
University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

Is the Cure Worse than the Disease? A Large-Scale
Analysis of Overfitting in Automated Program Repair

Edward K. Smith Earl T. Barr? Claire Le Goues† Yuriy Brun
University of Massachusetts ?University College, London †Carnegie Mellon University

Amherst, MA, USA London, UK Pittsburgh, PA, USA
{tedks, brun}@cs.umass.edu, e.barr@ucl.ac.uk, clegoues@cs.cmu.edu

ABSTRACT
Recent research in automated program repair has shown promise
for reducing the significant manual effort debugging requires. This
paper addresses a deficit of earlier evaluations of automated repair
techniques caused by repairing programs and evaluating generated
patches’ correctness using the same set of tests. Since tests are an
imperfect metric of program correctness, evaluations of this type
do not discriminate between correct patches, and patches that over-
fit the available tests and break untested but desired functionality.
This paper evaluates two well-studied repair tools, GenProg and
TSPRepair, on a 956-bug dataset, each with a human-written patch.
By evaluating patches on tests independent from those used during
repair, we find that the tools are unlikely to improve the proportion
of independent tests passed, and that the quality of the patches is
proportional to the coverage of the test suite used during repair. For
programs with fewer bugs, the tools are as likely to break tests as to
fix them. However, novice developers also overfit, and automated
repair can, under the right conditions, outperform these develop-
ers. In addition to overfitting, we measure the effects of test suite
coverage, test suite provenance, starting program quality, and the
difference in quality between novice-developer-written and tool-
generated patches when quality is assessed with an independent test
suite from patch generation. We have released the 956-bug dataset
to allow future evaluations of new repair tools.

1. INTRODUCTION
Automated program repair [3, 12, 16, 17, 24, 26, 29, 32, 33, 35, 39,

42,43,47,54,56,57] holds great potential to reduce debugging costs
and improve software quality. For example, GenProg quickly and
cheaply generated patches for 55 out of 105 C bugs [29], while
PAR showed comparable results on 119 Java bugs [26]. While some
techniques validate patch correctness with respect to user-provided
or inferred contracts [24, 42, 56], a larger proportion use test cases.
The most common prior evaluations of automatic repair provide
evidence of techniques’ feasibility with respect to this test-case-
based definition of patch correctness (e.g., [16, 31, 42, 56]).

However, in practice, a test suite is rarely exhaustive [48], and
repair techniques must avoid breaking undertested functionality.
When evaluations of a repair techniques use the same test cases or
workloads to both construct patches and validate their correctness,
they fail to measure whether or to what degree the repair technique
breaks functionality. In our review of the literature, most of the
prior evaluations of automated repair techniques that relied on test
cases or workloads failed to evaluate patches independently of the
test cases used to construct them. More recent work (e.g., [47, 60])
has begun to consider independent quality measures, though less
extensively than we do here. And while some evaluations have
used humans to independently measure repair acceptability [26] and

maintainability [19], unlike our work, they did not directly evaluate
patch correctness.

We refer to the repair techniques affected by this observation —
ones that use test cases or workloads in patch construction — generate
and validate (G&V) techniques. In this paper, we focus on G&V
techniques. As we describe further in Section 2.2, G&V techniques
are worth our investigation because they have broad applicability to
mature, deployed, legacy software. Investigating other approaches,
such as synthesis-based repair [24,42,56] techniques, is also of great
value, but is outside the scope of this paper as it requires a different
methodology and a focus on different kinds of input properties than
is appropriate for G&V techniques.

Our contribution is a large-scale, controlled investigation of Gen-
Prog [31, 58] and TSPRepair [45, 46], both test-case-guided, search-
based automatic program repair tools with freely available imple-
mentations that scale well to large programs. The evaluation identi-
fies the circumstances under which these techniques break function-
ality despite producing patches that pass all test cases used during
patch construction. We do this by using multiple test suites: one
suite to construct the patch and another to evaluate it. To borrow
from machine learning vocabulary, we use one test suite as “training”
data to construct a patch, and another as “evaluation” or “held-out”
data to evaluate the quality of the patch, checking if it breaks ex-
isting functionality. Patches that are overly specific to the training
tests and fail to generalize to the held-out tests overfit to the training
tests. Techniques that produce overfitting patches tend to fix certain
program behavior while breaking other behavior.

The goals of our study are to (1) evaluate the quality of automated
repair patches independently of their construction, and (2) measure
the effects of properties of the input program and test suite on
patch quality. Using exhaustively testable programs is thus a critical
requirement for our study. Each program must be equipped with
multiple independent exhaustive test suites so that patches can be
evaluated for correctness independently from the suites used in patch
construction. We also require a large corpus of programs to support
a large-scale evaluation that results in statistically significant claims.
We therefore produce a dataset for our evaluation by collecting
956 student-written programs with defects, submitted as homework
in a freshman programming class, and all with student-written,
bug-fixing patches. Each program specification is accompanied
by two independent test suites: a black-box test suite written by
the course instructor to the specification, and a white-box test suite
constructed using the symbolic executor Klee [11]. We release this
dataset to foster better evaluation of future automated repair tools:
http://repairbenchmarks.cs.umass.edu/IntroClass/.

Previous work has used larger, real-world programs written by
professional developers to evaluate techniques’ scalability and ap-
plicability to complex program behavior (e.g., [29, 43]). However,

1

mailto:tedks@cs.umass.edu,e.barr@ucl.ac.uk,clegoues@cs.cmu.edu,brun@cs.umass.edu
http://repairbenchmarks.cs.umass.edu/IntroClass/

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

these properties are not our focus. Although our use of small pro-
grams threatens the generalizability of our results, we make this
tradeoff because we need many programs with multiple exhaustive
test suites to evaluate the repair properties we are interested in. Un-
derstanding repair techniques at this scale increases understanding
of repair techniques in general.

To the best of our knowledge, this is the first systematic effort to
evaluate the correctness of automated repair with respect to fully in-
dependent measures. We measure overfitting and characterize repair
quality along several previously unexplored dimensions, including
test suite coverage, quality, and provenance. We also explicitly com-
pare automatically generated and novice-developer-written patches
with respect to functionality, as opposed to human judgments.

While our dataset is homogenous in that all our programs, bugs,
and patches are short and written by novice programmers, it is rich
in other ways, such as the availability of human-written patches,
and a wide range of versions that fail multiple tests. The programs’
small sizes, well-defined requirements, and numerous varied human
implementations enable a comprehensive, controlled evaluation of
how test suite coverage and provenance, patch minimization, and
bug complexity affect repair quality. Automated repair is able to
generate patches for many of the bugs in our dataset, providing
sufficient data to draw statistically significant conclusions. Our
study therefore increases the understanding of how, why, and under
what circumstances search-based repair succeeds and fails through a
large-scale experimental comparison, which would be dramatically
more difficult (if not impossible) on large, complex programs. We
find that:

• GenProg and TSPRepair are less likely to repair programs that
fail more training tests.

• Both tools overfit to the training test suite used to guide patch
construction. The resulting patches often break undertested func-
tionality. Patch minimization does not reduce this effect.

• Test suite coverage is critically important to patch quality. Both
tools produce patches that overfit more when given lower-coverage
training suites.

• Both tools are more likely to break undertested functionality in
programs that start with fewer defects. In these cases, the “fixed”
program is often worse than the un-patched program.

• Both tools produce higher-quality patches when given human-
generated requirements-based, black-box test suites than they do
when given high-coverage, automatically generated, white-box
test suites.

• Novice developers also overfit to provided test suites when fixing
their own programs. In fact, they overfit more than the tools do
when the tools use the black-box tests. However, the tools overfit
more than the humans do when using the white-box tests.

• GenProg and TSPRepair can often generate multiple patches for
the same bug. We find some evidence that combining multiple
lower-quality patches can decrease overfitting, but the practical
effect is quite small.

The rest of this paper is structured as follows. Section 2 summa-
rizes automated repair. Section 3 describes our dataset. Section 4
discusses the results of a series of experiments measuring how the
quality of inputs to automatic program repair affects the output
patches. Section 5 presents a case study demonstrating overfitting.
Finally, Section 6 acknowledges threats to the validity of our results,
Section 7 places our work in the context of related research, and
Section 8 summarizes our contributions.

2. AUTOMATED PROGRAM REPAIR
Automatic repair techniques can be classified broadly into two

classes: (1) Synthesis-based techniques use constraints to build
correct-by-construction patches via formal verification or inferred
or programmer-provided contracts or specifications (e.g., [24, 42,
56] (2) Generate-and-validate (G&V) techniques create candidate
patches (often via search-based software engineering [23]) and then
validate them, typically through testing (e.g., [3, 12, 13, 16, 17, 26,
33,35,39,43,47,54,57,58]. This paper focuses on G&V techniques.
Section 2.1 defines this class of repair techniques, Section 2.2 ex-
plains the reasons we focus on it, and Section 2.3 discusses how we
improve on prior evaluations.

2.1 Generate-and-validate program repair
G&V repair works by generating multiple candidate patches that

might address a particular bug and then validating the candidates to
determine if they constitute a repair. In practice, the most common
form of validation is testing. A G&V approach’s input is therefore
a program and a set of test cases. The passing tests validate the
correct, required behavior, and the failing tests identify the buggy
behavior to be repaired. G&V approaches differ in how they choose
which locations to modify, which modifications are permitted, and
how the candidates are evaluated.

Of all existing G&V techniques, and to the best of our knowledge,
GenProg [29,58], TSPRepair [45], and AE [57] are the only publicly
available repair tools that both repair programs written in C and
target general-purpose bugs (as opposed to focusing on one domain
of bugs, such as concurrency or integer overflow). In this paper, we
use GenProg and TSPRepair as exemplars of G&V program repair.
Unlike GenProg and TSPRepair, AE is deterministic, and so much
of our experimental methodology does not apply. However, we do
find that AE similarly overfits to the input tests (Section 4.2).

GenProg [29, 58] uses a genetic programming heuristic [28] to
search the space of candidate repairs. Given a buggy program and
a set of tests, GenProg generates a population of random patches.
The fitness of each patch is computed by applying it to the input
program and running the result on the input test cases; a weighted
sum of the count of passed tests informs a random selection of a
subset of the population to propagate into the next iteration. These
patch candidates are recombined and mutated to form new candi-
dates until either a candidate causes the input program to pass all
tests, or a preset time or resource limit is reached. Because genetic
programming is a random search technique, GenProg is typically
run multiple times on different random seeds to repair a bug.

TSPRepair [45] uses random search instead of the genetic pro-
gramming approach to traverse the search space of candidate so-
lutions. Instead of running an entire test suite for every patch,
TSPRepair uses heuristics to select the most informative test cases
first, and stops running the suite once a test fails. TSPRepair lim-
its its patches to a single edit. TSPRepair is more efficient than
GenProg in terms of time and test case evaluations [45]. The same
approach is also called RSRepair [46], and we refer to the original
algorithm name in this paper.

There are three key hurdles that G&V must overcome to find
patches [57]. First, there are many places in the buggy program that
may be changed. The set of program locations that may be changed
and the probability than any one of them is changed at a given time
describes the fault space of a particular program repair problem.
GenProg and TSPRepair tackle this challenge by using existing fault
localization techniques to identify good repair candidates. Second,
there are many ways to change potentially faulty code in an attempt
to fix it. This describes the fix space of a particular program re-
pair problem. GenProg and TSPRepair tackle this challenge using

2

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

the observation that programs are often repetitive [6, 20] and logic
implemented with a bug in one place is likely to be implemented
correctly elsewhere in the same program. GenProg and TSPRepair
therefore limit the code changes to deleting constructs and copying
constructs from elsewhere in the same program. Finally, as a chal-
lenge that applies to GenProg in particular, genetic programming is
known to lead to bloat, in which solutions contain more code than
necessary [22]. GenProg minimizes code bloat post-facto; prior
work has claimed that minimization reduces patches overfitting to
the training tests [31]. TSPRepair only attempts single-edit patches,
and thus does not further minimize successful patches.

GenProg and TSPRepair share sufficient common features to al-
low consistent empirical and theoretical comparisons. For example,
in our experiments, we use the same fault localization strategy and
fix space weighting schemes for both. This allows us to focus on par-
ticular experimental concerns and mitigates the threat that unrelated
differences between the algorithms confound the results. However,
the algorithms vary both in the way they traverse the search space
and in the way they evaluate candidate patches, and thus we expect
our findings to generalize to other G&V techniques, especially in
light of recent successes in modeling and characterizing the similar-
ities in G&V approaches [57].

2.2 Our focus on G&V
Our evaluation focuses on G&V approaches for two reasons:
First, while both synthesis-based and G&V techniques share high-

level goals, they work best in different settings, and have differ-
ent limitations and challenges. For example, the performance of
synthesis-based repair relates strongly to the power of the underlying
proof system, which is typically irrelevant to G&V repair.

Second, G&V is particularly promising for deployed, legacy soft-
ware, because it typically does not require that the program be
written in a novel language or include special annotations or speci-
fications. As examples, Clearview, GenProg, Par, and Debroy and
Wong have successfully fixed bugs in legacy software. Although
new projects appear to be increasingly adopting contracts [18], their
penetration into existing systems and languages remains limited.
Few maintained contract implementations exist for widely-used lan-
guages such as C. As an example, as of March 2014, in the Debian
main repository, only 43 packages depended on Zope.Interfaces
(by far the most popular Python, contract-specific library in Debian)
out of a total of 4,685 Python-related packages. For Ubuntu, 144 out
of 5,594 Python-related packages depended on Zope.Interfaces.
Synthesis-based techniques show great promise for new or safety-
critical systems written in suitable languages, and adequately en-
riched with specifications. However, the significance of defects in
existing software demands that research attention be paid at least in
part to techniques that address software quality in existing systems
written in legacy languages. Since legacy codebases often are often
idiosyncratic to the point of not adhering to the specifications of
their host language [8], it might not be possible even to add contracts
to such projects.

2.3 Prior program repair evaluations
There have been several prior evaluations of G&V repair tech-

niques. Most such evaluations demonstrate by construction that the
technique is feasible and sufficiently efficient in practice [16, 31,
33, 35, 39, 42, 43, 54, 56, 58], some show that the resulting patches
withstand red team attacks [43], some illustrate with a small number
of examples that G&V-generated patches for security vulnerabilities
protect against exploits and fuzzed variants of those exploits on
typical user workloads [31], and some consider the fraction of a set
of bugs their technique can repair [26, 29, 39]. These evaluations

have demonstrated that G&V can repair a moderate number of bugs
in medium-sized programs, as well as evaluated the monetary and
time costs of automatic repair [29], the relationship between op-
erator choices and test execution parameters and success [30, 57],
and human-rated patch acceptability [26] and maintainability [19].
However, these evaluations have not used a metric of correctness
independent of patch construction.

Our evaluation measures patch correctness independently of patch
construction. We empirically examine how test suite coverage and
provenance, number of test failures, and patch minimization affect
repair effectiveness, defined by both success and functional correct-
ness. We perform these experiments using a much larger set of
bugs than ever before, designed to permit controlled evaluations that
isolate particular features of the inputs, such that we can examine
their effects on automatic repair in a statistically significant way.

Stressing the importance of this work, concurrent research is
starting to evaluate repair techniques in terms of overfitting [47, 54].
Tan et al. [54] evaluate the degree to which relifix and GenProg
introduce regression errors. Their evaluation is a step toward the
independent correctness evaluation we advocate here, where we use
independent test suites to measure patch quality. By contrast, those
experiments use the subset of the original test suite that does not ex-
ecute any of the lines associated with the bug under repair, ignoring
specifically regressions a patch is most likely to introduce. Another
concurrent evaluation is finding that poor-quality test suites result in
patches that overfit to those suites [47]. Our evaluation goes further,
demonstrating that high-quality, high-coverage test suites still lead
to overfitting, and identifying other relationships between test suite
properties and patch quality. Finally, prior human evaluations of au-
tomatically generated patches have measured acceptability [26] and
maintainability [19]. While the human judgment is a criterion not
used by the repair tools for patch construction, it is fundamentally
different from the correctness criterion we use in our evaluation, as
it is often difficult for humans to spot bugs even when told exactly
where to look for them [41].

3. THE DATASET
This section describes our dataset of 956 bugs in versions of

six small C programs, together with two types of tests and human-
written bug fixes. This dataset is available at:
http://repairbenchmarks.cs.umass.edu/IntroClass/

3.1 The subject programs
Our dataset is drawn from an introductory C programming class

at UC Davis with an enrollment of about 200 students. The use of
this anonymized dataset for research was approved by the UC Davis
IRB. To prevent identity recovery, students’ names in the dataset
were securely hashed, and all code comments were removed.

The dataset includes six programming assignments (Figure 1).
Each assignment requires students to individually write a program
that satisfies a provided set of requirements. The requirements
were of relatively high quality: A good deal of effort was spent
to make them as clear as possible, given their role in a beginning
programming class. Further, the students were taught to first under-
stand the requirements, then design, then code, and finally test their
submissions.

Students working on their assignments submit their code by push-
ing to a personal git repository. The students may submit as many
times as they desire without penalty until the deadline. On every
submission, a system called GradeBot runs the student program
against a set of black-box test cases (described next), comparing
the output against an instructor-written reference implementation.
The students learn how many tests run and how many pass, but

3

http://repairbenchmarks.cs.umass.edu/IntroClass/

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

program LoC tests buggy versions computationbb wb bb wb

checksum 13 6 10 29 49 checksum of a string
digits 15 6 10 80 140 digits of a number
grade 19 9 9 226 224 grade from score
median 24 7 6 166 153 median of 3 numbers
smallest 20 8 8 153 118 min of 4 numbers
syllables 23 6 10 108 126 count syllables

total 114 42 53 762? 810?

?956 of the 762 bb and 810 wb buggy versions are unique.

Figure 1: The instructor-written implementations of the six
subject programs vary in size from 13 to 24 LOC. The black-
box (bb) tests are instructor-written to cover the specification.
The white-box (wb) tests are automatically generated for com-
plete coverage of a reference implementation. The programs’
revision histories contain 762 versions that pass at least one and
fail at least one bb test, and 810 versions that pass at least one
and fail at least one wb test, with a total of 956 unique buggy
versions.

no other information. The grade is proportional to the number of
tests the latest submission (before the deadline) passes. Students do
not know the test cases used by the GradeBot, so when a submis-
sion fails a test, the student has to carefully reconsider the program
requirements.

The G&V techniques evaluated in this paper rely on a pool of
candidate source code elsewhere in the program. We were initially
concerned that the programs’ small size will impede patch construc-
tion. However, as Section 4.1 shows, automated repair was often
able to produce patches. Further, we found that increasing the pool
of candidate source code lines showed neither an increase in repair
rate nor a decrease in overfitting behavior.

3.2 Test suites and measure of patch quality
Each program has two test suites: a black-box test suite and a

white-box test suite. The instructor-written black-box test suite is
based solely on the program specification. The instructor separated
the input space into equivalence partitions and selected an input
from each partition. The white-box test suite achieves edge coverage
(also called branch and structural coverage) on the instructor-written
reference implementation. We created the white-box test suite us-
ing KLEE, a symbolic execution tool that automatically generates
tests that achieve high coverage [11]. When KLEE failed to find
a covering test suite, we manually added tests to achieve full edge
coverage.

The black-box and white-box test suites were developed inde-
pendently and independently describe desired program behavior.
Because students can query how well their submissions do on the
black-box tests (without learning the tests themselves), they can use
the results of these tests to guide their development. A repair tool
can analogously use the black-box tests to guide automated repair.

We use the two test suites to measure functional patch quality.
When a human or a tool uses black-box tests to construct a patch,
we evaluate how well the patch performs on the held-out white-box
test suite. If the patch passes all black-box tests provided as input to
the repair tool but fails some white-box tests, then the patch overfits
to the black-box tests, and fails to generalize to the held-out tests.
We can similarly measure overfitting to white-box tests. Several
experiments described in Section 4 use this method for measuring
patch quality in terms of overfitting and generalizability (the inverse

of overfitting).

3.3 Buggy program versions
Because the homework is submitted to a git repository, student

submissions to GradeBot provide a detailed history of student efforts
to solve each problem. Inevitably, some submissions contain bugs,
in that they do not satisfy all of the requirements for the assignment.
We can approximate if a submission is buggy by evaluating its
performance on the two test suites. Many, though not all, of the final
submitted versions are correct. To identify a specific buggy program
version, we pick a test suite (e.g., black-box) and find all versions
that pass at least one and fail at least one test in that suite. Overall,
we identified 762 buggy versions using the black-box suites, and
810 buggy versions using the white-box suites (Figure 1); the union
of these sets constitutes 956 unique buggy programs.

For each of the 956 versions, we ran each test and observed the
version’s behavior on that test. We observed 8,884 failures. The
overwhelming majority of errors were caused by incorrect output;
this accounted for 8,469 cases. Segmentation faults accounted for
76 test failures; other errors detected by program exit status codes
accounted for 254 errors. The remaining 85 errors were due to
timeouts, likely caused by infinite loops.

4. EMPIRICAL EVALUATION
We evaluate G&V repair via a series of controlled experiments

using the dataset from Section 3. Section 4.1 outlines our experimen-
tal procedure and reports baseline results for successful patching.
Section 4.2 examines overfitting in G&V repair and measures how
various factors affect overfitting. Section 4.3 compares G&V repair
to novice developers in terms of overfitting. Finally, Section 4.4
tests previously proposed approaches to combat overfitting.

4.1 Evaluation methodology
This section outlines the methodology we use to evaluate GenProg

and TSPRepair and presents baseline results. We use each tool to
attempt to repair each of the 762 program versions that fail at least
one black-box test, providing the black-box test suite as the training
suite to both tools. For each buggy version, we compute the black-
box tests it passes and fails, and then sample randomly those tests
to produce 25%, 50%, 75%, and 100% subsets of the training suite
of the same pass-fail ratio (rounding up to the nearest test). These
test suite subsets represent test suites of varying levels of coverage.
We use the term scenario to refer to the pair consisting of the buggy
program version and a coverage measure. Thus for black-box tests,
there are 762× 4 = 3,048 scenarios. We attempt to repair each
scenario 20 times, providing a new randomly generated seed each
time, for a total of 3,048×20 = 60,960 attempted repairs. When a
tool exits successfully after generating a patch that passes 100% of
the training suite, we run the (white-box) held-out evaluation suite
over the patch to measure its quality.

Figure 2(a) summarizes the fraction of the time each run, each
scenario, and each buggy version was fixed by each of the two tools.
While fewer GenProg runs find patches (25.8% vs. 31.2%), GenProg
is able to patch more scenarios (46.1% vs. 42.5%) and more distinct
buggy program versions (61.9% vs. 57.1%) than TSPRepair.

Figure 2(b) shows the relationship between the number of black-
box tests the un-patched buggy program fails and patch success.
GenProg is slightly more likely to patch buggy versions that fail
fewer tests: A linear regression confirms a slight positive trend (with
significance, p = 0.0106). The trend detected for TSPRepair is not
statistically significant at α = 0.05 (p = 0.0624, and thus at α = 0.1,
the result is considered significant). Based on these results, we
conclude that GenProg and TSPRepair generate patches sufficiently

4

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

tool runs scenarios buggy programs

GenProg 15739
60960 = 25.8% 1404

3048 = 46.1% 472
762 = 61.9%

TSPRepair 19023
60960 = 31.2% 1294

3048 = 42.5% 435
762 = 57.1%

(a)

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
before−repair training suite passing rate

R
ep

ai
r

su
cc

es
s

ra
te

● GenProg TSPRepair

(b)

Figure 2: (a) GenProg and TSPRepair patch creation rates.
(b) GenProg’s and TSPRepair’s scenario patch creation rates
(producing at least one patch that passes all the black-box tests
in 20 attempts on different seeds) improve as the number of
passing before-repair training suite tests increased. This re-
lationship is significant for GenProg (p = 0.0106) but not for
TSPRepair.

often to enable further empirical experiments.
All relationships reported in the following sections are evaluated

via linear regression, unless otherwise specified. While we give
significances where appropriate, none of the detected relationships
had large effects measured by R2, and we do not conclude that any
of the relationships are strongly linear.

4.2 Overfitting

Research Question 1: How often do the patches produced
by G&V techniques overfit to the training suite, and fail to
generalize to the held out evaluation suite, and thus ultimately
to the program specification?

Having shown that the repair techniques often find patches that
cause a program to pass all of the training test suite, we next eval-
uate the quality of those patches. Specifically, we are interested
in learning if G&V techniques produce patches that overfit to the
training test suite.

We find that the median GenProg patch (which passes 100% of
the training suite, by definition) passes only 83.3% of the evaluation
suite (mean 83.5%). The median TSPRepair patch passes 67% of
the evaluation suite (mean 65%).1

We conclude that tool-generated patches often overfit to the train-
ing suite used in constructing the patch. For programs that are
1For completeness, we also evaluated if AE [57], another publicly
available G&V tool, overfits. AE produces patches for 33.7% of
buggy programs, and the median patch passes 62.5% of the eval-
uation suite (mean 61.9%). Because AE is deterministic and only
produces one patch per buggy program version, our other experi-
ments that rely on using multiple random seeds do not apply.

GenProg TSPRepair

●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●
●

●

0%

25%

50%

75%

100%

25% 50% 75% 100% 25% 50% 75% 100%
available training suite coverage

ev
al

ua
tio

n
su

ite
 p

as
si

ng
 r

at
e

Figure 3: The coverage of the test suite GenProg and TSPRe-
pair use to repair the buggy program strongly correlates
(p < 0.001) with the portion of the white-box tests the patched
program passes.

mostly correct to begin with, both GenProg and TSPRepair are more
likely to decrease the correctness of the program under repair than
to increase it.

Research Question 2: How does training suite coverage affect
patch overfitting?

In practice, test suites are typically incomplete. To measure how
G&V techniques perform when given incomplete test suites, we
use subsets of the black-box test suites as the training suites, and
measure the relationship between the coverage of the training suite
and the patch’s overfitting.

For each buggy program, we use the test suite sampling procedure
from Section 4.1 to produce 25%-, 50%-, 75%-, and 100%-sized
test suites that keep consistent the pass-fail ratio of every buggy
version, but vary the test suite coverage. As before, for each tool,
we repeat this process 20 times, each time resampling the test suites
and using a different random seed.

Figure 3 shows the relationship between training suite coverage
and overfitting (the fraction of the held-out white-box tests the
patched program passes). For both GenProg and TSPRepair, higher-
coverage training suites improve the quality (reduce the overfitting)
of a patch: the patch passes more white-box tests, on average. A
linear regression confirms both positive trends (with significance,
p < 0.001).

We conclude that GenProg and TSPRepair benefit from high-
coverage test suites in repairing bugs. Using low-coverage test
suites, which are unfortunately common in practice, poses a risk of
automated patches that overfit to that test suite.

Research Question 3: How does the number of tests that a
buggy program fails affect the degree to which the generated
patches overfit?

Section 4.1 showed that the number of training tests the buggy
version fails is related to a technique’s ability to produce a patch.
Now, we explore if it is also related to overfitting.

Figure 4 relates the quality of the generated patch as measured
by its performance on the held-out white-box tests to the number
of training black-box tests the original program passes. The top of
Figure 4 shows that programs that pass more training tests before

5

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

●●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●

●

●●●

●●
●
●

●

●

●

●

●

●

●

●●●

●
●

●●

●
●
●
●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●●

●●

●

●●
●
●

●●

●

●

●●●
●

●
●

●

●

●

●●●

●

●
●
●

●
●
●

●

●

●●●

●

●

●
●
●
●
●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●

●
●

●
●

●●
●

●

●●●●

●

● ●

●

●
●

●●

●●●●

●

●●●

●

●

●

●●

●

●●●

●
●
●●

●

●
●
●

●
●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●
●●

●●●

●

●●●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●

●● ●

●

●

●●

●●●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●●●●

●
●●● ●

●●
●

●

●●

● ●

●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●●

●
●

●●

●
●●
●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●●

●

●

●●
●

●

●

●

●

●
●●●●●

●●

●

●

●

●
●

●●
●

●
●●

●

●

●

●●

●

●

●
●

●●
●

●
●●

●

●
●
●
●

●

●
●

●

●

●
●

●
●
●

●

●●●

●

●

●

●●

●

●●●

●●

●●

●

●

●
●

●
●

●

●●●

●

●

●●
●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●●●●

●●●●
●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●
●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●
●
●

●

●

●

●

●

●
●●

●●
●

●●●

●●●●

●
●
●●

●
●●

●

●

●

●

●

●

●

●

●● ●●

●
●
●●

●●

●

●
●●

●

●●

●●
●
●

●●●●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●
●

●●

●●

●● ●

●●

●

●

●

●

● ●●●

●
●

●

●

●

●●
●

●
●●●●

●●●●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●●

●
●

●
●

●
●●
●

●●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●●

●●●
●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●

●
●

●

●

●

●
●●

●●

●

●
●●

●

●
●
●

●

●

●
●

●

●●

●

●
●
●●

●
●

●

●

●
●
●●●
●
●

●

●

●●
●●

●

●

●●

●

●

●●
●

●●●

●

●

●

●
●●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●●●

●●
●●

●
●

●
●

●

●●●

●
●

●●

●

●
●●

●●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●●

●

●●●

●
●

●

●●

●●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●●●●●

●
●

●
●
●

●

●

●●●

●
●

●●

●

●

●●

●
●

●

●●

●●

●
●

●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●

●●

●

●

●

●

●●
●

●

●

●●

●
●

●●
●

●●●

●

●

●
●●●

●●

●

●
●

●

●
●●

●
●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●
●●

●●

●●

●●●●

●

●

●

●
●●

●

●

●
●●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●
●

●
●
●●

●●

●
●

●

●

●

● ●
●●●

● ●

●
●●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●●
●
●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●●
●

●

●

●●●

●
●

●●

●
●
●●

●

●
●●

●
●●
●

●●●●●●
●●

●

●
●

●●

●
●

●
● ●●●●

●

●

●●

●
●

●●

●

●●

●

●

●

●●●

●

●
●

●

●●

●
● ●

●●

●

●

●

●●

●

●

●●

●●

●●

●

●●
●

●

●

●

●

● ●●●

0%

25%

50%

75%

100%

25% 50% 75%
before−repair training passing rate

af
te

r−
re

pa
ir

ev
al

ua
tio

n
pa

ss
in

g
ra

te
● GenProg TSPRepair

●●●●

●

●

●
●

●●
● ●

●●

●

●

●
●●
●

●

●●●

●●●●
●

●

●
●
●

●

●

●●●

●●
●●

●●
●●

●

●

●

●

●
●
●●
●

●●

●

●●

●
●

●

●

●
●●●

●
●

●●

●

●

● ●

●
●

●
●

●

●
●
●●

●●
●●

●●

●

●●
●
●

●●

●
●

●●●●

●●

●

●

●

●●●

●

●

●●

●
●
●

●

●
●●●

●

●

●

●●●●

● ● ●●●
●

●
●●
●

●

●

●

●

●

●

●
●●

●
●●
●

●●

●●
●●

●●
●
●

●●●●
●●

●

●
●●

●●

●●●●

●

●●●

●

●

●

●●
●

●●●
●●●●

●
●●● ●

●●●

●
●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●
●●

●

●

●
●
●

●

●

●●●

●●

●●

●

●
●

●●

●

●●●

●

●

●

●

●●●

●
●

●●

●
●●
●
●●●●

●●●

● ●●●

●

●

●

●

●●

●●
●●

●

●

●
●●
●●

●

●

●●

●

●
●

●●

●●●

●
● ●

●●
●

●●

●●

●

●
●
●

●

●

●

●

●

●

●●

●●

●●

●●

●

●●●●
●
●●●

●

●●●

●
●●
● ●

●

●●

●

●

●

●
●●

●●
●●
●●

●

●

●●

●

●●

●●

●

●

●●

●
●●●

●●

●●

●●
●
●

●

●

●

●

●●

●

●

●
●
●●

●

●
●●

●

●

●●

●

●

●

●

●

●●
●●

●●

●●

●
●
●

●
●

●●

●

●●●

●

●

●

●●

●

●

●●

●●

●
●
●●●
●●
●
●●

●
●
●

●

●
●

●●
●
●

●●●

●

●

●
●●

●
●●●

●●
●●

●
●
●●●

●

●
●●●

●

● ●●●●

●
●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●●

●
●
●

●

●
●●●

●
●●
●

●●●●

●

●

●
●●

●●

●
●●●

●

●

●●

●

●●●

●
●●

●

●●●●

●●●●

●
●

●

●

●●●

●

●

●

●
●●●

●

●

●

●
●
●●

●
●●●

●
●●

●

●●●

●●
●
●

●
●

●

●

●●
●● ●

●●●

●

●
●
●●

●

●

●

●

●

● ●●

●●

●

●●●

●●●●

●●
●●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●●
●●

●●

●

●●●

●

●●
●●●●

●●●●

●

●
●●

●

●●

●●●●

●
●

●

●

●

●

●●

●

●●●

●
●

●●
●

●

●
●●

●
●
●
●

●

●●●

●●

●●

●●

●
●●
●●

●
●

●

●●●

●
●

●
●

●

●●●
● ●●●●

●●●●

●
●

●●

●

●

●

●

●
●
●●

●

●
●

●●

●●

●●

●●●
●

●●

●

●●

●

●●●

●
●

●●

●

●●
●

●

●

●

●

●
●●

●●

●●●

●●
●●

●

●●●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●●
●

● ●●●

●
●

●

●●

●

●●●

●

●

●●

●●

●

●
●
●●●●● ●

●●●

●

●
●●

●
●

●
●

●

●●
●
●●
●●

●●

●

●

●
●
●

●●
●●●

●
●●●●

●

●

●●

●

●
●●

●

●●●

●

●
●
●

●●
●
●

●●●●

●

●●●

●

●

●

●

●●

●●

●
●
●
●●

●

●

●●●●

●●
●●

●●

●●

●
●●●●

●

●●

●
●
●●

●●
●
●

●

●

●
●
●●

●●●

●
●

●

●

●●

●

●●●

●
●

●

●●
●●

●
●

●

●●
●

●

●

●●●

●
●

●

●

●●
●
●

●
●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●
●
●

●●

●
●●

●
●

●

●
●

●●

●
●●
●

●●●●

●●
●
●
●
●

●

●●●

●●

●●

●

●

●●

●●

●

●●

●●

●
●
●●

●

●

●

●

●●

●

●

●

●

●
●
●●
●

●●
●●

●

●

●●

●●
●
●

●

●

●●●
●
●

●●

●●

●●

●

●●●

●
●

●
●

●●

●●

●

●●

●
●●●

●
●
●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●●

●
●

●●

●●

●●

●

●
●●

●●

●●

●●●●●

●

●
●●●

●

●

●
●●

● ●
●
●●

●
●●
●

●

●

●●

●

●

●

●

●●
●●●●

●●

●
●

●
●

●●●●

●
●
●●●

●●
●

●●

●

●
●

●

●●

●●

●●

●

●

●

●●
●
●

●

●●●

●

●

●
●

●● ●●

●

●

●

●

●●

●

●

●
●

●
●
●
●

●

●
●●●

●
●

●●●

●
●

●●
●
●
●●

●

●●
●

●●
●●

●●●●●●
●●

●

●
●
●●

●●

●●

●●●●

●
●
●●

●●

●●

●
●●
●

●

●
●●●

●

●
●
●

●●

●●

●
●●
●

●
●

●●

●
●

●●

●●

●●

●

●●
●

●

●

●

●

●

●●●

−100%

−50%

0%

50%

25% 50% 75%
before−repair training passing rate

ch
an

ge
 in

 e
va

lu
at

io
n

te
st

 p
as

si
ng

 r
at

e ● GenProg TSPRepair

Figure 4: Top: The fraction of evaluation tests the patched pro-
gram passes is significantly positively correlated with the frac-
tion of training tests the un-patched version passes (p < 0.001
for both tools). Bottom: However, for un-patched programs
that pass more of the training tests to start with, both tools are
more likely to break functionality than fix it; the correlation
between before-repair training suite pass rate and evaluation
tests fixed is significantly negative (p < 0.001 for both tools).

repair are more likely to pass the evaluation tests post-repair. Linear
regression confirms the positive trend for both tools with signifi-
cance, p < 0.001. However, the bottom of Figure 4 shows that both
GenProg and TSPRepair are also more likely to break the held-out
test cases than fix them when repairing programs that initially pass
most of the black-box tests. Again, a linear regression confirms the
negative trend for both tools with significance, p < 0.001.

We conclude that G&V repair presents a danger when fixing high-
quality programs that pass most of their test suites. The patches are
likely to overfit to the tests, breaking other, previously correct func-
tionality. For low-quality programs that fail many tests, GenProg and
TSPRepair repair more functionality than they break, on average.

Research Question 4: How does the training test suite’s prove-
nance (automatically generated vs. human-written) influence
the patches’ overfitting?

We have shown that using low-coverage test suites to fix bugs
can lead to low-quality patches. This suggests that automatic test
generation might be used to improve test suite coverage prior to a
repair attempt. Here, we evaluate if automatically generated tests
(generated with KLEE [11] as described in Section 3.2) are as
effective for use by G&V repair as human-written tests. We refer to
the method by which the tests are created as test provenance.

Figures 5(a) and 5(c) summarize the relationship between test
suite provenance and GenProg patch overfitting. When GenProg
repaired buggy programs using (all of) the black-box tests as the
training suite (Figure 5(a)), its patches did relatively well on the
white-box evaluation tests. However, the same was not true when
GenProg used (all of) the white-box test suite as the training suite,
with the black-box tests as the held-out suite (Figure 5(c)). In
the latter case, GenProg overfit significantly to the white-box tests.
Figure 5(e) directly compares the two provenance methods. A two-
sample test supports our conclusion that the black-box patches pass
more of the white-box tests than the white-box patches do the black-
box tests (with significance, p < 0.001). Cliff’s Delta test reports a
large magnitude effect (magnitude > 0.5).

Similarly, Figures 5(b) and 5(d) summarize the effect of test suite
provenance on TSPRepair patch quality, and Figure 5(f) directly
compares the two provenance methods. The effect is nearly identical
to GenProg, although TSPRepair has slightly worse performance,
even with black-box tests. The two-sample test similarly supports
this conclusion (p < 0.001), and a Cliff’s Delta test reports a similar
large magnitude effect.

We conclude that test suite provenance plays an important role in
GenProg-generated patch quality. Not all full-coverage test suites
are created equal, and some are better suited for automated repair.

4.3 Do tools outperform novice developers?
One of the advantages of our dataset is that every program has

a human fix associated with it, corresponding to the student’s final
submission. The students who produced the programs in our dataset
are faced with a challenge similar that presented to our repair tools.
They write and submit code, gain information about how many tests
their code passes and fails, make changes, and resubmit. Those who
have taught introductory programming courses know that students
follow a number of search strategies while constructing repairs,
ranging from structured reasoning to random search. This section
compares the patches produced by the automated repair tools to the
results of novice developers’ repair attempts. As before, repair tools
(and now, humans) have the black-box test suite available during
repair to serve as a training suite, and the white-box tests are held
out and can be used to evaluate the quality of the repair.

Research Question 5: Do tool-generated patches overfit more
than novice-developer-written patches?

Figure 6(a) shows that student solutions do, in fact, overfit to the
provided test suites and often fail to generalize to held-out tests.
Figure 6 compares the quality of GenProg, novice developer, and
TSPRepair patches. The mean GenProg-generated patch trained on
the same (black-box) test suite is of higher quality than those created
by the students (although the median student patch is of higher qual-
ity than the median GenProg-generated one). The Wilcoxon signed
rank test supports a significant (p < 0.001) difference between the
GenProg-generated and human-written patches (Figure 6(b)). How-
ever, the improvement is only slight, and the Cliff’s Delta test indi-
cates that the effect size is negligible. While the GenProg-generated
patches are only slightly better, they also demonstrate significantly
less quality variability than student-written patches. This is also
evident in Figure 6(b).

TSPRepair patches have both a lower mean and median pass-
ing rate for held-out tests than the student-written and GenProg-
generated patches. While there is a visual difference in Figure 6(b)
between student-written and TSPRepair-generated patches, the Wil-
coxon signed rank test reports no significant difference between the

6

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

GenProg TSPRepair

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%

(a) White-box passing rate of
GenProg patches generated
with black-box tests.

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%

(b) White-box passing rate of
TSPRepair patches generated
with black-box tests.

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%

(c) Black-box passing rate of
GenProg patches generated
with white-box tests.

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%

(d) Black-box passing rate of
TSPRepair patches generated
with white-box tests.

●

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

0%

20%

40%

60%

80%

100%

black−box white−box

%
 o

f h
el

d−
ou

t t
es

ts
 p

as
se

d

(e) Direct comparison of Gen-
Prog patches trained with black-
box and white-box suites.

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●

●●

●

●

●●

●●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

0%

20%

40%

60%

80%

100%

black−box white−box

%
 o

f h
el

d−
ou

t t
es

ts
 p

as
se

d

(f) Direct comparison of
TSPRepair patches trained with
black-box and white-box suites.

Figure 5: (a) and (b): When black-box tests guided repair
search, the resulting patches did well on the evaluation white-
box tests. (c) and (d): However, the same was not true when
using white-box tests to guide the search for patches. (e) and (f):
The direct comparisons show that patches generated using the
black-box suite generalize to evaluation tests much better than
patches generated using the white-box suite. (The line shows
the median, and the dot the mean.) For both tools, Wilcoxon
signed-rank tests detected a significant difference, p < 0.001
with a large Cliff’s Delta in both cases.

samples. As with GenProg, TSPRepair-generated patches demon-
strate significantly less variability in quality than student-written
patches.

Comparing automatically generated patches to novice-developer-
written patches might seem unfair, since repair tools can only access

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%

(a) White-box passing rate
of novice-developer-written
patches using black-box tests.

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●

●●

●

●

●●

●●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

0%

20%

40%

60%

80%

100%

GenProg human TSPRepair

%
 o

f w
hi

te
−

bo
x

te
st

s
pa

ss
ed

(b) Direct GenProg, novice de-
veloper, and TSPRepair compari-
son.

Figure 6: (a): Novice-developer-written patches also overfit to
the black-box tests used during development. (b) The median
(shown as the line) human-written patch overfits slightly less
than those generated by GenProg and TSPRepair, but the mean
(shown as the dot) GenProg-generated patches overfit slightly
less than the others, in part because the student-written patches
show higher variance than both automatic techniques. A Wilco-
xon signed rank test (p < 0.001) supports this conclusion about
GenProg; the same test for TSPRepair does not reject the null
hypothesis with significance.

tests that represent a partial specification, while humans can reason
abstractly about the program specification. However, while humans
can reason about program faults abstractly above the level of a repair
tool, they are also subject to a large array of cognitive biases [1, 34]
that can hamper their debugging effort. Repair tools have no such
biases, and will mechanically explore the solution space as guided
by their fitness function, without becoming irrationally fixated on
particular solutions.

4.4 Mitigating overfitting

Research Question 6: Does minimizing the GenProg-
generated patches affect the specificity of the patches?

GenProg uses patch minimization, via delta debugging [59], to
reduce code bloat. TSPRepair does not perform minimization, be-
cause the produced patch is only ever a single edit. Intuitively, a
small change to a program is less likely to encode special behavior
that handles just the training tests in a separate way [58]. Thus far,
all results we have described for GenProg have used GenProg’s built-
in patch minimization procedure. We now investigate if disabling
this feature increases the overfitting.

We compared unminimized patches produced by GenProg to their
minimized versions in terms of the number of black-box and white-
box tests the patched versions passed. In all experiments, regardless
of the tests used, paired Wilcoxon tests show that the test-passing
rates of the minimized and unminimized patches were drawn from
the same distribution, and fail to reject the null hypothesis (p > 0.1
in all cases, after Benjamini-Hochberg correction for false discovery
rates). This indicates that minimization does not reduce the degree
to which GenProg overfits.

7

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

●

●

●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●

●●

●

●

●●

●●

●

●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●
●●

●

0%

20%

40%

60%

80%

100%

GenProg

GenProg n−version
Human

TSPRepair

TSPRepair n
−version

w
hi

te
−

bo
x

pa
ss

in
g

ra
te

Figure 7: Tool-generated patches and n-version programs
made up of those patches perform worse than humans-written
patches, on average. N-version GenProg programs under-
perform even the individual GenProg patches, and n-version
TSPRepair programs perform negligibly worse than individ-
ual TSPRepair patches while not statistically differing from
human-written patches.

Research Question 7: Can overfitting be averaged out by
exploiting randomness in the repair process? Do different
random seeds overfit in different ways?

Some repair tools, including GenProg and TSPRepair, can gen-
erate multiple patches for the same defect (such as when run on
multiple different random seeds). This affords a unique opportunity:
Even if patches do overfit to their test suites, it is possible that a
group of patches better represents the desired program behavior
than an individual patch. Specifically, even if each patch overfits on
some subset of desired behavior, if each patch in a group encodes
most of that behavior, a group vote on the behavior may outperform
each individual patch. N-version patches may therefore provide an
avenue to mitigate overfitting. Human-written code typically lacks
sufficient diversity [27] to enable true n-version programming [14],
but randomized G&V repair may not.

To create the n-version program Pn, we: For each buggy version-
test suite subset pair Pb, run GenProg on Pb 20 times. If fewer than
three of the runs result in a patch, we exclude this pair from this
experiment. We call these (n ≥ 3) patched versions P 1

p . . .P n
p . Next,

we create a new program, Pn, that on input i, runs each of P 1
p . . .P n

p
on i, and returns the output most frequently returned by output by
those program. If two or more return values tie, Pn returns one of
those values at random.

Figure 7 shows that n-version patches constructed from Gen-
Prog’s output do not perform statistically significantly better than
either individual GenProg-generated patches or novice-developer-
written patches. While n-version TSPRepair patches are statistically
significantly better than individual TSPRepair patches (p < 0.001),
the Cliff’s Delta is negligible, and n-version TSPRepair patches do
not significantly outperform those written by novice developers. The
only other case in which n-version programs outperformed individ-
ual patches was when GenProg constructed patches using white-box
suites for training (not shown in Figure 7). Recall that training on
white-box suites produced poor-quality patches (Research Ques-
tion 4). In this case, the GenProg n-version patches significantly

outperform individual patches (p < 0.001), but the Cliff’s effect size
is small.

We conclude that when tools can produce quality patches (using
high-quality test suites), there is insufficient diversity in the patches
to further improve quality. However, when repair tools produce
poor quality patches, diversity sometimes provides a modest benefit.
N-version programming may indeed provide an avenue to mitigate
the worst cases of overfitting.

5. CASE STUDY
Section 4.2 showed that test suite provenance has the largest effect

on the quality of automatically generated patches. This section de-
scribes a case study of a buggy student program and two patches that
GenProg produced for it using the white-box test suite to highlight
the ways that some test suites can lead to increased overfitting.

The median homework assignment asks students to produce a C
function that takes as input three integers and outputs their median.
Figure 8 shows the black- and white-box test suites for the median
program.

One of the student’s buggy (non-final) submissions to the home-
work was:

1 int med(int n1, int n2, int n3) {
2 if ((n1==n2) || (n1==n3) ||
3 (n2<n1 && n1<n3) || (n3<n1 && n1<n2))
4 return n1;
5 if ((n2==n3) || (n1<n2 && n2<n3) ||
6 (n3<n2 && n2<n1))
7 return n2;
8 if (n1<n3 && n3<n2)
9 return n3;

10 }

This submission is close to correct. Despite its incorrect logic
(e.g., the equality checks on lines 2 and 5), it passes five of the six
white-box and six of the seven the black-box tests. It does not return
an answer for the fifth black-box and for the second white-box tests,
for which n3 is the median and n1 > n2.

Given this program and the white-box suite, GenProg generated
several patches of varying quality. One such low-quality, GenProg-
patched program is:

1 int med(int n1, int n2, int n3) {
2 if ((n1==n2) || (n1==n3) || ((n3<n1) && (n1<n2)))
3 return n1;
4 if (n2<n1)
5 return n3;
6 if ((n2==n3) || ((n1<n2) && (n2<n3)) ||
7 ((n3<n2) && (n2<n1)))
8 return n2;
9 if ((n1 < n3) && (n3 < n2))

10 return n3;
11 }

One of the conditions in the check on line 2 has been removed,
and this program returns n1 as the median if it is coincidentally
equal to either n2 or n3, or if it is actually the median and n3 < n2.
If n1 is not the median, but n2 < n1 (the check moved to line 5),
this code will (possibly, but not necessarily incorrectly) return n3.
The rest of the logic is unaffected.

This patch addresses the original problem in the student’s code, at
least with respect to the white-box suite. This code is correct when
n1 is the median and n3 < n2, n2 is the median and n2 > n1, or
n3 is the median and n2 ≤ n1. Although this code passes all of the
white-box tests (improving on the original student submission), it
passes fewer black-box tests than the original, failing tests 3 and 6
in Figure 8.

8

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

black-box tests white-box tests

med(2, 6, 8) = 6 med(0, 0, 0) = 0
med(2, 8, 6) = 6 med(2, 0, 1) = 1
med(6, 2, 8) = 6 med(0, 0, 1) = 0
med(6, 8, 2) = 6 med(0, 1, 0) = 0
med(8, 2, 6) = 6 med(0, 2, 1) = 1
med(8, 6, 2) = 6 med(0, 2, 3) = 2
med(9, 9, 9) = 9

Figure 8: White- and black-box suites for median.

This patch is an excellent example of overfitting the fitness func-
tion, and highlights weaknesses in the white-box test suite: Many
of the inputs have repeated elements. As a result, the student’s
otherwise logically incorrect equality checks on lines 2 and 5 of
the original submission mask the larger problems in the low-quality
patch.

Running GenProg with the same white-box test suite but a dif-
ferent random seeds can lead to different patches for the same bug.
For example, for this buggy program, GenProg also produced the
following patched program:
1 int med(int n1, int n2, int n3) {
2 if ((n1==n2) || (n1==n3) || ((n2<n1) && (n1<n3)) ||

((n3<n1) && (n1<n2)))
3 return n1;
4 if ((n2==n3) || ((n1<n2) && (n2<n3)) ||
5 ((n3<n2) && (n2<n1)))
6 return n2;
7 if ((n1 < n3) && (n3 < n2))
8 return n3;
9 else
10 return n3;
11 }

The incorrect equality checks on lines 2 and 4 remain. This patch
inserted return n3 into the else block of the last set of conditions
that seek to determine if n3 is the median. Ignoring the equality
checks, this is actually a reasonable solution, because by that point,
the only remaining option should be that n3 is the median.

For this buggy program, the student rewrote the logic consider-
ably, eliminating the equality checks on lines 2 and 4 and properly
handling the last set of conditionals:
1 int med(int n1, int n2, int n3) {
2 if ((n2<=n1 && n1<=n3) || (n3<=n1 && n1<=n2))
3 return n1;
4 if ((n1<n2 && n2<=n3) || (n3<=n2 && n2<n1))
5 return n2;
6 if ((n1<n3 && n3<n2) || (n2<n3 && n3<n1))
7 return n3;
8 }

In this example, GenProg solutions overfit to the test suite, while
the student-written patch is more general. This example highlights
weaknesses in the white-box test suite, which fails to encode key
behavior. This raises interesting questions about the potential of
automatic test case generation to augment the input given to G&V
repair techniques; more work is required to improve the quality of
the output of such techniques before the two approaches can be
usefully integrated.

6. THREATS TO VALIDITY
Our experiments may not generalize. We only experiment with

GenProg and TSPRepair, two of several G&V repair techniques,
and our results may not extend to other automatic program repair

mechanisms. However, recent work has started to unify the the-
ory underlying G&V repair [57], suggesting that results from two
different techniques may extend to others. Our subjects are small
student-written programs, with fairly small test suites. Therefore,
our results may not generalize to large, real-world programs. How-
ever, this is a necessary tradeoff, as the goals of our study require
exhaustively testable programs with multiple exhaustive test suites.
Understanding repair techniques at the scale of our experiments
increases understanding of the repair techniques in general. Addi-
tionally, while our subjects’ size allows for a very large dataset for
conducting controlled trials, it may also affect the ability to find
diverse patches. We ran 20 seeds per repair effort, a relatively small
number by the standards of metaheuristic search algorithms. More
attempts may have revealed more solutions. Finally, we used the
recommended GenProg parameter set defined in previous work [30];
a full parameter sweep is outside the scope of this investigation.

We release our dataset, including all the buggy versions, student-
written solutions, and test suites. This makes our experiments re-
peatable. However, parts of the creation of the dataset were manual.
While the white-box suites were generated automatically to the ex-
tent possible, and black-box suites were generated by a rigorous
manual analysis of the requirements, at least the latter is subject
to human interpretation. Thus, a replication of our experiments on
different programs or with different test suites on our programs may
be affected by human subjectivity and may produce different results.

GenProg, TSPRepair, and many other related repair techniques
rely on randomized algorithms. Evaluating systems that involve
randomized algorithms is particularly difficult and requires paying
special attention to the sample sizes, statistical tests, cross-validation,
and uses of bootstrapping. Our work is consistent with the guidelines
for evaluating randomized algorithms [4] to enhance the credibility
of our findings. Specifically, we used a large sample of 956 buggy
student programs, controlled for a variety of potential influencers
in our experiments, and used fixed-effects regression models and
two sample tests along with false-discovery rate correction to lend
statistical support to our findings.

7. RELATED WORK
Our work evaluates automated repair so that it can be improved.

Empirical studies of fixes of real bugs in open-source projects can
also improve repair by helping designers select change operators
and search strategies [25, 60]. Understanding how automated repair
handles particular classes of errors, such as security vulnerabili-
ties [31, 43] can guide tool design. For this reason, some auto-
mated repair techniques focus on a particular defect class, such
as buffer overruns [51, 53], unsafe integer use in C programs [16],
single-variable atomicity violations [24], deadlock and livelock de-
fects [32], concurrency errors [33], and data input errors [3]. Other
techniques tackle generic bugs. For example, the ARMOR tool
replaces buggy library calls with different calls that achieve the
same behavior [12], and relifix uses a set of templates mined from
regression fixes to automatically patch generic regression bugs. Our
evaluation has focused on tools that fix generic bugs, but our method-
ology can be applied to focused repair as well.

User-provided code contracts, or other forms of invariants, can
help to synthesize correct-by-construction patches, e.g., via AutoFix-
E [42, 56] (for Eiffel code) and SemFix [39] (for C). DirectFix [35]
aims to synthesize minimal patches to be less prone to overfitting,
but only works for programs with a subset of the language features,
and has only been tested on small programs. These techniques
have the benefit of correctness proofs, but require contracts, so
they are unsuitable for legacy systems. Synthesis techniques can
also construct new features from examples [15, 21], rather than

9

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

address existing bugs. Our work has focused on G&V approaches,
and investigating overfitting and patch quality in synthesis-based
techniques is a complementary and worthwhile pursuit.

The techniques evaluated in this paper, GenProg and TSPRepair,
are representative of G&V approaches. Our work does not create a
new bug-fixing technique, but rather evaluates existing techniques
in a new way to expose previously hidden limitations to G&V pro-
gram repair. Our findings may extend to other search-based or test
suite-guided repair techniques (e.g., [5, 17, 26, 35, 39, 40, 43, 57]).
Section 2.3 has already discussed previous evaluations of G&V tech-
niques. Monperrus [38] has recently discussed the challenges of
experimentally comparing program repair techniques. For exam-
ple, the selection of test subjects (defects) can introduce evaluation
bias [9, 44]. Our evaluation focuses precisely on the limits and po-
tential of repair techniques on a large dataset of defects, and controls
for a variety of potential influencers, addressing some of Monperrus’
concerns [38].

Genetic programming tends to produce extraneous code that does
not contribute to the fitness of the solution [22, 52] and may lead
to overfitting. GenProg attempts to mitigate this through solution
minimization. Overfitting is also a well-studied problem in ma-
chine learning [37]. Our experiments suggest that minimization and
overfitting are unrelated, which is consistent with prior results in
machine learning [49]. To the best of our knowledge, ours is the
first consideration of this relationship in the program repair domain.

G&V approaches fall in the space of search-based software en-
gineering [23], which adapts search methods, such as genetic pro-
gramming, to software engineering tasks. Search-based software
engineering has been used for developing test suites [36,55], finding
safety violations [2], refactoring [50], and project management and
effort estimation [7]. Good fitness functions are critical to search-
based software engineering. Our findings indicate that using test
cases alone as the fitness function leads to patches that may not
generalize to the program requirements, and more sophisticated
fitness functions may be required for search-based program repair.

N-version programming [14] combines multiple different pro-
grams trying to solve the same problem in the interest of achieving
resiliency and correctness through redundancy. N-version program-
ming works poorly with human-written systems because the errors
humans make do not appear to be independent [27]. Our evaluations
have shown that n-versions of automatically generated patches has
a minor positive effect but failed to fully generalize to the desired
behavior.

8. CONCLUSIONS AND IMPLICATIONS
G&V automated repair shows promise for reducing the manual

bug-fixing burden and improving software quality. However, if these
techniques are to gain practical traction, we must augment feasibility
demonstrations with qualitative evaluations that address the quality
and applicability. In this paper, we systematically evaluated the
factors affecting the output quality of GenProg and TSPRepair, two
representative G&V techniques, through a controlled evaluation on
a large set of programs written by novice developers with naturally
occurring bugs and human-written patches. Based on our findings,
the open research challenges include:

Repair techniques must go beyond testing on the training data
to characterize functional correctness. GenProg and TSPRepair
produced patches for more than half of the bugs in our dataset
(61.9% and 57.1%, respectively). The ability to produce a patch was
correlated with input program quality, as measured by the test suites.
However, those patches tended to overfit to the test suite used to
generate the patch. Interestingly, the novice programmers (students)

also overfit to the provided test cases. When using requirements-
based (black-box) tests, GenProg overfit less than the students did.
These results highlight both the significant promise of automatic
repair and the fact that more work is needed to improve repair output
quality.

We propose that future evaluations of G&V repair tools withhold
some portion of tests from the repair tool, at least some of which
share code-under-test with the tests exposing the buggy behavior.
This is similar to the machine learning evaluational technique of
cross-validation, and provides a higher level of confidence that a
repair technique is able to repair isolated defects without introducing
regressions.

Automatic repair should be used in appropriate contexts. Both
test suite coverage and input program quality appear related to the
quality of the automatically generated patches. Higher-coverage
test suites were more likely to lead to more general patches, while
patches produced for higher-quality programs were more likely to
break existing functionality. This suggests that automatic repair
techniques might be best applied early in the development lifecycle,
though unfortunately, this is the time when the program quality itself
is likely low (reducing the likelihood of repair success), and the test
suite is least likely to be comprehensive. Different repair techniques
are likely to be useful at different times, and more study is needed
to explore this space.

The quality of repair test suites should be measured and im-
proved appropriately. The provenance of the test suites — auto-
matically-generated or human-written — had a striking relationship
with the resulting patch quality. Automatic test-input generation
techniques should fit naturally into a toolchain for automatic re-
pair, particularly when user-provided test cases fail to fully cover
the program functionality, or when critical functionality should be
independently tested post-repair, to ensure that overfitting has not
occurred. Our results suggest that more work is needed to fully un-
derstand and characterize test suite quality beyond coverage metrics
alone.

Patch diversity might improve repair quality. Low-quality patches,
especially those generated using automatically generated tests, demon-
strated sufficient functional diversity to improve on the patched pro-
grams via plurality voting. Plurality voting may thus mitigate the
risks of low-quality test suites, in the appropriate settings.

While G&V techniques have not yet become a silver bullet of
program repair, in some cases and settings, they already outperform
beginner developers. Our results suggest that if several shortcom-
ings are addressed, there is significant promise that automated repair
techniques can be impactful and helpful parts of the software devel-
opment process.

Acknowledgments
Prem Devanbu and Ming Xiao were instrumental in the creation of
an earlier version of the student programs dataset and early GenProg
experiments [10].

9. REFERENCES
[1] R. E. Adamson. Functional fixedness as related to problem

solving: A repetition of three experiments. Journal of
Experimental Psychology, 44(4):288–291, 1952.

[2] E. Alba and F. Chicano. Finding safety errors with ACO. In
Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, pages 1066–1073, London,
England, UK, 2007.

10

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

[3] M. Alkhalaf, A. Aydin, , and T. Bultan. Semantic differential
repair for input validation and sanitization. In International
Symposium on Software Testing and Analysis, pages 225–236,
2014.

[4] A. Arcuri and L. Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering.
In Proceedings of the 33rd International Conference on
Software Engineering, pages 1–10, Honolulu, HI, USA, 2011.

[5] A. Arcuri and X. Yao. A novel co-evolutionary approach to
automatic software bug fixing. In Congress on Evolutionary
Computation, pages 162–168, 2008.

[6] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro. The
plastic surgery hypothesis. In Symposium on the Foundations
of Software Engineering (FSE), pages 306–317, Hong Kong,
China, November 2014.

[7] A. Barreto, M. Barros, and C. Werner. Staffing a software
project: a constraint satisfaction approach. Computers and
Operations Research, 35(10):3073–3089, 2008.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World. Commun. ACM, 53(2):66–75, Feb.
2010.

[9] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu. Fair and balanced?: Bias in bug-fix
datasets. In European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE), pages 121–130,
Amsterdam, The Netherlands, August 2009.

[10] Y. Brun, E. Barr, M. Xiao, C. Le Goues, and P. Devanbu.
Evolution vs. intelligent design in program patching.
Technical Report
https://escholarship.org/uc/item/3z8926ks, UC
Davis: College of Engineering, 2013.

[11] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation
(OSDI), pages 209–224, San Diego, CA, USA, 2008.

[12] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and
M. Pezzè. Automatic recovery from runtime failures. In
Proceedings of the 2013 International Conference on Software
Engineering, pages 782–791, San Francisco, CA, USA, 2013.

[13] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic
workarounds for web applications. In Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE10), pages 237–246, Santa Fe,
New Mexico, USA, 2010.

[14] L. Chen and A. Avižienis. N-version programming: A
fault-tolerance approach to reliability of software operation. In
Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-8), pages 3–9, 1978.

[15] R. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and
M. Veanes. Program boosting: Program synthesis via
crowd-sourcing. In Symposium on Principles of Programming
Languages (POPL), pages 677–688, Mumbai, India, January
2015.

[16] Z. Coker and M. Hafiz. Program transformations to fix C
integers. In Proceedings of the 2013 International Conference
on Software Engineering, pages 792–801, San Francisco, CA,
USA, 2013.

[17] V. Debroy and W. Wong. Using mutation to automatically

suggest fixes for faulty programs. In Proceedings of the 2010
Third International Conference on Software Testing,
Verification, and Validation, pages 65–74, Paris, France, 2010.

[18] H. Estler, C. A. Furia, M. Nordio, M. Piccioni, B. Meyer, et al.
Contracts in practice. arXiv preprint arXiv:1211.4775, 2012.

[19] Z. P. Fry, B. Landau, and W. Weimer. A human study of patch
maintainability. In International Symposium on Software
Testing and Analysis, pages 177–187. ACM, 2012.

[20] M. Gabel and Z. Su. Testing mined specifications. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, Cary,
NC, USA, 2012.

[21] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In Symposium on Principles of
Programming Languages (POPL), pages 317–330, Austin,
TX, USA, 2011.

[22] S. Gustafson, A. Ekart, E. Burke, and G. Kendall. Problem
difficulty and code growth in genetic programming. Genetic
Programming and Evolvable Machines, pages 271–290,
September 2004.

[23] M. Harman. The current state and future of search based
software engineering. In International Conference on
Software Engineering, pages 342–357, 2007.

[24] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 389–400, San Jose, CA, USA, 2011.

[25] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of
existing faults to enable controlled testing studies for Java
programs. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 437–440, San
Jose, CA, USA, July 2014.

[26] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In
Proceedings of the 35th International Conference on Software
Engineering, pages 802–811, San Francisco, CA, USA, 2013.

[27] J. C. Knight and N. G. Leveson. An experimental evaluation
of the assumption of independence in multiversion
programming. IEEE Transactions on Software Engineering,
12(1):96–109, 1986.

[28] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[29] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In Proceedings of the 34th
International Conference on Software Engineering, pages
3–13, Zurich, Switzerland, 2012.

[30] C. Le Goues, S. Forrest, and W. Weimer. Representations and
operators for improving evolutionary software repair. In
Genetic and Evoluationary Computation Conference, pages
959–966, 2012.

[31] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg:
A generic method for automatic software repair. IEEE
Transactions on Software Engineering, 38:54–72, 2012.

[32] Y. Lin and S. S. Kulkarni. Automatic repair for multi-threaded
programs with deadlock/livelock using maximum satisfiability.
In International Symposium on Software Testing and Analysis,
pages 237–247, 2014.

[33] P. Liu, O. Tripp, and C. Zhang. Grail: context-aware fixing of
concurrency bugs. In International Symposium on
Foundations of Software Engineering, pages 318–329. ACM,
2014.

11

https://escholarship.org/uc/item/3z8926ks

University of Massachusetts School of Computer Science Technical Report UM-CS-2015-007

[34] A. S. Luchins. Mechanization in problem solving: The effect
of Einstellung. Psychological Monographs, 54(6):i–95, 1942.

[35] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking
for simple program repairs. In Proceedings of the ACM/IEEE
37st International Conference on Software Engineering
(ICSE15), Florence, Italy, 2015.

[36] C. C. Michael, G. McGraw, and M. A. Schatz. Generating
software test data by evolution. IEEE Transactions on
Software Engineering, 27(12):1085–1110, December 2001.

[37] T. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

[38] M. Monperrus. A Critical Review of "Automatic Patch
Generation Learned from Human-Written Patches": Essay on
the Problem Statement and the Evaluation of Automatic
Software Repair. In International Conference on Software
Engineering, pages 234–242, 2014.

[39] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
SemFix: Program repair via semantic analysis. In Proceedings
of the 2013 International Conference on Software
Engineering, pages 772–781, San Francisco, CA, USA, 2013.

[40] M. Orlov and M. Sipper. Flight of the finch through the java
wilderness. Trans. Evol. Comp, 15(2):166–182, Apr. 2011.

[41] C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In International Symposium
on Software Testing and Analysis (ISSTA), pages 199–209,
Toronto, ON, Canada, 2011.

[42] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and
A. Zeller. Automated fixing of programs with contracts. IEEE
Transactions on Software Engineering (TSE), 40(5):427–449,
2014.

[43] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and
M. Rinard. Automatically patching errors in deployed
software. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 87–102, Big Sky, MT,
USA, October 12–14, 2009.

[44] D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in
empirical software engineering. In International Conference
on Automated Software Engineering (ASE), pages 362–371,
Lawrence, KS, USA, November 2011.

[45] Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair
through fault-recorded testing prioritization. In International
Conference on Software Maintenance (ICSM), pages 180–189,
September 2013.

[46] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In International
Conference on Software Engineering (ICSE), pages 254–265,
2014.

[47] Z. Qi, F. Long, S. Achour, , and M. Rinard. An analysis of
patch plausibility and correctness for generate-and-validate

patch generation systems. Technical Report
MIT-CSAIL-TR-2015-003, MIT Computer Science and
Artificial Intelligence Laboratory, 2015.

[48] Research Triangle Institute. The economic impacts of
inadequate infrastructure for software testing. Technical
Report NIST Planning Report 02-3, May 2002.

[49] J. Rissanen. Modelling by the shortest data description.
Automatica, 14:465–471, 1978.

[50] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class structure
of object-oriented systems. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, pages
1909–1916, Seattle, WA, USA, 2006.

[51] S. Sidiroglou and A. D. Keromytis. Countering network
worms through automatic patch generation. IEEE Security
and Privacy, 3(6):41–49, Nov. 2005.

[52] S. Silva and E. Costa. Dynamic limits for bloat control in
genetic programming and a review of past and current bloat
theories. Genetic Programming and Evolvable Machines,
10(2):141–179, June 2009.

[53] A. Smirnov and T. cker Chiueh. Dira: Automatic detection,
identification and repair of control-hijacking attacks. In
Network and Distributed Systems Security, 2005.

[54] S. H. Tan and A. Roychoudhury. Relifix: Automated repair of
software regressions. In Proceedings of the ACM/IEEE 37st
International Conference on Software Engineering (ICSE15),
Florence, Italy, 2015.

[55] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time-aware test suite prioritization. In Proceedings of
the International Symposium on Software Testing and
Analysis, pages 1–12, Portland, ME, USA, 2006.

[56] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller. Automated fixing of programs with contracts. In
Proceedings of the 19th International Symposium on Software
Testing and Analysis, pages 61–72, Trento, Italy, 2010.

[57] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In Proceedings of the 28th International Conference
on Automated Software Engineering, Palo Alto, CA, USA,
2013.

[58] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic programming. In
Proceedings of the ACM/IEEE 31st International Conference
on Software Engineering (ICSE09), pages 364–374,
Vancouver, BC, Canada, 2009.

[59] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183–200, February 2002.

[60] H. Zhong and Z. Su. An empirical study on real bug fixes. In
International Conference on Software Engineering (ICSE),
Florence, Italy, 2015.

12

	1 Introduction
	2 Automated Program Repair
	2.1 Generate-and-validate program repair
	2.2 Our focus on G&V
	2.3 Prior program repair evaluations

	3 The Dataset
	3.1 The subject programs
	3.2 Test suites and measure of patch quality
	3.3 Buggy program versions

	4 Empirical Evaluation
	4.1 Evaluation methodology
	4.2 Overfitting
	4.3 Do tools outperform novice developers?
	4.4 Mitigating overfitting

	5 Case Study
	6 Threats to Validity
	7 Related Work
	8 Conclusions and Implications
	9 References

