
Detailed Problem Descriptions for General Program
Synthesis Benchmark Suite

Technical Report UM-CS-2015-006

Thomas Helmuth
Computer Science

University of Massachusetts
Amherst, MA 01003

thelmuth@cs.umass.edu

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

ABSTRACT
Recent interest in the development and use of non-trivial
benchmark problems for genetic programming research has
highlighted the scarcity of general program synthesis (also
called“traditional programming”) benchmark problems. We
present a suite of 29 general program synthesis benchmark
problems systematically selected from sources of introduc-
tory computer science programming problems. This suite is
suitable for experiments with any program synthesis system
driven by input/output examples. We present results from
illustrative experiments using our reference implementation
of the problems in the PushGP genetic programming sys-
tem. This technical report provides sufficient detail of the
problems and our reference implementation for researchers
to implement and attempt to solve these problems in other
synthesis systems. The results show that the problems in
the suite vary in difficulty and can be useful for assessing
the capabilities of a program synthesis system.

Keywords
program synthesis; genetic programming; benchmarks

1. INTRODUCTION
Several genetic programming (GP) researchers have high-

lighted the need for better benchmark problems to guide re-
search in the field [11, 25, 26]. While benchmarks have been
proposed, few are for general programming problems (also
called “traditional” or “algorithmic” programming problems)
even though this category received the second highest level
of interest in a recent community survey about the need for
benchmarks [25].

Automating human programming has long been a goal of
GP, as articulated for example in Koza’s first book [9]. The
purpose of a general program synthesis benchmark is to help
researchers assess the ability of a system to automate human
programming. Such problems should require a range of pro-
gramming techniques including the use of control flow, mod-
ularity, and large, diverse instruction sets covering multiple
data types and data structures. Minimal sizes for solution
programs should cover a range beyond what could be found
using brute-force search. This contrasts with most existing
benchmark problems used in GP and other program synthe-
sis fields [7], which prescribe small, domain-specific instruc-
tion sets and assess a system’s abilities only on a narrow
range of programming techniques.

In this technical report we present a suite of 29 general
program synthesis benchmark problems, systematically se-
lected from sources of introductory computer science pro-
gramming problems. We present each problem’s specifica-
tions in the form of input/output examples, making them
suitable to a wide range of program synthesis techniques,
including GP. While the problems are not particularly chal-
lenging for skilled human programmers, they are reasonably
challenging for beginners and many are arguably too diffi-
cult for existing program synthesis systems, including GP.
As textbook problems, they are not likely representative of
real general program synthesis applications, yet they should
prove useful for assessing progress toward this goal.

This technical report expands on the initial publication of
these benchmark problems [5] by providing additional de-
tails of the implementation and experimental results. These
additions include a list of instructions used in the evolv-
ing programs, detailed descriptions of the inputs and fitness
functions used for training and testing of each problem, de-
tails of the GP parameters used in our experiments, and an
expanded statistical analysis of our results. This expansion
should provide sufficient detail to replicate our experiments
or implement the problems in other systems.

2. BENCHMARK-BASED COMPARISONS
In the context of general program synthesis, we call a pro-

gram a “solution” only if it perfectly maps all inputs to cor-
rect outputs. While one might argue that human-written
software is often useful even if it has known bugs, the goal
here is to pass all input/output tests. Therefore, we are not
interested in programs that are only approximately correct,
as might be appropriate in the context of other problems
for which GP is used, such as symbolic regression. We rec-
ommend measuring performance on the problems presented
here primarily in terms of success rates, quantifying how of-
ten a stochastic algorithm finds a successful program across
a set of runs1. A more thorough argument for assessment
in terms of success rates can be found in [4]. Furthermore,
in order to be considered successful, a program must not
only achieve zero error on all of the example data used to
train the program (the “training set”), but also on a set of
withheld generalization data (the “test set”).

When using this benchmark suite to compare different

1For deterministic synthesis algorithms other measures must
be used, such as whether a correct program is found within
a set period of time.



settings within one system, we recommend limiting com-
putation with a budget based on the maximum number of
program evaluations allowed in a run. This ensures that the
methods perform similar computational work. That said, it
may nonetheless be difficult to justify fine-grained numerical
comparisons among diverse techniques on these problems, as
they may involve qualitatively different kinds of costs and
each may be parameterized in radically different ways. In
many cases, the most interesting question to ask vis-a-vis
a particular system on a particular problem may just be
whether the system can solve the problem at all, and if so,
whether it can solve it reasonably reliably. Nevertheless,
we aim here to describe specifications that will allow for as
much cross-system comparability as possible.

3. PROBLEM SELECTION CRITERIA
In this section we describe the criteria we used when se-

lecting problems for the benchmark suite. Several of our
criteria overlap with those described in the GP benchmarks
papers [11, 25], such as being varied, relevant, realistically
difficult, representation-independent, and precisely defined.

This benchmark suite is designed for systems that use ex-
ample inputs and their corresponding outputs as the speci-
fications for desired programs. In the context of GP, we call
the input/output pairs test cases for the problem. Thus,
a problem must be defined on a range of inputs that have
known correct outputs; it cannot simply specify the calcula-
tion of a single value. For example, a problem that requires
the program to calculate the number of prime numbers less
than 1000 would not qualify, since it only has one answer;
but, a similar problem that requires the program to calcu-
late the number of prime numbers less than an input integer
n would meet this requirement, since we could then provide
example inputs for n and their corresponding outputs. This
requirement also ensures that test cases can be generated to
fill the training and test set, as required to test generaliza-
tion of successful programs.

Problems in the suite should present challenges typical of
real programming tasks. This criterion leads us to choose
problems that call for a range of programming constructs
and data types. The problems should require a variety of
sizes and shapes for solution programs, not just artificially
small programs.

The benchmarks should not be biased toward a particu-
lar method of synthesis; it should be possible to attempt to
solve them using various GP systems as well as analytic and
search-based program synthesis systems. Since systems gen-
erate programs in a variety of languages, we avoid problems
that require a specific language feature or non-standard data
type (such as Java objects).

We take our problems from pre-existing sources of intro-
ductory programming problems. From each source, we in-
clude all problems that meet the criteria described above,
aiming to avoid biasing the selection of problems. We re-
jected problems from other sources that did not meet our cri-
teria, such as the inductive programming benchmark repos-
itory2, other program synthesis and inductive programming
papers, and programming competitions.

4. PROBLEM DESCRIPTIONS
2http://www.inductive-programming.org/repository.html

We used two sources for problems: iJava [14, 13], an in-
teractive textbook for introductory computer science, and
IntroClass [2, 1], a set of problems originally used as bench-
marks for automatic program repair. Below we describe
each of these sources in further detail and present our natu-
ral language description of each problem, summarized from
the original source. All problems use functional arguments
as inputs besides one that requires reading input from a file.
Some problems require programs to return functional out-
puts, where others require the program to print results.

4.1 iJava
iJava is an interactive introductory computer science text-

book that contains a number of automatically graded pro-
gramming problems [14, 13]. Many of its problems are
graded by testing programs against a range of inputs, mak-
ing them easy to convert into benchmark problems.

Some sets of problems in iJava meet our criteria but test
similar programming techniques; for these sets, we chose one
representative problem from the group, ensuring a reason-
able distribution of problem requirements. Along with each
problem name and description, we provide the question or
project number associated with the problem in iJava 3.1.

1. Number IO (Q 3.5.1) Given an integer and a float,
print their sum.

2. Small or Large (Q 4.6.3) Given an integer n, print
“small” if n < 1000 and “large” if n ≥ 2000 (and noth-
ing if 1000 ≤ n < 2000).

3. For Loop Index (Q 4.11.7) Given 3 integer inputs
start, end, and step, print the integers in the sequence

n0 = start

ni = ni−1 + step

for each ni < end, each on their own line.

4. Compare String Lengths (Q 4.11.13) Given three
strings n1, n2, and n3, return true if length(n1) <
length(n2) < length(n3), and false otherwise.

5. Double Letters (P 4.1) Given a string, print the
string, doubling every letter character, and tripling ev-
ery exclamation point. All other non-alphabetic and
non-exclamation characters should be printed a single
time each.

6. Collatz Numbers (P 4.2) Given an integer, find the
number of terms in the Collatz (hailstone) sequence
starting from that integer.

7. Replace Space with Newline (P 4.3) Given a
string input, print the string, replacing spaces with
newlines. Also, return the integer count of the non-
whitespace characters. The input string will not have
tabs or newlines.

8. String Differences (P 4.4) Given 2 strings (with-
out whitespace) as input, find the indices at which the
strings have different characters, stopping at the end
of the shorter one. For each such index, print a line
containing the index as well as the character in each
string. For example, if the strings are “dealer” and



“dollars”, the program should print:
1 e o

2 a l

4 e a

9. Even Squares (Q 5.4.1) Given an integer n, print
all of the positive even perfect squares less than n on
separate lines.

10. Wallis Pi (P 6.4)) John Wallis gave the following
infinite product that converges to π/4:

2

3
× 4

3
× 4

5
× 6

5
× 6

7
× 8

7
× 8

9
× 10

9
× ...

Given an integer input n, compute an approximation
of this product out to n terms. Results are rounded to
5 decimal places.

11. String Lengths Backwards (Q 7.2.5) Given a vec-
tor of strings, print the length of each string in the
vector starting with the last and ending with the first.

12. Last Index of Zero (Q 7.7.8) Given a vector of
integers, at least one of which is 0, return the index of
the last occurrence of 0 in the vector.

13. Vector Average (Q 7.7.11) Given a vector of floats,
return the average of those floats. Results are rounded
to 4 decimal places.

14. Count Odds (Q 7.7.12) Given a vector of integers,
return the number of integers that are odd, without
use of a specific even or odd instruction (but allowing
instructions such as mod and quotient).

15. Mirror Image (Q 7.7.15) Given two vectors of in-
tegers, return true if one vector is the reverse of the
other, and false otherwise.

16. Super Anagrams (P 7.3) Given strings x and y of
lowercase letters, return true if y is a super anagram of
x, which is the case if every character in x is in y. To
be true, y may contain extra characters, but must have
at least as many copies of each character as x does.

17. Sum of Squares (Q 8.5.4) Given integer n, return
the sum of squaring each integer in the range [1, n].

18. Vectors Summed (Q 8.7.6) Given two equal-sized
vectors of integers, return a vector of integers that con-
tains the sum of the input vectors at each index.

19. X-Word Lines (P 8.1) Given an integer X and a
string that can contain spaces and newlines, print the
string with exactly X words per line. The last line
may have fewer than X words.

20. Pig Latin (P 8.2) Given a string containing lowercase
words separated by single spaces, print the string with
each word translated to pig Latin. Specifically, if a
word starts with a vowel, it should have “ay” added to
its end; otherwise, the first letter is moved to the end
of the word, followed by “ay”.

21. Negative To Zero (Q 9.6.8) Given a vector of inte-
gers, return the vector where all negative integers have
been replaced by 0.

22. Scrabble Score (P 10.1) Given a string of visible
ASCII characters, return the Scrabble score for that
string. Each letter has a corresponding value according
to normal Scrabble rules, and non-letter characters are
worth zero.

23. Word Stats (P 10.5) Given a file, print the number
of words containing n characters for n from 1 to the
length of the longest word, in the format:

words of length 1: 12

words of length 2: 3

words of length 3: 0

words of length 4: 5

...

At the end of the output, print a line that gives the
number of sentences and line that gives the average
sentence length using the form:

number of sentences: 4

average sentence length: 7.452423455

A word is any string of consecutive non-whitespace
characters (including sentence terminators). Every file
will contain at least one sentence terminator (period,
exclamation point, or question mark). The average
sentence length is the number of words in the file di-
vided by the number of sentence terminator characters.

4.2 IntroClass
The set of 6 problems in the IntroClass dataset [2, 1] was

designed for the purpose of benchmarking automatic soft-
ware defect repair systems. As such, the authors of this
dataset provide a number of buggy programs written by stu-
dents trying to solve each problem, taken from students in
an introductory computer science class. For the purposes
of general program synthesis from scratch, we will use the
problems themselves but not the accompanying buggy pro-
grams.

24. Checksum Given a string, convert each character in
the string into its integer ASCII value, sum them,
take the sum modulo 64, add the integer value of the
space character, and then convert that integer back
into its corresponding character (the checksum charac-
ter). The program must print Check sum is X, where
X is replaced by the correct checksum character.

25. Digits Given an integer, print that integer’s digits
each on their own line starting with the least signifi-
cant digit. A negative integer should have the negative
sign printed before the most significant digit.

26. Grade Given 5 integers, the first four represent the
lower numeric thresholds for achieving an A, B, C, and
D, and will be distinct and in descending order. The
fifth represents the student’s numeric grade. The pro-
gram must print Student has a X grade., where X
is A, B, C, D, or F depending on the thresholds and
the numeric grade.

27. Median Given 3 integers, print their median.

28. Smallest Given 4 integers, print the smallest of them.

29. Syllables Given a string containing symbols, spaces,
digits, and lowercase letters, count the number of oc-
currences of vowels (a, e, i, o, u, y) in the string and
print that number as X in The number of syllables

is X.



5. SYNTHESIS SPECIFICATIONS
The natural language descriptions of the problems in Sec-

tion 4 do not provide all of the information needed to apply
program synthesis systems to the problems. Here we pro-
vide the needed additional information, aiming to do so in
a technique-independent and system-independent way.

Table 1 presents recommendations regarding training and
test data for each problem. While these are merely guide-
lines, and there may be good reasons to diverge from them
when using different techniques or systems, adhering to these
guidelines will clarify comparisons among techniques and
systems. The table describes the data types of the inputs
and outputs and gives reasonable ranges for program inputs.

We also provide recommendations for numbers of cases to
use in the training and test sets in Table 1. For most prob-
lems, we recommend between 100 and 200 training cases,
depending on the difficulty of the problem as well as the di-
mensionality of the input space. A few problems use fewer
cases, either because they have limited input spaces or are
simple enough to solve with fewer cases. We usually rec-
ommend using a test set ten times as large as the training
set; again, there are exceptions for problems with limited
input spaces. The method of producing the training and
test cases is system-specific; we recommend a combination
of hand-chosen edge cases with randomly generated cases,
and will describe our method in more detail in Section 6.

The question of which instructions to make available for a
synthesis system to use for each problem is a complex one.
It is important to not cherry pick a small set of instructions
that are known to be sufficient to solve a problem; such a
selection may be difficult for a real-world problem, where it
might not be clear which instructions will be useful. On the
other hand, using all available instructions for every prob-
lem expands the search space and may make problems more
difficult than necessary. We recommend a compromise be-
tween these approaches in which one first determines which
data types are likely to be useful for solving the problem and
then uses all instructions that operate on those data types.
For example, an instruction that compares the equality of
two integers and returns a boolean would be included if the
problem could potentially make use of integers and booleans.
By specifying only the data type requirements for a prob-
lem, we can limit the number of instructions without cherry
picking.

6. SYSTEM-SPECIFC PARAMETERS
Whereas Section 5 gave technique-independent recommen-

dations for specifying the benchmark problems for a syn-
thesis system, this section will give more detail about the
system-specific parameters and decisions that must be made
in order to implement these problems in a given program
synthesis system. Here we will focus on our implementation
in the PushGP genetic programming system, but we empha-
size that this is just one possible approach and one possible
implementation, and that the problems here could be used
in any system that meets the requirements in Section 3.

PushGP evolves programs in Push, a stack-based pro-
gramming language designed specifically for GP [18, 24, 22].
The reference implementation of our problems in PushGP
can be found on GitHub3. In the rest of this section, we

3http://thelmuth.github.io/GECCO 2015 Benchmarks
Materials/

will describe some of the major decisions necessary for im-
plementing these benchmark problems in this environment.

6.1 Training and Test Data
When generating training and test data, we use a combi-

nation of hand-picked edge cases that remain constant across
runs and randomly generated inputs that vary across runs.
For each problem, we specify one or more “data domains”
[4], which consist of either a set of hard-coded inputs or a
random input generator, as well as the number of training
and test cases that should come from each domain.

In order to facilitate the creation of training and test data,
we designed a general system for automatic data generation
based on data domains. A “data domain”D is a set of pro-
gram inputs described by either a list of inputs or a random
input generator function. The list ("hi", "hello", "howdy",
"hey") and a function that returns "zoo" followed by 0 to
17 random lowercase letters are examples of data domains,
where the former is an enumerated list of four inputs and
the latter is random input generator function of strings at
most 20 characters long that start with the substring "zoo".
Along with each data domain D, the user must provide the
integers train(D) and test(D) that indicate the number of
training and test cases respectively to generate from D.

To generate training and test data from a set of data do-
mains {D1, D2, ..., Dn}, we simply take each domain and
create the required number of cases. If the domain Di is an
enumerated list of inputs, we select train(Di) and test(Di)
of them at random, without replacement within the train-
ing cases or test cases. If the domain is described by a
random input generator, we run it train(Di) and test(Di)
times (with replacement) to create the data. This automatic
data generation system allows for the generation of training
and test cases for a wide range of problems.

Tables 2, 3, and 4 present detailed descriptions of the
data domains we used to generate training and test data
for each benchmark problem. The table has two types of
data domains: hard coded lists of inputs (HC) and random
input generators (RNGs). For HC data domains, we give
the list of inputs; for RNGs, we describe the generator. Un-
less stated otherwise, RNGs have the following properties:
ranges for inputs are given in Table 1. For integer and float
RNGs, inputs are sampled uniformly across the given range;
for string RNGs, lengths are sampled uniformly between 1
and the max length given in Table 1, and characters are
distributed uniformly across visible ASCII characters along
with space, newline, and tab. If a HC domain is specified
by a range such as [40, 50], it includes every integer in the
range inclusive. For HC string inputs, we use " " for the
space character, "\t" for tab, and "\n" for newline.

6.2 Fitness Functions
When using this benchmark suite with GP, we not only

need the training and test cases, but also a method of mea-
suring how well a particular program performs on each case—
the fitness function. Many of the problems in this suite print
results to standard output, and we generally treat these out-
puts as strings and use Levenshtein distance (a measure of
string edit distance) as the fitness function. Other prob-
lems produce numeric outputs, either returned or printed;
for these problems we use absolute error for fitness, parsing
printed numbers when possible. Some problems produce
boolean values, or are best measured by a simple binary



Table 1: For each problem, the types of the inputs and outputs, and the limits imposed on the inputs. Any
printed outputs should be printed by the program to standard output. The columns Train and Test indicate
the recommended sizes of the training set and test set respectively.

Name Inputs Outputs Train Test

Number IO integer in [−100, 100], float in [−100.0, 100.0] printed float 25 1000
Small Or Large integer in [−10000, 10000] printed string 100 1000
For Loop Index integers start and end in [−500, 500], step in [1, 10] printed integers 100 1000
Compare String Lengths 3 strings of length [0, 49] boolean 100 1000
Double Letters string of length [0, 20] printed string 100 1000
Collatz Numbers integer in [1, 10000] integer 200 2000
Replace Space with
Newline

string of length [0, 20] printed string,
integer

100 1000

String Differences 2 strings of length [0, 10] printed string 200 2000
Even Squares integer in [1, 9999] printed string 100 1000
Wallis Pi integer in [1, 200] float 150 50
String Lengths
Backwards

vector of length [0, 50] of strings of length [0, 50] printed string 100 1000

Last Index of Zero vector of integers of length [1, 50] with each integer
in [−50, 50]

integer 150 1000

Vector Average vector of floats of length [1, 50] with each float in
[−1000.0, 1000.0]

float 100 1000

Count Odds vector of integers of length [0, 50] with each integer
in [−1000, 1000]

integer 200 2000

Mirror Image 2 vectors of integers of length [0, 50] with each
integer in [−1000, 1000]

boolean 100 1000

Super Anagrams 2 strings of length [0, 20] boolean 200 2000
Sum of Squares integer in [1, 100] integer 50 50
Vectors Summed 2 vectors of integers of length [0, 50] with each

integer in [−1000, 1000]
vector of
integers

150 1500

X-Word Lines integer in [1, 10], string of length [0, 100] printed string 150 2000
Pig Latin string of length [0, 50] printed string 200 1000
Negative To Zero vector of integers of length [0, 50] with each integer

in [−1000, 1000]
vector of
integers

200 2000

Scrabble Score string of length [0, 20] integer 200 1000
Word Stats file containing [1, 100] chars printed string 100 1000
Checksum string of length [0, 50] printed string 100 1000
Digits integer in [−9999999999, 9999999999] printed integers 100 1000
Grade 5 integers in [0, 100] printed string 200 2000
Median 3 integers in [−100, 100] printed integer 100 1000
Smallest 4 integers in [−100, 100] printed integer 100 1000
Syllables string of length [0, 20] printed string 100 1000

right or wrong; here, we use a fitness of 0 for right and 1
for wrong. Finally, some problems require problem-tailored
fitness functions, such as vector edit distance or string for-
matting requirements. We give the details of each fitness
function in Table 5.

For some problems we found it appropriate to use multi-
ple fitness functions per test case. For example, the Replace
Space With Newline problem requires both a printed string
and a returned integer. For problems like this, we produce
multiple fitness values for a single case. Additionally, we
find that PushGP performs better on some problems when
we use more than one fitness value per case, even where not
strictly necessary. For example, we found no solutions to
the X-Word Lines problem when using Levenshtein distance
as the only fitness function, but found solutions after adding
additional fitness functions calculating the number of new-
line characters and summed errors of differences in number
of words on each line. When using multiple fitness values for

a single training case, we treat each fitness value separately
when the parent selection method requires it; in tournament
selection, we simply sum all fitness values.

Since these problems aim to test how well a system would
perform on real program synthesis applications, we try to
keep fitness functions simple to resemble those that might
be used by practitioners. For the majority of the problems
in this suite (19 out of 29), we use a basic fitness function
based on the type of the output. The basic fitness func-
tion for integers and floats is absolute numeric distance; for
booleans it is right/wrong; for printed strings it is either
right/wrong or Levenshtein distance. Most of the problems
for which we use problem-specific fitness functions require a
printed string as output, and attempt to parse that string to
provide extra information based on the problem’s expected
output. We try to not put too much knowledge about a
problem into the problem-specific fitness functions, but in-



Table 2: Data domains for each benchmark problem (part 1).

Name Type Domain Train Test

Number IO RNG integer, float 25 1000
Small Or Large HC -10000, 0, 980, 1020, 1980, 2020, 10000, [995, 1004], [1995, 2004] 27 0

HC integers in ranges [980, 1019] and [1980, 2019] 0 80
RNG integer 73 920

For Loop Index RNG integers: start < 0 < end, start + (20× step) + 1 > end 10 100
RNG integers: start < end, start + (20× step) + 1 > end 90 900

Compare String Lengths HC triplet ("", "", "") 1 0
HC all permutations of ("", "a", "bc") 6 0
RNG (repeated twice) all permutations of 2 empty strings and a string 6 0
RNG (repeated 3 times) all permutations of 2 copies of a string and

another string
9 0

RNG random string repeated 3 times 3 100
RNG 3 strings in sorted length order 25 200
RNG 3 strings 50 700

Double Letters HC "", "A", "!", " ", "*", "\t", "\n", "B\n", "\n\n", "CD",

"ef", "!!", "q!", "!R", "!#", "@!", "!F!", "T$L", "4ps",

"q\t ", "!!!", "i:!i:!i:!i:!i", "88888888888888888888",

"                    ", "ssssssssssssssssssss",

"!!!!!!!!!!!!!!!!!!!!", "Ha Ha Ha Ha Ha Ha Ha",

"x\ny!x\ny!x\ny!x\ny!x\ny!", "1!1!1!1!1!1!1!1!1!1!",

"G5G5G5G5G5G5G5G5G5G5", ">_=]>_=]>_=]>_=]>_=]",

"k!!k!!k!!k!!k!!k!!k!"

32 0

RNG string 68 1000
Collatz Numbers HC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6171, 6943, 7963, 9257, 9999, 10000 16 0

RNG integer 184 2000
Replace Space With
Newline

HC "", "A", "*", " ", "s", "B ", "  ", " D", "ef", "!!",

" F ", "T L", "4ps", "q  ", "   ", "  e", "hi ", "  $  ",

"      9", "i !i !i !i !i", "88888888888888888888",

"                    ", "ssssssssssssssssssss",

"1 1 1 1 1 1 1 1 1 1 ", " v v v v v v v v v v",

"Ha Ha Ha Ha Ha Ha Ha", "x y!x y!x y!x y!x y!",

"G5G5G5G5G5G5G5G5G5G5", ">_=]>_=]>_=]>_=]>_=]",

"^_^ ^_^ ^_^ ^_^ ^_^ "

30 0

RNG string (with  as 20% of characters) 70 1000
String Differences HC pairs of strings: ("" ""), ("" "hi"), ("ThereWorld" ""), ("A"

"A"), ("B" "C"), ("&" "#"), ("4" "456789"), ("rat" "hat"),

("new" "net"), ("big" "bag"), ("STOP" "SIGN"), ("abcde"

"a"), ("abcde" "abcde"), ("abcde" "edcba"), ("2n" "nn"),

("hi" "zipper"), ("dealer" "dollars"), ("nacho" "cheese"),

("loud" "louder"), ("qwertyuiop" "asdfghjkl;"),

("LALALALALA" "LLLLLLLLLL"), ("!!!!!!" ".?."), ("9r2334"

"9223d4r"), ("WellWell" "wellwell"), ("TakeThat!"

"TAKETHAT!!"), ("CHOCOLATE^" "CHOCOLATE^"), ("ssssssssss"

"~~~~~~~~~~"), (">_=]>_=]>_" "q_q_q_q_q_"), ("()()()()()"

"pp)pp)pp)p"), ("HaHaHaHaHa" "HiHiHiHiHi")

30 0

RNG pair of strings, length > 1 170 0
RNG pair of strings 0 2000

Even Squares HC 1, 2, 3, 4, 5, 6, 15, 16, 17, 18, 36, 37, 64, 65, 9600, 9700, 9999 17 0
RNG integer 83 1000

Wallis Pi HC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 198, 199, 200 15 0
RNG integer 135 50

String Lengths
Backwards

HC vector of strings: [], [""], ["" ""], ["" "" ""], ["" "" "" ""

"" "" "" "" "" ""], ["abcde"], ["1"], ["abc" "hi there"],

["!@#" "\n\n\t\t" "5552\na r"], ["tt" "333" "1" "ccc"]

10 0

RNG vector of strings 90 1000



Table 3: Data domains for each benchmark problem (part 2).

Name Type Domain Train Test

Last Index of Zero HC vector of integers: [0 1], [1 0], [7 0], [0 8], [0 -1], [-1 0],

[-7 0], [0 -8]

8 0

HC every vector of zeros of length between 1 and 50 30 20
HC all permutations of vector [0 5 -8 9] 20 4
HC all permutations of vector [0 0 -8 9] 10 2
HC all permutations of vector [0 0 0 9] 4 0
RNG vector of integers with at least one 0 78 974

Vector Average HC vector of floats: [0.0], [100.0], [-100.0], [2.0 129.0],

[0.12345 -4.678], [999.99 74.113]

6 0

RNG length 50 vector of floats 4 50
RNG vector of floats 90 950

Count Odds HC vector of integers: [], [-10], [-9], [-8], [-7], [-6], [-5],

[-4], [-3], [-2], [-1], [0], [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10], [-947], [-450], [303], [886], [0 0],

[0 1], [7 1], [-9 -1], [-11 40], [944 77]

32 0

RNG vector of integers, all odd 9 100
RNG vector of integers, all even 9 100
RNG vector of integers, random probability of odd per vector 150 1800

Mirror Image HC pair of vectors of integers: ([] []), ([1] [1]), ([0] [1]), ([1]

[0]), ([-44] [16]), ([-13] [-12]), ([2 1] [1 2]), ([0 1] [1

1]), ([0 7] [7 0]), ([5 8] [5 8]), ([34 12] [34 12]), ([456

456] [456 456]), ([40 831] [-431 -680]), ([1 2 1] [1 2 1]),

([1 2 3 4 5 4 3 2 1] [1 2 3 4 5 4 3 2 1]), ([45 99 0 12 44

7 7 44 12 0 99 45] [45 99 0 12 44 7 7 44 12 0 99 45]), ([24

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24] [24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24]), ([33 45 -941] [33 45 -941]), ([33

-941 45] [33 45 -941]), ([45 33 -941] [33 45 -941]), ([45

-941 33] [33 45 -941]), ([-941 33 45] [33 45 -941]), ([-941

45 33] [33 45 -941])

23 0

RNG pair of vectors of integers that are mirror image 37 500
RNG pair of equal vectors of integers 10 100
RNG pair of vectors of integers that are close to mirror image, but have a

few elements changed
20 200

RNG pair of vectors of integers 10 200
Super Anagrams HC pair of strings: ("" ""), ("h" ""), ("" "i"), ("a" "a"), ("c"

"b"), ("nn" "n"), ("c" "abcde"), ("abcde" "c"), ("mnbvccxz"

"r"), ("aabc" "abc"), ("abcde" "aabc"), ("edcba" "abcde"),

("moo" "mo"), ("mo" "moo"), ("though" "tree"), ("zipper"

"rip"), ("rip" "flipper"), ("zipper" "hi"), ("dollars"

"dealer"), ("louder" "loud"), ("ccccc" "ccccccccc"),

("oldwestaction" "clinteastwood"), ("ldwestaction"

"clinteastwood"), ("verificationcomplete"

"verificationcomplete"), ("hhhhhhhhhhaaaaaaaaaa"

"hahahahahahahahahaha"), ("aahhhh" "hahahahahahahahahaha"),

("qwqeqrqtqyquqiqoqpqs" ""), ("qazwsxedcrfvtgbyhnuj"

"wxyz"), ("gggffggfefeededdd" "dddeeefffgggg"),

("dddeeefffgggg" "gggffggfefeededdd")

30 0

RNG pair of strings, chosen to be close to (or actually) super anagrams 170 2000
Sum of Squares HC 1, 2, 3, 4, 5, 100 6 0

RNG integer 44 50
Vectors Summed HC pair of vectors of integers: ([] []), ([0] [0]), ([10] [0]), ([5]

[3]), ([-9] [7]), ([0 0] [0 0]), ([-4 2] [0 1]), ([-3 0]

[-1 0]), ([-323 49] [-90 -6])

10 0

RNG pair of length 1 vectors of integers 5 0
RNG pair of length 50 vectors of integers 10 100
RNG pairs of vectors of integers 125 1400

X-Word Lines HC pair of strings and integers (too long to print, see reference
implementation for details)

46 0

RNG pair of strings and integers 104 2000



Table 4: Data domains for each benchmark problem (part 3).

Name Type Domain Train Test

Pig Latin HC "", "a", "b", "c", "d", "e", "i", "m", "o", "u", "y", "z",

"hello", "there", "world", "eat", "apple", "yellow",

"orange", "umbrella", "ouch", "in", "hello there world",

"out at the plate", "nap time on planets",

"supercalifragilistic", "expialidocious",

"uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu",

"ssssssssssssssssssssssssssssssssssssssssssssssssss",

"w w w w w w w w w w w w w w w w w w w w w w w w w",

"e e e e e e e e e e e e e e e e e e e e e e e e e",

"ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha",

"x y x y x y x y x y x y x y x y x y x y x y x y x"

33 0

RNG string 167 1000
Negative To Zero HC vector of integers: [], [-10], [-1], [0], [1], [10], [0 0], [0

1], [-1 0], [-90 -6], [-16 33], [412 111]

12 0

RNG length 1 vector of integers 5 0
RNG vector of negative integers 9 100
RNG vector of positive integers 9 100
RNG vector of integers 165 1800

Scrabble Score HC each single lowercase letter 26 0
HC each single uppercase letter 0 26
HC "", "*", " ", "Q ", "zx", " Dw", "ef", "!!", " F@", "ydp",

"4ps", "abcdefghijklmnopqrst", "ghijklmnopqrstuvwxyz",

"zxyzxyqQQZXYqqjjawp", "h w h j##r##r\ n+JJL",

"i !i !i !i !i", "QQQQQQQQQQQQQQQQQQQQ",

"$$$$$$$$$$$$$$$$$$$$", "wwwwwwwwwwwwwwwwwwww",

"1 1 1 1 1 1 1 1 1 1 ", " v v v v v v v v v v",

"Ha Ha Ha Ha Ha Ha Ha", "x y!x y!x y!x y!x y!",

"G5G5G5G5G5G5G5G5G5G5"

24 0

RNG string with at least 2 characters 150 974
Word Stats HC string (too long to print, see reference implementation for details) 36 0

RNG string containing at least one sentence terminator 64 1000
Checksum HC string (too long to print, see reference implementation for details) 12 0

RNG string 88 1000
Digits HC -9495969798, -20008000, -777777, -9876, -482, -97, -20, 0, 19, 620,

24068, 512000, 8313227, 30000000, 9998887776
15 0

RNG integer taken from logarithmic distribution 85 1000
Grade HC quintuplet of integers: (80 70 60 50 85), (80 70 60 50 80), (80

70 60 50 79), (80 70 60 50 75), (80 70 60 50 70), (80 70 60

50 69), (80 70 60 50 65), (80 70 60 50 60), (80 70 60 50

59), (80 70 60 50 55), (80 70 60 50 50), (80 70 60 50 49),

(80 70 60 50 45), (90 80 70 60 100), (90 80 70 60 0), (4 3

2 1 5), (4 3 2 1 4), (4 3 2 1 3), (4 3 2 1 2), (4 3 2 1 1),

(4 3 2 1 0), (100 99 98 97 100), (100 99 98 97 99), (100 99

98 97 98), (100 99 98 97 97), (100 99 98 97 96), (98 48 27

3 55), (98 48 27 3 14), (98 48 27 3 1), (45 30 27 0 1), (45

30 27 0 0), (48 46 44 42 40), (48 46 44 42 41), (48 46 44

42 42), (48 46 44 42 43), (48 46 44 42 44), (48 46 44 42

45), (48 46 44 42 46), (48 46 44 42 47), (48 46 44 42 48),

(48 46 44 42 49)

41 0

RNG quintuplet of integers, with the first four distinct and decreasing 159 2000
Median RNG triplet of integers, all equal 10 100

RNG triplet of integers, two of three equal 30 300
RNG triplet of integers 60 600

Smallest HC quadruplet of integers: (0 0 0 0), (-44 -44 -7 -13), (0 4 -99

-33), (-22 -22 -22 -22), (99 100 99 100)

5 0

RNG quadruplet of integers, all equal 5 100
RNG quadruplet of integers, three of four equal 10 100
RNG quadruplet of integers in range [0, 100] 20 200
RNG quadruplet of integers 60 600

Syllables HC "", "a", "v", "4", "o", " ", "aei", "ouy", "chf", "quite",

"a r e9j>", "you are many yay yea", "ssssssssssssssssssss",

"oooooooooooooooooooo", "wi wi wi wi wi wi wi",

"x y x y x y x y x y ", "eioyeioyeioyeioyeioy"

17 0

RNG string (with each char having 20% chance of being a vowel) 83 1000



Table 5: The fitness functions used for each problem. For problems that require the program to print, we
usually use Levenshtein distance on the printed string and the correct output. Additionally, we add a second
fitness function to many problems by parsing part or all of a printed string as a different data type and
comparing to the correct output. For example, for the Number IO problem, if the printed output can be
parsed as a float, it is done so and used as a float error. For such problems, an output that cannot be parsed
correctly receives a penalty error.

Problem Fitness Function

Number IO printed string Levenshtein distance; printed float error
Small Or Large printed string Levenshtein distance
For Loop Index printed string Levenshtein distance
Compare String Lengths boolean error
Double Letters printed string Levenshtein distance
Collatz Numbers integer error
Replace Space with Newline printed string Levenshtein distance; integer error
String Differences printed string Levenshtein distance; numeric difference in number of lines

with correct format
Even Squares printed string Levenshtein distance; numeric difference in number of lines

with correct format; printed integer error on each line
Wallis Pi float error; Levenshtein distance of string version of float
String Lengths Backwards printed string Levenshtein distance
Last Index of Zero integer error
Vector Average float error
Count Odds integer error
Mirror Image boolean error
Super Anagrams boolean error
Sum of Squares integer error
Vectors Summed integer error at each position in vector
X-Word Lines printed string Levenshtein distance; integer error for number of newlines;

numeric difference in correct words on each line summed over lines
Pig Latin printed string Levenshtein distance
Negative To Zero integer vector Levenshtein distance
Scrabble Score integer error
Word Stats printed string Levenshtein distance; integer error for printed number of

sentences; float error for printed average sentence length
Checksum printed string Levenshtein distance; for last printed char in string, ASCII

value error
Digits printed string Levenshtein distance
Grade printed string Levenshtein distance; printed char error for grade char
Median printed string right/wrong
Smallest printed string right/wrong
Syllables printed string Levenshtein distance; printed integer error

stead choose functions that are fairly obvious based on the
problem descriptions.

6.3 Instruction Sets
As discussed in Section 5, we have chosen to specify the

data types relevant to each problem, and then include all
instructions that use those data types in each problem’s in-
struction set. Table 6 presents the Push data types we chose
for each problem. The “exec” column signifies instructions
that use Push’s exec stack, which typically perform control
flow manipulations such as conditionals, iteration, and sub-
functions defined through tagging [23]. The “print” column
includes instructions that print data to standard output, and
“file input” includes a small set of file reading instructions.

Table 6 also gives the terminals used for each problem,
which encompass constants and ephemeral random constants
(ERCs). ERCs allow for the creation of random constants in
randomly generated code during initialization and mutation.
We used problem-specific ERC ranges, which can be found

in Table 7. These ranges were selected as seemed appropri-
ate for each problem; we do not anticipate that varying from
these ranges would have significant impact on results.

Tables 8 and 9 show every Push instruction used in our
experiments, and the data types that they require. For ex-
ample, the string_containschar instruction requires that
the boolean, char, and string data types be used for a prob-
lem in order to be included; this is because it must use a
string and a char as inputs, and returns a boolean of whether
the input string contains the input char. These tables are
intended to give an idea of the scope and complexity of the
instructions used in our experiments. Attempting the prob-
lems in another system would obviously require a different
set of instructions specific to the programming language of
the search. While we would expect such a system to use
different instructions, we would also expect similar numbers
of instructions that are not cherry-picked for the individual
problems.



Table 6: Instructions and data types used in our PushGP implementation of each problem. The column “#
Instructions” reports the number of instructions, terminals, and ERCs used for each problem. The middle
columns show which data types were used for each problem. For example, the Number IO problem used all
instructions relevant to integers, floats, and printing. The last column lists the constants and ERCs used
for the problem; ERC ranges are given in Table 7. Here, char constants are represented in the Clojure
style, starting with a backslash, and strings are surrounded by double quotation marks. The “Problems” row
simply counts how many problems use each data type. The “Instructions” row shows the number of Push
instructions that primarily use each data type; some use multiple types but are only counted once.

Problem #
In

st
ru

c
ti

o
n
s

e
x
e
c

in
te

g
e
r

fl
o
a
t

b
o
o
le

a
n

ch
a
r

st
ri

n
g

v
e
c
to

r
o
f

in
te

g
e
rs

v
e
c
to

r
o
f

fl
o
a
ts

v
e
c
to

r
o
f

st
ri

n
g
s

p
ri

n
t

fi
le

in
p
u
t

Terminals (besides inputs)

Number IO 50 x x x integer ERC, float ERC
Small Or Large 103 x x x x x “small”, “large”, integer ERC
For Loop Index 74 x x x x
Compare String
Lengths

98 x x x x boolean ERC

Double Letters 132 x x x x x x \!
Collatz Numbers 102 x x x x 0, 1, integer ERC
Replace Space
with Newline

135 x x x x x x \space, \newline, string ERC, char
ERC

String Differences 135 x x x x x x \space, \newline, integer ERC
Even Squares 72 x x x x
Wallis Pi 103 x x x x 2 integer ERCs, 2 float ERCs
String Lengths
Backwards

134 x x x x x x integer ERC

Last Index of Zero 101 x x x x 0
Vector Average 88 x x x x
Count Odds 104 x x x x 0, 1, 2, integer ERC
Mirror Image 102 x x x x boolean ERC
Super Anagrams 129 x x x x x boolean ERC, char ERC, integer ERC
Sum of Squares 71 x x x 0, 1, integer ERC
Vectors Summed 68 x x x [], integer ERC
X-Word Lines 134 x x x x x x \newline, \space
Pig Latin 141 x x x x x x “ay”, \space, \a, \e, \i, \o, \u, “aeiou”,

string ERC, char ERC
Negative To Zero 102 x x x x 0, []
Scrabble Score 158 x x x x x x vector containing Scrabble values

(indexed by ASCII values)
Word Stats 281 x x x x x x x x x x x \., \?, \!, \space, \tab, \newline, [],

“words of length ”, “: ”, “number of
sentences: ”, “average sentence
length: ”, integer ERC

Checksum 136 x x x x x x “Check sum is ”, \space, 64, integer
ERC, char ERC

Digits 133 x x x x x x \newline, integer ERC [-10, 10]
Grade 112 x x x x x “Student has a ”, “ grade.”, “A”, “B”,

“C”, “D”, “F”, integer ERC
Median 75 x x x x integer ERC
Smallest 76 x x x x integer ERC
Syllables 141 x x x x x x “The number of syllables is ”, “aeiouy”,

\a, \e, \i, \o, \u, \y, char ERC, string
ERC

Problems 28 29 5 26 11 15 7 2 2 17 1
Instructions 28 28 31 19 17 39 31 31 31 10 4



Table 7: ERC ranges used in our problems. For char and string ERCs, “visible chars” indicates all visible
ASCII characters plus space, newline, and tab.

Problem ERC Ranges

Number IO integer ERC [−100, 100], float ERC [−100.0, 100.0)
Small Or Large integer ERC [−10000, 10000]
For Loop Index
Compare String Lengths boolean ERC [true, false]
Double Letters
Collatz Numbers integer ERC [−100, 100]
Replace Space with Newline char ERC (visible chars), string ERC (lowercase letters and spaces, with

space having 20% chance at each character)
String Differences integer ERC [−10, 10]
Even Squares
Wallis Pi integer ERC [−10, 10], integer ERC [−500, 500], float ERC [−500.0, 500.0)
String Lengths Backwards integer ERC [−100, 100]
Last Index of Zero integer ERC [−50, 50]
Vector Average
Count Odds integer ERC [−1000, 1000]
Mirror Image boolean ERC [true, false]
Super Anagrams boolean ERC [true, false], integer ERC [−1000, 1000], char ERC (visible

chars)
Sum of Squares integer ERC [−100, 100]
Vectors Summed integer ERC [−1000, 1000]
X-Word Lines
Pig Latin char ERC (visible chars), string ERC (lowercase letters and spaces, with

space having 20% chance at each character)
Negative To Zero
Scrabble Score
Word Stats integer ERC [−100, 100]
Checksum integer ERC [−128, 128], char ERC (visible chars)
Digits integer ERC [−10, 10]
Grade integer ERC [0, 100]
Median integer ERC [−100, 100]
Smallest integer ERC [−100, 100]
Syllables char ERC (visible chars), string ERC (lowercase letters, spaces, digits, and

symbols, with vowels having 20% chance at each character)

6.4 GP Parameters
In the most recent version of PushGP, genomes are repre-

sented by flat sequences of instructions that may have one
or more epigenetic markers attached to each instruction. In
this work, we use the default epigenetic markers, which only
include a marker that tells how many pairs of parentheses
to close after each instruction when translating the genome
into a Push program. We initialize genomes by selecting a
genome size uniformly between 0 and the maximum initial
genome size, which for these runs we set to half of the max-
imum genome size. Each gene is composed of an instruction
taken uniformly from the instruction set, as well as an epige-
netic marker for parentheses ranging from 0 to 3, weighted
toward 0.

In our experiment, we keep most of our PushGP system
parameters constant across all problems, with specific de-
tails in Table 10. The genetic operators in our system work
on the linear Push genomes as described in Table 10. The
only significant PushGP parameters that we vary per prob-
lem are the maximum program size, the maximum number
of instruction evaluations that a program may use per ex-
ecution, and the maximum number of generations per run.
We varied these parameters based on expected problem dif-

ficulty and expected program size necessary to solve each
problem; the exact values are given in Table 11. By specify-
ing the maximum generations, the population size (1000 for
all of our runs), and the size of the training set (see Table
1), we also specify the program evaluation budget, which is
the product of those values.

7. EXPERIMENTAL RESULTS
Whereas the relevance of a benchmark suite is determined

by how well its problems reflect potential applications of the
test systems, its utility is based on how well it differentiates
between different approaches. We aim to include problems
with a large range of difficulties, from those that can be
solved reliably to those that extend beyond the abilities of
current program synthesis systems. More importantly, we
hope to include problems that are solved more often with
some systems or settings than others, allowing us to com-
pare their performances on these problems. In this section
we present a simple experiment showing the utility of the
benchmark suite presented here. This experiment compares
three parent selection algorithms: tournament selection, im-
plicit fitness sharing, and lexicase selection.

Implicit fitness sharing (IFS) is a modification of tourna-



Table 8: Push data types and instructions used in our experiments. For each combination of data types listed
in the first column, we list all of the Push instructions that are included in the instruction set when those
data types are present for the problem. Continued in Table 9.

Data Types Instructions

boolean boolean empty, boolean swap, boolean eq, boolean invert first then and, boolean flush,
boolean rot, boolean and, boolean invert second then and, boolean xor, boolean not,
boolean or, boolean dup, boolean pop

boolean, char char iswhitespace, char empty, char isletter, char eq, char isdigit
boolean, char, string string containschar
boolean, exec exec eq, exec when, exec if, exec do*while, exec while, exec empty
boolean, float float lt, boolean fromfloat, float empty, float lte, float gte, float fromboolean, float gt,

float eq
boolean, float, vector float vector float contains
boolean, integer integer eq, boolean yank, integer gte, integer lt, integer lte, boolean shove, integer empty,

integer gt, integer fromboolean, boolean frominteger, boolean stackdepth,
boolean yankdup

boolean, integer,
vector integer

vector integer contains

boolean, string string eq, string emptystring, string fromboolean, string contains, string empty
boolean, string,
vector string

vector string contains

boolean, vector float vector float emptyvector, vector float empty, vector float eq
boolean, vector integer vector integer eq, vector integer empty, vector integer emptyvector
boolean, vector string vector string empty, vector string emptyvector, vector string eq
char char dup, char swap, char flush, char rot, char pop
char, exec, string exec string iterate
char, float char fromfloat, float fromchar
char, integer char shove, char stackdepth, integer fromchar, char yank, char yankdup, char frominteger
char, integer, string string occurrencesofchar, string setchar, string nth, string indexofchar
char, string string removechar, char allfromstring, string replacefirstchar, string replacechar,

string conjchar, string fromchar, string first, string last
exec exec y, exec pop, exec rot, exec s, exec k, exec flush, exec swap, exec dup, exec noop, tag,

tagged
exec, float, vector float exec do*vector float
exec, integer exec stackdepth, exec do*times, exec do*count, exec do*range, exec yank, exec yankdup,

exec shove
exec, integer, vector integer exec do*vector integer
exec, string, vector string exec do*vector string
file file readline, file readchar, file EOF, file begin
float float rot, float sin, float cos, float swap, float div, float inc, float sub, float flush, float add,

float tan, float mult, float max, float pop, float min, float dup, float dec, float mod
float, integer float yank, float frominteger, float stackdepth, float shove, float yankdup, integer fromfloat
float, integer, vector float vector float indexof, vector float occurrencesof, vector float nth, vector float set
float, string float fromstring, string fromfloat
float, vector float vector float conj, vector float remove, vector float last, vector float first,

vector float replacefirst, vector float pushall, vector float replace
integer integer add, integer swap, integer yank, integer dup, integer yankdup, integer flush,

integer shove, integer mult, integer stackdepth, integer div, integer inc, integer max,
integer sub, integer mod, integer rot, integer dec, integer min, integer pop

integer, string string substring, string take, string frominteger, string stackdepth, integer fromstring,
string yank, string yankdup, string length, string shove

integer, string, vector string vector string indexof, vector string set, vector string nth, vector string occurrencesof
integer, vector float vector float shove, vector float length, vector float stackdepth, vector float subvec,

vector float yank, vector float take, vector float yankdup
integer, vector integer vector integer remove, vector integer pushall, vector integer yank, vector integer subvec,

vector integer last, vector integer first, vector integer shove, vector integer indexof,
vector integer occurrencesof, vector integer replace, vector integer replacefirst,
vector integer take, vector integer stackdepth, vector integer nth, vector integer set,
vector integer length, vector integer yankdup, vector integer conj

integer, vector string vector string stackdepth, vector string subvec, vector string take, vector string shove,
vector string yank, vector string length, vector string yankdup



Table 9: Continuation of Table 8.

Data Types Instructions

print print newline
print, boolean print boolean
print, char print char
print, exec print exec
print, float print float
print, integer print integer
print, string print string
print, vector float print vector float
print, vector integer print vector integer
print, vector string print vector string
string string pop, string rot, string rest, string parse to chars, string reverse, string swap, string split,

string flush, string replacefirst, string butlast, string concat, string replace, string dup
string, vector string vector string remove, vector string conj, vector string first, vector string pushall,

vector string last, vector string replacefirst, vector string replace
vector float vector float dup, vector float pop, vector float rot, vector float swap, vector float flush,

vector float reverse, vector float rest, vector float concat, vector float butlast
vector integer vector integer swap, vector integer butlast, vector integer flush, vector integer rest,

vector integer concat, vector integer rot, vector integer reverse, vector integer pop,
vector integer dup

vector string vector string dup, vector string rot, vector string rest, vector string reverse, vector string butlast,
vector string concat, vector string pop, vector string flush, vector string swap

Table 10: The PushGP parameters that were held
constant across the problems. Alternation is a uni-
form crossover operator similar to ULTRA [20].
Uniform mutation has a constant probability of re-
placing each instruction with a random one. Uni-
form close mutation increases or decreases the num-
ber of closing parentheses after each instruction
probabilistically. Alignment deviation is the stan-
dard deviation of index changes during alternation,
and for four problems was set to 5 (Number IO,
Small Or Large, Median, and Smallest).

Parameter Value

population size 1000
alternation rate 0.01
alignment deviation 10
uniform mutation rate 0.01
uniform close mutation rate 0.1

Genetic Operator Prob

alternation 0.2
uniform mutation 0.2
uniform close mutation 0.1
alternation followed by uniform mutation 0.5

ment selection designed to encourage diversity preservation
in the population [12, 17]. IFS selection greatly rewards in-
dividuals for solving training cases that are solved by a small
fraction of the population, and gives less reward for solving
cases that are solved by more of the population. Most of the
problems here produce non-binary error values, for which we
use the non-binary adaptation of IFS found in [10]. As re-
quired by this method, we normalize error values to [0, 1]
by dividing each error by a maximum allowed error value,
which differs per problem based on the fitness function.

Lexicase selection [6, 19], unlike tournament selection and
IFS, does not base selection on a single fitness value. In-
stead, it uses a random ordering of the training set to select
individuals that perform as well as possible on a subset of
the cases even if they exhibit poor performance on other
cases. Lexicase selection has been shown to improve the
performance of a GP system on a variety of problems [6, 4,
3].

Table 12 gives the results of our parent selection experi-
ment. Over the 29 problems, PushGP with lexicase selec-
tion produced at least one successful run on nine more prob-
lems than either tournament selection or IFS. Additionally,
there were 8 problems where lexicase selection achieved a
significantly higher number of successful runs than the other
two, where IFS showed significant improvement on just one
problem and tournament selection none. Similarly, the con-
fidence intervals of the difference in success rate between
lexicase and tournament or IFS generally show neutral to
positive effects of using lexicase.

To examine aggregate performance of each selection method,
we calculate the average rank for each method across the 29
problems, with 1 being best and 3 being worst:

Lexicase IFS Tournament
1.28 2.26 2.47

Lexicase achieves the lowest average rank, as it has the most
or tied for the most successes on every problem except for



Table 12: The first three columns give the number of successful runs out of 100 for each setting, where “Lex”
is lexicase selection, “Tourn” is size 7 tournament selection, and “IFS” is implicit fitness sharing with size
7 tournaments. For each problem, underline indicates significant improvement over the other two selection
methods at p < 0.05 based on a pairwise chi-square test with Holm correction [16], or a pairwise Fisher’s
exact test with Holm correction if any number of successes is below 5 [15]. The columns “Lex−Tourn” and
“Lex−IFS” give the differences in success rate (successful runs divided by total runs) between lexicase and
the other two settings. The columns “Lex−Tourn CI” and “Lex−IFS CI” give 95% confidence intervals of the
differences in success rate. The “Size” column indicates the smallest size of any simplified solution program.

Problem Lex Tourn IFS Lex−Tourn Lex−Tourn CI Lex−IFS Lex−IFS CI Size

Number IO 98 68 72 0.30 [0.19, 0.41] 0.26 [0.16, 0.36] 5
Small Or Large 5 3 3 0.02 [−0.04, 0.08] 0.02 [−0.04, 0.08] 27
For Loop Index 1 0 0 0.01 [−0.02, 0.04] 0.01 [−0.02, 0.04] 21
Compare String Lengths 7 3 6 0.04 [−0.03, 0.11] 0.01 [−0.07, 0.09] 11
Double Letters 6 0 0 0.06 [0.00, 0.12] 0.06 [0.00, 0.12] 20
Collatz Numbers 0 0 0 0 − 0 −
Replace Space with
Newline

51 8 16 0.43 [0.31, 0.55] 0.35 [0.22, 0.48] 9

String Differences 0 0 0 0 − 0 −
Even Squares 2 0 0 0.02 [−0.02, 0.06] 0.02 [−0.02, 0.06] 37
Wallis Pi 0 0 0 0 − 0 −
String Lengths
Backwards

66 7 10 0.59 [0.47, 0.71] 0.56 [0.44, 0.68] 9

Last Index of Zero 21 8 4 0.13 [0.02, 0.24] 0.17 [0.07, 0.27] 5
Vector Average 16 14 13 0.02 [−0.09, 0.13] 0.03 [−0.08, 0.14] 7
Count Odds 8 0 0 0.08 [0.02, 0.14] 0.08 [0.02, 0.14] 7
Mirror Image 78 46 64 0.32 [0.18, 0.46] 0.14 [0.01, 0.27] 4
Super Anagrams 0 0 0 0 − 0 −
Sum of Squares 6 2 0 0.04 [−0.02, 0.10] 0.06 [0.00, 0.12] 7
Vectors Summed 1 0 0 0.01 [−0.02, 0.04] 0.01 [−0.02, 0.04] 11
X-Word Lines 8 0 0 0.08 [0.02, 0.14] 0.08 [0.02, 0.14] 15
Pig Latin 0 0 0 0 − 0 −
Negative To Zero 45 10 8 0.35 [0.23, 0.47] 0.37 [0.25, 0.49] 8
Scrabble Score 2 0 0 0.02 [−0.02, 0.06] 0.02 [−0.02, 0.06] 14
Word Stats 0 0 0 0 − 0 −
Checksum 0 0 0 0 − 0 −
Digits 7 0 1 0.07 [0.01, 0.13] 0.06 [0.00, 0.12] 20
Grade 4 0 0 0.04 [−0.01, 0.09] 0.04 [−0.01, 0.09] 52
Median 45 7 43 0.38 [0.26, 0.50] 0.02 [−0.13, 0.17] 10
Smallest 81 75 98 0.06 [−0.06, 0.18] −0.17 [−0.26,−0.08] 8
Syllables 18 1 7 0.17 [0.08, 0.26] 0.11 [0.01, 0.21] 14

Problems Solved 22 13 13

one. The Friedman test on this data gives us a p-value
< 0.001, indicating that at least one method performs sig-
nificantly differently from the others. A post-hoc Wilcoxon-
Nemenyi-McDonald-Thompson test [8] indicates that lexi-
case outranks both IFS and tournament at the 0.05 signif-
icance level. These results strongly indicate the utility of
lexicase selection for general program synthesis problems.

The data in Table 12 only reflect solutions that generalize
by achieving zero error on the unseen test set. Some prob-
lems seem to lend themselves to generalization more than
others; for example, PushGP using lexicase selection found
14 programs with zero error on the training set for the Su-
per Anagrams problem, none of which generalized to the
test set. For lexicase selection, five problems resulted in 20
or more runs that passed the training set that did not gener-
alize (Small Or Large, Compare String Lengths, Last Index
of Zero, Negative To Zero, and Median), and five problems
had between 10 and 20 runs that did not generalize (String

Lengths Backwards, Mirror Image, Super Anagrams, Dig-
its, and Smallest). These 10 problems show an important
area for future study: how to evolve programs that general-
ize to unseen data for general program synthesis problems.
Among these problems are the only five in the suite that
give a correct/incorrect binary error as fitness in our imple-
mentation: Compare String Lengths, Mirror Image, Super
Anagrams, Median, and Smallest. This shows the difficulty
of evolving general programs based entirely on correctness
of output, and suggests that these problems might be better
tackled if they can be transformed into problems with more
informative fitness functions.

With regards to the problems themselves, this experiment
illustrates the ability of this benchmark suite to provide use-
ful comparisons between multiple systems or parameter set-
tings. By looking at the number of problems solved by each
technique, how often each technique showed significant im-
provements over the others, and the average rank of each



Table 11: The PushGP parameters that we varied
per problem. “Max Size” gives the maximum num-
ber of instructions that can appear in an individual’s
genome. “Eval Limit” is the number of steps of the
Push interpreter that are executed before stopping
a program’s execution; programs halted in this way
may still achieve good results if they print or re-
turn results before they are stopped. “Max Gens”
gives the maximum number of generations in a sin-
gle PushGP run. “Prog Eval Budget” is the max-
imum number of programs that will be evaluated
before a run is terminated.

Problem Max
Size

Eval
Limit

Max
Gens

Prog
Eval

Budget

Number IO 200 200 200 5,000,000
Small Or Large 200 300 300 30,000,000
For Loop Index 300 600 300 30,000,000
Compare String
Lengths

400 600 300 30,000,000

Double Letters 800 1600 300 30,000,000
Collatz Numbers 600 15000 300 60,000,000
Replace Space
with Newline

800 1600 300 30,000,000

String
Differences

1000 2000 300 60,000,000

Even Squares 400 2000 300 30,000,000
Wallis Pi 600 8000 300 45,000,000
String Lengths
Backwards

300 600 300 30,000,000

Last Index of
Zero

300 600 300 45,000,000

Vector Average 400 800 300 30,000,000
Count Odds 500 1500 300 60,000,000
Mirror Image 300 600 300 30,000,000
Super Anagrams 800 1600 300 60,000,000
Sum of Squares 400 4000 300 15,000,000
Vectors Summed 500 1500 300 45,000,000
X-Word Lines 800 1600 300 45,000,000
Pig Latin 1000 2000 300 60,000,000
Negative To Zero 500 1500 300 60,000,000
Scrabble Score 1000 2000 300 60,000,000
Word Stats 1000 6000 300 30,000,000
Checksum 800 1500 300 30,000,000
Digits 300 600 300 30,000,000
Grade 400 800 300 60,000,000
Median 200 200 200 20,000,000
Smallest 200 200 200 20,000,000
Syllables 800 1600 300 30,000,000

technique across the problems, we can clearly see that lex-
icase selection increases PushGP’s ability to solve general
program synthesis problems compared to tournament selec-
tion and IFS. The main goal of a benchmark suite is to sup-
port this type of experiment. Additionally, some problems
in the suite were solved frequently by each system, whereas
others were solved infrequently or not at all. This range
of difficulties permits the suite to be useful for a variety
of experiments and allows it to remain relevant as program
synthesis systems improve.

Of the seven problems on which PushGP found no gener-
alizing solution, most are not surprising in that they involve
extensive use of multiple programming constructs, the link-
ing of many distinct steps, or a deceptive fitness space where
fitness improvements do not lead toward perfect programs.
We have written solutions to each of the unsolved problems
by hand to ensure that each problem is solvable within the
constraints we put on the system and instruction set.

The last column in Table 12 gives the size (in Push points,
which includes instructions and nested parenthesis pairs) of
the smallest simplified solution program. Here, we’ve used
post-run simplification to automatically reduce the sizes of
solution programs without changing their semantics on the
training data [21]. While this hill-climbing simplification is
not guaranteed to find the smallest semantically equivalent
program, it reliably removes excess code, leaving the core
functionality of the program [21]. The simplified program
sizes present a reasonable proxy for the smallest solution pro-
gram for each problem (using our instruction sets). While
some problems can be solved with programs containing fewer
than 10 instructions, few if any would likely be found using
brute-force search over our instruction sets within the num-
ber of program evaluations allowed here. Searching over size
5 programs using the Number IO instruction set would re-
quire evaluating over 7 billion programs, much more than
the 5 million we used in our GP runs. Other problems
have smallest known solutions of over 20 instructions us-
ing instruction sets with more than 100 instructions, to our
knowledge beyond the reach of all other program synthesis
systems.

8. CONCLUSIONS
We have presented a suite of 29 general program synthesis

benchmark problems, systematically selected from sources of
introductory computer science programming problems. This
technical report expands on the original publication of this
benchmark suite [5] by providing details of our implemen-
tation of the problems in PushGP. Through exposition and
experimentation, we have demonstrated the potential utility
of this suite to assess the capabilities of program synthesis
systems. We expect that the application of this suite can
help advance multiple fields of automatic program synthe-
sis, including genetic programming, that have long employed
simple benchmark problems not attuned to potential real-
world applications.

9. ACKNOWLEDGMENTS
Thanks to the members of the Hampshire College Com-

putational Intelligence Lab, Nicholas Freitag McPhee, Yuriy
Brun, and David Jensen for discussions that helped to im-
prove the work described in this paper, to Josiah Erikson
for systems support, and to Hampshire College for support



for the Hampshire College Institute for Computational In-
telligence. This material is based upon work supported by
the National Science Foundation under Grants No. 1017817,
1129139, and 1331283. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

10. REFERENCES
[1] Y. Brun, E. Barr, M. Xiao, C. Le Goues, and

P. Devanbu. Evolution vs. intelligent design in
program patching. Technical Report
https://escholarship.org/uc/item/3z8926ks, UC Davis:
College of Engineering, 2013.

[2] C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer. The
ManyBugs and IntroClass benchmarks for automated
program repair. IEEE Transactions on Software
Engineering. Under Review.

[3] T. Helmuth and L. Spector. Evolving a digital
multiplier with the PushGP genetic programming
system. In GECCO ’13 Companion, pages 1627–1634,
Amsterdam, The Netherlands, 6-10 July 2013. ACM.

[4] T. Helmuth and L. Spector. Word count as a
traditional programming benchmark problem for
genetic programming. In GECCO ’14: Proceedings of
the 2014 conference on Genetic and evolutionary
computation, pages 919–926, Vancouver, BC, Canada,
12-16 July 2014. ACM.

[5] T. Helmuth and L. Spector. General program
synthesis benchmark suite. In GECCO ’15:
Proceedings of the 2015 Conference on Genetic and
Evolutionary Computation, July 2015.

[6] T. Helmuth, L. Spector, and J. Matheson. Solving
uncompromising problems with lexicase selection.
IEEE Transactions on Evolutionary Computation,
2014.

[7] M. Hofmann, E. Kitzelmann, and U. Schmid. A
unifying framework for analysis and evaluation of
inductive programming systems. In Proceedings of the
Second Conference on Artificial General Intelligence,
pages 55–60. Citeseer, 2009.

[8] M. Hollander and D. Wolfe. Nonparametric Statistical
Methods. Wiley Series in Probability and Statistics.
Wiley, 1999.

[9] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[10] K. Krawiec and M. Nawrocki. Implicit fitness sharing
for evolutionary synthesis of license plate detectors. In
Applications of Evolutionary Computing,
EvoApplications 2012, volume 7835 of Lecture Notes
in Computer Science, pages 376–386, Vienna, Austria,
3-5 Apr. 2013. Springer.

[11] J. McDermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec,
R. Harper, K. De Jong, and U.-M. O’Reilly. Genetic
programming needs better benchmarks. In GECCO
’12: Proceedings of the Genetic and evolutionary
computation conference, pages 791–798, Philadelphia,
Pennsylvania, USA, 7-11 July 2012. ACM.

[12] R. I. McKay. Fitness sharing in genetic programming.

In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages
435–442, Las Vegas, Nevada, USA, 10-12 July 2000.
Morgan Kaufmann.

[13] R. Moll. iJava—an online interactive textbook for
elementary Java instruction: Demonstration. Journal
of Computing Sciences in Colleges, 26(6):55–57, June
2011.

[14] R. Moll. iJava. http://ijava.cs.umass.edu/index.html,
2014. Edition 3.1. Online; accessed September 2015.

[15] M. Nakazawa. fmsb: Functions for medical statistics
book with some demographic data, 2014. R package.

[16] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2012. ISBN
3-900051-07-0.

[17] R. Smith, S. Forrest, and A. S. Perelson. Population
diversity in an immune system model: Implications for
genetic search. In Foundations of Genetic Algorithms
2, pages 153–166. Morgan Kaufmann, 1992.

[18] L. Spector. Autoconstructive evolution: Push,
pushGP, and pushpop. In Proceedings of the Genetic
and Evolutionary Computation Conference
(GECCO-2001), pages 137–146, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.

[19] L. Spector. Assessment of problem modality by
differential performance of lexicase selection in genetic
programming: a preliminary report. In Proceedings of
the Genetic and evolutionary computation conference
companion, GECCO Companion ’12, pages 401–408,
New York, NY, USA, 2012. ACM.

[20] L. Spector and T. Helmuth. Uniform linear
transformation with repair and alternation in genetic
programming. In R. Riolo, J. H. Moore, and
M. Kotanchek, editors, Genetic Programming Theory
and Practice XI, Genetic and Evolutionary
Computation, chapter 8, pages 137–153. Springer,
Ann Arbor, USA, 9-11 May 2013.

[21] L. Spector and T. Helmuth. Effective simplification of
evolved Push programs using a simple, stochastic
hill-climber. In GECCO Companion ’14, pages
147–148, Vancouver, BC, Canada, 12-16 July 2014.
ACM.

[22] L. Spector, J. Klein, and M. Keijzer. The Push3
execution stack and the evolution of control. In
GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, pages
1689–1696, Washington DC, USA, 2005. ACM Press.

[23] L. Spector, B. Martin, K. Harrington, and
T. Helmuth. Tag-based modules in genetic
programming. In GECCO ’11: Proceedings of the 13th
annual conference on Genetic and evolutionary
computation, pages 1419–1426, Dublin, Ireland, 12-16
July 2011. ACM.

[24] L. Spector and A. Robinson. Genetic programming
and autoconstructive evolution with the push
programming language. Genetic Programming and
Evolvable Machines, 3(1):7–40, Mar. 2002.

[25] D. R. White, J. Mcdermott, M. Castelli, L. Manzoni,
B. W. Goldman, G. Kronberger, W. Jaśkowski, U.-M.
O’Reilly, and S. Luke. Better GP benchmarks:
community survey results and proposals. Genetic



Programming and Evolvable Machines, 14(1):3–29,
Mar. 2013.

[26] J. Woodward, S. Martin, and J. Swan. Benchmarks
that matter for genetic programming. In GECCO
2014 4th workshop on evolutionary computation for
the automated design of algorithms, pages 1397–1404,
Vancouver, BC, Canada, 12-16 July 2014. ACM.


