SUBTYPING WITH GENERICS: A UNIFIED
APPROACH

A Dissertation Presented
by
JOHN G. ALTIDOR

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 2014

School of Computer Science

(© Copyright by John G. Altidor 2014
All Rights Reserved

SUBTYPING WITH GENERICS: A UNIFIED
APPROACH

A Dissertation Presented
by
JOHN G. ALTIDOR

Approved as to style and content by:

Yannis Smaragdakis, Chair

Jack C. Wileden, Member

Neil Immerman, Member

[an Grosse, Member

Lori Clarke, Department Chair
School of Computer Science

ACKNOWLEDGMENTS

First, I thank Yannis Smaragdakis and Jack Wileden who have taught me a great
deal about programming languages. In addition, they have stressed the importance
of communicating ideas clearly, motivating work, and justifying claims. I am deeply
indebted to them. I thank my advisor, Yannis, also for pushing me to strive for
excellence, providing vast amounts of feedback, and for teaching me how to recognize
when work can be improved. I thank Jack also for being my initial advisor and for
advising me for nearly 10 years since my undergraduate years. Jack has been an
amazing mentor and has broaden my horizons. His guidance has contributed greatly
to my accomplishments and has shaped who I am today.

I also thank both Jack and his wife, Andrea, for their generosity. I thank Ian
Grosse for years of collaborating on interdisciplinary research and teaching me how to
work with people from other fields. I also thank him for accepting to wade through the
sea of greek symbols in this dissertation. I thank Neil Immerman for showing me that
theory is not only an academic exercise but also a valuable tool for making practical
impact. I thank Shan Shan Huang for her initial work on variance that eventually
led to this dissertation. I thank Christoph Reichenbach for his willingness to listen
to research ideas no matter how premature they were. I thank my REU students,
Jeffrey McPherson, Keith Gardner, and Felicia Cordeiro for directly helping with my
research projects.

I thank Tongping Liu, Kaituo Li, Dan Barowy, Charlie Curtsinger, Matthew
Laquidara, Jacob Evans, Hannah Blau, and other students of the department for
listening to many of my presentations and for providing a social environment. I

thank Barbara Sutherland for her endearing words of encouragement especially when

v

work seemed insurmountable. I thank the excellent staff in the School of Computer
Science for answering so many of my questions and helping me with so much. I thank
Hridesh Rajan for introducing me to valuable skills for critically evaluating literature
and for writing scientifically. I thank Aaron Stump, Cesare Tinelli, Harley Eades III,
and others from the CLC group for teaching me a great deal about formal verification
tools. I thank Beth Duggan for helping me develop inter-personal professional skills
and teaching me a great deal about the corporate world. I thank Gabriele Belete,
Jaikishan Jalan, Faris Khundakjie, and others for frequently encouraging me to pur-
sue a Ph.D. I thank Jeremy Smith, Douglas Devanney, and Gregory Cutter who have
supported me throughout the years. I thank Khurram Mahmud for spurring my ini-
tial interest in computer science and making it seem cool to study it. I thank Jon
Leachman and Serena Dameron for their friendship and generous hospitality. I thank
my parents who have stressed the importance of education since my birth. They came
from humble beginnings in Haiti and taught me the value of hard work. I also thank
my brother and sister for their support. I thank my future wife and partner in life,

Alina Florescu, for her love, support, and continuous encouragement.

ABSTRACT

SUBTYPING WITH GENERICS: A UNIFIED
APPROACH

SEPTEMBER 2014

JOHN G. ALTIDOR
B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yannis Smaragdakis

Reusable software increases programmers’ productivity and reduces repetitive
code and software bugs. Variance is a key programming language mechanism for
writing reusable software. Variance is concerned with the interplay of paramet-
ric polymorphism (i.e., templates, generics) and subtype (inclusion) polymorphism.
Parametric polymorphism enables programmers to write abstract types and is known
to enhance the readability, maintainability, and reliability of programs. Subtyping
promotes software reuse by allowing code to be applied to a larger set of terms. In-
tegrating parametric and subtype polymorphism while maintaining type safety is a
difficult problem. Existing variance mechanisms enable greater subtyping between
parametric types, but they suffer from severe deficiencies: They are unable to ex-
press several common type abstractions. They can cause a proliferation of types and
redundant code. They are difficult for programmers to use due to their inherent

complexity.

vi

This dissertation aims to improve variance mechanisms in programming languages
supporting parametric polymorphism. To address the shortcomings of current mech-
anisms, we will combine two popular approaches, definition-site variance and use-site
variance, in a single programming language. We have developed formal languages
or calculi for reasoning about variance. The calculi are example languages support-
ing both notions of definition-site and use-site variance. They enable stating precise
properties that can be proved rigorously. The VarLang calculus demonstrates fun-
damental issues in variance from a language-neutral perspective. The VarJ calculus
illustrates realistic complications by modeling a mainstream programming language,
Java. VarJ not only supports both notions of use-site and definition-site variance but
also language features with complex interactions with variance such as F-bounded
polymorphism and wildcard capture.

A mapping from Java to VarLang is implemented in software that infers definition-
site variance for Java. Large, standard Java libraries (e.g., Oracle’s JDK 1.6) were
analyzed using the software to compute metrics measuring the benefits of adding
definition-site variance to Java, which only supports use-site variance. Applying this
technique to six Java generic libraries shows that 21-47% (depending on the library)
of generic definitions are inferred to have single-variance; 7-29% of method signatures
can be relaxed through this inference, and up to 100% of existing wildcard annotations
are unnecessary and can be elided.

Although the VarJ calculus proposes how to extend Java with definition-site vari-
ance, no mainstream language currently supports both definition-site and use-site
variance. To assist programmers with utilizing both notions with existing technology,
We developed a refactoring tool that refactors Java code by inferring definition-site
variance and adding wildcard annotations. This tool is practical and immediately
applicable: It assumes no changes to the Java type system, while taking into ac-

count all its intricacies. This system allows users to select declarations (variables,

vil

method parameters, return types, etc.) to generalize. It performs a flow analysis to
determine the set of declarations that require updating given a user’s selection. We
evaluated our technique on six Java generic libraries. We found that 34% of available
declarations of variant type signatures can be generalized—i.e., relaxed with more
general wildcard types. On average, 146 other declarations need to be updated when
a declaration is generalized, showing that this refactoring would be too tedious and
error-prone to perform manually. The result of applying this refactoring is a more

general interface that supports greater software reuse.

viil

TABLE OF CONTENTS

ACKNOWLEDGMENTS|

ABSTRACT

LIST OF TABLES| . . o xiii

.. Xiv

CHAPTER

1. INTRODUCTION 1
(1.1 Subtype Polymorphism|......... 1
(1.2 Parametric Polymorphism| 3
(.3 Variance Introductionl 5

2.3 A Comparison| 16
[2.4 Generalizing the Design Space.| 17

3. REASONING ABOUT VARIANCE]

[3.1 Variance Composition].t 20
[3.2 Integration of Use-Site Variance| 24
3.3 Recursive Variances. 27
[3.3.1 Recursive Variance Type 1| 27
[3.3.2 Recursive Variance Type 2| 28
[3.3.3 Recursive Variance Type 3| 29
[3.3.4 Recursive Variance Type 4| 30

X

[3.3.5 Handling Recursive Variance.|............................... 31

4. VARLANG: A CORE LANGUAGE AND CALCULUS

4. YL AX] . . e 33
4.2 VarLang Translation|.......... 34
4.3 Revisiting Recursive Type Variances| 36
4.4 Constraint Solving|. 37

5. TOWARDS INDUSTRIAL STRENGTH LANGUAGES

[>.2 Existential Types|. 47
[5.2.1 Expressible But Not Denotable Types|.......... 49
[5.2.2 Scope of Wildcards|.......... 49
[5.2.3 Wildcard Capture|........ 52

[5.3 F-bounded polymorphism|............ 53

B VAR . 56

(6.1 VarJ Syntax| 56

[6.2 Variance of a T'ype| Y

6.3 Variance of a Posifion].o o 62

(6.4 Subtyping| 68

6.5 Typing and Wildcard Capture|. 70
[6.5.1 Expression Typing| 70
[6.5.2 Matching tor Wildcard Capture| 72
[6.5.3 Sitting for Wildcard Capturel. 74

7. VARIANCE SOUNDNESS

[7.1 High-Level Proof of Lemma 2| 89
[7.2 Supporting Field Writes| 93

8. AN APPLICATION: DEFINITION-SITE VARIANCE |

| INFERENCE FOR JAVA]

(8.1 Applications] 95
(8.2 Analysis of Impact|. 97

9. REFACTORING BY INFERRING WILDCARDS

[9.3.2 Flow Dependencies from Qualifiers| 117
[9.3.3 Expression Targets| 118
[9.3.4 Dependencies from Inheritance|.............. 119
[9.3.5 Algorithml..... 119
[9.3.6 Non-rewritable Overrides|. 121

9.4 Method Body Analysis|........ 124
[9.5 Type Influence Graph Optimizations|................. 127
9.6 Evaluationl.......... 129
[9.7 Comparison to Related Work|. 134
MORELATED WORK]ottt 138
[10.1 Related Research on Variancel 138
[10.2 Variance and Programming Language Research|..................... 144
(10.2.1 Nominal Subtyping and Structural Subtyping| 144
(10.2.2 Nominal Subtyping and Sottware Extensionl.................. 146
(10.2.3 Nominal Subtyping and Functional Languages| 146
[10.2.4 Generalized Constraints with Existential Types| 148
(10.2.4.1 Deconstructing Generalized Constraints|............. 149

(10.2.4.2 Deconstructing Existential Subtyping|............... 151

(10.2.4.3 Boundary Analysis and Deconstructing |

[Constraints]. 152
[10.2.5 Proofs of Language Properties| 155
[10.2.6 Barendregt’s Variable Convention| 157
11.CONCLUSIONI 160
[11.1 Summary of Contributions|............ 160
1.2 Future Workl. 162

x1

APPENDICES

A. VARLANG SOUNDNESS|
B. PROOF OF VARJ SOUNDNESS|

BIBLIOGRAPHY

xii

LIST OF TABLES

Table Page

xiil

LIST OF FIGURES

Figure Page
2.1 Standard variance latticel. 13
[3.1 Variance transtorm operator.).......... 21
4.1 Syntax of VarLang|. 33
(5.1 Example Java program that motivates the usage ot existential types |
| to model Java wildcards. This program is based on an example |
| from |12, Section 2.1].|. 48
(6.1 VarJ Syntax| 58
[6.2 Variance of types and ranges|.......... 60
[6.3 Class and Method Typing| 64
[6.4 Lookup Functions| 64
[6.5 Wellformedness Judgments|. 65
[6.6 Subtyping Relations| 66
[6.7 Expression Typing and Auxiliary Functions For Wildcard Capture| 71
6.8 Reduction Rules.o 75
(7.1 Key lemmas for proving variance analysis only infers type sate |
| subtyping. Arrows denote implication. We skip some parameters |
| in the subtyping judgments in this figure such as the type variable |
[context A because the exact rules are not the focus of this |
| chapter.|. 88

Xiv

B

Definition-Site Variance Inference Statistics by Type Definitions. An

mvariant class is invariant in all of its type parameters, whereas a

|
|
variant class is variant in at least one of its type parameters. |
Shaded results are for the method body analysis, unshaded for the |

signature-only analysis.|......... 99

Unnecessary Wildcards and Over-Specified Methods. Shaded results |

are for the method body analysis, unshaded for the signature-only |

Analysis.|. . .. 100

Definition-5Site Variance Inference Statistics by Type Parameters. |

shaded results are for the method body analysis, unshaded for the |

signature-only analysis.|......... 101

[9.1 Code comparison. Original code on the top. Retactored code on the |
[bottom. Declarations that were selected for generalization are |
| shaded 1n the original version. |........... 109
0.2 FGJ™ Syntax].o 115
[9.3 Auxiliary Functions|........... 116
9.4 Simplified code example from the Apache collections library at the

top. Subtyping (interface-implements) relationships at the

bottom, if we annotate K with ~ ? extends” only in the parent

type OrderedIterator<Map.Entry<K,V>>. |....................... 122

[9.5

Variance rewrite statistics for all declarations with generic types.

Rewritable decls are those that do not affect unmodifiable code,

infer a more general type than the one already in the code.

|
|
per our flow analysis. Rewritten decls are those for which we can |
|
|

shaded results are for the method body analysis, unshaded for the

signature-only analysis.|......... 130

06 The fone o dedamion DTl ol Jeclamah] l

are reachable from /influenced by D in the influence graph.

declarations in the influence graph. Flowsto-R Avg. Size is the

|
Flowsto Avg. Size 1s the average size of the flows-to set for all |
|
|

average size of the flows-to set for all rewritable declarations in

the influence graph. |. 131

XV

0.7 Variance rewrite statistics for declarations with variant types (i.e.,

using generics that are definition-site variant). Rewritable decls

are those that do not affect unmodifiable code, per our flow

analysis. Rewritten decls are those for which we can infer a more

for the method body analysis, unshaded for the signature-only

analysis. There are slightly more variant decls in the method

I
I
| general type than the one already in the code. Shaded results are
I
I
I

body analysis because more generics are variant.|................. 132
[9.8 Refactoring resulting from applying Kiezun et al.’s [41] and then our |
[refactoring tooll. 135

[10.1 Code example for investigating which non-static methods are

| available to an instance of SimpleGen<? super T>, where T is some

type expression. In this example, available methods are methods

I
[that can be called with a non-null value. If calling a method with
I

any non-null value causes a compiler (a type checking) error,

I lllg:ll lll;i! IIl§=l11!2!1 1‘“ (:S!Il:ild,f:lg:d, 11‘!212 !Q hf: ;!!;!ili!tzlg:, | -------------

(10.2 Example C# program with generalized constraints. This example is

| based on an example from |24, Section 2.5 L. 150
|C.1 Constraint Generation from Method Bodies. Shaded parts show |
[where uvar constraints differ from the corresponding dvar |
| constraint of the signature-only analysis.|...................... .. 213

Xvi

CHAPTER 1
INTRODUCTION

Writing reusable software is vital to programmer productivity and software safety.
Productivity increases when programmers are able to apply a reusable and well-tested
solution. Repeating most of an existing implementation may introduce new bugs in
the reimplementation. Duplicate code is also difficult to maintain because updates
must be repeated. A software fix, for example, must be applied to every repetition of
the buggy code. The ability to reuse code, thus, is key to software development.

Abstraction is the fundamental mechanism for writing reusable code. Code can
be generalized by abstracting components of the software that can vary. This sup-
ports the idea of software modularity, where software components can be swapped
with others without modifying existing code. Extending software with new features

without changing existing code is another important goal of reusable design.

1.1 Subtype Polymorphism

Programming languages provide tools for introducing abstractions and rewriting
reusable software. Polymorphism is a broad category of abstraction mechanisms.
It refers to the ability to apply one piece of code to multiple types. Subtype poly-
morphism, also known as inclusion polymorphism, is a kind of polymorphism where
multiple classes can extend or implement another class or interface. In Java, for

example, a class Dog may extend another class Animal as in the following code:

class Animal { void speak() { ... } }
class Dog extends Animal { void fetchFrisbee() { ... } %}
class Client {

void foo(Animal a) { a.speak(); }
void bar(Dog d) { d.fetchFrisbee(); }
}

The extending class Dog is called a subclass of Animal. The extended class Animal
is called a superclass or a parent of the extending class Dog. Java supports inheritance:
subclasses inherit all members (e.g., methods and fields) from their parent class. In
this example, because Dog extends Animal, Dog inherits the method speak from its
parent Animal. As a result, speak can be invoked on any instance of Dog as well as
any instance of Animal. Furthermore, a subclass and its superclass are said to be in
an 1s-a relationship. Because class Dog extends class Animal, a Dog is an Animal. That
is, every instance of Dog is also considered to be an instance of Animal because Dogs
inherit the ability to perform all of the operations of Animals. Therefore, method foo
in class Client can take in instances of Dog because they are also instances of Animal.

Although a Dog is an Animal, the inverse is not true: An Animal is mot a Dog
because a Dog can do something that an Animal cannot. Not every instance of Animal
supports a fetchFrisbee method but every instance of Dog does. As a result, the bar
method in class Client accepts every instance of Dog, but it does not accept every
instance of Animal.

Java interfaces [28, Chapter 9] provide another example of subtype polymorphism.
They enable developers to program to an interface rather than an implementation.
A class may provide an implementation of an interface. Any implementation of an
interface can be used where an instance of the interface is expected without modifying
clients of the interface.

(Classes, interfaces, and similar kinds of software modules are modeled in program-
ming language research as types. Subtyping establishes when one type can be used
where another is expected. Subtyping is defined using a binary relation <: between

types. T <: U is read as “T is a subtype of U”; this signals that an instance of T may

be provided where a U is expected. Furthermore, every instance of T is also said to
be an instance of U.

U is also called a supertype of T, when T <: U. This vocabulary comes from viewing
a type as the set of all of its instances. Under this interpretation, U is a superset of T.

The subtyping relation should be defined to satisfy the subsumption principle:
Whenever T <: U is established, any operation that an instance of supertype U can
perform should also be able to be performed with an instance of subtype T. For ex-
ample, a standard Java compiler concludes C <: I, if class C implements interface I.
This subtype relationship is safe because class ¢ implements all of the methods/op-
erations declared in interface I. Since class C may implement additional methods not
in interface I, it is not safe to assume the reverse, I <: C. In this case, an instance of
I may not contain a method that is supported in class C; moreover, assuming I <: C

would violate the subsumption principle.

1.2 Parametric Polymorphism

Parametric polymorphism is one of the most significant programming language
advances of the past 40 years. It is another mechanism for writing reusable software.
This language feature occurs in many programming languages and appears in Java
as generics. A generic class can declare type variables that abstract type expressions
that occur in the implementation of the class. First, consider the non-generic class

List0fAnimal below:

class ListOfAnimal {

Animal get(int index) { ... }
void add(Animal elem) { ... }
int size() { ... }

}

This class represents a list of any type of Animals. It supports reading Animals
from the list using the get method and adding Animals to the list using add. The

size method returns the number of Animals in the list.

Because instances of this class can contain any type of Animal, type errors can
result when a more specific type of list is desired. If a list should only contain Dogs, for
example, but a client mistakenly added an instance of class Cat to the list, a runtime
error may result]l] One way of avoiding this kind of error is making another class that

only allows creating lists of Dogs such as the class below.

class List0fDogs {

Dog get(int index) { ... }
void add(Dog elem) { ... }
int size(O) { ... }

}

If one also wanted to create a list that only contained Cats, a similar class to
List0fDogs would be needed, where occurrences of the type Dog are replaced with
Cat. Creating a new class each time a list of a new type is desired is a clear case of
duplicated code that is error prone and difficult to maintain. Generics were invented
to support this type variability without requiring code to be duplicated. The Java

generic class below removes the need for the classes List0fAnimal and List0fDog.

class List<X> {

X get(int index) { ... }
void add(X elem) { ... }
int size() { ... }

}

In this generic List class, a type parameter/variable X has been declared. It
abstracts the type of elements in instances of List. Lists of specific types of elements
can be emulated by instantiating the parameter with the desired type. For example,
the type List<Animal> simulates class ListOfAnimal. Type List<Animal> can be
thought of as a new version of class List with occurrences of type variable X replaced

by the type argument, Animal.

A runtime error would certainly have to result if a method only in class Dog (e.g.,
fetchFrisbee) is invoked on the Cat added to the list

Similarly, type List<Dog> emulates the class List0fDogs. Instances of List<Dog>
can only contain Dogs. A Cat cannot be added to a List<Dog>. This prevents the
runtime error that can occur when we use ListOfAnimal to create a list that should

only contain Dogs.

1.3 Variance Introduction

Generics and subtyping are two key programming language mechanisms for writ-
ing reusable software. Although they work well in isolation, utilizing both features
simultaneously suffers from severe practical limitations. In this dissertation, we are
concerned with variance, the ability to write one piece of code that applies to multiple
instantiations of a generic. For example, a Java class Dog may extend a class Animal.
In this case, Dog is considered to be a subtype of Animal. However, Java does not
conclude List<Dog> is a subtype of List<Animal>. Assuming this subtype relationship
can result in a runtime error. In this case, the supertype List<Animal> can add a Cat
to itself but the subtype List<Dog> cannot, which violates the subsumption principle.

This dissertation investigates mechanisms for improving variance in programming
languages. Variance mechanisms are the keystone of safe genericity in modern pro-
gramming languages, as they attempt to develop the exact rules governing the in-
terplay of the two major forms of polymorphism: parametric polymorphism (i.e.,
generics or templates) and subtype (inclusion) polymorphism. Concretely, variance
mechanisms aim to answer the question “under what conditions for type expressions
Expl and Fxp2 is C<Fxpl> a subtype of C<FExp2>7”

The conventional answer to this question has been definition-site variance: the
definition of generic class C<X> determines its variance [4}/18,24]. Depending on how
type parameter X is used in the class, C can have one of four flavors of variance: it
can be covariant, meaning that C<S> is a subtype of C<T> if S is a subtype of T; it

can be contravariant, meaning that C<8> is a subtype of C<T> if T is a subtype of S;

it can be bivariant, meaning that C<S> is always a subtype of C<T>, for any two types
S and T; or it can be invariant, meaning that C<S> is a subtype of C<T> only if types

” or subtypes of each other.

S and T are “equivalen

Languages like C# [31] and Scala [51] support a type system with definition-
site variance: at the point of defining the generic type C<X> we state its subtyping
policy, and the type system attempts to prove that our assertion is statically safe.
For instance, a C# definition class C<out X> ... means that C is covariant: C<S>
is a subtype of C<T> if S is a subtype of T. The type system’s obligation is to ensure
that type parameter X of C is used in the body of C in a way that guarantees type
safety under this subtyping policy. For example, X cannot appear as the argument
type of a public method in C¢—a rule colloquially summarized as “the argument type
of a method is a contravariant position”.

By contrast, the type system of Java employs the concept of use-site variance
[34]: a class does not itself state its variance when it is defined. Uses of the class,
however, can choose to specify that they are referring to a covariant, contravariant,
or bivariant version of the class. For instance, a method void meth(C<? extends T>
cx) can accept arguments of type C<T> but also C<S> where S is a subtype of T. An
object with type C<? extends T> may not offer the full functionality of a C<T> object:
the type system ensures that the body of method meth employs only such a subset of
the functionality of C<T> that would be safe to use on any C<S> object (again, with
S a subtype of T). This can be viewed informally as automatically projecting class C
and deriving per-use versions.

Use-site variance is a truly elegant idea. Producing automatically all different vari-
ance flavors from a single class definition is an approach of hard-to-dispute flexibility.
The idea was quickly integrated in Java in the form of wildcards |28, Section 4.5.1]
and it is widely used in standard Java libraries. Despite the conceptual elegance,

however, the practical deployment of wildcards has been less than entirely successful.

Among opponents, “wildcards” has become a virtual synonym for a language design
mess. (E.g., Josh Bloch’s presentation at Javapolis 2008 emphasized “We simply
cannot afford another wildcards” [8].) The reason is that use-site variance results
in conceptual complexity, requires anticipation of generality at all usage points, and
postpones the detection of overly restrictive type signatures until their use.

However, the traditional approach of definition-site variance, as used in Scala
and C#, is also hardly free of usability problems. For a class that is not purely
covariant or contravariant, the only way to achieve full genericity is by introducing
specialized interfaces that correspond to the class’s co-, contra-, and bivariant parts.
Consequently, users have to remember the names of these interfaces, library designers
must anticipate genericity, and a combinatorial explosion in the number of introduced
interfaces is possible. (E.g., for a type Triple<X,Y,Z> we may need an interface for
each of the 3% = 27 possible access combinations, such as “covariant with respect to
X, contravariant with respect to Y and z”. The number is 3% and not 4 only because
bivariance is not allowed as an explicit annotation.)

It is worth noting that, although definition-site variance is arguably simpler than
use-site variance, it was purposely left out of the recent programming language Dart.
Every generic in Dart is assumed to be covariant in its type parameters. The Dart

programming language specification [36] states the following:

The type system is unsound, due to the covariance of generic types.
This is a deliberate choice (and undoubtedly controversial). Experience
has shown that sound type rules for generics fly in the face of programmer
intuition. It is easy for tools to provide a sound type analysis if they
choose, which may be useful for tasks like refactoring.

Generally, each flavor of variance has its own advantages. Use-site variance is
arguably a more advanced idea, yet it suffers from specific usability problems because
it places the burden on the user of a generic type. (Although one should keep in

mind that the users of one generic type are often the implementors of another.)

Definition-site variance may be less expressive, but leaves the burden of specifying
general interfaces with the implementor of a generic. A natural idea, therefore, is
to combine the two flavors in the same language design and allow full freedom: For
instance, when a type is naturally covariant, its definition site can state this property
and relieve the user from any further obligation. Conversely, when the definition site
does not offer options for fully general treatment of a generic, a sophisticated user
can still provide fully general signatures.

This dissertation addresses the shortcomings of current variance mechanisms by
providing theoretical and practical foundations for combining definition-site and use-
site variance in a single language. The thesis of this dissertation is stated below.

Thesis:

Subtype and parametric polymorphism can be leveraged in tandem,
by employing and generalizing the concepts of use-site and definition-
site variance. Concretely, we will show that the definition- and use-site
variance mechanisms can be combined in full generality and type-safety,
to support a programming model with greater opportunity for reusability
of generic code.

1.4 TIllustration of Approach

To quickly indicate some of the contributions of this work, this section briefly il-
lustrates one aspect of our approach: inferring definition-site variance. Later chapters
present our approach to combining definition- and use-site variance in detail.

The variance of a class with respect to its type parameters is constrained by the
variance of the positions these type parameters occur in. For instance, an argument
type position is contravariant, while a return type position is covariant. However, in
the presence of recursive type constraints and wildcards, no past technique reasons
in a general way about the variance of a type expression in a certain position. For
instance, past techniques would not infer anything other than invariance for classes

C and D:

class C<X> {

X foo (C<? super X> csx) { ... }
void bar (D<? extends X> dsx) { ... }
}
class D<Y> {
void baz (C<Y> cx) { ... }
}

Our approach is based on assigning a variance to every type expression, and
defining an operator, ® (pronounced “transform”), used to compose variances. In our
calculus, inferring the most general variance for the above type definitions reduces
to finding the maximal solution for a constraint system over the standard variance
lattice (* is top, o is bottom, + and — are unordered, with a join of x and a meet of
0). If ¢ stands for the (most general) variance of the definition of C<X> with respect
to type parameter X, and d stands for the variance of D<Y> with respect to Y, the

constraints (simplified) are:

Consider the first of these constraints. Its intuitive meaning is that the variance of
class € (with respect to X) has to be at most covariance, +, (because X occurs as a
return type of foo). Similarly, for the third constraint, the variance of C has to be at
most the variance of type expression D<? extends X> transformed by the variance, —,
of the (contravariant) position where the type expression occurs. The variance of type
expression D<? extends X> itself is the variance of type D joined with the variance of
the type annotation, +.

We will see the full rules and definition of ®, as well as prove their soundness,

later, but for this example it suffices to know that —®+ = —, —®@ — = +, —®* = *,

and — ® o = o. It is easy to see with mere enumeration of the possibilities that
the most general solution has ¢ = + and d = —. Thus, by formulating and solving
these constraints, we correctly infer the most general variance: class C is covariant
with respect to X, and class D is contravariant with respect to Y. We note that the
interaction of wildcards and type recursion is non-trivial. For instance, removing the

“? super” from the type of argument csx would make both ¢ and D be invariant.

1.5 Dissertation Outline

This dissertation is structured as follows. Chapter 2| provides a more detailed
background on definition-site and use-site variance. The presentation of our approach
starts in Chapter [3] That chapter describes how definition- and use-site variance can
be applied from a language-neutral perspective. It presents three fundamental prob-
lems that we address for reasoning about variance. Chapter [4] presents VarLang, a
unifying framework for checking and inferring definition-site variance in a language
that also supports use-site variance. Chapter [5| discusses realistic complications for
adding definition-site variance to Java, a large, complex, main-stream programming
language with intricate features that interact with variance. That chapter also pro-
vides background needed to understand Chapter[6l Chapter [0 presents VarJ, a model
for Java with definition-site variance. Unlike VarLang, VarJ is equipped with an op-
erational semantics. That is, there is a model of execution associated with programs
in VarJ. The type soundness proof ensures runtime-type errors do not occur for well-
typed programs. Since the type soundness proof includes a lot of detail not related to
variance, Chapter [7] focuses on why the variance analysis is safe for program execu-
tion. This dissertation then switches gears to practical applications of the work and
case studies. Chapter [§ describes how we inferred definition-site variance for Java.
Chapter [9] describes a refactoring tool that we developed. It refactors Java code gen-

eralizing parametric types by adding wildcard annotations. The tool allows users to

10

select declarations (variables, method parameters, return types, etc.) to generalize
and works with declarations that are not declared in available source code. The result
of this refactoring is a more general interface that supports greater software reuse.
Chapter [10| presents related work and compares the related work with our approach.
Chapter discusses the implications of this work, possible future work, and plans

to adopt ideas from this work into mainstream languages in the real world.

11

CHAPTER 2
BACKGROUND ON VARIANCE

This chapter offers a brief background on definition- and use-site variance as well

as their relative advantages.

2.1 Definition-site Variance

Languages supporting definition-site variance [31,51] typically require each type
parameter to be declared with a variance annotation. For instance, Scala [51] requires
the annotation + for covariant type parameters, - for contravariant type parameters,
and invariance as default. A well-established set of rules can then be used to verify
that the use of the type parameter in the genericﬂ is consistent with the annotation.

In intuitive terms, we can understand the restrictions on the use of type param-
eters as applying to positions. Each typing position in a generic’s signature has an
associated variance. For instance, method return and exception types, supertypes,
and upper bounds of class type parameters are covariant positions; method argument
types and class type parameter lower bounds are contravariant positions; field types
are both co- and contravariant occurrences, inducing invariance. Type checking the
declared variance annotation of a type parameter requires determining the variance
of the positions the type parameter occurs in. The wvariance of all such positions
should be at least the declared variance of the type parameter. Figure [2.1] presents the

variance lattice. Consider the following templates of Scala classes, where vy, vy, and

'We refer to all generic types (e.g., classes, traits, interfaces) uniformly as “generics”.

12

A

(bivariance)
L

/ \
+ — (contravariance)
NS v [
o

(invariance)

(covariance)

Figure 2.1. Standard variance lattice.

vy stand for variance annotations

abstract class RList[vxX] { def get(i:Int):X }

abstract class WList[vyY] { def set(i:Int, y:Y):Unit }
abstract class IList[vzZ] { def setAndGet(i:Int, z:Z):Z }

The variance vy is the declared definition-site variance for type variable X of the
Scala class RList. If vx = +, the RList class typechecks because X does not occur in
a contravariant position. If vy = 4, the WList class does not type check because Y
occurs in a contravariant position (second argument type in set method) but vy = +
implies Y should only occur in a covariant position. IList typechecks only if vz = o
because Z occurs in both a covariant and a contravariant position.

Intuitively, RList is a read-only list: it only supports retrieving objects. The
return type of a method indicates this “retrieval” capability. Retrieving objects of
type T can be safely thought of as retrieving objects of any supertype of T. Thus, a
read-only list of Ts (RList[T]) can always be safely thought of as a read-only list of
some supertype of Ts (RList[S], where T<:S). This is the exact definition of covariant
subtyping and the reason why a return type is a covariant position. Thus, RList is

covariant in X. Similarly, WList is a write-only list, and is intuitively contravariant.

2In Scala, a method’s return type is written after the method’s name and argument. Also, the
Scala type Unit is the equivalent of Java type void.

13

Its definition supports this intuition: Objects of type T can be written to a write-only
list of Ts (WList[T]) and written to a write-only list of Ss (WList[S]), where T <:S,
because objects of type T are also objects of type S. Hence, a WList [S] can safely be
thought of as a WList[T], if T <:S.

The variance of type variables is transformed by the variance of the context the
variables appear in. Covariant positions preserve the variance of types that appear in
them, whereas contravariant positions reverse the variance of the types that appear
in them. The “reverse” of covariance is contravariance, and vice versa. The “reverse”
of invariance is itself. Thus, we can consider the occurrence of a type parameter to
be initially covariant. For instance, consider again the Scala classes above. In RList,
X only appears as the return type of a method, which preserves the initial covariance
of X, so RList is covariant in X. In WList, Y appears in a contravariant position, which
reverses its initial covariance, to contravariance. Thus, WList is contravariant.

When a type parameter is used to instantiate a generic, its variance is further

transformed by the declared definition-site variance of that generic. For example:

class Sourcelist[+Z] { def copyTo(to:WList[Z]):Unit }

Suppose the declared definition-site variance of WList (with respect to its single
parameter) is contravariance. In WList [Z], the initial covariance of Z is transformed by
the definition-site variance of WList (contravariance). It is then transformed again by
the contravariant method argument position. As a result, Z appears covariantly in this
context, and SourceList is covariant in Z, as declared. Any variance transformed by
invariance becomes invariance. Thus, if Z had been used to parameterize an invariant
generic, its appearance would have been invariant. In Section [3.1] we generalize and
formalize this notion of transforming variance.

We have so far neglected to discuss bivariance: C<X> is bivariant implies that
C<S><:C<T> for any types S and T. Declaring a bivariant type parameter is not sup-

ported by the widely used definition-site variant languages. At first this seems to

14

not be entirely surprising. For a type parameter to be bivariant, it must only appear
bivariantly in a generic. This means either it does not appear at all, or it appears
only as the type argument to instantiate other bivariant generics. If a type parameter
does not appear in a generic’s signature at all, then it is useless to parameterize over
it; if it is only used to instantiate other bivariant generics, it could just as well be
replaced by any arbitrary type, since, by definition, a bivariant generic does not care
what type it is instantiated with. Nevertheless, this argument ignores type recursion.
As we discuss in Section and in our experimental findings, several interesting
interface definitions are inherently bivariant.

Finally, instead of declaring the definition-site variance of a type parameter and
checking it for consistency, it is tempting to infer the most general such variance from
the definition of a generic. This becomes hard in the presence of type recursion and

supporting it in full generality is one of the contributions of our work.

2.2 Use-site Variance

An alternative approach to definition-site variance is use-site variance [12}34,63].
Instead of declaring the variance of X at its definition site, generics are assumed to
be invariant in their type parameters. However, a type-instantiation of C<X> can be
made co-, contra-, or bivariant using variance annotations.

For instance, using the Java wildcard syntax, C<? extends T> is a covariant in-
stantiation of C, representing a type “C-of-some-subtype-of-T”. C<? extends T> is a
supertype of all type-instantiations C<S>, or C<? extends S>, where S<:T. In exchange
for such liberal subtyping rules, type C<? extends T> can only access fully those meth-
ods and fields of € in which X appears covariantly. (Other methods can be used only
with type-neutral values, e.g., called with null instead of values of type X.) In de-

termining this, use-site variance applies the same set of rules used in definition-site

15

variance, with the additional condition that the upper bound of a wildcard is consid-
ered a covariant position, and the lower bound of a wildcard a contravariant position.
For example, consider an invariant generic class List that uses its type parameter

in both covariant and contravariant positions:

class List<X> {
// other members that don’t affect variance

void add(int i, X x) { ... } // requires a List<? super X>
X get(int i) { ... } // requires a List<? extends X>
int size() { ... } // requires a List<?>

}

List<? extends T>, only has access to method “X get(int i)”, but not method
“void add(int i, X x)”. (More precisely, method add can only be called with null
for its second argument.)

Similarly, List<? super T> is the contravariant version of List, and is a supertype
of any List<S> and List<? super S>, where T <:S. Of course, List<? super T> has
access only to methods and fields in which X appears contravariantly or not at all.
(The get method returns Object for a List<? super T>.)

Use-site variance also allows the representation of the bivariant version of a
generic. In Java, this is accomplished through the unbounded wildcard: List<?>.
Using this notation, List<S> <:List<?>, for any S. The bivariant type, however, only
has full access to methods and fields in which the type parameter does not appear
at all. In definition-site variance, these methods and fields would have to be factored

out into a non-generic class.

2.3 A Comparison

Both approaches to variance have their merits and shortcomings. Definition-site
variance enjoys a certain degree of conceptual simplicity: the generic type instantia-
tion rules and subtyping relationships are clear. However, in the worst case the class

or interface designer must pay for such simplicity by splitting the definitions of data

16

types into co-, contra, and bivariant versions. This can be an unnatural exercise.
For example, the data structures library for Scala contains immutable (covariant)
and mutable (invariant) versions of almost every data type—and this is not even a
complete factoring of the variants, since it does not include contravariant (write-only)
versions of the data types.

The situation gets even more complex when a generic has more than one type
parameter. In general, a generic with n type parameters needs 3™ (or 4" if bivariance is
allowed as an explicit annotation) interfaces to represent a complete variant factoring
of its methods. Arguably, in practice, this is often not necessary.

Use-site variance, on the other hand, allows users of a generic to create co-, contra-,
and bivariant versions of the generic on the fly. This flexibility allows class or interface
designers to implement their data types in whatever way is natural. The users of
these generics must pay the price, by needing to carefully consider the correct use-
site variance annotations, so that the type can be as general as possible. This might
not seem very difficult for a simple instantiation such as List<? extends Number>.
However, type signatures can very quickly become complicated. For instance, the

following method signature is part of the Apache Commons-Collections Library:

Iterator<? extends Map.Entry<? extends K,V>>
createEntrySetIterator (Iterator<? extends Map.Entry<? extends K,V>>)

2.4 Generalizing the Design Space.

Our goal is to combine the positive aspects of use-site and definition-site variance,
while mitigating their shortcomings. The key is to have a uniform and general treat-
ment of definition-site and use-site variance in the same type system. This creates

opportunities for interesting language designs. For instance:

e A language can combine explicit definition- and use-site variance annotations

and perform type checking to ensure their soundness. For example, Scala or

17

C# can integrate wildcards in their syntax and type reasoning. This will give
programmers the opportunity to choose not to split the definition of a type just
to allow more general handling in clients. If, for instance, a List is supposed
to support both reading and writing of data, then its interface can be defined
to include both kinds of methods, and not need to be split into two types.
The methods that use List can still be made fully general, as long as they
specify use-site annotations. Generally, allowing both kinds of variance in a
single language ensures modularity: parts of the code can be made fully general
regardless of how other code is defined. This reduces the need for anticipation

and lowers the burden of up-front library design.

Similarly, Java can integrate explicit definition-site variance annotations for
purely variant types. This will reduce the need for use-site annotation and the

risk of too-restricted types.

A language can combine use-site variance annotations with inference of definition-
site variance (for purely variant types). This is the approach that we imple-
ment and explore in later sections. Consider the long type signature of the
createEntrySetIterator method mentioned above. It contains two wildcard-
instantiations of Iterator and two more of Map.Entry totaling four wildcard-
instantiations. Our approach can infer that Iterator is covariant, and Map.Entry
is covariant in its first type parameter—without having to change the definition
of either generic. Thus, the following signature in our system has exactly the

same generality without any wildcards:

Iterator<Map.Entry<K,V>>
createEntrySetIterator(Iterator<Map.Entry<K,V>>)

Furthermore, specifying the most general types proves to be challenging for even

the most seasoned Java programmers: our experiments reveal that (at least) 7%

18

of the types in method signatures of the Java core library (java.*) are overly

specific. We will discuss the details of our findings in Section 8.2

19

CHAPTER 3
REASONING ABOUT VARIANCE

In order to meet our goal of a general, unified framework (for both checking
and inference of both use-site and definition-site variance) we need to solve three
fundamental problems. The first is that of composing variances, the second deals
with the integration of use-site annotations in definition-site reasoning, and the third
concerns the handling of recursive types. The concepts from this chapter establish
formal foundations that are applied throughout the remainder of this dissertation.
To the best of our knowledge, this work is the first to solve all three problems in their

full generality.

3.1 Variance Composition

In earlier variance formalisms, reasoning about nested types, such as A<B<X>>, has
been hard. Igarashi and Viroli pioneered the treatment of variant types as unions
of sets of instances. Regarding nested types, they note (Section 3.3 of [34]): “We
could explain more complicated cases that involve nested types but it would get
harder to think of the set of instances denoted by such types.” The first observation
of our work is that it is quite easy to reason about nested types, not as sets of
instances but based on variance composition. That is, given two generic types A<X>
and B<X>, if the (definition-site) variances of A and B (with respect to their type

parameters) are known, then we can compute the variance of type A<B<X>>D This

IThis relies on a natural extension of the definition of variance, to include the concept of a
variance of an arbitrary type expression with respect to a type variable. E.g., type expression F is

20

composition property generalizes to arbitrarily complex-nested type expressions. The
basis of the computation of composed variances is the transform operator, ®, defined
in Figure (3.1, The relation v; ® v, = w3 intuitively denotes the following: If the
variance of a type variable X in type expression E is vy and the definition-site variance

of the type parameter of a class C is U1E| then the variance of X in type expression

C<E> is vs.

Definition of variance transformation: ®

+Q+ =+ -+ =- * @+ = * 0+ =0
+T®—-=- —®—-=+ *Q — =% 0¥ —=0
+ &k = * — @ * = * * Q) *x = % 0RQ* =0
+X®o=o0 —®o=o0 * Q0 = % o0®o=o0

Figure 3.1. Variance transform operator.

The behavior of the transform operator is simple: invariance transforms every-
thing into invariance, bivariance transforms everything into bivariance, covariance
transforming a variance leaves it the same, and contravariance reverses it. (The re-
verse of bivariance is itself, the reverse of invariance is itself.) To sample why the
definition of the transform operator makes sense, let us consider some of its cases.

(The rest are covered exhaustively in our proof of soundness.)

e Case + ® — = —: This means that type expression C<E> is contravariant with
respect to type variable X when generic C is covariant in its type parameter and

type expression F is contravariant in X. This is true because, for any T}, T5:

covariant in X iff Ty <: Ty = FE[T1/X] <: E[T2/X]. (These brackets denote substitution of a type
for a type variable and should not be confused with the Scala bracket notation for generics, which
we shall avoid except in pure-Scala examples.)

2For simplicity, we often refer to generics with a single type parameter. For multiple type pa-
rameters the same reasoning applies to the parameter in the appropriate position.

21

T <1, = (by contravariance of E)
ETy/X] <: E[T1/X] = (by covariance of C)
C<E[Ty/X]> <: c<E[T\ /X]> =

C<E>[T5/X] <: C<E>[T/X]

Hence, C<E> is contravariant with respect to X.

e Case *®v = x: This means that type expression C<E> is bivariant with respect
to type variable X when generic C is bivariant in its type parameter, regardless

of the variance of type expression E (even invariance). This is true because:

for any types S and T = (by bivariance of C)
C<E[S/X]> <: Cc<E[T/X)> =
C<E>[S/X]| <: c<E>[T/X]
Hence, C<E> is bivariant with respect to X.

As can be seen by inspection of all cases in Figure [3.1] operator ® is associative.

The operator would also be commutative, except for the case x ® 0 = % # 0 = 0 ® *.

This is a design choice, however. With the types-as-sets approach that we follow in

our formalization, operator ® would be safe to define as a commutative operator, by

changing the case o ® * to return *. To see this, consider the meaning of 0 ® *. When

generic C is invariant with respect to its type parameter X and type expression E is

bivariant in X, should type expression C<E> be bivariant or invariant with respect to

X? The answer depends on what we mean by “invariance”. We defined invariance

earlier as “C<S><:C<T> only if § = T”. Is the type equality “S = T” syntactic or

semantic? (Le., does type equality signify type identity or equivalence, as can be

22

established in the type system?) If type equality is taken to be syntactic, then the

only sound choice is 0 ® * = o:

C<E>[S/X]| <: C<E>T/X] =

C<E[S/X]> <: C<E[T/X]> = (by invariance of C)
E[S/X] = E[T/X] = (assuming X occurs in E)
S=T

Hence, C<E> is invariant with respect to X. If, however, the definition of invariance
allows for type equivalence instead of syntactic equality, then it is safe to have o®@* =
«: By the bivariance of E, E[S/X] <: E[T/X| and E[T/X] <: E[S/X]. Hence, E[S/X]
is equivalent to E[T/X| and consequently C<E>[S / X] can be shown equivalent to
C<E>[T / X] (assuming a natural extensionality axiom in the type system).

We chose the conservative definition, o ® * = o, in Figure to match that
used in our implementation of a definition-site variance inference algorithm for Java,
discussed later. Since, in our application, bivariance is often inferred (not stated by
the programmer) and since Java does not naturally have a notion of semantic type
equivalence, we opted to avoid the possible complications both for the user and for
interfacing with other parts of the language.

Similar reasoning to the transform operator is performed in Scala to check definition-
site variance annotations. |51, Section 4.5] defines the variance position of a type
parameter in a type or template and states “Let the opposite of covariance be con-
travariance, and the opposite of invariance be itself.” It also states a number of rules
defining the variance of the various type positions such as “The variance position of a
method parameter is the opposite of the variance position of the enclosing parameter

2

clause.” The ® operator is a generalization of the reasoning stated in that section;

it adds the notion of bivariance and how the variance of a context transforms the

23

variance of a type actual in general instead of defining the variance of a position for

language-specific constructs.

3.2 Integration of Use-Site Variance

The second new element of our work is the integration of use-site annotations in
the reasoning about definition-site variance. Earlier work such as [34] showed how
to reason about use-site variance for Java. Emir et al |24] formalized definition-site
variance as it occurs in C#.ﬂ However, no earlier work explained how to formally
reason about variance in a context including both definition-site and use-site variance.
For example, suppose Scala is extended with support for use-site variance, v is a
variance annotation (+, —, or o), and the following are syntactically legal Scala

classes.

abstract class C[vX] {

def set(argl:X):Unit

}

abstract class D[+X] {

def compare(arg2:C[+X]):Unit
}

Section [2.1] gave an overview of how declared definition-site variance annotations
are type checked in Scala. Since class C only contains the set method, it typechecks
with v = - because X only appears contravariantly in the type signature of the set
method. However, type checking class D with the compare method requires reasoning
about the variance of X in the argument type expression C[+X].

In our unified framework, a use-site annotation corresponds to a join operation in
the standard variance lattice (Figure [2.1). That is, if generic C<X> has definition-site
variance v; with respect to X, then the type expression C[v2X] has variance vy Ll vy

with respect to X.

3Their calculus is an extension of C# minor [40).

24

Intuitively, this rule makes sense: When applying use-site variance annotations,
it is as if we are removing from the definition of the generic the elements that are
incompatible with the use-site variance. For instance, when taking the covariant
version, C[+X], of our Scala class C, above, we can only access the members that use
type parameter X covariantly—e.g., method set would be inaccessible. Hence, if class
C is naturally contravariant in X (meaning that X only occurs contravariantly in the
body of C), then C[+X] is a type that cannot access any member of C that uses X.
Thus, C[+X] is bivariant in X: the value of the type parameter cannot be used. This is
precisely what our lattice join approach yields: + Ll — = *. As a result, any declared
definition-site variance for class D would be legal.

To see more rigorously why the lattice-join approach is correct, let us consider the
above case formally. (Other cases are covered exhaustively in our proof of soundness.)
Given a contravariant generic C, why is it safe to infer that C<+X> (C[+X] in Scala
syntax) is bivariant in X? We start from the Igarashi and Viroli approach to variance:
All types are in a lattice with subtyping as its partial order and the meaning of C<+T>
is | |po.r C<T’>. This definition yields the standard variance theorems T <: T' =
C<+T> <: C<+T’> and C<T> <: C<+T>. Consider then the bottom element of the type
lattice. (This lattice depends on the type system of the language and is not to be

confused with the simple variance lattice of Figure [2.1]) We have:

l<T= (by first theorem above)

C<+L1> <: C<+T> (1)

But also, for any type T’

l<T= (C contravariant)

C<T’> <: C<L> (2)

25

Therefore:

C<HT> = (by variance def)

|_| C<T?> <: (by (2), above)
T'<:T

C<l> < (by second theorem above)

C<+1> (3)

Hence, from (1) and (3), all C<+T> are always subtype-related, i.e., have type C<x>.

A Note on Scala:

To enable interoperability between Scala and Java, Scala represents Java wild-
card types as existential types. For example, a Java Iterator<?> could be written as
Iterator[T] forSome { type T } or more compactly as Iterator[.]. Similarly, the
type Java Iterator<? extends Comparator> maps to the Scala type Iterator[_ <:
Comparator], and the type Java Iterator<? super Comparator> maps to the Scala
type Iterator[. >: Comparator]. However, Scala variance reasoning with existen-
tial types is too conservative because it just assumes that the use-site variance anno-
tation overrides the definition-site variance instead of reasoning about how they both

interact. For example, consider the Scala traits below.

trait GenType[+Y] { def get(i:Int):Y }
trait Wild[-X] {
def add(elem:X):Unit
// flagged as error but actually safe
def compare(w:GenType[_ >: X]):Unit
}

The Scala compiler flags an error because it assumes the variance of X in GenType [
>: X] is contravariance. This contravariance occurrence is then negated (trans-
formed by contravariance) to covariance because it occurs in an argument (contravari-

ant) position. Because the Scala compiler assumes X occurs in a covariant position in

26

compare’s argument type but the definition-site of X in trait Wwild is contravariance,
Scala flags this occurrence as an error. However, it is safe to assume that the vari-
ance of X in GenType[_ >: X] is bivariance. Because GenType is covariant in its type
parameter, the contravariant version of GenType essentially provides no members of
GenType that contain GenType’s type parameter in their type signature. Our joining
of the definition-site and use-site variances takes advantage of this reasoning enabling

more safe code to type check.

3.3 Recursive Variances

The third novel element of our approach consists of reasoning about recursive
type definitions. This is particularly important for inferring (instead of just check-
ing) definition-site variance. With type recursion, the unknown variance becomes
recursively defined and it is not easy to compute the most general solution. Further-
more, type recursion makes the case of bivariance quite interesting. In contrast to
non-recursive types, recursive types can be bivariant even when their type parameter

is used. For instance the following type is safely bivariant:

interface I<X> { I<X> foo (I<X> i); }

To appreciate the interesting complexities of reasoning about type recursion, we

discuss some cases next.

3.3.1 Recursive Variance Type 1

The following interface demonstrates a most simple form of recursive variance:

interface C1<X> { Ci1<X> fool (); }

The variance of C1 depends on how X appears in its signature. The only appearance
of X is in the return type of fool, a covariant position, as the argument to C1. Thus,

the variance of X in this appearance is its initial covariance, transformed by the

27

variance of Cl1—the very variance we are trying to infer! This type of recursive
variance essentially says that the variance of C1 is the variance of C1, and thus can
be satisfied by any of the four variances: covariance, contravariance, invariance, or
bivariance. Without any more appearances of X, the most liberal form of variance for
C1 is bivariance.

If X does appear in other typing positions, however, the variance of its declaring

generic is completely determined by the variance of these appearances:

interface C2<X> extends C1<X> { wvoid bar2 (X x); 1}
interface C3<X> extends Ci<X> { X bar3 (); }

The definition-site variance of C2 is constrained by the variance of C1, as well as
X’s appearance as a method argument type—a contravariant appearance. Since C1’s
variance is completely unconstrained, €2 is simply contravariant. Similarly, C3 is only
constrained by X’s appearance as a method return type—a covariant appearance—and
is thus covariant, as well.

The above pattern will be common in all our recursive variances. Without any
constraints other than the recursive one, a generic is most generally bivariant. When
other constraints are factored in, however, the real variance of C1 can be understood

informally as “can be either co- or contravariant”.

3.3.2 Recursive Variance Type 2
The next example shows a similar, but much more restrictive form of recursive

variance:

interface D1<X> { void fool (D1<X> dx); 1}

The variance of D1 is again recursively dependent on itself, only this time X ap-
pears in D1<X> which is a method argument. If a recursive variance did not impose
any restrictions in a covariant position, why would it be any different in a contravari-

ant position? Interestingly, the contravariance means that the variance of D1 is the

28

variance of D1 transformed by the contravariance. This means the variance of D1 must
be the reverse of itself!

The only two variances that can satisfy such a condition are bi- and invariance.
Again, without any other uses of X, D1<X> is most generally bivariant.

However, if X does appear either co- or contravariantly in combination with this

type of recursive variance, the resulting variance can only be invariance:

interface D2<X> extends D1<X> { void bar2 (X x); }
interface D3<X> extends Di1<X> { X bar3 (); }

In the above example, X appears contravariantly in D2, as the argument of bar2.
At the same time, the variance of X must be the opposite of itself, as constrained by
the recursive variance in supertype D1. This is equivalent to X appearing covariantly,
as well. Thus, the only reasonable variance for D2 is invariance. A similar reasoning
results in the invariance of D3.

Thus, recursive variance of this type can be understood informally as “cannot be

2

either co- or contravariant” when other constraints are taken into account.

3.3.3 Recursive Variance Type 3

The following example shows yet a third kind of recursive variance:

interface E1<X> { E1<E1<X>> fool (); 1}

The variance of E1 is the same as X’s variance in E1<E1<X>>. That is, the initial
covariance of X, transformed by the variance of E1—twice. This type of recursive
variance can, again, like the previous two, be satisfied by either in- or bivariance.
However, the key insight is that, no matter whether E1 is contra- or covariant, any
variance transformed by E1 twice (or any even number of times, for that matter) is
always preserved. This is obvious if E1 is covariant. If E1 is contravariant, being

transformed by E1 twice means a variance is reversed, and then reversed again, which

29

still yields a preserved variance. Thus, unless E1 is bi- or invariant, X in E1<E1<X>> is
always a covariant appearance.

Thus, when other appearances of X interact with this form of recursive variance,
its informal meaning becomes “cannot be contravariant”. In other words, when this
recursive variance is part of the constraints of a type, the type can be bivariant,

covariant, or invariant. The following examples demonstrate this:

interface E2<X> extends E1<X> { void bar2 (X x); }
interface E3<X> extends Ei1<X> { X bar3 (); }

X appears contravariantly in E2, eliminating bivariance and covariance as an option
for E2. However, X also appears in E1<E1<X>> through subtyping, which means it
cannot be contravariant. Thus, E2 is invariant.

In E3, X appears covariantly, and X in E1<E1<X>> can still be covariant. Thus, E3

can safely be covariant.

3.3.4 Recursive Variance Type 4
Our last example of recursive variance is also twice constrained by itself. But this

time, it is further transformed by a contravariance:

interface Fi1<X> { int fool(F1<F1<X>> x); }

The variance of F1 is the same as X’s variance in F1<F1<X>>, then transformed by
the contravariant position of the method argument type. That is, X’s initial covari-
ance, transformed twice by the variance of F1, then reversed. Like all the other recur-
sive variances, bi- and invariance are options. However, since the twice-transformation
by any variance preserves the initial covariance of X in F1<F1<X>>, the transformation
by the contravariance produces a contravariance. Thus, if F1 cannot be bivariant, it
must be contravariant (or invariant).

In other words, along with other constraints, F1 has the informal meaning: “cannot

be covariant”. For instance:

30

interface F2<X> extends F1<X> { wvoid bar2 (X x); }
interface F3<X> extends F1<X> { X bar3 (); }

In F2, X appears contravariantly as a method argument. Combined with the
recursive variance through subtyping F1<X>, F2 can be contravariant. In F3, however,
X appears covariantly. With bivariance and contravariance no longer an option, the
only variance satisfying both this covariant appearance and the recursive variance of

F1<F1<X>> is invariance. Thus, F3 is invariant in X.

3.3.5 Handling Recursive Variance.

The above list of recursive variances is not exhaustive, although it is representative
of most obvious cases. It should be clear that handling recursive variances in their
full generality is hard. The reason our approach can handle recursive variance well
is that all reasoning is based on constraint solving over the standard variance lattice.
Constraints are simple inequalities (“below” on the lattice) and can capture type
recursion by having the same constant or variable (in the case of type inference)

multiple times, both on the left and the right hand side of an inequality.

3.3.6 A Note on Scala:

Scala’s reasoning about recursive variances is limited because it does not have
the notion of bivariance; it does not allow the most general types to be specified.
Consider the three following traits.
trait Ci[vxX] { def foo:C1[X] }
trait C2[vyY] extends C1[Y] { def bar(arg:Y):Unit }
trait C3[vyzZ] extends C1[Z] { def baz:Z }

Because trait C1 has type 1 recursive variance, if Scala supported bivariant annota-
tions, it would be safe to set the definition-site variances as follows: vy = %, vy = —,
and vy = 4. Since Scala does not support bivariant annotations, no assignments

allow both trait €2 to be contravariant and trait C3 to be covariant. For example,

31

setting vy = + implies attempting to compile trait €2 will generate an error because
Scala infers Y occurs covariantly in the base type expression occurring in “C2[-Y]
extends C1[Y]”; since Y is declared to be contravariant, Y should not occur in a co-
variant position in the definition of 2. Below are the only three assignments allowed

by the Scala compiler.

UVx — — Vy = — Vz = O
vx = + Vy = 0 vy =+
Ux = 0 Vy = 0 Vz = O

32

CHAPTER 4
VARLANG: A CORE LANGUAGE AND CALCULUS

We combine all the techniques of the previous section into a unified framework for
reasoning about variance. We introduce a core language, VarLang [1], for describing
the various components of a class that affect its variance. Reasoning is then performed

at the level of this core language, by translating it to a set of constraints.

4.1 Syntax

A sentence S in VarLang is a sequence (treated as a set) of modules, the syntax

of which is given in Figure {4.1]

M € Module ::= module C<X> { Tv }
T € Type :=X | C<vT>
v € Variance :=+| — | * | o
C € ModuleNames is a set of module names

X € VariableNames is a set of variable names

Figure 4.1. Syntax of VarLang

Note that variance annotations, v, (+/-/*/0) can appear in two places: at the top
level of a module, as a suffix, and at the type level, as a prefix. Informally, a v at
the top level means that the corresponding type appears covariantly/contravariant-
ly /invariantly (i.e., in a covariant/contravariant/invariant position). A v on a type

means that the type parameter is qualified with the corresponding use-site variance

33

annotation, or no annotation (for invariance). For instance, consider the VarLang

sentence:

module C<X> { X+, C<-X>-, void+, D<+X>- }
module D<Y> { void+, C<oY¥Y>- }

This corresponds to the example from Section [I.4] That is, the informal meaning

of the VarLang sentence is that:

e In the definition of class C<X>, X appears covariantly; C<? super X> appears con-

travariantly; void appears covariantly; D<? extends X> appears contravariantly.

e In the definition of class D<Y>, void appears covariantly; C<Y> appears con-

travariantly.

4.2 VarLang Translation

Our reasoning approach consists of translating a VarLang sentence S into a set
of constraints over the standard variance lattice (Figure 2.1). The constraints are
“below”-inequalities and contain variables of the form war(X;T) and var(X;C), pro-
nounced “variance of type variable X in type expression T” and “(definition-site) vari-
ance of type variable X in generic C”. The constraints are then solved to compute
variances, depending on the typing problem at hand (checking or inference). The fol-
lowing rules produce the constraints. (Note that some of the constraints are vacuous,
since they establish an upper bound of %, but they are included so that the rules cover
all syntactic elements of VarLang and the translation from a VarLang sentence to a

set of constraints is obvious.)

var(X;C) C v; ® var(X; T;), Vi,
(4.1)

where module C<X> { Tv } € §

34

var(X; C<>) C (4.2)
var(X;Y) C *, where X # Y (4.3)

var(X;X) C + (4.4)

var(X; C<vT>) C (v; U var(Y;C)) ® var(X;T;), Vi, (45)

where Y is the i-th type variable in the definition of C.

Rule specifies that for each type T; in module C, the variance of the type
variable X in C must be below the variance of X in T; transformed by v;, the variance
of the position that T; appears in. This corresponds to the traditional reasoning about
definition site variance from Section 2.1l

Rules and specify that the X can have any variance in a type expression for
which it does not occur in. Rule constrains the initial variance of a type variable
to be at most covariance.

Rule is the most interesting. It integrates our reasoning about how to com-
pose variances for complex expressions (using the transform operator, as described in
Section and how to factor in use-site variance annotations (using a join in the
variance lattice, as described in Section .

Note that the rules use our transform operator in two different ways: to combine
the variance of a position with the variance of a type, and to compose variances.

We prove the soundness of the above rules denotationally—that is, by direct appeal

to the original definition and axioms of use-site variance [34]. The proof can be found

in Appendix [A]

Example
We can now revisit in more detail the example from the Introduction, containing

both recursive variance and wildcards:

35

class C<X> {

X foo (C<? super X> csx) { ... }
void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } 1}

As we saw, the corresponding VarLang sentence is:

module C<X> { X+, C<-X>-, void+, D<+X>- }
module D<Y> { void+, C<oY>- }

The generated constraints (without duplicates) are:

var(X; C) C + ® var(X;X) (rule
var(X;X) C + (rule
var(X;C) C — ® var(X; C<-X>) (rule [4.1])
var(X; C<-X>) C (= U war(X;C)) ® var(X;X) (rule
var(X; C) C + ® var(X; void) (rule
var(X;void) C = (rule
var(X;C) C — ® var(X; D<+X>) (rule
var(X;D<+X>) C (+ U var(Y;D)) ® var(X;X) (rule [4.5)
var(Y;D) C + ® var(Y; void) (rule
var(Y;void) C (rule
var(Y;D) C — ® var(Y; C<oY>) (rule
var(Y; C<oY>) C (o U war(X;C)) ® var(Y;Y) (rule
var(Y;Y) C + (rule 4.3)

4.3 Revisiting Recursive Type Variances
Armed with our understanding of variance requirements as symbolic constraints

on a lattice, it is quite easy to revisit practical examples and understand them quickly.

36

For instance, what we called type 2 recursive variance in Section [3.3]is just an instance
of a recursive constraint ¢ C — ® ¢, where ¢ is some variable of the form var(X;C).
This is a case of a type that recursively (i.e., inside its own definition) occurs in a
contravariant position. (Of course, the recursion will not always be that obvious:
it may only become apparent after other constraints are simplified and merged.) It
is easy to see from the properties of the transform operator that the only solutions
of this constraint are o and x; i.e., “cannot be either co- or contravariant” as we
described in Section [3.3] If ¢ = +, then the constraint generated by type 2 recursive
variance would be violated, since ¢ = + £ — ® ¢ = — ® + = —. Similar reasoning

shows ¢ cannot be — and satisfy the constraint.

4.4 Constraint Solving

Checking if a variance satisfies a constraint system (i.e., the constraints generated
for a VarLang module) corresponds to checking definition-site variance annotations in
type definitions that can contain use-site variance annotations. Analogously, inferring
the most general definition-site variances allowed by a type definition corresponds to
computing the most general variances that satisfy the constraint system representing
the type definition. The trivial and least general solution that satisfies a constraint
system is assigning the definition-site variance of all type parameters to be invariance.
Assigning invariance to all type parameters is guaranteed to be a solution, since
invariance is the bottom element, which must be below every upper bound imposed
by the constraints. Stopping with this solution would not take advantage of the
subtyping relationships allowed by type definitions. Fortunately, the most general
solution is always unique and can be computed efficiently by fixed-point computation
running in polynomial time of the program size (number of constraints generated).

The only operators in constraint systems are the binary operators LI and ®. Both

of these are monotone, as can be seen with the variance lattice and Figure |3.1

37

Every constraint system has a unique maximal solution because there is guaran-
teed to be at least one solution (assign every type parameter invariance) and solutions
to constraint systems are closed under point-wise U; we get a maximal solution by
joining all of the greatest variances that satisfy each constraint. Because operators L
and ® are monotone, we can compute the maximal solution efficiently with fixed point
iteration halting when the greatest fixed point of the equations has been reached. We
demonstrate this algorithm below by applying it to the example Java classes C and D
from Section [4.2l

First, because we are only interested in inferring definition-site variance, we only
care about computing the most general variances for terms of the form var(X;C) but
not var(X;T). We can expand var(X;T) terms with their upper bounds containing
only unknowns of the form wvar(X;C) Consider the constraint generated from foo’s
argument type: var(X;C) E — ® var(X; C<-X>). Because we are computing a maximal
solution and because of the monotonicity of U and ®, we can replace var(X;C<-X>)
and var(X;X) by their upper bounds, rewriting the constraint as:

var(X;X)
® 4

var(X;C) C — ® (— U wvar(X;C))

.

-~

var(X;C<-X>)

Lastly, we can ignore type expressions that do not mention a type parameter be-
cause they impose no real upper bound; their upper bound is the top element (e.g.,
var(X;void) C x). This leads to the following constraints generated for the example

two Java classes:

38

I

f t t X;Cc) C

oo return type var(X;C) C+® +

var(X;X)
var(X;C) C — ® (var(X;C) L —)

(.

!

foo arg type

-~

var(X;C<-X>)
bar arg type — var(X;C) C — ® (var(Y;D) L +)

var(X;D<+X>)
baz arg type —> var(Y;D) C — ® (var(X;C) U o)

var(Y;C<oY>)

For each expanded constraint » C [in a constraint system, r is a var(X;C) term
and [is an expression where the only unknowns are wvar(X;C) terms. The greatest
fixed-point of a constraint system is solved for by, first, assigning every var(X;C) term
to be * (top). Each constraint r C [is then transformed to r <— [Mr, since r need not
increase from the value it was lowered to by other assignments. The last step is to
iterate through the assignments for each constraint until the var(X;C) terms no longer
change, which results in computing the greatest fixed-point. Finally, computing the
greatest fixed-point runs in at most 2n iterations, where n is the number of constraint
inequalities, since for each r <— [T r, r can decrease at most 2 times to invariance

(bottom) from initially being bivariance (top).

39

CHAPTER 5
TOWARDS INDUSTRIAL STRENGTH LANGUAGES

The VarLang calculus of Chapter |4 proposes a unifying framework for checking and
inferring both definition- and use-site variance in a language. That proposal is not
accompanied by a language operational semantics however—its proof of soundness
is expressed as a meta-theorem, i.e., under assumptions over what an imaginary
language’s type system should be able to prove about sets of values. This meta-
theorem is welcome as an intuition about why it makes sense to combine variances
in a certain way. VarLang is designed to ignore language specific constructs that are
orthogonal to the denotational meaning of variance and would make our soundness
proof be of the same complexity as in e.g., TameFJ [12]. Due to the novelty of both
the problem we were addressing and our approach, we followed the philosophy stated

in classic literature [32]:

Often it is sensible to choose a model that is less complete but more
compact, offering maximum insight for minimum investment.

However, VarLang did not establish a firm connection with any real programming
language. For instance, in VarLang programs, the variance of a position that a type
occurs in is given. This is not case in realistic languages like Java. This causes a
straightforward, VarLang-based algorithm for inferring definition-site variance to be
overly conservative. For instance, our early application of VarLang |1| did not try
to infer the most general variance induced by polymorphic methods: if a class type
parameter appears at all in the upper bound of a type parameter of a polymorphic

method, we considered this to be an instance of an invariant position, the most

40

restrictive kind. As a result, a generic would be inferred to be invariant relative to its
type parameter if this type parameter occurred in an upper bound of a (polymorphic)
method’s type parameter.

Futhermore, VarLang is not defined with an operational semantics. In other words,
programs written in VarLang have no execution behavior associated with them. The
proof of VarLang’s soundness Theorem ({3 does not show how to prove that particular
rules for variant subtyping (subtyping between instantiations of a single type) do not
cause runtime type errors. Since proving the absense of runtime type errors is a key
goal of a type system, this vital question is not addressed by VarLang.

We next investigate realistic complications by developing the VarJ calculus, a
type system based on Java, presented in Chapter [} We also provide background on
existential types and other concepts required to understand Chapter [0 VarJ achieves
a safe synergy of use-site and definition-site variance, while supporting the full com-
plexities of the Java realization of variance, including F-bounded polymorphism and
wildcard capture. We show that the interaction of these features with definition-site
variance is non-trivial and offer a full proof of soundness—the first in the literature
for an approach combining variance mechanisms. The work on VarJ makes several

contributions. At the high level:

e Compared to the type systems of Java, C#, or Scala, our combination of
definition-site and use-site variance allows the programmer to pick the best tool
for the job. Libraries can avoid offering different flavors of interfaces just to
capture the notion of, e.g., “the covariant part of a list” vs. “the contravariant
part of a list”. Conversely, users can often use purely-variant types more easily
and with less visual clutter if the implementor of that type had the foresight to

declare its variance.

41

e Our approach maintains other features of the Java type system, namely full
support for wildcards, which are a mechanism richer than plain use-site variance

(e.g., [33]) and allow uses directly inspired by existential types.

e We provide a framework for determining the variance of the various positions
in which a type can occur. (For example, why is the upper bound of the type

parameter of a polymorphic method a contravariant position?)
Also, at the technical level:

e We show how definition-site variance interacts in interesting ways with advanced
typing features, such as existential types, F-bounded polymorphism, and wild-
card capture. A naive application of our earlier work [1] to Java would result
in unsoundness, as we show with concrete examples. (Our earlier approach
avoided unsoundness when applied to actual Java code by making several over-
conservative assumptions to completely eliminate any interaction between, e.g.,

definition-site variance and F-bounded polymorphism.)

e We clarify and extend the TameFJ formalism with definition-site variance.
TameFJ is a thorough, highly-detailed formalism and extending it is far from a
trivial undertaking. The result is that we offer the first full formal modeling and

proof of soundness for a language combining definition- and use-site variance.

Realistic Complications

The main contribution of VarJ consists of formalizing and proving sound the
combination of definition- and use-site variance in the context of Java. In order to
do so, we need to reason about the interaction of definition-site variance with many
complex language features, such as F-bounded polymorphism, polymorphic methods,
bounds on type parameters, and existential-types (arising in the use of wildcards).

This interaction is highly non-trivial, as we see in examples next.

42

5.1 Generic Methods

In addition to classes having type parameters, Java methods may also be declared
with type parameters. Such methods are known as polymorphic methods or generic
methods |28, Section 8.4.4]. Variance complications involving generic methods will
be presented in Section [5.2.3] An example generic method toList is defined in the

following code segment:

class Utils {
<X extends String> List<X> toList(X elem) {
List<X> newlList = new LinkedList<X>;
newlList.add(elem);
int numOfCharacters = elem.length();
System.out.println(numOfCharacters) ;
return newlList;

}

boolean foo() {
String str = "a string";
List<String> listl = this.<String>toList(str);
List<String> list2 = this.tolist(str);
return listl.equals(list2);

The generic method toList is declared with a type parameter X. It takes in an el-
ement of type X and returns a new List<X> that only contains the input element. The
abbreviated type signature of toList without mentioning the name of its value ar-
gument (elem) is <X extends String> (X) — List<X>. To connect this notation with
that used commonly in programming language literature, type signatures of generic
methods can be written as universal types |53, Section 23], where type parameters
are universally quantified variables. The corresponding universal type of toList is
VX <: String.(X — List<X>). Java wildcards are modeled in VarJ as existential types
rather than universal types. We explain in Section why existential types are a
more appropriate model for Java wildcards than universal types.

Method type parameters can be referenced anywhere in the type signature of the

method (return type and value argument type) and in the body of method. They

43

can be declared with upper bounds. Because the upper bound of X is String, any
instance of X can invoke methods in the String class. The toList method invokes the
method length that is defined in the String class to retrieve the number of characters
in the string bound to elem.

Invoking a generic method always requires specifying both type arguments and
value arguments either by the programmer or by the compiler. First, we define ter-
minology to clarify references to syntactic elements related to generic methods. Type
arguments/parameters are variables bound to types. Value arguments are bound
to values. Arguments in type signatures are called formal arguments. Arguments
in method invocations are called actual arguments. Consider the type signature of
toList and the generic method invocation this.<String>toList(str) in the body of
the foo method. In that invocation, the actual type argument String is bound to
formal type argument X. Similarly, the actual value argument str is bound to formal
value elem. We skip the qualifiers such as “formal” and “actual” when refering to
arguments when the desired qualifier is clear from the context.

In the method invocation this.toList(str), an actual type argument is not spec-
ified by the programmer. For such invocations, the compiler automatically infers
an actual type argument. This process is known as type inference. Actual type
arguments are inferred first using the types of actual value arguments |28, Section
15.12.2.7]. If there are method type arguments that were not inferred from the type
of the actual value arguments, the context of the method invocation is used to infer
the remaining type arguments [28, Section 15.12.2.8] EI For this invocation, the javac
compiler infers the missing type argument to be String using the fact that the value

argument str is of type String.

'For example, the method invocation may be the right-hand side of an assignment expression.

44

The interaction between generic methods, type inference, Java wildcards, and vari-
ance raises complex issues that must be addressed to support definition-site variance

in Java. These issues are discussed later in this chapter.

Contrasting Use-Site Variance and Generic Methods

This section explains why generic method type parameters with upper type bounds
cannot emulate use-site variance. Use-site variance allows truly unknown types at
compile time. It enables greater abstraction on method type signatures than just
introducing type variables with type bounds. For example, suppose List is invariant.
It may seem that the method signature “(int) — List<? extends Animal>” can al-
ways be replaced by the generic method type signature “<Y extends Animal> (int) —
List<Y>". A method of either of these types returns a List of some subtype of Animal.

However, the following method shows that this is not the case.

// This method typechecks/compiles
List<? extends Animal> createList(int num) {
if(num % 2 == 0) // if num is an even number
return new List<Dog>();
else // else num is an odd number
return new List<Cat>();

// This method does not type check/does not compile
<Y extends Animal> List<Y> createList2(int num) {
if(num % 2 == 0)
// next line does not type check because
// List<Dog> is not a subtype of List<Y>
return new List<Dog>();
else
// next line does not type check because
// List<Dog> is not a subtype of List<Y>
return new List<Cat>();

The createList method returns a List<Dog> if the input value argument num is

even; otherwise, it returns a List<Cat>. Since List is invariant, neither List<Dog> nor

45

List<Cat> is a subtype of List<Animal>. Both List<Dog> and List<Cat> are subtypes
of List<? extends Animal>, which allows method createList to type check.

Although methods createList and createList2 have the same method body (ex-
cept for comments), createList2 does not type check. In Java, a method body of a
generic method is type checked once and for all legal instantiations of the method’s
type parameters. This ensures that a method body is type safe for every instanti-
ation of the method’s type parameters that is within the upper bounds of the type
parameters. createList2 does not type check because a compiler cannot establish
that for every instantiation of type parameter Y that is a subtype of Animal, List<Y>
is a supertype of both List<Dog> and List<Cat>.

An invocation of createList2 would not type check even if only instantiated
method bodies are type checked. In C++ [37], uninstantiated bodies of generic
methodsﬂ are compiled without type checking. Only instantiated methods resulting
from generic method invocations are type checked in C++. By the invariance of List,
no instantiation of List is a supertype of both List<Dog> and List<Cat>. Hence,
no instantiation of createList2 typechecks for the entire method body, and any
invocation of createList2 will not type check.

Without use-site variance, type arguments must always be specified statically or
at compile time in method invocations. Although type inference allows type actuals
to be specified by the compiler instead of by the programmer, these types must be
specified statically. This example shows that generic methods with upper bounds on
type parameters do not give the expressiveness of wildcards. It also highlights a key
difference between universally-quantified type variables and existentially-quantified
type variables. Types abstracted by wildcards are existentially quantified. Details of

existential types and their correspondence with Java wildcards will be given next, in

2Generic methods are known as template methods in C++.

46

Section 5.2 For now, we just mention existential type variables are never instantiated
at compile time. On the contrary, applying terms of universal types such as generic
methods requires instantiating universally-quantified type variables (either manually

or automatically, by the compiler) at compile timeﬁ

5.2 Existential Types

Java wildcards are not merely use-site variance, but also include mechanisms in-
spired by existential typing mechanisms. This section explains these mechanisms and
motivates the usage of existential types in the VarJ calculus to model Java wildcards.
We will show that existential types model aspects of Java wildcards that cannot be
represented using VarLang types.

During the type checking phase of the compiler, Java wildcards are captured or
converted to fresh type variables; this process is known as capture conversion |28,
Section 5.1.10]. Each wildcard in the input program generates a distinct type variable.
For example, the type Pair<?, ?> is capture converted to a type Pair<Y, Z>, where
Y and Z are fresh, distinct type variables.

Wildcard types are modeled in the TameFJ calculus [12] as existential types. Type
variables resulting from capture conversion are modeled as existentially quantified
type variables. The type Pair<?, 7> is modeled in TameFJ as the existential type
dY,z.Pair<Y, Z>. Further details of how Java wildcards are translated to existential
types are in |12, Section 4]. The remainder of this section will motivate the usage of

existential types to model Java wildcards using the code example in Figure [5.1}

3An encoding of existential types as universal types in an extension of the lambda calculus is
presented in [30, Chapter 21]. In that encoding, 3(t.0) = V(t'V(t.o — t') — t'), where ¢t is a
type variable and ¢ is a type expression. In that encoding, the newly created type variable
is instantiated at compile time in an open expression. However, the existentially-quantified type
variable t is never instantiated at compile time.

47

class Client

{
<X> Pair<X, X> make(List<X> 1) { ... }
<X> Boolean compare(Pair<X, X> p) { ... }

<X> void exchangeFirsts(List<X> 11, List<X> 12) {

X tmp = 11.get(0); // get first element of 11
11.set(0, 12.get(0)); // set 11’s first element to 12’s
12.set (0, tmp); // set 12’s first element to 11’s

}

<X> void uselessExchange(List<X> 1) {
exchangeFirsts(1l, 1);
}

void foo() {
Pair<?, 7> pair;

List<?> list;

compare(pair); // 1, error, does not type check/compile
compare (make (1list)) ; // 2, 0K, type checks/compiles

exchangeFirsts(list, list); // 3, error, does not type check
uselessExchange(list); // 4, OK, type checks/compiles

Figure 5.1. Example Java program that motivates the usage of existential types to
model Java wildcards. This program is based on an example from [12, Section 2.1].

48

5.2.1 Expressible But Not Denotable Types

Expressions can be assigned with types that are expressible but cannot be written
in Java’s syntax. The method invocation this.make(list) from the above code ex-
ample returns a Pair of two elements that are both of the same unknown type. This
type can be modeled in TameFJ as 3X.Pair<X, X>. This type cannot be written by a
programmer in Java’s syntax. Each occurrence of a wildcard (?) in the syntax causes
a fresh type variable to be generated during capture conversion. The type Pair<?,
7> represents a pair of two elements that can be of two distinct types. However,
the compare method requires a pair where both elements are of the same type. The
first method invocation this.compare(pair) does not type check, as a result. The
second method invocation this.compare(this.make(list)) does type check because
the capture converted type of the expression this.make(list) is Pair<X, X>, where
X is a fresh type variable. Hence, types such as dX.Pair<X, X> are needed to model
types that can arise during type checking with wildcards. VarLang does not support
types that can model a pair of the same unknown type. VarJ extends TameFJ and

supports both definition-site variance and existential types.

5.2.2 Scope of Wildcards

In Java, the types of two expressions never share a type variable resulting from
capture conversion. This holds even when both of the two expressions are exactly the
same.

Consider the method exchangeFirsts from Figure 5.1l It expects two lists that
store elements of the same type. It swaps the first element in both of the lists
with each other. Each time a wildcard type is capture converted, the generated
type variables are distinct from variables occurring in all other types that result
from capture conversion. The method invocation exchangeFirsts(list, list) in

Figure does not type check for that reason. Although both actual arguments are

49

the same expression, the types assigned to the two occurrences of list are List<Y>
and List<Z>, respectively, where type variables Y and Z are distinct from each other
and from all other type variables that occur in different types. As a result, the Java
compiler assumes that two lists of two different types were passed as arguments in
exchangeFirsts(list, list).

Rejecting this method call may seem too conservative because it seems to be safe
from runtime type errors. In Java, the dynamic type of 1ist may change from up-
dating the value that 1list is bound to. The previous dynamic type may not be
subtype-related with the new dynamic type. When a method call is executed, the
actual arguments of the method call are evaluated (from left to right in Java) before
executing the code of the method body. 1ist may initially be set to new List<Dog>()
and then set to new List<Cat>() before the method body of exchangeFirsts is eval-

uated. For example, the following expression is legal in Java:

exchangeFirsts((list = new List<Dog>()), (list = new List<Cat>()))

In Java, an assignment (z = e) is an expression. The value returned by an assignment
is the value of the expression on the right-hand side. The type of an assigment is the
declared type of the variable on the left-hand side. The type of both actual arguments
is list. Although this example is contrived, many programs implement threads |28,
Chapter 17] that modify shared memory. The execution of exchangeFirsts(list,
list) may be interrupted by a thread that changes the value of list.
As a result, evaluating exchangeFirsts(list, list) may reduce it to
exchangeFirsts(new List<Dog>(), new List<Cat>()). Since List is invariant, there

does not exists a type instantiation of List that is a supertype of both argument types,

20

List<Dog> and List<Cat>[T] A runtime type error can result if exchangeFirsts(list,
list) was permitted to execute. Passing a List<Dog> and a List<Cat> would add
a Dog to a List<Cat> and vice versa. We describe a type-safe way of passing two
occurrences of list indirectly to a call to exchangeFirsts in Section [5.2.3

The scope of existential type variables is used to model that the types of two Java
expressions never share a type variable that resulted from a wildcard. An existential
type JA.R in TameFJ consists of an environment A and a body R. Existential type
variables are declared in the environment and are bound (are in scope) in the body
R. Existential type variables are not global variables and are bound only within the
existential type that they are declared in. The grammar of existential types in VarJ
is given in Figure [6.1]

In TameFJ, in the method invocation exchangeFirsts(list, list), both of the
actual arguments could have been assigned the type JX.List<X>. However, the oc-
currences of X in the bodies of the existential types JdX.List<X> and dX.List<X> refer
to two different binders or declarations of type variables. Type checking should not
depend on the specific names chosen for binders. For example, the type of the second
occurrence of 1list in exchangeFirsts(list, list) could have been either dX.List<X>
and JY.List<Y>. The types JX.List<X> and JY.List<Y> are alpha-equivalent |53, Sec-
tion 5.3] because they only differ in the names of their binders. Many proofs of
language properties depend on the ability to swap syntactic terms that are alpha-
equivalent without invalidating a proof [64]. The type safety proofs for TameFJ and
VarJ also depend on this capability. Barendregt’s variable convention is explained in

more detail in Section [10.2.6]

4Although List<?> is a supertype of both List<Dog> and List<Cat>, ‘?’ is not a type. Thus,
List<7?> is not a type instantiation of List.

o1

5.2.3 Wildcard Capture

Wildcard capture |28, Section 15.12.2.7] is the process of passing an unknown
type, hidden by a wildcard, as a type parameter in a method invocation. Consider
the method invocation uselessExchange(list) from Figure 5.1} Although a pro-
grammer may want to pass an object of type List<?> as a value argument to the
uselessExchange method, the type parameter to pass for X cannot be manually spec-
ified because the type hidden by ? cannot be named by the programmer. That is, a
programmer cannot specify a type T such that this.<T>uselessExchange(list) type-
checks. However, passing a List<?> typechecks because Java allows the compiler to
automatically generate a name for the unknown (capture converted) type and use
that name in a method invocation. VarJ models wildcard capture and its interac-
tion with definition-site variance. This interaction requires significant changes in our
formalism relative to TameFJ [12].

Recall that the expression exchangeFirsts(list, list) doesnot type check. How-
ever, uselessExchange(1list) seems to perform the same behavior as the former ex-
pression. The difference is that throughout the execution of the method body of
uselessExchange, the formal argument 1 is always bound to a single instantiation of
List. 1 can only be set to a different instance of List<X> within the method body.
Changing the value 1ist does not change the value of 1 because they are two different
references.

We conclude this section by showing how wildcard capture can simplify the type
signatures of methods that perform type independent operations. [9, Chapter 5, Item
28] states the rule “if a type parameter appears only once in a method declaration,
replace it with a wildcard.” Example code following this rule is below. Method
swapLastTwo swaps the order of the two elements at the top of a stack. Method

call swapLastTwoHelper (stack) typechecks because of wildcard capture. The signa-

52

ture of swapLastTwo is arguably simpler than swapLastTwoHelper because invoking

swapLastTwo does not require a type argument.
public void swapLastTwo(Stack<?> stack) { swapLastTwoHelper(stack); }

private <E> void swapLastTwoHelper (Stack<E> stack) {
E eleml = stack.popQ);
E elem2 = stack.pop();
stack.push(elem2);
stack.push(eleml);

¥

5.3 F-bounded polymorphism

Another language feature that significantly complicates variance reasonining is F-
bounded polymorphism [13]. An F-bound is a recursive bound in a subtype constraint
on a type parameter X, where the type bound T includes an occurrence of XE] Consider

the following definition:

interface Trouble<P extends List<P>> extends Iterator<P> {}

The type Trouble<P> extends Iterator<P>, which is assumed in the example to
be covariant (exporting a method “P next()”, per the Java library convention for
iterators). It would stand to reason that Trouble is also covariant: an object of type
Trouble<P> does precisely what an Iterator<P> object does, since it simply inherits
methods. Consider, however, the type Trouble<? super A>. This is a contravariant
use of a covariant generic. According to our approach for combining variances, this

results in a bivariant type (due to the variance joining described in Section . For

SThere are restrictions in Java for what an F-bound can be in |28, Section 4.4]. For example, a
type variable X cannot be bounded by just itself (i.e., the constraint X extends X is not allowed).

93

example, we can derive the following subtype relationship even though the types,

MyList and YourList, are not subtype-related.

Trouble<YourList> <: Trouble<Object> (by covariance assumption of Trouble)
<: Trouble<? super Object>

<: Trouble<? super MyList>

The problem, however, is that the bounds of type variables (List<P> in this case) are
preserved in the existential type representing a use of Trouble with wildcards. This
results in unsoundness because, in F-bounded polymorphism, the bound includes the
hidden type, allowing its recovery and use. We can cause a problem with the following
code (ArrayList is a standard implementation of the usual Java List interface, both

invariant types) ﬂ

class MyList extends ArrayList<MyList> { }
class YourList extends ArrayList<YourList> {
int i = 0;
public boolean add(YourList list)
{ System.out.println(list.i); return super.add(list); }
}
void foo(Trouble<? super MyList> itr) {
itr.next().add(new MyList());
}
void main() {
Trouble<YourList> preitr = ...;
foo(preitr);
}

Function foo typechecks because itr.next() is guaranteed to return an unknown
supertype, X, of MyList but also (due to the F-bound on Trouble) a subtype of

List<X>. Thus, X has a method add (from List) which accepts X instances, and thus

also accepts MyList instances (since X is a supertype of MyList).

6This example is originally due to Ross Tate.

o4

The problem arises in the last line, foo(preitr). If Trouble<? super MyList> were
truly bivariant (as a contravariant use of a covariant generic), then that line would
type check, allowing the unsound addition of a MyList object to a list of YourLists.

Note that this example is not a counterexample to VarLang’s soundness Theorem [3]
because Trouble is not covariant by the subsumption principle. For example, it is not
safe to assume Trouble<Dog> <: Trouble<Animal>. An instance of Trouble<Animal>
can return a List<Animal> using the next method but a Trouble<Dog> cannot. Invok-
ing next () on an instance of Trouble<Dog> returns an instance of List<Dog>, which
is not a subtype of List<Animal>, by the invariance of List.

This example only shows that the joining of definition- and use-site variances
needs to be carefully restricted in the presence of F-bounded polymorphism. In
particular, variance of bounds cannot be ignored when an F-bound occurs within a

type expression rather than a type definition. We discuss this issue in more detail in

Section

95

CHAPTER 6
VARJ

We investigate extending Java with definition-site variance by developing the VarJ
calculus [2]. VarJ is a type system [53] that models a subset of Java that is extended
with definition-site variance. The definition of VarJ follows the standard approach to
defining a type system. In this approach, a set of inference rules and mathematical
functions are used to precisely state the semantics of the language. Such a rigorous
definition of a language facilitates mathematical proofs of properties over the lan-
guage. VarlJ is defined with this approach. Using VarJ, we prove that our variance

reasoning is safe or prohibits runtime type errors.

6.1 VarJ Syntax

VarJ is an extension of a past formalism, TameFJ by Cameron et al [12]. VarJ’s
syntax is found in Figure[6.1] A program that typechecks in TameFJ also typechecks
in VarJ. Significant differences are highlighted using shading. To improve readability,
some syntactic categories are overloaded with multiple meta-variables. FEzistential
types range over T, U, V, and S. Type variables range over X, Y, and Z. Bounds range
over B and A. Variances range over v and w. The bottom type, L, is used only as a
lower bound.

We follow the syntactic conventions of TameFJ: all source-level type expressions
are written as existential types, with an empty range for non-wildcard Java type
uses and type variables written as 3().X; substitution is performed as usual except

[T/x]30.X = T; % is a syntactic marker designating that a method type parameter

o6

(i.e., for a polymorphic method) should be inferred. When a non-existential type R
is written in a context where an existential type is expected, R denotes J0.R. For
example, List<X> denotes J().List<3().X> in an appropriate context.

Class type parameters (X) now have definition-site variance annotations (¥) and
lower bounds (Bz). Method type variables now have lower bounds as well. When the
bounds of a type variable are skipped, the implicit lower and upper bounds are the
bottom type L and the top type 30).0bject, respectively. For example, 3X.List<X>
denotes 93X — [L-3().0bject].List<X>. Also, when no type arguments are supplied in
a parameteric type the angle brackets can be skipped; e.g., Animal denotes Animal<>.

The auxiliary function fu(t) returns the set of free variables in term ¢; a term is
string in the grammar of any syntactic category of VarlJ.

The remainder of this section focuses on semantic differences between VarJ and
TameFJ and new concepts from adding definition-site variance. Sections 6.2 and
formally present notions of the variance of a type expression and the variance of a
type position. Section [6.4] covers subtyping with definition-site and use-site variance
in VarJ. Section discusses the updates made to allow safe interaction between

wildcard capture and variant types.

6.2 Variance of a Type

Before we embark on the specifics of the VarJ formalism, we examine the essence
of variance reasoning, i.e., how variances are computed in type expressions. For now,
consider the subtyping relation of our formalism as a black box—it will be defined in
Section [6.4. When is a type instantiation C<Expl> a subtype of another instantiation
C<Exp2>? We answer a more general question using the predicate var(X;T), where X
is a type variable and T is a type expression. The definition of var in Section {4.2] is
defined only for VarLang types. We redefine var in this section over VarJ types. The

definition of war in this section is more general because it is defined over a richer set

o7

Syntax:

S n o

= O

U wd =

Q% o= =

x| e.f|e.<P>m(e) | new C<T>(e) expressions
new C<T>(8) values
+ | — | * | o variance
class C<vX — [Bp -Byl> < N{T £; M } class declarations
<X — [Bg -Byl> T m(T x) { returne; } method declarations
C<T> non-variable types
N | X non-existential types
JAN | 30.x existential types
T| L type bounds
T | * method type parameter
X — [By,-Byl type ranges
x:T var environments

type vars
eTpr vars

class names

Figure 6.1. VarJ Syntax

o8

of types, which include existential types. Furthermore, this section provides insight
into how to define var over types with syntactic forms that are not in the grammar
of VarlJ.

The goal of war is to determine the following: Given a type variable X and a
type expression T that can contain X, what is the subtyping relationship between
different “instantiations” of T with respect to (wrt) X, where an instantiation of T
wrt to X is a substitution for X in T. For example, we want var(X;T) = + to imply
[U/XIT <: [U'/X]IT, if U <: U

To define var, we use predicate v(T;T’) as a notational shorthand, denoting the

kind of subtype relation between T and T’:

o HT;T)=T<:T e (T;T)=T<:T
e o(T;T) =4+(T;) A-(T;T) o *(T;T) = true
Note that, by the variance lattice (in Figure , we have
v<w = |:V(T; T) = wu(T; T')} (6.1)

In general, we want for var the following property, which is a generalization of the

subtype lifting lemma of Emir et al.’s modeling of definition-site variance [24]:
var(X;T) = v = [V(U;U/) — [U/XIT <: [U’/X]T] (6.2)
By , entails a more general implication:
v <war(X;T) = |v(U;U) = [U/XIT <: [U'/X]IT (6.3)

We assume there is a usual class table C'T" that maps class identifiers C to their

definition (i.e., C'T'(C) = class C<vX — [B;-Byl> <IN { ... }). Similarly, we define a

29

variance table V'T" that maps class identifiers to their type parameters with their def-
site variances. For example, assuming the class table mapping above, VT'(C) = vX.
VT is overloaded to take an extra index parameter i to the " def-site variance

annotation; e.g, if VT'(C) = vX, then VT'(C,i) = v;.

Variance of Types and Ranges: var(X; ¢), where ¢ :=B|R| A
var(X;X) = + (VAR-XX)
var(X;Y) = *, if X # Y (VAR-XY)
var(X; C<T>) M, (vi ® var(x;1;)), if VT(C) = (VAR-N)
var(X; L) = (VAR-B)
(%)

(%;)

)

var(X; JA. R) = var(X; A) Mwvar(X;R), if X ¢ dom(A) (VAR-T

var(X;Y — [BL-Byl) = [, ((— ® var(X;Br;)) M (+ ® var(x; BUZ»))) (Var-R
[var(X; ¢) = %] = [Vi, var(X;; ¢) = v;], where ¢ :=B|R|A (VAR-SEQ

Figure 6.2. Variance of types and ranges

The expression var(X;B) computes the variance of type variable X in type ex-
pression B. Figure contains var’s definition. wvar’s type input is overloaded for
non-existential types (R) and type ranges (A). (var(X;¢) is further overloaded in the
expected way for computing variances for sequences of type variables.)

The wvar relation is used in our type system to determine which variance is ap-
propriate for each type expression. Eventually our proof connects it to the subtype

relation, in Lemma . (Proofs of all key lemmas can be found in Appendix)

Lemma 1 (Subtype Lifting Lemma). If (a) ¥ < var(X;B) and (b) A F v(T;U) then

[T/X]B <: [U/X]B.

We provide some intuition on the soundness of var’s definition. One “base case”
of var’s definition is the Var-XX rule. To see why it returns +, note that the desired
implication from the subtype lifting lemma holds for this case: if +(T;U), which is

equivalent to T <: U, then [T/X]X = T <: U = [U/X]X. The Var-N rule computes

60

the variance in a non-variable type using the ® operator, which determines how
variances compose, as described in Section [3.1] Var-R computes the variance of a
type variable in a range. Computing the variance of ranges is necessary for computing
the variance of constraints from type bounds on type parameters, which occur in
existential types and method signatures. The domains of ranges are ignored by Var-
R. A range becomes more “specialized” as the bounds get “squeezed”. Informally,
a range [By — By] is a subrange of range [A; — Ay] if & <: By and By <: Ay. The
variance of the lower bound is transformed by contravariance to “reverse” the subtype
relation, since we want the lower bound in the subrange to be a supertype of the lower
bound in the superrangeﬂ The subtype lifting lemma can be used to entail subrange

relationships:

var(X;Y — [BL-Byl) = v and v(T; V)

— [U/X1B, <: [T/X1B; and [T/X]By <: [U/X1By

The variance of an existential type variable is just the meet of the variances of
its range (A) and its body (R). The Var-T rule has the premise “X ¢ dom(A)”
to follow Barendregt’s variable convention [64], as in the TameFJ formalism. (var
is undefined when this premise is not satisfied.) This convention is followed in the
definitions of TameFJ and VarJ. Following this convention substantially reduces the
number of places requiring alpha-conversion to be applied and allows for more elegant
proofs. Furthermore, this convention ensures that predicates defined by the type
system’s rules are equivariant (respect alpha-renaming). In other words, changing the
name of a bound variable does not invalidate any derived judgment. For example,
this property holds for var(X;T) because we can rename binders to fresh names in

existential types in T without changing the variance of X in T. Without the premise

'ntuitively, the upper/lower bounds are in co-/contravariant positions, respectively.

61

of rule Var-T, this property would no longer hold. So that the important premises
are clearer, in the remaining rules we skip such “side-conditions” in the text and
just mention that the premises for following the variable convention are implicit.
Barendregt’s variable convention is discussed further in Section [10.2.6

Contrasting with var’s definition in Section [4.2] var’s definition in Figure[6.2|does
not use that the lattice join operator LI. Computing variance using the join operator
is not safe in VarJ because F-bounded type variables can be declared within type

expressions. We discuss this issue further in Section [6.7.1}

6.3 Variance of a Position

Satisfying the subsumption principle with variant subtyping requires assigning
variances to positions in class definitions where types can occur. For example, return
types are assumed to be in covariant positions while argument types are assumed
to be in contravariant positions. These assumed variances of positions are used to
typecheck class definitions and their def-site variance annotations.

The expressions ‘v < war(X;B)” and “— ® v’ are used frequently in the VarJ

formalism. To relate our notation to previous work, we define the following:

[ﬁ B mono] = [V < var(X; B)} (6.4)

[ﬁv] = [— ® v] (6.5)
A “monotonicity” judgment of the syntactic form “vX = T mono” appears origi-
nally in Emir et al.’s definition-site variance treatment [24] and later in Kennedy and
Pierce [39] as “vX F T ok”. The semantics of these judgments in the aforementioned
sources are similar to its definition here but differs in that their work had no function

similar to var, no ® operator, nor a variance lattice. The negation operator — also

62

appears in [24] and [39], and it is used to transform a variance by contravariance. Us-
ing the implications in Section it is easy to show the following properties, which

are important for type checking class definitions:

V= = [V(B,B') — w(B/,B)} (6.6)
X+ B mono = [v(T,U) — [T/XIB <: [ﬂ]s] (6.7)
=X F B mono = [V(T,U) — [U/X]B <: [m]B} (6.8)

Figure [6.3] contains rules for checking class and method definitions and the defini-
tion of the override predicate. Premises related to type checking with definition-site
variance are highlighted. Auxiliarly lookup functions, such as mtype, are used by the
override definition and are used to compute the types of members (fields and meth-
ods) in class definitions. Their definitions are in Figure 6.4 These lookup functions
take in non-variable types (N) instead of existential types. In the expression typing
rules (in Figure , existential types are implicitly “unpacked” to non-variable types
to type some expressions such as a field access. The process for packing and unpack-
ing types is similar to the process performed in the TameFJ formalism. Section [6.5
has a brief overview of this process and an example type derivation.

The definition-site subtyping relation judgment A = N <: N is defined over non-
variable types and considers definition-site annotations when concluding subtype re-
lationships. For example, VT(C) = +X =— A F Cc<30.Dog> <: C<I0.Animal>,
assuming A F 30).Dog <: 0. Animal. This relation is defined in Figure .

The motivation for the assumed variances of positions is to ensure the subsumption
principle holds for the subtyping hierarchy. Informally, if T <: U, then a value of type

T may be provided whenever a value of type U is required. In the case of VarlJ, the

63

Class and Method Typing:

vX F N, T mono A =X — [Br-By]
PFAOK AFNTOK +MOKinc
 class C<vX — [B,-Byl> < N{T £; M} OK

(W-CLs)
CT(C) = class C<vX — [B.-Byl> < N{ ... }
A =X — [B-By] AFAN OK AANFTTOK
override(m; N; <A'> (T) — T) =vX T, A’ mono vX = T mono

AJA' x T, this : d).c<X> e : T |0
F<A'> T m(T x) { returne; } OKin C

(W-METH)
mtype(m;N) = <A> (T) = T mtype(m; N) is undefined
override(m; N; <A> (T) — T) override(m; N; <A> (T) — T)
(OVER-DEF) (OVER-UNDEF)

Figure 6.3. Class and Method Typing

Lookup Functions:
Shared premise for lookup rules except F-Osu:

CT(C) = class C<vX — [B,-Byl> A N{S £; M}

fields(Object) = 0 (F-OBJ)
fields(c) =g, £, if N = D<U> and fields(D) =g (F-SuPER)
ftype(£; C<T>) = ftype(£; [T/XIN), if £ ¢ T (FT-SUPER)
ftype(£;; C<T>) = [T/X]S;, (FT-CLass)
mitype(m; C<T>) = mtype(m; [T/XIN), if m ¢ M (MT-SUPER)
mitype(m; C<T>) = [T/X](<A> (@) — U),

if <A> U m(U x) { returne; } € M (MT-CraAsS)
mbody(m; C<T>) = mbody(m; [T/XIN), if m ¢ M (MB-SUPER)
mbody(m; C<T>) = (%.[T/X]e), o

if <A> U m(U x) { returne; } € M (MB-CraAsS)

Figure 6.4. Lookup Functions

64

Wellformed Ranges: A+ A OK

X & dom(A) A,X — [Br-Byl,A’' By, By OK
A ubounda(Br) C: ubounda (By)
A By <:By A, X — [B;-Byl F A" OK
A0 OK AF X — [B-Byl,A' OK
(W-RNG-EMPTY) (W-RNG)

Non-Variable Upper Bound: ubounda(B)

ubounda (By), if B = 30.X, where A(X) = [B, — By

ubounda (B) = {B B TN

Wellformed Types: A+ ¢ OK, where ¢ :=B|P|R

X € dom(A)
A Object<> OK AFXOK AF 1 OK AFx OK

(W-OBJ) (W-X) (W-B) (W-1)
class C<vX — [B,-Byl> < N{ ...}
AF [T/XIB, <:T AFT<:[T/X]By

AFTOK AFA OK A/AFROK
A F c<T> OK A+F3A'R OK
(W-N) (W-T)

Wellformed Expression Variable Environments A - T' OK

x ¢ dom(I) AFTOK AFT OK

A0 OK AFT,x:TOK
(W-ENV-EMPTY) (W-Exv)

Figure 6.5. Wellformedness Judgments

65

Definition-Site Subtyping: R <: R

class C<vX — [B;-Byl> < N { ...} VT(c) =vX
C#D AF [T/XIN <: D<U> A F v(T, V)
A F C<T> <: D<U> A F C<T> <: C<U> AFX=<:X
(SD-SUPER) (SD-Var) (SD-X)

Existential Subtyping: A+-B[C:B

AN FN <NV AFBLC:B AFBC: 8
AF3IANC: AN AFBLC:B AFBC:B
(SE-SD) (SE-REFL) (SE-TRAN)

dom(A") N fo(3X — [BL-Byl.N) =0 fu(T) C dom(A, A")
A A FIT/X1B, <:T AN FT<: [T/X1By

AF 1LC:B A F3A[T/XIN C: 3X — [B,-Byl.N
(SE-Bor) (SE-Pack)

Subtyping: AFB <:B

A+BC: B AFB<:B AFB < B A(X) = [BL, — By]

AFB<:B AFB<:B AFBp <: 30X
(ST-SE) (ST-TRAN) (ST-LBOUND)
AF 30X <:By

(ST-UBoUND)

Figure 6.6. Subtyping Relations

subsumption principle is established by showing appropriate subtype relationships
between types of members from class definitions. Lemma [2]states a goal subsumption
property, which is to have the type of field £ of the supertype N’ become a more specific
type for the subtype N. Although inherited fields syntactically have the same type as in
the superclass definition, definition-site subtyping allows fields to have more specific
types in the subtype. Lemma [3]| states the goal subsumption property for types in
method signatures; the sixth conclusion of this lemma holds because of the override

predicate.

66

Lemma 2 (Subtyping Specializes Field Type). If (a) F class C<vX — [...]1> <
N... OKand (b) A F c<T> <: W and (c) ftype(£;N') = T, then A I ftype(£; c<T>) <: Tf]

Lemma 3 (Subtyping Specializes Method Type). If (a) F class C<vX — [...1> <
N... OK and (b) A F ¢<T> <: V¥ and (¢) mtype(m;N') = <Y — [B,-Byl> (U) — U,

then: (1) mtype(m;C<T>) = <Y — [A-Ap]> (V) =V, (2) ARV < U (3) AFT<V,

(4) A+ Ap <:Bg, (5) AF By <: Ay, and (6) var(Y;U) = var(Y; V).

To satisfy the two lemmas above, we make assumptions about the variance of the
positions that types can occur in. To preserve the subtype relationship order of a type
in a member signature, we assume the type occurs in a covariant position (i.e., the
subtype needs to have a more specific type appear in such a position). To reverse the
subtype relationship order of a type in a member signature, we assume the type occurs
in a contravariant position. The assumptions about the variance of the positions are
reflected in the mono judgments in the W-Crs and W-Met#u rules for checking class
and method definitions. By , not negating the def-site variance annotations,
v, in the judgment “vX F T mono” reflects that T is assumed to be in a covariant
position. Since covariance, +, is the identity element for the ® operator (+ ® v = v),
the variances ¥ do not need to be transformed by +. By , negating the def-site
variance annotations in the judgment “—vX = T mono” reflects that T is assumed to
be in a contravariant position. We need to reverse the subtype relationship order
for argument types and ranges in method type signatures. Negating the variance
annotations for the argument types ensures the argument types are more general

supertypes for the subtype.ﬁ

2If field assignments were allowed, then field types would be in both co- and contravariant posi-
tions, and both ftype(£;C<T>) and ftype(f; N’) would be subtypes of each other. This is explained
further in Section

3Bounds on class type parameters may make unrestricted use of type parameters by similar
reasoning as in |24} p.7]. Once an object is created, they are forgotten.

67

Negating the range of a method type signature ensures the range is wider for
the subtype. For code examples motivating why ranges need to be widened for the
subtype, see Section 2.4 of [24]. More generally, if (1) e.<T>m() typechecks implying
the type actual T is within the type bounds for m’s type argument and (2) typeof(e’) <:
typeof(e), then e’ .<T>m() should type check as well even if m is overridden in the
subclass. Hence, the subtype’s version of m should accept a superset/wider range of

types than accepted by the supertype’s version of m.

6.4 Subtyping

Subtyping in VarJ is defined similarly to TameFJ. Figure contains the subtyp-
ing rules. There are three levels of subtyping in VarJ, as in TameFJ. The first level of
subtyping in TameFJ, the subclass relation, has been replaced with the definition-site
subtyping relation <: defined on non-existential types. Def-site subtyping is defined
by the SD-* rules, which are similar to the subtyping rules from [39)]. Like the subtype
relation from [39], <: is defined by syntax-directed rulesﬂ and shares the reflexive and
transitive properties by similar reasoning as in [39]. The <: judgment requires a typ-
ing context to check subtyping relationships between pairs of type actuals as done in
the SD-Var rule.

The existential subtyping relation C: is defined by the SE-* rules and is similar
to the “Extended subclasses” relation in TameFJ. The XS-Env rule from TameFJ
was renamed to SE-Pack; it is the only subtyping rule that can pack (and ac-
tually also unpack) types into existential type variables. The XS-Sus-Crass rule
was not only renamed to SE-SD but also had its premise updated to use def-site

subtyping. SE-SD allows def-site subtyping to be applied to both type variables

4The syntax-directed nature of these rules does not ensure that an algorithmic test of <: is
straightforward, because the premise of rule SD-VAR appeals to the definition of the full <: relation
(hidden inside the v shorthand).

68

in the type context A and existential type variables in A’. As a result, a type
packed into an existential type variable may not be in the range of the variable.
For example, if Iterator is covariant in its type parameter (V7' (Iterator) = +X),
then the following subtype relationship is derivable: 30.Iterator < PrettyDog ><:
). Iterator < Dog ><: 3Y — [Dog-Animall].Iterator<Y>. Subtyping between two
types implies the subsumption principle between the types. Since Iterator<Dog>
can be packed into 3X — [Dog-Animal].Iterator<X> and Iterator<PrettyDog> <:
Iterator<Dog>, it must be the case that Iterator<PrettyDog> can also be packed into
JX — [Dog-Animall.Iterator<X>. This intuition is formalized in Lemma [4] which is
similar to Lemma 35 from TameFJ, and establishes a relationship between existential

subtyping and def-site subtyping.

Lemma 4 (Existential subtyping to def-site subtyping). If (a) A - 3A’ R C:

JX — [B,-Byl.R and (b)) = A OK, then there exists T such that: (1) A, A’
R <: [T/XIR and (2) A, A" m and (3) AA" m and (4)
fu(T) C dom(A, A").

Existential subtyping does not conclude subtype relationships for type variables
except for the reflexive case using SE-RerrL. The (all) subtyping relation <: allows
non-reflexive subtype relationships with type variables by considering their bounds
in the typing context. Since T or U may be type variables in a subtype relationship
T <: U, we want a stronger relationship between the non-variable upper bounds of T
and U. Lemma [5 formalizes this notion and is similar to lemma 17 from TameFJ. The

non-variable upper bound of a type T is ubounda(T), defined in Figure 6.5

Lemma 5 (Subtyping to existential subtyping). If (a) A+ T <: T and (b) 0 - A OK

then A F ubounda(T) C: ubounda (T').

69

6.5 Typing and Wildcard Capture

The expression typing rules in VarJ are mostly the same as in TameFJ and are
given in Figure [6.7] Unlike TameFJ, VarJ allows method signatures to have lower
bounds. The sift function is needed for safe wildcard capture and is applied in the
T-Invk rule for typing method invocations. The definition of sift required updating
because of interaction with variant types. First, we give a brief overview of expression

typing; see |12] for more thorough coverage.

6.5.1 Expression Typing

Consider the Java segment below. It typechecks because the expression box.elem
is typed as String. The type of box.elem is the same as the type actual passed
to the Box type constructor. In this case, the type actual is “? extends String’,
which refers to some unknown subtype of String. To type box.elem with some
known/named type, the most specific named type that can be assigned to box.elem

is chosen, which is String.

class Box<E> { E elem; Box(E elem) { this.elem = elem; } }
Box<? extends String> box = ...
box.elem.charAt(0);

We explain this type derivation through the formal calculus. Types hidden by
wildcards such as “? extends String’ are “captured” as existential type variables.
The type Box<? extends String> is modeled in VarJ by X — [1-String].Box<X>.
Expression typing judgments have the form A; I' e : T | A’. The second type
variable environment A’ is the guard of the judgment. It is used to keep track of type
variables that have been unpacked from existential types during type checking. Vari-
ables in dom(A’) may occur free in T and model hidden types. To type an expression
without exposed (free) hidden types (existential type variables), the T-Suss rule is ap-

plied to find a suitable type without free existential type variables. The example typ-

70

Expression Typing: A; T'Fe : T|A

AFc<T> OK fields(C) =£
ftype(f,c<T>) =U

A;The :U|0
A;ThEx o T(x)|0 A; T+ new c<T>(e) : J0.c<T> | ()
(T-VAR) (T-NEW)
A;The - U|A
A;The : 3A'N |0 AANFU<T
ftype(£;N) =T AFA OK AFTOK
A;Thef @ T|A A;The :T|0
(T-F1ELD) (T-Suss)

A;The : A’ N[0 miype(m;N) = <Y — [Br-Byl> (U) — U
AFPOK A;ThHe : JAR|OD
sift(R;U;Y) = (R, U') match(R';U'; P;Y; T)
A=A AN A A"+ 3R <: [T/YIU
A"F [T/YIB, <:T A"+ T<: [T/YIBy

A; THe<Pon(s) : [T/YIU| A A
(T-INVK)

Match: _
O+ R <: [T/Y, T /XK

dom(A) =X f(T,T)NY,X =1
match(R; JA.R;P; Y;T)

(MaTch)
Sift: sift(R;U;Y) = (R; V)
YN fo(u) =X var(X;U) =0
sift(R; U; Y) = (R; V)
sift(@; 0;Y) = (0;0) sif((R,R); (U,0);¥) = ((R,R); (U, 1))
(StFT-EmPTY) (StFT-ADD)
YN fou) =X var(X;;U) # o, for some X; € X
sift(R; U; Y) = (R;U)
sift((R,R); (U, 0);) = (R;U)
(StFT-SKIP)

Figure 6.7. Expression Typing and Auxiliary Functions For Wildcard Capture
71

ing derivation below illustrates this process on typing the “box.elem” expression from

the previous code segment, where we assume I' = box : 3X — [-String].Box<X>.

(); T'Fbox : IX — [L-String].Box<X>] 0

0,% — [L-String] I- X <: String
ﬂype(elem; Box<x>) =X

) Fx — [L-String] OK

f; ' - box.elem : X |X — [L-String]
() - string OK

(T-FIeLD)

0; '+ box.elem : String | ()
(T-Suss)

(6.9)

6.5.2 Matching for Wildcard Capture

The T-Invk rule typechecks a method invocation and uses match to perform wild-
card capture. The definition of match is updated to use the definition-site subtyping
relation (<:). Ignoring return types, consider a polymorphic method declared with
type <Y>m(0) and called with types <P>m(3A.R). The match function is used to infer

actual type arguments for method invocations using the actual value arguments. The

1. The bodies of the actual value argument types of a method invocation (R).
2. The formal value argument types of a method (T).

3. The specified type actuals of a method invocation (P).

4. The formal type arguments of a method (Y).

5. The inferred type actuals of a method invocation (T).

72

We briefly explain an example typing derivation where wildcard capture is per-
formed. More detailed coverage is given in [12, Section 3.4]. We type the method invo-
cation “uselessExchange(list)” from the code example in Figure in Section [5.2]
To explain the type derivation using the VarJ calculus, we translate syntactic elements
from the code example to their corresponding syntax in VarJ. For example, the local
variable declaration “List<?> list;” translates to “JY.List<Y> list;” Method in-
vocation “uselessExchange(list)” translates to “this.<x>uselessExchange(list)”.
The marker x in the position of an actual type argument signals that an actual type
argument should be inferred at that position. The inferred type argument will be
passed to the formal type argument X of method uselessExchange. To derive the
type of “this.<x>uselessExchange(list)”, we list the following judgments that rule
T-Invk will be applied to. First, let I' be the expression variable context for the
typing of that expression. For example, the domain of I' includes the this reference,
so I'(this) = Jf).Client<>. The other map entries in " can easily be determined by
inspecting the code example. In the judgments below, we highlight the existentially

quantified type variable when it occurs free in a type expression.

1. 0; T+ this : J0.Client<> | §), since I'(this) = J).Client<>.

2. mtype(uselessExchange; Client<>) = <X> (J(.List<X>) — void.
3. 0 =% OK, by W-1 in Figure [6.5]

4. 0; T F 1ist : JY.List<Y> | (), since I'(1ist) = JY.List<Y>.

5. sift(List< ¥ >;30.List<x>;X) = (List<[¥>; J0.List<x>). The sift function is
used to filter formal method value argument types that should not be instanti-

ated with inferred actual argument types. No such type is in this example. sift

is explained further in Section [6.5.3]

73

6. match(List< ¥ >; 3D.List<X>;x;X; ¥). This holds because there exists a type T
such that replacing the method’s formal type argument X with T in the body of
the formal value argument type List<X> makes it a supertype of the body of
the actual value argument type List<Y>. In this case, T = Y and List<Y> <:

[Y/X] List<X> = List<Yy>.

7. 0 F 30.List<¥> <: [[¥Y /X]130.List<X> = FD.List<¥ >

Applying rule T-Invk to the judgments listed above gives the following:

(; T'F this.<x>uselessExchange(list) : void | ¥ (6.10)

The existentially quantified type variable, Y, in the type of list escapes to the
guard of typing judgment in case Y occurred free in the type of the method invo-
cation. Rule T-Suss can be applied in similar fashion to that in typing derivation
to type the method invocation with an empty guard. Typing with an empty guard
ensures that no existential type variable occurs free in the type of an expression.

Figure contains the reduction rules for performing runtime evaluation. The
R-Invk rule also uses match to compute inferred type actuals because some of the
specified type actuals (P) may be the type inference marker . Since each occurrence
of the x marker may refer to different inferred types, match is needed to compute the
concrete types to substitute for the formal type arguments’ (Y) occurrences in the

method body.

6.5.3 Sifting for Wildcard Capture

To preserve the type of a method invocation during execution, we want inferred
type arguments to remain the same throughout execution. Type arguments are in-
ferred from actual value arguments. Recall that the dynamic type of a value argument

may be a more specific subtype of the argument’s static type. Thus, the dynamic

74

Computation Rules: e — e

fields(c) = £
new C<T>(¥) .f; — v;
(R-FIELD)

v = new N(v/) v = new N(v/) mbody(m; N) = (X.eq)
mtype(m;N) = <Y — [B,-Byl> (U) — U
sift(N; U; Y) = (W; U) match(N; U; P; Y; T)

v.<P>m(¥) — [v/x,v/this, T/Y]eg

(R-INVK)
Congruence Rules: e — e
e— e e — e
e.f e f new C<T>(..e;..) > new C<T>(..e...)
(RC-FIELD) (RC-NEW-ARG)
ers e e;, — e;
e.<P>m(e) — &' .<P>m(e) e.<P>m(..e;..) — e.<P>m(..e}..)

(RC-INV-RECV) (RC-INV-ARG)

Figure 6.8. Reduction Rules

75

type of an argument may cause a different type to be inferred than using the static
type of an argument. This occurs when a formal type argument occurs in a position
that allows variant subtyping. As a result, not all formal type argument are allowed
to be bound to inferred type arguments. In particular, if the variance of a formal
type argument Y is greater than invariance in the type of a method’s formal value
argument, then Y cannot be bound to an inferred type argument.

The sift function is used in VarJ and TameFJ to filter inputs passed to match
(in the T-Invk and R-Invk rules). The goal of sift is to only allow type inference for
formal type arguments that occur at most invariantly in the types of formal value
arguments “fixed” or invariant positions. As a result, inferred type arguments for
a method invocation do not change throughout execution. Without applying sift,
counter examples to the subject reduction (type preservation) theorem can result.

First, note that the following two judgments are derivable.

1. match(Dog; 30).Y; ; Y; Dog) because Dog <: [Dog/Y]Y = Dog. The other premises

of match are easy to verify.
2. match(Dog; 3(.Y; x; ¥; Animal) because Dog <: [Animal/Y]Y = Animal.
Assume List is invariant and consider the following method definition and evalu-

ation step of a method invocation

<X> List<X> createlList(X arg) { return new List<X>(); }

createList<x>(new Dog()) : List<Animal>

— new List<Dog>() : List<Dog>

The expression createList<x>(new Dog()) can be typed with List<Animal> be-

cause the actual value argument new Dog() has type Animal. Hence, the inferred type

76

actual used for typing the expression can be Animal, which implies that the type
of createlList<x>(new Dog()) is List<Animal>. However, the inferred type used for
typing the method invocation is not required to be the same inferred type, computed
in the R-Invk rule, that is substituted into the method body. Without sift, the above
evaluation step is possible, which contradicts the subject reduction theorem, since,
by the invariance of List, new List<Dog>() cannot be typed with List<Animal>.
Specifically, we want match to be a function over the filtered inputs from sift
and the following property, similar to lemma 37 from [12]. This lemma states that
the ability to perform wildcard capture is preserved as actual value arguments are

evaluated to concrete values.

Lemma 6 (Subtyping Preserves matching (arguments)). If (a) A F 3A;.R; C: 3As.Ry

AN FU <: [U/Z1By and (4) Ry <: [U//Z1Ry (5) fu(U)) C dom(A, A).

In TameFJ, sift filters out a pair of a type actual body R and a formal type U,
if U = 30.X and X is one of the formal type arguments (Y). Due to sift, the two
match judgments above could never be derived in TameFJ. Moreover, TameFJ allows
an existential type variable to be passed as parameter for a formal type variable
argument only if the formal type variable is used as a type parameter. Since every
type constructor in TameFJ is assumed to be invariant, every type variable used for
inference is in an invariant position. This no longer holds in VarJ with variant type
constructors. If we assume Iterator is covariant, a counter example similar to the

previous one can be produced with the following method:

<X> List<X> createlList2(Iterator<X> arg) { return new List<X>(); }

Hence, we update the definition of sift to use var to check if a method type pa-

rameter occurs at most invariantly. This restriction ensures that instantiations of the

7

type parameter from type inference do not vary during execution. We find that pro-
hibiting wildcard capture in variant positions is not practically restrictive. A wildcard
type for a variant type typically has an equivalent non-wildcard type. Iterator<?>
is equivalent to Iterator<Object> by covariance of Iterator. BiGeneric<?> is equiv-
alent to BiGeneric<T>, for any T, if BiGeneric is bivariant. In such cases, the need
for wildcard capture is eliminated because the required type actuals to specify in a
method call can be named and written by the programmer. The VarJ grammar does
not allow the bottom type L to be specified as a type actual. However, we have not

found any practical need for wildcard capture with contravariant types.

6.6 Type Soundness

We prove type soundness for VarJ by proving the progress and subject reduction
theorems below. As in TameFJ, a non-empty guard is required in the statement of
the progress theorem when applying the inductive hypothesis in the proof for the case

when the T-Suss rule is applied.

Theorem 1 (Progress). For any Aje, T, if); 0 Fe : T | A, then either e — &’ or

there exists a v such that e = v.

Theorem 2 (Subject Reduction). For any e, e/, T, if); 0 e : T|(and e — ¢/,
then 0; O ¢ : T|0.

The key difficulty in proving these theorems can be captured by a small number of
key lemmas whose proofs are substantially affected by variance reasoning. Lemmal[7]is
probably the main one, which relates subtyping and wildcard capture, and is similar
to lemma 36 from [12]. It states that the method receiver’s ability to perform wildcard
capture is preserved in subtypes with respect to the method receiver. It shows that

the subsumption principle holds even under interaction with wildcard capture.

78

Lemma 7 (Subtyping Preserves matching (receiver)). If (a) A F JAN; T: FA9.Ny

and (b) mtype(m;Ny) = <Y9 — [Boz-Boyl> (U2) — Uy and

(c) mtype(m;Ny) = <Y; — [B1-Bip1> (U1) — Uy and (d) sift(R; Uz; ¥2) = (R';U}) and (e)
match(R'; Uy; P; ¥o; T) and (f) O = A OK and (g) A, A’ =T OK then: (1) sift(R;0;Y;) =

(R;U}) and (2) match(R;U};P;¥1;T).

6.7 Discussion

This section discusses important practical issues for supporting definition-site vari-
ance in Java. Section discusses a type bound analysis Armed with the VarJ
calculus, it also revisits the issue related to F-bounded polymorphism that was dis-
cussed in Section [5.3] Section discusses a soundness issue that occurs in any
language that supports definition-site variance and that is compiled with an erasure-

based translation.

6.7.1 Boundary Analysis

Definition-site variance can imply that the variance of a type does not depend
on all of the type bounds that occur in the type. Chapter {4| presented a definition
of var(X;U) that performed a simple boundary analysis to compute such irrelevant
bounds. The variance returned by wvar(X;U) might not depend on all type bounds
that occurred in U. As discussed in Section [3.2] if generic C<Y> is covariant wrt to Y,
then the lower bound of a use-site variant instantiation is ignored, which is sound for

the VarLang calculus:

var(X;C<-T>) = (+ U —) ® var(X;T) = * @ var(X;T) = *

Hence, var(X;C<-T>) = *, even if X occurred in the lower bound, T.
This simple boundary analysis is not safe for languages that can declare F-bounded

type variables within type expressions. F-bounded type variables cannot be declared

79

within type expressions in VarLang or in Java. In Java, F-bounded class type pa-
rameters can be declared in type definitions but not in type expressions. Hence,
we can analyze the variance of F-bounds in Java type definitions to safely constrain
definition-site variances. Our early work [1] conservatively assumed upper bounds
of class type parameters are in invariant positions. Scala assumes upper bounds of
class type parameters are covariant positions even if they are an F-bound |51} Section
4.5]. This make sense since the range of class type variables (between lower and upper
bounds) should be narrower in the subtype. As explained in a footnote in Section ,

bounds on class type parameters do not constrain definition-site variance in VarJ.

F-Bounds in Existential Types

The ability to ignore type bounds is present in a disciplined way in our VarJ
formalism, although there is no explicit variance joining mechanism in the definition
of var. For example, if Iterator is covariant in its type parameter, we can infer the

following, where the notation T = U denotes “T <: UAU <: T”:

JX — [Dog-Animal].Iterator<X> = JX — [l -Animal].Iterator<X>

Clearly, 3X — [Dog-Animal].Iterator<X> <: 3X — [l -Animal].Iterator<X> is deriv-
able using rule SE-Pack because the range of the existential type variable is wider in
the supertype. However, it is not always safe nor derivable to narrow the range of a
type variable in the supertype. In the inverse relationship, the range of X is squeezed

from [1-Animal] to [Dog-Animal] in the supertype:

JX — [L-Animal] .Iterator<X> <: JX — [Dog-Animal].Iterator<X> (6.11)

This relationship is derivable by applying a combination of the SE-SD, SE-Pack, and

ST-* rules:

80

JX — [L-Animal].Iterator<X>
<:dX — [l-Animal].lterator<Animal>
(by covariance of Iterator and X — [l-Animall - X <: Animal)
<: J).Iterator<Animal> (since X does not occur in body Iterator<Animal>)

<: 3X — [Dog-Animal].Iterator<X> (packed argument Animal to an existential)

As we saw in Section [5.3] narrowing the range of an existential type variable in
a supertype is not sound in the presence of F-bounded polymorphism. It is impor-
tant to realize that this issue is not limited to use of recursive bounds of class type
parametersﬁ The counterexample in Section used interface Trouble<P extends
List<P>> extends Iterator<P> {}. However, even if we restrict our attention to a
plain Iterator (or, equivalently, if the class type constraint, extends List<P>, of
Trouble is removed) it is still not safe to assume the following subtype relation, by

reasoning similar to that used in Section [5.3}

dX — [YourList-List<X>].Iterator<X> <: dX — [MyList-List<X>].Iterator<X>
More generally, the above subtype relationship would violate the subsumption prin-
ciple. An instance of the latter type can return a 3X — [MyList-List<X>].List<X>

from its next method, but the former type cannot because by the invariance of List,

JX — [YourList-List<X>].List<X> <: dX — [MyList-List<X>].List<X>

°In our earlier work [1], when we inferred definition-site variance of Java type parameters, it
sufficed to be overly conservative at this point: the mere appearance of a class type variable in an
upper bound of any type parameter caused us to consider the definition as invariant relative to that
class type variable. If a class type parameter occurs in the upper bound of a method type parameter,
we no longer restrict the definition-site variance to invariance. Such an occurrence is not a recursive
bound on a class type parameter because class and method type parameters are distinct. Upper
bounds of method type parameters are in contravariant positions, as explained in Section @

81

In contrast to subtype relationship , above, VarJ does not support the above
erroneous subtyping because it cannot establish that the upper bounds of the two
instantiations of Iterator are related. In particular, we cannot derive that dX —
[YourList-List<X>].List<X> is a subtype of some non-existential type, 30.List<T>,
which is, in turn, a subtype of 3X — [MyList-List<X>].List<X>.

Contrasting the two examples shows that boundary analysis is complex and can
be unintuitive to the programmer. Note, however, that the VarJ calculus merely tells
us what is possible to infer correctly. A practical implementation may choose not
to perform all possible inferences. A specific scenario is that of separating boundary
analysis from type checking. Useless bounds can be “removed” during a preprocess-
ing step performed before type checking. This is analogous to general type inference
algorithms relative to type checking algorithms: type checking can be performed in-
dependently of the type inference performed to compute type annotations that were
skipped by programmers [32]. Similarly, our variance-based type checking can be per-
formed independently of the “useless boundary analysis”. For example, a boundary
preprocessing step could transform input type 3X — [Dog-Animal].Iterator<X> to the
equivalent type dX — [l -Animal].Iterator<X>. This opens the door to many prac-
tical instantiations—e.g., an optimistic but possibly unsound bound inference inside
an IDE (which interacts with the user, offering immediate feedback and suggesting
relaxations of expressions that the user types in) combined with a simple but sound

checking inside the compiler.

6.7.2 Definition-Site Variance and Erasure
A practical issue with definition-site variance concerns its use with erasure |28,

Section 4.6]. In an erasure-based translation, a compiler does not preserve type argu-

82

ments in byte code. The type List<String> is compiled to the type List, for examplef]
Unfortunately, for any language that supports definition-site variance, supports cast
expressions, and is compiled using an erasure-based translation, downcasts |28, Sec-
tion 5.1.6] that should fail at runtime instead succeed. A cast expression “(T) e” is
a downcast if the static type of e is a supertype of T. The static type of expression
((T) e) is T. A cast should “fail” at runtime if the dynamic type of e is not a subtype
of T. A ClassCastException is thrown when a cast expression fails, in Java.

The following code example demonstrates the issue with the combination of casts,
definition-site variance, and erasure. Class A is covariant and only supports reading
data using method get. Class B is invariant, extends class A, and adds the ability to

write data using method set.

class A<+X> {
private X elem;
A(X elem) { this.elem = elem; }
public X get() { return elem; }
}
class B<oX> extends A<X> {
B(X elem) { super(elem); }
void set(X elem) { this.elem = elem; }
}
void main() {
A<Integer> a = new B<Integer>(8);
A<Object> a2 = a; // fine by covariance of A
B<Object> b = (B<Object>) a2; // downcast succeeds with erasure
b.set("string");
Integer i = a.get(); // error, a.get() returns a String

In a language with an expansion-based translation, such as C#, type parameters
are preserved in byte code. As a result, the downcast will fail dynamically: an object
with dynamic type B<Integer> cannot be cast to a B<Object>, by the invariance of

class B.

6A type such as List that uses a generic type without supplying actual type arguments is known
as a raw type [28, Section 2.8].

83

In an erasure-based translation, however, the cast cannot check the type parameter
(which has been erased) and will therefore succeed, causing errors further down the
road. Specifically, a runtime type error could result in a non-cast expression. This
violates type soundness. This property requires that runtime type errors only occur
in cast expressions. In this code example, however, the runtime error occurs when
executing the last line, which does not contain a cast.

This practical consideration affects all type systems that combine definition-site
variance, casts, and erasure. For instance, Scala already handles such cases with a
static type warning. Effectively, no cast to a subtype with tighter variance is safe.
This result is somewhat counter-intuitive because it defies common patterns for safe
casting. For instance, the downcast above could have been performed after an “a2
instanceof B<Object>” check [28 Section 15.20.2] to establish that a2 is indeed of
type B<Object>. In this case the programmer would expect that the cast warning
can be ignored, which is not the case. In practice, any deployment of the VarJ type
system in an erasure-based setting would have to follow the same policy as Scala

regarding cast warnings.

84

CHAPTER 7
VARIANCE SOUNDNESS

This section provides intuition as to when variant subtyping (subtyping between
instantiations of a single type) is safe for program execution (does not result in runtime
type errors). A rigorous proof of type soundness of VarJ is given in Appendix .
However, the proof of variance soundness is hidden in the vast amount of details.
Variance soundness is the property that the variance analysis infers only subtype
relationships that are type safe or cannot result in a runtime type error. This section
highlights why our variance analysis infers only type safe subtype relationships for
VarJ. Although variance soundness will be explained using VarJ, general variance
concepts that are independent of a particular language supporting execution will be
presented to highlight fundamental issues for verifying type soundness with variance.

VarLang helped established language neutral concepts for reasoning about vari-
ance. However, VarLang is not accompanied by an operational semantics. The proof
of its soundness Theorem does not show how to prove that particular variant
subtyping rules do not cause runtime type errors. We will use VarJ to provide a
template for proving the absence of runtime type errors with variant subtyping.

We investigate why type soundness of VarJ holds with variant subtyping (rules
in Figure and the variances assigned to positions in class definitions. Type
soundness of VarlJ is the conjunction of the preservation Theorem ([2|) and the progress
Theorem . Satisfying these two properties implies that a runtime type error does

not result during execution of VarJ programs. Hence, proving these theorems shows

85

that the variance analysis is safe in practice or for a programming language where
programs written in the language can execute.

The subsumption property is required for type soundness because abstract terms
or variables are replaced with concrete terms or values during execution. Although
the static type of the variable may differ from the dynamic type of the value, the type
checking rules ensure that the dynamic type is a subtype of the static type. If the
subtype relation satifies the subsumption principle, the dynamic type of the variable
can do everything the static type of the variable can do. Consider the following
program written in VarJ with a couple of extra language features from Java (explicit

constructors and static and void methods).

class Animal { void speak() { ... } }
class Dog extends Animal {
void speak() { bark(); }
void bark() { ... }
}
class Box<+X> {
public final X elem;
Box(X elem) { this.elem = elem; }
}
class Client {
public static Animal unbox(Box<Animal> box) {
return box.elem;
}
public static void main() {
unbox (new Box<Dog>(new Dog())) .speak();
}
}

Because Box is declared to be covariant, Box<Dog> <: Box<Animal>. The static
type of argument box in the body of method unbox is Box<Animal>. When executing
the main method in class Client, the method invocation unbox(new Box<Dog>(new
Dog())) reduces to [new Box<Dog>(new Dog())/box]box.elem = new Box<Dog>(new
Dog()).elem. The dynamic type of box for that method invocation is Box<Dog>, so

it needs to support the operations of Box<Animal> that are requested in the method

body. In this case, the method body requires reading an Animal from the elem field

86

of a Box<Animal>. A Box<Dog> also supports this operation, so a runtime type error
does not result.

The key properties for showing that the variance analysis only infers safe sub-
typing are illustrated at a high level in Figure The left-hand side of the figure
contains abstract descriptions of important variance properties that are circled. The
right-hand side contains corresponding concrete properties that are specific to VarJ.
The implication arrows represent lemmas that are needed for type soundness. They
relate variance of a type to subtyping and then to subsumption or preserving op-
erations in the subtype. The first arrow/lemma states that the variance of a type
implies subtype relationships between instantiations of a type. For VarlJ, this prop-
erty is expressed as the Subtype Lifting Lemma [1, The second arrow/lemma states
that every subtype relationship satisfies the subsumption principle. Together these
two lemmas imply variance soundness; that is, subtyping relationships between two
instantiations of a type allowed by variance also satisfy the subsumption principle.
As a result, runtime type errors do not result from these additional subtype relations.
The VarJ subsumption property in the figure expresses that a field’s type becomes
more specific for the subtype with variant subtyping.

The remainder of this chapter provides intuition on how variance soundness is
achieved for VarJ without going into all of the details of VarJ’s type soundness proof.
Since intuition of the proof of the Subtype Lifting Lemma (1| (the first arrow) was
already given in Section we focus on how the subsumption principle is satisfied

(the second arrow).

Proving Subsumption in VarJ

In VarJ, only three operations can be peformed with an object:

1. Reading the field of an object.

2. Invoking a method of an object.

87

Variance Soundness Variance Soundness

Lemmas in General Lemmas in VarlJ
v < var(X;N)
[Variance of Types j and
v(U; T)
\U/ \U/ (Lemma)
[Variant Subtyping] [[U/XIN <: [T/ X]N]

\U/ \U/ (Lemma)

/ftype(f; [T/XIN) = S\
=
[Subsumption Principle] ftype(£; [U/XIN)
<

\ ftype(£; tT/X] N) J

Figure 7.1. Key lemmas for proving variance analysis only infers type safe subtyping.
Arrows denote implication. We skip some parameters in the subtyping judgments in
this figure such as the type variable context A because the exact rules are not the
focus of this chapter.

88

3. Passing an object “directly” as an argument in a call to a method or constructor.
For example, variable obj is passed directly in method call “m(obj)” but not in

method call “m(obj.g())”.

These operations need to be preserved for the subtype in order to satisfy type sound-
ness. The third operation is preserved because the subtype relation is transitive (rule
ST-TraN). For example, in method call “m(obj)” the static type of obj must be a
subtype of the method’s m formal argument type. Since obj’s dynamic type is a sub-
type of its static type, by transitivity of subtyping, the dynamic type is also a subtype
of the formal argument type. Subtyping is still transitive with variant subtyping.

Preserving the first two operations with variance is far less trivial and depends
on the variance analysis. In particular, we show how the variance analysis supports
lemmas [2] and [3] These two lemmas specify that a subtype preserves the ability to
read a field and invoke a method. Satisfying these lemmas depends on the subtype
lifting lemma and the variances assigned to type positions in class definitions. Al-
though detailed proofs of these lemmas can be found in Appendix [B] we highlight the
reasoning related to variance in the proof of Lemma [2 Similar reasoning applies in
the proof of Lemma [3] so we skip its high-level proof.

VarJ does not support the ability to modify the values of fields. Section also
discusses how the variance reasoning would need to be updated if fields could be

updated.

7.1 High-Level Proof of Lemma

Lemma 8 (Subtyping Specializes Field Type). If (a) F class C<vX — [...]1> <

N... OKand (b) A F c<T> <: N and (c) ftype(£;N') = T, then A F ftype(£; C<T>) <: T.

Before we embark on the proofs for the particular cases, note that premise (a)
implies definition-site variances in all class definitions in the proof of this lemma type

check. Also, to simplify the presentation, we only use one subtype relation symbol,

89

<:, to denote subtyping between types of any syntactic category, rather than the

three relations from Section [6.4]
This lemma is proved by structural induction on both the derivations of judgments
(b) and (c).

Case:

VT()=vk AFv(T,U) class C<vX — [...1> A N{S£; M}

A C<T> <: C<U> ftype(£;; C<U>) = [U/X]S;
Nl

FT-CLASS
(SD-VAR) ()

Proof:

This proof case is the only base case of this inductive proof. This case does not
require applying the inductive hypothesis. In this proof case, we use the fact that
field types are in covariant positions. Since class C type checks, we can establish the
following relationship between the definition-site variance annotations of C and the

variances of the type parameters X in the field type S;:
1. v < war(X;s;)

Applying the subtype lifting lemma (Lemma [1)) to (1) and the assumption A F

v(T,U) gives the following:

At [T/xls;, < [U/X]S;
| I

ftype(£i;C<T>) <t ftype(£;; C<U>)

90

Case:

CT(C) = class C<vX — [B,-Byl> < N{§ £; M}

VT(c) =vX A F v(T,U) f¢f
A F C<T> <: C<U> ftype(£; C<T>) = ftype(£; [U/XIN)
N/
FT-S
(SD-Var) (UPER)
Proof:

This proof case uses the fact that parent types are in covariant positions. Since
class C type checks, we can establish the following relationship between the definition-
site variance annotations of C and the variances of the type parameters X in the parent

type N:
1. v < wvar(X;N)

Applying the subtype lifting lemma (Lemma (1)) to (1) and the assumption A F

v(T,U) gives:
2. AF [T/XIN <: [U/XIN
3. WLOG, assume N = D<V>.
4. Class D type checks as explained in the beginning of this proof.

Applying the inductive hypothesis to (4), (2), and the assumption that ftype(£; ['Lm] N)

is defined gives the following:
5. A& ftype(t; [T/XIN) <: ftype(£; [U/XIN)

Since we assumed rule FT-Surer applied, field £ is inherited from the parent type

N. Hence,

91

6. ftype(t; C<T>) = ftype(£; [T/XIN)

Therefore, we have the following:

A& ftype(£; C<T>)

= ftype(£; [T/X1N) by (6)
<: ftype(£; [U/XIN) by (5)
= ftype(£; C<N>) by assumption

]
Case:
classC<vk — [...1> <IN{Sf; M} C#D Ak [T/XIN <:D<U>
A C<T> <: D<U>
S~
N/
(SD-SuPER)
Proof:

This proof case does not depend on which rule derived premise (c) ftype(£;D<U>) =
T. Since C # D, we know that field £ is not defined in class C (f ¢ ?)H The lemma holds
for this case because of the inheritance subtyping. This can be seen by noting that
the inductive hypothesis applies to the premise A [m]N <: D<U>. Furthermore,

since £ is an inherited field, ftype(f; C<T>) = ftype(£; [m] N), by rule FT-SUPER.

LAlthough Java allows inherited field names to be redefined in subclasses |28, Section 15.11]
with a new type, VarJ does not allow this for simplicity. For example, class definitions “class
A { String f; }” and “class B extends A { int f; }” are allowed in Java. Contrasting with
dynamic dispatch of methods, the declaration accessed by a field access expression is determined
completely at compile time. [28, Section 15.11.2] presents the syntax used to access a field with the
same name in the super class. Hence, that language feature is not related to subtyping or variance.

92

The proof for this case does not depend on variance reasoning. Since the purpose
of this proof is to highlight variance reasoning, we direct the reader to the proof of
this lemma in the appendix for further details. This lemma appears as Lemma [18]in
Appendix Bl O

7.2 Supporting Field Writes

VarJ allows reading values from fields but not modifying the values of fields. This
section describes how the variance reasoning in VarJ would be updated if field values
could change. To explain the updates to the variance reasoning, we show how the
statement and proof of Lemma [§] would be updated. We also state the additional
constraint on definition-site variance annotations to satisfy the updated version of
Lemma [l

The only proof case of Lemma [§| that would need to change is the base case. In
the other proof cases, applying the inductive hypothesis would allow us to derive
the desired properties. In the base case, rules SD-Var and FT-Crass were applied to
derive premises (b) and (c), respectively.

The base case shows how we get the desired subtype relationship between field
types, ftype(£;; C<T>) <: ftype(£;; C<U>), when C<T> <: C<U>. This subtype relationship
is desired to support the subsumption principle. In particular, this relationship shows
that we can retrieve a value of type ftype(£;; C<U>) when reading field £; from an
instance of the subtype C<T>.

If field £; could be updated, then the inverse subtype relationship is also desired,

when C<T> <: C<U>:

ftype(£;; C<U>) <: ftype(£;; C<T>) (7.1)

In order to write a term of type S to field £; of an object of type C<U> it must

be the case that § <: ftype(f;;C<U>). If subtype relationship also holds, then

93

S <: ftype(£;;C<U>) <: ftype(£;; C<T>). Hence, the ability to write an instance of type
S to field £; is supported by an instance of the subtype C<T>, given relationship [7.1]
As a result, the statement of Lemma [8 should be updated by adding the conclusion
A& ftype(£;W') < ftype(f; C<T>).

Subtype relationship holds if we assume field £;’s type is also in a contravariant
position. That is, field £;’s type, S;, is in both a covariant position and also in a
contravariant position. To reflect in the type checking rules that field types are in
contravariant positions, the following judgment would need to be added as a premise

to rule W-Cus from Figure [6.3]in Section [6.3}

—vX T mono

Since S; is in a contravariant position and class C type checks, we can establish

the following relationship between the definition-site variance annotations of ¢ and

the variances of the type parameters X in the field type S;:

1. v< —®uar(%;s;)

Applying Lemma [15| from Appendix |B| to (1) and the assumption A F v(T,U) of

rule SD-Var gives us the desired subtype relationship:

At [v/xls; < [T/X]S;
I |
ftype(£;;C<U>) <: ftype(£;; C<T>)
Since we have derived subtype relationship , we have showed that the ability

to write values to a field is preserved in the subtype.

94

CHAPTER 8

AN APPLICATION: DEFINITION-SITE VARIANCE
INFERENCE FOR JAVA

To showcase the potential of our unified treatment of use-site and definition-site
variance, we implemented a mapping from Java to VarLang and used it to produce
a (definition-site) variance inference algorithm. This software application applies the
formal framework developed in previous chapters to reason about and infer definition-
site variance. We evaluated the potential benefit of adding definition-site variance to
Java. We analyzed six large Java libraries with generics (including the standard

library). Findings from this experiment are given in this chapter.

8.1 Applications

Our mapping from Java to VarLang is straightforward: We produce a VarLang
module definition for each Java class or interface, and all Java type expressions are
mapped one-to-one on VarLang type expressions with the same name. The module
definitions contain variance constraints that correspond to the well-understood vari-
ance of different positions (as discussed in Section : return types are a covariant
position, argument types are a contravariant position, types of non-final fields are
both covariant and contravariant positions, supertypes are a covariant position.

Our mapping is conservative: Although we handle the entire Java language, we
may constrain definition-site variances to less-general variances than required to be
safe. For instance, we ignore the potential for more general typing through reasoning

about member visibility (i.e., private/protected access control). Member visibility,

95

in combination with conditions on self-reference in type signatures, can be used to
establish that some fields or methods cannot be accessed from outside a class/package.
Nevertheless, our mapping does not try to reason about such cases to produce less
restrictive variance constraints. We prefer to infer unquestionably safe variances at
the expense of slightly worse numbers (which still fully validate the potential of our
approach).

We used this mapping to implement a definition-site variance inference algorithm.
That is, we took regular Java code, written with no concept of definition-site variance
in mind, and inferred how many generics are purely covariant/contravariant/bivari-

ant. Inferring pure variance for a generic has several practical implications:

e One can use our algorithm to replace the Java type system with a more lib-
eral one that infers definition-site variance and allows subtyping based on the
inferred variances. Such a type system would accept all current legal Java pro-
grams, yet allow programs that are currently not allowed to type-check, without
violating soundness. This would mean that wildcards can be omitted in many
cases, freeing the programmer from the burden of always specifying tedious
types in order to get generality. For instance, if a generic C is found to be
covariant, then any occurrence of C<? extends T> is unnecessary. (We report
such instances as “unnecessary wildcards” in our measurements.) Furthermore,
any occurrence of C<T> or C<? super T> will be immediately considered equiv-
alent to C<? extends T> or C<?>, respectively, by the type system, resulting in
more general code. (We report such instances as “over-specified methods” in

our measurements.)

e One can use our algorithm as a programmer’s assistant in the context of an
IDE or as an off-line tool, to offer suggestions for more general types that are,
however, still sound. For instance, for a covariant generic, C, every occurrence of

type C<T> can be replaced by C<? extends T> to gain more generality without

96

any potential for more errors. Just running our algorithm once over a code
body will reveal multiple points where a programmer missed an opportunity to
specify a more general type. The programmer can then determine whether the
specificity was intentional (e.g., in anticipation that the referenced generic will

later be augmented with more methods) or accidental.

In practice, our implementation (in Scala) of the optimized constraint solving
algorithm described in Section 4.4] takes less than 3 minutes (on a 3.2GHz Intel Core
i3 machine w/ 4GB RAM) to analyze the generics of the entire Java standard library.
Almost all of the time is spent on loading, parsing, and processing files, with under
30 seconds constraint solving time.

Finally, we need to emphasize that our signature-only based inference algorithm
is modular. Not only does it reason entirely at the interface level (does not inspect
method bodies), but also the variance of a generic depends only on its own definition
and the definition of types it (transitively) references, and not on types that reference
it. This is the same modularity guarantee as with standard separate compilation.

We can also generate constraints from inspecting method bodies. This method-
body based analysis is explained later in Section[9.4,. When the method-body analysis
is performed, we expect improved numbers (since, for instance, an invariant type may
be passed as a parameter, but only its covariance-safe methods may be used—e.g., a
list argument may only be used for reading). Nevertheless, analyzing the bodies of
methods has a cost in modularity: the analysis would still not depend on clients of a
method, but it would need to examine subtypes, to analyze all the possible overriding

methods.

8.2 Analysis of Impact
To measure the impact of our approach, we ran our inference algorithm over 6

Java libraries, the largest of which is the core Java library from Oracle’s JDK 1.6, i.e.,

97

classes and interfaces in the packages of java.*. The other libraries are JScience [22],
a Java library for scientific computing; Guava [10], a superset of the Google collections
library; GNU Trove [25]; Apache Commons-Collection [5]; and JPaul |56], a library
supporting program analysis.

The results of our experiment appear in Figures [8.1], [8.2] and Definition-
site variances were inferred with two types of analyses. The signature-only analysis
inferred definition-site variance using only the type signature of members of class/type
definitions. The method-body analysis is described in Section [9.4, The method-
body analysis may relax the constraints on definition-site variances, thereby allowing
more generics to be variant. Statistics computed using the method-body analysis are
shaded in the tables. Shaded results are for the method body analysis, unshaded for
the signature-only analysis

Together, these libraries define 3,827 classes and interfaces, out of which 1,093
are generics. These generics declare 1,442 type parameters—i.e., some of the generics
declare more than one type parameter. Statistics in Figure[8.1]are collapsed per-class:
An invariant class is invariant in all of its type parameters, whereas a variant class
is variant in at least one of its type parameters. Hence, a class can be counted as,
e.g., both covariant and contravariant, if it is covariant in one type parameter and
contravariant in another. The “variant” column, however, counts the class only once.
The five “invar./variant/cov./contrav./biv/” columns show the percentage of classes
and interfaces that are inferred by our algorithm to be invariant versus variant, for
all three flavors of variance.

As can be seen, 26% of classes or interfaces are variant in at least one type param-
eter. (Our “Total” row treats all libraries as if they were one, i.e., sums individual
numbers before averaging. This means that the “Total” is influenced more by larger
libraries, especially for metrics that apply to all uses of generics, which may also oc-

cur in non-generic code.) This means that about a 1/4 of the generics defined should

98

Library # # Type Definitions
Types | Generics | invar. | variant | cov. contrav. | biv.
classes 1786 156 80% 20% 13% 5% 2%
1786 156 80% 20% 13% 5% 2%
Java interfaces 329 31 55% 45% 39% 6% 0%
329 31 55% 45% 39% 6% 0%
total 2115 187 76% 24% 17% 5% 2%
2115 187 76% 24% 17% 5% 2%
classes 110 46 54% 46% 7% 0% 39%
110 46 54% 46% 7% 0% 39%
JScience nterfaces 60 13 62% 38% 8% 15% 15%
61 14 50% 50% 14% 21% 14%
total 170 59 56% 44% 7% 3% 34%
171 60 53% 47% 8% 5% 33%
classes 370 302 76% 24% 12% 8% 4%
370 302 76% 24% 12% 8% 4%
Apache interfaces 29 28 64% 36% 25% 11% 0%
30 29 62% 38% 24% 14% 0%
total 399 330 75% 25% 13% 8% 3%
400 331 5% 25% 13% 8% 3%
classes 551 289 84% 16% 9% 7% 1%
551 289 84% 16% 9% 7% 1%
Cuava interfaces 50 36 42% 58% 39% 17% 3%
50 36 42% 538% 39% 17% 3%
total 601 325 79% 21% 12% 8% 1%
601 325 79% 21% 12% 8% 1%
classes 322 46 8% 22% 15% 7% 0%
322 46 78% 22% 15% 7% 0%
Trove interfaces 76 17 0% 100% 6% 94% 0%
76 17 0% 100% 6% 94% 0%
total 398 63 57% 43% 13% 30% 0%
398 63 57% 43% 13% 30% 0%
classes 129 114 78% 22% 10% 7% 5%
129 114 7% 23% 10% 8% 5%
JPaul interfaces 13 13 69% 31% 0% 31% 0%
13 13 69% 31% 0% 31% 0%
total 142 127 7% 23% 9% 9% 5%
142 127 76% 24% 9% 10% 5%
classes 3268 953 78% 22% 11% 6% 4%
3268 953 78% 22% 11% 7% 4%
Total interfaces | 559 140 49% 51% 25% 24% 2%
559 140 47% 53% 26% 25% 2%
total 3827 1093 75% 25% 13% 9% 4%
3827 1093 74% 26% 13% 9% 4%

Figure 8.1. Definition-Site Variance Inference Statistics by Type Definitions. An
invariant class is invariant in all of its type parameters, whereas a variant class is
variant in at least one of its type parameters. Shaded results are for the method
body analysis, unshaded for the signature-only analysis.

99

Library # # Unnecessary | Over-specified
Types | Generics wildcards methods
classes 1786 156 16% 7%
1786 156 16% 7%
Java interfaces 329 31 12% 9%
329 31 12% 9%
total 2115 187 16% 7%
2115 187 16% 7%
classes 110 46 89% 30%
110 46 89% 30%
JScience nterfaces 60 13 100% 20%
61 14 100% 20%
total 170 59 89% 29%
171 60 89% 29%
classes 370 302 59% 16%
370 302 59% 16%
Apache interfaces 29 28 9% 0%
30 29 9% 0%
total 399 330 58% 16%
400 331 58% 16%
classes 551 289 41% 10%
551 289 41% 10%
Cuava interfaces 50 36 33% 4%
50 36 33% 4%
total 601 325 41% 10%
601 325 41% 10%
classes 322 46 30% 26%
322 46 30% 26%
Trove interfaces 76 17 0% 0%
76 17 0% 0%
total 398 63 30% 26%
398 63 30% 26%
classes 129 114 5% 25%
129 114 5% 25%
JPaul interfaces 13 13 0% 0%
13 13 0% 0%
total 142 127 5% 25%
142 127 5% 25%
classes 3268 953 39% 15%
3268 953 39% 15%
Total interfaces | 559 140 19% 7%
559 140 19% 7%
total 3827 1093 39% 15%
3827 1093 39% 15%

Figure 8.2. Unnecessary Wildcards and Over-Specified Methods. Shaded results
are for the method body analysis, unshaded for the signature-only analysis.

100

Library # Type Type Parameters Recursive
Params | invar. | variant COoVv. contrav. biv. variances

classes 190 84% 16% 11% 4% 2% 18%

190 84% 16% 11% 4% 2% 18%

Java interfaces 36 61% 39% 33% 6% 0% 33%

36 61% 39% 33% 6% 0% 33%

total 226 80% 20% 14% 4% 1% 20%

226 80% 20% 14% 4% 1% 20%

classes 50 58% 42% 6% 0% 36% 54%

50 58% 42% 6% 0% 36% 54%

JScience interfaces 15 67% 33% 7% 13% 13% 7%

15 53% 47% 13% 20% 13% 7%

total 65 60% 40% 6% 3% 31% 43%

65 57% 43% 8% 5% 31% 43%

classes 399 82% 18% 9% 6% 3% 8%

399 82% 18% 9% 6% 3% 8%

Apache interfaces 37 70% 30% 22% 8% 0% 30%

37 68% 32% 22% 11% 0% 30%

total 436 81% 19% 10% 6% 3% 10%

436 81% 19% 10% 6% 3% 10%

classes 433 88% 12% 7% 5% 0% 9%

433 88% 12% 7% 5% 0% 9%

Cuava interfaces 53 51% 49% 30% 17% 2% 21%

53 51% 49% 30% 17% 2% 21%

total 486 84% 16% 10% 6% 1% 10%

486 84% 16% 10% 6% 1% 10%

classes 48 7% 23% 15% 8% 0% 31%

48 7% 23% 15% 8% 0% 31%

Trove interfaces 18 0% 100% 6% 94% 0% 0%

18 0% 100% 6% 94% 0% 0%

total 66 56% 44% 12% 32% 0% 23%

66 56% 44% 12% 32% 0% 23%

classes 149 83% 17% 8% 5% 4% 21%

149 82% 18% 8% 6% 4% 21%

JPaul interfaces 14 64% 36% 0% 36% 0% 7%

14 64% 36% 0% 36% 0% 7%

total 163 81% 19% 7% 8% 4% 20%

163 80% 20% 7% 9% 4% 20%

classes 1269 83% 17% 9% 5% 3% 14%

1269 83% 17% 9% 5% 3% 14%

Total interfaces 173 54% | 46% 22% 22% 2% 21%

173 53% 47% 23% 23% 2% 21%

total 1442 80% 20% 10% 7% 3% 15%

1442 79% 21% 10% 7% 3% 15%

Figure 8.3. Definition-Site Variance Inference Statistics by Type Parameters.
Shaded results are for the method body analysis, unshaded for the signature-only
analysis.

101

be allowed to enjoy general variant subtyping without users having to annotate them
with wildcards.

Figure illustrates the burden of default invariant subtyping in Java, and the
benefits of our approach. “Unnecessary Wildcards” shows the percentage of wild-
cards in method signatures that are unnecessary in our system, based on the inferred
definition-site variance their generics. For instance, given that our technique in-
fers interface java.util.Iterator<E> to be covariant, all ‘? extends’ annotations in
instantiations of Iterator are unnecessary. This number shows that, using our tech-
nique, 39% of the current wildcard annotations can be eliminated without sacrificing
either type safety or the generality of types!

The “Over-specified Method” column lists the percentage of method arguments
that are overly specific in the Java type system, based on the inferred definition-site
variance of their generics. For instance, given that the inferred definition-site variance
of Iterator<E> is covariant, specifying a method argument with type Iterator<T>,
instead of Iterator<? extends T>, is overly specific, since the Java type system would
preclude safe invocations of this method with arguments of type Iterator-of-some-
subtype-of-T. Note again that this percentage is purely based on the inferred definition-
site variance of the arguments’ types, not on analysis of the arguments’ uses in the
bodies of methods. We find that 15% of methods are over-specified. This means
that 15% of the methods could be used in a much more liberal, yet still type-safe
fashion. It is also interesting that this number is derived from libraries and not from
client code. We expect that the number of over-specified methods would be much
higher in client code, since programmers would be less familiar with wildcards and
less confident about the operations supported by variant versions of a type.

Variance statistics per generic type parameter are in Figure |8.3| The last col-
umn, “Recursive variances”, shows the percentage of type parameters for which their

definition-site variances are recursively constrained. Example types of recursively

102

constrained variances were given in Section [3.3] For example, recursive variance type
1 would result in a constraint of the form wvar(X;C) C + ® var(X;C), where X is a
type parameter of generic C. As discussed in that chapter, recursively constrained
type parameters can be bivariant even when their type parameter is used in the type
definition. We know of no other technique that would infer anything other than in-
variance for recursively constrained type parameters. The JScience library shows the
largest impact of inferring general variances with recursive variances. Out of the six
libraries, the JScience library has the largest percentage of recursive variances. Per-

haps not surprisingly, it also has the largest percentage of bivariant type parameters.

Backward Compatibility and Discussion

As discussed earlier, our variance inference algorithm can be used to replace the
Java type system with a more liberal one, or can be used to offer suggestions to
programmers in the context of an IDE. Replacing the Java type system with a type
system that infers definition-site variance is tempting, but would require a pragmatic
language design decision, since there is a cost in backward compatibility: in some
cases the programmer may have relied on types being rejected by Java, even though
these types can never cause a dynamic type error.

We found one such instance in our experiments. In the reference implementation
for JSR 275 (Measures and Units) [23], included with the JScience library [22], a
group of 11 classes and interfaces are collectively bivariant in a type parameter, Q
extends Quantity. In the definition of Unit<Q extends Quantity>, for example, the
type parameter Q appears nowhere other than as the type argument to Unit<Q>. Closer
inspection of the code shows that Quantity is extended by 43 different subinterfaces,
such as Acceleration, Mass, Torque, Volume, etc. It appears that the authors of the
library are actually relying on the invariant subtyping of Java generics, to ensure,

e.g., that Unit<Acceleration> is never used as Unit<Mass>.

103

Of course, full variance inference is only one option in the design space. Any
combination of inference and explicitly stated variance annotations, or just adding
explicit definition-site variance to Java, are strictly easier applications from a typing
standpoint. The ultimate choice is left with the language designer, yet the potential

revealed by our experiments is significant.

104

CHAPTER 9
REFACTORING BY INFERRING WILDCARDS

Wildcard annotations can improve the generality of Java generic libraries, but
require heavy manual effort. This chapter presents an algorithm for refactoring and
inferring more general type instantiations of Java generics using wildcards. Compared
to past approaches, our work is practical and immediately applicable: we assume no
changes to the Java type system, while taking into account all its intricacies. Our
system allows users to select declarations (variables, method parameters, return types,
etc.) to generalize and considers declarations not declared in available source code.
It then performs an inter-procedural flow analysis and a method body analysis, in
order to generalize type signatures. We evaluate our technique on six Java generic
libraries. We find that 34% of available declarations of variant type signatures can be
generalized—i.e., relaxed with more general wildcard types. On average, 146 other
declarations need to be updated when a declaration is generalized, showing that this

refactoring would be too tedious and error-prone to perform manually.

9.1 Contributions Relative to Past Work

This chapter is based on the observation that the straightforward approach of
Chapter |8 needs significant extension to yield benefits with existing programs and
without changing the Java type system. First, the approach ignores practical com-
plexities. Preserving the original program’s semantics with additional wildcards may
require adding wildcards to syntactically-illegal locations (e.g., wildcards are not al-

lowed in the outermost type arguments in parent type declarations in Java). Second,

105

we have not explained how we can infer more general types by analyzing method
bodies. Most importantly, however, the statistics in Chapter [§ showed the potential
impact when the entire program and all its libraries get rewritten. Even if this was
what the programmer desired, it is an impossible requirement in practice: part of the
code is unavailable for a rewrite (e.g., fixed signatures of native methods). Instead,
we need an approach that is aware of which type occurrences cannot be generalized
and integrates this knowledge into its variance inference. Furthermore, the use mode
of a variance inference algorithm is typically local: the programmer wants help in
safely generalizing a handful of type occurrences, as well as any other types that are
essential in order to generalize the former.

We present a modular approach that addresses the above need, by leveraging an
inter-procedural flow analysis. Our technique has an incremental usage mode: we
only perform program rewrites based on program sites that the programmer selected
for refactoring (and on other sites these depend on), and not on an entire, closed code
base. Our type generalization fully takes into account the peculiarities of the Java type
system, as well as other constraints (e.g., generic native methods) that render some
type occurrences off-limits for generalization. Furthermore, we perform a method
body analysis that can infer more general types than mere method signature analysis.
The result is a refactoring algorithm that allows safely inferring more general types
for any subset of a program’s type occurrences and for any pragmatic environment
restrictions. Our approach yields more general types than past work [21,41] and
assumes no changes to Java (unlike, e.g., Chapter @

In outline, this work makes the following contributions:

e To assist the programmer with utilizing variance in Java, we present a refactor-
ing approach that automatically rewrites Java code with more general wildcard
types. Our tool allows users to select which declarations to generalize the type

signatures of. Similar, to work in Chapter [4] our approach infers definition-site

106

variance based on type signatures for determining if a parameterized type is
overly specified. Unlike that work, we also perform an inter-procedural analysis
based on how objects are actually used in the program to determine if the pa-
rameterized types specified by the programmer are overly restrictive. A method
taking in a parameter of type List<T>, for instance, may only invoke methods

available from a List<? extends T>.

Our approach works in a context where not all types can be rewritten because,
for example, they are declared in a third-party library for which the source code
is unavailable. The user may also select declarations to exclude from rewriting
if keeping the more specific type is desired to support future code updates. For
instance, the user may not want the return type of some method to be changed

to a supertype, since the supertype provides fewer methods of a class to a client.

Our approach handles the entire Java language and preserves the behavior of
programs employing intricate Java features, such as generic methods, method

overrides, and wildcard capture.

We evaluate our tool on six Java generic libraries. To measure the benefit of
analyzing method bodies, we performed analyses both when taking in method
bodies into account and when inferring definition-site variance solely based
on a generic’s type signature. We find that 34% of available declarations of
variant type signatures (generic types that may promote a wildcard) can be
generalized—i.e., relaxed with more general wildcard types. On average, 146
declarations will need to be updated if a declaration is generalized, showing that

this refactoring would be too tedious and error-prone to perform manually.

We offer both empirical evidence and a proof that the refactoring algorithm
is sound. The six large Java generic libraries that were analyzed were also

refactored by our tool. The refactored code of the libraries was compiled using

107

javac. Appendix [D]formally argues why the refactoring algorithm preserves the

ability to compile programs.

9.2 Illustration

We next illustrate the impact and intricacies of inferring variance annotations
in a pragmatic setting. Figure presents an example program before and after
automatic refactoring by our tool. This program declares two classes: WList, a write-
only list, and MapEntryWList, a specialized WList of map entries. Our tool allows
a user to select declarations whose types should be generalized. For this example,

suppose the user selects method arguments source, dest, strings, and entry (lines

[18, and respectively).

1. Consider generalizing the type of the argument dest, declared on line of
the addAndLog method. In general, the interface java.util.List is invariant
in its type parameter because it allows both reading elements from a list and
writing elements to a list. However, in the addAndLog method, no elements are
read from the list dest. Within this method, only the add method is invoked
on dest to write to this list. The type signature of List.add contains the type
parameter of List only in the argument type, which is a contravariant position.
Hence, only a contravariant version of List is required by dest, and its type

can be safely promoted to List<? super T>.

2. The user has selected generalizing the type of the argument source of the addA11l
method declared on line [{} Only the iterator method is invoked on source
within this method, which returns an Iterator<E>. Iterator is covariant in
its type parameter, and our tool infers this. As a result, the type parameter of

List in the type signature of List.iterator occurs only covariantly. Because of

108

1 import java.util.sx;

2 class WList<E> {

3 private List<E> elems = new LinkedList<E>();
4 wvoid add(E elem) {

5 addAll (Collections.singletonList (elem));

6 }

7 wvoid addAll (List<E> |[source) {

8 addAndLog (source.iterator (), this.elems);

9 }

10 static <T> wvoid

11 addAndLog (Iterator<T> itr, List<T> dest) {

12 while (itr.hasNext ()) {

13 T elem = itr.next () ;

14 log(elem) ;

15 dest.add (elem);

16 }

17 }

18 static void client (WList<String> |strings) { ... }
19 1}

20 class MapEntryWList<K,V> extends WList<Map.Entry<K,V>> {
21 @Override wvoid add (Map.Entry<K, V> entry) {1}
22}

1 import java.util.sx;

2 class WList<E> {

3 private List<E> elems = new LinkedList<E>();

4 void add(E elem) {

5 addAll (Collections.singletonList (elem));

6 }

7 wvoid addAll (List<? extends E> source) {

8 addAndLog (source.iterator (), this.elems);

9 }

10 static <T> wvoid

11 addAndLog (Iterator<? extends T> itr, List<? super T> dest) {
12 while (itr.hasNext ()) {

13 T elem = itr.next ();

14 log(elem);

15 dest.add (elem) ;

16 }

17 }

18 static void client (WList<? super String> strings) { ... }
19 1}

20 class MapEntryWList<K,V> extends WList<Map.Entry<K,V>> {
21 @Override wvoid add (Map.Entry<K, V> entry) { }
22}

Figure 9.1. Code comparison. Original code on the top. Refactored code on the
bottom. Declarations that were selected for generalization are shaded in the original
version.

109

the limited use of source in addA11l we can safely infer that the type of source

can be promoted to the more general type List<? extends E>.

3. If only the type of source changes to List<? extends E>, then the refactored
program will no longer compile. After changing source’s type, source.iterator()
no longer returns an Iterator<E> but instead an Iterator<? extends E>. The
method call to addAndLog on line[§|would cause a type error because this method
expects a stricter type, Iterator<E>EI As a result, to perform this refactoring
without introducing compilation errors, we must perform a flow analysis to de-
termine if generalizing the type of one declaration requires changing the types
of other declarations. This flow analysis requires careful reasoning as depen-
dency relationships arise from many non-trivial language features in Java. In
this example, the type of the itr field (line is also generalized to Iterator<?

extends T>.

4. The user has selected for generalization the type of the strings argument of
method client, declared on line [I§ The type of this argument is promoted
to WList<? super String>. The method body is elided for brevity, but let us
assume that all non-static methods of WList are dispatched on variable strings
in this method. The refactoring of the type of strings is safe because the
tool can infer that WList is contravariant, but only after performing the earlier
refactorings. In the original version, the occurrence of the type parameter E in
List<E>, the type of source, constrained the inferred definition-site variance of
WList to be invariance because the inferred definition-site variance of List is

invariance. Changing the type of source to List<? extends E>, however, allows

! The inferred type parameter passed in the invocation of the generic method addAndLog is E.
Thus, the first argument type of addAndLog is Iterator<E>.

110

the definition-site variance of WList to be contravarianceP] This contravariance
of WList tells us that it is safe to add the use-site annotation ? super to the
type of strings. Note how this type generalization is done for different reasons
than that of source, earlier: type WList is inherently contravariant (after earlier
refactorings), therefore it does not matter how strings is used. In contrast, the
generalization of the type of source was possible only because of the way source

was used in method addAll.

5. The argument entry of the overriding method add is declared on line Our
tool infers that Map.Entry is covariant in its first type parameter. Therefore,
changing the type of entry to Map.Entry<? extends K, V> would not cause a
runtime error. Our tool does not apply this update, however, for the following

reasons:

(a) Java (javac) would no longer infer that MapEntryWList.add overrides WList.
add. Because of the ‘@0Override’ annotation, javac would flag a compilation

error.

(b) Removing the ‘@0verride’ annotation would seem not cause a compila-
tion error. Instead since MapEntryWList.add does not override WList.add,
Java now considers that MapEntryWList.add overloads WList.add, where
the arguments types of MapEntryWList.add and WList.add are Map.Entry<?
extends K, V> and Map.Entry<K, V>, respectively. However, the erasures
[28, Section 4.6] of the type signatures of both methods are the same:
Both argument types erase to Map.Entry. Overloaded methods that have

the same erasure result in a compilation error.

2The occurrence of the type parameter E in the type of the field elems, declared on hne does
not constrain the definition-site variance of E in WList because elems is what is called object-private
in the Scala language [51, Sections 5.2 and 4.5]: elems is not only private to WList but also only
accessed from a this qualifier on line

111

(c) Even if the Java compiler did not flag a compilation error as a result
of generalizing the type of entry, performing this refactoring is undesir-
able because it could change the runtime behavior of the program. Client
code that previously invoked MapEntryWList.add at runtime may now in-
voke WList.add instead, since MapEntryWList.add would no longer override

WList.add.

(d) Another option to allowing the type of entry to be generalized would be
to change the parent type declaration of MapEntryWList. Our tool does
not add wildcards to parent type declarations for a number of reasons
that we discuss in Section [9.3.6] For instance, the most straightforward
generalization would change the parent type of MapEntryWList to WList<?
super Map.Entry<K, V>>, since we inferred the refactored version of WList
to be contravariant. This change is not legal in Java because wildcards are
not allowed in the outermost type arguments in parent type declarations
in Java. (The type in question is not a class type but rather a reference

type [28, Section 4.3].)

Our tool will generalize the type signature of an overridden method only if all
of the methods it overrides and vice versa can also be generalized, so that all
overriding relationships in the original program are maintained. More generally,

our tool ensures the behavior of programs is preserved.

Although the above example is small, it illustrates how generalizing types with
Java wildcards requires intricate, tedious, and error-prone reasoning. The complexity

of the refactoring, thus, warrants automation.

112

9.3 Type Influence Flow Analysis

The act of generalizing occurrences of types in a program introduces a tradeoff.
On the one hand, we want to assist programmers with generalizing their interfaces
in a type safe manner—i.e., to replace type occurrences with more general types.
More general types for the interface of a class, however, entail fewer operations for
implementations of this interface. For instance, promoting the type of an object from
List<String> to the type List<? extends String> results in the inability of that
object to add String objects to itself. Furthermore, in Java, an overriding method
must have the same type signature as the overridden method. Hence, generalizing
the types in a method’s signature also restricts the ability of subclasses to provide
alternative implementations.

To enable library designers to manage this tradeoff, our tool allows users to choose
which declarations to update instead of always generalizing all (rewritable) types.
A refactoring tool should not introduce new compilation errors for practicality and
should preserve the semantics of the original program. Thus, automating the update
of a fragment of the program requires a flow analysis to determine, given a type
occurrence to update, the set of other type occurrences that also need to be updated.
We say that a declaration A influences a declaration B if making A’s type more general
requires making B’s type more general. Moreover, we coin the term “type influence
flow analysis” (or just “influence analysis”) for the program analysis computing (an
over-approximation of) this information.

We implement our influence analysis by building a directed flow graph where
nodes represent declarations in the program. A flow graph is constructed so that if
declaration A influences declaration B, then the graph will contain a path from A
to B. Thus, our global “influence” relation is just the transitive closure of primitive
influences (directed edges in the flow graph) induced by the program text. For ex-

ample, an edge from variable A to variable B would be generated for an assignment

113

expression from A to B: generalizing the type of A would require B’s type to also be

generalized. Subsequent subsections provide further details.

9.3.1 Influence Nodes

Our refactoring tool generalizes interfaces by generalizing types of declarations.
Nodes in our flow graph represent declarations in the program.

The Java language constructs that can be nodes in our influence graph are given

by the syntactic category InfluenceNode:

InfluenceNode ::= MethodDecl | Variable
Variable .= VariableDeclaration
| FieldDeclaration

| ParameterDeclaration

MethodDecl, VariableDeclaration, FieldDeclaration and ParameterDeclaration are
the syntactic entities that their names suggest, as defined in the JLS [28]. Both static
and instance fields are instances of FieldDeclarations. VariableDeclarations are
local variable declarations, which occur in blocks, method bodies, initialization state-
ments of for-loops, etc. Formal value arguments from methods and constructors are
ParameterDeclarations. Arguments in exception-catch declarations are ignored; we
found that generalizing their types would not provide significant benefit. MethodDecl
nodes in the flow graph are used to capture the influences on return types of method
declarations. Return types may need to be generalized if the types of variables occur-
ring in return statements are generalized. Generalizing the return type of a method
can influence the type of other declarations; for instance, a variable can be assigned
the result of a method invocation.

Auxiliary functions used in this presentation are defined over a language similar

to Featherweight Generic Java [32], which we will call FGJ*, rather than the full Java

114

language, in order to focus the presentation on the essential elements. FGJ*’s syntax
is presented in Figure 0.2l We skip the definitions of some syntactic elements such
as statements (s) and names of type variables (X or Y) or methods (m). We follow
the FGJ convention of using <1 to abbreviate the extends keyword and A denotes
the possibly empty vector Aj, Ao, ..., A,. Reference types allow use-site annotations,
which denote wildcard annotations; types C<? extends T> and C<T>, for example, are
expressed in the syntax as C<+T> and C<oT>. Although method invocations in the
FGJ* syntax contain specified type arguments (T) and a qualifier component (“e.”),

we allow invocations where both can be skipped.

Vv, W= + | — | * | o use-site variance
T,U,S =X|N|R types
N ::= C<T> class types
R:u=C<v > reference types
L:u=classC<XJU> < N{T £f; M} class declaration
M:=<X<U> T m(T x) { returns; } method declaration
e:=x|e.f|e<T>n(e) | new N(e) expressions
Sii=e1 = e9; ’ statements
XY= type variables
X,y 1= expression variables

Figure 9.2. FGJ* Syntax

Auxiliary functions are defined in Figure [9.3] Some functions are defined only
informally because their precise definitions are either easy to determine or are not
the focus of this paper. For example, Lookup(m; €) returns the declaration of the
method being called (statically) by the method invocation m(e) E| Detailed definitions
of look up functions and other auxiliary functions that are omitted here can be found

in Chapter [6] and [32].

3Changing wildcard annotations does not affect method overloading resolution because the type
signatures of two different overloaded methods are not allowed to have the same erasure.

115

nodesA ffecting Type: (representative rules)

Lookup(m;) = M Lookup(m; &) = M
return TypeDependsOnParams(M) —return TypeDependsOnParams(M)
nodesAffecting Type(<T>m(e)) = nodesA ffecting Type(<T>m(e)) = {M }

ULilnodesAﬁ‘ectingType(ei) U{M} (N-MONOMETHOD)

(N-GENERICMETHOD)
e #m(e)
nodesAffecting Type(e) =
accessedNodes(e)

(N-NoNMETHODCALL)

destinationNode: (representative rules)

<S>m(e) € P e, =er € P
Lookup(m;e) = <Y <U> T m(T x) { return ...; } varDecl(er) = x
destinationNode(e;) = x; destinationNode(er) = x
(D-METHODCALL) (D-ASSIGNMENT)

“return e ;7 € P

enclosingMethod(e) = M
destinationNode(e) = M
(D-RETURN)

Lookup(m;e) = the declaration of the method being called (statically) by the invo-
cation of method m with arguments @.

return TypeDependsOnParams(M) = M is a generic method with a type param-
eter X that syntactically occurs in both the return type and in an argument type.
varDecl(e) = the declaration referred to by expression e (e.g. varDecl(x.£) = dec-
laration of field f£).

accessedNodes(e) = the set of declarations accessed in expression e (e.g.
accessedNodes(x.£) = {x,£}).

enclosingMethod(e) = the enclosing method of e (this function is partial).
hierarchyMethods(M) = the set of methods that either override M or are overrid-
den by M.

hierarchyParams(x) = {i'" parameter of M’ | M’ € hierarchyMethods(M)},
where x is the i*" formal parameter of M.

P is the input Java program and, “A € P” denotes expression or statement A syn-
tactically occurs in program P.

Figure 9.3. Auxiliary Functions

116

9.3.2 Flow Dependencies from Qualifiers

The semantics of an object-oriented language like Java entails intricate flow depen-
dencies from qualifiers. The qualifier of a Java expression is the part of the expression
that identifies the host (object, type definition, or package) from which the member
is accessed. In the expression someString.charAt(0), for example, the subexpression
someString is the qualifier of the method invocation charAt(0). Generalizing the
type of a qualifier of a method invocation may require generalizing the type signa-
ture of the method accessed. In particular, we need to add edges in the flow graph
from qualifiers (declarations accessed in qualifiers) to formal method arguments when

analyzing a method invocation. The following example motivates these dependencies:

interface C<X> { void foo(D<X> arg); 1}
interface D<Y> { int getNumber(); }
class Client {
void bar(C<String> cstr, D<String> dstr) {
cstr.foo(dstr);
}
}

The generic interfaces C and D are both safely bivariant. D is clearly bivariant
because its type parameter does not appear in the definition of D. C is bivariant
because its variance is only constrained by D, which is also bivariant.

Suppose the argument arg in method foo above is not rewritable (i.e., its type
remains D<X>). Also, consider rewriting the Client class and assume that all method
arguments in Client are rewritable. Then it seems that the types of variables cstr
and dstr in bar are rewritable to C<?> and D<?>, respectively, by the bivariance of
both interfaces C and D. However, this would cause bar to generate the following

compilation error (modulo generated numbers):

foo(D<capture#274 of 7>) in C<capture#274 of 7>
cannot be applied to (D<capture#582 of 7>)

Effectively, the error states that the unknown type that the “?” stands for in C<?> is

not known to be the same as the unknown type that the “?” stands for in D<?7>.

117

This error would have been avoided if the type of arg in method foo was rewritten.
More generally, wildcard annotations need to be added in type definitions in order for
the inferred definition-site variance to support all of the operations of the class. In
the case of interface C, an instance of type C<?> cannot access the method foo unless
the type of arg is changed to D<?>[] Therefore, we need to add an influence edge

from the qualifier cstr to the formal parameter arg of method foo.

9.3.3 Expression Targets

Expressions may access variables that are declared with types that were gener-
alized. In the refactored code, the type of an expression can change as a result of
changing the type of a variable or declaration accessed by the expression. In the
motivating example of Section the type of the parameter source changes from
List<E> to List<? extends E> in the refactored code. The return type of method
List<E>.iterator is Iterator<E>. Updating the type of source causes the type of the
expression source.iterator() on line [§| to change from Iterator<E> to Iterator<?
extends E>. In turn, changing the type of expression source.iterator() requires
modifying the type of method parameter itr on line [11]

The essence of determining type influences emerging from expressions is described
by two key functions: nodesAffecting Type(e) computes the set of declarations accessed
in expression e that can affect the type of e. destinationNode(e) is a partial function
that returns the declaration that is influenced by the type of e. Figure |9.3| contains
the definitions of these functions for the most important (and representative) ele-
ments of the FGJ* syntax. Considering the motivating example, for instance, node-
sAffectingType(source.iterator()) = {source, List.iterator} and destinationN-

ode(source.iterator()) = WList.addAndLog.itr. Because the expression source.

4Without changing the type of arg to D<?>, invoking foo on an instance of C<?> type checks
only if null is passed as an argument.

118

iterator() is the first argument in the method call to addAndLog, the first formal
parameter, itr, of addAndLog is the destination node of source.iterator(). Influ-
ence edges are added from nodes in nodesAffectingType(e) to the node returned by
destinationNode(e). These edges signal the dependencies caused by the expression in

a context such as a method invocation.

9.3.4 Dependencies from Inheritance

In Java, an overriding method in a subclass is required to have the same argument
types as the overridden method in the superclass. We add corresponding edges be-
tween method declarations in the influence flow graph so that overrides relationships
are preserved in the refactored code. In the motivating example, the add method
in MapEntryWList (line overrides the add method in the super class WList. Our
analysis infers that the type of MapEntryWList.add’s argument influences the type of
WList.add’s argument, to preserve the override. In general, we add an edge from a
parameter to its corresponding parameter in an overriding method. An edge in the
reverse direction is also added, since generalizing the parameter type in the overrid-
den method requires updating the corresponding parameter’s type in the subclass to
preserve the override. Adding edges to method parameters in subclasses, however,
requires a whole-program analysis: All of the subclasses of the input class must be

known to find all of the overridding methods.

9.3.5 Algorithm

Algorithm [I] contains the pseudo-code of our algorithm for computing the type in-
fluence flow graph. The algorithm implements the analyses described in the preceding
subsections using functions defined in Figure 0.3 Given the flow graph, determining
if the type of one declaration influences another is performed by checking for existence

of a path in the graph.

119

Algorithm 1 Algorithm computing influence flow graph

Input: Java program P
Output: Flow graph GG on Java declarations
/] Analysis from Section
1: for each method call <T>m(e) € P do
2: qualifierDecl +— varDecl(e)
33 <YJU> T m(T x) { return ...; } < Lookup(m;e)
4: Add edge (qualifierDecl, x;) to G, for each x; € T.
5: end for
// Analysis from Section[9.3.5
6: for each expression e € P do
7. D < destinationNode(e)
8: Add edge (N, D) to G,
for each N € nodesAffectingType(e).
9: end for
// Analysis from Section[9.3.4)]
10: for each method declaration M € P do
11: Add edge (M', M) to G,
for each M' € hierarchyMethods(M).
12: for each parameter x € formalParams(M) do

13: for each parameter y € hierarchyParams(x) do
14: Add edge (v,x) to G

15: end for

16: end for

17: end for

18: return G

120

9.3.6 Non-rewritable Overrides

The motivating example illustrates the need to determine when types cannot be
further generalized. Clearly, types of declarations from binary files (e.g., jar files)
are not rewritable because we do not have access to the source codef] Consider the
example interface java.util.List<E>, which declares a method iterator with return
type Iterator<E>. A class implementing List<E> cannot override iterator with a
return type of Iterator<? extends E> even though Iterator is covariant in its type
parameter. We use the influence graph to determine if a declaration can influence a
non-rewritable declaration. Any declaration that can reach a non-rewritable declara-
tion in the graph is also considered to be non-rewritable.

The motivating example shows that we must classify some declarations from source
as non-rewritable. MapEntryWList.add’s argument type, Map.Entry<K, V>, on line
is a parameterized type, which could be further generalized safely to Map.Entry<?
extends K, V> by the covariance of Map.Entry in its first type parameter. The argu-
ment’s type in the overridden method, WList.add, could not because it is just a type
variable (E). Generally, we classify an argument type or return type of a non-static

and non-final method not to be rewritable if the type is just a type variable.

Discussion: parent types are not rewritable. As mentioned in Section[9.2] our
analysis does not generalize parent type declarations (i.e., extends and implements
clauses). We chose not to rewrite parent types in order to improve the usability of the
refactoring tool and to simplify the analysis. We next discuss the rationale in detail.

If we were to generalize parent types, the influence analysis would be far less
intuitive to users of the refactoring tool as dependencies would no longer be traceable

by flows from only variable/member declarations. Rewriting parent types would

5Bytecode is often as malleable as source code. In principle our approach could apply to byte-
code. However, this would not address the issue of unavailable code—native code would still be
inaccessible—and, furthermore, Java bytecode does not preserve full type information for generics.

121

public interface OrderedIterator<E> extends Iterator<E>
{
E previous();
3
protected static class EntrySetIterator<K, V>
extends LinkIterator<K, V>
implements OrderedIterator<Map.Entry<K, V>>,
ResettableIlterator<Map.Entry<K, V>>
{
public Map.Entry<K, V> previous() { ... }
3

EntrySetIterator<K,V>
<: ResettableIterator<Map.Entry<K,V>>
<: Iterator<Map.Entry<K,V>>.
EntrySetIterator<K,V>
<: OrderedIterator<Map.Entry<? extends K,V>>
<: Iterator<Map.Entry<? extends K,V>>.

Figure 9.4. Simplified code example from the Apache collections library at the top.
Subtyping (interface-implements) relationships at the bottom, if we annotate K with
“? extends” only in the parent type OrderedIterator<Map.Entry<K,V>>.

122

significantly complicate the analysis, may cause decidability issues, and would not
significantly increase the number of declarations that could be rewritten. We explain
the issues using the example in Figure (9.4, which is a simplified version of a code
segment from the Apache collections library [5].

Consider rewriting the type OrderedIterator<Map.Entry<K,V>> in the implements
clause of EntrySetIterator. We inferred that OrderedIterator is covariant in its
type. However, rewriting OrderedIterator<Map.Entry<K,V>> to OrderedIterator<?
extends Map.Entry<K,V>> in a parent type declaration is not legal in Java since wild-
cards are not allowed in the outermost type arguments in parent type declarations |28,
Section 4.3].

Now consider rewriting the first parent-interface type to OrderedIterator<Map.
Entry<? extends K,V>>. The latter is a class type and legal in a parent type decla-
ration. This causes a compile error because it implies that EntrySetIterator<k,V>
implements two different instantiations of the same generic: Iterator<Map.Entry<?
extends K,V>> and Iterator<Map.Entry<K,V>>; Figure [9.4] also shows how this was
derived [

Another possibility is to rewrite the second parent-interface type to
Resettablelterator<Map.Entry<? extends K,V>> in addition to promoting the first
parent-interface type to OrderedIterator<Map.Entry<? extends K,V>>. Then,
EntrySetIterator<K,V>only implements a single instantiation: Iterator<Map.Entry<?
extends K,V>>. However, this is safe only if Resettablelterator is covariant in its
type parameter. If Resettablelterator is invariant, then ResettableIterator<Map.
Entry<K,V>> and ResettableIterator<Map.Entry<? extends K,V>> are not subtype-
related. We only want to replace types with more general supertypes without sacrific-

ing functionality. Hence, determining if one declared parent type can be generalized

6Interface ResettableIterator<E> also extends Iterator<E>.

123

not only depends on all the other parent types but also on whether the argument types
being generalized are passed to covariant type constructors. (Adding wildcards to a
type used to parameterize another is safe only if the parameterized type is covariant.)

Further complicating matters, it has been shown in past work [39,61] that intro-
ducing the wildcard annotation “? super” in parent type declarations makes deciding
the subtyping relation (determining whether one given type is a subtype of another
given type) highly likely undecidable.[] Rewriting parent types would then require our
tool to check if the generalized parent type would be within a decidable fragment. We
expect that most programmers would find the dependencies involving parent types to
be severely non-intuitive. This makes it difficult for users to choose which types they
want to rewrite and the types they want preserved. To make the influence analysis
more intuitive and avoid decidability issues, we restrict rewriting to types of variable

declarations and of members of classes and interfaces.

9.4 Method Body Analysis

We can infer safe definition-site variances of type parameters solely from the in-
terfaces or member type signatures of a generic. Only analyzing type signatures,
however, is more restrictive than necessary because a programmer can specify a more
specialized type than needed. For example, a method may take a List<String> as an
argument, but never invoke a method on the argument that contains a type parameter
in its type signature (e.g., it may only call the size method in the List interface). In

this case, the argument could be declared with the more liberal type List<?> without

"Subtyping in the presence of definition-site variance and contravariant type constructors in
parent type declarations was shown to be undecidable in [39]. [39, Appendix A] contained simple
Java programs with “? super” annotations in parent types that crashed Java 1.5 and 1.6 compilers
(javac) when checking example subtype relations. [61] identified a decidable fragment that does not
allow “? super” in parent types.

124

causing a type error, and the more liberal type would allow the method to accept

more types of list arguments. The class below presents a non-trivial example.

class Body<X extends Comparable<X>> {
int compareFirst(List<X> 1lx, X other) {
X first = 1x.get(0);
return first.compareTo(other);
}
}

Only analyzing the interface of the Body class restricts the greatest definition-site
variance we can infer for the type parameter to be invariance. The variance of Body
is constrained by the invariance of List in the first argument of the compareFirst
method. By taking into account how variables are actually used in a program, how-
ever, we may detect when the type of a variable can be promoted to a more liberal
type. In the compareFirst method body, only the get method is invoked on the 1x
argument. In the type signature of get, the type parameter of List occurs only in
the return type, a covariant position. Hence, only the covariant version of List is
required for the 1x variable, and its type can be promoted to List<? extends X>[f| In
this case, the (implicitly) specified use-site variance annotation, invariance, has been
replaced with covariance. Assuming this new type for 1x, we can also safely infer that
the definition-site variance of Body is now contravariance. We shall use this reasoning
for illustration next. []

It was easy to manually inspect and determine the most liberal use-site variance
required for argument 1x. The compareFirst has few lines of code and the type
expressions in the signature of the members accessed by 1x are simple (i.e. do not
contain any parameterized types). This reasoning becomes more difficult and error

prone as methods become longer and more parameterized types are involved. Also,

8The type signature of List<X>.get = (int) — X.

9The covariance of X in List<? extends X> is transformed by the contravariant method argu-
ment position that it occurs in. The other type occurrences of X in class Body also only constrain
dvar(X; Body) to contravariance.

125

changing a use-site annotation may cause a method to no longer override a previously
overridden method. Performing a method body analysis to infer use-site annotations,
thus, warrants automation. The remainder of this section presents how we generate
constraints from uses and we present sets of constraints generated from example

classes.

High-level picture. To infer use-site variance, we generate a set of constraint
inequalities between variance expressions in similar fashion to that described in Sec-
tion . Use-site variances can now vary (they integrate the result of a method body
analysis, whereas earlier they consisted of only the wildcard annotation on the type).
Hence, we add to the syntax of variance expressions a new kind of variable: If y
is a method argument declared with type c<vT> and X; is the i'" type parameter of
generic C, then uvar(X;; C; y) denotes the inferred use-site annotation for the i'" type
argument in the type of y.

Treating use-site variances as variables, in turn relaxes constraints on definition-
site variances. Consider the constraint on the inferred def-site variance of Body’s type
parameter that is generated from analyzing the type of method argument 1x if we

only analyzed type signatures.

dvar(X;Body) C — ® wvar(X; List<oX>)
= — ® (dvar(E;List) L 0)
= — ® dvar(E;List) = —® o0 = o,

where E is the type parameter of List.

dvar(E; List) refers to the definition-site variance of the type parameter E of
the List interface; it can only (safely) be invariance. This upper bound constrains
dvar(X; Body) to invariance and is too restrictive considering the limited use of 1x.
Our method body analysis would replace this constraint on dvar(X; Body) with the

following more relaxed one. The specified use-site annotation o has been joined with

126

uvar(E; List; 1x). Constraints on this variable are generated based on the limited use
of 1x. In this example, we would infer wvar(E; List; 1x) = + and dvar(X; Body) =
—. Further details of the constraint generation process performed during the method

body analysis can be found in Appendix [C]

dvar(X; Body) C —®(dvar(E; List) Ll o Ll uvar(E; List; 1x))
= — ® (oU ol uvar(E;List; 1x))

= — ® wvar(E; List; 1x)

9.5 Type Influence Graph Optimizations

As the number of declarations in the flow graph increases, so may the number of
unmodifiable declarations. In turn, fewer declarations will be rewritten because more
paths to unmodifiable declarations will exist in the graph. To allow more rewritable
declarations to be detected, the analysis ignores (i.e. does not add to the flow graph)
declarations that are not affected by the generalizations performed by the tool. It
is safe to ignore such declarations because, even if they were rewritable, their types
would not change from rewrites performed by the refactoring tool. Considering the
java.util.List.size method, for example, which returns an int, adding wildcards
to any instantiation of the List interface would never cause the size method to
return anything but an int. The expression 1.size() returns int, whether 1 has
type List<Animal> or List<?>, for instance.

The influence analysis also ignores declarations of parameterized types by using
results from the definition-site and use-site variance inference. Using the inference
we separate parameterized types into two categories. A variant type is a parameteric
type C<vT>, where generic C is safely (definition-site) variant (covariant, contravari-
ant, or bivariant) in at least one of its type parameters; otherwise, we call C<vT>

an invariant type. Because Iterator is covariant in its type parameter, for exam-

127

ple, Iterator<Animal> is a variant type. Only variant types can be refactored with
wildcards, when inferring definition-site variance solely from type signatures.
The influence analysis ignores declarations of the following types. Below we list

the types and explain why they are safe to ignore.

1. Primitive types (e.g., int, char) and monomorphic class types (e.g., String,

Object). These types are not affected by adding wildcards.

2. Type variables that are declared to be the types of declarations that do not affect
method overriding. These types cannot be further generalized by wildcards. For
example, a field or local variable declared with a type that is a type variable
would not be added to the flow graph. However, as explained in Section [9.3.6),
we cannot ignore argument types and returns types of non-static and non-final
methods if they are just type variables. Declarations of these types are added

to the flow graph.

3. Parametric types that are only specified with bivariant use-site annotations
(e.g., List<?>). These types cannot be further generalized no matter the rewrites

performed.

4. Parametric types that only contain specified use-site annotations that are greater-
than or equal-to (according to the ordering of Figure the inferred use-site
annotations. The rewrites performed by the refactoring tool never cause the
type of any declaration to require a use-site annotation that is greater-than the
inferred use-site annotation. The inferred definition-site variances only assume
that the inferred use-site annotations are written in type definitions. As a re-
sult, when inferring definition-site variance from only type signatures, variables
declared with invariant types are also ignored; in this case, adding a wildcard to
a variant type will never cause a wildcard to be added to an invariant type. For

example, assuming Iterator and List are covariant and invariant, respectively,

128

changing a declaration’s type from Iterator<Animal> to Iterator<? extends
Animal> will never require a wildcard to be added to the type of a variable
declared with List<Animal>. In the definition of Iterator, List could not be
applied to Iterator’s type parameter without causing Iterator to be invariant
and no longer be covariant in its type parameter. The variance analysis ensures
that only parameterized declarations with an over-specified use-site annotation

need to be rewritten.

When performing the method body analysis to infer use-site annotations (as de-
scribed in Section , the inferred use-site annotation in an invariant type may be
greater than invariance. For example, a method argument may be declared with an
invariant type (List<Animal>), but its use of the invariant type may be limited and
may support a greater use-site annotation than specified in the original program. If
a declaration has an inferred use-site annotation that is greater than the specified
annotation, then that declaration will be added to the flow graph. As a result, per-
forming the method body analysis may cause more declarations to be added to the
flow graph than with the signature-only analysis because now some declarations of
invariant types may be added to the graph. In turn, the number of rewritable dec-
larations may decrease. The tables in Figures [9.5) and show an instance of this

result.

9.6 Evaluation

Our refactoring tool allows users to modularly generalize classes by selecting
which declarations (of local variables, fields, method arguments, and return types) to
rewrite. Parametric types are generalized by adding wildcard annotations based on
inferred definition-site variances.

Section showed that the majority (53%) of interfaces and a large proportion

(22%) of classes in popular, large Java generic libraries are variant even though they

129

Library # P-Decl | # Rewritable | Rewriteable | Rewritten | Rewritten
Total P-Decl Total P-Decl % Total Percentage
classes 4900 4284 87% 569 12%
4900 4193 86% 584 12%
Java interfaces 170 153 90% 20 12%
170 148 87% 34 20%
total 5070 4437 88% 589 12%
5070 4341 86% 618 12%
classes 1553 1042 67% 217 14%
1553 1017 65% 229 15%
JScience interfaces 56 53 95% 43 7%
56 53 95% 44 79%
total 1609 1095 68% 260 16%
1609 1070 67% 273 17%
classes 3357 2567 76% 565 17%
3357 2491 74% 600 18%
Apache interfaces 46 38 83% 1 2%
46 38 83% 16 35%
total 3403 2605 7% 566 17%
3403 2529 74% 616 18%
classes 5794 3973 69% 355 6%
5794 3690 64% 384 7%
Cuava interfaces 69 57 83% 2 3%
69 56 81% 2 3%
total 5863 4030 69% 357 6%
5863 3746 64% 386 7%
classes 953 531 56% 127 13%
953 531 56% 139 15%
Trove interfaces 0 0 0% 0 0%
0 0 0% 0 0%
total 953 531 56% 127 13%
953 531 56% 139 15%
classes 1350 1085 80% 137 10%
1350 1067 79% 187 14%
JPaul interfaces 11 11 100% 0 0%
11 11 100% 1 9%
total 1361 1096 81% 137 10%
1361 1078 79% 188 14%
classes 17907 13482 75% 1970 11%
17907 12989 73% 2123 12%
Total interfaces 352 312 89% 66 19%
352 306 87% 97 28%
total 18259 13794 76% 2036 11%
18259 13295 73% 2220 12%

Figure 9.5. Variance rewrite statistics for all declarations with generic types.
Rewritable decls are those that do not affect unmodifiable code, per our flow analysis.
Rewritten decls are those for which we can infer a more general type than the one
already in the code. Shaded results are for the method body analysis, unshaded for
the signature-only analysis.

130

Library Flowsto | Flowsto-R
Avg. Size | Avg. Size
classes 61.10 1.23
61.37 1.16
Java interfaces 39.91 2.75
40.08 2.76
total 60.39 1.29
60.66 1.21
classes 52.04 5.42
54.59 5.49
JScience interfaces 10.21 0.66
10.27 0.66
total 50.59 5.19
53.05 5.25
classes 119.81 0.69
122.31 0.72
Apache interfaces 84.61 0.61
84.63 0.61
total 119.33 0.69
121.80 0.71
classes 289.27 0.97
313.20 0.93
Guava interfaces 134.59 3.70
154.91 3.73
total 287.45 1.01
311.34 0.97
classes 13.93 0.26
13.95 0.28
Trove interfaces N/A N/A
N/A N/A
total 13.93 0.26
13.95 0.28
classes 15.60 0.50
15.98 0.53
JPaul interfaces 0.73 0.73
0.73 0.73
total 15.48 0.50
15.86 0.53
classes 139.21 1.28
147.74 1.26
Total interfaces 58.36 2.23
62.44 2.24
total 137.65 1.30
146.10 1.28

Figure 9.6. The flows-to set of a declaration D is the set of all declarations that
are reachable from/influenced by D in the influence graph. Flowsto Avg. Size is the
average size of the flows-to set for all declarations in the influence graph. Flowsto-R
Avg. Size is the average size of the flows-to set for all rewritable declarations in the
influence graph.

131

Library # Rewritable | Rewritable Rewritten Rewritten
V-Decls | V-Decl Total | V-Decl % | V-Decl Total | V-Decl %

classes 1115 746 67% 563 50%

1115 708 63% 529 47%

Java interfaces 47 31 66% 20 43%

47 31 66% 21 45%

total 1162 7T 67% 583 50%

1162 739 64% 550 47%

classes 717 349 49% 217 30%

720 350 49% 218 30%

JScience interfaces 51 48 94% 43 84%

51 48 94% 43 84%

total 768 397 52% 260 34%

771 398 52% 261 34%

classes 1197 759 63% 544 45%

1201 730 61% 532 44%

Apache interfaces 6 2 33% 1 17%

6 2 33% 1 17%

total 1203 761 63% 545 45%

1207 732 61% 533 44%

classes 1906 1088 57% 355 19%

1906 990 52% 336 18%

Cuava interfaces 11 8 73% 2 18%

11 8 73% 2 18%

total 1917 1096 57% 357 19%

1917 998 52% 338 18%

classes 367 226 62% 127 35%

367 226 62% 127 35%
Trove interfaces 0 0 0% 0 0%
0 0 0% 0 0%

total 367 226 62% 127 35%

367 226 62% 127 35%

classes 253 139 55% 137 54%

260 146 56% 144 55%
JPaul interfaces 0 0 0% 0 0%
0 0 0% 0 0%

total 253 139 55% 137 54%

260 146 56% 144 55%

classes 5555 3307 60% 1943 35%

5569 3150 57% 1886 34%

Total interfaces 115 89 7% 66 57%

115 89 7% 67 58%

total 5670 3396 60% 2009 35%

5684 3239 57% 1953 34%

Figure 9.7. Variance rewrite statistics for declarations with variant types (i.e., using
generics that are definition-site variant). Rewritable decls are those that do not affect
unmodifiable code, per our flow analysis. Rewritten decls are those for which we can
infer a more general type than the one already in the code. Shaded results are for the
method body analysis, unshaded for the signature-only analysis. There are slightly
more variant decls in the method body analysis because more generics are variant.

132

were not designed with definition-site variance in mind. This demonstrates the po-
tential impact of the refactoring tool if all declarations were rewritable even for users
who are not familiar with definition-site variance.

Not all declarations are rewritable, however, as discussed in previous sections.
Changing the type of one variable, for example, may require changing the type of
a method argument that is not declared in available source code. To evaluate the
potential impact of the refactoring tool, we calculated how many declarations of pa-
rameterized types are rewritable. We applied the refactoring tool to six Java libraries,
including the core Java library from Oracle’s JDK 1.6, i.e., the classes and interfaces
of java.*. The other libraries are JScience [22], a Java library for scientific comput-
ing; Guava [10], a superset of the Google collections library; GNU Trove [25]; Apache
Commons-Collection [5]; and JPaul [56], a library supporting program analysis.

The results of our experiment appear in Figures[0.5] (9.6, and[9.7 Overall, we found
significant potential for generalizing types, even under the constraints of our flow
analysis, which only allows generalization if the type in question does not influence
unmodifiable library types. When considering all parameterized types with a method
body analysis, 73% of “parameterized decls” or “p-decls” are rewritable or do not
influence an unmodifiable type. Figure [0.7s table contains statistics for “variant
decls” or “V-Decls”, which are the subset of declarations that are declared with
variant types. The majority of variant declarations (57%) can also be rewritten.

“Rewritten P-decls” (and V-decls) are parameterized declarations that not only
can be rewritten with wildcards but were also actually generalized by the tool because
they contain a specified use-site annotation that is less general than the corresponding
inferred use-site annotation. For example, a rewritable declaration can be declared
with type, Iterator<? extends Animal>; this type does not require a rewrite, how-
ever, because the inferred use-site annotation, +, is not greater than the specified

use-site annotation, +.

133

Even in these sophisticated generic libraries written by experts, who are more
disciplined with specifying use-site annotations, we found significant potential for
generalizing types. Under the most conservative scenario (considering all param-
eterized types, examining only type signatures), 11% of all the types that appear
anywhere in these libraries are less general than they could be! This number grows
to 34% if only variant types are considered. Programmers can use our refactoring to
safely perform such rewrites. In these libraries, some variant types were used with
more discipline, such as the interface com.google.common.base.Function<F,T>, which
is contravariant in its “argument” type F and covariant in its “return” type T. In
the class com.google.common.util.concurrent.Futures, for example, for many dec-
larations of type Function, programmers specified wildcard annotations to reflect the
inferred definition-site variances (e.g., Function<? super I, ? extends 0>). Other
variant types had many declarations where use-site annotations were skipped, such as
org.apache.commons.collections15.Transformer<I,0>, java.util.Iterator<E>, and
java.util.Comparator<T>.

The last two columns in the first table (Figure list the average sizes of the
flows-to sets for parameterized declarations. A flows-to set for a declaration x is the
set of declarations that x influences according to our type influence analysis. The
flows-to sizes are quite large (146.1 on average), showing that manually checking if a
declaration’s type is rewritable is tedious and error-prone. The “Flowsto-R” column
lists the average sizes of flows-to sets only for declarations that are rewritable. As
expected, the rewritable declarations typically influence fewer declarations than non-

rewritable ones.

9.7 Comparison to Related Work

We next compare our work to past approaches that infer use-site variance anno-

tations.

134

Animal first(List 1) {
Iterator itr =
1l.iterator(); Original program
return (Animal) itr.next();

}
Animal first(List<Animal> 1) {
Iterator<Animal> itr =

1l.iterator(); After Kiezun et. al refactoring
return itr.next(); // cast removed

}
Animal first(List<? extends Animal> 1) {
Iterator<? extends Animal> itr =

l.iterator(); After variance refactoring
return itr.next();

by

Figure 9.8. Refactoring resulting from applying Kiezun et al.’s [41] and then our
refactoring tool

135

Kiezun et al. [41] offered an automated approach to adding type parameters to
existing class definitions. The introduction of type parameters to a class often re-
quires instantiating generics or determining the type arguments to instantiate uses
of a generic. Kiezun et al.’s approach may instantiate a generic with a wildcard an-
notation but only when it is required, for example, to preserve a method override.
Consider a non-generic class D that (1) extends the non-generic version of the class
TreeSet and (2) contains a method addA11(Collection c1) that overrides a method
in TreeSet. In the generic version of TreeSet<E>, the addAll method has the sig-
nature addAll(Collection<? extends E> c2). Class D can be parameterized with
type parameter E and then can extend the generic version, TreeSet<E>. Preserving
the method override of addAll requires changing the method argument c1’s type to
Collection<? extends E>.

A new wildcard is introduced only when an existing wildcard from the original
program requires the new wildcard to preserve the ability to compile the code and
to preserve method overrides. Kiezun et al.’s approach does not infer definition-
site variance and would not introduce a wildcard if the original program does not
access a declaration with a wildcard in its type. However, Kiezun et al.’s proposed
refactoring would be a useful preprocessing step to our refactoring tool. After classes
are parameterized with type parameters, our tool can take advantage of the variance
inference to add wildcards to support greater reuse. This series of steps, for instance,
could perform the refactoring in Figure 0.8/ Kiezun et al.’s approach would not add
wildcards in this example because wildcards are not required for the program to
compile. Our refactoring tool can infer that Iterator is covariant and that method
argument 1 is only using the covariant operations of List in foo’s method body.

Craciun et al. [15,21] offered an approach to inferring use-site annotations, where
a parametric type is modeled as an interval type with two bounds: A lower bound

and an upper bound for stating the types of objects that can be written to or

136

read from, respectively, an instance of a generic. In this calculus, supertypes have
wider ranges: List<[T,Tyl> <: List<[Sy,Syl>, if S, <: Tp and Ty <: Sy. Types
List<[T,T]>, List<[L,T]>, and List<[T, T]1> are abbreviated as List<®T>, List<®T>,
and List<ST>, where L and T are subtypes and supertypes of every type, respec-
tively. Furthermore, the type of the this reference must be specified for each instance
method in a generic. An example class in their language is provided below (with the

leftmost type of each signature corresponding to the type of this):

class List<A> {

List<®A> | A getFst() { ... }
List<©A> | void setFst(A a) { ... }
public final Comparator<©A> comp;

3

When fields are declared with parameteric types instead of type variables, however,
Craciun et al.’s approach does not infer the greatest use-site variance that supports
all of the available operations. A contravariant instantiation of the List class above,
List<oT>, should be able to read the comp field as an instance of Comparator<oT>.
However, Craciun et al.’s type promotion technique |15, Section 4.2], would only be
able to read a Comparator<®T> from the comp field of a List<oT>. A Comparator<dT>
cannot access its compare method. Furthermore, if a method argument x of type
List<T> was used in the method body only in the assignment “Comparator<&T> c =
x.comp;”, the use-site annotation in the type of x inferred by the approach would be
invariance. Our tool, however, would rewrite the type of x with a greater (contravari-
ant) use-site annotation; more generally, our approach infers more liberal use-site

variances when fields are of parametric types.

137

CHAPTER 10
RELATED WORK

This chapter presents relevant related research and comparisons to our work. We
also discuss how this research fits in the broader field of programming languages by
explaining how this work relates to and can be applied to other subfields of program-

ming languages.

10.1 Related Research on Variance

Definition-site variance was first investigated in the late 80’s [4],/11,/18], when
parametric types were incorporated into object-oriented languages. For example, [1§]
presents a proposal for making FEiffel type safe, where type attributes are used to
declare definition-site variances of generic type parameters. Definition-site variance
has experienced a resurgence in recent years, as newer languages such as Scala [51]
and C+# [31] chose it as means to support variant subtyping. Perhaps surprisingly,
with such a long history, it has only recently been formalized and proven sound in a
non-toy setting [24].

Previous work focuses on the safety characteristics of definition-site variance, not
on how such variance can be inferred (other than for basic, non-recursive types).
There has never been a study of how to determine definition-site variance in the
face of recursive type definitions—which are ubiquitous in object-oriented programs.
This work is the first, to our knowledge, to determine safe definition-site variances
with recursive type definitions. Our implementation solves the problem fully, not

just for the four example cases presented in Section [3.3] Any recursive constraint on

138

definition-site variances can be encoded in the variance constraint language presented
in Section Our constraint-solving algorithm (presented in Section computes
the most general definition-site variances that satisfy a system of the constraint in-
equalities.

Use-site variance was introduced as structural virtual types by Thorup and Torg-
ersen [62] in response to the rigidity in class definitions imposed by definition-site
variance. A language with virtual types supports virtual type members, also known
as abstract type members in Scala [51, Section 4.3], where, in addition to fields and
methods, a type can be declared as a member of a class. Virtual type members can
be overridden or instantiated in subclasses. For example, a List class may have a
virtual type member ElemType that represents the type of the elements stored in the
list. A class IntegerList may extend List and override ElemType by setting it to
the type IntegerList. A possible implementation of these two classes in a Java-like

language supporting virtual types is below:

class List {

type ElemType <: Object

void add(ElemType e) { ... }
ElemType get(int index) { ... }

}

class IntegerList extends List {
type ElemType == Integer;

}

Structural virtual types avoid the need to create a subclass in order to create
an instantiation of a type. They allow bindings to type members to be speci-
fied in type expressions. The IntegerList class above can be emulated with the
type expression List [ElemType==Integer]. Use-site variance is supported with type
expressions such as List[ElemType<:0bject], where List[ElemType==Integer] <:
List [ElemType<:0bject].

Java does not support type members but does facilitate abstract types using

generic type parameters. The concept of use-site variance from structural virtual

139

types was later applied to Java generics by Igarashi and Viroli [33]34]. This work
formalized use-site variance by developing a formal language model that extended
Featherweight GJ with variant parametric types (VPTs). They also generalized the
notion of use-site variance to also support contravariant and bivariant use-site anno-
tations; the approach in [62] only supported covariant use-site variance.

The elegance and flexibility of the approach evoked a great deal of enthusiasm.
As a result, use-site variance was quickly introduced into Java by extending it with
wildcards [63]. Java wildcards facilitate use-site variance and support capabilities that
are not provided by VPTs. Unlike VPTs, Java wildcards do not rely on read- and
write-only semantics. For example, invoking the get () method to read an element
on an instance of the VPT List<-Number> is prohibited because this type returns a
write-only version of List. Invoking get() on the contravariant wildcard type List<?
super Number>, however, does type check. That method invocation would be typed
with the top type, Object, since any supertype of Number is still a subtype of Object.
Also, a List<+Number> does not allow calling add() to add null to itself. A List<?
extends Number> facilitates this operation.

Java wildcards support further capabilities inspired by existential types such as
capture conversion |28, Section 5.1.10] and wildcard capture [28| Section 15.12.2.7],
where types hidden by wildcards can be opened in invocations to polymorphic meth-
ods. These further capabilities raise practical issues not addressed by VPTs. We
explained these issues in Section [5.2]

The flexibility of wildcards has also proved challenging to both researchers and
practitioners. The soundness of wildcards in Java has only recently been proven [12],
and the implementation of wildcards has been mired in issues [15,59}61]. Decidability
of subtyping with wildcards is still an open problem [29]. Subtyping with definition-
site variance was shown to be undecidable [39]. Since definition-site variance can be

emulated with use-site variance [3], subtyping with use-variance is likely also unde-

140

cidable. Greenman et al. [29] have identified a fragment of Java with wildcards for
which their algorithm for deciding subtyping is sound and complete. After surveying
13.5 millions lines of open-source Java code, they found that all surveyed code was
within that decidable fragment. This suggests that subtyping with use-site variance
is decidable for most practical Java programs.

[17] discusses the complex relationship between type-erasure and wildcards and
the difficulty of providing runtime information about generic type instantiations in
that context. [35] presents variant subtyping between path types that describe eract
and ineract qualifications/paths to nested type definitions. Let T be a path type
and C and D be class names. The exact qualification T@C accesses a class C that is a
member of the type definition for T. The inexact qualification T.C accesses a class C
that is defined at any level of nesting within T’s type definition. Exact qualifications
are invariant type constructors: TeC is a subtype of T@D only when C = D. Inexact
qualifications are covariant type constructors: T.C is a subtype of T.D when class C

extends class D and both classes are inside the definition of type T.

Operations Available to a Variant Type

The work of Viroli and Rimassa [65] attempts to clarify when variance is to be
used, introducing concepts of produce/consume, which are an improvement over the
read/write view. Under this view, expression variables of parameteric types (C<T>)
that only produce elements of the type argument (T) should be annotated with ‘7
extends’ (C<? extends T>). Similarly, parameteric types of variables that only con-
sume should be annotated with ‘? super’. Using that perspective, that work presents
access restrictions rules to compute the signature of members of generic definitions
given a parametric type. The producer/consumer view does not further clarify the
signature of members that include parametric types C<T> that include a class type pa-

rameter. Our approach offers a generalization and a high-level way to reason soundly

141

about the variance of arbitrary nested type expressions. The variance of member type
signatures can be used for determining which members are available to a variant ver-
sion of a type. We demonstrate this benefit with the code example in Figure We
will explain how our approach can be used to determine which non-static methods are
available to an instance of SimpleGen<? super T>, where T is some type expression.
In this case, available methods are methods that can be called with a non-null value.
If calling a method with any non-null value causes a compiler (a type checking) error,
then that method is considered not to be available.

A non-null value can clearly be passed to methl when invoking that method on
an instance of SimpleGen<? super T>. The argument type of methl is just the class
type parameter E, so it is easy to determine that methl is available to consumers.
Static method fool demonstrates that methl is available because the method call
sg.methl(str) in its body type checks.

The argument types in the remaining methods are parameteric types. Determining
which of the remaining methods are available to a SimpleGen<? super T> is not clear
with the producer/consumer view. The only other available method is meth3. Using
our formalism, it is easy to determine that method meth3 is available but methods
meth2 and meth4 are not. Our approach can easily determine that class type parameter
E appears contravariantly in the type signatures of methl and meth3. Hence, these
methods are available to a contravariant projection of SimpleGen. Method foo3 type
checks, which confirms the availability of meth3. E appears invariantly in meth2 and
covariantly in meth4; so these two methods are not available to a SimpleGen<? super
T>.

The compiler error messages that result from compiling methods meth2 and meth4
are complex. They do not provide the essence of why they do not compile because
Java does not have the notion of the variance of a position. For example, the error

message resulting from trying to compile meth4 with javac version 1.6.0.65 is below.

142

public class SimpleGen<E>

{

¥

E elem;
SimpleGen(E elem) { this.elem = elem; }

// available to SimpleGen<? super E>
public void methl(E arg) { }

// not available to SimpleGen<? super E>
public void meth2(Vector<E> arg) { }

// available to SimpleGen<? super E>
public void meth3(Iterator<? extends E> arg) { }

// not available to SimpleGen<? super E>
public void meth4(Comparable<? super E> arg) { }

public static void fool(SimpleGen<? super String> sg,
String str)
{
sg.methl(str); // OK, type checks
}
public static void foo2(SimpleGen<? super String> sg,
Vector<String> vstr)
{
sg.meth2(vstr); // error, does not type check
}
public static void foo3(SimpleGen<? super String> sg,
Iterator<? extends String> itr)
{
sg.meth3(itr); // OK, type checks
}
public static void foo4(SimpleGen<? super String> sg,
Comparable<? super String> cstr)
{
sg.meth4(cstr); // error, does not type check
}

Figure 10.1. Code example for investigating which non-static methods are available
to an instance of SimpleGen<? super T>, where T is some type expression. In this
example, available methods are methods that can be called with a non-null value. If
calling a method with any non-null value causes a compiler (a type checking) error,
then that method is considered not to be available.

143

meth4 (java.lang.Comparable<? super capture#537
of 7 super java.lang.String>)
in SimpleGen<capture#537 of 7 super
java.lang.String>
cannot be applied to
(java.lang.Comparable<capture#407
of ? super java.lang.String>)

10.2 Variance and Programming Language Research
This section relates the work of this dissertation to the broader field of program-
ming languages. Specifically, we discuss other subfields of programming languages

and how they relate to the approach presented in this dissertation.

10.2.1 Nominal Subtyping and Structural Subtyping

Nominal subtyping [53, Section 19.3] is the ability to declare one type to be a
subtype of another type. Object-oriented languages facilitate nominal subtyping by
allowing one class to declare that it is extending another class or implementing an
interface. When one type declares that it is a subtype of another, the semantics of
the language should ensure that the subsumption principle is satisfied for declared
subtype relationships. In the case of Java, when class C is declared to extend another
class D, C is a subtype of D. Also, class C inherits all of the operations from class D.
Hence, nominal subtyping in Java satisfies the subsumption principle.

Structural subtyping |14] is defined using the structure of types. Languages with
structural subtyping support type constructors, also known as type operators [53,
Chapter 29]. A type constructor is a generalization of a generic and is a function that
returns types. The ref type constructor in ML [47], for example, takes in a type T
and returns a type representing a reference cell storing values of type T.

Structural subtyping does not require programmers to declare one type to be a

subtype of another. A type system supporting structural subtyping will assign vari-

144

ances to arguments of type constructors that are defined in a language specification.
Type constructors defined in the language are operators for aggregrating simpler
structures into more complex structures. Only those type constructors will support
variant subutyping. For example, a product type [53, Section 11.6], T; X Ty, represents
an immutable pair of elements (z,y), where the first element x is of type T; and the
second element y is of type Ty. Since pairs are immutable, products are covariant in
their two element types. For example, if int <: real, then int X int <: real X real.

Nominal and structural subtyping each have their own advantages and disadvan-
tages. Structural subtype relationships are not required to be declared by program-
mers. This supports unanticipated use of one type as another. However, structural
subtyping only supports variant subtyping for a fixed set of type constructors that
are defined in a language specification. Structural subtyping rules do not establish
variant subtyping with user-defined type constructors.

This dissertation investigates subtyping with user-defined type constructors, such
as generics. It focuses on integrating nominal subtyping and parametric polymor-
phism. In addition, Section provides insights that are useful for determining how
to assign variances to arguments of type constructors in general.

Nominal subtyping allows programmers to extend software without modifying
existing code by declaring that a newly created type is a subtype of an existing type.
Software extension with new data types is common in practice [55]. Variance allows
code with parameterized types to be applied to new data types. Supporting software
extension without modification is discussed further in Section [10.2.2]

Currently, most programming languages do not support both nominal and struc-
tural subtyping. Malayeri et al. [42] investigated supporting both nominal and struc-
tural subtyping in a single language called Unity. However, Unity does not support
generics. That work did not investigate variant subtyping between user-defined type

constructors. We briefly discuss what this combination looks like in Section [11.2

145

10.2.2 Nominal Subtyping and Software Extension

Nominal subtyping is a key mechanism in object-oriented languages to designing
software entities that follow the open-closed principle [46]. This principle states that
“software entities (classes, modules, functions, etc.) should be open for extension, but
closed for modification”. In other words, software should be able to be extended with
new features without modifying existing code. Nominal subtyping supports software
extension without modifying existing code because instances of new types can be used
where instances of existing types are expected. For example in Java, a new class may
implement an interface that existing methods expect as arguments. More generally,
nominal subtyping makes it easy to extend software with new classes or datatypes
without modifying existing code.

However, adding new operations that vary by type is difficult in pure object-
oriented languages. Type-varying operations are implemented as instance methods in
classes. A method is overridden in a subclass to implement the appropriate behavior
for that subclass. Adding a new type-varying operation requires modifying existing
classes to add a new instance method that implements the operation.

In summary, object-oriented languages support adding new datatypes without
modifying existing code because of nominal subtyping. Adding type-varying opera-

tions requires modifying existing code in pure object-oriented languages.

10.2.3 Nominal Subtyping and Functional Languages

Nominal subtyping is not supported in most pure functional languages [20] such as
Haskell [38,|43]. In pure functional languages, type-varying functions operate over al-
gebraic datatypes |38, Section 4.2.1] also known as variants [53), Section 11.10]. Terms
of an algebraic datatype are generated by a finite set of constructors or functions that

return terms of the datatype. For example, the following line of Haskell code declares

146

an algebraic datatype Tree to represent a binary tree of integers. Tree is declared

with two constructors, Empty and Node.

data Tree = Empty | Node Int Tree Tree

This line states that a Tree can be either of the following:
1. An empty tree represented by the constructor Empty.

2. A node that stores an integer (an Int) and has two subtrees. The constructor
Node can be thought of as a function that returns a new Tree given an Int and

two instances of Tree.

Functions on algebraic datatypes are implemented using pattern matching |38,
Section 3.17], which is a case analysis on the structure of the term. The structure
of a term is determined by the constructor used to create the term. The following
function computes the height of a Tree using case analysis on the structure of the

input Tree.

height :: Tree -> Int
height Empty = 0
height (Node num left right) = 1 + max (height left) (height right)

The first line declares the type of function height. The second line states that
if an instance of Tree was generated using constructor Empty, then height returns 0.
The last line states that the height of a Tree of the form (Node num left right) is
one plus the larger of the two heights of the subtrees left and right.

As shown in the example above, type-varying functions are not members of a
type, as in object-oriented languages. Unlike the case in object-oriented languages,
new type-varying functions can be added without modifying existing code.

Programs in purely-functional languages depend on a closed-world assumption of
datatypes. Functions that take in an algebraic datatype expect terms to be in one of

a finite set of forms. This conflicts with the ability to apply existing code to new data

147

types, which is a goal of nominal subtyping. Adding a new constructor/data type to
an algebraic datatype requires updating every function that takes in that type.

In summary, software can be extended either by adding new data types or new
operations. Object-oriented languages support adding new data types without mod-
ifying existing code, but adding new operations requires modifying existing code.
Conversely, functional languages only support adding new operations without mod-
ifying existing code. Supporting the ability to add both data types and operations
without modifying existing code is known as the expression problem [19,54,|66].

Robbes et al. [55] investigated which type of software extension, new datatypes
or new operations, is more common. This work analyzed software projects from the
Squeaksource repository [60] that were implemented in the purely object-oriented
language, Smalltalk [27]. More than half a billion lines of code, distributed over
2,505 projects, and 111,071 commits were analyzed. They found that both kinds
of extensions occur with roughly the same frequency. Hence, subtyping enables a
common kind of software extension without modifying existing code. They also found
that larger class hierarchies over time tend to need more operation extensions than

datatype extensions.

10.2.4 Generalized Constraints with Existential Types

Emir et al. [24] presented a calculus modeling C# with definition-site variance
and generalized constraints. Generalized constraints are lists of subtyping constraints
between arbitrarily complex types. For each subtyping constraint T <: U, T and U are
called the lower bound and the upper bound of the constraint, respectively. Also,
for each constraint, neither the lower bound nor the upper bound are required to be
a type variable. This section discusses our initial investigation of how our approach
to reasoning about variance may provide a general framework for reasoning about

generalized constraints. For example, we describe in Section [10.2.4.2| how to reason

148

about generalized constraints with existential types, which are not supported in the
formalism of [24].

A method’s generalized constraints can be used to add a locally assumed bound
on a class type parameter such as in the code example below, taken from [24], Section

1.2]. A subtype constraint T <: U is expressed in C#’s syntax as T : U.
interface ICollection<X> {

void Sort() where X : IComparable<X>;
bool Contains(X item) where X : IEquatable<X>;

These additional constraints are assumed to hold only for the method that declares
them. If method Sort () had a method body, then, within that method body, methods
available to instances of IComparable<X> can also be invoked on instances of X.

Calling a method with additional constraints requires that actual type arguments
satisfy the constraints. For example, method Sort() can be invoked on an instance

of ICollection<T> only if T <: IComparable<T>.

10.2.4.1 Deconstructing Generalized Constraints

Deconstructing generalized constraints is the process of inferring subtype rela-
tionships between subterms of types occurring in the generalized constraints. If the
subtype relationship T <: U holds, deconstructing this relationship investigates which
subtype relationships must have been derived in order to derive T <: U. We demon-
strate this process using the code segment in Figure [10.2] All class type parameters
in this example are implicitly declared to be invariant.

Type parameters of generic methods are declared in generalized constraints. Any
type variable in a method’s generalized constraint that is not a class type parameter
is a type parameter of the method. For example, type variables C and D are type

parameters of method EqTuple in class Exp.

149

abstract class Exp<X> {
public abstract X Eval();
public abstract bool Eq(Exp<X> that);

/** This is a generic method with type parameters
* C and D introduced in the generalized constraint.
*/
public abstract bool EqTuple<C,D>(Tuple<C,D> that)
where Tuple<C,D> : Exp<X>;
3
class Tuple<A,B> : Exp<Pair<A,B>> // class Tuple extends Exp
{
public Exp<A> el;
public Exp e2;
public Tuple(Exp<A> el, Exp e2) {
this.el = el; this.e2 = e2;
X
public override Pair<A,B> Eval() {
return new Pair<A,B>(el.Eval(), e2.Eval());

}

public override bool Eq(Exp<Pair<A,B>> that) {
// Note that Tuple<A,B> <: Exp<Pair<A,B>>,
// which satisfies constraint of EqTuple.
return that.EqTuple<A,B>(this);

}

/** The constraint inherited from the overridden
* method specializes to
* "where Tuple<C,D> <: Exp<Pair<A,B>>"
* is inherited from the overridden method.
*/

public override bool EqTuple<C,D>(Tuple<C,D> that) {
return el.Eq(that.el) && e2.Eq(that.e2);

}

}

Figure 10.2. Example C# program with generalized constraints. This example is
based on an example from [24, Section 2.5].

150

The above program type checks according to the typing rules in [24]. In particular,
generic method Tuple.EqTuple (method EqTuple in the class Tuple) type checks be-
cause of deconstructing generalized constraints. Consider the body of generic method

Tuple.EqTuple. Note the following four expression typings:
1. el has type Exp<A>.
2. e2 has type Exp.
3. that.el has type Exp<C>.
4. that.e2 has type Exp<D>.

In order for the body of Tuple.EqTuple to type check, it must be the case that Exp<C>
<: Exp<A>; otherwise, the method invocation e1.Eq(that.e1) would not type check.
Similarly, Exp<D> <: Exp because of method invocation e2.Eq(that.e2). These
two subtype relationships can be inferred from the generalized constraint “Tuple<C,D>

Exp<Pair<A,B>>" inherited from the parent class. In order to derive Tuple<C,D>
<: Exp<Pair<A,B>> those two subtype relationships must have been derived. [24,
Section 2.5] explains in detail how those two subtype relationships are derived from
the generalized constraint. The derivation relied on the fact that classes Exp and

Tuple are declared to be invariant in all of their type parameters.

10.2.4.2 Deconstructing Existential Subtyping

Rules for deconstructing subtyping relationships between non-existential types are
presented in [24, Section 3]. If C<X> is covariant or invariant and C<T> <: C<U>, then
rule DECON™ would conclude T <: U. Similarly, if C<X> is contravariant or invariant, rule
DECON~ gives the implication C<T> <: C<U> = U <: T. We present a generalization
of these rules for deconstructing both existential and non-existential types using the

predicate var, our novel notion of a variance of a type defined in Figure [6.2]

151

Suppose List is invariant and consider the following subtype relationship:

List<? extends T> <:List<? extends U> (10.1)

Although List is invariant, we should be able to deduce T <: U because of the “?
extends” wildcard annotation. This is because both T and U occur in the same
covariant position. We apply wvar to provide rules Decon-B and Drcon-R below.
They are powerful yet simple rules for deconstructing subtyping relations. They
deconstruct existential subtyping and non-existential subtyping, respectively. The

syntax of terms and the definition of judgments used in these are in Chapter [6]

v > var(X;B) v > var(X;R)

AF [U/XIB<: [U/X]IB AF [U/XIR <: [U/XIR

AFv(U,U) A Fv(u,U)

(DeCON-B) (DECON-R)
The following example applies Decon-B to subtyping relationship . The
wildcard types in that relationship were translated to their existential versions (e.g.,

List<? extends T> is translated to ¥ — [L-T].List<Y>).

+ > var(X; Y — [L-X].List<Y>) = +

AF [T/X13Y — [L-X].List<Y> <: [U/X]3Y — [L-X] List<Y>

DEcon-B
AF+(T,U)=T<:U

10.2.4.3 Boundary Analysis and Deconstructing Constraints
Unfortunately, the boundary analysis described in Section [6.7.1} could no longer
be performed as a preprocessing step with deconstructing generalized constraints. For

example, assuming that Itr is covariant and that no bounds are ignored, then Itr<?

152

super T> <: Itr<? super U> = U <:T. However, if the subtype relation can ignore
useless bounds, then we cannot make safe assumptions about types in useless bounds.

The previous implication would no longer be safe to assume. If the subtype re-
lation ignores useless bounds, then by the joining of use-site and definition-site vari-
ances, lower bounds in instantiations of covariant generics are ignored. For example,
Itr<? super T> = Itr<?> because applying the contravariant use-site annotation ‘?
super’ to a covariant generic Itr returns a bivariant version of the generic. Recall
that, Itr<? super T> = Itr<?> denotes Itr<? super T> <: Itr<?> A Itr<?> <: Itr<?
super T>. Since T was arbitrary, we could establish Itr<? super String> <: Itr<?>
<:Itr<? super Dog>. Applying rule DEcon-B to this relationship would derive String
<: Dog, which is not safe.

In order for the addition of the Decon rules to be safe, var must not be conserva-
tive. var must compute the greatest possible variance safe for the subtype relation.
For example, suppose the subtype relation ignores useless bounds and the following

safe relationship is derivable:

JY — [String-Object].Itr<Y> <: Y — [Dog-Object].Itr<Y>

Then it must not be the case that var(X; 3Y — [X-O0bject].Itr<Y>) < %, since String
and Dog are not subtype related. The judgment *(T, U) holds for any two types T and U.
Therefore, deriving *(String, Dog) does not add any additional subtype assumptions.

In order for the deconstruction rules to be safe, the following converse of the

subtype lifting lemma must hold for the subtype relation without the Decon rules.

At [U/XIT <: [U//X]T and ¥ < var(X;T) = A F v(U, V) (10.2)

This implication does not hold for the VarJ calculus by the following counter ex-

ample. var(X; Y — [X-0bject].Itr<¥Y>) = —, and —(String, Dog), which is equivalent

153

to Dog <: String, is not derivable. The following subtype relationship is derivable in

VarlJ:

[String/X](3Y — [X-Object].Itr<Y>)
= JdY — [String-Object].Itr<Y>
<:dY — [1-0Object].Itr<Object>
<: J0.I1tr<Object>

<:dY — [Dog-Object].Itr<Y>

= [Dog/X](JY — [X-Object].Itr<Y>)

The judgment above violates implication ((10.2]).

Given the above discussion, we describe two possible language design options for

supporting generalized constraints with both definition- and use-site variance.

1.

The more complex option is to have a subtype relation that ignores useless
bounds, which also requires a more complex definition of var that ignores useless
bounds. Although ignoring useless bounds allows more subtyping, performing
boundary analysis and deconstructing generalized constraints would impose the
burden of understanding boundary analysis on the programmer. For example,
in order to determine if the compiler will deduce U <: T from the constraint,
JY — [T-Object].Itr<Y> <: JdY — [U-Object].Itr<Y>, the programmer would

need to determine if T and U are useless bounds.

The simpler option is to have a subtype relation that never allows narrowing the
range of an existential type variable in the supertype. This does not support
as much subtyping as the first option. We expect programmers to find such
a subtype relation easier to understand. Furthermore, since type bounds are
specified by programmers, a programmer may expect the compiler to draw

conclusions about the specified bounds.

154

10.2.5 Proofs of Language Properties

Formal language definitions are detailed enough to support rigorous proofs of
language properties. Chapter [6] presented VarlJ, a formal language modeling a subset
of Java with both definition-site variance and wildcards. Appendix [B| contains the
type soundness proof of VarJ.

Proofs of language properties are typically more detailed than mathematical proofs
in other subjects. This occurs because type systems are defined in a intuitionistic
logic, which is more generally known as constructive logic [44]. In this logic, a propo-
sition P is true if and only if there exists a proof of P. Unlike classical logic, we
cannot assume the law of the excluded middle. That is, we cannot assume PV —P.
Constructive logic requires a proof of P or a proof of =P in order to prove PV —P.

The set of true propositions in constructive logic is closed under a finite set of
axioms. Since a proposition is true iff there is a proof of it, a proposition is true
only if it can be derived from a finite set of axioms. This corresponds to how most
compilers semantically analyze programs. For example, a compiler will assign a type
to an expression only if there are rules from the language specification to support
that claim.

Language properties can be proved by structural induction on the derivation of
judgments. For example, the subtype lifting lemma in VarJ (Lemma in Ap-
pendix is proved by structural induction on the derivation of wvar(X;¢), where
¢ =B |R| A. For each rule that can derive the judgment, this type of proof shows
that the lemma is true when that rule is applied. If the lemma is proved for all rules,
then the lemma holds in general because a proposition can only be derived using only

the specified rules.

155

Mechanized Proofs

The appendices contains rigorous proofs of many language properties. These
proofs typically are long, tedious, and involve many cases. VarJ’s type soundness
proof in Appendix [B] is over 30 pages. As a result, there are many opportunities
for errors in proofs. The length and detail of the these proofs makes it difficult for
humans to find errors.

Proof assistants such as Twelf [57], Coq [45], and Isabelle [50] are software tools
that enable one to encode theory and prove properties. Mechanized proofs are proofs
that are written in a language understood by a proof assistant. Proof assistants are
designed to find errors in proofs. When a mechanized proof is verified by a proof
assistant, there is high confidence that the proof is indeed correct.

Proof assistants are a hybrid of proof checkers and automated theorem provers.
A proof checker is software that verifies proofs written in a computer language. An
automated theorem prover finds proofs of properties on their own. No automated
theorem prover can automatically finds proofs of all valid theorems, by Godel’s in-
completeness theorems [26]. A goal of using a proof assistant is therefore to have
“easy” or routine steps of a proof be found automatically by the proof assistant.
Only “difficult steps” should require the assistance of a human.

However, proof assistants are very complex and using them remains an esoteric
skill. Although proof assistants provide some automation, mechanized proofs typi-
cally require specifying a lot more details than manually-written proofs in natural
languages [16]. These additional details usually do not contribute significant concep-
tual gain. For example, Aydemir et al. [6] showed encoding variable binding in the
Coq proof assistant requires a substantial amount of boilerplate code and requisite

theorems for reasoning about substitution.

156

Rather than provide a longer proof than already given in Appendix [B] we chose
to provide a manually written but detailed proof that focuses on important reasons

for why a theorem is true.

10.2.6 Barendregt’s Variable Convention
The Barendregt variable convention [64] is followed in the definition of VarlJ.

Barendregt’s statement [7, Page 26] of the covention is below:

If My, ..., M, occur in a certain mathematical context (e.g. definition,
proof), then in these terms all bound variables are chosen to be different
from the free variables.

In the context of the rule induction, the requirements for following this convention

are the following:

1. All bound variables in a rule are distinct from all other variables.

2. No bound variable occurs free in a term in the conclusion.

Urban et al. [64] showed that following this convention ensures that predicates
or relations defined in the type system are equivariant: Changing the name of any
binder (bound variable) to a fresh name should not invalidate any derived judgment.
They also showed that following this convention implies it is safe to assume in a proof
that bound variables are distinct from any other variable occurring in the proof.

Urban et al. also showed that if the variable convention is not followed, properties
resulting from the convention are not guaranteed. [64, Section 1] provides an example
of an inductived-defined relation, where its definition violates the rules of the conven-
tion. In that work, a lemma over that relation is accompanied by a faulty proof. A
counter example to the lemma is also provided. The mistake in the proof is that it
assumes that a bound variable is distinct from all other variable names in the proof;

that assumption is not valid for the relation in question.

157

The soundness proof of VarJ requires that this convention is followed. For ex-
ample, judgment (2) of the proof of Lemma [0 dom(A) NX = 0, is derived using a
consequence of Barendregt’s variable convention. In that proof, type variables X are
binders. Because VarJ’s type system rules follow Barendregt’s variable convention,
it is safe to assume that X are distinct from other variable names such as names in
dom(A).

In rule Var-T from Figure[6.2] dom(A) are binders. The premise X ¢ dom(A) is ex-
plicitly stated and is needed to follow Barendregt’s variable convention. As discussed
in Section [6.2] this premise ensures that var is an equivariant relation. However,
conditions for following variable conventions usually are not explicitly expressed in
inference rules to make important premises more overt. Such side conditions are
typically implicitly assumed in rules.

We illustrate the amount of detail added to rules by explicitly stating such side
conditions. We use the standard simple let expression, let = be e; in ey, as an
example to show that even simple rules require significantly more detail. This let
expression is evaluated by substituting e; for occurrences of variable x in the body
expression es. The expression let x be e; in ey is written in higher-order abstract
syntax [52] as let(e;, z.e2). The term x.e5 makes it clear that x is a bound variable
and that the scope of z is e. The following typing and reduction (evaluation) rules
below are given in many texts and do not state the side conditions for Barendregt’s
variable convention:

'cer:m Tox:mbFe:n
I'Elet(ey, z.€2) : 7

T-LET

R-LET
let(er, m.e2) — [e1/x]ey

The following rules are new versions of the previous ones with judgments (side con-
ditions) that ensure that Barendregt’s variable convention is followed. By convention,

fu(t) is the set of free variables in term t¢.

158

z¢ ful') & fule;) Thep:m Tox:mbey:n
' 1let(ey, z.€3) : 1

T-LET*

¢ fuler)

let(er, z.e2) H%[el/mk@

R-LET*

The starred rules explicitly specify side conditions that ensure that Barendregt’s
variable convention is followed. They also show that stating such conditions in an
already complex type system such as VarJ would add a lot of technical details without

much conceptual gain.

159

CHAPTER 11
CONCLUSION

We conclude this dissertation by summarizing the contributions of this work and

discussing future work.

11.1 Summary of Contributions

The goal of this dissertation is to improve support for variance in programming
languages. Variance is a programming language feature that enables programmers
to safely write one piece of code that applies to multiple instantiations of a generic.
This dissertation addresses the shortcomings of current variance mechanisms by pro-
viding theoretical and practical foundations for combining definition-site and use-site
variance in a single language. This approach allows simpler type expressions than in
languages with only use-site variance. Unlike languages only supporting definition-
site variance, this approach does not require creating redundant types to facilitate
variant versions of a type.

Variance is one of the least understood programming language features. Joshua
Bloch, the architect of the Java collections library and author of a popular book [9] on
how to use advanced features in Java, has heavily criticized Java wildcards for their
complexity [8]. Although definition-site variance is arguably simpler than use-site
variance, it was purposely avoided in the Dart programming language [36, Chapter
18].

This dissertation not only generalizes but also clarifies all previous related work.

The transform operator ® (Section [3.1]) provides a clear way to reason about the

160

variance of nested types. The variance predicate var (Section gives a high-level
way to reason soundly about the variance of a type. Section[6.3|explains how to assign
variances to positions in type definitions. Section describes how the concepts
developed in this dissertation simplify determining which operations are available to
a variant type.

This dissertation also contributes practical foundations for supporting both definition-
and use-site variance. Section [4.4] presents a constraint-solving algorithm that com-
putes the most-general definition site variances that satisfy a system of constraint
inequalities. The algorithm is efficient and runs in polynomial time with respect
to the number of constraints. This work is the first to determine the most general
definition-site variances in the face of recursive type definitions, which are ubiquitous
in object-oriented programs. It also allows bivariant definition-site annotations, which
are not supported in C#, Scala, or any other mainstream language. Section |[3.3.6
showed that bivariant annotations would allow more generics to be variant.

Because we provide clear and practical foundations for understanding, implement-
ing, and applying variance mechanism, there are plans to adopt ideas from this dis-
sertation to mainstream languages. Mozilla is implementing the constraint-solving
algorithm from [4.4] to support definition-site variance inference [48] in the Rust [49]
programming language. A proposal to add definition-site variance to Java using ideas
from this dissertation [58] was recently put forward in the Oracle Java language de-
velopment forums.

Given these plans, we expect variance mechanisms to improve in mainstream
languages. Better and easier-to-use variance mechanism should increase usage of
variance in software designs. As a result, software libraries will be developed with

interfaces that support greater reuse.

161

11.2 Future Work

This section discusses how the ideas of this dissertation can be further utilized.

Some directions for future work based on our results were already presented
throughout this dissertation. Section described how our approach to reasoning
about variance may provide a general framework for reasoning about generalized con-
straints. Generalized constraints are lists of subtyping constraints between arbitrarily
complex types. Emir et al. [24] showed how to support generalized constraints with
limited type expressiveness. For example, that work did not support parametric types
with use-site variance annotations. Section discussed how generalized con-
straints with existential types could be supported. Moreover, that section described
at a high-level how generalized constraints with types of any syntactic structure can
be supported. Our approach supports this generalization because our notion of a
variance of a type can applied to types of any structure.

Section described and compared nominal subtyping and structural subtyp-
ing. Nominal and structural subtyping each have their own advantages and disad-
vantages. Currently, most programming languages do not support both nominal and
structural subtyping. Malayeri et al. [42] investigated supporting both nominal and
structural subtyping in a single language called Unity. However, Unity does not sup-
port generics. That work did not investigate variant subtyping between user-defined
type constructors, i.e., functions that can take in types and return types.

Higher-order polymorphism [53, Chapter 30| refers to treating types as first class
values, i.e., the ability to write a function that takes in types as inputs and returns
a type. Hence, languages with higher-order polymorphism support user-defined type

constructors. The standard type system F¥, [53, Chapter 31] (called “F-omega-sub”)

162

supports structural subtyping and higher-order polymorphismﬂ However, different
applications of functions defined by users are never subtype-related.

Variance annotations could be supported in a language with higher-order poly-
morphism [53, Chapter 30]. For example, one could define a function f that takes in
a type T and returns the product type T x T. Applying function £ to type T in FY, is
written as (f T). As discussed in Section [10.2.1] product types are covariant in their
element types. Hence, it is safe to assume that f is covariant in its single argument.
In this case, if U <: T, then, by the covariance of £, it is safe to assume (f U) <: (f
T).

A definition-site variance annotation on the argument of function £ could inform
the type system and clients of the function that £ is covariant in its argument type.
The type system would need to ensure that the covariant definition-site variance
annotation is safe according to the definition of £.

Another function g could use £ and other user-defined type constructors in its
definition. For example, suppose h is a type constructor that is declared to be con-
travariant in its argument. Function g can be defined to take in a type T as input
and return type (£ (b (£ T))). Section described how to reason about the vari-
ance of nested applications of type constructors using the transform operator ®. The
definition-site variance of a type constructor transforms the variance of the type argu-

ment. Using this reasoning, it is easy to determine that the variance of g’s argument

is contravariance: + ®(— @ +)= —.
~— N
f h £

Hence, a language supporting both structural subtyping and variant subtyping on
user-defined type constructors can be investigated using ideas from this dissertation.
One approach to this investigation would be to extend F¥, with definition-site variance

annotations. These annotations label type arguments of functions.

'Functions that return types in F¥, are also called type abstractions.

163

A language supporting nominal subtyping, structural subtyping, and variant sub-
typing on user-defined type constructors can be studied, for example, by extending the
Unity calculus by Malayeri et al. [42] with generics and variant subtyping. Definition-
site variances can be declared or inferred for generic type parameters in that language
extension using ideas from this dissertation. Type expressions with use-site variance
annotations, wildcards, or existential types can also be added to this language com-

bination using ideas from this dissertation.

164

APPENDIX A

VARLANG SOUNDNESS

We prove the soundness of our treatment of VarLang sentences denotationally—
that is, by direct appeal to the original definition and axioms of use-site variance [33],
and not relative to a specific type system. At the same time, we want our proof to
apply to actual type systems. For this purpose, we try to state clearly the assumptions
we make for a type system to be able to use our approach.

Specifically, our proof is based on the following meaning of use-site variance, over

some subtyping lattice (i.e., subtyping is the partial order of the lattice):
o C<HT> = | |, C<T’>
® C<-T> = | |;_.py C<T’>
o C<x> = | |, C<T’>

(The rules are presented for the case of a single-argument generic—for multiple ar-
guments the rules should be read to apply to the same position.) This meaning of
use-site variance is consistent with a types-as-sets treatment [33], hence the reader
can be assigning meaning using set operations in any universe of types that stand for
sets of values. The definitions essentially say that a variant type is equivalent to a
type encompassing all possible values of the appropriate invariant types. There are
two elements worth noting: First, our treatment assumes the existence of a bottom
element (since it is on a lattice). Second, the above treatment does not take into
account, type identity: Use-site variant types are really pairs of a unique identifier

and their above denotation, i.e., two different occurrences of C<+T> are incompatible,

165

although they map to the same element of the lattice. We omit the identity aspect
since it only makes the discussion more tedious without affecting our argument.

The above meaning of use-site variance yields the common variance properties:
o C<T> <: C<+T> <: C<*>

o C<T> <: C<-T> <: C<*x>

o T <: T = C<+T> <: C<+T’> A C<-T’> <: C<-T>

(Note that every type expression C<*T’> refers to the same type, which we write C<*>
when more convenient.)

The denotation of use-site variance is only half the story, however. The other
important part of the semantic domain is the meaning of the variance of a position,
i.e., a formalization of the concepts “type T appears covariantly/contravariantly /bi-
variantly /invariantly in the definition of class C”. In other words, using the definition
of variance we can assign meaning to VarLang expressions of the form C<vT> but
what about VarLang expressions of the form Tv? To give such a definition we first
introduce notation allowing variance annotations, v, to also define binary predicates

on types:
o +(T,Tg) =Ty <: Ty
o —(T1,Ty) =Ty <: Ty
e 0(T1,Ty) = false
o x(Ty,Toy) = true

Then, to have a type T appear in a position with variance v at the top level of the
definition of class C means that if we were to replace the occurrence of T with a T/,
such that v(T’,T) we would be defining a safe subtype of €. For instance, the reason it

is safe to consider the return type of a class’s method to be a covariant position is that

166

replacing the return type with a subtype produces a class definition that can safely
be a subtype of the original class. This “meaning” of the variance of a position is a
fairly common understanding, but we need to bind its components (e.g., subtyping,
considering a module to represent a type definition in a real language, etc.) to specific
languages and type systems.

Consider a real programming language JSCW (for “Java-Scala-C#-Whatever”)
to which we want to apply our typing framework. The JSCW language needs to have
use-site variance annotations in the type vocabulary, but may or may not already
support some use-site-variance-based reasoning—after all, this is what our approach

adds. We first introduce the idea of a variance oracle.

Definition 1. A wariance oracle, O, for a program P is a finite set of oracular
assertions (or just assertions) of the form var(X)T = v or var(X)C = v (for a type T

or class name C), such that:
e There is a single assertion per type expression, T, and per class name, C.

e The oracle is closed: if it contains an assertion for a type expression, it also
contains assertions for all its constituent type expressions and class names ap-
pearing in them. If the oracle contains an assertion for a class name, it also
contains assertions for all type expressions appearing in the body of the class

definition.

Definition 2. We say that a set of oracular assertions is consistent with program P
and language JSCW iff taking the assertions as facts does not violate the soundness
of JSCW. That is, the type system of JSCW can consult the assertions and infer
subtyping accordingly: if var(X)T = v, (resp. var(X)C = v) then for any types T; and Ty
for which v(Ty, Ty) (recall our treatment of variance annotations as binary predicates),
the type system can infer that T[T, /X] <: T[Ta/X] (resp. C[T1/X]| <: C[T2/X]). (T[T'/X] is

defined as the type expression produced by substituting T’ for X in T. C[T;/X] is the

167

name of a class with the same definition (body) as C, after substituting T’ for X in
the body.) If the JSCW type system enhanced with the set of oracular assertions in
this way still respects all its soundness properties for program P (e.g., that if P is
well-typed it will cause no semantic violation), then the set of assertions is consistent

with P and JSCW.

Next, we can state more precisely the mapping between a program in JSCW and

its corresponding sentence in VarLang.

Definition 3. A VarLang sentence S models a program P of language JSCW (pos-

sibly enhanced with oracle O) iff:

e Modules in S and classes in P are in one-to-one correspondence. (We assume

a module has the same name as the corresponding class.)

e For every class C<X> in P and every type expression, T, containing X in the
definition of C, if the occurrence of the type expression may affect the variance
of C, then sentence S contains a corresponding member T inside module C<X>
{ ... 1Tv... }. Conversely, every member T of the definition of a module
C in S has a corresponding syntactic source in the definition of C in P. That
is, C in program P can be defined as a JSCW syntax tree with a hole, Cdef|o],
where o appears once in the syntax tree Cdef[o] and Cdef|[T| (i.e., replacing o

with T in the tree) is equal to the definition of € in program P.

e The suffix variance annotations in S (i.e., the descriptions of variance positions)
are consistent with P’s semantics under the subtyping relation and semantics of
language JSCW. That is, if S contains a module C<X> { ... Tv... } and
in program P it is v(T’,T) for some type T’ (possibly inferred with the help of
oracle O) then it would not violate the soundness of the type system of JSCW
to have Cdef[T'] <: Cdef|T].

168

This definition captures the obligations of language JSCW and its mapping to
VarLang: the mapping has to always produce VarLang sentences that fully and
accurately describe the variance information of the JSCW program (i.e., correctly
describe the variance of each position inside a class definition).

Now we can state our soundness theorem, essentially as a meta-theorem, condi-

tional on a sentence S modeling a program P.

Theorem 3. Consider a VarLang sentence S that models a JSCW program P, and
a set of variance assertions of the form var(X)T = v and var(X)C = v that satisfy all

constraints generated by the translation of sentence S. The following properties hold:

e The set of variance assignments forms an oracle O.
e The module assertions, var(X)C = v, are consistent with P and JSCW.

e The type expression assertions, var(X)T = v, are consistent with each other and
with the module assertions, under the definition of use-site variance. That is,
any subtyping that can be inferred by consulting the oracle’s type expression

assertions is also inferrable directly from the definition of use-site variance.

In other words, the soundness claim of our approach is that it only computes
variances that are permitted under the definition of use-site variance. The expectation
is that the type system of the unknown language JSCW will remain sound under such

sound-in-principle oracular assertions.

Proof. Solving the constraints from the translation of a VarLang sentence S results
in an oracle O, since the translation of S assigns exactly one variance value to every
type expression and module name in sentence S (as can be seen by comparing the
translation rules with the grammar of 5).

We next prove that the assertions of O are consistent with the definition of use-site
variance. We do this by considering what subtypings can be inferred by consulting

the oracle’s assertions.

169

The theorem trivially holds for rules and Since X does not occur in the
type expression of the rule, any substitution of X by two types related by variance v
will result in a subtype (the original type expression itself). Thus, we can assign any
variance to var(X)C<> and to var(X)Y, exactly as these rules prescribe.

Rule is similarly easy. The rule says that oracle O can assign var (X)X to at most
+, i.e., to either + or o. Assigning o clearly produces a consistent oracle (since the
antecedent of the definition of consistency is not satisfied: o(Ty, To) = false for every
T; and Ts). So, we only need to consider +, which results in making the definition of
consistency a tautology: +(Ty,Ty) = Ty <: To, and if the type system can prove this
subtyping then substituting the two types for X will clearly result in sound subtyping.

We covered the above trivial cases in detail so that the flow of the argument
becomes clear. The real issue, however, is to prove the theorem for rule[d.5] This rule
is the essence of our variance reasoning. It effectively says that the transform operator
correctly builds the variance of composite type expressions from that of component
type expressions, and that use-site variance annotations are tantamount to a join in
the lattice.

The rule introduces N constraints, where N is the number of type parameters of C.
We reason about each constraint separately. If X does not occur in the i-th type T; that
parameterizes C then no unsoundness is introduced by any type assignment consistent
with the rule, by the same reasoning as for rules and above. Therefore we only
consider the case where X occurs in T;, and, thus, a substitution of X by a subtype may
introduce unsoundness. To simplify the presentation, we subsequently write all type
expressions for the case of a single-type-parameter generic. In the case of multiple
type-parameters, the argument should be understood to apply to the same parameter
position of any two expressions.

We consider all cases for the three variables on the right hand side of the constraint:

v, var(Y)C, var(X)T:

170

e v = x: the r.h.s. of the constraint is %, hence O may assign any variance to
var(X)C<x>. Thus, the type system enhanced with oracle O can infer subtyping
between type expressions substituting X with any two types. This is sound,

since C<xT[T;/X]|> <: C<xT[T2/X]>, by the standard variance properties.

e var(Y)C = x: similar argument as above. The right hand side of the rule is x,
but any variance is safe for a composite type expression on C if the variance of

C 1S *.

e var(X)T = o and either v = +,var(Y)C = +, or v. = +,var(Y)C = o, or
v = —var(Y)C = —, or v = — var(Y)C = o, or v = o,var(Y)C = +, or
v = o,var(Y)C = —: the r.h.s. of the constraint is o, thus oracle O cannot
introduce unsoundness, since no subtyping substitution is allowed by the asser-

tion.
e v =0 and var(Y)C = o: always safe since constraint has a r.h.s. of o.

e var(X)T = %, v # *, and either var(Y)C = + or var(Y)C = —: the r.h.s. of the
constraint is x and oracle O can assign any variance to var(X)C<vT>. v # % and
var(Y)C = + or var(Y)C = — means that v U var(Y)C = + or v U var(Y)C = —.
But for any two types T; and To, T[T;/X] <: T[T2/X] (and vice versa), since
var(X)T = *. Hence we have C<T[T;/X]> <: C<T[Ty/X]> (because of the co-
variance or contravariance of var(Y)cC taken in either direction) and finally both
C<-T[T;/X]> <: C<-T[Ty/X]> and C<+T[T;/X]> <: C<+T[Ty/X]> (by the stan-
dard variance properties). Therefore, the assertion of O follows from the vari-

ance definition.

e var(X)T = *, var(Y)C # o, and either v = 4+ or v = —: the r.h.s. of the
constraint is % and oracle O can assign any variance to var(X)C<vI>. As in

the previous case, v U var(Y)C = + or v U var(Y)C = —. But for any two

171

types Ty and Ty, T[T1/X] <: T[T2/X] (and vice versa), since var(X)T = #, hence
C<-T[T;/X]> <: C<-T[T2/X]> and C<+T[T;/X]> <: C<+T[T9/X]> (by the stan-
dard variance properties takein in either direction). Therefore, the assertion of

O follows from the variance definition.

We will use the same argument structure for all the individual cases below,
which contain the core (i.e., the hardest cases) of the proof, but due to the
length of the reasoning we will not belabor the inference steps, assuming that

the reader understands the argument flow from the earlier cases.

e v = +,var(Y)C = +,var(X)T = +: constraint r.h.s is +. Soundness preserved

since:
T) <: Ty = (by variance of T)
T[T, /X] <: T[T2/X] = (by variance properties)
C<+T[T{/X]> <: C<+T[Ty/X]1>
e v = +,var(Y)C = +, var(X)T = —: constraint r.h.s is —. Soundness preserved
since:
T) <:Tp = (by variance of T)
T[To/X| <: T[T1/X] = (by variance properties)
C<+T[Ty/X]> <: C<+T[T{/X]>
e v =+, var(Y)C = —: constraint r.h.s is *. Soundness preserved since:

l<T= (by variance properties)

C<+1> <: C<+T>

172

But also, for any type T’

1l<T= (C contravariant)

C<T’> <: C<L>

Therefore:

C<HT> = (by variance def)
|_| C<T’> < (by above)
T <
C<l> < (by variance properties)
C<+.L1>

Hence, all C<+T> are always subtype-related, i.e., have type C<*>.

e v = +,var(Y)C = o,var(X)T = +: constraint r.h.s is +. Soundness preserved

since:
T) <: Ty = (by variance of T)
T[T1/X] <: T[T2/X] = (by variance properties)
C<+T[T1/X]> <: C<+T[Ty/X]>
e v = +,var(Y)C = o,var(X)T = —: constraint r.h.s is —. Soundness preserved
since:

T) <: Ty = (by variance of T)
T[T2/X| <: T[T1/X] = (by variance properties)

C<+T[Ty/X]> <: C<+T[T,/X]>

173

e v = — var(Y)C = +: constraint r.h.s is x. Soundness preserved since:

T<: T =

C<=T> <: C<-T>
But also, for any type T’

T<:T=

C<T’> <: CLT>
Therefore:

C<-T> =

|_| C<T?> <

T<:T

CLT> <

C<-T>

(by variance properties)

(C covariant)

(by variance def)

(by above)

(by variance properties)

Hence, all C<-T> are the same type, i.e., C<*>.

o v = — var(Y)C = —,var(X)T = +: constraint r.h.s is —. Soundness preserved

since:

T) <: Ty =
T[T1/X] <: T[T9/X] =

C<-T[Ty/X]> <: C<-T[T{/X]>

174

(by variance of T)

(by variance properties)

o v = — var(Y)C = —,var(X)T = —: constraint r.h.s is +. Soundness preserved

since:
T) <: Ty = (by variance of T)
T[T2/X| <: T[T1/X] = (by variance properties)
C<-TI[T{/X]> <: C<-T[T9/X]>
e v = — var(Y)C = o,var(X)T = +: constraint r.h.s is —. Soundness preserved
since:
T) <: Ty = (by variance of T)
T[T1/X] <: T[T2/X] = (by variance properties)
C<-T[Ty/X]> <: C<-T[T,/X]>
e v = — var(Y)C = o,var(X)T = —: constraint r.h.s is +. Soundness preserved
since:

T) <: Ty = (by variance of T)
T[To/X| <: T[T1/X] = (by variance properties)

C<-T[T{/X]> <: C<-T[T9/X]>

e v = 0,var(Y)C = +,var(X)T = +: constraint r.h.s is +. Soundness preserved

since:

T) <: Ty = (by variance of T)
T[Ty /X] <: T[T2/X] = (by variance of C)

C<T[T;/X]> <: C<T[Ty/X]1>

175

e v = 0,var(Y)C = +,var(X)T = —: constraint r.h.s is —. Soundness preserved

since:
T) <:Ty = (by variance of T)
T[To/X] <: T[T1/X] = (by variance of C)
C<T[Ty/X]> <: C<T[T/X]>
e v = 0,var(Y)C = —,var(X)T = +: constraint r.h.s is —. Soundness preserved
since:
T) <: Ty = (by variance of T)
T[T, /X] <: T[To/X] = (by variance of C)
C<T[T2/X]1> <: C<T[T;/X]>
e v = 0,var(Y)C = —,var(X)T = —: constraint r.h.s is +. Soundness preserved
since:

T) <: Ty = (by variance of T)
T[To/X] <: T[T1/X] = (by variance of C)

C<T[T;/X]> <: C<T[Ty/X]1>

This concludes the proof for rule [£.5] which establishes that all oracle assertions
for type expressions are consistent with the definition of use-site variance. The last
piece is to prove that all module assertions, var(X)C = v, are consistent with program
P and JSCW. Such assertions are solutions of constraints generated by rule 4.1, which

combines the constraints on type expressions with the variance of their position, to

176

derive the variance of an entire module definition. The consistency of the assertions
is based on the theorem’s assumption that sentence S models program P.

We want to show the consistency of a module assertion with P and JSCW, which
means that treating the assertion as a fact will not cause an unsound inference. Since
constraints generated by rule have the variance of an entire module on their left-
hand-side, consider two substitutions C[T;/X] and C[T2/X]|. These substitutions consist
of replacing X wherever it occurs in the definition of C. Consider one such occurrence
in a type expressionT, contained in module C<X> { ... Tv... }. Define Cdef|o],
to be the syntax tree of the definition of class C with a hole in place of Tv. We again
consider all possible cases for the variables v, var(X)T on the right hand side of the
corresponding constraint. The proof is case-by-case analogous to that for rule [4.5]
above, specialized for var(Y)C = o. We discuss one sample case, v = +, var(X)T = —,
which results in a constraint with an upper bound of —. For the rest of the cases, one
only needs to adapt the argument below based on the corresponding case of rule 1.5
We have:

T) <: Ty = (by variance of T)
T[To/X] <: T[T1/X] = (since S models P and v = +)

Cdef[To] <: Cdef[Ty]

By covering all cases and getting the same result for all constraints generated by
rule [4.1] we can combine the results for the individual Cdef [o]s and show that C[T; /X]
and C[Ty/X| are related in the appropriate way (since the variance of € has to satisfy
all constraints). Hence, module assertions in O are consistent with P and JSCW, and

this concludes the proof. O

177

APPENDIX B

PROOF OF VARJ SOUNDNESS

The numbering of the lemmas in this appendix does not correspond to that in the
main text. Each lemma also appearing in the main text is clearly labeled with both

numbers.
Lemma 9 (Widening Range Gives Supertype). If
a. A+A; <:Bj
b. A+By <: Ay
Then
1. A+ 3X — [Br-Byl.N <: 3X — [Ar-Ap].N

Proof. 1. X are binders.

2. dom(A) NX = (), by Barendregt.

3. A, X — [Br-Byl F A <: By, applied weakening lemma to (2) and (a).

4. AJX — [B,-By] F By <: Ay, applied weakening lemma to (2) and (b).
5. A,X — [Br-By] F By, <: 30.X, by ST-LBOUND.
6. A, X — [B-Byl F J0.X <: By, by ST-UBOUND.

7. A,X — [Br-Byl F Ap <: 30.X, applied ST-TraN to (3) and (5).

178

8. A,X — [B.-Byl + 30.X <: Ay, applied ST-Tran to (6) and (4).
9. fu(3X — [AL-ApI.N)NX =10

10. X € A, X — [BL-By]

11. A, X — [B,-Bp] F [X/X1A; <: 30.x, by (7).

12. A, X — [B,-By] F 30.X <: [X/X]Ay, by (8).
13. AF 3X — [BL-Byl.N <: 3X — [AL-Ay].N, applied ST-Pack to (9)—(12).

[l [l

Definition 4.

X — [Br-Byl <: X — [Ap-Ay]l = A; <:Bp, and By <: Ay

Lemma 10 (Corollary of Lemma [J). If
a. A <: Ay
Then
1. AF3JAR<:JA3R

Proof. Trivial by applying Lemma [J] for the case R = N and applying ST-RerL for the

caseR=X,sinceR=X = A;=0=A,. [O

Lemma 11 (Variance Ordering Implies Subtyping). Let v and w be variance anno-

tations. If

a v<w

b. AFv(B;B)

179

Then
1. A+w(B,B)
Proof. Trivial by definition of v(B;B'). [O
Lemma 12 (Negation reverses subtyping). Let v and w be variance annotations. If
A w="Ww=—-—QvVv
Then
1. v(B,B') = w(F,B)

Proof. This lemma is proved by inspection of the following table and seeing that for

each data row, the two rightmost entries contain equivalent formulas.

VIiv=—®v v(B,B’) w(B',B)

+ - +(B,B') =B <: B —(B/,B) =B <: B

— + —(B,B') =B <:B +(B',B) =B <:B 0 O
0 0 o(B,B)=B<:B'AB <:B| 0(B,B) =B <:BAB<:B

* * *(B,B') = true o(B',B) = true

Lemma 13 (Negation preserves inequality). Let v and w be variance annotations.

v —Quw &= —Qv<w

Proof. This lemma can be verified by inspection of a variance table that enumerates

all possible variance value assignments for v and w. [O
Lemma 14 (Monotonicity of ®). If
a. vi S Vo

b. v3 < vy

180

Then
1. vi®vy <vo®vy

Proof. This lemma can be verified by inspection of a variance table that enumerates

all possible variance value assignments for vy,...,v4. [O]

The next three lemmas are mutually dependent on each other. As a result, in the
proofs of these lemmas, we can only apply these lemmas as “inductive hypotheses”
so that the proofs “terminate”. That is, we only apply these lemmas to subterms of
terms in the premises of lemmas. More specifically, the only cases where Lemma
depends on Lemma (15| are in proof cases VAr-N and Var-R, and in both cases they
apply Lemma [15| to strict subterms of the relevant type term. Since Lemma [15s call
to Lemma [17] does not alter the size of the type term, the proof terminates. (The
anchor cases are then the other cases in Lemma [16]) The lemmas could have been
combined into a single lemma, but this division makes the important reasoning more

apparent and the proof clearer.
Lemma 15 (Subtype Lifting — Transform). If
a. v < w® var(X;B)
b. AF v(U,U)
Then

1. A+ w([U/x1B, [U'/X]B)

Proof. Proof by case analysis on w:

Case 1: w=*
1.1. A+ %([U/X]B, [U//X]B) = true

[for case 1

Case 2: w= +.

181

2.1. v < 4+ ® var(X;B) = var(X;B)
2.2. A+ [U/X]B <: [U'/X]B, applied Lemmato (2.1) and (b) gives.
2.3. A F +([U/X]B, [U//X]B), by (2.2).

[for case 2

Case 3: w= -.
3.1. v < — ® var(X;B)
3.2. —®7 < war(X;B), applied Lemma 13| to (3.1).
3.3. Let vV =—®7.
3.4. v/ < war(X;B), by (3.2) and (3.3).
3.5. A+ v/(U,U), applied Lemma to (b) and (3.3).
3.6. A+ [U/X]B <: [U/X]B, applied Lemma [17] to (3.4) and (3.5).

3.7. A+ —([U/x1B, [U//X]B), by (3.6).

[for case 3

Case 4: wv= o.
4.1. v < o ® var(X;B)
By Lemma [14] (4.1) implies:
4.2. v < o®war(X;B) < 4+ ® var(X;B), since o < +.
4.3. v < o® var(X;B) < — ® var(X;B), since o < —.

Similar reasoning in cases 2 and 3 still apply.

182

4.4. A+ +([U/xX1B, [U'/X]B), applied case 2 to (4.2).
4.5. A+ —([U/X1B, [U'/X]B), applied case 3 to (4.3).
4.6. A+ o([U/X]B, [U/X]B), by (4.4) and (4.5).

J for case 4

All cases covered. [
Lemma 16 (Subtype Lifting — Single Variable). If
a. A+ v(u,U)
and if
b. v < var(X;B)
then
1. A+ [U/x]1B <: [U'/XIB
and if
c. v < wvar(X;R)
then
2. AF [U/XIR <: [U'/XIR
and if
d. v < war(x; A7)
then
3. Ak [U/XIA" <: [U//x1A

Proof by induction on the derivation of var(X; ¢), where ¢ ::=B | R | A.

Case: VAR-XY.

183

Proof. Trivial. [
Case: VAR-B.
Proof. Trivial. [
Case: VAR-XX.
Proof. 1. v < war(X;X) = +, by VAR-XX.
2. AF +(u,U'), applied Lemma (11| to (1) and (a).
3. AFu<: U, by (2).
4. A+ [U/X1X <: [U'/X]X, by (3).
O
Case: VAR-N.

Proof. 1. VT(C) = wY, premise of VAR-N.

2. v < var(X;c<T>) = [, (v ® var(X;T;)), by VAR-N.

3. v <w®var(X;T), by (2).

W

. AFw([u/xIT, [U'/X]T), applied Lemmato (3) and (a).

ot

. A Cc<[U/X]IT> <: C<[U'/X]1T>, applied SD-Var to (1) and (4).

[]

Case: VAR-R.

184

Proof. 1. v <war(XY — [Br-Byl) = [, [(— ® var(X;Br;)) M (+ ® var(X; BUj))} ,
by VAR-R.
We prove this case by showing that for an arbitrary ¢ € |[Y — [BL-By]|, we have
both

A [U//X]BLZ' < [U/X]BLi

and

A+ [U/X]By; <: [U'/X1By;
2. v < — ®war(X;Bg;), by (1).
3. v < + ® var(X; By;), by (1).

4. A+ —([U/X1By;; [U'/XIBr;) = [U//XIB; <: [U/XIBy,, applied Lemma [15] to (2)
and (a).

5. A F +([U/X1Bg,; [U'/XIBy;) = [U/X1Br; <: [U//X]1BL;, applied Lemma [15] to (3)
and (a).

6. AF [U'/X1B; <: [U/X]By, since i was arbitrary.

7. A+ [U/X]1By <: [U/X]By, since i was arbitrary.
8. At [U/X]Y — [B.-Byl <: [U//X]1Y — [B.-Byl, by (6) and (7).

O O
Case: VAR-T.

Proof. 1. v < war(X; A’ R) = var(X; A') M var(X;R), by VAR-T.
2. v <war(X;A’), by (1).
3. v < war(X;R), by (1).

185

4. AF [U/XIA" <: [U'/X]1A’, applied inductive hypothesis to (a) and (2).

5. A+ [U/X]IR <: [U'/X]R, applied inductive hypothesis to (a) and (3).

6. A+ 3[U/X]A’.[U/XIR <: F[U'/X]A’.[U/X]R, applied Lemma |10|to (4).

7. dom(A’) are binders, by (1).

8. dom(A") N dom(A) = 0, by Barendregt.

9. A, [U/X]1A’" - [U/X]IR <: [U'/X]R, applied weakening lemma to (8) and (5).
10. AF 3U/XIA[U/XIR C: IU'/X]A'.[U'/XIR, applied SE-SD to (9).

11. A+ 3/XIA[U/XIR <: I[U'/XTA'.[U'/X]IR, applied ST-SE to (10).

12. A+ [U/X13A’R <: J[U/XIA'.[U/XIR, by (6) and X ¢ dom(A’), premise of

VAR-T case assumption.

13. A F JU/X1IA' . [U/XIR <: [U/X]13A’R, by (11) and X ¢ dom(A’), premise of

VAR-T case assumption.
14. A+ [U/Xx13A'R <: [U//X]13A’R, applied ST-Tran.
0 0
All cases covered for Lemma[16 O
Lemma 17 (Lemma (I} from Main Text — Subtype Lifting). Let ¢ :=B |R| A. If
a. v < var(X; ¢)
b. AF v(U;U)
Then
1. AF [U/X1¢ <: [U/X1¢

186

Proof. For an arbitrary i € X, we have A F [U;/X;]¢ <: [U;/X;]¢ by applying
Lemma . Since ¢ was arbitrary, we have A [ﬁ]gb < [ﬂ] o. O O

Lemma 18 (Lemma [2[from Main Text — Subtyping Specializes Field Type). If
a. FclassC<vX — [...]> << N... OK and
b. AF Cc<T> <: N and
c. ftype(£;N) =U
Then
1. ftype(£f;C<T>) =T
2. AFT<:U

Proof by induction on (b) and (c).

Case (SD-VaRr, FT-SUPER):

Proof.
CT(C) = class C<vX — [BL-Bpl> < N{S £; M}
VT(c) =vX A F v(T,U) f¢f
A F C<T> <: C<U> ftype(£; C<T>) = ftype(£; [U/XIN)

N/

FT-SUPER
(SD-Var) ()

1. VT(c) = vX, premise of SD-VARr.
2. AF v(T,U), premise of SD-Var.

3. Ak C<T> <: C<U>, conclusion of SD-VAR.

4. class C<vX — [...]> < N..., premise of FT-SUPER.

187

5. £ ¢ £, premise of FT-SUPER.
6. U = ftype(£; C<U>) = ftype(£; [U/XIN), by conclusion of FT-Super and (c).
7. Let A’ by the class type parameter environment X — [...].
8. A’k N OK, applied inversion of W-CLs to (a).
9. vX F N mono, applied inversion of W-CLs to (a).
10. A+ [T/XIN <: [U/X]N, applied Lemmato (9) and (2).
11. WLOG, assume N= D<V>
12. CT(D) = class D<wY — [...1> <1 N”..., applied inversion of W-N on (8).
13. F class D<wY — [...1> < N”... OK, every class in CT is wellformed.
Applying inductive hypothesis to (13), (10), and (6) gives the next two judgments:
14. ftype(£; [T/XIN) =T
15. AFT<:U
16. ftype(£; C<T>) = ftype(£; [T/XIN) = T, applied FT-Supkr to (4) and (5).

17. 0O, by (16) and (15).

Case (SD-VaRr, FT-CLASS):

Proof.

VT(C)=vk AFv(T,U) classC<vX — [...1> <IN{S f; M}

A C<T> <: C<U> ftype(£;; C<U>) = [U/X]S;
N/

FT-CLASS
(SD-VAR) ()

188

1. £f=1,

2. A+ v(T,U), premise of SD-Var.

3. class C<vX — [...1> <{N{§ £; M }, premise of FT-CLass.
4. U = ftype(£,;; c<U>) = [U/X]8;, conclusion of FT-CLAsS.

5. vX - 8; mono, applied inversion of W-Cts to (a).

6. AF [T/X]s; <: [U/X]S;, applied Lemmato (5) and (2).

7. ftype(£;; C<T>) = [T/X18;, applied FT-Crass to (3).

8. ftype(f;; C<T>) = ftype(£;; C<T>) = [T/X18;, by (1) and (7).

©w

O, by (8), (6) and (4).

Case (SD-SupERr, *):

Proof.

classC<vXK — [...1> <A N{Sf; M} C#D Al [T/XIN <:D<U>

A F C<T> <: D<U>
S~~~
N/

(SD-SuPER)

1. class C<vX — [...1> < N{S £; M }, premise of SD-SUPER.

2. Ak [T/XIN <: D<U>, premise of SD-SUPER.

3. Ak C<T> <: D<U>, conclusion of SD-SUPER.

4. Let A’ be the type parameter environment X — [...] of class C.

189

5. A"+ N OK, applied inversion of W-Cts to (a).
6. WLOG, assume N= K<...>
7. K € dom(CT), applied inversion of W-N on (5).
8. F CT(X) OK, every class in CT is wellformed.
Applying inductive hypothesis to (8), (2) and (c) gives the next two judgments.
9. fype(t; [T/XIN) =T
10 AFT<:U
11. £ € fields(N), by (9).
12. £ ¢ £, applied distinctness of fieldnames to (11) and (1).
13. ftype(£; C<T>) = ftype(£; [T/X] N) =T, applied FT-Super to (1) and (12).

14. 0O, by (13) and (10).

[for all cases of Lemma [I8
Lemma 19 (Subclassing Preserves Method Type). If
a. FclassC<vX — [...1> < N{ ... M} OK and
b. mtype(m; [T/XIN) = <Y — [B,-By1> (U) = U
Then

1. mtype(m; C<T>) = mtype(m; [T/XIN)

190

Proof by case analysis on m € M.

Case 1: m ¢ M.

Proof. Applying MT-Super to (a) and the case assumption gives mtype(m; C<T>) =

mtype (m; [m] N).]
Case 2: m€ M.

Proof. 1. <A> 8 m(S x) { returne; } € M, by case assumption.

2. = M OK in ¢, applied inversion of W-Crs to (a).

3. F<A> S m(S x) {returne; } OK in C, by (1) and (2).

4. override(m; N; <A> (S) — 8), applied inversion of W-MgTH to (3).
5. mtype(m;N) is defined, by (b).

6. mtype(m;N) = <A> (S) — 8, by (4), (5), and definition override (OVER-DEF).
7. mtype(m; C<X>) = <A> (S) — 8, applied MT-Crass to (a) and (1).
8. mtype(m; C<X>) = mitype(m; N), by (6) and (7).

9. [m] mtype(m; C<X>) = [m] mtype(m; N), by (8).
10.

mtype(m; C<T>) = [T/X]mtype(m; C<X>)

= [T/X] mtype(m; N)

— miype(m; [T/XIN),

191

O for case. O

[for all cases of Lemma 10

Lemma 20 (Lemma [3[from Main Text — Subtyping Specializes Method Type). If

a.

b.

C.

- class C<vX — [...1> < N{ ... M} OK and
A c<T> <: N and

mtype(m;N') = <Y — [B,-Byl> (V) —» U

Then

6.

. mtype(m; C<T>) = <Y — [Ar-Apl> (V) — V,

AFV<: U,

CART <Y,

AFAf <:Bp,

A By <: Ay, and

var(Y;U) = var(Y; V).

Proof. Conclusions 1-5 can be derived by similar reasoning in the proof of Lemma [18]

So instead we focus on deriving conclusion (6). As in the proof of Lemma/[18] we derive

conclusion (6) by induction on premises (b) and (c). O

Case (SD-VAR, MT-CLASS):

Proof.
class C<vX — [...1> <A N{ ... M}
VT(c) =vX AFv(T,T) <Y — [B}-B;]> S m(S x) { returne; } € M
A C<T> <: C<T'> mitype(m; C<T'>) = [T'/X1<Y — [B}-B};]1> (S) — S
N/
MT-CLAsS
(SD-VAR) ()

192

10.

11.

12.

13.

14.

15.

16.

17.

. VT'(C) = vX, premise of SD-VAR.

A F v(T,T’), premise of SD-VAR.
A = C<T> <: C<T’>, conclusion of SD-Vagr.
class C<vX — [...1> <{N{ ... M }, premise of MT-CLAss.

<Y — [B,-B[;1> S m(S x) { return e; } € M, premise of MT-CLAsS.

. mtype(m; C<T’>) = [T'/X1<Y — [B}-B},1> (S) — S, conclusion of MT-CLass.

. U= [T'/X]8, by (6) and (c).

mitype(m; C<T>) = [T/X1<Y — [B}-B,]> (§) — 8, applied MT-Crass to (4) and

(5).

Let m

Y are binders by (c).

YN fu(N') = @, by Barendregt premise of (c) and (10).
Y N fu(c<T’>) = @, by (11) since N' = C<T’>.

Y N fu(X) = 0, by Barendregt and (10).

var(Y;8) = var(Y; [T/X18), by (12) and (13).

Y N fo(T) = 0, by Barendregt and (10).

var(Y;8) = var(Y; [T/X18), by (15) and (12).

var(Y; [T /X18) = var(Y;8) = var(¥; [T/X18), by (15) and (13).
—— N——

U v

O for case O

193

Case (SD-VaR, MT-SUPER):

Proof.
VT(Cc) =vX At v(T,T) class C<vX — [... 1> <AN{ ... M} n¢ M
A b C<T> <: C<T'> mtype(m; C<T'>) = mitype(m; [T’ /XIN)
N/
MT-SUPER
(SD-VaR) ()

1. VT(c) = vX, premise of SD-VARr.
2. A+ v(T,T'), premise of SD-VAR.
3. Ak C<T> <: C<T’>, conclusion of SD-Vag.
4. class C<vX — [...]> <N { ... M }, premise of MT-SUPER.
5. m ¢ M, premise of MT-SUPER.
6. mtype(m; C<T’>) = mtype(m; [T’ /XIN), conclusion of MT-SUPER.
7. mitype(m; C<T>) = mitype(m; [T/XIN), applied MT-Super to (4) and (5).
8. Let A’ be the type parameter environment X — [...] of class C.
9. A’ N OK, applied inversion of W-Cts to (a).
10. vX - N mono, applied inversion of W-Cts to (a).
11. A+ [T/XIN <: [T'/X]N, applied Lemmato (10) and (2).
12. WLOG, assume N = K<...>.

13. CT(K) = class K<...> < N”..., by (12) and applied inversion of W-N on (9).

194

14. F classK<...> < N’... OK, by (13) and every class in CT is wellformed.

Applying the inductive hypothesis to (14), (11), and (c) gives the following two

judgments.

15. mtype(m; [T/XIN) = <Y — [A.-Ay1> (V) =V

16. wvar(Y;U) = var(Y; V)

17. 0O, by (7), (15), and (16).

Case (SD-SUPER, *):

Proof.

classC<vXK — [...1> I N{S%; M} C#D Ak [T/XIN <:D<T’>

A F C<T> <: D<T'>
S~
N/

(SD-SuUPER)

1. class C<vX — [...1> <N {S £; M }, premise of SD-SUPER.

2. C # D, premise of SD-SUPER.

3. Ak [T/XIN <: D<T’>, premise of SD-SUPER.

4. A F Cc<T> <: D<T’>, conclusion of SD-SUPER.

5. mtype(m; D<T’>) = <Y — [B-By]1> (U) — U, by (c), since D<T'> = N'.
6. Let A’ be the type parameter environment X — [...] of class C.

7. A’ N OK, applied inversion of W-Cts to (a).

195

8. WLOG, assume N = K<...>.
9. CT(X) = class K<...> < N”..., by (8) and applied inversion of W-N to (7).
10. F classK<...> < N’... OK, by (9) and every class in C'T is wellformed.

Applying the inductive hypothesis to (10), (3), and (c) gives the following two

judgments.

11. mtype(m; [m] N) =<Y — [Ap-Apl> (V) =V

12. var(Y;U) = var(Y; V)
13. mtype(m; C<T>) = mtype(m; [T/XIN), applied Lemma to (a) and (11).

14. O, by (13), (11), and (12).

[for all cases of Lemma R0l

Lemma 21 (Reflexivity of Definition-Site Subtyping).

AFR<:R

Proof. Easy, since by ST-RerL, for any type T and any variance v, we have A F v(T, T).

[[
Lemma 22 (Transitivity of Definition-Site Subtyping). If

a. AFR=<:FR

b. AFR <:R”

Then

196

1. AFR=<: R

Proof. Proof by similar reasoning found in Appendix B of work by Kennedy and
Pierce [13]. O O

Lemma 23 (Lemma || from Main Text — Existential subtyping to def-site subtyping).
If

a. AF3A' R C:3X — [B.-Byl.R
b. 0F A

Then there exists T such that

1. A, AR <: [T/XIR

2. A,A'F [T/XIBy <: T

3. AN BT <: [T/X]1By

4. fo(T) C dom(A, A)

Proof. Proof by similar reasoning found in proof of Lemma 35 from TameFJ, with
one new induction case on (a):

Case: SE-SD.
A, X — [B-Byl F N <: N

AF 3X — [Br-Byl.N C: dX — [B.-Byl.N

1. Choose T =X.

2. A, X — [B;-Byl - N <: N/, premise of SE-SD.

3. A,X — [B,-Byl By, <: 30.X, by ST-LBOUND.
4. A,X = [B,-Byl F 30.x <: By, by ST-UBOUND.
5. X C dom(A,X — [BL-By])

197

[, by (1-5). u
Lemma 24 (Lemma [5| from Main Text — Subtyping to existential subtyping). If

a AFT<T

b. 0 A OK

Then

1. AF ubounda(T) C: ubounda(T)
Proof. Proof by similar reasoning found in proof of Lemma 17 from TameFJ. [
Lemma 25 (Subtitution Preserves Subtyping). If

a. A=A, X — [B,-Byl, Ay

b. A= [T/X1(A1, Ay)

c. fu(T) C dom(A’)

d. A'F T <: [T/X1By

e. A'F [T/XIBy <: T
and if

f. AFR<:F
then

1. A’F [T/XIR <: [T/XIR/
and if

g AFBLC:B

198

then

2. A’ [T/XIB C: [T/XIB'
and if

h. AFB<: ¥
then

4. A"+ [T/XIB <: [T/X]B'

Proof by induction on A F ¢ <<: ¢, where “¢p <<: ¢'” = (¢ <: ¢’ OR ¢ L:
¢ OR ¢ <: ¢') and ¢ :=R | B.

Case: SD-SUPER

Proof.
classC<vY — [...1><aN{ ... } C#D At [U/YIN <:D<V>
A F C<U> <: D<V>
(SD-SuPER)
1. classC<vY — [...1> < N{ ... }, premise of SD-SUPER.

2. A+ [ﬁ]N ~<: D<V>, premise of SD-SUPER.

3. A F C<U> <: D<V>, conclusion of SD-SUPER.

4. A'F [T/X]1[U/YIN <: D<[T/X1V>, applied inductive hypothesis to (2) and (a-e).
5. Y are binders by (1).

6. YN (fu(T) UX) = 0, applied Barendregt to (5).

7. FclassCvY — [...]> < N{ ... } OK, applied every class is wellformed by

to (1).

199

8. Y— [...1F N OK, applied inversion of W-Cts to (7).

D)

10. fo(N)NX =0, by (9) and (6).

11. [T/X]1[U/YIN = [[T/X]U/YIN, by (10) and (6).

12. A’ F [[T/X]U/YIN <: D<[T/X]V>, (4) and (11).

13. C # D, premise of SD-SuPER case assumption.

14. A’ c<[T/X]U> <: D<[T/X]V>, applied SD-SupEr to (1), (13), and (12).

O for case
Case SD-VAR:

Proof.

A Fv(U,V)

VT(C) =vY

A F C<U> <: C<V>

(SD-VaR)

1. VT'(C) = vY, premise of SD-VAR.

2. AF v(u,V), premise of SD-Var.

3. Ak C<U> <: C<V>, conclusion of SD-VAR.

4. A’k v([T/X1U, [T/X1V), applied inductive hypothesis to (2) and (a-e).

5. A | Cc<[T/X]U> <: C<[T/X]V>, applied SD-Var to (1) and (4).

O for case

Case SE-SD:

200

Proof.

10.

11.

12.

13.

14.

15.

A, X — [Br-Byl, Ay, A N <:

Al, X — [B;-Byl, AQ + ElAg,.N C: E'Ag.N/

(SE-SD)

. A1,X — [Br-Byl, Ay, Ag = N <: N, premise of SE-SD.

A1,X — [Br-Byl, Ag F JA3.N C: dA3.N, conclusion of SE-SD.

. fu(T) € dom(A") C dom(A’, A3), by (c).

dom(Asz) N dom(Ay1, X — [Br-Byl, Ay) = 0, by Barendregt premise of SE-SD.

. dom(As) N dom([T/X1Ay, [T/X1A) =), by (4).

dom(As) NX =10, by (4).

[T/X1A5 = As, by (6).

Let A" = Ay,X — [Br-Byl, Ag, As.

Let A" = [T/X1A, [T/X1Ay, [T/X1As.

fu(T) € dom(A") C dom(A'; Az) = dom(A"), by (9) and (7).
dom(A3z) N dom(A’) = (), by (5).

A',As T <: [T/X]By, applied weakening lemma to (11) and (d).
A///

A" F [T/X]1B, <: T, applied weakening lemma to (11) and (e).

[T/X1(A1, Ay, Ag) F [T/XIN <: [T/XIN, applied inductive hypothesis to (9),
(10), (12), (13), and (1)

[T/X]1(Ay, Ag) F 30T/X1As. [T/XIN C: 3[T/X] As. [T/XIN, applied SE-SD to (14).

201

16. [T/X1(Ay, Ag) F [T/X13As.N C: [T/X13A5.N, by Barendregt since dom(As) are

binders.

O for case OJ
Case ST-LBOUND:

Proof.
(Al, X — [B;-Byl, AQ)(Y) = [BL — BU]

Al,x — [BL-BU],AQ H By < 30.y

(ST-LBounD)

1. (Ay,X — [BL-Byl,As)(Y) = [B — By, premise of ST-LBoUND.
2. Ay, X — [Br-Byl, Ay By, <: 30.Y, conclusion of ST-LBOUND.

Completing proof by case analysis on Y € X.

Case 1: Y € X.
1.1. Y = X;, for some 7, by case assumption
1.2. [T/x130.Y = [T/X130.5; = T;, by (1.1).
1.3. Y — [B,-Byl = X; — [Br,-By,1, by (1.1) and (1).
1.4. A'F [T/X1By, <:T;, by (e).
1.5. A’ [T/X1By <: [T/X130.Y, by (1.4), (1.3), and (1.2).

J for case 1

Case 2: Y¢ X and Y € dom(Aq, Ay).
2.1. (A1, A9)(Y) = [BL — By], by (1) and case assumption.
2.2. [T/X1(A1, Ag)(Y) = [[T/XIB, — [T/X1By], by (2.1).

202

2.3. [T/X1(Ay, Ay) F [T/X1B, <: 30.Y, applied ST-LBounD to (2.2).
2.4. [T/X130.Yy = 30.Y, by case assumption.
2.5. [T/X1(Aq, Ay) F [T/X]1B, <: [T/X130.Y, by (2.3) and (2.4).

[for case 2

Case 3: Y¢ X and Y ¢ dom(Aq, Ay).

3.1. Y & dom(Ay,X — [BL-Byl, As), by case assumption.
3.2. contradiction, by (3.1) and (1).

[J for case 3
We completed the case analysis on Y € X and completed the proof for the ST-

LBounD case of this lemma. [O O
Case ST-UBOUND:

Proof. Similar reasoning in the proof for the ST-LBounp case proves the lemma for

this case. [for case O
Case SE-Pack

Proof.

dom(A3) N fu(FY — [AL-ApI.N) =0 fu(U) C dom(A1,X — [BL-Byl, Ag, Aj)
Al, X — [B;-Byl, AQ, Ag F [U_/Y]AL <:U

Al,X — [BL_BU] s AQ, Ag FU<: [Im]AU

A1, X — [BL-Byl, Ay F 3A;. [U/YINC: IY — [A-AyI.N

(SE-Pack)

1. dom(As3) N fu(3Y — [AL-Ayl.N) = (), premise of SE-Pack.

203

10.

11.

12.

13.

14.

. fu(U) € dom(A1,X — [BL-Byl, Ao, As), premise of SE-PACK.

A1, X — [Br-Byl, Ag, Ag [ﬂ] Aj, <: U, premise of SE-PAck.

. A, X — [Br-Byl, Ay, Az F U <: [ﬂ] Ay, premise of SE-PACK.

A1, X — [Br-Byl, Ay F JA;. [IW]N C: 3dY — [A.-Ay].N, conclusion of SE-Pack.

. fu(T) C dom(IT/X1(A1, As)) € dom([T/X1(A1, As, As)), by (c).

dom([T/X1As3) N dom([T/X1 (A, Ay)) = 0, by Barendrengt premise of SE-Pack.
[T/X1(A1, Ay, Ag) T <: [T/XIBy, applied weakening lemma to (7) and (d).

[T/X1(A1, Ay, Ag) F [T/X1By, <: T, applied weakening lemma to (7) and (e).

[T/X1(A1, Ay, Ag) F [T/X1[U/Y1A, <: [T/X]U, applied inductive hypothesis to

(6-9) and (3).

[T/X1(A1, Ay, Ag) F [T/X]U <: [T/X] [U/Y]Ay, applied inductive hypothesis to

(6-9) and (4).
dom(A3) = dom(IT/X1A;)

YN X = (), by Barendregt, since Y are binders.

fo(3Y — [[T/X1AL-[T/X]1Ay]. [T/XIN)
= fu([T/X1TFY — [AL-AyT.N)
= [T/X1fo(IY — [AL-AyT.N)

C fu(T) U fo(3IY — [AL-Ay].N)

204

15.

fo(T) N dom([T/X1As)
= fu(T) N dom(A3) by (12)
C dom(Aq, Ay) N dom(As) by (c)

= by Barendrengt premise of SE-Pack

16.
dom([T/X1As) N fo(IY — [[T/X1AL-[T/X]1Ay].[T/XIN)
C dom(As) N [fo(T) U fu(3Y — [AL-Ap]1.N)] by (9) and (10)
= [dom(As) N fu(T)] U [dom(As) N fu(FY — TAL-AyT.N)]
=0u by (15) and (1)
17.

Jo(LT/x30) € fu(T) U [fu(0) — X]
C dom(Aq, Ag) U [fu(T) — X] by (c)
C dom(Aq, Ag) U [dom(A1, X = [B-BylAs, Ag) —X] by (2)

= dom(Ay, Ay, Ag) = dom(([T/X1)A1, Ag, As)

18. (fo(T) UX) NY = (), by Barendregt, since Y are binders.
19. [T/X]1[U/Y1AL = [[T/X]1U/Y][T/X1A, by (18).

20. [T/X]1[U/Y1Ay = [[T/X1U/Y][T/X]Ay, by (18).

21. [T/X1(A1, A, Ag) F [IT/X1U/YI[T/XIA, <: [T/X]U, by (19) and (10).

205

22. [T/X1(A1, Ay, Ag) - [T/XIU <: [[T/X1U/Y][T/X]Ay, by (20) and (11).

23. [T/X1(Ay, Ay) F I[T/X1A;. [IT/XIU/YIN T IY — [[T/XIAL-[T/X]Ay]. [T/XIN,
applied SE-Pack to (16), (17), (21), and (22).

24. [T/X1(A1, Ay) - [T/X13A4.[U/YIN C: [T/X13Y — [A-AyT.N, by (23) and (18).

[] for case.
Proofs for remaining cases are all trivial.

[J for lemma. O

Lemma 26 (Invariance Fixes Type Instantiations). If

a. var(Y;R) =o

b. A+ Ry <: [T/YIR

c. AFRy <: [U/YIR

Then

1. AF o(T,0)
Proof. By standard induction on (b) and (¢). [O
Lemma 27 (Invariance Fixes Type Unification Position). If

a. var(Y;R3) = o

b. At Ry <: [U/Y]R3

c. AFRy <: [T/X]IRy

d. ARy <: [V/Y]R3

e. (fu(T)UX)NY=10

206

f. fuRs)NX =10
Then
1. AFo(v, [U/X]IV)
Proof. 1. At [T/XIRy <: [T/X] [U/Y]R3, applied Lemma [25 to (b).
2. [T/X1[U/YIR3 = [[T/X]U/YIRg3, by (e) and (f).
3. AF [T/XIRy <: [[T/X]U/YIRs, by (1) and (2).
4. A+ Ry <: [[T/X]U/YIRs, applied Lemma 22 to (c) and (3).
5. Ak o(v, [T/X]U), applied Lemma [26] to (a), (d), and (4).

U U

Lemma 28 (Lemma [7| from Main Text — Subtyping Preserves matching (receiver)).
If

a. AF ElAl.Nl C: HAQ.NQ

b. mtype(m, Ng) = <Yy — [By;-Boyl> (U_Q) — Uy

c. mtype(m;Ny) = <Yy — [B1,-Biyl> (U) — Uy
d. sift(R;Uz; Yo) = (R';U)

e. match(R; Uy; P; Yy; T)

f. 0FA OK

g. AA'FT OK

Then

L. sift(®; Ur; Y1) = (R'; U))

207

2. match(R;U,;P; ¥1;T)

Proof. Proof by similar reasoning as in the proof of lemma 36 of TameFJ exception
noting that R’ is returned by both sift(R; Uy; Y2) and sift(R; Uy; Y1) because of conclusion

(6) of Lemma 0] O O

Lemma 29 (Subtyping Preserves matching (arguments)). If

a. A+ JdA;.R; C: dA9.Ry
c. Ay =7 = [B.-Byl
d. f0)Nz=10

e.) A OK

f. AF3A R OK

g. AFPOK

Then there exists U such that: Then

—_
S
=)
~
o
>

—~
&.

=

—~
=l

o

&
<

=

-9

Ny
—
<

\
N
—
=

~

AN U/Z1B < U

[\

3. AN FU < [U/Z1By

W

. Ry <: [U/Z]R,
5. fu(U') C dom(A, A)
Proof. Proof by similar reasoning as in the proof of lemma 37 of TameFJ. [[

Theorem 4 (Progress). For any Aje, T, if); 0 Fe : T| A, then either e — &’ or

there exists a v such that e = v.

208

Proof. Proof by similar reasoning as in the proof of the Progress Theorem of TameFJ.

[l [l

Theorem 5 (Subject Reduction). For any e,e’,T, if §; 0 e : T |0 and e > ¢,

then 0; O ¢ : T|0.

Proof. The proof of this theorem is similar to the proof of the Subject Reduction
Theorem of TameFJ except for a technicality with match that is related to the issue
discussed in Section [6.5.3l The TameFJ soundness proof section did not specify that
the match relation is a function. However, on p. 73 of the TameFJ paper (full
version), consider judgment 54 of the TameFJ Subject Reduction Proof for the case

the R-INVK rule was applied; judgment 54 is repeated below for quick lookup:
T = [Us/X]1T”

A brief explanation of the derivation of judgment 54:

1. A premise of R-INVK is

3. They assumed the match relation is a function, so that the above two judgments

imply

T = [Ug/X1T”

209

To understand the importance of judgment 54, the judgment

match(sift(N; U;Y); P; ¥; [Us/X1T")

was used to type the method invocation expression:
v.<P>m (V)

However, the evaluation step

v.<P>n(¥) — [v/x, v/this,m] e
was performed under the premise

match(sift(N;U;Y); P; Y; T)

In order, for the subject reduction theorem to hold for TameFJ, it must be the
case that the inferred type actuals, [Us/X,1T”, used to assign a type to the method
invocation expression, must be the same as or equivalent to the inferred type actuals,
T, used to evaluate (perform on a reduction step on) the method invocation. Two
types are equivalent if they are subtypes of each other. Although our type system

allows variant type constructors, Lemmas [26| and [27| guarantee that our definition of

match ensures the set of output types for given inputs are equivalent. [n

210

APPENDIX C

METHOD BODY ANALYSIS: CONSTRAINTS ON
USE-SITE ANNOTATIONS

The heart of method body analysis is the production of constraints bounding
use-site variances, wvar(X;; C; y). These bounds ensure that the inferred use-site
annotation supports the limited use of y in its enclosing method body. The bounds
on use-site variances can be more relaxed than the bounds on definition-site variances.
A definition-site variance is constrained by the variance of all members of a generic.
A use-site variance for a method argument y can be more general because it needs to
be constrained by the variance of only those members accessed by y in the method
body.

Consider the argument source of method addAll from line [7] in the motivating
example (Figure in Section . The type of source is List<oE>. When the
method body analysis is performed, source’s inferred use-site annotation is the value
of the expression: dvar(E;List)UoUuvar(E;List; source). The definition-site variance
and specified use-site variance were further relaxed by wvar(E; List; source) to take
advantage of the fact that not all members of List were accessed by source in the
method body of addAll. We computed that only a covariant version of List was
required by source; formally, we computed wvar(E;List;source) = +. In this case,
uvar(E; List; source) was only constrained by the variance of the type signature of
the method List.iterator. It was the only method from List used and no other

uses of source occurred in the method body. As a result, the only upper bound on

211

wvar(E; List; source) is var(E; Iterator<E>) = +[[| This is the same upper bound on
dvar(E;List) that results from List.iterator alone, but dvar(E;List) also needs to
respect other constraints.

Figure contains the constraint generation rules for uvars and auxiliary func-
tions. The first three (MB) rules constrain wvar(Y; C; x) by the variance of Y in the
(non-static) members of C accessed by x in its enclosing method body. A field read
is only a covariant use of its type T; var(Y;T) was not transformed by + in rule MB-
FieLDREAD because + is the identity element on the transform operator ®. Note that
this constraint also occurs for definition-site variances; see rule W-Cus from Figure 6.3
for details.

Constraints with uvars are generated from method arguments using the auxiliary
function localvar. localvar may return an expression with a wvar to signal that a use-
site annotation can be inferred. localvar is not recursive and uwvars are only generated
for top-level use-site annotations. We chose not to generalize use-site annotations in
nested types for simplicity.

Section [9.4] did not need to mention localvar to describe the method body analysis
at a high level. However, the actual upper bound generated for dvar(X; Body) is —®
localvar(X; List<oE>; 1x) = —®(dvar(E; List) U o U uvar(E; List;1x)), so the initial
upper bound expression simplifies to the expression previously stated.

localvar returns an expression with a uvar for a method argument x if it is declared
with a parametric type and if it satisfies hierarchyMaybeGeneralized(x). hierarchy-
MaybeGeneralized(x) is imposed to help preserve method overrides in refactored code.
Use-site annotations in each position must be the same in overridden/overriding meth-
ods. We do not infer use-site annotations if an overridden method is not available

from source. We also do not infer use-site annotations for x if one of its corresponding

'Return types are in a covariant position.

212

uvar constraint generation: (representative rules)

M = enclosingMethod(x) M = enclosingMethod(x)
“x.f7 e M Lookup Type(£) =T “x.f =e”eM
—isWriteTarget(x. £) Lookup Type(f) =T
uvar(Y; C;x) C var(Y;T) wvar(Y; C;x) E — ® var(Y; T)
(MB-FIELDREAD) (MB-FIELDWRITE)

M = enclosingMethod(x)
“x.<S>m(e)” € M
Lookup(m;e) = <Y <U> T m(T x) { returns; }
[0] IT|
uvar(Y; C;x) C I_l(— ® var(Y;U)) Mvar(Y;T) |_|(— © localvar(Y; T;; x;))
i=1 =1
(MB-METHODCALL)

M = enclosingMethod(x)

y € hierarchyParams(x) “vy=x"eM Lookup Type(y) = C<vT>
Lookup Type(y) = C<vT> Y = " type parameter of C
uvar(Y; C;x) C localvar(Y; C<vT>; y) uvar(Y; C;x) C inferredUseSite(y; ¥; C; 1)
(MB-OVERRIDE) (MB-AsSIGNTOGENERIC-SAME)

M = enclosingMethod(x)
L(y = X77 E M

Lookup Type(y) = D<vT> C#D
uvar(Y; C;x) C dvar(Y; C)
(MB-AsSIGNTOGENERIC-BASE)

El(inferredUseSite(x; ¥; C; i) @ var(Y;T;))

localvar(Y; T; x) = , if T = C<vT> and hierarchyMaybeGeneralized (x)
var(Y; T), otherwise
dvar(X; C) Uv; U woar(X; C; y)
inferredUseSite(y; ¥; C; i) = if y is a method argl%ment
dvar(X;; C) U v;, otherwise,
where X; is the i® type parameter of C.
hierarchyMaybe Generalized(x) = Vy € hierarchyParams(x),y is declared in avail-
able source A sameGeneric(y; x).
sameGeneric(x; y) = Lookup Type(x) = C<vT> A Lookup Type(y) = C<wU> A [¥| = |w].
Lookup Type(x) = the declared type of variable x.
isWriteTarget(e) = e is the target (left-hand side) of an assignment.

Figure C.1. Constraint Generation from Method Bodies. Shaded parts show where
uwvar constraints differ from the corresponding dvar constraint of the signature-only
analysis.

213

parameters from a overridden/overriding method is not declared with a parametric
type of the same generic. One such example is method argument entry declared on
line 21] from Section [0.2] Changing a use-site annotation in the type of entry would
cause the add method of MapEntryWList to no longer override add in WList. When hi-
erarchyMaybeGeneralized (x) is satisfied, rule MB-OverrIDE ensures that each inferred
use-site annotation is the same in each position for all of the overridden/overriding
methods.

Rule MB-AssicNToGENERIC-SAME handles the case when a method argument x is
assigned to another variable y that are both parametric types of the same generic.
Promoting a use-site annotation in the type of x may require promoting the type
of y. Consider again argument source of method addAll on line [/} If the state-

Y

ment “List<E> list2 = source;” was added to the beginning of the method body
of addAll, then changing only the type of source to List<? extends E> would cause
the method to no longer type check; the type of the left-hand side of the assignment,
list2, would no longer be a supertype of the right-hand side, source. The influ-
ence analysis from Section (9.3 would also detect that source’s type influences 1ist2’s
type. To make the upper bounds on uwvars less restrictive, we perform a more precise
analysis for generating constraints on uvars.

The expression “y = x.£f” does not cause rule MB-AssiGNTOGENERIC-SAME to gener-
ate a constraint using y’s type even though the influence analysis detects that x’s type
influence y’s type. Instead, rule MB-FieLbREAD is applied to reflect that expression
“y = x.f”7 is only a covariant use of the field type of £. In the actual implementa-
tion, rule MB-AssicNToGENERIC-SAME also applies when x is an expression that has a
destination node (Figure but x is not a qualifier in the expression. This handles

? occurs in method M and other similar cases.

the case when “return x ;
Rule MB-AssicNToGENERIC-BASE handles the other assignment case from x to y

when y is declared with a parametric type of a different generic D<wU> than that used

214

in the type of x, C<vT>, where C # D. This can occur when C<vT> <: D<wU>. This sub-
typing relationship may be derived when there exists another instantiation of the base

type, D<v/S’>, such that (1) C<vT> <: D<v’S’> holds not because of variance but instead

by the class hierarchy and (2) C<vT> <: D<v/S’> <: D<wU>. Considering the class “class
Pair<X,Y> extends Box<X> {}” for example, Pair<? extends Dog, String> <:Box<?
extends Dog> <: Box<? extends Animal>. Also, Pair<S,?> <: Box<? extends S> but
Pair<?,T> <£: Box<? extends S>. More generally, if y is of type Box<vS> and x is
of type Pair<S,T>, generating the most relaxed but safe constraint for the assign-
ment “y = x” requires computing the most general instantiation of Pair that is a
subtype of Box<vS>. Rather than compute such an instantiation of C in rule MB-
AssIGNTOGENERIC-BASE, we chose to simplify the analysis by restricting the inferred
use-site annotation to its corresponding definition-site variance; this is safe because

definition-site variances support all uses of a generic definition.

215

APPENDIX D
SOUNDNESS OF REFACTORING

This section provides a sketch of a rigorous argument for why our algorithm for
generalizing types with wildcards is sound. There are two important soundness ques-
tions relevant to our refactoring tool. First, are the “correct” wildcard annotations
being generated? That is, will the inferred, more general, types support all of the
original operations available to clients, so that the refactoring will not break any client
code? Second, does the type influence graph record all of the necessary dependencies
between declarations?

The second soundness question can be easily verified for a given language con-
struct. Examining the type checking rule for an assignment expression, for example,
one can verify that generalizing the type of the right-hand side may require gener-
alizing the type of the left-hand side but not the other way around. Effectively, the
type influence graph encodes an overapproximation of the dependencies in our typing
rules, feature-by-feature. Therefore, answering this soundness question formally for
the full Java language would be tedious, error-prone, and would focus on technicali-
ties that do not provide fundamental insight on when code can be generalized with
wildcards. Rather, we provide empirical evidence that our influence analysis is sound
by recompiling the six large libraries of our study after the refactoring was performed.

Given that our influence graph records all of the necessary dependencies, it is safe
to rewrite the types of all declarations in a path in the graph (assuming all declarations
in the path are rewritable). Specifically, rewriting the types of all declarations in the

path preserves the subtype relationships between the types of expressions from the

216

original program. This property is a consequence of Lemma [35 which is stated later
in this section.

To answer the first question, we apply many properties proven in Appendices [A]
and [B| adapted to our refactoring setting. The essence of the proofs can be found in
those appendices, but the precise statements are different, due to the unique elements
of our approach. First, we cannot just refer to definition-site variance, which Java
does not support, but instead emulate it via refactoring-induced use-site variance.
Second, we need to also integrate method body analysis, which we do later, as a
separate step.

Our definition-site variance inference algorithm was proven sound in Appendix [A]
This algorithm computes how a new type system, ignoring Java intricacies, can infer
definition-site variance and, thus, generalize method signatures transparently. Subse-
quently, the VarJ calculus (Chapter @ modeled faithfully a subset of Java that sup-
ports language features with complex interactions with variance, such as F-bounded
polymorphism [13| and wildcard capture. VarJ extends the Java type system with de-
clared (not inferred) definition-site variance and shows that this extension is sound.
Our current system borrows from both of the above formalisms by first inferring
definition-site variance, and then emulating it with use-site variance in a more com-
plete setting, borrowed from VarlJ.

The type soundness proof of VarJ requires that subtyping relationships con-
cluded using definition-site variance annotations also satisfy the subsumption princi-
ple, where subtypes can perform the operations available to the supertype. Another
consequence of satisfying that requirement is that the refactored type is not only a
supertype of the original type but it is also safe to assume that the refactored type
is a subtype of the original type. In other words, types that occur in the refactored

program support all of the operations available in the original program; otherwise,

217

the refactored code would not compile because an operation is being performed in
the code that is no longer supported by a refactored type.

The proofs in Appendices [A] and [B] ensure that the refactored types are subtypes
of the original types according to the subtype relation with definition-site subtyping.
However, Java does not support definition-site variance, and the subtype relation
as defined in the JLS [28] does not conclude subtype relationships using inferred
definition-site variances. To relate our subtype relation with that of the JLS, we
define another subtype relation <:jg that is the same as <: except <:j.g does not
support a definition-site subtyping rule. For example, although Iterator is inferred
to be covariant in its type parameter, Iterator<Dog> £:j.s Iterator<Animal>. The
following lemma establishes that definition-site variance can be simulated with use-

site variance.

Lemma 30 (Use-site can simulate def-site). If T <: C<vT>, then T <:jpg C<wT>, where

w; = dvar(X;; C) U v;, for each i € [wl.

This lemma establishes that any additional subtype relationships that hold for <:
but do not hold for <:j g are a result of definition-site variance inference. Also, a
program still compiles if types are generalized only by joining their use-site annota-
tions with inferred definition-site variances. For example, suppose in a program that
type checks that there is an assignment x = y, where x and y are declared with types
Iterator<Animal> and T, respectively. Since the program type checks, we know T <:
Iterator<Animal>. The refactoring tool may change the type of y to a greater super-
type T'. Since the refactored type is always a subtype of the original type according
to <:, T <: T <: Iterator<Animal>. Lemma implies that T' <:jg Iterator<?
extends Animal>. So changing the type of x to the latter type ensures the program
still compiles, as far as assignments to x are concerned. In this example, it could have

been the case that T = Iterator<Animal> and T = Iterator<? extends Animal>.

218

Although only the types of declarations (e.g., fields) are rewritten by the tool,
we will prove that the types of all expressions in the refactored program can safely
be subtypes of the corresponding types in the original program. This ensures nested
expressions are also able to be perform operations from the original program.

The soundness proof of Theorem [3| guarantees that C<(v, Uvg)T> <: C<v,T> is safe,
where v, is a safe definition-site variance for C. Considering Iterator is covariant,
for example, this property implies that Iterator<?> <: Iterator<? super Animal> is
safe to conclude. The refactoring tool would replace the latter type with the former.

We state this property formally in the following lemma.

Lemma 31 (Def-site joining does not further generalize). Let C be a generic class such

that CT(C) = “class C<X> ...”. Then C<(wUv)T> <: C<vT>, where w; = dvar(X;;C),

for each 7 € [w|.

Additionally, in order for the refactored code to compile, the operations performed
on the original types must also be able to be performed on the refactored types. To
describe this property precisely, first, we assume that there is an auxiliary (partial)
function ftype(£; C<vT>) such that given the name £ of a field that exists in generic
class ¢ and an instantiation of the generic C<vT>, ftype(£; C<vT>) returns the type of
the field for that instantiation. Also, we assume that there is a (partial) function
mtype(m; C<vT>) such that given the name m of a method that exists in generic class C
and an instantiation of the generic C<vT>, mtype(m; C<vT>) returns the type signature
of the method for that instantiation. Formal definitions of ftype and mtype can be
found in Figure [6.4]

Since refactored types are subtypes of original types, showing that operations can
be performed on the refactored types amounts to showing that the subtyping relation
satisfies the subsumption principle. This is established by Lemmas [2] and The
proofs of those lemmas rely on intricate reasoning involving the variances of positions

in class definitions, and the subtype lifting lemma (Lemma [I)), which establishes the

219

key relationship between variance and subtyping. We restate those lemmas here since

properties in this appendix are specified using the FGJ* syntax (given in Figure .

Lemma 32 (Subtyping Specializes Field Type). If T <: T and ftype(£;T) = U, then
ftype(£;T') <: U.

If Lemma [32| were not true, the subtyping relation would violate the subsumption
principle; in that case, the supertype T could return a U from its field £ but the subtype
T’ could not.

To satisfy the subsumption principle, a method’s type signature for the subtype
must be a subtype of its type signature for the supertype. Lemma states this

precisely.

Lemma 33 (Subtyping Specializes Method Type). If T <: T and mitype(m;T) =
<Z 8> (0) — V, then mtype(m;T') = <Z<18> (U) — V' such that (1) U<: U, (2)

S <:8,and (3) V' <: V.

To formally argue that the refactoring preserves compilation, we model the refac-
toring tool using the FGJ* syntax and similar notation used in FGJ. Recall that an
FGJ program is a pair (CT, e) of a class table CT that maps class names to class
definitions and an expression e representing the main method. The refactoring tool
is modeled by a function R that maps elements from an FGJ program to elements in
the refactored program (R(CT), e). R is not applied to e because the refactoring tool
does not modify term expressions. It only changes the types of declarations, which
only occur in the class table.

The typing judgment CT - e : T denotes that expression e has type T given class
table CTE| The following key theorem is satisfied by the refactoring tool and establishes

that the refactoring preserves compilation.

!The typing judgment in FGJ takes in more parameters such as a type variable context A and
an expression variable context I'. We skip these parameters because the exact typing rules are not
the focus of this paper.

220

Theorem 6 (Refactored Types Are Safe). Suppose CT - e : C<vT>, where CT(C) =

“class C<X>...”. Then R(CT) F e : C<v'T>, where for each i € [T|,

(
dvar(X;; C) U v; U uvar(X; C;y),

GEQ ife= y and y is a method argument

dvar(X;; C) U v;, otherwise.
x

This theorem states that the use-site variances in the type of every expression
in the refactored program are bounded by the join of the use-site variances in the
types in the original program and the corresponding definition-site variances, if the
signature-only based variance analysis is performed. If the method body analysis
is also performed, then expressions that are method arguments may be further pro-
moted by the inferred use-site needed to support only the operations performed in
the method body. The upper bounds of the v/ ensure that every expression can sup-
port the operations performed in the original program. Although it is not safe to
assume C<v/T> <: C<vT> in general, it is safe to assume that subtype relationship for
a particular method.

We will sketch the proof of this theorem. To clarify the presentation, we first prove
the theorem for the case where the refactoring tools performs just the signature-only
analysis. Later, we will cover the case when the method-body analysis is performed.
Also, for simplicity, we ignore the type influence analysis by assuming that all decla-
rations are declared in source, and that the types of all declarations are generalized.
Finally, we assume that the type system exhibits a subsumption typing property: an
expression can be typed with any supertype of its most specific type. Formally, if
e:Tand T <:j s U, then e : U. Assuming this typing rule is safe because we know that
the subtype relation satisfies the subsumption principle. Subsumption typing rules

were defined in both type systems for TameFJ [12] and VarJ. We use relation <:jig

221

instead of <: because we only want to derive typing judgments that a standard Java
compiler would infer.

Since we are assuming the signature-only analysis, we can define the refactoring
tool function R over all type expressions in a program: R(C<wT>) = C<vT>, where
w; = dvar(X;;C) Uv; and X; is the i'' type parameter of C. Also, R(X) = X, where X is

a type variable. Given this definition, we state two important properties:
Lemma 34 (Refactored Type is Subtype of Original). R(T) <: T.
Lemma 35 (Refactoring Preserves Subtyping). If T <: U, then R(T) <:jrs R(U).

Lemma [34] states that the refactored type is a subtype of the original, and it holds
because of Lemma Lemma [35] establishes that the refactoring preserves subtype
relations from the original program; it is easy to show using Lemmas |31| and We

restate Theorem [6] with the signature-only based refactoring:

Theorem 7 (Refactored Types Are Safe for Sig-Only). If CT F e : T, then R(CT) F

e : R(T). We prove this by structural induction on expression e.

Case: e = y. Proof: This proof case is trivial. Because every declaration is
generalized, the refactoring tool changes the type of y from T to R(T). O

Case: e = new N(g). Proof: In the original program, e has type N. It also has
type N in the refactored program, if it type checks. Furthermore, e would have type
R(N), by the subsumption typing rule, since N <:jis R(N). So we only need to show
that this expression still type checks in the refactored program. Since new N(e) has
a type, by inversion (similar to [12, Lemma 31]), we know that for each i € [e|, the
actual argument e; also has a type that is a subtype of the type of the i*" formal
argument of the constructor for N. We show that this is also the case in the refactored
program.

Let T; be the type of e; and U; by the type of the it" formal argument of the

constructor for N. By the inductive hypothesis, R(CT) e; : R(T;). As discussed

222

above, it must be the case that T, <:js U;. By Lemma this implies R(T;) <:jLs
R(U;). Since i was arbitrary in ||, new N(e) type checks in the refactored program.
Therefore, R(CT) - new N(&) : N. [

Case: e = ¢'.f. Proof: Since CT |- ¢'.f : T, then by inversion, we have the

judgments (1) and (2) below:
1. CTHe U
2. ftype(£;U) <: T
3. R(CT) €' : R(U), by applying the inductive hypothesis to (1).
4. R(v) <: U, by Lemma [34]
5. ftype(£; R(U)) <: ftype(£;U) <: T, by applying Lemma (32| to (4) and (2).
6. ftype(£; R(U)) <:jus R(T), by applying Lemma [30] to (5).
7. R(CT) Fe'.£: R(T), by (3), (6), and the subsumption typing rule. [

Case: e = ¢’.<S>m(e). Proof: Since CT - ¢'.<S>m(e) : T, then by inversion, we

have judgments (1-6) below:
1.CTFe:U
2. CTHe' U
3. mtype(m;U) =<Z V> (A) — B
4. U<:[S/ZJA. 5. S<:[S/zZIV. 6. [S/Z1B <:T.
7. R(CT) F €' : R(U), by applying the inductive hypothesis to (2).
8. R(U) <:U, by Lemma 34

Applying Lemma [33|to (3) and (8) gives the following four judgments:

223

9. mtype(m; R(U)) =<z V> (4') — B

10. A <: A 11. v<: V. 12. B <:B.

We use the following standard substitution preserves subtyping lemma that was

proven for many extensions of FGJ.
Lemma 36. If T <: T, then [U/X]T <: [U/X]T.

Applying Lemma [36| to (10-12) gives the next three judgments:

13. [S/Z]A <: [S/Z1N’

14. [S/Z]V <: [S/Z1V'
15. [S/Z]B <: [S/Z1B

16. R(CT) - e : R(U), by applying the inductive hypothesis to (1).

17. R(U) <: U, by Lemma .

18. R(V) <: U <: [S/Z1A <: [S/Z1¥, by (17), (4), and (13).

19. s <: [S/Z]V <: [8/Z1V', by (5) and (14).

20. [8/2]B <: [8/Z]B <: T, by (15) and (6).

21. R(U) <:yLs R([S/Z]A), by applying Lemmato (18).

22. S <:yus R([S/Z1V), by applying Lemmato (19).
23. R([S/Z1B') <:y.s R(T), by applying Lemma [35[to (20).

24. R(CT) F & .<s>m(@) : R(T), by (7), (9), (16), (21-23), and the subsumption

typing rule. [

224

Proof of Theorem [6) with Method Body Analysis.

We next sketch the proof of a theorem analogous to Theorem (7| (which specializes
Theorem [0 specifically for the signature-only analysis), for the case of the method
body analysis. Although the proof of Theorem [7] assumed that the signature-only
based analysis was performed, similar reasoning proves the theorem still holds if the
method body analysis is performed. First, for this proof we now reason with a function
Ry(T) that refactors the type T with the method body analysis assuming that it is

the declared type of method argument y:

(

dvar(X; C) U v; U uvar(X; C; y),
if T = C<vT>, y is a method argument,
and X; = i*" type parameter of C.

R(T), otherwise.

\

We define another function R™ to model applying the refactoring tool to the entire
class table. R™(CT) is the same as R(CT) except that when R™ is applied to the type
T of method argument y, R™ returns Ry(T) instead of R(T). Theorem [6 is restated

with the equivalent implication below:

Theorem 8 (Refactored Types Are Safe for Body Analysis). If CT F e : T, then:

R™(CT) ke : Ry(T), if e =y and y is a method argument

R™(CT) F e : R(T), otherwise.

Note that this theorem implies that if a method argument y is used as a qualifier
in an expression (e.g., “y.£”), that expression has the same type as in the refactored
program where the signature-only based analysis was performed. Hence, proving this

theorem amounts to showing that each kind of use of a method argument in the

225

original program is still supported in the refactored program. Specifically, we show

the following;:

e If y is used in a member access expression (i.e., a field read or a method invo-
cation), then the type of that expression in the refactored program is the same

for both the signature-only based and the method body analysis.

o [f y is declared with type T and is being “directly assigned” to a declaration of
type U, then R™(T) <:jLs R™(U). Hence, the direct assignment still type checks
in the refactored program. “Directly assigning” y to another declaration refers
to the situation when y is not a qualifier in an expression but that expression has
a destination declaration (node) as discussed in Section[9.3.3] For example, this

Y

occurs when y was directly returned from a method (i.e., “return y;” occurred

in the method body).

In general for a type T of a method argument y, it is not the case that Ry(T) <: T.
However, for the limited use of y in the method body, it is safe to assume that
R,(T) <: T. We define a new subtype relation where T" <:; T denotes that for the
limited use of type T by method argument y, T is a subtype of T. This assumption is
safe because Lemmas [32| and [33| hold for the subset of members accessed by y in the
method body. In the statements of those two lemmas, we can replace the subtype
T with Ry(T) and those lemmas would still hold for the particular members accessed
by y. Considering method argument source from line [7] of Figure for example,
even though List is invariant, we have Rgource(List<E>) = List<? extends E> <isource
List<E>. The only member accessed from source in the method body is iterator().
Lemma [33 holds with the instantiations T" = List<? extends E>, T = List<E>, and
m = iterator.

Contrasting with Lemma |35 in general we cannot establish the implication T <:

U = R™(T) <:rs R™(U) if T is the type of a method argument y. However, if

226

T <:jus U holds in the original program because y was directly assigned to another
variable of type U, then rules MB-AssiGNToGENERIC-SAME and MB-AsSIGNTOGENERIC-
Base from Figure guarantee R™(T) <:js R™(U). For example, if R™(T) = C<vT>
and R™(U) = C<wT>, rule MB-AssiIGNTOGENERIC-SAME ensures v < w. Moreover, if an
arbitrarily complex expression e of type T occurs where an expression of type U is
expected, then the implication T <:js U = R™(T) <:jLs R™(U) holds.

Given the properties above, each kind of use of a method argument is still sup-
ported in the refactored program. Furthermore, the argument above describes how
to augment the proof of Theorem [7]to prove Theorem 8| For example, in the proof of
Theorem 7] for the case when e = new N(&), for each i € [€], we have T; <:js U;, where
T; is the type of the actual argument e; and U; is the type of the i** formal argument
of the constructor for N. Since e; was directly assigned to the i*" formal argument,
R™(T;) <:yus R™(U;). Hence, the proof of this theorem for the case when e = new

N (e) still holds. Augmenting the remainder of the proof is similarly straightforward.

227

BIBLIOGRAPHY

[1] Altidor, John, Huang, Shan Shan, and Smaragdakis, Yannis. Taming the wild-
cards: Combining definition- and use-site variance. In Proceedings of the 32nd

ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (New York, NY, USA, 2011), PLDI ’11, ACM, pp. 602-613.

[2] Altidor, John, Reichenbach, Christoph, and Smaragdakis, Yannis. Java wildcards
meet definition-site variance. In Proceedings of the 26th FEuropean Conference on
Object-Oriented Programming (Berlin, Heidelberg, 2012), ECOOP’12, Springer-
Verlag, pp. 509-534.

[3] Altidor, John, and Smaragdakis, Yannis. Refactoring java generics by inferring
wildcards, in practice. In Proceedings of Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA) (Portland, OR, Oct. 2014),
ACM.

[4] America, Pierre, and van der Linden, Frank. A parallel object-oriented language
with inheritance and subtyping. In European Conf. on Object-Oriented Program-
ming and Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA/ECOOP) (New York, NY, USA, 1990), ACM, pp. 161-168.

[5] Apache Software Foundation. Apache commons-collections library. http://
larvalabs.com/collections/. Version 4.01.

[6] Aydemir, Brian, Charguéraud, Arthur, Pierce, Benjamin C., Pollack, Randy,
and Weirich, Stephanie. Engineering formal metatheory. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (New York, NY, USA, 2008), POPL 08, ACM, pp. 3-15.

[7] Barendregt, Henk P. The Lambda Calculus: Its Syntax and Semantics, vol. 103
of Studies in Logic and the Foundations of Mathematics. North Holland, Ams-
terdam, 1984.

[8] Bloch, Joshua. The closures controversy. http://www.javac.info/
bloch-closures-controversy.ppt. Accessed Dec. 2013.

[9] Bloch, Joshua. Effective Java (2nd Edition) (The Java Series), 2nd ed. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2008.

[10] Boumillion, Kevin, and Levy, Jared. Guava: Google core libraries for Java 1.5+.
http://code.google.com/p/guava-libraries/. Release 8.

228

http://larvalabs.com/collections/
http://larvalabs.com/collections/
http://www.javac.info/bloch-closures-controversy.ppt
http://www.javac.info/bloch-closures-controversy.ppt
http://code.google.com/p/guava-libraries/

[11]

[12]

[13]

[18]

[19]

[20]

[21]

[22]

Bracha, Gilad, and Griswold, David. Strongtalk: typechecking smalltalk in a
production environment. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) (New York, NY, USA, 1993), ACM, pp. 215-230.

Cameron, Nicholas, Drossopoulou, Sophia, and Ernst, Erik. A model for Java
with wildcards. In European Conf. on Object-Oriented Programming (ECOOP)
(2008), Springer, pp. 2-26.

Canning, Peter, Cook, William, Hill, Walter, Olthoff, Walter, and Mitchell,
John C. F-bounded polymorphism for object-oriented programming. In Proceed-
ings of the Fourth International Conference on Functional Programming Lan-
guages and Computer Architecture (New York, NY, USA, 1989), FPCA 89,
ACM, pp. 273-280.

Cardelli, L. Structural subtyping and the notion of power type. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1988), POPL ’88, ACM, pp. 70-79.

Chin, Wei-Ngan, Craciun, Florin, Khoo, Siau-Cheng, and Popeea, Corneliu. A
flow-based approach for variant parametric types. In Proceedings of Conf. on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)
(New York, NY, USA, 2006), OOPSLA ’06, ACM, pp. 273-290.

Chlipala, Adam. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. The MIT Press, 2013.

Cimadamore, Maurizio, and Viroli, Mirko. Reifying wildcards in java using the
ego approach. In Proceedings of the 2007 ACM Symposium on Applied Computing
(New York, NY, USA, 2007), SAC '07, ACM, pp. 1315-1322.

Cook, William. A proposal for making Eiffel type-safe. In European Conf. on
Object-Oriented Programming (ECOOP) (Cambridge, UK, 1989), Cambridge
University Press, pp. 57-70.

Cook, William R. Object-oriented programming versus abstract data types. In
Proceedings of the REX School/Workshop on Foundations of Object-Oriented
Languages (London, UK, UK, 1991), Springer-Verlag, pp. 151-178.

Cousineau, Guy, and Mauny, Michel. The Functional Approach to Programming.
Cambridge University Press, 1998.

Craciun, Florin, Chin, Wei-Ngan, He, Guanhua, and Qin, Shengchao. An
interval-based inference of variant parametric types. In Proceedings of the
18th European Symposium on Programming (ESOP) (Berlin, Heidelberg, 2009),
ESOP ’09, Springer-Verlag, pp. 112-127.

Dautelle, Jean-Marie, et al. Jscience. http://jscience.org/. Version 4.3.

229

http://jscience.org/

[23]

[24]

Dautelle, Jean-Marie, and Keil, Werner. Jsr-275: Measures and units. http:
//www.jcp.org/en/jsr/detail?id=275. Accessed Nov. 2010.

Emir, Burak, Kennedy, Andrew, Russo, Claudio, and Yu, Dachuan. Variance
and generalized constraints for c# generics. In Proceedings of the 20th Euro-
pean Conference on Object-Oriented Programming (Berlin, Heidelberg, 2006),
ECOOP’06, Springer-Verlag, pp. 279-303.

Friedman, Eric, and Eden, Rob. Gnu Trove: High-performance collections library
for Java. http://trovedj.sourceforge.net/. Version 2.1.0.

Godel, Kurt. On Formally Undecidable Propositions of Principia Mathematica
and Related Systems. Dover Books on Mathematics. Dover Publications, 2012.

Goldberg, Adele, and Robson, David. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

Gosling, James, Joy, Bill, Steele, Guy, Bracha, Gilad, and Buckley, Alex. The
Java Language Specification, 7th ed. California, USA, February 2012.

Greenman, Ben, Muehlboeck, Fabian, and Tate, Ross. Getting f-bounded poly-
morphism into shape. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (New York, NY, USA,
2014), PLDI "14, ACM, pp. 89-99.

Harper, Robert. Practical Foundations for Programming Languages. Cambridge
University Press, Dec. 2012.

Hejlsberg, Anders, Wiltamuth, Scott, and Golde, Peter. C# Language Specifi-
cation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2003.

Igarashi, Atsushi, Pierce, Benjamin C., and Wadler, Philip. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23,
3 (May 2001), 396-450.

Igarashi, Atsushi, and Viroli, Mirko. On variance-based subtyping for parametric
types. In Proceedings of the 16th European Conference on Object-Oriented Pro-
gramming (London, UK, UK, 2002), ECOOP ’02, Springer-Verlag, pp. 441-469.

Igarashi, Atsushi, and Viroli, Mirko. Variant parametric types: A flexible sub-
typing scheme for generics. ACM Trans. Program. Lang. Syst. 28, 5 (Sept. 2006),
795-847.

Igarashi, Atsushi, and Viroli, Mirko. Variant path types for scalable extensibil-
ity. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications (New York, NY, USA, 2007),
OOPSLA 07, ACM, pp. 113-132.

230

http://www.jcp.org/en/jsr/detail?id=275
http://www.jcp.org/en/jsr/detail?id=275
http://trove4j.sourceforge.net/

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

International, Ecma. Dart Programming Language Specification Version 1.3,
1st ed. Ecma International, Mar. 2014.

ISO Standards Committee. ISO/IEC standard 14882: Programming languages
— G4+, 1998.

Jones, Simon P. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, May 2003.

Kennedy, Andrew, and Pierce, Benjamin. On decidability of nominal subtyping
with variance. FOOL/WOOD (2007).

Kennedy, Andrew, and Syme, Don. Transposing f to c¢#: expressivity of para-
metric polymorphism in an object-oriented language: Research articles. Concurr.
Comput. : Pract. Ezper. 16 (June 2004), 707-733.

Kiezun, Adam, Ernst, Michael D., Tip, Frank, and Fuhrer, Robert M. Refac-
toring for parameterizing Java classes. In Proceedings of the 29th International
Conference on Software Engineering (Washington, DC, USA, 2007), ICSE '07,
IEEE Computer Society, pp. 437-446.

Malayeri, Donna, and Aldrich, Jonathan. Integrating nominal and structural
subtyping. In Proceedings of the 22nd European Conference on Object-Oriented
Programming (Berlin, Heidelberg, 2008), ECOOP ’08, Springer-Verlag, pp. 260
284.

Marlow, Simon. Haskell 2010 language report, 2010.

Martin-Lof, P. Constructive mathematics and computer programming. In Proc.
Of a Discussion Meeting of the Royal Society of London on Mathematical Logic
and Programming Languages (Upper Saddle River, NJ, USA, 1985), Prentice-
Hall, Inc., pp. 167-184.

The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

Meyer, Bertrand. Object-Oriented Software Construction, 1st ed. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

Milner, Robin, Tofte, Mads, and Macqueen, David. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

Mozilla. Definition-site variance inference in rust. http://static.rust-lang.
org/doc/0.9/rustc/middle/typeck/variance/index.html. Accessed Aug.
2014.

Mozilla. The rust reference manual. http://doc.rust-lang.org/rust.html.

231

http://static.rust-lang.org/doc/0.9/rustc/middle/typeck/variance/index.html
http://static.rust-lang.org/doc/0.9/rustc/middle/typeck/variance/index.html
http://doc.rust-lang.org/rust.html

[50]

[51]

[52]

[53]

[54]

[62]

Nipkow, Tobias, Wenzel, Markus, and Paulson, Lawrence C. Isabelle/HOL:
A Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

Odersky, Martin. The Scala Language Specification v 2.9. http://www.
scala-lang.org/docu/files/ScalaReference.pdf, 2014.

Pfenning, F., and Elliot, C. Higher-order abstract syntax. In Proceedings of
the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation (New York, NY, USA, 1988), PLDI '88, ACM, pp. 199-208.

Pierce, Benjamin C. Types and Programming Languages. MIT Press, Cambridge,
MA, USA, 2002.

Reynolds, John C. User-defined types and procedural data structures as com-
plementary approaches to data abstraction. In Conference on New Directions
on Algorithmic Languages (Munich, Aug. 1975), Stephen A. Schuman, IFIP WP
2.1.

Robbes, Romain, Rothlisberger, David, and Tanter, Eric. Extensions during soft-
ware evolution: Do objects meet their promise? In Proceedings of the 26th Eu-
ropean Conference on Object-Oriented Programming (Berlin, Heidelberg, 2012),
ECOOP’12, Springer-Verlag, pp. 28-52.

Salcianu, Alex. Java program analysis utilities library. http://jpaul.
sourceforge.net/. Version 2.5.1.

Schiirmann, Carsten. The twelf proof assistant. In Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics (Berlin,
Heidelberg, 2009), TPHOLSs ’09, Springer-Verlag, pp. 79-83.

Smith, Daniel. Jep draft: Improved variance for generic classes and interfaces.
http://openjdk.java.net/jeps/8043488.

Smith, Daniel, and Cartwright, Robert. Java type inference is broken: can we
fix it? In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (New York, NY, USA, 2008), ACM, pp. 505-524.

Squeaksource. Squeaksource repository. http://www.squeaksource.com/.

Tate, Ross, Leung, Alan, and Lerner, Sorin. Taming wildcards in java’s type
system. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA, 2011), PLDI 11,
ACM, pp. 614-627.

Thorup, Kresten Krab, and Torgersen, Mads. Unifying genericity: Combining
the benefits of virtual types and parameterized classes. In European Conf. on
Object-Oriented Programming (ECOOP) (London, UK, 1999), Springer-Verlag,
pp- 186-204.

232

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://jpaul.sourceforge.net/
http://jpaul.sourceforge.net/
http://openjdk.java.net/jeps/8043488
http://www.squeaksource.com/

[63] Torgersen, Mads, Hansen, Christian Plesner, Ernst, Erik, von der Ahe, Peter,
Bracha, Gilad, and Gafter, Neal. Adding wildcards to the Java programming
language. In SAC °04: Proc. of the 2004 Symposium on Applied Computing
(Nicosia, Cyprus, 2004), ACM Press, pp. 1289-1296.

[64] Urban, Christian, Berghofer, Stefan, and Norrish, Michael. Barendregt’s variable
convention in rule inductions. In In Proc. of the 21th International Conference on
Automated Deduction (CADE), volume 4603 of LNAI (2007), Springer, pp. 35—
50.

[65] Viroli, Mirko, and Rimassa, Giovanni. On access restriction with Java wildcards.
Journal of Object Technology 4, 10 (Dec. 2005), 117-139.

[66] Wadler, Philip. The expression problem. Email, Nov. 1998. Discussion on the
Java Genericity mailing list.

233

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Subtype Polymorphism
	Parametric Polymorphism
	Variance Introduction
	Illustration of Approach
	Dissertation Outline

	Background on Variance
	Definition-site Variance
	Use-site Variance
	A Comparison
	Generalizing the Design Space.

	Reasoning about Variance
	Variance Composition
	Integration of Use-Site Variance
	Recursive Variances
	Recursive Variance Type 1
	Recursive Variance Type 2
	Recursive Variance Type 3
	Recursive Variance Type 4
	Handling Recursive Variance.
	A Note on Scala:

	VarLang: A Core Language and Calculus
	Syntax
	VarLang Translation
	Revisiting Recursive Type Variances
	Constraint Solving

	Towards Industrial Strength Languages
	Generic Methods
	Existential Types
	Expressible But Not Denotable Types
	Scope of Wildcards
	Wildcard Capture

	F-bounded polymorphism

	VarJ
	VarJ Syntax
	Variance of a Type
	Variance of a Position
	Subtyping
	Typing and Wildcard Capture
	Expression Typing
	Matching for Wildcard Capture
	Sifting for Wildcard Capture

	Type Soundness
	Discussion
	Boundary Analysis
	Definition-Site Variance and Erasure

	Variance Soundness
	High-Level Proof of Lemma 2
	Supporting Field Writes

	An Application: Definition-Site Variance Inference for Java
	Applications
	Analysis of Impact

	Refactoring by Inferring Wildcards
	Contributions Relative to Past Work
	Illustration
	Type Influence Flow Analysis
	Influence Nodes
	Flow Dependencies from Qualifiers
	Expression Targets
	Dependencies from Inheritance
	Algorithm
	Non-rewritable Overrides

	Method Body Analysis
	Type Influence Graph Optimizations
	Evaluation
	Comparison to Related Work

	Related Work
	Related Research on Variance
	Variance and Programming Language Research
	Nominal Subtyping and Structural Subtyping
	Nominal Subtyping and Software Extension
	Nominal Subtyping and Functional Languages
	Generalized Constraints with Existential Types
	Deconstructing Generalized Constraints
	Deconstructing Existential Subtyping
	Boundary Analysis and Deconstructing Constraints

	Proofs of Language Properties
	Barendregt's Variable Convention

	Conclusion
	Summary of Contributions
	Future Work

	VarLang Soundness
	Proof of VarJ Soundness
	Method Body Analysis: Constraints on Use-Site Annotations
	Soundness of Refactoring
	Bibliography

