
UNIVERSAL SCHEMA FOR
KNOWLEDGE REPRESENTATION

FROM TEXT AND STRUCTURED DATA

A Dissertation Presented

by

LIMIN YAO

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 7, 2014

Computer Science

c© Copyright by Limin Yao 2012

All Rights Reserved

UNIVERSAL SCHEMA FOR
KNOWLEDGE REPRESENTATION

FROM TEXT AND STRUCTURED DATA

A Dissertation Presented

by

LIMIN YAO

Approved as to style and content by:

Andrew McCallum, Chair

Benjamin Marlin, Member

Daniel Sheldon, Member

Rajesh Bhatt, Member

Luke Zettlemoyer, Member

Lori Clarke, Chair
Computer Science

ABSTRACT

UNIVERSAL SCHEMA FOR
KNOWLEDGE REPRESENTATION

FROM TEXT AND STRUCTURED DATA

December 7, 2014

LIMIN YAO

B.Sc., XI’AN JIAOTONG UNIVERSITY

M.Sc., TSINGHUA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

In data integration we transform information from a source into a target schema.

A general problem in this task is loss of fidelity and coverage: the source expresses

more knowledge than that can be fit into the target schema, or knowledge that is

hard to fit into any schema at all. This problem is taken to an extreme in informa-

tion extraction (IE) where the source is natural language—one of the most expressive

forms of knowledge representation. To address this issue, one can either automatically

learn a latent schema emergent in text (a brittle and ill-defined task), or manually

define schemas. We propose instead to store data in a probabilistic representation

of universal schema. This schema is simply the union of all source schemas, and we

learn how to predict the cells of each source relation in this union. For example, we

could store Freebase relations and relations that are expressed by natural language

iv

surface patterns. To populate such a database of universal schema, we present ma-

trix factorization models that learn latent embedding vectors for entity tuples and

relations.

We show that such latent models achieve substantially higher accuracy than a

traditional classification approach on New York Times and Freebase data. Besides

binary relations, we also use universal schema for unary relations, i.e., entity types.

We also explore various facets of universal schema matrix factorization models on a

large-scale web corpus, including implicature among the relations. We also evaluate

our approach on the task of question answering using features obtained from universal

schema, achieving state-of-the-art accuracy on a benchmark dataset.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . x

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Contributions . 2
1.2 Declaration of Previous Work . 3

2. BACKGROUND . 4

2.1 Relations . 4
2.2 Mentions . 4
2.3 Dependency Path . 5
2.4 Relation Extraction . 5
2.5 Entity Types . 6
2.6 Selectional Preferences . 6
2.7 Data Preprocessing . 6
2.8 Entity Linking . 7
2.9 Graphical Models . 8

2.9.1 Discriminative Models . 8
2.9.2 Generative Models . 9

3. DISTANT SUPERVISION FOR RELATION EXTRACTION 12

3.1 Distant Supervision . 12
3.2 Modeling Relations and Their Mentions . 13

3.2.1 Models . 14
3.2.2 Experiments . 15

vi

3.3 Joint Inference for Entity and Relation Extraction 17

3.3.1 Model . 19
3.3.2 Learning and Inference . 21
3.3.3 Experiments . 22

3.3.3.1 Wikipedia data . 24
3.3.3.2 New York Times data . 26

3.4 Related Work . 29

3.4.1 Supervised Relation Extraction . 29
3.4.2 Distant Supervision . 29
3.4.3 Joint Entity and Relation Extraction . 30

3.5 Conclusion . 30

4. UNSUPERVISED RELATION EXTRACTION USING
GENERATIVE MODELS . 32

4.1 Introduction . 32
4.2 Models . 34

4.2.1 Rel-LDA Model . 34
4.2.2 Rel-LDA1 model . 36
4.2.3 Type-LDA model . 37

4.3 Experiments . 39

4.3.1 Relations discovered by different models . 39
4.3.2 Distant Supervision based Relation Extraction 42
4.3.3 Comparing against USP . 46

4.4 Related Work . 47
4.5 Conclusion . 48

5. UNSUPERVISED RELATION DISCOVERY WITH SENSE
DISAMBIGUATION . 49

5.1 Introduction . 49
5.2 Our Approach . 51

5.2.1 Sense Disambiguation . 52
5.2.2 Hierarchical Agglomerative Clustering . 54

5.3 Experiments . 55

vii

5.3.1 Feature Extraction . 55
5.3.2 Sense clusters and relation clusters . 57
5.3.3 Baselines . 58
5.3.4 Automatic Evaluation against Freebase . 59
5.3.5 Path Intrusion . 60
5.3.6 Error Analysis . 62

5.4 Related work . 63
5.5 Conclusion . 64

6. UNIVERSAL SCHEMA FOR ENTITY TYPE
CLASSIFICATION . 65

6.1 Introduction . 65
6.2 Factorization Models . 70

6.2.1 Neighbor Model . 73

6.3 Experiments . 74

6.3.1 Data Sets . 74
6.3.2 Baselines . 77
6.3.3 Pattern Analysis on NYT data . 77
6.3.4 Closed Set Evaluation . 78
6.3.5 Evaluation on WikiLinks . 80
6.3.6 Parameter Selection . 82

6.4 Related Work . 82
6.5 Conclusion . 83

7. UNIVERSAL SCHEMA FOR RELATION EXTRACTION 84

7.1 Introduction . 84
7.2 Models . 86

7.2.1 Matrix Factorization . 86
7.2.2 Neighbor Model . 88
7.2.3 Entity Model . 88
7.2.4 Alternative Training Objectives . 89

7.3 Evaluation . 90

7.3.1 Data . 91
7.3.2 Evaluation Measures . 92
7.3.3 Baselines . 93
7.3.4 Ranking based Evaluation . 93

viii

7.3.5 Classification based Evaluation . 96
7.3.6 Integrating entity types . 96

7.4 Exploration on Facets of Universal Schema . 98

7.4.1 Does more training data lead to better performance? 99
7.4.2 Does the number of components matter? . 100
7.4.3 Does the non-convex objective affect the performance? 100
7.4.4 How does coreference affect the final performance? 100
7.4.5 Can our approach discover implications among relations? 101
7.4.6 Error Analysis . 105

7.5 Related Work . 108
7.6 Conclusion . 110

8. QUESTION ANSWERING FROM FREEBASE 112

8.1 Question Answering System . 112
8.2 Experiments . 114

8.2.1 Error Analysis . 115

8.3 Related Work . 116
8.4 Conclusion . 117

9. CONCLUSIONS AND FUTURE DIRECTIONS 118

BIBLIOGRAPHY . 121

ix

LIST OF TABLES

Table Page

3.1 The statistics of held-out evaluation on Wikipedia and New York
Times. 25

3.2 Average and weighted (w) average precision over frequent relations
for New York Times and Wikipedia data, based on manual
evaluation. 26

3.3 Precision at 50 for the most frequent relations on New York Times
. 28

4.1 The features of tuple ‘(Gamma Knife, made by, Elekta)’ in sentence
“Gamma Knife, made by the Swedish medical technology firm
Elekta, focuses low-dosage gamma radiation ...” 35

4.2 The notation used in our models . 35

4.3 Clustering quality evaluation (%). Recall is measured against
Freebase. Precision is measured according to human annotators
. 40

4.4 The path, source and destination arguments of some relations found
by Rel-LDA1. 42

4.5 The entity clusters found by Type-LDA . 42

4.6 Precision (%) of some frequent relations . 44

4.7 Manual evaluation, Precision and recall of some frequent relations 45

x

5.1 Example sense clusters for pattern “A play B” produced by sense
disambiguation. For each sense, we randomly sample 5 entity
pairs. We also show top features for each sense. Each row shows
one feature type, where “num” stands for digital numbers, and
prefix “l:” for source argument, prefix “r:” for destination
argument. Some features overlap with each other. We manually
label each sense for easy understanding. We can see the last two
senses are close to each other. For two theme features, we replace
the theme number with the top words. For example, the
document theme of the first sense is Topic30, and Topic30 has top
words “sports”. The lower four rows are four types of features:
document theme, sentence theme, lexical words and entity names.
. 55

5.2 Example semantic relation clusters produced by our approach. For
each cluster, we list the top paths in it, and each is followed by
“:number”, indicating its sense obtained from sense
disambiguation. They are ranked by the number of entity pairs
they take. The column on the left shows sense of each relation.
They are added manually by looking at the sense numbers
associated with each path. 56

5.3 Pairwise and B3 evaluation for various systems. Since our systems
predict more fine-grained clusters than Freebase, the recall
measure is underestimated. 61

5.4 A path intrusion task. We show 5 paths and ask the annotator to
identify one path which does not belong to the cluster. And we
show one example sentence for each path. The entities (As and
Bs) in the sentences are bold. And the italic row here indicates
the intruder. 61

5.5 Results of intruding tasks of all systems. 62

6.1 Some entities, observed types and predicted ones by our system. We
can describe an entity in any granularity based on the patterns or
types from ontologies. The patterns are translated from
dependency parsing paths as described in §6.3. 70

6.2 Top similar patterns to the target queries. 78

6.3 Top ranked patterns learned by the baseline classifiers. Not all
patterns can imply the target patterns. The patterns are not as
diverse as patterns learned by our approach. 79

xi

6.4 Performance on predicting Freebase entity types on a closed data set.
. 80

6.5 Performance on predicting Freebase entity types on WikiLink. 80

6.6 F1 measure on some human annotated fine-grained types. We take
these types as representatives of pattern based types. 81

7.1 Average and (weighted) Mean Average Precisions for Freebase
relations based on pooled results. The # column shows the
number of true facts in the pool. NFE is statistically different to
all but NF and F according to the sign test. Bold faced are
winners per relation, italics indicate ties. 95

7.2 Performance on predicting Freebase relations in universal schema.
+Unary indicates adding predicted pattern based types as
features. +Unary(FB) for adding predicted Freebase types 97

7.3 Selectional preferences learned by our model . 98

7.4 Statistics of processed data. 99

7.5 Performance variations of relation extraction as the amount of
training data increases. 99

7.6 Performance variations of relation extraction as the number of
dimensions varies. 100

7.7 Performance variations of relation extraction for different
initializations. 100

7.8 Performance variations of relation extraction as we use different
coreference approaches. 101

7.9 Examples of asymmetric implication pairs. 102

7.10 Top narrower relations for some broader relations. 103

7.11 The number of relations predicted as true based on only one observed
relation. Broad relations (i.e., “player”) turn on more predictions;
narrow relations (e.g., “pitcher”) turn on fewer predictions. 104

xii

8.1 Combined features from question and candidates. ‘ctype’ stands for
entity types of a candidate. ‘qtype’ stands for entity types of a
question topic. ‘qword’ and ‘qfocus’ are similar to those defined
in [Yao and Durme, 2014] . 114

8.2 Performance on WebQuestions: a question answering data set
annotated with answers from Freebase. 115

xiii

LIST OF FIGURES

Figure Page

2.1 Latent Dirichlet Allocation model. z represents a topic, w represents
a word token in a document, Z represents the number of topics,
and D represents the number of documents. 10

3.1 Overview of distant supervision. 13

3.2 Factor Graph for joint relation mention prediction and relation type
identification. For each pair of entities that are mentioned
together in at least one sentence we create one relation variable
(the top variable here). For each of the pairs of entity mentions
that appear in a sentence we create one relation mention variable,
and connect it to the corresponding relation variable. Note that
relation variables for different pairs of entities are considered to be
independent. 14

3.3 The recall and precision curves for the held out evaluation of three
approaches: distant supervision, joint supervision, and
at-least-once supervision . 16

3.4 Precision at K for manually evaluated predictions . 17

3.5 Factor Graph of our model that captures selectional preferences and
functionality constraints. For readability we only label a subsets
of equivalent variables and factors. Note that the graph shows an
example assignment to variables. 19

3.6 Precision-recall curves for various setups in Wikipedia held-out
setting. 25

3.7 Precision-recall curves for isolated, pipeline and joint approaches in
New York Times held-out setting. 27

4.1 Rel-LDA model. Shaded circles are observations, and unshaded ones
are hidden variables. A document consists of N tuples. Each
tuple has a set of features. Each feature of a tuple is generated
independently from a hidden relation variable r. 36

xiv

4.2 Type-LDA model. Each document consists of N tuples. Each tuple
has a set of features, relation level features f and entity level
features of source argument fs and destination argument fd.
Relation level features and two hidden entity types T1 and T2 are
generated from hidden relation variable r independently. Source
entity features are generated from T1 and destination features are
generated from T2. 38

5.1 Sense-LDA model. 54

6.1 Overview of our system. 68

7.1 Averaged 11-point precision recall curve for surface pattern
relations. 94

7.2 Different factorization models for relation extraction. They are
different in terms of how they model relations and entities. The
first model represents relations as matrices. The remaining
models represent relations as vectors. All the first three models
represent each entity as a vector. The fourth model, our
factorization model, represents each entity pair as a vector.
Except for the first model, all the models are scalable. 110

xv

CHAPTER 1

INTRODUCTION

Natural language is a highly expressive representation of knowledge. Yet, for many

tasks knowledge bases are more suitable, as they support more effective querying,

question answering and data mining. But knowledge bases usually have a pre-defined

schema, and they can only capture so much of the information natural language

can express. For example, Freebase [Bollacker et al., 2008] captures the content of

Wikipedia to some extent, but has no criticized(Person,Person) relation and hence

cannot answer a question like “Who criticized George Bush,” even though partial an-

swers are expressed in Wikipedia. This makes the database schema a major bottleneck

in information extraction (IE). From a more general point of view, data integration al-

ways suffers from schema mismatch between knowledge source and knowledge target,

for example, integrating natural language text with Freebase.

To overcome this problem, one could attempt to manually extend the schema

whenever needed, but this is a time-consuming and expensive process. Alternatively,

in the case of IE, we can automatically induce latent schemas from text, but this

is a brittle, ill-defined and error-prone task. This thesis presents a third alternative:

sidestep the issue of incomplete schemas altogether, by simply combining the relations

of all knowledge sources into what we refer to as a universal schema. So universal

schema is the union of all relations seen among natural language surface patterns and

other structured knowledge sources. We generalize these source relations by learning

implications among them using matrix factorization. Experimental results on New

York Times data show that, comparing against recent distant supervision baseline

1

systems, relation extraction using universal schema achieves better performance. We

explore various facets of universal schema matrix factorization models on a large-

scale web corpus, including implicature among the relations. We also evaluate our

approach on the task of question answering using features obtained from universal

schema, achieving state-of-the-art accuracy on a benchmark dataset.

In this thesis, we first introduce background knowledge in Chapter 2. After that,

we introduce alternative approaches to relation extraction: distant supervision in

Chapter 3, unsupervised relation discovery with topic models in Chapter 4, and pat-

tern sense disambiguation in Chapter 5. Then we describe our core approach universal

schema, starting with universal schema for entity types in Chapter 6, and exploring

universal schema for relation extraction in Chapter 7. We also describe a question

answering application using universal schema in Chapter 8. Finally we conclude and

list future research directions in Chapter 9.

1.1 Contributions

This thesis mainly describes our work on building knowledge bases of entities and

relations using different approaches. Here are my contributions.

• Present universal schema for representing entities (6) and relations (7), allowing

surface patterns to stand for themselves without information loss, and employ

matrix factorization for learning implications among relations (§7.2).

• Explore different applications of universal schema, including relation instance

prediction, question answering. (§7.3, 8).

• Develop relation extraction models based on distant supervision, addressing the

challenge that not all relation mentions in the text corpus express the relation

from the distant supervision source, and incorporating selectional preferences

to improve the performance (3).

2

• Develop generative models for unsupervised relation discovery, assuming each

relation tuple is generated from a relation topic, and dealing with the ambiguity

of pattern senses by clustering entity pairs of each pattern (4, 5).

1.2 Declaration of Previous Work

I declare my previous work and collaborations with other researchers. All of them

are directed by my advisor Andrew McCallum.

• Work on modeling the mismatching between the knowledge base and the text

corpus in distant supervision (§3.2) is in collaboration with Sebastian Riedel,

published as [Riedel et al., 2010].

• Work on joint modeling of entity and relation types in distant supervision (§3.3)

is in collaboration with Sebastian Riedel, published as [Yao et al., 2010].

• Work of developing topic models for unsupervised relation extraction (4) is

published as [Yao et al., 2011], and in collaboration with Aria Haghighi and

Sebastian Riedel.

• Work of disambiguating pattern senses using topic model (5) is published as [Yao

et al., 2012b], and in collaboration with Sebastian Riedel.

• Work of developing efficient inference algorithms for topic models is in collabo-

ration with David Mimno, published as [Yao et al., 2009].

• Work of universal schema for entity types (6) is published as [Yao et al., 2013],

and in collaboration with Sebastian Riedel.

• Work of universal schema (7) for relation extraction is in collaboration with

Sebastian Riedel, published as [Yao et al., 2012a, Riedel et al., 2013].

3

CHAPTER 2

BACKGROUND

This chapter briefly introduces the terminology for defining the tasks, and machine

learning models for addressing the tasks.

2.1 Relations

Relation extraction deals with extraction of relationships among entities. Example

entities include the company founder Bill Gates, the company Microsoft, and

the country USA. A relation R is a set of tuples over entities. We call R (e1, . . . en)

with tuple (e1, . . . en) ∈ R a relation instance. It denotes the membership of the tuple

in the relation R. For example, founded (Bill Gates, Microsoft) is a relation

instance denoting that Bill Gates and Microsoft are related in relation founded.

2.2 Mentions

In natural language, text spans of tokens are used to refer to entities. We call

such spans entity mentions. Consider, for example, the sentence snippet: “Political

opponents of President Evo Morales of Bolivia have in recent days stepped up”

Here “Evo Morales” is an entity mention of president Evo Morales, and “Bolivia”

a mention of the country Bolivia he is the president of.

People often express relations between entities in natural language texts by men-

tioning the participating entities in specific syntactic and lexical patterns. Any tuple

of mentions of entities (e1, . . . en) in a sentence is defined as a candidate mention tuple.

4

Note that tuples across sentences are not considered in our work. If such a candi-

date expresses the relation R, then it is a relation mention of the relation instance

R (e1, . . . , en). In this thesis, we mostly work on binary relation instances. Usually

our basic data unit is a triple (e1, pattern, e2) that has two arguments e1 and e2, and

a pattern that expresses the relationship between them.

2.3 Dependency Path

As described in §2.2, relations between entities are expressed by specific syntac-

tic and lexical patterns. To obtain such patterns, we first parse sentences to get

dependency trees. In a dependency tree, each word is a node and a dependency

relation between two words is an edge. For binary relations, we employ depen-

dency paths that connect entity pairs to represent relations. A dependency path

is a concatenation of dependency relations (edges) and words (nodes) along a path

in a dependency tree [Lin and Pantel, 2001]. For instance, the sentence “John

Lennnon was born in Liverpool” would yield the relation tuple (John Lennon,

[←nsubjpass←bear→prep→in→pobj→], Liverpool). This relation instance re-

flects a semantic bornIn relation between the John Lennon and Liverpool entities.

The dependency path in this example corresponds to the “X was born in Y” textual

expression. Through this proposal, we mainly use dependency paths to represent

relationships of entity pairs.

2.4 Relation Extraction

The goal of relation extraction is to discover the truth about underlying relations

among entities—to discover the semantic meanings of relations irrespective of how

they are expressed. For example, in supervised and weakly supervised approaches,

relation types are defined to represent relations. In unsupervised approaches, a set of

surface patterns falling in one cluster represents a relation. In universal schema, each

5

surface pattern or a relation type represents a relation. The underlying semantics of

these relations are expressed by implications among them.

2.5 Entity Types

An entity can be categorized into one or several entity types. For example, Bill

Gates is a person, and a founder of a company. Entity types correspond to the

special case of relations with arity one, and we usually name them unary relations.

Discovering entity types can help us understand the concepts of specific domains.

For relation extraction, we care about entity types because they are useful for ex-

tracting binary relations due to selectional preferences—see §2.6.

We care about entity types due to their importance in downstream applications:

if consumers of our extracted facts know the type of entities, they can find them more

easily, visualize them more adequately, and perform operations specific to these types

(write emails to persons, book a hotel in a city, etc.).

2.6 Selectional Preferences

There are type constraints between relations and entities, known as selectional

preferences. Specifically, relations require, or prefer, their arguments to be of certain

types. For example, the nationality relation requires the first argument to be a

person, and the second to be a country. In relation extraction, we expect that

modeling these type constraints can improve the performance [Roth and Yih, 2007,

Pantel et al., 2007].

2.7 Data Preprocessing

We use the following procedure to generate candidate relation tuples: first we

use the Stanford named entity recognizer (NER) [Finkel et al., 2005] to find entity

mentions in the corpus. The NER tagger segments each document into sentences and

6

classifies each token into four categories: PERSON, ORGANIZATION, LOCATION

and NONE. We treat consecutive tokens that share the same category as single entity

mention.

We extract a pair of entity mentions that occur in the same sentence as one

candidate tuple, and extract a set of features from the sentence for relation extraction.

The features are similar to those used in [Mintz et al., 2009]: lexical, part-of-speech

(POS), named entity and dependency path features, as explained in §2.3. We use the

openNLP POS tagger1 to obtain POS tags and employ the MaltParser [Nivre et al.,

2004] for dependency parsing.

Our entity type extraction uses the following features: the surface form of the

entity, the POS sequence, the head of the entity in the dependency parse tree, the

named entity tag, and the left and right words to the current entity mention phrase.

2.8 Entity Linking

Most of our approaches discussed in this thesis require linking entities from a

text corpus (e.g., NYT articles) to a knowledge base (e.g., Freebase). For example,

most approaches learn models that leverage co-occurrences among multiple relation

mentions of the same entity pair. To find these multiple mentions, entity resolution

is a prerequisite. However, entity resolution is not our main focus in this thesis,

and there are many complex alternative methods from which to choose. To ease

reproducibility and demonstrate the robustness of our approaches we use simple string

matching to link entity mentions in NYT documents to Freebase entities. Specifically,

if the Freebase entity has the same string form as the entity mention, we link them as

one entity. If multiple Freebase entities have the same string form, we use the most

popular one. For example, “Canada” could be a country, or a kind of wine. We use

1available at http://opennlp.sourceforge.net/

7

country. This method has been employed by many researchers [Mintz et al., 2009,

Lin and Pantel, 2001, Yao et al., 2010]. Integrating relation extraction with more

complex entity resolution systems is a topic for future work.

2.9 Graphical Models

Graphical models have been proven useful for formalizing learning tasks. This sec-

tion describes graphical model representation and how to learn parameters for these

models. In graphical models, we usually formalize a task as predicting the values of

variables. There are observed variables and hidden variables. Observed variables cap-

ture the information of observed data. Hidden variables capture the latent structure

of the data. Usually we predict hidden variables based on observed variables. In this

thesis, we use Y to represent hidden variables and X to represent observed variables.

We note the values of hidden variables as labels, and instances of observed variables

as data, observations and evidence. One can categorize graphical models into two

categories in terms of how they define their objectives as functions of observed and

hidden variables. Discriminative models define the objectives as the conditional prob-

abilities of hidden variables given observed variables, while generative models define

the objectives as the joint probabilities of observed and hidden variables.

2.9.1 Discriminative Models

In this thesis we mainly use exponential family models. The models define the

conditional probabilities as

p(Y|X) =
exp(~λF(X,Y))

∑
Y′ exp(~λF(X,Y′))

In these models, F(X,Y) represents features defined over hidden and observed vari-

ables. For example, if a word “baseball” occurs in a document where “sports” is a

possible label, we can define a binary feature as (observation=baseball, label=sports).

8

We employ maximum log likelihood estimation to learn the parameters ~λ. Given a

list of pairs (~xi, ~yi), we define the objective function as:

∑

i

log pi(~yi|~xi)−
1

2σ2
||~λ||2

In this formula, the first term is the log likelihood of the data and the second one

is the regularization term. In this thesis we mainly use L2 regularization. Other

regularizations are possible too. To maximize the objective function, we use the

gradient descent optimization method. We derive the gradients with respect to the

parameters:

5~λ = F(X,Y)− Ep~λ
(X,Y)

The gradients have two terms, the constraints term and the expectation term. The

constraints are the statistics obtained from the training data. The expectation term

calculates the expectations of the features under the assumption that the data fol-

lows the distribution defined by the model. The objective is maximized when the

constraints match the expectations. Intuitively, one set of parameters define a dis-

tribution, and the goal of learning is to find one distribution in the whole parameter

space that can explain the data well.

2.9.2 Generative Models

Discriminative models are usually used in supervised settings, i.e. when we have

annotated relations available. When we do not have labeled data, we can use unsu-

pervised models. Generative models, mainly topic models are popular unsupervised

models. Generative models assume the data is generated from a probabilistic process.

Take one document as an example: in a simple case, we can assume that each word

is generated independently from a probabilistic distribution.

One example of a generative process is the standard topic model named Latent

Dirichlet Allocation (LDA) [Blei et al., 2003]. This model assumes that a document

9

Z
D

φwα θ z β

Figure 2.1. Latent Dirichlet Allocation model. z represents a topic, w represents a
word token in a document, Z represents the number of topics, and D represents the
number of documents.

has a distribution over topics, each topic has a distribution over words in a vocabulary

and each word is drawn from a topic. Figure 2.1 shows the graphical representation

of this model.

Here is the generative process in detail:

1. For each topic z, generate a distribution φz over each word from Dir(β)

2. For each document d, generate its topic distribution θd from Dir(α)

3. For each word in a document d,

- Draw a topic z from Multi(θd),

- Generate a word w from Multi(φz) independently

There are various ways to estimate the document topic distribution θd and the

topic word distribution φz. We use Gibbs sampling in this thesis. We iteratively

sample a topic for each word in each document based on current parameters Θ and

Φ, and update parameters based on the current topic assignments.

p(z|w) ∝ p(z|d)p(w|z)

∝ (αz + nz|d)
βw+nw|zP
w(βw+nw|z)

p(z|d) and p(w|z) are estimated as follows:

10

θd =
α + nz|d∑
z(α + nz|d)

φzw =
βw + nw|z∑
w(βw + nw|z)

Topic models are successful in modeling documents. We will adapt topic models

for unsupervised relation extraction.

11

CHAPTER 3

DISTANT SUPERVISION FOR RELATION
EXTRACTION

In distant supervision, we align knowledge bases with text data to set up the train-

ing source. In this chapter, we first review distant supervision. After that, we point

out challenges in distant supervision and present our approach for explicitly modeling

mentions. Last, we extend the distant supervision approach to model entities and

relations jointly.

3.1 Distant Supervision

In relation extraction we often encounter a lack of explicitly annotated text, but

an abundance of structured data sources such as company databases or collaborative

knowledge bases like Freebase are available. In distant supervision, we align relation

instances from structured data sources with a text corpus in which they are mentioned

to set up the training data [Mintz et al., 2009, Bunescu and Mooney, 2007, Bellare

et al., 2007]. The knowledge base plays the role of a distant supervisor for training a

relation extractor.

This approach performs relation extraction within a larger scope that considers

mentions across documents and takes advantage of redundancy. Often facts are men-

tioned in several sentences and documents. It may be difficult to parse some of these

mentions, or they use unseen patterns. However, the more mentions we consider, the

higher the probability that it is easier to parse a mention, and encounter a pattern

that we have seen in the training data.

12

founded(Bill Gates, Microsoft)
nationality(Xi Jinping, China)

...(…, …)

founded(Paul Porter,
Industry Ears)

Microsoft was founded
by Bill Gates

With Microsoft chairman
Bill Gates soon
relinquishing ...

Paul Porter, a founder of
Industry Ears

founded

founded

Classifier

Figure 3.1. Overview of distant supervision.

Figure 3.1 shows an overview process of distant supervision. Starting with a

knowledge base of relation instances, we find mentions of them in the text corpus. This

requires co-reference and entity linking, we use a simple string matching approach for

both of these tasks §2.8. After linking relation instances to sentences in the text,

for each entity pair, we collect features from all the sentences that mention them.

We train a multi-class classifier for relation extraction. At test time, given new

text documents, we first identify candidate tuples, i.e., entity pairs that occur in the

same sentence. We then extract a feature vector from all sentences that mention

the entity pair. Finally we apply our trained classifier to categorize this pair into

one relation type. To expand our knowledge base, we can add this newly predicted

relation instance into the knowledge base.

3.2 Modeling Relations and Their Mentions

One challenge in distant supervision arises from the mismatch between relation

instances in the knowledge base and their mentions in the form of textual expres-

sions. That is, sometimes two entity mentions appear together in a sentence, but the

sentence is not expressing the relation that appears in the KB.

We present a novel approach to distant supervision that can alleviate this problem

based on the following two ideas. First, we use a factor graph to explicitly model the

13

1

founded

...
0

Elevation Partners, the private
the $ 1.9 billion private equity
group that was founded by
Roger McNamee ...

relation(Roger McNamee,Elevation Partners)

Roger McNamee , a managing
director at Elevation Partners ...

Figure 3.2. Factor Graph for joint relation mention prediction and relation type
identification. For each pair of entities that are mentioned together in at least one
sentence we create one relation variable (the top variable here). For each of the pairs
of entity mentions that appear in a sentence we create one relation mention variable,
and connect it to the corresponding relation variable. Note that relation variables for
different pairs of entities are considered to be independent.

decision whether two entities are related, and the decision whether this relation is

mentioned in a given sentence. Second, we apply constraint-driven semi-supervision

to train this model without any knowledge about which sentences express the relations

in our training KB [Riedel et al., 2010] .

3.2.1 Models

For modeling, we employ the following expressed-at-least-once assumption: If two

entities participate in a relation, at least one sentence that mentions these two entities

express that relation.

Figure 3.2 shows the factor graph of our model. Our model connects a relation

variable Y for two entities with a set of binary relation mention variables Zi. Zi is true

14

if and only if mention i is indeed expressing the relation Y between the two entities.

Crucially, the relation mention variables Zis are unobserved at training time: we only

know that a relation is expressed at least once, but not in which sentences. During

training, the model prefers at least one Zi is active if Y is true. In Figure 3.2, we

show two example mention variables. For each relation mention, we collect features

from the sentence, such as the dependency path between the two entities (§2.7).

Our model is implemented in FACTORIE [McCallum et al., 2009], a probabilistic

programming language that simplifies the construction process, as well as inference

and learning.

3.2.2 Experiments

We carry out experiments on New York Times articles, and use Freebase as distant

supervision source.

We follow [Mintz et al., 2009] and perform two types of evaluation: held-out and

manual. In both cases we have a training and a test corpus of documents, and training

and test sets of entities. For held-out evaluation we split the set of entities in Freebase

into training and test sets. For manual evaluation we use all Freebase entities during

training. For testing we use all entities that appear in the test document corpus. This

setting is used again in distant supervision experiments in the following chapters.

In Figure 3.3 we compare the precision and recall curve for the baseline distant-

supervision model (distant), the supervised joint model (joint) and the distant model

with expressed-at-least-once assumption (at-least-once). The joint model favors as-

signing 1 to each Zi if Y is true, otherwise prefers assigning each Zi to 0. The curve

is constructed by ranking predicted relation instances using their log linear score.

For the distant supervision baseline this score is first normalized by the number of

mentions. We traverse this list from high score to low score, and measure precision

and recall at each position. We can see that the model with expressed-at-least-once

15

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re
ci
si
on

at-least-once
joint
distant

Figure 3.3. The recall and precision curves for the held out evaluation of three
approaches: distant supervision, joint supervision, and at-least-once supervision

assumption is consistently outperforming the distant supervision baseline and the su-

pervised joint model. This suggests that the at-least-once model has the best sense

of how relations that are already contained in Freebase are expressed in NYT data.

Figure 3.4 shows the manual evaluation results for the three approaches. We

first note that the precision is much higher for manual evaluation than for held-out

evaluation. This shows that false negatives in Freebase are an issue when doing

held-out evaluation. Many of the false positives we predict are in fact true relation

instances that just do not appear in Freebase.

For manual evaluation, the at-least-once model is still the clear winner. At K =

1000 we observe a precision of 91% for at-least-once supervision and 87% for distant

supervision. This amounts to an error reduction rate of 31%. The sign test shows

that the at-least-once model is significantly better than the distant supervision model,

with p << 0.05. We also note that despite using the same assumption, the joint

16

0 200 400 600 800 1000

0.
6

0.
7

0.
8

0.
9

1.
0

Top K

P
re
ci
si
on

at-least-once
joint
distant

Figure 3.4. Precision at K for manually evaluated predictions

model performs much worse than the distant supervision approach in this scenario.

Learning a model of relations and mentions is inherently more difficult. Using a wrong

assumption will hence more likely hurt performance.

3.3 Joint Inference for Entity and Relation Extraction

In relation extraction, selectional preferences describe that certain relations can

only hold between particular entity types. For example, for relation nationality,

the first argument should be a person and the second a country. These constraints

can correct some predictions in relation extraction. In this section, we present how

to incorporate them in cross document relation extraction under distant supervision.

A simple way to is to use a pipeline: first predict entity types, and then condition

on these when predicting relations. However, this neglects the fact that relations

could as well be used to help entity type prediction.

17

While there is some existing work on enforcing such constraints in a joint fash-

ion [Roth and Yih, 2007, Kate and Mooney, 2010, Riedel et al., 2009], they are not

directly applicable in distant supervision. The difference is the amount of facts they

take into account at the same time. They focus on single sentence extractions, and

only consider very few interacting facts. This allows them to work with exact op-

timization techniques such as (Integer) Linear Programs and still remain efficient.1

However, when working on a sentence level they fail to exploit the redundancy present

in a corpus. Moreover, the fewer facts they consider at the same time, the lower the

chance that some of these will be incompatible, and that modelling compatibility will

make a difference.

In this work we present a novel approach that enforces selectional preferences in

distant supervision. It is based on an undirected graphical model in which variables

correspond to facts, and factors between them measure compatibility. In order to

scale up, we run an efficient Gibbs-Sampler at inference time, and train our model

using SampleRank [Wick et al., 2009]. In practice this leads to a runtime behaviour

that is linear in the size of the corpus. In our experiments, 200K documents take less

than three hours for training and testing.

For evaluation we consider two scenarios. First we follow Mintz et al. [2009],

use Freebase as a source of distant supervision, and employ Wikipedia as source of

unlabelled text—we will call this an in-domain setting. This scenario is somewhat

artificial in that Freebase itself is partially derived from Wikipedia, and in practice

we cannot expect text and training knowledge base to be so close. Hence we also

evaluate our approach on the New York Times corpus (out-of-domain setting).

For in-domain data we make the following finding. When we compare to an

isolated baseline that makes no use of entity types, and our joint model improves

1The pyramid algorithm of Kate and Mooney [2010] may scale well, but it is not clear how to
apply their scheme to cross-document extraction.

18

founded

Microsoft was
founded by Bill Gates...

personcompany

nation

country

With Microsoft chairman
Bill Gates soon relinquishing...

Bill Gates was
born in the USA in 1955

1

nationof

Elevation Partners, was
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was
founded by Roger McNamee ...

Elevation Partners, was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

⇧

Tj�T

⇧

(yi,xi)�Tj

e
PKj

k=1 �j
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight �Bias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=

�
⌅⇤
⌅⇥

1 yc = founder⇥
m1", director of "m2 � xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight �Joint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight �Joint

founder,person,company to be larger than
�Joint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

1

nationof

Elevation Partners, was
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was
founded by Roger McNamee ...

Elevation Partners, was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

⇧

Tj�T

⇧

(yi,xi)�Tj

e
PKj

k=1 �j
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight �Bias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=

�
⌅⇤
⌅⇥

1 yc = founder⇥
m1", director of "m2 � xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight �Joint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight �Joint

founder,person,company to be larger than
�Joint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

X1

X2

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) , DKL (||)

g () = log
�
1� µi + µie

�i
�
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

< max
y0 ,y0 ,y0

f⇥

�
y0 , y0 , y0 �

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

 X

k

wkfk (yi,j ;x)

!

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

nationality. When testing our model we then
encounter a sentence such as

(3) Arrest Warrant Issued for Richard Gere in
India.

that leads us to extract that RICHARD GERE is a cit-
izen of INDIA.

2.6 Global Consistency of Facts
As discussed above, distant supervision can lead to
noisy extractions. However, such noise can often be
easily identified by testing how compatible the ex-
tracted facts are to each other. In this work we are
concerned with a particular type of compatibility:
selectional preferences.

Relations require, or prefer, their arguments to be
of certain types. For example, the nationality
relation requires the first argument to be a person,
and the second to be a country. On inspection,
we find that these preferences are often not satis-
fied in a baseline distant supervision system akin to
Mintz et al. (2009). This often results from patterns
such as “<Entity1> in <Entity2>” that fire in many
cases where <Entity2> is a location, but not a
country.

3 Model

Our observations in the previous section suggest
that we should (a) explicitly model compatibil-
ity between extracted facts, and (b) integrate ev-
idence from several documents to exploit redun-
dancy. In this work we choose a Conditional Ran-
dom Field (CRF) to achieve this. CRFs are a natural
fit for this task: They allow us to capture correlations
in an explicit fashion, and to incorporate overlapping
input features from multiple documents.

The hidden output variables of our model are Y =
(Yc)c�C . That is, we have one variable Yc for each
candidate tuple c � C . This variable can take as
value any relation in C with the same arity as c. See
example relation variables in figure 1.

The observed input variables X consists of a fam-
ily of variables Xc =

�
X1

c, . . .X
m
c

⇥
m�M

for each
candidate tuple c. Here Xi

c stores relevant observa-
tions we make for the i-th candidate mention tuple of
c in the corpus. For example, X1

BILL GATES,MICROSOFT

in figure 1 would contain, among others, the pattern
“[M2] was founded by [M1]”.

3.1 Factor Templates

Our conditional probability distribution over vari-
ables X and Y is defined using using a set T of
factor templates. Each template Tj � T defines
a set of factors {(yi,xi)}, a set Kj of feature in-

dices, parameters
�

�j
k

k�Kj

and feature functions
�

f j
k

k�Kj

. Together they define the following con-

ditional distribution:

p (y|x) =
1

Zx

⌥

Tj�T

⌥

(yi,xi)�Tj

e
P

k2Kj
�j
kfj

k(yi,xi)

(4)
In our case the set T consists of four templates

we will describe below. We construct this graphical
model using FACTORIE (McCallum et al., 2009), a
probabilistic programming language that simplifies
the construction process, as well as inference and
learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template
is unrolled, it creates one factor per variable Yc for
candidate tuple c � C. The template also consists of
one weight �Bias

r and feature function fBias
r for each

possible relation r. fBias
r fires if the relation associ-

ated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need

to model the correlation between relation instances
and their mentions in text. For this purpose we de-
fine the template TMention that connects each relation
instance variable Yc with its observed mention vari-
ables Xc. Crucially, this template gathers mentions
from multiple documents, and enables us to exploit
redundancy.

The feature functions of this template are taken
from Mintz et al. (2009). This includes features that
inspect the lexical content between entity mentions
in the same sentence, and the syntactic path between
them. One example is

fMen
101 (yc,xc)

def=

⇤
⌃⇧
⌃⌅

1 yc = founded ⌅ ⇥i with
"M2 was founded by M1" � xi

c

0 otherwise

.

founder

Microsoft was
founded by Bill Gates...

personcompany

nationality

country

With Microsoft chairman
Bill Gates soon relinquishing...

Bill Gates was
born in the USA in 1955

1

nationof

Elevation Partners, was
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was
founded by Roger McNamee ...

Elevation Partners, was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

⇧

Tj�T

⇧

(yi,xi)�Tj

e
PKj

k=1 �j
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight �Bias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=

�
⌅⇤
⌅⇥

1 yc = founder⇥
m1", director of "m2 � xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight �Joint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight �Joint

founder,person,company to be larger than
�Joint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

1

nationof

Elevation Partners, was
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was
founded by Roger McNamee ...

Elevation Partners, was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

⇧

Tj�T

⇧

(yi,xi)�Tj

e
PKj

k=1 �j
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight �Bias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=

�
⌅⇤
⌅⇥

1 yc = founder⇥
m1", director of "m2 � xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight �Joint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight �Joint

founder,person,company to be larger than
�Joint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

1

nationof

Elevation Partners, was
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was
founded by Roger McNamee ...

Elevation Partners, was
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

⇧

Tj�T

⇧

(yi,xi)�Tj

e
PKj

k=1 �j
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight �Bias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=

�
⌅⇤
⌅⇥

1 yc = founder⇥
m1", director of "m2 � xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight �Joint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight �Joint

founder,person,company to be larger than
�Joint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

X1

X2

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

g (,) � DKL (||)

g () = log
�
1� µi + µie

�i
⇥
� µie

�i

. . . + w⇥f⇥ (y , y , y) + . . .

> 0

= max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

< max
y� ,y� ,y�

f⇥

�
y� , y� , y� ⇥

�1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

� (yi,j ;x) = exp

⇤⇧

k

wkfk (yi,j ;x)

⌅

p (y;x) =
1

Zx
⇥1 (y;x) · . . . · ⇥n (y;x)

log E [⇥i]� µi

⇥i (y;x) = exp (�i⇥i (y;x))

µi = E [⇥i]

Y

Y

Y

Y

Y

X1

X2

Figure 1: Factor Graph of our model that captures selectional preferences and functionality constraints. For
readability we only label a subsets of equivalent variables and factors. Note that the graph shows an example
assignment to variables.

It tests whether for any mentions of the candidate
tuple the phrase "founded by" appears between the
mentions of the argument entities.

3.1.3 Selectional Preferences Templates

To capture the correlations between entity types
and relations the entities participate in, we introduce
the template TJoint. It connects a relation instance
variable Ye1,...,en to the individual entity type vari-
ables Ye1 , . . . , Yen . To measure the compatibility
between relation and entity variables, we use one
feature f Joint

r,t1...ta (and weight �Joint
r,t1...ta) for each com-

bination of relation and entity types r, t1 . . . ta.

f Joint
r,t1...ta fires when the factor variables are in the

state r, t1 . . . ta. For example, f Joint
founded,person,company

fires if Ye1 is in state person, Ye2 in state company,
and Ye1,e2 in state founded.

We also add a template TPair that measures the
pairwise compatibility between the relation variable
Ye1,...,ea and each entity variable Yei in isolation.
Here we use features fPair

i,r,t that fire if ei is the i-th ar-
gument of c, has the entity type t and the candidate
tuple c is labelled as instance of relation r. For ex-
ample, fPair

1,founded,person fires if Ye1(argument i = 1)
is in state person, and Ye1,e2 in state founded, re-
gardless of the state of Ye2 .

X1
BILL GATES,USA

3.2 Inference

There are two types of inference we have to perform:
sampling from the posterior during training (see sec-
tion 3.3), and finding the most likely configuration
(aka MAP inference). In both settings we employ a
Gibbs sampler (Geman and Geman, 1990) that ran-
domly picks a variable Yc and samples its relation
value conditioned on its Markov Blanket. At test
time we decrease the temperature of our sampler in
order to find an approximation of the MAP solution.

3.3 Training

Most learning methods need to calculate the model
expectations (Lafferty et al., 2001) or the MAP con-
figuration (Collins, 2002) before making an update
to the parameters. This step of inference is usually
the bottleneck for learning, even when performed
approximately.

SampleRank (Wick et al., 2009) is a rank-based
learning framework that alleviates this problem by
performing parameter updates within MCMC infer-
ence. Every pair of consecutive samples in the
MCMC chain is ranked according to the model and
the ground truth, and the parameters are updated
when the rankings disagree. This update can fol-
low different schemes, here we use MIRA (Cram-
mer and Singer, 2003). This allows the learner to
acquire more supervision per instance, and has led
to efficient training for models in which inference

Figure 3.5. Factor Graph of our model that captures selectional preferences and
functionality constraints. For readability we only label a subsets of equivalent vari-
ables and factors. Note that the graph shows an example assignment to variables.

average precision by 4%. However, it does not outperform a pipelined system. In

the out-of-domain setting, our collective model substantially outperforms both other

approaches. Compared to the isolated baseline, we achieve a 15% increase in precision.

With respect to the pipeline approach, the increase is 13%.

3.3.1 Model

In this section we describe our approach. It is based on Conditional Random

Field (CRF), represented as factor graphs, in which variables correspond to entity

types and relation types, and factors between them measure compatibility. CRFs are

a natural fit for this task: they allow us to capture correlations in an explicit fashion,

and to incorporate overlapping input features from multiple documents.

Figure 3.5 shows the factor graph of our model. The hidden output variables

of our model are Ys. We have one relation variable for each candidate tuple, and

one entity variable for each entity. Relation variables can take values from the set

19

of relation types, while entity variables take values from the set of entity types. See

example relation variables in figure 3.5.

The observed input variables X consist of a family of variables for each candidate

tuple. Each candidate tuple may have multiple relation mentions. Each variable

stores relevant observations we make for the i-th candidate relation mention in the

corpus. For example, X1
Bill Gates,Microsoft in figure 3.5 would contain the pattern

“[M2] was founded by [M1].”

Our conditional probability distribution over variables X and Y is defined using

a set T of factor templates. Each template Tj ∈ T defines a set of factors {(yi,xi)},

a set Kj of feature indices, parameters
{
θjk
}
k∈Kj and feature functions

{
f jk
}
k∈Kj .

Together they define the following conditional distribution:

p (y|x) =
1

Zx

∏

Tj∈T

∏

(yi,xi)∈Tj

e
P
k∈Kj θ

j
kf
j
k(yi,xi) (3.1)

In our case the set T consists of four templates we will describe below. We

construct this graphical model using FACTORIE [McCallum et al., 2009].

Bias Template. We use a bias template TBias that prefers certain relations a

priori over others. When the template is unrolled, it creates one factor per variable

Yc for candidate tuple c ∈ C. The template also consists of one weight θBias
r and

feature function fBias
r for each possible relation r. fBias

r fires if the relation associated

with tuple c is r.

Mention Template. In order to extract relations from text, we need to model the

correlation between relation instances and their mentions in text. For this purpose

we define the template TMen that connects each relation instance variable Yc with

its observed mention variables Xc. Crucially, this template gathers mentions from

multiple documents, and enables us to exploit redundancy.

The feature functions of this template are taken from Mintz et al. [2009]. This

includes features that inspect the lexical content between entity mentions in the same

20

sentence, and the syntactic path between them. One example is

fMen
101 (yc,xc)

def
=





1 yc = founded ∧ ∃i with

“M2 was founded by M1” ∈ xic

0 otherwise

.

It tests whether for any mentions of the candidate tuple the phrase “founded by”

appears between the mentions of the argument entities.

Selectional Preferences Templates. To capture the correlations between en-

tity types and relations the entities participate in, we introduce the template TJoint.

It connects a relation instance variable Ye1,...,en to the individual entity type variables

Ye1 , . . . , Yen . To measure the compatibility between relation and entity variables, we

use one feature fJoint
r,t1...ta

(and weight θJoint
r,t1...ta

) for each combination of relation and entity

types r, t1 . . . ta.

fJoint
r,t1...ta

fires when the factor variables are in the state r, t1 . . . ta. For example,

fJoint
founded,person,company fires if Ye1 is in state person, Ye2 in state company, and Ye1,e2 in

state founded.

We also add a template TPair that measures the pairwise compatibility between

the relation variable Ye1,...,ea and each entity variable Yei in isolation. Here we use

features fPair
i,r,t that fire if ei is the i-th argument of c, has the entity type t and the

candidate tuple c is labelled as instance of relation r. For example, fPair
1,founded,person

fires if Ye1(argument i = 1) is in state person, and Ye1,e2 in state founded, regardless

of the state of Ye2 .

3.3.2 Learning and Inference

Most learning methods need to calculate the model expectations [Lafferty et al.,

2001] or the MAP configuration [Collins, 2002] before making an update to the pa-

21

rameters. This step of inference is usually the bottleneck for learning, even when

performed approximately.

SampleRank [Wick et al., 2009] is a rank-based learning framework that allevi-

ates this problem by performing parameter updates within MCMC inference. Every

pair of consecutive samples in the MCMC chain is ranked according to the model

and the ground truth, and the parameters are updated when the rankings disagree.

This update can follow different schemes, here we use MIRA [Crammer and Singer,

2003]. This allows the learner to acquire more supervision per instance, and has

led to efficient training for models in which inference is expensive and generally in-

tractable [Singh et al., 2009].

There are two types of inference we have to perform: sampling from the posterior

during training, and finding the most likely configuration (aka MAP inference). In

both settings we employ a Gibbs sampler [Geman and Geman, 1990] that randomly

picks a variable Yc and samples its relation value conditioned on its Markov blan-

ket. At test time we decrease the temperature of our sampler in order to find an

approximation of the MAP solution.

3.3.3 Experiments

We set up experiments to answer the following questions: (i) Does the explicit

modeling of selectional preferences improve accuracy? (ii) Can we also perform entity

and relation extraction in a pipeline and achieve similar results?

We carry out experiments on two data sets, Wikipedia and New York Times

articles, and use Freebase as distant supervision source for both. For briefness, I only

report the results on New York Times data. Our experimental setting is the same as

described in §3.2.2.

For both training and testing we then choose the candidate tuples that may or

may not be relation instances. To pick the entities we want to predict entity types

22

for, we choose all entities that are mentioned at least once in the train/test corpus.

To pick the entity pairs that we want to predict the relations of, we choose those that

appear at least once together in a sentence.

Since many tuples are not covered in Freebase, for efficiency, we filter out a large

fraction of these negative candidates for training. The number of negative examples

we keep is chosen to be about 10 times the number of positive candidates.

We carry out manual and held-out evaluation. For both evaluation, we rank

extracted test relation instances in the MAP state of the network. For manual eval-

uation we pick the top ranked 50 relation instances for the most frequent relations

and ask three annotators to inspect the mentions of these relation instances to decide

whether they are correct. Upon disagreement, we use the majority vote. To sum-

marize precisions across relations, we take the average of all relations, and also the

average weighted by the proportion of predicted instances for the given relation.

We compare our joint approach against the distant supervision approach [Mintz

et al., 2009] and a pipeline approach. For the pipeline approach, we first train an

isolated system for entity type prediction. Then we use the output of this system as

input for the relation extraction system.

We apply the following configurations of our factor graphs. As our baseline,

and roughly equivalent to previous work [Mintz et al., 2009], we pick the templates

TBias and TMen. These describe a fully disconnected graph, and we will refer to this

configuration as isolated. Next, we add the templates TJoint to model selectional

preferences, and refer to this setting as joint.

In addition, we evaluate how well selectional preferences can be captured with a

simple pipeline.

Freebase contains many relation types and only a subset of those relation types

occur frequently in the corpus. Since classes with few training instances are generally

hard to learn, we restrict ourselves to the 54 most frequently mentioned relations.

23

These include, for example, nationality, contains, founded and place of birth.

Note that we convert two Freebase non-binary temporal relations to binary relations:

employment tenure and place lived. In both cases we simply disregard the tem-

poral information in the Freebase data.

As our main focus is relation extraction, we restrict ourselves to entity types

compatible with our selected relations. To this end we inspect the Freebase schema

information provided for each relation, and include those entity types that are de-

clared as arguments of our relations. This leads to 10 entity types including person,

citytown, country, and company.

Note that a Freebase entity can have several types. We pick one of these by

choosing the most specific one that is a member of our entity type subset, or MISC if

no such member exists.

3.3.3.1 Wikipedia data

In our first set of experiments we train and test using Wikipedia as the text corpus.

This is a comparatively easy scenario because the facts in Freebase are partly derived

from Wikipedia, hence there is an increased chance of properly aligning training facts

and text. This is similar to the setting of Mintz et al. [2009].

Held Out Evaluation. We split 1,300,000 Wikipedia articles into training and

test sets. Table 3.1 shows the statistics for this split. The last row provides the

number of negative relation instances (candidates which are not related according to

Freebase) associated with each data set.

Figure 3.6 shows the precision-recall curves of relation extraction for held-out data

of various configurations. We notice a slight advantage of the joint approach in the

low recall area. Moreover, the joint model predicts more relation instances, as can be

seen by its longer line in the graph.

24

Wikipedia NYT
Train Test Train Test

#Documents 900K 400K 177K 39K
#Entities 213K 137K 56K 27K
#Positive 36K 24K 5K 2K
#Negative 219K 590K 64K 94K

Table 3.1. The statistics of held-out evaluation on Wikipedia and New York Times.

0.0 0.1 0.2 0.3 0.4

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Recall

P
re
ci
si
on

joint
pipe
isolated

Figure 3.6. Precision-recall curves for various setups in Wikipedia held-out setting.

For higher recall, the joint model performs slightly worse. On closer inspection,

we find that this observation is somewhat misleading. Many of the predictions of the

joint model are not in the held-out test set derived from Freebase, but nevertheless

correct. Hence, to understand if one system really outperforms another, we need to

rely on manual evaluation.

Note that the figure only considers binary relations—for entity types all configu-

rations perform similarly.

Manual Evaluation. As mentioned above, held-out evaluation in this context

suffers from false negatives in Freebase. Table 3.2 therefore shows the results of our

manual evaluation. They are based on the average, and weighted average, of the

precisions for the relation instances of the most frequent relations. We notice that

25

Isolated Pipeline Joint
Wikipedia 0.82 0.87 0.86
Wiki (w) 0.95 0.94 0.95
NYT 0.63 0.65 0.78
NYT (w) 0.78 0.82 0.94

Table 3.2. Average and weighted (w) average precision over frequent relations for
New York Times and Wikipedia data, based on manual evaluation.

here all systems perform comparably for weighted average precision. For average

precision we see an advantage for both the pipeline and the joint model over the

isolated system.

One reason for similar weighted average precisions is the fact that all approaches

accurately predict a large number of contains instances. This is due to very regular

and simple patterns in Wikipedia. For example, most articles on towns start with

“A is a municipality in the district of B in C, D.” For these sentences, the relative

position of two location mentions is a very good predictor of contains. When used

as a feature, it leads to high precision for all models. And since contains instances

are most frequent, and we take the weighted average, results are generally close to

each other.

To summarize: in this in-domain setting, modelling compatibility between entity

types and relations helps to improve average precision, but not weighted average

precision. This holds for both the joint and the pipeline model. However, we will see

how this changes substantially when moving to an out-of-domain scenario.

3.3.3.2 New York Times data

We choose all articles of the New York times during 2005 and 2006 as training

corpus. As test corpus we use the first 6 months of 2007.

Figure 3.7 shows precision-recall curves for our various setups. We see that jointly

modelling entity types and relations helps improve precision.

26

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re
ci
si
on

joint
pipe
isolated

Figure 3.7. Precision-recall curves for isolated, pipeline and joint approaches in
New York Times held-out setting.

Due to the smaller overlap between Freebase and NYT data, figure 3.7 also has

to be taken with more caution. The systems may predict correct relation instances

that just do not appear in Freebase. In this case manual evaluation is even more

important.

When evaluating entity precision we find that for both models it is about 84%.

This raises the question why the joint entity type and relation extraction model

outperforms the pipeline on relations. We take a close look at the entities that

participate in relations and find that the joint model performs better on most entity

types, for example, country and citytown. We also look at the relation instances

that are predicted by both systems and find that the joint model does predict correct

entity types when the pipeline mis-predicts. In fact, exactly these mis-predictions lead

the pipeline astray. Considering binary relation instances where the pipeline fails but

the joint model does not, we observe an entity precision of 76% for the pipeline and

27

Relation Type Iso. Pipe Joint
contains 0.92 0.98 0.96

nationality 0.28 0.64 0.82
plc lived 0.88 0.70 0.96
plc of birth 0.32 0.20 0.25
works for 0.96 0.98 0.98

plc of death 0.24 0.40 0.42
children 1.00 0.92 0.98
founded 0.42 0.34 0.71

Avg 0.63 0.65 0.78
Avg(w) 0.78 0.82 0.94

Table 3.3. Precision at 50 for the most frequent relations on New York Times

86% for our joint approach. The joint model fails to correctly predict some entity

types that the pipeline gets right, but these tend to appear in contexts where relation

instances are easy to extract without considering entity types.2

Manually evaluated precision for New York Times data can be seen in Table

3.3. We can see that modelling entity types and relations jointly makes significant

improvement over the baselines. For average precision, our joint model improves over

the isolated baseline by 15%, and over the pipeline by 13%. Similar improvements

can be observed for weighted average precision.

Let us look at a break-down of precisions with respect to different relations shown

in Table 3.3. We see dramatic improvements for nationality and founded when

applying the joint model. Note that the nationality relation takes a larger part in

the predicted relation instances of the joint model and hence contributes significantly

to the weighted average precision.

The algorithm is scalable, and the running time is linear in the number of docu-

ments.

2Note that our learned preferences are soft, and hence can be violated in case of wrong entity
type predictions.

28

3.4 Related Work

There are tremendous amounts of work in relation extraction. We briefly review

some of them here.

3.4.1 Supervised Relation Extraction

This approach formalizes relation extraction as a multi-class classification task [Ze-

lenko et al., 2003, Culotta and Sorensen, 2004]. Unfortunately it requires large

amounts of annotated data and it only extracts relations from one sentence.

3.4.2 Distant Supervision

Learning to extract relations by using distant supervision has raised large amounts

of interest in recent years [Craven and Kumlien, 1999, Bunescu and Mooney, 2007,

Mintz et al., 2009, Bellare et al., 2007, Bunescu and Mooney, 2007, Weld et al., 2009,

Hoffmann et al., 2010]. Both of our works are inspired by Mintz et al. [2009] who also

use Freebase as distant supervision source.

Schoenmackers et al. [2008] use entailment rules on assertion extracted by Tex-

tRunner to increase recall for relation extraction. They also perform cross-document

probabilistic inference based on Markov Networks. However, they do not infer the

types of entities and work in an openIE setting.

Many research work has been done to address the mismatching between the distant

supervision source and the text data. For example, extending our work, researchers

make the assumption that one relation mention can be related by one relation type,

can be not related, and one tuple can have multiple relations [Hoffmann et al., 2011,

Surdeanu et al., 2012]. Researchers also deal with other challenges in distant super-

vision to acquire more accurate training data [Min et al., 2013, Ritter et al., 2013].

29

3.4.3 Joint Entity and Relation Extraction

Joint entity and relation extraction are widely explored in supervised relation and

event extraction. For example, Roth and Yih [2007] have used Linear Programming to

enforce consistency between entity types and extracted relations. Kate and Mooney

[2010] use a pyramid parsing scheme to achieve the same. Riedel et al. [2009] use

Markov Logic to model interactions between event-argument relations for biomedical

event extraction. These works are in supervised settings, and they perform extraction

on a per-sentence basis.

Carlson et al. [2010] also apply the selectional preferences of entity and rela-

tion types to improve a bootstrapping process. In each iteration of bootstrapping,

extracted facts that violate compatibility constraints will not be used to generate

additional patterns in the next iteration.

3.5 Conclusion

In this chapter, we present two models for relation extraction using distant su-

pervision. Our first model relaxes the assumption in distant supervision that every

sentence mentioning two related entities expresses the corresponding relation. Instead

we use the expressed-at-least-once assumption: at least one (instead of each) sentence

which mentions two related entities expresses the corresponding relation. We inject

this assumption into a ranking function that is used within SampleRank to discrim-

inatively train a joint model of relation extraction and relation mention prediction.

Empirically we show that this approach indeed improves precision: we achieve an

error reduction rate of 11.7% compared against the distant supervision baseline.

Our second approach, instead of extracting facts in isolation, models interactions

between facts in order to improve precision. In particular, we capture selectional

preferences of relations. These preferences are modelled in a cross-document fashion

using a large scale factor graph. We show inference and learning can be efficiently

30

performed in linear time by Gibbs Sampling and SampleRank. When applied to out-

of-domain text, this approach leads to a 15% increase in precision over an isolated

baseline, and a 13% improvement over a pipelined system.

A crucial aspect of our approach is its extensibility. Since the approach is exclu-

sively framed in terms of an undirected graphical model, it is conceptually easy to

extend the model to other types of compatibilities, such as functionality constraints.

Our model could also be extended to tackle coreference resolution.

31

CHAPTER 4

UNSUPERVISED RELATION EXTRACTION USING
GENERATIVE MODELS

Distantly supervised relation extraction approach requires a pre-defined knowledge

base that contains all entity and relation types that we care about. The available

knowledge bases usually cannot fulfill our needs due to their incompleteless. In this

chapter, we discuss an unsupervised approach for discovering broad relation and entity

types.

4.1 Introduction

Generative models are widely used in discovering latent structures for text doc-

uments. We adapt them for relation extraction. We present a series of generative

probabilistic models, broadly similar to standard topic models, that generate a corpus

of observed triples of entity mention pairs and the surface syntactic dependency path

between them. Our proposed models exploit entity type constraints within a relation

as well as features on the dependency path between entity mentions. The output of

our approach is a clustering over observed relation paths (e.g. “X was born in Y”

and “X is from Y”) such that expressions in the same cluster bear the same semantic

relation type between entities.

Past work has shown that standard supervised techniques can yield high-performance

relation detection when abundant labeled data exists for a fixed inventory of individ-

ual relation types (e.g. placeOfBirth) [Kambhatla, 2004, Culotta and Sorensen, 2004,

Roth and Yih, 2007]. However, less explored are open-domain approaches where the

32

set of possible relation types is not fixed and little to no labeled is given for each

relation type [Banko et al., 2007, Banko and Etzioni, 2008]. A more related line

of research has explored inducing relation types via clustering. For example, DIRT

[Lin and Pantel, 2001] aims to discover different representations of the same seman-

tic relation using distributional similarity of dependency paths. Poon and Domingos

[2008] present an Unsupervised semantic parsing (USP) approach to partition depen-

dency trees into meaningful fragments (or “parts” to use their terminology). The

combinatorial nature of this dependency partition model makes it difficult for USP

to scale to large data sets despite several necessary approximations during learning

and inference. Our work is similar to DIRT and USP in that we induce relation

types from observed dependency paths, but our approach is a straightforward and

principled generative model which can be efficiently learned. As we show empirically,

our approach outperforms these related works when trained with the same amount

of data and further gains are observed when trained with more data.

We evaluate our approach using ‘intrinsic’ clustering evaluation and ‘extrinsic’

evaluation settings. The former evaluation is performed using subset of induced clus-

ters against Freebase relations, a large manually-built entity and relational database.

We also show some clusters which are not included as Freebase relations, as well as

some entity clusters found by our approach. The latter evaluation uses the cluster-

ing induced by our models as features for relation extraction in distant supervision

framework. Empirical results show that we can find coherent clusters. In relation

extraction, we can achieve 12% error reduction in precision over a state-of-the-art

weakly supervised baseline and we show that using features from our proposed mod-

els can find more facts for a relation without significant accuracy loss.

33

4.2 Models

We present three generative models for modeling tuples of entity mention pairs and

the syntactic dependency path between them [Yao et al., 2011]. The first two mod-

els, Rel-LDA and Rel-LDA1, are simple extensions of the standard LDA model [Blei

et al., 2003]. At the document level, our model is identical to the standard LDA; a

multinomial distribution is drawn over a fixed number of relation types R. Changes

lie in the observations. In standard LDA, the atomic observation is a word drawn

from a latent topic distribution determined by a latent topic indicator variable for

that word position. In our approach, a document consists of an exchangeable set of

relation tuples. Each relation tuple is drawn from a relation type ‘topic’ distribution

selected by a latent relation type indicator variable. Relation tuples are generated

using a collection of independent features drawn from the underlying relation type

distribution. These changes to standard LDA are intended to have the effect that in-

stead of representing semantically related words, the ‘topic’ latent variable represents

a relation type.

Our third model exploits entity type constraints within a relation and induces

clusters of relations and entities jointly. For each tuple, a set of relation level fea-

tures and two latent entity type indicators are drawn independently from the relation

type distribution; a collection of entity mention features for each argument is drawn

independently from the entity type distribution selected by the entity type indicator.

4.2.1 Rel-LDA Model

This model is an extension to the standard LDA model. At the document level, a

multinomial distribution over relations θdoc is drawn from a prior Dir(α). To generate

a relation tuple, we first draw a relation ‘topic’ r from Multi(θ). Then we generate

each feature f of a tuple independently from a multinomial distribution Multi(φrf)

selected by r. In this model, each tuple has three features, i.e. its three components,

34

Path X, made by Y
Source Gamma Knife
Dest Elekta

Trigger make
Lex , made by the Swedish

medical technology firm
POS , VBN IN DT JJ JJ NN NN

NER pair MISC-ORG

Table 4.1. The features of tuple ‘(Gamma Knife, made by, Elekta)’ in sentence
“Gamma Knife, made by the Swedish medical technology firm Elekta, focuses low-
dosage gamma radiation ...”

shown in the first three rows in Table 4.1. Figure 4.1 shows the graphical representa-

tion of Rel-LDA. Table 4.2 lists all the notation used in describing our models.

|R| Number of relations
|D| Number of documents
r A relation
doc A document
p, s, d Dep path, source and dest args
f A feature/feature type
T Entity type of one argument
α Dirichlet prior for θdoc
βx Dirichlet prior for φrx
β Dirichlet prior for φt
θdoc p(r|doc)
φrx p(x|r)
φt p(fs|T), p(fd|T)

Table 4.2. The notation used in our models

We employ Gibbs sampling to learn the parameters. It is an expectation maxi-

mization (EM) approach. The procedure is similar to that used by the standard topic

model. In the E-step (inference), we sample the relation type indicator for each tuple

using p(r|f):

35

 |R|

......

 N

r

f

θ

φrf

α

βf

f

 |D|

Figure 4.1. Rel-LDA model. Shaded circles are observations, and unshaded ones are
hidden variables. A document consists of N tuples. Each tuple has a set of features.
Each feature of a tuple is generated independently from a hidden relation variable r.

P (r|f(p, s, d)) ∝ p(r)
∏

f p(f |r)

∝ (αr + nr|d)
∏

f

βf+nf |rP
f ′ (βf ′+nf ′|r)

We estimate p(r) and p(f |r) in the M-step:

θdoc =
α + nr|doc∑
r′(α + nr′|doc)

φrf =
βf + nf |r∑
f ′(βf ′ + nf ′|r)

where nf |r indicates the number of times a feature f is assigned with r.

4.2.2 Rel-LDA1 model

Looking at results of Rel-LDA, we find the clusters sometimes are in need of

refinement, and we can address this by adding more features. For instance, adding

trigger features can encourage sparsity over dependency paths. We define trigger

words as all the words on the dependency path except stop words. For example, from

path “X, based in Y,” “base” is extracted as a trigger word. The intuition for using

trigger words is that paths sharing the same set of trigger words should go to one

cluster. Adding named entity tag pairs can refine the clusters too. For example, a

cluster produced by Rel-LDA contains “X was born in Y” and “X lives in Y;” but it

36

also contains “X, a company in Y.” In this scenario, adding features ‘PER-LOC’ and

‘ORG-LOC’ can push the model to split the clusters into two and put the third case

into a new cluster.

Hence we propose Rel-LDA1. It is similar to Rel-LDA, except that each tuple

is represented with more features. Besides p, s, and d, we introduce trigger words,

lexical pattern, POS tag pattern, and the named entity pair features for each tuple.

Lexical pattern is the word sequence between the two arguments of a tuple and POS

tag pattern is the POS tag sequence of the lexical pattern. See Table 4.1 as an

example.

Following typical EM learning [Charniak and Elsner, 2009], we start with a much

simpler generative model, expose the model to fewer features first, and iteratively

add more features. First, we train a Rel-LDA model, i.e. the model only generates

the dependency path, source and destination arguments. After each interval of 10

iterations, we introduce one additional feature. We add the features in the order of

trigger, lexical pattern, POS, and NER pair.

4.2.3 Type-LDA model

We know that relations can only hold between certain entity types, known as se-

lectional preferences [Ritter et al., 2010, Seaghdha, 2010, Kozareva and Hovy, 2010].

We propose a Type-LDA model that can capture the selectional preferences of re-

lations to their arguments. This model clusters tuples into relational clusters, and

arguments into different entity clusters. The entity clusters could be useful in many

applications, for example, defining fine-grained entity types and finding new concepts.

We split the features of a tuple into relation level features and entity level features.

Relation level features include the dependency path, trigger, lex and POS features;

entity level features include the entity mention itself and its named entity tag.

37

 N

 |D|

 |R|

r
f

fs

θ

φrf

φt

fd

 |R|

φrt2

α

βt2

β

βf

T1 T2

 |T|

 |R|

φrt1

βt1

Figure 4.2. Type-LDA model. Each document consists of N tuples. Each tuple has
a set of features, relation level features f and entity level features of source argument
fs and destination argument fd. Relation level features and two hidden entity types
T1 and T2 are generated from hidden relation variable r independently. Source entity
features are generated from T1 and destination features are generated from T2.

The generative storyline is as follows. At the document level, the model draws

a multinomial distribution over relations θdoc from a Dirichlet prior. A document

consists of N relation tuples. Each tuple is represented by relation level features (f)

and entity level features of source argument (fs) and destination argument (fd). The

model draws a relation r from Multi(θdoc) for each tuple. Subsequently, the model

generates independently the relation level features and two hidden entity types T1 and

T2 from r. Finally, the model generates features fs from T1 and fd from T2. Figure

4.2 shows the graphical representation of this model.

At inference time, we sample r, T1 and T2 for each tuple. For efficient inference,

we first initialize the model without T1 and T2, i.e. generating all the features directly

from r. Here the model degenerates to Rel-LDA1. After some iterations, we introduce

T1 and T2. We sample the relation variable (r) and two mention types variables (T1,T2)

iteratively for each tuple. We can sample them together, but this is not efficient. In

addition, we found that it does not improve performance.

38

4.3 Experiments

As mentioned in §2.2, our data is a list of tuples. A tuple has two entity mentions

and a dependency path between them. Following DIRT [Lin and Pantel, 2001], we

filter out tuples that do not satisfy the following constraints. First, the path needs

to be shorter than 10 edges, since longer paths occur less frequently. Second, the

dependency relations in the path should connect two content words, i.e. nouns, verbs,

adjectives and adverbs. For example, in phrase “solve a problem,” the dependency

relation “obj(solve, problem)” is kept, while “det(problem, a)” is discarded. Finally,

the dependency labels on the path must not fall into the set including ‘conj,’ ‘ccomp,’

‘parataxis,’ ‘xcomp,’ and so on. This selection is based on the observation that most

of the times the corresponding dependency relations do not explicitly state a relation

between two candidate arguments.

After all entity mentions are generated and paths are extracted, we are left with

nearly 2.5M tuples. After clustering (inference), each of these tuples belongs to one

cluster/relation and is associated with its clusterID.

We experimented with the number of clusters and find that in the range of 50-200

the performance does not vary significantly with different numbers. In our exper-

iments, we cluster the tuples into 100 relation clusters for all three models. For

Type-LDA model, we use 50 entity clusters.

We evaluate our models in both ‘internal’ and ‘external’ ways. The internal eval-

uation aims at measuring the clustering quality by mapping clusters to Freebase

relations. The external one seeks to assess the utility of our predicted clusters as

features for relation extraction.

4.3.1 Relations discovered by different models

Looking closely at the clusters we predict, we find that some of them can be

mapped to Freebase relations. We discover clusters that roughly correspond to the

39

parentCom (parent company relation), filmDirector, authorOf, comBase (base of a

company relation) and dieIn relations in Freebase. We treat Freebase annotations as

ground truth and measure recall. We count each tuple in a cluster as true positive if

Freebase states the corresponding relation between its argument pair. We find that

precision numbers against Freebase are low, below 10%. However, these numbers are

not reliable mainly because many correct instances found by our models are missing

in Freebase. One reason why our predictions are missing in Freebase is coreference.

For example, we predict parentCom relation between “Linksys’”and “Cisco,” while

Freebase only considers “Cisco Systems, Inc.” as the parent company of “Linksys.”

It does not corefer “Cisco” to “Cisco Systems, Inc.” Incorporating coreference in our

model may fix this problem. Instead of measuring precision against Freebase, we ask

humans to label 50 instances for each cluster and report precision according to this

annotated data. Table 4.3 shows the scores.

Rel. Sys. Rec. Prec.

parentCom
Rel-LDA 51.4 76.0
Rel-LDA1 49.5 78.0
Type-LDA 55.3 72.0

filmDirector
Rel-LDA 42.5 32.0
Rel-LDA1 70.5 40.0
Type-LDA 74.2 26.0

comBase
Rel-LDA 31.5 12.0
Rel-LDA1 54.2 22.0
Type-LDA 57.1 30.0

authorOf
Rel-LDA 25.2 84.0
Rel-LDA1 46.9 86.0
Type-LDA 20.2 68.0

dieIn
Rel-LDA 26.5 34.0
Rel-LDA1 55.9 40.0
Type-LDA 50.2 28.0

Table 4.3. Clustering quality evaluation (%). Recall is measured against Freebase.
Precision is measured according to human annotators

40

We can see that in most cases Rel-LDA1 and Type-LDA substantially outperform

the Rel-LDA model. This is due to the fact that both models can exploit more

features to make clustering decisions. For example, in Rel-LDA1 model, the NER

pair feature restricts the entity types the two arguments can take.

In the following, we analyze the behaviors of different models by examples. Con-

sidering parentCom relation, Rel-LDA includes spurious instances such as “A is the

chief executive of B,” whereas Rel-LDA1 has fewer such instances due to the NER

pair feature. Similarly, by explicitly modeling entity type constraints, Type-LDA

makes fewer such errors. All our models make mistakes when sentences have coordi-

nation structures on which the parser has failed. For example, when a sentence has

the following pattern “The winners are A, a part of B; C, a part of D; E, a part of

F,” our models may predict parentCom(A,F), because the parser connects A with F

via the pattern “a part of.”

Some clusters found by our models cannot be mapped to Freebase relations. Take

the Freebase relation worksFor as one example. This relation subsumes all types of

employment relationships, irrespective of the role the employee plays for the employer.

By contrast, our models discover clusters such as leaderOf, editorOf that correspond

to more specific roles an employee can have. We show some example relations in Table

4.4. In the table, the 2nd row shows a cluster of employees of news media companies;

the 3rd row shows leaders of companies; the last one shows birth and death places of

persons. We can see that the last cluster is noisy since we do not handle antonyms in

our models. The arguments of the clusters are noisy too. For example, ‘New York’

occurs as a destination argument in the 2nd cluster. This is because ‘New York’ has

high frequency in the corpus and it brings noise to the clustering results. In Table

4.5 we show some entity clusters produced by Type-LDA. We find different types of

companies, such as financial companies and news companies. We also find subclasses

of person, for example, reviewer and politician, because these different entity classes

41

Source New York, Euro RSCG Worldwide, BBDO Worldwide, American, DDB Worldwide
Path X, a part of Y; X, a unit of Y; X unit of Y; X, a division of Y; X is a part of Y
Dest Omnicom Group, Interpublic Group of Companies, WPP Group, Publicis Groupe

Source Supreme Court, Anna Wintour, William Kristol, Bill Keller, Charles McGrath
Path X, an editor of Y; X, a publisher of Y; X, an editor in chief of Y;
Dest The Times, The New York Times, Vogue, Vanity Fair, New York

Source Kenneth L. Lay, L. Dennis Kozlowski, Bernard J. Ebbers, Thomas R. Suozzi, Bill Gates
Path X, the executive of Y; X, Y executive; X, the chairman of Y
Dest Enron, Microsoft, WorldCom, Citigroup, Nassau County

Source Paul J. Browne, John McArdle, Tom Cocola, Claire Buchan, Steve Schmidt
Path X, a spokesman for Y; X, a spokeswoman for Y; X, a commissioner of Y
Dest White House, Justice Department, Pentagon, United States, State Department

Source United Nations, Microsoft, Intel, Internet, M. D. Anderson
Path X, based in Y; X, which is based in Y; X, a company in Y; X, a consultant in Y
Dest New York, Washington, Manhattan, Chicago, London

Source Army, Shiite, Navy, John, David
Path X was born in Y; X die at home in Y; X, son of Y; X die at Y
Dest Manhattan, World War II, Brooklyn, Los Angeles, New York

Table 4.4. The path, source and destination arguments of some relations found by
Rel-LDA1.

participate in different relations. The last cluster shown in the table is a mixture of

news companies and government agencies. This may be because this entity cluster is

affected by many relations.

Company Microsoft, Enron, NBC, CBS, Disney
FinanceCom Merrill Lynch, Morgan Stanley, Goldman Sachs, Lehman Brothers

News Notebook, New Yorker, Vogue, Vanity Fair, Newsweek
SportsTeam Yankees, Mets, Giants, Knicks, Jets
University University of California, Harvard, Columbia University

Art Reviewer Stephen Holden, Ken Johnson, Roberta Smith, Anthony Tommasini
Games World Series, Olympic, World Cup, Super Bowl, Olympics

Politician Eliot Spitzer, Ari Fleischer, Kofi Annan, Scott McClellan, Karl Rove
Gov. Agency Congress, European Union, NATO, Federal Reserve
News/Agency The New York Times, The Times, Supreme Court, Security Council

Table 4.5. The entity clusters found by Type-LDA

4.3.2 Distant Supervision based Relation Extraction

Our generative models detect clusters of dependency paths and their arguments.

Such clusters are useful in their own right, but we claim that they can also help a

42

supervised relation extractor. We validate this hypothesis in the context of relation

extraction with distant supervision using predicted clusters as features.

Following previous work [Mintz et al., 2009], we use Freebase as our distant super-

vision source, and align related entity pairs to the New York Times articles discussed

earlier. Our training and test instances are pairs of entities for which both arguments

appear in at least one sentence together. Features of each instance are extracted from

all sentences in which both entities appear together. The gold label for each instance

comes from Freebase. If a pair of entities is not related according to Freebase, we

consider it a negative example. Note that this tends to create some amount of noise:

some pairs may be related, but their relationships are not yet covered in Freebase.

After filtering out relations with fewer than 10 instances we have 65 relations

and an additional “O” label for unrelated pairs of entities. We call related instances

positive examples and unrelated instances negative examples.

We train supervised classifiers using maximum entropy. The baseline classifier

employs features that Mintz et al. [2009] used. To extract features from the generative

models we proceed as follows. For each pair of entities, we collect all tuples associated

with it. For each of these tuples we extract its clusterID, and use this ID as a binary

feature.

The baseline system without generative model features is called Distant. The clas-

sifiers with additional features from generative models are named after the generative

models. Thus we have Rel-LDA, Rel-LDA1 and Type-LDA classifiers. We compare

these against Distant and the DIRT database. For the latter we parse our data us-

ing Minipar [Lin, 1998] and extract dependency paths between pairs of named entity

mentions. For each path, the top 3 similar paths are extracted from DIRT database.

The Minipar path and the similar paths are used as additional features.

For held-out evaluation, we construct the training data from half of the positive

examples and half of the negative examples. The remaining examples are used as

43

test data. Note that the number of negative instances is more than 10 times larger

than the number of positive instances. At test time, we rank the predictions by the

conditional probabilities obtained from the Maximum Entropy classifier. We report

precision of top ranked 50 instances for each relation in table 4.6. From the table

we can see that all systems using additional features outperform the Distant system.

In average, our best model achieves 4.1% improvement over the distant supervision

baseline, 12% error reduction. The precision of bornIn is low because in most cases

we predict bornIn instances as liveIn.

We expect systems using generative model features to have higher recall than the

baseline. This is difficult to measure, but precision in the high recall area is a signal.

We look at top ranked 1000 instances of each system and show the precision in the

last row of the table. We can see that our best model Type-LDA outperforms the

distant supervision baseline by 4.5%.

Relation Dist Rel Rel1 Type DIRT
worksFor 80.0 92.0 86.0 90.0 84.0
authorOf 98.0 98.0 98.0 98.0 98.0

containedBy 92.0 96.0 96.0 92.0 96.0
bornIn 16.0 18.0 22.0 24.0 10.0
dieIn 28.0 30.0 28.0 24.0 24.0
liveIn 50.0 52.0 54.0 54.0 56.0

nationality 92.0 94.0 90.0 90.0 94.0
parentCom 94.0 96.0 96.0 96.0 90.0

founder 65.2 76.3 61.2 64.0 68.3
parent 52.0 54.0 50.0 52.0 52.0

filmDirector 54.0 60.0 60.0 64.0 62.0
Avg 65.6 69.7 67.4 68.0 66.8

Prec@1K 82.8 85.8 85.3 87.3 82.8

Table 4.6. Precision (%) of some frequent relations

Why do generative model features help in improving relation extraction? One

reason is that generative models can transfer information from known patterns to

unseen patterns. For example, given “Sidney Mintz, the great food anthropologist at

44

Johns Hopkins University,” we want to predict the relation between “Sidney Mintz”

and “Johns Hopkins University.” The distant supervision system incorrectly predicts

the pair as ‘O’ since it has not seen the path “X, the anthropologist at Y” in the

training data. By contrast, Rel-LDA can predict this pair correctly as worksFor,

since the dependency path of this pair is in a cluster which contains the path “X, a

professor at Y,” and this path in turn is a strong indicator for relation worksFor.

In addition to held-out evaluation we also carry out manual evaluation. To this

end, we use all the positive examples and randomly select five times the number of

positive examples as negative examples to train a classifier. The remaining negative

examples are candidate instances. We rank the predicted instances according to their

classification scores. For each relation, we ask human annotators to judge its top

ranked 50 instances.

Table 4.7 lists the manual evaluation results for some frequent relations. We also

list how many instances are extracted for each relation. For almost all the relations,

systems using generative model features find more instances. In terms of precision,

our models perform comparatively to the baseline, even better for some relations.

Relation
Top 50 (%) #Instances

Distant RelLDA TypeLDA Distant RelLDA TypeLDA
worksFor 100.0 100.0 100.0 314 349 349
authorOf 94.0 94.0 96.0 185 208 229

containedBy 98.0 98.0 98.0 670 714 804
bornIn 82.6 88.2 88.0 46 36 56
dieIn 100.0 100.0 100.0 167 176 231
liveIn 98.0 98.0 94.0 77 86 109

nationality 78.0 82.0 76.0 84 92 114
parentCom 79.2 77.4 85.7 24 31 28

founder 80.0 80.0 50.0 5 5 14
parent 97.0 92.3 94.7 33 39 38

filmDirector 92.6 96.9 97.1 27 32 34

Table 4.7. Manual evaluation, Precision and recall of some frequent relations

45

We also notice that clustering quality is not consistent with distant supervision

performance. Rel-LDA1 can find better clusters than Rel-LDA but it has lower preci-

sion in held-out evaluation. Type-LDA underperforms Rel-LDA in average precision

but it gets higher precision in a higher recall area, i.e. precision at 1K. One possible

reason for the inconsistency is that the baseline distant supervision system already

employs features that are used in Rel-LDA1. Another reason may be that the clusters

do not overlap with Freebase relations well, see §4.3.1.

4.3.3 Comparing against USP

We also compare against USP [Poon and Domingos, 2008]. Due to memory re-

quirements of USP, we are only able to run it on a smaller data set consisting of 1,000

NYT documents; this is three times the amount of data Poon and Domingos [2008]

used to train USP.1 For distant supervision based relation extraction, we only match

approximately 500 Freebase instances to this small data set.

USP provides a parse tree for each sentence and we can extract a path from the

tree for each mention pair. Since USP provides clusters of words and phrases, we use

the USP clusterID associated with the words on the path as binary features in the

classifier.

All models are less accurate when trained on this smaller dataset; we can do as

well as USP does, even a little better. USP achieves 8.6% in F1, Rel-LDA 8.7%, Rel-

LDA1 10.3%, Type-LDA 8.9% and Distant 10.3%. Of course, given larger datasets,

the performance of Rel-LDA, Rel-LDA1, and Type-LDA improves considerably. In

summary, comparing against USP, our approach scales much more easily to large

data.

1Using the publicly released USP code, training a model with 1,000 documents resulted in about
45 gigabytes of heap space in the JVM.

46

4.4 Related Work

Supervised and weakly supervised approaches for relation extraction cannot dis-

cover new relations and classify instances which do not belong to any of the predefined

relations. Researchers have devoted large amounts of efforts on inducing relations us-

ing unsupervised approaches. We briefly list several examples here.

DIRT [Lin and Pantel, 2001] aims to discover different representations of the same

semantic relation, i.e. similar dependency paths. They employ the distributional sim-

ilarity based approach while we use generative models. Both DIRT and our approach

take advantage of the arguments of dependency paths to find semantic relations.

Moreover, our approach can cluster the arguments into different types.

Unsupervised semantic parsing (USP) [Poon and Domingos, 2008] discovers rela-

tions by merging predicates which have similar meanings; it proceeds to recursively

cluster dependency tree fragments (or “parts”) to best explain the observed sentence.

It does not concentrate on capturing any particular kind of relation between sentence

constituents, but on capturing repeated patterns. Our approach differs in that we

aim to capture a narrow range of binary relations between named entities; some of

our models (see § 4.2) explore entity type information to constraint relation type

induction. Also, our models are scalable and we train them on a large corpus. In

addition, we use a distant supervision framework for evaluation.

Relation duality [Bollegala et al., 2010] employs co-clustering to find clusters of

entity pairs and patterns. They identify each cluster of entity pairs as a relation by

selecting representative patterns for that relation. This approach is related to our

models, however, it does not identify any entity clusters.

Generative probabilistic models are widely employed in relation extraction. For

example, they are used for in-domain relation discovery while incorporating con-

straints via posterior regularization [Chen et al., 2011]. We are focusing on open

domain relation discovery. Generative models are also applied to selectional pref-

47

erence discovery [Ritter et al., 2010, Seaghdha, 2010]. In this scenario, the authors

assume relation labels are given while we automatically discover relations. Generative

models are also used in unsupervised coreference [Haghighi and Klein, 2010].

Clustering is also employed in relation extraction. Hasegawa et al. [2004] cluster

pairs of named entities according to the similarity of context words intervening be-

tween them. Their approach is not probabilistic. Researchers also use topic models to

perform dimension reduction on features when they cluster relations [Hachey, 2009].

However, they do not explicitly model entity types.

Open information extraction aims to discover relations independent of specific

domains and relations [Banko et al., 2007, Banko and Etzioni, 2008]. A self-learner

is employed to extract relation instances but the systems do not cluster the instances

into relations. Yates and Etzioni [2009] present RESOLVER for discovering relational

synonyms as a post processing step. Our approach integrates entity and relation

discovery in a probabilistic model.

4.5 Conclusion

In this chapter, we present an unsupervised probabilistic generative approach to

relation extraction between two named entities. Our proposed models explore entity

type constraints within a relation as well as features on the dependency path be-

tween entity mentions to cluster equivalent textual expressions. We demonstrate the

effectiveness of this approach by comparing induced relation clusters against a large

knowledge base. We also show that using clusters of our models as features in distant

supervised framework yields 12% error reduction in precision over a weakly supervised

baseline and outperforms other state-of-the art relation extraction techniques.

48

CHAPTER 5

UNSUPERVISED RELATION DISCOVERY WITH SENSE
DISAMBIGUATION

To discover relation types from text, most methods cluster shallow or syntactic

patterns of relation mentions, but consider only one possible sense per pattern [Bolle-

gala et al., 2010, Lin and Pantel, 2001, Yao et al., 2011]. In practice this assumption

is often violated. In this chapter we present an approach to overcome this issue by

inducing clusters of pattern senses from feature representations of patterns. In par-

ticular, we employ a topic model to partition entity pairs associated with patterns

into sense clusters using local and global features. We merge these sense clusters into

semantic relations using hierarchical agglomerative clustering. We compare against

several baselines: a generative latent-variable model, a clustering method that does

not disambiguate between path senses, and our own approach but with only local

features. Experimental results show our proposed approach discovers dramatically

more accurate clusters than models without sense disambiguation, and it is crucial

to incorporate global features, such as the document theme.

5.1 Introduction

Many relation discovery methods rely exclusively on the notion of either shallow or

syntactic patterns that appear between two named entities [Bollegala et al., 2010, Lin

and Pantel, 2001]. Such patterns could be sequences of lemmas and POS tags, or lex-

icalized dependency paths. Generally speaking, relation discovery attempts to cluster

such patterns into sets of equivalent or similar meaning. Whether we use sequences or

49

dependency paths, we will encounter the problem of polysemy. For example, a pattern

such as “A beat B” can mean that person A wins over B in competing for a polit-

ical position, as pair “(Hillary Rodham Clinton, Jonathan Tasini)” in “Sen Hillary

Rodham Clinton beats rival Jonathan Tasini for Senate.” It can also indicate that an

athlete A beat B in a sports match, as pair “(Dmitry Tursunov, Andy Roddick)” in

“Dmitry Tursunov beat the best American player Andy Roddick.” Moreover, it can

mean “physically beat” as pair “(Mr. Harris, Mr. Simon)” in “On Sept. 7, 1999, Mr.

Harris fatally beat Mr. Simon.” This is known as polysemy. If we work with patterns

alone, our extractor will not be able to differentiate between these cases.

A large body of previous work does not explicitly address this problem. Lin

and Pantel [2001] assumes only one sense per path. Pantel et al. [2007] augment

each relation with its selectional preferences, i.e. fine-grained entity types of two

arguments, to handle polysemy. However, such fine grained entity types come at a

high cost. It is difficult to discover a high-quality set of fine-grained entity types due

to unknown criteria for developing such a set. In particular, the optimal granularity

of entity types depends on the particular pattern we consider. For example, a pattern

like “A beat B” could refer to A winning a sports competition against B, or a political

election. To differentiate between these senses we need types such as “Politician” or

“Athlete.” However, for “A, the parent of B” we only need to distinguish between

persons and organizations (for the case of the sub-organization relation). In addition,

there are senses that just cannot be determined by entity types alone, like our example

“A beat B,” the entity type “person” for A and B could not disambiguate the senses.

In this paper we address the problem of polysemy, while we circumvent the prob-

lem of finding fine-grained entity types. Instead of mapping entities to fine-grained

types, we directly induce pattern senses by clustering feature representations of pat-

tern contexts, i.e. the entity pairs associated with a pattern. This allows us to employ

50

not only local features such as words, but also global features such as the document

and sentence themes.

To cluster the entity pairs of a single relation pattern into senses, we develop a

simple extension to Latent Dirichlet Allocation [Blei et al., 2003]. Once we have our

pattern senses, we merge them into clusters of different patterns so that patterns in

the same cluster have similar sense. We employ hierarchical agglomerative clustering

with a similarity metric that considers features such as the entity arguments, and the

document and sentence themes.

We perform experiments on New York Times articles and consider lexicalized

dependency paths as patterns in our data. In the following we shall use the term

path and pattern exchangeably. We compare our approach with several baseline

systems, including a generative model approach, a clustering method that does not

disambiguate between senses, and our approach with different features. We perform

both automatic and manual evaluations. For automatic evaluation, we use relation

instances in Freebase as ground truth, and employ two clustering metrics, pairwise

F-score and B3 (as used in coference). Experimental results show that our approach

improves over the baselines, and that using global features achieves better perfor-

mance than using entity type based features. For manual evaluation, we employ a

set intrusion method [Chang et al., 2009]. The results also show that our approach

discovers relation clusters that human evaluators find coherent.

5.2 Our Approach

We induce pattern senses by clustering the entity pairs associated with a pattern,

and discover semantic relations by clustering these sense clusters [Yao et al., 2012b].

We represent each pattern as a list of entity pairs and employ a topic model to

partition them into different sense clusters using local and global features. We take

each sense cluster of a pattern as an atomic cluster, and use hierarchical agglomerative

51

clustering to organize them into semantic relations. Therefore, a semantic relation

comprises a set of sense clusters of patterns. Note that one pattern can fall into

different semantic relations when it has multiple senses.

5.2.1 Sense Disambiguation

In this section, we discuss the details of how we discover senses of a pattern. We

form a clustering task by collecting all entity pairs a pattern connects. Our goal is

to partition these entity pairs into sense clusters. After this clustering, each pattern

will have multiple senses. Each sense is represented by a cluster of entity pairs. We

represent each entity pair by the following features.

Entity names: Since participating arguments can differentiate pattern senses, we

use the surface string of an entity pair as features. For example, intuitively, for one

pattern “A play B,” pairs which contain the B argument “Mozart” and pairs which

have the B argument “Mets” (an american football team) should be in different sense

clusters.

Words: The words between and around the two entity arguments can disambiguate

the sense of a path. For example, “A’s parent company B” is different from “A’s

largest company B” although they share the same path “A’s company B.” The former

describes the sub-organization relationship between two companies, whereas the latter

describes B as the largest company in a location A. The two words to the left of

the source argument, and to the right of the destination argument also help sense

discovery. For example, in “Mazurkas played by Anna Kijanowska, pianist,” “pianist”

tells us pattern “A played by B” takes the “music” sense.

Document theme: Sometimes, the same pattern can express different relations in

different documents, depending on the document’s theme. For instance, in a docu-

ment about politics, “A defeated B” is perhaps about a politician that won an election

against another politician. While in a document about sports, it could be a team that

52

won against another team in a game, or an athlete that defeated another athlete. In

our experiments, we use the meta-descriptors of a document as side information and

train a standard LDA model to find the theme of a document. See §5.3.1 for details.

Sentence theme: A document may cover several themes. Moreover, sometimes the

theme of a document is too general to disambiguate senses. We therefore also extract

the theme of a sentence as one feature. Details are in §5.3.1.

We call entity name and word features as local, and the two theme features as

global.

We employ a topic model to discover senses for each path based on the feature

representations of entity pairs. Each path pi forms a document, and it contains a list

of entity pairs co-occurring with the path. Each entity pair is represented by a list of

features fk. For each path, we draw a multinomial distribution θ over topics/senses.

For each feature of an entity pair, we draw a topic/sense from θpi . Formally, the

generative process is as follows:

θpi ∼ Dirichlet(α)

φz ∼ Dirichlet(β)

ze ∼ Multinomial(θpi)

fk ∼ Multinomial(φze)

Assume we have m paths and l entity pairs for each path. We denote each entity pair

of a path as e(pi) = (f1, . . . , fn). Hence we have:

P (e1(pi), e2(pi), . . . , el(pi)|z1, z2, . . . , zl)

=
l∏

j=1

n∏

k=1

p(fk|zj)p(zj)

53

S
p

φ
e(p)

fα θ z βn

Figure 5.1. Sense-LDA model.

We assume the features are conditionally independent given the topic assignments.

Each feature is generated from a multinomial distribution φ. We apply Dirichlet

priors on θ and φ. Figure 5.1 shows the graphical representation of this model.

This model is a minor variation on the standard LDA model. The difference is

that instead of drawing an observation from a hidden topic variable, we draw multiple

observations from a hidden topic variable. Gibbs sampling is used for inference. After

inference, each entity pair of a path is assigned to one topic. One topic is one sense.

Entity pairs which share the same topic assignments form one sense cluster.

5.2.2 Hierarchical Agglomerative Clustering

After discovering sense clusters of paths, we employ hierarchical agglomerative

clustering (HAC) to discover semantic relations from these sense clusters. We apply

the complete linkage strategy and take cosine similarity as the distance function. The

cutting threshold is set to 0.1.

We represent each sense cluster as one vector by summing up features from each

entity pair in the cluster. The weight of a feature indicates how many entity pairs in

the cluster have the feature. Some features may get larger weights and dominate the

cosine similarity. We down-weigh these features. For example, we use binary features

for word “defeat” in sense clusters of pattern “A defeat B”. The two theme features

are extracted from generative models, and each is a topic number.

Our approach produces sense clusters for each path and semantic relation clusters

of the whole data. Table 5.1 and 5.2 show some example output.

54

20:sports 30:entertainment 25:music/art
Americans, Ireland Jean-Pierre Bacri, Jacques Daniel Barenboim, Mozart

Yankees, Angels Rita Benton, Gay Head Dance Mr. Rose, Ballade
Ecuador, England Jeanie, Scrabble Gil Shaham, Violin Romance
Redskins, Detroit Meryl Streep, Leilah Ms. Golabek, Steinways

Red Bulls, F.C. Barcelona Kevin Kline, Douglas Fairbanks Bruce Springsteen, Saints
sports music books television music theater

game yankees theater production book film show music reviews opera
beat victory num-num won played plays directed artistic director conducted production

- r:theater r:theater r:hall r:york l:opera

Table 5.1. Example sense clusters for pattern “A play B” produced by sense
disambiguation. For each sense, we randomly sample 5 entity pairs. We also show
top features for each sense. Each row shows one feature type, where “num” stands
for digital numbers, and prefix “l:” for source argument, prefix “r:” for destination
argument. Some features overlap with each other. We manually label each sense for
easy understanding. We can see the last two senses are close to each other. For two
theme features, we replace the theme number with the top words. For example, the
document theme of the first sense is Topic30, and Topic30 has top words “sports”.
The lower four rows are four types of features: document theme, sentence theme,
lexical words and entity names.

5.3 Experiments

We carry out experiments on New York Times articles. Our data is a list of triples.

We filter out paths which occur fewer than 200 times and use some heuristic rules to

filter out paths which are unlikely to represent a relation, for example, paths in with

both arguments take the syntactic role “dobj” (direct objective) in the dependency

path. In such cases both arguments are often part of a coordination structure, and

it is unlikely that they are related. In summary, we collect about one million tuples,

1300 patterns and half million named entities. In terms of named entities, the data

is very sparse. On average one named entity occurs four times.

5.3.1 Feature Extraction

For the entity name features, we split each entity string of a tuple into tokens.

Each token is a feature. The source argument tokens are augmented with prefix “l:”,

55

relation paths
entertainment A, who play B:30; A play B:30; star A as B:30

sports lead A to victory over B:20; A play B:20; A’s loss to B:20; A trail B:20;
A face B:26; A hold B:26; A play B:26; A acquire (X) from B:26

politics A nominate B:39; A name B:39; A select B:39; A select B:42;
A ask B:42; A choose B:42; A nominate B:42; A turn to B:42

law A charge B:39; A file against B:39; A accuse B:39; A sue B:39

Table 5.2. Example semantic relation clusters produced by our approach. For each
cluster, we list the top paths in it, and each is followed by “:number”, indicating its
sense obtained from sense disambiguation. They are ranked by the number of entity
pairs they take. The column on the left shows sense of each relation. They are added
manually by looking at the sense numbers associated with each path.

and the destination argument tokens with prefix “r:”. We use tokens to encourage

overlap between different entities.

For the word features, we extract all the words between the two arguments, re-

moving stopwords and the words with capital letters. Words with capital letters are

usually named entities, and they do not tend to indicate relations. We also extract

neighboring words of source and destination arguments. The two words to the left of

the source argument are added with prefix “lc:” Similarly the two words to the right

of the destination arguments are added with prefix “rc:”

Each document in the NYT corpus is associated with many descriptors, indicating

the topic of the document. For example, some documents are labeled as “Sports,”

“Dallas Cowboys,” “New York Giants,” “Pro Football” and so on. Some are labeled

as “Politics and Government,” and “Elections.” We extract a theme feature for each

document from these descriptors. To this end we interpret the descriptors as words

in documents, and train a standard LDA model based on these documents. We pick

the most frequent topic as the theme of a document.

We also train a standard LDA model to obtain the theme of a sentence. We use

a bag-of-words representation for a document and ignore sentences from which we do

not extract any tuples. The LDA model assigns each word to a topic. We count the

56

occurrences of all topics in one sentence and pick the most frequent one as its theme.

This feature captures the intuition that different words can indicate the same sense,

for example, “film,” “show,” “series” and “television” are about “entertainment,”

while “coach,” “game,” “jets,” “giants” and “season” are about “sports.”

5.3.2 Sense clusters and relation clusters

For the sense disambiguation model, we set the number of topics (senses) to 50. We

experimented with other numbers, but this setting yielded the best results based on

our automatic evaluation measures. Note that a path has a multinomial distribution

over 50 senses but only a few senses have non-zero probabilities.

We look at some sense clusters of paths. For path “A play B”, we examine the

top three senses, as shown in Table 5.1. The last two senses “entertainment” and

“music” are close. Randomly sampling some entity pairs from each of them, we

find that the two sense clusters are precise. Only 1% of pairs from the sense cluster

“entertainment” should be assigned to the “music” sense. For the path “play A in

B” we discover two senses which take the most probabilities: “sports” and “art.”

Both clusters are precise. However, the “sports” sense may still be split into more

fine-grained sense clusters. In “sports,” 67% pairs mean “play another team in a

location” while 33% mean “play another team in a game.”

We also closely investigate some relation clusters, shown in Table 5.2. Both the

first and second relation contain path “A play B” but with different senses. For the

second relation, most paths state “play” relations between two teams, while a few of

them express relations of teams acquiring players from other teams. For example, the

entity pair ”(Atlanta Hawks, Dallas Mavericks)” mentioned in sentence ”The Atlanta

Hawks acquired point guard Anthony Johnson from the Dallas Mavericks.” This is

due to that they share many entity pairs of team-team.

57

5.3.3 Baselines

We compare our approach against several baseline systems, including a generative

model approach and variations of our own approach.

Rel-LDA: Generative models have been successfully applied to unsupervised relation

extraction [Rink and Harabagiu, 2011, Yao et al., 2011]. We compare against one such

model: An extension to standard LDA that falls into the framework presented by Yao

et al. [2011]. Each document consists of a list of tuples. Each tuple is represented by

features of the entity pair, as listed in §5.2.1, and the path. For each document, we

draw a multinomial distribution over relations. For each tuple, we draw a relation

topic and independently generate all the features. The intuition is that each document

discusses one domain, and has a particular distribution over relations.

In our experiments, we test different numbers of relation topics. As the number

goes up, precision increases whereas recall drops. We report results with 300 and

1000 relation topics.

One sense per path (HAC): This system uses only hierarchical clustering to dis-

cover relations, skipping sense disambiguation. This is similar to DIRT [Lin and

Pantel, 2001]. In DIRT, each path is represented by its entity arguments. DIRT

calculates distributional similarities between different paths to find paths which bear

the same semantic relation. It does not employ global topic model features extracted

from documents and sentences.

Local: This system uses our approach (both sense clustering with topic models and

hierarchical clustering), but without global features.

Local+Type This system adds entity type features to the previous system. This al-

lows us to compare performance of using global features against entity type features.

To determine entity types, we link named entities to Wikipedia pages using the Wik-

ifier [Ratinov et al., 2011] package and extract categories from the Wikipedia page.

Generally Wikipedia provides many types for one entity. For example, “Mozart” is a

58

person, musician, pianist, composer, and catholic. As we argued in §5.1, it is difficult

to determine the right granularity of the entity types to use. In our experiments,

we use all of them as features. In hierarchical clustering, for each sense cluster of a

path, we pick the most frequent entity type as a feature. This approach can be seen

as a proxy to ISP [Pantel et al., 2007], since selectional preferences are one way of

distinguishing multiple senses of a path.

Our Approach+Type This system adds Wikipedia entity type features to our

approach. The Wikipedia feature is the same as used in the previous system.

5.3.4 Automatic Evaluation against Freebase

We evaluate relation clusters discovered by all approaches against Freebase. We

use coreference evaluation metrics: pairwise F-score and B3 [Bagga and Baldwin,

1998]. Pairwise metrics measure how often two tuples which are clustered in one

semantic relation are labeled with the same Freebase label. We evaluate approxi-

mately 10,000 tuples which occur in both our data and Freebase. Since our system

predicts fine-grained clusters comparing against Freebase relations, the measure of

recall is underestimated. The precision measure is more reliable and we employ F-0.5

measure, which places more emphasis on precision.

Matthews correlation coefficient (MCC) [Baldi et al., 2000] is another measure

used in machine learning, which takes into account true and false positives and neg-

atives and is generally regarded as a balanced measure which can be used when the

classes are of very different sizes. In our case, the true negative number is 100 times

larger than the true positive number. Therefore we also employ MCC, calculated as

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

The MCC score is between -1 and 1. The larger the better. In perfect predictions,

FP and FN are 0, and the MCC score is 1. A random prediction results in score 0.

59

Table 5.3 shows the results of all systems. Our approach achieves the best perfor-

mance in most measures. Without using sense disambiguation, the performance of

hierarchical clustering decreases significantly, losing 17% in precision in the pairwise

measure, and 15% in terms of B3. The generative model approach with 300 topics

achieves similar precision to the hierarchical clustering approach. With more topics,

the precision increases. However, the recall of the generative model is much lower

than those of other approaches. We also show the results of our approach without

global document and sentence theme features (Local). In this case, both precision

and recall decrease. We compare global features (Our approach) against Wikipedia

entity type features (Local+Type). We see that using global features achieves better

performance than using entity type based features. The entity type features do not

help much, due to that we cannot determine which particular type to choose for an

entity pair. Take pair “(Hillary Rodham Clinton, Jonathan Tasini)” as an example,

choosing politician for both arguments instead of person will help.

We should note that these measures provide comparison between different systems

although they are not accurate. One reason is the following: some relation instances

should have multiple labels but they have only one label in Freebase. For example,

instances of a relation that a person “was born in” a country could be labeled as

“/people/person/place of birth” and as “/people/person/nationality.” This decreases

the pairwise precision. Further discussion is in § 5.3.6.

5.3.5 Path Intrusion

We also evaluate coherence of relation clusters produced by different approaches

by creating path intrusion tasks Chang et al. [2009]. In each task, some paths from

one cluster and an intruding path from another are shown, and the task is to identify

one single path which is out of place. For each path, we also show one example

sentence. We ask three graduate students in natural language processing to identify

60

System
Pairwise B3

Prec. Rec. F-0.5 MCC Prec. Rec. F-0.5
Rel-LDA/300 0.593 0.077 0.254 0.191 0.558 0.183 0.396
Rel-LDA/1000 0.638 0.061 0.220 0.177 0.626 0.160 0.396

HAC 0.567 0.152 0.367 0.261 0.523 0.248 0.428
Local 0.625 0.136 0.364 0.264 0.626 0.225 0.462

Local+Type 0.718 0.115 0.350 0.265 0.704 0.201 0.469
Our Approach 0.736 0.156 0.422 0.314 0.677 0.233 0.490

Our Approach+Type 0.682 0.110 0.334 0.250 0.687 0.199 0.460

Table 5.3. Pairwise andB3 evaluation for various systems. Since our systems predict
more fine-grained clusters than Freebase, the recall measure is underestimated.

the intruding paths. We use the majority vote strategy to resolve disagreements.

Table 5.4 shows one example intrusion task.

Path Example sentence
beat Dmitry Tursunov beat the best American player, Andy Roddick

who lose to Sluman, Loren Roberts (who lost a 1994 Open playoff to Ernie Els at Oakmont ...
who beat ... offender seems to be the Russian Mariya Sharapova, who beat Jelena Dokic

a broker at Robert Bewkes, a broker at UBS for 12 years
meet Howell will meet Geoff Ogilvy, Harrington will face Davis Love III

Table 5.4. A path intrusion task. We show 5 paths and ask the annotator to
identify one path which does not belong to the cluster. And we show one example
sentence for each path. The entities (As and Bs) in the sentences are bold. And the
italic row here indicates the intruder.

From Table 5.5, we see that our approach achieves the best performance. We

concentrate on some intrusion tasks and compare the clusters produced by different

systems.

The clusters produced by HAC (without sense disambiguation) are coherent if all

the paths in one relation take a particular sense. For example, one task contains

paths “A, director at B”, “A, specialist at B”, “A, researcher at B”, “A, B professor”

and “A’s program B”. It is easy to identify “A’s program B” as an intruder when

the annotators realize that the other four paths state the relation that people work in

61

System Correct
Rel-LDA/300 0.737
Rel-LDA/1000 0.821

HAC 0.852
Local+Type 0.773

Our approach 0.887

Table 5.5. Results of intruding tasks of all systems.

an educational institution. The generative model approach produces more coherent

clusters when the number of relation topics increases.

The system which employs local and entity type features (Local+Type) produces

clusters with low coherence because the system puts high weight on types. For exam-

ple, (United States, A talk with B, Syria) and (Canada, A defeat B, United States) are

clustered into one relation since they share the argument types “country”-“country”.

Our approach using the global theme features can correct such errors.

5.3.6 Error Analysis

We also closely analyze the pairwise errors that we encounter when comparing

against Freebase labels. Some errors arise because one instance can have multiple la-

bels, as we explained in §5.3.4. One example is the following: our approach predicts

that (News Corporation, buy, MySpace) and (Dow Jones & Company, the parent of,

The Wall Street Journal) are in one relation. In Freebase, one is labeled as “/organiza-

tion/parent/child”, the other is labeled as “/book/newspaper owner/newspapers owned”.

The latter is a sub-relation of the former. We can overcome this issue by introducing

hierarchies in relation labels.

Some errors are caused by selecting the incorrect sense for an entity pair of a

path. For instance, we put (Kenny Smith, who grew up in, Queens) and (Phil Jack-

son, return to, Los Angeles Lakers) into the “/people/person/place of birth” relation

62

cluster since we do not detect the “sports” sense for the entity pair “(Phil Jackson,

Los Angeles Lakers).”

5.4 Related work

There has been considerable interest in unsupervised relation discovery.

Our work is closely related to DIRT [Lin and Pantel, 2001]. Both DIRT and our

approach represent dependency paths using their arguments. Both use distributional

similarity to find patterns representing similar semantic relations. Based on DIRT,

Pantel et al. [2007] addresses the issue of multiple senses per path by automatically

learning admissible argument types where two paths are similar. They cluster argu-

ments to fine-grained entity types and rank the associations of a relation with these

entity types to discover selectional preferences. Selectional preferences discovery Rit-

ter et al. [2010], Seaghdha [2010] can help path sense disambiguation, however, we

show that using global features performs better than entity type features.

Our approach is also related to feature partitioning in cross-cutting model of

lexical semantics Reisinger and Mooney [2011]. Our sense disambiguation model is

inspired by this work. There they partition features of words into views and cluster

words inside each view. In our case, each sense of a path can be seen as one view.

However, we allow different views to be merged since some views overlap with each

other.

Clustering approaches are explored in relation extraction [Hasegawa et al., 2004,

Hachey, 2009, Bollegala et al., 2010], however these approaches neither deal with

polysemy nor incorporate global features, such as sentence and document themes.

Many generative probabilistic models have been applied to relation extraction.

For example, varieties of topic models are employed for both open domain [Yao

et al., 2011] and in-domain relation discovery [Chen et al., 2011, Rink and Harabagiu,

2011]. Our approach employs generative models for path sense disambiguation, which

63

achieves better performance than directly applying generative models to unsupervised

relation discovery.

5.5 Conclusion

We explore senses of paths to discover semantic relations. We employ a topic

model to partition entity pairs of a path into different sense clusters and use hierar-

chical agglomerative clustering to merge senses into semantic relations. Experimen-

tal results show our approach discovers precise relation clusters, and outperforms a

generative model approach and a clustering method which does not address sense

disambiguation. We also show that using global features improves the performance

of unsupervised relation discovery over using entity type based features.

64

CHAPTER 6

UNIVERSAL SCHEMA FOR ENTITY TYPE
CLASSIFICATION

We now begin to describe our core work with universal schema. We describe

the simple case, universal schema for entity types in this chapter. Next chapter we

describe universal schema for relation extraction.

Learning entity types is useful in many applications, such as knowledge base con-

struction, relation extraction, and query intent prediction. Fine-grained entity type

ontologies are especially valuable, but typically difficult to design because of endless

quandaries about level of detail and boundary cases. In this chapter, we present uni-

versal schema for automated fine-grained entity type prediction. The set of types is

taken as the union of textual surface patterns (e.g. appositives) and pre-defined types

from available databases (e.g. Freebase)—yielding not tens or hundreds of types, but

more than ten thousand entity types, such as financier, criminologist, and musical

trio. We robustly learn mutual implications among this large union by probabilistic

matrix factorization, thus avoiding the need for hand-labeled data. Experimental

results demonstrate significant improvement over classification based approaches on

predicting fine-grained entity types. Experiments also show that our predicted entity

types can benefit downstream applications, such as relation extraction [Yao et al.,

2013].

6.1 Introduction

Knowledge about the underlying things in the world (such as people, places,

plants, and products) rather than merely character strings (like pages or paragraphs)

65

enables deeper, more structured understanding of the world. The significant re-

sources being devoted to Google’s Knowledge Graph, Facebook’s Graph Search, and

Microsoft’s Satori are testaments to the importance of modeling the world as entities

and the relations among them. One of the first, fundamental tasks when dealing with

entities is to predict their categories or “types.”

Entity types can be useful in many applications. In some cases, such as relation

extraction [Yao et al., 2010, Roth and Yih, 2007] or query intent discovery [Cheung

and Li, 2012, Pantel et al., 2012, Balog and Neumayer, 2012], entity types are hid-

den variables included to improve accuracy on the target task. In other cases, such

as knowledge base construction, entity types may be a prominent user-visible fea-

ture [Carlson et al., 2010, Hoffart et al., 2012], where they help users browse or find

entities more easily, and visualize them better.

Occasionally the ontology of entity types is coarse, such as the four types in

the CoNLL-2003 shared task (person, organization, location and miscellaneous), but

often finer-grained ontologies are more useful. For example, specializations of people,

including politician, scientist, and athlete are defined in previous work [Fleischman

and Hovy, 2002, Giuliano and Gliozzo, 2008, Ekbal et al., 2010]. Others are even

more detailed; for instance, the Unified Medical Language System (UMLS) defines

an ontology of 987,321 biomedical concepts. Defining such ontologies is a significant

challenge, often giving rise to debates about desired granularity and subtle questions

about boundary cases. These difficulties appear both when the assignment of entities

to types is exclusive and when it is one-to-many.

Once the ontology is defined, the problem of building the automated classification

system remains. The most common approach is supervised training from a set of

entity mentions labeled into the ontology [Fleischman and Hovy, 2002, Tanev and

Magnini, 2006]. However labeling such data is painful—especially with fine-grained

ontologies. Furthermore, when the ontology evolves or expands (as it often does),

66

the data labeling must be re-visited. Even when used as hidden variables, the set of

entity types may warrant adjustment because an ontology tuned to the task at hand

typically performs better—for example, Pantel et al. [2007] show that the entity types

in the WordNet ontology [Fellbaum, 1998] are not as effective as those derived from

automatic clustering for the task of learning selectional preferences. Unsupervised

clustering may be employed to derive entity types [Elsner et al., 2009, Pantel et al.,

2007, Yao et al., 2011], but the resulting types often have peculiar, undesirable, only

weakly interpretable boundary and granularity choices.

This chapter presents an approach to fine-grained entity type prediction that

avoids the need to manually design an ontology, avoids the need for labeled data,

and avoids the boundary difficulties that arise from forcing our semantics into finite,

pre-defined, somewhat arbitrary “boxes.” Our approach is universal schema, that

defines types as the union of all available types from all input sources, including mul-

tiple pre-existing ontologies and naturally-occurring textual surface-form expressions

that indicate entity type, such as appositives, isa-expressions, or even adjectival or

verb phrases. For example, “James Cameron” may appear as a person/director in

Freebase [Bollacker et al., 2008], and as a person in TAC/KBP.1 He may also oc-

cur in text documents as a movie-mogul, Canadian citizen, and jerk in clauses like

“James Cameron, a movie-mogul,” “James Cameron, a Canadian citizen” and “James

Cameron is a jerk.” Rather than five, fifty, or five-hundred entity types, this universal

schema approach typically yields more than ten thousand entity types, particularly

from textual surface forms. Universal schema does not force the natural diversity and

ambiguity of the original input types into a smaller set of types. Universal schema

gets to the heart of the taste by predicting sources instead of latent variables that we

do not know the ground truth.

1http://www.nist.gov/tac/2013/KBP/

67

Sprite
Bill Clinton has

been photographed
drinking diet Sprite

novel by Pierre
Louys

the fellow held a
can of Sprite

… poem of
Pierre Louys

a can of X

drink X

Pierre
Louys

surface patterns
a can of

X
drink

X
poem of

X
X,

a poet ... Type:
food ...

Sprite 1 1

Pierre Louys 1

...

a can of
X

drink
X

poem of
X

X,
a poet ... Type:

food ...

Sprite 1 1 N N Y

Pierre Louys N N 1 Y N

...

Input

Output

matrix completion

Figure 6.1. Overview of our system.

The key characteristic of universal schema is that it enables us to model directed

implicature among the many candidate types of an entity. We cast the problem as

a large matrix completion task. Each row in the matrix corresponds to an entity,

and each column an entity type. Some cells of the matrix are observed and marked

true, and many are unobserved. It is the job of matrix completion to “fill in” the

matrix, marking the unobserved cells as either true or false. For example, although

we may not have directly observed that “Barack Obama” is a leader, our model will

infer it by having observed that he is a president and commander-in-chief—doing so

by leveraging various patterns of co-occurrences among these types in other entities.

Similarly it will infer that he is neither a movie-mogul nor a waterfall.

We achieve this using probabilistic matrix factorization—efficiently estimating

vector embeddings for both entities and types by online stochastic gradient descent

optimization. The probability of assigning a type to an entity is determined by the

dot-product of the corresponding embeddings, mapped through a logistic function.

The output matrix can be queried as a probabilistic database since each cell has a

probability score.

68

Figure 6.1 shows the overview of our system. Our information sources include text

documents and existing knowledge bases, such as Freebase. Note that documents can

be from any sources, including the web, a newswire corpus, and so on. From the

text documents we identify entity mentions and extract the dependency path as the

surface patterns for them. To fill in our matrix, we perform string match coreference

to cluster mentions into entities. In figure 6.1, we show that two mentions of “Sprite”

that refer to the same entity are clustered to one row in the matrix. We also link

these entities to knowledge bases. We produce the output matrix using probabilistic

matrix factorization—efficiently estimating vector embeddings for both entities and

types by online stochastic gradient descent optimization.

Table 6.1 shows some examples from our data: the first column lists several en-

tities, the second column shows observed types for the corresponding entity and the

third column shows newly predicted types. In one example, we observe “Sprite, a

drink,” “(subject) drink Sprite” and so on in text, we predict “Sprite” is food.beverage

in Freebase. In another example, seeing “poem of Pierre Louys” and “novel by Pierre

Louys,” we predict “Pierre Louys, a poet,” “Pierre Louys, a novelist,” and “Pierre

Louys, an author.”

We carry out experiments on various datasets. On a small closed dataset [Ling

and Weld, 2012], we show that our approach is a general framework that can achieve

comparable performance as the baseline classifier. On a large scale web data with

entities linked to Wikipedia [Singh et al., 2012], we show that our approach is scalable

and can achieve better performance than baseline models. Using New York Times

data [Sandhaus, 2008], we show that entity type predictions can help relation extrac-

tion. In all of the experiments, we employ Freebase as the knowledge base for entity

and relation types.

69

Entity Observed Predicted
Mohamed al-Fayed tycoon, owner, entrepreneur, financier billionaire, magnate,

estate of X, purchase by X person:Freebase
House of Pain X’s member, reminiscent of X, trio, band, X rap

music by X, rap group X singer of X, rapper X
Sprite commercial, drink, brand, ad beverage:Freebase

drink X, campaign for X
Jonathan Wolken founder, director, choreographer dancer

X’s solo, create by, choreograph by dance by X
Pierre Louys poem of, novel by, ’s poem, ’s novel poet, novelist, author

Rick Wamsley goaltender, goalie goalkeeper
Walter Arndt scholar, libretto by, translate by translator

Table 6.1. Some entities, observed types and predicted ones by our system. We can
describe an entity in any granularity based on the patterns or types from ontologies.
The patterns are translated from dependency parsing paths as described in §6.3.

6.2 Factorization Models

In this section, we describe matrix factorization models for entities and types.

Note that types can be understood as unary relations, so we use unary relations and

types interchangeably. Our observations are entities from text. Each cell represents

an entity and a unary relation that holds according to our data source. Our goal is

to predict new unary relations that also hold for the entity.

Our technical approach is based on extensions to probabilistic models of matrix

factorization and collaborative filtering [Collins et al., 2001, Rendle et al., 2009]. In

collaborative filtering, items are recommended to users based on collecting many

users’ ratings about the items. For example, if both user X and Y like item A, and

user X likes item B, it is likely that user Y likes item B as well. In our scenario,

an entity corresponds to a user; a unary relation corresponds to an item; and an

observed cell corresponds to a positive rating by the user for the item. By collecting

information about preferences of other entities, we can “recommend” unary relations

that hold for an entity. Our approach is novel in that we learn implication among

these unary relations.

70

We fill a matrix |E| × |R| with unary relation instances, where E corresponds to

entities and R to unary relations. Assume we index an entity with e and a relation

with r. Each matrix cell is a binary variable, denoted as xe,r. The variable is 1 when

relation r holds for entity e, and 0 otherwise. For example, observing “Rick Wamsley,

a goaltender,” we fill the corresponding cell (Rick Wamsley, “X, a goaltender”) with

1. Note that all our training cells are positive, as one rarely states explicitly that a

particular unary relation does not hold.

In our matrix factorization approach, we embed each entity and relation as latent

vectors ae and vr in a K-dimensional space, respectively. Each dimension is a com-

ponent (c). Since square loss is not appropriate for discrete data, a logistic regression

version of matrix factorization is a better choice for our binary data [Collins et al.,

2001]. Thus we have:

θe,r =
∑

c

ae,cvr,c

xe,r = σ(
∑

c

ae,cvr,c)

The first formula is factorizing a matrix into a multiplication of two matrices. In

matrix representation, it is Θ = AV . The second is applying a logistic function

σ(θ) = 1/(1 + exp(−θ)) to θe,r to model a binary cell. This has a probabilistic

interpretation: each cell is drawn from a Bernoulli distribution with natural parameter

θ.

To learn low dimensional representations, we maximize the log likelihood of the

observed cells under the probabilistic model above. Notice that in our training data

we only observe positive cells and have no accurate data on which relations do not

hold for an entity. However, learning requires negative training data. We address

this issue by sampling unobserved relations for an entity based on their frequencies

in the whole dataset and treating them as negative. The joint probability of all cells

71

is defined as:

∏

cell

p(xcell = 1)δ(x=1)(1− p(x = 0))δ(x=0)

=
∏

cell

σ(θ)δ(x=1)(1− σ(θ))δ(x=0)

For simplicity, we elide the subscript of each cell, and δ(x = 1) stands for the number

of positive cells.

To simplify the joint probability, we can represent negative cells as positive cells by

choosing a different natural parameter. Thus the joint probability becomes
∏

cell σ(θ).

For simplicity, we use Θ to represent all the parameters. Adding a prior for the

parameters, we can write the log likelihood as

log
∑

cell

σ(θ)− ΛΘ||Θ||2.

The gradient with respect to θ is:

(1− σ(θ))∇θ − λθ

Taking gradients of θ with respect to the parameters, we obtain:

∇ae,c = vr,c

∇vr,c = ae,c

We notice that, in our data, some unary relations are more popular than others.

In order to capture this, we introduce a bias for each relation (br). We also introduce

a bias shared across the whole matrix (b). Finally we have

θe,r =
∑

c

ae,cvr,c + br + b

72

We use stochastic gradient optimization to effectively deal with the large scale

of our matrices. In each iteration, we traverse random permutations of all training

cells, randomly sample some negative cells for each training cell, and update the

corresponding ae and vr vectors for the positive and negative cells based on their

corresponding gradients.

We update the parameters of a positive cell (e, r) using the following formulas,

iterating over each component c, with learning rate l:

ae,c = ae,c + l((1− σ(θ))vr,c − λae,c) (6.1)

vr,c = vr,c + l((1− σ(θ))ae,c − λvr,c) (6.2)

Likewise for a negative cell, we update the parameters using:

ae,c = ae,c + l((0− σ(θ))vr,c − λae,c) (6.3)

vr,c = vr,c + l((0− σ(θ))ae,c − λvr,c) (6.4)

To predict a cell, we calculate xe,r = σ(θe,r). In our experiments, cells with scores

above a threshold are considered as true.

6.2.1 Neighbor Model

In our matrix, each column represents one entity type. There is also other in-

formation that can be useful for entity type prediction. For example, the surface

string tokens, the head words, the context words of an entity [Ling and Weld, 2012].

To incorporate these information resources into our model, we employ the Neighbor

Model, a model that is analogous to classifiers [Koren, 2008]. Here we represent the

73

information sources as features and other columns representing semantic types of

entities as labels. The score of each cell is defined as:

θe,r =
∑

i

wifi(e, r)

In the equation, fi(e, r) defines a conjunctive feature, i.e. token = Department, label =

university. During training, we learn the weight wi for each feature.

In our experiments, we also introduce a combined factorization and neighbor

model, and each cell has its θ defined as:

θe,r =
∑

c

ae,cvr,c + br + b+
∑

i

wifi(e, r)

It is straightforward to calculate the gradients for weights of features. Therefore

we still use maximum log likelihood as the objective function and employ stochastic

gradient descent to learn the parameters.

6.3 Experiments

Our goal is to predict types for entities, i.e. missing cells in the entity-relation

matrix. In the following, we design experiments to measure the accuracy of these

predictions. We analyze the embeddings of patterns learned by our model, evaluate

the predicted entity types, and also experiment with using our predicted entity types

for relation extraction.

6.3.1 Data Sets

We perform experiments on various data sets, including NYT data, a small closed

data set, and a large scale web data set. As a knowledge base, we use Freebase for

entity and relation types in the experiments.

74

New York Times and Freebase data. We extract unary relations from New

York Times data for the years 1990 to 2007 [Sandhaus, 2008]. We preprocess the

documents as described in §2.7. Following Szpektor and Dagan [2008], we extract

dependency paths originating from a (named) entity mention as unary relations.

Specifically, we traverse from the head token of the entity mention to the root of the

dependency tree. Whenever we come across a content word (nouns, adjectives etc.),

the current (lexicalized) path from the entity mention to this content word node is

used as one unary relation. We stop when approaching a verb or a clause boundary.

Additionally, when a verb is encountered, other direct children of the verb are also

included in the path. For example, we can have “X buy share,” “X roll over.” This

yields many simple relations that could serve as entity types, including appositive

structures. For example, the unary relation “X, a magnate” can define “magnate” as

the corresponding entity type.

The universal schema approach labels types of entities, not entity mentions. This

is inherent in the method, since it learns the embedding that leverages co-occurrences

among multiple entity type patterns (coming from multiple mentions) of the same

entity. Thus universal schema relies on entity resolution as a prerequisite. However,

entity resolution is not our main focus in this paper; and there are many complex

alternative methods from which to choose. To ease reproducibility and demonstrate

the robustness of our entity type prediction method in this paper we use instead

simple string matching to link entity mentions in NYT documents to Freebase entities.

Specifically, if the Freebase entity has the same string form as the entity mention,

we link them as one entity. If multiple Freebase entities have the same string form,

we choose the one that is most popular. For example, “Canada” could be a country,

or a kind of wine. We choose country. This method is also employed by previous

work [Mintz et al., 2009, Lin and Pantel, 2001, Yao et al., 2010]. We allow one entity

to have multiple types, not disambiguating entities that have the same string form.

75

Integrating universal schema with more complex entity resolution systems is a topic

for future work.

On this dataset, we analyze the embeddings of patterns obtained by our factoriza-

tion model in § 6.3.3. We also test downstream application of predicted entity types,

i.e., taking them as input for relation extraction (see § 7.3.6).

Local reports data from UW. A practical use case of entity type prediction is

that we train a model on available data sources and apply it to new documents that

we have not seen before. Specifically, we want to predict types for entities occurring

in a closed set of documents. Exhaustive annotation for all entities with all possible

types should be available when measuring precision, recall, and F1. We use a recent

benchmark that satisfies these conditions, local reports data [Ling and Weld, 2012].

This dataset consists of 18 documents and approximately 430 sentences, and each

entity mention is labeled with all possible entity types.

WikiLinks Data. To show that our approach is scalable, we also experiment

with a large scale web data set. This dataset, originally used for large scale corefer-

ence [Singh et al., 2012], contains a large number of entity mentions collected from

web pages. The advantage of using this dataset is that we have labeled coreference

for these entity mentions since the creators of this dataset use Wikipedia links to

annotate whether two mentions are referring to the same entity. Sentences to the left

and right of each mention are available as contexts. Dependency parse trees are not

provided. We extract the left and right words to the current mention as unary rela-

tions. We heuristically filter out some entities, such as entities that contains digits,

and entities that are not proper nouns. We also filter out infrequent unary relations.

As a result, we obtain 847,039 entities, 23,810 unary relations, and 9,427,543 ob-

served cells in the input matrix. Since part of Freebase data is from Wikipedia, we use

mappings from Wikipedia links to Freebase entities to include entity types from the

ontology. Approximately 55% of entities in this dataset have Freebase labels. In total,

76

we have 513 entity types from Freebase. These types are moderately fine-grained, for

example, wine.grape, food.cheese, sports.boxer, and event.disaster. Predicting these

types are non-trivial since many of them do not have many training instances.

6.3.2 Baselines

We compare our approach against binary classifiers (Classifier) as traditionally

used in distant supervision [Mintz et al., 2009], leveraging a knowledge base as a

supervision source and employing a one-vs-all classification strategy, considering one

type as positive, all the others as negative. As the classifier, we use a log-linear model

trained by maximum log likelihood and L2 regularization.

On local reports data, we also compare against a multi-instance multi-label clas-

sifier for entity prediction (UW) [Ling and Weld, 2012]. This approach performs

perceptron style training, but uses a set of positive labels instead of one positive la-

bel. Each update discourages the model from predicting labels that are not in the

positive set, and increases weights for labels in the positive set.

We have several variations for universal schema. We employ the factorization

model (F), the neighbor model (N) and the combined model (F+N).

In the following, we will describe our experiments on these data sets.

6.3.3 Pattern Analysis on NYT data

We begin by providing some intuition for the embeddings learned for NYT data.

On this dataset, we obtain 503,301 entities and 16,916 patterns. Our model learns

a low dimensional vector for each pattern. It is usually challenging for humans to

interpret these vectors. Intuitively, patterns representing similar entity types should

be close to each other in the low dimensional space. To demonstrate that this happens,

we perform hierarchical agglomerative clustering using cosine similarity as distance

measure on these vectors. We query some patterns and show in Table 6.2 the clusters

in which they occur. We observe here that our approach can learn diverse and accurate

77

Target Patterns
magnate developer, investor, estate, financier, owner, partner, shareholder,

tycoon, landlord, billionaire, buyer, principal, capitalist
band tune, album, country, trio, duo, blues, rock, folk,

singer of, wing with, music of, tour with, musician like, hit for
sound of, recording by, song by, act like, ’s singer, ’s song
performer, co-star, X appear in, X portray in, X is cast as,

actor X play character, X play in, star X as, feature X as/in, X reprise
embody by, film with, star with, actor like, act by, narrate by, play by
draft, guard, defensive, lineman, linebacker, fullback, quarterback

player X miss after, X recover, X tear in, X injure knee, X is suspended for
X pick off, X’s interception, X run yard, X has catch, X’s touchdown,
tackle X, recover by X, return by X

Table 6.2. Top similar patterns to the target queries.

patterns that are indicative of the target patterns. For example, we learn different

roles of players such as “lineman” and “quarterback.” We also find actions of players,

such as “injure knee,” “has catch,” and “run yard.”

We also compare against features from traditionally learned one-vs-all classifiers

on the same dataset, using query patterns as labels. We list top ranked features of

each binary classifier for a target pattern in Table 6.3. Note that the classifiers do

not find as many high quality patterns as our approach. The classifiers instead often

find frequent patterns that co-occur with the target pattern.

6.3.4 Closed Set Evaluation

We compare our method against both the Classifier and UW on the closed local

reports dataset. The UW approach employs a multi-class multi-label classifier for

fine-grained entity recognition. Their model labels entity mentions, not entities. We

obtain two results from this baseline, one that uses string match for coreference to

translate their labels on mentions into multiple labels on entities, for purposes of

comparison (UW-mention); the other performs coreference using string match up

front and applies their approach on the resulting entities instead of mentions (UW).

78

Target Top features
magnate X, businessman, tycoon, developer, chairman,

magnate who was born, X is a/the buyer, X purchase,
control by X, name for X, form by X, house of X, son of X, widow of X
band X, singer X, record, outfit, open for X, player for X,

band X open show, X is taught, X featuring, X share, X mix,
X turn for, X sell copy, X play song, X’s producer, X entertain,

actor actor X, television, X is an actor, X is outstanding, X is eager,
cast as X, play by X, marry to X, star as X , ask X on

player bassist, athlete, foot, X which is percent, X’s note

Table 6.3. Top ranked patterns learned by the baseline classifiers. Not all patterns
can imply the target patterns. The patterns are not as diverse as patterns learned by
our approach.

In addition to dependency path, features including words and head words of the

entity, as well as the contextual unigrams and bigrams, are also beneficial for pre-

dicting entity types. These features are used in UW [Ling and Weld, 2012]. We

incorporate them using our neighbor model (see Section 6.2.1).

Our approach (Universal), the distant supervision classifier baseline (Classifier),

and UW [Ling and Weld, 2012] use the same training data, linking Freebase enti-

ties to mentions from Wikipedia articles. The input matrix in our approach has

approximately 623K entities.

Table 6.4 shows the F1 scores of different systems. Our approach is consistently

better than the distant supervision classifier, better than applying UW system on

entities instead of mentions, and comparable with the UW approach when translating

their predictions on mentions to predictions of entities. We report the results of

combined model for universal schema. Only using the factorization model is unfair on

this dataset, since the factorization model does not consider the contextual features.

However, this evaluation is somewhat deficient because it is based on a relatively

small data set. Hence we are interested in applying our approach to WikiLinks data.

79

System Precision Recall F1
Classifier 0.585 0.438 0.501

UW 0.582 0.475 0.523
UW-mention 0.521 0.590 0.553

Universal (F+N) 0.633 0.492 0.553

Table 6.4. Performance on predicting Freebase entity types on a closed data set.

System Precision Recall F1
Classifier 0.619 0.215 0.320

N 0.246 0.450 0.318
F 0.215 0.355 0.268

F+N 0.303 0.427 0.354

Table 6.5. Performance on predicting Freebase entity types on WikiLink.

6.3.5 Evaluation on WikiLinks

On WikiLink data we perform held-out evaluation, using 80% of the entities as

training data, and the remaining 20% as test data. Freebase labels in the test set are

hidden and to be predicted for evaluation.

In the neighbor model, we consider all the columns of patterns in one row as

features, and types from Freebase as labels. Likewise for the combined model. We list

the results in Table 6.5. We can see that Classifier has high precision and all variations

of our approach have higher recall than Classifier. Our neighbor model performs

similarly to Classifier in F1. Our combined model outperforms both. Note that

Freebase is not complete. There exist some entities that our systems predict correctly

but are not annotated in Freebase. When this occurs, it leads to underestimation of

precision.

Looking at the 513 entity types we have from Freebase we find that some of them

have an exactly corresponding word pattern type in a column of our matrix. This

alignment provides yet another avenue for evaluation. For example we can evaluate

80

Query N F F+N
wine.grape 0.538 0.403 0.523

sports.boxer 0.650 0.677 0.721
food.cheese 0.228 0.095 0.187
physician 0.500 0.539 0.522

food.beverage 0.294 0.205 0.324
disaster 0.437 0.362 0.465

drug 0.112 0.175 0.209
software 0.423 0.500 0.500

Table 6.6. F1 measure on some human annotated fine-grained types. We take these
types as representatives of pattern based types.

whether the entities labeled with the word pattern “boxer” are labeled with the

sports.boxer type in Freebase. We obtain the set of “boxer” candidate entities by

taking the union of predicted “boxers” from all evaluated systems. Labeled truth

is determined by WikiLinks’ linkage to Freebase and human annotations based on

Wikipedia articles. We perform this evaluation for eight randomly-selected prominent

types, gathering different sets of entities for each query, and within each checking the

prediction of only one type that defines the query. Table 6.6 shows the results. As in

the previous experiment we find that F+N performs best.

We also perform error analysis to search for commonalities among our error cases.

We find that one common case of error occurs when context words are insufficient. For

example, criminals who killed people may be assigned the type disaster because “kill”

occurs as a context word; or patients treated with medicine or medical tests sometimes

may be assigned the type drug since “vaccine” occurs as a context word. Dependency

parse information can help in these cases; “treat X with vaccine” can indicate that

X is not a drug. However, it is challenging to obtain accurate dependency parse trees

on some data, like sentences from web pages. Entity type exclusive constraints can

help as well, knowing that X is a person and a person cannot be a drug can correct

these predictions. Other error cases are simply caused by co-occurring confounding

81

features; for example researchers in chemistry are sometimes predicted to have type

physician.

6.3.6 Parameter Selection

For all experiments, we vary the number of components in {50, 100, 150, 200},

learning rate in {0.02, 0.05, 0.1}, regularizers for embedding vectors of entities and

relations in {0.01, 0.02, 0.05}, number of negative examples in {1,3,5,7,10}. We

use stochastic gradient descent as our optimization method. This method efficiently

learns from examples one at a time, therefore scaling well to large datasets.

6.4 Related Work

Classifying entities into large ontologies is a common task and is widely acknowl-

edged as useful. Some researchers have explored entity type classification specifically

for categories of people [Fleischman and Hovy, 2002, Giuliano and Gliozzo, 2008, Ek-

bal et al., 2010]. Large-scale knowledge bases, such as Freebase and its fine-grained

entity types, have significant collections of entities that can be used for training tra-

ditional classification methods by distant supervision [Ling and Weld, 2012]. Others

have also performed entity type classification with a multi-label classifier in a hierar-

chy of types [Yosef et al., 2012].

The main differences to our approach are: (1) we use matrix factorization rather

than classification as the framework for our model, and more importantly; (2) we do

not restrict ourselves to predefined entity types, instead leveraging the wide diversity

of naturally available data. Even when a pre-existing knowledge base can provide

supervision for a classifier, the resulting entity type classifier is still limited by the

types envisioned by the creators of the knowledge base ontology. Furthermore, note

that even when the goal is merely classification into a specific ontology, matrix fac-

82

torization’s striving to predict many other text-based entity types provides a kind of

multi-task learning [Caruana, 1993] that can be beneficial.

Our work is also related to semantic inference over text [Dagan et al., 2005].

Szpektor and Dagan [2008] aim to discover implications among unary patterns for

predicting new unary facts. We have a similar goal here. They concentrate on verb-

triggered patterns, whereas we focus on patterns that define entity types, including

noun-triggered patterns (such as appositives) and verb-triggered patterns. They em-

ploy distributional similarity where we use matrix factorization.

6.5 Conclusion

This chapter presents universal schema for assigning entities into multiple entity

types on NYT data. We use the term “universal” because the set of types is formed

by the union of textual surface patterns and multiple input entity type ontologies.

We evaluate our approach on predicting types from ontologies since we have ground

truth. On a larger data set, we achieve better performance against an advanced multi-

instance multi label classifier; on a small closed dataset, we perform better than a

maximum entropy classifier and comparable with the advance classifier.

83

CHAPTER 7

UNIVERSAL SCHEMA FOR RELATION EXTRACTION

We introduced universal schema for entity types in Chapter 6. We explore uni-

versal schema for relation extraction in this chapter.

7.1 Introduction

In previous chapters, we introduce distant supervision for relation extraction. This

approach uses a pre-defined, finite and fixed schema of relation types (such as born-in

or employed-by) and relies on the availability of a large database that has the desired

schema.

The need for pre-existing datasets can be avoided by using language itself as

the source of the schema. This is the approach taken by OpenIE [Banko et al.,

2007]. Here surface patterns between mentions of concepts serve as relations. This

approach requires no supervision and has tremendous flexibility, but lacks the ability

to generalize. For example, OpenIE may find historian-at(Ferguson, Harvard) but

does not know is-a-professor-at(Ferguson, Harvard). OpenIE has traditionally relied

on a large diversity of textual expressions to provide good coverage. However this

diversity is not always available, and the lack of generalization greatly inhibits its

ability to support reasoning.

One way to gain generalization is to cluster textual surface forms that have sim-

ilar meaning. We described this approach in Chapter 4 and 5. While the clusters

discovered by all these methods usually contain semantically related items, closer

inspection invariably shows that they do not provide reliable implicature. For exam-

84

ple, a typical representative cluster may include historian-at, professor-at, student-at,

graduated-from. Although these relation types are indeed semantically related, note

that professor-at does not necessarily imply historian-at, and professor-at certainly

does not imply student-at. In fact, we contend that any relational schema would

inherently be brittle and ill-defined, having ambiguities, problematic boundary cases,

and incompleteness. For example, Freebase, in spite of its extensive effort towards

high coverage, has no criticized nor student-at relation.

In response to this problem, we present universal schema. Here we embrace the

diversity and ambiguity of original inputs and avoid forcing textual meaning into

pre-defined boxes. This is accomplished by defining our schema to be the union of

all source schemas: original input forms, e.g. variants of surface patterns similarly to

OpenIE, as well as relations in the schemas of many available pre-existing structured

databases. Unlike OpenIE, we concentrate on learning asymmetric implicature among

relations. This allows us to probabilistically“fill in” inferred unobserved entity-entity

relations in this union. For example, after observing historian-at(Ferguson,Harvard)

our system infers that professor-at(Ferguson, Harvard), but not vice versa.

Similar to representing entity instances in a matrix, we represent relation instances

as a matrix as well. Here one row stands for one entity tuple instead of one single

entity. Each column stands for a binary relation, as opposed to a unary relation in a

entity-relation matrix. The rows come from running cross-document entity resolution

across pre-existing knowledge bases and textual corpora. The columns come from

the union of surface forms and knowledge base relations. We also use a matrix

factorization model to learn lower dimensional manifolds for tuples and relations,

and a neighbor model to capture local correlations between patterns and knowledge

base relations. We still make the binary random variable assumption as in Chapter

6.

85

We carry out experiments on New York Times articles and Freebase relation in-

stances. We show that our models can accurately predict relationships defined by

surface patterns which do not appear explicitly in text, and that learning latent rep-

resentations of tuples and relations substantially improves results over a traditional

classifier approach. Moreover, on predicting relations in Freebase, our model outper-

forms the current state-of-the-art distant supervision method [Surdeanu et al., 2012]

by 10% points Mean Average Precision through joint implication learned among sur-

face patterns and Freebase relations.

7.2 Models

Our observations are relation instances from text and structured data. Each

instance is represented by an entity tuple and a relation that holds according to our

data source. Our goal is to predict new relations that also hold for the entity tuple.

In this section, we introduce several models that address the task.

7.2.1 Matrix Factorization

Researchers have successfully employed matrix factorization for collaborative fil-

tering. We adapt this model to relation extraction. We organize our observations

into a entity-tuple/relation matrix, similar to the entity-relation matrix in Chapter

6. Each row represents an entity tuple and each column represents a relation. The

corresponding cell is a binary value, indicating whether the relation holds for the

entity tuple. Using t as the tuple/row index, r as the relation/column index, and c

as the component index, we have

θt,r =
∑

c

at,cvc,r

σ(θ) =
1

1 + exp(−θ)

86

Similar to matrix factorization for entity instances, taking gradients of θ with respect

to the parameters at,c and vc,r, we have:

∂

∂at,c
θt,r = vc,r

∂

∂vc,r
θt,r = at,c

In our data, some relations are more popular than others. We introduce a bias

for each relation (br). We also introduce a bias shared across the whole matrix (b).

Finally we have

θt,r =
∑

c

at,cvr,c + br + b

Similar to matrix factorization for entity instances, we use stochastic gradient

optimization to effectively deal with the large scale of our matrices. We update the

parameters of a positive cell (t, r) using the following formulas:

at,c = at,c + l((1− σ(θ))vr,c − λat,c)

vr,c = vr,c + l((1− σ(θ))at,c − λvr,c)

Likewise for a negative cell, we update the parameters using:

at,c = at,c + l((0− σ(θ))vr,c − λat,c)

vr,c = vr,c + l((0− σ(θ))at,c − λvr,c)

These update formulas are exactly the same as 6.1 and 6.3, by replacing index e with

t. To predict a cell, we calculate xt,r = σ(θt,r). In our experiments, cells with scores

above a threshold are considered as true.

87

7.2.2 Neighbor Model

Matrix factorization captures the global structure of the data, and relations only

interact with each other via their low dimensional embeddings. However, the factor-

ization approach fails to capture the local structure of the data. For example, since

pattern champion from occurs fewer times in the data, the factorization model can-

not predict nationality correctly. In our data, we observe that even though champion

from occurs fewer times, it co-occurs with nationality frequently. This suggests that

in some cases, the truth of one relation only depends on a few other co-occurring

relations (neighbors). To capture this localized correlation in our data, we employ

neighbor Model (N), a model that is analogous to classifiers [Koren, 2008]. Here we

consider current relation as labels, other relations in the same row as features. The

score of each cell is defined as:

θt,r =
∑

i

wifi(r
′, r)

In the equation, fi(t, r) defines a conjunctive feature, i.e. r′ = champion from, r =

nationality. During training, we learn the weight wi for each conjunctive feature.

In our experiments, we also introduce a combined factorization and neighbor

model, and each cell has its θ defined as:

θt,r =
∑

c

at,cvr,c + br + b+
∑

i

wifi(r
′, r)

It is straightforward to calculate the gradients for weights of features. Therefore

we still use maximum log likelihood as the objective function and employ stochastic

gradient descent to learn the parameters.

7.2.3 Entity Model

Relations have selectional preferences: they allow only certain types in their ar-

gument slots. While knowledge bases such as Freebase or DBPedia have extensive

88

ontologies of types of entities, these are often not sufficiently fine to allow relations to

discriminate [Yao et al., 2012b]. Hence, instead of using a predetermined set of entity

types, in our entity model, we learn a latent entity representation from data. More

concretely, we embed each entity into a low dimensional space. In addition, for each

relation r and each argument slot, we introduce a low dimensional vector, that has

the same dimension as the entity vector. For example, binary relations have two vec-

tors, v1
r for argument 1, and v2

r for argument 2. Measuring compatibility of an entity

tuple and relation amounts to measuring, and summing up, compatibility between

each argument slot representation and the corresponding entity representation. This

leads to:

θt,r =
∑

c

at1,cv
1
r,c +

∑

c

at2,cv
2
r,c

In this equation, t1 stands for argument 1, likewise for argument 2.

Similarly, we can have a combined model of three parts, factorization model,

neighbor model, and this entity model. This leads to:

θt,r =
∑

c

at,cvr,c + br + b+
∑

i

wifi(r
′, r) +

∑

c

at1,cvr1,c +
∑

c

at2,cvr2,c

7.2.4 Alternative Training Objectives

To train our models, we can also employ a ranking based objective, known as

Bayesian Personalized Ranking (BPR) in recommendation [Rendle et al., 2009, Krohn-

Grimberghe et al., 2012]. This objective function assumes that in each row, the ob-

served cells are positive feedback, and should be ranked ahead of the unobserved

cells. Instead, our sampling based method randomly samples the unobserved cells as

negative training data. In our experiments we tried both training objectives.

In universal schema, for each tuple, we can train our model to rank the observed

positive cells above the negative cells [Rendle et al., 2009]. We assume each ranked

pair is a random variable drawn from a Bernoulli distribution. For example, for a

89

tuple t, i.e. one row in the input matrix, we rank relation r over r′. This can be

denoted as

xt,r >θ xt,r′

xt,r =
∑

c

at,cvc,r

Similarly, here for a ranked pair, we can define the natural parameter as:

xt,r − xt,r′

We can learn the parameters using maximum log likelihood as well. Following the

procedure in §7.2, we need to calculate

∂

∂θ
(xt,r − xt,r′)

This falls out as

∂

∂θ
xt,r −

∂

∂θ
xt,r′

We can also rank entity tuples for each relation if we care about the top ranked

entity tuples for each relation. Here the natural parameter is

xt,r − xt′,r

This relation based ranking is used in our evaluation §7.3.4. We can optimize the

parameters using stochastic gradient descent, due to the large number of ranked

pairs.

7.3 Evaluation

In this section, I discuss evaluation of our universal schema approach for relation

extraction.

90

Our work aims to predict new relations that hold for each entity tuple. From

the column perspective, this is to discover new instances for each relation. From the

row perspective, this is to predict new relations for each entity pair. We currently

concentrate on binary relations.

7.3.1 Data

Our approaches for relation extraction usually involve two types of data, text

data and structured data. Following this, in universal schema, we use 20 years of

New York Times articles [Sandhaus, 2008] as our text corpus, and Freebase [Bollacker

et al., 2008] as our structured data. Freebase covers a set of entities and the relations

among them. Part of the data is obtained from Wikipedia infoboxes, and part is from

human annotation. More details of the text data and preprocessing can be found in

§2.7.

As described in §2.7, we perform named entity recognition and dependency parsing

over the NYT documents. We extract each entity pair occurring in a sentence as

a candidate tuple, the dependency path that connects the two named entities as

the surface pattern to denote the relation between an entity pair. This results in

approximately 400,000 entity pairs and 8,000 relations.

As we mentioned many times in this thesis, many approaches discussed here re-

quire linking entities from a text corpus to a knowledge base §2.8. Here for universal

schema, we perform entity linking as described in §2.8. We leave integration of uni-

versal schema with entity resolution as a future topic.

After linking entity mentions in NYT data to Freebase entities, we add Freebase

relations that hold for entity pairs appearing in the text corpus. This adds 116

relations to our universal schema.

91

7.3.2 Evaluation Measures

The main challenge is that we do not have ground truth for the whole matrix. For

example, for each entity tuple, we do not have the whole set of relations that hold.

Our solutions are two-fold: one is to use the knowledge base, and the other is to use

data from human annotation. When we care about rankings, we can use measures

from the information retrieval (IR) community. Consider target applications, such

as question answering. Usually a question can be converted to a relation, and we

are interested in the top ranked entity tuples for this particular relation. We employ

ranking based training objective to rank entity tuples for a relation. Our approach

can rank entity pairs not only for relations defined in the knowledge base, but also

for relations defined by surface patterns.

In terms of relation prediction, we can employ classification based measures. We

predict relations that hold for one entity tuple and measure whether the predictions

are correct. Precision, recall and F1 measures could be used. This allows us to

compare against previous distant supervision based approaches. Distant supervision

systems model probabilities of relations in KB conditioned on the observed surface

patterns. Instead, our approach jointly models the target relation types and the

surface patterns. You can see that the distant supervision approach is a discriminative

model and our model is a generative model.

In our experiments, we split the data into training and test as follows. The NYT

articles after 2000 are used as the training corpus, and articles from 1990 to 1999 as

the test corpus. We also split Freebase facts 50/50 into train and test facts, and their

corresponding tuples into train and test tuples. Train tuples are linked to training

corpus, and test tuples are linked to test corpus. We evaluate our predictions for

Freebase relations and sampled surface patterns.

92

7.3.3 Baselines

We compare different variations of our models, the neighbor model (N), the matrix

factorization model (F), the combined factorization and neighbor model (NF), and

the combined factorization, neighbor and entity model (NFE). To get the ranking list

for each relation, we maximize the ranking based log likelihood §7.2.4.

We compare our results against distant supervision approaches for relation extrac-

tion, including DS [Mintz et al., 2009], Unsup [Yao et al., 2011], and MIML [Surdeanu

et al., 2012].

7.3.4 Ranking based Evaluation

This ranking based evaluation is inspired by the TREC competitions and work in

information retrieval [Manning et al., 2008]. That is, we treat each relation as a query

and receive the top 1000 (run depth) entity pairs from each system. Then we pool the

top 100 (pool depth) answers from each system and manually judge their relevance

or “truth.” This gives a set of relevant results that we can use to calculate recall and

precision measures. In particular, we can use these annotations to measure an average

precision across the precision-recall curve, and an aggregate mean average precision

(MAP) across all relations. This metric has shown to be robust and stable [Manning

et al., 2008]. In addition, we also present a weighted version of MAP (weighted MAP)

in which the average precision for each relation is weighted by the relation’s number

of true facts.

Our evaluation deviates from previous work in distant supervision. Evaluation in

previous work (a) combines the results from several relations in a single precision recall

curve, and (b) uses held-out evaluation to measure how well the predictions match

existing Freebase facts. This has some disadvantages. First, when aggregating across

relations, results are often dominated by a few frequent relations, such as containedby,

providing little information about how the models perform across the board. Second,

93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Averaged 11-point Precision/Recall

N
F

NF
NFE

Figure 7.1. Averaged 11-point precision recall curve for surface pattern relations.

evaluating with Freebase held-out data is biased. For example, we find that frequently

mentioned entity pairs are more likely to have relations in Freebase. Systems that

rank such tuples higher receive higher precision than those that do not have such

bias, regardless of how correct their predictions are. Our evaluation can aggregate

per-relation comparisons to establish statistical significance, for example via the sign

test.

Also note that while we run our models on the complete training and test set,

evaluation is restricted to a subsampled test set of 10,000 tuples.

Table 7.1 summarizes our results. We can see that our approach using variations

of factorizations (the last three columns) can achieve better performance than distant

supervision approaches.

Figure 7.1 presents a comparison of our models with respect to 10 surface pattern

relations. These relations were chosen according to what we believe are interesting

questions not currently captured in Freebase. We again see that learning a latent

representation (F, NF and NFE) from additional data helps quite substantially over

the N model.

94

Table 7.1. Average and (weighted) Mean Average Precisions for Freebase relations
based on pooled results. The # column shows the number of true facts in the pool.
NFE is statistically different to all but NF and F according to the sign test. Bold
faced are winners per relation, italics indicate ties.

Relation # DS Unsup MIML N F NF NFE
person/company 103 0.67 0.64 0.70 0.73 0.75 0.76 0.79
location/containedby 74 0.48 0.51 0.54 0.43 0.68 0.67 0.69
author/works written 29 0.50 0.51 0.52 0.45 0.61 0.63 0.69
person/nationality 28 0.14 0.40 0.13 0.13 0.19 0.18 0.21
parent/child 19 0.14 0.25 0.62 0.46 0.76 0.78 0.76
person/place of death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86
person/place of birth 18 0.78 0.75 0.82 0.50 0.83 0.81 0.89
neighborhood/neighborhood of 12 0.00 0.00 0.08 0.43 0.65 0.66 0.72
person/parents 7 0.24 0.27 0.58 0.56 0.53 0.58 0.39
company/founders 4 0.25 0.25 0.53 0.24 0.77 0.80 0.68
film/directed by 4 0.06 0.15 0.25 0.09 0.26 0.26 0.30
sports team/league 4 0.00 0.43 0.18 0.21 0.59 0.70 0.63
team/arena stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08
team owner/teams owned 2 0.00 0.50 0.70 0.55 0.38 0.61 0.75
roadcast/area served 2 1.00 0.50 1.00 0.58 0.58 0.83 1.00
structure/architect 2 0.00 0.00 1.00 0.27 1.00 1.00 1.00
composer/compositions 2 0.00 0.00 0.00 0.50 0.67 0.83 0.12
person/religion 1 0.00 1.00 1.00 0.50 1.00 1.00 1.00
film/produced by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33
MAP 0.32 0.42 0.56 0.45 0.61 0.66 0.63
Weighted MAP 0.48 0.52 0.57 0.52 0.66 0.67 0.69

95

7.3.5 Classification based Evaluation

To evaluate Freebase predictions, we randomly sample approximately 2,000 entity

pairs from test set, and obtain ground truth labels from Freebase and human annota-

tions. We allow each entity pair to have multiple relation types. We report precision,

recall and F1 on the test set. This evaluation considers the traditional relation ex-

traction task, where predicting relations of entity pairs are important. The ranking

based evaluation (§7.3.4) puts more emphasis on ranking entity pairs with respect to

each relation.

The first four rows of Table 7.2 shows the performance of variations of our models.

We can see that the matrix factorization model (F) performs better than the neigh-

bor model (N). The combined model performs significantly better than the matrix

factorization and the neighbor model with p << 0.05.

7.3.6 Integrating entity types

Previous work has shown that incorporating entity types can increase relation

extraction accuracy [Roth and Yih, 2007, Yao et al., 2010]. Here we demonstrate this

is also true in universal schema. We use universal schema to predict entity types,

including Freebase entity types and surface patterns denoting unary relations. Then

we use these predicted types as features in our experiments. We compare against

relation extraction models based on universal schema, the matrix factorization model

(F), the neighbor model (N), and the combined matrix factorization and neighbor

model (F+N). Based on the combined model, we add predicted entity types as fea-

tures(F+N+Unary). This is different from the entity model, where we learn low

dimensional embeddings for entities and relations. Our previous experiments show

that entity models do not increase the performance, so we discard entity model for

this set of experiments.

96

System Precision Recall F1
DS 0.619 0.540 0.577
N 0.591 0.611 0.601
F 0.605 0.637 0.621

F+N 0.647 0.640 0.643
F+N+NER 0.604 0.622 0.622

F+N+Unary 0.663 0.672 0.667

Table 7.2. Performance on predicting Freebase relations in universal schema.
+Unary indicates adding predicted pattern based types as features. +Unary(FB)
for adding predicted Freebase types

We design features as conjunctions of entity type combinations and relations,

(type1, type2, relation), where type1 ranges in all possible predicted types for the

first entity argument, likewise for type2. For example, for cell (Gordon Bunshaft

& Lever House, architect/structures designed), predicting “Gordon Bunshaft” as an

architect, and “Lever House” as a location, we add one feature (architect, location,

architect/structures designed). Intuitively, this feature type captures the selectional

preferences of relations—particular relations only hold between specific argument

types.

We perform experiments on the same train and test data as used in Riedel et al.

[2013]. This dataset is obtained from NYT articles and Freebase. The same annotated

data set is used as ground truth for evaluation.

We allow each entity pair to have multiple relation types. We report precision,

recall and F1 on the test set. Table 7.2 shows the performance of all the systems.

When incorporating our entity type predictions into the combined model, F1 increases

by approximately 2.5%. We also perform experiments replacing entity types with

Stanford NER tags [Finkel et al., 2005], and the F1 score decreases. Comparing the

neighbor model with our best model, F1 increases by 6.6%, that corresponds to a

16.5% error reduction.

97

Relation Two argument types
architect/structures designer → home
sports team/league team → game/competition
team owner/teams chairman → team

broadcast/area served news → suburb
military person/conflicts senator → movement

Table 7.3. Selectional preferences learned by our model

To better understand the effect of using entity types, we rank the features for some

Freebase relations by their weights. Table 7.3 lists the top ranked type combinations

for some of the relations. We can see that our model learns reasonable selectional

preferences.

7.4 Exploration on Facets of Universal Schema

In this section, we explore the characteristics of universal schema on a large scale

dataset, ClueWeb. ClueWeb is a data set of crawled web pages1. We use ClueWeb12

data. We apply our NLP tools implemented in Factorie [McCallum et al., 2009] to

process the web pages. We also take advantage of a corpus that automatically anno-

tates entities from Freebase in these web pages [Gabrilovich et al., 2013]. We extract

sentences that contain at least one entity mention from each page, and parse these

sentences using a transition parser. For two entity mentions occurring in the same

sentence, we extract the dependency path as patterns that expresses their relation-

ship. Since the entity mentions are linked to Freebase entities, we collapse multiple

mentions of the same entity pair as one row in our input matrix. We also add Freebase

relation types if one pair of entities occurs in Freebase.

1http://www.lemurproject.org/clueweb12.php/

98

#Row #Col #Cell #Relation
2,690,096 9,289 5,604,691 2,036

Table 7.4. Statistics of processed data.

train 1/3 2/3 3/3
F1 0.196 0.209 0.234

Table 7.5. Performance variations of relation extraction as the amount of training
data increases.

We vary different parameters, for example, the amount of training data, the num-

ber of dimensions, and the initialization methods, to test how these factors affect the

performance.

7.4.1 Does more training data lead to better performance?

Here we test whether more data will increase the performance for relation extrac-

tion, i.e. predicting relation types for entity pairs. We process the ClueWeb data and

collect approximately 5M entity pairs. We filter out entity pairs with only 1 pattern

since our approach counts on co-occurrences to learn good embeddings. Table 7.4

shows the final statistics for the whole dataset.

We keep the most frequent 300 Freebase relations as our target labels for relation

extraction. In other words, we classify the entity pairs into these 300 categories. We

note that training data is limited for other Freebase labels. We split the documents

into train and test. We use one third, two thirds and all of the training data. We test

on the same set of held-out documents. Table 7.5 lists the performance of different

amounts of training data. We can see that as training data increases, the F1 increases.

99

#comp. 10 50 100 200 500 1000
F1 0.061 0.212 0.243 0.250 0.261 0.259

Table 7.6. Performance variations of relation extraction as the number of dimensions
varies.

0.258 0.243 0.241

Table 7.7. Performance variations of relation extraction for different initializations.

7.4.2 Does the number of components matter?

We vary the number of components for the embedding vectors. Experiments show

that in some ranges, from 100 to 500, the performance does not vary much, and a

larger number of components leads to slightly better performance (see Table 7.6). The

performance does not increase when increasing the number of components to 1000.

Using fewer dimensions leads to worse performance. Usually we use 100 dimensions.

7.4.3 Does the non-convex objective affect the performance?

The objective is not convex. If we split the parameters into row vectors and

column vectors, the objective is convex with respect to each group. Here we measure

the effect of initialization on the final performance. We initialize the parameters with

samples from a uniform distribution between 0 and 0.01. In different runs, we use

different random seeds. As seen in Table 7.7, the performance varies with different

random initializations. One can try different random initializations and average the

performance. In these experiments, we use 100 components.

7.4.4 How does coreference affect the final performance?

Since we have annotations for linking Freebase entities to their mentions in ClueWeb,

we can compare this entity linking against simple string match for relation extrac-

tion. We run universal schema on the same set of triples, except that we collapse

100

string match entity linking
0.183 0.245

Table 7.8. Performance variations of relation extraction as we use different coref-
erence approaches.

these triples using entity linking and string match separately. We find that the ma-

trix created from string match is more sparse. We test on the same set of entity pairs.

Table 7.8 lists the results. We can see that coreference does boost the performance.

One reason why string match performs worse is that we link each entity pair to all

possible Freebase relations, since one entity surface string may correspond to multiple

Freebase entities. In this case, the evidence may not be sufficient to predict all these

relations.

7.4.5 Can our approach discover implications among relations?

In this section, we measure the asymmetric implications among relations. For

example, we can predict that “biologist” implies “scientist,” but not in the other

direction. In other words, comparing against each other, “biologist” is a narrow

relation and “scientist” is a broad relation. There is no standard way to measure

this, so we employ different measures to uncover the mysteries of implications.

Directional similarity. To measure this asymmetric implications, we compute di-

rectional similarity for each pair of low dimensional vectors using average precision

(AP) [Kotlerman et al., 2010]. This similarity measures the directional implications

of two vectors, a vector u of a narrow relation and a vector v of a broad relation.

This similarity originates from the average precision in information retrieval. Each

component in u is seen as a retrieved document in information retrieval, and compo-

nents in v correspond to a set of relevant documents. Then we rank the components

of u and calculate average precision. The similarity is calculated as:

101

implication similarity
daughter =⇒ parents 0.485
parents =⇒ daughter 0.416
biologist =⇒ scientist 0.342
scientist =⇒ biologist 0.268

soccerteam.player =⇒ team.player 0.260
team.player =⇒ soccerteam.player 0.233

pitch for =⇒ be player for 0.248
be player for =⇒ pitch for 0.154

Table 7.9. Examples of asymmetric implication pairs.

AP(u =⇒ v) =

∑
c∈F (u) P (c)rel(c)

F (u)

P (c) =
#components before c included in v

rank(c, F (u))

rel(c) = 1− rank(c, F (v))

F (v) + 1
if c ∈ F (v)

where P (c) is similar to precision and rel(c) is a relevance score. If c does not occur

in v, rel(c) is 0.

Since our vectors do not have components with value 0.0, we cut the absolute

values of components below a threshold 0.1 as 0.0. In Table 7.9 we show some

example pairs. In these pairs, one directional similarity is larger than the other. This

shows that our approach captures asymmetrical implications among relations.

In order to get an overview of all the embedding vectors, we show some example

broad relations and the top relations that can imply them in Table 7.10. We can see

that our approach learns accurate implications.

Turned-on patterns. Besides directional similarity, we employ a method that

is simple and straightforward to measure whether the embedding vectors capture

102

broad narrow
person.parents be daughter of, daughter of, son of, be son of,

bear to, father, grandson, dad, descendant of, mother
place of birth born in, born on #TIME# in, born on, born at,

born near, native of, be originally from,
grew up in, places lived

play for make debut for, start for, be player for,
draft by, player.team, sign contract with,
score for, score goal for, pitch for,
add for, hit for, trade to

Table 7.10. Top narrower relations for some broader relations.

the asymmetry between two relations. Our hypothesis is that we can predict more

relations based on one observed broad relation, whereas we can predict fewer relations

based on observed narrow relation. We name the phenomenon of predicting relations

based on observations as “turn on.” The intuition is that broad relations interact with

more other relations and the embedding vectors encode these interactions. In other

words, the components of these embedding vectors have more information of other

relations, whereas components of narrow relation vectors have little information of

other relations. At prediction time, broad relations will trigger more other relations.

After sampling tuples that have only one observed relation, we check, for each

observed relation, how many relations they turn on. We show some observed relations

and the number of relations they turn on in Table 7.11. Similar relations appear in

one row. Each row contains one broad relation and some narrow relations. We can

see that broad relations turn on more other relations, as relation “player” turns on

451 relations; whereas narrow relations turn on fewer other relations, as “pitcher”

turns on 266 relations. This verified our hypothesis and show that our approach can

make asymmetric predictions.

The peakiness and norm of vectors. We also employ L2 norm and L1 norm

to measure the peakiness of a vector. The larger the ratio of L2 over L1 is, the

103

broad narrow
politician 634 governor of 446, candidate 410, representative 366
professor 326 economist 254, physicist 243, historian 314, chemist 210
child of 447 daughter of 135, son of 188
player 443 guard 283, pitcher 270, quarterback 290

Table 7.11. The number of relations predicted as true based on only one observed
relation. Broad relations (i.e., “player”) turn on more predictions; narrow relations
(e.g., “pitcher”) turn on fewer predictions.

more peaked the vector is. We find that the ratios of different relations do not vary

much, ranging from 0.053 to 0.059. This measure cannot tell us more information

about vectors of different relations. L2 norm itself is more informative. Comparing

L2 norm of the vectors, we find that broad relations have larger norms. For exam-

ple, Freebase relation “location/contains” has larger norm than the Freebase relation

“location/capital” and the textual pattern “capital of province.” We have similar ob-

servations for several other pairs of broad and narrow relations, including “scientist”

vs “biologist,” “parent of” vs “daughter of”, and “leader of” vs “president of.”

The similarity between vector vt and vo. Here we study the similarity between

a tuple vector and its single observation vector. We call the tuple vector as vt and

the observation vector as vo. Our hypothesis is that for an observed narrow relation,

vo is more similar to vt than an observed broad relation. We use a synthetic example

to explain the intuition behind this hypothesis. Theoretically, when a tuple has one

single observation, after training, vo should be close to vt since the training objective

is to maximize the probability of this observation. Assume that we only have two

relations and two tuples in our data set, relation n occurs with the first tuple and

relation b occurs with the second tuple. After training, each of these two relation

vectors (vn and vb) is similar to their corresponding tuple vector. Now we add a

third tuple that has two observed relations, relation b and relation r. We retrain the

model using all three tuples. The vector vb should deviate from the previous one since

104

relation b co-occurs with another relation r in the third tuple, whereas the vector vn

should stay the same.

In our experiments, we select tuples that have only one observation for analysis.

We calculate the similarity between vt and vo for each tuple. To study the similarity

differences of narrow and broad relations, we average the similarities for each relation.

We find that the similarities of narrow relations, especially the fine-grained ones, are

higher than the similarities of broad relations. For example, the average similarity

of specific relation “receive (PhD/MS/BS) degree from is 0.985, and the average

similarity of the relatively broad relation “graduate of is 0.938. In another example,

the similarity of “CEO of is 0.943, and the similarity of “president is 0.880. The

relation “president is broad since it can represent “leader of a country, “leader of a

company, and “leader of some organization. In an extreme case, the average similarity

of the pattern “NNP is 0.629. This pattern represents a broad relation stating that

there exists a noun phrase between the two entities of a tuple.

7.4.6 Error Analysis

In this section, we take a close look at predictions made by our matrix factorization

model (F).

We mainly look at predicted instances of Freebase types since we can compare

them against those predicted by other distant supervision systems. We group the

errors into several categories.

Noisy training data. When building our input matrix, we link Freebase en-

tities to their mentions in the text corpus. Each relation instance has multiple

relation mentions, i.e., multiple sentences that mention the entity pair. We know

that not all sentences mentioning the entity pair express the relationship between

them §3.2. For example, there are few occurrences of relation expressions for some

Freebase relation types, such as book/work/written subject. This relation type may

105

have entity pairs like (Woodstock, New York) and (Vietnam War, Vietnam). In

Freebase, there exists one piece of work named “Woodstock,” and it is “a 1970

American documentary of the watershed counterculture Woodstock Festival that

took place in August 1969 at Bethel in New York.” However, in our text corpus,

these two entities usually are two locations. Our system predicts few instances

for relation type book/work/written subject. Similar errors occur for relation type

book/edition/place of publication.

Confusion among co-occurring relation types. Some relation types usually

co-occur with each other and this leads to inaccurate predictions. For example, the

movie “Wild Wild West” has director and producer “Barry Sonnenfeld.” This results

in predicting film/directed by, film/written by, and film/produced by when in fact

only one of them is true.

Inaccurate dependency paths. Since we mainly employ a dependency path

between two entities to represent the relation between them, sometimes incorrect path

leads to wrong predictions. For example, in sentence “She was born in Morristown,

the daughter of George W. Jenkins”, we incorrectly extract the path “daughter of”

between “Morristown” and “George W. Jenkins.” This results in wrong prediction

person/parents for (Morristown, George W. Jenkins).

Ambiguous patterns. Some patterns are ambiguous. Consider “home of” in

these three clauses: “Jive Records, home of the Backstreet Boys,” “Candlestick Park,

home of the San Francisco Giants,” and “Monticello, the home of Thomas Jefferson.”

Our system is inclined to predict two relation types, music/record label/artist and

sports/facility/teams when observing the pattern “home of.” We do not learn the

sense “home of a person” from the training data. Entity types can disambiguate

these three senses.

Lower score for correct relation types. A large proportion of errors belong

to this category. That is, sometimes we can predict the correct relation type with the

106

highest score when comparing against other types, but the absolute value is below our

global threshold. For example, person/nationality ranks first for entity pair (Maya

Usova, Russia), but the score is below the global threshold 0.5.

Insufficient evidence. We do not observe sufficient occurrences of some pat-

terns. Or sometimes we observe many occurrences of these patterns, but we do not

observe many co-occurrences of these patterns with other patterns or Freebase re-

lations. Considering the entity pair (Mr. Jones, Columbia College), there exists a

pattern “graduate of” between them. Ideally, we should predict the person/company

relation type for this pair. However, because “graduate of” usually occurs by itself,

not so often co-occurring with other patterns or Freebase types, we miss the relation

type person/company. Adding more data may lead to co-occurrences of this pattern

with other patterns and Freebase types.

We categorize the errors more specific to ClueWeb data as well.

Missing labels in Freebase. Freebase is not complete. Some facts predicted by

our approach are indeed correct, though missing from Freebase. For example, we pre-

dict many instances for Freebase relation fictional universe.fictional character.parents,

including pair (Adam/m.09 c5v, Creator/m.0f5d2). In another interesting example,

we predict the sibling relationship for entity pair (Guan Yu, Liu Bei). These two

persons are characters occurring in Chinese novels and they are “blood brothers.”

Incorrect entity linking. Considering entity pair (Kennedy, Rose), “Rose” is

incorrectly linked to rose(flower). Actually “Rose” is the first name of JF Kennedy’s

mother. Our prediction person/parents is correct.

Short patterns. Usually short patterns are extracted for entity pairs occur-

ring in ClueWeb. These patterns are ambiguous and are not strong indicators for

particular relations. For example, patterns “at,” “of” for predicting relation institu-

tion/parent institution. Entity types and more context features can help.

107

7.5 Related Work

Our task is similar to collaborative filtering. We only have positive data; that is,

we only observe what relations hold for an entity pair. This is analogous to positive

only collaborative filtering, and researchers have developed different models, including

Bayesian personalized ranking [Rendle et al., 2009, Rendle and Schmidt-Thieme, 2010]

and different weighing strategies [Pan and Scholz, 2009, Hu et al., 2008].

Co-clustering and matrix factorization approaches have been employed in rela-

tion extraction. Bollegala et al. [2010] employ co-clustering to find clusters of entity

pairs and patterns jointly. Infinite Relational Model [Kemp et al., 2006] provides a

framework to discover latent structures jointly for an n-dimensional matrix, and each

dimension has a latent structure. Takamatsu et al. [2011] use probabilistic matrix fac-

torization as a dimensionality reduction technique to discover relations. Their goals

are to cluster patterns whereas our aim is to predict the source patterns.

Recently, factorization models have gained much more attention in analyzing rela-

tional data. In this section, we take several factorization models as representatives to

analyze their differences, as listed in Figure 7.2. These models are different in terms

of how they represent relations.

The first model represents each relation as a matrix whereas the remaining mod-

els represent each relation as a vector. The factorization of Yago [Nickel et al., 2012]

is an example of the first model. There are also variations of the first model, for

example, factorizing matrices that represent relations again into low dimensional vec-

tors [Jenatton et al., 2012]. The disadvantage of the first model is that the number

of parameters is large compared with representing a relation as a vector. This model

is an example of factorizing tensor data.

The second model is another typical tensor factorization model [Kolda and Bader,

2009, Kang et al., 2012]. Kolda and Bader [2009] cover most of the methodolo-

gies and applications. Among them, the CANDECOMP/PARAFAC (CP) method

108

is mostly used for decomposing an entity/entity/relation matrix. The authors also

introduce many applications for tensor decomposition. The most relevant to us are

the applications in text mining and web mining. For example, researchers employ

a user/query/page tensor for web page recommendation [Sun et al., 2005], and a

page/page/anchor tensor for analyzing web page links [Kolda et al., 2005]. Miettinen

[2011] employ boolean tensor factorizations for entity/entity/relation data. However,

they work with a small data set, and mostly concentrate on exploring the algorithm

with synthetic data other than using it for predictions.

The third model is similar to the second tensor factorization model. The only

difference is that it uses a different way to calculate a score for each triple. The

second tensor factorization model employs the tensor product of three vectors, i.e.,

the vectors for two entities and the vector for the relation. The third model makes

the assumption that adding the first entity vector and the relation vector should lead

to a vector that is close to the second entity vector [Bordes et al., 2013, Weston et al.,

2013]. In other words, the relation vector translates the first entity vector into the

second entity vector. The objective is to minimize the distance between the second

entity vector and the sum of the first entity and relation vectors. In experiments,

they show that this model can rank the first or the second entity accurately given the

other two elements in a triple.

Our model is different from all the three models in that we embed each entity

pair, instead of each entity, as a vector. Similar to the second and third model, we

represent each relation as a vector instead of a matrix. It is advantageous to represent

an entity pair as a vector over to represent each entity as a vector. Only modeling the

interaction of individual entities with relations fails to capture that a relation occurs

between an entity pair, not individual entities. Representing each entity as a vector

breaks the interactions between two entities.

109

#Parameters References

e x k + r x k2
Factorizing YAGO, WWW12
Semantic Matching Energy,

Machine Learning 2013

e x k + r x k Canonical Decomposition, Kolda
and Brett W. Bader, SIAM09

e x k + r x k Translation model, Bordes et al.,
NIPS13

p x k + r x k Universal Schema, NAACL13

Figure 7.2. Different factorization models for relation extraction. They are different
in terms of how they model relations and entities. The first model represents relations
as matrices. The remaining models represent relations as vectors. All the first three
models represent each entity as a vector. The fourth model, our factorization model,
represents each entity pair as a vector. Except for the first model, all the models are
scalable.

Our approach is also related to learning low-dimensional embeddings of high-

dimensional NLP data. This topic has been of both long-standing [Brown et al.,

1992, Bengio et al., 2003, Collobert and Weston, 2008, Blitzer et al., 2004] and in-

creasing recent interest [Socher et al., 2010, Mikolov et al., 2013]. Many of these

works have been for the embedding of individual words [Brown et al., 1992, Bengio

et al., 2003, Blitzer et al., 2004, Mikolov et al., 2013]. There are also embeddings

for structured natural language processing, such as part-of-speech tagging, phrase

chunking, named entity recognition, semantic role labeling [Collobert and Weston,

2008], and parsing [Socher et al., 2010]. Our work is the first to use “open domain”

universal schema as relation and entity types by leveraging natural language inputs.

7.6 Conclusion

We present universal schema for relation extraction. Universal schema contains

surface patterns as relations, as well as pre-defined types from structured sources as

relations. By predicting missing tuples for surface pattern relations we can populate

110

a knowledge base without any labelled data, and answer questions not supported by

the structured schema alone. By predicting missing tuples in the structured schema

we can expand a knowledge base of fixed schema; this only requires a set of existing

facts from this schema. Crucially, by predicting and modeling both surface patterns

and structured relations simultaneously we can improve performance. We show this

experimentally by contrasting a series of the popular distant supervision models to our

collaborative filtering models that learn low dimensional embeddings across surface

patterns and structured relations. Moreover, our models are computationally efficient,

requiring less time than comparable methods, while learning more relations.

111

CHAPTER 8

QUESTION ANSWERING FROM FREEBASE

A common strategy in question answering is to convert a question to a relation

triple, with one or more known arguments and one missing argument. For example,

“what school did Sir Ernest Rutherford go to?” would be converted to “go to (Sir

Ernest Rutherford,)” with the second argument missing. The main challenge in

question answering is to understand the semantic meaning of a question, since dif-

ferent expressions can represent the same relation. In our example, we need to know

“go to (school)” bears the same meaning as “attend (school/university/college),”

and indicates Freebase relation “person.education.institution.” My research aims to

discover semantic meaning expressed in natural language patterns and, if applicable,

align them with pre-defined relation types. Question answering serves as a benchmark

task for our work.

8.1 Question Answering System

We test our approach on question answering using Freebase, a well-known knowl-

edge base. We do so by extracting answers from Freebase, instead of from other

sources, like web pages. We choose this task since there exists a research dataset

commonly used as bench mark, allowing us to compare our results with those previ-

ously published using this data. The main challenge here is to map a question to one

of the relation types defined in the knowledge base, i.e., mapping “go to (school)” to

the Freebase relation “person.education.institution.”

112

Yao and Durme [2014] approach this task as follows. First they parse the question,

identifying the named entities, i.e., “Sir Ernest Rutherford” in our example, and note

them as question topics. Second, they search question topics in the knowledge base,

i.e., the Freebase entity representing “Sir Ernest Rutherford.” Third, they retrieve

all the entities that are related to question topics, i.e., all Freebase entities that

are related to “Sir Ernest Rutherford”, and rank these candidate entities to obtain

the answers to the question. An alternative approach to question answering taken

by Bernat and Liang [2014] is to parse a question into a logical form and execute the

form on the knowledge base. For both of these approaches, we need to map a relation

in a question to a relation type defined in the knowledge base, and then use this

mapping to either rank candidates or to rewrite the logical forms. Because universal

schemas learn embeddings for patterns and relations from knowledge bases, we can

learn high quality mappings that we can evaluate using this question answering task.

To do so, we follow the approach taken by Yao and Durme [2014]. We parse

each question and extract noun phrases as named entities. We search these entities

in Freebase and extract all Freebase entities related to them as candidate answers.

During training, we train a classifier from questions and their answers, considering

answers as positive examples and other candidates as negative examples. We use

combined features from a pair of question and candidate answer. From each question,

we extract entity mentions, the question word and the question focus. Usually the first

word of a question is the question word. “college” is the question focus in our example.

Please refer to Yao and Durme [2014] for definitions. For each entity mention in a

question, we extract the dependency path between the question word and this entity

mention. We also extract the trigger words from each question, i.e., verbs and certain

nouns such as “leader,” “capital” and so on. Table 8.1 lists some example features.

The first two features measure whether the candidate has the correct entity type.

The third and fourth features measure selectional preferences, i.e., whether a relation

113

Feature Example
qword:ctype what:education.institution
qfocus:ctype school:education.institution

qfocus-qtype:relation school-person:person.institution
qtype:ctype:trigger person:institution:go

pattern:relation go to:person.institution
pattern-qtype:relation go to-person:person.institution

trigger:relation go:person.institution
trigger-qfocus:relation go-school:person.institution
trigger-qtype:relation go-person:person.institution

rank(relation—pattern) rank1 (for person.institution)

Table 8.1. Combined features from question and candidates. ‘ctype’ stands for
entity types of a candidate. ‘qtype’ stands for entity types of a question topic. ‘qword’
and ‘qfocus’ are similar to those defined in [Yao and Durme, 2014]

or a trigger word can take particular entity types as its arguments. The last feature

measures whether a pattern in a question aligns well with a Freebase relation that

answers the question. There are also some features involving triggers.

We run universal schema on ClueWeb § 7.4, using all data as training. We ob-

tain lower dimensional embeddings for patterns and Freebase relations, and employ

ranking based on the similarity between the two vectors as our features.

8.2 Experiments

We set up experiments using a question answering dataset WebQuestions [Bernat

and Liang, 2014]. This dataset has a collection of questions from web suggestions

and each question has annotated answers from Freebase. We split the dataset into

train, development and test set as Yao and Durme [2014]. We tune parameters on the

development set and report results on the test set. Table 8.2 lists the results. We can

see that our F1 performance is comparable with the best result reported to date (the

last row), and F1 increases when adding universal schema based features. Compared

against the JHU system, our approach has higher precision but lower recall. Our

114

System Prec Rec F1
Stanford - - 0.430

JHU 0.388 0.458 0.420
-UnivSchema 0.546 0.303 0.390
+UnivSchema 0.578 0.332 0.422

Table 8.2. Performance on WebQuestions: a question answering data set annotated
with answers from Freebase.

lower recall is partly due to the fact that we do not have rankings for all the patterns

that occur in the questions.

8.2.1 Error Analysis

While analyzing the errors our system made, we notice that some errors are caused

by incorrectly parsing the questions. For example, in question “who is Jamie Little

engaged to,” our system does not recognize “Jamie Little” as an entity. Some errors

are due to ambiguous named entities in questions. For example, in the question “what

does Janelle Brown work on,” the named entity “Janelle Brown” could be linked to

several Freebase entities. In some scenarios, we fail to extract answers due to in-

correct rankings or no rankings for Freebase relations. On one hand, some patterns

are missing in ClueWeb data. On the other hand, some patterns are ambiguous.

For example, in ClueWeb data, the pattern “be part of” often co-occurs with rela-

tion “organization.parent.child,” whereas in question answering, this pattern actually

indicates relation “location.location.containedby.” Noisy training data also lead to

incorrect predictions. One question in the training data asks about songs by “bob

dylan.” Bob dylan has many songs, but the training data only labels his most famous

song as positive.

115

8.3 Related Work

There are several works with results on WebQuestions data. The main differences

between previous work and our own are how questions are translated to answers. Yao

and Durme [2014] learn mappings from questions to relations by aligning relation

mentions in ClueWeb data with relations from Freebase. They rank Freebase rela-

tions for each question by learning probabilities of words in questions given Freebase

relations. Then they employ the ranking as features, such as rank-in-top-1, rank-in-

top-3. We also use ranking based features. Instead of obtaining ranking probabilities

from word given relations, we use the similarity between the embeddings of a question

and a relation as our ranking criteria. One interpretation of our approach is that we

learn probabilities of patterns given Freebase relations, instead of individual words.

Bernat and Liang [2014] learn logical derivations from question answer pairs. They

translate a question into a logical formula, and execute the logical formula on Freebase

to extract answers for a question. Our system does not require logical representation.

Fader et al. [2014] map a question to answers using a set of operators, including

parsing, paraphrase, query rewrite, and execution. The process is a series of states

connected by these operators. A single step is to apply an operator to a state and

select a successor state since an operator can output multiple states. There are many

derivations from a question to its answers and their algorithm learns to rank the

derivations. Their systems does not perform better than [Bernat and Liang, 2014] on

WebQuestions.

Bordes et al. [2014] embed questions and answers to a joint low dimensional space,

so that vectors for correct answers are close to the vector of the question. They

obtain better results on WebQuestions. Different from our approach, they use more

information sources, such as the paraphrases obtained from Wikianswers.

116

8.4 Conclusion

We employ universal schema to learn associations of a natural language pattern

to a defined relation type. Experiments demonstrate that on question answering, the

associations learned by our approach, i.e., rankings of Freebase relations for a pattern,

leads to better performance than several baseline systems.

117

CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

Relation extraction plays an important role in information extraction, question

answering and many other natural language tasks. In this thesis, we represent natural

language patterns as syntactic dependency paths and explore several approaches for

inducing the semantic meanings of these relational patterns. We apply distant super-

vision to align relational patterns with pre-defined relation types, employ generative

models to discover semantic relation clusters that are not defined in knowledge bases,

and we present universal schema to represent both natural language patterns and re-

lation types in knowledge base. In universal schema, we employ matrix factorization

to learn semantic associations among patterns and relation types.

There is increasing interest in interpreting natural languages that express relations

between entities. Here we briefly list some challenging future directions.

Incorporate constraints. Assume that we know both Seahawks and Patriots are

football teams, we can constrain that the low dimensional vectors for these two entities

are close to each other. In modeling entities using universal schema, our objective

function is:
∏

e,r

pθ(xe,r)− ΛΘ||Θ||2

We can add one constraint term to the objective function:

∏

e,r

pθ(xe,r)− ΛΘ||Θ||2 −
∑

i,j

wi,jdist(ei, ej)

In this equation, we add the constraints that ei and ej should be close in the low

dimensional space. We can use any distance function between the vectors for two

118

entities. There is recent work on applying constraints to embeddings [Rocktäschel

et al., 2014], where they encourage embeddings to be consistent with facts and first

oder rules in a knowledge base.

Embeddings in low dimensional space. Many factorization models and deep

learning models aim to embed entities and relations into low dimensional space.

These low dimensional vectors can help build relationships between entities, iden-

tify paraphrases for relational expressions, answer natural language questions. There

are many interesting future directions to pursue, for example, exploring new embed-

ding models, applying learned embeddings to downstream tasks, and interpreting

these embeddings.

Use knowledge base in applications, for example, question answering. An-

swering questions by extracting information from Freebase is one simplified version of

the question answering task. We can still employ our system discussed in Chapter 8

to tackle question answering. One component needs to be modified is how to extract

candidate answers. With Freebase, the candidates are limited to entities in knowledge

bases. In question answering, we must extract candidates from data sources. We can

use information retrieval to extract the related passages first and extract candidate

entities from the related passages. Assume we have one candidate from one passage,

to rank the candidate, we need to extract a relation between this candidate and an

entity from the question. This relation is a substitute for the Freebase relation in

our system. In practice, this relation is usually not a pre-defined relation type, but

patterns or word sequences extracted from the candidate passage. Our challenge is

still to determine wether the relation extracted from the passage is a match for the

relation in question. Questions are part of the queries submitted to search engines.

Knowledge base can also help queries of entities. We can search the entity in the

knowledge base, extract the other entities that are related to the query entity, and

present the structured results to users.

119

Data integration. Universal schema can serve as a framework for various data inte-

gration tasks. For example, we could integrate facts from one schema (say, Freebase)

into another (say, the TACKBP schema1) by adding both sets of relations to the set

of surface patterns. Reasoning with this schema will mean populating each knowledge

base with facts from the other, and would leverage information in surface patterns to

improve integration.

1http://www.nist.gov/tac/2014/KBP/

120

BIBLIOGRAPHY

Amit Bagga and Breck Baldwin. Algorithms for scoring coreference chains. In The
First International Conference on Language Resources and Evaluation Workshop
on Linguistics Coreference, 1998.

Pierre Baldi, Søren Brunak, Yves Chauvin, Claus A. F. Andersen, and Henrik Nielsen.
Assessing the accuracy of prediction algorithms for classification: an overview.
Bioinformatics, 16:412–424, 2000.

Krisztian Balog and Robert Neumayer. Hierarchical target type identification for
entity-oriented queries. In Proceedings of CIKM, 2012.

Michele Banko and Oren Etzioni. The tradeoffs between open and traditional relation
extraction. In Proceedings of ACL-08: HLT, 2008.

Michele Banko, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and Oren
Etzioni. Open information extraction from the web. In Proceedings of IJCAI2007,
2007.

Kedar Bellare, Partha Pratim Talukdar, Giridhar Kumaran, Fernando Pereira, Mark
Liberman, Andrew McCallum, and Mark Dredze. Lightly-supervised attribute
extraction for web search. In NIPS workshop on Machine Learning for Web Search,
2007.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137–1155,
2003.

Jonathan Bernat and Percy Liang. Semantic parsing via paraphrasing. In Proceedings
of ACL, 2014.

David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993–1022, January 2003.

John Blitzer, Kilian Q. Weinberger, Lawrence K. Saul, and Fernando C. N. Pereira.
Hierarchical distributed representations for statistical language modeling. In Pro-
ceedings of NIPS, 2004.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge.
In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1247–1250, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-102-6. doi: http://doi.acm.org/10.1145/1376616.1376746.

121

Danushka Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. Relational duality: Unsu-
pervised extraction of semantic relations between entities on the web. In Proceedings
of WWW, 2010.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Pro-
ceedings of NIPS, 2013.

Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph
embeddings. In Proceedings of EMNLP, 2014.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–479, 1992.

Razvan C. Bunescu and Raymond J. Mooney. Learning to extract relations from the
web using minimal supervision. In ACL, 2007.

Andrew Carlson, Justin Betteridge, Richard Wang, Estevam Hruschka, and Tom
Mitchell. Coupled semi-supervised learning for information extraction. In Third
ACM International Conference on Web Search and Data Mining (WSDM ’10),
2010.

Richard A. Caruana. Multitask learning: A knowledge-based source of inductive bias.
In Proceedings of ICML, 1993.

Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David Blei.
Reading tea leaves: How humans interpret topic models. In Proceedings of NIPS,
2009.

Eugene Charniak and Micha Elsner. Em works for pronoun anaphora resolution. In
Proceedings of ACL, 2009.

Harr Chen, Edward Benson, Tahira Naseem, and Regina Barzilay. In-domain relation
discovery with meta-constraints via posterior regularization. In Proceedings of ACL,
2011.

Jackie Chi Kit Cheung and Xiao Li. Sequence clustering and labeling for unsupervised
query intent discovery. In Proceedings of WSDM, 2012.

Michael Collins. Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the Conference on
Empirical methods in natural language processing (EMNLP ’02), volume 10, pages
1–8, 2002.

Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. A generalization of prin-
cipal component analysis to the exponential family. In Proceedings of NIPS, 2001.

122

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of ICML,
2008.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research, 3:951–991, 2003. ISSN 1533-
7928.

M. Craven and J. Kumlien. Constructing biological knowledge-bases by extracting
information from text sources. In Proceedings of the Seventh International Confer-
ence on Intelligent Systems for Molecular Biology, pages 77–86, Germany, 1999.

Aron Culotta and Jeffery Sorensen. Dependency tree kernels for relation extraction.
In Proceedings of ACL, Barcelona, Spain, 2004. URL http://www.cs.umass.edu/

~culotta/pubs/tkernel.pdf.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual
entailment challenge. In Proceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment, 2005.

Asif Ekbal, Eva Sourjikova, Anette Frank, and Simone Paolo Ponzetto. Assessing
the challenge of fine-grained named entity recognition and classification. In Named
Entities Workshop, ACL, 2010.

Micha Elsner, Eugene Charniak, and Mark Johnson. Structured generative models
for unsupervised named-entity clustering. In Proceedings of NAACL, 2009.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering over
curated and extracted knowledge bases. In Proceedings of KDD, 2014.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books,
1998.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-
local information into information extraction systems by gibbs sampling. In Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguis-
tics (ACL ’05), pages 363–370, June 2005.

Michael Fleischman and Eduard Hovy. Fine grained classification of named entities.
In Proceedings of Coling, 2002.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Subramanya. FACC1: Free-
base annotation of ClueWeb corpora. 2013.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. pages 452–472, 1990.

Claudio Giuliano and Alfio Gliozzo. Instance-based ontology population exploiting
named-entity substitution. In Proceedings of Coling, 2008.

123

http://www.cs.umass.edu/~culotta/pubs/tkernel.pdf
http://www.cs.umass.edu/~culotta/pubs/tkernel.pdf

Benjamin Hachey. Towards Generic Relation Extraction. PhD thesis, University of
Edinburgh, 2009.

Aria Haghighi and Dan Klein. Coreference resolution in a modular, entity-centered
model. In Proceedings of HLT-NAACL, 2010.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman. Discovering relations among
named entities from large corpora. In Proceedings of ACL, 2004.

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Ar-
tificial Intelligence, 2012.

Raphael Hoffmann, Congle Zhang, and Daniel S. Weld. Learning 5000 relational
extractors. In ACL, 2010.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld.
Knowledge-based weak supervision for information extraction of overlapping rela-
tions. In Proceedings of ACL, 2011.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of ICDM, 2008.

Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski. A
latent factor model for highly multi-relational data. In Proceedings of NIPS, 2012.

Nanda Kambhatla. Combining lexical, syntactic, and semantic features with maxi-
mum entropy models for extracting relations. In Proceedings of ACL, 2004.

U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor:
Scaling tensor analysis up by 100 times - algorithms and discoveries. In Proceedings
of KDD, 2012.

Rohit J. Kate and Raymond J. Mooney. Joint entity and relation extraction using
card-pyramid parsing. In Proceedings of the 12th Conference on Computational
Natural Language Learning (CoNLL’ 10), 2010.

Charles Kemp, Joshua B. Tenenbaum, and Thomas L. Griffiths. Learning systems of
concepts with an infinite relational model. In Proceedings of AAAI, 2006.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51:455–500, 2009.

Tamara G. Kolda, Brett W. Bader, and Joseph P. Kenny. Higher-order web link
analysis using multilinear algebra. In Proceedings of ICDM, 2005.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’08, pages 426–434, New York, NY,

124

USA, 2008. ACM. ISBN 978-1-60558-193-4. doi: 10.1145/1401890.1401944. URL
http://doi.acm.org/10.1145/1401890.1401944.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan Zhitomirsky-geffet. Direc-
tional distributional similarity for lexical inference. Natural Language Engineering,
16(4):359–389, 2010.

Zornitsa Kozareva and Eduard Hovy. Learning arguments and supertypes of semantic
relations using recursive patterns. In Proceedings of ACL 10, 2010.

Artus Krohn-Grimberghe, Lucas Drumond, Christoph Freudenthaler, and Lars
Schmidt-Thieme. Multi-relational matrix factorization using bayesian personalized
ranking for social network data. In Proceedings of WSDM, 2012.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
the 18st International Conference on Machine Learning (ICML’ 01), pages 282–
289. Morgan Kaufmann, San Francisco, CA, 2001.

Dekang Lin. Dependency-based evaluation of minipar. In Proceedings of the Workshop
on the Evaluation of Parsing Systems, 1998.

Dekang Lin and Patrick Pantel. DIRT - Discovery of Inference Rules from Text. In
Proceedings of KDD, 2001.

Xiao Ling and Daniel S. Weld. Fine-grained entity recognition. In Proceedings of
AAAI, 2012.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, Cambridge, UK,
2008. ISBN 978-0-521-86571-5. URL http://nlp.stanford.edu/IR-book/

information-retrieval-book.html.

Andrew McCallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Infor-
mation Processing Systems 22, pages 1249–1257. 2009.

Pauli Miettinen. Boolean tensor factorizations. In Proceedings of ICDM, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representation in vector space. In Proceedings of workshop at ICLR, 2013.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant su-
pervision for relation extraction with an incomplete knowledge base. In Proceedings
of NAACL, 2013.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
relation extraction without labeled data. In ACL-IJCNLP, 2009.

125

http://doi.acm.org/10.1145/1401890.1401944
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: Scalable
machine learning for linked data. In Proceedings of WWW, 2012.

J. Nivre, J. Hall, and J. Nilsson. Memory-based dependency parsing. In Proceedings
of CoNLL, pages 49–56, 2004.

Rong Pan and Martin Scholz. Mind the gaps: Weighting the unknown in large-scale
one-class collaborative filtering. In Proceedings of SIGKDD, 2009.

Patrick Pantel, Rahul Bhagat, Bonaventura Coppola, Timothy Chklovski, and Ed-
uard Hovy. ISP: Learning Inferential Selectional Preferences. In Proceedings of
NAACL HLT, 2007.

Patrick Pantel, Thomas Lin, and Michael Gamon. Mining entity types from query
logs via user intent modeling. In Proceedings of ACL, 2012.

Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In Proceedings
of the Conference on Empirical methods in natural language processing (EMNLP),
2008.

Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algo-
rithms for disambiguation to Wikipedia. In Proceedings of ACL, 2011.

Joseph Reisinger and Raymond J. Mooney. Cross-cutting models of lexical semantics.
In Proceedings of EMNLP, 2011.

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization
for personalized tag recommendation. In Proceedings of WSDM, 2010.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of UAI,
2009.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi, and Jun’ichi Tsujii. A markov
logic approach to bio-molecular event extraction. In Proceedings of the Natural
Language Processing in Biomedicine NAACL 2009 Workshop (BioNLP ’09), pages
41–49, 2009. URL http://www.aclweb.org/anthology/W/W09/W09-1406.pdf.

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and their
mentions without labelled data. In Proceedings of ECML/PKDD, 2010.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin Marlin. Relation
extraction with matrix factorization and universal schemas. In Proceedings of
NAACL, 2013.

Bryan Rink and Sanda Harabagiu. A generative model for unsupervised discovery of
relations and argument classes from clinical texts. In Proceedings of EMNLP, 2011.

Alan Ritter, Mausam, and Oren Etzioni. A Latent Dirichlet Allocation method for
Selectional Preferences. In Proceedings of ACL10, 2010.

126

http://www.aclweb.org/anthology/W/W09/W09-1406.pdf

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Etzioni. Modeling missing data
in distant supervision for information extraction. TACL, 2013.

Tim Rocktäschel, Matko Bosnjak, Sameer Singh, and Sebastian Riedel. Low-
dimensional embeddings of logic. In ACL Workshop on Semantic Parsing
(SP2014), 2014.

Dan Roth and Wen-tau Yih. Global inference for entity and relation identification
via a linear programming formulation. 2007.

Evan Sandhaus. The New York Times Annotated Corpus. Linguistic Data Consor-
tium, Philadelphia, 2008.

Stefan Schoenmackers, Oren Etzioni, and Daniel S. Weld. Scaling textual inference to
the web. In EMNLP ’08: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 79–88, Morristown, NJ, USA, 2008. Association
for Computational Linguistics.

Diarmuid O Seaghdha. Latent variable models of selectional preference. In Proceedings
of ACL 10, 2010.

Sameer Singh, Karl Schultz, and Andrew McCallum. Bi-directional joint inference for
entity resolution and segmentation using imperatively-defined factor graphs. In Eu-
ropean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), pages 414–429, 2009.

Sameer Singh, Amarnag Subramanya, Fernando Pereira, and Andrew McCallum.
WikiLinks: Large-scale cross-document coreference corpus labeled via links to
wikipedia. Technical Report UM-CS-2012-015, University of Massachusetts,
Amherst, 2012.

Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Learning continuous
phrase representations and syntactic parsing with recursive neural networks. In
NIPS, 2010.

Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen. Cubesvd: A
novel approach to personalized web search. In Proceedings of WWW, 2005.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D. Man-
ning. Multi-instance multi-label learning for relation extraction. In Proceedings
of EMNLP-CoNLL, 2012.

Idan Szpektor and Ido Dagan. Learning entailment rules for unary templates. In
Proceedings of Coling, 2008.

Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa. Probabilistic matrix factor-
ization leveraging contexts for unsupervised relation discovery. In Proceedings of
PAKDD, 2011.

127

Hristo Tanev and Bernardo Magnini. Weakly supervised approaches for ontology
population. In Proceedings of 11st Conference of the European Chapter of the
Association for Computational Linguistics, 2006.

Daniel S. Weld, Raphael Hoffmann, and Fei Wu. Using wikipedia to bootstrap open
information extraction. In ACM SIGMOD Record, 2009.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. Connecting
language and knowledge bases with embedding models for relation extraction. In
Proceedings of EMNLP, 2013.

Michael Wick, Khashayar Rohanimanesh, Aron Culotta, and Andrew McCallum.
Samplerank: Learning preferences from atomic gradients. In Neural Information
Processing Systems (NIPS), Workshop on Advances in Ranking, 2009.

Limin Yao, David Mimno, and Andrew McCallum. Efficient methods for topic model
inference on streaming document collections. In Proceedings of SIGKDD, 2009.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Collective cross-document
relation extraction without labelled data. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 1013–1023, Cambridge,
MA, October 2010. Association for Computational Linguistics. URL http://www.

aclweb.org/anthology/D/D10/D10-1099.

Limin Yao, Aria Haghighi, Sebastian Riedel, and Andrew McCallum. Structured
relation discovery using generative models. In Proceedings of EMNLP, 2011.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Probabilistic databases of
universal schema. In Proceedings of the AKBC-WEKEX Workshop at NAACL,
2012a.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Unsupervised relation discovery
with sense disambiguation. In Proceedings of ACL, 2012b.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Universal schema for entity
type prediction. In Proceedings of AKBC workshop at CIKM, 2013.

Xuchen Yao and Benjamin Van Durme. Information extraction over structured data:
question answering with Freebase. In Proceedings of ACL, 2014.

Alexander Yates and Oren Etzioni. Unsupervised methods for determining object
and relation synonyms on the web. Journal of Artificial Intelligence Research, 34:
255–296, 2009.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart, Marc Spaniol, and Gerhard
Weikum. Hyena: Hierarchical type classification for entity names. In Proceedings
of Coling, 2012.

Dimitry Zelenko, Chinatsu Aone, and Anthony Richardella. Kernel methods for
relation extraction. JMLR, 3(6):1083 – 1106, 2003.

128

http://www.aclweb.org/anthology/D/D10/D10-1099
http://www.aclweb.org/anthology/D/D10/D10-1099

	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions
	Declaration of Previous Work

	Background
	Relations
	Mentions
	Dependency Path
	Relation Extraction
	Entity Types
	Selectional Preferences
	Data Preprocessing
	Entity Linking
	Graphical Models
	Discriminative Models
	Generative Models

	Distant Supervision for Relation Extraction
	Distant Supervision
	Modeling Relations and Their Mentions
	Models
	Experiments

	Joint Inference for Entity and Relation Extraction
	Model
	Learning and Inference
	Experiments
	Wikipedia data
	New York Times data

	Related Work
	Supervised Relation Extraction
	Distant Supervision
	Joint Entity and Relation Extraction

	Conclusion

	Unsupervised Relation Extraction using Generative Models
	Introduction
	Models
	Rel-LDA Model
	Rel-LDA1 model
	Type-LDA model

	Experiments
	Relations discovered by different models
	Distant Supervision based Relation Extraction
	Comparing against USP

	Related Work
	Conclusion

	Unsupervised Relation Discovery with Sense Disambiguation
	Introduction
	Our Approach
	Sense Disambiguation
	Hierarchical Agglomerative Clustering

	Experiments
	Feature Extraction
	Sense clusters and relation clusters
	Baselines
	Automatic Evaluation against Freebase
	Path Intrusion
	Error Analysis

	Related work
	Conclusion

	Universal Schema for Entity Type Classification
	Introduction
	Factorization Models
	Neighbor Model

	Experiments
	Data Sets
	Baselines
	Pattern Analysis on NYT data
	Closed Set Evaluation
	Evaluation on WikiLinks
	Parameter Selection

	Related Work
	Conclusion

	Universal Schema for Relation Extraction
	Introduction
	Models
	Matrix Factorization
	Neighbor Model
	Entity Model
	Alternative Training Objectives

	Evaluation
	Data
	Evaluation Measures
	Baselines
	Ranking based Evaluation
	Classification based Evaluation
	Integrating entity types

	Exploration on Facets of Universal Schema
	Does more training data lead to better performance?
	Does the number of components matter?
	Does the non-convex objective affect the performance?
	How does coreference affect the final performance?
	Can our approach discover implications among relations?
	Error Analysis

	Related Work
	Conclusion

	Question Answering from Freebase
	Question Answering System
	Experiments
	Error Analysis

	Related Work
	Conclusion

	Conclusions and Future Directions
	Bibliography

