
Accelerating Multi-agent Reinforcement Learning

with Dynamic Co-learning

Dan Garant Bruno Castro da Silva Victor Lesser
School of Computer Science

University of Massachusetts Amherst
{dgarant, bsilva, lesser}@cs.umass.edu

Chongjie Zhang
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
chongjie@csail.mit.edu

January 2014

Abstract

We introduce an approach to adaptively identify opportunities to pe-
riodically transfer experiences between agents in large-scale, stochastic,
homogeneous, multi-agent systems. This algorithm operates in an on-line,
distributed manner, using supervisor-directed transfer, leading to more
rapid acquisition of appropriate policies in systems with a large number
of cooperating reinforcement learning agents. Our method constructs
high-level characterizations of the system—called contexts—and uses them
to identify which agents operate under approximately similar dynamics. A
set of supervisory agents compute and reason over contextual similarity be-
tween agents, identifying candidates for experience sharing, or co-learning.
Using a tiered architecture, state, action, and reward tuples are propa-
gated amongst the members of co-learning groups. We demonstrate the
effectiveness of this approach on a large-scale distributed task allocation
problem with hundreds of co-learning agents operating in an unknown
environment with non-stationary neighbors.

1 Introduction

In large-scale multi-agent systems consisting of hundreds to thousands of reinforcement-
learning agents, convergence to a near-optimal joint policy, when possible, can
require a large number of samples. However, in such settings, there may be groups
of agents working on approximately identical local tasks or under approximately
similar environmental dynamics. Identification of such groups could prove to be
very useful in cooperative domains, giving rise to a number of opportunities to

1

North Virginia

Oregon

North California

Dublin

Singapore

Sydney

Tokyo

São Paulo

Figure 1: A Small Load Balancing Network

exploit shared information. Information sharing has been studied in single-agent
settings in order to generalize knowledge learned for a particular task or envi-
ronment to novel tasks [13, 5, 1]. Adapting this idea to the multi-agent setting,
it is apparent that in addition to transferring experiences across environments
or tasks, it is possible to adapt experiences for use by concurrently learning
agents within a fixed task and environment. This paper focuses on the problem
of directly sharing experiences between agents, with emphasis on finding agents
within a large community that can form appropriate experience sharing groups.

Consider a distributed load balancing domain, as in Figure 1. This is a
cooperative multi-agent system in which agents (depicted as nodes) seek to
minimize the joint service time of a set of tasks. A common MARL (multi-agent
reinforcement learning) approach in settings such as this consists of decomposing
the environment such that each agent is locally autonomous and perhaps capable
of observing properties of neighboring agents. Each agent optimizes a value
function over a local view of the overall global environment [2, 14, 7, 9]. At
the other extreme, attempts could be made to optimize a single joint policy
directly, but these become intractable as system size grows. In a load balancing
network consisting of 1000 agents, each capable of forwarding tasks to three
neighboring agents, policies defined over joint actions span a large space with
more than 31000 elements. Since the former technique is distributed, the action
space is manageable. However, a completely distributed learning process cannot
exploit similarities between agents or leveraging knowledge obtained by one node
to accelerate the learning of some other agent. In the load balancing domain,
the local environment of the “Sydney” node could, for instance, be very similar
to that of the “Oregon” node, and it would be valuable for these nodes to
communicate and integrate each other’s experiences. Attempting to formalize
the notion of “similarity” between agents’ local environments and communication
of experiences among similar agents gives rise to a number of challenges:
• What information should be transferred between agents? Taylor and Stone

[13] identify several classes of information transfer in single-agent domains.
We will discuss these alternatives in the context of multi-agent systems

2

and introduce a supervisory architecture based on the transfer of low-level
experiences taking the form (s, a, s′, r).

• How should we define contextual compatibility and use this to form sharing
groups? Several potential approaches to evaluate the similarity of tasks
in single-agent reinforcement learning have been proposed by Carrol &
Seppi [1]. We will motivate a similarity measure grounded in comparison
of environment dynamics rather than learned policies or Q-values.

• How should concerns involving scalability be addressed? As multi-agent
systems become larger, it becomes increasingly difficult to construct tran-
sition or reward models. As a result, directly operating over model-based
information for experience transfer, such as that proposed by Lazaric et
al. [5] for single-agent settings, is not practical in large-scale multi-agent
settings.

• How should the architecture handle temporal heterogeneity in transition and
reward models? A principal challenge of multi-agent reinforcement learning
is that concurrently learning agents introduce non-stationarity. In such
a setting, convergence is not guaranteed. To counteract this, we propose
modeling context as inherently dynamic, temporal, local characterizations
of the system and operating over short-scale time windows during which
policies, transition, and reward models are approximately static.

2 Contributions

Our proposed technique accelerates MAS learning in non-stationary situations
and does not require augmentation of any agent’s state space with additional
information about the global environment or modification of the reinforcement
learning algorithm employed. Instead, we advocate for the use of supervisory
agents, differing from a standard agent only in that they are capable of receiving
and acting on communications from any subordinate. Supervisors are responsible
for identifying contextually compatible subordinates, which by construction are
those that gather experiences from approximately equivalent state transition
and reward models. Our architecture periodically searches for these contextually
compatible groups of agents, forms knowledge sharing groups, and propagates
learned experiences among members of the group.

Contextual modeling is made possible through the commonly-studied property
of interaction sparsity [15]. In many domains such as disaster planning [4, 10]
and sensing networks [16], agents interact strongly with only a small group of
closely related partners (defined with a metric such as proximity, similarity, or
some task-based measure). This leads to promising opportunities to summarize
agent interactions in a compact way. In the load balancing example of Figure 1,
agents interact most strongly with other agents within some geographic radius.
In addition, it may not be necessary to reason about individual interactions but
rather some aggregate interaction effect over groups of anonymous agents. For
instance, it may be unnecessary to model which servers are servicing which tasks
but rather aggregate measures, or summaries, of task frequency and difficulty.

3

This information is likely unobservable by individual agents operating in complete
independence, but could be maintained by a regional supervisor.

We evaluate our architecture on a distributed task allocation domain in
which agents work to minimize service time for a set of tasks. We use the notion
of context feature fidelity to measure the discrepancy between a set of context
features compactly characterizing the local learning environment and the true
state transition & reward models they act as a proxy for. We demonstrate that
selection of appropriate context features (discussed in Section 4) can be highly
beneficial, allowing for significant performance gains when selected correctly,
and introducing volatility in performance when mis-specified. In addition, we
justify our supervisory architecture (Section 6) by describing how performance
and communication complexity varies with respect to the degree of distribution
employed by the system.

3 Multi-agent Reinforcement
Learning

Multi-agent decision-making problems are often framed in the context of Markov
games. In the most general configuration, these games model n agents, each with
a set of allowable actions and operating in an environment with shared state
S. A state transition function specifies the conditional probability of existing
in an environment state S′ at the next step given the joint action (an n-tuple
describing the actions taken by each agent) and the current shared system state,
P (S′|S, a1, a2, . . . , an).

Let us decompose the global state S into (potentially overlapping) components
representing the portions of the state that agents can directly observe and
incorporate into their learning. We let si denote the observable state of agent i,
and let se represent all elements of the global state which no agent can observe,
that is:

se = S −
⋃

i∈{1,2,...,n}

si.

In large systems, even when each agent can observe all of S (that is, si = S),
it may not be practical for agents to perform learning over this very large state
space. In addition, depending on the application domain, physical distance
between agents or communication bandwidth can introduce limitations on state
observability. For this reason, we focus on problems in which the state observable
by an individual agent is insufficient to faithfully reconstruct the state transition
model, Pi(s

′
i|S, a1, a2, . . . , an). Note, however, that there may be sparsity in Pi,

allowing an agent to obtain an estimate P̂i of Pi for which s′i is conditionally
independent of many of the state and action variables of other agents.

In Markov games, each agent i holds a reward function Ri(ri|S, a1, a2, . . . , an),
which we represent here as a conditional distribution over rewards for sake of
generality. In cooperative environments, individual reward functions may be
identical, that is, each agent measures its individual performance in terms of

4

how well the system performs as a whole. This can again be problematic for
large systems of agents, so in this paper we will consider a more general case
of decomposable reward, found in settings structured as ND-POMPDPs1 [8] or
factored multi-agent MDPs [3]. We assume that rewards can be computed only
from a joint action and complete shared state, and that agents receive reward
roughly proportional to their independent contribution to the state change.

4 Context Features

In this section we discussion utilizing context features as proxies for compactly
characterizing the learning environment of an agent. Carrol & Seppi [1] note the
difficulty of constructing reasonable similarity measures for learning environments,
given a wide array of possible definitions of agent similarity. For transfer in
single-agent reinforcement learning, they propose several techniques including
measures derived from similarity in learned policies, MDP distance measures
computed over Q-values, or reward function differences. In the multi-agent
setting, we are interested in capturing a measure of compatibility in the local
learning environment of two agents in a way that does not suffer from any of
the following problems:
• Imbalance in Experience Attempting to characterize the local learning

environment of an agent by comparing policies or Q-values directly requires
that the policies under investigation have been constructed with enough
samples to be accurate estimates of the optimal policy. Comparing policies
and Q-values of agents with inaccurate estimates may bias such similarity
measures. We would like to allow formation of mentor/mentee relationships
as described by Price and Boutilier [11] (except that we are additionally
interested in accounting for non-stationarity arising from transition function
dependence).

• Policy Divergence Optimal policies for Markov games are not unique [6].
However, supposing two agents working within the same local environment
had diverged on the trajectory to an optimal policy, it is still reasonable to
share experiences between these agents. When the underlying unobservable
environmental model for two agents is identical, they should be able to
provide some information to one another, but sharing or comparison of
learned values or entire an policy would be problematic due to lack of
uniqueness.

• Latent State Features While Q-values indirectly describe the transition
model experienced by an agent, if potential factors impacting that transition
model remain unobserved, two Q-functions are not directly comparable.

• Disjoint State Visitations It is possible that two agents could share a
common task but have experiences in disjoint regions of the state space.
In this case, the Q-values, policies, or reward models are well-estimated in
separate regions of the state space, so it may be difficult to compare them

1For this work, transition and observation independence is not assumed

5

Figure 2: Example Hierarchy Involving 2 Supervisors

directly. However, this could be an excellent opportunity for information
sharing in case the agents do transition into new regions of the state space.

To account for these factors, we propose reasoning over the underlying model
of a stochastic game as a basis for contextual comparison. In particular, if we
can guarantee that agents are working under the same local transition model
and they share a common reward function, we know from the homogeneity of
the system that the agents are facing the same learning problem. In such a
case, the experiences gathered by each compatible agent are interchangeable
and opportunities to exchange information between them are numerous. Since
estimating these models is impractical in an online manner for large systems,
we propose the use of designer-selected context features, designed to provide
broad-scope summaries of transition and reward models as experienced from
individual agents’ perspectives. When agents act without complete knowledge
of other agents in the system, state transition and reward models must be
approximated as P̂i(s

′
i|si, ai) and R̂i(ri|si, ai), respectively. While it could be

possible for an individual agent to track and reason over the states and actions of
all other agents in the system, thereby removing the non-stationarity, this is not
generally possible and becomes increasingly difficult or impossible as the number
of agents in the system grows. To counteract this, we propose constructing
context features that are compact descriptions of the environmental dynamics
experienced by an agent, computable by an agent’s supervisor.

4.1 Context Feature Fidelity

Context features are intended to act as an indirect proxy for state transition
and reward models. We will show experimentally that when these features
are effective, performance improves, and when such features as inappropriate,
opportunities for sharing are limited (by Algorithm 2), realizing no benefit over
a system which does not leverage contextual similarity. In order to evaluate a
set of features, model estimates must be constructed. As we have noted, this
may not be possible in an on-line manner. However, in cases where it is possible
to build the models in an offline setting, it is possible to evaluate the efficacy
of such features in achieving their designed goal of assessing compatibility of
transition and reward models.

In particular, we are interested in selecting context features and a distance
function over those context features that induces context feature distances which
are positively correlated with distances between agents’ local state transition

6

and reward models. When comparing the models of agents i and k,

Pi(s
′
i|S, a1, a2, . . . , an),

Ri(ri|S, a1, a2, . . . , an),

Pk(s′k|S, a1, a2, . . . , an), and

Rk(rk|S, a1, a2, . . . , an),

it is quite likely that each agent’s transition and reward functions will be affected
most strongly by a different sets of agents. For instance, agent i might interact
strongly with agent 1, so a1 has importance in Pi and Ri. Perhaps agent k does
not interact with agent 1 at all, but has very comparable interactions with agent
n, so an is important in its model. Thus, the manner we use to “label” agents
in each case may be different, but we may be able to draw analogies between
the two models. As such, it is necessary to search for a good “correspondence”
function, taking the form of a permutation ρ over agents with the restriction
that when constructed for agent i, ρ(i) = i (an agent cannot be relabeled in its
own local transition model). The quality of a correspondence is characterized as
the distance between the component models that it induces. Then, to evaluate
context feature fidelity, we can perform a search over all permutations ρ, jointly
minimizing the symmetric KL-divergence (denoted SKL) between Pi & Pk, and
Ri & Rk, shown in Algorithm 1. This gives us a measure of equality, since when
m = 0, we have Pi = Pk and Ri = Rk, up to labeling [12]. As this divergence
measure grows, the two agents become increasingly incompatible.

By relating the divergence measure m to some distance function DC over
context features, we can get a sense for how effective the selected context features
are at representing distances between transition and reward models. If Cit and
Ckt are context feature vectors computed from agent i and k’s perspective at time
t, respectively, then DC(Cit , Ckt) should be positively correlated with m, derived
from the estimated transition and reward models from some window around time t.
Context feature fidelity, then, is the correlation of m with values output from DC ,
in the range [−1, 1]. Values approaching 1 indicate that as DC distances trend
upwards, transition and reward models become increasingly distant/dissimilar
as well – exactly the relationship we would like to encode. Values approaching
-1 would encode an inverse relationship between DC distances and the model
information, which is undesirable for our purposes. Values approaching 0 indicate
that the selected context features are not informative about the true models.

Given a good set of context features, DC can be used to derive a compatibility
measure between agents. When these distances are small, the models currently
governing each agent’s state transitions are similar. Various selection strategies
can be employed to find groups of similar agents given a matrix of pairwise
distances. One such technique will be introduced in Section 6.2.

7

5 Experience Sharing

Typically, sharing experiences between agents in a system is not reasonable,
since each agent experiences different state transitions. However, discovery of
contextually compatible agent groups G = {g1, g2, . . . , gm} with the DC measure,
allows for reasoning about compatibility of agent experiences. If the agents in G
are perfectly contextually compatible, we have

Pg1
∼= Pg2

∼= · · · ∼= Pgm and Rg1
∼= Rg2

∼= · · · ∼= Rgm .

Of course, it is unlikely that such a group G would be selected in practices.
Context features are approximate measures, and we may be willing to accept
agents in G for inclusion even if their transition models are not perfectly identical.
As such, agents in G have are approximately equivalent transition models. We
will demonstrate that sharing experiences in such circumstances (under imperfect
but approximate correspondence of transition models) can be highly beneficial,
and is highly dependent on the distances DC between the agents in G (see
Section 7).

Once G has been identified, experiences of its members can be propagated
through the group (using a supervisory technique introduced in Section 6.1).
This effectively multiplies the number of experiences each agent by |G| (assum-
ing agents gain roughly the same number of experiences). In a non-episodic
environment, experiences for agent i can be transferred as a vector of tuples
within some time window [t0, te]:〈

(sit0 , ait0 , rit0 , s
′
it0

),

(sit1 , ait1 , rit1 , s
′
it0

),

. . . ,

(site , aite , rite , s
′
it0

)
〉

In episodic environments, it is reasonable to transfer only complete episodes
between agents. In this case, agents are responsible for delimiting the tuples
comprising each episode and reporting only complete episodes.

We could also consider transferring or merging policies, but this has several
disadvantages. In particular, replacing a policy suggests permanence and risks
losing information about states which may not be visited uniformly across time.
Consider a case agent where agent i experiences transitions from model P 1

i for
some time, then P 2

i , then returns to P 1
i . In addition, imagine another agent k

cycling between P 1
k , then P 2

k , and finally P 1
k again. Further suppose that P 2

i

and P 2
k are contextually similar, but P 1

i and P 1
k are not. In this case, if P 1

i and
P 2
i have probability mass on different regions of the state space, we would risk

losing learning taking place in P 1
i by deciding to transfer a policy from k during

the second time window. Additionally, in domains that may have competitive
aspects (such as taxi driving), it may not be practical to impose a policy on
an actor. A more agreeable option would be to make experiences available for

8

Input: Ri, Rk, stochastic reward models for agents i and k, respectively.
Pi, Pk, state transition models for agents i and k, respectively.
λ ∈ (0, 1], a parameter balancing the importance of accuracy in
the state transition model with the reward model

Output: m, a measure of context feature fidelity
Compute similarity in reward as symmetric KL divergence for a
permutation ρ of agents:

DR(ρ)← DSKL

(
Ri(ri|Sρ, aρ(1), aρ(2), . . . , aρ(n)),
Rk(rk|S, a1, a2, . . . , an)

)
Compute similarity in state transition models as symmetric KL divergence:

DS(ρ)← DSKL

(
Pi(s

′
i|Sρ, aρ(1), aρ(2), . . . , aρ(n)),

Pk(s′k|S, a1, a2, . . . , an)
)

Find the best permutation ρ according to the balancing parameter λ:

m← min
ρ

λ (1− exp (−DR(ρ))) +

(1− λ) (1− exp (−DS(ρ)))

Algorithm 1: Estimated Model Divergence

9

incorporation into a policy if appropriate and desired, maintaining the autonomy
of individual learning.

6 Context-based Learning

In order to enable contextual comparison & experience transfer in a general way,
we propose the use of supervisory agents. Each supervisor a is responsible for a
set of subordinates Ua. In order to be a candidate for experience sharing, an
agent must have a supervisor. Supervisory agents are capable of receiving commu-
nications of experiences from all subordinates, and derives context features from
the reported experiences by cross-inspection of reports from other subordinates.
Given these context features and the previously noted distance function DC ,
groups of similar agents can be recovered. The supervisor then relays information
amongst the members of these groups, and agents can incorporate the shared
experiences into their policy if desired.

6.1 Agent Organization

Illustrated in Figure 2, we view supervision graphically as a forest of agents
with maximum tree depth 1. Further, we assume that agents are not capable of
communicating directly, relying on a common supervisor to act as a proxy for
experience transfer. This arrangement highlights several design decisions. First,
supervisory agents are unlikely to have boundless communication bandwidth
– there is undoubtedly some limit to the number of agents they can receive
communications from (and the size of those messages). It may prove useful to
distribute supervisors in manner that spans a physical space most effectively, or
in a manner consistent with agent interaction strength [17]. Finally, computing
context features and finding similar agents requires a non-trivial amount of
computation, typically polynomial in the number of agents (depending on the
clustering algorithm employed by Algorithm 2).

A critical aspect of the proposed architecture is selection of other agents with
sufficiently small distances in context space to form sharing groups. This requires
that a balance be found between the number of supervisors in the system and the
number of agents which are candidates for experience sharing. As the number
of supervisors grow, the problem becomes increasingly distributed, reducing
the requirements imposed on any individual supervisor. In opposition to this,
supervisors which oversee larger groups of subordinates are capable of selecting
from a larger pool of experience sharing candidates, increasing the likelihood that
similar agent groups can be constructed. Additionally, a trade-off is necessary
between communication fidelity and bandwidth by allowing for lossy compression
of experiences to and from the supervisor. One such lossy compression technique
involves the use of linear interpolating functions, and is especially effective when
agents infrequently change state. To start, a set of linear regressions can be
performed over any continuous state, action (or action probability), and reward
variables. These regression equations can be performed in a loss-less manner,

10

Supervisor

Subordinate A

Subordinate B

Compressed
Experiences

Compressed
Experiences

Decompress
Construct
Context
Features

Assess
Similarity Compress

Subordinate C

Compressed
Experiences

Figure 3: Relaying Experiences through a Supervisor

that is, a sufficient number of lines can be fit to the data to perfectly reconstruct
the traces on the original time scale. Alternately, we can allow for interpolation
by performing regressions over subsets of the original data. The extent of the
compression is tunable by considering more or less sparse data sets for this
regression. As shown in Figure 3, communications to and from the supervisor
consist of “compressed experiences”, which are simply coefficients of regression
equations in this formulation. The supervisor is then capable of reconstructing
the (perhaps approximated) state, action, and reward tuples forming the agent’s
experience trace over the report’s relevant time window.

6.2 Algorithms

Upon receipt and decompression of an agent observations, supervisors are re-
sponsible for construction of context features. The process by which these
feature vectors are constructed depends on the features themselves, although
if interactions are sparse, we believe that agents’ transition models can be ex-
plained by experiences from some neighborhood of constant size d. Suppose
agent experiences are communicated every K time units, so an agent may report
as many as K observations. If a supervisor oversees n subordinates, the task of
context feature construction is to transform time-indexed experience vectors

Oi = 〈(s, a, s′, r)t1 , (s, a, s′, r)t2 , . . . , (s, a, s′, r)tK 〉

for each agent i ∈ {1..n} into a vector of context feature sets

V = 〈V1, V2, . . . Vn〉 .

The template we propose to perform this transformation is to use a summarization
routine accepting a time k, a reference agent i, and a set of d agents in i’s
neighborhood, and returning a context feature vector Vitk . Then, the mean of
these time-dependent feature vectors is taken to produce a single context feature
vector Vi representing a per-agent context summary. If the summarization

11

process can be performed in constant time, the full vector V can be performed
in θ(Kn) time.

Given the set of context features V , we can compute contextual similarity
between agents using Algorithm 2. This process uses a two-stage selection process.
First, agents are partitioned into roughly similar groups using a clustering
algorithm. Then, within each group, an annealing process is used to select related
agents. First, pairwise distances are computed over the agents within the cluster.
This distances matrix is then represented as a Boltzmann distribution, and agents
are assigned a “selection probability”, which can be raised or lowered according
to a temperature parameter T . Agents are then selected for sharing according
to this probability. Once f has been formed, supervisors relay experiences to
agents which may benefit from them. In particular, for agent i, supervisors
communicate the compressed experiences for all agents in f(i). Locally, agents
decompress these experiences and incorporate them into their policies.

Input: Vector V = 〈V1, V2, . . . , Vn〉 of feature vectors for agents
A = {1, 2, . . . , n}, temperature parameter T ∈ N

Output: A set-valued mapping f : A→ P(A) describing the (possibly
empty) set of agents that the input agent should share with

Cluster V into k groups C1, C2, . . . , Ck
for i← {1, 2, . . . , k} do

M ← Pairwise distances DC over vectors within Ci

P ←
∑
t∈1..T BinomialPMF

(
exp(M)∑
exp(M) , t

)
for a ∈ Agents(Ci) do

for b ∈ Agents(Ci) \ a do
Let p be the entry in P corresponding to entry (a, b)
With probability p, let f(a)← f(a) ∪ {b}

end

end

end

Algorithm 2: Selection of Sharing Partners

7 Empirical Analysis

We evaluated our architecture on a network-distributed task allocation domain.
We can model this domain as a graph G = 〈V,E〉 where the vertex set V
represents the set of agents in the system. Agents maintain a queue of tasks,
with the head of this queue representing the task that is currently being worked
on. These tasks are annotated with a service time s, indicating how many time
units it would take to complete each task. After a task has been at the head of an
agent’s queue for s steps, that task is dequeued and marked as completed. The
reward function in this setting is the reciprocal of the average service time over

12

some recent time window, where service time is measured as the time from task
creation to task completion. Tasks are generated by the environment according
to pattern unknown to the agents. When a task is created, it is associated
with some agent v, and immediately placed in that agent’s routing queue, which
contains tasks that are not actively being worked on because they require some
action on the part of v. Agent v has several options available for dealing with
the tasks in its routing queue. It may either decide to work on the task itself,
adding to the task to v’s processing queue, or it may forward the task. An agent
may forward a task to any agent that it is connected to. That is, for all n ∈ V
such that (v, j) ∈ V , an agent has action forward-j available to them, which
adds the task to the routing queue of agent j. Upon taking an action, agents
immediately receive a reward signal of 1

s , where s is the service time of the agent
receiving the task. When the task has finally been completed, agents receive a
signal propagated back through the routing channel that they can use to update
their service time based on how long the forwarded task took to complete.

For this domain, we selected as context features for agent i (1) the rate at
which each of i’s neighbors receive tasks from the environment, (2) the rate
at which each of i’s neighbors receive tasks from other agents, and (3) i’s load
relative to the mean load of i’s neighbors. Thus, if i has 4 neighboring agents,
i’s context feature vector has length 9. By selecting these context features,
we impose the requirement that context comparisons can only be performed
between two agents if those agents have the same number of neighbors. This
is a reasonable requirement, since agents with different neighborhood sizes will
have different action spaces, breaking some assumptions of Algorithm 1.

We are interested in characterizing whether our sharing architecture is ben-
eficial and if it can scale. To do this, we constructed a network of 100 agents,
imposed a supervisory structures on this network in a manner that minimizes
the total network distances among the subordinates of any particular supervisor,
and ran a variety of experiments whereby characteristics of the network and the
architecture were varied. In particular, we consider varying the task distribution
pattern governing the concentration of tasks in particular regions of the network.
We also varied the the task rate, or a measure of how many tasks arise according
to this pattern. Together, these provide a means for adjusting difficulty of a
scenario. Then, we vary architectural aspects such as the number of supervisors
and examine corresponding changes in performance. Our primary measure of
performance is the area under the learning curve (AUC), which is an exponential
moving average of the mean task service time over all tasks completed in the
network. Before computing the area, we first “lower” this curve onto the x-axis
by subtracting the minimum y-value. As a result, the area under the curve will
change only minimally once the system has stabilized in performance, which is
desirable since we used a fixed run length of 10000 time units, but some easy
configurations stabilize in performance very early in this span.

Throughout our experiments, a learning window of K = 115 is employed.
Smaller values of K lead to more frequent communication, whereas larger values
of K decrease the likelihood that agent transition and reward models are static
across the K-timestep window. Our experiments focus on cases which are neither

13

Figure 4: Effect of varying window size K

trivially easy or unrealistically difficult. We characterize the former case as one
in which all architectures convergence almost instantly to optimal performance,
requiring little or no learning. The latter case is characterized by divergence
in performance of the baseline configuration, indicating that agents are unable
to learn policies effective enough to handle incoming tasks. This leaves a set
of task difficulty settings in which agents learn for a non-negligible amount of
time (at least 1000 time units), then converge in performance. We normalize
performance of all architectural configurations relative to a baseline architecture
which does not use supervision or experience sharing, but is otherwise identical in
configuration and in the policy learning algorithms employed. Figure 5 illustrates
how performance comparisons are carried out given a time series of performance
values.

The relative performance of each architecture in simulations with two different
task distribution strategies (border-based, center-based) and ten different task
distribution rates (ranging from very easy to very difficult) is shown in Figure 7.
The “1 Sup” (1-supervisor) configuration is something of a best-case scenario
in which we can completely centralize the sharing process. This allows sharing
to take place between any pair of agents in the system, and requires roughly
half the learning area as the baseline configuration. As we grow the number of
supervisors in the system, the problem becomes more tractable, distributed, and
realistic to many real domains in which communication cannot practically span
the entire breadth of an agent network. In the 9-supervisor configuration, each
supervisor need only oversee its 11 closest neighbors, but the required learning
area has still been reduced by 25%. As the network size increases, the pool of
subordinates in the 9-supervisor configuration increases, leading to additional
sharing opportunities. Figure 8 demonstrates this phenomena for 30 simulations

14

Figure 5: Task Allocation Performance Evaluation. Area under learning curves
is computed, then any area below the best convergence point is subtracted from
each curve (illustrated as a grey region), penalizing sub-optimal convergence. In
this case, the 1-supervisor configuration improves on the baseline area by 70%.

15

Figure 6: Relative Performance as Context Features are Noised. At noise level
0.75 and 1, the performance of the 1-supervisor case has the same mean as the
baseline case, but is much more volatile.

spread across networks of three different network sizes (i.e. 100, 324, and 729
agents).

Of course, any supervisory configuration will require more communication
bandwidth than the baseline. However, in this domain at least, agent experiences
are easily compressed using the technique described in Section 6.1, with a tunable
fidelity. A set of experiments using a single-supervisor architecture demonstrated
that the size of messages sent from supervisors to subordinates decreases rapidly
with decreased message fidelity. The observed trend indicates that we can vastly
reduce the average subordinate-to-supervisor message down to as little as 43
bytes per time unit. A natural concern would be the effect of compression
fidelity on performance. We performed a correlation test on this relationship
and found no significant trend up to a compression degree of 15, indicating that
we can safely compress experiences up to the point where further degrees of
compression are ineffective without significantly impacting performance. Another
important factor in controlling the amount of communication is the window
size K. To characterize the effect of selecting K, we ran 10 trials of the single
supervisor and baseline configurations for each of eight window sizes. Figure 4
demonstrates the performance of the single-supervisor configuration relative to
the baseline configuration for each window size. As larger window sizes are used,
performance degrades, as these windows are unlikely to contain approximately
static transition and reward models.

One goal in the development of the sharing methodology is to allow for mis-
specification of context features without sacrificing performance. Algorithm 2

16

Figure 7: Relative Performance by Supervisory Configuration

Figure 8: Relative Performance as network size is varied

17

realizes this goal, identifying sharing opportunities only when context feature
distances are significantly close. To evaluate this algorithm, we performed an
experiment in which a noise was artificially added to our context features before
the sharing partner selection process takes place. This noise degrades the quality
of the signal that context features encode, and there is a point at which noise is
so strong that features are entirely unhelpful. To accomplish this, we measured
the standard deviation of each context feature, and varied noise relative to the
largest feature standard deviation. Thus, when the noise level is 1, the standard
deviation of the normally-distributed noise term is greater than or equal to
the standard deviation of any context feature, effectively eliminating any signal
that they encoded. As the noise level approaches 0, this noise term becomes
insignificant. Figure 6 demonstrates that at the point that the noise term
begins to dominate (approaching 1), the performance of the sharing architecture
becomes increasingly volatile, though with mean 1 and no clear skew. As the
information encoded in the context features becomes less meaningful, the sharing
architecture is equally likely to archieve a 50% reduction in AUC as it is to
increase AUC by 100%.

8 Discussion

We have presented an architecture for experience transfer among reinforcement
learning agents in large multi-agent systems. Intuitively, when multiple agents
work on similar tasks, information transfer can take place. By explicitly trans-
ferring experiences, it is possible to bypass issues related to policy divergence,
experience imbalance, latent state features, and disjoint state visitations. Further,
by transferring (s, a, r, s′) tuples, the described technique makes no assumptions
about the manner in which individual agents perform policy learning.

In the domain of dynamic task allocation, the proposed experience sharing
architecture provides significant improvements over configurations without expe-
rience sharing, and becomes increasingly advantageous as system size grows. We
have demonstrated that context features can be mis-specified without inducing
a systematic degradation in performance.

As future work, we are interested in finding opportunities for automated or
informed context feature selection. A simple technique towards this goal could
involve an informed search over the space of possible features, using estimated
model divergence to guide the search. For model-free learning algorithms, this
would require a more efficient implementation of the model divergence estimate.
However, by adapting the notion of context features to model-based settings,
it may be straightforward to evaluate a measure similar to model divergence
directly in an on-line manner, bypassing the need for explicit context features.

18

9 Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. IIS-1116078.

References

[1] J. L. Carroll and K. Seppi. Task similarity measures for transfer in rein-
forcement learning task libraries. In Neural Networks, 2005. IJCNN’05.
Proceedings. 2005 IEEE International Joint Conference on, volume 2, pages
803–808. IEEE, 2005.

[2] P. J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in
multi-agent settings. J. Artif. Intell. Res.(JAIR), 24:49–79, 2005.

[3] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored
mdps. In NIPS, volume 1, pages 1523–1530, 2001.

[4] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shin-
jou, and S. Shimada. Robocup rescue: Search and rescue in large-scale
disasters as a domain for autonomous agents research. In Systems, Man,
and Cybernetics, 1999. IEEE SMC’99 Conference Proceedings. 1999 IEEE
International Conference on, volume 6, pages 739–743. IEEE, 1999.

[5] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch
reinforcement learning. In Proceedings of the 25th international conference
on Machine learning, pages 544–551. ACM, 2008.

[6] M. L. Littman. Value-function reinforcement learning in markov games.
Cognitive Systems Research, 2(1):55–66, 2001.

[7] R. Makar, S. Mahadevan, and M. Ghavamzadeh. Hierarchical multi-agent
reinforcement learning. In Proceedings of the fifth international conference
on Autonomous agents, pages 246–253. ACM, 2001.

[8] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed
pomdps: A synthesis of distributed constraint optimization and pomdps.
In AAAI, volume 5, pages 133–139, 2005.

[9] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent
optimization. Automatic Control, IEEE Transactions on, 54(1):48–61, 2009.

[10] F. A. Oliehoek, M. T. Spaan, S. Whiteson, and N. Vlassis. Exploiting locality
of interaction in factored dec-pomdps. In Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems-Volume
1, pages 517–524. International Foundation for Autonomous Agents and
Multiagent Systems, 2008.

19

[11] b. Price and C. Boutilier. Accelerating reinforcement learning through
implicit imitation. JAIR, 19:569–629, 2003.

[12] A. Rényi. On measures of entropy and information. In Fourth Berkeley
Symposium on Mathematical Statistics and Probability, pages 547–561, 1961.

[13] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning
domains: A survey. The Journal of Machine Learning Research, 10:1633–
1685, 2009.

[14] D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical
games. In AAAI/IAAI, pages 345–351, 2002.

[15] S. J. Witwicki and E. H. Durfee. Influence-based policy abstraction for
weakly-coupled dec-pomdps. In ICAPS, pages 185–192, 2010.

[16] C. Zhang and V. Lesser. Coordinating Multi-Agent Reinforcement Learning
with Limited Communication. In J. Ito and S. Gini, editors, Proceedings of
the 12th International Conference on Autonomous Agents and Multiagent
Systems, pages 1101–1108, St. Paul, MN, 2013. IFAAMAS.

[17] C. Zhang, V. Lesser, and S. Abdallah. Self-Organization for Coordinating
Decentralized Reinforcement Learning. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages
739–746, Toronto, 2010.

20

