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ABSTRACT

Heating and cooling accounts for over 50% of a typical home’s
energy usage. While programmable thermostats that control resi-
dential HVAC are cumbersome to program, next-generation smart
thermostats have not seen wide adoption due to their high costs and
complex installation. Thus, we focus on making existing “dumb”
programmable thermostats smart by leveraging energy analytics on
smart meter data to infer home occupancy patterns and compute
an optimized thermostat schedule. Unlike smart thermostats, our
system, called iProgram, is immediately applicable to a broad ar-
ray of homes at nearly no cost. iProgram uses an approach based
on a Hidden Markov Model (HMM) to derive a custom thermo-
stat schedule for each home using only its smart meter data. We
implement iProgram as an open web service and show that, in a
representative home, it reduces the miss time by 127 minutes from
a default 8am-6pm schedule, and is only 64 minutes off a perfect
schedule that precisely tracks occupancy.

1. INTRODUCTION

Buildings account for over 40% of energy and 75% of electricity
usage in most developed countries, including United States [13].
Heating, cooling and ventilation (HVAC) accounts for nearly half
of the energy usage within a typical building—with HVAC loads
consuming 54% of the energy usage within residential buildings.
HVAC loads, such as air conditioners and heaters, are typically
controlled by a thermostat, such that the user specifies a desired
temperature setpoint and the thermostat cycles the HVAC system
on and off to maintain the temperature at the desired set point.

The simplest type of thermostat is a manual one, where a user must
manually switch a heater or air conditioner on and off and manually
specify the desired temperature setpoint when the load is on. Man-
ual thermostats, while simple and inexpensive, suffer from several
disadvantages. Their manual nature makes them prone to human
errors, since a user may forget to turn off the HVAC system when
leaving the house (or leaving a room for an extended period) caus-
ing energy wastage. Such thermostats also impact user comfort,
since their manual nature implies that the HVAC system cannot be
turned on until after the user has arrived home, causing the house

to be uncomfortable—too hot or cold—until the HVAC system has
fully cooled or heated the house.

To address these drawbacks, most modern thermostats are pro-
grammable. A programmable thermostat allows a user to program
a daily schedule, which specifies the times of the day the HVAC
system should be turned on and the corresponding setpoint temper-
ature when on. A programmable thermostat automates when the
heating or cooling system comes on based on when the user ex-
pects to be home or away. A programmable thermostat can reduce
human errors—e.g., by automatically turning off heating or cool-
ing when the user departs for work each weekday as specified in
the programmed schedule. Such thermostats can also pre-cool or
pre-heat the home on a fixed schedule, which allows the home to
be comfortable when the user returns home.

Programmable thermostats have been marketed as energy-saving
convenience devices and tens of millions of such thermostats
have been sold and installed in homes over many years. Despite
their advantages, programmable thermostats suffer from two key
drawbacks—complex interfaces and their static nature. The main
disadvantage of programmable thermostats is that users find them
complex and tedious to program. The interface these thermostats
expose is not particularly user-friendly, and programming a sched-
ule requires a user to carefully derive the repeating patterns in their
daily schedules to determine an "optimal" schedule to program in.
Users often find the task of determining the best schedule for each
day of the week and each weekend day to be a cumbersome task.

The second main disadvantage of these thermostats is that the pro-
grammed schedule is static in nature and does not adjust to small or
large changes in occupants’ daily activities. For instance, if a user
stays home on a weekday due to illness, the thermostat’s schedule
must be manually overridden. In addition, long-term changes in
daily activities such as a summer schedule being different from a
winter schedule requires periodic re-programming. Due to the need
to manually program and adjust the schedule, many users simply
avoid using these programming features altogether and instead use
the thermostat in manual mode, which defeats their purpose.

Recently, a new generation of smart thermostats have been devel-
oped to address the key drawbacks of programmable thermostats.
Since the main drawback of programmable thermostats is the need
to manually determine and program a schedule for HVAC loads,
smart thermostats automate this task. In particular, they use on-
board or external occupancy sensors to determine when users are
home or away and learn repeating patterns of occupancy of the
sensor data to derive a schedule. Occupancy sensor data can also



be used to make short-term or longer term dynamic adjustments
to the schedule. There has been a wide range of prior work on
designing such designing “smart” thermostats that automatically
adjust a home’s temperature setpoint by monitoring and learning
home occupancy patterns using various sensors, e.g., motion or
GPS [1, 7, 8, 15, 20], and numerous commercial smart thermo-
stat products are now available, including NEST [17], Lyric [16],
Ecobee [4], etc.

However, despite their benefits, smart thermostats pose prob-
lems that continue to position them as niche devices for energy-
efficiency and technology enthusiasts, and prevent them from be-
ing deployed in a large number of homes. For example, these ther-
mostat rely on additional occupancy sensors to learn schedules of
when users are home or away. While some thermostats have on-
board occupancy sensors, others rely of external sensors deployed
in ahome. The need to install additional sensors significantly drives
up the cost of these devices and also increases installation cost for
deploying additional sensors. A typical smart thermostat costs ten
times that of an entry-level programmable thermostat. For exam-
ple, an entry-level Honeywell programmable thermostat costs $22,
while the Nest and the Lyric cost ~$250. The high costs lengthen
the return on investment due to the energy-efficiency savings. In
addition, smart thermostats do not address issues with the millions
of “dumb” programmable thermostats already installed in homes
that are being used in a sub-optimal fashion.

Thus, in this paper, we focus on the problem of making existing
“dumb” programmable thermostats smart via the use of learning-
based techniques and without requiring any additional sensors or
new investment. Our goal is to allow homeowners to make more
effective use of their existing programable thermostats and extract
their full energy-efficiency potential while reducing the pain of de-
termining and adjusting schedules. Our key insight is that elec-
tricity usage data from smart meters, which are being deployed
by utility companies in larger numbers as part of their smart grid
deployment, already reveal occupancy patterns (without requiring
additional sensors) and these occupancy patterns can be used to
automatically derive a custom thermostat schedule for each home.
Thus, it is feasible to develop inexpensive and scalable techniques
that use smart meter data to optimize the wide range of “dumb”
thermostats already installed in most homes. Our system, called
iProgram, analyzes data from a home’s smart electricity meter over
a long period to infer occupancy patterns and derive an optimal
thermostat schedule. The schedule is home-specific, taking into
account both its number of zones and type of thermostat, e.g., 1-
day, 7-day, or 5-2-day programmable. iProgram’s goal is to address
current problems that limit smart thermostat adoption by being im-
mediately applicable to the broadest array of homes at no cost.

Our work builds on recent research in energy data analytics, which
analyzes smart meter data to learn new insights into home behav-
ior. We focus on smart meter data, since smart meters are one of
the most widely deployed sensors deployed in homes: in 2011, an
estimated 493 utilities in the U.S. had already installed more than
37 million smart meters with additional deployments continuing to
come online [6]. Thus, smart meters provide a readily-available
sensor that mitigates the need for a homeowner to install and main-
tain their own sensors inside the home. In addition, the utilities that
collect smart meter data have both an interest in energy-efficiency
and direct access to a large set of customers. As a result, utilities are
in a position to deliver iProgram’s results to users, provide incen-
tives for users to adopt them, and verify their adoption. For exam-

ple, utilities could include a custom thermostat schedule computed
by iProgram for each consumer as part of their energy bill. Util-
ities already include similar, albeit more rudimentary, data-driven
energy-efficiency information in customer bills, e.g., comparing a
home’s energy usage to their neighbor’s usage.

Our hypothesis is that iProgram can improve HVAC efficiency en
masse by analyzing smart meter data to infer long-term patterns of
occupancy, and then compute an optimal thermostat-specific sched-
ule based on those patterns. In evaluating our hypothesis, this paper
makes the following contributions.

e Large-scale Data Analysis. We analyze smart meter data
recorded at five minute intervals over a 6-month period for
a small town consisting of 16,800 homes. We show that most
homes have highly regular and predictable power usage pat-
terns both across weekends and weekdays and within each
day. In particular, we show that most home usage patterns fall
into one of three coarse-grained periods: occupied and asleep,
occupied and awake, and unoccupied.

e Deriving Thermostat Schedules. Based on the observations
above, we develop a technique based on Hidden Markov Mod-
els (HMMs) to identify and label the three coarse-grained pe-
riods above in each day’s smart meter data. We then derive an
optimal thermostat-specific schedule based on a home’s long-
term occupancy pattern. Since we identify periods of sleep,
our approach is capable of supporting multi-zone systems with
one primary zone and bedroom zones, e.g., by setting bed-
room zones to a shallower setback than the primary at night.

e Implementation and Evaluation. We implement iProgram
as an open web service where users may upload their smart
meter data and receive suggested thermostat-specific sched-
ules. We evaluate iProgram on data from the Pecan St. dataset.
We infer ground truth occupancy in the Pecan St. data us-
ing interactive circuit data, and quantify the “miss time” and
“waste time,” i.e., the amount of time the home is unoccu-
pied and the HVAC system is on, from our inferred thermostat
schedules. We show that iProgram is capable of reducing the
miss time by 127 minutes from a default thermostat schedule
of 8am-6pm, and is only 64 minutes off a perfect schedule.

2. BACKGROUND AND DATA ANALYSIS

iProgram assumes a home is equipped with a networked power
meter—a smart meter—that reports aggregate electricity usage at
fine-grained intervals, e.g., every five minutes. While smart gas me-
ters also exist (our town dataset includes hourly gas data for each
home), we focus solely on smart electric meters. Most residential
HVAC is electric: all space cooling, i.e., air conditioning, is elec-
tric and 38.1% of U.S. homes use some form of electric space heat-
ing [5]. While our techniques should also be applicable to smart
gas meters, extending iProgram to support them is future work.

We also assume each home has at least one thermostat that reg-
ulates HVAC operation. Importantly, though, iProgram does not
dictate a specific type of thermostat or configuration. There are
a wide range of thermostats available, ranging from simple man-
ual thermostats to programmable thermostats to WiFi-enabled ther-
mostats. Likewise, homes may employ more than one thermostat
to support multiple heating and cooling zones. As we discuss, to
support the widest range of homes, iProgram is capable of generat-
ing multiple possible thermostat schedules optimized for different
thermostat types and configurations.
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Figure 1: Histogram of distance in power data time-series be-
tween weekdays in our town dataset. The graph shows most
homes are highly regular with a heavy tail of irregular homes.

2.1 Problem Statement

Our goal is to analyze smart meter data to generate a thermostat
schedule that best matches a home’s pattern of occupancy. For-
mally, we represent a schedule as a function S(¢) that returns a
thermostat temperature setting for time ¢. In essence, the thermo-
stat schedule defined by S(t) consists of a series of variable-length
intervals that specify different setpoint and setback temperatures.
The setpoint temperature denotes the comfortable temperature set
by the occupants, while the setback temperature denotes the desired
thermostat temperature when occupants are not present. A thermo-
stat schedule must specify either a setpoint or setback temperature
for each interval. For programmable thermostats, the thermostat
schedule must repeat at regular intervals, which limits the range of
t. For example, for a 1-day programmable thermostat, ¢ is in the
range 0 < ¢ < 24 hours, while, for a 7-day programmable thermo-
stat, ¢ is in the range 0 < ¢ < 168 hours.

iProgram derives the schedule S(¢) by analyzing the time-series
P(t) of power readings generated by a smart meter to infer when
a home is occupied. As in prior work, we represent occupancy
as a binary function O(t), where zero is an unoccupied home and
one is an occupied home. Occupancy detection then requires in-
ferring O(¢) from P(t). Intuitively, power usage that is high and
variable correlates with occupants’ use of interactive devices while
home. While a variety of background devices that operate au-
tonomously may also cause high power usage, their operation gen-
erally follows a regular pattern of usage that is distinct from in-
teractive devices. Prior work evaluates many approaches for de-
tecting occupancy based on this intuition, ranging from employing
simple thresholds on power’s mean and variance [3] to advanced
techniques using Hidden Markov Models (HMMs), Support Vector
Machines (SVMs), and k-Nearest Neighbor classifiers [14]. While
accuracy depends on the correlation between a home’s occupancy
and electricity usage, it generally ranges between 75% and 95%.

While prior work quantifies the accuracy of occupancy detection
in isolation, iProgram applies the technique to the problem of ther-
mostat scheduling. As we discuss, we adapt and extend an existing
technique based on HMMs to identify long occupied and unoccu-
pied periods (suitable for slow adjustments in temperature) and to
account for occupancy in multiple zones (a primary zone and one or
more bedroom zones). Since our focus is on thermostat scheduling,
our performance metric is not the accuracy of occupancy detection,
but rather the MissTime in the thermostat schedule.

We define two variants of MissTime, which have been used in prior
work. Our first variant, which we denote as MissTimesmart, 18
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Figure 2: Histogram of distance in power data time-series be-
tween weekends in our town dataset. The graph shows most
homes are highly regular with a heavy tail of irregular homes.

defined as the total time a home is occupied where its tempera-
ture deviates by more than X deg from its occupied setpoint [15].
This metric is typically used to quantify the performance of smart
thermostats [15,20], which are capable of tracking real-time oc-
cupancy and adjusting the thermostat temperature in real time.
MissTimesmart is useful for comparing against the ideal thermo-
stat schedule that perfectly tracks occupancy. Our second variant of
MissTime, which we denote as MissTimepest, represents the best
thermostat schedule possible using a conventional programmable
thermostat. Note that MissTimepes: is thermostat-specific, since
the best schedule possible depends on the thermostat type, whether
it be 1-day, 7-day, or 5-2-day. MissTimepest is useful for com-
paring with the best schedule possible for a given thermostat.

As we discuss below, in most cases, MissTimepes: effectively di-
vides the thermostat schedule into two highly regular periods: oc-
cupied and unoccupied. In these cases, our MissTimepest vari-
ant is similar to one defined in prior work [10], and written be-
low, which defines average MissTimepest over n days assuming
that occupied interval is [Turrive, Ticave, the unoccupied interval
is [Ticave, Tarrive], the conditioned time as [Ton, Toss], and the
unconditioned time as [T, 5 ¢, Ton].

Z? mam(07 Tlea'ue - Toff) + max(O, Ton -

n

Tarrive)

Here, the conditioned time represents the time that the thermostat is
at the setpoint temperature, and the unconditioned time represents
the time the thermostat is at the setback temperature. Of course,
a simple way to achieve a MissTime of zero (in either case) is to
never alter the thermostat setpoint, even when a home is not occu-
pied. Thus, for both MissTime variants, there is a tradeoff between
HVAC energy usage and MissTime: the lower the HVAC energy us-
age, the harder it is to achieve a low MissTime, while the higher the
HVAC energy usage, the easier it is to achieve a low MissTime. We
use the term WasteTime to quantify wasted HVAC energy, which
represents the time a home is unoccupied but the HVAC system is
on. We define two variants of WasteTime similarly to MissTime.
Thus, as above, WasteT imepest is calculated as:

. Z? min(O, ﬂeave - off) + mzn(O, Ton - Tarri'ue)
n

iProgram computes thermostat schedules for homes that specify
when the thermostat should be at a setpoint or a setback tempera-
ture. However, it does not specify the exact setpoint and setback
temperatures for the user. The setpoint temperature at different
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Figure 3: Average weekday power usage in each of the 16,800
homes in our town dataset.

times should be defined by a home’s occupants, since it depends on
their subjective notion of comfort, i.e., some people may like their
house warmer or colder than others. iProgram could possibly aid
in setting setback temperatures based on the regularity and length
of a home’s occupancy pattern. For example, the more regular and
predictable a home’s schedule, the deeper the setback that is possi-
ble without causing discomfort. In addition, setting the depth of the
setback also depends on a home’s size and insulation, since these
attributes affect the time it takes to change the temperature back to
the setpoint temperature. Thus, we leave setting of the setback tem-
perature’s depth as future work: iProgram computes the schedule,
while the user sets their desired setpoint and setback temperature.

2.2 Data Analysis and Observations

Before describing our technique for inferring thermostat schedules
from smart meter data, we first analyze smart meter data from a
small town. Our dataset includes a year’s worth of power data
at five minute granularity for 16,800 residential homes in a small
town, which gets electric service from a small municipal utility
owned by the town. Thus, our dataset represents the actual power
usage patterns from every household managed by a single utility.

Figure 1 shows a histogram of the average distance between con-
secutive weekdays for each home in our dataset. The y-axis is
the number of homes with the corresponding value on the x-axis,
which represents the normalized average distance in the hourly
power data time-series between all consecutive weekdays. Here,
we normalize by dividing the distance by the home’s mean power
consumption. While there are many possible distance functions for
two time-series, we use Dynamic Time Warping (DTW). As op-
posed to Euclidean distance, where small differences or offsets in
two time-series can result in large distances, DTW adjusts for slight
offsets in time and is thus more robust to irregular data.

We use the DTW distance to get a sense of the regularity (or pre-
dictability) of each home’s pattern of power usage. Since prior
work shows that power usage tracks occupancy, regularity in power
usage indicates regularity in occupancy and a conventional pro-
grammable thermostat is only useful if there is some regularity in
a home’s pattern of occupancy. Figure 1 shows that most homes
are highly regular with many homes having a distance of near zero.
While there is a heavy tail of less regular homes, they represent
a small fraction of the 16,800 homes in our dataset. The graph
demonstrates that the vast majority of homes exhibit similar lev-
els of high regularity, which indicates that they can benefit from
correctly scheduling a programmable thermostat.

Figure 1 shows that a large fraction of homes exhibit similar levels
of regularity in their power data, which based on prior work also
implies regularity in their occupancy patterns. We are also inter-
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Figure 4: Average weekend and weekday power usage.

ested in the average pattern of power usage each day because that
pattern ultimately dictates our schedule. Figures 3 and ?? plots
the average daily power usage for weekdays and weekends, respec-
tively, at five minute intervals for all 16,800 homes in our town
dataset. In addition, Figure 4 shows the average pattern of usage
for both weekends and weekdays across all homes. Weekends are
similar to weekdays except for slightly higher average power usage
that is slightly more irregular across homes.

As expected, both graphs generally show two peaks during the
morning (bam-8am) and evening (4pm-6pm) aligning with break-
fast and dinner with a dip in power usage overnight (11pm-5am).
The overnight usage is generally lower than the mid-day usage. In
addition, the nighttime usage (6pm-11pm), while lower than the
peak evening usage, is greater than the mid-day and overnight us-
age. While the weekend graph shows these same trends, they are
generally less well-defined (each period is “fuzzier”), which indi-
cates that occupancy patterns are more variable over the weekend.
This is intuitive, since weekends are not defined by the work and
school. The weekend graph also shows slightly higher power usage
than the weekday, which correlates with higher levels of occupancy.

Ultimately, based on the graphs, we can divide an average home
into one of three periods: occupied and awake, unoccupied, and
occupied and sleeping. When occupied and awake (roughly from
6am-8am and 4pm-11pm) power usage is high, when unoccupied
(8am-4pm) power usage is lower, and when occupied and sleeping
(11pm-6am) power usage is lowest. Given these results, the goal of
our technique in the next section is to identify these three periods
from smart meter data. While these graphs represent general trends
across all homes, their “fuzziness” shows that each home exhibits
its own unique trend that diverges from this general trend. Thus,
iProgram finds per-home schedule based on each homes’ trend.

3. INFERRING SCHEDULES

A baseline approach for determining thermostat schedules from
smart meter data involves combining two distinct, but well-known,
approaches: (i) using an occupancy detection technique to infer
occupancy from smart meter data [3, 14], and then (ii) use an ap-
proach that takes the occupancy data to determine a schedule that
minimizes miss times [10,15]. However, both approaches have lim-
itations, and we found that naively combining them results in poor
thermostat schedules in practice.

Prior occupancy detection techniques are i) not perfectly accurate
and ii) detect fine-grained occupancy, e.g., unoccupied periods as
small as a few minutes. We found that even slight inaccuracies in
occupancy, when occurring over a large number of days, reduce the
accuracy of a static thermostat schedule, as the schedule is based
on inaccurate information. In addition, the small periods of oc-
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cupancy or non-occupancy existing techniques detect are typically
not highly regular across days, and, thus, are not useful in deriv-
ing a static schedule for a conventional programmable thermostat.
Similarly, the approach taken prior work on self-programming ther-
mostats [10, 15] only infers static schedules for a single zone home
and does not i) handle homes with multiple zones or i) make dy-
namic adjustments to static schedules based on short-term devia-
tions in occupancy patterns. Our proposed approach is designed to
handle these drawbacks of both approaches.

Our approach involves: (i) determining a static schedule for a home
based on long-term repeating patterns of usage and occupancy, (ii)
dynamic techniques to adjust the inferred static schedule based on
short-term and gradual long-term changes in daily patterns, and (iii)
extensions to handle multiple zones that separate bedroom zones
from the home’s primary zone.

3.1 Deriving A Static Schedule

Our approach first determines a static thermostat schedule for a
home by distilling periods of occupancy and non-occupancy. Our
approach ensures that inferred occupancy periods are long and
more likely to follow regular daily (or weekly) patterns and where
we have high confidence in their accuracy. The process of inferring
a static thermostat schedule involves a series of pipelined steps de-
picted in Figure 5: occupancy detection, smoothing, filtering, clus-
tering, and scheduling. The pipeline defines a general and intuitive
sequence of steps to transform raw smart meter data into a thermo-
stat schedule. We discuss each step in-turn below, including how
we implement it, potentially among various options, and why we
chose our specific implementation.

Step 1: Determine Occupancy. There are a variety of previously
proposed methods to detect occupancy from smart meter data us-
ing various classifiers, including simple thresholding, k-Nearest
Neighbor, Support Vector Machines, and Hidden Markov Mod-
els [3, 14]. Each technique trains a classifier based on features
of the smart meter data, typically the power value, variance, and
range, that correlate with binary occupancy. The classifier effec-
tively discretizes smart meter data at each time period ¢ to be one
of two states: occupied or non-occupied. Prior work shows that no
one classifier works best across all homes.

In this paper, we chose to use a classifier based on a simple Hid-
den Markov Model (HMM) [14], which associates hidden, i.e., un-
known, states with different power levels, e.g., Py for lowest power
level state, P for next lowest powered state, etc., and visible states
with power consumption. HMM’s adhere to the memory-less prop-
erty, such that a visible change in power at time ¢; only depends on
the hidden power state at time ¢;, which captures the influence oc-
cupancy has over the home’s power consumption.

The HMM uses two sets of probabilities learned during a training
phase: transition and emission probabilities. Transition probabili-
ties capture the probability of a home being occupied at time ¢;+1

given that a home is occupied at time ¢;. Intuitively, the transi-
tion probability captures the inertia in a home’s occupancy status
where an occupied home tends to remain occupied for a long du-
ration. Likewise, if a home is in a lower power state because it is
unoccupied, then it has a high probability of continuing to remain
in that state. The inertial property of the HMM is the primary rea-
son we chose it for iProgram, as the regular patterns of occupancy
tend to be long, rather than short, periods, i.e., people generally do
not leave home for only a few minutes (or even an hour) at regular
intervals every day or week.

Emission probabilities indicate the probability of emitting a partic-
ular power level given a particular power level state (Po, P1, P,
etc.). During classification, the HMM uses the transition and emis-
sion probabilities to assign values to the hidden states based on the
power readings. We associate the lowest power state (Fp) with the
unoccupied state and the remaining states with the occupied state.

Step 2: Smoothing and Filtering. Any raw occupancy detection
technique from above is sensitive to changes in power, since these
changes act as the classifier’s features. Our HMM is no different
and also construes any significant rise in power with the occupied
state. Such fluctuations in power are not always the result of oc-
cupants’ use of interactive devices, but may also result from back-
ground devices, such as refrigerators, air conditioners, heaters, de-
humidifiers, etc., regulated by environmental sensors or timers. In
some cases, these devices my activate concurrently and generate
large increases in power. Thus, we post-process the discretized se-
ries of hidden states our HMM produces by smoothing out spikes
in the discretized power levels that indicate brief periods of occu-
pancy or non-occupancy that are unlikely to be repeated.

Our iterative smoothing algorithm looks for series of power levels
that are less than a threshold K. If the algorithm finds such an in-
terval, it does not simply smooth it, but examines the surrounding
intervals for context: the algorithm only smooths an interval, i.e.,
eliminates it, if the previous interval has a length > K or the suc-
cessive interval has a length > K. Once the algorithm smooths an
interval, it starts again from the beginning to determine if the con-
solidation leads to additional smoothing of past intervals. In our
experiments, we have found that K = 30 minutes works well.

Finally, after smoothing, we filter the resulting trace of smoothed
discretized power levels to extract intervals of length greater than
H hours. Our intuition is that longer periods of occupancy and
non-occupancy are more likely to repeat and, thus, be useful in
scheduling a thermostat. Our filter converts each day’s trace into a
set of zero or more intervals of the form {(starti, stop1), (starts,
stopz), ...}. Figure 6 and Figure 7 provides examples of these
intervals in two homes. As expected, the figures show that most
low power intervals occur at night or during the work day.

Step 3: Cluster Unoccupied or Low Activity Periods. After post-
processing a home’s discretized power data by smoothing and fil-
tering it, we apply a clustering algorithm to determine reasonable
clusters for generating schedules. While we could use any cluster-
ing algorithm, we chose DBSCAN [9], since it robust to outliers.
Outliers are likely to occur in our data, since even people that fol-
low a regular pattern of occupancy may diverge significantly on
occasion, e.g., due to inclement weather, illness, etc.

One challenge with clustering is that we do not know a priori how
many regular intervals any particular home might exhibit. In a large
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Figure 6: Day and night clusters for Home A.

dataset, such as our town dataset that includes over 16,000 homes,
it is difficult to manually determine a customer number of inter-
vals that works best for each home. However, as our figures above
show, we found that two clusters are evident in most homes’ data:
a daytime cluster that signifies the start and end of the unoccupied
period and a nighttime cluster that signifies when occupants went
to sleep. We categorize the home as being occupied and awake dur-
ing the time outside these clusters. Thus, we use DBSCAN to find
a dense cluster of unoccupied daytime intervals, which we define
as occurring between 6am and 10pm. Figures 6 and 7 show the un-
occupied daytime cluster in red. To find nighttime intervals, we use
the latest arrival and earliest departure from the daytime clusters to
define the nighttime period for a home. We then run DBSCAN to
find a dense clusters of points that defines the nighttime.

Step 4: Compute a Repeating Schedule. The clusters from the
previous step can then be employed to compute a static thermo-
stat schedule. One approach to computing a schedule is to use the
centroid of each cluster representing repeating occupied periods to
determine when the HVAC system should be turn down. Another
approach is to use the mean start times and end times of the day-
time and nighttime intervals above to determine the setback period
each day. The approach proposed by Gao and Whitehouse [10],
is to determine a maximum length setback period for a particu-
lar MissTime given arrival and departure times over a long period.
A slight variant of the algorithm can also determine the minimum
MissTime for a specified duration of the setback period. We can
apply these algorithms directly using the collection of arrival and
departure times we infer above.

3.2 Thermostat-specific Scheduling

The approach presented above determines a single static daily
schedule for a home. However, real homes and actual pro-
grammable thermostats are more complex than “one schedule fits
all” approach. For example, a home may have multiple thermostats
to independently control different rooms of the house. Thus, our
approach is designed to handle the most common case of a two-
zone house with a thermostat is the living area and one or more
thermostats in the bedrooms. Similarly, programmable thermostats
come in many flavors: a 7-day thermostat supports seven different
schedules (one for each day of the week), while a “5-2” thermostat
supports two schedules (one for weekdays and one for weekends),
and a “5-1-1" thermostat supports three schedules (one for week-
days, one for Saturday, and one for Sunday).

iProgram handles these real-world factors by using the clusters to
determine a custom schedule for each scenario. Deriving a sched-
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Figure 7: Day and night clusters for Home B.

Living | Bedroom
Unoccupied off off
Daytime occupied on on or off
Nighttime occupied off on

Table 1: Determining schedules for a two-zone home

ule for a multi-zone house treats the primary zone and the bed-
room zones differently based on the observed daytime and night-
time clusters. Table 1 summarizes how iProgram determines the
schedule for each zone: when the house is unoccupied, both the
primary and bedroom zones are turned off (or equivalently, set to
a pre-set “away” temperature); when the house is occupied during
the daytime, the primary zone is on and the bedroom zones are set
to either on or away depending on user preferences; finally, when
the house is occupied at night, the primary zone is turned off (or set
to away) while the bedroom zone is turned on.

3.3 Dynamic Scheduling

While iProgram is capable of determining a static schedule for mul-
tiple zones, in practice, daily occupancy patterns exhibit both short-
term and long-term deviations from the inferred repeating patterns.
iProgram uses continuous online learning over smart meter data to
adapt to such dynamics. Short one-time deviations occur when a
home is occupied when it is expected to be unoccupied or unoccu-
pied when it is normally occupied, e.g., when a user stays home due
to an illness or is away for a one-time event. To handle such devi-
ations, iProgram runs the occupancy detector presented earlier on
live smart meter data and if it determines that the home is occupied,
it can set the thermostat schedule to “away” mode. The thermo-
stat goes back the normal mode when occupancy is detected again.
Similarly, if a house is occupied during a normally unoccupied pe-
riod, the thermostat may be temporarily set to on. We note that
such dynamic scheduling is feasible only for programmable ther-
mostats that are remotely programmable—since expecting users to
manually reprogram thermostats on a frequent basis in infeasible.

Our system also periodically runs the four step pipeline on new
data to detect and handle long-term changes in activity patterns
and occupancy. The period can be once a day or once a week as
desired; the algorithm can also be invoked dynamically if frequent
deviations from the computed schedule are observed. In this case,
a static schedule is recomputed on more recent smart meter data
to account for persistent changes in occupancy patterns. Since run-
ning the entire four step pipeline can be computationally expensive,
an incremental approach can be used where occupancy patterns are
determined in the first step and compared to the previously com-
puted occupancy. The remaining step are run to compute a new
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Figure 8: Screenshots of iProgram’s web service, including user profile and thermostat configuration (a), inferred occupancy visual-

ization(b), and generated thermostat-specific schedule(c).

schedule only if more than a threshold amount of deviation is ob-
served in the occupancy patterns.

4. IMPLEMENTATION

We implement iProgram as an open web service that enables con-
sumers to upload their power data and select their type of thermo-
stat and then visualize their occupancy patterns and generate a cus-
tom thermostat schedule based on them. The architecture consists
of six modules: a profile manager, storage engine, occupancy ana-
lyzer, schedule generator, visualization engine, and API manager.

The profile manager handles account creation, user authentication,
and user meta-data, such as their username, email address, power
consumption data, and details of their home’s thermostat. The
profile manager interacts with the storage engine to store and re-
trieve information user profiles, as well as power consumption data.
Users may upload power usage data directly as CSV files or provide
a URL for a third-party meter storing the data. We currently sup-
port eGauge power meters, but intend to add additional third-party
meters in the future, such as TED. Figure 8(a) shows a screenshot
of iProgram’s account dashboard and profile manager.

The occupancy analyzer module applies the pipeline, including the
HMM occupancy detection, smoothing, and filtering, from the pre-
vious section to derive occupancy from the uploaded power data.
The module stores the discretized occupancy information in the
storage engine. The occupancy information is then read by the
scheduler generator, which is capable of generating schedules for 1-
day, 5-2-day, and 7-day programmable thermostats. The schedule
generator supports multiple types of scheduling algorithms, includ-
ing a conservative one that minimizes MissTime and a configurable
one that permits users to set a threshold on the MissTime.

The visualization engine displays the occupancy information and
the generated schedules to the user. Figure 8(b) shows a sample of
the occupancy information for a home, where green indicates the
home is occupied and awake, red indicates it is unoccupied, and
yellow indicates it is occupied and sleeping, and Figure 8(c) shows
a sample thermostat schedule for a home. Finally, iProgram ex-
poses an external REST API via the API manager, which provides a
programmatic interface for networked thermostats to auto-program
themselves using iProgram’s schedules. The API exposes informa-
tion in JSON format, and could be extended to offer If-This-Then-
That (IFTTT) recipes to trigger automated emails to users based on
certain events, e.g., if the schedule changes.

iProgram’s web service is built using Django, a popular Python-
based web application framework. We use SciPy stack, which

includes assortment of scientific computing libraries for Python,
to process, store, and analyze power data. We also use an R li-
brary [18] to implement our HMM for learning and inference. We
use dygraph, a Javascript graphing library for displaying occupancy
data, and a sqlite3 database to store each user’s profile, power data,
occupancy information, and thermostat schedules.

S. EVALUATION

One challenge in evaluating iProgram using our town dataset is that
we do not have ground truth occupancy for the 16800 homes. As
a result, while our data analysis from Section 2 indicates that iPro-
gram would prove useful in these homes, we cannot use them in
evaluating how well it schedules thermostats based on ground truth
occupancy. Instead, we evaluate iProgram on a set of 20 homes
where we either directly monitor ground truth occupancy or can de-
rive it from fine-grained power monitoring of individual appliances
and circuits. The first two homes in our evaluation are homes A
and B from the Smart* dataset [2]. We directly monitored ground
truth occupancy in these homes by instrumenting the occupants’
smartphones to record their GPS location.

Since the logistics of directly monitoring both power and occu-
pancy in a large number of homes is challenging, we also take 18
homes from the Pecan Street dataset [19], which includes minute-
level power data for entire homes and individual circuits. To infer
ground truth occupancy in these homes, we approximate it by only
looking at the periods where circuits that power interactive devices
use power. The circuit-level data enables us to directly filter out
any background devices that use power, rather than infer whether
a change in power is due to an interactive device. By looking only
at circuits with interactive devices, we know that any change in
power correlates with occupancy. While this technique may result
in some false negatives during when someone is home but not inter-
acting with any devices, we have found it to be accurate on homes
where we directly monitor ground truth occupancy. Figure 9 shows
one example from Home B of the Smart* dataset, where we di-
rectly monitor ground truth occupancy and overlay power data and
“on” events from interactive circuits. The graph shows that anytime
power rises above a minimal level the home is occupied.

5.1 Inference Accuracy

We first evaluate how well iProgram’s inferred unoccupied day-
time and nighttime intervals match ground truth, since iProgram
uses these intervals to define the thermostat schedule. Figure 10
shows the percentage of our inferred intervals that overlap with
the corresponding ground truth intervals over a three month period.
The result shows that for 15 of the 20 homes in our dataset, iPro-
gram finds 60% or more of these intervals, while it finds >80%
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Figure 10: Percentage of unoccupied intervals detected.

of them intervals in five homes. Of course, the results vary by
home, since the mix of devices and their behavior is different in
each home. However, the results indicate that iProgram is able to
detect a large percentage of these unoccupied daytime and night-
time periods. Figure 11 then quantifies the amount of overlap our
inferred intervals have relative to the ground truth. For example, an
interval we detect may be five hours, while the actual interval in the
ground truth data may be six hours. We plot the inaccuracy of our
detected intervals as a percentage of the average inferred interval
length. We see that for all but two homes, our inferred unoccupied
intervals are less than 30% of the length of the ground truth interval.
Ultimately, our results indicate that over the 20 homes we 1) find a
large percentage of the unoccupied daytime and nighttime intervals
in a large fraction of the homes and ii) these detected intervals are
close in the length to the actual periods.

5.2 Scheduling Accuracy

After detecting the intervals above, we then define our thermostat
schedules by clustering the start and end times of the intervals. As
we discuss in Section 3, a variety of schedules are possible based
on a user’s preference for balancing either variant of MissTime and
WasteTime. Of course, the accuracy of a schedule is dependent
on the regularity of a particular home’s occupancy pattern. For
example, highly regular home will result in tight clusters for the
start times and end times of intervals each day, which enables the
schedule to simultaneously minimize both MissTime and Waste-
Time. Likewise, irregular homes will result in loose clusters that
present a trade-off between minimizing MissTime and minimizing
WasteTime, as increasing one causes the other to decrease.

We first evaluate the performance of a conservative schedule
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Figure 11: The inaccuracy of detected intervals as a percentage
of the average length of the ground truth interval.
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Figure 12: Average MissTimeyp.s: for each of our 20 homes.

that has zero MissTimepes: based on our inferred periods of
occupancy, which represents the best miss time a particular
type of programmable thermostat can achieve when statically di-
viding the day into a discrete number of fixed periods. To
ensureMissTimepest = 0, we compute the schedule for the un-
occupied and sleeping periods based on the earliest point in the
cluster representing the start times and the latest point in the clus-
ter indicating the departure times. Figure 12 shows the average
MissTimepest for ground truth occupancy. For 80% of homes
using this conservative schedule, the average MissTimepest per
day is under 60 minutes. More importantly, for about half of the
homes, the average MissT'imepest is under 20 minutes. While
such a schedule may be wasteful for homes with irregular occu-
pancy patterns, it illustrates that iProgram is capable of setting a
schedule that does not significantly impact occupant comfort.

Figure 13 shows the MissTimepes: from Figure 12 along with
the MissTimepest for a baseline weekday thermostat schedule of
8am to 6pm, which all EnergyStar-compliant thermostats are pre-
programmed with by default. As the figure shows, for 19 out of 20
homes, iProgram’s schedule does significantly better than the de-
fault schedule. M<issT'imepest represents the deviation from the
best schedule possible with a 5-2-day programmable thermostat
with a static schedule. We also compare with MissTimesmart
which represents the best schedule possible with a smart thermo-
stat that dynamically adjust the thermostat based on real-time oc-
cupancy patterns. Figure 14 shows the MissTimegsmart for each
home using a schedule based on the intervals iProgram infers and
a schedule based on intervals derived from ground truth occu-
pancy, which represents the best iProgram could do. The average
MissTimesmart across all homes when using iProgram is about
~ 64 minutes, while the average MissT'imesmart using a sched-
ule based on ground truth occupancy is ~ 25 minutes. Thus, the
result shows that iProgram’s MissT'imesmart is only an hour off
the best possible time using a smart thermostat without requiring an
upgrade to a programmable thermostat or the installation of differ-
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Figure 13: Average MissTimeyp.s: for both our technique and
a default baseline thermostat schedule of 8am to 6pm.
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Figure 14: Average MissTimesmart for a iProgram’s schedule
using inferred occupancy patterns and using ground truth.

ent sensors. Note also that MissTimesmaqr¢ represents an upper
bound on smart thermostat performance.

Finally, we also show that even with a conservative approach to
thermostat scheduling that focuses on minimizing MissTimepest,
iProgram’s thermostat schedules result in significant decreases in
WasteTimepes:. Figure 15 shows cumulative time that the ther-
mostat is at the setback temperature, either due to occupants sleep-
ing or due to a home being unoccupied. The graph shows that for
80% of the homes in our 20 home dataset, iProgram reduces the
conditioned time by over 10 hours each day on average when com-
pared with a thermostat that maintains its setpoint all day.

5.3 Balancing MissTime and WasteTime

We also apply the algorithm by Gao and Whitehouse [10] to enable
users to define a tradeoft between comfort and energy-efficiency.
While iProgram conservatively determines the schedules above
based on MissTimepest of zero, relaxing the MissTimepest
enables reductions in Wastel'imepest and more energy sav-
ings. Figure 16 shows how the actual average MissTimepest
and WasteTimepes: varies as iProgram changes the threshold
MissTimepest it uses to compute its thermostat schedule for
Home A from the Smart* dataset. For an inferred MissTime
of zero minutes, the average MissTimepest 1S ~ 8.44 minutes.
Thus, if a user were use this conservative schedule, she would ex-
perience discomfort for ~ 8.44 minutes. However, the correspond-
ing average WasteTime is high at ~ 160 minutes. In this case,
if a user were to choose a higher MissTimeyp.s; target of, say, 30
minutes, their actual average MissTimepes: would be higher at
~~ 65 minutes, but their Wastelimepes: would decrease signifi-
cantly from ~ 160 to ~ 35 minutes. The graph also shows how
unconditioned time (or setback duration) increases as the schedule
goes from conservative to liberal. In the extreme conservative case,
the home has an unconditioned time of /4.5 hours, while for a less
conservative one, the unconditioned time increases to > 7.5 hours.
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Figure 15: Total amount of time each home’s thermostat is at
the setback temperature due to it being unoccupied during the
day or the occupants being asleep at night.

Figure 17 shows the same experiment as above for Home B in the
Smart* dataset. Home B differs from Home A in that the occu-
pants of Home B have a highly regular schedule, which results
in tight clusters for unoccupied periods during the day and sleep-
ing periods during the nighttime. As a result, setting a very con-
servative schedule does not adversely affect the WasteT imepest.
For an inferred MissTimepes: of zero minutes, the actual av-
erage MissTimepes: for the home is ~16.5 minutes, while the
WasteT'imepest is only about /7.5 minutes. In addition, for
a MissTimepest threshold of only five minutes, the home’s
W asteTime drops to near zero, while the actual MissTimepest
increases to roughly 45 minutes, which suggests this home has a
narrow window in which occupants arrive and leave.

Finally, Tables 2 and 3 show the unoccupied daytime and nighttime
setback periods for Home A for different types of thermostats com-
puted using the conservative schedule with M¢ssTimepest = 0.

6. RELATED WORK

Accurately detecting occupancy from just power consumption data
is an active area of research. Chen et al. [3] present an unsuper-
vised threshold-based approach to occupancy detection using vari-
ous statistical features of the power trace, such as the average power
level, standard deviation, and power range. Likewise, Kleiminger
et al. [14] present and evaluate multiple supervised approaches to
occupancy detection, including techniques based on SVM, KNN
and HMM, which first train a model using ground truth occupancy
and then use it to predict future occupancy.

There is a large body of work on home heating control and HVAC
scheduling. Gao et a. [10] design and evaluate a self-programming
thermostat using historical occupancy data to choose optimal set-
back schedules for homes. Similar to iProgram, their system pro-
duces static thermostat schedules. However, iProgram does not as-
sume availability of ground truth occupancy data via sensors. Scott
et al. [20] develop an online algorithm for occupancy prediction us-
ing historically available data for past days. At any point in a day,
they match a day starting from midnight until that point with his-
torical days to see which days are most similar in terms of power
consumption patterns. They then use those days to compute an oc-
cupancy probability for the rest of the day and use a threshold on
the occupancy prediction probability to determine when to sched-
ule the thermostat. Lu et al. [15] use a Hidden Markov Model on
historical motion sensor data to decide when to turn the system off.

Yet another approach to HVAC control is to determine occupancy
based on GPS data. Gupta et al. [11] use real time GPS data to
predict travel-to-home times and use those estimates to preheat or
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1 Day Programmable | 5-2 Programmable 7 Day Programmable

1 Day Programmable | 5-2 Programmable 7 Day Programmable

Monday 11:54AM - 16:29PM | 11:55AM - 16:27PM | 11:28AM - 17:25PM

Sunday 0:25AM - 06:04AM | 00:25AM - 06:00AM | 00:46AM - 06:00AM

Tuesday 11:54AM - 16:29PM | 11:55AM - 16:27PM | 11:21AM - 16:30PM

Monday 0:25AM - 06:04AM | 00:25AM - 06:00AM | 00:20AM - 06:25AM

Wednesday | 11:54AM - 16:29PM | 11:55AM - 16:27PM | 11:51AM - 17:15PM

Tuesday 0:25AM - 06:04AM | 00:25AM - 06:00AM | 00:00AM - 06:39AM

Thursday 11:54AM - 16:29PM | 11:55AM - 16:27PM | 9:41AM - 16:20PM Wednesday | 0:25AM - 06:04AM | 00:25AM - 06:00AM | 00:16AM - 06:00AM
Friday 11:54AM - 16:29PM | 11:55AM - 16:27PM | 12:06PM - 17:35PM Thursday 0:25AM - 06:04AM | 00:25AM - 06:00AM | 23:51PM - 06:25AM
Saturday 11:54AM - 16:29PM | - - Friday 0:25AM - 06:04AM | 00:13AM - 06:20AM | 23:57PM - 06:20AM
Sunday 11:54AM - 16:29PM Saturday 0:25AM - 06:04AM | 00:13AM - 06:20AM | 00:17AM - 06:35AM

Table 2: Day Schedules for Home A

precool a home. Similarly, Hong et al. [12] use GPS traces to model
when an occupant will return home to drive thermostat preheat de-
cisions. They look for conditionally similar days in the past, com-
pute a distribution of arrival times on those days, and then use it to
estimate when an occupant will arrive back home. Unlike this prior
work, iProgram computes static schedules based on data from a
readily available sensor—a utility smart meter—without requiring
the installation of a new thermostat or additional sensors.

7. CONCLUSION

This paper presents iProgram: a system for deriving schedules for
programmable thermostats by analyzing smart meter data. We im-
plement iProgram as an open web service that is accessible to any-
one with smart meter data and a programmable thermostat. We
show that the thermostat schedules iProgram derives schedules that
are significantly better than the default 8am-6pm schedules in pro-
grammable thermostats, and come close to the best possible sched-
ules achievable by smart thermostats.
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