5.4.4.4 Substitution . 63

6. ACCLAM EXAMPLES AND MODEL EXCERPTS . 64

6.1 Set . 64

6.1.1 Conflict Predicates . 66
6.1.2 Abstract Locking . 67

6.2 Equivalence and Parameterizing Set . 69

6.2.1 Iterators and Iteration . 71

vii

6.3 Ordered Set . 73

6.3.1 Conflict Predicates . 76
6.3.2 Abstract Locking . 77

6.4 Map . 78

6.4.1 Conflict Predicates . 78
6.4.2 Abstract Locks . 78

6.5 MultiMap . 78

6.5.1 Conflict Predicates . 80
6.5.2 Abstract Locks . 80

7. FORMAL DESCRIPTION OF ACCLAM . 83

7.1 Abstract Syntax . 83

7.1.1 Type Domains: . 84
7.1.2 Metavariables . 84
7.1.3 Metafunctions . 84
7.1.4 Models . 85
7.1.5 Expressions . 86
7.1.6 Statements . 86
7.1.7 Well-formedness . 86

7.1.7.1 Type well-formedness . 87

7.1.8 Static Semantics Typing Rules: . 88

7.1.8.1 Type Schema . 89
7.1.8.2 Method Overload Well-formedness . 90
7.1.8.3 Expression Typing . 92
7.1.8.4 Statement Types . 94

7.2 Operational Semantics . 98

7.2.1 Metafunctions . 101
7.2.2 Computation Steps . 101

7.2.2.1 Operations on Local Variables . 102
7.2.2.2 Blocks and Scope . 102
7.2.2.3 Simple Expressions and Statements 103
7.2.2.4 Forall and Choose . 106
7.2.2.5 Updates in forall bodies . 109
7.2.2.6 Choose . 113

viii

7.2.2.7 Ordering Rules . 113
7.2.2.8 State Transition Rules . 115

7.3 Soundness . 118

7.3.1 Well-typed Heap . 118
7.3.2 Well-typed Variable Stack . 119
7.3.3 Well-typed frame stack . 120

7.3.3.1 Typing Substitution Holes . 120
7.3.3.2 Case-by-case Typing of Statements 120

7.3.4 Soundness . 122

7.3.4.1 Progress . 122
7.3.4.2 Type Preservation . 126
7.3.4.3 Soundness . 128

7.4 Circuit Semantics . 129

7.4.1 Circuit Constructs . 129
7.4.2 Circuit Expressions . 130

7.4.2.1 Lambda Application Rule . 130

7.4.3 Transforms . 130
7.4.4 State in the Circuit . 131
7.4.5 Utility Functions . 131
7.4.6 Value Transform . 132
7.4.7 Expression Transform . 133
7.4.8 Statement Transform . 136
7.4.9 Program Transform . 140

7.5 Equivalence of Circuit and Operational Semantics . 142

7.5.1 Equivalence of Basic Forms . 143
7.5.2 Equivalence of Stacks and Heaps . 144
7.5.3 Expressions . 144
7.5.4 Statements . 146

7.5.4.1 Control Flow Lemma . 146
7.5.4.2 Conditioned-State Lemma . 148

7.5.5 Statement Equivalence . 149
7.5.6 Program Equivalence . 156

ix

8. QUESTIONS ANSWERABLE WITH THE LANGUAGE AND TOOL 157

8.1 Correctness Questions . 157

8.1.1 Conflict Predicate Correctness . 157
8.1.2 SAT-friendly form . 159
8.1.3 Lock Correctness . 160

8.1.3.1 SAT-friendly form . 162

8.1.4 Correctness of Inverses . 162
8.1.5 SAT-friendly form . 163

8.2 Side-conditions . 164

8.2.1 Forall side condition . 164
8.2.2 Choose side condition . 165

8.2.2.1 SAT-friendly form . 166

8.2.3 Invariant Maintenance . 166

8.2.3.1 SAT-friendly form . 166

8.3 Performance questions . 167

8.3.1 Conflict Predicate Precision . 167
8.3.2 Lock Tightness . 168

9. TOOL DESIGN AND PERFORMANCE . 170

9.1 The Verifier’s Front End . 170

9.1.1 Expansion into circuit expressions . 170
9.1.2 Relations and scalarization . 171

9.1.2.1 Relations within forall . 173

9.1.3 Reductions . 176
9.1.4 Invariants . 177

9.1.4.1 Forall Expansion . 178

9.1.5 Predicate construction . 179

9.2 The Verifier’s Back End . 180

9.2.1 Expression Conversion . 181

x

9.2.2 Circuit Simplification . 181
9.2.3 Circuit Memoization . 182

9.3 Verification via SAT . 184

9.3.1 Using a counter-example . 184

9.4 Limits . 186
9.5 Results . 186

9.5.1 Data types Modeled . 187
9.5.2 Inverse Results . 188
9.5.3 Conflict Predicate Results . 190
9.5.4 Abstract Lock Results . 190
9.5.5 Conflict Predicate Precision . 191
9.5.6 Lock Tightness . 192
9.5.7 Invariant Maintenance . 192

10. CONCLUSION AND FUTURE WORK . 194

10.1 Conclusion . 194
10.2 Future Work . 195

10.2.1 Generating Protocols and Inverses . 195

10.2.1.1 Protocol Inference . 195
10.2.1.2 Inverse Inference . 196

10.2.2 Optimization . 196
10.2.3 Language Extensions . 197

10.3 Future Uses . 197

BIBLIOGRAPHY . 199

APPENDICES

A. FULL RESULTS TABLES . 210

A.1 Conflict Predicate Correctness with Good Predicates . 211
A.2 Conflict Predicate Correctness Results for Bad Predicates 226
A.3 Inverse Results . 240
A.4 Abstract Lock Verification Results . 246

B. ACCLAM GRAMMAR . 260

xi

C. FULL MODELS . 264

C.1 IntCell . 264

C.1.1 Conflicts . 265

C.2 Map . 266

C.2.1 Conflicts . 268

C.3 MultiMap . 268

C.3.1 Conflicts . 270

C.4 Set . 270

C.4.1 Conflicts . 272

C.5 Equivalence . 273

C.5.1 Conflicts . 273

C.6 Parameterized Sets . 273

C.6.1 Set parameterized by an equ relation . 273
C.6.2 Set parameterized by a canonical element mapping 274
C.6.3 Set parameterized by an Equivalence . 275
C.6.4 Conflicts (shared by all implementations) . 276

C.7 Parameterized Sets with Iterators . 276

C.7.1 Conflicts . 278

C.8 MultiSet . 280

C.8.1 Conflicts . 281

C.9 Ordering Definitions . 283

C.9.1 Partial Order . 283

C.9.1.1 Conflicts . 283

C.9.2 Total Order . 284

C.9.2.1 Conflicts . 284

C.10 Ordered Set . 284

xii

C.10.1 Conflicts . 287

C.11 Queue . 289

C.11.1 Conflicts . 290

C.12 Stack . 290

C.12.1 Conflicts . 291

D. DETAILED TOOL DESIGN . 293

D.1 The Code . 293

D.1.1 Dependencies . 293
D.1.2 Source . 293
D.1.3 Tests . 294

D.2 The Tool . 294

D.2.1 The Front End . 294
D.2.2 The Back End . 295
D.2.3 The Verifiers . 297
D.2.4 The Circuit Builders . 299
D.2.5 The Driver . 300

D.3 Testing and Debugging . 300
D.4 Known Issues . 301

xiii

LIST OF TABLES

Table Page

6.1 Conflict predicate matrix for Set . 66

6.2 Example Conflict Predicates for Parameterized Ordered Set 77

6.3 Example Map Conflict Predicates . 78

6.4 Example Conflict Predicates for MultiMap . 80

9.1 Summary of Non-simplified Problem Results for ParamOrderedSet 184

9.2 Summary of SAT Results for ParamOrderedSet with Large Invariant 187

9.3 Timing Summary for Inverse Verification . 189

9.4 SAT Statistics for Inverse Verification . 189

9.5 Timing Results Summary for Conflict Predicate Correctness 190

9.6 SAT Statistics Summary for Conflict Predicate Correctness 191

9.7 Timing Results Summary for Abstract Lock Correctness 192

9.8 SAT Statistics Summary for Abstract Locking Correctness 193

9.9 Timing results for conflict predicate precision of the Set model 193

9.10 SAT statistics for conflict predicate precision of the Set model 193

9.11 Timing results for lock tightness of the Set model . 193

9.12 SAT statistics for lock tightness of the Set model . 193

9.13 SAT statistics and timing for invariant maintanence . 193

A.1 Results for model: Stack . 211

xiv

A.2 Results for model: Equivalence . 211

A.3 Results for model: TotalOrder . 212

A.4 Results for model: PartialOrder . 213

A.5 Results for model: Map . 214

A.6 Results for model: ParamOrderedSet . 215

A.7 More Results for model: ParamOrderedSet . 216

A.8 Results for model: ParamSet . 216

A.9 Results for model: ParamSetIterators . 217

A.10 Results for model: IncrementalIterator . 217

A.11 Results for model: SnapshotIterator . 217

A.12 Results for model: ParamSetIterators . 218

A.13 Results for model: ParamSet . 219

A.14 Results for model: IntCell . 219

A.15 More Results for model: IntCell . 220

A.16 Results for model: MultiMap . 221

A.17 Results for model: Queue . 221

A.18 Results for model: MultiSet . 222

A.19 Results for model: MultiSet . 223

A.20 Results for model: ParamSet . 223

A.21 Results for model: Set . 224

A.22 More Results for model: Set . 225

A.23 Results for model: Stack . 226

A.24 Results for model: Equivalence . 226

xv

A.25 Results for model: Map . 227

A.26 Results for model: ParamOrderedSet . 228

A.27 More Results for model: ParamOrderedSet . 229

A.28 Results for model: ParamSet . 229

A.29 Results for model: ParamSetIterators . 230

A.30 Results for model: IncrementalIterator . 230

A.31 Results for model: SnapshotIterator . 230

A.32 More Results for model: ParamSetIterators . 231

A.33 Results for model: ParamSet . 231

A.34 Results for model: IntCell . 232

A.35 Results for model: IntCell . 233

A.36 Results for model: MultiMap . 234

A.37 Results for model: Queue . 235

A.38 Results for model: MultiSet . 236

A.39 More Results for model: MultiSet . 237

A.40 Results for model: ParamSet . 237

A.41 Results for model: Set . 238

A.42 More Results for model: Set . 239

A.43 Results for model: Stack . 240

A.44 Results for model: Equivalence . 240

A.45 Results for model: PartialOrder . 240

A.46 Results for model: Map . 241

A.47 Results for model: ParamOrderedSet . 241

xvi

A.48 Results for model: ParamSet . 241

A.49 Results for model: ParamSetIterators . 242

A.50 Results for model: IncrementalIterator . 242

A.51 Results for model: SnapshotIterator . 242

A.52 Results for model: ParamSetIterators . 243

A.53 Results for model: ParamSet . 243

A.54 Results for model: IntCell . 243

A.55 Results for model: MultiMap . 243

A.56 Results for model: Queue . 243

A.57 Results for model: MultiSet . 244

A.58 Results for model: ParamSet . 244

A.59 Results for model: Set . 245

A.60 Results for model: Stack . 246

A.61 Results for model: Map . 247

A.62 Results for model: ParamOrderedSet . 248

A.63 More Results for model: ParamOrderedSet . 249

A.64 More Results for model: ParamOrderedSet . 250

A.65 Results for model: ParamSet . 250

A.66 Results for model: ParamSetIterators . 251

A.67 Results for model: IncrementalIterator . 251

A.68 Results for model: SnapshotIterator . 251

A.69 Results for model: ParamSetIterators . 252

A.70 Results for model: ParamSet . 252

xvii

A.71 Results for model: IntCell . 253

A.72 Results for model: IntCell . 254

A.73 Results for model: MultiMap . 255

A.74 Results for model: Queue . 255

A.75 Results for model: MultiSet . 256

A.76 More Results for model: MultiSet . 257

A.77 Results for model: ParamSet . 257

A.78 Results for model: Set . 258

A.79 Results for model: Set . 259

xviii

LIST OF FIGURES

Figure Page

6.1 An ACCLAM Set Example . 65

6.2 An ACCLAM Set With Abstract Locks . 68

6.3 A more precise lock . 69

6.4 Invariants for Set Member Equivalence . 70

6.5 An Example Implementation of an Incremental Iterator 73

6.6 An Example Implementation of a Snapshot Iterator . 74

6.7 Partial Order Example . 74

6.8 Total Order Example . 75

6.9 A Parameterized Ordered Set Example . 75

6.10 Ordered Set add Method . 76

6.11 Ordered Set Range Locks . 78

6.12 Map Definition . 79

6.13 Map Abstract Lock Examples . 80

6.14 A Example Model of a Multi Map . 81

6.15 Lock Declarations for MultiMap . 82

9.1 An Example of Forall Usage . 173

9.2 An Example Output Graph of an Assignment . 185

xix

CHAPTER 1

INTRODUCTION

Multi-core architectures are prevalent in both high-end and commodity hardware. Now

only applications that can exploit increases in core counts will get faster with newer gen-

erations of hardware. Exploiting multi-core architectures requires programmers to design

applications to exploit concurrency. However, concurrent programming is hard. Reasoning

about standard lock-based multi-threaded code is difficult and error-prone. In addition to

all the normal correctness concerns, issues of memory consistency, deadlock, and atomic-

ity make concurrent programming considerably more difficult than normal serial coding.

Much effort is being devoted to making concurrent design and implementation simpler

and Transactional Memory [33] (TM) is an intriguing programming model that can greatly

reduce the complexity of multi-threaded application development.

TM is no panacea, however. The Transactional Memory run-time can prevent data

races and deadlock, however this comes at the cost of performance and flexibility. For

example, it is very challenging to integrate I/O into a transactional context where trans-

actions may have to be aborted and have their mutations undone (or redone). Often data

structures where operations traverse shared objects will suffer performance degradation as

the TM run-time’s conservative concurrency control may abort many transactions. For ex-

ample, a simple linked list will often degrade to effectively single-threaded performance as

each operation has a high probability of reading list nodes that another operation will later

desire to mutate. Transactional semantics are also challenging to integrate with standard

lock-based code as the transactional run-time will have to know about memory operations

performed by library functions invoked within transactions. This is commonly done by re-

1

quiring the programmer to assert certain transactional properties of non-transactional code

and implement additional functionality (such as inverse methods). This approach is known

as Boosting [19]. In managed environments (e.g., a Java virtual machine) it is possible to

integrate transactional and non-transactional code automatically by intrusively tracking all

memory operations [61] (known as strong atomicity). A third approach, Open nesting [51],

is a general-purpose ‘escape hatch’ that lets expert programmers relax transactional seman-

tics in order to overcome these performance and integration issues in a general, consistent

fashion.

Open nesting is an extension to the more traditional closed nesting approach to Trans-

actional Memory. In closed nesting, the child transaction executes and adds its changes to

the parent transaction, whereas an open nested transaction’s changes are not published to

its parent on successful completion. This allows the expert developer to use open nesting to

selectively remove certain operations from the TM run-time’s control. Performance can be

improved by selectively removing spuriously conflicting memory accesses from the run-

time, which could decrease the number of aborts triggered by the run-time and/or increase

the number of transactions the run-time can execute concurrently (the details depend upon

the particular TM run-time implementation). Open nesting can also be leveraged to invoke

non-transactional external code. This could be used to perform irrevocable operations such

as I/O, or to call into pre-existing concurrent code that is non-transactional. This flexibility

incurs a cost. Because an open nested transaction has removed information from the TM

run-time’s purview, the programmer must ‘fill in the gaps’ in order to implement correct

concurrency control. In particular, the implementor must specify undo operations and ab-

stract locks. Undo operations are invoked in the event that the containing parent transaction

has to abort. Abstract locks are programmer specified to detect conflict conditions for the

open nested transaction. Because the memory operations will be unavailable to the TM run-

time, it will be unable to perform automatic conflict detection. Therefore, the programmer

must specify conflict conditions in the form of a locking protocol that guards potentially

2

conflicting operations. At first it appears as though Open Nesting has all the complexity of

traditional lock-based approaches to concurrent design. It is difficult to reason about locks,

locking, and inverse operations. Even though open nesting is, in some sense, for experts

only, subtle concurrency bugs are notoriously difficult to track down and fix. Thus it ap-

pears that any TM application that leverages open nested code could be vulnerable to all

the pernicious bugs of standard lock-based code. Appearances would be wrong in this case

because unlike traditional locking code, open nested transactions take place in a transac-

tional context, and we can leverage that to automatically prove correctness of locking and

inverse operations for transactional data types.

Transactional data structures greatly simplify the correctness conditions for both lock-

ing and inverse operations by reducing everything to verifying commutativity of the trans-

actional operations. This thesis describes the conditions needed to prove an open nested

data structure is correct, as well as a language and tool that will automatically prove these

properties via a reduction to SAT problems. Given a description of the abstract state of

a data structure and operations over that state, my system will translate that into a set of

SAT variables and clauses. The question being asked (for example, ‘Is the following lock

protocol correct?’) is also translated into SAT form and the whole combined problem is

fed into a standard SAT solver. SAT solvers inherently search for answers to existential

questions and my system leverages that so that a ‘yes’ answer evaluates to UNSAT while a

‘no’ answer produces a SAT result, with a solving assignment. This assignment can then be

translated into a specific counter-example, which will aid the programmer in constructing

a correct refinement.

3

CHAPTER 2

TRANSACTIONAL SEMANTICS

Transactional Memory builds upon decades-long work on transactions in the database

community. This chapter is intended to be an overview of salient transactional concepts

that are applicable to transactional memory systems in general and open nesting systems in

particular. Much of the work described in this chapter condenses many years of incremental

results, excellent discussions of which can be found in the following definitive text by Gray

and Reuter [27].

2.1 Transactions as Abstractions

A transaction is an abstraction of an atomic action. A transaction is a collection of op-

erations that need to execute atomically in a consistent fashion, and potentially while other

transactions are also in process. A transaction executes in the context of a transactional

run-time system that provides functions for maintaining transaction state and for detecting

and resolving transaction conflicts. A transaction starts, performs its operations and then

either completes successfully (a commit), or fails (an abort). On commit, a transaction’s

changes are now visible to the system as a whole. On abort, a transaction’s changes are not

visible at all and the system should behave as though the transaction never executed.

Transactions obey several important properties, commonly abbreviated as ACID [27,

68]. This stands for atomicity, consistency, isolation and durability. Durability refers to

storing transactional state on durable media so that the system state can be reconstructed

after a hard crash. This is a property of some importance in databases; however, transac-

4

tional memory systems tend to ignore that requirement. Therefore we won’t spend much

time discussing it.

Atomicity is the all-or-nothing property. A transaction appears to happen all at once or

not at all. A successful transactional execution will install all the updated state at once,

and an unsuccessful transaction won’t leave behind any side-effects. This means that a

transaction has a simple set of states, it can be actively executing, completed successfully

(committed), or failed (aborted).

Consistency is the property that a transaction’s view of the system state is consistent

throughout the transaction’s execution. For reads, this means that if a transaction reads a

value twice in a row (without mutating it in between), the second read will produce the

same result as the first. This property allows programmers to construct transactions using

intuitive straight-line code semantics. However, the programmer must trust the transac-

tional run-time to handle all the nitty-gritty details.

Isolation is the property that any transaction’s internal states are not visible to another

transaction. A transaction is an ongoing execution of a sequence of operations, so it will

produce many intermediate states between the start and the end. An isolated transaction’s

intermediate states won’t be visible to another transaction.

2.1.1 Transactions as Histories

A common abstraction for modeling transactions is to treat them as a history. A history

is simply an ordered list of operations. The operations are ordered in time. The operations

are also assumed to be individually atomic, by which I mean that they execute atomi-

cally and their atomicity is ensured by some lower level system (such as the underlying

hardware). A transaction’s history is a predictable affair. As operations are executed in the

transaction, they are appended to the transaction’s history. In a system that obeys full ACID

semantics, a transaction’s history will contain only operations issued by that transaction.

The transactional system as a whole has its own history. This is a more complicated affair

5

and it represents the interleaving of the operations in flight for however many transactions

are executing simultaneously. It is the unenviable task of the transactional run-time to exe-

cute as many operations simultaneously as possible, but to keep the execution consistent.

A serial ordering is a history where all the operations are in transaction order, and

apart from the initial and final operation, all prior and succeeding operations are from

the same transaction. In short, a serially ordered history is one where each transaction is

executed one-at-a-time one after another. It is trivially apparent that a serial ordering is

consistent. Therefore, many transactional run-times attempt to maintain consistency by

allowing only those interleavings that preserve the illusion of serial order. This is known

as serializability. At its heart, a serializable order is one where operations from different

transactions commute around each other. By repeatedly applying these commutations until

all the operations for a transaction are grouped together, a serial ordering emerges [64].

Although commutativity is a property of pairs of operations, serializability depends upon

the entire series of commutations that each operation must undergo in order to form a serial

ordering. What this means is that even though a given operation may commute with its

immediate neighbor in the history, in order to be serializable, it must commute with all the

subsequent intervening operations separating it from the rest of its transaction. Likewise,

this property must hold for all operations in the history not already in a serial ordering in

order to declare the history serializable.

Therefore, a run-time that is interested in preserving serializability needs to be able

to reason about the commutativity of the operations for each active transaction. For most

practical systems, ‘operation’ really refers to reads and writes of some quantum of data.

For example, databases are often concerned with reads and writes to individual table rows.

2.1.2 Read sets and Write sets

Reasoning about transactions can be difficult. One of the more convenient mechanisms

for abstracting the state of an ongoing transaction is as a pair of sets of data. The read

6

set contains every datum that was read by the transaction, and the write set contains every

datum that was written. The data itself is highly contextual. For example, in a database the

data themselves would be rows from tables; however, in a programming language context

they could be memory words, objects, or fields in objects. The assumption is that the

transaction-processing run-time is consistent about how it records any particular datum, so

we can ignore the specifics.

The transaction run-time needs to be able to determine if and when transactions inter-

fere with one another. Consider two transactions T1 and T2 that are both attempting to

commit. The circumstances under which T1 and T2 interfere correspond to relationships

between their respective read sets and write sets. For example, if one transaction’s read set

overlaps with another transaction’s write set then they interfere, as one transaction has read

a value written by another active transaction. Also, if one transaction’s write set overlaps

another transaction’s write set, then one transaction’s write will interfere with another.

Once the transactional run-time detects such interference, it must make a decision. The

run-time could chose to do nothing and let both transactions complete. Many database sys-

tems allow the programmer to relax the consistency requirements to permit certain interfer-

ing transactions to commit (this often increases concurrency). If the run-time determines

that the interference is fatal, then it must fail one of the transactions so that the other can

complete. This whole process is usually referred to as concurrency control. In lock-based

multi-threaded programming models, the focus is on preventing conflicting operations a

priori, and it is the responsibility of the programmer to do so. In transactional systems,

conflict detection/prevention is a function of the transactional run-time.

2.2 Concurrency Control

Transactions are an abstraction of compound atomic actions. A transaction executes in

the context of a transactional run-time, which is the system that handles the nuts and bolts

of transactional processing. In the abstract, a user submits transactions to the run-time

7

for execution, and relies on the run-time to handle decisions about concurrent execution

and coordination of shared resources and data. It is important for a transactional run-time

to perform well, and in general this means exploiting concurrent execution to ensure that

as many transactional operations are being successfully executed as possible. The topic

of executing transactions concurrently, and managing synchronization among transactions

and resources is known as concurrency control.

2.2.1 Synchronization

If multiple threads are going to be executing operations from different transactions

in an interleaved fashion, some coordination is necessary in order to prevent or handle

inconsistencies or deadlock. The usual way to think about this is in terms of reading and

writing individual data. The task of concurrency control mechanisms is then to synchronize

these reads and writes so that the transactions maintain consistent views of system state.

Pessimistic Concurrency Control refers to techniques of ensuring consistent access by

excluding later transactions from modifying the data. For example, locks from everyday

thread-based programming are a form of pessimistic concurrency control because they al-

low only one thread to access the datum at a time. Consistency is ensured by preventing

conflicting modifications outright. However, the standard limitations of mutual exclusion

apply to pessimistic concurrency control. Namely, locks may reduce concurrency and can

create deadlock.

Optimistic Concurrency Control refers to techniques that ensure consistent access by

optimistically performing operations against system state, and then verifying the changes

as part of transaction commit. In the case of reads, this could mean recording the values

that were read and then verifying that they still hold as part of commit. If read values

had changed out from under the transaction it would fail (the transactional run-time could

then restart the transaction, fail it outright, or prompt the user for input). Writes are more

complicated because the mutation has to be inverted if the transaction fails. One tech-

8

nique is to make the mutations in a transaction-local copy of the datum and the publish

these updated values as part of a successful commit (publication is usually carried out by

atomically swapping in the updated value). Another tactic is to optimistically install a new

version of the overwritten datum. In this scenario a successful commit would update the

publicly visible version rather than the data itself (failure then involves either uninstalling

the failed version, or ensuring that newer versions will overwrite the failed version). Op-

timistic techniques avoid artificially reducing concurrency as caused by over-locking. The

disadvantages include maintaining the (possibly large) bookkeeping information for vali-

dation, and in highly contentious circumstances optimistic systems may end up doing a lot

of work that will end up being discarded and resubmitted.

It is possible to have systems that employ both optimistic and pessimistic techniques.

One may choose to be optimistic for reads and pessimistic for writes, or to be optimistic

most of the time but switch to a pessimistic mode when some contention metric exceeds

some threshold.

2.2.2 Transaction Failure

Closely related to the mechanisms of concurrency control are the mechanisms for han-

dling transaction failures. A write-in-place or undo-based system overwrites data in place.

Therefore, if the transaction fails, the run-time must replace the failed value with the old

value (the run-time ‘undoes’ the forward-going mutation). This requires the run-time to

record the prior version. A non-blocking or redo-based system makes mutations in some

private memory or otherwise non-visible location. In the event of transaction failure, the

failed writes can just be discarded and the transaction started over.

Transaction failure handling can take multiple forms. In some cases, the transaction

run-time will automatically restart a failed transaction. This makes sense in non-interactive

scenarios where the primary interaction with the transactional run-time is by concurrent

programs. Another approach is to just halt transaction execution and require the user or

9

client program to decide whether to abandon the transaction totally or to restart. In general

Transactional Memory systems choose the automatic approach, while databases choose the

interactive approach.

2.3 Deadlock Detection and Avoidance

Transactional run-times alleviate many of the burdens that face a designer of a concur-

rent system, but there is still the potential for deadlock. There are two main techniques for

coping with deadlock: detection and avoidance. Deadlock detection discovers deadlock

after it’s established and then decides to abort one or more of the involved transactions to

break the deadlock and allow the other transactions to continue. Detection is feasible in

transactional systems because the run-time often has enough information available to track

data dependencies accurately. Deadlock avoidance takes an alternate approach, and struc-

tures the synchronization protocols to prevent most or all possibilities for deadlock. For

example, a pessimistic system may impose a global lock ordering ’under the covers’ which

would prevent deadlock. Another approach is two-phase locking [6], which ensures that

aborting will work. Therefore, deadlock detection can pick any two-phase locking trans-

action to abort to break any deadlock that emerges. A hybrid approach is often possible,

where the avoidance technique employed has the added benefit of simplifying the detection

algorithm needed to detect the smaller set of remaining deadlock cases.

2.4 Nesting Transactions

Up to this point, the discussion of transactions has been assuming that all the transac-

tions are ‘top-level’, by which I mean there is no hierarchical relationship between different

transactions. As each transaction executes, operations are added to its history and if the

transaction is aborted, all of its constituent operations are aborted as well. Sometimes, it is

desirable to have more structure and to be able to nest smaller transactions within a larger

one [49].

10

A nested transaction executes in the context of its parent (outer) transaction. Concur-

rency control decisions are made against the state of the parent transaction at the point

the nested transaction began executing. This means that nested transactions can read the

changes made by the parent transaction. Nested transactions can fail without causing the

parent to fail, and can be rolled back within the context of the parent transaction. This

means that the failure of a nested transaction may induce rollback only for the subset of

operations that were part of the nested transaction.

There are several reasons why nested transactions may be desirable. The first is that

it may aid in semantically chunking the larger parent transaction into logical sub-units.

The second is that nested transactions can enable limited partial rollback in the event of

transaction abort. Consider the case of a long-running transaction that needs to increment

a counter. A failure to increment the counter because another transaction updated it first

would be cause for aborting the transaction. Without nesting, this could mean undo-ing a

large amount of work. However, with nesting, it may be possible to retry the increment op-

eration in isolation and thereby avoid having to redo many expensive operations. The third

reason is that transactions (unlike lock-protected critical sections) are composable [27], and

nesting sub-transactions is a convenient way to assemble a compound atomic operation

from a collection of smaller individually atomic operations. Lastly, nesting transactions

may allow for concurrent execution within a transaction. Normally, operations within a

transaction are executed serially with respect to the transaction context. By grouping sub-

sets of the operations into nested transactions, the programmer indicates to the run-time

that there is additional structure that can be exploited by the run-time to execute several

pieces of the parent transaction in parallel.

There are also many different ways of implementing nesting transactions. However,

there are broadly two categories. Closed nesting, in which the sub-transaction executes

in much the same way as the top-level transactions would; and open nesting in which

11

the run-time cedes concurrency control to the programmer for the purposes of increasing

performance and flexibility.

2.4.1 Closed Nesting

Closed nesting is the most straightforward approach. The nested transaction executes

normally, and on a successful commit, adds its read and write sets to the parent transaction’s

sets. This means that the parent transaction’s read and write sets grow as if it were just a

simple top-level transaction, and from the point of view of the run-time, after a nested

commit any abort will require rolling back the entire transaction up to that point.

Nested transactions may also fail/abort, so those possibilities have to be handled. There-

fore, while the transaction is executing, the run-time does need to know that it is in a nested

context. Partial rollback is simply the normal undo/retry logic. However, it’s applied just

to the subset of the read and write sets that the nested transaction generated. A convenient

way to think about it is as a log, where a marker is put down when a nested transaction

begins and the run-time performs its rollback function on the portion of the log from the

marker to the end.

Visibility and observability are more complex. The nested transaction’s context is, in

some sense, inherited from its parent. In practical terms this means that a parent transac-

tion’s writes are visible to the nested transaction, and that if the nested transaction aborts,

it must abort to the state of the parent transaction at the point the nested transaction be-

gan. The run-time must adjust its concurrency control mechanisms to account for this. For

example, in a system with pessimistic writes, a transaction would attempt to write a value

by first locking it. Without nested transactions, the lock attempt succeeds only if the value

was unlocked or the lock was already held by the requesting transaction. With nesting, the

relationship between nested and parent transactions must be taken into account. The lock

will succeed if the value is unlocked, or locked by the nested transaction, or by its parent.

Note, that this may involve multiple levels of nesting so multiple ‘parent locks’ may need

12

to be compared against. Another approach would be to have the nested transaction do the

locking, but with the identity of the top-most ancestor (this only works if there is no con-

currency within the transaction, and additional bookkeeping must be employed to ensure

that all locks are properly re-entrant). Again, this would require changing the run-time to

furnish this information to transactions, and to adapt the locking infrastructure to permit

‘multiple identities’.

Although there are some complications, most of the added complexity is in the im-

plementation of the run-time to accommodate notions of multiple transactions having the

same view of a particular value. At the high level of abstraction we’ve been using, closed

nesting is just a straightforward re-application of transactional behavior to a portion of a

transaction’s operations.

2.4.2 Open Nesting

Open nesting is quite different from closed nesting. An open-nested transaction ex-

ecutes in the context of its parent like a closed nested transaction. However, the open-

nested transaction is not operating under the standard concurrency control mechanism that

any closed transaction would. To maintain correctness the programmer must augment the

open nested transaction with information so the run-time can still do conflict detection and

retry/undo if the nested transaction aborts. There are two reasons why one would need to

escape the mediation of the transactional run-time. The first is that the sub-transaction may

need to do something inherently non-transactional (such as execute an irrevocable action

like performing I/O). The second is that the concurrency control of the run-time may be

conservatively declaring conflicts and over-aborting transactions (and thereby decreasing

concurrency and therefore performance).

Escaping Transactional Semantics: Certain operations are inherently non-transactional.

The standard example is I/O, where some external state is being manipulated or read out-

side of the control of the transactional run-time. Many useful programs must occasionally

13

be able to interact with external, non-transactional processes (or invoke non-transactional

code), and open nesting provides a formalized mechanism for doing so. Other mecha-

nisms for ‘stitching together’ transactional and non-transactional worlds have been pro-

posed [19, 63]. However, open nesting is not exclusively a mechanism for interacting with

non-transactional processes and the focus of this thesis is the performance and correctness

implications of using Open Nesting. Therefore, most of the discussion will not be about

using Open Nesting to interact with external processes.

Increasing Concurrency: The transactional run-time must execute against the concrete

state that the transactions themselves are manipulating. This concrete state is an implemen-

tation of some abstract state. For example, an array of integers may concretely implement

an abstraction: a fixed size set of integers. The concrete state may not be a precise enough

approximation of the abstract state to allow for accurate conflict detection. Continuing the

example, the order of integers within the array doesn’t change the abstract state being rep-

resented (the specific set of integers). However, two different concrete states may represent

the same abstract state. The run-time doesn’t know about the abstraction. Therefore it

must decide on the basis of concrete states, and could therefore fail a transaction that is

abstractly safe to commit, but whose concrete state differs from that produced by running

transactions in a different order. Obviously this will reduce concurrency because at least

one fewer transaction could complete in a given time interval. It also will reduce perfor-

mance because all the work performed by the aborted transaction will have to be repeated.

An example will illustrate this more clearly. Continuing with the array of integers as

the concrete representation of a set of integers, let’s consider a starting state: [1, 2, 3],

and two operations: find and remove. Let’s assume the operations are implemented as

a linear scan, and that the value e is special and represents an empty slot. We can then

illustrate the concrete state transitions that both operations represent (as operations against

indices in the array):

remove(2): [1, 2, 3] => [1, e, 3] ([read 0, read 1, write 1])

14

find(3): [1, 2, 3] => [1, 2, 3] ([read 0, read 1, read 2])

Because find has to read the second element to inspect it, it will be in the read set of the

transaction executing find. However, because remove overwrites the second element,

it will be in the write set of the transaction executing remove. Therefore, in this case,

the run-time will have to declare a conflict between the find transaction and the remove

transaction and abort one of them. Now consider the same operations, working in the same

way, but executing on a slightly different concrete initial state for the same abstract set:

[1, 3, 2]. This change will induce the following read and write set changes:

remove(2): [1, 3, 2] => [1, 3, e] (rd 0, rd 1, rd 2, wr 2)

find(3): [1, 3, 2] => [1, 3, 2] (rd 0, rd 1)

Now, the read set for the find transaction has no overlap with the remove transaction’s

write set. The run-time can let both transactions complete. In a broad sense, the second

concrete state allows twice as much concurrency as the first. It is certainly undesirable and

possibly prohibitive to have the concurrency and performance of a system be so sensitive

to a particular concrete representation of the state of an abstract data type. Therefore, an

implementor of a transactional form of an abstract data type would need to use open nesting

in order to raise the level of abstraction being used for concurrency control. The program-

mer knows the abstraction being coded against and can make more precise determinations

of conflicts. In the example above, the programmer knows that an array is being used to

represent a small set of integers. Therefore, the programmer may also know that the only

true conflicts are when the membership of that set changes. Furthermore, the only way for

a remove and find operation to conflict (i.e., be non-commutative) is for both opera-

tions to be operating against the same set element. In this example, the programmer would

be able to greatly increase the concurrency of the array manipulation code by somehow

informing the run-time’s concurrency controller that remove(x) and find(y) conflict

only if x == y.

15

2.4.2.1 Abstract Concurrency Control

Central to a full understanding of open nesting is abstract concurrency control. Be-

cause an open-nested action is executing outside of oversight by the transactional run-time,

open-nested actions can’t rely on the run-time’s concurrency control mechanism for safety

guarantees. In fact, often the action is being implemented in an open-nested fashion specif-

ically to bypass restrictions imposed by the transactional run-time’s concurrency control

process. However, open-nested actions may still interfere and do require concurrency con-

trol. Therefore a run-time that supports open nesting must also support abstract concur-

rency control, which is a mechanism for ensuring safety in the presence of concurrent

updates given some additional programmer inputs.

When a closed-nested transaction commits, it effectively appends its read sets and write

sets to the parent transaction’s. This means that the transactional run-time has all the in-

formation needed to both detect conflicts and to undo any changes (assuming ‘undo’ se-

mantics). Open nested transactions explicitly do not modify the parent transaction’s read

and write sets when committing, therefore additional information must be provided by the

programmer. Specifically, the programmer needs to provide an inverse operation that will

be executed in the event that the open-nested transaction is aborted. The inverse is so-called

because it is meant to invert all the open-nested transaction’s changes (and thereby undo

them). Additionally, the programmer must also provide conflict information so that the ab-

stract concurrency controller can determine when another open-nested operation conflicts

with the effects of the committed open-nested action (this other operation could be exe-

cuting concurrently or subsequently). The conflict information can take many forms. One

option is to literally specify the exact conflict predicate that logically describes the set of

conflicting states. These predicates may be written to a log, and when a new action is start-

ing up, the log of conflict predicates is compared against the action’s state to determine if it

conflicts with committed actions. This is the approach used by the Galois system [40], and

it has certain performance implications. In the example of the integer array implementing

16

an integer set, the predicate would be exactly x == y for find(x). When remove(y)

is executed as an open-nested transaction the predicate would be evaluated to determine if

remove conflicted.

Another approach is abstract locking [51, 49], where a lock protocol over the abstract

state is used to summarize the open-nested changes. An abstract lock resembles a more

conventional lock in that it has a context (the states over which it is locking) and it has a

mode (e.g., Shared/Exclusive). The lock protocol dictates the procedure to determine if

two contexts interfere and if two modes interfere. In general, two actions interfere only if

their abstract lock contexts overlap and their modes conflict. In the integer array as set ex-

ample, find(x) would grab an abstract Read/Write lock with context x and mode Read.

remove(y) would have the context y and the mode Write. In this case, the contexts

overlap only if they are identical. However, one could easily imagine a case involving

ranges or subsets of values, where overlap would be determined by non-empty set intersec-

tions. Using abstract locks for concurrency control, find(x) and remove(y) conflict

only if x == y (the locks’ contexts overlap). Because the modes conflict (as a standard

Read/Write conflict), any overlap is also a conflict. An advantage to abstract locking over

explicit predicate tracking is that it is possible to trade off precision with performance.

With explicit predicates, each must be evaluated in turn regardless of the cost. Locks al-

low the programmer the option to reduce abstract conflict accuracy in order to increase

the performance of the abstract concurrency controller within the run-time. Furthermore,

a locking protocol may be able to exploit lower-cost algorithms and data structures than

general predicate evaluation. For example, the locks for operations over a set of integers

could be organized within a hash table (keyed by the set member). This would mean that

determining conflict could be done at O(1) cost, while the cost of a predicate-based scheme

would depend on the number of elements accessed by running transactions.

17

CHAPTER 3

TRANSACTIONAL MEMORY

Transactional memory is a vibrant and growing field of research. In this section I at-

tempt to describe some of the more important aspects of TM.

3.1 Transactional Memory

Transactional memory (TM) is a concurrent programming model that reinterprets trans-

actional semantics from the database community in a programming language context. As

in databases, a transaction can complete successfully (commit), or fail (abort). TM systems

can be optimistic and pessimistic as well. Much of this infrastructure is provided by the

transactional memory run-time which handles all the transaction processing details (thus

easing the burden of the programmer). Ideally, the programmer needs only to label the

sections of code that should execute atomically and the TM run-time will take care of the

rest (of course, some changes may need to be made to improve efficiency). Transactional

Memory systems are interested in preserving the so-called ACID (atomicity, consistency,

isolation, and durability) properties first described in the database community [27, 68].

Atomicity in TM means that other transactions can’t see partial state updates (all the trans-

actions changes are visible or none of them are). Consistency ensures that the transaction

performs a consistent transformation of the state. In short, consistency ensures that a cor-

rect program running under a TM system will not behave incorrectly. From a programming

language point of view, this means that the TM system must implement and respect the

memory model of the language being transactionalized. Isolation implies that transactions

cannot observe each other executing concurrently. More formally, transactions appear to

18

execute in some serial order and some transaction T1 will see other transactions executing

either before or after T1, but not both. Durability is more commonly called persistence

in programming languages. A durable system is one that retains successful state changes

through failures. This is of less importance in transactional memory. In fact, current TM

systems [56, 31, 32, 15] are not durable at all (they do not commit program state to persis-

tent media such as a disk), and we will work within that model.

3.2 Data tracking

Databases are interested in tracking accesses and modifications to tables and fields, and

by logging these operations databases can ensure transactional semantics. TM systems

have a more open-ended domain and so several strategies have evolved to track changes to

memory. Low-level systems such as TL2 [15] track memory accesses directly. Hardware

and software/hardware systems can track changes to cache lines [57]. TM systems for

higher-level languages have more options. In languages with explicit objects (such as Java

or C#), it is possible to track changes to objects or fields of objects. This is especially

attractive if the language has no concept of atoms that aren’t objects themselves (such as

Java). Whether a TM system tracks objects directly, or can also track object fields, is often

referred to as the ‘granularity’ of the system (or of its read/write logging). In general a

coarse-grained system tracks changes at the object level, and a fine-grained system tracks

changes at the field level.

For a TM system, the read set represents all the read accesses in program order and

the write set records all the writes as well as the overwritten values. Conflict detection

then checks two properties: whether a given transaction’s read set overlaps with another

transaction’s write set (possibly read a stale value), or whether a given transaction’s write

set overlaps with another transaction’s write set (another kind of data race). In a fully

optimistic system (for historical reasons, TM implementors refer to optimistic systems as

non-blocking or non-locking), changes are made to a scratch workspace. On commit, that

19

workspace is compared to the target memory/objects (this process is usually called valida-

tion). If no read or written value changed out from under the transaction, then the commit

can proceed by having the TM run-time atomically swap the workspace versions of ob-

jects into ‘global’ memory. In a pessimistic implementation (often called a ‘blocking’ or

‘locking’ implementation), the object (or field) is locked when read or written, and then the

locks are released on commit (no validation required). In practice, hybrid approaches that

mix locking with validation tend to out-perform strictly pessimistic and strictly optimistic

approaches.

Abstractly, if a conflict is detected, one of the transactions is chosen to be aborted

and restarted. Optimistic systems just have to discard the workspace data and start over.

Pessimistic systems may have to rollback changes. Rollback is straightforward because the

TM run-time has access to the old values in the write set: the run-time simply writes the

old values back into memory as it traverses the write log in reverse order (i.e., last write

first). Obviously, there are many complex details involved in implementing this abstraction

efficiently.

3.3 Closed Nesting

Transaction nesting is almost essential in a TM system: executing one transaction

within another maps very nicely onto standard function calls (where the functions may

contain their own transactions). In terms of the read set/write set abstraction, a nested

transaction maintains its own read and write sets while executing. Conflict detection is a

little different for nested transactions. Basically, a nested transaction cannot conflict with

its parent. To ensure this the parent’s read/write sets must be considered part of the child’s

for the purposes of conflict detection. On abort, a nested transaction simply rolls back its

own write set (note that this property means that nested transactions are a way of imple-

menting partial rollback). On commit, the nested transaction appends its read/write sets

20

to its parent’s sets. This is necessary for correct conflict detection and rollback when the

parent transaction tries to commit.

Nested transactions have an additional benefit. They allow atomic actions to be trivially

composed. One simply calls the actions one wishes to compose from inside a higher level

transaction. This is a huge advantage over lock-based systems, where it can be impossible

to implement additional functionality on top of a concurrent data structure (without rais-

ing the possibility of deadlock). In a transactional system, one simply lumps together the

actions in a larger, higher-level transaction. Composability is a powerful property. Imple-

mentors of libraries don’t have to expose the innards of their concurrent creations, which

allows them to preserve the abstraction of the libraries’ interface. This in turn allows the

benefits of proper encapsulation to be applied to highly concurrent code.

3.4 Open Nesting

In the database community (where most of the transactional work was done), open nest-

ing is a broad term that encompasses any multi-level transactional scheme where nested

transactions relax one of the transaction properties. In this work, open nesting means re-

laxing the isolation property [51]. More specifically, this means that an open nested trans-

action’s memory actions become visible to the whole world when it commits. This means

that the TM run-time is unaware of the memory operations, and therefore cannot use them

to trigger spurious aborts (which is good). Unfortunately, this also means that the TM

run-time can no longer automatically roll back a transaction or detect a conflict between

open-nested actions. This is why the programmer must provide not only locking semantics

but also inverse actions (to undo the transaction if the enclosing action aborts). However,

this added responsibility can be more cleanly encapsulated than in standard locking.

In a TM system, an open-nested transaction grabs its abstract locks, executes and then

registers the locks and the inverse action with the parent transaction. If the parent aborts, the

inverse action is executed. Locks are used for conflict detection; however, in TM systems

21

the context of an abstract lock is a collection of memory locations. When the outer-most

open transaction commits, the abstract locks can be totally released, as this signifies the

actual publication of the state changes to globally visible memory.

Open nesting offers an ‘escape hatch’ by which experienced programmers can imple-

ment their own, more sophisticated, locking schemes and rollback procedures. Open nest-

ing is useful if one is a competent programmer with a much better grasp of the abstract

semantics of a data structure than the TM run-time has. Seen in this light, open nesting is a

way of raising the level of abstraction in a concurrent system (above the raw memory level

where the standard TM run-time operates). It makes sense then to think about abstract state

rather than pure memory state. Abstract state corresponds more closely to the abstract data

type implemented by concrete code. By focusing on abstract state, the programmer is free

to use any concrete implementation. It is also important to remember that it is possible that

many concrete memory states may all correspond to the same abstract state. For instance,

given an open-nested implementation of a B-tree, the inverse of an insert operation is a

remove operation. In a closed nested scheme, rolling back an aborted insert would undo

all of the memory operations, returning the data structure to its initial memory state. In an

open scheme, one simply runs the remove as an additional forward-going action. This may

result in a different low-level memory state; but, the abstract state of the tree will be iden-

tical to the closed nested case. This ability to distinguish memory conflicts from abstract

state conflicts is the source of the efficiency of open-nested actions.

3.5 Transactional Boosting

Transactional boosting is another extension to standard closed nesting that allows an

expert programmer to take a linearizable data structure and ‘transactionalize’ it. This means

that if there is a pre-existing concurrent code-base, it can be ‘boosted’ into a transactional

form. Similarly to open nesting, a boosted structure must provide additional concurrency

control information. In practice this means that a programmer must specify under which

22

conditions and with which actions any particular action conflicts, as well as specifying any

compensating actions to take in case of an abort.

Although it seems like the programmer’s duties are identical under open nesting and

transactional boosting, there are important differences. A boosted data structure must be

handled opaquely and therefore none of the inner state is available to the run-time. Con-

sequently, this means that the conflict predicates may have to be overly conservative. This

also implies that the only state that can be evaluated in a boosted structure is globally com-

mitted. Whereas open nesting permits rich abstract locking, a boosted data structure must

make simple conflict decisions before beginning any action 1.

3.6 TM implementation

Implementation of a TM system is a complex engineering task. In recent years it has

become commonplace to build a library [28, 31, 56, 32] implementing methods to track

memory accesses and detect conflicts. A compiler that understands the transactional syn-

tax extensions will then generate normal code decorated with appropriate calls to the TM

library system. Depending on the language, a TM library may need to interface with the

run-time system. The McRT-STM system, for instance uses the ORP [10] JVM to au-

tomatically transactionalize loaded classes and to respect TM references during garbage

collection. Another approach [31, 32] is to require the programmers to ‘transactionalize’

an object (usually by passing it through a factory). The library generates a transactional

wrapper around the non-transactional object.

Implementations also differ as to whether they modify the data in place or first make a

copy which is then modified. This difference is also related to whether or not the system

supports write locking or is geared towards a more non-blocking style. In terms of imple-

mentation, a modify-in-place system will log the old value and actually write the new value

1with the caveat that a boosted system may be able to relax the locks slightly once the run-time sees the
result (if any) of the boosted action

23

(these systems usually also lock objects for writing). Non-blocking systems will first copy

the entire object, modify the private copy and then atomically switch a global pointer on

commit. If write conflicts are relatively rare, then all the additional copying is an unnec-

essary cost. Additionally, it is much easier to extend a modify-in-place system to support

open-nesting. Open-nested actions need to become visible to the world when they com-

mit, which in a modify-in-place system is automatic (if commit releases locks acquired by

the open-nested action). It is much less clear how to conveniently modify a non-blocking

system to support open-nesting. Therefore, for the duration of this thesis, we will assume

that the TM system in use is for a strongly-typed, object oriented language (such as Java),

and that the TM system supports optimistic reads and pessimistic writes. This assumption

has the advantage that it resembles those systems currently known to be performant and

scalable in arguably real-world scenarios [56].

3.7 Integrating Transactional and Non-transactional Systems

Programmers may want or need to be able to integrate pre-existing concurrent code

within a transactional context. Sometimes, it could just be that there is a library of code

that one would like to re-use. Other times the programmer may be implementing a system

that will be used by others, perhaps in a non-transactional context (e.g., the programmer is

implementing a library and can’t control how the end user will deploy it). For correctness’s

sake, it is important that the TM run-time be able to reason about the memory operations

being performed by other threads. This has been termed the privitization problem, and a

decent overview can be found in [63]. Several approaches have been taken. I have al-

ready discussed transactional boosting, whose primary goal is to integrate lock-based code

libraries with a transactional application. Open nesting can also be used to ensure transac-

tional consistency even when escaping the TM run-time’s concurrency control. Both boost-

ing and open nesting provide mechanisms to wrap a concurrent thing in transactional garb

to present it as a transactional thing. Another approach is known as strong atomicity [61],

24

where the run-time aggressively tracks all memory operations by all threads and effectively

transactionalizes all operations. This certainly solves the privitization problem; however,

the performance costs can be high. Also, such an approach is infeasible for languages with

limited run-times (e.g., C++) or languages whose run-times cannot be modified.

25

CHAPTER 4

RELATED WORK

This work occurs in the context of intense academic interest in concurrent program-

ming generally and transactional memory in particular. However, as the proposed work

seeks to automatically verify and derive locking protocols, it has a strong relation to topics

in software verification and program analysis. This section will try to cover topics both

transactional and formal. First, I will discuss directly related work from other transactional

memory researchers. Second, I will describe the foundations of transactional research es-

tablished by the database community. Third, I will describe related efforts in software

verification and program analysis and compare them to my proposed work.

4.1 Transactional Memory

Transactional memory was first formulated as a hardware concept in 1993 by Herlihy

and Moss [33]. Since then, both hardware and software implementations of transactional

semantics have been introduced. That initial work was itself grounded in the previous two

decades of database-oriented transaction research (described later). Early TM work had

many limitations: it supported only fixed-size transactions [33] or had no support for stan-

dard closed-nesting [60]. Recent hardware [47] and software [32, 56] systems support both

unbounded transactions as well as closed-nesting. The two current challenges attracting

much attention are TM performance and integrating transactional and non-transactional

code. Researchers have started to address performance questions with STM implementa-

tion [56, 29] and compiler work [2]. However, neither of these approaches can detect and

avoid the spurious conflicts that open nesting addresses.

26

Integration of transactional and non-transactional systems has been more problematic.

The primary issue is making sure that non-transactional code does not trample transac-

tional meta-data or operate on partial state (uncommitted transactional data). One approach,

dubbed ‘strong atomicity’, has been to make sure that all memory accesses are logged so

that the TM system is aware of them and can abort/commit transactions appropriately. This

increases the overhead of standard memory operations but this additional cost can be re-

duced somewhat [61]. Some recent work on programming language semantics [46] has

revealed that as long as transactional and non-transactional code don’t share data, then

there is no difference between strongly and weakly atomic systems. Note that neither of

these results addresses the question of irrevocable actions (e.g. an I/O operation that can-

not be undone) occurring within a transaction. Transactions with isolation and cooperation

(TIC) [62], is an interesting effort to address these problems. In TIC, a transaction is ef-

fectively split around an irrevocable action, with the before portion committing before the

I/O and the after portion proceeding as a normal transaction. Interestingly, TIC requires the

programmer to annotate I/O actions so that they restore invariants expected by the transac-

tional code. This resembles open nesting, and in fact, TIC is implemented in terms of open

nesting.

Transactional Boosting [19], like open nesting, attempts to address performance and

communication simultaneously. Boosting works by annotating normal lock-based code

with commutativity rules. These rules are used by the TM run-time to determine if two

lock-based actions can occur simultaneously (if they commute, they can be concurrently

executed). Initially only commutativity annotations were used. However, as boosting was

extended, compensating actions were found to be required. The annotations needed are

basically the same as those in open nesting [50], but boosting lacks the ability to support

rich state-based locking protocols. Boosting also does not address the safety concerns of

integrating transactional and non-transactional code (boosting assumes that the concurrent

system being boosted is safe and won’t corrupt transactional data).

27

As I was performing the literature search to compose this related work section, I en-

countered many efforts to address the shortcomings of transactional memory [17, 9, 55, 62,

19]. I was most struck by the fact that unlike the specialized mechanisms often employed to

solve a particular problem, open nesting provided a generalized TM escape hatch that can

be used both to speed up transactional code as well as communicate with non-transactional

code in a structured, analyzable way.

4.2 Database Research

Transactions as programming constructs have existed in the database community for

decades, and much of the formal analysis and practical implementation issues were first

worked out in databases years ago. Much of this foundational work is summarized nicely

in the textbooks by Gray and Reuter [27] and Weikum and Vossen [69]. Although trans-

actional memory borrows heavily from the prior work of the database community, there are

subtle differences. First, in databases, it is customary to think of transactions as the funda-

mental unit of concurrency. Programmers submit transactions to the database, which inter-

nally processes them. In this model, threads are used to process transactions and threads

may move from one outstanding transaction to another. The database uses threads to en-

hance the concurrency of transactions. In a programming language context, it is often the

case that threads are considered fundamental and therefore transactions are associated with

specific threads. Threads use transactions to aid concurrency. This difference leads to

different uses of transactional semantics. Nesting transactions [49] maps nicely onto func-

tion calls in a PL context, and many systems intend for them to be used primarily in that

way. In databases, nested transactions often correspond to different levels of abstraction

and allow one to isolate low level operations (such as ‘subtract $500 from field: balance’)

from higher level operations (such as ‘process debit card transaction’). A crucial feature

of nested transactions is commutativity [21], which allows the database to reorder nested

28

operations with respect to one another or to provision threads to execute commuting nested

actions in parallel.

Transactions were first formally analyzed by database researchers. Primarily, a concept

of abstract serializability was derived. Through this formal structure, one could prove that

transactions could be safely interleaved by mapping any interleaving onto some legal serial

ordering. Importantly (for this work), it was discovered that if the operations of an outstand-

ing transaction commuted with the operations from another transaction then they could be

interleaved safely (while still preserving the transaction-internal order of operations). In

an effort to overcome the efficiency burdens of classical transactions, database researchers

attempted to move to locking data at finer levels of granularity (down to the field level).

However, this increased the burden of the programmer and led to complicated locking is-

sues. For instance, if a transaction needed to grab all rows in a table with a field of a certain

value, it also had to block other transactions from adding fields which would contain that

value. These were termed ‘phantom’ entries and abstractly could be blocked by obtaining

a predicate lock on the data. A predicate lock is a predicate that would inform other trans-

actions which data was locked within the table. However, predicate-locking (even with

restricted operations) is in NP (it can be reduced to SAT) [35, 69] and so it hasn’t achieved

much acceptance in the database community. However, the problem is somewhat different

in the TM case. Whereas, in databases, the database must be able to handle essentially

arbitrary predicates flowing in from users (in the form of SQL statements), a TM system

has only to work with statically known code which can be analyzed and processed ahead

of time as part of compilation. I claim this difference is sufficient to allow us to utilize a

limited form of predicate locking for open nested actions.

Commercial databases have long had high-performance extensions to standard transac-

tions. Like open-nesting, these schemes were intended to be used only by expert program-

mers, who would then present a more traditional interface to people writing normal queries

(similar to a library procedure in a modern programming language). At a very low level,

29

databases use techniques like index logging [30] or locking to track physical layout changes

internal to the DB. By giving programmers access to such low-level information, standard

concurrency bottlenecks can be bypassed. A standard example from the DB community

is hand-over-hand locking (also known as ‘lock coupling’) for B-trees rather than lock-

ing everything from the root down. Additionally, most commercial databases also include

support for stored procedures. A stored procedure is a block of code (usually not written

in SQL) that executes within the DB and with access to the DB internals. Again, these

potentially unsafe techniques exist primarily because databases are focused on providing

extremely high performance to experienced developers.

4.3 Formal Methods and Program Analysis

The work proposed in this document can be considered a kind of formal program anal-

ysis. Recently, work in program analysis and model checking has turned to analyzing

concurrent code [34, 20, 53, 45, 22]. The amount of potential related work in these areas

is quite large, so I have subdivided it into various types. Each type will be discussed along

with some recent examples as well as how my work is distinct. First, I create a distinc-

tion between static and dynamic methods. My work is strictly static, in that it happens

before run time. In the static space, I divide the related work into three sections: program

analysis, algebraic (or abstract) data types, and model checking. Program analysis covers

techniques, usually less mathematical, to analyze concurrent programs. This covers topics

including type systems for concurrent code, techniques to derive lock sets and lock orders

for concurrent code, and others. I further divide analysis techniques into dynamic and static

methods. Dynamic analysis operates on the concrete state of an actual system, but often has

limited generality. Static analysis operates on the program text and may be more general

than dynamic approaches, but must operate with the more limited information available in

a static context. Algebraic data types covers the space of formal analysis that uses full-

featured theorem provers to derive proofs of correctness from an abstract specification and

30

a set of algebraic axioms. Model checking refers to techniques that explore the program’s

state space and ensure that a set of temporal properties (e.g., temporal logic formulae) hold.

4.3.1 Program Analysis: Dynamic Methods

Dynamic methods includes all analysis techniques that either occur at run time or rely

upon traces generated at run time. Recently there have been several efforts employing

dynamic techniques to detect errors in concurrent programs. Previously, much effort was

focused on race detection systems such as Eraser [58], which sought to ensure that all

accesses to a shared variable were protected by a lock, or set of locks (they pioneered the

LockSet algorithm to track locks at run time). However, race freedom is neither necessary

nor sufficient to prove program atomicity [24] (i.e., that it is, in fact, serializable). More

recent efforts have focused on detecting atomicity violations. In general, program execution

is traced and portions are lumped into transactions (this sometimes requires programmer

annotation). These transactions are then analyzed with a version of Lipton’s reduction [44]

or structured into a happens-before graph [41]. This analysis is then used to see if the

code could be interleaved to violate serializability. Agarwal et al. [3] used a static first pass

analysis to drive later dynamic trace gathering. In essence, they performed a partial type

discovery to guide a dynamic detector (if their type system can prove a portion of code

safe, then the dynamic checker need not inspect it). They grouped actions (heuristically)

into transactions, which allowed them to analyze interleavings of transactions rather than

interleavings of individual statements. This can make exhaustive inspection of interleavings

tractable (this trick is used heavily by more recent work).

Atomizer [22] is a fully dynamic technique that detects potential atomicity violations

given an execution. Operations are grouped into atomic transactions, which can either

be specified by the programmer or derived automatically (via heuristics). Atomizer uses

a version of the LockSet algorithm (from Eraser) to check for data races and to catego-

rize data. This categorization allows Atomizer to determine if operations are left-movers,

31

right-movers, both-movers, or non-movers (in accordance with Lipton’s reduction). These

commutativity rules allow Atomizer to check for atomicity violations by attempting to re-

duce an interleaving to a serial execution (by commuting operations into some serial order).

Wang et al. [66] introduce an analysis to detect conflict and view serializability in dynamic

traces of concurrent programs. They also group actions into transactions, but interestingly

they use concepts from the data base community (conflict and view serializability) to define

atomicity violations.

Burnim et al. [8] use an interesting approach where the programmer annotates the code

with atomic blocks, and then specifies bridge predicates. These predicates specify post con-

ditions that are true for commutative atomic actions, and allow the programmer to specify

equivalence between data structures that may be physically distinct in memory. Their tool

can execute a small subset of the possible interleavings of atomic actions to verify that

certain actions are semantically linearizable. Although not designed for transactional code,

their approach solves a problem similar to proving abstract concurrency annotations cor-

rect. However, it relies on execution of concrete implementations and can explore only a

small number of interleavings.

4.3.2 Program Analysis: Static Methods

Automatic analysis of concurrent programs has become quite important with the intro-

duction of commodity multi-core processors, and many recent publications have attempted

to catch concurrency bugs statically. Locksmith [53] analyzed a reasonable subset of C

to infer correlations between locations and protecting locks. These correlations were then

used to verify that the locations were consistently protected by their locks (thereby ensuring

race-freedom). This approach was effective; however, race-freedom does not ensure serial-

izability, and the approach works only on code that explicitly acquires and releases locks.

Autolocker [45] analyzed a program containing atomic sections and locks and inferred a

global lock-acquisition order to prevent data races and deadlocks among atomic sections.

32

These atomic sections can be considered pessimistic (they cannot abort or retry) and can

therefore contain irrevocable actions (such as I/O). However, Autolocker required the pro-

grammer to allocate global locks beforehand and to annotate all shared data explicitly with

information indicating the protecting lock. Autolocker also was restricted to standard lock-

ing protocols (mutex or read/write), and was a whole program analysis (in the sense that

all atomic sections accessing the shared data need to be available to the analysis). Lock

Allocation [20] was a more general approach where the tool itself inferred which locks

would be needed (in addition to where they should be acquired and released). However,

Lock Allocation required that all shared data only be accessed in atomic sections and is a

whole-program technique (in the same sense as Autolocker).

Flanagan et al. have developed a type system useful for inferring atomicity properties

of programs [24, 23]. The basic idea is to infer types based upon Lipton’s reduction (i.e.,

left-movers, right-movers, both-movers, non-movers) from Java source code, and then use

these types to verify that the program is serializable. The authors discovered several in-

teresting properties: first, that race-freedom is insufficient to prove atomicity; and second,

that inferring this type system is NP-complete. Therefore, their analysis requires program-

mer annotations to work statically. However, this work has informed later dynamic tools

(such as Atomizer), which use dynamic traces to generate annotations. Much of the static

analysis work for parallelizing compilers focuses on loop restructuring. However, Rinard

[54] explicitly focused on analysis to discover and exploit commutativity (although not in

a transactional context). The difficulty of discerning and exploiting fine-grained commuta-

tivity in general purpose code has restricted the utility of these techniques. Fortunately, the

nature of transactional memory simplifies many of these problems to more tractable forms.

Recent improvements in the performance of SAT-solvers (such as Chaff [48]) has in-

creased the popularity of using constraint solvers in program analysis. Tools like Sat-

urn [71] translate C code directly into SAT clauses (with a little hand-holding), and can

be used to check locking properties of complex system code (the Linux kernel). Another

33

approach [18, 14] is to have the programmer describe program properties in a relational

logic (Alloy [37] is the currently popular choice) and then translate the logic descriptions to

a SAT problem. This has the advantage of allowing modular analysis (a bug-bear of model

checking). However, in order for the problems to be tractable, the instances generated are

extremely small (which is somewhat justified by the small-scope hypothesis). Addition-

ally, this work is targeted more at verifying software contracts (in the software engineering

sense), and it seems unscalable to a multi-threaded case.

Although promising, many of the approaches are restricted to analyzing standard ex-

plicit lock-based code. Transactional code requires different techniques (to analyze the im-

plicit non-blocking behavior of transactions). These approaches use either rely-guarantee

[38] or a separation logic coupled with Lipton’s reduction. For example, Wang et al. [65]

describe a static analysis that operates on code containing low-level non-blocking primi-

tives (e.g., compare-and-swap, load-linked and store-conditional) using a type system in-

spired by Flanagan’s. The analysis is incomplete, however, and very low-level. Analysis

of non-blocking code is less developed than for locking code and tends to be low-level and

only semi-automated [72] or completely manual [52, 64].

4.3.3 Abstract Data Types

The approach I propose shares much in common with what is usually known as abstract

or algebraic data types. This approach to verification relies on an algebraic specification

of a data type (this specification may include specialized axioms). These specifications

are then processed by a theorem prover in order to verify desired properties. Because the

theorem provers are semi-automatic at best, these techniques tend to be semi-automatic

themselves. Verification of concurrency properties for algebraic data types is an even more

difficult problem. Older work utilized extensions of the process algebra to reason about

concurrent systems (see Astesiano [4] for an overview), which is inappropriate for the

analysis of highly concurrent non-blocking transactional data structures (which do not em-

34

ploy explicit message passing). Transactional data structures have been analyzed by hand

using rely-guarantee reasoning [52, 64] or by strictly specifying legal abstract schedules for

operations [67, 59]. My approach differs in that the property to be checked is fixed (e.g.,

correct abstract locking) and I am interested only in verifying the equivalence of abstract

states.

Burnim et al. [8] use an interesting approach where the programmer annotates the code

with atomic blocks, and then specifies bridge predicates. These predicates specify postcon-

ditions that are true for commutative atomic actions, and allow the programmer to specify

equivalence between data structures that may be physically distinct in memory. Their tool

can execute a small subset of the possible interleavings of atomic actions to verify that

certain actions are semantically linearizable. Although not designed for transactional code,

their approach solves a problem similar to proving abstract concurrency annotations cor-

rect. However, it relies on execution of concrete implementations and can explore only a

small number of interleavings.

The most directly related work is Rinard and Kim [39], in which the authors lever-

aged their Jahob [73] language to prove soundness and completeness properties for conflict

predicates and inverses for a set of 18 operations (over 6 data types). Although there is

significant overlap in terms of the problems addressed, the approach is very different. First,

the work analyzes concrete implementations of abstract types using programmer-provided

annotations and supplied projection functions to infer an abstract model. This approach

requires considerably more programmer leg work in specifying the data type (the models

appendix exceeds 600 pages) as well as the conflict predicates (up to three predicates for

each operation combination). Second, the system is not fully automated and the underlying

theorem prover required human intervention to complete 57 proofs. Lastly, their work is

done outside of a transactional context, and therefore is unsuited to addressing the problems

related to abstract locking and open nesting in general. However, because this work is done

35

in the context of proving things about concrete implementations, it would be a powerful

complement to ACCLAM.

4.3.4 Model Checking

Model Checking [13, 5] has been used to verify multi-threaded code. Model check-

ers such as Spin [34], NuSMV [11], and CBMC [12] are particularly useful for explicitly

threaded code because they can exhaustively examine all possible interleavings of valid

states. This differs from my approach in several respects. First, model checkers verify a

model against an arbitrary formula in temporal logic (that might, for example, ensure that

no deadlock occurs). My system is intended to check only one property (that the abstract

lock prevents non-commutative orderings) which doesn’t vary over time (and hence I don’t

need the full power of a temporal logic). Second, because the transactional memory sys-

tem guarantees serializability of operations, my system doesn’t need to check against all

possible interleavings or all possible thread combinations. Third, model checkers (for rea-

sons of completeness) often need access to the full program text (or spec) to render correct

judgments. My system leverages the isolation afforded by transactions in order to analyze

data structures in a modular fashion and so only needs the description for the data structure

in question. In short, my system doesn’t require the richness of a full model checker.

In summary, my approach differs from previous work in several ways. First, although

much work has gone into verifying explicitly threaded code, comparatively little work has

been done on transactional code (unsurprising, as TM is a relatively new concept). Second,

although my approach utilizes an abstract description of a data type (similar to algebraic

specifications), my system is not intended to answer arbitrary correctness questions and

so I don’t need the power of a full theorem prover or model checker. Third, my system

can make simplifying assumptions (particularly regarding interleavings) by relying on the

Transactional Memory infrastructure. Fourth, the ACCLAM language and system is meant

to address questions about abstract state only, and therefore doesn’t need to deal with the

36

complexities of proving a particular implementation correct. Although such verification is

interesting and important, the approach I’ve taken is essentially ‘implementation agnostic’

and is therefore capable of generating results that are meaningful across multiple imple-

mentations and implementation languages. In short, although portions of my approach are

inspired by previous work, the problem domain and application of these approaches are

significantly different from other work.

37

CHAPTER 5

ABSTRACT STATE SPECIFICATION LANGUAGE

5.1 Problem Domain

Open nesting extends conventional transactional memory semantics to allow the pro-

grammer to escape full oversight by the TM run-time. As discussed previously, this is done

to enhance performance or to interact with external non-transactional processes. Other

systems, such as boosting, allow similar (if more limited) forms of escape. All of these

approaches work by hiding information from the TM run-time. Therefore, they all end up

requiring the programmer to specify additional information so that the TM run-time can

maintain the invariants necessary in order to preserve transactional semantics. Namely, the

programmer must specify conditions under which the open actions conflict and how to in-

vert the action if the parent transaction aborts. For performance reasons, abstract locks may

be preferred over conflict predicates, in which case the programmer may have to specify the

locks as well as (or instead of) conflict predicates. The programmer has chosen to nest this

action in an open fashion, therefore maximizing concurrency is important to them. How-

ever, there is often a tension between the precision of a conflict detector and the simplicity

of the specification. Generally, more precise conflict predicates are more complicated.

Reasoning about concurrent systems is well-known to be difficult. In general, when requir-

ing a programmer to input specifications it would be great if those specifications could be

formally verified to be correct.

Of course, people have been trying to reason about concurrent systems for as long as

there have been concurrent systems [16, 44, 41]. And reasoning, in a useful way, about

general-purpose threaded lock-based code is very difficult. Open nesting has a distinct

38

advantage in this regard. Because open nested code executes in a transactional context,

a lot more can be assumed by a formal tool. In particular, transactional atomicity means

that transaction boundaries can be used to eliminate having to reason about interleaving

of operations, and transactional semantics greatly simplify conflict detection (by reducing

it to a commutativity check; see Chapter 8). Therefore, the tools required to prove useful

correctness properties of open nested code are much more tractable than a general purpose

‘concurrent code proof system.’

5.2 ACCLAM’s Audience

When we were designing the ACCLAM language, we assumed that the average user

of ACCLAM would be using open nesting to enhance the performance of their code. As

such, we can assume that they are an expert programmer and that it’s likely that their code

is performance critical. Therefore, the transactional correctness of the code is even more

important, and a programmer would welcome some automated safety checks even if there

were some up front specification work. We designed ACCLAM to have a syntax similar to

conventional systems languages (such as C or Java), and to resemble, as much as possible,

conventional imperative system code. We attempted to apply the principle of least surprise

to the language design in a conscious effort to make ACCLAM appealing to programmers

who would be likely to use Open nesting or transactional boosting.

Formal systems for program analysis come in all shapes and sizes. ACCLAM uses

a modeling approach, where the programmer specifies the abstract state being reasoned

about, and explicitly specifies the state transformations that result from all supported oper-

ations. This approach was chosen over a more ‘conventional’ approach (such as a formal

logic or some kind of model checking) because it was likely to result in specifications that

resembled code for the data structure being reasoned about. Of course, the state is speci-

fied in an abstract fashion and there are several operators in ACCLAM that are useful for

39

proving properties and wouldn’t be used in a practical system. But the general idea was to

have ACCLAM specifications be more ‘code-like’ and less ‘proof-like’.

5.3 Language Overview

ACCLAM is a description language meant to specify transactional properties of data

structures implemented in a language similar to Java. As such the language itself is de-

signed to resemble Java as much as possible. ACCLAM descriptions are organized into

packages of models, and models are structured similarly to Java classes. Models have

names, can be parameterized by type, and can inherit from other models. Models also con-

tain members and methods, however these differ from Java. Unlike Java, ACCLAM is not

intended to be an executable language. Members of an ACCLAM model are descriptions

of abstract state, and methods are descriptions of changes to the state caused by invoking

the method. The difference can sometimes be subtle, but although ACCLAM method’s are

describing state transformations imperatively, they will be converted into pure expressions

by the language processing tool so that they can eventually become SAT problems. In prac-

tical terms, the differences stem from the fact that when implementing a data structure in

Java, a programmer is concerned with correctness and efficiency; but when describing a

datatype in ACCLAM, a modeler is concerned with correctness and generality.

5.3.1 Language Pipeline

ACCLAM is a descriptive tool meant to drive an automated proof system. The proof

system will respond with either a ‘correct’ token or an ‘incorrect’ token, and, one hopes,

an example of a set of abstract states that violate the property being checked (for example,

the operation doesn’t commute in a given state, with the given arguments). The ACCLAM

processing pipeline is as follows:

1. Programmer specifies a model and/or conflict predicates or abstract locks

2. ACCLAM description is parsed and resolved

40

3. Model methods are translated into pure expressions in terms of a base state

4. Conflict predicates or abstract locks are translated into pure expressions in terms of

the same state

5. Pure expressions are translated into a SAT problem

6. SAT problem is fed into a SAT solver

Ideally, processing an ACCLAM model should take a matter of seconds so that the modeler

can iterate rapidly in order to produce a correct locking protocol (or conflict predicate

specification or inverse specification).

5.4 Notable Features

The differences between Java and ACCLAM are more apparent at the statement level.

The following short descriptions provide an informal overview of notable language fea-

tures. These descriptions are intended to give the reader a feel for the language and so they

include examples. The formal specifications occur later (see Chapter 7).

5.4.1 Top-level Declarations

Relations: Relations in ACCLAM describe mathematical functions between elements

of finite sets.1 For instance, a predicate isEven(x):int->boolean relates 32-bit Java

ints to boolean values. Because the domains of the relations are finite sets, relations can

be modeled as large arrays (similar to treating them as uninterpreted functions over finite

domains). For instance, the isEven predicate above can be modeled as a giant array of

boolean values. Consequently, in the language syntax, relation declaration and evaluation

resemble Java array declaration and dereferencing, respectively. The declaration of the

isEven relation above would be:

1The name, relation, is unfortunate, however function has a different conventional meaning in program-
ming languages and map has special meaning in the Java community.

41

boolean isEven[int];

Note that this differs from standard Java array declarations. This was done intentionally, to

preserve standard Java syntax for array declarations (so that model writers would not be sur-

prised by their arrays behaving like relations). Evaluating isEven at a given value x looks

like: isEven[x]. Relations can have many arguments (and resemble multi-dimensional

arrays in syntax), and can be modeled as multi-dimensional arrays. For brevity’s sake,

relations from domains onto booleans are often referred to as predicates.

A declared relation is normally assumed to be uninitialized/empty. However it is possi-

ble to copy the state of a relation into a newly declared relation at declaration time. Using

the = operator, a declared relation will start with a snapshot of the copied relation’s state.

From that moment on, they are separate entities (updates to one do not effect the other).

This is useful in any situation where one wishes to snapshot or ‘freeze’ the state of the

model (for instance, to construct iterators). The syntax is similar to that used when declar-

ing a primitive state variable with an initial value. For example:

int instanceCount[T];

int copyOfCount[T] = instanceCount;

Relations are convenient for describing collections of state without having to worry

about any specific implementation details. For example, if one were to model a set of

integers, one could do something like:

boolean in[int];

boolean contains(int val) { return in[val]; }

void add(int val) { in[val] = true; }

In a practical system, representing a set as an array is usually not optimal. However, it

is very convenient for modeling the abstract state of a set. The modeler can eschew imple-

mentation details for the most direct representation of the state. Of course, this means the

42

language processing tool has to deal with relations in a way that makes them manageable

and tractable.

Reductions: Reductions in ACCLAM are a way of describing a reducing function that

is continuously computed over a set of relations. For example, many data structures keep

track of the number of data elements they contain. It would be possible to explicitly model

this in ACCLAM (for example, with an int that is explicitly updated on insert/delete).

However, such explicit descriptions would constrain the implementation strategies. For

example, when the concurrent variations of the java.util.Map interface were being

designed they had to change the size calculation from a single int that was being main-

tained inside the data structure to an array of integers to increase the maximum concurrency

permitted by the implementation. Reductions in ACCLAM are meant to abstract away any

particular implementation strategies for maintaining such ‘bookkeeping’ data. ACCLAM

reductions are declared with a primitive variable serving as the target storage for the reduc-

tion value as well as a set of relations that the reduction is operating over and a predicate

that is true for values to be included in the reduction calculation. For example, to count the

number of true instances in a boolean relation:

boolean rel[T];

int ct = count(T idx ; rel[idx];1;0);

Because simple summation came up regularly while developing the ACCLAM lan-

guage, the keyword count is a shorthand for the summation reduction. In the example

above, the integer ct stores the ‘current’ number of positive instances in the relation rel.

The count declaration specifies locally bound index variables, a boolean expression that

can use those index variables, and an expression to use for true instances and an expression

to use for false instances (in this case, 1 and 0, respectively). ACCLAM takes care of

updating/recomputing reduction variables.

Reductions are a convenient way of calculating aggregate values over a set of relations,

and like relations their main purpose is to make the meaning of the aggregate value ex-

43

plicit while abstracting away any particular implementation considerations. This allows

the model to represent a larger range of implementations, at the cost of having the language

processing tool handle reduction calculations in a tractable fashion.

Models: A model describes the abstract state and abstract operations of a data struc-

ture. The abstract state itself is described as a collection of relations over finite sets, stan-

dard Java data (primitives and objects), and reductions over the model’s relations. Models

themselves bear a syntactic resemblance to Java class definitions, and in this sense the ab-

stract state functions as the data members of the model. As a motivating example, consider

a description of a set data structure. An abstract model for a Set needs only one relation,

the predicate in:Object->boolean, which abstractly describes membership in the set.

Models themselves are declared similarly to Java classes, so a declaration for the Set data

type would be:

model Set{

boolean in[Object];

//...operations...

}

Models can contain multiple relations, which may be needed to track more complex

state. Consider a simple graph representation using an adjacency matrix to represent the

graph itself:

model SimpleGraph{

boolean adjacent[Node, Node];

int connectivity[Node];

int weight[Node, Node];

}

44

This definition contains both a 2-argument relation (adjacent) that represents the graph

itself, a connectivity relation that records the number of edges incident to a node, and a

weighted adjacency matrix.

Parameterized Models: Models can be parameterized by type similar to Java 5 gener-

ics. This is useful if you are trying to describe a data structure that is type generic. For

example, the abstract Set model described above specifically used Java objects. It would

allow for more flexibility if one description could be used to analyze sets of objects as well

as sets of strings. To declare such a set, one would write:

model Set<T> {

boolean in[T]; }

Now we have a type-generic set description. As in Java generics, one can specify con-

straints over the type parameter using the Java keywords extends and implements.

Consider an extension of Set that maintains an order over its elements. Java programming

practice requires that this data structure accept only Comparable types. To specify that

in the Model, one would write:

model OrderedSet<T implements Comparable<T> > {

... }

One can specify multiple type parameters (each separately constrained), delimited by com-

mas.

Model Inheritance: Models (like classes) can inherit from other models. As there are

no protection keywords in ACCLAM, this inheritance causes the child model to include

all of the parent’s state variables. Method overloading basically blocks the inclusion of

the parent’s methods (that have the same signature). At the moment, ACCLAM supports

only single inheritance, although there is no fundamental reason why multiple inheritance

cannot be supported (due to the highly static nature of the descriptions). However, as

Java supports only single inheritance, multiple model inheritance may have limited utility.

45

Model inheritance is syntactically identical to Java class inheritance. For example, if the

ordered set model were to inherit from the plain set model, it would look like:

model OrderedSet<T implements Comparable<T> >

extends Set<T> {

... }

Note that the type parameter is shared in the reference to the parent model. This basically

allows the system to inline the parent model’s definitions.

ACCLAM is like a more conventional object-oriented language in that descendant mod-

els can be substituted for references to their parents. Therefore, a correctly inheriting sub-

model must be substitutable. Informally, this means that submodels can’t violate any of the

properties provable relative to the parent model. In particular, submodels must not conflict

where the parent model had no conflicts (the set of conflicting states must be a subset of the

parent’s conflicting state set). Also, if a submodel overrides a method definition, it must

perform the same state transformation as the parent’s method (this is explained in more

formal detail later).

Nested Models: Models can also be nested (as in Java). The nested (inner) model has

access to its parent (outer) model’s state. This can be useful when modeling auxiliary data

structures that are dependent upon the outermost definition (for example, an iterator). For

example, to declare an iterator inside the ordered set:

model OrderedSet<T implements Comparable<T> >

extends Set<T> { ...

model OrderedSetIterator<T> { ...

boolean hasNext() { ... }

T next() { }

...

} }

46

Methods: In addition to state variables, models can include methods. A model method

describes an allowed change in the abstract state of the model. However, even though the

syntax resembles that of Java methods, a model method is a description rather than a chunk

of executable code. This distinction is important as Java methods are meant to be compiled

(eventually) into machine code and model methods are transformed into SAT circuits that

transform state descriptions. A model method is an abstraction of an actual Java imple-

mentation and as such must describe the possible parameters and return value of the ac-

tual method, consequently model method declarations resemble Java method declarations

(without protection keywords). Consider the simple set example, say we add descriptions

for two abstract operations, add and remove:

model Set<T> {

boolean in[T];

boolean add(T elem){

boolean ret = !in[elem];

in[elem] = true;

return ret; }

boolean remove(T elem){

boolean ret = in[elem];

in[elem] = false;

return ret; }

}

The two methods take an element and either add or remove it from the set. The return value

indicates whether or not the Set was modified (as in Java). The bodies of the methods are

statements that reflect the total change to the abstract state that results from executing the

47

abstract operation. Note too that it is important for the abstract methods to have return

values as these represent data communication (an escape of state information to the caller).

Constructors: As in object-oriented languages, constructors are specialized methods

invoked only at object creation time to initialize the object state. In ACCLAM constructors

have two purposes: to model the constructors of the data structure, and to allow models

to create instances of other models. The first case interacts heavily with invariants (de-

scribed below), as a correct constructor will always establish the invariants of the data

structure. The second case is for modeling cases in Java where a data structure has meth-

ods that return other data structures (e.g., java.util.Map.keySet() is defined in

java.util.Map, but returns a java.util.Set that contains all the keys in the map).

Constructors are vital for modeling these cases, as correctness conditions often rely on

equivalence of return values. Therefore, accurate modeling of the internal state of a re-

turned data structure is extremely important. In terms of syntax, constructors in ACCLAM

resemble their Java equivalents (no return type, and the method name is identical to the

model name). In practice, they are often defined with the forall statement to initialize

member relations.

model Set(){

forall(T elem ; true) { in[T] = false; }

}

Method Handlers: Transactional systems have a more nuanced view of operations

than explicit locking systems. Because conflicts may be detected after a method has begun,

transactional methods must support aborts/undos. In practice, this means that each forward-

going operation may have to specify a block of code to be executed in the event that an abort

is generated. In ACCLAM this is accomplished with method handlers, which are labeled

blocks of code appended to a method definition. In the case of abort, the handler is labeled

onabort and is meant to model the undo action. For example, our Set model has an add

48

method that inserts an element into the set. If an add instance is aborted, it must undo the

changes to the abstract state thus:

model Set<T> {

boolean in[T];

boolean add(T obj) {

boolean ret = !in[obj];

in[obj] = true;

return ret;

} onabort { in[obj] = false; }

}

In this case, the abort handler is just one line that undoes the second line of the add method.

Note that this is not actually correct, in the case where obj is already in the set (before

the invocation of add), the abort handler does not return the Set to the initial state. To do

that, one would need to somehow cache the value of ret and allow it to be visible inside

the abort handler. This is possible using prevals (discussed below).

In general, it may be useful to provide handlers for situations other than aborting.

Three other handlers are available: onvalidate, oncommit, and ontopcommit.

onvalidate is applied during validation of a transaction (after the forward-going opera-

tion is complete, but before the run-time has determined commit/abort status). oncommit

is applied after a transaction is validated and set to commit. ontopcommit is applied

after the top-level (outermost) transaction has been validated and set to commit.

Prevals: As mentioned in the discussion of method handlers, sometimes it is necessary

to cache values computed at the beginning of a forward operation. These cached values are

known as prevals (because they are computed before the ‘execution’ of the forward-going

operation). Prevals are purely stored values. No mutation is allowed in generating prevals

and no mutation of prevals is allowed in the body of a method or method handlers. Prevals

are declared in a block delimited by square brackets after the method header. The prevals

49

themselves are declared just like any other variables. For example, a correct definition of

an abort handler for Set.add would look like:

model Set<T>{

boolean in[T];

boolean add(T obj) [boolean present = in[obj];]{ //preval

in[obj] = true;

return !present;

} onabort { in[obj] = present; }

}

In this case, a preval (present) is declared to capture the incoming value of in at the

point where it may be overwritten. Because present also captures the same information

as ret in the previous example, there is no need to declare ret, and !present is re-

turned instead. Now the abort handler correctly undoes add, and restores in to its initial

value (even if in[obj] was true before invoking add).

Prevals also allow for the capture/copying of a relation’s state. When declaring a new

relation, it can be assigned the value of a pre-existing relation. This has the semantic effect

of copying the entire relation into the newly declared relation. This allows for a user to

‘snapshot’ relation state. For example, in constructing derived or inner models it may be

useful to capture the outer model’s state at a particular point in time (this is especially

useful when defining iterators over a particular model). Consider a method clone() on

Set that is intended to return a copy of the Set itself:

Set clone()

[boolean copyOfIn[T] = in;]

{ ...

return new Set(copyOfIn);

}

50

Abstract methods: ACCLAM methods can be declared abstract. An abstract method

is one that specifies only a type signature and leaves implementation up to child models. In

Java, an abstract method declaration is an implementation obligation for inheriting classes.

An abstract ACCLAM method is modeled as an uninterpreted function. No implementation

is specified, so ACCLAM will allow the return values to range over all allowed values for

the type. If some constraint on the return value is desired, constraints can be specified with

invariants (described below). To declare a method abstract in ACCLAM one simply uses

the abstract keyword similarly to Java. For example:

boolean isEmpty() {

return size() > 0; //not abstract

}

abstract int size(); //abstract

Abstract methods, when combined with invariants allow for some flexibility when specify-

ing a method’s behavior without having to specify an explicit implementation.

Invariants: An ACCLAM description may include invariants. An invariant is a top-

level declaration inside a model that constrains the space of legal values. In practice, invari-

ants are useful for excluding illegal configurations of state. For instance, without clauses

to constrain values, a SAT solver will potentially assign any value to an array of unbound

literals. In the case of an ordered set, this may mean that the SAT solver will generate initial

states where the stored keys are not ordered (this happened during the construction of the

ACCLAM processing tool). Therefore, an invariant is needed to exclude situations where

the keys aren’t correctly ordered. Given an ordered set definition like this:

model OrderedSet<T>{

boolean in[T];

int rank[T];

T next[T]; ... }

51

If next is intended to map its input to the next higher object in the OrderedSet, and if

that ordering respects the rank relation, then a useful invariant would be:

invariant

forall(T x, T y ; (in[x] & y = next[x]) →

(y = null || rank[y] > rank[x]));

This invariant states that if an object (x) is in the set then its next field is either the special

value null, or an object with higher rank. One can see that this invariant, applied to float-

ing values of the initial state (i.e., values that the SAT solver can assign), will ensure that

only valid initial states are generated by the SAT-solver (this avoids garbage-in-garbage-out

problems).

Invariants are used to constrain the state of a model and are often specified in terms of

universal quantifiers (forall). However, it is completely legal to specify an existential

invariant. For example:

invariant exists(T x ; in[x] & next[x] = null)

This specifies that there is at least one T in the ordered set such that its next value is null.

Depending upon the meaning of null this could be the greatest value currently in the set.

Invariants can also be used to constrain abstract methods.

Abstract Locks: ACCLAM is a tool for describing several things: the abstract state

of a data type, abstract operations on that data type, predicates over sets of instances of

that data type, and abstract locking protocols. Abstract locking is the mechanism used by

open nesting to ensure that conflicting actions don’t occur concurrently. The usage pattern

for abstract locking is that a thread invokes an open-nested action from within a transac-

tion. The action specifies one or more abstract locks to acquire. The locks themselves are

specified with a context and a mode. The context is essentially the data type over which

the lock pertains, and the mode specifies a type of access that the transaction is requesting

(e.g., read mode or write mode). The point of lock acquisition is to identify any potentially

52

conflicting actions and to manage the concurrent execution accordingly. For example, if

one transaction is attempting to add a string to a set while another transaction is attempting

to remove a string from the same set, the run-time’s concurrency management mechanism

will have to know if the remove and add conflict before it can schedule the operations.

Abstract locks conflict if they refer to the same context (e.g., add and remove are operating

on the same set), the specific operation invocations overlap (e.g., add and remove are oper-

ating on the same string data) and the lock modes conflict (e.g., add and remove are both

exclusive mode operations).

Currently, ACCLAM allows the specification writer to define abstract locks in a sep-

arate lock definition file. A lock definition file can be grouped under a package (like a

model) and contains zero or more lock definitions. A lock definition can be either a lock

predicate or a lock space. At a very high level, a lock predicate is simply a predicate that

compares two requested locks and returns true if they overlap and false otherwise. In the

context of abstract locking, ‘overlap’ means that their domains of concern overlap, which

means that semantically, the locks are potentially referring to the same abstract state. Con-

sider a set of strings, and two transactions that are attempting to add a string to the set.

The lock predicate in this case would simply be string comparison. If the strings were

equal, then the two transactions are talking about the same abstract state and may conflict.

Otherwise, the two transactions are attempting to manipulate disjoint state and may execute

concurrently. A lock space is a named collection of lock predicates, possibly parameterized

by type. Lock spaces are a way of grouping together related lock definitions. For example,

a point-like lock may guard operations around a single value (a specific integer in a set of

integers, say) while a range-like lock may guard a whole range of values. They are differ-

ent lock types but are obviously related. For example, we would like ACCLAM to be able

to reason about one operation locking the value 14 and another locking the range [5,20].

Therefore, in ACCLAM we say that these locks are drawn from the same lock space. More

53

concretely, all lock types defined in a lock space may potentially overlap; locks defined in

different spaces can’t overlap.

Locks are used/declared within a model as part of method declaration. A lock may be

defined and have any free variables in the predicate definition bound to method parameters

and/or method prevals, as well as a mode specified. A lock predicate can be regarded as

a pure function that is evaluated at method invocation time. A lock is acquired (i.e., the

operations don’t conflict) if the predicate is false or the modes do not conflict.

Lock Predicates: A lock predicate is defined similarly to a model, but using the

lockpredicate keyword. Lock predicates can be doubly parameterized: first by type

(similarly to a type-parameterized model), and secondly by values. The value parameters

are free symbols within the predicate definition and are bound to defined state variables at

lock use time. The body of a lock predicate is a boolean function, defined similarly to a

method within a model. The predicate argument is the other lock instance against which

to compare the current bound instance. For example, the following lock predicate would

work for our simple set example:

lockpredicate ValPred<T><T val> {

overlap(ValPred other) {

(val = other.val) || (val.equals(other.val))

} }

The predicate is parameterized over the type T and has one free variable, val, that will be

bound at lock use time.

Lock Spaces: A lock space is a way of grouping together a bunch of related lock

predicates and giving that grouping a name. Lock spaces can also further constrain the

type parameters of lock predicates. For example, given the lock predicate definition above

a second predicate and lock space might be defined as follows:

54

lockpredicate RangePred<T><T leftend, T rightend>{

overlap(RangePred<T> other) {

(leftend ≤ other.leftend) && (rightend ≥ other.leftend)

} }

lockspace ValAndRange<S implements Comparable<S>> {

ValPred<S> point;

RangePred<S> range;

}

This lock space contains predicates for determining if pairs of range-like locks overlap

and pairs of point-like locks overlap. For completeness, we must also define a range/value

predicate:

lockpredicate RangeValPred<T><T leftend, T rightend>{

overlap(ValPred<T> other) {

other.val ≤ rightend && other.val ≥ leftend

}

}

Lock Modes: Abstract locking also depends upon a set of defined lock modes and a

conflict matrix describing the compatibility of the modes. A mode itself is simply a symbol

specified by the user, and is used to reference a conflict predicate from the mode defini-

tion matrix. The mode matrix itself is defined one entry at a time, using the * symbol to

represent the intersection of two modes. For example, the mode definition for the stan-

dard shared/exclusive (read/write) lock could be defined as (with S for shared and X for

exclusive):

55

modenames S, X;

S * S { false }

S * X { true }

X * S { true }

X * X { true }

The predicate definition is delimited by braces ({,}) and specifies the conditions under

which the modes are compatible. In the example, shared mode is compatible with shared

all the time, and exclusive mode is never compatible with another lock.

Using Locks: A model is verified against zero or more lock spaces and mode defini-

tions that are used to define individual locks, and each method will define the specific locks

that it will take. Each lock definition must bind the value parameters to either model state,

method arguments or prevals. Additionally a lock mode must be specified. For example, to

define locks for the set example mentioned above:

model Set<T implements Comparable<T>> {

void add(T obj)

@lock(point<T>(obj), X)

{

...

}

}

5.4.2 Statements and Expressions

If/Conditional: ACCLAM supports standard Java-style conditionals. Like Java, the

conditional must be an expression that evaluates to a boolean. The syntax is very similar to

Java, for example:

56

if(expr) {

stmt1;

} else {

stmt2;

}

Assignment: ACCLAM permits an operation that resembles assignment from an im-

perative language. Interpreted in an imperative fashion, assignment would overwrite the

value of a relation/array at a particular index. The syntax is similar to Java (= is the as-

signment operator). Here are examples of assigning a value to an element of an ACCLAM

relation:

in[x] = false;

//OR

weight[n1, n2] = weight[n1, n2] − 1;

Semantically, this means that any subsequent statements in the method body will see the

new value when they evaluate the relation (at the index that was updated).

Forall: ACCLAM is designed to answer existentially-qualified questions. However,

it is sometimes necessary to change multiple values, or to ‘filter’ values over an entire

relation. Therefore there is an operator that supports a limited kind of parallel update

masquerading as iteration, forall. forall takes typed symbols (to bind), a boolean

expression (known as the forall predicate, and in terms of the bound variables), and a

body of code to evaluate. The boolean expression controls which values of the typed sym-

bols are actually used. For each value such that the boolean expression is true, the body of

the forall is evaluated. Because these updates are considered to happen in parallel there

are some special scoping issues. The symbol and boolean expression refer to the enclosing

scope (i.e., the body of the forall cannot change the value produced by evaluating the

57

predicate). The bodies are evaluated (conceptually) in parallel and therefore cannot refer to

each other. Because the only way to affect other iterations is through assignment, a restric-

tion applies to assignment operations (the specifics are given in the Chapter 7). The updates

are considered to happen in parallel, effectively invisible to each other, and take effect im-

mediately after the forall. Syntactically, a forall resembles a for. For example, the

following code ‘removes’ all Strings from a Set<T>:

forall(T x; in[x] && isString[x]){

in[x] = false;

}

Note that this is legal, even though the body seems to be side-effecting a relation used in the

predicate. These changes will be visible only after the execution of the forall. This kind

of universal operation is possible only because the domains being operated on are finite.

The restrictions on the body of the forall basically ensure that across all ‘iterations’

of the forall body, if any two index expressions evaluate to the same value, then all

values assigned at that index within a relation are the same. The ACCLAM tool is capable

of generating side-proofs that ensure that all uses of forall obey this restriction. This is

possible because ACCLAM is built on top of an automated prover (a SAT solver). Because

these side-proofs can be generated separately from other proofs, all other proof questions

will assume that the forall correctness condition has been verified.

Return: Return is used to signify abstract state values communicated back to the caller.

These are important to note because for two operations to commute, not only must their

state changes commute, but their return values must not be dependent on their execution

order. In terms of syntax, it’s very Java-like:

return x;

where, x is of the appropriate type. Every method can be seen to have a return expression,

and this expression is like a bus where we guarantee that only one value is gated onto the

58

bus. This value will be one of all return statements contained within the method. For

example, the following method definition:

int meth(int arg){

if(E(arg)){

return 0;

}else{

return −1;

} }

The return statements are nested within a conditional that depends on some boolean ex-

pression E in terms of the method argument. As a SAT problem, the return expression for

meth would be E(arg)→ 0 , −1 . This return expression could itself be a subexpression

of a larger return expression if meth was more complicated.

Non-deterministic Choice: When specifying the model for data structures it is some-

times convenient to be able to pick a value from the structure without having to specify

any particular policy or logic implementing the ‘picking’. Consider an abstract set. Both a

search tree and hash table are valid implementations of that set. Now consider an iterator

over a set of values. The implementation of the iterator would necessarily have to con-

sider the implementation of the set. However, that logic has nothing to do with the abstract

operation of iterating over a set of data. Forcing the modeler to chose an iteration order

would over-constrain the model and would restrict its usefulness. To be more general, an

iterator should just specify that it picks a not-yet-picked value. To support situations where

the modeler would prefer not to have to specify a particular mechanism for choosing data,

ACCLAM supports a non-deterministic choice operator, choose. A choose statement

specifies one or more locally-scoped variables to ‘choose’ and a predicate that constrains

the particular values chosen. A body is provided to perform any additional operations on

the chosen values. For example, assume that there’s some iterator model nested inside an

59

abstract set and that we wish to use non-deterministic choice to abstract away the particular

picking mechanism.

model setIterator<T> {

boolean alreadyPicked[T];

int remaining = count(T v ; !alreadyPicked[v] && in[v]);

T next() {

if (remaining = 0) {

//nothing left to iterate over, an error

throw NoSuchElementException;

}

choose(T next ; !alreadyPicked[next] & in[next])

{

alreadyPicked[next] = true;

return next;

} } }

In this example non-deterministic choice is used to grab a value from the enclosing set such

that it hasn’t already been visited by the iterator but is in the set. Which specific value is

chosen is unspecified (and actually up to the vagaries of the SAT solver). This means that

proofs involving this iterator specification are true over all valid set iterators and are not

tied to any particular iteration order.

Non-deterministic choice cannot fail. This means that there must always be at least one

assignment of values that satisfies the predicate. This is a requirement of the underlying

proof system (a SAT solver). However the ACCLAM tool is capable of generating a side-

condition proof that uses the SAT solver to prove that choose is used only in cases where

there will always be a ‘pickable’ value. In the example above, the remaining reduction

60

is used to guard the choose, by throwing an exception if there is nothing to pick (this is

standard Java Iterator semantics).

Other Expressions: ACCLAM supports all the standard Java logical and bitwise op-

erations. ACCLAM also supports (syntactically) all the arithmetic operations. Simple

arithmetic, such as + and - is eventually implemented directly in terms of SAT clauses,

but more complex operations (such as division) may be supported only as uninterpreted

functions.

ACCLAM also supports function invocation, which is identical to Java syntax for func-

tion calls, but is carried out by inlining the called function at that point in the caller.

5.4.3 Atoms and Literals

ACCLAM supports the literal types of Java, and also treats certain concepts more con-

cretely. Object references in ACCLAM are eventually modeled as indexes into the heap,

and can be treated as a 32-bit value (although typing rules prevent integer operations from

being used on references). Additionally, null has a specific concrete value at the SAT

level, as does void (in order to allow the comparison of the return values of two void

methods).

ACCLAM supports the typing system of Java, but unlike Java, all data in ACCLAM is

boiled down to bit-vectors manipulated at the SAT level. Therefore a concrete meaning (in

terms of bit-width) has to be assigned to all types. Fortunately the Java language spec [26]

provides such assignments for all the primitive types, and also mandates that object refer-

ences be at least 32 bits. Therefore, references can be considered 32-bit index values into

an array of objects without losing any power to describe Java data structures. This also es-

tablishes a width for null. Another unique type is void, and the bit-width is essentially

arbitrary (however, as a point of implementation it would probably be prudent to assign it

a size and value guaranteed to be unique).

61

5.4.4 Model Inheritance

A model can be derived from another model. The derived model is said to be a sub-

model of the parent model. However, submodeling requires that the submodel be fully

substitutable for its parent. This is to ensure that any reasoning done about an instance of

the parent model as the parent model will apply to the submodel as well.

5.4.4.1 Conflicts in Sub Models

To be fully substitutable, any reasoning done about the parent model’s conflict states

must also apply to the submodel. In particular, if two methods in a state were proved not to

conflict, the submodel’s versions must also not conflict. If P(σ) is the conflict predicate of

the parent model and S(σ ′) is the conflict predicate of the submodel, a submodel is conflict-

substitutable for the parent model if: ¬P(σ)→¬S(σ). Note that this means a submodel

can have fewer conflict states than the parent. However, that knowledge can’t be used by a

model that’s only reasoning over references to the parent.

5.4.4.2 Overriding Methods

An implementor of a submodel can do three things: they can add new state variables,

add new methods, and override methods defined in the parent model. New state and new

methods can’t have been used to reason about parent models, by definition. So they are

inherently substitutable. Overridden methods may have been reasoned about in the context

of a parent model, and so they must not violate any properties that are exposed in order to

be substitutable. Outside of a model definition, methods are very much like ‘black boxes’.

The only things visible to an invoker are the input state, the output state, and any abstract

locks that may have been acquired. Therefore, any overridden method in a submodel must

transform the same parent model input states into the same parent model output states. Of

course, if the submodel is defined to include additional state variables, the input state may

include values for those new state variables (M.M. for the output state). If σin is the input

state of the parent model, and σout is the output state (both are sets of values for the actual

62

state variables), and if Σi is the input state in the submodel and Σo is the output state; then

a submodel’s overridden method must obey: ∀(σin,σout),(Σi,Σo) σin ⊂ Σi → σout ⊂ Σo .

That is, a submodel’s overridden method must map the same parent input states onto the

same parent output states. A submodel that obeys this state-mapping property is method-

substituteable.

Of course, a submodel may have more state variables than the parent, so a submodel

may have an effectively larger state. This is why we use the subset relationship in the

definition of method substitutability. To be fully rigorous, we must define ⊂ for instance

states. If we assume that a state is a set of mappings from symbols to expressions, then

σ1 ⊂ σ2→∀(s 7→ e) ∈ σ1∃(s 7→ e′) ∈ σ2.

5.4.4.3 Invariants

The last visible model property we discuss is invariants. If a submodel is conflict-

substitutable, and any overridden methods are method-substitutable, then the overridden

methods won’t violate the parent’s invariants. However, any new methods must also obey

the parent’s invariants. A submodel whose new methods obey the parent model’s invariants

is invariant-substitutable.

5.4.4.4 Substitution

Any submodel that is conflict-substitutable, method substitutable and invariant substi-

tutable is fully substitutable for any reference to the parent model. For the rest of this work,

we assume that any submodel is fully substitutable with its parent models. Although it

would be possible to extend the language processing tool to verify this, the current system

does not and it was considered outside the scope of this thesis.

63

CHAPTER 6

ACCLAM EXAMPLES AND MODEL EXCERPTS

This section includes example models and discussions to motivate the structure of the

language. The examples are descriptions of data types modeled from the main types of the

Java Collections Framework [43].

6.1 Set

This example represents a simple set data type. A set contains at most one instance

of an object, but makes no guarantees as to ordering among items. It’s just a mutable set

of objects (in the mathematical sense). The Set model (Figure 6.1) is type parameterized,

ensuring that it is a homogeneous set (up to sub-typing). The model supports four basic

operations: add, remove, find, and size. The add and remove methods return a

boolean value indicating whether or not the operation caused the set to change. The state

for Set is: a single relation, in, which maps objects to a membership flag, and a reduction

sz, over in that counts the number of distinct member objects in the Set.

add: The add method insures an element is in the set. This is intended to model

the way a Java programmer would interact with a data type. So rather than returning a

new set that includes the new value, the add method mutates the in relation and returns

a boolean to indicate whether or not the element was already present in the set. Of note

in this description is the use of the preval present, which is just a name to reference

a snapshot of in. However, present makes it nice and easy to express the conditional

undo action without having to use a conditional statement.

64

package examples;

model Set <T> {
boolean in[T]; //membership relation
int sz = count(T x ; in[x] ; 1 ; 0);

int size() { return sz; }

boolean find(T elem) {
return in[elem];

}

boolean add(T elem)
[boolean present = in[elem];]{
in[elem] = true;
return !present;

} onabort {
in[elem] = present;

}

boolean remove(T elem)
[boolean present = in[elem];]{
in[elem] = false;
return present;

} onabort {
in[elem] = present;

}
}

Figure 6.1. An ACCLAM Set Example

remove: remove is very similar to add, it just uses a different boolean constant in

the mutation.

size: The mutating methods, add and remove, don’t adjust any counters to ac-

count for their changes to the membership of the set. This is ok because the system is

modeling such changes with a reduction variable that will be kept in sync automatically by

the verification tool. This is a reasonable thing to do. In practice, it is not uncommon to

find that shared counters (like a size variable) end up as points of contention for concurrent

threads [25]. Varied techniques exist for alleviating this. Sometimes, atomic operations

65

may be used, or the counter is broken up into an array of partial values that is periodically

aggregated. It is important to realize that all these techniques are implementations of atom-

ically updating an abstract aggregating counter variable. Therefore, in ACCLAM we don’t

require the modeler to specify a particular implementation strategy. The model will just in-

dicate the aggregation that is desired and assume that the operations are atomic as a whole

(note that the restrictions on the count reduction ensure that the counter-level operations

are commutative).

6.1.1 Conflict Predicates

Element-based operations on a set can conflict only if they are referring to the same

element. Global operations on a set may conflict with any mutating operation. This is

expressed in the table below.

add(y) find(y) remove(y) size()
add(x) x == y x == y x == y !in[x]
find(x) x == y false x == y false
remove(x) x == y x == y x == y in[x]
size() !in[y] false in[y] false

Table 6.1. Conflict predicate matrix for Set

All the element-wise operations (add, find, remove) have predicates that only de-

pend upon the argument values. The global operation, size, requires global state infor-

mation in order to be precise. It would be correct to have size always conflict with any

mutating operation. However, that would include situations where there would be no actual

change to the Set’s abstract state (e.g., add(x) where x is already present in the set). The

precise predicate indicates conflict only in those situations where the other operation will

change the state of in and therefore the return value of size().

A reasonable question at this point might be why the conflict predicate for add(x)

* add(y) is x == y. One might reasonably argue that a more precise predicate would

be something like x == y & !in[x], where in is evaluated in the initial state (before

66

either method has executed). This more complicated predicate is correct because conflict

isn’t just between the forward-going parts of the operation. Two operations will also con-

flict if the inverse operations conflict. If the initial state did not contain x, then the inverse

operation for the first add invocation would be a remove, which does not commute if

x == y. If the initial state already contained x, then both add operations would have a

no-op as an inverse (which commutes trivially). So the more complex predicate is correct

because it is false precisely when the inverse operations would commute. It is also more

precise because it is true for fewer states than the simpler predicate. We chose to present

the less precise (but still correct) predicate initially because: it is simpler and therefore in-

tuitively easier to reason about; and more importantly, it is not clear what (if anything) the

additional precision of the complex predicate is buying us. From a more pragmatic point

of view there is always a question of trading off precision for resources (time and space).1

A more complex predicate will require more resources to evaluate. The simple predicate

just needs to examine the arguments. This is a straightforward thing to provide in a system

(because a TM system would need those arguments to evaluate the methods anyway). The

complex predicate requires an additional saved snapshot of prior state, which is not some-

thing one could reasonably expect a real system to provide. Therefore, because the simpler

predicate is easier to explain and also more realistic, we have chosen to present it as the

default predicate.

6.1.2 Abstract Locking

Using locks to detect conflicts with reasonable precision requires locks that can accept

two levels of granularity. The finer grained locks will be over specific elements so that the

element-wise operations will have lock conflicts only if the operations are referring to the

same elements. The coarser grained locks will be more global. To represent these locking

1This is true for systems like boosting that explicitly use predicates for concurrency control. Locking-
based systems do not have this restriction.

67

domains, we model the lock space as a collection of points. Each possible T is a separate

point in this collection. There are two lock constructors: Point1D and Everything.

Point1D locks are locks over a specific instance of T. Everything locks are locks over

the entire collection (acting like a whole-object lock).

Figure 6.2 is a reduced version of the locking-based Set model. The element-wise

model Set<T> {
. . .
//Lock table
lockTable locks1D<T> setLocks;

boolean add(T obj)
@lock(setLocks, Point1D<T>(obj), X)

boolean remove(T obj)
@lock(setLocks, Point1D<T>(obj), X)

boolean find(T obj)
@lock(setLocks, Point1D<T>(obj), S)

int size()
@lock(setLocks, Everything<T>(), S)

}

Figure 6.2. An ACCLAM Set With Abstract Locks

operations all use point locks and are as precise as the conflict predicates in Table 6.1.

However, the lock used for size is much less precise and causes all mutating operations to

conflict. The precision could be increased by taking locks within the body of the mutating

methods after determining whether or not the element is in the set, as in Figure 6.3.

The current design of the verification tool assumes that all locks are specified at method

entry, so this specification is currently untestable. However, once this tool limitation is

overcome, more precise locking will be easy to specify. 2

2Another possibility would be to conditionalize the mode portion of the lock specification.

68

boolean add(T obj) {
if (in[obj]) {

@lock(setLocks, Point1D<T>(obj), S)
} else {

@lock(setLocks, Point1D<T>(obj), X)
}

}

Figure 6.3. A more precise lock

6.2 Equivalence and Parameterizing Set

The model for Set was specified assuming that the elements of the set were equivalent

only if they were equal (by ==). In general, that’s not always the case, and in Java many

object types allow equivalence without requiring references to be equal (i.e., they have an

equals operation different from ==). We’d like to have a model for a Set that is param-

eterized by an equivalence relation so that we can prove properties that are true regardless

of the specific mechanism used for determining object equivalence. We explored several

techniques for generalizing equality.

Equivalence by relation: One approach was to abstract equivalence as a 2-parameter

relation, boolean equ[T,T], that maps pairs of T’s to true if they are equivalent (false

otherwise). A set of invariants (shown in Figure 6.4) also needs to be specified constraining

equ to obey the rules of an equivalence relation (transitivity, reflexivity, symmetry). Addi-

tionally, an invariant had to be specified to ensure that all members of an equivalence class

were either in or out of the set (partial membership states are impossible). The mutating

methods had to be changed to mutate in for all the members of an equivalence class. For

example, the new code for add would include:

forall(T z; equ[z,x]) { in[z] = true; }

The transformation for remove is very similar. Additionally, the new equivalence relation

and its invariants can also be encapsulated in a model (named Equivalence) and the

parameterized set would simply have a member of the Equivalence type.

69

//equivalence class rules
invariant forall(T x; equ[x,x]); //reflexivity
invariant forall(T x, T y; equ[x,y] = equ[y,x]); //symmetry
//transitivity
invariant forall(T x, T y, T z;

(equ[x,y] & equ[y,z]) → equ[x,z]);
//partial membership rule
invariant forall(T x, T y; equ[x,y] → (in[x] = in[y]));

Figure 6.4. Invariants for Set Member Equivalence

This approach demonstrates the power that invariants and relations give ACCLAM.

This definition is just constraining Equivalence instances, which means that not only

does the modeler not have to specify a concrete implementation of equivalence but also

that multiple sets can each have their own independent equivalence definitions (i.e., the

equivalence relation isn’t fixed for all Sets or even for a particular type).

This approach has limitations, however. Size computation is no longer possible with

a simple reduction. One could add an integer member and manually adjust it in each

method. Another approach would be to introduce a new relation that maps elements of

an equivalence class to a canonical element, and then define in in terms of canonical

elements. That alternative approach to equivalence we describe later.

Another difficulty is in maintaining precise locks with the equ relation. A point lock

is no longer correct, as every member of the equivalence class needs to be locked as well.

Only after seeing a point-lock based model fail in the ACCLAM tool did I realize that it

was still possible to add or remove other equivalent values. Demonstrating abstract locking

properties is important, so I needed to change the modeling approach to accommodate

locking. One could adopt the canonical element approach, or just resort to the old chestnut

of reader/writer locking on the whole set.

Equivalence by canonical element mapping: The limitations of the basic relational

equivalence approach led us to attempt modeling with equivalence defined as a relation

mapping all elements of an equivalence class to a specific ‘canonical’ element within the

70

equivalence class, such as T canon[T]. Now all the element-wise reasoning from the

original Set model can be preserved; it is now in terms of the canonical element. We can

recover the original definition of size and the locks, without losing any generality of

expressing equivalence classes.

An interesting variation of the canonical element approach would be to have the canon-

ical mapping actually map from type T to some other type (say T ′), without losing any of

the advantages of the canonical approach.

6.2.1 Iterators and Iteration

Iteration presents interesting problems of interpretation in a transactional context. It-

erators can present problems in concurrent contexts because they examine the state of the

data structure they’re iterating over and they have two operations (next and hasNext)

that are tightly coupled and can lead to atomicity violations. The logic of a Java iterator is

that next is called after a successful call to hasNext. However, in a concurrent context,

a large number of operations by other threads/processes may have operated on the data

structure between when any particular thread calls hasNext and next. This operations

may have changed the underlying state sufficiently that there is no valid value that next

may return. Software transactions allow the caller to compose two atomic actions into a

larger atomic action by wrapping them in a transaction. However forcing the programmer

to remember always to do this is cumbersome. That problem is solved by merging the two

operations into a next function that returns either the next element or some special value

to indicate that iteration is over. Because ACCLAM models Java, the standard approach

would be to throw an exception to indicate that there are no additional elements to iterate

over. Simply returning null may be ambiguous, because Java permits collection types to

contain nulls.3

3It might have been cleaner to return some pair type with a boolean value indicating if the null was a
proper element. However, the Java standard does not do this (nor does Java have an option type which would
also be cleaner).

71

In a transactional context, those problems are joined by a question of interpretation. It is

perfectly legal to construct an iterator in one transaction, and use it in others. It is also legal

for each iteration to happen within a different transaction. The question is which behaviors

would make the most sense to the programmer? There are two behaviors that seemed

reasonable. One, I call ‘incremental’ iteration. This iterator acts as if each next is in a

separate transaction and therefore may allow some mutating transactions to change the data

structure’s state between invocations. Essentially, the incremental iterator remembers the

values returned and returns some as yet unseen value (if there is one). The other approach

I call ‘snapshot’ iteration. This iterator takes a snapshot of the data structure’s state at

the moment of iterator construction, and will iterate over that immutable copy of the data

structure. This iterator acts as if no other mutating transactions modified the data structure

between any invocations of next.

Both iterator models address different use cases for iteration. Incremental iteration is

appropriate for circumstances where the data structure is shared between multiple commu-

nicating threads. An example is a global work queue. One could imagine that each of the

consumer threads just needs to get the next work item, and that it is more efficient for the

effects of other transactions to exclude work items that have already been dequeued. Snap-

shot iteration is appropriate for situations where the iterating transaction(s) need to process

a single consistent version of the data structure. An example is converting a collection of

Objects to a collection of Strings. Any situation where the programmer needs to read a

holistically complete version of the data structure is a good use case for snapshot iteration.

Incremental Iterator: To implement the incremental iterator, we could use something

like Figure 6.5. This example uses a relation seenIt to track values that have already

been returned (assume that it is initialized to false when the iterator is constructed). In

order to be as general as possible, we shouldn’t specify a particular iteration mechanism or

order. That way, any results obtained with an IncrementalIterator will be valid for

any particular implementation. next is therefore implemented with a non-deterministic

72

choice operator, so that any possible next value may be returned. This translates into a

requirement on the verification tool that it prove things for all possible legal return values

from next. The remaining reduction variable is used to determine if there is anything

to iterate over.

model IncrementalIterator {
boolean seenIt[T];
int remaining = count(T z ; in[z] && !seenIt[z]);
. . .
T next() {
if (remaining > 0) {
choose (T idx ; in[idx] && (!seenIt[idx])) {
seenIt[idx] = true;
return idx;

} else {
throw new Exception();

} } } }

Figure 6.5. An Example Implementation of an Incremental Iterator

Snapshot Iterator: To implement a snapshot-based iterator, we could do something

like the example in Figure 6.6. This iterator has a relation contents that stores a copy

of the containing Set’s in relation. As elements are returned, the elements in contents

are set to false. This iterator’s next is a close model of the Java standard iterator because

it throws an exception if there are no more elements to return.

6.3 Ordered Set

A set of ordered elements with operations that take that order into account covers a

lot of data structure ground. It covers search trees and skip lists and binary heaps (and

many more). Underlying all the implementation differences is an abstraction that is just a

set of elements that maintains some ordering and can be accessed according to that order.

We’d like to prove things about an ordered set without any dependence upon a particular

ordering. Since ACCLAM has inheritance, we can start by defining a model of a partial

73

model SnapshotIterator {
boolean contents[T];
int remaining = count (T z ; contents[z] ; 1 ; 0);

SnapshotIterator() {
forall (T idx ; true) {
contents[idx] = in[idx];

} }

T next() {
if (remaining > 0) {
choose (T idx ; contents[idx]) {
contents[idx] = false;
return idx;

}
} else {
throw new Exception();

} } }

Figure 6.6. An Example Implementation of a Snapshot Iterator

order that uses a relation to model the ≤ operation (see Figure 6.7). For reasons of space,

model PartialOrder<T> {
boolean leq[T,T];

// reflexivity
invariant forall (T x; leq[x, x]);

// transitivity
invariant forall (T x, T y, T z;

(leq[x, y] → (leq[y, z] → leq[x, z]));
...

}

Figure 6.7. Partial Order Example

I have omitted definitions of the methods for comparison (e.g., gt, lt, ge, etc.). Now

we can extend the partial order definition to model a total order (Figure 6.8): All that was

needed was one additional invariant to exclude non-total orderings.

An ordered set is a set, parameterized by a total order, that can be traversed in ascend-

ing and descending order. The way we chose to model the ordering aspect was with two

74

model TotalOrder<T> extends PartialOrder<T> {
invariant forall(T x, T y; leq[x, y] | leq[y, x]);

}

Figure 6.8. Total Order Example

relations: next and prev. nextmaps a value to the next higher element in the set (null

if there is none higher). prev maps a value to the next lower element in the set (null if

there is none lower). Note that the value itself need not be in the set. For example, using the

natural ordering of integers, if 1 and 3 were in the set, next[2] should produce 3, even

though 2 isn’t in the set. Let’s examine the definition of ParamOrderedSet in Figure

6.9 with two new methods, lower and higher that return the next lower and next higher

elements: But how should we define the mutating methods to preserve ordering? The idea

model ParamOrderedSet<T> extends Set<T> {
TotalOrder<T> order;
T next[T]; // next higher T that is in the set
T prev[T]; // next lower T that in in the set
...
T higher (T x) { return next[x]; }
T lower (T x) { return prev[x]; }
...

Figure 6.9. A Parameterized Ordered Set Example

here is to use the forall statement to allow us to modify the entire next and prev

relations without having to be aware of their specific contents. Consider the definition of

add in Figure 6.10. This definition adjusts next by ensuring that all values less than x,

but greater than any prior element, will all end up considering x as their next highest neigh-

bor in the set. remove can be similarly changed. This, it turns out is not quite enough.

When attempting to validate this model, it became apparent that we needed some invariants

to constrain next and prev so that they only expressed valid orderings. Otherwise, the

SAT-solver was free to generate states where the ordering was not obeyed. For example,

75

void add (T x) {
in[x] = true;
forall (T z; order.lt(z,x) && (next[z] = next[x])) {
next[z] = x;

}
forall (T z; order.gt(z,x) && (prev[z] = prev[x])) {
prev[z] = x;

}}

Figure 6.10. Ordered Set add Method

we added the following two invariants to ensure that next ordering was enforced for all

legal states:

invariant forall(T x, T y;

(x 6= null && in[y] && order.lt(x,y)) →

(next[x] 6= null && order.le(next[x],y)));

invariant forall(T x;

(x 6= null && next[x] 6= null) →

(in[next[x]] && order.lt(x,next[x])));

The first invariant ensures that any value x less than a value in the set y will have a next-

element that is less than or equal to y. The second invariant enforces next-ordering be-

tween a value and its next-element.

6.3.1 Conflict Predicates

Conflicts for an ordered set are more subtle than for a simple set. Rather than being con-

cerned with specific elements alone, the ordered access operations (higher and lower)

operate across intervals of elements. Mutations that would change the returned result from

an ordered access operation obviously conflict. Table 6.2 describes the conflict predicates

for the two mutation operations and two iteration operations (in the interests of space, the

ordering functions have been shortened (e.g., order.gt is represented as gt).

76

add(x) w = higher(x)
add(y) x == y gt(y,x) & (w == null | le(w,y))

remove(y) x == y gt(y,x) & (w == null | ge(w,y))

w = lower(x) remove(x)
add(y) gt(x,y) & (w == null | gt(y,w)) x == y

remove(y) gt(x,y) & (w == null | ge(y,w)) x == y

Table 6.2. Example Conflict Predicates for Parameterized Ordered Set

These conflict predicates depend on the returned value of the ordered access operations.

For example, the conflict predicate for add * higher is true if an element is being

added that sits in the interval between the argument to higher and the value it would

return without interference from add.

The conflict predicates also demonstrate that we are treating null as a special value.

It is used to represent positive or negative infinity depending on context. Initially, I had

neglected to include the null boundary in the conflict predicates, which means that the

conflict predicate will not describe any situation where an add is inserting an element

greater than any currently in the set while higher is being called on the largest value in

the set.

6.3.2 Abstract Locking

The methods inherited from Set can use the same kind of point-based locking. The

new ordered access operations have different semantics. For a method to conflict with

higher, it would have to change the value that would be returned by dereferencing the

next relation. This means any change to any values in the set between x and next[x].

To specify this constraint, a point-like lock is insufficient. Therefore, we extend the lock

types with a Range type. Range locks can be interpreted geometrically as line segments

along the number line. If higher(x) locks all points along the range from x to next[x]

then only operations against values in that range will conflict with higher. The locks are

shown in Figure 6.11.

77

T higher (T x)
@lock(orderedLocks, Range1D<T>(x, next[x]), S)
...
T lower (T x)
@lock(orderedLocks, Range1D<T>(prev[x], x), S)

Figure 6.11. Ordered Set Range Locks

6.4 Map

Mapping types are an important set of Java collection types. To model maps in AC-

CLAM we use a relation to model the mapping from keys to values. An additional relation

from key types to booleans is needed to track the presence or absence of keys in the map-

ping. This is needed not only for operations like containsKey, but also to distinguish

between keys that map explicitly to null values and keys that are not in the map. Figure

6.12 shows a map definition in ACCLAM.

6.4.1 Conflict Predicates

The state of the map is key based, so the conflict predicates are based off of key equality.

b = put(x,y) b = size()
a = put(k, v) x == k !isMapped[k]
a = size() !isMapped[x] false

Table 6.3. Example Map Conflict Predicates

6.4.2 Abstract Locks

Maps can use point locks to prevent conflict by locking on the key value.

6.5 MultiMap

A multimap is a map that can contain multiple value mappings for the same key. The

standard Java collection types do not include a multimap. However, it is an interesting

78

model Map<K,V> {
V mapping[K];
boolean isMapped[K];
int sz = count(K z ; isMapped[z] ; 1 ; 0);

V put(K key, V newVal)
[V oldVal = mapping[key];
boolean wasMapped = isMapped[key];]{
mapping[key] = newVal;
isMapped[key] = true;

return oldVal;
} onabort {
mapping[key] = oldVal;
isMapped[key] = wasMapped;

}

V get(K key) {
return mapping[key];

}

boolean containsKey(K key) {
return isMapped[key];

}

int size() {
return sz;

} }

Figure 6.12. Map Definition

exercise to model one. Rather than using a relation to model the mapping from a key to

a value, a relation from key/value pairs to a boolean is used to model the existence of the

individual mapping. A separate relation (mapCount) from keys to integers is used to track

the number of mappings for a given key. This is needed to determine when a key no longer

maps to any value in the multimap. Figure 6.14 shows the model.

79

V put(K key, V newVal)
@lock(mapLocks, Point1D<K>(key), X)
...
V get(K key)
@lock(mapLocks, Point1D<K>(key), S)
...
boolean containsKey(K key)
@lock(mapLocks, Point1D<K>(key), S)
...
int size()
@lock(mapLocks, Everything<K>(), X)

Figure 6.13. Map Abstract Lock Examples

6.5.1 Conflict Predicates

With a MultiMap, conflict can depend on both the key and the value. Because a Mul-

tiMap can permit multiple mappings for the same key, two put operations will conflict

only if they are adding the same mapping. Table 6.4 contains some example conflict pred-

icates.

put(w, z) r = getOne(w)
put(x,y) w == x && y == z x == w

s = getOne(x) w == x false

Table 6.4. Example Conflict Predicates for MultiMap

6.5.2 Abstract Locks

MultiMap could use the same point-based locks as Map. However, it could be ex-

tended to two dimensional points (one dimension is the key, one the value). Some methods,

like containsKey still need to lock a single key, which in a two dimensional interpre-

tation would be a line running through the key value (it would overlap every 2D point

with the same key). getOne still uses a 1D point, because the value parameter for a 2D

80

model MultiMap<K,V> {

int mapCount[K];
boolean mapping[K,V];
...
boolean containsKey(K key) {
return mapCount[key] 6= 0;

}

void put(K key, V newVal)
[boolean wasMapped = mapping[key, newVal];]{
mapCount[key] = mapCount[key] + 1;
mapping[key, newVal] = true;

} onabort {
mapCount[key] = mapCount[key] − 1;
mapping[key, newVal] = wasMapped;

}

V getOne(K key) {
if (containsKey(key)) {
choose (V val ; mapping[key, val]) {
return val;

}
} else {
return null;

} } }

Figure 6.14. A Example Model of a Multi Map

point would be the return value, and therefore not available at method entry.4 The locking

protocol is illustrated in Figure 6.15

4An alternative would be to allow choosing locks at return points rather than method entry. However, the
current ACCLAM tool does not support this.

81

boolean containsKey(K key)
@lock(mapLocks, Point1D<K>(key), S)

void put(K key, V newVal)
@lock(mapLocks, Point2D<K,V>(key, newVal), X)

V getOne(K key)
@lock(mapLocks, Point1D<K>(key), S)

Figure 6.15. Lock Declarations for MultiMap

82

CHAPTER 7

FORMAL DESCRIPTION OF ACCLAM

This chapter describes the formal semantics of the ACCLAM language. It follows the

conventional steps of specifying an abstract syntax and symbol domains, then static se-

mantics and finally dynamic semantics. Where things differ is in the interpretation of the

dynamic semantics. For a conventional ‘executable’ language, the dynamic semantics are

basically the formalization of the run-time behavior of programs. Since ACCLAM is more

of a modeling and description language, run-time behavior is a more distant concept. How-

ever, there is descriptive utility in examining ACCLAM in a conventional fashion. Since the

actual intended use of ACCLAM is to produce expressions describing program behavior,

there is a fourth section describing the dynamic semantics in terms of the circuit expres-

sions that ACCLAM may produce. Finally, there is a proof that the executable dynamic

semantics are equivalent to the circuit semantics. In practice, the actual ACCLAM veri-

fication tool implements the circuit-oriented semantics, additionally converting said pure

expressions into CNF form for processing by a SAT solver.

7.1 Abstract Syntax

An ACCLAM program is broadly a collection of model definitions, a collection of

instances of models, a collection of named states with statements showing how to produce

those states, and a predicate expression in terms of the global instances and named states.

ACCLAM is intended to model transactional data types specified in a language like Java,

so it includes statements and expressions, objects and methods, and employs a type system

very similar to the Java type system. Due to this similarity to Java, the formal semantics

83

of ACCLAM were based on lighter-weight versions of Java semantics [7, 36]. We will be

adopting their convention of using an overbar to represent tuples of entities. For example

C < Ū > means a class type C parameterized by zero or more type parameters, Ū . This has

the nice effect of reducing the number of special case rules without reducing generality (it

also looks nicer). The full concrete syntax appears in Appendix B.

7.1.1 Type Domains:

P ← boolean | byte | short | int

| long | float | double | void primitives

X ← Id type parameters

U ← P | X | N non-relation types

C ← Id model names

N ←C<Ū> models

R ←U[Ū] relations

B ← P | N | R non-parameterized/base types

T ←U | R all types
It is worth noting that, unlike Java, ACCLAM will permit primitive types to be concrete

type parameters.

7.1.2 Metavariables

x - ranges over variables

f - ranges over model fields

m - ranges over methods

c - ranges over literal constants

7.1.3 Metafunctions

FIELDS: A map of models to maps of names to field declarations

METHODS: A map of models to maps of names and types to a set of method bodies

84

INITS: A map of models to maps of types to a set of method bodies

A method body is a pair (x,stmt) of argument names and statements.

7.1.4 Models

The abstract syntax uses the inheritance operator / in place of the extends or

implements keywords. Since extension and implementation are the same in ACCLAM,

there’s no need to distinguish the two cases. Using the / operator is a convention employed

in formal Java semantics as well. In the abstract syntax, the process of object construction

has been broken up into two phases. Each model has one constructor that just initializes

the fields to the default values. There are multiple initialization functions that can set the

model’s fields to different values. This decomposition was done to simplify the semantics

of new, and is similar to the technique employed in Middleweight Java [7]. Decomposing

object construction into two phases does not change the semantics of the program at all,

because allocation and initialization still occur, and in the correct order. However, in the

abstract syntax, the initialization occurs because of an explicit invocation of an initialization

method, rather than implicitly within the concrete syntax.

Rather than making a distinction between interfaces and classes when specifying inher-

itance, these descriptions will use the inheritance operator /. For example, if the concrete

syntax were A extends B implements C, the abstract syntax would be A/B,C.

Program ←ModDef ; T x ; x{stmt}x ; e

ModDef ←model C < X / N > / N {Field ; Ctor ; Init ; Method}

Field ← T f ;

| int x = count(T x ; e ; e ; e)

Ctor ← N(T x){super(e) ; stmt}

Init ← N(T x){super(e) ; stmt}

Method ←< X / N > T m(T x){stmt}

85

7.1.5 Expressions

e ← x | c

| e. f | (U)e

| e. < T > m(e) | new N(e)

| e[e] | exc e

| primop(e)

7.1.6 Statements

stmt ← ; | e;

| e. f = e | T x = e

| x = e |e[e] = e | return e

| if(e){stmt} else {stmt}

| forall(T x ; e){stmt}

| choose(T x ; e){stmt}

7.1.7 Well-formedness

An ACCLAM program can consist of multiple models, so we assume there’s a mapping

structure, MT (model table), that maps names to models, and every model in the program

is within MT. A well-formed ACCLAM program has:

1. No duplicate model definitions (two different models with the same name)

2. No duplicate field names within a given model

3. No cycles in the inheritance graph

4. All types are well-formed (TYPE OK)

5. All statements are well-formed (STATEMENT OK)

86

ACCLAM is a Java-like language, and as such requires that all objects have a parent

type/model, except for the two built-in model types: Object and Throwable (the parent

type of all exceptions). Also, like Java, ACCLAM models define a scoped name space and

so the requirement that there are no duplicate field names really only applies to each model

singly and need not account for the chain of inheritance. Detecting duplicate models and

cycles in the inheritance graph can be done incrementally as the model table is populated.

Likewise, detecting duplicate fields can be done incrementally in a straightforward fashion.

Determining that all types and type usages are well-formed, and that all statements are well-

formed requires a few additional rules.

7.1.7.1 Type well-formedness

These rules are for enforcing well-formed type usage. They prevent misuse of parame-

terized types, duplicate method signatures, and uses of undefined types. These rules define

a new judgment TYPE OK, which depends on a model table (MT).

Models:

model C < X / N > / N2{Field ; Ctor ; Init; Method },

N TYPE OK in MT,N2 TYPE OK in MT,Field TYPE OK in MT,

Ctor TYPE OK in MT, Init TYPE OK in MT,Method TYPE OK in MT

C TYPE OK in MT
(7.1)

Fields: A field declaration is well-formed if the type and initializing expression are

well-formed.
T TYPE OK in MT,e TYPE OK in MT

T f = e TYPE OK in MT
(7.2)

Constructors and Initializers:

T TYPE OK in MT, stmt TYPE OK in MT, e TYPE OK in MT
N(T x){super(e);stmt}TYPE OK in MT

(7.3)

87

Methods:
N TYPE OK in MT, T ′ TYPE OK in MT,

T TYPE OK in MT, stmt TYPE OK in MT

m ∈METHOD(C),C = model C < X /N > .. . ,

X ′ ⊂ X , N′ /N,

X ′ TYPE OK in MT, N′ TYPE OK in MT

< X ′ / N′ > T ′ m(T x){stmt} TYPE OK in MT
(7.4)

Expressions:
U TYPE OK in MT

(U)e TYPE OK in MT
(7.5)

e′ TYPE OK in MT, T TYPE OK in MT, e TYPE OK in MT
e′. < T > m(e) TYPE OK in MT

(7.6)

N TYPE OK in MT, e TYPE OK in MT
new N(e) TYPE OK in MT

(7.7)

c TYPE OK in MT
,

x TYPE OK in MT
,

e TYPE OK in MT
e. f TYPE OK in MT, exc e TYPE OK in MT

(7.8)

e TYPE OK in MT, e TYPE OK in MT
e[e] TYPE OK in MT,primop(e) TYPE OK in MT

(7.9)

7.1.8 Static Semantics Typing Rules:

The typing rules for ACCLAM are similar to the rules for Java. In addition to a model

table (MT), the semantics require a typing environment, Γ.

Type environment

The type environment will be represented by the Greek letter Γ. The environment is a

mapping from type names to types. Sometimes it is convenient to discuss an extension to

the type environment, and that is represented by adding an explicit mapping after the Γ.

88

For example, to add a mapping that the symbol X now maps to type T ′, we would write:

Γ[X 7→ T ′].

Inheritance Operator, /:

ACCLAM supports limited inheritance, which these semantic descriptions capture. How-

ever, the standard syntax is cumbersome so we adopted the practice of others in the Java

semantics community and use the / operator to mean ‘inherits from’. X / Y means that

X inherits from Y , and A/ B means that each element in A inherits from B pair-wise (and

therefore A must be the same size as B). Inheritance is also transitive, so:

A/ B, B/C
A/ C

(7.10)

Next, we more formally define the inheritance operator /

Model types

Γ ` A : C <U >, Γ ` B : C′ <U ′ >, C / C′, U / U ′

A/B
(7.11)

Primitive types
Γ ` A : P, Γ ` B : P′, P = P′

A/ B
(7.12)

Substitutions: To express a substitution within a statement or expression, we use

square brackets and the 7→ operator. For example, to substitute the variable name y for

x in expression exp: exp[x 7→ y]

7.1.8.1 Type Schema

relation types τ[τ]

method types τ → τ

89

For typing models it will be convenient to have several helper functions for looking up

the types of members and methods. For the purpose of these definitions, assume C / C′.

fieldType(C)(f) =

 T f ∈ FIELDS(C)∧FIELDS(C)(f) = T f

f ieldType(C′)(f) otherwise

methType(C)(m) =


T → T ′ m ∈METHODS(C)

∧METHODS(C)(m) = T ′ < X > m(T x)

methType(C′)(m) otherwise
(7.13)

Note that we assume overloaded methods (i.e., methods with the same name but different

type signatures), have been rewritten to use different names. This is just a convenience and

does not limit what the language can express.

Initializers aren’t inherited, so they can just be looked up in the model directly.

initType(C)(T ′′) = T ′′ if C(T ′′) ∈ INITS(C) (7.14)

Top Type: We use a place holder type, top (>), for unbounded types. This can occur

with an unbound type parameter in a model or method definition. > unifies thus:

unify(>,P) = P

unify(>,N) = N

unify(>,>) => (7.15)

It extends the inheritance operator / thus:

T 6= void
T / >

(7.16)

7.1.8.2 Method Overload Well-formedness

ACCLAM, like Java, requires that at each method invocation site, the specific method

being invoked is statically knowable from the method name and the types of the arguments

90

at the invocation site. This puts some restrictions on the declaration of methods that over-

load each other (same name, different signatures). Simply having a different type signature

at the definition site in the model is insufficient, the argument list must also not subtype

or super type any other argument list in the set of defined overloaded methods for a given

method name. I define a predicate, noIntersection that formalizes this requirement by being

true if two argument lists have at least one position whose types do not intersect.

#T1 6= #T2

noIntersection(T1,T2,Γ)
(7.17)

T1 = {T1,1, . . . ,T1,k, . . . ,T1,n},T2 = {T2,1, . . . ,T2,k, . . . ,T2,n},unify(T1,k,T2,k,Γ) = /0
noIntersection(T1,T2,Γ)

(7.18)

The noIntersection predicate can be used to define the rules for legally overloading

methods in a model. In this case, it is part of the definition for a well-formedness condition,

OVERLOAD OK (that is in terms of a particular model C and type environment).

m1 =< X / N > m(T1 x1), m2 =< Y / M > m(T2 x2), m1 6= m2,

T ′1 = T1[X 7→ N], T ′2 = T2[Y 7→M], noIntersection(T ′1,T
′

2,Γ)

m1,m2 OVERLOAD OK in C,Γ
(7.19)

∀m1,m2 ∈METHOD(C)(m) : m1 6= m2 =⇒ m1,m2 OVERLOAD OK in C,Γ

m OVERLOAD OK in C,Γ
(7.20)

∀m ∈METHODS(C), m OVERLOAD OK in C,Γ

C OVERLOAD OK in Γ
(7.21)

A model that is OVERLOAD OK has defined methods that can be directly inferred

from their name and the type of the arguments at any call site. The way this is modeled

in the formal semantics is to do a little name mangling and create new name bindings in

the METHOD map for each of the overloaded method definitions. Then a pass through

the program will replace all call sites to an overloaded method with a call to the mangled

name version of the function. We assume that the name mangling function doesn’t alias

methods (that is, if two method’s mangled names are equal, then the methods must have

91

the same fully-qualified name and type signature). This means that the rest of the formal

description doesn’t have to deal with resolving overloaded methods and can treat each call

site as being fully resolved. Rule 7.22 describes name mangling more formally, and rule

7.23 describes rewriting the call sites to refer to the unambiguously named methods (by

using the mangled names instead). The rewriting rule has to account for the fact that the

concrete types at the call site may not be identical to the method’s declared types. But,

because the type vectors for two overloaded method declarations must be non-overlapping

in at least one position, we know that there can be at most one type vector for which the

call site’s types are a subtype.

m1 ∈METHOD(C)(m), m1 =< X / N > m(T x), mangle(m1) 6∈METHOD(C)

METHOD(C)(mangle(m1)) = m1
(7.22)

Γ ` e : C, Γ ` e′ : T ′, m1 =< X / N > m(T1x1),

m1 ∈METHOD(C)(m), mangle(m1) ∈METHOD(C),

T ∗ = T1[X 7→ N], T ′ / T ∗, T /N

e. < T > m(e′) 7→ e. < T > mangle(m1)(e′)
(7.23)

A similar set of typing rules and name-mangling transformations can be done with the

model initializer methods.

The remainder of this section will be a discussion of the rules describing a correctly

typed ACCLAM program. I will take a bottom-up approach, describing the typing rules

by starting with the simpler language elements and showing how they can be built into the

more complex rules until we can fully describe a correctly typed model. We begin with

expressions.

7.1.8.3 Expression Typing

Field Dereference:

92

Γ ` e : C,fieldType(C)(f) = T
Γ ` e. f : T

(7.24)

Casts:

downcast:
Γ ` e : U ′′,U / U ′′

Γ ` (U)e : U
, upcast:

Γ ` e : U ′′,U ′′ / U
Γ ` (U)e : U

(7.25)

Relation Dereference:

Γ ` e : U [U], Γ ` e′ : U ′, U ′ / U
Γ ` e[e′] : U

(7.26)

Exceptions:
Γ ` e : N, N / Throwable

Γ ` exc e : N
(7.27)

Primitive Ops:

ACCLAM supports the Java primitive operations (equality, boolean operators, arithmetic

operators and primitive type conversion). Rather than list them all out, we use a place

holder operation primop.

Γ ` e : P, Γ ` primop : P→ P′

Γ ` primop(e) : P′
(7.28)

Method Invocation ACCLAM, like Java, permits sub typing. Therefore, the type-

correctness of a particular method invocation requires unification rather than simple type

equality to check if the argument type vector is compatible with the declared parameter

type vector. ACCLAM also permits parameterized types, as well. So we have two main

requirements: first, the call site’s arguments (type parameters and all) must unify with the

method’s declared parameter types; second, all the parameterized types must subtype their

appropriate formal parameter type. The second requirement ensures that no legal program

93

will contain a type substitution for a type parameter that will be incompatible with any

parameterized types used in the declared method.

Γ ` e : C, METHOD(C)(m) =< X / N > m(T x),

methType(C)(m) = T → T ′′, [X 7→ α] = unify(N,T ′),

Γ ` e∗ : T ∗, T ∗ / T [X 7→ α]

Γ, [X 7→ α] ` e. < T ′ > m(e∗) : T ′′
(7.29)

Allocation (new) We assume that the name-mangling for initializers has already hap-

pened, so the call to a particular initialization method is unambiguous here.

initType(N) = Ti, Γ ` e′ : T ′, T ′ / Ti

Γ ` new N(e′) : N
(7.30)

7.1.8.4 Statement Types

We chose to describe well-typed ACCLAM statements with a STATEMENT OK judg-

ment, rather than by assigning types to non-return statements. STATEMENT OK de-

termines statement-by-statement if statements are well-typed. RETURN OK is a judgment

especially for methods that is true only if a return statement exists on all control paths

through the method body. A method body is well-typed if each statement in it is well-

typed, and there is a return on every path.

Empty Statement
Γ `; : void

;STATEMENT OK in Γ
(7.31)

Expressions
Γ ` e : T

e STATEMENT OK in Γ
(7.32)

Conditionals

stmt1 STATEMENT OK in Γ, stmt2 STATEMENT OK in Γ,

Γ ` e : boolean

if(e){stmt1}else{stmt2} STATEMENT OK in Γ
(7.33)

94

Field Assignment:

Γ ` e : N, Γ ` e′ : N′,fieldType(N)(f) = N′′,N′ / N′′

e. f = e′ STATEMENT OK in Γ
(7.34)

Local Variable Assignment:

Γ ` x : T, Γ ` e : T ′, T ′ / T, x 6= this
x = e STATEMENT OK in Γ

(7.35)

Relation Assignment:

Γ ` e : U [U∗], Γ ` e′ : U ′, Γ ` e′′ : U ′′, U ′ / U∗, U ′′ / U
e[e′] = e′′ STATEMENT OK in Γ

(7.36)

forall:
Γ[x 7→ T] ` e : boolean, stmt STATEMENT OK in Γ[x 7→ T]

forall(T x ; e){stmt} STATEMENT OK in Γ
(7.37)

choose:

Γ[x 7→ T] ` e : boolean, stmt STATEMENT OK in Γ[x 7→ T]
choose(T x ; e){stmt} STATEMENT OK in Γ

(7.38)

return:
Γ `@return : void

return; STATEMENT OK in Γ
(7.39)

Γ ` e : T, Γ `@return : T ′,T / T ′

return e; STATEMENT OK in Γ
(7.40)

Γ ` e : N, N /Throwable, Γ `@throws : T ∗, ∃T ′ ∈ T ∗.N / T ′

return exc e; STATEMENT OK in Γ
(7.41)

sequence with no declaration:

stmt1 STATEMENT OK in Γ, stmt STATEMENT OK in Γ

stmt1; stmt STATEMENT OK in Γ
(7.42)

95

sequence with a declaration:

stmt STATEMENT OK in Γ

T x; stmt STATEMENT OK in Γ[x 7→ T]
(7.43)

RETURN OK

return; RETURN OK
(7.44)

return e; RETURN OK
(7.45)

return exc e; RETURN OK
(7.46)

stmt; stmt′, stmt′ RETURN OK
stmt; stmt′ RETURN OK

(7.47)

stmt RETURN OK
choose(T x ; e){stmt} RETURN OK

(7.48)

stmt1 RETURN OK, stmt2 RETURN OK
if(e){stmt1} else {stmt2} RETURN OK

(7.49)

return is not allowed in a forall statement, so there is no forall case for the

RETURN OK judgment.

Method Definitions: Here we use the definitions of both STATEMENT OK and RE-

TURN OK to define the rules for correct method definitions. Basically, a method is stati-

cally ok if all of the statements are well-typed and every control path ends in a well-typed

return.
METHOD(C)(m) = T ′ < X > m(T x){stmt},

stmt STATEMENT OK in Γ[x 7→ T ,@return 7→ T ′],

stmt RETURN OK

m STATEMENT OK in Γ, C
(7.50)

Model Definitions: Given that we now can specify well-typed expressions, statements

and methods, we can now define well-typed models by a MODEL OK judgment. Note

that the types of inherited methods and fields are already handled by the auxiliary functions

96

fieldType and methType. For this rule, we assume that the type parameters for the model

can be separated out into unconstrained parameters (W) and constrained parameters (X).

Γ′ = Γ[W 7→ >, X 7→ N],

T x = e; STATEMENT OK in Γ′,

Γ+ = Γ′[x 7→ T],

Init STATEMENT OK in Γ+,

Method STATEMENT OK in Γ+,

N′ TYPE OK in Γ

model C <W , X / N > / N′ {T x = e; Init Method}MODEL OK in Γ
(7.51)

If every model in a model table is TYPE OK and MODEL OK, then the model table is

well-typed.

Programs: We now know how to specify well-typed models and model tables. An

ACCLAM program is just a model table, a set of named state transitions and an expression.

Since we also know how to specify well-typed expressions that just leaves named states.

Named state transitions are defined as a starting state (with σi meaning the initial state),

a sequence of statements, and a new state (the named state). The rule is essentially that a

named state is well-typed if the statements are well-typed and the starting state is known.

For the second requirement, a new environment, STATES, will be introduced that contains

mappings from names to states. State names must also be unique, to avoid the possibility of

colliding with other states as well as any user-defined symbol in the program. We assume

there’s a naming environment, Σ, for state names.

STATES ` σ , σ ∈ Σ,σ ′ /∈ Σ,

stmt STATEMENT OK in Γ

σ {stmt} σ ′ OK in Σ[σ ′], Γ
(7.52)

97

σin{stmt}σout OK in Σ,Γ,

σ{stmt}σ ′ OK in Σ[σ ′],Γ

σin{stmt}σout ;σ{stmt}σ ′ OK in Σ[σ ′],Γ
(7.53)

Now all that remains is to specify an overall rule for ACCLAM programs. The top-

level expression is just like a normal expression, except that portions of it can be evaluated

in terms of different named states (drawn from Σ). Because the program is well-typed,

the names will still refer to the same types even if the values may be different in different

states. Therefore, we can just type the expression as a normal ACCLAM expression.

C MODEL OK in Γ,

T x = e; STATEMENT OK in Γ,

Γ′ = Γ[x 7→ T],

σin{stmt}σout OK in Σ,Γ′,

Σ,Γ′ ` b : boolean

C;T x = e; σin{stmt}σout ;b OK
(7.54)

At this point we have formally specified well-formed and well-typed ACCLAM pro-

grams.

7.2 Operational Semantics

ACCLAM was designed initially to be a modeling language, used primarily as input

to automated theorem proving systems. However, since ACCLAM models operational

languages, it makes sense to have a notional operational specification for the meaning of

ACCLAM programs. This section will formally describe an operational semantics for AC-

CLAM. The semantics will be in terms of configurations, which are tuples describing a

state. This approach was used in Middleweight Java [7], and it maps reasonably directly

onto the Java state model.

98

A configuration consists of a Heap, a Stack, a term being evaluated and a set of terms

remaining to be evaluated (the continuation or frame stack). The terms are also called

frames, and I will use these words interchangeably. The heap is a mapping from ids to

heap objects (model instances and relation instances). A model instance is a pair of a type

and a mapping from field names to values. A relation is a lambda function from indexes

to values. The stack is a list of maps of variables to expressions (the list is used to handle

pushing and popping). A term is a bit of program syntax, and the continuation/frame stack

is a list of terms. The empty list is represented as []; ◦ is the list cons operator.

Term frames come in two flavors, closed and open. A closed frame is one that has been

completely evaluated and needs no additional values to be computed for its effects to be

known. An open frame is one that requires one or more values to be substituted before

the entire term can be evaluated. In the semantics the ‘hole’ that is being evaluated will be

represented by a bullet point, •. All this is summarized in the grammar we now describe:

We will start with the heap and stack portions of the configuration. The stack will be

referred to as S or VS (for value stack). This is the stack up to this point. MS is a mnemonic

for method stack, and it is the stack frame that is tacked onto the top of the stack on method

entry. BS stands for block stack, and is the mnemonic for a stack frame associated with a

block scope (e.g., the else block of a conditional).

config := (H,VS,CF,FS)

H := {oid 7→ o, rid 7→ r}

VS := MS ◦ VS | []

MS := BS ◦ MS | []

BS := {x 7→ (v, T)}

99

Next we’ll describe the terms. FS is the frame stack, which is the continuation of

the current term. CF is a closed frame, and is a frame where all expressions have been

evaluated so the statement rule can be applied (a closed frame is a statement continuation

because it may change the heap and/or stack state). OF is an open frame, a term in which

some subexpressions have to be evaluated before a statement rule may apply (an open

frame is therefore an expression continuation). For model types, we’ll use the math bold

F to stand for the mapping from field name to a value. An instance of a model in the heap

will map to a pair of model type and field mapping.

FS := F ◦FS | []

F := CF | OF

CF := stmt | return e; | return exc e;

| {} | e | super(e)

OF := if(•){stmt} else {stmt} | primop(v,•,e)

| • . f | • . f = e | o. f = •

| • [e] | r[v,•,e] = e | r[v] = •

| (U)• | • .m(e) | v.m(v,•,e)

| new N(v,•,e) | super(v,•,e)

| x = • | return •

v := null|void| o | p | r

o := (N,F)

r := λ i. f (i)→ v, r[i]

| λ i.(i = v)→ v, r[i]

| λ i.v

100

7.2.1 Metafunctions

For the sake of convenience, I’ll define several metafunctions to read values out of the

stack, to update values in the stack, and to produce initial values. If S is a stack, then

dom(S) is the set of variables in the stack.

eval: Eval takes a variable that is in a stack and produces the expression to which that

variable currently maps.

x∈dom(BS)
eval((BS◦MS),x)=BS(x)

x/∈dom(BS)
eval((BS◦MS),x)=eval(MS,x) (7.55)

update: Update changes the mapping of a variable to a new expression.

BS(x)=(v,T)
update((BS◦MS),(x 7→v′))=BS[x 7→(v′, T)]◦MS

x/∈dom(BS)
update((BS◦MS),(x 7→v))=BS◦update(MS,(x 7→v))

(7.56)

init: Init returns the initial value for the type provided.

U =C <U >

init(U) = null
(7.57)

U = boolean
init(U) = false

(7.58)

U = int∨ U = long∨ U = float∨ U = double

∨U = short∨ U = char∨ U = byte

init(U) = 0
(7.59)

7.2.2 Computation Steps

The bulk of the operational semantics will be defined as single-step reductions that will

transition from one configuration to the new, updated configuration.

101

7.2.2.1 Operations on Local Variables

The stack is the part of the configuration where local variable information is stored, so

they need to be treated distinctly from heap objects.

variable lookup
eval(MS,x) = (v,T)

(H,MS◦VS,x,FS)→ (H,MS◦VS,v,FS)
(7.60)

relation dereference

v′ = eval(MS,r)(V)

(H,MS◦VS,r[v],FS)→ (H,MS◦VS,v′,FS)
(7.61)

variable update

x ∈ dom(MS)
(H,MS◦VS,x = v,FS)→ (H,update(MS,x 7→ v)◦VS, ; ,FS)

(7.62)

relation update

rold = eval(MS,r), r′ = λ i.(i = v)→ v, rold(i)
(H,MS◦VS,r[v] = v,FS)→ (H,update(MS,r 7→ r′)◦VS, ; ,FS)

(7.63)

local variable declaration

BS′ = BS[x 7→ (v, U)]

(H,(BS◦MS)◦VS, U x = v,FS)→ (H,(BS′ ◦MS)◦VS, ; ,FS)
(7.64)

local relation declaration

H′ = H[r 7→ λU ′ i.init(U)], BS′ = BS[x 7→ r]
(H,(BS◦MS)◦VS,Ux[U ′],FS)→ (H′,(BS′ ◦MS)◦VS, ; ,FS)

(7.65)

7.2.2.2 Blocks and Scope

ACCLAM employs explicit scopes, which are modeled by the stack. Adding a new

scope is simply a matter of tacking a new map onto the front of the stack list. Popping a

102

scope is complicated by the fact that we need to pop the scope off the stack at the correct

point in the sequence of statements. I’ve adapted a trick employed by MJ and introduced a

special ’scope popping’ statement, {}.

scope start

(H,MS ◦ VS,{stmt},FS)→ (H,([]◦MS)◦ VS,stmt,{} ◦ FS)
(7.66)

scope exit

(H,(BS◦MS)◦VS,{},FS)→ (H,MS◦VS, ;,FS)
(7.67)

return from scope

(H,MS◦VS,return v; ,{}◦FS)→ (H,VS,v,FS)
(7.68)

(H,(BS◦MS)◦VS,return v; ,{}◦FS)→ (H,MS◦VS,return v; ,FS)
(7.69)

We must also support a return that happens in blocks nested within methods (for example, a

return in the else clause of a conditional within a method body). In that case, the return’s

effect is to bypass all the remaining statements in the continuation until we hit a scope

statement.

F 6= {}
(H,MS◦VS,return v; ,F ◦FS)→ (H,MS◦VS,return v; ,FS)

(7.70)

7.2.2.3 Simple Expressions and Statements

Here I’m gathering together all the operational semantics for the simpler, straightfor-

ward expressions and statements.

Conditionals:

v = true
(H,S, if(v){stmt1}else{stmt2},FS)→ (H,S,{stmt1},FS)

(7.71)

103

v = false
(H,S, if(v){stmt1}else{stmt2},FS)→ (H,S,{stmt2},FS)

(7.72)

Model Field Statements:

field read:
o ∈ dom(H), H(o) = (N,F), f ∈ dom(F), F(f) = v

(H,S,o. f ,FS)→ (H,S,v,FS)
(7.73)

null dereference:

o ∈ dom(H), H(o) = null
(H,S,o. f ,FS)→ (H,S,return exc NullPointerException,FS)

(7.74)

update field:

o ∈ dom(H), H(o) = (N,F),

f ∈ dom(F), F′ = F[f 7→ v],

H′ = H[o 7→ (N, F′)]

(H,S,o. f = v,FS)→ (H′,S, ; ,FS)
(7.75)

null update:

o ∈ dom(H),H(o) = null
(H,S,o. f = v,FS)→ (H,S,return exc NullPointerException,FS)

(7.76)

relation update

rold = H(r),r′ = λ i.(i = v)→ v′, rold(i), H′ = H[r 7→ r′]
(H,S,r[v] = v′,FS)→ (H′,S, ; ,FS)

(7.77)

Casts:

Object cast
H(o) = (N1,F),N1 /N2

(H,S,(N2)o,FS)→ (H,S,o,FS)
(7.78)

null cast

(H,S,(N2)null,FS)→ (H,S,null,FS)
(7.79)

Primitive casts are just like one would expect in Java. Since the code was type correct, we

know the cast is legal, and therefore the semantics of primitive casts involve conversion of

104

numerical representations and/or truncating or extending a value. For the sake of brevity, I

have omitted the specific rules for each legal primitive cast type pair.

Allocation/new

The challenge here is in ensuring that the correct init method is called after the new heap

object is created. However, if we assume that the overloaded method disambiguation step

from Section 7.1.8.2 has happened, then we can safely assume that init(C)(T) is defined

for these arguments and will return exactly one method body.

o /∈ dom(H), F= [f 7→ init(T)] ∀ f ∈ FIELDS(C),

MS = [this 7→ (o,C),x 7→ (v, T)], INITS(C)(T) = (x,stmt)

(H,S,new C(v),FS)→ (H[o 7→ (C,F)],MS◦S,stmt,(return o;)◦{}◦FS)
(7.80)

Method Invocations

Normal Method Invocation:

H(o) = (N,F),

METHOD(N)(m) = (x,stmt),

methType(N)(m) = N′→ N′′,

MS = {this 7→ (o,N), x 7→ (v, N′)}
(H,S,o.m(v),FS)→ (H,MS◦S,stmt,{}◦FS)

(7.81)

For invocation of super-model methods, the important thing is to ensure that we’re eval-

uating the immediate parent model rather than any model on the inheritance chain from

Object.

105

super invocation

MS(this) = (o,C),

C /C′ ∧ ∀ K : (C /K ∧C 6= K) =⇒ C′ /K,

INITS(C′)(T) = (x,stmt),

MS′ = {this 7→ (o,C′), x 7→ (v, T)}
(H,MS◦VS,super(v),FS)→ (H,([]◦MS′)◦ (MS◦VS),stmt,(return o;)◦{}◦FS)

(7.82)

null invocation

H(o) = null
(H,S,o.m(v),FS)→ (H,S,return exc NullPointerException;,FS)

(7.83)

sequence

(H,S, ; ,F ◦FS)→ (H,VS,F,FS)
(7.84)

evaluated expressions

(H,S,v,F ◦FS)→ (H,VS,F[v]◦FS)
(7.85)

7.2.2.4 Forall and Choose

The forall and choose statements define a predicate over which their body is eval-

uated. That predicate must capture the state of the model at that point, so we need to define

a closure function (CLOSE) to evaluate the predicate in terms of the actual model state.

The predicate may be defined over an arbitrary set of relations, and in the operational con-

text is effectively ‘evaluated’ for each relation element combination. This means that the

predicate cannot mutate any data defined outside the predicate functions. Because AC-

CLAM has an imperative flavor, this restriction doesn’t apply to variables declared within

any predicate function’s local scope. This excludes model member assignment as well as

relation assignment from the types of statements allowed in this context (pureStmts).

106

CLOSE

Heap Values
eval(S,x) = o,o ∈ dom(H)

CLOSE(x,H,S) = o
(7.86)

Field Read
o ∈ dom(H), H(o) = (N,F), f ∈ dom(F), v = F(f)

CLOSE(o. f ,H,S) = v
(7.87)

CLOSE(e. f ,H,S) = CLOSE(e,H,S). f
(7.88)

Relations
r ∈ dom(H), H(r) = (R,rfn)

CLOSE(r[e],H,S) = rfn(CLOSE(e,H,S))
(7.89)

CLOSE(e[e′],H,S) = CLOSE(CLOSE(e,H,S)[e′],H,S)
(7.90)

Scalar Values
eval(S,x) = v

CLOSE(x,H,S) = v
(7.91)

Primops

CLOSE(primop(e),H,S) = primop(CLOSE(e,H,S))
(7.92)

Casts

CLOSE((T)e,H,S) = (T)(CLOSE(e,H,S))
(7.93)

Method Invocation

Method invocation requires carefully substituting for this and arguments. In addition any

local variables declared in the method body will need to be converted into expressions and

handled correctly. Finally, the return is handled differently from normal method invoca-

tion, and becomes a big expression-producing statement whose value is the value of the

invocation.

107

method call:

Γ ` o : C,

METHOD(C)(m) = (x,pureStmt),

e′ = CLOSE(e,H,S),

S′ = {this 7→ o,x 7→ e′}◦S

CLOSE(o.m(e),H,S) = CLOSE(valOf(pureStmt),H,S)
(7.94)

A couple of new functions will be handy for processing methods: valOf takes a

statement and produces an expression that represents the run-time value of that statement.

resultIs takes an expression and produces a statement. Furthermore:

resultIs(valOf(stmt)) = stmt, and valOf(resultIs(e)) = e. The specific transformations from

statements to expressions basically walk down through the expressions and statements and

place resultIs at return points (returning values or exceptions). The transformation is

described by the following rules:

Conditional

e′ = CLOSE(e,H,S),

condEx = valOf(if(e′){CLOSE(pureStmt1,H,S)}else{CLOSE(pureStmt2,H,S)})

eval(e′,H′,S′) = true

eval(condEx,H′,S′) = eval(CLOSE(pureStmt1,H,S),H′,S′)
(7.95)

e′ = CLOSE(e,H,S),

condEx = valOf(if(e′){CLOSE(pureStmt1,H,S)}else{CLOSE(pureStmt2,H,S)})

eval(e′,H′,S′) = false

eval(condEx,H′,S′) = eval(CLOSE(pureStmt2,H,S),H′,S′)
(7.96)

Local Variable Declaration:

e′ = eval(CLOSE(e,H,S),H,S), S′ = {x 7→ e′}◦S
valOf(CLOSE(T x = e′;stmt,H,S)) = valOf(CLOSE(stmt,H,S′))

(7.97)

108

Local Variable Assignment:

e′ = eval(CLOSE(e,H,S),H,S), S′ = {x 7→ e′}◦S
valOf(CLOSE(x = e′;stmt,H,S)) = valOf(CLOSE(stmt,H,S′))

(7.98)

Return:

CLOSE(return e; ,H,S) = CLOSE(ResultIs(CLOSE(e,H,S)),H,S)

CLOSE(return e;stmt,H,S) = ResultIs(CLOSE(e,H,S)) (7.99)

Forall Enter Scope: To properly evaluate a forall, the predicate must be closed, and

then two special variables will be bound in the new stack frame. @forallVars will

capture the forall scoped variables, and @forallPred will bind to the closed predicate

expression. These two values are needed when evaluating the body of the forall.

e′ = CLOSE(e,H,MS◦S),

FREEVARS(e′)∪FREEVARS(CLOSE(stmt,H,S))⊆ x

(H,MS◦S, forall(T x;e){stmt},FS)→

(H,({@forallVars 7→ (x, T),@forallPred 7→ e′}◦MS)◦S,stmt,{}◦FS)

(7.100)

7.2.2.5 Updates in forall bodies

forall is a construct used to specify bulk parallel predicated updates. Because no

ordering is specified, each update must be independent or idempotent. For scalar variables

(locals and fields), idempotency means that the assignment must always be of the same

value (e.g., for all predicate-satisfying values, the right-hand side of the assignment must

be the same). For relation variables, idempotency means that for every update to a relation,

if the index variables are equal for different updates, the update values must also be equal.

These requirements for idempotency are required properties, and are a proof requirement

of the modeler. Chapter 8 discusses how proof of this requirement can be automated.

Relation updates have a further complication, which is that the update may be specified

in terms of expressions referring to the forall variables conditioned by the predicate.

109

Relations themselves are functions of their own index variables, so in order to produce a

valid expression for the new value of the relation, the expressions in terms of forall vari-

ables will need to be transformed into equivalent expressions but in terms of the relation’s

index variables. Therefore, we assume the existence of a binding function BIND, that will

take the predicate and relation index expressions in terms of the forall variables and

produce a set of expressions for the predicate arguments in terms of the relation function’s

index variables. Consider the following example:

forall (int x ; P(x)) {

rel[x + 1] = e;

}

We would like the new function for the relation (assuming the old one was named relold),

to look like: λ i . P′(i)→ e, relold(i). Because the relation function is in terms of index

variables, the converted predicate P′ will have to be in terms of the index variable but still

equivalent to P. In this case, P′(x) = P(x− 1). The BIND function’s job is to produce a

set of substitutions that map the forall variables onto functions of the relation’s index

variables. Therefore, for any relation, P′(i) = P(x)[x 7→ fni(i)], and therefore BIND must

produce a substitution from forall variables onto expressions in terms of relation in-

dex variables. In general, computing an ‘inverse’ function for an arbitrary expression is

a difficult problem. Practical systems will be able to automatically invert only a subset of

expressions. Therefore, for the purposes of these semantics, BIND will be specified by con-

straining its properties. First, BIND must produce a substitution whose expressions have

no free variables other than the relation’s index variables.

Let x be the forall variables, and i be the relation index variables.

∀x ∈ x : ∃ f (i) : [x 7→ f (i)] ∈ SUB∧FREEVARS(f (i))⊆ i (7.101)

110

Assume f (i) is produced by BIND as a valid substitution.

∀x, i : [P(x)→ (f (i) = x)] ⇐⇒ P′(i) (7.102)

A sample BIND function: Consider the following example BIND function, that can

only bind relation updates whose index expressions are each a function of a single forall

variable. Furthermore, each relation update must use all the forall variables. With those

restrictions, we can simplify the relation update expression to something like: r[f (x)] = e.

Assuming that each f is invertible, we can define a bind function as: bind(i,x, f (x)) =

[x 7→ f−1(i)]. The overlining convention is hiding an important ordering requirement here,

which is that the ordering of the x variables is not necessarily the same as the order in which

they were declared (the x that occurs in the nth position in the array of index expressions

will map to the nth relation index variable). This is actually very close to the BIND function

that exists in the current implementation. Apart from the restrictions on the form of relation

updates, the power of this BIND is limited by the ability of the implementation to invert

the functions. In the current implementation it is limited to boolean functions and simple

arithmetic (addition or subtraction of constant values).

Given a suitable BIND function, we can define the semantics for a relation update inside

a forall:

eval(S,@forallVars) = (x,T), eval(S,@forallPred) = epred,

expr’ = CLOSE(expr,H,S), e′ = CLOSE(epred,H,S), r ∈ dom(H),

H(r) = rold = λ i. . . . , r′ = λ i.(BIND(i,x,expr’,e)→ e′, rold(i)), H′ = H[r 7→ r′]

(H,S,r[expr] = e,FS)→ (H′,S, ; ,FS)
(7.103)

Reduction Updates:

Whenever a relation is updated, any reductions defined in terms of that relation may also

have changed value. A reduction is defined by a predicate over a relation and two values

111

(one if the predicate is true, and one if the predicate is false). For the purposes of the op-

erational semantics, we’ll be specifically discussing the count reduction which produces

an integer value. In general, it should be possible to use any commutative group to define

a reduction. But, we have found that count seems to suffice for all the data types we’ve

explicitly modeled. When the relation that the reduction is defined over is updated, the

reduction’s current value can be updated incrementally by subtracting the relation’s contri-

bution before the update and adding it back after. This two step process handles all possible

permutations of the predicate’s value. Reduction predicates share many similarities with

forall predicates. They are defined in terms of scoped variables declared just for the

reduction variable. To be useful, the reduction’s predicate needs to be reformulated into

a function of relation index variables. This is precisely what the BIND function does for

forall predicates. Therefore, we can use an appropriate BIND function to produce a

modified predicate, P′. In the interest of brevity, the rule below assumes that the updated

version of the relation r is r′ and that H′ is the updated heap with the new value of r.

For the following rule, let ⊕ be the group operator (+ for count), and let 0 be the

identity, − be the group inverse, and let v be a value drawn from the group.

reduxVar = (T x,P(x),v,v′),

H(r) = λ i , H(reduxVar) = einit, P′ = BIND(i,x,e),

ebefore = (eval(P′,H)→−v, −v′),

eafter = (eval(P′,H′)→ v, v′),

e′redux = (einit⊕ ebefore)⊕ eafter, H′(reduxVar) = e′redux
(H,S,r[e] = v,FS)→ (H′,S, ; ,FS)

(7.104)

Relation updates within a forall are more complex. It’s not possible to update incre-

mentally; however, in an operational context it is possible just to re-evaluate the reduction

after the forall. This is by no means efficient, but it will result in a correct concrete

112

value. As for the incremental case, we assume that r′ is the post-forall version of the

relation, and H′ is the post-forall version of the heap state.

reduxVar = (T x,P(x), trueVal, falseVal), P′ = BIND(i,x,e),

e′redux = Σi (eval(P′,H′)→ trueVal, falseVal), H′(redux) = e′redux
(H,S, forall(T x,Pforall){. . .},FS)→ (H′,S, ; ,FS)

(7.105)

7.2.2.6 Choose

choose is a statement that non-deterministically picks a set of values that satisfy its

predicate, and evaluates a body in terms of that particular value vector. It is a requirement

that the modeler only write choose statements where the predicate can, in fact, be true.

This can be proven automatically as discussed in Chapter 8. These semantics assume that

there will be some value vector that will satisfy the predicate.

e′ = CLOSE(e,H,S), FREEVARS(e′)⊆ x,

∃ T v : eval({x 7→ (v, T)}◦S,e′) = true

(H,S,choose(T x;e){stmt},FS)→ (H,{x 7→ v}◦S,stmt,{}◦FS)
(7.106)

7.2.2.7 Ordering Rules

This section contains all the open frame rules that formalize the order of evaluation

of parts of complex statements and expressions (for example, evaluating arguments to a

function call in a left-to-right fashion). These rules use the • symbol to represent the term

currently under evaluation.

sequence:

(H,S,stmt1; . . . ; stmtn; ,FS)→ (H,S,stmt1; ,(stmt2; . . . stmtn;)◦FS)
(7.107)

(H,S,e1, . . . ,en,FS)→ (H,S,e1,(e2, . . . ,en)◦FS)
(7.108)

113

return:

(H,MS◦VS,return e; ,FS)→ (H,MS◦VS,e,(return •;)◦FS)
(7.109)

conditionals:

(H,MS◦VS, if(e){stmt1} else {stmt2},FS)

→ (H,MS◦VS,e, if(•){stmt1} else {stmt2},FS)

(7.110)

field dereference:

(H,S,e. f ,FS)→ (H,S,e,(•. f)◦FS)
(7.111)

relation dereference:

(H,S,e1[e2],FS)→ (H,S,e1,(•[e2])◦FS)
(7.112)

(H,S,r[e2],FS)→ (H,S,e2,(r[•])◦FS)
(7.113)

casts:

(H,S,(T)e,FS)→ (H,S,e,((T)•)◦FS)
(7.114)

field writes:

(H,S,e1. f = e2,FS)→ (H,S,e1,(•. f = e2)◦FS)
(7.115)

(H,S,o. f = e2,FS)→ (H,S,e2,(o. f = •)◦FS)
(7.116)

relation update:

(H,S,e1[e2] = e3,FS)→ (H,S,e1,(•[e2] = e3)◦FS)
(7.117)

(H,S,r[e2] = e3,FS)→ (H,S,e2,(r[•] = e3)◦FS)
(7.118)

(H,S,r[v] = e3,FS)→ (H,S,e3,(r[v] = •)◦FS)
(7.119)

114

local variable update:

(H,S,x = e,FS)→ (H,S,e,(x = •)◦FS)
(7.120)

new:

(H,S,new N < · · ·> (e0,e),FS)→ (H,S,e,(new N < · · ·> (•,e))◦FS)
(7.121)

(H,S,new N < · · ·> (v,en,e),FS)→ (H,S,e,(new N < · · ·> (v,•,e))◦FS)
(7.122)

super invocation:

(H,S,super(e),FS)→ (H,S,e,(super(•))◦FS)
(7.123)

method invocation:

(H,S,e.m(e′),FS)→ (H,S,e,(•.m(e′))◦FS)
(7.124)

(H,S,o.m(e′),FS)→ (H,S,e′,(o.m(•))◦FS)
(7.125)

7.2.2.8 State Transition Rules

ACCLAM programs can specify a set of named states. There is an automatically sup-

plied named state init; all other states are specified as the result after a series of state-

ments have been executed against a known state. The semantics of the named state tran-

sitions require another environment STATE that’s a mapping from a symbol to a heap and

an initial stack (the stack contains the values for all the top-level variables). STATE is also

115

needed for the top-level expression which may evaluate expressions in terms of different

states, or two compare two states for equality.

STATE(σ1) = (H,VS), σ2 /∈ dom(STATE),

(H,VS,stmt,{}◦FS)→∗ (H′,VS′,{},FS),

STATE′ = STATE[σ2 7→ (H′,VS′)]

(STATE,σ1{stmt}σ2,FS)→ (STATE′, ; ,FS)
(7.126)

(STATE,σ1,1{stmt}σ1,2 . . .σn,1{stmt}σn,2,FS)

→ (STATE,σ1,1{stmt}σ1,2,(σ2,1{stmt}σ2,2 . . .σn,1{stmt}σn,2)◦FS)

(7.127)

Equality Between States

State equality is the pairwise equality between entries in heaps and stacks. The following

rules define equality between stacks, heaps and models.

State Equality

σ1 = (H1,S1), σ2 = (H2,S2), H1 EQHEAP H2, S1 EQSTACK S2

σ1 = σ2
(7.128)

Stack Equality

σ1 = (H1,S1), σ2 = (H2,S2), vars = dom(S1)∩dom(S2), ∀v ∈ vars : S1(v) = S2(v)
σ1 EQSTACK σ2

(7.129)

Heap Equality

σ1 = (H1,S1), σ2 = (H2,S2),

instances = dom(H1)∩dom(H2),

∀m ∈ instances : H1(m) EQINSTANCE H2(m)

σ1 EQHEAP σ2
(7.130)

116

Instance Equality:

σ1 = (H1,S1), σ2 = (H2,S2),

H1(o) = o1 = (N,F1), H2(o) = o2 = (N,F2),

o1 EQSCALAR o2 ∨ o1 EQREF o2 ∨ o1 EQREL o2

o1 EQINSTANCE o2
(7.131)

For the following rules, assume the existence of three new metafunctions: SCALARS,

MODELS, and RELATIONS, that are functions over the field mapping for an instance (F).

They return the set of field names that map to the appropriate kinds of fields (SCALARS re-

turns all the scalar fields, MODELS all the model reference fields, and RELATIONS returns

all the relation reference fields).

Equality of Scalar Instance Fields

σ1 = (H1,S1), σ2 = (H2,S2),

H1(o) = o1 = (N,F1), H2(o) = o2 = (N,F2),

∀ f ∈ dom(F1)∧ f ∈ SCALARS(F1) : F1(f) = F2(f)

o1 EQSCALAR o2
(7.132)

Equality of Model References

σ1 = (H1,S1), σ2 = (H2,S2),

H1(o) = o1 = (N,F1), H2(o) = o2 = (N,F2),

∀ f ∈ dom(F2)∧ f ∈ dom(MODELS(F1))

: m1 = F1(f)∧m2 = F2(f)∧m1 EQINSTANCE m2

o1 EQREF o2
(7.133)

Equality of Relations

117

σ1 = (H1,S1), σ2 = (H2,S2),

H1(r) = r1 = λ i , H2(r) = r2 = λ i ,

H1(o) = o1 = (N,F1), H2(o) = o2 = (N,F2),

F1(r) = r1,F2(r) = r2,∀ x : r1(x) = r2(x),

r1 EQREL r2
(7.134)

σ1 = (H1,S1), σ2 = (H2,S2),

H1(o) = o1 = (N,F1), H2(o) = o2 = (N,F2),

∀r ∈ RELATIONS(F1) : r1 = F1(r)∧ r2 = F2(r)∧ r1 EQREL r2

o1 EQREL o2
(7.135)

7.3 Soundness

With a description of operational semantics and typing, we can prove that ACCLAM

is a sound language. The approach is to define typing of an operational configuration

piece-wise, and then to demonstrate that the operational transition rules preserve the typing.

The typing rules in this section will usually be in terms of the model table (MT) and a

configuration element (such as the heap).

7.3.1 Well-typed Heap

A well-typed heap is one in which all fields of all objects in the heap are within the

same heap, and the heap and model table show the correct type for the heap objects.

Models Well-typed
H(o) = (N,F), N /T, N OK in MT

MT,H ` o : T
(7.136)

Null
N OK in MT

MT,H ` null : N
(7.137)

118

Field References are Valid

H(o) = (N,F), dom(F) = dom(FIELDS(N)) = f ,

∀ f ∈ dom(F) : (MT,H ` F(f) : FIELDS(N)(f))

MT,H ` o OK
(7.138)

Field Relation References are Valid

H(o) = (N,F), RELATIONS(F) = {r1, . . . ,rn}
MT,H ` o OK

(7.139)

Heap Well-typed A well-formed well-typed heap will be HEAP OK in terms of a model

table.
dom(H) = {o1, . . . ,on}∪{r1, . . . ,rm},

∀i ∈ {1 . . .n} : MT, H ` oi OK,

∀i ∈ {1 . . .m} : MT, H ` ri OK,

MT ` H HEAP OK
(7.140)

7.3.2 Well-typed Variable Stack

A well-typed variable stack must contain only valid or null values.

Variables Well-typed

S = x 7→ (v,T), ∀x ∈ S : MT, H ` x : T
MT, H ` S OK

(7.141)

Empty Stack
MT,H ` [] OK, MT,H ` S OK

MT,H ` []◦S OK
(7.142)

Compound Stack
MT,H ` VS OK, MT,H ` BS OK

MT,H ` (BS◦VS) OK
(7.143)

119

7.3.3 Well-typed frame stack

Typing a full configuration requires that we extend the basic type environment Γ to in-

clude information about heap and stack variables. We define the following extend function

to augment Γ.

extend(Γ,{}, []) = Γ

extend(Γ,{},({}◦MS)◦VS) = extend(Γ,{},MS◦VS)

extend(Γ,{},(BS[x 7→ (v, T)]◦MS)◦VS) =

{
extend(Γ,{},(BS◦MS)◦VS) x ∈ Γ

extend(Γ[x 7→ T],(BS◦MS)◦VS) x /∈ Γ

extend(Γ,H[o 7→ (N,F)],S) =

{
extend(Γ,H,S) x ∈ Γ

extend(Γ[o 7→ N],H,S) x /∈ Γ

(7.144)

To properly type a frame stack requires handling open and closed frames, all the statement

varieties, scope changes and control flow altering statements (return).

7.3.3.1 Typing Substitution Holes

Γ ` o : N, MT ` Γ OK
MT, Γ ` o : N

(7.145)

Γ ` • : N, MT ` Γ OK
MT, Γ ` • : N

(7.146)

7.3.3.2 Case-by-case Typing of Statements

empty stack (empty stacks don’t change the types)

MT, H, (BS◦ [])◦ [] ` [] : τ → τ
(7.147)

new scope
MT, H, MS◦VS ` FS : void→ τ

MT, H, (BS◦MS)◦VS ` ({})◦FS : τ ′→ τ
(7.148)

method with hole

MT, H, VS ` FS : τ → τ ′, τ ′′ / τ

MT, H, (BS◦ [])◦VS ` (return •;)◦FS : τ ′′→ τ ′
(7.149)

120

local variable declaration

model and primitive types:

L ∈ N∪P,

MT, H, (BS[x 7→ (init(L),L)]◦MS)◦VS ` FS : void→ τ,

x /∈ dom(BS◦MS)

H, (BS◦MS)◦VS ` (L x;)◦FS : τ ′→ τ
(7.150)

relation types:

R′ ∈ R,

MT, H, (BS[x 7→ (e,R′)]◦MS)◦VS ` FS : void→ τ,

MT, H, (BS[x 7→ (e,R′)]◦MS)◦VS ` e : τ ′,

x /∈ dom(BS◦MS)

H, (BS◦MS)◦VS ` (R′ x;)◦FS : τ ′→ τ
(7.151)

sequencing:
MT, H, S ` (stmt1)◦ (stmt)◦FS : τ → τ ′

MT, H, S ` (stmt1;stmt)◦FS : τ → τ ′
(7.152)

open stack frame: This rule is for all open frames not handled by the explicit rules above

(non-return statements)

MT, extend(Γ,H,S),• : T ` OF : τ,

H, S ` FS : τ → τ ′

MT, H, S ` OF ◦FS : T → τ ′
(7.153)

closed stack frames: This rule handles all closed frames not handled above (excluded are

returns, local variable declarations, and scope entry/exit).

MT; extend(Γ, H, S) ` CF : τ, H, S ` FS : τ → τ ′

MT, H,S ` CF ◦FS : τ ′′→ τ ′
(7.154)

121

7.3.4 Soundness

To prove soundness we need to prove that progress is guaranteed (e.g., there is no

configuration where the program is stuck) and that all possible transitions preserve type.

With that, we can prove that all possible transitions are sound in terms of the sub typing

relationship /.

terminals = return v | {} | v

non-terminals = stmt | primop

| o. f | o. f = e

| r[e] | r[e] = e

| (U)e | o.m(e) | new N(e) | x = e

| if(e){stmt} else {stmt}

| forall(T x; e){stmt}

| choose(T x; e){stmt} (7.155)

7.3.4.1 Progress

If the semantics ensure progress, then there is always a legal well-typed configuration

reachable from any non-terminal configuration. Formally: if (H,S,F,FS) is non-terminal∧

MT ` (H,S,F,FS) : T =⇒ ∃ (H′,S′,F′,FS′) such that (H,S,F,FS)→ (H′,S′,F′,FS′).

The proof is a series of small proofs for each non-terminal statement type. The general

format of each case is to state the prior configuration, then prove that there is a successor

configuration, and a description of the successor configuration. In the interest of brevity, the

configurations are usually just the current frame being evaluated F, and the successor frame

F′and possibly frame stack FS′ (i.e., only those things that change from one configuration

to the next will be mentioned).

A note about statements within forall bodies: the only statement type that has a dif-

ferent posterior configuration within a forall body is the relation update. Non-relation

updates have the requirement that they are idempotent, and so for any value of the forall

122

variables the right hand side must be identical. Local variable declarations will have been

closed over and will have been incorporated as expressions in updates.

primop: F = primop(v)

By well typing, Γ ` F : T , then by rule 7.93, F reduces to v and Γ ` v : T therefore F′ = v.

sequence/skip (F =;) By rule 7.84, there exists another frame F′.

conditional F = if(v){stmt1} else {stmt2}

By well-typing, Γ ` v : boolean. Therefore if v = true, F′ = stmt1; otherwise F′ = stmt2.

field dereference F = e. f

case 1 e = null, reduces by rule 7.74, F′ = return exc

case 2 e = o, reduces by rule 7.73, F′ = v

case 3 e 6= o, reduces by rule 7.111, F′ = e,FS′ = (•. f)◦FS

field assignment 1 F = (e. f = e′)

Reduces by rule 7.115, F′ = e,FS′ = (•. f = e′)◦FS.

field assignment 2 F = (v. f = e′)

case 1 v = null reduces by rule 7.74, F′ = return exc

case 2 v = o reduces by rule 7.116, F′ = e′,FS′ = (v. f = •)◦FS

field assignment 3 F = v. f = v′

case 1 v = null reduces by rule 7.74, F′ = return exc

case 2 v = o reduces by rule 7.75, F′ =;

relation read

case 1 F = e1[e], reduces by rule 7.112. F′ = e1, FS′ = (•[e2])◦FS

case 2 F = r[e], reduces by rule 7.113. F′ = e, FS′ = (r[•])◦FS

123

case 3 F = r[v], reduces by rule 7.61, F′ = v′

relation assignment

case 1 F = e1[e2] = e3, reduces by rule 7.117, F′ = e1,FS′ = (•[e2] = e3)◦FS

case 2 F = r[e2] = e3, reduces by rule 7.118, F′ = e2,FS′ = (r[•] = e3)◦FS

case 3 F = r[v1] = e3, reduces by rule 7.119, F′ = e3,FS′ = (r[v1] = •)◦FS

case 4 F = r[v1] = v2, reduces by rule 7.77, F′ = ;

case 5 @forallVars ∈ dom(S),F = r[e2] = e3

H(r) = rold = λ i. . . . ,

r′ = λ i.(BIND(i, x, e2, eval(S, @forallPred))→ e3, rold(i))

This is a relation update within a forall, which reduces by rule 7.103,

F′ =; , H′ = H[r 7→ r′]

cast

case 1 F = (U)e. Reduces by rule 7.114, F′ = e, FS′ = ((U)•)◦FS.

case 2 F = (U)v. Reduces by rule 7.78 or 7.79. F′ = v

method invocation

case 1 F = e1.m(e2), reduces by rule 7.124, F′ = e1, FS′ = (•.m(e2))◦FS

case 2 F = o.m(e2), reduces by rule 7.125, F′ = e2, FS′ = (o.m(•))◦FS

case 3 F = o.m(v), reduces by rule 7.81, S′ = MS◦S, F′ = {stmt}

block statement F = {stmt}

Because F is well typed, we know that S=MS◦VS, and therefore this configuration reduces

by rule 7.66, F′ = stmt, FS′ = {}◦FS,S′ = ([]◦MS)◦VS

124

local variable read

F = x, by well-typing x ∈ dom(S), therefore this configuration is reducible by rule 7.60.

F′ = v.

local variable update

case 1 F = (x = e), reduces by rule 7.120, F′ = e, FS′ = (x = •)◦FS

case 2 F = (x = v), reduces by rule 7.62, F′ = ;

object creation

case 1 F = new T (e), reduces by rule 7.121, F′ = e, FS′ = new T (•)◦FS

case 2 F = new T (v), reduces by rule 7.80, F′ = stmt, FS′ = (return o;)◦FS,

H′ = H[o 7→ (T,F)]

forall

F = forall(T x;e){stmt}, reduces by rule 7.100, S′ = ({@forallVars 7→ (x, T),

@forallPred 7→ e′}◦MS)◦S,F′ = stmt,FS′ = {}◦FS

choose

F = choose(T x;e){stmt}, reduces by rule 7.106 F′ = stmt,FS′ = {}◦FS

block exit

F = {}, reduces by rule 7.67. By the well-typing of the prior configuration, S = (BS◦MS)◦

VS. F′ = ; ,S′ = MS◦VS

return

case 1 F = return e, reduces by rule 7.109, F′ = e,FS′ = (return •)◦FS

case 2 F = return v,FS = {}◦FS′, this reduces by rules 7.68, 7.69. F′ = v

case 3 F = return v,FS = F′′ ◦FS′′,F′′ 6= {}, this reduces by rule 7.70. F′ = F, FS′ = FS′′

125

7.3.4.2 Type Preservation

The formal requirements for preserving well-typing are, for typed frames (expressions):

If MT, Γ ` (H,S,F,FS) : T ∧ (H,S,F,FS)→ (H′,S′,F′,FS′)

then ∃ T ′ such that MT, Γ ` (H′,S′,F′,FS′) : T ′
(7.156)

and for untyped (statement) frames:

If MT, Γ ` (H,S,F,FS) OK∧ (H,S,F,FS)→ (H′,S′,F′,FS′)

then MT, Γ ` (H′,S′,F′,FS′) OK
(7.157)

Any typed frame that obeys rule 7.156 is also an OK frame. Therefore 7.156 is a subset of

7.157.

For ACCLAM I have adopted the approach used by Middleweight Java, for which many

of the type-preservation rules apply with little or no change. One difference is that in MJ,

the statements have type (most of them have type void). The ACCLAM semantics do not

assign a type to statements; rather they are judged as being OK. For most statements, there

is no real difference whether they type as void or are OK. This section will consist of the

cases where there is a difference.

Covariant Typing Lemma A useful lemma used by MJ is the covariant typing lemma,

which states: Given an open frame OF

Γ[• : T ′] ` OF : T1 =⇒ ∀T2 : T2 /T ′ =⇒ ∃ T3 : (Γ[• : T2] ` OF : T3)∧ (T3 /T1)

(7.158)

This lemma greatly reduces the number of cases that need to be examined when a sub

typing relationship is present when typing open frames. Rather than having to prove four

cases for each open frame (base type and sub-type for each side of the →), the covariant

typing lemma lets us prove one. For ACCLAM, we just need to extend the lemma with

126

cases for relation operations. After this, most of the MJ type-preservation rules apply to

ACCLAM with the extended covariant typing lemma.

relation read (OF = r[•])

Since T3 /T1, if Γ ` r[•] : T3∧T3 /T1 then Γ ` r[•] : T1. By substituting into the typing

rule for relation read, we get:

Γ ` r : T1[T ′], Γ ` • : T2, T2 /T ′

Γ ` r[•] : T1
(7.159)

relation update (OF = r[e] = •)

Γ ` r : T1[T ′], Γ ` e : T2,

Γ ` • : T3, T2 /T ′, T3 /T1

r[e] = • OK
(7.160)

Now we will examine the cases where we have to extend MJ’s type preservation rules

to cover ACCLAM’s semantics.

non void return

assume: Γ ` (H,MS◦VS,return v,FS) : T,H OK, MS◦VS OK, FS OK

prove: Γ ` (H,VS,v,FS) : T

MS ◦VS→ VS OK by well typing of stacks, which leaves the type of v. By typing rule

7.41, if Γ ` v : T ′, then T ′ /T . Therefore Γ ` (H,VS,v,FS) : T .

void return

assume: Γ ` (H,MS◦VS,return,FS) : void, H OK, MS◦VS OK,FS OK

prove: Γ ` (H,VS, ; ,FS) : void

trivially true as Γ `; : void

exceptions

assume: Γ ` (H,MS◦VS,return exc v,FS) : Throwable,H OK,MS◦VS OK,FS OK

prove: Γ ` (H,VS,exc v,FS) : Throwable

By typing rule 7.27, Γ` exc v : Throwable, therefore Γ` (H,VS,exc v,FS) : Throwable.

127

relation read

assume: Γ ` (H,VS,r[v],FS) : T, eval(r,H) = λx. f (x), f (v) = v′

prove: Γ ` (H,VS,v′,FS) : T

By rule 7.26, Γ ` r : T [T ′] and therefore Γ ` v′ : T , so therefore Γ ` (H,VS,v′,FS) : T .

relation update

assume: Γ ` (H,S,r[v] = v′,FS) OK, H′ = H[r 7→ r′], (MT, Γ) ` H OK

prove: Γ ` (H′,S, ; ,FS) OK

By typing rule, 7.36, Γ ` r : T ′[T ′′], Γ ` v : T ′′, Γ ` v′ : T ′, therefore Γ ` r′ : T ′[T ′′],

therefore Γ ` H′ OK.

relation declaration

assume: Γ ` (H,(BS◦MS)◦VS,U [U] r; ,FS) OK

prove: Γ ` (H′,(BS′ ◦MS)◦VS, ; ,FS) OK

By typing rule 7.65, Γ ` r : U [U] and r ∈ dom(H′), therefore MT,Γ ` H′ OK.

By typing rule 7.65, BS′ = BS[r 7→ H′(r)], therefore MT,Γ,H′ ` BS′ OK, therefore Γ `

(H′,(BS′ ◦MS)◦VS, ; ,FS) OK.

7.3.4.3 Soundness

By the progress proof, (H,S,F,FS)→∗ (H′,S′,F′,FS′) where (H′,S′,F′,FS′) is termi-

nal. By the type preservation proof, if (H,S,F,FS) OK then (H′,S′,F′,FS′) OK. Therefore

all well-typed methods and well-typed models in ACCLAM are sound.

A well-typed ACCLAM program is sound if its model table’s models are sound, if the

named state transitions are sound, and the top-level expression is sound. A well-typed

ACCLAM program can’t use non-well-typed statements in the named state transitions,

therefore they are sound. A well-typed ACCLAM program must also have a well-typed

top-level expression, therefore that is sound. Therefore a well-typed ACCLAM program is

sound.

128

7.4 Circuit Semantics

ACCLAM is a modeling language. An operational description was illustrative and

necessary for a soundness proof. However, the actual ACCLAM processing tool converts

models into a pure expression-based circuit that’s appropriate for conversion into a SAT

problem. This circuit form is so called because the inputs to the circuit are the initial state

and function arguments, and the outputs are the final state and return values. The circuits

themselves are expressions that transform the initial state values into final state values.

Since there is no mutation in the circuit form, these expressions can be converted into SAT

clauses in a straight-forward fashion. This section describes that transformation using the

same kinds of formalism as the previous semantic descriptions.

7.4.1 Circuit Constructs

There are a couple of new value types that make sense in the circuit context that will be

introduced here.

Circuit Variables: A circuit variable is a value of a specific type that is an input to the

circuit. A circuit variable’s value is unknown and may assume any legal value for its type.

Circuit Values: A circuit value is an encoding of an ACCLAM type into a set of bits, and

is analogous to wires in a more conventional circuit.

Circuit Constant: A circuit constant is a circuit value that is hard-wired to produce a

constant value.

The semantics will be expressed in terms of a series of transforms that will accept some

portion of an ACCLAM program and produce a pair of an expression and a set of circuit

variables.

These transforms will operate on instances with named scoped state, so we’ll need a

Values environment that will map a name to an expression. For convenience, we’ll also

maintain a heap environment, H that will also map names to expressions.

129

7.4.2 Circuit Expressions

This is the abstract grammar of the valid output of the circuit transformation functions.

expr = CircuitValue

| lambda

| application

| multiplexor

| op(expr)

lambda = λT v . expr

application = lambda(expr)

multiplexer = expr→ expr, expr

(7.161)

The set of expressions is values, lambda forms, primitive operations, and multiplexors.

The final expressions will not contain any unapplied lambda forms; however, intermediate

results will. Primitive operations is a catch-all for unary and binary operations on primitive

values as well as == for reference values. A multiplexor is just a circuit-friendly form of a

conditional.

7.4.2.1 Lambda Application Rule

Lambda application is done with substitution.

f = λ T x . e, Γ ` e′ : T ′, T ′ /T
f (e′) = e[e′ / v]

(7.162)

7.4.3 Transforms

The transform functions operate on a configuration tuple similarly to the operational

semantics. The configuration may contain a stack mapping, a heap mapping, a term under

evaluation, a continuation, and a control flow expression. The control flow expression is

the way the circuit transformation handles control flow, by generating a boolean expression

that is true if control would have reached the term and false otherwise.

130

There is a transform function for every major type of syntactic element (values and

variables, expressions, statements and the program as a whole). The functions were defined

separately (rather than as one big function) to present the transformations in an incremental

fashion. The transform functions may invoke one another.

TransformV : value→ circuit value

TransformC : constant→ circuit constant

TransformE : expr ∗ stack ∗heap∗ control-flow expr→ circuit expr ∗heap

TransformS : stmt ∗ stack ∗heap∗ control-flow expr ∗ stmt

→ expr ∗ stack ∗heap∗ control-flow expr

TransformP : program∗ state map→ expr

7.4.4 State in the Circuit

The circuit transforms will be written in terms of a heap and stack state. However,

they are just mappings from names to expressions. The circuit expressions produced by the

transforms must produce all the same values that the statements/expressions would under a

more conventional operational approach. The way this is accomplished is by conditionaliz-

ing state by the control-flow expression. Updates do not overwrite/shadow concrete values.

In circuit form, an update wraps the old expression with a conditional expression. So the

new expression is something like: econtrol-flow→ enew, eold. The circuit interpretation

of this is that all possible state expressions are ‘evaluated’ and fed into a multiplexor. The

control flow expression is also evaluated and is used as the selector input to the multiplexor.

A state element that is updated multiple times becomes a chain of multiplexors+inputs.1

7.4.5 Utility Functions

Lookup Lookup is used to look up the value that a name maps to in a stack.

1Another formulation is to combine the control flow expressions and feed their multi-bit output into a
large multiplexor.

131

{name 7→ val} ∈ S
lookup(S◦S′,name) = val

(7.163)

{name 7→ val} /∈ S
lookup(S◦S′,name) = lookup(S′,name)

(7.164)

Stack Update Update replaces the mapping for a name at the appropriate nesting level for

the stack.
BS(v) = e

update(v,x,c,BS◦S) = BS[v 7→ (c→ x,e)]◦S
(7.165)

v /∈ dom(BS)
update(v,x,c,BS◦S) = BS◦update(v,x,c,S)

(7.166)

Heap Update Definitions

Instance Update

H(o) = (N,F)
update(o,(N,F′),c,H) = H[o 7→ (c→ (N,F′),(N,F))]

(7.167)

Relation Update
H(r) = e

update(r,e′,c,H) = H[r 7→ (c→ e′,e)]
(7.168)

r ∈ dom(S)
update(r,e′,c,S,H) = update(r,e′,c,S),H

(7.169)

r /∈ dom(S)
update(r,e′,c,S,H) = S,update(r,e′,c,H)

(7.170)

7.4.6 Value Transform

Creates a new mapping for the variable that refers to an expression that produces the

initial value for the variable’s type.

TransformV(T x) = (x,TransformC(init(T)))
(7.171)

132

7.4.7 Expression Transform

Expression transform functions produce an expression and a heap map. In these rules,

c is the control-flow expression.

Constants

TransformE(k,S,H,c) = TransformC(k),H
(7.172)

Variables

TransformE(x,S,H,c) = lookup(S,c),H
(7.173)

Field Access
TransformE(e,S,H,c) = o,H′,

o = (N,F), e′ = F(f)

TransformE(e. f ,S,H,c) = e′,H′
(7.174)

Cast
Γ ` e : T,T /N

TransformE((N)e,S,H,c) = TransformE(e,S,H,c)
(7.175)

Good downcast

Γ ` e : T,N /T,

e instanceof N′,N′ /N

TransformE((N)e,S,H,c) = TransformE(e,S,H,c)
(7.176)

Bad downcast

Γ ` e : T, N /T, e instanceof N′,¬(N′ /N)

TransformE((N)e,S,H,c)

= TransformE(return exc ClassCastException,S,H,c)

(7.177)

‘Stupid’ cast

Γ ` e : T, ¬(T /N), ¬(N /T)

TransformE((N)e,S,H,c)

= TransformS(return exc ClassCastException,S,H,c)

(7.178)

133

Primitive cast

Java defines rules for transforming primitive expressions from one primitive type to another.

Those rules are represented by the CONVERT function (CONVERT : type∗ type∗ e→ e).

Γ ` e : P′, e′,H′ = TransformE(e,S,H,c)
TransformE((P)e,S,H,c) = CONVERT(P′,P,e′),H′

(7.179)

Relation Dereference

TransformE(e,S,H,c) = r,H′,

r = λ i . er,

e′′,H′′ = TransformE(e′,S,H′,c)

TransformE(e[e′],S,H,c) = TransformE(er[e′′/i],S,H′′,c),H′′
(7.180)

Primitive Operations

For primitive operations (e.g., integer addition), we assume there’s a function PRIMOP that

produces a circuit-equivalent version of the ACCLAM primitive operation. For example,

PRIMOP(+, int1, int2)) could produce a 32-bit wide ripple-carry adder circuit. It could

also produce a fancier carry-lookahead circuit. Rather than get bogged down in specifying

exact circuits for each of the well-specified Java primitive operations, we assume that there

is a straightforward conversion from a primitive operation to a circuit operating on circuit

values and leave the specific circuit used as an implementation decision.

Γ ` e : P, TransformE(e,S,H,c) = e′,H′

TransformE(primop(e),S,H,c) = PRIMOP(primop,e′),H′
(7.181)

Method Invocation

Method invocation is not a valid circuit expression, therefore the transform needs to inline

the method definition by producing an expression that generates the possible return values

for the method. For this we’ll use the statement transform applied to the body of the

method being invoked. This transformation assumes that exceptions, if thrown, are not

134

being thrown up multiple levels of function invocation. At the moment ACCLAM has

no support for specifying full try-catch semantics, therefore an exceptional return is a

return of an exception value.

Note that the stack value that captures the return expression (@return) is explicitly

set to void. All non-void methods (because they are well-formed) will update this value

before returning, so this is safe. This rule also assumes that the type of the instance as

stored in the heap (N) is the most specific type. This means that the value from METHOD

will be the most specific method defined for that type. Therefore, this rule implements

Java-style invokevirtual method invocation.

TransformE(e,S,H,c) = e′,H,

H(o) = (N,F), METHOD(N)(m) = (T x,stmt),

MS = {this 7→ o,@return 7→ void,x 7→ e′},

TransformS(; ,S′,H,c,stmt ◦{}) = eret,S′′,H′,c′

S′ = MS◦S

TransformE(o.m(e,S,H,c) = eret,H′
(7.182)

New Instance Creation Creating a new instance means producing all the expressions for

the initially constructed object, while also creating a new top level circuit variable. This

is necessary because object construction is extending the state, and since the circuit form

is mutation-free, that extension just means that the new instance was always part of the

variable set, it just wasn’t referenced in any expression until this point in the circuit.

TransformV(N) = (N,F), o /∈ dom(H), H+ = H[o 7→ (N,F)],

TransformE(e,S,H+,c) = e′,H′, Γ ` e : T ,

INIT(N)(T) = (T x,stmt), MS = {this 7→ o,x 7→ e′′},

TransformS(; ,MS◦S,H′,c,stmt ◦{}) = void,S′′,H′′,c′′

TransformE(new N(e),S,H,c) = H′′(o),H′′
(7.183)

135

7.4.8 Statement Transform

The statement transform takes a statement, a stack, a heap, a control flow expression,

and a statement continuation and produces an expression, a stack, and a heap. As in the

expression transform, c will stand for the boolean control-flow expression. K will stand for

the statement continuation (analogous to FS from the operational configurations).

expression

TransformS(e; ,S,H,c,K) = TransformS(; ,S,H,c,K)
(7.184)

sequence

TransformS(; ,S,H,c,stmt ◦K) = TransformS(stmt,S,H,c,K)
(7.185)

Exit Scope (scope entry will be handled for each scope-creating statement)

TransformS({},BS◦S,H,c,K) = TransformS(; ,S,H,c,K)
(7.186)

Exit Method Scope

TransformS(; ,MS◦S,H,c,{}) = BS(@return),S,H
(7.187)

Local Variable Assignment

e′, H′ = TransformE(e,S,H,c), S′ = update(x,e′,c,S)
TransformS(x = e; ,S,H,c,K) = TransformS(; ,S′,H′,c,K)

(7.188)

Heap Variable Assignment

TransformE(e,S,H,c) = e′,H′,

H(o) = (N,F), F′ = F[f 7→ e′],

H′′ = update(o,(N,F′),c,H)

TransformS(o. f = e; ,S,H,c,K) = TransformS(; ,S,H′′,c,K)
(7.189)

136

Local Variable Declaration For circuit semantics, the declaration T x = e; is broken

down into a declaration T x;, followed immediately by an assignment x = e;

TransformV(T) = v, S′ = S[x 7→ v]
TransformS(T x,S,H,c,K) = TransformS(; ,S′,H,c,K)

(7.190)

TransformV(T) = v, BS′ = BS[x 7→ v]
TransformS(T x,BS◦S,H,c,K) = TransformS(; ,BS′ ◦S,H,c,K)

(7.191)

Normal Relation Assignment (not in a forall)

TransformE(e,S,H,c) = r,H′,

TransformE(e′,S,H′,c) = e′′,H′′,

TransformE(e+,S,H′′,c) = e++,H++,

r′ = λ i.(i = e′′)→ e++,r(i),

S′′′,H′′′ = update(r,r′,c,S,H++)

TransformS(e[e′] = e+,S,H,c,K) = TransformS(; ,S′′′,H′′′,c,K)
(7.192)

Normal Reduction Update

Reduction updates are performed implicitly when the relation they depend on is updated.

Assuming the relation update rule 7.192, we extend it with the following (assuming that

the reduction is defined as: int redux = count(T x;P(x); trueVal; falseVal)

P′ = BIND(i,x,e′),

TransformE(P′,S,H,c) = Pbefore,H

TransformE(P′,S′′′,H′′′,c) = Pafter,H
′′′

H(redux) = eold,

redux′ = (eold +(Pbefore→−trueVal, −falseVal))+(Pafter→ trueVal, falseVal),

update(redux, redux′,c,S′′′,H′′′) = Sr,Hr

TransformS(e[e′] = e+,S,H,c,K) = TransformS(; ,Sr,Hr,c,K)
(7.193)

137

This is not completely correct. H(redux) is incorrect: since reductions are part of a model’s

state, they need to be looked up indirectly through the model’s reference. Doing that pre-

cisely in the rule would have complicated it without adding anything to the discussion of

reduction value generation. For the sake of brevity, we assume that the compiler that is

generating this code will remember the model that the relation update was associated with,

and that H(redux) is a shorthand for the reduction’s value in the heap.

return

The normal return case (the return is at the end of a block).

TransformE(e,MS◦S,H,c) = e′,H′,

MS′ = update(MS,@return,(c→ e′,MS(@return)))

TransformS(return e,MS◦S,H,c,{}◦K)

= TransformS(; ,MS′ ◦S,H′,c,{}◦K)

(7.194)

The case where the return is in the middle of a block.

TransformS(stmt,S,H, false,{}) = void,S′,H′,c′,

stmt 6= {}
TransformS(return e,S,H,c,stmt ◦K) = TransformS(return e,S′,H′,c,K)

(7.195)

conditional

TransformE(b,S,H,c) = b′,H′,

TransformS(; ,S,H′,b′∧ c,stmtthen ◦{}) = e1,Sthen,Hthen,cthen,

TransformS(; ,S,H′,(¬b′)∧ c,stmtelse ◦{}) = e2,Selse,Helse,celse,

∀ x : S′(x) = b′→ Sthen(x),Selse(x),

∀ x : H′′(x) = b′→ Hthen(x),Helse(x)

TransformS(if (b){stmtthen} else {stmtelse},S,H,c,K)

= TransformS(; ,S′,H′′,cthen∨ celse,K)

(7.196)

138

forall Much of the work done for the operational description can be re-used here. We still

need to CLOSE the forall predicate, and BIND any relation index variables. Since both

CLOSE and BIND produce expressions without method invocation, they are suitable as

circuit expressions.

e′ = CLOSE(e,H,S), stmt′ = CLOSE(stmt,H,S),

S′ = {@forallVars 7→ (T,x),@forallPred 7→ e′}◦S

TransformS(forall(T x;e){stmt}◦{},S,H,c,K)

= TransformS(stmt′,S′,H,c,K)

(7.197)

Relation Assignment in a Forall

TransformE(e,S,H,c) = r,H,

TransformE(e′,S,H,c) = e′′,H′′,

TransformE(e+,S,H′′,c) = e++,H++,

S(@forallPred) = epred, S(@forallVars) = T x,

r′ = λ i . BIND(i,x,e′′,epred)→ e++,r(i),

S′′′,H′′′ = update(r,r′,c,S,H++)

TransformS(e[e′] = e+,S,H,c,K) = TransformS(; ,S′′′,H′′′,c,K)
(7.198)

Reduction Update in a Forall

Reductions are implicitly updated within a forall. It is not possible to produce incre-

mental updates for the reduction. As in the operational semantics, the value of the reduction

after a forall can be explicitly calculated.

enew = Σx P(x)→ trueVal, falseVal, H′′′′ = H′′′[redux 7→ enew]

TransformS(e[e′] = e+,S,H,c,K) = TransformS(; ,S′′′,H′′′′,c,K)
(7.199)

choose the circuit form of choose binds the choose variables to circuit variables. The

predicate is conjoined with the current control-flow variable to produce the control-flow

139

expression for the body of the choose.

TransformV(T x) = v,

TransformE(CLOSE(e,H,S),S,H,c) = e′,H,

stmt′ = CLOSE(stmt,H,S),

S′ = {T x 7→ v}◦S,

TransformS(stmt′,S′,H,e′∧ c,{}) = e′′,H′′,S′′,c′

TransformS(choose(T x;e){stmt},S,H,c,K) = TransformS(; ,S′′,H′′,c′,K)
(7.200)

7.4.9 Program Transform

An ACCLAM program is a 4-tuple of: a model table, variable declarations, named

states, and a top-level expression. We will need an additional environment STATES to

map state names to actual states. A state is a mapping from names to expressions, and is

therefore the heap produced by a statement transform.

Variable Declaration

STATES(@init) = H,

TransformV(T x) = v,

H′ = H[T x 7→ v],

STATES′ = STATES[@init 7→ H′]

TransformP(T x,STATES) = STATES′
(7.201)

Named States Transforming the named states portion of a program is simply transforming

the statement portion and extracting out the resulting heap expressions and extending the

STATES mapping. We are assuming that there will always be at least the initial state within

the STATES mapping and that it will be named some well-known reserved keyword (e.g.,

@init). For readability’s sake, in these rules all states will be named σi for some i.

140

H = STATES(σ1),

TransformS(; ,H, [], true,stmt ◦{}) = e,H′,S′,c′,

STATES′ = {σ2 7→ H′}◦STATES

TransformP(σ1 {stmt} σ2,STATES) = STATES′
(7.202)

TransformP(σ1 {stmt} σ2,STATES) = STATES′

TransformP(σ1 {stmt} σ2;(σn{stmt}σn+1),STATES)

= TransformP((σn{stmt}σn+1),STATES′)

(7.203)

Top-level Expression The top-level expression is a normal expression, except that it sup-

ports two additional forms. One allows an expression to be evaluated in terms of a named

state (rather than the default, which is the initial state). This is not a fully general expres-

sion and can only distribute around primitive operations. The transform function that can

handle this additional syntax is TransformEE. The other additional form is equality of

states, which is syntactically distinct from other forms of equality.

Expressions in Terms of a Named State

STATES(σn) = H′, TransformE(e, [],H′, true) = e′

TransformEE(σn(primop(e)),STATES) = TransformE(primop(e′), [],H′, true)
(7.204)

STATES(σn) = H′

TransformEE(σn(e),STATES) = TransformE(e, [],H′, true)
(7.205)

Equality of Named States

STATES(σn) = Hn, STATES(σn+1) = Hn+1,

NAMES = {name | name ∈ dom(Hn) ∧ name ∈ dom(Hn+1)}

TransformEE(σn == σn+1,STATES)

=
∧

name ∈ NAMES : Hn(name) = en∧Hn+1(name) = en+1 ∧

TransformE(TransformE(en, [],Hn, true) ==

TransformE(en+1, [],Hn+1, true), [],STATES(σinit), true)

(7.206)

141

Normal Expressions Fall-through to TransformE

STATES(σinit) = H
TransformEE(e,STATES) = TransformE(e, [],H, true)

(7.207)

Whole Program Transformation

TransformP(T x,{σinit 7→ {}}) = STATES′,

TransformP(σ1 {stmt} σ2,STATES′) = STATES′′,

TransformEE(e,STATES′′) = e′

TransformP((MT ;T x;σ1 {stmt} σ2;e),{}) = e′
(7.208)

7.5 Equivalence of Circuit and Operational Semantics

Equivalence between operational and circuit descriptions will be demonstrated by prov-

ing the equivalence between states. Simplistically, given equivalent initial states, the circuit

expression must produce the same values as the operational rule evaluates to. Since the op-

erational semantics also encompass mutations of heap and stack state, equivalence must be

done over all heap and stack values.

This proof will be a case-by-case proof for each of the expression and statement types.

We will assume that there is a mapping from operational values/constants to circuit values/-

constants that is correct, and the proofs will be demonstrating that the end states are still

equivalent under the mapping. We assume that the mapping function preserves typing (it

is sound) and that it is 1-to-1. We also assume that the mapping function distributes over

primitive operations (i.e., we assume that the operational and circuit forms of primitive op-

erations are equivalent). Therefore, given a mapping M, where M(primopop) = primopcirc.

M(primopop(e)) = primopcirc(M(e)).

As a reminder, the types of values in the operational state are: primitive and instance

values, primitive and instance variables, conditionals, and lambda forms (for relations).

The types of circuit state are: circuit values, circuit variables, multiplexors, lambda forms,

and circuit expressions.

142

7.5.1 Equivalence of Basic Forms

Values and Variables:

An operational value is equivalent to a circuit expression if the circuit expression produces

the equivalent mapped value whenever the control-flow expression is true. Given a map-

ping, M and a control flow expression c,

M(ecircuit) = eop, M(ccircuit) = cop, cop =⇒ eop = vop

vop EQ ecircuit
(7.209)

eop = vop =⇒ (H,S,eop,FS)→∗ (H,S,v,FS) (7.210)

An operational variable is equivalent to a circuit variable if the operational value of the

variable is equivalent to the circuit expression of the circuit variable (conditioned by the

control-flow expression).

Lambda Forms:

Two lambda forms are equivalent if for all mapped inputs the mapped lambda returns equiv-

alent outputs. More formally, given a mapping M and two lambda forms: fop and fcircuit,

fop EQ fcircuit ⇐⇒ ∀yop : M(yop) = ycircuit =⇒ M(fop(yop)) = fcircuit(ycircuit) (7.211)

Conditional Forms:

A conditional is equivalent to a circuit multiplexor if, given a mapping M,

M(cop) = ccirc, M(thenop) = thencirc, M(elseop) = elsecirc,

cop EQ ccirc, thenop EQ thencirc, elseop EQ elsecirc

cop→ thenop, elseop EQ ccirc→ thencirc, elsecirc
(7.212)

Equivalence of Models:

We assume that the programs under consideration are well-formed and well-typed. There-

143

fore we know that the models are of the same type. Equivalence of models then boils down

to equivalence of fields. Given a mapping, M,

Hop(oop) = (N,Fop), Hcirc(ocirc) = (N,Fcirc), ∀ f ∈ dom(Fop) : Fop(f) EQ Fcirc

oop EQ ocirc
(7.213)

7.5.2 Equivalence of Stacks and Heaps

Stacks and heaps are just maps from names to states. In the operational context, state

is either a primitive value, a model, or a relation lambda. In the circuit context, a state is

either an expression, a model, or a relation lambda. Two stacks are equivalent if for each

name in both stacks, the states mapped to by that name are equivalent (likewise for heaps).

Stack Equivalence

∀ name ∈ dom(Sop)∩dom(Scirc) : Sop(name) EQ Scirc(name)
Sop EQ Scirc

(7.214)

Heap Equivalence

∀ name ∈ dom(Hop)∩dom(Hcirc) : Hop(name) EQ Hcirc(name)
Hop EQ Hcirc

(7.215)

7.5.3 Expressions

A circuit transform TransformE(e,S,H,c) = e′circ, H′circ, c′circ and an operational rule

(H,S,e,FS)→ (H′op,S
′
op,e

′
op,FS) are equivalent if e′op EQ e′circ and S′op EQ S′circ when c is

true, and H′op EQ H′circ when c is true. For all these cases, we assume that the starting states

are already equivalent. For brevity’s sake, we omit c′ if it is identical to c (i.e., no control

flow changes).

The general format of these rules will be a summary of the operational and circuit rules,

followed by a proof of equivalence for parts of the final configuration that may differ from

the initial configuration.

144

Field Reads

Operational: (Hop,Sop,o. f ,FS)→ (Hop,Sop,Fop(f),FS)

Circuit: TransformE(o. f ,Scirc,Hcirc,c) = Fcirc(f),Hcirc

Heap and stack are unchanged in both cases, therefore they are equivalent. Therefore

Hop(o) EQ Hcirc(o), and Fop(f) EQ Fcirc(f). �

Relation Dereference

Operational: (Hop,Sop,r[v],FS)→ (Hop,Sop,rop(v),FS

Circuit: TransformE(r[e′],Scirc,Hcirc,c) = r(TransformE(e′,Scirc,Hcirc)),Hcirc

Let Hop(r) = rop and Hcirc(r) = rcirc

Heap and stack are unchanged, therefore they are equivalent.

e′ EQ v, therefore TransformE(e′,Scirc,Hcirc) EQ v. rop EQ rcirc,

therefore rcirc(TransformE(e′,Scirc,Hcirc)) EQ rop(v).�

Casts, Primops Trivially true.

Method Invocation

Let H(o) = (N,F) and METHOD(N)(m) = (T x,stmt)

Operational: Circuit:

MSop={this 7→(o,N),x 7→(v, N)}

(Hop,Sop,o.m(v),FS)
→ (Hop,(MSop)◦Sop,stmt,{}◦FS)
→∗ (H′op,Sop,v′op,FS)

TransformE(e,Scirc,Hcirc,c) = e′circ,Hcirc,

MScirc = {this 7→ o,x 7→ e′circ},
S′circ = (MScirc)◦Scirc

TransformE(o.m(e),Scirc,Hcirc,c)
= TransformS(; ,(MScirc)◦Scirc,Hcirc,c,stmt ◦{})
= eret ,Scirc,H′circ

Assume v EQ e, then MSop EQ MScirc. Therefore the stacks are equivalent.

Assume v′op EQ TransformS(; ,(MScirc) ◦ Scirc,Hcirc,c,stmt ◦ {}) by induction. Then if

c then v′op EQ eret . Therefore the final terms are equivalent.

By assumption above, if v′op EQ TransformS(. . .), then H′op EQ H′circ. Therefore the

heaps are equivalent.�

145

New Model Construction Let INIT(C)(T) = (T x,stmt),

Operational: Circuit:

∀ f ∈ FIELDS(C) : Fop(f) = init(T),
MSop = {this 7→ (o,C),x 7→ (v, T)}
H′op = Hop[o 7→ (C,Fop)]

(Hop,Sop,new C(v),FS)
→ (H′op,(MSop)◦Sop,stmt,(return o;)◦FS)
→∗ (H′′op,Sop,v,FS)

TransformV(C) = (C,Fcirc),

MScirc = {this 7→ (o,C),x 7→ (v, T)},
H′circ = Hcirc[o 7→ (C,Fcirc)],
TransformS(; ,(MScirc)◦Scirc,H′circ,
c,stmt ◦{}) = Scirc,H′′circ,
H′′circ(o) = (C,Fcirc)

TransformE(new C(vcirc),Scirc,Hcirc,c)
= H′′circ(o),H

′′
circ

Fcirc EQ Fop by the definition of TransformV, therefore MSop EQ MScirc.

Since Hop EQ Hcirc as well, then we can infer that H′op EQ H′circ.

Because all the state components are EQ, we can now assume that:[
(H′op,(MSop)◦Sop,stmt,(return o;)◦FS)

]
EQ

[TransformS(; ,(MScirc)◦Scirc,H′circ,c,stmt ◦{})] ,

and therefore (Sop,H′′op) EQ (Scirc,H′′circ).

Because the final heaps are equivalent, and because v = H′′op(o) we can conclude that

v EQ H′′circ(o). Therefore the final terms are also equivalent. �

7.5.4 Statements

Assume TransformS(. . .) = e,S,H,c and a final configuration (H′,S′,v,FS). A circuit

statement transform is EQ to the operational step if v EQ e ∧ S′ EQ S ∧ H′ EQ H. The

biggest difference between statements and expressions is the control-flow variable. Before

examining statements case-by-case, we’ll need a lemma to help us along the way.

7.5.4.1 Control Flow Lemma

A control flow expression, c, will be true at the start of a statement if c is true on the

control path reaching that statement. This means that if control reaches a statement in the

operational context, the control flow expression will be true in the circuit context. For

circuits, the statement transform operates over a continuation K, and there is an additional

requirement which is that assuming the initial c is true, at most one continuation will have

146

a c′ that is also true. This ensures that the set of statements ‘evaluated’ in the circuit context

is identical to the set of statements evaluated in the operational context. Both of these

properties of control-flow are implicitly true for the operational semantics; the rules can

only evaluate along a single control flow path. Therefore, we need to prove that the circuit

semantics produce at most one continuation with a true control-flow expression.

Case 1: Straight-line code Trivially true, c′ = c and there is only one continuation. �

Case 2: Conditional Statements:

Starting with if(e){stmt1} else {stmt2}, with control-flow variable c, and continuation K.

We assume that e is transformed into b, which leaves us with two possible continuations:

K1 = TransformS(; ,S,H,b∧ c,stmt1) = e1,S1,H1,c1

K2 = TransformS(; ,S,H,(¬b)∧ c,stmt2) = e2,S2,H2,c2

c1 =⇒ b∧ c, c is true, therefore c1 =⇒ b and ¬b =⇒ ¬c1.

c2 =⇒ (¬b)∧ c, c is true, therefore c2 =⇒ ¬b and b =⇒ ¬c2.

After a little substitution, we have c1 =⇒ ¬c2∧ c2 =⇒ ¬c1. Therefore the control flow

expression can only be true for one of K1 or K2. �

Case 3: Choose

By the side condition for choose, we can assume that the choose predicate is true for at

least one set of values. Therefore, the body will be executed (once), and therefore there is

at most one continuation for which c′ is true. �

Case 4: Return

Normal case In the normal case, the return is at the end of a scope/block and the next

statement is the scope exit {}. The transformation would be:

TransformS(return v,S,H,c,{}◦K) = TransformS(; ,S′,H′,c,{}◦K). There is only one

continuation (K), therefore at most one continuation will have c true. �

Abnormal Case In this case, the return is in the middle of a block of statements. The trans-

147

formation is: TransformS(return e,S,H,c,stmt◦K)=TransformS(return e,S′,H′,c,K).

c is unchanged, and there is only one continuation. �

7.5.4.2 Conditioned-State Lemma

The control-flow expression also manifests itself in the state mappings for the circuit

transformations. Every update is conditioned by the control-flow expression at that pro-

gram point. Thus every variable name maps to an expression of the value of that variable

over all possible control paths in the model. The final state in the operational context will

contain only one value for each state element. To demonstrate equivalence, we need to

prove that the expressions for state elements in the final circuit state produce only the value

that is visible at that program point. That is, only updates made on the control-path to that

program point are visible. This proof will be done for each of the control-flow changing

statements. In these cases, eold is the expression for that state element before any update

was processed.

Case 1: Straight-line Code

Assuming a control-flow expression c, all updates in straight-line code will be of the form

c→ e, eold . Therefore, if c is true, only the new value will be visible. If c is not true, then

the new value will not be visible. �

Case 2: Conditional Statements

The final states of the transformed conditional are:

S′ = b′→ Sthen,Selse, H′ = b′→ Hthen, Helse, where b′ is the transformed condition that is

used to select between the two state maps. The initial condition expression is c, and the

final expression is c′ = (b′∧ c)∨ (¬b′∧ c) = c.

If b′ is true, then b′∧ c = c and S′ = Sthen and H′ = Hthen. Therefore none of the else

state will be visible in the final state.

If b′ is false, then ¬b′∧ c = c and S′ = Selse and H′ = Helse. Therefore none of the then

state will be visible in the final state.

148

Therefore if c is true, then only one of the then state or the else state will be visible.

Also, if c is false neither the then nor else state will be visible. �

Case 3: Return

Normal case The return is at the end of a block. There are no subsequent statements,

therefore the state is the same. �

Abnormal case The return is followed by some number of statements before the block exit.

All the updates are conditioned by an explicitly false control flow expression, therefore

none of those updates will be visible.�

New Instances New instances are not conditioned by a control-flow variable. However,

by well-formedness no well-formed program may refer to a name outside of the scope in

which it is defined. For a program to violate the conditioned state lemma, well-formed

code would have to be able to distinguish between a state where the object was constructed

and one where it wasn’t. However, no well-formed program may refer to an instance that

hasn’t been constructed, and no well-formed program may refer to an instance outside its

scope. Therefore new instance construction doesn’t violate the conditioned state lemma.

7.5.5 Statement Equivalence

Now that we have proved the conditioned state lemma, we can assume that as long

as the operational value is equivalent to the circuit expression, then the heap and stack

states are equivalent. We can now do a case-by-case proof of the equivalence of circuit and

operational semantics.

sequence Trivially equivalent.

Local Variable Assignment

Operational : Circuit :
update(S,x 7→v)=S′op

(Hop,Sop,x=v,FS)→(Hop,S′op,;,FS)
S′circ=update(Scirc,x,(c→e,Scirc(x)))

TransformS(x = e; ,Scirc,Hcirc,c,K)

= TransformS(; ,S′circ,Hcirc,c,K)

149

Hop EQ Hcirc, because neither is changed.

e EQ v, by initial assumption. (c→ e,Scirc(x)) = e, by the control-flow lemma. Therefore

Sop EQ Scirc.

Therefore both rules are equivalent. �

Heap Variable Assignment

Operational: Circuit:

Hop(o) = (N,F),

F′op = Fop[f 7→ v],

H′op = Hop[o 7→ (N,F′op)]

(Hop,Sop,o. f=v,FS)→(H′op,Sop,;,FS)

TransformE(e,Scirc,Hcirc) = (ecirc,H′circ),

Hcirc(o) = (N,Fcirc),

F′circ = Fcirc[f 7→ ecirc],

H′′circ = update(H′circ,o,(N,F′circ))

TransformS(o. f = e,Scirc,Hcirc,c,K)

= TransformS(; ,Scirc,H′′circ,c,K)

Sop EQ Scirc because they are unchanged.

v EQ ecirc by equivalence of expression transforms, therefore H′circ EQ Hop and

Fop EQ Fcirc, and F′op EQ F′circ.

H′′circ(o) = (c→ F′circ, Fcirc) by the definition of update.

By the control flow lemmas, c is true and therefore H′′circ(o) = F′circ when control reaches

the operational rule.

Therefore H′op EQ H′′circ. Therefore both rules are equivalent. �

Local Variable Declaration

Operational: Circuit:
BS′op=BSop[x 7→(init(T),T)]

(Hop,(BSop ◦MS)◦S,T x; ,FS)

→ (Hop,(BS′op ◦MS)◦S, ; ,FS)

TransformV(T)=vcirc, BS′circ=BScirc[x 7→vcirc]

TransformS(T x; ,(BScirc ◦MScirc)◦Scirc,

Hcirc,c,K) = TransformS(; ,

(BS′circ ◦MScirc)◦Scirc,Hcirc,c,K)

150

Hop EQ Hcirc trivially.

vcirc EQ init(T), therefore BS′op EQ BS′circ.

Therefore (BS′circ ◦MScirc)◦Scirc EQ (BS′op ◦MS)◦S.

Therefore the rules are equivalent. �

Relation Assignment

Operational: Circuit:

rop = Hop(r),

r′op = λ i.(i = v)→ v′,rop(i),

H′op = Hop[r 7→ r′op]

(Hop,Sop,r[v]=v′,FS)→(H′op,Sop,;,FS)

Hcirc(r) = rcirc,

r′circ = λ i.(i = ecirc)∧ c→ e′,rcirc(i)

H′circ = update(r,r′circ,Hcirc)

TransformS(r[ecirc] = e′,Scirc,Hcirc,c,K)

= TransformS(; ,Scirc,H′circ,c,K)

Stacks are EQ trivially.

Hop EQ Hcirc by initial assumption, therefore rop EQ rcirc.

v EQ ecirc and v EQ e′ by initial assumption, and (i = ecirc)∧ c EQ (i = v) by the control

flow lemmas. Therefore r′op EQ r′circ. Therefore H′op EQ H′circ.

Therefore both rules are equivalent. �

Return

Normal Return (return statement at end of block)

Operational: Circuit:

(Hop,MSop ◦Sop,return v; ,{}◦FS)

→ (Hop,Sop,v,FS)

MS′circ = update(MScirc,@return,

c→ e,MScirc(@return))

TransformS(return e,MScirc ◦Scirc,

Hcirc,c,{}) = TransformS(; ,MS′circ ◦Scirc,

Hcirc,c,{}) = MS′circ(@return),Scirc,Hcirc

151

Before we demonstrate the equivalence of these rules, we must first argue for the gen-

erality of the circuit form. The statement continuation is the end-of-scope token {}. Does

this cover all possible returns? By well-formedness we know that returns can occur only

within a method context. We also know that method bodies are evaluated only via method

invocation. Method invocation is an expression, and therefore in the circuit context there

is a TransformE that will consume what is produced by the TransformS. Therefore, this

form of the circuit transformation is general enough to cover all well-formed cases.

Hop EQ Hcirc,Sop EQ Scirc trivially.

MS′circ(@return) = c→ e,MScirc(@return). e EQ v, by initial assumption.

Therefore v EQ c→ e,MScirc(@return) by the conditioned state lemma.

Therefore MS′circ(@return) EQ v. �

Abnormal Return (return statement in the middle of a block)

Operational: Circuit:

F 6={}

(Hop,Sop,return v; ,F ◦FS)

→ (Hop,Sop,return v; ,FS)

TransformS(stmt,Scirc,Hcirc, false,{})

= void,S′circ,H
′
circ,c

′,

stmt 6= {}

TransformS(return e,Scirc,Hcirc,c,stmt ◦K)

= TransformS(return e,S′circ,H
′
circ,c,K)

To begin, return e EQ return v trivially.

S′circ is an extension of Scirc conditioned by the control flow expression, c′. For each symbol,

x in Scirc, (S′circ(x) = Scirc(x))∨ (S′circ(x) = c′→ e′,Scirc(x)). For all mappings that weren’t

updated S′circ is identical to Scirc. However, since c′ is false, then for all the updated map-

pings S′circ(x) = false→ e′, Scirc(x) = Scirc(x), and is therefore also identical. Therefore

S′circ EQ Scirc, and therefore Sop EQ Scirc. A very similar argument can be made for heap

equivalence as well as the control flow variable being the same. �

152

Conditional Statements

Operational:

Condition true Condition false
vop=true

(Hop,Sop, if(vop){stmt1} else {stmt2},FS)

→ (Hop,Sop,{stmt1},FS)

→ (H1
op,S

1
op,{},FS)

vop=false

(Hop,Sop, if(vop){stmt1}else{stmt2},

FS)→ (Hop,Sop,{stmt2},FS)

→ (H2
op,S

2
op,{},FS)

Circuit:

TransformS(; ,Scirc,Hcirc,b∧ c,stmt1 ◦{})

= e1
circ,S

1
circ,H

1
circ,c1

TransformS(; ,Scirc,Hcirc,¬b∧ c,stmt2 ◦{})

= e2
circ,S

2
circ,H

2
circ,c2

S′circ(x) = b→ S1
circ(x), S2

circ(x)

H′circ(x) = b→ H1
circ(x), H2

circ(x)

TransformS(if(vop){stmt1} else {stmt2},Scirc,Hcirc,c,K)

= TransformS(; ,S′circ,H
′
circ,c1∨ c2,K)

We shall prove equivalence by proving the true and false conditions separately.

Condition true H1
op,S

1
op EQ H1

circ(x),S
1
circ(x) by the equivalence of statements. If the con-

dition is true, then b = true, therefore S′circ = S1
circ (likewise for H′circ). Therefore if the

condition is true, the two forms are EQ. �

Condition false H2
op,S

2
op EQ H2

circ(x),S
2
circ(x) by the equivalence of statements. If the con-

dition is false, then S′circ = S2
circ (likewise for H′circ). Therefore the states are also EQ when

the condition is false. �.

Because b EQ vop by the initial assumption, conditional statements are EQ. �

153

Forall

Operational:

e′op = CLOSE(e,Hop,Sop),

stmtop = CLOSE(stmt,Hop,Sop),

BSop = {@forallVars 7→ (x T), @forallPred 7→ e′op}

(Hop,Sop, forall(T x; e){stmt},FS)

→ (Hop,BSop ◦Sop,stmtop,{}◦FS)

Circuit:

e′circ = CLOSE(e,Hcirc,Scirc),

stmtcirc = CLOSE(stmt,Hcirc,Scirc),

BScirc = {@forallVars 7→ (x T), @forallPred 7→ e′circ}

TransformS(forall(T x; e){stmt},Scirc,Hcirc,c,K)

= TransformS(stmtcirc,BScirc ◦Scirc,Hcirc,c,K)

CLOSE is the same in both contexts, therefore e′op EQ e′circ, and stmtop EQ stmtcirc.

Therefore BSop EQ BScirc, and therefore by the initial assumption BSop◦Sop EQ BScirc◦Scirc.

The heaps are trivially equivalent. Therefore both rules are equivalent. �

Relation Assignment in Forall

Operational : Circuit :

eval(Sop,@forallVars) = (x T),

eval(Sop,@forallPred) = eop,

Hop(r) = rop = λ i ,

r′op = λ i . BIND(i,x,e,eop)→ v, rop(i),

H′op = Hop[r 7→ r′op]

(Hop,Sop,r[e] = v,FS)

→ (H′op,Sop, ; ,FS)

Scirc(@forallPred) = epred,

Scirc(@forallVars) = T x,

Hcirc(r) = rold = λ i ,

r′circ = λ i . BIND(i,x,e,epred)

∧c→ ecirc, rcirc(i),

H′circ = update(r,r′circ,Hcirc)

TransformS(r[e] = ecirc,Scrc,Hcrc,c,K)

= TransformS(; ,Scirc,H′circ)

154

BIND is the same in both contexts, therefore BIND(i,x,e,eop) EQ BIND(i,x,e,epred).

Therefore by the conditioned state lemma, r′op EQ r′circ. Therefore H′op EQ Hop. �

Choose

Operational:

e′op = CLOSE(e,Hop,Sop),stmt′ = CLOSE(stmt,Hop,Sop),

∃T vop : eval(e′op[vop x]) = true,BSop = {x 7→ vop}

(Hop,Sop,choose(T x;e){stmt},FS)

→ (Hop,BSop ◦Sop,stmt,{}◦FS)→ (H′op,S
′
op, ; ,FS)

Circuit:

TransformV(T x) = vcirc,

ecirc = CLOSE(e,Hcirc,Scirc),

stmt′ = CLOSE(stmt,Hcirc,Scirc),

BScirc = {T x 7→ vcirc},

TransformS({stmt},BScirc ◦Scirc,Hcirc,c∧ ecirc,K) = e′′,H′circ,S
′
circ,c

′

TransformS(choose(T x;e){stmt},Scirc,Hcirc,c,K)

= TransformS(; ,S′circH
′
circ,c,K)

eop EQ ecirc, assuming that ∃ T vop such that eop is true, then BSop EQ BScirc, therefore

H′circ,S
′
circ EQ H′op,S

′
op by the equivalence of statement transformations. Therefore choose

is equivalent �.

This proof requires that the choose be executable, that is, that there is a legal value

assignment such that the choose’s predicate is true. This is a proof requirement for the

modeler, and can actually be proved automatically (see Chapter 8).

155

7.5.6 Program Equivalence

An ACCLAM program is a set of models, some variable declarations, named state

definitions and an expression. The models, variable declarations and expression are all

trivially equivalent given the prior proofs. State definitions are just the evaluation of state-

ment sequences, with the additional extension of a STATES mapping. Since the mapping is

identical for both the circuit and operational context, the state definitions are also trivially

equivalent.

156

CHAPTER 8

QUESTIONS ANSWERABLE WITH THE LANGUAGE AND TOOL

ACCLAM is meant to model general purpose data types so that programmers can do

transactional data structure design with formal feedback. ACCLAM needs to be flexible so

that programmers can describe as many data types as possible. However, the real utility of

ACCLAM depends on the kinds of questions that an ACCLAM processing tool can answer

(that is, prove). This chapter will discuss several such useful questions, why they would be

interesting in a concurrent and transactional context, and how they are best represented for

use by a SAT solver.

Throughout this section I’ll use the word ‘question’ to refer to a specific proof condition

that an ACCLAM tool can prove given a fully-specified model.

8.1 Correctness Questions

The first set of questions deal with general correctness issues. These are questions that

address whether or not the data type being modeled is correct in a concurrent context.

8.1.1 Conflict Predicate Correctness

Given two methods op1 and op2, and a predicate expression, P, over the state, the

ACCLAM tool can prove that the predicate correctly describes the states under which op1

and op2 conflict (cannot commute). In general, P may be a function of the initial state, the

possible intermediate and final states, the method arguments, and their return values. Of

course, practical systems may not be able to sample all those values, but ACCLAM permits

the modeler to describe potentially impractical conflict predicates. Specifying a predicate

157

to describe conflicting states is interesting because it may be possible to precisely describe

the states of interest even though a practical method for enforcing concurrency control may

be necessarily less precise. Some systems [19] explicitly require some kind of predicate be

provided by the programmer (although in boosting, the predicate may only be a function

of the initial state and the method arguments). Additionally, it can be enlightening to try to

specify the exact states under which methods conflict, and this can lead to improvements

to a given data type’s concurrency.

Consider an initial state σi, and operations and states related as follows:

σi {ret11 = op1(x̄)} σ1

σi {ret21 = op2(ȳ)} σ2

σ1 {ret22 = op2(ȳ)} σ12

σ2 {ret12 = op1(x̄)} σ21

We can say that, for a given set of arguments and initial state, op1 and op2 do not

commute if:

(ret11 6= ret12)∨ (ret21 6= ret22)∨ (σ12 6= σ21)

In this expression equality of primitive values is as you’d normally expect, equality of

object types is the piecewise equality of their member values, and equality of states is the

piecewise equality of each of the entries in either state. Equality of relations is defined as

r = r′ ⇐⇒ ∀x : r[x] = r′[x].

We can summarize the non-commutativity conditions as a predicate:

NonComm(ret11,ret12,ret21,ret22,σ12,σ21)

A sufficient condition for proving the correctness of a given conflict predicate P is:

∀σi,x̄,ȳ NonComm(. . .)→ P(ret11,ret12,ret21,ret22,σ12,σ21,σ1,σ2,σi, x̄, ȳ)

158

Of course, this just proves that the supplied predicate is true when the methods wouldn’t

commute under a given state, and says nothing about how exact the predicate is.

Practically, conflict predicates might often be developed incrementally. The modeler

would propose a predicate and then refine it iteratively to get a better idea of the commuta-

tivity behavior of the data type being modeled.

8.1.2 SAT-friendly form

SAT solvers are particularly good at exploring a space in a way that is convenient for

answering existentially quantified expressions but not universally quantified ones. Since

the correctness condition above is universally quantified, it would seem to be a bad fit for a

SAT solver. The ACCLAM verification tool reformulates the condition so that an UNSAT

result implies that the condition is met. The reformulation is based on inverting the problem

and treating a satisfying assignment (that is a SATisfiable problem) as a rejection. Thus we

negate the more intuitive expression above to create an existential form:

∃σi, x̄, ȳ s.t. NonComm(. . .)∧¬P(. . .)

A satisfying assignment for this form implies that there is a state for which the operations

do not commute but for which the conflict predicate is false. This would contradict the

correctness condition. Therefore if this existential form is fed into a SAT solver and it

finds an assignment, the conflict predicate is not correct. Furthermore, the modeler has an

assignment that is a counter-example, which may help the modeler to refine the predicate. If

the SAT solver terminates with UNSAT, there is no valid assignment and thus the predicate

is correct.

159

8.1.3 Lock Correctness

Conflict predicates can be (almost) arbitrarily complex 1 and depend on many different

states. They can be incredibly precise, describing exactly those combinations of state and

arguments that prevent commutativity . However, in real-world systems many of the state

variables that a precise predicate would require may not be accessible. For example, possi-

ble intermediate states may require the partial execution of the methods in question, which

may be impossible or inefficient. A computationally expensive expression that must be

evaluated before every method invocation may not be practical, especially if performance

is a factor. One proposal for a more practical conflict detection scheme is abstract locking

[51]. Like more conventional locking, the locks and their lock modes are used to determine

if locks conflict. Locks are acquired as a method proceeds and are held until the outer

transaction commits. Abstract locks act as a summary of the state modifications performed

by an open-nested action.

An abstract lock is created within a lock space and with a particular mode. A lock space

is a collection of lock types with rules for determining if given instances of those lock types

overlap. For example, one could imagine a space of two dimensional objects. It might have

two types within it, points and line segments. The rules for determining overlap might be

the conventional ones from two dimensional geometry. If the lock space were defined so

that the points within it were integers or strings, one could imagine using such a lock space

to model locks over elements and ranges of elements within a data type.

Locks are also instantiated with a particular mode. Modes are much as they are in the

‘conventional’ locking world. Mode conflict can be defined as a matrix of boolean values

where the modes define the axes and at each cell within the matrix there is a boolean value

determining whether those two particular modes conflict. In order for two locks to conflict,

they must be from the same space, overlap within that space, and their respective modes

1Alternation of quantifiers is not allowed, and any predicate that causes the tool to exhaust memory and/or
CPU resources is obviously impractical.

160

must conflict. Locks are constructed based on the state at a particular point of execution and

the arguments to a method. Usually, they’re constructed at method entry although they may

also be acquired within a method as well. Because locks depend on the state at the point

where they are constructed, method invocation order may affect lock instances or modes.

For two methods op1 and op2, there are four potentially distinct sets of lock instances and

two possible combinations:

Locks1(σi, x̄)∗Locks21(σ1, ȳ)

Locks2(σi, ȳ)∗Locks12(σ2, x̄)

If we define a lock as a tuple of a lock instance (which includes the mode) and a lock space,

then we can define a function to determine overlap:

OVERLAP(< instance1,space1 >,< instance2,space2 >)

= (space1 = space2)→ overlapspace1
(instance1, instance2), false

In this definition, we assume that overlapspacei
is the overlap function defined for the

spacei lock space. Using the lock space aware overlap function, we can define a lock

conflict predicate LockCon :

LockCon =

OVERLAP(lock1, lock2)∧ conflict(Mode(lock1),Mode(lock2))

We then generalize this definition to sets of locks, since a method may acquire multiple

locks:
LocksCon =

∃ locki ∈ Locks1(σi,x), lock j ∈ Locks21(σ1,y),

lockm ∈ Locks2(σi,y), lockn ∈ Locks12(σ2,x)

: LockCon(locki, lock j)∨LockCon(lockm, lockn)

161

Using this lock conflict predicate, we can then define the lock correctness condition as:

∀σi,x̄,ȳ NonComm(. . .) =⇒ LocksCon(σi,σ1,σ2, x̄, ȳ,Locks1,Locks2,Locks12,Locks21)

This is not vastly different from the conflict predicate correctness condition. However,

the locking conflict predicate is a very different animal. In particular the lock arguments

themselves may be large expressions that depend on the state of the model.

8.1.3.1 SAT-friendly form

We invert the problem by treating UNSAT as correct and SAT as incorrect. We then

negate the universally quantified form to obtain:

∃σi, x̄, ȳ : NonComm(. . .)∧¬LockCon(. . .)

If the SAT solver finds an assignment (a SAT result), then there is a combination of initial

state and legal arguments that is non-commutative and for which the defined locks do not

conflict. This result is proof of the incorrectness of the specified locking protocol, and it is

also a specific failure case that the modeler can examine to help debug the locking protocol.

If the SAT solver returns UNSAT, then no incorrect assignment is possible so the model is

proved to specify a safe locking predicate.

8.1.4 Correctness of Inverses

Transactional programming involves reasoning not only about the commutativity of

operations on a data type, but also about their invertability. A transactional run-time is free

to fail and roll back a transaction at any point, so it is important that an open-nested data

structure correctly rolls back any uncommitted changes that were made. Of course, since

the data structure uses open nested actions, the inverse doesn’t need to undo every single

concrete operation that was performed up to the abort. The inverse’s function is to undo

162

the changes to produce an abstract state that is equivalent to the initial state just before the

open-nested action was invoked.

While an open-nested action is executing, all the normal concurrency control mecha-

nisms are in place, therefore an incomplete open-nested action can be undone in essentially

the same way as a closed nested action. After the open nested action has committed, all the

information that would allow the transactional run-time to undo automatically is discarded

(to prevent spurious conflicts). If the outer transaction in which the open nested action

is nested aborts, the run-time will invoke the programmer-provided inverse. Therefore,

checking the correctness of the inverse means ensuring that for all legal initial and final

states of the operation, the inverse transforms the final state back into the initial (abstract)

state. The inverse operation itself has access to the arguments and initial state. ACCLAM

itself allows the user to specify prevals, which are immutable variables initialized to ex-

pressions over the initial state. This is a convenience that makes it easier to write inverse

operations. However, since all prevals are derived exclusively from the initial state and

function arguments I won’t include them specifically in the formal description of inverse

operations.

Given an operation op(x̄) we can define its inverse op−1(x̄,σ). If an inverse is correct,

then given an initial state σi:

∀σi, x̄,σout : σi{op(x̄);op−1(x̄,σi)}σout =⇒ σi = σout

A correct inverse will always be able to produce a state equivalent to the initial state for all

possible output states of the forward-going operation.

8.1.5 SAT-friendly form

An existential version of the correctness condition uses the SAT solver to hunt for a

combination of initial state and arguments that the inverse does not successfully handle.

163

In this case, SAT is considered a failure, and a satisfying assignment indicates a state and

arguments for which the inverse was not correct.

∃σi, x̄,σout : σi{op(x̄);op−1(x̄,σi)}σout =⇒ σi 6= σout

8.2 Side-conditions

ACCLAM’s semantics depend upon certain assumptions associated with some of the

language constructs. Most of these can be checked statically ahead of time (e.g., type

correctness). However, there are two conditions that require more sophisticated proofs to

verify. Fortunately, the ACCLAM verification tool’s job is to produce SAT problems for

verification. We call these additional proofs ‘side-conditions’ and they fortunately can be

proved as separate SAT problems.

8.2.1 Forall side condition

ACCLAM does not support unbounded looping or recursion, so modelers have to model

this behavior with the forall statement. forall behaves like an atomic parallel update,

therefore the modeler can’t assume a particular order of evaluation. The transformation to a

pure expression form requires that the effect of the forall statement be consistent. What

this means is that the final state after the forall is the same regardless of the ‘order of

execution’. More specifically, it means that any relation update in the body of the forall

must always assign the same value to the same index of the relation. A relation update may

have expressions that produce index values, so it is possible that, for different values that

satisfy the forall predicate, the index expressions will produce equal values. Similarly,

the value being assigned to that index may also be the result of an expression. Therefore,

this is a tricky condition to determine statically. So instead of attempting to determine

forall correctness using conventional program analysis, ACCLAM just treats forall

correctness as another correctness condition to prove.

164

A forall statement has some bound variables z̄, a predicate P(z̄), a control flow

expression C(σ), and a body that may contain multiple relation updates. Given a relation

update in the body of the forall, rel[e] = e’, a correct forall will obey:

∀σ , z̄1, z̄2 : (C(σ)∧P(z̄1)∧P(z̄2)∧ e[z̄1/z̄] = e[z̄2/z̄]) =⇒ e′[z̄1/z̄] = e′[z̄2/z̄]

A more SAT-friendly form is:

∃σ , z̄1, z̄2 : C(σ)∧P(z̄1)∧P(z̄2)∧ e[z̄1/z̄] = e[z̄2/z̄]∧ e′[z̄1/z̄] 6= e′[z̄2/z̄]

The ACCLAM verifier can exhaustively examine every possible valid combination of

forall variables by extracting all possible variables from all possible states in which the

forall can execute. In practice, any method calls within the forall will have been

inlined so proof conditions can be generated for each forall independently.

8.2.2 Choose side condition

The choose statement in ACCLAM is correct only if there is always a valid choice that

can be made. If the predicate within a choose is true for no elements of the model’s state,

then the choose must be on a code path that isn’t logically executed. For each choose

statement we have two expressions: the predicate of the choose itself, and the control-

flow expression at that point in the method. Let’s call the choose predicate P(x̄,σ) and

the control flow predicate C(σ). Then the correctness condition for a given choose is:

∀σ∃x̄ : C(σ)→ P(x̄,σ)

The SAT formulation is:

∃σ : ∀x̄ : C(σ)∧¬P(x̄,σ)

165

If the SAT-solver finds an assignment, that means there was a legal state in which the

choose predicate is always false (along control paths that reached the choose state-

ment).

8.2.2.1 SAT-friendly form

Although the states are explored dynamically by the SAT solver, we know ahead of time

all the state variables that could possibly be accessed by the choose predicate. Therefore,

much like universally-quantified invariant expressions, we can just expand the nested ∀ into

a conjunction of all possible combinations. Then the condition simplifies to:

∃σ :
∧
x̄

C(σ)∧¬P(x̄,σ)

8.2.3 Invariant Maintenance

The other proof conditions assume that the defined methods are correct with respect to

the invariants. It is possible to prove that the methods maintain the invariants. A method

maintains an invariant if, for all legal input states and arguments the output state doesn’t

violate the invariant. Assuming that INVARIANTS is the set of all defined invariants, and

that an invariant, inv is a predicate that takes a state and arguments, and σout is the state

after executing a method, we can formalize the invariant maintenance condition as:

∀ m j ∈METHODS :

∀σ ,x,σout : σ [m j(x)]σout ∧
[
(
∧

invi∈INVARIANTS invi(σ ,x)) =⇒ inv(σout)
]

8.2.3.1 SAT-friendly form

The SAT formulation will use the SAT solver to try to find an initial state or set of

arguments that will cause the output state to violate the invariant. For a given method and

invariant, the formula would be:

∃σ , x : (
∧

invi∈INVARIANTS invi(σ ,x))∧¬inv(σout)

166

Since the proofs of invariant maintenance are independent for each method, they can be

developed as separate SAT problems and solved separately (and this is what the current

prototype does).

8.3 Performance questions

Up to this point, I have described correctness conditions. It is actually possible to retool

the ACCLAM verification machinery to answer questions more related to performance. Of

course, for true performance information, we’d have to model the system that would be

executing this model. As a proxy for more concrete performance details we’ll use pre-

cision. A precise predicate is one that exactly describes the states for which it is true.

Over-approximation may produce a correct predicate, but it may be true in many situations

where it needn’t be. Using “precision” this way is reasonable if one considers conventional

locking methodologies. A standard mutex can correctly prevent concurrent modification,

but it may be overly restrictive. Many practical systems use a more precise lock, the read-

write lock. It has more complex semantics than a simple mutex, but it can allow reader

parallelism, which can boost the performance of data structures where readers tend to out-

number writers. In the context of ACCLAM the read-write lock can be considered to be

more precise than the simple mutex for read operations.

8.3.1 Conflict Predicate Precision

Conflict predicates allow the modeler to reason about the commutativity of the data

structure as a function of state. A more precise conflict predicate more exactly describes

the division between commuting and non-commuting operation invocations. To test for

conflict predicate precision, we need a condition that describes invocations that commute

but for which the conflict predicate is true. Going back to the SAT-friendly form of conflict

predicate correctness:

∃σi, x̄, ȳ : NonComm(. . .)∧¬P(. . .)

167

Remembering that NonComm(. . .) is the raw state-comparison expression that is true if any

part of the final state depends on the order of method invocation, we can infer that if the

methods commute under the state, then NonComm will be false. We just need to rearrange

the expression a little to get an expression that is true for all the commutative states in

which the conflict predicate is conservatively true, something like:

∃σi, x̄, ȳ : P(. . .)∧¬NonComm(. . .)

This statement is true in states where the conflict predicate is true, but the raw state-

comparison commutativity function shows that the methods actually commute.

8.3.2 Lock Tightness

The more precise a lock is, the more concurrency it may allow. Therefore, in general

terms, a more precise lock may permit higher performance. Of course, in practice there

may be a trade-off between the computational overhead of performing highly precise lock

calculations and the incremental improvement in concurrency. However, there is benefit in

understanding those situations for which a model’s locking protocol may be sub-optimal.

At the very least, the modeler will be able to see the trade-offs made in the concrete de-

sign. More generally, a model may be iteratively adjusted over its lifetime to refine locking

protocols when profiling reveals that reduced concurrency is responsible for performance

degradation (and that the locks are not tight).

We can do the same kind of inversion of the correctness condition here to yield a preci-

sion condition. Revisiting the lock correctness condition:

∃σi, x̄, ȳ : NonComm(. . .)∧¬LockCon(. . .)

We can do a little re-arranging to get:

∃σi, x̄, ȳ : ¬NonComm(. . .)∧LockCon(. . .)

168

This statement is true for states where the locks conflict, but the methods actually com-

mute.

169

CHAPTER 9

TOOL DESIGN AND PERFORMANCE

The ACCLAM verification tool is a Java program that acts as a compiler for the AC-

CLAM language. Rather than compiling into an executable composed of machine code,

the Verifier (the verification tool) converts a circuit representation of an ACCLAM model

into a conjunctive normal form SAT problem. This SAT problem is then fed into a freely

available SAT solving library (sat4j [42]).

9.1 The Verifier’s Front End

The Verifier is structured similarly to many modern language processors. The front end

is composed of phases that are executed in a pipelined fashion. The parser for ACCLAM

is written in ANTLR (an LL(k) parser-generator). The resulting abstract syntax trees are

fed into a name resolution pass that tags every symbol it can find with the declaration of

that symbol. The next pass is a type-checker that implements the judgments described

in the static formal semantics. The output from all this is a fully resolved, type correct

ACCLAM program. It still contains statements, and still needs to be turned into a circuit-

based program before it can be fed to the SAT solver.

9.1.1 Expansion into circuit expressions

The part of the tool that takes a statement-rich ACCLAM program and processes it

into a collection of composable pure expressions is called the ‘Expression Expander’. Its

odd naming aside, it basically performs, in code, the steps laid out in the formal circuit

semantics. The expander processes an ACCLAM description in a modular fashion, treating

170

each model and method as an independent module. What this means is that it converts a

method into an expression-based circuit with inputs and outputs so that they can be more

readily stitched together. An important point to remember is that instance variables (the

members of the description itself) may also have to be considered as inputs, because in

general, it may be necessary to construct circuits that perform the same operation but on

multiple different instances.

The expander does a form of flow-analysis to handle variable assignment, and this is

also expressed in the circuit semantics. Method invocations are inlined directly (their circuit

expansion is wired in), which is the main reason why ACCLAM doesn’t have support for

recursive functions. Interestingly enough, the lack of recursion didn’t hamper our ability

to describe non-trivial data types. The forall construct permitted us to express many of

the semantics for which standard programming languages would use iteration or recursion.

The expander predates much of the formal understanding of the circuit-based seman-

tics. I have found that I often need to build prototypes in order to explore the problem

enough to get a feel for it. Therefore, much of the circuit semantics is a cleaner, more

formal rendition of the internal processes within the expression expander. For example, the

control-flow variable/bit is a fundamental part of how the expander works. As the expander

flows through a statement block, it very carefully keeps track of the expression that rep-

resents the state needed to reach each point in the code. When a variable’s value must be

computed (when converting an assignment), it is wrapped in the control-flow expression.

9.1.2 Relations and scalarization

From the point of view of the modeler, and the language of ACCLAM itself, a relation

can be viewed as a massive (possibly multi-dimensional) array. However, in order to practi-

cally represent a relation in a real system in a feasible way, the verifier employs a technique

we call ‘scalarization’. Scalarization is turning a relation of N-indexes into a function of

171

N arguments whose body is a chain of conditional expressions (if-then-else). A relation

boolean rel[T, T, T] would become something like:

boolean rel(T idx1, T idx2, T idx3) {

if (idx1 = <val1> && idx2 = <val2> && idx3 = <val3>) {

rel_element1;

} else if (...) {

rel_element2;

} else {

rel_element_initial;

}

}

After working on this for a while, we discovered that it is very similar to an older

transformation known as ‘ackermanization’ (or the Ackerman reduction) [1]. Scalarization

leverages the order of evaluation for a conditional expression to implement successive as-

signments. Each assignment to a relation essentially wraps the previous expression in a

new conditional expression with the old expression as the else case. rel[1, 2, 3] =

true; would become something like:

boolean rel’(T idx1, T idx2, T idx3) {

if (idx1 == 1 && idx2 == 2 && idx3 == 3) {

true;

} else {

rel(idx1, idx2, idx3);

}

}

172

These transformations are formalized in the formal semantics (chapter 7), however I of-

ten find that an informal description with examples can be very beneficial to understanding

a language processing system.

9.1.2.1 Relations within forall

forall is a special case. The main purpose of a forall statement is to model a

parallel update that assigns values to all indexes in a relation that match some predicate

function. This makes up for not having a more general recursion or iteration construct in

ACCLAM. Like more pedestrian assignment, forall wraps the prior definition in a new

condition. However, the conditional expression itself is a transformed version of the forall’s

predicate.

boolean friends[T x, T y];

. . .
void unfriendTotally(T user) {
...
forall (T x ; friends[x, user]) {
friends[x, user] = false;

}
...

}

Figure 9.1. An Example of Forall Usage

Given the example in Figure 9.1, if we assume that the prior definition of the friends

relation was friends prior, this would become:

boolean friends(T idx1, T idx2) {

if (friends_prior(idx1, user)) {

false;

} else {

friends_prior(idx1, idx2)

} }

173

It’s straightforward to extend this to handle predicates that mention completely different

relations. For example:

boolean even[int];

boolean odd[int];

...

forall(int x ; even[x]) {

odd[x] = false;

}

would become something like:

boolean odd(int idx1) {

if (even(idx1)) {

false;

} else {

odd_prior(idx1);

}

}

As long as the relation being updated is referring directly to the forall variables, the

substitution is a straightforward replacement of forall variables with relation index vari-

ables. However, if the relation assignment is indexed by a function of the forall variables,

then the tool must be able to invert the function in order to recover the values. Consider:

forall (T x ; P[x]) {

rel[f(x)] = <constant>;

}

174

In order to build a conditional expression, we’d need to be able to convert the forall

predicate to an expression in terms of the index variables of the relation. As long as f can

be inverted (as f’), we can have:

rel (T idx) {

if (P (f’(idx))) {

<constant>

} else {

rel_prior(idx)

}

}

The ACCLAM tool is fairly limited in functions it knows how to invert so it is possible

to express a sophisticated, but legal, forall statement that the tool won’t be able to

process. This is just a limitation of the current tool, however. In my modeling efforts I

haven’t found this limitation to be particularly restrictive.

There is an additional correctness constraint over forall statements. The right-hand-

side of the assignment might itself be an expression in terms of variables. In order for the

tool (and the model writer) to reason about the meaning of a forall, it is vital that for any

assignments in the body: rel[f(x1,..., xN)] = g(x1, ..., xN);

∀x̄ = (x1, ...,xN), ȳ = (y1, ...,yN). f (x̄) = f (ȳ)→ g(x̄) = g(ȳ) Because of this requirement,

the tool can assume that it can always safely do the following transformation:

rel (idx1, ..., idxN) {

if (P(f’(idx1, ..., idxN))) {

g(idx1,, idxN);

} else {

rel_prior(idx1, ...);

}

}

175

The tool processes relations in two basic phases. First, a set of all dereferences is

built up and an initial scalarized function of all visible values is assembled. The second

phase is to process assignments. The assignment processing is very order-dependent so

it must be done carefully (e.g., op1() ; op2() will have a different relative order for

assignments done in op1 than for op2() ; op1()). In the case of conflict predicate

and lock correctness, this means that two separate expressions will be generated for the

two different final states of the relation, where the main difference will be the relative order

of any assignment-related conditional expressions.

9.1.3 Reductions

Reductions are derived by mapping a predicate over a relation. The predicate maps

relation values into elements of an Abelian group, and then aggregates that set of values

into a single element of that group. At the moment, the tool supports only one kind of

reduction (count), which operates over the group of non-negative integers.

There are two things the tool needs to do for reductions. One is to compute a correct

initial value for the reduction. After all, if the SAT solver generates a legal state where

a relation is populated by 3 values, the sum reduction had better be outputting 3. Since

ACCLAM restricts states with invariants (rather than requiring the tool to produce entire

histories starting with object construction), the tool needs to be able to process relation

expressions and derive an expression for the initial state of the reduction that is correct. In

practice, the tool uses the set of dereferenced indices from relation processing and maps

the reduction value mapping over that set.

The remaining responsibility of the tool is to make sure that reductions stay in sync

with their associated relation. This is actually fairly simple. Each normal assignment is

wrapped in conditional adjustments to the reduction. Given a membership relation in and

a reduction over it like:

176

boolean in[T];

int ct = count(T x ; in[x] ; 1 ; 0);

An assignment in[ex1] = ex2; would be expanded to something like:

if (in[ex1]) {

ct = ct − 1;

}

in[ex1] = ex2;

if (in[ex1]) {

ct = ct + 1;

}

Now the expression for ctwill automatically be converted to an expression conditioned

on the value of in.

Reductions over relations that are modified by a forall expression are very difficult

to reason about. Except in cases where the predicate is completely pre-computable at tool

processing time (a boolean constant, say), the tool can’t figure out how many relation slots

were modified by a forall update. Of course, if two relation expressions are equal for

all possible index values, their reductions will also be equal, so the reduction delta for a

forall update can also be assumed to be equal and set to the group’s identity value. How-

ever, that isn’t possible if the relation expressions differ from one another. Therefore the

ACCLAM tool can’t fully reason about reductions whose relations are updated in forall

statements.

9.1.4 Invariants

ACCLAM allows modelers to specify invariants that define the legal states for the data

type they are modeling. This is very powerful because it means the system can leverage

SAT solvers to generate all legal states without having to evaluate all possible histories from

some starting point. Furthermore, producing a set of histories is obviously computationally

177

expensive, and it’s not clear that it could possibly fully model an abstract data type, in

general. ACCLAM supports both kinds of quantification, and so invariants can be specified

using both existential (exists) and universal (forall) quantification.

Existentially quantified expressions are very straightforward in a SAT circuit. Each

quantified variable becomes a top-level ‘floating’ variable composed of SAT literals that

the SAT solver will be free to set. The challenge is that invariants tend to be expressed in

terms of universal quantification, which a SAT solver would ordinarily struggle with. The

tool solves this problem by relying on the fact that ACCLAM models are finite. For a given

problem and model, the set of all variables of all types is completely known and guaranteed

to be finite. This means that all the state, and therefore all the inputs to any expression being

used, can be fully enumerated. Therefore, it is possible to expand a universally quantified

statement into a conjunction of assertions about every element in that finite set of variables.

The expansion-based approach requires that quantifiers not be alternated. If an exists

were nested within a forall, that would require that variables be instantiated and that the

SAT solver be forced to explore an essentially unbounded number of states, and that would

make the model not provable by our techniques (except perhaps for data types with a very

small number of possible values).

9.1.4.1 Forall Expansion

The ACCLAM tool performs forall invariant expansion by instantiating the body of

the invariant expression for each possible variable that the model is using. This information

is needed to build the CNF clauses, so it’s readily available. The verification tool can filter

down this set of variables by type, and further by performing a limited form of slicing

[70] (to ensure that ‘helper variables’ like the relation function indexing variables aren’t

quantified over). The end result is a set of expressions that can be AND-ed together to

yield a finite instantiation of a forall invariant.

178

Consider the example of a MultiSet. This is a set that permits elements to be in-

cluded multiple times. Let’s say the modeler chooses to model a multiset by having two

relations. One relation maps elements to a boolean value and the other relation maps ele-

ments to an integer counter. The model would look something like:

model MultiSet<T> {

boolean in[T];

int counter[T];

...

void add(T addObj) {

in[addObj] = true;

counter[addObj] = counter[addObj] + 1;

}

}

We can start to reason about the invariants that this model should have. If an element is in

the set, the counter should be greater than 0. That would be expressed like:

invariant forall(T x ; in[x] → counter[x] > 0);

In the state after add(x) ; add(y), we can instantiate this invariant over all in-

stances of type T, which results in an expression like:

in[x]→ counter[x]> 0∧ in[y]→ counter[y]> 0

In practice, the invariant would also be instantiated over any initial state that was also

generated by the ACCLAM verification tool.

9.1.5 Predicate construction

The verification tool processes the model, converting the methods into expressions that

can be chained together. Then, these are used by the tool to assemble what is called ‘The

179

Predicate’, which is the top-level expression that expresses the proof condition we’d like

the SAT solver to tackle. ACCLAM permits the modeler to specify conflict expressions

that involve states from any point in the execution of a pair of methods. The verifier will

record the expressions for each member of the state before and after method invocations.

This means that the tool can expand any expression in the predicate in terms of the state

before or after any method invocation. Because the mutations specified in the model have

been turned into expressions, it is possible to model complex predicates that require access

to intermediate states and return values even though it may be inefficient or impossible to

implement such state sampling in a practical system. In this way ACCLAM can model

both practical and currently impractical systems.

As an example, consider the predicate that would have to be assembled for conflict

predicate verification. Given two methods: op1,op2, the full predicate would be: (σ12 6=

σ21 ∨ return1
12 6= return1

21 ∨ return2
12 6= return2

21)→ conflict. To assemble this expression,

the verifier builds up state expressions for each state member of the model for both method

orders. The return expressions are chained off of the initial state or prior method’s final

state. Then this expression is joined by implication with the modeler-supplied conflict

predicate, which itself can depend on state variables sampled from the initial, intermediate,

and final states.

9.2 The Verifier’s Back End

The products of the verifier front end are: a set of state variables, a state-sampling

predicate assembled on top of those variables, and a collection of invariant expressions

defined in terms of those variables. The resulting expressions are composed of:

1. Variables

2. Basic boolean operations (AND, OR, XOR, bit-inversion)

3. Basic logic operations (NOT, ==,→)

180

4. Basic arithmetic operations (integer addition, subtraction, etc.) and shifting opera-

tions (left, right, arith. and logical)

5. If-then-else expressions

The back end’s main job is to convert these expressions into a circuit form that can be

directly converted into a conjunctive-normal-form that a SAT solver can consume. Because

there tends to be a lot of redundancy and recomputation in these expressions, a great deal

of benefit can be gained by attempting to simplify and share sub-expressions.

9.2.1 Expression Conversion

ACCLAM is a strongly-typed language based on, and attempting to model, Java-like

languages. Therefore, each variable in ACCLAM is well-typed, and because of this Java

heritage the exact bit-width of every type is known. Variables are converted to tuples of

bits (each one of which will eventually become a SAT literal).

Boolean operations are handled by building circuits to manipulate the bits directly. Log-

ical operations either operate on boolean (single-bit values) already, or take two variables

and compare their constituent bits to produce a single-bit output.

Arithmetic operations are handled by building conventional combinatorial circuits. For

example, addition is modeled by building a ripple-carry adder circuit of the appropriate

width. Shifting operations are handled similarly.

Conditional expressions (if-then-else) are modeled as multiplexers. The then and else

clauses must produce the same type, therefore they can be treated as the two inputs to a

2-way multiplexer. Because the condition is necessarily a boolean expression, its output is

connected to the single-bit selection input to the 2-way multiplexer.

9.2.2 Circuit Simplification

The verifier’s front end assembles expression fragments and instantiates them and wires

them together in different orders to build up compound expressions that fully model a state

181

through multiple method invocations. This reuse induces a lot of redundancy within the

expressions. The front end also doesn’t perform a lot of optimizations, so there are also

a lot of expressions that have simpler, more compact forms (e.g., x∧ x⇒ x). Therefore,

the back end first takes all the expressions produced by the front end and does some basic

constant propagation and circuit simplification.

The expressions are all pure, so the back end can just do a static flow analysis to prop-

agate values through the expressions. Although it is referred to as a constant propagator in

the code, the propagator also propagates facts about conditional expressions as it visits each

arm of an if-then-else. That is, as the then clause is visited, the conditional expression will

evaluate to true (false for the else clause). The front end tends to produce nested con-

ditional expressions, so the constant propagator handles nested expressions (using a stack).

As each expression is visited by the constant propagator, another component examines the

resulting expression and applies boolean peephole simplification. This peephole optimizer

has a set of basic boolean simplification rules (e.g., x∨ true⇒ true) that it tries to apply to

the expression to reduce its size.

9.2.3 Circuit Memoization

Even after a circuit is simplified at the expression level, two different expressions may

share one or more sub-expressions. This is very likely given the way the front end stitches

together expressions (although there is no explicit labeling or plumbing within the tool to

provide this information to the back end). The back end detects shared subexpressions

dynamically via a process I call ‘circuit memoization’. As each expression is fed into

the code that converts it to SAT form, the expression is hashed and used to look up prior

circuits. If there’s a hit, and the original expression matches the current expression, the

circuit builder will just use the old circuit rather than construct a new one. This is totally

safe because these circuits are pure (no register-like state). This memoization can greatly

reduce the size of the resulting SAT problem, and although there is no guarantee that a

182

smaller SAT problem will be easier to solve, reducing the number of clauses tends to speed

up SAT solving.

Because the back end always runs circuit memoization, the circuit simplification pass

attempts to order expressions so that they’ll tend to be recognized as duplicates. For ex-

ample, a | b is the same expression as b | a, but a lossy process such as hashing their

string representations may not catch this fact. Therefore, the circuit simplifier will rewrite

the second expression instance so that it will tend to hash to the same as the first. This has

the added benefit of making the peephole rule sets smaller (because constant values will

always be in a fixed position relative to non-constant values).

To illustrate the importance of simplification and memoization, I ran the large model

ParamOrderedSet through the verification tool with simplification and memoization

disabled. The remove method with memoization and simplification enabled, produces a

SAT problem with over 72 thousand variables and almost 4 million clauses. Without sim-

plification or memoization, there are over 224 thousand variables and almost 6.25 million

clauses. The results across all methods for conflict predicate verification are summarized

in Table 9.1. In that table, ‘diff’ refers to the difference between the non-simplified and

simplified versions, and ‘ratio’ is the ratio of the non-simplified to simplified versions (to

help illustrate how much larger the non-simplified versions can be). The numbers in the

table speak for themselves, and illustrate that the problem size is greatly reduced by these

optimizations. Additionally, I had to increase the memory allowed to the SAT solver to

1.5GB (the default was 512MB) in order to load and run the larger SAT problems. Interest-

ingly, the larger problems are also harder for the SAT solver to simplify and solve quickly.

The simplified and memoized problem versions had 31 out of 64 solved via a contradiction

that was detected as the problem was being loaded into the SAT solver (shows up as 0 time

spent). However, the non-simplified non-memoized problems had only 11 out of 64 that

were similarly solvable. Therefore, to tackle any reasonably complex modeling problem,

183

it is important to be able to optimize the expressions and circuits before handing them over

to a SAT solver.

avg diff max diff min diff avg ratio max ratio min ratio
SAT vars 52650 161248 12969 6.38 15.59 3.00
SAT clauses 186200 2254131 8286 1.23 1.69 1.04
time (ms) 4161 81746 0 568 16255 0

Table 9.1. Summary of Non-simplified Problem Results for ParamOrderedSet

9.3 Verification via SAT

The back end consumes pure expressions and produces a set of boolean variables and

a collection of CNF clauses. These are then handed to a third-party SAT solving library

(sat4j) that consumes the CNF form and runs a SAT solver on it. sat4j includes several

modern optimized SAT solvers (such as zchaff [48]) as well as a clause pre-processor that

can detect contradictions while processing the CNF clauses. What this means is that the

SAT solver tends to complete in a few seconds, but can sometimes detect UNSAT without

doing any variable exploration at all.

For the safety proof conditions we’re interested in, the predicates are structured so that

UNSAT will mean that the condition held in all legal states, and SAT will mean that the

condition did not hold. Moreover, because SAT is being used as a failure case, we can take

the assignment produced by the SAT solver and use it as a counter-example to display to

the modeler.

9.3.1 Using a counter-example

The verification tool can take a counter-example and map the values onto inputs and

outputs for the various circuit elements that were used to build the CNF problem. This can

then be used to produce a DOT file which can be processed to produce a graphical form of

the expression circuit. The circuit operations (AND, etc.) are the vertices and the edges are

184

the variables flowing between the operations (which are labeled with the assignments the

SAT solver gave them). The operations can be mapped back onto the original expressions

by examining the tool output. In the future, it would be more convenient to just plumb

these tags through to the DOT-file generation.

In the example output in Figure 9.2, we can see the circuit structure for the ParamSet

model doing conflict checking for add(x) * find(y). At the top of the graph is the

big conjunction that conjoins the state comparison subcircuit (the ORC), the conflict pred-

icate subcircuit (the NOT), and the invariant subcircuit (which in this case was simplified

to a constant 1). The state comparison subcircuit ORs a whole bunch of expressions that

had been simplified to false. This is because the return result of one of the methods is

void and void != void is always false. Other trivially true state comparisons were

simplified to false as well. The only state comparison that wasn’t simplified to a constant

was the expression for the return value comparison for find. The subcircuit compares the

result of reading the initial state of the relation in with the state after add has mutated it.

The structure of the relation expression is a chain of if-then-else expressions. The incorrect

conflict predicate for this case is false. When the in relation differs, the return value

comparison is true, which forces the state comparison OR also to be true.

Figure 9.2. An Example Output Graph of an Assignment

185

9.4 Limits

ACCLAM can prove useful things about models of real data structures. And the prob-

lems discussed so far have all been very tractable and within the ability of a zChaff-derived

SAT solver to solve on laptop hardware. However, the verification tool does produce SAT

problems, and there is a limit to how large those problems can be before the tool has dif-

ficulty producing results in a reasonable amount of time, or at all. The largest contributor

by far to problem size are the invariants. Because universally quantified invariants are ex-

panded into an exhaustive set of conjoined covering expressions, it is easy to see how they

can grow to overwhelm the SAT solver.

As an example, I added the following invariant to the ParamOrderedSet model:

invariant forall(T x, T y, T z;

(in[x] && in[z] && x = prev[z] &&

order.lt(x,y) && order.lt(y,z)) →

(next[y] = z && prev[y] = x && !in[y]));

I didn’t modify any of the state or method definitions. Since this invariant instantiates three

variables, it will be the largest invariant in the model. Running the verifier to check conflict

predicates resulted in a number of Java OutOfMemory exceptions (by default, I would

run with 512MB). Only by raising the memory limit to 1.5GB could I get the SAT solver

to terminate on the larger problems. Table 9.2 summarizes the results when running the

model with this large invariant. Both memory and time requirements increase; however,

the average increase in time was larger than that in memory. This is not surprising, and

one would expect that each additional clause or variable added would tend to increase the

running time at a greater rate than the memory used.

9.5 Results

We ran our suite of models through the verifier tool to get a range of results for inverse,

conflict predicate, and lock protocol verification. Additionally, I prototyped a conflict pred-

186

increase ratio
avg max min avg max min

SAT vars 393 2303 34 1.03 1.08 1.01
SAT clauses 724553 9331390 16702 1.93 3.34 1.35
time (ms) 1053 30079 0 2.16 13 0

Table 9.2. Summary of SAT Results for ParamOrderedSet with Large Invariant

icate precision and lock protocol precision verifier and ran a less-precise version of the Set

model through it. The tables below summarize the timing and SAT statistics with average,

minimum and maximum values. The full results appear in Appendix A. SAT statistics are

a rough metric that the SAT community uses to gauge problem size, and they consist of a

variable count and a clause count. Of course, this is only an approximate way of measur-

ing problem hardness, but it is a convenient way of comparing the complexity of different

models.

The verification tool is implemented in Java, and is single threaded. The SAT verifica-

tion was done with sat4j 2.0.5. The results were generated on a Macbook Pro laptop (2.2

GHz Intel Core i7 CPU, 8GB 1333 MHz DDR3 RAM). The JVM was limited to 512 MB

of main heap size.

9.5.1 Data types Modeled

• IntCell An atomic integer container

• Map A type-parameterized Java-style map

• MultiMap A map that supports multiple values for a key

• Set A type-parameterized set of values

• MultiSet A set that permits multiple identical elements

• Equality-parameterized Set A set where equality is defined by a type-parameterized

relation

187

• Equivalence-class based Set A set where equivalence is defined by an external model

• Canonical element based Set A set where equivalence is defined by an equivalence

class represented by a canonical element

• Set with Iterators A parameterized set with an incremental and snapshot iterator

• Total Order A model of a total order

• Partial Order A model of a partial order

• Ordering-parameterized Ordered Set An ordered set, parameterized by an instance

of a partial order

• Queue A type-parameterized LIFO data structure

• Stack A type-parameterized FIFO data structure

9.5.2 Inverse Results

For space reasons the timing and SAT statistics are presented in two separate tables

(9.3 and 9.4). The timing results are interesting because no inverse verification took over

a second. The SAT statistics show that for most models, the variable and clause count is

fairly small. ParamOrderedSet is definitely the outlier here. Not only is it the most

complex model, with the most abstract state, it also has the most invariants. And, in fact,

the invariants are responsible for most of the clauses.

188

Model Avg Time (ms) Max time (ms)
Stack 77 154
Equivalence 0 0
PartialOrder 0 0
Map 35.8 107
ParamOrderedSet 24.88 105
ParamSetIterators 4 16
IntCell 0 0
MultiMap 69.6 244
Queue 101 218
MultiSet 226.9 810
Set 0.29 1
ParamSet (canon) 4.67 7
ParamSet (Equiv) 0.33 1
ParamSet (equ) 1.67 3

Table 9.3. Timing Summary for Inverse Verification

Vars Clauses
Model Avg Min Max Avg Min Max
Stack 6598 3123 8352 28003 9311 38955
Equivalence 2022 2022 2022 5633 5633 5633
PartialOrder 1294 1294 1294 3785 3785 3785
Map 2411.2 1138 4337 8158 2558 16590
ParamOrderedSet 12432 2916 37030 379586 48751 1287310
ParamSetIterators 4423 2791 7132 11927 7498 18424
IntCell 103 103 103 107 107 107
MultiMap 5734 1710 11972 44192 3861 144402
Queue 17030 9821 21639 120560 46409 176419
MultiSet 8456 1420 13778 70980 3158 160161
Set 783 297 1147 1972 557 3033
ParamSet (canon) 2533 1235 3183 56895 4625 85957
ParamSet (Equiv) 542 104 761 1693 109 2487
ParamSet (equ) 3048 2791 3177 8766 7498 9401

Table 9.4. SAT Statistics for Inverse Verification

189

9.5.3 Conflict Predicate Results

The conflict predicate timing results (Table 9.5) show a bit more spread than the inverse

results. The average time is still under a second, but the maximum times are starting to

creep up into tens of seconds. The reason for this large increase is illustrated in the SAT

statistics (Table 9.6), where we see that the problem sizes are roughly twice as large as in

the inverse case. Twice as many clauses tends to translate into much more than twice as

much time running the SAT solver, so the time increases make sense.

Model Avg time (ms) Max time (ms)
Stack 4.5 50
Equivalence 0 0
TotalOrder 0 0
PartialOrder 0 0
Map 40.1 398
ParamOrderedSet 650 23300
ParamSetIterators 3.20 146
IntCell 0.428 5
MultiMap 51.20 1240
Queue 70.80 649
MultiSet 272 5300
Set 3.410 34
ParamSet (canon) 31.4 43
ParamSet (Equiv) 0.35 1
ParamSet (equ rel) 13.7 50

Table 9.5. Timing Results Summary for Conflict Predicate Correctness

9.5.4 Abstract Lock Results

The abstract lock correctness timing results (Table 9.7), show better performance than

the conflict predicate results. Of course, ParamOrderedSet remains the high-end out-

lier, but it is the only model to take over 2 seconds for any particular verification step. The

average time is also smaller. Interestingly enough, looking at the SAT statistics (Table 9.8),

they aren’t radically smaller than the conflict predicate problems (ParamOrderedSet’s

statistics are actually worse). Of course, a SAT problem with more clauses is not inher-

190

Vars Clauses
Model Avg Min Max Avg Min Max
Stack 7389 2561 12540 29980 7765 63490
Equivalence 1013 380 1646 149400 13122 285666
TotalOrder 1426 381 1664 373900 14970 515130
PartialOrder 1407 378 1643 327000 12198 450784
Map 2030 506 6693 8121 999 36175
ParamOrderedSet 13760 2514 72443 511100 47653 3992170
ParamSetIterators 2061 514 20669 11640 1017 252835
IntCell 677.7 115 1110 1532 126 2501
MultiMap 4963 537 19143 30270 1031 199364
Queue 20690 8201 33121 201100 42076 386965
MultiSet 9556 1241 27079 69740 2733 277447
Set 2214 504 4602 8288 996 21081
ParamSet (canon) 9165 4182 10033 462700 76766 608690
ParamSet (Equiv) 468 117 1197 1359 129 4449
ParamSet (equ rel) 3564 389 10034 161600 2100 607675

Table 9.6. SAT Statistics Summary for Conflict Predicate Correctness

ently a harder problem, so we are perhaps being misled by what is, at best, an approximate

metric. The expressions generated for the lock correctness proof involve only the state

available at method entry, and in most cases involve only the method arguments. The over-

lap predicates are also simple. So the lock predicate in most cases won’t involve evaluation

of relation or reduction state. These simpler expressions end up generating sets of clauses

that tend to be more tractable.

9.5.5 Conflict Predicate Precision

I extended the conflict predicate correctness verifier to wire up the final circuit to test

predicate precision. I ran the Set model through with a conflict predicate specification

where all the mutating operations had their conflict predicate as true (correct, but very

imprecise).

191

Model Avg time (ms) Max time (ms)
Stack 0 0
Map 0 0
ParamOrderedSet 1707 21140
ParamSetIterators 4 180
IntCell 0 0
MultiMap 104 1470
Queue 0 0
MultiSet 300 1939
Set 6 55
ParamSet (canon) 14 66
ParamSet (Equiv) 1 2
ParamSet (equ) 0 0

Table 9.7. Timing Results Summary for Abstract Lock Correctness

9.5.6 Lock Tightness

I extended the lock correctness verifier to wire up the predicate for lock tightness and

tested it on Set. I replaced all the point-wise locks with Everything locks (basically a

global mutex) to test the verifier. Interestingly, the tightness verifier also detected that the

point-wise locks were imprecise. This is true for many of the mutating operations if the

initial state and final state would be the same. For example, add * add when the value is

already in the set will commute. Therefore pessimistically locking is technically imprecise.

9.5.7 Invariant Maintenance

I created a prototype for proving invariant maintenance and tested it on the model with

the most invariants (ParamOrderedSet). Most of the problems were quickly solved by

the SAT solver. The results are summarized in Table 9.13.

192

Vars Clauses
Model Avg Min Max Avg Min Max
Stack 7390 2561 12535 29980 7765 63490
Map 2030 506 6693 8013 999 35725
ParamOrderedSet 23090 9023 84794 760500 151674 5554487
ParamSetIterators 2061 514 20669 11700 1017 252835
IntCell 291 114 529 548 125 1084
MultiMap 5827 1544 20579 33680 3300 207350
Queue 20690 8203 33125 200900 39558 387781
MultiSet 9548 1241 27079 69820 2733 277447
Set 2214 504 4601 8361 996 21081
ParamSet (canon) 9169 4182 10044 464500 76766 615305
ParamSet (Equiv) 511 117 760 1507 129 3468
ParamSet (equ) 763 390 992 12350 2101 23781

Table 9.8. SAT Statistics Summary for Abstract Locking Correctness

Model Avg time (ms) Max time (ms)
Set 2.5 17

Table 9.9. Timing results for conflict predicate precision of the Set model

Vars Clauses
Model Avg Min Max Avg Min Max
Set 2168 504 4602 7947 996 20631

Table 9.10. SAT statistics for conflict predicate precision of the Set model

Model Avg time (ms) Max time (ms)
Set 2.7 15

Table 9.11. Timing results for lock tightness of the Set model

Vars Clauses
Model Avg Min Max Avg Min Max
Set 2215 505 4603 8179 998 20633

Table 9.12. SAT statistics for lock tightness of the Set model

Vars Clauses
Model Avg time (ms) Avg Max Avg Max
ParamOrderedSet 2 6937 23380 243800 1202662

Table 9.13. SAT statistics and timing for invariant maintanence

193

CHAPTER 10

CONCLUSION AND FUTURE WORK

10.1 Conclusion

We began with an overview of Transactional Memory as a promising implementation

technique for concurrent systems. We also described the limitations inherent in conven-

tional closed-nesting TM systems, as well as several proposals for overcoming those lim-

itations (open nesting and boosting). All such techniques require that the TM run-time be

given enough information to correctly perform concurrency control for the extended sys-

tem. This has traditionally meant that a programmer that wants to use open nesting or

boosting must annotate their code with concurrency and commutativity properties. The

correctness of these properties is paramount, but they are non-trivial to reason about. We

proposed here that a solution to this problem would be a machine-verifiable form for spec-

ifying the properties of the open nested or boosted data structure. We proposed a modeling

language, ACCLAM, that allows implementers to prove properties about the abstract state

of their data structures. ACCLAM provides structures that allow the programmer to specify

abstract state and methods on that state, and we presented several examples to demonstrate

that even though ACCLAM has no looping or recursion, it can be used to model practical,

real-world data structures.

We described formally the structure and semantics of ACCLAM, proved the soundness

of the language, and described a pure ‘circuit semantics’ for the language. This description

is general enough that it can be used to produce an implementation of a language process-

ing tool for ACCLAM. We also described the design and implementation of such a tool as

well as results of feeding a suite of example models through the tool to verify correctness

194

properties of conflict predicates, operation inverses, and locking protocols. The results il-

lustrated that after some expression simplification and circuit memoization techniques, the

resulting SAT problems were all tractable, many being solved in a matter of milliseconds.

Formulating correct commutativity conditions is one of the great hurdles to adopting an

STM extension such as open nesting. However, we demonstrated that a modeling language

such as ACCLAM can be used to describe the abstract state of many practical data struc-

tures, and that those descriptions can be turned into a form that is fully machine verifiable.

ACCLAM increases correctness of transactional code and reduces the overhead of adopting

useful techniques like Open Nesting and Boosting.

10.2 Future Work

Broadly, there are several main directions for future work. One is expanding the scope

of the verification tool to propose predicates and inverses rather than just verifying them,

another is optimizing the way SAT problems are produced (for faster verification and ver-

ification of larger models), extensions to the language itself to enable more convenient or

more precise description of abstract state, and finally ways of connecting the ACCLAM-

specified abstract state with actual concrete implementations.

10.2.1 Generating Protocols and Inverses

The verification tool can be used to answer both correctness and precision questions.

If there were a system that could propose locking protocols, perhaps by iteratively refining

them, it could first check that the proposed protocol is correct, and then check the tightness

of the new protocol.

10.2.1.1 Protocol Inference

Inferring a protocol from a set of counter-examples can leverage work on generic func-

tion inference. Additionally, because the system will have access to the abstract state de-

scription, it may be more effective to construct protocols symbolically. At the moment, it

195

is unclear whether brute force (over concrete values) or a more algebraic approach (using

term-rewriting, perhaps) would be more effective. This will require a verification tool that

can process both lock correctness questions as well as lock precision questions. The preci-

sion predicate would have to be extended in order to compare two imprecise protocols. For

example, for a map both a mutex and a read-write lock are imprecise, but the read-write

lock is more precise (or less imprecise) than the mutex. The SAT formulation presented in

Chapter 8 wouldn’t provide any insight into relative imprecision. One would either need

to formulate a SAT-friendly comparison predicate, perhaps employ a SAT variant (like

MaxSAT), or something that isn’t SAT like at all.

10.2.1.2 Inverse Inference

Inferring inverses seems like a much harder problem than protocol inference (particu-

larly in cases where there is no single operation corresponding to an inverse). One has a

similar difficulty in that it is necessary to compare incomplete inverses and somehow be

able to determine that one is doing a better (although incomplete) job of inverting the state

changes.

10.2.2 Optimization

The current tool employs a fairly basic set of expression simplifications, so there would

be gains from adopting more powerful expression analysis. However, one of the largest

gains may come from exploiting the fact that the total state space is finite and well-known.

Currently, the tool models all types exactly as they are specified in the Java language spec-

ification. For example, an object is converted into a tuple of 64 SAT variables (to simulate

a 64-bit pointer). However, if there are only ever 4 objects in the system, there is no benefit

to modeling the entire 64 bit value space. Logically, for 4 objects and the null value, one

may only need 3 bits. This can greatly reduce the SAT problem size.

196

10.2.3 Language Extensions

While implementing the tool concurrently with the example suite, many ideas for lan-

guage features were proposed. Not all of the potentially useful ones could be included

in the scope of this work. One idea was for a kind of assertion statement. It would be a

modeler-specified proof request. The tool would generate expressions to verify that the as-

sertion is true at that program point in all legal states. Additionally, the assertion expression

could be assumed to be true for statements that happen after the assertion, which may lead

to expression simplification.

Another extension that would be useful would be to improve the tool to allow it to

understand lock acquisition in the middle of a method (rather than at method entry, as it

currently is). Several of the example models could have had a more precise locking protocol

if they could have grabbed locks conditionally within the body of the method itself.

10.3 Future Uses

This thesis presented ideas that have several potential uses. The main use is to model

and prove correct abstract concurrency control properties for transactional data structures.

We have demonstrated that it is possible to do this, and that the machine verifiable problems

produced are tractable for many practical use cases. Therefore, ACCLAM or an ACCLAM-

like system would be potentially useful to implementors of high-performance transactional

code. Any programmer that needs to employ open nesting to interact with non-transactional

code or improve performance is already in a position of having to reason about abstract

concurrency control. It seems reasonable that any tool that simplifies that process would

be welcome. Describing library code has the added advantage that as long as the interfaces

don’t change, the same model can prove things about different concrete implementations.

Of course, this is the ideal and some implementation decisions may require model changes.

ACCLAM can prove that properties hold with respect to a given model. However,

ACCLAM can’t prove that a given implementation actually correctly implements a model.

197

This is often a desirable thing to demonstrate, so therefore another potential use for the

ideas presented in this thesis would be to adapt something like ACCLAM to work with

a system for proving properties about concrete implementations. This could allow expert

implementors to co-evolve the model and implementation more seamlessly.

198

BIBLIOGRAPHY

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland Publishing

Co., Amsterdam, 1954.

[2] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin

Saha, and Tatiana Shpeisman. Compiler and runtime support for efficient software

transactional memory. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 26–37,

New York, NY, USA, 2006. ACM.

[3] Rahul Agarwal, Amit Sasturkar, Liqiang Wang, and Scott D. Stoller. Optimized

run-time race detection and atomicity checking using partial discovered types. In

ASE ’05: Proceedings of the 20th IEEE/ACM International Conference on

Automated Software Engineering, pages 233–242, New York, NY, USA, 2005. ACM.

[4] Egidio Astesiano. Algebraic Foundations of Systems Specification. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.

[5] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and

Ph. Schnoebelen with P. McKenzie. Systems and Software Verification.

Springer-Verlag, Berlin, Germany, 2001.

[6] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1987.

199

[7] G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An imperative core calculus for

Java and Java with effects. Technical Report UCAM-CL-TR-563, University of

Cambridge, Computer Laboratory, April 2003.

[8] Jacob Burnim, George Necula, and Koushik Sen. Specifying and checking semantic

atomicity for multithreaded programs. In Proceedings of the Sixteenth International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XVI, pages 79–90, New York, NY, USA, 2011. ACM.

[9] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao

Minh, Christos Kozyrakis, and Kunle Olukotun. The Atomos transactional

programming language. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 1–13,

New York, NY, USA, 2006. ACM.

[10] Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, and James Stichnoth. The

Open Runtime Platform: a flexible high-performance managed runtime environment.

Concurrency and Computation: Practice and Experience, 17(5-6):617–637, 2005.

[11] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.

NUSMV: A new symbolic model verifier. In Computer Aided Verification, pages

495–499, 1999.

[12] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C

programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for

the Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture

Notes in Computer Science, pages 168–176. Springer, 2004.

[13] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking. The

MIT Press, Cambridge, Massachusetts, 1999.

200

[14] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification of

code with SAT. In ISSTA ’06: Proceedings of the 2006 International Symposium on

Software Testing and Analysis, pages 109–120, New York, NY, USA, 2006. ACM.

[15] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings of

the 20th International Conference on Distributed Computing, DISC’06, pages

194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

[16] Edsger Wybe Dijkstra. Cooperating sequential processes, technical report ewd-123.

Technical report, 1965.

[17] Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton Jones, and Satnam

Singh. Lock free data structures using STM in Haskell. In Proceedings of the 8th

International Conference on Functional and Logic Programming, FLOPS’06, pages

65–80, Berlin, Heidelberg, 2006. Springer-Verlag.

[18] Julian Dolby, Mandana Vaziri, and Frank Tip. Finding bugs efficiently with a SAT

solver. In ESEC-FSE ’07: Proceedings of the the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, pages 195–204, New York, NY, USA, 2007.

ACM.

[19] Guy Eddon and Maurice Herlihy. Language Support and Compiler Optimizations

for STM and Transactional Boosting. In Proceedings of the 4th International

Conference on Distributed Computing and Internet Technology, ICDCIT’07, pages

209–224, 2007.

[20] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. Lock

allocation. In POPL ’07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 291–296, New York,

NY, USA, 2007. ACM.

201

[21] Alan Fekete, Nancy Lynch, Michael Merritt, and William Weihl.

Commutativity-based locking for nested transactions. J. Comput. Syst. Sci.,

41(1):65–156, August 1990.

[22] Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic atomicity checker

for multithreaded programs (summary). In 18th International Parallel and

Distributed Processing Symposium, IPDPS. IEEE Computer Society, 2004.

[23] Cormac Flanagan, Stephen N. Freund, and Marina Lifshin. Type inference for

atomicity. In TLDI ’05: Proceedings of the 2005 ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation, pages 47–58, New

York, NY, USA, 2005. ACM.

[24] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In

J. Gregory Morrisett and Manuel Fähndrich, editors, Proceedings of the ACM

SIGPLAN 2003 Conference on Programming Language Design and Implementation,

PLDI, pages 338–349. ACM, 2003.

[25] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and Tim

Peierls. Java Concurrency in Practice. Addison-Wesley Longman, Amsterdam,

2006.

[26] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language

Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley

Professional, 2005.

[27] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[28] Tim Harris and Keir Fraser. Language support for lightweight transactions. In Ron

Crocker and Guy L. Steele Jr., editors, Proceedings of the 18th Annual ACM

202

SIGPLAN Conference on Object-oriented Programing, Systems, Languages, and

Applications, OOPSLA, pages 388–402. ACM, 2003.

[29] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory

transactions. In Michael I. Schwartzbach and Thomas Ball, editors, Proceedings of

the 2006 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI, pages 14–25. ACM, 2006.

[30] Joseph M. Hellerstein and Michael Stonebraker. Anatomy of a database system. In

Readings in Database Systems, pages 42–95. The MIT Press, 2005.

[31] Maurice Herlihy. SXM: C# Software Transactional Memory, 2005 (accessed August

20, 2014). http://research.microsoft.com/research/downloads/Details/6cfc842d-

1c16-4739-afaf-edb35f544384/Details.aspx.

[32] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for

implementing software transactional memory. In Proceedings of the 21st Annual

ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages,

and Applications, OOPSLA, pages 253–262, 2006.

[33] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support

for lock-free data structures. In Proceedings of the 20th Annual International

Symposium on Computer Architecture, ISCA, pages 289–300, 1993.

[34] Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley, 2004.

[35] Harry B. Hunt and Daniel J. Rosenkrantz. The complexity of testing predicate locks.

In SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD International Conference

on Management of Data, pages 127–133, New York, NY, USA, 1979. ACM.

203

[36] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A

minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst.,

23(3):396–450, May 2001.

[37] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol., 11(2):256–290, 2002.

[38] Cliff B. Jones. Specification and design of (parallel) programs. In Information

Processing 83, Proceedings of the IFIP 9th World Computer Congress, IFIP

Congress, pages 321–332, 1983.

[39] Deokhwan Kim and Martin C. Rinard. Verification of semantic commutativity

conditions and inverse operations on linked data structures. Technical Report

MIT-CSAIL-TR-2010-056, Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, Cambridge, MA, December 2010.

[40] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. Commun.

ACM, 52(9):89–97, September 2009.

[41] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.

[42] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on

Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[43] Doug Lea. Overview of the collections package, April 1997.

http://gee.cs.oswego.edu/dl/classes/collections/index.html.

[44] Richard J. Lipton. Reduction: a method of proving properties of parallel programs.

Commun. ACM, 18(12):717–721, 1975.

204

[45] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker:

synchronization inference for atomic sections. ACM SIGPLAN Not., 41(1):346–358,

2006.

[46] Katherine F. Moore and Dan Grossman. High-level small-step operational semantics

for transactions. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL, New York, NY, USA,

2008. ACM.

[47] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben

Liblit, Michael M. Swift, and David A. Wood. Supporting nested transactional

memory in logtm. In John Paul Shen and Margaret Martonosi, editors, Proceedings

of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS, pages 359–370. ACM, 2006.

[48] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient SAT solver. In DAC ’01: Proceedings of the

38th Conference on Design Automation, pages 530–535, New York, NY, USA, 2001.

ACM.

[49] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed

Computing. The MIT Press, Cambridge, MA, 1985.

[50] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model and

architecture sketches. Sci. Comput. Program., 63(2):186–201, 2006.

[51] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L.

Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in

software transactional memory. In Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP, pages

68–78, 2007.

205

[52] Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verification

of a non-blocking stack. In Martin Hofmann and Matthias Felleisen, editors,

Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL, pages 297–302. ACM, 2007.

[53] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH:

context-sensitive correlation analysis for race detection. In PLDI ’06: Proceedings

of the 2006 ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 320–331, New York, NY, USA, 2006. ACM.

[54] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: a new analysis

technique for parallelizing compilers. ACM Trans. Program. Lang. Syst.,

19(6):942–991, November 1997.

[55] Michael F. Ringenburg and Dan Grossman. AtomCaml: First-class atomicity via

rollback. In ICFP ’05: Proceedings of the Tenth ACM SIGPLAN International

Conference on Functional Programming, pages 92–104, New York, NY, USA, 2005.

ACM.

[56] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben

Hertzberg. McRT-STM: a high performance software transactional memory system

for a multi-core runtime. In Proceedings of the Eleventh ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPOPP, pages 187–197, 2006.

[57] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural support for

software transactional memory. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 39, pages 185–196,

Washington, DC, USA, 2006. IEEE Computer Society.

206

[58] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. Eraser: a dynamic data race detector for multithreaded programs. ACM

Trans. Comput. Syst., 15(4):391–411, 1997.

[59] Peter M. Schwarz and Alfred Z. Spector. Synchronizing shared abstract types. ACM

Trans. Comput. Syst., 2(3):223–250, 1984.

[60] Nir Shavit and Dan Touitou. Software transactional memory. Distributed

Computing, 10(2):99–116, 1997.

[61] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan

Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing

isolation and ordering in STM. In PLDI ’07: Proceedings of the 2007 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 78–88, New York, NY, USA, 2007. ACM.

[62] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young.

Transactions with isolation and cooperation. In OOPSLA ’07: Proceedings of the

22nd Annual ACM SIGPLAN Conference on Object Oriented Programming Systems

and Applications, pages 191–210, New York, NY, USA, 2007. ACM.

[63] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott.

Privatization techniques for software transactional memory. In Indranil Gupta and

Roger Wattenhofer, editors, PODC, pages 338–339. ACM, 2007.

[64] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving

correctness of highly-concurrent linearisable objects. In PPoPP ’06: Proceedings of

the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 129–136, New York, NY, USA, 2006. ACM.

[65] Liqiang Wang and Scott D. Stoller. Static analysis of atomicity for programs with

non-blocking synchronization. In PPoPP ’05: Proceedings of the Tenth ACM

207

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

61–71, New York, NY, USA, 2005. ACM.

[66] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime detection of

atomicity errors in concurrent programs. In PPoPP ’06: Proceedings of the Eleventh

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pages 137–146, New York, NY, USA, 2006. ACM.

[67] W. E. Weihl. Local atomicity properties: modular concurrency control for abstract

data types. ACM Trans. Program. Lang. Syst., 11(2):249–282, 1989.

[68] Gerhard Weikum and Hans-Jorg Schek. Concepts and applications of multilevel

transactions and open nested transactions. In Database Transaction Models for

Advanced Applications, pages 515–553. Morgan Kaufmann Publishers, 1992.

[69] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory,

Algorithms, and the Practice of Concurrency Control. Morgan Kaufmann

Publishers, San Mateo, CA, 2001.

[70] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,

SE-10(4):352–357, July 1984.

[71] Yichen Xie and Alex Aiken. Saturn: A scalable framework for error detection using

boolean satisfiability. ACM Trans. Program. Lang. Syst., 29(3):16, 2007.

[72] Dachuan Yu and Zhong Shao. Verification of safety properties for concurrent

assembly code. In Chris Okasaki and Kathleen Fisher, editors, Proceedings of the

Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP,

pages 175–188. ACM, 2004.

[73] Karen Zee, Viktor Kuncak, and Martin C. Rinard. An integrated proof language for

imperative programs. In Proceedings of the 2009 ACM SIGPLAN Conference on

208

Programming Language Design and Implementation, PLDI ’09, pages 338–351,

New York, NY, USA, 2009. ACM.

209

APPENDIX A

FULL RESULTS TABLES

210

A.1 Conflict Predicate Correctness with Good Predicates
This section summarizes in the following tables the SAT statistics for running our suite of exam-

ple models through the language processing tool. These results are for conflict predicate correctness
verification with known good predicates (i.e., the predicates are correct).

For the following results tables, the entry ‘C’ in the time column means that the SAT solver
was able to detect a conflict while the clauses were being loaded. Therefore, the SAT solver didn’t
technically run. ‘C’ is used rather than 0 to distinguish cases where the conflict was detected during
loading as opposed to cases where the SAT solver did run, but finished in under a millisecond
(modulo the precision of the JVM’s timer).

Table A.1. Results for model: Stack

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Stack.push * push C 11062 59700
Stack.push * pop C 12535 63490
Stack.push * size C 5928 16445
Stack.pop * push C 12535 63490
Stack.pop * pop C 3522 9623
Stack.pop * size C 6218 16445
Stack.size * push C 5928 16445
Stack.size * pop C 6218 16445
Stack.size * size C 2561 7765

Table A.2. Results for model: Equivalence

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Equivalence.eq * eq C 380 13122
Equivalence.eq * ne C 1646 285666
Equivalence.ne * eq C 1646 285666
Equivalence.ne * ne C 380 13122

211

Table A.3. Results for model: TotalOrder

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
TotalOrder.eq * eq C 383 14970
TotalOrder.eq * le C 1619 412314
TotalOrder.eq * lt C 1664 515130
TotalOrder.eq * ge C 1619 412314
TotalOrder.eq * gt C 1664 515130
TotalOrder.eq * ne C 1664 515130
TotalOrder.le * eq C 1619 412314
TotalOrder.le * le C 381 14970
TotalOrder.le * lt C 1619 412314
TotalOrder.le * ge C 1576 296674
TotalOrder.le * gt C 1619 412314
TotalOrder.le * ne C 1619 412314
TotalOrder.lt * eq C 1664 515130
TotalOrder.lt * le C 1619 412314
TotalOrder.lt * lt C 383 14970
TotalOrder.lt * ge C 1619 412314
TotalOrder.lt * gt C 1664 515130
TotalOrder.lt * ne C 1664 515130
TotalOrder.ge * eq C 1619 412314
TotalOrder.ge * le C 1576 296674
TotalOrder.ge * lt C 1619 412314
TotalOrder.ge * ge C 382 14970
TotalOrder.ge * gt C 1619 412314
TotalOrder.ge * ne C 1619 412314
TotalOrder.gt * eq C 1664 515130
TotalOrder.gt * le C 1619 412314
TotalOrder.gt * lt C 1664 515130
TotalOrder.gt * ge C 1619 412314
TotalOrder.gt * gt C 383 14970
TotalOrder.gt * ne C 1664 515130
TotalOrder.ne * eq C 1664 515130
TotalOrder.ne * le C 1619 412314
TotalOrder.ne * lt C 1664 515130
TotalOrder.ne * ge C 1619 412314
TotalOrder.ne * gt C 1664 515130
TotalOrder.ne * ne C 383 14970

212

Table A.4. Results for model: PartialOrder

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
PartialOrder.eq * eq C 379 12198
PartialOrder.eq * le C 1598 360824
PartialOrder.eq * lt C 1643 450784
PartialOrder.eq * ge C 1598 360824
PartialOrder.eq * gt C 1643 450784
PartialOrder.eq * ne C 1643 450784
PartialOrder.le * eq C 1598 360824
PartialOrder.le * le C 378 12198
PartialOrder.le * lt C 1598 360824
PartialOrder.le * ge C 1555 259872
PartialOrder.le * gt C 1598 360824
PartialOrder.le * ne C 1598 360824
PartialOrder.lt * eq C 1643 450784
PartialOrder.lt * le C 1598 360824
PartialOrder.lt * lt C 379 12198
PartialOrder.lt * ge C 1598 360824
PartialOrder.lt * gt C 1643 450784
PartialOrder.lt * ne C 1643 450784
PartialOrder.ge * eq C 1598 360824
PartialOrder.ge * le C 1555 259872
PartialOrder.ge * lt C 1598 360824
PartialOrder.ge * ge C 378 12198
PartialOrder.ge * gt C 1598 360824
PartialOrder.ge * ne C 1598 360824
PartialOrder.gt * eq C 1643 450784
PartialOrder.gt * le C 1598 360824
PartialOrder.gt * lt C 1643 450784
PartialOrder.gt * ge C 1598 360824
PartialOrder.gt * gt C 379 12198
PartialOrder.gt * ne C 1643 450784
PartialOrder.ne * eq C 1643 450784
PartialOrder.ne * le C 1598 360824
PartialOrder.ne * lt C 1643 450784
PartialOrder.ne * ge C 1598 360824
PartialOrder.ne * gt C 1643 450784
PartialOrder.ne * ne C 379 12198

213

Table A.5. Results for model: Map

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Map.put * put 398 6368 34247
Map.put * size 0 1246 2958
Map.put * get 6 1860 6310
Map.put * remove 337 6530 36175
Map.put * containsKey 1 1358 3930
Map.size * put C 1246 2957
Map.size * size C 537 1031
Map.size * get C 737 1461
Map.size * remove C 1343 3086
Map.size * containsKey C 506 999
Map.get * put 5 1700 4704
Map.get * size C 737 1461
Map.get * get C 737 1461
Map.get * remove 5 1668 4704
Map.get * containsKey C 1346 2998
Map.remove * put 308 6530 36175
Map.remove * size 0 1342 3085
Map.remove * get 5 1828 6310
Map.remove * remove 297 6692 34891
Map.remove * containsKey 1 1358 3930
Map.containsKey * put 0 1358 3930
Map.containsKey * size C 506 999
Map.containsKey * get C 1346 2998
Map.containsKey * remove 1 1358 3930
Map.containsKey * containsKey C 506 999

214

Table A.6. Results for model: ParamOrderedSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamOrderedSet.find * find C 3617 93791
ParamOrderedSet.find * size C 3617 93791
ParamOrderedSet.find * higher C 9617 227028
ParamOrderedSet.find * insert 21 5313 195279
ParamOrderedSet.find * add 1 5315 195282
ParamOrderedSet.find * isEmpty C 3617 93791
ParamOrderedSet.find * remove 1 7134 525362
ParamOrderedSet.find * delete 0 5313 195279
ParamOrderedSet.size * find C 3617 93791
ParamOrderedSet.size * size C 2514 47653
ParamOrderedSet.size * higher C 7356 136027
ParamOrderedSet.size * insert 1 4352 95744
ParamOrderedSet.size * add 1 4354 95747
ParamOrderedSet.size * isEmpty C 2514 47653
ParamOrderedSet.size * remove C 6222 323578
ParamOrderedSet.size * delete C 4448 95871
ParamOrderedSet.higher * find C 19019 499907
ParamOrderedSet.higher * size C 14304 296057
ParamOrderedSet.higher * higher C 14304 296057
ParamOrderedSet.higher * insert C 19388 504037
ParamOrderedSet.higher * add 1527 19636 791113
ParamOrderedSet.higher * isEmpty C 14304 296057
ParamOrderedSet.higher * remove 363 44749 2970382
ParamOrderedSet.higher * delete C 19019 499907
ParamOrderedSet.insert * find 0 5313 196203
ParamOrderedSet.insert * size 1 4353 95743
ParamOrderedSet.insert * higher C 9617 227028
ParamOrderedSet.insert * insert 12 8172 211197
ParamOrderedSet.insert * add 13 8180 212120
ParamOrderedSet.insert * isEmpty 1 4586 96275
ParamOrderedSet.insert * remove 19 10359 543446
ParamOrderedSet.insert * delete 14 8372 212439
ParamOrderedSet.add * find 1 14467 321569
ParamOrderedSet.add * size C 9680 160811
ParamOrderedSet.add * higher 1363 19797 821168
ParamOrderedSet.add * insert 35 17332 338407
ParamOrderedSet.add * add 1152 23451 474332
ParamOrderedSet.add * isEmpty C 9913 161343
ParamOrderedSet.add * remove 6407 39065 1496591
ParamOrderedSet.add * delete 63 17525 338725

215

Table A.7. More Results for model: ParamOrderedSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamOrderedSet.isEmpty * find C 3617 93791
ParamOrderedSet.isEmpty * size C 2514 47653
ParamOrderedSet.isEmpty * higher C 7356 136027
ParamOrderedSet.isEmpty * insert 2 4585 96276
ParamOrderedSet.isEmpty * add 1 4587 96279
ParamOrderedSet.isEmpty * isEmpty C 2514 47653
ParamOrderedSet.isEmpty * remove C 6455 324110
ParamOrderedSet.isEmpty * delete C 4681 96403
ParamOrderedSet.remove * find 2 34942 1302595
ParamOrderedSet.remove * size C 27224 872804
ParamOrderedSet.remove * higher 3339 44526 3100014
ParamOrderedSet.remove * insert 72 38167 1320679
ParamOrderedSet.remove * add 5379 42869 1698265
ParamOrderedSet.remove * isEmpty C 27457 873336
ParamOrderedSet.remove * remove 11354 72442 3992170
ParamOrderedSet.remove * delete 75 38360 1320997
ParamOrderedSet.delete * find 0 5313 196203
ParamOrderedSet.delete * size 3 4450 95872
ParamOrderedSet.delete * higher C 9617 227028
ParamOrderedSet.delete * insert 10 8372 212439
ParamOrderedSet.delete * add 11 8373 212438
ParamOrderedSet.delete * isEmpty 1 4683 96404
ParamOrderedSet.delete * remove 27 10552 543764
ParamOrderedSet.delete * delete 12 8559 211833

Table A.8. Results for model: ParamSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find C 551 3811
ParamSet.find * add 1 991 23780
ParamSet.find * remove 2 991 23780
ParamSet.add * find 2 991 23780
ParamSet.add * add C 393 2109
ParamSet.add * remove C 782 4018
ParamSet.remove * find 1 991 23780
ParamSet.remove * add C 782 4018
ParamSet.remove * remove C 389 2100

216

Table A.9. Results for model: ParamSetIterators

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSetIterators.find * find C 551 3811
ParamSetIterators.find * incIterator C 551 3811
ParamSetIterators.find * IncrementalIterator.next C 551 3811
ParamSetIterators.find * SnapshotIterator.next C 938 4678
ParamSetIterators.find * add 2 1795 26120
ParamSetIterators.find * snapIterator C 938 4678
ParamSetIterators.find * remove 3 1795 26120
incIterator * find C 940 4681
incIterator * incIterator C 3224 8420
incIterator * IncrementalIterator.next C 3224 8420
incIterator * SnapshotIterator.next C 3224 8420
incIterator * add C 516 1020
incIterator * snapIterator C 3224 8420
incIterator * remove C 516 1020

Table A.10. Results for model: IncrementalIterator

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
IncrementalIterator.next * find C 1143 5149
IncrementalIterator.next * incIterator C 3228 8426
IncrementalIterator.next * IncrementalIterator.next 2 3479 10291
IncrementalIterator.next * SnapshotIterator.next 3 3931 10121
IncrementalIterator.next * add C 751 1488
IncrementalIterator.next * snapIterator C 3228 8426
IncrementalIterator.next * remove C 751 1488

Table A.11. Results for model: SnapshotIterator

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
SnapshotIterator.next * find C 1141 5146
SnapshotIterator.next * incIterator C 3226 8423
SnapshotIterator.next * IncrementalIterator.next 2 3929 10118
SnapshotIterator.next * SnapshotIterator.next 124 20669 252835
SnapshotIterator.next * add C 749 1485
SnapshotIterator.next * snapIterator C 3226 8423
SnapshotIterator.next * remove C 749 1485

217

Table A.12. Results for model: ParamSetIterators

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSetIterators.add * find 2 1795 26120
ParamSetIterators.add * incIterator C 514 1017
ParamSetIterators.add * IncrementalIterator.next C 514 1017
ParamSetIterators.add * SnapshotIterator.next C 514 1017
ParamSetIterators.add * add C 1197 4449
ParamSetIterators.add * snapIterator C 514 1017
ParamSetIterators.add * remove C 1586 6358
snapIterator * find C 1141 5146
snapIterator * incIterator C 3226 8423
snapIterator * IncrementalIterator.next C 3226 8423
snapIterator * SnapshotIterator.next C 3226 8423
snapIterator * add C 749 1485
snapIterator * snapIterator C 3226 8423
snapIterator * remove C 749 1485
ParamSetIterators.remove * find 2 1795 26120
ParamSetIterators.remove * incIterator C 514 1017
ParamSetIterators.remove * IncrementalIterator.next C 514 1017
ParamSetIterators.remove * SnapshotIterator.next C 514 1017
ParamSetIterators.remove * add C 1586 6358
ParamSetIterators.remove * snapIterator C 514 1017
ParamSetIterators.remove * remove C 1197 4449

218

Table A.13. Results for model: ParamSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find C 117 129
ParamSet.find * add C 361 619
ParamSet.find * remove C 361 619
ParamSet.add * find 1 360 618
ParamSet.add * add 0 371 1108
ParamSet.add * remove 0 760 3017
ParamSet.remove * find 1 360 618
ParamSet.remove * add C 761 3018
ParamSet.remove * remove C 372 1109

Table A.14. Results for model: IntCell

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
IntCell.set * set 5 692 2373
IntCell.set * putTwo 1 1110 2501
IntCell.set * put 5 692 2373
IntCell.set * get C 337 1471
IntCell.set * setOne 0 1110 2501
IntCell.set * setTwo 0 1110 2501
IntCell.set * putOne 0 1110 2501
IntCell.putTwo * set 1 1110 2501
IntCell.putTwo * putTwo 0 725 1570
IntCell.putTwo * put 0 1110 2501
IntCell.putTwo * get 0 723 1567
IntCell.putTwo * setOne C 532 1089
IntCell.putTwo * setTwo 0 725 1570
IntCell.putTwo * putOne C 532 1089
IntCell.put * set 5 692 2373
IntCell.put * putTwo 0 1110 2501
IntCell.put * put 4 692 2373
IntCell.put * get C 337 1471
IntCell.put * setOne 0 1110 2501
IntCell.put * setTwo 0 1110 2501
IntCell.put * putOne 0 1110 2501
IntCell.get * set C 337 1471
IntCell.get * putTwo 0 723 1567
IntCell.get * put C 337 1471
IntCell.get * get C 115 126
IntCell.get * setOne 1 723 1567
IntCell.get * setTwo 0 723 1567
IntCell.get * putOne 0 723 1567

219

Table A.15. More Results for model: IntCell

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
IntCell.setOne * set 0 1110 2501
IntCell.setOne * putTwo C 532 1089
IntCell.setOne * put 0 1110 2501
IntCell.setOne * get 0 723 1567
IntCell.setOne * setOne 0 725 1570
IntCell.setOne * setTwo C 532 1089
IntCell.setOne * putOne 0 725 1570
IntCell.setTwo * set 0 1110 2501
IntCell.setTwo * putTwo 0 725 1570
IntCell.setTwo * put 0 1110 2501
IntCell.setTwo * get 0 723 1567
IntCell.setTwo * setOne C 532 1089
IntCell.setTwo * setTwo 0 725 1570
IntCell.setTwo * putOne C 532 1089
IntCell.putOne * set 0 1110 2501
IntCell.putOne * putTwo C 532 1089
IntCell.putOne * put 0 1110 2501
IntCell.putOne * get 0 723 1567
IntCell.putOne * setOne 0 725 1570
IntCell.putOne * setTwo C 532 1089
IntCell.putOne * putOne 0 725 1570

220

Table A.16. Results for model: MultiMap

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
MultiMap.remove * remove C 19143 199364
MultiMap.remove * size C 3527 10043
MultiMap.remove * put 673 17459 140495
MultiMap.remove * getOne C 4105 15377
MultiMap.remove * containsKey 1 2985 9423
MultiMap.size * remove C 3527 10043
MultiMap.size * size C 537 1031
MultiMap.size * put C 3168 7727
MultiMap.size * getOne 4 2239 5263
MultiMap.size * containsKey C 730 1480
MultiMap.put * remove 1236 17459 146919
MultiMap.put * size C 3168 7727
MultiMap.put * put C 16901 115605
MultiMap.put * getOne 7 4005 15628
MultiMap.put * containsKey 1 2886 9291
MultiMap.getOne * remove C 4105 13771
MultiMap.getOne * size 4 2239 5263
MultiMap.getOne * put 7 4005 14022
MultiMap.getOne * getOne C 730 1480
MultiMap.getOne * containsKey C 1918 4301
MultiMap.containsKey * remove 1 2985 8620
MultiMap.containsKey * size C 730 1480
MultiMap.containsKey * put 1 2886 8488
MultiMap.containsKey * getOne C 1918 4301
MultiMap.containsKey * containsKey C 730 1480

Table A.17. Results for model: Queue

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Queue.dequeue * dequeue C 14728 311969
Queue.dequeue * size C 15057 118071
Queue.dequeue * enqueue C 32832 379537
Queue.size * dequeue C 15057 118071
Queue.size * size C 8201 42076
Queue.size * enqueue C 18065 94090
Queue.enqueue * dequeue C 33121 385965
Queue.enqueue * size C 18065 94090
Queue.enqueue * enqueue C 31063 265941

221

Table A.18. Results for model: MultiSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
MultiSet.find * find C 1241 2794
MultiSet.find * size C 1241 2794
MultiSet.find * insert 1 3910 11922
MultiSet.find * add 2 3910 11922
MultiSet.find * isEmpty C 1241 2794
MultiSet.find * remove 2 4201 13338
MultiSet.find * delete 1 4201 13338
MultiSet.size * find C 1241 2794
MultiSet.size * size C 1307 2733
MultiSet.size * insert C 3679 9041
MultiSet.size * add C 3679 9041
MultiSet.size * isEmpty C 1307 2733
MultiSet.size * remove 3 5478 15455
MultiSet.size * delete 1 5478 15455
MultiSet.insert * find 1 3910 12725
MultiSet.insert * size C 3679 9041
MultiSet.insert * insert C 18487 123609
MultiSet.insert * add 880 17647 121128
MultiSet.insert * isEmpty C 3912 9573
MultiSet.insert * remove 1072 21734 204362
MultiSet.insert * delete 1389 22124 208866
MultiSet.add * find 1 3910 12725
MultiSet.add * size C 3679 9041
MultiSet.add * insert 594 17647 121931
MultiSet.add * add C 17707 116207
MultiSet.add * isEmpty C 3912 9573
MultiSet.add * remove 1071 21344 199342
MultiSet.add * delete 1793 21734 203846

222

Table A.19. Results for model: MultiSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
MultiSet.isEmpty * find C 1241 2794
MultiSet.isEmpty * size C 1307 2733
MultiSet.isEmpty * insert C 3912 9573
MultiSet.isEmpty * add C 3912 9573
MultiSet.isEmpty * isEmpty C 1307 2733
MultiSet.isEmpty * remove C 5519 15507
MultiSet.isEmpty * delete C 5519 15507
MultiSet.remove * find 2 4201 13338
MultiSet.remove * size 18 5479 15457
MultiSet.remove * insert 1128 21734 177060
MultiSet.remove * add 821 21344 172040
MultiSet.remove * isEmpty C 5519 15507
MultiSet.remove * remove C 26299 267407
MultiSet.remove * delete 2245 25821 273655
MultiSet.delete * find 2 4201 13338
MultiSet.delete * size 2 5478 15455
MultiSet.delete * insert 1016 22124 180761
MultiSet.delete * add 1227 21734 175741
MultiSet.delete * isEmpty C 5519 15507
MultiSet.delete * remove 2539 25821 273655
MultiSet.delete * delete C 27079 277447

Table A.20. Results for model: ParamSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find C 4182 76766
ParamSet.find * add 43 9542 414044
ParamSet.find * remove 29 9542 414044
ParamSet.add * find 29 9542 414044
ParamSet.add * add 34 10033 608590
ParamSet.add * remove 28 10033 608590
ParamSet.remove * find 41 9542 414044
ParamSet.remove * add 41 10033 608590
ParamSet.remove * remove 38 10032 606065

223

Table A.21. Results for model: Set

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Set.find * find C 504 996
Set.find * size C 504 996
Set.find * insert 1 1352 3921
Set.find * add 0 1352 3921
Set.find * isEmpty C 504 996
Set.find * remove 1 1352 3921
Set.find * delete 1 1352 3921
Set.size * find C 504 996
Set.size * size C 535 1028
Set.size * insert C 1240 2948
Set.size * add C 1240 2948
Set.size * isEmpty C 535 1028
Set.size * remove C 1337 3077
Set.size * delete C 1337 3077
Set.insert * find 0 1352 4845
Set.insert * size C 1240 2948
Set.insert * insert 2 4213 19839
Set.insert * add 2 4215 19360
Set.insert * isEmpty C 1473 3480
Set.insert * remove 34 4409 19682
Set.insert * delete 34 4413 21081
Set.add * find 1 1352 3921
Set.add * size C 1240 2948
Set.add * insert 2 4215 19360
Set.add * add 2 4209 18881
Set.add * isEmpty C 1473 3480
Set.add * remove 28 4403 19203
Set.add * delete 33 4407 19678

224

Table A.22. More Results for model: Set

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Set.isEmpty * find C 504 996
Set.isEmpty * size C 535 1028
Set.isEmpty * insert C 1473 3480
Set.isEmpty * add C 1473 3480
Set.isEmpty * isEmpty C 535 1028
Set.isEmpty * remove C 1570 3609
Set.isEmpty * delete C 1570 3609
Set.remove * find 1 1352 3921
Set.remove * size C 1337 3077
Set.remove * insert 13 4409 19682
Set.remove * add 26 4403 19203
Set.remove * isEmpty C 1570 3609
Set.remove * remove 3 4597 19525
Set.remove * delete 3 4601 20000
Set.delete * find 0 1352 4845
Set.delete * size C 1337 3077
Set.delete * insert 16 4413 21081
Set.delete * add 13 4407 19678
Set.delete * isEmpty C 1570 3609
Set.delete * remove 3 4601 20000
Set.delete * delete 3 4599 20475

225

A.2 Conflict Predicate Correctness Results for Bad Predicates
The following results are for running the suite of example models through the language pro-

cessing tool but with a set of bad conflict predicates. Note that some read-only operations have no
conflicts at all and therefore have no bad conflict predicates. Similarly to good predicates, a ‘C’
means that the SAT solver detected a conflict before SAT solving began.

Table A.23. Results for model: Stack

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Stack.push * push 8 11062 59700
Stack.push * pop 9 12535 63490
Stack.push * size 3 5928 16445
Stack.pop * push 50 12535 63490
Stack.pop * pop 1 3522 9623
Stack.pop * size 3 6218 16445
Stack.size * push 2 5928 16445
Stack.size * pop 5 6218 16445
Stack.size * size 0 2561 7765

Table A.24. Results for model: Equivalence

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Equivalence.eq * eq C 380 13122
Equivalence.eq * ne C 1646 285666
Equivalence.ne * eq C 1646 285666
Equivalence.ne * ne C 380 13122

226

Table A.25. Results for model: Map

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Map.put * put 153 6369 33797
Map.put * size 1 1246 2957
Map.put * get 4 1861 5860
Map.put * remove 295 6531 35725
Map.put * containsKey 0 1359 3480
Map.size * put 1 1246 2957
Map.size * size 0 537 1031
Map.size * get 0 737 1461
Map.size * remove 0 1343 3086
Map.size * containsKey 0 506 999
Map.get * put 3 1701 4254
Map.get * size 0 737 1461
Map.get * get 0 737 1461
Map.get * remove 4 1669 4254
Map.get * containsKey 0 1346 2998
Map.remove * put 173 6531 35725
Map.remove * size 0 1343 3086
Map.remove * get 4 1829 5860
Map.remove * remove 3 6693 34441
Map.remove * containsKey 0 1359 3480
Map.containsKey * put 1 1359 3480
Map.containsKey * size 0 506 999
Map.containsKey * get 0 1346 2998
Map.containsKey * remove 1 1359 3480
Map.containsKey * containsKey 0 506 999

227

Table A.26. Results for model: ParamOrderedSet

Problem SAT
Conflict Pred. Correctness Time(ms) Vars Clauses
ParamOrderedSet.find * find 0 3617 93791
ParamOrderedSet.find * higher 0 9617 227028
ParamOrderedSet.find * size 0 3617 93791
ParamOrderedSet.find * insert 1 5313 195279
ParamOrderedSet.find * add 2 5316 194832
ParamOrderedSet.find * isEmpty 0 3617 93791
ParamOrderedSet.find * delete 1 5313 195279
ParamOrderedSet.find * remove 21 7135 524912
ParamOrderedSet.higher * find 0 19019 499907
ParamOrderedSet.higher * higher 0 14304 296057
ParamOrderedSet.higher * add 2963 19633 790647
ParamOrderedSet.higher * remove 3325 44746 2969921
ParamOrderedSet.size * find 0 3617 93791
ParamOrderedSet.size * size 0 2514 47653
ParamOrderedSet.size * insert 0 4353 95743
ParamOrderedSet.size * add 0 4355 95746
ParamOrderedSet.size * isEmpty 0 2514 47653
ParamOrderedSet.size * delete 0 4450 95872
ParamOrderedSet.size * remove 0 6224 323579
ParamOrderedSet.insert * find 1 5313 196203
ParamOrderedSet.insert * size 0 4353 95743
ParamOrderedSet.insert * insert 11 8172 211197
ParamOrderedSet.insert * add 7 8180 212120
ParamOrderedSet.insert * isEmpty 0 4586 96275
ParamOrderedSet.insert * delete 12 8372 212439
ParamOrderedSet.insert * remove 25 10359 543446
ParamOrderedSet.add * find 0 14468 321119
ParamOrderedSet.add * higher 1291 19795 821161
ParamOrderedSet.add * size 0 9680 160811
ParamOrderedSet.add * insert 43 17332 338407
ParamOrderedSet.add * add 1616 23452 473882
ParamOrderedSet.add * isEmpty 0 9913 161343
ParamOrderedSet.add * delete 32 17525 338725
ParamOrderedSet.add * remove 5748 39066 1496141

228

Table A.27. More Results for model: ParamOrderedSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamOrderedSet.isEmpty * find 0 3617 93791
ParamOrderedSet.isEmpty * size 0 2514 47653
ParamOrderedSet.isEmpty * insert 0 4586 96275
ParamOrderedSet.isEmpty * add 0 4588 96278
ParamOrderedSet.isEmpty * isEmpty 0 2514 47653
ParamOrderedSet.isEmpty * delete 0 4683 96404
ParamOrderedSet.isEmpty * remove 0 6457 324111
ParamOrderedSet.delete * find 1 5313 196203
ParamOrderedSet.delete * size 0 4450 95872
ParamOrderedSet.delete * insert 11 8372 212439
ParamOrderedSet.delete * add 29 8373 212438
ParamOrderedSet.delete * isEmpty 0 4683 96404
ParamOrderedSet.delete * delete 12 8559 211833
ParamOrderedSet.delete * remove 26 10552 543764
ParamOrderedSet.remove * find 205 34943 1302145
ParamOrderedSet.remove * higher 4483 44524 3100007
ParamOrderedSet.remove * size 0 27224 872804
ParamOrderedSet.remove * insert 147 38167 1320679
ParamOrderedSet.remove * add 3412 42870 1697815
ParamOrderedSet.remove * isEmpty 0 27457 873336
ParamOrderedSet.remove * delete 84 38360 1320997
ParamOrderedSet.remove * remove 23270 72443 3991720

Table A.28. Results for model: ParamSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find 0 551 3811
ParamSet.find * add 1 992 23781
ParamSet.find * remove 3 992 23781
ParamSet.add * find 2 992 23781
ParamSet.add * add 1 394 2110
ParamSet.add * remove 8 783 4019
ParamSet.remove * find 3 992 23781
ParamSet.remove * add 6 783 4019
ParamSet.remove * remove 0 390 2101

229

Table A.29. Results for model: ParamSetIterators

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
find * find 0 551 3811
find * incIterator 0 551 3811
find * IncrementalIterator.next 0 551 3811
find * SnapshotIterator.next 0 938 4678
find * add 3 1796 26121
find * snapIterator 0 938 4678
find * remove 3 1796 26121
incIterator * find 0 940 4681
incIterator * incIterator 0 3224 8420
incIterator * IncrementalIterator.next 0 3224 8420
incIterator * SnapshotIterator.next 0 3224 8420
incIterator * add 0 516 1020
incIterator * snapIterator 0 3224 8420
incIterator * remove 0 516 1020

Table A.30. Results for model: IncrementalIterator

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
IncrementalIterator.next * find 0 1143 5149
IncrementalIterator.next * incIterator 0 3228 8426
IncrementalIterator.next * IncrementalIterator.next 1 3479 10291
IncrementalIterator.next * SnapshotIterator.next 1 3931 10121
IncrementalIterator.next * add 0 751 1488
IncrementalIterator.next * snapIterator 0 3228 8426
IncrementalIterator.next * remove 0 751 1488

Table A.31. Results for model: SnapshotIterator

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
SnapshotIterator.next * find 0 1141 5146
SnapshotIterator.next * incIterator 0 3226 8423
SnapshotIterator.next * IncrementalIterator.next 1 3929 10118
SnapshotIterator.next * SnapshotIterator.next 146 20669 252835
SnapshotIterator.next * add 0 749 1485
SnapshotIterator.next * snapIterator 0 3226 8423
SnapshotIterator.next * remove 0 749 1485

230

Table A.32. More Results for model: ParamSetIterators

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
add * find 3 1796 26121
add * incIterator 0 514 1017
add * IncrementalIterator.next 0 514 1017
add * SnapshotIterator.next 0 514 1017
add * add 1 1194 4441
add * snapIterator 0 514 1017
add * remove 7 1587 6359
snapIterator * find 0 1141 5146
snapIterator * incIterator 0 3226 8423
snapIterator * IncrementalIterator.next 0 3226 8423
snapIterator * SnapshotIterator.next 0 3226 8423
snapIterator * add 0 749 1485
snapIterator * snapIterator 0 3226 8423
snapIterator * remove 0 749 1485
remove * find 2 1796 26121
remove * incIterator 0 514 1017
remove * IncrementalIterator.next 0 514 1017
remove * SnapshotIterator.next 0 514 1017
remove * add 6 1587 6359
remove * snapIterator 0 514 1017
remove * remove 0 1198 4450

Table A.33. Results for model: ParamSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find 0 117 129
ParamSet.find * add 1 361 619
ParamSet.find * remove 0 361 619
ParamSet.add * find 0 361 619
ParamSet.add * add 0 372 1109
ParamSet.add * remove 1 761 3018
ParamSet.remove * find 1 361 619
ParamSet.remove * add 1 761 3018
ParamSet.remove * remove 1 372 1109

231

Table A.34. Results for model: IntCell

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
IntCell.set * set 1 692 1473
IntCell.set * putTwo 1 724 1537
IntCell.set * get 0 338 1023
IntCell.set * put 0 692 1473
IntCell.set * setOne 1 724 1537
IntCell.set * setTwo 0 724 1537
IntCell.set * putOne 1 724 1537
IntCell.putTwo * set 1 724 1537
IntCell.putTwo * putTwo 1 533 1090
IntCell.putTwo * get 0 531 1087
IntCell.putTwo * put 1 724 1537
IntCell.putTwo * setOne 0 532 1089
IntCell.putTwo * setTwo 0 533 1090
IntCell.putTwo * putOne 0 532 1089
IntCell.get * set 0 338 1023
IntCell.get * putTwo 0 531 1087
IntCell.get * get 0 115 126
IntCell.get * put 0 338 1023
IntCell.get * setOne 0 531 1087
IntCell.get * setTwo 0 531 1087
IntCell.get * putOne 0 531 1087
IntCell.put * set 0 692 1473
IntCell.put * putTwo 1 724 1537
IntCell.put * get 0 338 1023
IntCell.put * put 0 692 1473
IntCell.put * setOne 1 724 1537
IntCell.put * setTwo 0 724 1537
IntCell.put * putOne 0 724 1537

232

Table A.35. Results for model: IntCell

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
IntCell.setOne * set 0 724 1537
IntCell.setOne * putTwo 0 532 1089
IntCell.setOne * get 0 531 1087
IntCell.setOne * put 1 724 1537
IntCell.setOne * setOne 0 533 1090
IntCell.setOne * setTwo 1 532 1089
IntCell.setOne * putOne 0 533 1090
IntCell.setTwo * set 0 724 1537
IntCell.setTwo * putTwo 1 533 1090
IntCell.setTwo * get 1 531 1087
IntCell.setTwo * put 0 724 1537
IntCell.setTwo * setOne 1 532 1089
IntCell.setTwo * setTwo 0 533 1090
IntCell.setTwo * putOne 1 532 1089
IntCell.putOne * set 1 724 1537
IntCell.putOne * putTwo 1 532 1089
IntCell.putOne * get 1 531 1087
IntCell.putOne * put 1 724 1537
IntCell.putOne * setOne 0 533 1090
IntCell.putOne * setTwo 0 532 1089
IntCell.putOne * putOne 1 533 1090

233

Table A.36. Results for model: MultiMap

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
MultiMap.remove * remove 252 19143 199364
MultiMap.remove * size 1 3527 10043
MultiMap.remove * put 261 17460 140045
MultiMap.remove * getOne 3 4105 15377
MultiMap.remove * containsKey 1 2986 8973
MultiMap.size * remove 2 3527 10043
MultiMap.size * size 0 537 1031
MultiMap.size * put 1 3168 7727
MultiMap.size * getOne 4 2239 5263
MultiMap.size * containsKey 0 730 1480
MultiMap.put * remove 19 17460 146469
MultiMap.put * size 1 3168 7727
MultiMap.put * put 15 16901 115605
MultiMap.put * getOne 24 4006 15178
MultiMap.put * containsKey 7 2887 8841
MultiMap.getOne * remove 2 4105 13771
MultiMap.getOne * size 5 2239 5263
MultiMap.getOne * put 17 4006 13572
MultiMap.getOne * getOne 0 730 1480
MultiMap.getOne * containsKey 0 1918 4301
MultiMap.containsKey * remove 2 2986 8170
MultiMap.containsKey * size 0 730 1480
MultiMap.containsKey * put 6 2887 8038
MultiMap.containsKey * getOne 0 1918 4301
MultiMap.containsKey * containsKey 0 730 1480

234

Table A.37. Results for model: Queue

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Queue.dequeue * dequeue 302 14728 311969
Queue.dequeue * size 181 15057 118071
Queue.dequeue * enqueue 40 32832 379537
Queue.size * dequeue 15 15057 118071
Queue.size * size 0 8201 42076
Queue.size * enqueue 11 18065 94090
Queue.enqueue * dequeue 37 33121 385965
Queue.enqueue * size 40 18065 94090
Queue.enqueue * enqueue 649 31063 265941

235

Table A.38. Results for model: MultiSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
MultiSet.find * find 0 1241 2794
MultiSet.find * size 0 1241 2794
MultiSet.find * insert 2 3911 11472
MultiSet.find * add 4 3911 11472
MultiSet.find * isEmpty 0 1241 2794
MultiSet.find * delete 3 4202 12888
MultiSet.find * remove 3 4202 12888
MultiSet.size * find 0 1241 2794
MultiSet.size * size 0 1307 2733
MultiSet.size * insert 1 3679 9041
MultiSet.size * add 6 3679 9041
MultiSet.size * isEmpty 0 1307 2733
MultiSet.size * delete 4 5286 14975
MultiSet.size * remove 5 5286 14975
MultiSet.insert * find 2 3911 12275
MultiSet.insert * size 1 3679 9041
MultiSet.insert * insert 403 18487 123609
MultiSet.insert * add 712 17648 120678
MultiSet.insert * isEmpty 1 3912 9573
MultiSet.insert * delete 43 22125 208416
MultiSet.insert * remove 18 21735 203912
MultiSet.add * find 5 3911 12275
MultiSet.add * size 2 3679 9041
MultiSet.add * insert 681 17648 121481
MultiSet.add * add 315 17707 116207
MultiSet.add * isEmpty 1 3912 9573
MultiSet.add * delete 49 21735 203396
MultiSet.add * remove 824 21345 198892

236

Table A.39. More Results for model: MultiSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
MultiSet.isEmpty * find 0 1241 2794
MultiSet.isEmpty * size 0 1307 2733
MultiSet.isEmpty * insert 1 3912 9573
MultiSet.isEmpty * add 2 3912 9573
MultiSet.isEmpty * isEmpty 0 1307 2733
MultiSet.isEmpty * delete 2 5519 15507
MultiSet.isEmpty * remove 2 5519 15507
MultiSet.delete * find 4 4202 12888
MultiSet.delete * size 11 5286 14975
MultiSet.delete * insert 265 22125 180311
MultiSet.delete * add 20 21735 175291
MultiSet.delete * isEmpty 10 5519 15507
MultiSet.delete * delete 92 27079 277447
MultiSet.delete * remove 1982 25822 273205
MultiSet.remove * find 4 4202 12888
MultiSet.remove * size 14 5286 14975
MultiSet.remove * insert 26 21735 176610
MultiSet.remove * add 29 21345 171590
MultiSet.remove * isEmpty 13 5519 15507
MultiSet.remove * delete 5303 25822 273205
MultiSet.remove * remove 39 26299 267407

Table A.40. Results for model: ParamSet

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find 0 4182 76766
ParamSet.find * add 42 9543 413129
ParamSet.find * remove 35 9542 408530
ParamSet.add * find 47 9543 413129
ParamSet.add * add 34 10034 607675
ParamSet.add * remove 47 10034 607675
ParamSet.remove * find 36 9542 408530
ParamSet.remove * add 50 10033 603076
ParamSet.remove * remove 49 10033 602738

237

Table A.41. Results for model: Set

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Set.find * find 0 504 996
Set.find * size 0 504 996
Set.find * insert 1 1353 3471
Set.find * add 1 1353 3471
Set.find * isEmpty 0 504 996
Set.find * delete 0 1353 3471
Set.find * remove 1 1353 3471
Set.size * find 0 504 996
Set.size * size 0 535 1028
Set.size * insert 1 1240 2948
Set.size * add 0 1240 2948
Set.size * isEmpty 0 535 1028
Set.size * delete 0 1337 3077
Set.size * remove 0 1337 3077
Set.insert * find 1 1353 4395
Set.insert * size 1 1240 2948
Set.insert * insert 3 4214 19389
Set.insert * add 3 4216 18910
Set.insert * isEmpty 1 1473 3480
Set.insert * delete 4 4414 20631
Set.insert * remove 4 4410 19232
Set.add * find 1 1353 3471
Set.add * size 1 1240 2948
Set.add * insert 3 4216 18910
Set.add * add 2 4210 18431
Set.add * isEmpty 1 1473 3480
Set.add * delete 4 4408 19228
Set.add * remove 11 4404 18753

238

Table A.42. More Results for model: Set

Problem (Conflict Pred. Correctness) Time(ms) SAT Vars SAT Clauses
Set.isEmpty * find 0 504 996
Set.isEmpty * size 0 535 1028
Set.isEmpty * insert 0 1473 3480
Set.isEmpty * add 0 1473 3480
Set.isEmpty * isEmpty 0 535 1028
Set.isEmpty * delete 1 1570 3609
Set.isEmpty * remove 0 1570 3609
Set.delete * find 1 1353 4395
Set.delete * size 1 1337 3077
Set.delete * insert 17 4414 20631
Set.delete * add 14 4408 19228
Set.delete * isEmpty 0 1570 3609
Set.delete * delete 3 4600 20025
Set.delete * remove 3 4602 19550
Set.remove * find 1 1353 3471
Set.remove * size 0 1337 3077
Set.remove * insert 14 4410 19232
Set.remove * add 5 4404 18753
Set.remove * isEmpty 1 1570 3609
Set.remove * delete 2 4602 19550
Set.remove * remove 5 4598 19075

239

A.3 Inverse Results
This section summarizes the SAT statistics for the suite of example models run through the

tool to verify that the specified inverses are correct. Because the inverse of a method can be verified
without having to consider other methods, there will only be one entry per method. Methods without
a specified inverse are assumed to have the default ‘no-op’ inverse that does nothing. This is the
case for the read-only methods.

Table A.43. Results for model: Stack

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: Stack.push 154 8352 35743
inverse of method: Stack.pop 77 8320 38955
inverse of method: Stack.size C 3123 9311

Table A.44. Results for model: Equivalence

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: Equivalence.eq C 2022 5633
inverse of method: Equivalence.ne C 2022 5633

Table A.45. Results for model: PartialOrder

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: PartialOrder.eq C 1294 3785
inverse of method: PartialOrder.le C 1294 3785
inverse of method: PartialOrder.lt C 1294 3785
inverse of method: PartialOrder.ge C 1294 3785
inverse of method: PartialOrder.ne C 1294 3785
inverse of method: PartialOrder.gt C 1294 3785

240

Table A.46. Results for model: Map

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: Map.put 72 4337 16526
inverse of method: Map.size C 1138 2558
inverse of method: Map.get C 1138 2558
inverse of method: Map.remove 107 4305 16590
inverse of method: Map.containsKey C 1138 2558

Table A.47. Results for model: ParamOrderedSet

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: ParamOrderedSet.find C 2916 48751
inverse of method: ParamOrderedSet.higher C 12522 160765
inverse of method: ParamOrderedSet.size C 2916 48751
inverse of method: ParamOrderedSet.insert 1 4551 104606
inverse of method: ParamOrderedSet.add 92 37030 1287310
inverse of method: ParamOrderedSet.isEmpty C 2916 48751
inverse of method: ParamOrderedSet.remove 105 32057 1233146
inverse of method: ParamOrderedSet.delete 1 4551 104606

Table A.48. Results for model: ParamSet

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: ParamSet.find C 2791 7498
inverse of method: ParamSet.add 3 3177 9401
inverse of method: ParamSet.remove 2 3176 9399

241

Table A.49. Results for model: ParamSetIterators

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: ParamSetIterators.find C 2791 7498
inverse of method: ParamSetIterators.incIterator C 2792 7500

Table A.50. Results for model: IncrementalIterator

Problem (Inverse) Time(ms) SAT Vars SAT Clauses
ParamSetIterators.IncrementalIterator.next 16 7132 18424

Table A.51. Results for model: SnapshotIterator

Problem (Inverse) Time(ms) SAT Vars SAT Clauses
ParamSetIterators.SnapshotIterator.next 8 6546 17322

242

Table A.52. Results for model: ParamSetIterators

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: ParamSetIterators.add 2 3177 9401
inverse of method: ParamSetIterators.snapIterator C 5344 13947
inverse of method: ParamSetIterators.remove 2 3176 9399

Table A.53. Results for model: ParamSet

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: ParamSet.find C 104 109
inverse of method: ParamSet.add 0 761 2487
inverse of method: ParamSet.remove 1 760 2483

Table A.54. Results for model: IntCell

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: IntCell.set C 103 107
inverse of method: IntCell.putTwo C 103 107
inverse of method: IntCell.get C 103 107
inverse of method: IntCell.put C 103 107
inverse of method: IntCell.setOne C 103 107
inverse of method: IntCell.setTwo C 103 107
inverse of method: IntCell.putOne C 103 107

Table A.55. Results for model: MultiMap

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: MultiMap.remove 244 11567 144402
inverse of method: MultiMap.size C 1710 3861
inverse of method: MultiMap.put 104 11972 64973
inverse of method: MultiMap.getOne C 1710 3861
inverse of method: MultiMap.containsKey C 1710 3861

Table A.56. Results for model: Queue

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: Queue.dequeue 218 19629 176419
inverse of method: Queue.size C 9821 46409
inverse of method: Queue.enqueue 85 21639 138853

243

Table A.57. Results for model: MultiSet

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: MultiSet.find C 1420 3158
inverse of method: MultiSet.size C 1420 3158
inverse of method: MultiSet.insert 11 13687 83531
inverse of method: MultiSet.add 11 13687 83531
inverse of method: MultiSet.isEmpty C 1420 3158
inverse of method: MultiSet.remove 756 13778 160161
inverse of method: MultiSet.delete 810 13778 160161

Table A.58. Results for model: ParamSet

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: ParamSet.find C 1235 4625
inverse of method: ParamSet.add 7 3182 80103
inverse of method: ParamSet.remove 7 3183 85957

244

Table A.59. Results for model: Set

Problem Time(ms) SAT Vars SAT Clauses
inverse of method: Set.find C 297 557
inverse of method: Set.size C 297 557
inverse of method: Set.insert 1 1147 3033
inverse of method: Set.add 1 1147 3033
inverse of method: Set.isEmpty C 297 557
inverse of method: Set.delete 0 1147 3033
inverse of method: Set.remove 0 1147 3033

245

A.4 Abstract Lock Verification Results
This section summarizes the SAT statistics for verifying the abstract locks specified for our suite

of example models.

Table A.60. Results for model: Stack

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
Stack.push * push C 11062 59700
Stack.push * pop C 12535 63490
Stack.push * size C 5928 16445
Stack.pop * push C 12535 63490
Stack.pop * pop C 3522 9623
Stack.pop * size C 6218 16445
Stack.size * push C 5928 16445
Stack.size * pop C 6218 16445
Stack.size * size C 2561 7765

246

Table A.61. Results for model: Map

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
Map.put * put C 6369 33797
Map.put * size C 1246 2957
Map.put * get C 1861 5860
Map.put * remove C 6531 35725
Map.put * containsKey C 1359 3480
Map.size * put C 1246 2957
Map.size * size C 537 1031
Map.size * get C 737 1461
Map.size * remove C 1343 3086
Map.size * containsKey C 506 999
Map.get * put C 1701 4254
Map.get * size C 737 1461
Map.get * get C 737 1461
Map.get * remove C 1669 4254
Map.get * containsKey C 1346 2998
Map.remove * put C 6531 35725
Map.remove * size C 1343 3086
Map.remove * get C 1829 5860
Map.remove * remove C 6693 34441
Map.remove * containsKey C 1359 3480
Map.containsKey * put C 1359 3480
Map.containsKey * size C 506 999
Map.containsKey * get C 1346 2998
Map.containsKey * remove C 1359 3480
Map.containsKey * containsKey C 506 999

247

Table A.62. Results for model: ParamOrderedSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
ParamOrderedSet.find * find C 13456 305286
ParamOrderedSet.find * lower C 19019 499907
ParamOrderedSet.find * higher C 19019 499907
ParamOrderedSet.find * size C 13456 305286
ParamOrderedSet.find * insert 2 20780 559870
ParamOrderedSet.find * add 1 17252 362137
ParamOrderedSet.find * isEmpty C 13456 305286
ParamOrderedSet.find * remove 2 41775 1925064
ParamOrderedSet.find * delete 1 20780 559870
ParamOrderedSet.lower * find C 19019 499907
ParamOrderedSet.lower * lower C 14304 296057
ParamOrderedSet.lower * higher C 20191 488632
ParamOrderedSet.lower * size C 14304 296057
ParamOrderedSet.lower * insert C 19661 501643
ParamOrderedSet.lower * add 2002 23712 851387
ParamOrderedSet.lower * isEmpty C 14304 296057
ParamOrderedSet.lower * remove 7293 46715 2271556
ParamOrderedSet.lower * delete C 19661 501643
ParamOrderedSet.higher * find C 19019 499907
ParamOrderedSet.higher * lower C 20191 488632
ParamOrderedSet.higher * higher C 14304 296057
ParamOrderedSet.higher * size C 14304 296057
ParamOrderedSet.higher * insert C 19661 501643
ParamOrderedSet.higher * add 4484 23712 851387
ParamOrderedSet.higher * isEmpty C 14304 296057
ParamOrderedSet.higher * remove 13311 46715 2271556
ParamOrderedSet.higher * delete C 19661 501643

248

Table A.63. More Results for model: ParamOrderedSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
ParamOrderedSet.size * find C 13456 305286
ParamOrderedSet.size * lower C 14304 296057
ParamOrderedSet.size * higher C 14304 296057
ParamOrderedSet.size * size C 9023 151674
ParamOrderedSet.size * insert C 14192 307238
ParamOrderedSet.size * add C 11553 188487
ParamOrderedSet.size * isEmpty C 9023 151674
ParamOrderedSet.size * remove C 33515 1342689
ParamOrderedSet.size * delete C 14289 307367
ParamOrderedSet.insert * find 2 20780 560794
ParamOrderedSet.insert * lower C 19661 501643
ParamOrderedSet.insert * higher C 19661 501643
ParamOrderedSet.insert * size C 14192 307238
ParamOrderedSet.insert * insert C 23640 575338
ParamOrderedSet.insert * add 45 20283 379899
ParamOrderedSet.insert * isEmpty C 14425 307770
ParamOrderedSet.insert * remove 7138 47585 1989776
ParamOrderedSet.insert * delete 3636 23839 577030
ParamOrderedSet.add * find 1 17252 362137
ParamOrderedSet.add * lower 1904 23746 882704
ParamOrderedSet.add * higher 1453 23746 882704
ParamOrderedSet.add * size C 11553 188487
ParamOrderedSet.add * insert 53 20283 379899
ParamOrderedSet.add * add C 27563 534646
ParamOrderedSet.add * isEmpty C 11786 189019
ParamOrderedSet.add * remove 9773 41359 1543370
ParamOrderedSet.add * delete 65 20476 380217

249

Table A.64. More Results for model: ParamOrderedSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
ParamOrderedSet.isEmpty * find C 13456 305286
ParamOrderedSet.isEmpty * lower C 14304 296057
ParamOrderedSet.isEmpty * higher C 14304 296057
ParamOrderedSet.isEmpty * size C 9023 151674
ParamOrderedSet.isEmpty * insert C 14425 307770
ParamOrderedSet.isEmpty * add C 11786 189019
ParamOrderedSet.isEmpty * isEmpty C 9023 151674
ParamOrderedSet.isEmpty * remove C 33748 1343221
ParamOrderedSet.isEmpty * delete C 14522 307899
ParamOrderedSet.remove * find 3 43071 2001008
ParamOrderedSet.remove * lower 12503 47039 2378355
ParamOrderedSet.remove * higher 14235 47039 2378355
ParamOrderedSet.remove * size C 33515 1342689
ParamOrderedSet.remove * insert 19496 48881 2052784
ParamOrderedSet.remove * add 21139 45163 1729336
ParamOrderedSet.remove * isEmpty C 33748 1343221
ParamOrderedSet.remove * remove C 84794 5554487
ParamOrderedSet.remove * delete 6721 49074 2053230
ParamOrderedSet.delete * find 1 20780 560794
ParamOrderedSet.delete * lower C 19661 501643
ParamOrderedSet.delete * higher C 19661 501643
ParamOrderedSet.delete * size C 14289 307367
ParamOrderedSet.delete * insert 7042 23839 577030
ParamOrderedSet.delete * add 40 20476 380217
ParamOrderedSet.delete * isEmpty C 14522 307899
ParamOrderedSet.delete * remove 5960 47778 1990222
ParamOrderedSet.delete * delete C 24027 575974

Table A.65. Results for model: ParamSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find C 551 3811
ParamSet.find * add C 992 23781
ParamSet.find * remove C 992 23781
ParamSet.add * find C 992 23781
ParamSet.add * add C 394 2110
ParamSet.add * remove C 783 4019
ParamSet.remove * find C 992 23781
ParamSet.remove * add C 783 4019
ParamSet.remove * remove C 390 2101

250

Table A.66. Results for model: ParamSetIterators

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
find * find C 551 3811
find * incIterator C 551 3811
find * IncrementalIterator.next C 551 3811
find * SnapshotIterator.next C 938 4678
find * add 3 1795 26571
find * snapIterator C 938 4678
find * remove 3 1795 26571
incIterator * find C 940 4681
incIterator * incIterator C 3224 8420
incIterator * IncrementalIterator.next C 3224 8420
incIterator * SnapshotIterator.next C 3224 8420
incIterator * add C 516 1020
incIterator * snapIterator C 3224 8420
incIterator * remove C 516 1020

Table A.67. Results for model: IncrementalIterator

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
IncrementalIterator.next * find C 1143 5149
IncrementalIterator.next * incIterator C 3228 8426
IncrementalIterator.next * IncrementalIterator.next 1 3479 10291
IncrementalIterator.next * SnapshotIterator.next 3 3931 10121
IncrementalIterator.next * add C 751 1488
IncrementalIterator.next * snapIterator C 3228 8426
IncrementalIterator.next * remove C 751 1488

Table A.68. Results for model: SnapshotIterator

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
SnapshotIterator.next * find C 1141 5146
SnapshotIterator.next * incIterator C 3226 8423
SnapshotIterator.next * IncrementalIterator.next 2 3929 10118
SnapshotIterator.next * SnapshotIterator.next 180 20669 252835
SnapshotIterator.next * add C 749 1485
SnapshotIterator.next * snapIterator C 3226 8423
SnapshotIterator.next * remove C 749 1485

251

Table A.69. Results for model: ParamSetIterators

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
add * find 4 1795 26571
add * incIterator C 514 1017
add * IncrementalIterator.next C 514 1017
add * SnapshotIterator.next C 514 1017
add * add C 1194 4441
add * snapIterator C 514 1017
add * remove 1 1586 6809
snapIterator * find C 1141 5146
snapIterator * incIterator C 3226 8423
snapIterator * IncrementalIterator.next C 3226 8423
snapIterator * SnapshotIterator.next C 3226 8423
snapIterator * add C 749 1485
snapIterator * snapIterator C 3226 8423
snapIterator * remove C 749 1485
remove * find 2 1795 26571
remove * incIterator C 514 1017
remove * IncrementalIterator.next C 514 1017
remove * SnapshotIterator.next C 514 1017
remove * add 1 1586 6809
remove * snapIterator C 514 1017
remove * remove C 1198 4450

Table A.70. Results for model: ParamSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find C 117 129
ParamSet.find * add 0 554 1069
ParamSet.find * remove 1 554 1069
ParamSet.add * find 0 554 1069
ParamSet.add * add C 372 1109
ParamSet.add * remove 1 760 3468
ParamSet.remove * find 1 554 1069
ParamSet.remove * add 2 760 3468
ParamSet.remove * remove C 372 1109

252

Table A.71. Results for model: IntCell

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
IntCell.set * set C 338 573
IntCell.set * putTwo C 338 605
IntCell.set * get C 336 1020
IntCell.set * put C 338 573
IntCell.set * setOne C 338 605
IntCell.set * setTwo C 338 605
IntCell.set * putOne C 338 605
IntCell.putTwo * set C 338 605
IntCell.putTwo * putTwo C 115 126
IntCell.putTwo * get C 529 1084
IntCell.putTwo * put C 338 605
IntCell.putTwo * setOne C 114 125
IntCell.putTwo * setTwo C 115 126
IntCell.putTwo * putOne C 114 125
IntCell.get * set C 336 1020
IntCell.get * putTwo C 529 1084
IntCell.get * get C 115 126
IntCell.get * put C 336 1020
IntCell.get * setOne C 529 1084
IntCell.get * setTwo C 529 1084
IntCell.get * putOne C 529 1084
IntCell.put * set C 338 573
IntCell.put * putTwo C 338 605
IntCell.put * get C 336 1020
IntCell.put * put C 338 573
IntCell.put * setOne C 338 605
IntCell.put * setTwo C 338 605
IntCell.put * putOne C 338 605

253

Table A.72. Results for model: IntCell

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
IntCell.setOne * set C 338 605
IntCell.setOne * putTwo C 114 125
IntCell.setOne * get C 529 1084
IntCell.setOne * put C 338 605
IntCell.setOne * setOne C 115 126
IntCell.setOne * setTwo C 114 125
IntCell.setOne * putOne C 115 126
IntCell.setTwo * set C 338 605
IntCell.setTwo * putTwo C 115 126
IntCell.setTwo * get C 529 1084
IntCell.setTwo * put C 338 605
IntCell.setTwo * setOne C 114 125
IntCell.setTwo * setTwo C 115 126
IntCell.setTwo * putOne C 114 125
IntCell.putOne * set C 338 605
IntCell.putOne * putTwo C 114 125
IntCell.putOne * get C 529 1084
IntCell.putOne * put C 338 605
IntCell.putOne * setOne C 115 126
IntCell.putOne * setTwo C 114 125
IntCell.putOne * putOne C 115 126

254

Table A.73. Results for model: MultiMap

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
MultiMap.remove * remove C 20579 207350
MultiMap.remove * size C 3882 10947
MultiMap.remove * put 1470 18895 148481
MultiMap.remove * getOne 11 4819 18900
MultiMap.remove * containsKey 1 3700 12496
MultiMap.size * remove C 3882 10947
MultiMap.size * size C 1737 3654
MultiMap.size * put C 3524 8631
MultiMap.size * getOne 12 3053 7083
MultiMap.size * containsKey C 1544 3300
MultiMap.put * remove 1069 18895 154905
MultiMap.put * size C 3524 8631
MultiMap.put * put C 18337 123591
MultiMap.put * getOne 10 4721 18701
MultiMap.put * containsKey 1 3602 12364
MultiMap.getOne * remove 10 4819 17294
MultiMap.getOne * size 12 3053 7083
MultiMap.getOne * put 9 4721 17095
MultiMap.getOne * getOne C 1544 3300
MultiMap.getOne * containsKey C 3222 8744
MultiMap.containsKey * remove 1 3700 11693
MultiMap.containsKey * size C 1544 3300
MultiMap.containsKey * put 1 3602 11561
MultiMap.containsKey * getOne C 3222 8744
MultiMap.containsKey * containsKey C 1544 3300

Table A.74. Results for model: Queue

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
Queue.dequeue * dequeue C 14732 313785
Queue.dequeue * size C 15059 113142
Queue.dequeue * enqueue C 32836 381353
Queue.size * dequeue C 15059 113142
Queue.size * size C 8203 39558
Queue.size * enqueue C 18069 95906
Queue.enqueue * dequeue C 33125 387781
Queue.enqueue * size C 18069 95906
Queue.enqueue * enqueue C 31067 267757

255

Table A.75. Results for model: MultiSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
MultiSet.find * find C 1241 2794
MultiSet.find * size C 1241 2794
MultiSet.find * insert 2 3910 11922
MultiSet.find * add 1 3910 11922
MultiSet.find * isEmpty C 1241 2794
MultiSet.find * delete 2 4201 13338
MultiSet.find * remove 1 4201 13338
MultiSet.size * find C 1241 2794
MultiSet.size * size C 1307 2733
MultiSet.size * insert C 3679 9041
MultiSet.size * add C 3679 9041
MultiSet.size * isEmpty C 1307 2733
MultiSet.size * delete C 5286 14975
MultiSet.size * remove C 5286 14975
MultiSet.insert * find 2 3910 12725
MultiSet.insert * size C 3679 9041
MultiSet.insert * insert C 18487 123609
MultiSet.insert * add 766 17647 121128
MultiSet.insert * isEmpty C 3912 9573
MultiSet.insert * delete 1254 22124 208866
MultiSet.insert * remove 1830 21734 204362
MultiSet.add * find 1 3910 12725
MultiSet.add * size C 3679 9041
MultiSet.add * insert 642 17647 121931
MultiSet.add * add C 17707 116207
MultiSet.add * isEmpty C 3912 9573
MultiSet.add * delete 1466 21734 203846
MultiSet.add * remove 1303 21344 199342

256

Table A.76. More Results for model: MultiSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
MultiSet.isEmpty * find C 1241 2794
MultiSet.isEmpty * size C 1307 2733
MultiSet.isEmpty * insert C 3912 9573
MultiSet.isEmpty * add C 3912 9573
MultiSet.isEmpty * isEmpty C 1307 2733
MultiSet.isEmpty * delete C 5519 15507
MultiSet.isEmpty * remove C 5519 15507
MultiSet.delete * find 1 4201 13338
MultiSet.delete * size C 5286 14975
MultiSet.delete * insert 877 22124 180761
MultiSet.delete * add 1192 21734 175741
MultiSet.delete * isEmpty C 5519 15507
MultiSet.delete * delete C 27079 277447
MultiSet.delete * remove 1939 25821 273655
MultiSet.remove * find 1 4201 13338
MultiSet.remove * size C 5286 14975
MultiSet.remove * insert 931 21734 177060
MultiSet.remove * add 1027 21344 172040
MultiSet.remove * isEmpty C 5519 15507
MultiSet.remove * delete 1457 25821 273655
MultiSet.remove * remove C 26299 267407

Table A.77. Results for model: ParamSet

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
ParamSet.find * find C 4182 76766
ParamSet.find * add C 9550 414399
ParamSet.find * remove C 9543 413129
ParamSet.add * find C 9550 415664
ParamSet.add * add C 10044 615305
ParamSet.add * remove 56 10038 610208
ParamSet.remove * find C 9543 413129
ParamSet.remove * add 66 10038 614003
ParamSet.remove * remove C 10034 607675

257

Table A.78. Results for model: Set

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
Set.find * find C 504 996
Set.find * size C 504 996
Set.find * insert 0 1352 3921
Set.find * add 1 1352 3921
Set.find * isEmpty C 504 996
Set.find * delete 0 1352 3921
Set.find * remove 0 1352 3921
Set.size * find C 504 996
Set.size * size C 535 1028
Set.size * insert C 1240 2948
Set.size * add C 1240 2948
Set.size * isEmpty C 535 1028
Set.size * delete C 1337 3077
Set.size * remove C 1337 3077
Set.insert * find 0 1352 4845
Set.insert * size C 1240 2948
Set.insert * insert C 4214 19389
Set.insert * add 2 4215 19360
Set.insert * isEmpty C 1473 3480
Set.insert * delete 55 4413 21081
Set.insert * remove 52 4409 19682
Set.add * find 1 1352 3921
Set.add * size C 1240 2948
Set.add * insert 3 4215 19360
Set.add * add C 4210 18431
Set.add * isEmpty C 1473 3480
Set.add * delete 46 4407 19678
Set.add * remove 40 4403 19203

258

Table A.79. Results for model: Set

Problem (Lock Correctness) Time(ms) SAT Vars SAT Clauses
Set.isEmpty * find C 504 996
Set.isEmpty * size C 535 1028
Set.isEmpty * insert C 1473 3480
Set.isEmpty * add C 1473 3480
Set.isEmpty * isEmpty C 535 1028
Set.isEmpty * delete C 1570 3609
Set.isEmpty * remove C 1570 3609
Set.delete * find 1 1352 4845
Set.delete * size C 1337 3077
Set.delete * insert 20 4413 21081
Set.delete * add 17 4407 19678
Set.delete * isEmpty C 1570 3609
Set.delete * delete C 4600 20025
Set.delete * remove 4 4601 20000
Set.remove * find 1 1352 3921
Set.remove * size C 1337 3077
Set.remove * insert 18 4409 19682
Set.remove * add 42 4403 19203
Set.remove * isEmpty C 1570 3609
Set.remove * delete 4 4601 20000
Set.remove * remove C 4598 19075

259

APPENDIX B

ACCLAM GRAMMAR

This is a formal description of the grammar of ACCLAM.

An ACCLAM program is a collection of models. These models are organized into

packages, which partition a global namespace. The description below lists keywords in

bold, and assumes that there are lexical primitives for numeric and character literals and a

lexical rule ID, that evaluates to a Java-legal symbol identifier [26].

Declarations:

Program←ModelDescription∗ (B.1)

ModelDescription← PackageDec ModelDec (B.2)

PackageDec← package Name (B.3)

Name← ID(.ID)∗ (B.4)

ModelDec←model ID TypeParamDec? ModelBody (B.5)

TypeParamDec←< (ID TypeConstraints+)+ > (B.6)

TypeConstraints← extends TypeInstance | implements TypeInstance (B.7)

TypeInstance← Name TypeParamInstance? (B.8)

TypeParamInstance←< TypeInstance+ > (B.9)

260

ModelBody← (MemberDec |MethodDec | CtorDec | InvariantDec)∗ (B.10)

MemberDec← (JavaDec | RelationDec | ReductionDec); (B.11)

JavaDec← PrimDec | ObjDec (B.12)

ObjDec← NameID (= Expression)? (B.13)

PrimDec← JavaPrimitiveType ID (= Expression)? (B.14)

RelationDec← TypeInstance ID [TypeInstance∗] (B.15)

ReductionDec← PrimDec = ID(MethodArg∗;Expr;Expr;Expr) (B.16)

MethodDec← AbstractMethodDec |ConcreteMethodDec (B.17)

AbstractMethodDec← abstract MethodPrototype ; (B.18)

MethodPrototype← ReturnType (TypeParamInstance)? ID (MethodArg∗) (B.19)

ConcreteMethodDec←MethodPrototype Prevals? LockUse∗ MethodBody (B.20)

MethodArg← TypeName ID (B.21)

ReturnType← void | TypeName (B.22)

TypeName← JavaPrimitiveType | RelationTypeName | TypeInstance (B.23)

RelationTypeName← TypeInstance [TypeInstance∗] (B.24)

CtorDec← ID (MethodArg∗) MethodBody (B.25)

Prevals← [(JavaDec | RelationDec)∗] (B.26)

LockUse←@lock (ID TypeParamInstance? (ID∗) , ID) (B.27)

MethodBody← StmtBlock (B.28)

InvariantDec← (forall | exists)(MethodArg∗ ; Expression) (B.29)

261

Expressions

Expression← TernaryExpression | BinExpression | UnaryExpression (B.30)

| ParenExpression | DerefExpression | CallExpression | NewExpr

(B.31)

| Name | Constant (B.32)

TernaryExpression← Expression ? Expression : Expression (B.33)

BinExpression← Expression BinOp Expression (B.34)

BinOp←& | | | ∧ | −> | == | != | < | <= | >= | > | + | − | ∗ | / |%

(B.35)

UnaryExpression← (! | + | −) Expression (B.36)

ParenExpression← LPar Expression RPar (B.37)

LPar← ((B.38)

RPar←) (B.39)

DerefExpression← Expression [Expression∗] (B.40)

CallExpression← Name(Expression∗) (B.41)

NewExpression← new Name (Expression∗) (B.42)

Name← ID (B.43)

Constant← IntegerLiteral | FloatLiteral | BooleanLiteral | CharLiteral (B.44)

(B.45)

262

Statements

Statement← ExpressionStmt | BlockStmt | ConditionalStmt | ForallStmt (B.46)

| ChooseStmt | ReturnStmt | VarDecStmt (B.47)

ExpressionStmt← Expression ; (B.48)

BlockStmt←{ Statement∗ } (B.49)

ConditionalStmt← if ParenExpression Statement (else Statement)? (B.50)

ForallStmt← forall (MethodArg∗ ; Expression) Statement (B.51)

ChooseStmt← choose (MethodArg∗ ; Expression) Statement (B.52)

ReturnStmt← return Expression (B.53)

VarDecStmt← JavaDec | RelationDec | ReductionDec (B.54)

263

APPENDIX C

FULL MODELS

This appendix contains listings for all the models and conflict predicates used to gener-

ate the results in Appendix A.

C.1 IntCell
package examples;

model IntCell {
int value;

lockTable locks1D<T> cellLocks;

IntCell (){ value = 0; }

IntCell (int x) { value = x; }

int get ()
@lock(cellLocks, Everything<T>(), S)
{ return value; }

int put (int x)
@lock(cellLocks, Everything<T>(), X)
[int oldVal = value;]
{

value = x;
return value;
} onabort {

value = oldVal;
}

void set (int x)
@lock(cellLocks, Everything<T>(), X)
[int oldVal = value;]
{

value = x;
} onabort {

value = oldVal;
}

264

int putOne ()
@lock(cellLocks, Everything<T>(), X)
[int oldVal = value;]
{

value = 1;
return value;
} onabort {

value = oldVal;
}

void setOne ()
@lock(cellLocks, Everything<T>(), X)
[int oldVal = value;]
{

value = 1;
} onabort {

value = oldVal;
}

int putTwo ()
@lock(cellLocks, Everything<T>(), X)
[int oldVal = value;]
{

value = 2;
return value;
} onabort {

value = oldVal;
}

void setTwo ()
@lock(cellLocks, Everything<T>(), X)
[int oldVal = value;]
{

value = 2;
} onabort {

value = oldVal;
}

}

C.1.1 Conflicts
package examples;

IntCell c;

m = c.get() ∗ n = c.get() { false }
m = c.get() ∗ n = c.put(i) { value 6= i }
m = c.get() ∗ c.set(i) { value 6= i }
m = c.get() ∗ n = c.putOne() { value 6= 1 }
m = c.get() ∗ c.setOne() { value 6= 1 }
m = c.get() ∗ n = c.putTwo() { value 6= 2 }
m = c.get() ∗ c.setTwo() { value 6= 2 }

265

m = c.put(i) ∗ n = c.get() { value 6= i }
m = c.put(i) ∗ n = c.put(j) { (i 6= j) —— (value 6= i) }
m = c.put(i) ∗ c.set(j) { (i 6= j) —— (value 6= i) }
m = c.put(i) ∗ n = c.putOne() { (i 6= 1) —— (value 6= 1) }
m = c.put(i) ∗ c.setOne() { (i 6= 1) —— (value 6= 1) }
m = c.put(i) ∗ n = c.putTwo() { (i 6= 2) —— (value 6= 2) }
m = c.put(i) ∗ c.setTwo() { (i 6= 2) —— (value 6= 2) }

c.set(i) ∗ n = c.get() { i 6= value }
c.set(i) ∗ n = c.put(j) { (i 6= j) —— (value 6= i) }
c.set(i) ∗ c.set(j) { (i 6= j) —— (value 6= i) }
c.set(i) ∗ n = c.putOne() { (i 6= 1) —— (value 6= 1) }
c.set(i) ∗ c.setOne() { (i 6= 1) —— (value 6= 1) }
c.set(i) ∗ n = c.putTwo() { (i 6= 2) —— (value 6= 2) }
c.set(i) ∗ c.setTwo() { (i 6= 2) —— (value 6= 2) }

m = c.putOne() ∗ n = c.get() { value 6= 1 }
m = c.putOne() ∗ n = c.put(j) { (j 6= 1) —— (value 6= 1) }
m = c.putOne() ∗ c.set(j) { (j 6= 1) —— (value 6= 1) }
m = c.putOne() ∗ n = c.putOne() { value 6= 1 }
m = c.putOne() ∗ c.setOne() { value 6= 1 }
m = c.putOne() ∗ n = c.putTwo() { true }
m = c.putOne() ∗ c.setTwo() { true }

c.setOne() ∗ n = c.get() { value 6= 1 }
c.setOne() ∗ n = c.put(j) { (j 6= 1) —— (value 6= 1) }
c.setOne() ∗ c.set(j) { (j 6= 1) —— (value 6= 1) }
c.setOne() ∗ n = c.putOne() { value 6= 1 }
c.setOne() ∗ c.setOne() { value 6= 1 }
c.setOne() ∗ n = c.putTwo() { true }
c.setOne() ∗ c.setTwo() { true }

m = c.putTwo() ∗ n = c.get() { value 6= 2 }
m = c.putTwo() ∗ n = c.put(j) { (j 6= 2) —— (value 6= 2) }
m = c.putTwo() ∗ c.set(j) { (j 6= 2) —— (value 6= 2) }
m = c.putTwo() ∗ n = c.putOne() { true }
m = c.putTwo() ∗ c.setOne() { true }
m = c.putTwo() ∗ n = c.putTwo() { value 6= 2 }
m = c.putTwo() ∗ c.setTwo() { value 6= 2 }

c.setTwo() ∗ n = c.get() { value 6= 2 }
c.setTwo() ∗ n = c.put(j) { (j 6= 2) —— (value 6= 2) }
c.setTwo() ∗ c.set(j) { (j 6= 2) —— (value 6= 2) }
c.setTwo() ∗ n = c.putOne() { true }
c.setTwo() ∗ c.setOne() { true }
c.setTwo() ∗ n = c.putTwo() { value 6= 2 }
c.setTwo() ∗ c.setTwo() { value 6= 2 }

C.2 Map
package examples;

//model for a map that allows null

266

model Map<K,V> {

V mapping[K];
boolean isMapped[K];
int sz = count(K z ; isMapped[z] ; 1 ; 0);

lockTable locks1D<K> mapLocks;

Map() {
forall (K key ; true) {

mapping[key] = null;
}

forall (K key ; true) {
isMapped[key] = false;
}
}

V put(K key, V newVal)
[V oldVal = mapping[key]; boolean wasMapped = isMapped[key];]
@lock(mapLocks, Point1D<K>(key), X)
@lock(mapLocks, Everything<K>(), S)
{

mapping[key] = newVal;
isMapped[key] = true;

return oldVal;
} onabort {

mapping[key] = oldVal;
isMapped[key] = wasMapped;
}

V get(K key)
@lock(mapLocks, Point1D<K>(key), S)
@lock(mapLocks, Everything<K>(), S)
{

return mapping[key];
}

boolean containsKey(K key)
@lock(mapLocks, Point1D<K>(key), S)
@lock(mapLocks, Everything<K>(), S)
{

return isMapped[key];
}

V remove(K key)
[V oldVal = mapping[key]; boolean wasMapped = isMapped[key];]
@lock(mapLocks, Point1D<K>(key), X)
@lock(mapLocks, Everything<K>(), S)
{

mapping[key] = null;
isMapped[key] = false;

267

return oldVal;
} onabort {

mapping[key] = oldVal;
isMapped[key] = wasMapped;
}

int size()
@lock(mapLocks, Everything<K>(), X)
{

return sz;
}
}

C.2.1 Conflicts
package examples;

a = put(k, v) ∗ b = put(x,y) { x = k }
a = put(k, v) ∗ b = get(x) { x = k }
a = put(k, v) ∗ b = containsKey(x) { k = x }
a = put(k, v) ∗ b = remove(x) { k = x }
a = put(k, v) ∗ b = size() @pre { !isMapped[k] }

a = get(k) ∗ b = put(x,y) { x = k }
a = get(k) ∗ b = get(x) { false }
a = get(k) ∗ b = containsKey(x) { false }
a = get(k) ∗ b = remove(x) { k = x }
a = get(k) ∗ b = size() { false }

a = containsKey(k) ∗ b = put(x,y) { x = k }
a = containsKey(k) ∗ b = get(x) { false }
a = containsKey(k) ∗ b = containsKey(x) { false }
a = containsKey(k) ∗ b = remove(x) { k = x }
a = containsKey(k) ∗ b = size() { false }

a = remove(k) ∗ b = put(x,y) { x = k }
a = remove(k) ∗ b = get(x) { x = k }
a = remove(k) ∗ b = containsKey(x) { k = x }
a = remove(k) ∗ b = remove(x) { k = x }
a = remove(k) ∗ b = size() @pre { isMapped[k] }

a = size() ∗ b = put(x,y) { true }
a = size() ∗ b = get(x) { false }
a = size() ∗ b = containsKey(x) { false }
a = size() ∗ b = remove(x) { true }
a = size() ∗ b = size() { false }

C.3 MultiMap
package examples;

model MultiMap<K,V> {

int mapCount[K];

268

boolean mapping[K,V];
int sz = count(K z ; mapCount[z] 6= 0 ; 1 ; 0);

lockTable locks1D<K> mapLocks;

MultiMap() {
forall (K key ; true) {

mapCount[key] = 0;
}
}

boolean containsKey(K key)
@lock(mapLocks, Point1D<K>(key), S)
{

return mapCount[key] 6= 0;
}

void put(K key, V newVal)
[boolean wasMapped = mapping[key, newVal];]
@lock(mapLocks, Point1D<K>(key), X)
{

mapCount[key] = mapCount[key] + 1;
mapping[key, newVal] = true;
} onabort {

mapCount[key] = mapCount[key] − 1;
mapping[key, newVal] = wasMapped;
}

V getOne(K key)
@lock(mapLocks, Point1D<K>(key), S)
{

if (containsKey(key)) {
choose (V val ; mapping[key, val]) {

return val;
}
} else {

return null;
}
}

boolean remove(K key, V removeVal)
[boolean wasMapped = mapping[key, removeVal];]
@lock(mapLocks, Point1D<K>(key), X)
{

mapping[key, removeVal] = false;

if (wasMapped) {
mapCount[key] = mapCount[key] − 1;
}

return wasMapped;
} onabort {

mapping[key, removeVal] = wasMapped;

269

if (wasMapped) {
mapCount[key] = mapCount[key] − 1;
}
}

int size()
@lock(mapLocks, Everything<K>(), S)
{

return sz;
}
}

C.3.1 Conflicts
package examples;

put(x, y) ∗ put(w, z) { true }
put(x, y) ∗ r = getOne(w) { w = x }
put(x, y) ∗ r = containsKey(w) { x = w }
put(x, y) ∗ r = remove(w, z) { x = w }
put(x, y) ∗ r = size() { true }

s = getOne(x) ∗ put(w, z) { w = x }
s = getOne(x) ∗ r = getOne(w) { false }
s = getOne(x) ∗ r = containsKey(w) { false }
s = getOne(x) ∗ r = remove(w, z) { true }
s = getOne(x) ∗ r = size() { false }

s = containsKey(x) ∗ put(w, z) { w = x }
s = containsKey(x) ∗ r = getOne(w) { false }
s = containsKey(x) ∗ r = containsKey(w) { false }
s = containsKey(x) ∗ r = remove(w, z) { x = w }
s = containsKey(x) ∗ r = size() { false }

s = remove(x) ∗ put(w, z) { w = x }
s = remove(x) ∗ r = getOne(w) { true }
s = remove(x) ∗ r = containsKey(w) { x = w }
s = remove(x) ∗ r = remove(w, z) { true }
s = remove(x) ∗ r = size() { true }

s = size() ∗ put(w, z) { true }
s = size() ∗ r = getOne(w) { false }
s = size() ∗ r = containsKey(w) { false }
s = size() ∗ r = remove(w, z) { true }
s = size() ∗ r = size() { true }

C.4 Set
package testmodels;

model Set<T>{
boolean in[T];
int sz = count(T obj ; in[obj];1;0);

270

lockTable locks1D<T> setLocks;

Set(){
forall(T z ; true){

in[z] = false;
}
}

Set(T x){
forall(T z ; true){

in[z] = false;
}
in[x] = true;
}

void add(T obj)
@lock(setLocks, Point1D<T>(obj), X)
{

in[obj] = true;
}

void remove(T obj)
@lock(setLocks, Point1D<T>(obj), X)
{

in[obj] = false;
}

boolean insert(T obj)
@lock(setLocks, Point1D<T>(obj), X)
{

boolean present = in[obj];
in[obj] = true;
return !present;
}

boolean delete(T obj)
@lock(setLocks, Point1D<T>(obj), X)
{

boolean present = in[obj];
in[obj] = false;
return present;
}

boolean find(T obj)
@lock(setLocks, Point1D<T>(obj), S)
{

return in[obj];
}

int size()
@lock(setLocks, Everything<T>(), S)
{

return sz;
}

271

boolean isEmpty()
@lock(setLocks, Everything<T>(), S)
{

return (sz = 0);
}

}

C.4.1 Conflicts
package testmodels;

add(x) ∗ add(y) { x = y }
add(x) ∗ remove(y) { x = y }
add(x) ∗ z = insert(y) { x = y }
add(x) ∗ z = delete(y) { x = y }
add(x) ∗ z = find(y) { x = y }
add(x) ∗ z = size() { !in[x] }
add(x) ∗ z = isEmpty() { true }

remove(x) ∗ remove(y) { x = y }
remove(x) ∗ add(y) { x = y }
remove(x) ∗ z = insert(y) { x = y }
remove(x) ∗ z = delete(y) { x = y }
remove(x) ∗ z = find(y) { x = y }
remove(x) ∗ z = size() { in[x] }
remove(x) ∗ z = isEmpty() { true }

w = insert(x) ∗ z = insert(y) { x = y }
w = insert(x) ∗ remove(y) { x = y }
w = insert(x) ∗ add(y) { x = y}
w = insert(x) ∗ z = delete(y) { x = y }
w = insert(x) ∗ z = find(y) { x = y }
w = insert(x) ∗ z = size() { !in[x] }
w = insert(x) ∗ z = isEmpty() { true }

w = delete(x) ∗ z = delete(y) { x = y }
w = delete(x) ∗ z = insert(y) { x = y }
w = delete(x) ∗ remove(y) { x = y }
w = delete(x) ∗ add(y) { x = y}
w = delete(x) ∗ z = find(y) { x = y }
w = delete(x) ∗ z = size() { in[x] }
w = delete(x) ∗ z = isEmpty() { true }

w = find(x) ∗ z = find(y) { false }
w = find(x) ∗ z = delete(y) { x = y }
w = find(x) ∗ z = insert(y) { x = y }
w = find(x) ∗ remove(y) { x = y }
w = find(x) ∗ add(y) { x = y}
w = find(x) ∗ z = size() { false }
w = find(x) ∗ z = isEmpty() { false }

w = size() ∗ z = find(y) { false }
w = size() ∗ z = delete(y) { in[y] }

272

w = size() ∗ z = insert(y) { !in[y] }
w = size() ∗ remove(y) { in[y] }
w = size() ∗ add(y) { !in[y] }
w = size() ∗ z = size() { false }
w = size() ∗ z = isEmpty() { false }

w = isEmpty() ∗ z = find(y) { false }
w = isEmpty() ∗ z = delete(y) { true }
w = isEmpty() ∗ z = insert(y) { true }
w = isEmpty() ∗ remove(y) { true }
w = isEmpty() ∗ add(y) { true }
w = isEmpty() ∗ z = size() { false }
w = isEmpty() ∗ z = isEmpty() { false }

C.5 Equivalence
package examples;

model Equivalence<T> {
boolean equ[T,T];
invariant forall (T x; equ[x, x]);
invariant forall (T x, T y; equ[x,y] = equ[y,x]);
invariant forall (T x, T y, T z;

(equ[x, y] && equ[y, z])→ equ[x, z]);

boolean eq(T x, T y) { return equ[x,y]; }
boolean ne(T x, T y) { return !eq(x, y); }
}

C.5.1 Conflicts
package testmodels;

Equivalence e1;

z = e1.eq(x,y) ∗ c = e1.eq(a,b) { false }
z = e1.eq(x,y) ∗ c = e1.ne(a,b) { false }

z = e1.ne(x,y) ∗ c = e1.eq(a,b) { false }
z = e1.ne(x,y) ∗ c = e1.ne(a,b) { false }

C.6 Parameterized Sets

C.6.1 Set parameterized by an equ relation
package examples;

model ParamSet<T> {
boolean in[T];
boolean equ[T,T];

lockTable locks1D<T> setLocks;

273

invariant forall(T x, T y; equ[x,y]→ (in[x] = in[y]));
invariant forall(T x; equ[x,x]);
invariant forall(T x, T y; equ[x,y] = equ[y,x]);
invariant forall(T x, T y, T z;

(equ[x,y] & equ[y,z])→ equ[x,z]);

ParamSet (){
forall (T x; true) { in[x] = false; }
}

void add (T x)
[boolean present = in[x];]
//point locks don’t work, because it should be locking the
//entire equivalence class defined by equ. So lock everything
@lock(setLocks, Everything<T>(), X)
{

forall(T z; equ[z,x]) { in[z] = true; }
} onabort {

if (!present){
remove(x);
}
}

void remove (T x)
[boolean present = in[x];]
@lock(setLocks, Everything<T>(), X)
{

forall(T z; equ[z,x]) { in[z] = false; }
} onabort {

if (present) {
add(x);
}
}

boolean find(T x)
@lock(setLocks, Everything<T>(), S)
{

return in[x];
}
}

C.6.2 Set parameterized by a canonical element mapping
// Parameterized Set done using integers to number
// the equivalence classes in in[T]
package examples;

model ParamSet<T> {
boolean in[T];
T canon[T];
boolean equ[T,T];

lockTable locks1D<T> setLocks;

274

//invariants
invariant forall(T x, T y; equ[x,y] = (x = y));
invariant forall(T x, T y;

equ[x,y] = (canon[x] = canon[y]));
invariant forall(T x; equ[x,x]);
invariant forall(T x, T y; equ[x,y] = equ[y,x]);
invariant forall(T x;

(x = null) = (canon[x] = null));

ParamSet (){
forall (T x; true) { in[x] = false; }
}

void add (T x)
[boolean present = in[canon[x]];]
@lock(setLocks, Point1D<T>(canon[x]), X)
{

in[canon[x]] = true;
} onabort {

if (!present){
remove(x);
}
}

void remove (T x)
[boolean present = in[canon[x]];]
@lock(setLocks, Point1D<T>(canon[x]), X)
{

in[canon[x]] = false;
} onabort {

if (present) {
add(x);
}
}

boolean find(T x)
@lock(setLocks, Everything<T>(), S)
{

return in[canon[x]];
}
}

C.6.3 Set parameterized by an Equivalence
package testmodels;

model ParamSet<T> {
boolean in[T];
Equivalence<T> e;

lockTable locks1D<T> setLocks;

ParamSet (){
forall (T x; true) { in[x] = false; }

275

}

void add (T x)
[boolean present = in[x];]
@lock(setLocks, Point1D<T>(x), X)
{

forall(T z; e.eq(x,z)) { in[z] = true; }
} onabort {

if (!present){
remove(x);
}
}

void remove (T x)
[boolean present = in[x];]
@lock(setLocks, Point1D<T>(x), X)
{

forall(T z; e.eq(z,x)) { in[z] = false; }
} onabort {

if (present) {
add(x);
}
}

boolean find(T x)
@lock(setLocks, Point1D<T>(x), S)
{

return in[x];
}
}

C.6.4 Conflicts (shared by all implementations)
package examples;

add(x) ∗ add(y) { equ[x,y] }
add(x) ∗ remove(y) { equ[x,y] }
add(x) ∗ z = find(y) { equ[x,y] }

remove(x) ∗ remove(y) { equ[x,y] }
remove(x) ∗ add(y) { equ[x,y] }
remove(x) ∗ z = find(y) { equ[x,y] }

w = find(x) ∗ z = find(y) { false }
w = find(x) ∗ remove(y) { equ[x,y] }
w = find(x) ∗ add(y) { equ[x,y] }

C.7 Parameterized Sets with Iterators
package examples;

model ParamSetIterators<T> {
boolean in[T];
boolean equ[T,T];

276

lockTable locks1D<T> setLocks;

//invariants
invariant forall(T x, T y; equ[x,y]→ (in[x] = in[y]));
invariant forall(T x; equ[x,x]);
invariant forall(T x, T y; equ[x,y] = equ[y,x]);
invariant forall(T x, T y, T z;

(equ[x,y] & equ[y,z])→ equ[x,z]);

ParamSetIterators (){
forall (T x; true) { in[x] = false; }
}

void add (T x)
[boolean present = in[x];]
@lock(setLocks, Everything<T>(x), X)
{

forall(T z; equ[z,x]) { in[z] = true; }
} onabort {

if (!present){
remove(x);
}
}

void remove (T x)
[boolean present = in[x];]
@lock(setLocks, Everything<T>(x), X)
{

forall(T z; equ[z,x]) { in[z] = false; }
} onabort {

if (present) {
add(x);
}
}

boolean find(T x)
@lock(setLocks, Everything<T>(x), S)
{

return in[x];
}

examples.ParamSetIterators.SnapshotIterator snapIterator()
@lock(setLocks, Everything<T>(), S)
{

return new SnapshotIterator();
}

IncrementalIterator incIterator()
@lock(setLocks, Everything<T>(), S)
{

return new IncrementalIterator();
}

277

model SnapshotIterator {
boolean contents[T];
int remaining = count (T z ; contents[z] ; 1 ; 0);

SnapshotIterator() {
forall (T idx ; true) {

contents[idx] = in[idx];
}
}

T next() {
if (remaining > 0) {

choose (T idx ; contents[idx]) {
contents[idx] = false;
return idx;
}
} else {

throw new Exception();
}
}
}

model IncrementalIterator {
boolean seenIt[T];

IncrementalIterator() {
forall (T idx ; true) {

seenIt[idx] = false;
}
}

T next()
@lock(setLocks, Everything<T>(), S)
{

choose (T idx ; in[idx] && (!seenIt[idx])) {
seenIt[idx] = true;
return idx;
}
}
}
}

C.7.1 Conflicts
package examples;

ParamSetIterators.SnapshotIterator snap;
ParamSetIterators.IncrementalIterator inc;

add(x) ∗ add(y) { equ[x,y] }
add(x) ∗ remove(y) { equ[x,y] }
add(x) ∗ z = find(y) { equ[x,y] }
add(x) ∗ z = snap.next() { !snap.contents[x] }
add(x) ∗ z = IncrementalIterator.next() { true }

278

add(x) ∗ z = SnapshotIterator.next() { false }
add(x) ∗ incIterator() { false }
add(x) ∗ snapIterator() { false }

remove(x) ∗ remove(y) { equ[x,y] }
remove(x) ∗ add(y) { equ[x,y] }
remove(x) ∗ z = find(y) { equ[x,y] }
remove(x) ∗ z = SnapshotIterator.next() { false }
remove(x) ∗ z = IncrementalIterator.next() { true }
remove(x) ∗ snapIterator() { false }
remove(x) ∗ incIterator() { false }

w = find(x) ∗ z = find(y) { false }
w = find(x) ∗ remove(y) { equ[x,y] }
w = find(x) ∗ add(y) { equ[x,y] }
w = find(x) ∗ z = snap.next() { false }
w = find(x) ∗ z = IncrementalIterator.next() { false }
w = find(x) ∗ z = SnapshotIterator.next() { false }
w = find(x) ∗ incIterator() { false }
w = find(x) ∗ snapIterator() { false }

w = IncrementalIterator.next()
∗ add(x) { !inc.seenIt[x] }

w = IncrementalIterator.next()
∗ snapIterator() { false }

w = IncrementalIterator.next()
∗ z = IncrementalIterator.next() { false }

w = IncrementalIterator.next()
∗ z = SnapshotIterator.next() { false }

w = IncrementalIterator.next()
∗ z = remove(y) { true }

w = IncrementalIterator.next()
∗ z = find(y) { false }

w = IncrementalIterator.next()
∗ incIterator() { false }

w = SnapshotIterator.next()
∗ add(x) { false }

w = SnapshotIterator.next()
∗ snapIterator() { false }

w = SnapshotIterator.next()
∗ z = IncrementalIterator.next() { false }

w = SnapshotIterator.next()
∗ z = SnapshotIterator.next() { false }

w = SnapshotIterator.next()
∗ z = remove(y) { false }

w = SnapshotIterator.next()
∗ z = find(y) { false }

w = SnapshotIterator.next()
∗ incIterator() { false }

incIterator() ∗ w = find(x) { false }
incIterator() ∗ incIterator() { false }
incIterator() ∗ snapIterator() { false }

279

incIterator() ∗ IncrementalIterator.next() { false }
incIterator() ∗ SnapshotIterator.next() { false }
incIterator() ∗ add(x) { false }
incIterator() ∗ remove(x) { false }

snapIterator() ∗ w = find(x) { false }
snapIterator() ∗ incIterator() { false }
snapIterator() ∗ snapIterator() { false }
snapIterator() ∗ IncrementalIterator.next() { false }
snapIterator() ∗ SnapshotIterator.next() { false }
snapIterator() ∗ add(x) { false }
snapIterator() ∗ remove(x) { false }

C.8 MultiSet
package examples;

model MultiSet<T>{
int in[T];
int sz = count(T obj ; (in[obj] > 0) ; 1 ; 0);

invariant forall(T elem ; in[elem] ≥ 0);

MultiSet(){
forall(T z ; true){

in[z] = 0;
}
}

MultiSet(T x){
forall(T z ; true){

in[z] = 0;
}
in[x] = 1;
}

void add(T obj)
[boolean present = in[obj] 6= 0;]
@lock(setLocks, Point1D<T>(obj), X)
{

in[obj] = in[obj] + 1;
}onabort{

if (!present) {
remove(obj);
}
}

void remove(T obj)
[boolean present = in[obj] 6= 0;]
@lock(setLocks, Point1D<T>(obj), X)
{

if (present) {
in[obj] = in[obj] − 1;
}

280

}onabort{
if (present) {

add(obj);
}
}

boolean insert(T obj)
[boolean present = in[obj] 6= 0;]
@lock(setLocks, Point1D<T>(obj), X)
{

in[obj] = in[obj] + 1;
return present;
}onabort{

if(!present) {
remove(obj);
}
}

boolean delete(T obj)
[boolean present = in[obj] 6= 0;]
@lock(setLocks, Point1D<T>(obj), X)
{

if (present) {
in[obj] = in[obj] − 1;
}
return present;
}onabort{

if(present){
add(obj);
}
}

boolean find(T obj)
@lock(setLocks, Point1D<T>(obj), X)
{

return in[obj] 6= 0;
}

int size()
@lock(setLocks, Everything<T>(), S)
{

return sz;
}

boolean isEmpty()
@lock(setLocks, Everything<T>(), S)
{

return (sz = 0);
}

}

C.8.1 Conflicts
package examples;

281

add(x) ∗ add(y) { true }
add(x) ∗ remove(y) { x = y }
add(x) ∗ z = insert(y) { x = y }
add(x) ∗ z = delete(y) { x = y }
add(x) ∗ z = find(y) { x = y }
add(x) ∗ z = size() @pre { true }
add(x) ∗ z = isEmpty() @pre { in[x] = 0 }

remove(x) ∗ remove(y) { true }
remove(x) ∗ add(y) { x = y }
remove(x) ∗ z = insert(y) { x = y }
remove(x) ∗ z = delete(y) { x = y }
remove(x) ∗ z = find(y) { x = y }
remove(x) ∗ z = size() @pre { in[x] = 1 }
remove(x) ∗ z = isEmpty() @pre { true }

w = insert(x) ∗ z = insert(y) { true }
w = insert(x) ∗ remove(y) { x = y }
w = insert(x) ∗ add(y) { x = y}
w = insert(x) ∗ z = delete(y) { x = y }
w = insert(x) ∗ z = find(y) { x = y }
w = insert(x) ∗ z = size() @pre { true }
w = insert(x) ∗ z = isEmpty() @pre { in[x] = 0 }

w = delete(x) ∗ z = delete(y) { true }
w = delete(x) ∗ z = insert(y) { x = y }
w = delete(x) ∗ remove(y) { x = y }
w = delete(x) ∗ add(y) { x = y}
w = delete(x) ∗ z = find(y) { x = y }
w = delete(x) ∗ z = size() @pre { in[x] 6= 0 }
w = delete(x) ∗ z = isEmpty() @pre { in[x] 6= 0 }

w = find(x) ∗ z = find(y) { false }
w = find(x) ∗ z = delete(y) { x = y }
w = find(x) ∗ z = insert(y) { x = y }
w = find(x) ∗ remove(y) { x = y }
w = find(x) ∗ add(y) { x = y}
w = find(x) ∗ z = size() { false }
w = find(x) ∗ z = isEmpty() { false }

w = size() ∗ z = find(y) { false }
w = size() ∗ z = delete(y) { in[y] 6= 0 }
w = size() ∗ z = insert(y) { true }
w = size() ∗ remove(y) { in[y] 6= 0 }
w = size() ∗ add(y) { true }
w = size() ∗ z = size() { false }
w = size() ∗ z = isEmpty() { false }

w = isEmpty() ∗ z = find(y) { false }
w = isEmpty() ∗ z = delete(y) { true }
w = isEmpty() ∗ z = insert(y) @pre { in[y] = 0 }
w = isEmpty() ∗ remove(y) { true }
w = isEmpty() ∗ add(y) @pre { in[y] = 0 }

282

w = isEmpty() ∗ z = size() { false }
w = isEmpty() ∗ z = isEmpty() { false }

C.9 Ordering Definitions

C.9.1 Partial Order
package testmodels;

model PartialOrder<T> {
boolean leq[T,T];
invariant forall (T x; leq[x, x]);
invariant forall (T x, T y, T z;

(!leq[x, y]) | (!leq[y, z]) | leq[x, z]);

boolean le(T x, T y) { return leq[x, y]; }
boolean ge(T x, T y) { return le(y, x); }
boolean lt(T x, T y) { return le(x, y) & !le(y, x); }
boolean gt(T x, T y) { return lt(y, x); }
boolean eq(T x, T y) { return le(x, y) & le(y, x); }
boolean ne(T x, T y) { return !eq(x, y); }
}

C.9.1.1 Conflicts
package testmodels;

PartialOrder p;

z = p.lt(x,y) ∗ c = p.lt(a,b) { false }
z = p.lt(x,y) ∗ c = p.le(a,b) { false }
z = p.lt(x,y) ∗ c = p.ge(a,b) { false }
z = p.lt(x,y) ∗ c = p.gt(a,b) { false }
z = p.lt(x,y) ∗ c = p.eq(a,b) { false }
z = p.lt(x,y) ∗ c = p.ne(a,b) { false }

z = p.le(x,y) ∗ c = p.lt(a,b) { false }
z = p.le(x,y) ∗ c = p.le(a,b) { false }
z = p.le(x,y) ∗ c = p.ge(a,b) { false }
z = p.le(x,y) ∗ c = p.gt(a,b) { false }
z = p.le(x,y) ∗ c = p.eq(a,b) { false }
z = p.le(x,y) ∗ c = p.ne(a,b) { false }

z = p.ge(x,y) ∗ c = p.lt(a,b) { false }
z = p.ge(x,y) ∗ c = p.le(a,b) { false }
z = p.ge(x,y) ∗ c = p.ge(a,b) { false }
z = p.ge(x,y) ∗ c = p.gt(a,b) { false }
z = p.ge(x,y) ∗ c = p.eq(a,b) { false }
z = p.ge(x,y) ∗ c = p.ne(a,b) { false }

z = p.gt(x,y) ∗ c = p.lt(a,b) { false }
z = p.gt(x,y) ∗ c = p.le(a,b) { false }
z = p.gt(x,y) ∗ c = p.ge(a,b) { false }
z = p.gt(x,y) ∗ c = p.gt(a,b) { false }

283

z = p.gt(x,y) ∗ c = p.eq(a,b) { false }
z = p.gt(x,y) ∗ c = p.ne(a,b) { false }

z = p.eq(x,y) ∗ c = p.lt(a,b) { false }
z = p.eq(x,y) ∗ c = p.le(a,b) { false }
z = p.eq(x,y) ∗ c = p.ge(a,b) { false }
z = p.eq(x,y) ∗ c = p.gt(a,b) { false }
z = p.eq(x,y) ∗ c = p.eq(a,b) { false }
z = p.eq(x,y) ∗ c = p.ne(a,b) { false }

z = p.ne(x,y) ∗ c = p.lt(a,b) { false }
z = p.ne(x,y) ∗ c = p.le(a,b) { false }
z = p.ne(x,y) ∗ c = p.ge(a,b) { false }
z = p.ne(x,y) ∗ c = p.gt(a,b) { false }
z = p.ne(x,y) ∗ c = p.eq(a,b) { false }
z = p.ne(x,y) ∗ c = p.ne(a,b) { false }

C.9.2 Total Order
package testmodels;

model TotalOrder<T> extends PartialOrder<T> {
invariant forall(T x, T y; leq[x, y] | leq[y, x]);
}

C.9.2.1 Conflicts
package testmodels;

TotalOrder t;

z = t.lt(x,y) ∗ c = t.lt(a,b) { false }

C.10 Ordered Set
package testmodels;

model ParamOrderedSet<T> extends Set<T> {
TotalOrder<T> order;
T next[T]; // next higher T that is in the set
T prev[T]; // next lower T that in in the set

invariant forall(T x; x = null→
!in[x] && next[x] = null && prev[x] = null);

invariant forall(T x, T y;
(x 6= null && y 6= null && prev[y] = null && order.lt(x,y))→

(prev[x] = null && !in[x]));
invariant forall(T y, T z;

(y 6= null && z 6= null && next[y] = null && order.lt(y,z))→
(next[z] = null && !in[z]));

invariant forall(T x, T y;
(x 6= null && in[y] && order.lt(x,y))→

(next[x] 6= null && order.le(next[x],y)));
invariant forall(T y, T z;

284

(z 6= null && in[y] && order.lt(y,z))→
(prev[z] 6= null && order.ge(prev[z],y)));

invariant forall(T x;
(x 6= null && next[x] 6= null)
→ (in[next[x]] && order.lt(x,next[x])));

invariant forall(T x;
(x 6= null && prev[x] 6= null)
→ (in[prev[x]] && order.lt(prev[x],x)));

invariant forall(T x, T z;
(in[x] && in[z]→ (((z = next[x]) = (prev[z] = x)) &&

((z = prev[x]) = (next[z] = z)))));

T higher (T x)
@lock(orderedLocks, Range1D<T>(x, next[x]), S)
{

if (x = null)
throw new Exception();

return next[x];
}

T lower (T x)
@lock(orderedLocks, Range1D<T>(prev[x], x), S)
{

if (x = null)
throw new Exception();

return prev[x];
}

void add (T x)
[boolean present = in[x];]
@lock(orderedLocks, Point1D<T>(x), X)
{

if (x = null) {
throw new Exception();
}
in[x] = true;

forall (T z; order.lt(z,x) && (next[z] = next[x])) {
next[z] = x;
}
forall (T z; order.gt(z,x) && (prev[z] = prev[x])) {

prev[z] = x;
}
}onabort{

if(!present){
remove(x);
}
}

boolean insert(T obj)
[boolean present = in[obj];]
@lock(orderedLocks, Point1D<T>(obj), X)
{

in[obj] = true;

285

return !present;
} onabort {

if (!present) {
remove(x);
}
}

void remove (T x)
[boolean present = in[x];]
@lock(orderedLocks, Point1D<T>(x), X)
{

if (x = null) throw new Exception();

in[x] = false;

forall (T z; next[z] = x && order.lt(z,x)){
next[z] = next[x];
}
forall (T z; prev[z] = x && order.gt(z,x)){

prev[z] = prev[x];
}
}onabort{

if(present){
add(x);
}
}

boolean delete(T obj)
[boolean present = in[obj];]
@lock(orderedLocks, Point1D<T>(obj), X)
{

in[obj] = false;
return present;
}onabort{

if(present){
add(x);
}
}

boolean find(T x)
@lock(orderedLocks, Point1D<T>(x), S)
{

return in[x];
}

int size()
@lock(orderedLocks, Everything<T>(), S)
{

return sz;
}

boolean isEmpty()
@lock(orderedLocks, Everything<T>(), S)
{

286

return (sz = 0);
}
}

C.10.1 Conflicts
package testmodels;

add(x) ∗ add(y) { x = y }
add(x) ∗ z = insert(y) { x = y }
add(x) ∗ remove(y) { x = y }
add(x) ∗ z = find(y) { x = y }
add(x) ∗ z = higher(y) { order.gt(x,y) && order.le(z,x) }
add(x) ∗ z = size() { true }
add(x) ∗ z = isEmpty() { true }
add(x) ∗ z = lower(y) { true }
add(x) ∗ z = delete(y) { x = y }
add(x) ∗ z = isEmpty() { !in[x] }

remove(x) ∗ remove(y) { x = y }
remove(x) ∗ add(y) { x = y }
remove(x) ∗ z = insert(y) { x = y }
remove(x) ∗ z = find(y) { x = y }
remove(x) ∗ z = higher(y) { order.gt(x,y) && order.le(z,x) }
remove(x) ∗ z = size() { true }
remove(x) ∗ z = isEmpty() { true }
remove(x) ∗ z = lower(y) { true }
remove(x) ∗ z = delete(y) { x = y }
remove(x) ∗ z = isEmpty() { in[x] }

w = find(x) ∗ z = find(y) { false }
w = find(x) ∗ remove(y) { x = y }
w = find(x) ∗ add(y) { x = y }
w = find(x) ∗ z = insert(y) { x = y }
w = find(x) ∗ z = higher(y) { false }
w = find(x) ∗ z = size() { false }
w = find(x) ∗ z = isEmpty() { false }
w = find(x) ∗ z = lower(y) { false }
w = find(x) ∗ z = delete(y) { x = y }
w = find(x) ∗ z = isEmpty() { false }

w = higher(x) ∗ add(y)
{ order.gt(y,x) && (w = null | order.gt(w,y)) }

w = higher(x) ∗ z = insert(y)
{ order.gt(y,x) && (w = null | order.gt(w,y)) }

w = higher(x) ∗ remove(y)
{ order.gt(y,x) && (w = null | order.ge(w,y)) }

w = higher(x) ∗ z = find(y) { false }
w = higher(x) ∗ z = higher(y) { false }
w = higher(x) ∗ z = size() { false }
w = higher(x) ∗ z = isEmpty() { false }
w = higher(x) ∗ z = lower(y) { false }
w = higher(x) ∗ z = delete(y) { true }
w = higher(x) ∗ z = isEmpty() { false }

287

w = size() ∗ add(y) { !in[y] }
w = size() ∗ z = insert(y) { !in[y] }
w = size() ∗ remove(y) { in[y] }
w = size() ∗ z = find(y) { false }
w = size() ∗ z = higher(y) { false }
w = size() ∗ z = size() { false }
w = size() ∗ z = isEmpty() { false }
w = size() ∗ z = lower(y) { false }
w = size() ∗ z = delete(y) { in[y] }
w = size() ∗ z = isEmpty() { false }

w = lower(x) ∗ add(y)
{ order.gt(x,y) && (w = null | order.gt(y,w)) }

w = lower(x) ∗ z = insert(y)
{ order.gt(x,y) && (w = null | order.gt(y,w)) }

w = lower(x) ∗ remove(y)
{ order.gt(x,y) && (w = null | order.ge(y,w)) }

w = lower(x) ∗ z = find(y) { false }
w = lower(x) ∗ z = higher(y) { false }
w = lower(x) ∗ z = size() { false }
w = lower(x) ∗ z = isEmpty() { false }
w = lower(x) ∗ z = lower(y) { false }
w = lower(x) ∗ z = delete(y) { true }
w = lower(x) ∗ z = isEmpty() { false }

w = delete(x) ∗ add(y) { x = y }
w = delete(x) ∗ z = insert(y) { x = y }
w = delete(x) ∗ remove(y) { x = y }
w = delete(x) ∗ z = find(y) { x = y }
w = delete(x) ∗ z = higher(y) { true }
w = delete(x) ∗ z = size() { in[x] }
w = delete(x) ∗ z = isEmpty() { in[x] }
w = delete(x) ∗ z = lower(y) { true }
w = delete(x) ∗ z = delete(y) { x = y }
w = delete(x) ∗ z = isEmpty() { in[x] }

w = insert(x) ∗ add(y) { x = y }
w = insert(x) ∗ z = insert(y) { x = y }
w = insert(x) ∗ remove(y) { x = y }
w = insert(x) ∗ z = find(y) { x = y }
w = insert(x) ∗ z = higher(y) { true }
w = insert(x) ∗ z = size() { !in[x] }
w = insert(x) ∗ z = isEmpty() { !in[x] }
w = insert(x) ∗ z = lower(y) { true }
w = insert(x) ∗ z = delete(y) { x = y }
w = insert(x) ∗ z = isEmpty() { !in[x] }

w = isEmpty() ∗ add(y) { !in[y] }
w = isEmpty() ∗ z = insert(y) { !in[y] }
w = isEmpty() ∗ remove(y) { in[y] }
w = isEmpty() ∗ z = find(y) { false }
w = isEmpty() ∗ z = higher(y) { false }
w = isEmpty() ∗ z = size() { false }

288

w = isEmpty() ∗ z = isEmpty() { false }
w = isEmpty() ∗ z = lower(y) { false }
w = isEmpty() ∗ z = delete(y) { in[y] }
w = isEmpty() ∗ z = isEmpty() { false }

C.11 Queue
package examples;

model Queue<T> {

T next[T];
T prev[T];
T head;
T tail;
int sz = count(T z ; next[z] 6= null ; 1 ; 0);

lockTable locks1D<T> queueLocks;

invariant forall(T z ;
(head = null —— head = tail)→ next[z] = null);

invariant forall(T z ;
(tail = null —— head = tail)→ prev[z] = null);

invariant forall(; tail = null→ head = null);
invariant forall(; head = null→ tail = null);

Queue() {
forall (T x ; true) {

next[x] = null;
}

forall (T y ; true) {
prev[y] = null;
}

head = null;
tail = null;
}

void enqueue(T val)
[T oldHead = head; T oldTail = tail;]
@lock(queueLocks, Point1D<T>(head), X)
@lock(queueLocks, Point1D<T>(tail), S)
{

if (oldHead = null) {
head = val;
tail = val;
} else {

next[val] = head;
prev[head] = val;
head = val;
}
} onabort {

next[val] = null;

289

prev[oldHead] = null;
head = oldHead;
tail = oldTail;
}

T dequeue()
[T oldTail = tail; T oldHead = head;]
@lock(queueLocks, Point1D<T>(tail), X)
@lock(queueLocks, Point1D<T>(head), S)
{

if (oldHead = oldTail) {
tail = null;
prev[oldTail] = null;

head = null;
} else {

tail = prev[oldTail];
prev[oldTail] = null;
next[tail] = null;
}

return oldTail;
} onabort {

next[tail] = oldTail;
prev[oldTail] = tail;
head = oldHead;
tail = oldTail;
}

int size()
@lock(queueLocks, Everything<T>(), S)
{

return sz + 1;
}
}

C.11.1 Conflicts
package examples;

enqueue(x) ∗ enqueue(y) { true }
enqueue(x) ∗ a = dequeue() @pre { sz ≤ 1 }
enqueue(x) ∗ a = size() { true }

a = dequeue() ∗ enqueue(y) { sz ≤ 1 }
a = dequeue() ∗ b = dequeue() { true }
a = dequeue() ∗ b = size() { true }

a = size() ∗ enqueue(y) { true }
a = size() ∗ b = dequeue() { true }
a = size() ∗ b = size() { false }

C.12 Stack
package examples;

290

model Stack<T> {

T top;
T next[T];
int sz = count(T z ; next[z] 6= null ; 1 ; 0);

lockTable locks1D<T> stackLocks;

Stack() {
top = null;

forall (T x ; true) {
next[x] = null;
}
}

void push(T x)
[T oldTop = top;]
@lock(stackLocks, Point1D<T>(top), X)
{

next[x] = top;
top = x;
} onabort {

next[x] = null;
top = oldTop;
}

T pop()
[T oldTop = top;]
@lock(stackLocks, Point1D<T>(top), X)
{

top = next[oldTop];
next[oldTop] = null;

return oldTop;
} onabort {

next[oldTop] = top;
top = oldTop;
}

int size()
@lock(stackLocks, Everything<T>(), S)
{

return sz + 1;
}
}

C.12.1 Conflicts
package examples;

push(x) ∗ push(y) { true }
push(x) ∗ b = pop() { true }
push(x) ∗ b = size() { true }

291

a = pop() ∗ push(y) { true }
a = pop() ∗ b = pop() { true }
a = pop() ∗ b = size() { true }

a = size() ∗ push(y) { true }
a = size() ∗ b = pop() { true }
a = size() ∗ b = size() { false }

292

APPENDIX D

DETAILED TOOL DESIGN

This appendix will describe and summarize the design and implementation of the AC-

CLAM processing research tool that was used as a proof of concept of the ideas in this

thesis. It is important to understand that this code is for a prototype, meant to handle the

cases spelled out in this thesis. As a consequence the repository contains dead code, and the

tool itself isn’t necessarily particularly user friendly. The code was also implemented by a

single person (me), and was evolved incrementally while my understanding of the meaning

and scope of ACCLAM were also evolving. Almost certainly, given the description of the

language in this thesis, I would have designed the tool very differently.

D.1 The Code

The code is all in the ALI SVN repository under the lock inference repository. The tool

is implemented in Java, and all the development was done with Eclipse (and ANTLRWorks

for the parsing part). There is no particular integration with a build tool like ANT or maven,

so initially Eclipse will have to be used.

D.1.1 Dependencies

The dependencies are those needed for ANTLR 3 support as well as a release of sat4j.

They are stored in jar form in the lib directory off the root.

D.1.2 Source

The source code is located in sat-builder/src, and that’s where all the back-end

code as well as the grammar files and generated Java for the front-end live.

293

D.1.3 Tests

The tests are JUnit4-based and are located in sat-builder/test. These are all

end-to-end tests, so they run example models and conflict predicates through the tool and

compare the results against provided expected results.

D.2 The Tool

The tool itself consists of several parts. There is the front-end which parses and does

static analysis of the model descriptions. There is the back-end which distills the output

of the front-end down to simple expressions. There is the circuit builder which takes the

simple expressions and converts them to SAT clauses. Then there are the verifiers that glues

these parts together to solve a specific problem. And last, there’s the driver that handles all

the quotidian details like churning through command-line arguments and deciding which

verifier to run on which files.

D.2.1 The Front End

The front end consists of a parser, classes for an AST (abstract syntax tree), a type-

checker, and a name resolver/scope checker.

The parser is generated by ANTLR 3, and the grammar file is located in the package

sat builder.parser. I personally used ANTLRWorks to build the grammar, but that

is not a requirement. In fact, the AST is not an ANTLR-produced one, so the parser can be

swapped out if desired.

The AST classes are defined in sat builder.tree and correspond to all the state-

ment and expression types described in Chapter 5. The tool doesn’t use particularly fancy

intermediate representations, so the various phases will ‘lower’ parts of the AST into ei-

ther annotated instances of the same types, or more expression-like analogues. The stan-

dard way that the AST is traversed is with a visitor pattern, the base class of which is

sat builder.tree.Visitor.

294

The name resolver is named, due to historical accident, ScopeResolver, and it is

located in sat builder.types. It started life as a scope checker/resolver, and grew

into a more general-purpose name resolver.

The type checker is named sat builder.types.TypeResolver, and it han-

dles all the normal Java type checking. However, its support for sophisticated use of type

parameters is not well-tested. Since fancy type parameterization was not the focus of this

research, only the type parameter support necessary to handle the simple inheritance hier-

archies in the examples was exercised.

D.2.2 The Back End

The back end of the ACCLAM tool takes a type- and name-decorated AST and then

lowers it incrementally into something that is more expression-like. The package that con-

tains all the back end logic is sat builder.circuit. Unfortunately, most of the logic

is all in a single class, ExprExpander. Over time it became a kind of kitchen sink object

that I never had sufficient free time to decompose. This class also contains some of the old-

est and most tortured code because it weathered many significant changes in the direction

of the work as well as my understanding of the ACCLAM language and its processing. I

will do my best to describe the way it’s intended to work.

In general, an ExprExpander is a kind of context object. It contains maps of models and

state variable names to data structures or expressions that describe them. In general, the de-

sire is to be able to, for each method in each model produce an expression for each element

of that model’s state. For state elements where chaining together two methods isn’t simply

making the output of one expression the input to another, the state is summarized by a data

structure that can be chained and then processed to produce the desired expression. For

example, scalarization produces a series of nested if expressions. It was more convenient

in the code to store the state of a relation as a pair of ordered lists (one of assignments and

one of dereferences). Each element in that list stores the expressions for the indexes and

295

the expression for the relation element (if an assignment). This list is processed to produce

the chain of if-then-else’s. Lists were more convenient because changing the order of two

methods just becomes appending or prepending the lists for each method together.

A model is processed by an ExprExpander in several phases. The first phase is

to sweep through the model and build up a context for the model’s state. At this point,

uninitialized values are created for non-relation variables and fields.

The next phase is to process each method. The goal of this phase is to produce, for

each state variable, an expression (or expression-like thing) that summarizes the method’s

transformation of that state variable. Within these expressions, the free variables will be the

state at method entry and the arguments to the method. This is accomplished by rewriting

the expressions to read the various typed Var expressions. They are generated by this pro-

cessing pass, and are basically place holders for reading state declared outside the method.

When methods are invoked back-to-back, a visitor replaces the free variables with the ap-

propriate expressions flowing from the prior method (technically, this also happens with the

first method, except it just reads an initial state). Relations and reductions are processed

specially here. As mentioned above, they are summarized in a list-like fashion. Within a

method, any read of a relation or reduction variable is rewritten to be a read of an appro-

priately typed guaranteed-unique variable (these are the VarRelTemp and VarRedTemp

types). These particular Var types contain additional information so that their relative po-

sition within the list-like state is known. Then, when the list-like state representations are

concatenated, those relative positions are used to derive sub-lists that are used to produce

intermediate versions of the relation or reduction’s state. Each of the particular state ex-

pressions is conditioned by the control flow information in a fashion described in Chapter

7. Since ACCLAM doesn’t allow recursion, method invocations just become inlinings of

the called method’s definition.

The next phase is to take the method’s state expressions and then derive a return ex-

pression for each method by re-visiting the method. This could be done in conjunction

296

with the prior phase, but at the time return support was wired into the tool, this approach

was more convenient. By building up a control-flow expression as the method is visited, an

expression for the return value of the method as an expression of the input state and argu-

ments is derived. This expression will include the Var expressions as well, so the return

expressions can be rewritten to reflect different method invocation orders. This phase is

also where exception throwing is processed, as part of the return. The tool can’t currently

handle exception catching, so a thrown exception is considered a different kind of return

value that will equal only the exact same exception if compared.

Finally, any method handlers are processed (e.g., onAbort). These are just like meth-

ods, except their input states will be the output states of the forward-going method. Their

contexts are stored in a separate set of maps under the forward-going method’s name.

In each of these phases, as variables are encountered, they are added to various sets

organized by type. These are used later as inputs to expanding universally quantified in-

variants.

At this point, the ExprExpander for this particular model has a lot of context.

For each state variable, there is an initial state, and for each method there is a mapping

from state variables to expressions. Additionally, there are the return expressions for each

method as well. The rest of the machinery in ExprExpander performs the Var substitu-

tions and converts the list-like data structures for relations and reductions into expressions.

All of this context is exactly what a verifier needs in order to produce a concrete expression

to feed into a circuit builder.

D.2.3 The Verifiers

A verifier is a user of an ExprExpander that produces some expressions that are

fully bound to state variables and are suitable for feeding into something that can convert

expressions into SAT problems. The verifiers are located in sat builder.verify.

297

There are also various utilities within that package for stitching together the expressions

coming out of the ExprExpander. The classes are:

• ConflictVerifier the verifier for conflict predicates

• NewLockVerifier the verifier for lock predicate correctness

• InverseVerifier the verifier for inverse correctness

• ForallSideVerifier the verifier for forall side conditions

• ChooseSideVerifier the verifier for choose side conditions

• ConflictPredicateTightnessVerifier the verifier for conflict predicate

precision testing

• LockTightnessVerifier the verifier for locking protocol precision testing

Additionally, the classes for stitching together relation state lists, and for scalarizing rela-

tion expressions are located in this package. In general, each verifier has a ‘root’ method

that performs the verification on a given problem configuration. This method is invoked by

the driver and it produces a Circuit which is a circuit expression amenable to SAT pro-

cessing. Unfortunately, due to time constraints, I was unable to rationalize the root methods

across all the verifiers and come up with a common, reasonable interface.

The general flow in the verifiers is:

1. build up state expressions (e.g., for each state variable v, is vop1;op2 = vop2;op1?)

2. build up return value expressions

3. scalarize the generated expressions

4. build up the top-level question in terms of the scalarized state

5. build the invariant expressions in terms of the variables from the methods

298

6. convert all the expressions into a single circuit-like expression

Scalarization is just if-then-else style ackermannization, and most of the art is in vis-

iting things in a way that doesn’t produce cycles (an artifact of the implementation). Pro-

ducing the invariant expressions requires accessing the sets of variables gathered by the

ExprExpander, and using them to exhaustively instantiate invariant expressions for the

given problem. This code isn’t particularly sophisticated, and so it will instantiate more

expressions than it may strictly have to (e.g., it will produce both a == b and b == a,

even though they are symmetric).

D.2.4 The Circuit Builders

Once the verifier has built up a problem into an expression that is free of Vars, then

it can be converted into a circuit. The basic circuit primitives are in the circuitGen

package. They consist of CircuitVals and CircuitGates. A CircuitVal is a

value, and is an ordered tuple of boolean variables. A constant is just a CircuitVal with

an added constraint that forces each variable to be a particular value. A CircuitGate

is an abstraction of a gate that accepts one or more input CircuitVals and produces a

CircuitVal. A Circuit is a set of input CircuitVals, a set of CircuitGates

and a set of output CircuitVals. The final outputs are often constrained to be a particu-

lar value.

The CircuitBuilder class itself is an expression visitor that converts expressions

into circuit values and gates, and adds them incrementally to an internal circuit object.

The FoldingCircuitBuilder is a circuit builder that does some constant propaga-

tion and expression simplification as it processes the input expressions. It also contains a

MemoizedCircuit which is a child class of Circuit that does circuit memoization.

Circuit memoization works by maintaining a cache of circuits. The reason for using a cache

rather than an unbounded map is that when handling large circuits, a map could grow to fill

up memory. Therefore, I bounded the map by size and turned it into a cache. On modern

299

hardware, memory is reasonably plentiful, so the cache limit may be too small. The cache

is keyed by a canonically sorted list of inputs and the gate type, and the value is the output

circuit value of the resulting gate. What this means is that for circuits that can fit in the

cache, a given gate for the same inputs will always just refer to the same output circuit

value (rather than recomputing it with a new set of clauses). For circuits that don’t fit in

the cache, memoization is still very useful, it’s just not going to be guaranteed to simplify

circuits in all cases. All circuits can convert themselves to SAT form as well as a DOT

graph form.

D.2.5 The Driver

The driver is located in the top-level package and is called Verifier. It’s job is to

parse command line arguments, collect the set of models and conflicts to be analyzed, feed

them all through individual ExprExpanders and to then run the verifier code on the child

model to be verified, take the circuit and convert it into SAT form and feed it to the sat4j

library. All of this is fairly straightforward. The most idiosyncratic thing is that all the

command-line arguments are processed by the VerifierFlags class, rather than some

external tool.

D.3 Testing and Debugging

Now that you have a rough idea as to how the whole thing is designed, how do you

test and debug it? The verifier has a main line, so it can be run directly from the com-

mand line, and there is an abandoned testing system in the test directory that does this

via python. There is a unit test harness that runs against a set of model files located

in sat-builder/test/testmodels. The unit test programmatically inspects the

output SAT state produced by the verifier, but the verifier also produces text output for

command-line inspection.

300

If you encounter a bug,1 how do you go about debugging it? The two main tools I used

were the Eclipse debugger and the problem circuit DOT files. The verifier allows the user to

specify a particular set of methods to verify (with the -method command-line argument),

so that can be used to narrow the bug down to a single problem. Once that is done, the

-dot flag can be used to produce a graph version of the problematic circuit (rather than

feed it the SAT solver). The DOT graph’s nodes are tagged with unique identifiers (e.g.,

AND123), and the output of the tool can be used to determine for which expressions that

graph node was produced. At this point, I switch over to the Eclipse debugger and examine

the expression as it flows to the circuit builder. When run with the -debug flag, each AST

object is tagged with an allocation site. This can be used to figure out which part of the

system produced the problem expression. Then I work backwards to figure out the chain

of decisions that resulted in the mal-formed expression.

D.4 Known Issues

There are several categories of known issues:

Inheritance: the test models don’t exercise this to a great extent, and there have been

problems with the incorrect implementations of methods being chosen. In the short term,

these issues can be worked around by manually including parent model state. But for

generality and utility, the bugs will need to be sorted out.

Instances: By instances I mean having multiple named instances of models. The sys-

tem was implemented initially assuming an implicit single instance. The instance support

was added later and is incomplete. One of the main issues is that instances of the same

type can cause the tool to alias state incorrectly. All the instances of this I encountered, I

1I apologize, but there are most assuredly bugs lurking in this code!

301

fixed. However, I suspect that a better approach would be to rework the tool itself to do all

its processing relative to an instance as well as a model.

Reduction Initial State: Reductions need to have a set of constraints built around

them to make sure that any initial relation state will produce a correct reduction state.

Historically, errors in these constraints have caused a disproportionate number of bugs.

These constraints were added after the initial reduction code, and it may be more productive

to rework the whole constraint building mechanism.

302

