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ABSTRACT
Directed links – representing asymmetric social ties or inter-
actions (e.g., “follower-followee”) – arise naturally in many
social networks and other complex networks, giving rise to
directed graphs (or digraphs) as basic topological models for
these networks. Reciprocity, defined for a digraph as the per-
centage of edges with a reciprocal edge, is a key metric that
has been used in the literature to compare different directed
networks and provide “hints” about their structural proper-
ties: for example, are reciprocal edges generated randomly
by chance or are there other processes driving their gener-
ation? In this paper we study the problem of maximizing
achievable reciprocity for an ensemble of digraphs with the
same prescribed in- and out-degree sequences. We show that
the maximum reciprocity hinges crucially on the in- and out-
degree sequences, which may be intuitively interpreted as
constraints on some “social capacities” of nodes and impose
fundamental limits on achievable reciprocity. We show that
it is NP-complete to decide the achievability of a simple up-
per bound on maximum reciprocity, and provide conditions
for achieving it. We demonstrate that many real networks
exhibit reciprocities surprisingly close to the upper bound,
which implies that users in these social networks are in a
sense more “social” than suggested by the empirical reci-
procity alone in that they are more willing to reciprocate,
subject to their “social capacity” constraints. We find some
surprising linear relationships between empirical reciprocity
and the bound. We also show that a particular type of small
network motifs that we call 3-paths are the major source of
loss in reciprocity for real networks.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems; H.2.8 [Database
Applications]: Data mining
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1. INTRODUCTION
Many complex networks are naturally directed, which en-

dows them with nontrivial structural properties not shared

∗This work was supported in part by DoD ARO MURI
Award W911NF-12-1-0385, NSF grants CNS-1065133, CNS-
1117536, CNS-1411636, and DTRA grants HDTRA1-09-1-
0050 and HDTRA1-14-1-0040.

by undirected networks. One such property that has been
widely studied is reciprocity, which is classically defined as
the fraction of edges that are reciprocated, i.e. paired with
an edge of the opposite direction. Nontrivial patterns of
reciprocity can reveal possible mechanisms of social, biolog-
ical or other nature that systematically act as organizing
principles shaping the observed network topology [6]. Pre-
vious work shows that reciprocity plays an important role
in many information networks such as email networks [16],
the World Wide Web [2] and Wikipedia [29, 28]. It is also
shown that major online social networks that are directed
in nature, such as Twitter[10, 12], Google+[14], Flickr [15,
4], LiveJournal [25, 15, 7], and YouTube [15], all exhibit a
nontrivial amount of reciprocity.

When we try to interpret observed values of reciprocity,
we are faced with the problem of assessing the significance
of the observation. For instance, the Swedish Wikipedia has
reciprocity of 21%. How significant is this? This question is
often answered by comparing measured values with the ex-
pected value of some null model. One commonly used null
model is a random graph with the same number of nodes and
edges [16]. An alternative is a random graph with specified
degree sequence, as the specific degree sequence is expected
to affect reciprocity [26]. Networks are then classified as re-
ciprocal or anti-reciprocal according to whether the observed
reciprocity is larger or smaller than the expected value [6].
Significant deviation from the expected values suggests the
existence of some underlying organizational mechanism at
work. For our example of Swedish Wikipedia, the expected
reciprocities in both random null models are almost zero,
so the Swedish Wikipedia is classified as a reciprocal net-
work. Informative as this might be, comparison with ex-
pected values is not the whole story. Is 21% a significant
deviation from 0? Can we say that the tendency to recip-
rocate is strong in this network? The answer might de-
pend on the eye of the beholder. However, if we know for
some reason the maximum possible reciprocity is only 28%,
then we may safely conclude that 21% is indeed a significant
amount of reciprocity. On the other hand, if the maximum
is 90%, we might conclude that 21% is not as significant as
suggested by the comparison with random null models. In
general, knowledge of the extremal values can give a better
idea about where the observation lies in the entire spectrum,
which can potentially change our conclusion about the sig-
nificance level of the observation.

Since real social networks often exhibit reciprocities larger
than those associated with the random null models, we con-
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cern ourselves only with the maximum achievable reciprocity
in this work. As in the random null models, we may want
to retain certain key structural features of the real network
when we maximize reciprocity. The particular feature that
we choose to preserve in this work is the joint in- and out-
degree sequence, which is a confounding factor in the study
of reciprocity [26]. In real networks, in- and out-degrees of-
ten serve as proxies for some kind of capacities of the corre-
sponding node. For example, in a file sharing network where
edges represent transfers from file sources to downloaders,
the in-degree of a node can reflect the available network
bandwidth and the out-degree the amount of resource. In a
social network where edges point from followers to followees,
the in-degree of a node can reflect its fame and popularity
and the out-degree its budget of attention. Quite often these
capacity constraints are too important to be ignored in the
network under consideration. By preserving the degree se-
quence, we honor these capacity constraints, thus controlling
these confounding factors.
Motivated by the above considerations, we study the prob-

lem of maximizing reciprocity subject to prescribed joint in-
and out-degree constraints. This paper makes the following
contributions.

• We formulate the maximum reciprocity problem and
prove its NP-hardness. We provide an upper bound
on reciprocity and conditions for achieving the bound.

• We show that empirical reciprocity is surprisingly close
to the upper bound in a wide range of real networks.
We also find surprisingly strong linear relationships be-
tween empirical reciprocity and the upper bound.

• We identify some suboptimal network motifs and show
that a particular type of small motif called 3-paths is
the major cause for suboptimality in real networks.

The rest of the paper is organized as follows. Section 2 in-
troduces the maximum reciprocity problem. Section 3 proves
the NP-hardness of the problem, and provides a simple up-
per bound for maximum reciprocity. Section 4 identifies pat-
terns of maximum digraphs and provides a greedy algorithm
for eliminating suboptimal motifs. Section 5 conducts some
empirical study of real networks and Section 6 concludes the
paper.

2. GRAPHIC SEQUENCES AND MAXIMUM
RECIPROCITY PROBLEM

In this section, we first introduce the notion of a graphic
sequence for undirected graphs and then a graphic bi-sequence
for directed graphs or digraphs for short, which will be used
in the theoretical analysis of Section 3. We then formulate
the maximum reciprocity problem. Throughout the rest of
the paper, a graph, directed or not, always means a sim-
ple graph, i.e. no self-loops or multiple edges are allowed.
We will use the terms node and vertex interchangeably. For
directed graphs, an edge always means a directed edge.

2.1 Graphic Sequence and Bi-sequence
For an undirected graph G = (V,E), the degree dG(v) of a

node v is the number of edges incident to v. Associated with
every graph G is its degree sequence d = {dG(v) : v ∈ V }.
However, not every sequence of nonnegative integers can be

realized as the degree sequence of a graph. When it is real-
izable, the sequence is called graphic. More precisely, a se-
quence of nonnegative integers d = (d1, d2, . . . , dn) is called
graphic if there exists a graph G with nodes v1, v2, . . . , vn
such that dG(vi) = di for i = 1, 2, . . . , n. The following
classical theorem of Erdős and Gallai characterizes graphic
sequences.

Theorem 1 (Erdős-Gallai). A sequence of nonneg-
ative integers d1 ≥ d2 ≥ · · · ≥ dn is graphic if and only if∑n

i=1 di is even and

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{di, k}, for k = 1, 2, . . . , n.

The graphicality of a sequence can be tested in linear time
using the Erdős-Gallai theorem [9].

For a digraph G = (V,E), a node has both an in-degree
and an out-degree. The in-degree d−G(v) of a node v is the
number of directed edges coming into v, and the out-degree
d+G(v) is the number of directed edges going out of v. Associ-
ated with every digraph G is a bi-sequence (d+,d−), where
d+ = {d+G(v) : v ∈ V } is the out-degree sequence and d− =
{d−G(v) : v ∈ V } is the in-degree sequence. As in the undi-
rected case, not every bi-sequence of nonnegative integers
can be realized by a digraph. A bi-sequence of nonnegative
integers (d+,d−) = {(d+1 , d

+
2 , . . . , d

+
n ), (d

−
1 , d

−
2 , . . . , d

−
n )} is

called graphic if there exists a digraph G with nodes v1,
v2, . . . , vn such that d+G(vi) = d+i and d−G(vi) = d−i for
i = 1, 2, . . . , n. The Fulkerson-Chen-Anstee theorem char-
acterizes graphic bi-sequences.

Theorem 2 (Fulkerson-Chen-Anstee). A bi-sequence
{(d+1 , . . . , d+n ), (d−1 , . . . , d

−
n )} with d+1 ≥ d+2 ≥ · · · ≥ d+n is

graphic if and only if
∑n

i=1 d
+
i =

∑n
i=1 d

−
i and

k∑
i=1

d+i ≤
k∑

i=1

min{d−i , k − 1}+
n∑

i=k+1

min{d−i , k},

for k = 1, 2, . . . , n.

2.2 Maximum Reciprocity Problem
In this subsection, we formulate the maximum reciprocity

problem. For notational simplicity, we henceforth make no
distinction between a graph (digraph) and its edge set when
no confusion arises.

Given a digraph G, let Gs be the symmetric subgraph of
G, i.e. (i, j) ∈ Gs if and only if both (i, j) ∈ G and (j, i) ∈ G.
The reciprocated edges of a digraph G are precisely those
of Gs. Thus the number ρ(G) of reciprocated edges in G is
given by ρ(G) = |Gs|, and the reciprocity of G is r(G) :=
ρ(G)/|G|. Note that we use |G| to denote the number of
edges in G and each pair of reciprocal edges contributes two
to ρ(G).

Given a graphic bi-sequence (d+,d−), let G(d+,d−) de-
note the nonempty set of graphs that have (d+,d−) as their
degree bi-sequence. Since the total number of edges is fixed
for a given graphic bi-sequence, maximizing r(G) is the same
as maximizing ρ(G). The maximum reciprocity problem is
then to find a digraph G in G(d+,d−) with maximum ρ(G),
i.e.

maximize ρ(G)

subject to G ∈ G(d+,d−).
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We denote the maximum value by ρ(d+,d−) and refer to a
digraph G with ρ(G) = ρ(d+,d−) as a maximum reciprocity
digraph or maximum digraph for short.

2.3 Some Notations
We collect here some notations for later reference. Let G

denote a generic digraph.

• LetGa be the anti-symmetric subgraph ofG, i.e. (i, j) ∈
Ga if and only if (i, j) ∈ G but (j, i) /∈ G. Note that
G = Gs + Ga and Gs ∩ Ga = ∅, i.e. G is the edge
disjoint union of Gs and Ga.

• Let Gu be the undirected graph obtained by sym-
metrizing G, i.e. (i, j) ∈ Gu if either (i, j) ∈ G or
(j, i) ∈ G.

Let (d+,d−) be a graphic bi-sequence.

• The min sequence is

d+ ∧ d− = (d+1 ∧ d−1 , d
+
2 ∧ d−2 , . . . , d

+
n ∧ d−n ),

where a ∧ b = min{a, b}.

• The max sequence is

d+ ∨ d− = (d+1 ∨ d−1 , d
+
2 ∨ d−2 , . . . , d

+
n ∨ d−n ),

where a ∨ b = max{a, b}.

• The total number of edges is

ε(d+,d−) =
∑
i

d+i =
∑
i

d−i .

• The total balanced degree is

β(d+,d−) =
∑
i

d+i ∧ d−i ,

which is the ℓ1-norm of the min sequence.

• The total unbalanced degree is

ν(d+,d−) =
1

2

∑
i

|d+i − d−i |,

which is the total variation distance between d+ and
d−. Note that ε(d+,d−) = β(d+,d−) + ν(d+,d−).

3. HARDNESS ANALYSIS AND BOUNDS
In this section, we first provide an upper bound for the

maximum number of reciprocated edges allowed by a graphic
bi-sequence. We then prove that the maximum reciprocity
problem is NP-hard by showing that it is NP-complete to
decide the achievability of the upper bound. Some sufficient
conditions for achieving the upper bound are then provided.

3.1 Upper Bound for Reciprocity
In this subsection, we first establish a simple upper bound

on the maximum number of reciprocal edges in terms of the
total imbalance of the graphic bi-sequence, along with neces-
sary conditions for achieving this upper bound. Some exam-
ples are provided to illustrate how the necessary conditions
may fail and that they are not sufficient, which provides
insight into why the bound is not always tight.

Proposition 1. The number of reciprocated edges in any
digraph with a given degree bi-sequence cannot exceed the
total balanced degree, i.e.

ρ(d+,d−) ≤ β(d+,d−).

A necessary condition for equality is that both d+ ∧ d− and
d+ ∨ d− be graphic.

Proof. LetG ∈ G(d+,d−) be a maximum digraph. Note
that the number of reciprocated edges going out of a node
v is at most d+G(v) ∧ d−G(v). The desired bound is obtained
by summing over v.

If equality holds, then Gs and Gu, when viewed as undi-
rected graphs, have respective degree sequences d+∧d− and
d+ ∨d−. Thus both d+ ∧d− and d+ ∨d− are graphic.

Note that it is possible that neither d+ ∧d− nor d+ ∨d−

is graphic. In fact, one sequence can fail to be graphic inde-
pendent of whether the other is graphic or not, as illustrated
by the following examples, where graphic bi-sequences are
shown along with the corresponding maximum digraphs.

Example 1. In Figure 1, neither the min sequence d+∧d−

nor the max sequence d+ ∨ d− is graphic, since they both
have odd sums. Here ρ(d+,d−) = 2 < β(d+,d−) = 3.

1 2 3 4 5

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

1 (1, 0) 0 1

2 (1, 1) 1 1

3 (0, 2) 0 2

4 (2, 1) 1 2

5 (1, 1) 1 1

Figure 1: Graphic bi-sequence with non-graphic max and
min sequences.

Example 2. In Figure 2, the min sequence d+ ∧ d− is
graphic, while the max sequence d+ ∨ d− is not. No reci-
procity is allowed by this bi-sequence, i.e. ρ(d+,d−) = 0,
while the upper bound gives β(d+,d−) = 2n, so the gap
can be arbitrarily large. The only unbalanced nodes s and r
have very large unbalanced degrees that cannot be absorbed
by themselves, as a consequence of which some, in fact all,
balanced degrees have to be used for absorbing unbalanced
degrees rather than forming reciprocal edges.

Example 3. In Figure 3, the max sequence d+ ∨ d− is
graphic, while the min sequence d+ ∧ d− is not. As in Ex-
ample 2, no reciprocity is allowed here, i.e. ρ(d+,d−), while
the upper bound is β(d+,d−) = 2n. The situation is, how-
ever, the opposite. Node 0 has too large a balanced degree
relative to the number of nodes with nonzero balanced de-
grees, which is one here. Thus some of the balanced degrees
have to be absorbed by the unbalanced degrees.

The common pattern in Examples 2 and 3 is that there are
a small number of nodes with extremely large degrees. In the
social network context, these nodes correspond to celebrities
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s

1

2

2n

r

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

s (2n, 0) 0 2n

1 ∼ 2n (1, 1) 1 1

r (0, 2n) 0 2n

Figure 2: Graphic bi-sequence with graphic min sequence
but non-graphic max sequence.

0

s1

s2

s2n

r1

r2

r2n

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

s1 ∼ s2n (1, 0) 0 1

r1 ∼ r2n (0, 1) 0 1

0 (2n, 2n) 2n 2n

Figure 3: Graphic bi-sequence with graphic max sequence
but non-graphic min sequence.

(node r in Figure 2), information aggregators (node s in
Figure 2), or middlemen (node 0 in Figure 3). These large
degree nodes often incur inevitable reduction of reciprocity
from the upper bound.
The next example shows that the necessary condition in

Proposition 1 is not sufficient.

Example 4. For the bi-sequence (d+i , d
+
i ) = (n− i, i), i =

0, 1, . . . , n, the upper bound is β(d+,d−) = ⌊n/2⌋ · ⌈n/2⌉.
When n is a multiple of 4, both the max sequence d+ ∨
d− and the min sequence d+ ∧ d− are graphic. However,
ρ(d+,d−) = 0, as the only digraph in G(d+,d−), of which
(i, j) is an edge if and only if i < j, has zero reciprocity; see
Figure 4.

3.2 Proof of NP-hardness
We saw in the previous subsection that the upper bound

may not be achievable. Unfortunately, the next theorem
shows that it is NP-complete to decide whether the upper
bound is achievable, which means the maximum reciprocity
problem is NP-hard.

Theorem 3. The decision problem whether ρ(d+,d−) =
β(d+,d−) is NP-complete.

0 1 2 n−1 n

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

0 ∼ ⌊n/2⌋ (n− i, i) i n− i

⌈n/2⌉ ∼ n (n− i, i) n− i i

Figure 4: Insufficiency of necessary condition.

Proof. Note that the problem is the same as the exis-
tence problem of a digraph G ∈ G(d+,d−) with ρ(G) =
β(d+,d−). This problem is in NP, since given a digraph G,
we can verify whether ρ(G) = β(d+,d−) in polynomial time.
To show that the problem is NP-hard, we adapt the proof
of Lemma 5 in [5] by reduction from the 3-color tomography
problem, which is shown to be NP-hard therein.

Recall that the 3-color tomography problem is as follows.
Given nonnegative integral vectors rw, rb ∈ Nn, and sw, sb ∈
Nm that satisfy

rwi + rbi ≤ m, swj + sbj ≤ n, for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and
n∑

i=1

rci =

m∑
j=1

scj , for c ∈ {w, b},

decide if (rw, rb, sw, sb) is feasible, i.e. there exists a matrix
M with entries in {w, b, g} such that

rci = |{j : Mij = c}|, scj = |{i : Mij = c}|, for c ∈ {w, b}.

Let (rw, rb, sw, sb) be an n × m instance of the 3-color
tomography problem. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

d+i = rwi + rbi + n− 1, d+n+j = swj ,

d−i = rwi + n− 1, d−n+j = swj + sbj .
(1)

Now we show that (rw, rb, sw, sb) is feasible if and only
if (d+,d−) is graphic and ρ(d+,d−) = β(d+,d−), where
β(d+,d−) = n(n− 1) + 2

∑n
i=1 r

w
i .

First assume that M is a solution to the 3-color tomog-
raphy instance. We construct a digraph G as follows. For
1 ≤ i ≤ n and 1 ≤ j ≤ m, let Wij = 1 if Mij = w, and
Bij = 1 if Mij = b. Let J be an n × n matrix with all
off-diagonal entries equal to 1 and diagonal entries equal to
0. Let the adjacency matrix of G be(

J W +B
WT 0

)
.

It is straightforward to verify thatG ∈ G(d+,d−) and ρ(G) =
β(d+,d−).

For the reverse direction, assume that (d+,d−) is graphic
and ρ(d+,d−) = β(d+,d−). Then there exists a digraph
G ∈ ρ(d+,d−) with ρ(G) = β(d+,d−). Divide the adja-
cency matrix of G into the following block form

G =

(
G11 G12

G21 G22

)
.
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where G11 is n× n and G22 is m×m.
Let Φ =

∑n
j=1 d

−
j −

∑m
i=1 d

+
n+i, which, by (1), evaluates

to n(n − 1). On the other hand, d−j =
∑n+m

k=1 G(k, j) and

d+n+i =
∑n+m

k=1 G(n+ i, k), so

Φ =
n∑

i=1

n∑
j=1

G11(i, j)−
m∑
i=1

m∑
j=1

G22(i, j) ≤ n(n− 1) = Φ,

where the inequality follows from the facts that G11(i, j) ≤
1, G11(i, i) = 0 and G22(i, j) ≥ 0. Since the equality holds,
we must have G11 = J and G22 = 0. Thus

ρ(G) = n(n− 1) + 2
n∑

i=1

m∑
j=1

G12(i, j)G21(j, i)

≤ n(n− 1) + 2

n∑
i=1

m∑
j=1

G21(j, i)

= n(n− 1) + 2

m∑
j=1

d+n+j = β(d+,d−) = ρ(G).

Since the equality holds, G12(i, j) ≥ G21(j, i). Thus G12 =
W + B and G21 = WT for some (0, 1)-matrices W and B.
Let Mij = w if W (i, j) = 1, and Mij = b if Bij = 1. Then
M is a solution to the 3-color tomography instance.
Since the graphicality of (d+,d−) can be tested in quadratic

time using the Fulkerson-Chen-Anstee theorem, the above
reduction then shows that it is NP-hard to decide whether
ρ(d+,d−) = β(d+,d−).

3.3 Sufficient Conditions for Achieving Bound
Given the hardness of the maximum reciprocity problem,

we provide some sufficient conditions for achieving the upper
bound in Proposition 1. We start with the following slightly
more general theorem, which may potentially be used to
lower bound ρ(d+,d−).

Theorem 4. Suppose that d0 is a graphic sequence such
that the residual bi-sequence (d+−d0,d−−d0) is also graphic.

If ∆ <
√

δn+
(
δ − 1

2

)2
+ 3

2
− δ, where n = |V0|, ∆ =∨

i∈V0
(d+i + d−i − d0i ) and δ =

∧
i∈V0

(d+i + d−i − d0i ), with

V0 = {i : d+i ∨ d−i > 0}, then ρ(d+,d−) ≥ 2
∑

i d
0
i .

Proof. See Appendix A.

This theorem is analogous to Theorem 2.2 in [3], which
deals with packing two graphic sequences for undirected
graphs. Theorem 4 deals with packing a graphic sequence
d0 for undirected graphs and a graphic bi-sequence (d+ −
d0,d− − d0) for digraphs.
Applying Theorem 4 with d0 = d+ ∧ d−, we obtain the

following sufficient conditions for achieving the upper bound
in Proposition 1.

Corollary 1. ρ(d+,d−) = β(d+,d−) if the following
conditions hold,

(1). d+∧d− and (d+−d+∧d−,d−−d+∧d−) are graphic;

(2). ∆ <
√

δn+
(
δ − 1

2

)2
+ 3

2
− δ, where n = |V0|, ∆ =∨

i∈V0
(d+i ∨ d−i ) and δ =

∧
i∈V0

(d+i ∨ d−i ), with V0 =

{i : d+i ∨ d−i > 0}.

Note that ∆ is the maximum of either the in- or out-
degrees. Putting an upper bound on ∆ rules out extremely
large degrees, which are the trouble makers in the examples
of Section 3.1. However, in most real networks, we have δ =
1, so the sufficient condition essentially requires ∆ <

√
n,

which, unfortunately, usually fails to hold. In fact, it fails
for most networks studied in Section 5.

4. PATTERNS IN MAXIMUM DIGRAPHS
In this section, we identify some structural patterns of

maximum digraphs, or equivalently, the associated subop-
timal structures that contribute to the loss in reciprocity
not imposed by the degree bi-sequence. We first look at
some small suboptimal motifs and provide a greedy algo-
rithm to eliminate them. We then show some more compli-
cated structural patterns of maximum digraphs and demon-
strate how they can help us pin down the maximum digraphs
in some special cases.

Throughout this section, a cycle or a path always refers
to a directed cycle or directed path, i.e. the edges must be
all in the same direction as we follow the cycle or path. We
also require that the edges be distinct. On the other hand,
the vertices are not necessarily distinct. When the vertices
are distinct, we say the path or cycle is elementary.

4.1 Small Suboptimal Motifs
In this subsection, we focus on a particular type of small

motifs that we call 3-paths, the nonexistence of which also
guarantees the nonexistence of many larger scale subopti-
mal structures. As we will see in Section 5, elimination of
such suboptimal motifs brings reciprocity close to the corre-
sponding upper bound for a variety of real world networks.

Given a digraph G, we call an elementary path of length 3,
π = (v0, v1, v2, v3), a 3-path if (vi, vi+1) ∈ Ga for i = 0, 1, 2,
i.e., π consists entirely of unreciprocated edges. We further
classify 3-paths into the following four types according to
the connectivity between v0 and v3 (Figure 5),

(I). (v0, v3) /∈ Gu, i.e. there is no edge between v0 and v3;

(II). (v0, v3) ∈ Gs;

(III). (v3, v0) ∈ Ga, i.e. (v0, v1, v2, v3, v0) is a 4-cycle;

(IV). (v0, v3) ∈ Ga.

As shown in Figure 5, 3-paths of Types I, II and III
are suboptimal and can be rewired locally to increase reci-
procity. We say a digraph is 3-path optimal if it has no
3-path of Type I, II or III. Note that when viewed as a
transformation on Ga, the rewiring procedure in Figure 5
simply eliminates 4-cycles (Type III), and replaces open 3-
paths by a shortcut from its first vertex to its last vertex if
such a shortcut does not yet exist (Types I and II). Thus
each rewiring increases the number of reciprocated edges by
either 2 or 4, and we have the following

Lemma 1. A maximum digraph is 3-path optimal.

Given a digraph G, we can greedily rewire all 3-paths to
get a lower bound on the maximum reciprocity allowed by
the degree bi-sequence of G. The resulting greedy algorithm
is shown in Algorithm 1. Lemma 2 guarantees that Algo-
rithm 1 eliminates all 3-paths of Types I, II and III.
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v0 v1

v2v3

×

×
(a) Type I.

v0 v1

v2v3

× ×

(b) Type II.

v0 v1

v2v3
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(c) Type III.
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(d) Type IV.

Figure 5: Different types of 3-paths with corresponding
rewirings. The edges marked by red crosses are to be rewired
into the dashed green edges.

Algorithm 1 GreedyRewire

Input: G = (V,E)
1: S ← V
2: while S ̸= ∅ do
3: pick v0 ∈ S
4: if ∃ non-Type IV 3-path π = (v0, v1, v2, v3) then
5: G← Rewire(π)
6: S ← S ∪ {v1, v2}
7: else
8: S ← S − {v0}
9: end if
10: end while
11: return G

Lemma 2. Algorithm 1 returns a 3-path optimal digraph.

Proof. See Appendix B.

Note that depending on how v0 and π are picked, Al-
gorithm 1 can return different 3-path optimal graphs. Al-
though there is no theoretical guarantee, we will see in Sec-
tion 5 that reciprocities of 3-path optimal digraphs returned
by Algorithm 1 are very close to the corresponding upper
bounds and hence close to the maxima as well. The next
subsection shows that 3-path optimality precludes many other
suboptimal structures, which partially explains why Algo-
rithm 1 works pretty well in practice.

4.2 Properties of Maximum Digraphs
In this subsection, we consider additional suboptimal struc-

tures that are more complicated than 3-paths. Some of these
structures are automatically eliminated by Algorithm 1, while
others require extra attention. We will state the results as
properties of maximum digraphs. Any violation of the stated
properties yields a suboptimal structure.

4.2.1 3-path optimal digraphs
We first consider some properties of 3-path optimal di-

graphs, which, by Lemma 1, are also properties of maxi-
mum digraphs. All these properties involve only unrecip-
rocated edges. Note that any suboptimal structures that

violate these properties are automatically eliminated by Al-
gorithm 1. Let G denote a 3-path optimal digraph through-
out this subsection.

Lemma 3 shows that the unreciprocated edges of a 3-path
optimal digraph cannot form any elementary path of odd
length without a shortcut. As a result, for any two vertices
u and v, either there is no path from u to v in Ga, or there
is such a path of length at most 2.

Lemma 3. If π = (v0, v1, . . . , v2p+1) is an elementary path
of odd length in Ga, then (v0, v2p+1) ∈ Ga.

Proof. We use induction on p. If p = 0, then (v0, v1) ∈
Ga by assumption. If p = 1, then π is a 3-path of Type
IV and hence (v0, v3) ∈ Ga. Now consider p ≥ 2. We
have (v0, v2p−1) ∈ Ga by the induction hypothesis. Then
(v0, v2p−1, v2p, v2p+1) is a 3-path of Type IV. Thus we have
(v0, v2p+1) ∈ Ga, completing the induction.

Lemma 4 shows that the anti-symmetric subgraph of a
3-path optimal digraph is almost cycle free. We can obtain
a directed acyclic graph from it by removing an edge from
each 3-cycle.

Lemma 4. The only possible cycles in Ga are 3-cycles,
and any two of them must be vertex disjoint.

Proof. We first prove that two distinct 3-cycles must
be vertex disjoint by contradiction. Suppose they share at
least one vertex v0. Let the cycles be C0 = (v0, v1, v2, v0)
and C1 = (v0, v3, v4, v0). Note that v1 ̸= v4 and v2 ̸= v3, as
all edges are in Ga. Since C0 and C1 are distinct, we must
have either v1 ̸= v3 or v2 ̸= v4. Without loss of generality,
assume v1 ̸= v3. Then (v1, v2, v0, v3) is a 3-path of Type
IV, so (v1, v3) ∈ Ga. But then (v1, v3, v4, v0) is a 3-path of
Type III, which is impossible. Therefore, C0 and C1 must
be vertex disjoint.

Next we prove there are no elementary k-cycles for k ≥ 4.
Suppose there is such a cycle (v0, v1, . . . , vk−1, v0). If k is
even, (v1, vk−2) ∈ Ga by Lemma 3. But (v0, v1, vk−2, vk−1)
is a 3-path of Type III, which is impossible. If k is odd, then
(v0, vk−2), (v1, vk−1) ∈ Ga again by Lemma 3. But then
(v0, v1, vk−1, v0) and (v0, vk−2, vk−1, v0) are two distinct 3-
cycles with two common vertices, which is again impossible.

Finally, suppose there is a non-elementary cycle. We can
be decompose it into several distinct elementary cycles, all
of which must be 3-cycles by the previous paragraph. But
then we have distinct 3-cycles that are not vertex disjoint,
which is impossible. Therefore, there are no k-cycles for
k ≥ 4.

Although 3-path optimality does not preclude 3-cycles,
they are unlikely to exist in 3-path optimal graphs obtained
from real world networks using Algorithm 1, as Lemma 5
requires that the vertices of a 3-cycle in such graphs have
exactly the same connectivity to every vertex outside the 3-
cycle, which is extremely unlikely, especially in large graphs.

Lemma 5. For a 3-cycle C in Ga and any vertex v not
in C, either there is no path in Ga that connects v and C,
or there is an edge of Ga between v and each vertex of C,
all in the same direction.

Proof. Let C = (v0, v1, v2, v0). Without loss of general-
ity, assume π is from v to v0 and has odd length. Successive
application of Lemma 3 to the paths π, (v, v0, v1, v2) and
then (v, v2, v0, v1), we obtain (v, v0) ∈ Ga, (v, v2) ∈ Ga and
(v, v1) ∈ Ga in the same order.
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4.2.2 Maximum digraphs
In this subsection, we consider some properties of maxi-

mum digraphs that are not direct consequences of 3-path op-
timality. The associated suboptimal structures may be left
intact by Algorithm 1 and require extra attention. Through-
out this subsection, let G⋆ denote a maximum digraph with
a given bi-sequence (d+,d−), i.e. G⋆ ∈ G(d+,d−) and
ρ(G⋆) = ρ(d+,d−).
We know from Lemma 4 that large cycles involving only

unreciprocated edges are suboptimal structures, but certain
cycles of even length that contains reciprocated edges are
also suboptimal. In particular, we have the following

Lemma 6. Let C be an even cycle in H ∈ G(d+,d−). If
any two edges in C ∩Hs are separated by an odd number of
edges in C, then there exists H ′ ∈ G(d+,d−) with ρ(H ′) =
ρ(H) + |Ca| − 2|Ca ∩ Hs|, where Ca is the anti-symmetric
part of C, i.e. Ca = {(i, j) ∈ C : (j, i) /∈ C}.

Note that C ∩Ha ⊂ Ca, but it is not necessarily true that
Ca = C ∩Ha. The two edges (3, 4) and (5, 0) in Figure 6(a)
are in Ca but not in C ∩Ha. Any cycle satisfying the condi-
tions in Lemma 6 is suboptimal if it has more anti-symmetric
edges than symmetric ones. The cycles (0, 1, 2, 3, 4, 5, 0) in
Figure 6(a) and (0, 1, 2, 0, 5, 3, 4, 5, 0) in Figure 6(b) are two
such examples. Note that these two cycles are not automat-
ically eliminated by Algorithm 1.

0

1

2

3

4

5

×

×

×

(a)

0

1

2

3

4

5

××

×

×

(b)

Figure 6: Suboptimal even cycle with reciprocated edges.
Reciprocity can be increased by rewiring edges marked by
red crosses into the dashed green edges.

Proof of Lemma 6. Let C = (v0, v1, . . . , v2p−1, v2p =
v0), where the vertices are labeled such that (v2p−1, v0) ∈ Hs

if C ∩Hs ̸= ∅. Note that the vertices may not be distinct.
Note also that we must have (v2k, v2k+1) ∈ Ha for all k. If
(v2k, v2k+1) ∈ Hs for some k, then the number of edges in
C between (v1, v2) and (v2k, v2k+1) would be 2k − 2, con-
tradicting the assumption that any two edges in C ∩Hs are
separated by an odd number of edges in C. As illustrated
in Figure 6, let

H ′ = H − {(v2i−1, v2i)}pi=1 + {(v2i−1, v2i−2)}pi=1.

Since (v2i−2, v2i−1) ∈ Ha, we have (v2i−1, v2i−2) /∈ H and
hence H ′ ∈ G(d+,d−). Note that the edges in C ∩Ha are
either absent from H ′ or in H ′

s, so Ha − H ′
a = C ∩ Ha =

Ca∩Ha. On the other hand, all edges in C∩Hs are removed
from H ′, so H ′

a − Ha = Ca ∩ Hs. Thus by going from H
to H ′, we eliminated |Ca ∩Ha| unreciprocated edges while
creating |Ca ∩ Hs| new ones. Therefore, ρ(H ′) = ρ(H) −
|Ca ∩Hs|+ |Ca ∩Ha|. Since |Ca| = |Ca ∩Hs|+ |Ca ∩Ha|,
the desired conclusion follows by eliminating |Ca ∩Ha|.

Lemma 7 specifies how multiple 3-cycles should be con-
nected in maximum digraphs. If we collapse each 3-cycle
into a single vertex by contracting its edges, the subgraph
of G⋆

a induced by these vertices will have the structure in
Figure 4. Therefore, while the existence of multiple 3-cycles
is already very unlikely in 3-path optimal digraphs, it is even
less likely in maximum digraphs with degree bi-sequences of
real world networks.

Lemma 7. The set of all distinct 3-cycles of G⋆
a can be

linearly ordered as C0, C1, . . . , Cm such that there are 9 edges
of G⋆

a going from Ci to Cj for all 0 ≤ i < j ≤ m.

Proof. Consider two distinct 3-cycles C = (v0, v1, v2, v0)
and C′ = (w0, w1, w2, w0). There cannot exist a pair of edges
from G⋆

s that connect C and C′; otherwise, say (v0, w0) ∈
G⋆

s , the cycle (v0, v1, v2, v0, w0, w1, w2, w0, v0) would be sub-
optimal by Lemma 6. On the other hand, there must be
at least one edge between C and C′; otherwise, replacing
Ci and Cj by the three pairs of edges {(vi, wi), (wi, vi)}2i=0

would increase the reciprocity. Without loss of generality,
assume (v0, w0) ∈ G⋆

a. It then follows from Lemma 5 that
(vi, wj) ∈ G⋆

a for all i, j ∈ {0, 1, 2}. By Lemma 4, such edges
cannot be part of any cycle. Therefore, we can sort the 3-
cycles topologically and label them in the desired way.

The next lemma complements Lemma 3 by specifying con-
nection patterns of elementary paths of even length.

Lemma 8. Let π = (v0, v1, . . . , v2p) be an elementary path
of even length 2p ≥ 4 in G⋆

a, E0 = {(v2i, v2j) : i ̸= j} and
E1 = {(v2i−1, v2j−1) : i ̸= j}. If (v0, v2p) /∈ G⋆

a, then G⋆

either has all the edges in E0 but none in E1, or vice versa.

Proof. See Appendix C.

Figure 7 shows both possibilities for an elementary path
of length 4. The shortcuts required by Lemma 3 are also
shown. The red dashed edges represent those that cannot
coexist with the green edges in a maximum digraph. Some
suboptimal structures that violate Lemma 8 cannot be au-
tomatically eliminated by Algorithm 1. For example, if the
pair of edges between the vertices 0 and 2 are missing from
Figure 18, the resulting suboptimal digraph will be left in-
tact by Algorithm 1.

0 1 2 3 4

(a) E0 ⊂ G⋆, E1 ∩G⋆ = ∅.

0 1 2 3 4

(b) E1 ⊂ G⋆, E0 ∩G⋆ = ∅.

Figure 7: Patterns of even paths in maximum digraphs..
Each undirected solid edge represents a pair of reciprocated
edges in G⋆. Each dashed edge represents a pair of edges
that are both missing in G⋆.
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4.3 Some Examples
In this subsection, we illustrate how the structural pat-

terns of the previous subsection may be used to pin down
the maximum digraph in some special cases. Here G⋆ always
denotes a maximum digraph.
Proposition 2 shows that when the bi-sequence is perfectly

balanced, the maximum digraph achieves perfect or near-
perfect reciprocity. Therefore, any unfulfilled reciprocity
must be due to the lack of effort to form reciprocal edges
rather than due to the fundamental limit imposed by the
bi-sequence itself.

Proposition 2. Suppose (d+,d−) is perfectly balanced,
i.e. ν(d+,d−) = 0.

(1). If ε(d+,d−) is even, then ρ(d+,d−) = ε(d+,d−).

(2). If ε(d+,d−) is odd, then ρ(d+,d−) = ε(d+,d−) − 3,
and G⋆

a consists of a 3-cycle.

Proof. Since ν(d+,d−) = 0, we have d+i = d−i for all i.
Thus any edge of G⋆

a must be contained in a cycle of length
at least 3 in G⋆

a. By Lemma 4, the length of such a cycle is
exactly 3. By Lemma 7, there is at most one such cycle in
G⋆

a. Thus G
⋆
a is either empty or a 3-cycle. Since ρ(G⋆) must

be even, the former case corresponds to even ε(d+,d−) and
the latter odd ε(d+,d−).

The next proposition shows that when the bi-sequence is
slightly unbalanced, the number of possible values of ρ(d+,d−)
increases. This sheds some light on why the maximum reci-
procity problem is so difficult. As the total unbalanced de-
gree increases, the number of possibilities is expected to ex-
plode.

Proposition 3. Suppose (d+,d−) is slightly unbalanced
with ν(d+,d−) = 1, d+0 − d−0 = 1 and d−1 − d+1 = 1.

(1). If ε(d+,d−) is even, then the gap ε(d+,d−)−ρ(d+,d−)
is either 2 or 4. When the gap is 2, the two edges in
G⋆

a form a 2-path from 0 to 1. When the gap is 4, G⋆
a

is the vertex disjoint union of {(0, 1)} and a 3-cycle.

(2). If ε(d+,d−) is odd, then the gap ε(d+,d−)−ρ(d+,d−)
is either 1 or 5. When the gap is 1, G⋆

a = {(0, 1)}.
When the gap is 5, G⋆

a is the vertex disjoint union of
a 2-path from 0 to 1 and a 3-cycle.

Proof. Note that there must be a path from 0 to 1 in
G⋆

a. Let π be the shortest path from 0 to 1 in G⋆
a. All

edges in G⋆
a − π, if there is any, must be contained in a

cycle in G⋆
a. By Lemma 4, G⋆

a can only have 3-cycles. If G⋆
a

had more than one 3-cycles, Lemma 7 would require that
there be at least 9 edges in G⋆

a that are not contained in
any cycle, all of which must be in π. Lemma 3 shows that
π has either one or two edges. Therefore, G⋆

a − π is either
empty or has one 3-cycle. By Lemma 5, π and the 3-cycle,
if there is one, must be vertex disjoint. Since |π| ∈ {1, 2},
and |G⋆

a − π| ∈ {0, 3}, it follows that ε(d+,d−) − ρ(G⋆) =
|G⋆

a| = |π| + |G⋆
a − π| ≤ 2 + 3 = 5. Note that ρ(G⋆) is

even. If ε(d+,d−) is even, then ε(d+,d−)− ρ(G⋆) is equal
to |π| = 2 or α(G⋆) = |π| + |Ga − π| = 1 + 3 = 4. If
ε(d+,d−) is odd, then ε(d+,d−)−ρ(G⋆) is equal to |π| = 1
or |π|+ |G⋆

a − π| = 2 + 3 = 5.

It is easy to come up with examples where the gaps are 1
and 2, respectively. The next examples shows that the other
two cases are also possible.

Example 5. Let (d+,d−) = {(1, 3, 2, 2, 2), (0, 4, 2, 2, 2)}.
Figure 8(a) shows a realization G of this bi-sequence, where
each undirected edge represents a pair of edges in opposite
directions. Note that ρ(G) = ε(d+,d−)− 4. We claim that
ρ(G) = ρ(d+,d−). If not, then ρ(G⋆) = ε(d+,d−) − 2 by
Proposition 3, and the two edges in G⋆

a form a 2-path π
from a to b. Since c, d, e have the same in- and out-degrees
and hence are equivalent, we may assume without loss of
generality that π = (a, c, b). Thus G⋆

a − π is symmetric and

corresponds to a simple graph with degree sequence d̂ =
{0, 3, 1, 2, 2}. There is only one simple graph with this degree
sequence, which is shown by the black edges in Figure 8(b).
When we superimpose π and G⋆

a − π, there are two edges
from (c, b), and hence G⋆ /∈ G(d+,d−), a contradiction.

a b c

d

e

(a) G.

a c b

d

e

(b) π and G⋆
a − π.

Figure 8: Example 5.

Example 6. Let (d+,d−) = {(1, 0, 4, 2, 2, 2), (0, 1, 4, 2, 2, 2)}.
Figure 9 shows a realization G of this bi-sequence, where
each undirected edge represents a pair of edges in opposite
directions. Note that ρ(G) = ε(d+,d−) − 5. Since the se-
quence d+∧d− = {0, 0, 4, 2, 2, 2} is not graphic, Proposition
1 shows that ρ(d+,d−) < β(d+,d−) = ε(d+,d−)−1. Thus
Proposition 3 yields ρ(G) = ρ(d+,d−). In fact, G is the
only element of G(d+,d−).

a

b

c d

e

f

Figure 9: Example 6.

5. EMPIRICAL STUDY
In this section, we conduct an empirical analysis of real

networks by comparing the observed values of reciprocity
against the upper bounds. We also look at the lower bounds
on maximum reciprocities given by Algorithm 1.

5.1 Datasets
The networks that we analyze include major online social

networks (OSN) that are directed in nature [15, 12, 8, 24,
13]. For the purpose of comparison, we have also included
other types of networks: biological networks [20, 21, 18, 23,
19, 27], communication networks [13], product co-purchasing
networks [13], web graphs [13], Wikipedias [1], software call
graphs [22, 17], and P2P networks [13]. All the datasets
except for Wikipedias are already converted into graph rep-
resentations by other researchers and the descriptions for the
datasets can be found at the cited sources. For Wikipedias,
each node represents a page. Only article pages, i.e. pages
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with namespace ID 0, are included. Pages that redirect to
the same page are represented as a single node correspond-
ing to the destination page. There is an edge from node A
to node B if there is at least one hyperlink from page A to
page B. Multiple edges and self-loops are discarded. Some
basic statistics of the networks can be found in Appendix D.

5.2 Empirical Reciprocity vs. Upper Bound

upper bound
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Figure 10: Scatter plot of empirical reciprocity versus upper
bound. Regression line was fitted without data points for
biological, P2P and software call networks.

Figure 10 shows the scatter plot of empirical reciproci-
ties against the corresponding upper bounds. Here the up-
per bound is normalized by the number of edges, i.e., it is
the ratio β(d+,d−)/ε(d+,d−). Note that the reciprocity
values vary widely, ranging from 0 for the peer-to-peer net-
work Gnutella to 90% for the online social network Slashdot.
There is even a fair amount of variation within the cate-
gories of biological, social and Wikipedia networks. In gen-
eral, social networks and Wikipedia networks tend to have
high reciprocity, while software call networks tend to have
low reciprocity. Note the strong linear correlation between
empirical reciprocity and the upper bound. This is a bit sur-
prising, especially for the social networks, in view of the large
variations in reciprocity. Related to Figure 10 is the scatter
plot in Figure 11 of number of reciprocated edges against the
unnormalized bound β(d+,d−). There the linear relation-
ship in log-log scale is even more apparent, with biological
networks being also around the regression line. These linear
relationships suggest that there might exist some universal
mechanism that works across different domains.
Despite the wide variation in reciprocity, the ratio between

the empirical reciprocity and the normalized upper bound
has a much narrower range as shown by the box plots for
the ratios in Figure 12.
Note that the ratios are close to zero for the P2P network

Gnutella and software call graphs. The Gnutella exhibits
zero reciprocity, far away from the upper bounds, which are
above 30%. This is probably because Gnutella implements
an indirect reciprocity mechanism. The low reciprocity for
software call graphs is not surprising, as software codes are
usually designed to work in a hierarchical manner. The case
for biological networks are more complicated, as the four
biological networks considered here are actually of quite dif-
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Figure 11: Scatter plot of number of reciprocated edges ver-
sus upper bound. Regression line was fitted in log scale,
without data points for software call networks.
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Figure 12: Box plot of reciprocity-bound ratio for different
network categories.

ferent natures. For example, the C. Elegan neural network
and the mouse cortex network are both neural networks,
but the former is at the neuron level while the latter is at
a coarser level of cortical regions. One can speculate that
both the low reciprocity in C. Elegan neural network and
the high reciprocity in the mouse cortex network are due to
biological reasons. However, we do not know if this behavior
is a norm or an exception due to the lack of data for similar
networks.

In all categories other than biological, software call and
P2P networks, the ratios are above 50% with only three ex-
ceptions: the wiki-Vote network, the Stack Overflow Q&A
network, and the Spanish Wikipedia. Although we have
classified the Stack Overflow Q&A network as a social net-
work, it differs from typical social networks. The low reci-
procity suggests that there is a hierarchy of expertise. What
is more interesting is the wiki-Vote network and the Spanish
Wikipedia, as their behaviors deviate from those of other
networks of the same category, which suggests that there
might be something unusual about them that is worthy of
scientific study. Apart from the three outliers, all other
networks in these categories actually achieve a significant
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fraction of the possible reciprocity suggested by the upper
bound. This means that modulo the degree constraints, the
tendency to reciprocate is much stronger than the empirical
reciprocity alone might have suggested. Prominent exam-
ples include the web graphs, the Swedish Wikipedia and the
Google+ network, whose reciprocities are not very high in
absolute value but quite high relative to the bound. This
suggests that when we study these networks, it might be
more meaningful to ask the question why there is such large
imbalance in degrees than to ask the question why the ten-
dency to reciprocate is low.

5.3 Reciprocity of 3-path Optimal Digraphs
In this subsection, we look at 3-path optimal digraphs

returned by Algorithm 1. Note that the reciprocity of such a
digraph provides a lower bound on the maximum reciprocity
of the corresponding degree bi-sequence.
Figure 13 shows the scatter plot of the reciprocities of

the 3-path optimal digraphs against the corresponding up-
per bounds. Figure 14 shows the box plots of their ratios.
Note that the reciprocities of 3-path optimal digraphs are
close to the upper bounds, especially for communication,
co-purchasing, social and Wikipedia networks. This means
that the maximum reciprocities are also close to the upper
bounds. Therefore, for the degree bi-sequences of those real
networks, the fundamental limit that they impose on reci-
procity is largely summarized by the upper bounds, and the
major source of loss in reciprocity is the existence of 3-paths
of Types I, II and III. Thus in practice Algorithm 1 usu-
ally suffices for approximating maximum reciprocities and
we do not need to worry much about the more complicated
suboptimal structures in Section 4.2.2.
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Figure 13: Scatter plot of reciprocity of the 3-path optimal
digraph returned by Algorithm 1 versus upper bound.

Finally, recall from Section 4.2.1 that the existence of 3-
cycles in a 3-path optimal digraph requires some specific
structures. These structures are usually too special to occur
in practice, so 3-cycles are unlikely to exist in 3-path optimal
digraphs. This is indeed the case for most of the 3-path opti-
mal digraphs obtained from the real networks studied here,
the anti-symmetric parts of which turn out to be acyclic.
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Figure 14: Box plot of ratio between reciprocity of 3-path
optimal digraph returned by Algorithm 1 and upper bound.

6. CONCLUSION
In this work, we showed that the maximum reciprocity

problem is NP-hard. We provided a partial characteriza-
tion of networks with maximum reciprocity and a greedy
algorithm to eliminate suboptimal motifs. We also provided
an upper bound on reciprocity along with necessary condi-
tions and sufficient conditions for achieving the bound. We
demonstrated that the bound is surprisingly close to the
observed reciprocity in a wide range of real networks, which
suggests that the tendency to form reciprocal edges might be
much stronger than the observed reciprocity indicates. We
found surprising linear relationships between empirical re-
ciprocities and the corresponding upper bounds. We showed
that a particular type of suboptimal motif called 3-paths is
the major source of loss in reciprocity in these networks.
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APPENDIX
A. PROOF OF THEOREM 4

We adapt the proof for Theorem 2.2 of [3] that deals with
packing two graphic sequences for undirected graphs. With-
out loss of generality, we can assume that V0 = V , since
removing isolated vertices does not change the conclusion.
Assume that conditions (1)–(3) hold and consider the set G
of all pairs of digraphs (G1, G2) such that

(i). G1 is symmetric with degree bi-sequence (d0,d0),

(ii). G2 has degree bi-sequence (d+ − d0,d− − d−),

(iii). the union G = G1 +G2, as a multi-digraph, has degree
bi-squence (d+,d−).

Note that G1 can be identified with an undirected graph
with degree sequence d0. Conditions (1) and (2) guarantee
that G ̸= ∅. Among all pairs in G, choose a pair (G1, G2)
such that the number of shared edges |G1∩G2| is minimized.
We will show that G1 ∩G2 = ∅, so their union G = G1 +G2

is a realization of (d+,d−) and hence ρ(d+,d−) ≥ ρ(G) ≥
|G1| = 2

∑
i d

0
i ≥ 2m. To this end, we will show that condi-

tion (iii) would be violated if G1 ∩G2 ̸= ∅.
Assume there exists an edge (x, y) ∈ G1 ∩ G2. Since G1

is required to be symmetric, for the sake of notational sim-
plicity, we will use the same notation (a, b) for a single edge
to refer to the pair of edges (a, b) and (b, a) in G1, which is
represented pictorially by an undirected edge.

For v ∈ V , let NG(v) = {u : (v, u) ∈ G} be the out-
neighbors of v in G and N−

G (v) = {u : (u, v) ∈ G} the
in-neighbors of v in G. Let NG(v) = N+

G (v)∪N−
G (v) be the

neighbors of v inG. ForW ⊂ V , letN+
G (W ) =

∪
w∈W N+

G (w),

N−
G (W ) =

∪
w∈W N−

G (w) and NG(W ) = N+
G (W )∪N−

G (W ).

We use the convention N+
G (∅) = N−

G (∅) = NG(∅) = ∅. For
V1, V2 ⊂ V , let V1 ⊗ V2 = {(v1, v2) ∈ V1 × V2 : v1 ̸= v2}.

Now consider I = V −[NG(x)∪NG(y)]. LetW
1 = NG1(I),

W 2(I) = N+
G2

(I) ∩ N−
G2

(I), W+ = N+
G2

(I) − N−
G2

(I) and

W− = N−
G2

(I) − N+
G2

(I). Note that NG(I) = W 1 + W 2 +

W+ +W−.
We break the proof into several claims.

11



x y

v w

×
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×
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Figure 15: Proof of Claims 1–3 of Appendix A. The number
of shared edges is reduced by rewiring the edges marked by
red crosses into the dashed green edges. Each undirected
edge represents a pair of reciprocated edges.

Claim 1. W 1 ⊂ NG(x) ∩NG(y).

Proof. Suppose W 1 ̸= ∅. Let w ∈ W 1 and v ∈ I
such that (v, w) ∈ G1. If w /∈ NG(x), then G′

1 = G1 −
{(x, y), (v, w)} + {(x,w), (y, v)} would reduce the number
of shared edges; see Figure 15(a). Therefore, w ∈ NG(x).
Similarly, w ∈ NG(y).

Claim 2. N+
G2

(I) ⊂ N+
G (x).

Proof. Suppose N+
G2

(I) ̸= ∅. Let w ∈ N+
G2

(I) and v ∈ I

such that (v, w) ∈ G2. If w /∈ N+
G (x), then G′

2 = G2 −
{(x, y), (v, w)}+{(x,w), (v, y)} would reduce the number of
shared edges; see Figure 15(b). Therefore, w ∈ N+

G (x).

Claim 3. N−
G2

(I) ⊂ N−
G (y).

Proof. Suppose N−
G2

(I) ̸= ∅. Let w ∈ N−
G2

(I) and v ∈ I

such that (w, v) ∈ G2. If w /∈ N−
G (y), then G′

2 = G2 −
{(x, y), (v, w)}+{(x, v), (w, y)} would reduce the number of
shared edges; see Figure 15(c). Therefore, w ∈ N−

G (y).

It follows from Claims 2 and 3 that W 2 ⊂ N+
G (x)∩N−

G (y),
W+ ⊂ N+

G (x) and W− ⊂ N−
G (y). Note that NG(I) ⊂

NG(x) ∪ NG(y) = Ic. As a result, there is no edge with
both ends in I.

Claim 4. There exists an edge in G between every pair
of distinct vertices in W 1.

Proof. Let w1, w2 ∈W 1 and z1, z2 ∈ I such that (zi, wi) ∈
G1 for i = 1, 2, where z1 are z2 are not necessarily dis-
tinct. If (w1, w2) /∈ G and (w2, w1) /∈ G, then G′

1 = G1 −
{(x, y), (w1, z1), (w2, z2)} + {(x, z1), (y, z2), (w1, w2)} would
reduce the number of shared edges; see Figure 16(a). There-
fore, either (w1, w2) ∈ G or (w2, w1) ∈ G.

Claim 5. N−
G2

(I)⊗N+
G2

(I) ⊂ G.

Proof. Let (w1, w2) ∈ N−
G2

(I) ⊗ N+
G2

(I). Let z1, z2 ∈ I
such that (w1, z1) ∈ G2 and (z2, w2) ∈ G2, where z1 are z2
are not necessarily distinct. If (w1, w2) /∈ G, then G′

2 = G2−
{(x, y), (w1, z1), (z2, w2)} + {(x, z1), (z2, y), (w1, w2)} would
reduce the number of shared edges; see Figure 16(b). There-
fore, (w1, w2) ∈ G.

As a result of Claim 5, W 2⊗W 2 ⊂ G and W−⊗W+ ⊂ G.

Claim 6. W 1 ⊗W 2 ⊂ G and W 2 ⊗W 1 ⊂ G.

Proof. Let w1 ∈ W 1, w2 ∈ W 2 be such that w1 ̸= w2.
Let z1, z2, z3 ∈ I be such that (w1, z1) ∈ G1, (z3, w2) ∈

x y

w1 w2

z1 z2

×

× ×

(a) w1, w2 ∈ W 1.

x y

w1 w2

z1 z2

×

× ×

(b) w1 ∈ N−
G2

(I), w2 ∈ N+
G2

(I).

Figure 16: Proof of Claims 4–5 of Appendix A. The number
of shared edges is reduced by rewiring the edges marked by
red crosses into the dashed green edges. Each undirected
edge represents a pair of reciprocal edges.

G2 and (w2, z2) ∈ G2, where z1, z2, z3 are not necessarily
distinct. We will show that if (w1, w2) /∈ G or (w2, w1) /∈ G,
we would be able to find a new pair of graphs (G′

1, G
′
2) ∈ G

such that |G′
1∩G′

2| < |G1∩G2|, which would contradict the
choice of (G1, G2). Consider three cases.

(i). If (w1, w2) /∈ G, (w2, w1) /∈ G, then let

G′
1 = G1 − {(x, y), (w1, z1)}+ {(x, z1), (w1, w2)},

G′
2 = G2 − {(z3, w2), (w2, z2)}+ {(z3, y), (y, z2)};

see Figure 17(a).

(ii). If (w1, w2) /∈ G, (w2, w1) ∈ G, then let

G′
1 = G1 − {(w1, z1)}+ {(w1, w2)},

G′
2 = G2 − {(x, y), (z3, w2), (w2, w1)}

+ {(z3, y), (x, z1), (z1, w1)};

see Figure 17(b).

(iii). If (w1, w2) ∈ G, (w2, w1) /∈ G, then let

G′
1 = G1 − {(w1, z1)}+ {(w1, w2)},

G′
2 = G2 − {(x, y), (w1, w2), (w2, z2)}

+ {(x, z2), (w1, z1), (z1, x)};

see Figure 17(c).

Therefore, (w1, w2) ∈ G, (w2, w1) ∈ G.

Claim 7. ∆ ≥ 3.

Proof. Note that ∆ ≥ 2 since d+x + d−x − d0x ≥ d+x ≥ 2.
If ∆ = 2, then NG(x) = {y} and NG(y) = {x}. Thus
NG(I) ⊂ {x, y}. But x, y /∈ NG(I) by the definition of I.
Therefore, NG(I) = ∅, and hence d+v = d−v = 0 for every
v ∈ I = V − {x, y}. It then follows that δ = ∆ = 2 and
n = 2. A direct calculation shows that condition (3) is
violated. Therefore, ∆ ≥ 3.
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x y

w1 w2

z1 z2 z3

×

× × ×

(a) (w1, w2), (w2, w1) /∈ G.

x y

w1 w2

z1 z2 z3

×

×

× ×

(b) (w1, w2) /∈ G, (w2, w1) ∈ G.

xy

w1 w2

z1 z2z3

×

×

× ×

(c) (w1, w2) ∈ G, (w2, w1) /∈ G.

Figure 17: Proof of Claim 6 of Appendix A. The number
of shared edges is reduced by rewiring the edges marked by
red crosses into the dashed green edges, where w1 ∈ W 1

and w2 ∈ W 2. Each undirected edge represents a pair of
reciprocal edges.

Now consider the cut (I, Ic). Let W 0 = W 1 ∪W 2. Let
w0 = |W 0|, w+ = |W+|, w− = |W−|. We will count the
number of edges across the cut in a special way. An edge
from G2 in either direction is counted as one edge, while
a pair of reciprocal edges from G1 is counted as one edge.
Note that the number of edges across the cut is bounded by

E(I, Ic) ≥ δ|I| = δ(n− |Ic|),

since each vertex in I contributes at least δ edges. Note that
|NG(x)| ≤ ∆− 1 and |NG(y)| ≤ ∆− 1, since the edge (x, y)
has multiplicity 2. Since W 0 ⊂ NG(x) ∩NG(y),

|Ic| = |NG(x) ∪NG(y)|
= |NG(x)|+ |NG(y)| − |NG(x) ∩NG(y)|
≤ 2∆− 2− w0,

and hence

E(I, Ic) ≥ δ(n− 2∆ + 2 + w0).

On the other hand, each vertex in W 0 must connect to
x, y and every other vertex in W 0, and hence contributes at
most ∆−1−w0 edges to E(I, Ic). Each vertex in W+ must
connect to x and every vertex in W−, and hence contributes
at most ∆−1−w− edges to E(I, Ic). Similarly, every vertex
in W− contributes at most ∆ − 1 − w+ edges to E(I, Ic).
Therefore,

E(I, Ic) ≤ w0(∆−1−w0)+w+(∆−1−w−)+w−(∆−1−w+).

Combining the two inequalities for E(I, Ic), we obtain

f(w0, w+, w−) ≥ δ(n− 2∆ + 2),

where

f(w0, w+, w−) = w0(∆− δ − 1− w0) + w+(∆− 1− w−)

+ w−(∆− 1− w+).

Note that w0+w+ ≤ |NG(x)−{y}| ≤ ∆−2. Similarly w0+
w− ≤ ∆ − 2. If we maximize f subject to these feasibility
constraints, the inequality should still hold.

Claim 8. The maximum value of f(w0, w+, w−) subject
to the following constraints

w0 + w+ ≤ ∆− 2,

w0 + w− ≤ ∆− 2,

w0, w+, w− ≥ 0,

is f⋆ = (∆− 2)(∆− 1).

Proof. Note that f⋆ is achieved by w0 = w− = 0 and
w+ = ∆ − 2. Thus it remains to show that f ≤ f⋆ for all
feasible (w0, w+, w−). For fixed w0 and w+, f is linear in
w−, where w− ∈ [0,∆−2−w0]. Thus in order to maximize f ,
we only need to consider w− ∈ {0,∆−2−w0}. By the same
argument, we only need to consider w+ ∈ {0,∆ − 2 − w0}.
Since f is symmetric in w+ and w−, we only need to consider
three cases.

(i). w+ = w− = 0. In this case, 0 ≤ w0 ≤ ∆− 2, and

f(w0, 0, 0) = w0(∆−δ−1−w0) ≤ (∆−2)(∆−δ−1) < f⋆.

(ii). w− = 0 and w+ = ∆− 2− w0. In this case,

f(w0, w+, 0)

= w0(∆− δ − 1− w0) + (∆− 2− w0)(∆− 1)

= f⋆ − w0(w0 + δ) ≤ f⋆.

(iii). w+ = w− = ∆− 2− w0. In this case,

f(w0, w+, w−)

= w0(∆− δ − 1− w0) + 2(∆− 2− w0)(w0 + 1)

= w0(3∆− δ − 7− 3w0) + 2(∆− 2)

≤ w0(3∆− 8− 3w0) + 2(∆− 2).

If ∆ = 3, then w0 ∈ {0, 1} and

f(w0, w+, w−) ≤ w0(1− 3w0) + 2 ≤ 2 = f⋆.

If ∆ ≥ 4, set w0 = (3∆− 8)/6 and

f(w0, w+, w−) ≤ 1

12
(3∆− 8)2 + 2(∆− 2).
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Thus

f⋆ − f ≥ (∆− 1)(∆− 2)− 1

12
(3∆− 8)2 − 2(∆− 2)

=
1

4
∆(∆− 4) +

2

3
≥ 0.

Therefore, f ≤ f⋆ for all feasible (w0, w+, w−), which com-
pletes the proof.

Now we have

(∆− 1)(∆− 2) = f⋆ ≥ δ(n− 2∆ + 2),

and hence

∆ ≥

√
δn+

(
δ − 1

2

)2

+
3

2
− δ.

which violates condition (3). Therefore, G1 ∩ G2 = ∅ as
desired.

B. PROOF OF LEMMA 2
LetG(i) and S(i) be the digraphG and the set S before the

i-th iteration of the while loop of lines 2–10 of Algorithm 1.

Given a vertex v, let Π
(i)
v be the set of 3-paths in G(i) that

starts at v, and Π̃
(i)
v ⊂ Π

(i)
v the set of non-Type IV 3-paths.

We first prove the following: If Π̃
(i)
v ̸= ∅, then v ∈ S(i). This

trivially holds for i = 1 since S(1) = V . Assume it holds for
the i-th iteration. Consider the (i + 1)-st iteration. Let w0

be such that Π̃
(i+1)
w0 ̸= ∅. Let v0 the node picked on line 3 of

the i-th iteration. Consider two cases.

(1). The condition on line 4 is false. In this case, G(i+1) =

G(i) and hence Π̃
(i)
w0 = Π̃

(i+1)
w0 ̸= ∅. Thus w0 ̸= v0,

and, by the induction hypothesis, w0 ∈ S(i). By line 8,
S(i+1) = S(i) − {v0}, so w0 ∈ S(i+1).

(2). The condition on line 4 is true. Let π = (v0, v1, v2, v3)

be the 3-path rewired in the i-th iteration. Since S(i+1) =
S(i) ∪{v1, v2} by line 6, by the induction hypothesis, it

suffices to show that Π
(i)
w0 ̸= ∅ for w0 /∈ {v0, v1, v2, v3}.

Assume w0 /∈ {v0, v1, v2, v3}. If π is of Type III, then

G
(i+1)
a ⊂ G

(i)
a and hence ∅ ≠ Π̃

(i+1)
w0 ⊂ Π̃

(i)
w0 . Now sup-

pose π is of Type I or II. Pick π1 = (w0, w1, w2, w3) ∈
Π̃

(i+1)
w0 . Note that the only edge in G

(i+1)
a \ G(i)

a is

(v0, v3). Since (w0, w3) /∈ G
(i+1)
a and w0 ̸= v0, we ob-

tain (w0, w3) /∈ G
(i)
a . If π1 ∈ Π

(i)
w0 , then π1 ∈ Π̃

(i)
w0 . If

π1 /∈ Π
(i)
w0 , then either (w1, w2) or (w2, w3) must be

the newly added edge (v0, v3). Suppose (w1, w2) =

(v0, v3). Then π2 = (w0, w1 = v0, v1, v2) ∈ Π
(i)
w0 . If

(w0, v2) /∈ G
(i)
a , then π2 ∈ Π̃

(i)
w0 . If (w0, v2) ∈ G

(i)
a , then

π3 = (w0, v2, v3 = w2, w3) ∈ Π
(i)
w0 . Since (w0, w3) /∈

G
(i)
a , π3 ∈ Π̃

(i)
w0 . Thus Π̃

(i)
w0 ̸= ∅ if (w1, w2) = (v0, v3).

The same argument shows that Π̃
(i)
w0 ̸= ∅ if (w2, w3) =

(v0, v3). Therefore, Π̃
(i)
w0 ̸= ∅ for all cases.

Therefore, Π̃
(i)
v ̸= ∅, then v ∈ S(i). When Algorithm 1

terminates, S = ∅, so there is no non-Type IV 3-paths. Now
it remains to show that Algorithm 1 indeed terminates. For
this purpose, let Xi = |S(i+1)| − |S(i)|. Let Yi = 1 if if
the i-th iteration rewires some 3-path and Yi = 0 otherwise.

Note that if Yi = 1, 0 ≤ Xi ≤ 2 and |G(i+1)
a | ≤ |G(i)

a | − 2;

otherwise, Xi = −1 and |G(i+1)
a | = |G(i)

a |. After the i-th
iteration,

0 ≤ |G(i+1)
a | ≤ |G(1)

a | − 2

i∑
j=1

Yj ,

and hence 2
∑i

j=1 Yj ≤ |G(1)
a | ≤ |E|. Thus

|S(i+1)| = |S(1)|+
i∑

j=1

Xj

≤ |V |+ 2
i∑

j=1

Yj −
i∑

j=1

(1− Yi)

= |V | − i+ 3

i∑
j=1

Yj

≤ |V |+ 3

2
|E| − i.

It follows that Algorithm 1 terminates in at most |V |+ 3
2
|E|

iterations.

C. PROOF OF LEMMA 8
We break the proof into several claims.

Claim 1. (E0 ∪ E1) ∩G⋆
a = ∅.

Proof. For k < ℓ, let π[vk, vℓ] be the sub-path of π from
vk to vℓ. Suppose there exists (vi, vj) ∈ (E0 ∪ E1) ∩ G⋆

a.
Note that i ≡ j mod 2. If i < j, then π[v0, vi] + (vi, vj) +
π[vj , v2p] is a path of odd length 2p+1+i−j, which requires
(v0, v2p) ∈ G⋆

a by Lemma 3, a contradiction. If i > j, then
π[vj , vi]+(vi, vj) is a cycle in G⋆

a. By Lemma 4, this must be
a 3-cycle and i = j+2. By symmetry, we can assume j ≥ 1.
Lemma 5 applied to vj−1 and the 3-cycle (vj , vj+1, vi, vj)
then requires (vj−1, vj+1) ∈ G⋆

a, which we have just shown
is impossible. Therefore, (E0 ∪ E1) ∩G⋆

a = ∅.

By virtue of Claim 1, a pair of edges (vi, vj) and (vj , vi)
of E0 ∪ E1 are either both in G⋆ or both outside G⋆. Thus
we only need to consider (vi, vj) ∈ E0 ∪ E1 for i < j.

Claim 2. Either (v0, v2p) ∈ G⋆ or (v1, v2p−1) ∈ G⋆.

Proof. Assume the contrary. By Claim 1, (v0, v2p) /∈ G⋆
u

and (v1, v2p−1) /∈ G⋆
u. LetH = G⋆−{(v0, v1), (v2p−1, v2p)}+

{(v0, v2p), (v2p−1, v1)}. Then ρ(H) = ρ(G⋆) and hence H is
also a maximum digraph. Now π[v1, v2p−1] + (v2p−1, v1) is
a (2p− 1)-cycle in Ha. If p > 2, this contradicts Lemma 4.
If p = 2, this contradicts Lemma 5 since (v0, v1) /∈ Ha but
(v0, v2p−1) ∈ Ha by applying Lemma 3 to π[v0, v2p−1].

Claim 3. If (v0, v2p) ∈ G⋆, then G⋆ ∩ E1 = ∅ and E0 ⊂
G⋆.

Proof. Suppose (v2i−1, v2j−1) ∈ G⋆, where j > i ≥
1. Note that (v2i−1, v2p) ∈ G⋆

a by Lemma 3. Then C =
π[v0, v2j−1] + (v2j−1, v2i−1, v2p, v0) satisfies the assumption
of Lemma 6. Thus there exists an H ∈ G(d+,d−) with
ρ(H) = ρ(G⋆) + 2(j − 1) > ρ(G), a contradiction. There-
fore, (v2i−1, v2j−1) /∈ G⋆ and hence E1 ∩G⋆ = ∅.

Suppose (v2i, v2j) /∈ G⋆, where i < j. Since (v0, v2p) ∈ G⋆,
either i ≥ 1 or j ≤ p − 1. By symmetry, we may assume
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(a) p = 3, i = 1, j = 2.
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(b) p = 2, i = 0, j = 1.

Figure 18: Proof of Claim 3 of Appendix C. Reciprocity can
be increased by rewiring the edges marked by red crosses into
the dashed green edges.

0 1 2 3 4× ×
×

Figure 19: Proof of Claim 4 of Appendix C. Reciprocity can
be increased by rewiring the edges marked by red crosses into
the dashed green edges.

that j ≤ p− 1. Let

H = G⋆ − {(v2k−1, v2k)}i/2k=1 − {(v2k, v2k+1)}p−1
k=j/2

− {(v2p, v0)}+ {(v2k−1, v2k−2)}i/2k=1

+ {(v2k, v2k−1)}pk=j/2+1 + {(v2j , v2i)};

see Figures 18. Then H ∈ G(d+,d−) and ρ(H) = ρ(G⋆) +
2i+2(p−1−j) ≥ ρ(G⋆). ThusH is also a maximum digraph,
i = 0 and j = p − 1. Now (v0, v1, . . . , v2j , v0) is a cycle of
length 2j + 1 = 2p− 1 in Ha. This contradicts Lemma 4 if
p > 2. For p = 2, by applying Lemma 5 to v3 and the 3-
cycle (v0, v1, v2, v0), we obtain (v1, v3) ∈ Ha, contradicting
E1 ∩ G⋆ = ∅; see Figure 18(b). Therefore, (v2i, v2j) ∈ G⋆

and hence E0 ⊂ G⋆.

Claim 4. If (v1, v2p−1) ∈ G⋆, then G⋆ ∩ E0 = ∅ and
E1 ⊂ G⋆.

Proof. First consider the case p ≥ 3. Claim 3 applied to
π[v1, v2p−1] yields E1 ⊂ G⋆ and (v2i, v2j) /∈ G⋆ for i ≥ 1
and j ≤ p − 1. It remains to show (v2i, v2j) /∈ G⋆ for
i = 0 or j = p. By symmetry, we only need to show
(v0, v2j) /∈ G⋆. Suppose (v0, v2j) ∈ G⋆. Consider the cycle
C = (v0, v3) + π[v3, v2p−1] + (v2p−1, v1, v2j , v0), which has
length 2p and satisfies the assumption of Lemma 6. Note
that C ∩G⋆

s = {(v2p−1, v1), (v2j , v0)}. Lemma 6 then yields
an H ∈ G(d+,d−) with ρ(H) = ρ(G⋆) + 2p − 4 > ρ(G⋆), a
contradiction. Thus (v0, v2j) /∈ G⋆ and E0 ∩G⋆ = ∅.

For p = 2, E1 ⊂ G⋆ trivially. By Claim 3, (v0, v4) /∈ G⋆.
To show E0 ∩ G⋆ = ∅, by symmetry, we only need to show
(v0, v2) /∈ G⋆. Suppose (v0, v2) ∈ G⋆. Let

H = G⋆ − {(v0, v1), (v2, v0), (v3, v4)}
+ {(v3, v0), (v0, v4), (v2, v1)};

see Figure 19. Then H ∈ G(d+,d−) and ρ(H) = ρ(G) + 1,
a contradiction. Thus (v0, v2) /∈ G⋆ and E0 ∩G⋆ = ∅.
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D. DATASETS IN SECTION 5

Table 1: Statistics of some real networks. The datasets without explicit citations are from the SNAP repository [13]. This
table shows for each network the number of nodes (column 2), the number of edges (column 3), the number of reciprocal edges
(column 4), the number of reciprocal edges in a 3-path optimal digraph returned by the GreedyRewire algorithm on page 6
(column 5), and the upper bound in Proposition 1 (column 6).

Network Nodes Edges Reciprocal Edges

Observed GreedyRewire Bound

Biological networks

C. Elegan [20, 21] 297 2345 394 1364 1467
Mouse-Cortex [27] 49 964 656 804 825
Protein [19] 6339 34814 4216 22066 23630
Yeast [18] 6725 201775 1090 6446 8835
A. Thaliana [23] 10134 15580 12 40 77

Communication networks

email-EuAll 265214 418956 108950 128192 143287
wiki-Talk 2394385 5021410 723690 1219196 1285201

Product co-purchasing networks

amazon0302 262111 1234877 670170 801530 858907
amazon0312 400727 3200440 1701142 1945350 2079813
amazon0505 410236 3356824 1834774 2092700 2227333
amazon0601 403394 3387388 1887960 2130012 2266214

Social networks

Epinions1 75879 508837 206194 299778 317821
Slashdot0811 77360 828161 717962 731044 737201
Slashdot0902 82168 870161 731862 749436 758751
Pokec 1632803 30622564 16641200 21997368 22813049
wiki-Vote 7115 103689 5854 31126 35989
LiveJournal1 4847571 68475391 51248308 55619590 56984610
LiveJournal [15] 5204176 76937805 56456064 61806458 63451685
Flickr [15] 1715255 22613980 14117878 16401174 16998181
YouTube [15] 1138499 4945382 3909878 3996410 4086949
Twitter [12] 41652230 1468364884 531703676 690897836 875520298
ego-Twitter 81306 1768135 851678 1112236 1179627
Google+ [8] 61858438 948605109 321728626 414578876 443168800
ego-Google+ 107614 13673453 2870336 4954418 5481158
Stackoverflow [24] 1749197 11894846 26558 2445802 2965936

Web graphs

BerkStan 685230 7600595 1902250 2257148 2913141
Google 875713 5105039 1565976 2106234 2460500
NotreDame 325729 1469679 759142 821340 907239
Stanford 281903 2312497 639722 770266 983414

Wikipedia [1]

English 4709883 328267748 176523698 215049808 227103696
Swedish 1946669 49061638 10296750 12792974 13689733
Dutch 1794354 50061183 19993040 23471168 25078755
German 1738087 69385800 28079234 38594032 41799602
French 1555872 87231786 38347858 49859546 53102549
Russian 1163335 68613850 35807558 42472180 44437671
Italian 1160082 85261756 48584200 55921822 58593672
Spanish 1109589 32489175 4927794 10429430 11654906
Polish 1072883 51993365 28351902 32917546 34433059
Japanese 936882 61591797 26512542 36239836 38326442
Portuguese 841064 39840808 19062374 23016802 24224634
Chinese 781344 49703600 31848356 36082340 37248389
Korean 290291 15595628 9318976 10859386 11281173

16



Table 1: (continued)

Network Nodes Edges Reciprocal Edges

Observed GreedyRewire Bound

P2P networks

Gnutella04 10876 39994 0 13878 16371
Gnutella05 8846 31839 0 9584 11830
Gnutella06 8717 31525 0 9606 11825
Gnutella08 6301 20777 0 5604 6947
Gnutella09 8114 26013 0 7064 8822
Gnutella24 26518 65369 0 19142 23920
Gnutella25 22687 54705 0 15292 19016
Gnutella30 36682 88328 0 25386 31236
Gnutella31 62586 147892 0 40564 50227

Call Graph [17]

DrJava 1702 2920 4 778 1056
Endeavour 724 2067 2 358 519
FreeMind 237 623 18 140 217
JabRef 868 1532 2 340 523
jEdit 2222 5172 10 1286 1793
JForum 716 1506 2 248 364
JPetStore 222 328 0 30 42
Kunagi 781 1345 6 348 599
logicaldoc 892 3682 0 194 304
Makagiga 1777 4075 8 1106 1440
OpenKM 1390 2525 0 384 491
openproj 2824 4866 2 1428 1823
OpenSyncro 658 1271 2 216 327
SweetHome3D 1118 2363 12 558 844
weka 911 1737 2 392 581
Linux [22] 12391 33553 316 7982 10933
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