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ABSTRACT

AN OPPORTUNISTIC SERVICE ORIENTED APPROACH
FOR ROBOT SEARCH

FEBRUARY 2015

DAN XIE

B.Sc., BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

M.Sc., BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Allen Hanson and Professor Roderic A. Grupen

Health care for the elderly poses a major challenge as the baby boomer generation

ages. Part of the solution is to develop technology using sensor networks and service

robotics to increase the length of time that an elder can remain at home. Since

moderate immobility and memory impairment are common as people age, a major

problem for the elderly is locating and retrieving frequently used “common” objects

such as keys, cellphones, books, etc. However, for robots to assist people while they

search for objects, they must possess the ability to interact with the human client,

complex client-side environments and heterogeneous sensorimotor resources. Given

this complexity, the traditional approach of developing particular control strategies

in a top-down manner is not suitable.

v



In this dissertation an opportunistic service-oriented approach is presented to ad-

dress the robot search problem in residential eldercare. With the presented approach,

a hierarchy of search strategies is developed in a bottom-up manner from passive

object detection and retrieval performed by embedded camera sensors to context-

aware cooperative search performed by a human-robot team. By opportunistically

employing available sensorimotor resources, the robotic application achieves increased

search performance, and has the flexibility to balance between performance goals and

resource constraints. To evaluate the proposed approach, I describe several experi-

ments with a robot-sensor network that includes the UMass uBot-5, Pan-Tilt-Zoom

cameras and wireless sensors. The results of these experiments suggest that the robot

search application based on the proposed approach can lead to efficient search per-

formance and great flexibility in resource-constrained environments.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Technological progress over the past decade suggests that we are closer to personal

robots that can assist human clients in the activities of daily living than ever before.

However, a number of challenges have to be addressed before robotics really impacts

the lives of a vast number of people in need. First, for robots to operate and assist

people, they must possess the ability to interact with the complex client-side envi-

ronment and the human clients. The traditional approach of developing particular

control strategies in a top-down manner is not suitable for multi-task applications due

to the complexity and the cost. For wide spread use and commercialization, personal

robots must be packaged in a manner that pushes price/performance downward. Sec-

ond, another challenge is the recruitment of heterogenous sensorimotor resources from

which services can be derived in the client-side environment. Adequate organization

of hardware and computational resources to form and deliver services is a current

research interest.

This dissertation argues that the key to address these problems is to construct

robotic applications in a distributed and service-oriented approach. One of the tech-

nical breakthroughs that puts these goals in reach is the availability of middleware

to handle messages between modular sensory and motor resources (e.g., ROS –Robot

Operating System [46], Yarp –Yet Another Robot Platform [43], MRDS –Microsoft

Robotics Developer Studio [54], NDDS [44], etc). Human-centric applications require

dynamic adaptation of services, so in this dissertation I propose using an oppor-
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tunistic service-oriented approach to design robot applications for assisted-living.

The proposed architecture builds applications using a hierarchy of services and tries

to satisfy performance requirements at the lowest level possible where minimum re-

sources are engaged and flexibility is limited. If performance specifications cannot be

satisfied, then control percolates up the hierarchy to achieve better performance. The

applications also have the flexibility to collapse to lower tiers and to release resources

to other applications when resource contention happens.

In this dissertation, the proposed opportunistic service-oriented approach is used

to address the robot search problem, where the robotic system assists a human client

to find common objects in a residential environment. Despite some relevant research,

robot search in unstructured environments is still an open problem. To achieve effec-

tive search, the robot must acquire skills that model the dynamic of the environment,

recruit additional resources as necessary, and cooperate with the client who may

themselves contribute resources.

There has been considerable recent interest in robot search and rescue in emer-

gency response. The unprecedented number and scales of natural and human-induced

disasters in the past decade has urged the emergency search and rescue community

around the world to seek newer, more effective equipment to enhance their efficiency.

Emergency respond robots have been proposed to help search and rescue survivors

in collapsed or compromised structures, mining accidents, hostage situations, and

explosions. Some examples are illustrated in Figure 1.1. A good overview of rescue

robotics is in Disaster Robotics by Robin Murphy [80].

It is likely that applying search and rescue technologeis for residential assisted liv-

ing settings can help to extend the period of time that elders can live independently.

(some examples are shown in Figure 1.2). As the baby boomer generation ages over

the next decade, health care for the elderly poses a major economic and pratical

challenge. In addition to monitoring for illnesses and potentially life-threatening sit-
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uations, an equally important challenge in home healthcare for the elderly is providing

assistance in day-to-day life. Since moderate immobility and memory impairment are

common as people age, a major problem for the elderly is locating and retrieving

frequently used “common” objects such as keys, cellphones, books, etc [116, 88]. Im-

paired performance on this everyday task can lead to safety issues and potentially

to institutionalization. However, assisted-living systems today are still unable to re-

liably find objects. Compared to the systems in emergency response, assisted living

robots should have a high degree of autonomy and learning capability to adapt to

the behavior of the human subjects living in the residential environment. Furthur-

more, an important aspect of assistive technology is that technology delivered into

residential environment must adapt to special needs, lifestyles, preferences, residen-

tial geometry and environment. Therefore, it is important to study the object search

problem and to develop effective and efficient approaches for automated object search

for residential assited living.

1.2 Approach

An Opportunistic Service-Oriented approach for the design of robot search ap-

plications for residential assisted-living is proposed. The Service-Oriented approach

I proposed organizes the behavior of distributed sensorimotor and computational

resources to support many applications in many situations. As shown in Figure

1.3, heterogeneous sensorimotor resources are employed. The major components of

the system include an array of 4 Pan/Tilt/Zoom (PTZ) cameras and mobile robots

(uBot-5). Microsoft Kinect sensors, embedded wireless camera sensors and RFID

(Radio-Frequency Identification) readers are also deployed to sense the environment.

Primitive computational services including object recognition, feature detection and

tracking. These services can migrate in the distributed architecture with the client.

Client applications (object/event/activity recognition, tracking) are realized using
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(a) (b)

(c)

Figure 1.1. Robots are being used to search and rescue in emergency response
scenarios. (a) The Nexi robot developed by MIT Media Lab and LPR (Laboratory
for Perceptual Robotics) UMass Amherst is searching for victims in a post-disaster
rescue scenario. (b) The PackBot developed by iRobot Corp was used in response
to 9/11, and helped explore overheating nuclear plants in Japan after earthquake in
2011. (c) Other search and rescue robots.

compositions of primitive services informed by prior models of the context dependent

interaction patterns

Robotic systems using service-oriented architectures are not new [40, 64]. The cost

of a particular configuration in the SOA is defined in terms of the time a resource

commitment required. The goal is to respond to the run-time context in a manner that

produces the best quality result per unit cost. In a multi-tasking system that deals

with resource contention and node/communication failure, services must be capable

of re-configuring to optimize the expected net performance of the entire system. This

dissertation advocates composing services from re-usable primitives to accumulate

skills that make services robust. When executing, the application starts from running

in the lowest most primitive tier, and attempts to employ more resources when there
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(a) (b)

Figure 1.2. Robots are being used to search for house-hold objects in assisted-living
scenarios. The robots must possess the ability to interact with complex and dynamic
environment and human clients to achieve successful search. (a) The uBot-5 robot
[36] was searching for objects. (b) Developed by Department of Computer Science,
University of British Columbia, Curious George is a visual search robot, which won
the robot league of the 2007 Semantic Robot Vision Challenge (SRVC)

is an opportunity to achieve better performance. The applications also have the

flexibility to collapse to lower tiers and to release resources to other applications

when resource contention happens.

In this thesis, robot search strategies are developed in an incremental manner.

A bottom-up approach is adopted to develop a hierarchy of search strategies from

passive object detection and retrieval performed by embedded camera sensors to

context-aware cooperative search performed by a human-robot team (see Figure 1.4).

This approach starts from the smallest use of resources, and incrementally and op-

portunistically recruits more sensorimotor resources for higher performance. Novel

approaches are proposed in this dissertation to address the important questions in

robot search.

(1) How to achieve energy-efficient yet effective search with the minimum resource

in the lowest tier so that a persistent and basic functionality is maintained?

To achieve energy-efficieny, a tracking-based object retrieval application (Tier-1

in Figure 1.4) is adopted, which doesn’t employ any motor resource. By passively
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Figure 1.3. Heterogeneous hardware resources are employed in the robot assisted-
living system

monitoring the environment and recording the movement of the target objects, the

tracking-based method can provide object location information to the user on demand.

An energy-efficient object detection and recognition algorithm is developed and the

design of a dual-camera platform is presented.

(2) How does a robot interact with complex client-side environment to achieve

efficient search?

Tracking-based object retrieval suffers from incomplete coverage and may not

be sufficient in some cases. A mobile robot performing active search is required.

A probabilistic framework is introduced to address the single agent search problem.

Consider the case when the system recruits resources to assist a human client who has

lost his/her book. The Probability Distribution Function (PDF), Pr(x|book), where

x ∈ R3 is the location of the book, is given a priori and updated iteratively as obser-

vations are accumulated. Search agents select the next place to look in Pr(x|book)

in order to maximize the expectation of finding the target object.

Machine learning is used to acquire expert domain knowledge regarding a single

client in a complex client-side environment. The way to model the expert domain

knowledge is twofold. (i) The human is the teacher. A Learning-by-Demonstration
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Figure 1.4. The hierarchy of the proposed object search application.

(LbD) approach is used to break the programming barrier of the robot. By observing

and analyzing human search activity, the robot mimics how the human searches to

form an initial prior PDF as the initial problem domain knowledge, which is discussed

in Chapter 7. (ii) Subsequently, contextual information is used to refine the initial

domain knowledge. This dissertation investigates (in Chapter 5) how context such as

the detection history and human activities influence the estimation of the prior PDF

of the target and the use of this information to improve the search efficiency. To the

best of our knowledge, no work has been done that uses human activity information

to help reduce the search space of the robot agent.

(3) How does a search robot interact with other search agents and the human

teammates to achieve efficient cooperation?

In search operations, a team of intelligent agents can provide a robust solution

with greater efficiency than can be achieved by single agents, even with comparatively

superior mobility and sensors. Some synchronous approaches have been proposed for

multi-agent search [26, 37]. However, for a multi-tasking system that must deal with

resource contention, pre-emption, and node/network failures, a decentralized and

asynchronous version is preferred. A cooperative search strategy is proposed that
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employs inter-agent messages to share posterior distributions that summarize where

search agents have already looked and where they are likely to look next to coordinate

multiple asynchronous search agents.

It is important for the robot system to cooperate with the human clients to perform

search. The cooperative search strategy is extended to model the human as an agent

teammate without explicit message transmission mode. The robot agents infer the

current state and intention of the human peer using a probabilistic model of human

search activity acquired in the learning session. By inferring human search states,

independent search activity of the robot agents are scheduled to search goals that

complements the human client’s activities to achieve efficient cooperation.

1.3 Contributions

The contributions of this dissertation can be elaborated as follows:

An Opportunistic Service Oriented approach is presented to address the robot

search problem in residential eldercare. The resulting system provides a systematic

illustration on how services can be composed in a incremental manner for accomplish-

ing complex tasks in a resource-constrained environment. Experimental results are

presented to show how increasingly efficient search performance is acquired as more

sensorimotor resources are employed. The proposed framework can be applied to

more than robot search applications, e.g., mobility aids and ADL (Activity of Daily

Living) analysis.

In the design of robot search system, novel approaches and algorithms are pre-

sented to make it a robust system for interacting with both the complexity of the

environment and the human clients.

1. A probabilistic search strategy for a single robot agent is presented. Human

search behavior is studied and the robot search performance is compared to the human

performance. Our work also investigates how the contextual information such as the
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detection history and human activity influence the estimation target priors and the

use of this information to improve search efficiency.

2. A decentralized approach for multi-agent cooperative search in which

agents exchange information to be complementary to each other is demonstrated.

In our approach, each autonomous search agent maintains separate estimates of the

spatial probability distributions for the target object and makes independent decisions

about its search process. Asynchronous cooperative search is achieved by transmitting

perceptual information among the agents. A novel utility function is proposed for

the search agent to complement the limitation of the mobility and viewpoint and

recognition reliability of the teammates in an unstructured environment.

3. A unique approach for human-robot cooperative search is described in

which a human is modeled as a cooperative teammate whose activity pattern can be

learned by robot agents using stochastic models. We also present an implicit interface

design framework for robot assisted tasks, which allows the robot to infer the intention

of the user and to provide assistance autonomously. It reduces the cognitive workload

of the user and therefore is useful for elder care applications. The effectiveness and

the efficiency of these systems and approaches are demonstrated in the experimental

results.

4. This dissertation also proposes a novel object detection and recognition

algorithm for low-power cameras, and demontrates the design and implementa-

tion of a dual-camera sensor platform that can be used to track humans and search

for objects.

1.4 Document Overview

Chapter 2 offers a review of the literature to provide the background of the ap-

proaches taken in this dissertation. Chapter 3 defines the object search problem

that needs to be addressed. An architectural overview of the robot search system
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is presented to show how increasingly efficient search behavior is developed as more

sensorimotor resources are recruited. The remainder of the document focuses on indi-

vidual components of the overall approach for robots search in a human environment,

and elaborates on each separately.

Chapter 4 presents the tracking-based object retrival approach. An object detec-

tion and recognition algorithm for embedded cameras is introduced in this chapter.

Chapter 5 presents the skill acquisition for a single search agent that recruits both

the sensor and the motor resources. The performance is demonstrated by different

types of agents, mobile robot and PTZ camera agents. In Chapter 6 a decentralized

multi-agent cooperative search algorithm is developed. The chapter assumes that

teammate agents have communication capability and a message sharing algorithm is

presented.

Chapter 7 presents the approach in which human factors are considered to im-

prove search performance. The multi-agent search scheme presented in Chapter 6 is

extended to support the recognition of human activities and, thus, learning methods

for cooperative human-robot interaction. This chapter also presents an implicit in-

terface design framework for robot assisted tasks, which allows the robot to infer the

intention of the user and to provide assistance autonomously.

Finally, Chapter 8 provides conclusions of the work presented in this document

and discusses areas of future investigation.
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CHAPTER 2

LITERATURE REVIEW

Research in several disciplines has had an impact on the approach reported in

this dissertation. The rapid advancement of distributed and service-oriented software

architectures (Section 2.1) has made a significant impact on all forms of robotics

applications. In particular, publish-subscribe architectures allow resources to be allo-

cated and reconfigured at run time. Section 2.2 discusses technologies in residential

assisted-living from both the computer science and the social science literature. In

Section 2.3, existing work on robot search is reviewed, including single robot search,

multi-robot cooperative search, heuristic search strategies and human-robot cooper-

ative search; Section 2.4 reviews work in object recognition with embedded camera

sensor. Finally, the chapter concludes with a brief summary in Section 2.5.

2.1 Software Architecture for Robotics Applications

Robot systems are becoming computing intensive, especially when they must in-

teract with the unstructured client-side environment. It is no longer practical to

develop particular control strategies in a top-down manner and to carefully craft the

entire software structure of the robot. New architectural paradigms have to be devel-

oped for robot systems. The research on software methods and systems for robotics

has increased considerably in recent years. The application of good software practices

to handle the complexity of robot systems has led to the adoption of software archi-

tectures well established in computer science. Three of those architectural paradigms

are classified in [16], the DOA (Distributed Object Architecture), CBA (Component
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Based Architecture) and SOA (Service Oriented Architecture). As an extension of

SOA, the paradigm of Cloud Robotics (CR) was proposed in recent years and has

attracted considerable attention.

Distributed Object Architecture (DOA). Distributed Object Architecture

paradigm is based on the concept of merging object-oriented design techniques with

distributed computing systems. According to the definition provided by the OMG

(Object Management Group) [7], DOA applications are “composed of objects, in-

dividual units of running software that combine functionality and data”, and run

on multiple computers to act as a scalable computational resource. DOA systems

rely on the definition of interfaces to support the interaction between server-side and

client-side objects. Among the several DOA proposals of the latest fifteen years, the

Common Object Request Broker Architecture (CORBA) [2] has achieved the high-

est level of maturity, which is a vendor-independent specification promoted by the

OMG. CORBA has been widely used as a well-proved architecture for building and

deploying significant robotics systems [70, 59, 104].

The problem with DOA paradigm is that it requires a tight coupling among en-

tities, which causes a system to be hard to modify, because each change will usually

result in other required changes, in a domino effect [16]. Currently, the main area

of applications using DOA paradigm is the development of real-time and embedded

systems.

Component Based Architecture (CBA). Component-Based Architectures

(CBA) are built upon the concept of software component. W3C [8] defines a com-

ponent as a software object, meant to interact with other components, encapsulating

certain functionality or a set of functionalities. A component has a clearly defined

interface and conforms to a prescribed behavior common to all components within

an architecture. The goal of CBA is to increase productivity and quality in software

development. CBA approaches define a model that the component developers have
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to follow in order to allow graceful composition. This model specifies the creation,

use, and lifecycle management of components and includes a programming model for

their definition, assembly, and deployment. Interactions can follow several schemes

(synchronous, asynchronous, event-driven, etc.) and they are usually not statically

defined but can be manipulated at runtime. The most mature and generally appli-

cable CBA is CORBA Component Model (CCM) [86] of OMG. Additional details

about CBA and robotics can be found in [28].

CBA requires a “medium” coupling among components, which is better than

DOA’s objects. But the component extensibility is often limited because mainstream

class-based object-oriented programming languages do not meet a number of impor-

tant requirements [16].

Service-Oriented Architecture (SOA) The concept of “Service Oriented Ar-

chitecture” is that an application consists of a collection of services that are started

on demand. There is no core controller, but an assembly of services that are selected

by the user for a specific type of scenario. One of the key advantage for SOA is that it

provides loosely coupled applications, therefore increases the reusability and extensi-

bility of the system. Recent years some mature robotic middleware systems based on

SOA paradigm have been introduced. One of the outstanding work is Robot Oper-

ating System (ROS) [46], which is being adopted at a very rapid pace in the robotics

research community. It provides an excellent collection of robotic algorithms and

operating system type functionality for communication between distributed nodes.

Microsoft Robotics Developer Studio (MRDS) [54] is another initiative in applying

SOA to robotic systems. MRDS relies on the Microsoft .NET standard and also

offers limited support for Unix-based systems. Yet Another Robot Platform (Yarp)

[43] is another famous SOA-based middleware system that was started to support

research on humanoid robots. The attempts to develop robotic applications in SOA

can be found in the literature (a recent survey is presented in [92]). For example, in
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[40, 72] the authors presented the lessons learned from six years of experiments with

planetary rover prototypes running the service oriented middleware developed by the

Intelligent Robotics Group (IRG) at NASA Ames Research Center.

The natural loose coupling among software components and the native support of

Web service interfaces (SOAP, RESTful, etc.) make it easy to virtualize and expose

some computing services in SOA through a cloud. This comes as a result of extending

the SOA paradigm to support the concept of Cloud Robotics (CR).

Cloud Robotics (CR) The application of the cloud computing concept to robots

is called Cloud Robotics, which has been attracting a lot of interest in the last four

years. CR uses the help of the Internet to increase a robot’s capabilities by reducing

on-board computation and providing cloud computing services on demand. With CR,

robot information can be stored in the Internet and new abilities can be learnt easily

and application for robots can share common features. In [31], the authors defined

the concept of Robot as a Service (RaaS) based on SOA. The design complies with the

commonWeb service standards, development platforms, and execution infrastructure,

following the Web 2.0 principles and participation. Kehoe et al. [63] illustrated a

system architecture for Cloud-based robot grasping using a variant of the Google

Goggles proprietary object recognition engine. An implemented prototype and initial

experiments and analysis are presented in their work.

SOA are considered to be the most appropriate architecture for many robotics

applications because it provides loose coupling, high extensibility [16] and compati-

bility with Cloud Robotics. However, in spite of recent work in this field, research on

how to design the control strategy and robot application in a flexible manner in SOA

is in its infancy. Such a design would adjust behavior in response to changing run-

time contexts by opportunistically recruiting available sensory and motor resources.

Opportunistic Computing has been investigated and used mainly in Wireless Sensor

Networks, Communication, Networking [34]. With opportunistic computing, the exe-
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cution of applications is supported by spare computational resources available some-

where in the network [18]. Opportunistic Computing paradigm has been introduced

to other fields. The work in [119] proposes an approach that implements an auto-

nomic manager as an opportunistic composition of loosely-coupled service oriented

management components. Each management component implements a simple admin-

istrative task, such as monitoring a parameter, detecting a problem type, planning a

specific solution or modifying a managed resource. By opportunistically integrating

specialised autonomic management resources, complex and adaptable management

strategies are obtained. In [68] the authors proposed an opportunistic activity recog-

nition paradigm, with which the human activity recognition system always uses the

available resources and keeps working when the sensor configuration changes. In this

dissertation the concept of Opportunistic Computing is introduced into the design of

SOA-based robotics applications, and an opportunistic service oriented approach for

the robot search system for residential assisted living is presented.

2.2 Residential Assisted Living

As the baby boomer generation ages, health care for the elderly poses a major

challenge over the next decade. The growing numbers of elderly individuals in need of

support to live in the community will severely test the current services infrastructure.

Part of the solution is to develop technology to increase the length of time elders can

remain at home. The ultimate goal is to “consumerize” these technologies and make

it practical and affordable to incorporate them into existing homes and lifestyles.

Sensor networks and ubiquitous robotics system have often been referred to as the

technology that can provide an affordable solution to this problem [76, 11, 35, 114,

115]. Consequently, many research projects have explored the use of sensor systems

for medical care at home including a combination of wearable and ambient sensors

for vital sign, gait, and fall monitoring. The ASSIST system developed at UMass
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Amherst proposed the use of PTZ (pan-tilt-zoom) cameras for fall detection and

object finding [111]. The AlarmNet system [11] combines wearable vital sign sensors

with other stationary sensors placed within the living environment to provide home

or assisted-living health monitoring services. In the CareMedia project [22] a large

number of high-resolution cameras are used to provide constant monitoring of the

public spaces in a dementia unit in order to reduce the burden on human caregivers.

Intel’s Long-Term Care project [101] focuses on the use of RFID technology to detect

activities of daily living among the elderly. The CodeBlue project [76] focuses on

developing a scalable software infrastructure for discovering and connecting wireless

medical sensors, PDAs, and PCs. Some smart living environments for research on

sensor organization and activity recognition have also been developed, such as the

Aware-Home [12], the PlaceLab [96] initiative and Tiger Place [108].

Although many works in this field have been proposed, the key issue that how to

design complex applications on the base of ubiquitous and heterogenous sensorimotor

resources, especially the robotic resources is still open. The work in this dissertation

is part of the ASSIST project developed in Computer Science Department of UMass

Amherst that uses mobile robots and sensor network to solve the problems in resi-

dential assisted living [111]. In this dissertation an opportunistic SOA framework is

presented to address the object search problem, and the proposed framework can be

extended to the design of other applications in assisted living.

2.3 Object Search Systems

In addition to monitoring for illnesses and potentially life-threatening situations,

an equally important challenge in residential assisted living is providing assistance

in clients’ day-to-day life. Moderate memory impairment is common as people age,

hence a major problem for the elderly is locating frequently used “common” objects

such as keys, cellphones, books and others.
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2.3.1 Object Search Systems

There has been considerable recent interest in addressing the problems of “object

search” both in academia and industry. The work in [88] investigates the real-world

nature of what losing an object means and general strategies that can be used to

find those objects. Some of the existing services seek to attach wireless tags on the

object, such as RFIDs [24, 71, 112], Bluetooth chips [65], or 802.15.4 radios [82, 87],

making it easier to track and localize the object. While this offers a feasible solution

for objects such as car keys and cellphones that might already have wireless tags on

them, the solution is cumbersome since it requires that every possible object that may

be misplaced needs to be tagged a priori. For some kinds of sensors like RFID that

have short sensing range, the receivers must be deployed densely in the residential

space or carried by the user, neither of which is convenient in the eldercare context.

Other approaches utilize visual information [83, 111], e.g., the ASSIST project

proposed the use of PTZ cameras for object finding [111]. Some research has been

done on combining RFID and vision sensors to improve the performance of object

detection and search. The work in [100, 53] discussed the basic idea of using RFID

to roughly localize an object and then applying vision to refine the location. In [58],

the RFID system estimates a rough position of each object. Then each object that

is attached to an RFID tag is visually recognized using color histograms obtained by

ceiling mounted cameras. However, these systems employ image recognition methods

that are not robust, and the cooperation of RFID and vision sensor was not investi-

gated. McDaniel [107] presents a conceptual framework where RFID and computer

vision are integrated for the task of remote object perception in a wearable system

for blind people. In this work, visual information aids the RFID detection system

in that it enables only the object in front of the user to be detected. Furthermore,

this system can be used in untagged environments. In [32], the robot obtains pre-

defined CAD models via RFID tags placed on each object and uses the models to
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recognize and localize targets. In a more recent approach, Kim et al. [66] developed a

robotic system for object recognition and localization. The authors proposed the use

of smart tags that have an active landmark (IRED) and a data structure consisting

of geometrical, physical and semantic information. When a tagged object is read,

its IRED is activated, and the robot searches the scene for the active landmark (a

flickering light). When the light is found, stereo cameras on a pan-tilt mechanism are

used to find the object’s depth, size and pose. The work in [30] presents a method

for object recognition in complex scenes combining vision-based techniques applied

to the 3D data obtained using range sensors, and object identification coming from

RFID. Although some progress has been achieved, prior efforts to combine RFID and

vision sensors are still not good enough: most of them handle the sensor informa-

tion separately (e.g., RFID is responsible for detection and vision is responsible for

recognition).

Our work differs from these approaches in that we investigate the approach that

builds object search applications in multi-tier manner, by incorporating heteroge-

neous sensorimotor and computational resources and services in an opportunistic

SOA framework. Particularly, this dissertation considers opportunities for collabora-

tion between the automated search procedure and the human client. This contribution

has received far less attention in the literature than purely automated systems.

2.3.2 Heuristic Approaches for Object Search

Efficiency is an important concern when evaluating technology for residential

healthcare. Object search can be seen as a sensor planning problem in which an

appropriate sensor configuration must be selected in order to allow a proper recogni-

tion. Sensor planning is formulated as an optimization problem in which the goal is

to maximize the target detection probability while minimizing the energy, distance

traveled, and time to achieve the task. However, the sensor planning problem is
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NP-complete [118] and thus a heuristic strategy is needed to overcome predictable

computational issues. A fruitful strategy to overcome computational complexity is to

introduce object detection subtasks for identifying objects that are probabilistically

associated with the target to refine the spatial search. Wixon [113] uses the idea

of indirect search, in which one first finds an object that commonly has a spatial

relationship with the target, and then restricts the search in the spatial area defined

by that relationship. The problem with indirect search is that the spatial relation

between the target and intermediate object may not always exist. In addition, the de-

tection of the intermediate object may not be easier than the detection of the target.

Sujan [103] proposes an iterative planning approach driven by an evaluation function

based on Shannon’s information theory. The camera parameter space is explored and

each configuration is evaluated according to the evaluation function. The work in

[39, 97] proposed a visual attentional framework developed for the humanoid robot

HRP-2 in order to implement object search behavior. The problem is formulated

as an optimization problem. The concept of a visibility map is introduced to con-

strain the sensor parameter space according to the detection characteristics of the

recognition algorithm. By this means, the dimension of the sensor parameter space

is reduced. In [117] the search agent’s knowledge of object location is encoded as a

discrete probability density which is updated after each sensing action performed by

the detection function.

People interact with objects in the course of many tasks associated with daily

living. A novel idea in this dissertation is leveraging user activity to improve the cost

efficiency in search tasks. User activity density can be analyzed from the vision-based

people tracker, and can be used to infer the region where object use may happen.

To the best of our knowledge, no work has been done that uses human activity

information to help reduce the search space of the robot agent.
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2.3.3 Cooperative Search Strategies

A multi-agent system is well suited for search operation, especially when in a

complex environment and the mission is time sensitive. Multi-agent search systems

have been proposed to locate the fire ignition point [77], find an intruder of a building

[14] or search source of radiation, mines [13], victims [60] and the odor of waste [75],

regarding its carried sensor and manipulator. In search operations, a team of intelli-

gent agents can provide a robust solution with greater efficiency than can be achieved

by single agents, even with comparatively superior mobility and sensors. The key

to exploiting this observation in a multi-agent framework is to develop a coopera-

tive decentralized control strategy that allows each agent to determine its actions

independently while optimizing the team’s performance. A synchronized coordinated

search strategy was developed in a Bayesian framework in [26]. DeLima et al. [37]

proposed a rule-based search method with which multiple unmanned aerial vehicles

can cooperatively search an area for mobile target detection.

Although there have been considerable works on multi-agent cooperative search,

most of them focus on achieving optimal planning in a single search trial without

considering using accumulated knowledge to achieve efficient cooperative behaviors.

Prior knowledge can be used to represent teammates’ search capabilities. Ideally, an

agent should learn the limitations of its teammates by observing their performance

and select actions to compensate for these limitations. In this dissertation, we investi-

gated how to achieve better performance by considering these limitations. Two types

of limitations are considered, (i) viewpoint limitations, which represents the ability

of an agent to reach certain locations in the search space, and (ii) limitations on

observation reliability, which describe the ability of an agent to make a true-positive

detection in certain locations.
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2.3.4 Human-Robot Cooperative Search

Our vision for search problem solving is that humans and robots will work as

partners, leveraging the capabilities of each. Human-robot teams are used in Ur-

ban Search and Rescue (USAR) [81, 84], but these applications typically use robots

as "drone" under direct control of human teleoperators. In these works Search and

Rescue robots are studied as near-ideal application for studying HRI (Human Robot

Interaction), where human intervention enters in at some level to help ensure ro-

bustness in planning and perception, e.g., via manual tuning of heuristics and model

parameters by expert human programmers; mixed-initiative/supervisory control by

trained operators [102, 41]; or natural interactions with untrained non-experts [21].

Some works treat human as a teammate to accomplish the search task instead of

a centralized commander, planner or manager of the system, and explore how human

observation can be combined with robot sensor data to improve autonomous state

estimation and model learning. Here human observation can be eye observation or

carried sensor inputs. Early work by [62] and [25] showed how certain human sen-

sor inputs could be formally characterized and fused with robotic sensor data for

augmented physical perception through the Bayesian paradigm. In [25] peer-to-peer

collaboration between human-computer augmented nodes and autonomous mobile

sensor platforms is achieved by sharing information via wireless communication net-

work. The individual controllers iteratively negotiate anonymously in the information

space to find cooperative search plans based on both observed and predicted informa-

tion that explicitly consider the human motion model, its sensors detection functions,

as well as the target arbitrary motion model. These works usually limit the expected

complexity and scope of human sensor inputs, largely for the sake of analytical and

computational tractability. For instance, [62] assume that humans provide numerical

range and bearing measurement data for target localization (“The object is at range

10 m and bearing 45 degrees”), while [25] assumes that humans provide binary “de-
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tection/no detection” visual observations for a 2D multi-target search problem. To

incorporate broader range of information that can be provided by human teammates,

such as using natural language semantic information, [15] proposed a Probabilistic

Semantic Human Sensor Model.

All the existing work on human-robot cooperative search neglect the learning of

human teammate’s behavior pattern. By observing the search behavior of human

teammates and learning their behavior pattern, the robot’s capability and experience

can be accumulated. In this dissertation I propose to use stochastic model to learn

the human search pattern, which is used by the robot to perform complementary

search actions and improve the search performance of the H-R team.

2.4 Object Recognition with Embedded Camera

In this dissertation I propose the design and implementation of an indoor object

retrieval system using a network of wireless camera nodes. This section presents the

related work on this topic.

Multi-tier sensor network: The multi-tier structure for wireless sensor network

has been considered in prior work to achieve energy-efficient computer vision tasks.

Tenet [47] argues for a multi-tier design and SensEye [67] proposes a three-tier camera

sensor network for surveillance. Our work uses two tiers, but they are tightly coupled

as part of a single platform. In addition, we propose novel techniques for splitting an

object recognition task between a low-power and high-power camera.

Object recognition: Many different approaches to object recognition have been

proposed in computer vision, including model-based and appearance-based approaches

[99]. In recent years, methods using local appearance features [73, 79] have come more

popular. In [109] the SIFT descriptor is combined with color histograms. The work

in [90] discusses fusion methods for SIFT and LUV color moments descriptors. In
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our work we exploit combination of SIFT and color features for energy-efficiency as

opposed to recognition accuracy.

Semi-supervised clustering: Clustering is traditionally viewed as an unsuper-

vised method for data analysis. Based on the widely used k-means algorithm, some

constrained versions have been developed [110, 19, 45] to incorporate the information

about the problem domain that is available in addition to the data instances them-

selves. As an extension of the model proposed in [19], our work incorporates hard

and soft constraints together, which achieves cluster refinement for accurate object

classification.

2.5 Summary

In summary, the approaches proposed in this dissertation is an advance in the

related fields in robot search on two fronts: (1) It propose an opportunistic service

oriented architecture for assist robot applications and uses object search problem as

a case study to investigate the potential of the opportunistic SOA. The robot builds

object search capability in a dynamic and hierarchical manner, which gives the robot

capability to interact with environment, human and resources as well as the ability

to perform efficiently in a resource constrained situation. (2) In each hierarchy of

the search application, this dissertation propose novel approaches to achieve effective

and efficient search, ranging from passive tracking-based (yet energy-efficient) object

detection and retrieval approach to robot-human cooperative object search strategies.

In the following chapters the proposed architecture and approaches will be introduced

and experimental results and analysis will be presented.
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CHAPTER 3

OPPORTUNISTIC SERVICE-ORIENTED
ARCHITECTURE

This chapter focuses on the service-oriented architecture of the proposed object

search system. In first section I present a description of the assisted living problem as

the context of the object search problem. It helps us to understand the requirements

and challenges of the object search system. The second section covers the details of

the architectural design.

3.1 Specifications and Challenges

Robot systems designed for assisted-living have been the focus of considerable re-

search in both academic and industry. Important examples of successful applications

of this research involve monitoring the health and activity of clients and mechanisms

for providing cognitive and physical assistance for independent living.

1. Emergency (vital sign) Monitoring. Time plays a determined role in

health care. Some common life-threatening medical emergencies include stroke, car-

diac arrest (myocardial infarction or heart attack), and seizure. Time-critical treat-

ment usually makes a tremendous difference in these cases. Assisted living robots

should provide emergency monitoring functions such as automatic blood pressure

readings, heart rate monitoring and fall detection. Once the robot detects an emer-

gency or deterioration in the user’s health, it must be able to communicate this

information to the relatives, care takers, or health care providers responsible for the

user. It is important that this action is carried out in real time, particularly in

24



an emergency situation. To achieve real-time response, in an assisted-living system,

emergency monitoring applications usually have the highest service priority.

2. ADL (Activities of Daily Living) Analysis ADL analysis monitors and

records the user’s daily activities, which can be accessed and used by the caregiver

to determine the health condition of the client. In ADL analysis, different levels are

involved. It includes human trajectory analysis to provide information to higher level

activity recognition modules that identify activities such as sitting, walking, reading

and cooking. This data, in turn, is used to estimate the health of the client. In this

way, assisted living systems would provide not only an immediate, reactive response to

health care shortages, but also a long-term, proactive solution to the health problem

of the human clients. ADL Analysis usually doesn’t require a high service priority

and is tolerable to temporary and short-term data shortage, since it focuses on finding

patterns from long-term data instead of a single event.

3. Assistive Services In addition to monitoring for illnesses and potentially life-

threatening situations, an equally important challenge in residential assisted living is

providing assistance in user’s day-to-day life. Assistive services include applications

that promote the independent living of elderly clients by assisting them in daily tasks.

Examples of this type of service include personal information managers that can

remind the client of important appointments or mobile robots that provide physical

assistance. Object search also fails in this category, which can help locate misplaced

items such as keys and cell phones. The service priority for assistive services usually

is lower than that for Emergency Monitoring and higher than that for ADL Analysis,

and are provided in an on-demand manner.

We focus on developing object search application that helps the client to find com-

mon objects efficiently in the assisted-living context. The object search application is

part of the assisted-living system ASSIST [111] developed at UMass Amherst. Figure

3.1 illustrates the problems and applications related to this assisted-living system.
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It can be seen that in this system the supported applications include object find-

ing, fall alerts and client trajectory analysis. Considering the above analysis on the

specifications of the assisted living system, we can see that to develop object search

applications in such a system, some challenges must be addressed.

Object Search

ADL Analysis
Emergency 

Detection

Assistive Services

Supported 

Applications

Problem domains of 

residential eldercare

Figure 3.1. Problem domains and the supported applications in a residential
assisted-living system.

3.1.1 Challenges

1. Heterogeneous hardware/software components. In residential assisted-

living environment, the robot system must interact with the unstructured and dy-

namic client-side environment, and must cooperate with other agents and human

clients. Heterogeneous sensorimotor hardware/software components must be adopted

to perceive and interact with this complex and dynamic environment. A novel robot

system architecture that facilitates sensorimotor resource organization needs to be

developed.
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2. Multi-tasking and resource contention. For wide spread use and commer-

cialization, personalized robotic services must be packaged in a manner that pushes

the price/performance ratio downward. In residential assisted-living systems, sen-

sorimotor resources are limited. On the other hand, multiple tasks with different

service priorities need to be executed simultaneously. For example, in our assisted-

living system, fall prevention and object search applications may run at the same

time. Since they all share monitoring hardware (Pan-Tile-Zoom camera) and compu-

tational resources (e.g., the “human tracking” component), resource contention will

occur.

3. Reliability. Reliability is essential for assisted-living applications. The sensors

may disconnect from the system due to hardware, software, and network failures or

become unavailable due to resource contention. Assisted-living applications must be

able to handle these situations and provide effective and reliable results to the client.

Since none of the current related work fully fulfilled our requirements and vision,

a number of scenarios and activities were studied.

3.2 Architectural Overview

Our goal is to develop robot search approaches that satisfy the requirements of

assisted-living applications. An opportunistic service-oriented approach is advocated.

3.2.1 Service Oriented Architecture

Service oriented design has been heavily investigated [51, 55]. It aims at separating

tasks by breaking a computer program into distinct modules with minimum overlap in

functionality [9], provides a design framework for rapid, low-cost system development,

and includes mechanisms for total system quality improvement.

Service-oriented architectures decompose the infrastructure of a personal robot

system into distributed elements composed of heterogeneous resources that can be
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federated in many ways to support many applications. As shown in Figure 3.2, het-

erogeneous sensorimotor resources including Pan/Tilt/Zoom (PTZ) cameras, mobile

robots, and RFID devices are employed in the assisted living system. Computational

services are provided as local services or as cloud services through a privacy protection

mechanism. In our system, local computational services include object recognition,

human tracking, and activity recognition. Cloud computational services, such as ob-

ject detection and recognition were considered, but were not used in the prototype

system presented in this dissertation. Although not being used, the cloud compu-

tational services are natively supported by the presented system thanks to SOA’s

compatibility to cloud computing.

DNS 

RN RN 

RN 

RN 

RN 

RN 

RN 

RN 

Embedded 
Camera 

UI 

uBot-5 

PTZ 
Camera 

Kinect 

RFID 

Object 
Recognition 

Human 
Tracking 

Activity 
Recognition 

Cloud 
Services 

Local  
Services 

Firewall 

Client Node 

Figure 3.2. System infrastracture consists of sensor, motors, kinematic devices,
computational services and system interfaces. Local and remote (cloud) servics are
considered. Local services support robotic devices and functional units. RN denotes
ROS Node and DNS denotes the Distributed Naming Service in ROS.

Multiple client applications including object search, fall prevention and ADL

recognition are composed of basic services. The hardware and computational ser-

vices involved in object search applications are illustrated in Figure 3.2.
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As illustrated in Figure 3.3, assisted living applications contend for basic services.

The same service is used by different applications with different service priorities. To

deal with the resource contention, an application must be flexible enough to adapt to

the limited service resources.
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Figure 3.3. Relationship between the hardware/computational services and the
applications in the assisted-living system

The possibility of developing service oriented robot systems lies in the availability

of middleware to handle messages between modular sensory and motor resources (e.g.,

MRDS [54], ROS [46], NDDS [44], Yarp [43]). In this work, the proposed approach is

independent of the choice of the middleware implementation. In practice both MRDS

and ROS were used to develop the proposed object search application. ROS was used

for the experiments in this dissertation.

3.2.2 Opportunistic Service Oriented Approach (SOA)

Well-functioned robotic systems using the SOA principle have been demonstrated

[40, 64]. However, design principles for single applications in a resource-constrained
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environment are still actively being investigated. In this dissertation, we argue that in

a multi-tasking system that deals with resource contention and node/communication

failure, the applications need to be able to execute at different running levels according

to different resource conditions and performance requirements. The opportunistic

service-oriented approach is a good fit for this problem.

The concept of opportunistic service architecture was introduced in the sensor

network area [9]. Opportunistic Service-Oriented Architectures (OSOA) consist of

changing constellations of services and nodes that, for a limited amount of time,

work together to achieve a common goal. The OSOA applications are designed in

a hierarchical manner. Each tier in the hierarchy is composed of a subset of the

sensorimotor services and provides certain performance guarantees with respect to

the functionality required. Applications have the flexibility to adapt at different

levels in the hierarchy by trading resources when there is an opportunity so as to

balance the performance of a task against the overall value of a suite of tasks.

This dissertation proposes an opportunistic service-oriented approach for an ob-

ject search application in the assisted-living system. Figure 3.4 illustrates the design

hierarchy of the object search application. The application is built in an incremental

manner in different tiers, each of which comprises a set of services. A bottom-up

approach is adopted to develop a hierarchy of search strategies from tracking-based

search (lowest tier) to human-robot cooperative search (higher tier). This approach

starts from the least use of resources (tier-1), and incrementally recruits more senso-

rimotor resources for achieving higher performance.

Tier-1: Tracking-based object retrieval. The basic search strategy (the one that lies

in the lowest tier with minimum resource requirement) must be very energy efficient

to maintain a persistent and basic functionality. As shown in Figure 3.4, in Tier-

1 there is a tracking-based object retrieval strategy that satisfies this requirement.

By passively monitoring the environment and recording the movement of the target
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Figure 3.4. A road map for developing search strategies in multiple levels.

objects, the tracking-based method can provide location information of a set of known

objects to the user on demand. The tracking-based strategy consumes the minimum

set of the service resources, which only includes the low-power embedded camera

sensors.

Tier-2: Single agent object search. Although being effective and energy-efficient,

the tracking-based object retrieval method still needs considerable effort to deploy the

camera sensors to achieve complete coverage. This may be hard to achieve when the

room structure is complex and dynamic, in which case the sensors must be deployed

more densely, or relocated frequently according to the change of the room structure.

To address this problem, a mobile robot performing active search is involved in the

proposed search system. By performing active search, the mobile robot is able to

reach most of the area and achieve a more complete coverage than the tracking-based

strategy, even when the room structure is complex and dynamic. In our system, a
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robot agents (the uBot-5 mobile manipulator or an elevated, immobile PTZ camera)

can be employed opportunistically when available to help the client to find objects.

Tier-3: Multi agent object search. In search operations, a team of intelligent agents

can provide a robust solution with greater efficiency than can be achieved by single

agents. When more sensorimotor resources are available, our system recruits multiple

robot agents to perform search cooperatively. The cooperation can be achieved in a

team with the uBot-5 robot and PTZ camera nodes.

Tier-4: Joint search in human-robot team. It is important for the robot system

to cooperate with the human clients to perform search. In the proposed framework,

the cooperative search strategy is extended in a way that models the human as an

agent teammate without a direct means of message transmission. Given that human

tracking and activity recognition services are available, the robot search system can

work with human teammates by inferring their search intention or by interpreting

their pointing gestures, which can lead to a more efficient search.

When executing, the object search application will opportunistically employ avail-

able service resources to get to the highest tier possible so as to achieve more efficient

search performance. When resource contention occurs, the application degrades to a

lower tier to release the resources to the applications with higher service priorities.

For instance, when the application is running in tier-3, the robot and PTZ cameras

search for the object jointly. However, the fall prevention application is configured at

a higher priority and requires all PTZ cameras to track the human client. The object

search application will release the cameras and will run in Tier-2, where only the

uBot-5 continues to search for the object. By this means, the system guarantees the

performance of the applications with high service priorities but still maintains best-

effort performance on the application with lower service priority like object search.

In the following chapters, the design and implementation of the search strategies

in each execution tier is discussed. Experimental results are presented to evaluate
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the performance of the proposed search strategies. A performance improvement is

expected when the system recruits more sensorimotor services and executes in a higher

tier.
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CHAPTER 4

TRACKING-BASED OBJECT RETRIEVAL

In this chapter, the lowest tier in the aforementioned application hierarchy is de-

scribed, and performance evaluation results are presented. The basic idea underlying

the tracking-based approach for object search is the opportunistic identification and

tracking of objects within the set of target objects. It is the lowest-tier option for

search (Figure 3.4) and when the target is discovered, it records movements and

retrieves historic images containing the object. The tracking-based object retrieval

module uses energy-efficient embedded camera sensor nodes to perform consistent

and non-intrusive monitoring.

There are two contributions arising from the method proposed in this chapter:

(i) an energy-efficient object recognition approach is proposed for object tracking

and retrieval using low-power wireless cameras. The system employs a technique

for splitting an object recognition task into a low-power and a high-power camera

part; and (ii) a dual-camera structure that comprises different types of small wireless

cameras is designed.

4.1 Dual-Camera Structure

In this work we explore how low-power camera sensors can be distributed in a home

environment to facilitate retrieval of objects. Small, battery powered cameras are

portable, easy to deploy, and can be densely arrayed for greater coverage. While there

have been many efforts in recent years to design low-power smart camera networks

for surveillance, object tracking, and object detection [50, 106, 67, 17], our work is
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fundamentally different in that we focus on achieving energy-efficient recognition of

common objects in the home.

The design of an object recognition system using low-power cameras poses signifi-

cant technical challenges. The first challenge is that state-of-art image matching tech-

niques (e.g. SIFT [73]) are expensive computationally and energy intensive, making

them ill-suited for use with embedded processors. This makes it essential to develop

techniques that are less complex and consume less energy but can still enable robust

image recognition. The second challenge is that image recognition typically requires

a high-end sensor device with a high-resolution camera, and substantial computation

and memory resources. However, the use of higher-end sensor platforms (e.g. iMote2

[5]) comes at the cost of energy-efficiency, and consequently reduces the utility of the

sensor due to the short battery life. One commonly proposed approach is to use a

multi-tier network [67], where a low-power and low-resolution wireless camera node

(e.g. Cyclops [10]) is used for object detection, and wakes up a higher power camera

to perform object recognition only when needed. The problem is that the high-power

camera still needs to wakeup and take images periodically to update its background

model. The system described here addresses both these problems in a dual-camera

structure.

4.1.1 Hardware Components

The tracking-based object retrieval application described in this chapter involves

a network of dual-camera nodes, each of which comprises a low-power and high-

power part that are physically connected as shown in Figure 4.2. The low-power part

(Part-1) is a MICAz mote [3] equipped with a low fidelity Cyclops camera sensor

(CyclopsCam) [10, 94]. The high-power part (Part-2) is a more-capable platform, the

Intel Mote2 (iMote2) [5] equipped with a high fidelity Enalab camera (EnalabCam)

[4]. The two cameras in the dual-camera structure are placed close enough so that

35



they have a similar field-of-view (FOV) (alignment is a single affine transformation).

A proxy node is used to organize the information from the dual-camera sensor nodes,

as well as to process user queries. The proxy node runs on a Linux computer that is

connected to an 802.15.4 wireless radio, and can communicate with the MICAz and

iMote2 nodes.

Figure 4.1. The dual-camera sensor node

4.1.2 Overview of System Operation

The operation of our system can be divided into three main components: object

detection, object recognition, and object retrieval. The low-power camera in Part-1

takes an image every few seconds, and performs still object detection, i.e., it deter-

mines if an object that is detected is likely to be a newly placed object as opposed

to a moving object (discussed in Section 4.2). If a still object is detected, the Part-1

camera stores the location and size of this object in its local flash memory. Once

a batch of still objects have been detected, the Part-1 camera wakes up the Part-2

camera node and transfers the stored images together with information about the

region in the image where the object was detected.

The Part-2 camera node uses an inter-camera region mapping function to map

the Part-1 ROOs (Region of Object) to its own camera co-ordinates. This enables
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Figure 4.2. Software and hardware architectures of the tracking-based object re-
trieval application

it to determine which regions in its own view correspond to the new objects. Next,

the Part-2 node takes an image using its high-resolution camera, extracts the ROOs

corresponding to new objects, and obtains the color histogram corresponding to each

ROO. The object recognition procedure first tries to recognize the object in each ROO

by using the color histogram together with a semi-supervised k-means clustering. For

objects that cannot be classified correctly using color features, the SIFT recognition

algorithm is used as additional evidence.

A proxy node is used in this system to organize the information from the dual-

camera sensor nodes, as well as process user queries. The tagged classification results

from the Part-2 node together with a detection timestamp are transmitted to the

proxy node, and the raw image data is locally stored on the flash memory in Part-2

node. The Part-2 camera node then goes back into sleep mode.
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The user can query the system by specifying an object tag that needs to be located.

An approximate time frame of interest can also be provided by the user to further

refine the search. The proxy node locates the most recent event corresponding to the

requested object, and queries Part-2 sensors that have reported the object. Since the

Part-2 sensor is asleep, this query is first received by the Part-1 node which wakes up

the Part-2 sensor and forwards the query over the serial connection. The matching

image ROOs are retrieved, and displayed on a GUI (Graphic User Interface) to the

user, who can mark images to be "Valid" or "Invalid". If the required object is not

found, the proxy retrieves the previous event matching the query, and repeats the

same procedure. This continues either until the object is located, or until no more

objects are detected in the time frame of interest. Periodically, the proxy also returns

user feedback to the appropriate sensors, which use this information to refine their

clusters, thereby enabling more efficient and more robust recognition.

The detailed algorithms for object detection, object recognition and object re-

trieval are presented in the following sections. Then the system implementation and

experimental results are given.

4.2 Object Detection

The object detection procedure in our system involves two steps. The first step is

detecting the presence of a still object at each Part-1 CyclopsCam. This procedure

aims to filter out transient motion in the field of view of the camera such that only

objects that stay relatively motionless are detected. The second step involves trigger-

ing the Part-2 EnalabCam, and mapping from the ROO in the CyclopsCam to the

EnalabCam. This procedure aims to address the fact that the EnalabCam is woken

up infrequently and cannot maintain a reliable background model locally. Hence the

EnalabCam needs to be told approximately where the detected object is located in

its image.
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4.2.1 Object detection in ultra-low-power tier

For object detection, the Cyclops node maintains the background using an average

update model, which is computational-efficient. The background imageBm is updated

by integrating the new frame Ic into the current background with a first order recursive

filter: Bk+1
m = (1 − α)Bk

m + αIc. The blobs that represent potential objects are

extracted by background subtraction. To detect that a candidate blob represents a

new object placement event as opposed to a transient motion event, we need to check

if this blob has been detected before and has been still for a sufficiently long time. To

achieve this, we compare all the blobs in the current frame with those in the previous

frame. If the size and center of a blob is similar enough to those of a blob in the

previous frame, these two blobs are considered to be the same object. When the

detection duration of an object blob becomes longer than a pre-defined threshold, it

is classified as a still object. The object blob is then extracted and saved on the local

flash memory of the MICAz mote.

4.2.2 Sensor Triggering and ROO mapping

After the still objects are detected, the Part-1 node needs to wake-up the Part-2

camera in the dual camera node from deep-sleep mode. Since the wake-up of the

iMote2 node from this state has long latency and consumes significant energy, the

Part-1 node triggers the Part-2 node after a batch of still objects are detected. In

this manner, the energy consumed to wakeup the Part-2 camera is amortized across

multiple detections. Note that the wakeup delay is not a problem for our application

since we are trying to detect still objects that remain in the scene for a significant

duration. Our system will not be as effective in a tracking scenario since the latency of

wakeup needs to be low in order to track motion. Although the FOVs of two cameras

are similar, there may be slight translation, rotation and considerable scaling between

them due to installation bias and imprecision in the mechanical mounts. To achieve
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robust region mapping from the pixels Pj = [ux, uy, 1]T in CyclopsCam image to the

pixels P′
j = [vx, vy, 1]T in EnalabCam image, a motion model is defined based on the

affine transformation.

P
′

j = Dx0,y0Ssx,syRθPj

where Dx0,y0 is the translation matrix, Ssx,sy is the scale matrix and Rθ, the rota-

tion matrix. In order to solve the motion model, the dual-camera node executes a

calibration procedure at system deployment time. Both cameras take an image simul-

taneously, and the Part-1 node transfers its image over the serial port to the Part-2

node. The Part-2 node then extracts SIFT descriptors [74] from the two images.

Since the SIFT descriptors are invariant to the image rotation, scale, and translation

expected in this application, they provide a consistent set of local descriptors to match

between the two images. This calibration procedure is typically more computation-

ally intensive than object recognition since it needs to be performed on the entire

image as opposed to just the ROO. However, this is a one-time computation, hence

its overhead is a very small fraction of overall energy resources. After the inter-tier

calibration is done, any ROO in CyclopsCam image can be mapped to the Enalab-

Cam image efficiently using the motion model. Figure 4.3 (b) shows a mapping result,

in which the bounding box around a book that is detected on the desk in the upper

CyclopsCam image is mapped to the appropriate rectangle in the lower EnalabCam

image.

4.3 Semi-supervised object recognition

Given the Region-of-Object extracted by the object detection module, the next

task of the Part-2 node is to efficiently recognize the object. Our approach includes

three procedures: feature extraction, object recognition and constrained cluster up-

date.
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(a) (b)

Figure 4.3. An example of Field-of-View and ROO mapping: (a) Control points
found by SIFT. (b) The ROO mapping result.

4.3.1 Feature Extraction

We use two kinds of features to classify objects. The first type of feature is the

32-bin hue histogram that represents the global color information of the object region.

The second type of feature that we use is the SIFT descriptor, which represents an

image as a collection of local feature vectors that are invariant to image translation,

scaling, rotation, and partially invariant to illumination changes and affine or 3D

projection [74]. Given two images, a matching algorithm is performed to calculate

the number of matching points between them, which represents the similarity.

Both color and SIFT features have their advantages and limitations in object

recognition. Color features can be calculated in a computationally inexpensive man-

ner, and are invariant to severe scale, rotation and 3D projection; however, they are

not invariant to illumination changes. SIFT tolerates illumination changes and is

widely considered to be one of the best feature representation methods, but it is com-

putationally intensive and does not perform well for deformable objects or objects

that have no consistent texture.
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Our method uses a combination of the two features in a cascading manner. The

idea is to use color features to filter out irrelevant images and to classify images that

have distinctive color hues, since color histograms are computation efficient. The

SIFT features are then used to recognize the remaining images that are hard to

classify using only color. This combination enables us to tradeoff between efficiency

and robustness, since SIFT matching is performed only on a small set of unclassified

but relevant images. We note that the idea of combining two kinds of image features

for more robust detection has been considered in the image processing literature

[98, 91]. However, we exploit this technique for energy-efficiency as well.

4.3.2 Object Recognition Procedure

The object recognition procedure initially gathers a small set of object images

as training samples and uses them to generate a set of clusters using the standard

k-means algorithm. During this phase, clusters may be tagged by a user. For in-

stance, one cluster might correspond to a cup whereas another might correspond to

a cellphone. After this training phase, the system can be used to monitor the scene

continually, using this initial cluster model to detect a possible object/region of in-

terest. We now describe the recognition approach on an object oi. The pseudocode

of the algorithm is shown in Algorithm 1.

4.3.2.1 Recognize by Color Histogram

The recognition procedure first tries to classify a new object using color histogram

clustering since this can be done efficiently. Since color histograms are the least precise

of the two features, it is used in two ways: (a) to filter irrelevant images that are

unlikely to be an object of interest and hence can be immediately discarded, and (b)

to determine if an object can be recognized solely using the color histogram, in which

case the SIFT descriptor based matching need not be performed. The procedure is

shown in the first four steps of Algorithm 1.
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The algorithm first finds the distance between the color histogram of the new

object oi and each cluster centroid, dij. In step 2, this distance is used to determine

a normalized cluster membership metric, Rij, which represents the likelihood that

object oi belongs to cluster j. If the minimum distance of oi to all clusters is q1

times larger than the maximum of the distances between all samples to their cluster

centroids, oi will be considered to be an irrelevant object and will be discarded.

Otherwise, in Step 4, the algorithm checks to see if the best matching cluster (i.e. the

cluster with maximum membership metric) exceeds a pre-determined threshold, TR.

If so, oi is considered to uniquely belong to the cluster. In this case, the algorithm

matches the object to the tag associated with the cluster (e.g. cup, or cellphone),

and terminates.

4.3.2.2 Combine the Color and SIFT Features

While the color feature-based classification removes irrelevant images and iden-

tifies images that have clear membership in one cluster, there may be a number of

images that are close to multiple clusters and cannot be classified accurately. We use

the SIFT features to identify such cases. Classification using SIFT features involves

three steps. First, a previously observed image that is closest to the centroid of each

"nearby cluster" (the cluster j such that Rij is larger than a threshold TLR ) is cho-

sen as the "representative" image for the cluster. This is done because the clusters

were built using color features, not SIFT descriptors, hence we cannot directly use

the clusters for SIFT-based classification. Second, the SIFT descriptors for the new

image are compared to the representative images for each cluster, and a SIFT cluster

membership score is assigned based on the similarity. Finally, a combined score is

assigned to the new object based on a weighted combination of the color-based and

the SIFT-based membership metric. The object is considered to belong to all clus-

1q is an empirically determined constant; for all results reported here, q=2
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ters, and assigned all tags for which the weighted score is greater than a pre-defined

threshold.

Algorithm 1: Pseudocode of object recognition procedure.
Input: object oi
Current model: Sample set X and k clusters {Xh}kh=1

Parameters: TR, TLR , α, THtag

Method:
1. Calc histogram xi for oi.
2. Calc membership of oi to all cluster centroids µj :
Rij = 1/(d2ij

∑k
j=1(1/d

2
ij)), where dij = ‖xi − µj‖.

3. If min(dij) > 2max(dlj)
l=n,j=k
l=1,j=1 , oi 3 {Xh}

k
h=1, exit.

4. If max(Rij) > TR, similarityij = Rij , goto step 6.
5. (1) For each µr such that Rir > TLR , do:

Calc/save SIFT descriptors for oi and the closest sample sr to
µr; Calc number of SIFT matching points Mir between oi and
sr.

(2) For the rest µr such that Rir < TLR , let Mir = 0.
(3) Calc RirSIFT =Mir/

∑k
j=1Mij for all µr.

(4) l = maxr(R
ir
SIFT ). Let oi, sl → S.

(5) similarityij = Rij + αRijSIFT .
6. Let k = maxj(similarityij), oi ∈ Xk.
7. For all j that similarityij > THtag,
stringof(µi)→ Tags.

This procedure is shown in Steps 5-7 of Algorithm 1. In step 5, we calculate

the number of SIFT matching points between oi and the representative image sj

corresponding to each cluster. For cluster j, sj is the closest sample to the centroid

µj. We can then calculate the number of SIFT matching points Mij between oi and

sj in each cluster. Rij
sift represents the SIFT similarity between oi and the sample sj

in cluster j. Thus Rij
sift represents the evaluation score of the membership of oi to

cluster j given by SIFT features.

The overall evaluation score of the identity of oi is calculated by combining color

and SIFT features: similarityij = Rij + αRij
sift, where α is a weight that reflects the

importance of SIFT features. If similarityij > THtag, then the object is associated
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with a specific tag, where THtag is a predefined threshold that balances the false

positive and false negative of object recognition. After an object is recognized, the

ROO and the entire scene image is stored in the flash memory of Tier-2 node, and

metadata about the recognized object (node id, timestamp, tags) is transmitted to

the proxy.

4.3.3 Constrained Cluster Updating

Until now, we have discussed how the color-based clusters can be used for clas-

sification. We will now describe how the clusters themselves can be evolved in a

dynamic manner, by taking into account both information gleaned from the SIFT

feature-based matching as well as from user feedback. SIFT feature-based matching

provides links between two ROOs. For instance, if the matching score Rij
SIFT of two

samples i, j is high, it is likely that sample i and j are the same object. In addi-

tion, since our object retrieval application interacts with users, we can even get more

constraints from user feedback. For example, a user can directly label the class of a

sample, or denote if two samples are the same object. We assume in this work that

user feedback is always accurate.

4.3.3.1 Constraint Definition

We define two broad classes of constraints - hard-label constraints and pair-link-

constraints. The former captures constraints provided by user feedback, where the

user labels an image ROO, for instance, as a PDA. The latter captures constraints

between pairs of images—for instance, based on SIFT image matching. We now

formally define these constraint classes.

Hard-labeled-constraint (HLC) indicates a definite match between a sample

and a certain cluster. H denotes the set containing the HLCs.

Pair-link-constraint (PLC) represents the constraint between pairs of exam-

ples. There are three subclasses:
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(i) A Must-link constraint indicates that two samples should belong to the same

cluster. M denotes the set containing the must-link constraints.

(ii) A Cannot-link constraint indicates that two samples must belong in different

clusters. C denotes the set containing the cannot-link constraints.

(iii) A Soft-link constraint indicates two samples are probably in one cluster. The

evidence of each soft-link constraint is computed by SIFT descriptor matching, and

its weight is assigned based on the SIFT matching score Rij
SIFT . S denotes the set

containing the soft-link constraints.

4.3.3.2 Constrained k-means

Although clustering algorithms like k-means have the ability to handle hard-label

constraints, it is difficult for them to handle pair-link constraints. A few techniques

[110, 19, 45] have been suggested in semi-supervised k-means algorithms to address

this problem, upon which our approach is based.

Since standard k-means cannot handle pairwise constraints explicitly, the goal of

clustering is formulated as minimizing a combined objective function which is the

sum of the total distance between the samples and their cluster centroids and the

cost of violating the pair-link constraints. The clustering problem can be formulated

as minimizing the following objective function, where xi is assigned to the partition

Xi with centroid µli .

Φ = β
∑
xi∈X

‖xi − µli‖2 +
∑

(xi,xj)∈S

wijS⊥[li 6= lj]

+
∑

(xi,xj)∈M

wM⊥[li 6= lj] +
∑

(xi,xj)∈C

wC⊥[li = lj]

in which ⊥ is the indicator function, with ⊥[true] = 1 and ⊥[false] = 0. β is a

parameter to trade off the importance of the data set itself with that of the constraints.
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The cost of violating a pair-link constraint is given by the weight of this link: wijS

denotes the weight of the soft-link constraints based on SIFT matching; and wM and

wC denote the weights on must-link and cannot-link constraints. Since explicit user

feedback is more precise than the SIFT-based matching result, we use higher value

for wM and wC than that for wijs .

Algorithm 2: Constrained cluster updating algorithm.
Input: A set of old samples X = {xi}ni=1

The old clusters: disjoint k partitioning {Xh}kh=1

A set of new samples: Xnew = {xi}mi=1

Constraint sets: S, M, C, H
Parameters: β, wM , wC , ws
Method:
1. Load the cluster configuration {Xh}kh=1

2. Repeat until convergence:
(1) Assign all sample with HLC: For the sample (xi → j) ∈ H ,

directly assign xi to cluster hj . For the sample (xi 9 j) ∈ H,
assign it to the closest cluster h such that h 6= j.

(2) Assign each other sample xi to the cluster hL, for

hL = argmin
h

(β‖xi − µ(t)h ‖
2 +

∑
(xi,xj)∈S

RijSIFT⊥[h 6= lj ]

+
∑

(xi,xj)∈M

wM⊥[h 6= lj ] +
∑

(xi,xj)∈C

wC⊥[h = lj ])

(3) Estimate and update means:
{µ(t+1)

h }kh=1 ← {
1

|X (t+1)
h |

∑
x∈X (t+1)

h

wsx}kh=1

(4) t← (t+ 1)
3. Delete a set of the oldest samples from the clustered data.

Algorithm 2 shows the cluster update algorithm. The algorithm alternates be-

tween the cluster assignment and centroid estimation steps. When doing the cluster

assignment, every sample xi is assigned to a cluster such that it minimizes the sum of

the distance of xi to the cluster centroid and the cost of constraint violations caused

by that assignment. The centroid re-estimation step is the same as standard k-means

algorithm.
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The proof of the convergence property of our algorithm is similar to the proof in

[20]. In our algorithm, the pairwise constraints are given only by SIFT features and

user feedback, which are not explicit functions of the centroid, so in re-estimating

the cluster centroid µh, only the component
∑k

h=1

∑
xi∈Xh

‖xi − µh‖2 is minimized.

Hence the objective function decreases after every cluster assignment and centroid re-

estimation step. Therefore our algorithm will finally converge to a local minimum of

Φ. We give samples with hard constraints more weight in the centroid re-estimation

step.

The computational complexity of k-means is O(nkd), where n, k, d represent the

number of data points, number of clusters, and dimensionality respectively. The

algorithm is computational efficient since the complexity is linear in the size of the

input.

(a) (b)

Figure 4.4. An example of clustering under constraints. Color is used to identify
different clusters. To represent clusters, two dominating dimensions are calculated by
Principal Components Analysis and used as x, y coordinates.

An illustration of constrained cluster updating is shown in Figure 4.4, in which

each color represents an actual cluster. Due to slight illumination change, there is

a small shift between new samples and old samples in each cluster. As seen from
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Figure 4.4 (a), the new samples in the "boundary regions" between clusters may

be incorrectly assigned due to the shift. Figure 4.4 (b) shows that by using pair-link

constraints to update clusters, the centroids shift towards the new samples so that the

cluster model represents the new samples better. In this way, our system is reactive

to changes in illumination. The cluster update algorithm is performed infrequently

on iMote2 when a sufficiently large number of constraints have been accumulated,

hence the computational overhead of the approach is not significant.

4.4 Object Retrieval in Proxy Node

Our system employs a proxy node to organize the information from the dual-

camera sensor nodes, as well as process user queries.

4.4.1 Event Database

The proxy node maintains a database of event messages sent by sensor nodes. Each

time a sensor node detects and recognizes an object, it sends an event notification to

the proxy. In the event that multiple overlapping cameras are placed to cover an area

of interest, it is possible that multiple nodes can detect and recognize the same object,

thereby suppressing false negatives. To merge the recognition results from multiple

nodes, the proxy combines event messages with similar timestamps, and stores it in a

local database for future retrieval. Note that consistent timestamps can be obtained

by using a network-wide time synchronization protocol such as FTSP [78]. Table

4.1 shows an example of the stored items in the database in the proxy-node, where

"Global ID" represent the global sequence number of the event, "Node-Addr (Local-

ID)" indicates the address of the nodes detecting this event along with the local event

index in the detecting node. "Tags" is a set that is the intersection of the recognition

results of those nodes that see the same object. "Timestamp" is the average time of

the same event detected by multiple sensors.
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Table 4.1. Database in the proxy node

Global
ID

Node-Addr
(Local-ID)

Tags Timestamp

n 2 (14) Key; PDA 2007-10-3-22:25:50
n+1 2 (15) Book 2007-10-3-22:31:27
n+2 2 (16); 3 (15) Book; Cup;

PDA
2007-10-3-22:38:54

4.4.2 Tag-based object retrieval

Our system provides a tag-based object retrieval capability. The user can provide

the name of a tag or class as the command to retrieve the latest location of this

object. The retrieval process is performed in an interactive manner. The proxy first

searches for the query string (object name) in the Tags field of the local database.

The proxy locates the latest item whose Tags field contains the query string, and

sends an "ROO Request" message to the appropriate sensors in the NodeID field to

retrieve the ROOs of interest. Each node that receives this request compresses the

candidate ROO image in JPEG format and transmits it over the wireless radio to the

proxy.

The candidate ROO sent back by the sensor node is shown to the user using an

easy-to-use GUI. If the user marks this ROO as "Valid", i.e., confirms that it is, in

fact, the queried object, the proxy sends an "Image Request" command to the sensor

node and a full image containing the ROO will be transmitted back to the proxy and

shown to the user. Otherwise if the user marks this ROO as "Invalid", it means the

ROO is not the queried object due to a false positive. The proxy will continue to

search through its database to locate an older item that matches the user query. This

process is repeated until an ROO is accepted by the user or there are no more entries

in the database. Such an interactive retrieval approach ensures that we don’t transfer

an entire scene image unless we are sure that it contains the queried object, thereby

saving time and energy.
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The user feedback also provides constraints that can be exploited for better clus-

tering, as described in Section 4.3.3.2. In addition to the "Valid/Invalid" marking,

users also have the option of correctly labeling a candidate ROO, or indicating if two

candidate ROOs are the same object or not. This information is periodically fed back

from the proxy to the appropriate sensor nodes, which use them to update the cluster

model.

4.5 System implementation

This section describes the implementation details of our system based on the

design discussed in previous sections.

4.5.1 Hardware implementation

Part-1: Part-1 comprises of a Cyclops camera [94] connected to a MICAz [3] mote.

The Cyclops is constructed from an Agilent ADCM-1700 CMOS camera module, a

Xilinx FPGA and an ATMega128 microcontroller. The Cyclops communicates with

MICAz via I2C bus and uses a 2.4GHz CC2420 radio chip as the wireless component.

Part-2: Part-2 node is a combination of an Enalab camera [4] and an iMote2

[5]. Enalab camera module comprises an OV7649 Omnivision CMOS camera chip,

which provides color VGA (640x480) resolution. The iMote2 is assembled from an

18-400MHz Xscale PXA271 processor and a CC2420 radio chip. The Enalab camera

is connected to the Quick Capture Interface (CIF) on iMote2. To support large image

data storage, a 1GB external flash memory is attached.

The Part-1 node and the Part-2 node are connected with a trigger circuit for

wakeup, and communicate through the serial port. The Cyclops camera and the

Enalab camera are mounted close to each other in order to increase the accuracy in

inter-tier ROO mapping. The sensor nodes are powered by batteries.
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Proxy node: In the prototype system a computer running Linux is used as the

proxy node. An iMote2 node is connected to the proxy node and acts as the network

gateway.

4.5.2 Software environment

The software environments in our system are different on the different tiers. In

Part-1, both the MICAz and the Cyclops run TinyOS 1.1.14. We enhanced the

object detection software available for the Cyclops to perform still object detection.

The Part-2 iMote2 runs Arm-Linux. The OpenCV library [6] is used on the iMote2

to facilitate the basic image computations, such as image conversion, transformation

and color histogram computation. Our SIFT algorithm is based on the SIFT++ lib,

which is a lightweight C++ implementation of SIFT descriptors. The Intel Integrated

Performance Primitives library (IPP) is used to accelerate data processing. A JPEG

compressor was also developed using IPP lib to compress images. The IEEE 802.15.4

radio protocol is used to communicate among all nodes in the system.

4.6 Experimental results

We evaluated the performance of our object retrieval system through an extensive

set of experiments. We first evaluated the benefits of using a dual-camera sensor

node instead of a single camera node. We then evaluated the power consumption and

performance of the object detection, and object recognition algorithms individually,

and finally provide a full system evaluation using multiple cameras in a realistic

environment.

There are a number of key parameters in our system most of which are empirically

determined: TR, TLR , α, THtag for Algorithm 1, and β, wM , wC , ws for Algorithm

2. In all our experiments, TR, TLR were fixed and set to 0.7 and 0.2 respectively.

These values excluded samples in the "boundary regions" (as seen in Figure 4.a). α
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is set to 1.2 to tune the trade-off between color and SIFT features. THtag is set to

0.3 in all experiments except in Section 7.5 where we evaluate the impact of tuning

this parameter. For algorithm 2, β is set to 0.02 so as to give more weight to the

constraints. The experimental results are not very sensitive to the parameters wM

and wC , as long as they are assigned a value larger than 10. In our experiment we

set wM = wC = 10. The parameter wS is also not a sensitive parameter and is set to

2.

4.6.1 Energy Cost of Object Detection

In order to provide a better intuition for the energy gains offered by our system,

we compare our system with a single-part design that keeps the Part-2 node (iMote2

+ EnalabCam) always on to perform the detection. In our system, the Part-1 node

(MICAz + CyclopsCam) will wake up the Part-2 node (iMote2 + EnalabCam) after

every 4 still objects are detected. We also present the power consumption for two

operational modes of the CyclopsCam - a "duty-cycle" mode and an "always on"

mode.

(a) (b)

Figure 4.5. Power consumption analysis. (a) Effect of the sampling interval. (b)
Effect of object detection interval.
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Figure 4.5 (a) shows the power consumption for continuous monitoring as a func-

tion of the sampling interval. In this experiment, no object is detected, and con-

sequently the iMote2 does not need to be woken up. As seen from the figure, both

operation modes of our system consume less energy than the single-tier version, clearly

demonstrating the benefits of using a tiered system for object detection. The exper-

iment also reveals that the critical point for choosing between the two modes of the

CyclopsCam is around 6 seconds. Thus, when the sampling frequency is less than

6 seconds, the always-on mode of the CyclopsCam is more efficient since the energy

consumption for transitioning the camera from sleep to wake state dominates the

total power consumption.

Figure 4.5 (b) evaluates the effect of object detection interval (i.e. the average

time between two consecutive object detection events) on the power consumption of

the three schemes. In this experiment, the sampling interval is fixed to 10 seconds. As

shown in the figure, if the still object is detected very frequently (less than 20 seconds

between detections), the power consumption of our system may be a little larger

than that of the single-part version, because of the frequent wake-up overhead of the

iMote2 node. For most reasonable inter-object intervals, the power consumption of

the two versions of our system is considerably less than that of the single-part version.

4.6.2 Accuracy of object mapping

Obtaining an accurate mapping between the CyclopsCam’s ROO and the Enal-

abCam’s ROO is essential to the performance of our system. We compare the error

in ROO estimation for two schemes: (a) an always-on single-part system that uses

the iMote2 and EnalabCam, and (b) our system using inter-part wakeup and ROO

mapping. The errors are calculated by comparing the object region produced by the

algorithms to those labeled manually. The experimental results in Table 4.2 show that

our system has only marginal higher error (less than two pixels along each axis) than
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a single-part system that uses a high resolution camera. In addition, the absolute

error is less than three pixels on each axis.

Table 4.2. Object detection error analysis. Errors are measured in pixels.

Center Error Width error Height Error
Test Avg (Var) Avg (Var) Avg (Var)
EnalabCam 1.04 (0.88) 1.70 (4.90) 1.30 (4.46)
DualCam 2.47 (2.08) 2.84 (4.13) 2.91 (6.07)

4.6.3 Comparison between color and SIFT

In this section, we demonstrate the accuracy and energy benefits of using the

Color and SIFT features in a cascading manner for object recognition (described in

Section 4.3.2.1). Table 4.3 compares the performance of three different recognition

methods: only color features, only SIFT features, and the cascading combination of

the two. We use two metrics to evaluate the schemes—rate and latency. The "rate"

metric represents the percentage of correctly recognized objects, and the "latency"

metric shows the amount of time taken by the iMote2 node for object recognition,

which in turn corresponds to the energy consumption for recognition. Five common

objects are used in this test: book, cup, keyring, PDA, and TV remote control. These

are all common objects that are easy to lose.

We tested the three methods with a training set and a test set. The training set

contains 50 samples. The test set, FIXED-ILLUM, contains 100 samples under the

same lighting conditions as in the training set. The set VARY-ILLUM contains 100

samples where illumination changes were introduced by switching off one of the three

ceiling lights in the room. Samples are collected by placing the objects in different

locations and with different poses on a table. We first train the clusters by using the

training dataset, and then classify the two test sets respectively.

Table 4.3 shows that the recognition rate by using a combination of Color and

SIFT features has higher accuracy than using the features individually. When illu-
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mination changes are present, the improvement in accuracy over color alone is 17%.

The computation time for processing is significantly greater than for a method that

just uses color features, but is only a third of the time required when only the higher

accuracy SIFT descriptors are used. This is because our algorithm needs to run the

SIFT algorithm only on roughly 20-40% of the samples. Note that cluster updates

were not performed in this experiment.

Table 4.3. Comparison of recognition methods (The power consumption during
object recognition is 681mW)

FIXED-ILLUM VARY-ILLUM
Methods Rate Latency Rate Latency
1. Color 84% 0.0034s 63% 0.0032s
2. SIFT 83% 6.49s 75% 6.17s
3. Color + SIFT 91% 2.07s 80% 2.96s

4.6.4 Benefits of using constraints

We now evaluate the benefits of using pair-link constraints to improve clustering

results. In this experiment, we collect another test dataset, VARY-ILLUM-1, that

contains 100 samples under the same illumination conditions as in VARY-ILLUM.

We then evaluate whether the recognition rate on VARY-ILLUM-1 improves as a

result of refinement of the clusters with constraints that are obtained from VARY-

ILLUM in the previous experiment. Table 4.4 shows the results of this experiment.

The "No constraint" column shows the results using only standard k-means without

constraints, and the "Using constraint" column shows the results of our constrained

k-means algorithm with refinement using constraints derived from VARY-ILLUM. As

seen from Table 4.4, the use of constraints improves the recognition results by 10%

when only color features are used, and by 6% when both color and SIFT features are

used. The refinement of clusters also improves the latency required to perform the
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object recognition by about 20%, since the clusters are more accurate and hence the

SIFT recognition algorithm is invoked fewer times.

Table 4.4. Improvements from using constraints (The power consumption during
object recognition is 681mW)

VARY-ILLUM-1
Recognition methods No constraint Using constraint
Color Rate 68% 78%
Color + SIFT Rate 77% 83%

Latency 2.89s 2.24s

The recognition results above are all produced by a single camera node. We also

evaluate the benefits of placing multiple sensor nodes with overlapping coverage for

object recognition. In our experiment we evaluated the recognition rate using two

camera views and found that the recognition rate improves from 82% (single view)

to 86% (two views).

4.6.5 System performance on object retrieval

We now evaluate the overall performance of our object retrieval system using an

experiment in a real room environment with multiple sensor nodes. In this experi-

ment, we placed 5 dual-camera nodes in a room so that the FOVs of these nodes cover

most of the area in which human activity may happen. The cameras are placed in

an ad-hoc manner, so some cameras have overlaps in their field of view. Figure 4.7

shows the deployment of the camera network. We use the same object set as previous

experiments: book, cup, key ring, PDA, and TV remote control. In this experiment,

objects are randomly placed and removed from the monitored area. Queries for each

object are generated after roughly every 20-25 object placements events.

Table 4.5 gives the results from this experiment. The first column labeled "Cor-

rect/Total" stands for the ratio of number of correctly retrieved images to the number

of queries. A correct retrieval is the case where the system returns the latest scene
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Figure 4.6. Deployment of the dual-camera sensor nodes.

image containing the queried object. "Average ROO Transmitted" denotes the av-

erage number of candidate regions that need to be transmitted to get the retrieval

result. As seen from the table, in the absence of user feedback, our system achieves

90% accuracy in ROO retrieval, with less than four candidate regions retrieved per

correct retrieval. If users provide additional feedback by labeling returned candidate

ROOs, the accuracy increases to 95%, and the average number of ROOs need to be

transmitted for each query is reduced from 3.6 to 2.5 (a reduction of 7KB in bytes

transmitted).

Table 4.5. Object retrieval performance (The tagging threshold THtag is fixed to
0.3)

Correct/Total Average ROO (data
bytes) Transmitted

No user feedback 18/20 3.6 (22.5KB)
With user feedback 19/20 2.5 (15.6KB)

4.6.5.1 Impact of Tagging Threshold

The correct rate and the number of ROOs that are transmitted are sensitive to

the value of threshold THtag. As described in Section 4.3.2.2, THtag influences the

number of false positives and number of false negatives in object recognition, and also

determines the number of category tags saved for each ROO. Figure 4.7 illustrates

the effect of changing THtag and shows that the threshold provides a tradeoff between
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(a) (b)

Figure 4.7. Effect of the tagging threshold THtag. (a) Retrieval rate. (b) ROO
transmitted.

the number of ROOs transmitted against the accuracy of retrieval. If available energy

in the system is limited, a higher value can be used for THtag, which will reduce the

number of ROO images transmitted, but will also decrease the correct rate of retrieval.

The experiment result shows that our system functions well in real world settings with

multiple camera nodes, and can be tuned to tradeoff recognition accuracy for amount

of energy expended for communication.

4.7 Summary

This chapter presents the design and implementation of an indoor object retrieval

system using a network of dual-camera wireless camera nodes, each of which combine

multiple cameras with complementary capabilities. Our system proposes a number of

novel techniques including: (a) the use of the low-power camera both for still object

detection as well as region-of-object estimation, (b) the use of two different visual

features—color histogram and SIFT descriptors—for energy-efficient yet accurate ob-

ject recognition, and (c) refinement of clusters for more accurate object classification

using pairwise constraints from SIFT matching and user feedback. Our experimental
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results demonstrate that the system is energy efficient, computationally efficient, and

accurate.

Although the proposed tracking-based approach achieves reasonable results and

has been demonstrated as effective in assisted-living, it still suffers a success-rate

problem. As described in the experimental session, it in average has a failure rate of

10%, which may cause problems in an assisted-living scenario. More importantly, it

usually suffers from incomplete coverage. To improve the effectiveness of the object

search application, other sensorimotor resources, like PTZ cameras, RFID sensors

and mobile robots can be employed; this is addressed in the next chapter.
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CHAPTER 5

SINGLE-AGENT ACTIVE SEARCH

In Chapter 4, a tracking-based object retrieval approach is proposed. In spite of its

advantages of low power consumption and persistent monitoring, the tracking-based

approach suffers from detection failures and incomplete coverage. To cover a larger

area and to achieve more effective object search performance, the system can employ

more resources. One such resource is a mobile robot embedded in a sensor array to

perform active search.

In this chapter, an object search approach for a single agent is presented and its

performance is evaluated. Building a smart agent with efficient search capability is a

prerequisite to building a cooperative robot search team (which will be presented in

the following chapters). In our system, each search agent can be seen as an expert

when searching alone and is able to independently perform a complete exploration of

the environment, acquire observations and decide if the target is detected in a certain

region. In this chapter, a general framework is described that can be adapted by

different types of agents. Two types of agents are considered and studied: (i) PTZ

camera nodes and (ii) the uBot-5 robot [36].

5.1 Bayesian Searching Problem

The search problem for a single agent can be represented in a Bayesian framework

[27]. For a target r, the state vector of its location ~xr ∈ Xr in Cartesian space can

be expressed in the form of a Probability Density Function (PDF) pr(~x). Given a

prior PDF pr(~x0|z0) ≡ pr(~x0) of the target and the independent observations z, the
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PDF at time step t can be constructed recursively using Bayes’ theorem. In the

application of object search to living space, it is reasonable to assume that when the

search process starts, the target object is stationary and not allowed to move until

the search finishes. So we have pr(~xt|z1:t−1) = pr(~xt−1|z1:t−1). After each observation,

the PDF will be updated according to the observation,

pr(~xt|z1:t) = Kpr(~xt−1|z1:t−1) · pr(zt|~xt) (5.1)

where K is the normalization factor and is given by,

K = 1/

∫
[pr(~xt|z1:t−1)pr(zt|~xt)]d~xt (5.2)

The search system is designed to maximize the chances of finding the target given

a restricted amount of time. Although using a longer time horizon can achieve a

better solution, planning with a “one-step-lookahead” strategy [27, 118] that maxi-

mizes p(Zt|z1:t−1), where Zt represents a “detection” event at time t− 1, can provide

reasonable performance with very low computational overhead.

5.2 Search Strategy

The single agent search task consists of four subtasks: (i) the subtask Plan is

the selection of the next action and the corresponding position in R2 for the mobile

robot or pan-tilt-zoom parameters for the PTZ cameras so as to bring a potential

search sub-area into the sensing range of the agent; (ii) the subtask Move involves

controlling the hardware to realize the planned state; (iii) the subtask Observation

involves the procedure for detecting the target, and (iv) when the target is detected in

subtask Observation, the subtask (Localization) is performed to drive the agent

to approach the target, to localize the target and to broadcast the detection event.

The overall local search process is illustrated in Figure 5.1. The agent repeats the
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subtasks of action planning, manipulation, and observation to explore all the visible

area.

Start Plan ap Oa Stop
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Figure 5.1. The search strategy for a single agent.

5.2.1 Subtask Plan

We assume that the geometric configuration of the search space is CW , and objects

can be placed only on the floor or on tables of uniform height. The horizontal planes

of the search region are tessellated into a two-layer occupancy grid G where the centers

of the grid nodes gi ∈ G are candidate positions to be observed.

Given CW , each agent c calculates a local visibility map Mc(~x) = {0, 1} which

indicates if a grid node gi is visible to the camera agent or not (e.g., gi is invisible

for a PTZ camera node if gi is located outside of the limitation of the pan/tilt/zoom

parameters or is blocked by an occluding object). The local PDF map pc,r(~x0) for

agent r is initialized by re-normalizing pr( ~x0) in all visible areas.

pc,r(~x0) = Npr(~x0) ·Mc(~x) (5.3)

where N is a normalization factor. The local PDF map is the core data maintained

by each agent. After pc,r( ~x0) is calculated, the agent is ready to perform search.
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In our approach each agent uses a “one-step-lookahead” strategy to plan the next

action. The action space of an agent consists of all the manipulations that bring a

visible grid node to the center of the camera image. To do action planning, a utility

value ui is calculated for each grid node indicating the benefit of visiting this node.

Given the local PDF of the target, ui can be calculated by two different strategies,

Strategy 1 (S1): Using Expected Information Gain.

The expected information gain uinfo(i) is calculated for each grid node i indicating

the possibility of detecting the target object by visiting this node. Given the local

PDF of the target, uinfo(i) can be calculated by,

uinfo(i) =
∑
gk∈Vi

pc,r(xk) (5.4)

where Vi is the set of all grid nodes in the observation field, i.e., that can be

observed when agent is visiting grid node gi.

Strategy 2 (S2): Using Expected Information Gain and Travel Cost.

In this dissertation we propose to use this strategy to consider not only the infor-

mation gain but also the travel cost.

ucost(i) = fh(xc, xi) (5.5)

where fh(xa, xb) is the length of the harmonic function path [33] from xa to xb.

Given the two criteria, the utility function u(p) is calculated as:

u(p) = w · uinfo + (1− w)ucost (5.6)

The set of actions selected is that set which results in the agent visiting the grid

node with highest value vi.
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5.2.2 Subtask Move

After the grid node i with highest utility value is calculated, the agent drives

itself to the grid node i. For PTZ camera agents, the Pan/Tile/Zoom parameters

(α, θ, τ) = f(~xgi) are calculated according to the 3D position of the selected grid node

and the camera. To get similar observation fields, the zoom value τ is proportional

to the distance between the visited grid node and the camera. For the mobile robot

(uBot-5 in this dissertation), harmonic function navigation [33] is used to drive it in

R2 space to the grid node i.

5.2.3 Subtask Observation

Object detection in the image can be achieved using a variety of methods, from vi-

sion based methods to RFID based detection. The active search part (Chapter 5, 6, 7)

of this dissertation is focused on describing a generalized approach and the discussion

of particular object detection and recognition algorithms that might be appropriate

is beyond the scope of this dissertation. In this dissertation two object detection

approaches are considered and used for evaluation, the vision-based approach that

detects the target object using the camera sensors, and the RFID-based approach

that detects the target object using the RFID receiver mounted on the robot.

5.2.4 Localization

When a target is detected as a result of successful execution of the second and

third subtasks, the last subtask (Localization) is performed to approach the target,

localize it and to announce the detection.

There are many ways to localize the detected object, ranging from visual trian-

gulation methods to RFID active localization methods (e.g., Sherlock [4] proposed a

technique to refine the RFID localization of objects in an office environment). Here,

we only consider and use visual methods. After the object is detected, the position

of the object can be located using a depth-sensing camera (e.g., Microsoft Kinect
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sensor) that is mounted on the robot, or can be triangulated using a pair of the PTZ

cameras. If located by a mobile robot, the robot converts the object’s position in its

coordinate system to the world coordinate system. If a precise 3D location of the

object is required, the calibrated PTZ camera array can be used to localize the target

object accurately.

As the result of a query, the system can simply return an image containing the

queried object to the user with the bounding box labeled.

The search process terminates when the agent performs the Localization or

completes the exploration of its entire action space.

5.3 Evaluations

In this section we present the experimental results of the proposed methods. The

first experiment scenario is called LPR-1, in which human search behavior is collected

and studied. After this, a robot search (both in simulation and in the real world)

experiment is conducted in this same environment and compared to the human search

statistics.

5.3.1 LPR-1 Scenario

To evaluate the performance of the active search strategies, an experimental sce-

nario LPR-1 is defined. In LPR-1, the search space is a mock apartment, which

is 42 × 28 square feet. The actual search space is in the Laboratory of Perceptual

Robotics (LPR) at UMass Amherst. A photo of the search space is shown in Figure

5.2.

5.3.2 Human Data in LRP1 Scenario

To evaluate the search performance of the robot system, we need to understand

how humans search for objects. For this human search experiment, 10 subjects were

recruited. Among these participants, 5 were colleagues of the author and are familiar
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Figure 5.2. LPR-1 testing space.

with the lab environment. The remaining 5 subjects were unfamiliar with the search

room and received a short description of the room configuration and furniture. Their

ages range from 26 to 32. Two search activities were considered, (1)searching for a

BOOK and (2)searching for a CLAMP. The participants are asked to search for a

designated target objects in each trial. Each subject performs each search task 10

times (5 for the BOOK and 5 for the CLAMP).

The furniture in this search space include desks and shelves. In each trial of the

experiment, the target object was placed in a new location. Different objects have

different prior distributions. The target objects were placed locations where one might

reasonably expect to find them; the BOOK was placed on random shelves while the

CLAMP was placed randomly on the tables. This information was not exposed to the

subjects. They only use common sense to search for the object. The human search

trajectories were recorded, and are shown in Figure 5.3. Figure 5.3 (a) illustrates the

search trajectories from the 10 subjects when they were searching for the BOOK. The

black circles are places where the human subjects moved slowly and spent long time

to search carefully, these are called “dwell positions”. The state when the subject is

in the dwell position in the search process is called the “dwell state”. Figure 5.3 (a)
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shows that the dwell positions overlap the places where the shelves are, which are the

actual position the BOOK is hidden. It shows that it is very efficient for human to

search using expectations. It can also be seen from the figure that different subjects

have similar search behavior. The same results can also be seen in Figure 5.3 (b),

which shows that the subjects dwelled around the desks to search for the CLAMP.

The statistics of the human search results are shown in Figure 5.4. The average

time cost for searching the BOOK is 109 seconds and the average time cost for

searching the CLAMP is 135 seconds.

(a) (b)

Figure 5.3. Trajectories (orange and blue dots) and dwell locations (black circles)
when human subjects search. (a) Search for object BOOK, (b) Search for object
CLAMP. Shadowed areas represent obstacles (desks and shelves).

5.3.3 Simulated Experiments

A set of simulations were conducted to evaluate the performance of the single

agent search strategy. The experiments were performed using a simulated uBot-5 in

a simulated LPR environment developed with Microsoft Robotics Development Studio
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Figure 5.4. Human search performance when searching for the BOOK and the
CLAMP

(MRDS) [54]. The simulated environment is an replica of the real world environment.

Objects are placed in the search space randomly according to the distribution derived

from human search data. The physical and simulated uBot-5 are shown in Figure 5.5.

To accelerate the experiments, the moving and observation speed of the robot was

accelerated so that the robot searches faster than in the real world and hence these

results should be be compared to the real world performanace directly.

In this section two search strategies for a single robot are compared. (1) Strategy

1 (S1): Utility function contains Expected Information Gain. (2) Strategy 2 (S2):

Utility function contains Expected Information Gain and Travel Cost.

It can be seen in Figure 5.6, the strategy that considers the travel cost (S2 )

has better search performance. In Figure 5.6 a step is equivalent to a second. The

uncertainty reduces faster with S2 than that it does when using only S1. To achieve an

uncertainty threshold of 0.1, S2 uses 22 steps and S1 uses 37 steps. The experiment

demonstrates that using the factor of travel cost in the utility function effectively

69



(a) (b)

Figure 5.5. (a) The physical uBot-5 and the search space. (b) The simulated uBot-5
and the simulated environment.

improves the search efficiency. Therefore S2 is used as the basic single agent search

strategy in the following discussions.

5.3.4 Real-World Experiments

The real world experiments were conducted using the physical uBot-5 robot. uBot-

5 is equipped with two types of sensors, an RFID reader and a depth camera. The

depth camera is the ASUS Xion Pro sensor, which is similar to the Microsoft Kinect

sensor. In this experiment, the RFID sensor is used to detect the target object. The

uBot-5 carries a Skyetek M9 UHF reader and a directional antenna (shown in Figure

5.7 (b)). RFID tags were attached on the target objects. The uBot-5 navigates using

harmonic function navigation [33] in R2 space.

To compare the performance of the physical robot search, the trials were performed

in the LPR-1 experimental scenario. The target object BOOK was put in the same

location as in the human search experiments. The data was collected from 10 trials

of the real world search. The average time cost is 193.7 seconds. Figure 5.8 illustrates

the time cost comparison of the human search and the robot search. It can be seen
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that on average the single robot search is slower than the human search, but is still

useful. In many cases in residential assisted-living, it is tolerable for the robot to

spend about 3 minutes to search the whole room.

5.4 Summary

In this chapter the search strategy of a single agent robot is presented. A PDF

based Bayesian schema is proposed. While our study demonstrates that the single

robot search strategy is efficient and useful, there is still room for improvement. By

accommodating more sensorimotor resources, an agent team can be formed (tier-3 in

the search application hierarchy in Figure 1.4) and better performance in the object

search task can be obtained. In the next chapter multi-agent cooperative search

strategies are proposed and discussed.

71



(a)

(b)

Figure 5.7. uBot-5 robot. (a) An 11-inch MacBook Air computer is mounted on the
back of the robot and used as the central processing computer. (b) An ASUS Xion
Pro sensor and a Skyetek M9 UHF RFID reader are mounted on the robot.
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Figure 5.8. Performance comparison of the human subjects and the uBot-5 when
searching the BOOK.
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CHAPTER 6

MULTI-AGENT COOPERATIVE SEARCH

As described in the last chapter, single agent search performance has been demon-

strated as efficient and (tolerably) low performance than human search. Subject to

limited background modeling for objects and rooms, the uBot-5 is an accomplished

autonomous searcher that can be useful in the assisted-living environment. In search

operations, a team of intelligent agents can provide a robust solution with greater ef-

ficiency than can be achieved by single agents. In our framework, the functionalities

of all the agents, including the uBot-5 and the PTZ camera nodes, are wrapped in

services and can be invoked to join the search team opportunistically. This chapter

focuses on cooperative search strategies in a robot team.

There has been successful demonstrations of synchronized control in multi-agent

search [26, 37]. However, for a multi-tasking system that deals with resource con-

tention, pre-emption, and node/network failures, a decentralized and asynchronous

version has clear advantages. For example, in our application the PTZ camera nodes

perform multiple tasks including object search and people tracking. Figure 6.1 and

Figure 6.2 show two examples of our system. In Figure 6.1, all PTZ camera agents

were performing object search, while in Figure 6.2, two camera agents were perform-

ing human tracking and the other two cameras were searching for an object. One

of the searching camera agent even lost its signal due to connection failure. In the

assisted-living scenario, people tracking sometimes has a higher service priority than

object search, since people tracking is the basic service for vital applications such as

fall prevention. In this situation, the search process can be interrupted. This problem,
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along with the possible node and network failures, supports a decentralized search

design. In the next section, we propose an asynchronous cooperative search strategy

in which autonomous search agents share perceptual information but maintain sepa-

rate probability distribution for targets, and make independent decisions about their

search strategy. Multiple asynchronous search agents coordinate activity in a coop-

erative search strategy by using inter-agent messages to share posterior distributions

summarizing where search agents have already looked and where they are likely to

look next.

Figure 6.1. PTZ camera agents performing object search.

6.1 Message Sharing-Based Cooperative Search Schema

Rather than maintaining identical PDFs [26], in the proposed search strategy,

cooperative agents maintain separate search knowledge concerning the probable ob-

servability of the target and make independent decisions about their search process.

Two kinds of messages are considered to help coordinate asynchronous search agents

as illustrated in Figure 6.3.
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Figure 6.2. PTZ camera agents performing human tracking and object search si-
multaneously, with connection failure to one searching camera.

(1) Pre-Observation Inhibition Message (POIM). Avoiding replicated observations

(a form of collision avoidance) is non-trivial. As illustrated in Figure 6.3, a POIM is

broadcast by an agent after it selects its next action, but before the control and obser-

vation steps are executed. A POIM contains an inhibition map I(~x) that identifies all

the grid nodes in the observation field of the next action that has been selected. The

agent receiving a POIM combines it with its current local PDF to avoid overlapping

observations. As illustrated in Figure 6.4, at time t + 2, agent 2 receives the POIM

from agent 1. The area that agent 1 is planning to observe is ablated in the local

PDF of agent 2, which in turn plans its next action to cover the peak indicated on

the right side.

(2) Observation Result Message (ORM). ORM is broadcast after an action is

taken. It contains the observation result pr(zt|xt) produced by agent r at time t. The

observation result from another agent is considered to be equivalent to observations by

the agent itself and, therefore, Equation 5.1 is used to update the search probability

distribution. As illustrated in Figure 6.4, the local PDF of target 1 at time t + 10
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Figure 6.3. The cooperative search strategy for a single agent.

was modified by the previous observation taken by itself, the observation results sent

by agent 2, and the POIM message sent by agent 2 at time t+ 5.

To maintain the correctness of message transmission, message buffers are used

to store the POIM and ORM. A consistent network timestamp is used to correct

for situations where ORM r
t arrives later than POIM r

t due to network latency. In

addition, a POIM is discarded if the corresponding ORM hasn’t come within time

interval TPOIM . Therefore, if the agent sending the POIM fails or is interrupted by

another task, the area masked by POIM will eventually be observed by other agents.

The approach described in this section is a basic message sharing strategy for

multi-agent search. In this strategy, the agents adopt the same utility function as in

single agent search, and share messages containing their search intentions and search

results. The next section explores how to incorporate more prior knowledge in the

utility function to improve the cooperative search efficiency.
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6.2 How to Compensate for the Limitations of Teammates

Intelligent agents help teammates to cover the search space efficiently. The basic

message sharing-based strategy described above allows the agents to cooperate with

their teammates by updating the PDF in the search. So far, prior knowledge only rep-

resents the distribution of probable object locations, without considering teammates’

search capabilities. Ideally, an agent should know the limitations of its teammates

and try to behave to compensate for these limitations. Two types of limitations are

considered, (i) viewpoint limitations, which represents the ability of an agent to reach

certain locations in the search space, and (ii) limitations on observation reliability,

which describe the ability of an agent to make a true-positive detection in certain

locations.
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6.2.1 Compensating for Viewpoint Limitations

Robot agents have limited ability to deliver sensors to the viewpoints required by

a task. The “reachable” area is defined as the inspection area that is accessible to a

particular agent while it is searching. For instance, a mobile robot may not be able

to check the areas on the upper levels of a shelf because the robot is not tall enough.

This region in the environment may be accessible to the elevated PTZ camera, which

is subject to other constraints (i.e., floor areas under tables) due to motor limitations.

To coordinate efficient multi-agent search given these agent-specific constraints,

agent should be capable of covering the viewpoint limitations of their teammates. For

example, in a search team consisting of a low-profile mobile camera node and a ceiling

mounted PTZ camera node, the PTZ camera is well-suited for searching desk surfaces

and the upper shelves of bookcases and the mobile robot can provide complementary

information on the floor under desks and tables.

Appropriate treatment of asymmetric reachability constraints can improve effi-

ciency as well. For example, in Figure 6.5, two agents start searching from their

initial position and enter the search space (the rectangle with rounded corners). The

gray rectangle represents the area accessible to agent A. Agent B has the ability to

cover the whole space. In Figure 6.5 (a), agent B doesn’t know the viewpoint lim-

itations of agent A. To achieve a complete coverage, agent A visits location 1, and

the agent B visits location 2, 4, 3 in sequence. The overall number of search steps

for the team to achieve complete coverage is 3. If agent B is aware of the viewpoint

limitations of agent A (Figure 6.5 (b)) then the total number of search steps can be

reduced to 2.

Viewpoint limitations can be coded manually but this is an extremely tedious

process and would have to be repeated each time the reach capability of an agent

changes. Instead, our approach is to consider mechanisms that allow an agent to ac-

quire knowledge of the viewpoint limitations of its teammates based on observations.
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(a) (b)

Figure 6.5. An example of viewpoint limitations: (a) without knowledge of reacha-
bility constraints, the overall number of steps to achieve complete coverage is 3; (b)
if agent B can compensate for viewpoint limitations in agent A, the number of steps
can be reduced to 2.

For an agent to compensate for its teammates’ viewpoint limitations, utility factor,

ureach, is defined in addition to the existing utility factors (uinfo and ucost) presented

in Chapter 5.

In the multi-agent search algorithm, an agent ak receives Observation Result Mes-

sage (ORM) from its teammates a0, ..., ak−1, ak+1, ..., aN . These ORMs are used to

accumulate knowledge of viewpoint limitations of its teammates. The travel capabil-

ity creach(~x) at a grid location ~x is defined as,

creach(~x) = Nd

N∑
n=1

D∑
i=1

Kn(~x− ~xni ) (6.1)

where ~xmi is the inspection location reported by agent an in the ith observation. D is

the total number of the ORMs, and N denotes the number of teammates. Kn(·) is

a suitable kernel function that is determined by the observation model of an (here, a

Gaussian). Given creach(~x), ureach(~x) can be defined as,

ureach(~x) = 1− α · creach(~x) (6.2)
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where α is the factor that balances the trend for an agent to cover its teammates’

viewpoint limitations. Now, three criteria are used to calculate the utility function

of this strategy:(1)uinfo, the expected information gain; (2) ucost, the travel cost; and

(3)ureach, the viewpoint limitation of the teammates. Then, the utility function at

location ~x is defined as weighted combination,

u(~x) = γ1 · uinfo(~x) + γ2 · ucost(~x) + γ3 · ulimit(~x) (6.3)

6.2.2 Compensating For Limitations on Observation Reliability

Observations are subject to uncertainty that depends on a wide variety of envi-

ronmental contexts. For example, a vision-based object detection algorithm may be

not functioning well when searching in a dark corner due to the lighting conditions.

As a result the agent will probably miss the target in that position. To make an

efficient search, the agent with the limitation on observation reliability should avoid

untrustworthy observations that cause target detection failure. As a compensation,

the other more capable agent should have a higher priority to visit the blind locations

of its teammate.

An example is given in Figure 6.6, where the target object is in location 3. Agent

A and B are jointly searching in the space. Location 3 is a blind location for agent

A. Without considering the limitation on observation reliability, agent A may visit 3

but will miss the target. The total search steps to cover the whole area is 4. However,

the joint search would have performed better with complementary behavior if both

agents are aware of the observation reliability of agent A in location 3. In this case,

agent A would tend to skip location 3 and agent B would tend to visit location B with

a higher priority. Complementary joint search take one step less than the previous

case.
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(a) (b)

Figure 6.6. An example of observation reliability in joint search. (a) Not consid-
ering the limitation on observation reliability, the overall number of steps to achieve
complete coverage is 4. (b) The agent B compensates the limitation on observation
reliability of the agent A, the overall number of steps to achieve complete coverage is
3.

It’s difficult if not impossible to develop an algorithm that works perfectly in all

circumstances. To manually label all the places that cause object detection algorithm

failure is also tedious for humans. However, autonomous agents that have access to

the same environment over a prolonged period of time can model those reachable

locations in which detection results are not reliable.

For agent ai and observation sequence z0, z1, ..., zN in a search trial, and given

that finally, the target is detected by agent aj in location ~x. The limitation on

observation reliability of agent ai in location ~x is modeled as an accumulation of the

failed observations,

liobs(~x) =


Nd

N∑
n=1

p(~x|zn), j 6= i

0, j = i

(6.4)
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where p(~x|zn) is given by the observation model of agent ai. Nd is a normalization

factor.

Given lobs(~x), and assume there are M agents, the complementary factor cobs for

agent k in location ~x is represented as,

ckobs(~x) =
M∑
m=1

lmobs(~x),m 6= k (6.5)

For an agent to successfully avoid the positions with observation failure and to

complement its teammates, it needs to consider a utility factor uobs(~x),

uobs(~x) = cobs(~x)− α · lobs(~x) (6.6)

Three criteria are used to calculate the utility function of this strategy: (1)uinfo,

the expected information gain; (2)ucost, the travel cost; and (3)uobs, the limitation

on observation reliability. The utility function at location ~x is defined as weighted

combination,

u(~x) = α1 · uinfo(~x) + α2 · ucost(~x)− α3 · uobs(~x) (6.7)

6.3 Evaluations

This section presents the experimental results of the proposed cooperative search

strategies.

6.3.1 Performance of Basic Message Sharing Strategy

The effectiveness of the basic message sharing-based strategy in a real world sce-

nario was evaluated using 4 PTZ camera nodes to perform joint search. The viewpoint

limitation and observation reliability are not considered in this experiment.

In this experiment, four fixed Sony EVI-D100 PTZ cameras search for a target

that was placed randomly in the search space. Each camera is attached to a small
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Figure 6.7. The system console when the camera array is searching. The left four
windows show the camera views, and the four coloured areas in the map represent
the camera’s field-of-view that is projected on the floor.

local computer containing an Intel 2.5GHz dual-core processor to form a search agent.

The local computer is used to process the captured images and communicate to the

central PC and other agents over an 802.11g wireless network.

The deployment of the cameras is shown in the right part of Figure 6.7, in which

four circles represent cameras placed 2.4 meters above the floor. The search space

setting in this experiment uses the same room as that in LPR-1, but two horizontal

levels are considered, namely the floor plane (z=0 feet) and table surface planes (z=2.4

feet). We tessellate the horizontal plane into grid nodes with a resolution of 2 × 2

cm. The target object is a ball with 20cm diameter and solid green color. Object

detection is achieved using mean shift algorithm in color space [1]. The prior PDF

for each agent is a uniform distribution.

In this test all four cameras are used to search for the object. Figure 6.7 shows

a snapshot of the console screen when the camera array was searching. To evaluate

the benefit of using the cooperative search strategy, we compare the efficiency of the

proposed message sharing-based cooperative search strategy to the method without
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the cooperation mechanism, in which all agents perform independent search without

exchanging message. We measured the “time to detect” cost of the search in 10 inde-

pendent tests. In each test the target object was placed randomly in the environment.

Figure 6.8 shows the time when the first camera detects the target. In 8 out of 10

trials, the proposed cooperative search strategy is more efficient than the approach

without cooperation.
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Figure 6.8. Search performance of the camera array for cooperative and non-
cooperative coordinate modes.

6.3.2 Benefit of Considering Teammates’ Limitations

A simulated experiment was conducted to evaluate the impact of reachability and

reliability predictions on the performance of the team. The simulated environment

used in Chapter 5 was used in this experiment as well for a pair of simulated uBot-5

robots. A harmonic function path planner [33] was used for each robot to navigate

in the environment R2, but mutual collisions between robots were not considered.
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6.3.2.1 Cooperative Search Strategies with Viewpoint Limitations

In this experiment three search strategies were compared. For each strategy 50

trials were performed.

Stragety 1 (S1): Two robot agents search independently, without cooperation.

The utility function incorporates the expected information gain and the travel cost.

The utility function is shown in Equation 5.6 (for a reminder, the equation is repeated

below as Equation 6.8), where w is set to 0.6.

u(p) = w · uinfo + (1− w)ucost (6.8)

Stragety 2 (S2): Two robot agents search cooperatively using the basic message

sharing framework without compensating for the viewpoint limitations.

Stragety 3 (S3): Two robot agents search cooperatively using the basic message

sharing framework. They compensate predicted viewpoint limitations in the other

agents. Equation 6.3 is used for the utility function with γ1 = 0.3, γ2 = 0.2 and

γ3 = 0.2.

Figure 6.9 summarizes the results of the experiment. It shows that Strategy 3

reduces the uncertainty fastest compared to the other two strategies. (Figure 6.10

illustrates the standard deviation for each strategy). It reveals that by considering

the viewpoint limitation, each agent is able to compensate for the limitations (here

reach) of its teammates and the search efficiency is improved.

6.3.2.2 Cooperative Search Strategies with Predicted Observation Reli-

ability

This experiment also compares three search strategies but focuses on the limitation

on observation reliability. For each strategy 50 trials were performed. Strategy 1

(S1 ) and strategy 2 (S2 ) are the same as those in last experiment (Section 6.3.2.1).

Strategy 3 (S3 ) is defined as below:
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Figure 6.9. Comparison of search strategies with viewpoint limitation. S1: Non-
cooperative search; S2: Cooperative search; S3: Cooperative search, complement team-
mate’s viewpoint limitations.

Stragety 3 (S3): Two robot agents search cooperatively using the message shar-

ing framework compensating for information gain, search cost, and predicted obser-

vation reliability. The utility function is shown in Equation 6.7, where α1 = 0.3,

α2 = 0.2 and α3 = 0.5.

Figure 6.11 shows that strategy 3 outperforms the other strategies since it incor-

porates the limitation on observation reliability (of both itself and its teammates) into

the prior knowledge. Figure 6.12 illustrates the standard deviation for each strategies.

6.3.3 Overall Search Performance of the Robot Team

Real world experiments were conducted to evaluate the search performance in a

team consisting of 2 PTZ camera nodes and the uBot-5 robot. Since we want to

compare the joint search performance with the single robot search and the human

search performance presented in Chapter 5, we use the LPR-1 experimental scenario
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Figure 6.10. Standard deviation (a) S1; (b) S2; (c) S3.

in this test. The target object is the BOOK. Please note that (BOOK ) is much

smaller than the one (BALL) used in the last section (Section 6.3.1), and the PTZ

cameras’ zoom value is different. As a result the search speed of the PTZ cameras is

slower than that in the last section. The cover of the BOOK is a solid color (green)

and can be detected by the cameras using mean shift algorithm [1] in color space.

Both the ubot-5 robot and the PTZ camera nodes use camera sensor to detect the

target object.

In this experiment two strategies were used for testing. (i) S2: Strategy 2 in

Section 6.3.2.2; (ii) S3: Strategy 3 in Section 6.3.2.2. For each strategy 5 trials were

performed.

The results (shown in Figure 6.13) reveals that cooperative search (both S2 and S3)

outperforms the single agent search and achieves relatively comparable performance

with the human search. This result is consistent with the simulated results in that

S3 is more efficient than S2, though not by very much. It is partly because there

were only 5 trials performed and the prior knowledge of the team limitations had not

been established well. In the future, more trials are needed to better evaluate the

benefit of observation reliability in the real world, which will be discussed in Future

Directions (Chapter 8).
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Figure 6.11. Comparison of search strategies with limitation on observation relia-
bility.

6.4 Summary

In this chapter a decentralized and asynchronous cooperative search strategy is

developed so that the system is tolerant to failures and interruptions of the search

agents. Each autonomous search agent maintains separate estimates of the spatial

probability distributions for the target object and makes independent decisions about

its search process. Asynchronous cooperative search is achieved by transmitting per-

ceptual information among the agents. Limitations on viewpoint and observation

reliability of robot agents are also considered in order to achieve cost-efficient joint

search.
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Figure 6.12. Standard deviation (a) S1; (b) S2; (c) S3.

Figure 6.13. Comparison of cooperative and single-agent search strategies (searching
for the BOOK ).

90



CHAPTER 7

HUMAN-ROBOT COOPERATIVE SEARCH

In the previous chapter a multi-agent cooperative search strategy was introduced.

Our vision for search problem solving is that humans and robots will work as partners,

leveraging the capabilities of each. Human-robot teams are used in Urban Search and

Rescue (USAR) [81, 84], but these applications typically use robots as "drone" under

direct control of human teleoperators. There is inadequate study for coordinating

human and robots as peers in search tasks, which is the main focus of this dissertation.

In our approach, the robot learns to recognize and complement a human’s search

activity.

In the multi-agent cooperation strategy introduced in the last chapter, the au-

tonomous search agent maintains estimates of the probability density function (PDF)

for the object location and makes independent decisions about its search process. Co-

operation is achieved by sharing perceptual information and intention among cooper-

ating agents. For robot teammates, explicit message transmission is used. A human

teammate is modeled as an agent without this mode of communication. In this case,

the robot agents infer the current state and intention of the human peer using a model

of human search activity acquired in the learning session. By inferring human search

states, the robot chooses compensatory actions to achieve efficient cooperation with

human peers.

Recently intention estimation for robot-human interaction has been investigated

as a means for the robot to assist humans. Along this line, there is recent work aimed

at recognizing human activity as a means of inferring intention. In [105], a vision
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based approach is used to infer the intentions of other agents. In [85], a hierarchical

hidden Markov model is used to recognize a set of complex indoor activities. However,

the approach of integrating intention estimation with robot planning is still in need

of investigation, especially in search tasks.

A second area of the work presented in this chapter is the problem of user interface

design for robot assistance. Cognitive load is an important factor for human-robot

interaction and has been studied considerably in the work on interface design [56, 52,

57]. Most of this work is based on explicit message transmission without considering

the potential for using predictions of human intentions. To reduce the mental stress in

H-R interaction, collaborative control [29, 42] was developed for mobile autonomous

robots. The robots work autonomously until they run into a problem they can’t

solve. At this point, the robots ask the remote operator for assistance, allowing

human-robot interaction and autonomy to vary as needed. In this dissertation, we

discuss how collaborative control mechanisms can be used for service robots in elder

care applications. An implicit interface design for robot assisted tasks is proposed,

which allows the robot to infer the intention of the user and to provide assistance

autonomously. It reduces the cognitive workload of the user and therefore is useful

for elder care applications.

The robot assisted search scenario is illustrated in Figure 7.1 where some of the

information that the robot needs to know for efficient assistance is listed. The first

two questions are related to user interface design, which is used to inform the robot

what assistance is needed by human. The user interface can be interactive, which

means that the robot could learn the answer to question 1 in Figure 7.1 by observing

the human’s action and then asking what the target object is. The third question is

related to search coordination, where the robot needs to plan the next move to coop-

erate with its human peer in order to achieve the goal. In this chapter, our approach
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1. Is human searching for 
something? 

2. What’s the target object? 
3. Where is the next 

location to search? Search 
Coordination 

Interface Design 

Figure 7.1. A scenario of robot assisted search in a home environment

to human-robot cooperative search is presented first, followed by the problem of user

interface design.

7.1 Search Schema with Human Teammates

In previous chapters, Bayesian framework for search tasks is introduced in which

messages are used to convey observations and intentions between agents to coordi-

nate otherwise autonomous search activities. These messages are used to update

probability distributions in each agent that influence its choice of search actions. To

incorporate human agents into this framework, we have adopted a strong commitment

not to impose cognitive overhead on the human (eldercare) client that might diminish

his or her attention to the primary search task. Therefore, while the human client

will be informed if the team locates the target object, we do not require that human

searchers announce their state or their intentions to the rest of the team. Instead, in

addition to searching, robot agents must infer the current state and intention of the

human peer using a prior model of human search activity. By inferring human search

states, the robot chooses compensatory actions to achieve efficient cooperation with

human peers.

93



A schematic for the proposed distributed architechture with a human-in-the-loop

is shown in Figure 7.2, which is an elaboration of Figure 5.1 and 6.2.
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Figure 7.2. Cooperative search strategy for a single agent when working with human
teammates.

7.2 Human Peer Modeling

We model human peers as agents without explicit message transmission. As shown

in Figure 7.2, the Human Activity Estimator and Expressive Gesture are used to

replace message sharing modules when communicating with human peers. In this

chapter, the focus is on the receptive module that enables the robot to estimate hu-

man activity and to provide complementary behavior. At time t, the human activity

estimator provides two types of information: (i) a human search location sequence

Xt = (x0, x1, ..., xt), which describes the human search history till t, and (ii) a pre-

diction xt+1, which is the predicted search location of the human at time t+ 1.
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7.2.1 Dwell State Detection

A reasonable human observation model is necessary for the robot to estimate the

impact of human search actions. In Section 5.3.2, the experimental data reveals that

a human searcher will dwell in places where objects are likely to be found, which

suggests using human observation models with different kernel sizes for dwelling and

walking states. A K-means algorithm [48] is used to cluster the state vectors for all

human tracking points o(t) = [x, y, ẋ, ẏ] in order to distinguish dwell and walking

states and to find out all possible dwell states. During training, human subjects were

asked to search for various objects and tracking points and velocities were logged

and subsequently clustered in batches to reveal dwell states and transitions (walking

states) that connect dwell states for each target object. Figure 7.3 illustrates the

clustering results.

The appropriate number of clusters, k, depends on the domain. In this work the

value of k is manually selected. Automatic selection of k can be achieved by applying

certain cluster analysis approaches, such as hierarchical clustering [49], but is beyond

the scope of this dissertation.

We assume that human search activities are only related to the dwelling states

(It is reasonable since 100% successful target found events happened in the dwelling

states in the experiments presented in this dissertation). Dwell and walking states

can be distinguished by using a simple classifier based on the tracking velocity, for

cluster Ci, if
√
ẋ2 + ẏ2 > T , then all tracking points oik ∈ Ci are labeled “walking”

states, else they are labeled as certain “dwell” states. Walking clusters were discarded

since they don’t provide informative knowledge on the tracking behaviors.

By applying this clustering algorithm to the original human tracking data, human

dwell location sequences Xt = (x0, ..., xi, ..., xt) can be obtained, in which xi belongs

to a dwell state from the clustering result. Then stochastic modeling tools can be
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selected and applied to the dwell location sequences Xt to modeled the human search

activities.

Figure 7.3. Clustering result and human dwell states for BOOK search.

7.2.2 Activity Modeling with HMM

Given the observed dwell location sequences, a stochastic model can be con-

structed for human searching activities. Hidden Markov Models (HMMs) are powerful

tool for modeling sequential phenomena, and have been successfully used in applica-

tions involving speech signal recognition, DNA sequence analysis, handwritten char-

acters recognition, natural language domains, etc. Recently, HMMs have been used

for activity understanding, showing a significant potential for their use in activity

modeling and inferring intent [93].

7.2.2.1 Hidden Markov Model (HMM)

As stated in Rabiner and Juang [69], the classical tutorial to HMMs, an HMM

is defined as a doubly stochastic process with an underlying hidden stochastic pro-

cess and an observed stochastic process which can produce the sequence of observed

symbols. The underlying hidden stochastic process is a first-order Markov process;
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that is, each hidden state depends only on the previous hidden state. Moreover,

in the observed stochastic process, each observed measurement depends only on the

current hidden state. An HMM inference graph is shown in Figure 7.4. The circular

nodes denote the hidden state variables, and the square nodes represent the observed

variables.

Figure 7.4. A graphical representation of Hidden Markov Model with three states.

Formally, an HMM is defined by the following entities:

• A set S = S1, S2, ..., SN of hidden states; where N is the number of states.

• A set O = O1, O2, ..., OT of individual observations; where T is the number of

observations.

• A transition matrix A = aij, where aij0 represents the probability of going from

state Si to state Sj ;

• An emission matrix B = b(O|Si), where b represents the probability of emission

of symbol O from state Si;

• An initial state probability distribution π = πi, representing the probability of

the first state π1 = P [Q1 = Si]
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Generally, the HMM can be represented as: λ = P (A,B, π). In real applications,

there are three basic problems to be solved in the HMM model, which are:

• Evaluation. Given the model λ = P (A,B, π) and the observation sequence

O = O1, O2, ..., OT , how do we find P (O|λ)?

• Decoding. Given the model λ = P (A,B, π) and the observation sequence O =

O1, O2, ..., OT , how do we find a corresponding state sequence S = S1, S2, ..., ST ?

• Learning. Given the observation sequence O = O1, O2, ..., OT , how do we find

the model parameters λ = P (A,B, π). which maximize P (O|λ)?

These problems can be solved efficiently using the Forward-Backward Algorithms,

the Viterbi Algorithm and the Baum-Welch Algorithm. For more information about

the algorithms typically used in hidden Markov modeling problems, please refer to

the tutorial by Rabiner [69].

7.2.2.2 Activity Modeling and Training

In our work HMMs were used to model the search activity of human beings where

the hidden states denote search locations and the observed outputs are the dwell

locations from human tracking and clustering described in Section 7.2.1. One HMM

is generated for each activity to be learned, e.g., searching for BOOK and searching

for CLAMP .

HMM parameters λ = (A,B, π) are trained by observing the sequence of dwell

locations traversed over a number of search demonstrations. The Baum-Welch algo-

rithm [23] is used to train model parameter λi corresponding to the search activity

class ai. Baum-Welch algorithm is a generalized expectation-maximization algorithm

defined by Equation 7.1 that modifies transition weights and the statistics of the

models.
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P (O|λ) =
∑
S

P (O, S|λ) (7.1)

For more detailed information about training HMM see [23] or [69].

7.2.2.3 Decoding

Given a trained HMM with parameters λ = (A,B, π) and an observation sequence,

Viterbi algorithm [69] is used to find an optimal sequence of states, which in our case

indicates the search locations the human subject has visited. Given a dwell location

sequence with length t′ as observation O = O1, O2, ..., Ot′ , the algorithm proceeds as

follows:

Initialization:

δ1(i) = πibj(O1), 1 ≤ i ≤ N (7.2)

Induction: For 2 ≤ t ≤ t′, 1 ≤ j ≤ N

δt+1(j) =

[
max
1≤i≤N

δt(i)aij

]
bj(Ot+1) (7.3)

ψt+1(j) =

[
arg max

1≤i≤N
δt(i)aij

]
(7.4)

Termination:

p∗ = max
1≤i≤N

δt′(i) (7.5)

q∗t′ = arg max
1≤i≤N

δt′(i) (7.6)

The state path can be read backward as:

q∗t = ψt+1(q
∗
t+1), t = T − 1, ..., 1 (7.7)

The algorithm give us the optimal state sequence stored in vector q∗. p∗ is

the probability of q∗ generating O. At time t′, the calculated state sequence q =

q1, q2, ..., qt′ is used in Section 7.2.3 for the robot agents to update target’s probability

distribution based on the estimated human activities.
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7.2.2.4 Prediction

In addition to estimating the optimal human search history, the system also needs

to predict the next search location of the human teammate, so that the robot agents

can act complementary to human search. The prediction at time t + 1 is based on

the probability estimations on all states Si(1 ≤ i ≤ N) at time t, which can be

represented as the forward probability in the forward algorithm [69] of HMM. Given

a trained HMM with parameters λ = (A,B, π), the forward probability is defined as

αi = P (O1, O2, ..., Ot, qt = Si|λ) (7.8)

This is the probability of a partial observation sequence with length t and state

Si at time t, given the model λ. αt(i) can be calculated inductively by the following

equations:

α1(i) = πi, bi(O1), 1 ≤ i ≤ N (7.9)

For t = 1, ..., T − 1, calculate αt+1(i):

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ j ≤ N (7.10)

P (O|λ) =
N∑
i=1

αT (i) (7.11)

If we calculate the forward probability αt(i) for a partial observation sequence

of length t, we get for each state St the probability of being in that state. To get

a prediction about the next state qt+1, the joint probabilities of forward probability

αt(i) and transition probability aij have to be summed up. So for each state q a next

step probability σt+1(q) can be calculated as:

σt+1(q) =
∑

αt(i)aij,∀i, j (7.12)
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The most probable state q∗t+1 at the next step is:

q∗t+1 = argmax[σt+1(q)],∀q (7.13)

At time t, the next human search location is predicted as the state q∗t+1, which is

used by the robot agents to choose search action to complement human search. The

robot’s search strategy is described in the following section.

7.2.3 Robot Search Strategy

Given the estimated state sequence Qt = (q0, q1, ...qt) which represents the loca-

tions where human subject paused in the search and the predicted state q∗t+1 which

indicates the location where a human subject is likely to make the next observation,

the cooperative search can be performed by robot agents to complement human’s

search. We assume that the human observation model ph(zt|xt) is represented by a

Gaussian distribution for simplicity. Using Qt, q∗t+1 and ph, the robot updates the

probability distribution describing the likely location of the target object using Bayes’

theorem (Equation 5.1). The robot selects actions in the following way:

(1) At time t, the robot infers the hidden search sequence Qt and predicts the

next human search location qt+1.

(2) The robot selects the action at to complement the search behavior of the

human. Applying Bayes’ theorem, a temporary PDF P
′
t is constructed by updating

robot’s PDF Pt with the estimated human location sequence Qt along with the human

observation model ph. qt+1 is used to trigger an Inhibition Message It(x) [114] to

update P ′
t as well to bias the robot to avoid searching locations where the human

subject is likely to go in the next step.

(3) The robot uses P ′
t to plan the next action. A value vi is calculated for each

grid node indicating the benefit of visiting this node. Given P
′
t for an agent, vi is

calculated by,
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Figure 7.5. Posterior probability distribution describing the location of the target
object update for a search agent: (a) before observation. (b) after current observation.

vi =
∑
gk∈V i

t

p
′

t(xk) (7.14)

where Vi is the set of all grid nodes in the observation field, i.e., that can be

observed when the agent is visiting grid node gi.

(4) The robot moves to the planned location and performs an observation. The

PDF Pt of robot is updated in Bayes’ theorem using its observation result and Bayes

Theorem. Figure 7.5 illustrates the update of the PDF map using Bayes’ theorem.

The steps (1)-(4) iterate until the target object is found by the robot or human.

7.3 Interface Design for Implicit Cooperation

To cooperate with human peers autonomously, the robot also needs to know when

to search and what is the target object (first two questions in Figure 7.1). This

information is usually conveyed through a GUI or voice control and may increase the

cognitive load of the user. This problem becomes more severe in elder care.

In collaborative control frameworks, robots work autonomously until they run

into a problem they can’t solve. At this point, the robots ask a remote operator for

assistance. A similar mechanism is used in our work, where the robot estimates the

human’s intention and autonomously provides assistance without explicit command
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instructions to do so. We call this approach an Implicit Interface for a service robot.

The explicit and implicit user interfaces are categorized as follows:

(i) an explicit interface conveys explicit tasks to the robot to implement a coordi-

nation plan conceived by the operator.

(ii) an implicit interface infers robot tasks from the observations of human ac-

tivity. The robot asks questions to verify the inference results when the recognition

confidence is low. The autonomy of the robot is adjusted dynamically according to

the recognition confidence and the cognitive load of the user.

Using the Hidden Markov Model described in the last section, it is possible to

evaluate the partial observation sequence to identify what target object the human

subject is searching for (e.g., searching for BOOK rather than CLAMP). Our experi-

ments show that search activities for different objects are distinguishable since human

search patterns are different for different objects.

Given a trained HMM λ = {A,B, π}, the probability of an observation Ot =

O1, O2, ..., Ot can be calculated using the forward algorithm (iteratively using Equa-

tion 7.9, Equation 7.10 and Equation 7.11). Given that at time t, P (Ot|λi) is cal-

culated for each model λi, the model with maximum likelihood is chosen as the

recognized activity class. The basic formulation of the problem is given by the maxi-

mization of a conditional probability as in Equation 7.15. The classes are considered

to be balanced in our experiments.

i∗ = arg max
i

P (λi|Ot) = arg max
i

[
P (Ot|λi)P (λi)

P (Ot)

]
(7.15)

The processes that support the implicit interface are elaborated as follows.

(a) The robot waits and observes human activities. After an amount of data accu-

mulated, the classification algorithm is used to classify the observed human activities.

(b) The robot claims an activity ai is detected (e.g., human is searching for a

book) if the recognition confidence is higher than a threshold. In this case the robot
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can choose to initiate a dialog with the human for verification. The cognitive load

Mt of user at time t is to be limited to satisfy a threshold Tml throughout the inter-

action. The robot initiates a dialog if Mt < Tml. Otherwise, the dialog is not allowed

and the robot continues to assist autonomously until better recognition results are

obtained. Cognitive load can be described in several different ways. For simplicity,

Mt is described in terms of verbal communication density, which is the weighted sum

of questions over a period of time.

(c.1) Given positive user feedback on activity ai, the robot starts assisting the

human search with the approach described in the last section.

(c.2) Without initiating interface dialog or receiving any user feedback in step

(b), the robot continues to assist human autonomously with the currently recognized

search activity ai.

In step (b), more information can be obtained from the dialog with the human,

such as which objects are related to the activity ai. When generalizing the implicit

interface from search activity to other daily activities, it is important to infer the

objects that participate in ai. For search activity, we consider the case in which

only one object is involved. For other activities like reading, multiple objects may be

involved. Imagine applying the implicit interface to a reading activity. Two objects

(a book and a light) can be associated to this activity in the form of prior knowledge.

Due to the constraints on cognitive load, the robot may only be allowed to assist

autonomously, in which case, it will bring the book to the user and turn on the light

even it is not verified through the dialog.

7.4 Guided Search with Human Gesture

I also evaluated the potential for human directional gestures to allow human clients

some direct control over the coordination policies. By pointing (see Figure 7.6), the

human expresses the intention that the robot should search in the area pointed to.
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In our system human gesture recognition is performed using the Microsoft Kinect

sensor and the OpenNI skeleton tracking library [89]. When the robot starts a search,

it drives to the center of the room and the human teammate will give it a goal area

to search by pointing to it. The robot then determines the direction of the pointing

gesture and drives to the desired search area. After the robot searches that area, it

drives back to the center of the room to receive another pointing command from the

human.

Figure 7.6. Skeleton tracking in the camera view of the robot.

The OpenNI [89] Skeleton tracking system is built in a ROS service which gives

a direction vector that can be mapped into the world reference frame based on the

robot’s current position and heading estimate (as shown in Figure 7.6). To account

for inaccuracies in human directions we adopt a probabilistic interpretation of the

gesture direction [95]. The presence of a directional vector indicates a distribution

p(~x|~st, ~dt) over the target object as shown in Equation 7.16,

p(~x|~st, ~dt) = εσ(dist) (7.16)

where ~st indicates the position of the gesture giver, and ~dt, the indicated direction.

εσ(dist) denotes a Gaussian centered on the direction vector.
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Given p(~x|~st, ~dt), a utility factor ugest that represents the benefit of visiting a grid

node in the map is obtained,

ugest(i) =
∑
gk∈Vi

pc,r(xk) (7.17)

where Vi is the set of all grid nodes in the observation field (previously defined in

Section 5.2.1), i.e., that can be observed when agent is visiting grid node gi .

When searching, ugest is used as a factor in the weighted combination of utility

function u(~p),

u(p) = β1 · uinfo + β2 · ucost + β3 · ugest (7.18)

While human communication in the presented work is limited to gesture interpre-

tation, the work extends to more sophisticated modes of interaction, such as language-

based direction giving [38].

7.5 Learning from Demonstration

It is possible to refine the prior PDF over objects using the Search Activity Density

(SAD) of human. SAD reflects the spatial probability of an object by observing the

behavior of human demonstrations of search activity directed at the object.

The influence of a dwell point obtained from the teacher on the prior PDF is

determined by the Cartesian observation error ellipsoid, which can be estimated by

the triangulation Jacobian J for a camera pair. If D is the baseline between two

cameras and γR and γL are the respective headings to the target, the uncertainty

Jacobian is given as follows,

J =
D

sin2(γR − γL)

 sin γR cos γR − sin γL cos γL

sin2(γR) − sin2(γL)


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The eigenvalues and eigenvectors of JJT define the principle directions of error

amplification in stereo triangulation. The probability of observing target r at an

occupancy grid ~x is given by:

ph(~x|r) = Nh

Di∑
k=1

Kh(~x− ~xk) (7.19)

where ~xk represents the locations where human dwell states are observed, Di is the

total number of dwell points, andKh(·) is a suitable kernel function (here, a Gaussian),

which is scaled and rotated using the eigenvalues and eigenvectors of JJT .

7.6 Evaluation

This section presents the experimental results of the proposed human-robot coop-

erative search strategies.

7.6.1 Simulated Experiments

An experiment that combines real world data and simulated data is presented.

Human subjects search for objects in a mock apartment environment and their tra-

jectories are recorded. The mock apartment is 42×28 square foot as shown in Figure

7.7 (a). The search space setting in this experiment is different from the setting of

LPR-1. In this experiment we use the same room as that in LPR-1, but the configu-

ration is different. The target object for search is a BOOK and a SCREWDRIVER.

The PTZ camera array is used for human tracking in this experiment. The cameras

perform tracking on captured frames using color and edge features [115]. Each time

step, a pair of color cameras is selected to determine the 3D location of the human

subject in the environment [61].

Since we focus on investigating the receptive behavior and there are no expressive

gestures performed by the robot, it is reasonable to assume that human behavior is

not influenced by robot actions. The real world data of the human peer is recorded
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(a) (b)

Figure 7.7. Human data (a) searching for a book; (b) searching for a screwdriver.

and replayed in simulations, in which the simulated uBot-5 cooperates in search tasks

to complement the human teammate. The simulated uBot-5 and environment were

developed using the Microsoft Robotics Development Studio. The target object is

simulated as a colored 3D sphere that is detected visually by the simulated uBot-5

using Camshift [1] algorithm.

7.6.1.1 Efficiency of Human-Robot Cooperative Search

We first evaluate the efficiency of the proposed cooperative search strategy. Eight

subjects were recruited for this study. Among these participants, 3 were colleagues of

the authors and familiar with the lab environment. The remaining 5 were unfamiliar

with the search room and received a short description of the room configuration and

furniture. Two search activities were considered, searching for a book and searching

for a screwdriver. In each trial the target object was placed randomly in possible
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locations (e.g., a book on the shelf, table or on the couch) in the environment. The

participants were asked to search for the designated target objects in each trial. As

shown in Figure 5.3 and Figure 7.7, subjects presented different search patterns for

different objects. For instance, the participants went to bookcases and tables to

search the book, and toolboxes when searching for the screwdriver. Each participant

performed 5 search trials for each object for a total of 40 trials. 24 trials were used to

train the activity model and the remaining 16 trials were used to evaluate the result.

We compare the efficiency of four search strategies: (1) Single human search; (2)

Single robot search; (3) Human-Robot (H-R) team search without cooperation, where

human and robot search simultaneously but independently without communication;

and (4) H-R team search with cooperation. For the 16 datasets used for evaluation

(for each object), the “time to detect” cost of different search strategies were measured.

The experiments in this part use the explicit interface, where subjects send commands

to robot directly, and the team starts searching together.

Table 7.1 gives the average time cost of the search strategies. It can be seen that

the search efficiency with the single robot is comparable to that of the human (the

average time cost to find an object on all trials is 211.9s for single human and 219.8s for

single robot), which indicates that the robot is a qualified search teammate for efficient

cooperation. The time cost of cooperative search is 29.6% less on average than that

of non-cooperative search for object BOOK, and 13.4% for object SCREWDRIVER,

which indicates that the proposed cooperative search is efficient.

Figure 7.8 shows the comparison of search strategies in all trials for searching the

book. In all trials the cooperative search is better than single human search. In 14

out of 16 trials the proposed cooperative search strategy is more efficient than the

single robot search without human peer. In 14 out of 16 trials the performance of the

proposed cooperative search is better than or equal to that of the non-cooperative

strategy. There are some cases where cooperative search is worse than non-cooperative
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strategy. The reason is that sometimes the human will inspect a location, but miss the

target object, which inhibits the robot from searching the same place and finding it. It

suggests an improvement in our approach by learning different observation models for

the human teammates with different searching capabilities, which is beyond the scope

of this dissertation. Figure 7.9 shows similar results for searching for the screwdriver.

The experiments show that the proposed cooperative search is efficient.

Table 7.1. Average time cost with different search strategies. (sec)

Human Robot No-Co Cooperation
Book 234.1 217.6 181.0 127.4
Screwdriver 189.7 221.9 170.5 147.2
Average 211.9 219.8 175.8 137.3

7.6.1.2 Interface Design Experiments

In this part, the search efficiency of the explicit and implicit user interface is

compared. We measure the classification accuracy of the partly observed subject tra-

jectory when searching for the book and the screwdriver. Figure 7.10 shows that the

accuracy improves with the number of observations. Given 40 seconds of observation,

the robot is able to predict the search activities with 75% accuracy. It can be used as

the time for the robot to initiate the dialog with the human to clarify the remaining

ambiguity, if the subject’s cognitive load is lower than a threshold M < TML. In

the case of M > TML, the robot waits longer to collect more data for better human

activity recognition.

We evaluate the search efficiency when using the implicit interface design. With

implicit interaction, the robot needs time to predict what human is looking for, which

causes a delay for the subsequent cooperative search. We want to evaluate if this

delay causes a significant degradation of the cooperative search efficiency. In all

trials in this experiment, the human search was started first. The robot waited for

40 seconds and then joined the human search. The search efficiency with explicit
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Figure 7.8. Search efficiency (for BOOK)
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Figure 7.9. Search efficiency (for SCREWDRIVER)
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Figure 7.10. Accuracy of search activity prediction

and implicit interactions are given in Figure 7.11. It can be seen that both explicit

and implicit cooperations outperforms the non-cooperative search. The average time

cost with implicit interactions is only 17s (13.4%) higher than that with the explicit

interactions. The dashed line in Figure 7.11 represents the actual driving time of the

robot. It shows that implicit cooperation saves energy by decreasing costs associated

with navigation and mobility.
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Figure 7.11. Comparison in search efficiency
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7.6.2 Real World Experiments

Real world experiments were conducted in the LPR-1 environment and the results

are compared to the human search performance in LPR-1.

7.6.2.1 Activity-Based Human-Robot Joint Search

Figure 7.12 summarizes an experiment designed to evaluate the performance of a

human-robot search team in which the robot infers the human search intention and

chooses search locations to compliment the human peer. Two subjects participated in

five trials each. The BOOK target was randomly placed in its possible locations (on

desks or shelves). The search team consisted of the uBot-5 and the human client and

the camera array was used predict the next search location for the human searcher.

The uBot-5 carried an RFID reader to find a tag attached to the book. The average

time cost for the human-robot team to find the target was 81 seconds. Figure 7.12

shows that the proposed H-R (Human-Robot) search strategy improves the search

performance by 25% compared to search by the human alone.

Figure 7.12 shows a tendency to higher performance with the proposed strategy,

but it was not statistical significant. More experiments need to be conducted in future

work (Section 8).

7.6.2.2 Gesture-Based Human-Robot Joint Search

The last experiment was performed to evaluate the effectiveness of the gesture

guided search. In this experiment the robot always received a pointing gesture com-

mand to search the areas that the human peer designates. Every time the robot

finishes the search in a location, it returns to the center of the search space, and the

human peer provides the robot the next command. Three subjects executed thirty

trials each. All other experiment conditions were the same as the previous experiment.

Figure 7.13 illustrates the search performance of this strategy. The average time

for the team to find the target was 94 seconds. From the result we contend that
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Figure 7.12. Performance comparison of search strategies. The left bar represents
human search performance. The right bar represents the performance of the human-
robot cooperative search strategy with human activity modeling.

gesture-guided search is efficient, but that does not represent a significant improve-

ment over human-alone search. I believe the reason is partly because the current

gesture interface is inefficient. The constraints required for recognizing gestures are

costly to search performance because the Kinect sensor and OpenNI library only

support kinematic reconstruction for gesture recognition at ranges between 3 and 5

meters. Longer range gesture recognition will likely improve the performance of this

form of human-robot cooperative search.

7.7 Summary

In this chapter a human-robot cooperative search scheme is presented. The robot

agents infer the current state and intention of the human peer using a human search

activity model that was acquired prior to actual search. By inferring the human search

policy, the robot chooses complementary actions to achieve efficient cooperation with
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Figure 7.13. Performance comparison of search strategies. The left bar represents
human search performance. The right bar represents the performance of the human-
robot cooperative search strategy with human gesture guidance.

human peers. An implicit interface design for robot assisted tasks was also proposed,

which allows the robot to infer the intention of the user and to provide assistance

autonomously. It reduces the cognitive workload of the user and is, therefore, useful

for elder care applications. The experimental results indicate that there is promise in

this technology.

In this dissertation, we focus on investigating the receptive behavior of the robot

in cases, where the human subject is not highly sensitive to the behavior of the robots.

An example scenario is a human subject embedded in an array of stationary surveil-

lance cameras. However, our results show that this model also applies in applications

where the behavior of the human subject can be altered by the robot’s presence (e.g.,

H-R cooperation in an emergency response team). The same model makes relevant

predictions about actions that improve the performance of the team when informed

by the two-agent search history. It does not depend on which agents contributed to
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the history given the assumption that the human and robot have similar observa-

tion capabilities. In the future, we plan to evaluate the added value (versus cost) of

modeling joint team activity on the performance of search tasks.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this dissertation, I have proposed and presented an opportunistic service-

oriented approach that supports applications important to service robots, particularly

those involved in future residential healthcare, eldercare, and emergency response sys-

tems and specifically those that depend on human-robot cooperative search. With

the proposed approach, this dissertation gives a comprehensive description on how

to make an effective object search system for residential assisted-living environments.

Variants of approaches and algorithms are proposed for the object search application.

In this dissertation I have presented (1) a tracking-based object retrieval strategy

that uses low-power embedded cameras. A novel dual-camera sensor structure and

an energy-efficient object recognition approach are proposed; (2) a probabilistic search

strategy for a single robot which achieves better coverage than the tracking-based ap-

proach and has comparable performance to human search; (3) a decentralized and

cooperative search strategy with which the system is tolerant to failures and inter-

ruptions of the search agents; and (4) the investigation on human-robot cooperative

search strategies. Experimental results are presented to show how increasingly effi-

cient search performance is acquired as more sensorimotor resources are employed.

In this dissertation human factors on search system performance are thoroughly

studied. We studied human search with real world data and revealed that patterns

exist in human search behaviors. These patterns can be used as prior knowledges

about the distribution of the target object to improve the search performance. With
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the learned human search patterns, the robot agents can also infer the current state

and the intention of the human peer, and chooses complementary actions to achieve

efficient cooperation with human peers.

8.2 Directions For Future Work

In this work physical robot experiments were conducted to evaluate the proposed

approaches. However, the experiments presented in this thesis are necessarily limited

and more experiments will be performed on the physical robot and with more human

subjects. In the future, we plan to evaluate the added value (versus cost) of modeling

joint team activity on the performance of search tasks. The performance of our

approaches when the number of objects and human activities scale up will also be

evaluated.

In addition, the robot should be able to show not only efficient but also legible

behavior. Expressive behaviors of the robot to naturally communicate with human

need to be studied. Furthermore, the proposed opportunistic service oriented ap-

proach can be applied to other assisted-living applications, e.g., fall prevention and

ADL analysis.
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