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ABSTRACT
Data centers are an indispensable part of today’s IT infrastructure.
To keep pace with modern computing needs, data centers continue
to grow in scale and consume increasing amounts of power. While
prior work on data centers has led to significant improvements in
their energy-efficiency, detailed measurements from these facili-
ties’ operations are not widely available, as data center design is
often considered part of a company’s competitive advantage. How-
ever, such detailed measurements are critical to the research com-
munity in motivating and evaluating new energy-efficiency opti-
mizations. In this paper, we present a detailed analysis of a state-
of-the-art 15MW green multi-tenant data center that incorporates
many of the technological advances used in commercial data cen-
ters. We analyze the computing load of the data center and its im-
pact of power, water and carbon usage using standard efficiency
metrics, including PUE, WUE, and CUE. Our results reveal the
benefits of optimizations such as free cooling and provide insights
into how the various efficiency metrics change with seasons and in-
creasing capacity usage. More broadly, our PUE, WUE and CUE
analysis validate the green design of this LEED Platinum data cen-
ter.

1. INTRODUCTION
Data centers form the backbone of our increasingly IT-driven econ-
omy, and are commonly used by enterprises to run their IT infras-
tructure. In recent years, the number and scale of data centers has
grown rapidly. While small data centers may host a few thousand
servers, the largest ones now host hundreds of thousands of servers.
The energy consumed by these servers and their associated IT and
network infrastructure is significant—globally, recent estimates at-
tribute 2% of U.S. electricity consumption to data centers [12]. The
largest data centers now consume over 100MW and incur monthly
energy bills in the millions of dollars [8].

Thus, improving data center energy-efficiency has emerged as both
an important academic research topic, as well as a pressing indus-
try need. Over the past fifteen years, there has been much work on
improving the energy-efficiency of the servers housed in data cen-
ters, e.g.,[6, 3, 19, 4]. More recently, researchers have focused on

optimizing the efficiency of data center cooling systems, e.g., by us-
ing free cooling from the outside air with air-side economizers [9,
13], since cooling servers consumes a significant fraction of data
center energy. Collectively, these advances have led to a steady
decrease in the Power Usage Efficiency (PUE) metric commonly
used to quantify data center energy-efficiency. Recent studies show
that older enterprise data centers have PUEs of 1.7 or higher [20],
while newer data centers that incorporate energy optimizations for
servers and their cooling infrastructure have PUEs near 1.1 [10].

While industry groups and companies, including Google, Mi-
crosoft, Facebook, Amazon, and Apple, have published average
PUE values across their data centers, detailed energy measurements
are not widely available. For example, the published PUE values
are typically averages across many data centers over a long period,
e.g., the past year, and do not break it down spatially, temporally,
or across subsystems. Facebook has taken strides to increase ac-
cess to such data through its OpenCompute project, which includes
both hardware and facility designs for its data centers as well as a
public dashboard showing their real-time PUE and Water Usage Ef-
fectiveness (WUE) [14] (although without a detailed breakdown).
However, detailed access to such data can enable important insights
into data center operations that motivate new research directions.
Unfortunately, detailed data on internal data center operations is
typically kept confidential, since most companies view data center
design as a competitive advantage. Thus, only the few researchers
at each company with access to the data are able to identify the
real problems that affect the energy-efficiency of data center oper-
ations. Our goal is, in part, to democratize research in data cen-
ter energy-efficiency to enable a much broader set of researchers
to make contributions in this area. To do so, this paper presents
and analyzes detailed energy measurements from a state-of-the-art
15MW multi-tenant (“colo”) university data center.

While our measurements, analysis, and insights should prove use-
ful to systems researchers, our study is particularly interesting
since our data center—the Massachusetts Green High Performance
Computing Center (MGHPCC)—is specifically designed to be a
“green” facility, and thus incorporates many of same technologi-
cal advances employed by recent state-of-the-art commercial data
centers. The facility uses renewable cooling and renewable hydro-
electric power, and is one of only 13 data centers in the country
(and the only university data center) to receive a LEED Platinum
rating. The data center is jointly owned and operating by a consor-
tium of universities in Massachusetts, including UMass, MIT, Har-
vard, Boston University, and Northeastern. The data center, which
opened in November 2012, is primarily used for research-oriented
computing with batch workloads; each university in the consortium
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Figure 1: Physical layout of the MGHPCC.

is a tenant, which allocates its reserved space with the data center
as its own colo facility to house compute clusters owned by various
research groups on each campus.

In this paper, we analyze detailed facility-level data, e.g., of energy
and water use, from the second year of the MGHPCC’s operation.
In doing so, we aim to address the following questions.

• Since the data center’s workload is primarily batch-oriented,
how much do the time-of-day and season effects influence the
workload’s intensity? What are the implications for many pre-
viously proposed energy-efficiency optimizations, which often
focus on exploiting these effects?

• What is the facility’s overall PUE and what is the contribu-
tion/overhead from each subsystem?

• How does the PUE vary over time and how is it affected by
changing weather and the seasons?

• How does the PUE vary spatially across tenants and clusters
and what is the cause?

• What is the Water Usage Efficiency (WUE) of the facility?
• Given its use of renewable energy sources, what is the Carbon

Usage Efficiency (CUE) of the facility?

Unlike prior work on improving data center energy efficiency, we
focus on detailed measurements and analysis of data from the fa-
cility itself, rather than from individual servers or clusters. While
direct access to such data has largely been restricted to facility man-
agers, it is important in developing energy optimizations for multi-
tenant data centers. While data centers controlled by a single entity
have access to the underlying servers and network infrastructure
and are able to implement many previously proposed cluster-level
energy optimizations, multi-tenant data centers do not. Thus, these
data centers must apply optimizations at the facility-level, similar
to how a multi-tenant commercial building generally cannot control
the energy usage of its tenants. As a result, facility-level energy op-
timizations for data centers have more in common with building
energy-efficiency optimizations than the server-centric optimiza-
tions that have largely been the focus of prior work. In answering
the questions above, this paper makes the following contributions.

Detailed Design Overview and Data Collection. In Section 2,
we describe details of the design and operation of a medium-sized
data center facility, as well the instrumentation available for facil-
ity data collection. The design applies many of the advanced tech-
niques used in recent state-of-the-art commercial data centers. We
gather and analyze data from over 900 sensors in the facility to both
better understand its operation, and provide a baseline for other re-

searchers studying the efficiency of data centers at the facility level.
Temporal and Spatial PUE Analysis. In Section 3, we then ana-
lyze both the temporal and spatial PUE of the data center over the
past year. To estimate per-tenant spatial PUE, we develop a model
for partitioning the energy usage of the data center’s centralized
cooling system across different pods of racks based on their load.
CUE and WUE Analysis. Based on our data, we also analyze the
Water Usage Efficiency (WUE) in Section 4 and the Carbon Usage
Efficiency (CUE) in Section 5. Our results indicate that, even at
only 10% capacity utilization, the data center’s WUE is better than
published numbers for an average data center, while its CUE is near
the published CUEs of the best commercial data centers.

2. BACKGROUND AND GREEN DESIGN
In this section, we present general background on the MGHPCC,
including the design of its power and cooling infrastructure.

Overview. Our study focuses on the Massachusetts Green High
Performance Computing Center (MGHPCC), a green data center
built by a consortium of universities in Massachusetts for research
computing. The data center is located in Holyoke, Massachusetts.
The location was chosen based on the availability of abundant and
cheap renewable hydroelectric power in Holyoke, the proximity to
fibre-optic network backbones, and inexpensive real-estate. Mas-
sachusetts has a relatively cool climate with mean summer and
winter temperatures of 27 ◦F and 74 ◦F, respectively, although sum-
mers months can be hot and humid; this cool climate enables the
facility to employ renewable cooling costs, as explained later.

The data center became operational in November 2012 at the loca-
tion of a former industrial mill site. The facility has 90,000 square
feet of computing space and is provisioned for a 15MW peak load.
The present utilization of the data center is less than 10% of its
peak load, with an approximate compute load of 1MW and a non-
compute load of 0.3 MW. As we discuss later, the compute load
is steadily ramping up over time as new colo clusters are installed,
and is expected to reach full capacity in a few years.

The data center is jointly operated by the university consortium and
is structured as a multi-tenant facility with space pre-allocated to
each member university. Each university uses its space to co-locate
compute clusters owned by various research groups and units on
their campus. The multi-tenant colo data center houses a growing
number of clusters for research computing with workloads that are
primarily batch-oriented with different clusters running scientific
batch jobs of various flavors.

Green Design The MGHPCC was designed as a green facility, and
was the first university data center to achieve a LEED Platinum



Figure 2: The MGHPCC’s cooling infrastructure leverages free
evaporative cooling and backup chillers.

rating. As noted earlier, the facility is largely powered using re-
newable hydroelectric power, and employs a number of modern
techniques to increase its energy-efficiency and minimize its power
usage, as discussed below. For example, the data center employs
hot aisle containment and uses renewable free cooling from outside
air whenever possible to reduce its cooling-related energy usage.
Finally, the facility employed a number of sustainable practices
during the construction process and continues to do so during its
operations (described in more detail here [1]).

Physical Layout Figure 1 depicts the physical layout of the data
center. As shown in Figure 1(a), the data center comprises of two
levels. The lower level contains the main power infrastructure, in-
cluding a utility sub-station and flywheel-based UPS system, and
cooling infrastructure including chillers and water pumps. The up-
per level mainly contains racks for hosting the computing infras-
tructure. Evaporative cooling towers are housed on the roof of the
first floor, adjacent to the computer floor. The data center also in-
cludes backup diesel generators that provide power for a fraction of
the facility in case of a utility outage. The UPS system minds the
gap between an outage and the activation of the diesel generators to
prevent servers from losing power. Figure 1(b) shows the layout of
the computer floor. There are five main aisles of racks, one for each
tenant. A sixth aisle is the “networking aisle” and houses network-
ing equipment to connect each tenant’s computing infrastructure to
the incoming fibre optic lines. Each tenant’s aisle has three groups
of racks, each referred to as a pod. Racks in each pod are designed
for hot aisle containment as shown in Figure 1(c).

Power Infrastructure. The power infrastructure for the data cen-
ter resembles a small-scale distribution network in the electric grid.
The infrastructure comprises of substations, feeders, transformers
and switchboards that feed power to the the computing and cooling
infrastructure. Electricity enters the facility at 13.8kV where it is
distributed from the main switchboard, transformed to 230V before
entering the switchboards at the lowest levels, and is finally deliv-
ered to the busplugs that feed the power distribution units (PDUs)
in each server rack.

Since power conversion losses can be a key source of higher PUEs
in data centers, the data center uses a number of techniques to re-
duce such losses. First, the facility uses high voltage, and low cur-
rent, to deliver power, which reduces losses due to power conver-
sion and heat generation. Higher distribution voltages also make it
possible to eliminate an entire tier of transformers from the distribu-
tion network, further reducing transformer losses. Second, energy
losses due to the UPS system are another source of higher PUEs.

Since the data center houses research computing infrastructure, not
all of which is “mission critical”, only a fraction (roughly 20%) of
each tenant’s racks are backed up by the centralized UPS system.
The tenants are then able to choose how to partition their compute

infrastructure between UPS and non-UPS racks. The remaining
racks are not connected to the centralized UPS system, which nat-
urally avoids UPS losses for the 80% of the racks in the data cen-
ter. Third, in many data centers, the UPS system for UPS-backed
racks normally operates in a double conversion mode, which in-
curs losses in both directions when converting from AC to DC and
from DC to AC. Double conversion is often useful in providing
consistent high-quality AC power, e.g., a tight 60Hz sine wave, for
mission-critical applications, e.g., by using the UPS system to con-
dition it. For the MGHPCC, most workloads at the MGHPCC are
not mission-critical and the hydroelectric power offered by the lo-
cal utility is already high-quality. Thus, UPS systems in the MGH-
PCC are configured to operate in direct mode, where power is fed
directly to racks, rather than through the UPS, and there is a near
instantaneous transfer (within tens of milliseconds) to UPS systems
when a power failure is detected.

Finally, the facility’s UPS system stores energy kinetically in spin-
ning flywheels, which is more environmentally-friendly than stor-
ing energy chemically in batteries that often contain harmful chem-
icals, such as lead in lead-acid batteries. The data center is pro-
visioned for 18 seconds of UPS power in case of an outage, and
standby diesel generators take over within this time period.

Cooling Infrastructure. Traditionally data centers have used
chillers to cool the servers in the facility. However, chillers con-
sume a significant amount of energy and their use is a key contribu-
tor to high data center PUEs. Thus, modern data centers have begun
using alternative technologies to cool their servers and lower their
PUEs. The MGHPCC leverages “free cooling” (also known as “re-
newable cooling") to cool servers. Specifically the data center uses
evaporative cooling technology that essentially uses the outside air
to cool servers. Figure 2 depicts the two cooling water loops used
in the data center.

The water in the outer loop is cooled using evaporative cooling
towers whenever the temperature of the outside air permits it. The
inner water loop circulates water through the computer room racks.
The water loop is used to extract heat from the hot air ejected by
the server, which cools the air. The hot water in the inner loop
is then sent to the heat exchanger, where the heat from this water
is exchanged with the cold water in the outer water loop. Doing
so, transfers the heat from the servers to the outer loop, cooling
the water in the inner loop, which is sent back to the computer
racks. The hot water in the outer loop is sent to the evaporative
cooling tower where it is cooled again using the outside air, through
evaporative means, and circulated back to the heat exchangers.

The cooler climate in Massachusetts permits the use of this free
cooling approach for over 70% of the year. Evaporative cooling
becomes less feasible or infeasible during the warmer, and more
humid, summer months. During these months, the data center falls
back on using chillers to cool water in the inner loop. A hybrid
mode is also possible where water is partly cooled using evap-
orative cooling and then cooled further using chillers (when the
weather permits part, but not full, free cooling).

Each tenant’s rack is configured to use hot aisle containment to pre-
vent hot and cold air from mixing together, which increases the ef-
ficiency of the cooling system by focusing cold air on servers. The
cold air in the inner water loop is circulated through in-row chillers
(IRCs), which are deployed adjacent to racks, to cool the hot air
extracted from the servers and produce cool air. The use of in-row



Dataset Description Resolution
Power All IT and non-IT power usage 20 second
Mechanical Cooling equipment usage 1 minute
Water Water usage Monthly
Weather Temperature, humidity 5 minute

Table 1: Description of our datasets.

chillers allows for a close coupling of the cooling with the comput-
ing heat load—the controls of the in-row chillers actively adjust fan
speeds and chilled water flow to closely match the computing heat
load on nearby racks, thereby enhancing efficiency.

Finally, the data center maintains the computer floor temperature
at 80◦F, which is a higher temperature than traditional data cen-
ters; doing so, reduces the amount of cooling required, which in
turn improves cooling efficiency without impacting the reliability
of modern server hardware.

Compute Infrastructure. As noted earlier, the data center is a
multi-tenant facility, with each university tenant treating its allo-
cated racks as a co-location facility to house research computing
clusters from on-campus groups. Thus, the data center does not
own, or exercise direct control, over the type of servers deployed
at the facility. Consequently, all energy optimizations “stop” at the
rack and the data center cannot mandate the use of any specific
server model, e.g., unlike Facebook or Google that deploy energy-
optimized severs that may be DC powered, use power supplies op-
timized for their load levels, or employ local on-board batteries
rather than a centralized UPS system.

The data center is provisioned for a peak load of 15MW. In its sec-
ond year of operation, the data center is still operating at less than
10% of its maximum load (or roughly a 1MW compute load). The
compute load has been increasing steadily as new clusters are de-
ployed by each tenant. one consequence of the low capacity utiliza-
tion is that the current PUE of the facility is higher than it would be
at full utilization, largely because the cooling infrastructure is sized
for a much higher load and is less efficient at lower loads (since it
is not energy proportional).

Monitoring Infrastructure. The data center is highly instru-
mented to monitor all aspects of its operation and has several thou-
sand points of instrumentation that provide real-time data on power,
cooling, and water usage within the facility. Note that this facility-
level data is separate from the type of data monitored at the level of
individual servers and clusters; facility-level data is monitored by
the data center staff, while the server and cluster-level data is ac-
cessible only to tenants (who own the compute infrastructure), and
not to the facility staff.

Table 1 depicts the various datasets that we have gathered from
the facility and form the basis of our study in this paper. At the
facility level, the power distribution infrastructure is monitored by
over 900 networked electric meters that monitor power usage at
different levels of the distribution network at 20 second granularity.
These meters monitor the average power usage of individual racks,
as well as the aggregate usage at higher levels of power distribution
hierarchy. There are also separate meters to monitor the power
usage of the cooling infrastructure, including its associated pumps,
chillers, and in-row chillers.

The facility’s mechanical systems, which are primarily associated
with the cooling infrastructure, are also monitored by a conven-
tional building management system. The available data includes

Figure 3: Average monthly temperature at the data center.

water pump flow levels at various points in the water loops, as
well as data from in-row chillers, such as fan speed, water inlet
and outlet temperature, and water flow data. This data is generally
recorded and available at a one-minute granularity. The tempera-
ture and humidity of the computer room floor is extensively mon-
itored using sensors that are deployed on the hot and cold sides of
each rack. The outside weather data is monitored using a weather
station (we also use data from Weather Underground), and the fa-
cility’s overall water usage is recorded by a water meter.

Datasets: We use the datasets in Table 1 gathered over a 12 month
period from May 2014 to April 2015, which roughly corresponds
to the second year of the data center’s operation. As shown in the
table, we use four different datasets in our analysis. The power data
is gathered from the 900 electric meters deployed within the power
distribution system. This data is gathered at 20 second resolu-
tion and includes the average power usage data of individual racks,
UPS-backed rack usage, aggregate in-row chiller power usage, and
the power usage of the cooling infrastructure such as chillers and
water pumps.1 The mechanical data comprises primarily data from
in-row chillers, which includes fan speed, water flow speed, as well
water inlet and outlet temperature. Our water usage data includes
the monthly water usage of the facility. Finally, weather data con-
sists of outside temperature and humidity at the facility over the
year (see Figure 3). Inside temperature data monitored at hot and
cold side of individual racks is also available, but not directly used
in our analysis.

3. PUE ANALYSIS
In this section, we analyze in detail the power usage of the MGH-
PCC. We first analyze the IT load, e.g., of the server and network-
ing equipement, over different time scales to quantify its impact on
the facility’s PUE. We also analyze the various factors contributing
to the observed PUE, and consider the impact of seasons on PUE
to quantify the benefits of free cooling. In addition to analyzing
temporal PUE, we perform a spatial analysis to compute per-tenant
PUEs and analyze how the PUE various across tenants and why.

3.1 IT Load Analysis
Figure 4 depicts the IT power usage of the data center at the time
scale of months, a week and a day. The IT power usage is derived
by combining the electricity meter data for only those meters that
supply power directly to the computing and networking racks. Fig-
ure 4(a) depicts the mean monthly IT load from May 2014 to April
2015. As the figure shows, the IT load steadily rose over the one

1Some older power data is only available at an 8 hour resolution,
while all recent data is archived at 20s granularity.
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Figure 4: Variation in IT Power load at time scales of months, days and hours. The load has been increasing steadily over the course
of the year, but the batch-oriented load does not show any significant day-of-the-week or time-of-day effects.

year period, largely due to new colo compute clusters being com-
missioned at a steady rate by the various tenants. The figure also
shows that the mean IT load is less than 1MW, which is less than
10% of the peak provisioned power capacity. Thus, we expect the
increasing trend in IT load to continue for the foreseeable future.

As a research computing facility, the workload of the data cen-
ter is primarily batch-oriented. Hence, analyzing the IT load over
the time scales of a week and a day are instructive in determining
whether the workload exhibits the time-of-day and week-of-day ef-
fects that are common in commercial data centers that host inter-
active Internet workloads. Figure 4(b) depicts the mean daily IT
load for different days of the week for the month of April 2015,
while Figure 4(c) shows the load for different hours of the day. The
figures show that, unlike interactive workloads, the batch workload
of the data center does not show pronounced time-of-day or day-
of-the-week effects. As Figure 4(b) shows, there is only a very
modest rise in the load in the middle of the week, but no significant
weekday-weekend effects. Similarly, 4(c) shows that long-running
batch jobs or batch schedulers with a queue of jobs cause the com-
pute load to remain high across both the day and the night. While
there is a very small drop (∼2.5%) in load in the early hours of
the day (4am to 7am), possibly due to the completion of overnight
batch jobs, it does not yield any perceptible time-of-day effects.

Result: The explicit goal of many server- and cluster-level energy
optimizations is to exploit such time-of-day and day-of-week ef-
fects, e.g., by powering down servers when the workload drops to
make them more energy-proportional [4, 21]. Our data indicates
that these types of energy optimizations are not as applicable to the
MGHPCC, as it does not experience significant time-of-day and
day-of-week effects.

3.2 Temporal PUE Analysis
We next analyze the power usage efficiency (PUE) of the data cen-
ter over the course of the year. The PUE metric is computed as
ratio of the facility’s total power usage to the power usage of the
IT equipment, e.g., servers and switches. The total power usage is
monitored directly by a networked meter that measures the power
entering the facility from the grid, while the IT power usage is com-
puted as outlined in the previous section. Figure 5(a) depicts the
monthly PUE of the data center over the course of the year. The
figure shows that the PUE varies between 1.285 and 1.509 over
the year. We note that a mean PUE value of 1.377 is significantly
lower than the average PUE value of 1.7 (or higher) that is common
in enterprise data centers in the industry [20]. However, the value
is not as efficient as the PUEs near 1.1 reported by the newest (and

Figure 5: Temporal variations in the monthly PUE.

most efficient) data centers built by large Internet companies, such
as Facebook and Google [17, 10].

We analyze the key contributors to our PUE in more detail below.
However, we also note that the data center is presently operating
only at 10% capacity utilization, while its cooling infrastructure is
sized for full capacity utilization and is not energy proportional.
Hence, we believe the facility will achieve further reductions in
PUE as its IT load increases to full utilization. Thus, the PUE val-
ues we report here are conservative in that the facility’s design is
more efficient than its current PUE values indicate.

Second, the figure shows a reduction in the PUE from May 2014
to April 2015. This reduction can be attributed to two possible fac-
tors. First, since the IT power load has risen during this period, the
cooling infrastructure, which is not energy proportional, becomes
relatively more efficient with increased IT load, yielding a lower
PUE. Second, free cooling is feasible only during cooler months
of the year and the data center needs chillers to cool the facility
in warmer month. So the higher PUE in warmer months (May to
September) may be attributed to the use of chillers, and the PUE is
lower for the remaining months when free cooling is used.

Our analysis shows that the second factor dominates, since turning
off chillers yields a greater reduction in PUE than the increase in
IT power load during this period (since the total IT power load is
still at 10% of capacity, its impact on the PUE is much smaller).
Figure 6(a) confirms that chillers are used during the months of
May to September and that they consume a significant amount of
energy (thereby contributing to a higher PUE in those months). The
lack of chiller energy use in other months stems from the use of
free cooling during those months, yielding a lower PUE. This result
shows the PUE of the data center is 1.413 when chillers are in use



(a) Factors contributing to the PUE.

(b) Cooling factors contributing to the PUE

Figure 6: Various factors contributing to the PUE, including
cooling energy use and power losses.

and 1.301 when free cooling is used; in other words, PUE decreases
0.112 when not using chillers even at 10% capacity utilization.

Next, we analyze the non-IT load of the data center, which in turn
reveals the various factors contributing to the PUE. Conventional
wisdom has held that there are two main sources of overhead that
contribute to the non-IT power load: cooling infrastructure and
power distribution losses, including UPS losses. Figure 6 depicts
the power usage of various non-IT loads in the data center. As
the figure shows, roughly half of the non-compute load can be at-
tributed to cooling and other mechanical systems; a quarter can be
attributed to power losses; and another quarter can be attributed to
other factors, including measurement error. The measurement error
is only a few tens of kilowatts (of the multi-megawatt power usage),
but it is almost a quarter of the current non-IT load, since the over-
all capacity utilization is low. This error will become negligible
once the data center becomes fully utilized.

The cooling load, which is roughly half or more of the total non-
IT power load, comprises of (i) chillers, (ii) cooling tower (“outer
loop”) water pumps, (iii) chilled water (“inner loop”) water pumps,
(iv) air handlers, (v) in-row chillers, and (vi) miscellaneous cooling
equipment. As shown in Figure 6, chillers are the largest com-
ponent whenever they are operating in the warmer months. Thus,
eliminating the use of chillers by using free cooling yields a signif-

(a) Daily (b) Hourly

Figure 7: Daily and hourly variations in the data center PUE.

icant reduction in both cooling power usage and PUE. 2

The power losses consist of two key components: power distribu-
tion losses that occur when the incoming power flows through vari-
ous components of the data center’s distribution network, and UPS
losses that occur in all UPS systems. The data center has optimized
UPS losses by not using UPS systems in double conversion mode,
which results in losses from AC to DC and DC to AC conversion;
instead power is directly fed to the computing racks with a fast fail-
over to UPS upon detecting a power loss or fluctuation. Further,
since only 20% of the racks have a UPS backup, this naturally cuts
down on the total UPS losses in the facility.

Finally Figure 7 depicts the daily and hourly variations in the PUE
for the different days of the week in April and a particular day in
April 2015, respectively. As Figure 7(a) shows, the PUE is mostly
flat over the course of a week, as the corresponding IT load seen
during different days of the week, shown in Figure 4(b), is nearly
flat without any week of the day effects. The hourly PUE in Fig-
ure 7(b) shows small fluctuations caused by corresponding varia-
tions in the instantaneous hourly IT load; the hourly PUE is mostly
flat when averaged over the month, as expected, since the hourly IT
load is similarly flat without any significant time-of-day effects.

Result: The MGHPCC’s PUE is 1.3773, even at a low 10% ca-
pacity utilization,a figure generally considered to by quite efficient,
although not as efficient as some of the most efficient data centers
in industry. We note that this relatively low PUE is achieved in a
multi-tenant colo facility where the data center has no direct ability
to optimize server hardware (unlike, say, Google or Facebook data
centers where end-to-end optimizations that include the server tier
are feasible). Free cooling yields a significant reduction in PUE
over periods when chillers have to be deployed, demonstrating the
benefits of optimizing the cooling infrastructure on lowering the
PUE. Finally, an interesting artifact of our batch workloads is that
they do not exhibit typical time-of-day or weekend effects, pointing
to the possibility of higher server utilizations throughout the day.

3.3 Per-tenant PUE Analysis
The previous section shows that the overall PUE of the data cen-
ter is between 1.285 and 1.509. As noted earlier, the data center
is a multi-tenant facility, with each tenant operating an entire aisle
of racks independently of the other tenants. Thus, analyzing and
comparing the PUE of each tenant to the facility’s overall PUE is

2As shown in Figure 6(b), cooling tower pumps used more power in
the months of May and June than in warmer summer months such
as July; this is due to use of hybrid cooling to partially cool water
first and then use chillers to cool the rest. As seen, this mode uses
more power than using chillers alone in warmer months; facility
managers are currently optimizing pump controls to enhance the
efficiency of hybrid cooling.



useful. Further, different tenants are in different stages of their roll-
out of computing equipment at the data center, and per-tenant PUE
analysis can provide insights into how the PUE might vary when
the racks are at different capacity utilizations.

There is no well-known method to compute the per-tenant PUE.
While the IT load is directly metered on a per-rack (and per-tenant)
basis, the non-IT load is not. The cooling infrastructure including
the evaporative cooling towers and chillers are facility-wide equip-
ment and not deployed on a per-tenant basis. Thus, to compute
PUE on a per-tenant basis, we must determine how to apportion to
non-IT (and particularly cooling) loads across individual tenants.

Fortunately, in our case, each tenant operates an entirely separate
aisle of racks, such that the racks do not mix computing equipment
from multiple tenants. Thus, determining the compute and cooling
load of all racks in a given aisle is equivalent to determining the
computing and cooling load due to that tenant. In other words,
spatial analysis of PUE across racks and aisles in our case also
yields the PUE of the various tenants.

3.3.1 Per-tenant PUE and IRC Power Models
To determine the PUE of an aisle of racks, or more precisely a pod
of racks, we make the following assumptions.

First, we assume that the hot air containment used by the racks to
isolate the hot air from cold air is perfect [18]. That is, the hot air
from the racks is fully contained and does not impact the tempera-
ture, or associated cooling, of the racks in other aisles.

Second, while the cooling infrastructure, such as chillers and cool-
ing towers, are facility-wide equipment, the in-row chillers are de-
ployed to locally cool adjacent racks and represent per-pod (and
per-tenant) cooling equipment. Further, in-row chillers directly re-
move the heat generated by racks in each pod, and hence, the power
consumed by in-row chillers is an indirect measure of the cooling
needs of that pod. Hence, we can use power consumed by the in-
row chillers of a pod to apportion the remaining non-IT load across
pods. We note that such a method is an approximation since nei-
ther the in-row chillers nor the facility-wide cooling equipment are
energy-proportional, i.e., a linear increase in heat generated does
not result in a proportionate linear increase in power usage of the
IRCs or the cooling equipment.

Given these assumptions, the PUE of a pod is given below.

PUEpod =
P pod
total

P pod
IT

=
P pod
IT + P pod

non−IT

P pod
IT

(1)

In the equation, P pod
total denotes the total power usage of a pod,

while P pod
IT and P pod

non−IT denote the IT and non-IT power used
by the pod. The IT power consumed by each rack is directly mea-
sured, while the non-IT power used by the pod must be estimated.
Based on the assumption above, the non-IT power usage of a pod
is assumed to be proportional to the power consumed by the pod’s
in-row chillers, which itself depends on local cooling demands.

Thus, we estimate the non-IT power usage of the pod below.

P pod
non−IT =

P pod
IRC

P total
IRC

(Ptotal − PIT ) (2)

Here, P pod
IRC and P total

IRC denote the power consumed by the IRCs of
a pod and the total power consumed by IRC across all aisles and
pods, and Ptotal and PIT denotes the total facility power and the
total IT power across all tenants (the difference between the two is
the total non-IT power usage). If each in-row chiller were individ-
ually metered, all of the quantities in the above equation would be
known. However, the data center meters IRC power consumption
in the aggregate (for groups of IRCs) and thus the power used by in-
dividual IRCs is not directly monitored. However, our mechanical
dataset monitors the fan speeds of the in-row chillers and it is well
known (from IRC manuals) that power consumption of an IRC is a
cubic function of its fan speed. Thus, we use a model to estimate
IRC power usage from its monitored fan speed, as shown below.

PIRC = α · x3 + β (3)

Here, α and β are constants that depend on a specific model of
an IRC and x denotes the fan speed. Since the aggregate power
consumed by a group of IRCs is metered and known, the following
relationship holds for power consumed by IRCs in each metered
group at time instant t.

P 1
IRC + P 2

IRC + . . .+ Pn
IRC = P total

IRC + ε (4)

Here, P i
IRC denotes the power consumed by the ith IRC within

a metered group and P total
IRC denotes the total power consumed by

all IRCs within that group. ε is a term that captures the measure-
ment error. By substituting Equation 3 for each individual IRC into
Equation 4, we obtain a set of equations, one for each measurement
interval t, for the unknown constants α and β.

We can then use regression on this set of equations to derive the
α and β that minimize the error term ε. By deriving α and β,
the regression then yields an IRC power model where the power
consumed by the IRC is a function of the fan speed x with known
constants α and β. That is, PIRC = α · x3 + β. Since fan speeds
are directly measured and available to us, the power usage of a
pod can be estimated using this approach, and this value can be
substituted in Equation 2 to estimate the non-IT power usage of a
pod P pod

non−IT . Since the IT power usage of each pod is directly
measured and known, we can compute the PUE of each pod.

We ran the regression on the measured values of IRC fan speeds and
the total IRC power consumption to derive the IRC power model as
discussed above. Figure 8 depicts the model we learned for the
IRC power consumption as a function of the IRC fan speed. To
validate our model, we compute the power consumed by individual
IRCs using measured fan speeds, and then compare the sum of the
computed individual IRC power values to the total IRC power as
measured by the electric meter. Figure 9 depicts the estimated IRC
power consumption from the model and the actual values from the
metered data. As can be seen, there is a close match between the
model estimates and the actual values.

3.3.2 Spatial PUE Analysis.
Given our models above to estimate the per-IRC power consump-
tion and the per-pod PUE, we next analyze the spatial distribu-
tion of computing load and the resulting PUE on a pod-by-pod and
tenant-by-tenant basis. We note at the outset that the spatial distri-
bution of servers across racks can impact the PUE, similar to how
prior work has shown the spatial distribution of compute load in-



Figure 8: IRC power model learned via regression: the model is
cubic in fan speed with parameters α = 0.00279 and β = 97.7.

Figure 9: We validate our IRC power model by comparing the
fit of total modeled IRC power to the aggregate meter values.

fluences cooling costs [16]. To illustrate, consider two different
deployments of ten servers, one where all ten servers are housed
in a single rack and another where each individual server is de-
ployed on a separate rack, i.e., a “depth-first” versus “breadth-first”
deployment. Although the IT power load of these ten servers is
independent of how they are placed on the racks, the cooling load
depends on the spatial distribution of servers. In the former case,
the cooling load is concentrated in one rack and a single IRC can
handle the cooling of the servers while the remaining IRCs in the
pod can remain idle. In the latter case, the cooling load is spread
across multiple racks, and multiple IRCs will need to absorb this
spatially by spreading out the cooling load. Thus, the two deploy-
ments will result in different PUE values even though both have
the same IT load. This toy example illustrates that two pods with
identical IT loads may have different PUEs if they have different
spatial distributions of servers across racks.

Figure 10 depicts the spatial distribution of the IT power usage of
server racks in each pod across different pods and tenants. Recall
that each tenant has an aisle dedicated to them, and each aisle is
partitioned into three pods of racks; let Ti denote tenant i, and the
suffixA, B or C denote the three pods allocated to that tenant. The
sixth row, denoted by N , houses network equipment to connect
the tenants to various network/fibre backbones. As shown, differ-
ent tenants are at different stages of deployment of their research
clusters—the IT load of a pod varies from 2kW to 214kW. Many
pods—those with usage of less than 5kW—remain empty. A few
pods are moderately loaded and have IT loads of 50-100kW. Only
one pod (pod A for tenant 2) is nearing capacity and has a current
load of nearly 220kW. The pods housing networking gear also re-
main lightly utilized.

Using these IT power loads and our models, we compute the PUE

Figure 10: A heat-map showing the IT power consumption of
different pods and tenants across our multi-tenant data center.
Data shown is for April 3-11, 2015.

Figure 11: A heat-map showing the mean PUE of each pod of
racks and various tenants.

of each pod, which is depicted as a heat-map in Figure 11. The
data shown is for April 3-11, 2015, where the overall PUE of the
data center was 1.28. The figure reveals the following insights.
To compute this figure, we used a more refined PUE model than
the one discussed in Section 3.3.1 where the UPS power losses are
only attributed to pods with UPS backup power, rather than being
uniformly spread across both UPS and non-UPS racks.

As expected, the pods that have low utilization also have high
PUEs. However, these PUE values are not meaningful since they
are associated with an IT load that is close to zero. In general, we
observe that the PUE of a pod is inversely proportional to the IT
load: as the IT load increases, its associated PUE value falls. Thus,
lightly and moderately loaded pods have PUEs that are higher than
the facility-wide PUE, while more heavily loaded pods have lower
PUEs than than the overall PUE. This trend is not surprising, since
the cooling equipment and in-row chillers are not energy propor-
tional and operate at optimal efficiency levels at near-peak loads,
and are much less efficient at lower loads. Hence, the PUE is much
lower (and better) for more heavily loaded pods.

Interestingly, pod B for tenant 4 and pod C for tenant 2 have
roughly similar IT load, i.e., 70kW, but have different PUE values
of 1.28 and 1.21, respectively. This is a real-world depiction of the
toy example above, and demonstrates that the spatial distribution of
servers in a pod does matter and can impact a pod’s PUE, i.e., two
pods with identical compute loads but different spatial distribution
of servers can yield different PUEs.
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Figure 12: Monthly water usage and WUE of our data center.

4. WUE ANALYSIS
In addition to consuming significant amounts of power, data cen-
ters also typically consume significant amounts of water, mainly as
part of their cooling infrastructure. While there has been signifi-
cant emphasis on measuring and optimizing the power usage using
metrics such as PUE, there has been less attention on measuring
the efficiency of water usage. Recently a new metric to capture
the efficiency of water usage has been proposed. The water usage
efficiency (WUE) of a data center is defined as below.

WUE =
Water Usage (liters)

IT Energy Usage (kWh)
(5)

Intuitively, WUE is defined as liters of water used per kilowatt-hour
(kWh) of energy used by the IT equipment. Unlike its better known
PUE counterpart, there is little data published on WUE of data cen-
ters. Recently Facebook released data indicating that the WUE of
their Prineville data center was 0.28 L/kWh and their Forest City
data center was 0.34 L/kWh [7]. In contrast, an average 15MW data
center (similar in size of our MGHPCC data center) may consume
as much as 360,000 gallons of water each day [15]. Assuming a
moderate PUE of 1.5, a fully utilized 15MW data center has an IT
load of 10MW, which translates into a WUE of 5.67 L/kWh. In
contrast, GreenGrid published a report indicating the average data
center has a WUE of 1 L/kWh but did not provide details [11].

Figure 12(a) depicts the monthly water usage of the data center
over a 12 month period. The present water usage varies between
1000 kL and 2000 KL per month depending on the season of the
year. As the figure shows, the water usage is higher in the warmer
months and lower in cooler months. This is not surprising since
warmer months lead to more evaporative water loss and the use of
chillers in these months consumes more water. In contrast, the data
center relies on free cooling in cooler months, resulting in lower
water usage in those months. Next, Figure 12(b) depicts the WUE
of our data center over a 12 month period. As shown, the WUE
values vary between 1.5 L/kWh and 3.0 L/kWh over the course of
the year. The WUE rises in the warmer months and falls in the
cooler months. We attribute this trend to two factors: rising IT load
over the course of the year results in more efficient use of water
and a fall in WUE, and seasonal effects where there is less loss of
evaporative cooling in cooler months.

While a WUE between 1.5 and 3.0 L/kWh is already lower than
the average WUE of 5.67 hinted in [15], it is higher than the Green-
Grid value of 1. There is little real-world data available to provide
a meaningful comparison. We note, however, that the MGHPCC is
presently operating at only 10% capacity, and we expect a signifi-
cant fall in WUE as the capacity ramps up, in line with the trends

Fuel Type Energy
(MWh)

Energy
(%)

CO2 (kg) CO2

(%)
Oil 1724 0.4 1476897 16.3
Hydro 261691 66.7 0 0
Nuclear 61310 15.6 0 0
Solar 6105 1.6 0 0
Contracted (carbon free) 40800 10.4 0 0
Contracted (other) 20592 5.3 7584064 83.7
Total 392222 100 9060054 100
Table 2: Holyoke Gas & Electric power generation sources.

observed in the initial months of 2015. Thus, our hypothesis is that,
in the long run, the WUE of the MGHPCC will be significantly
lower than the “typical” data center, and in line with its green de-
sign goal. Although not shown here, the data center uses a number
of other measures to optimize its water footprint, including the use
of water filtration techniques to maximize the circulation of water
in the two water loops as well as use of recycled water for many
auxiliary purposes, e.g., for landscaping.

5. CUE ANALYSIS
Our final analysis focuses on the carbon impact of the MGHPCC,
since ultimately it is designed to be a green facility. While there are
many methodologies to compute the operational carbon footprint
of a building, a new metric called Carbon Usage Efficiency (CUE),
has been defined explicitly to compute the carbon efficiency of data
centers [5]. The CUE of a data center is defined as below

CUE =
CO2 emmissions from the total data center energy

IT equipment energy

=
kg CO2

kWh
· Total data center energy

IT equipment energy
=

kg CO2

kWh
· PUE

As shown, the CUE depends significantly on the carbon emissions
due to the electricity consumed by the data center. The carbon
emissions of the electricity consumption, in turn, depend on the
generation source mix of the electric utility that supplies power to
the data center. In the event that the data center uses on-site or con-
tracted renewable energy, that portion must also be considered in
the overall electricity mix as well.

The MGHPCC does not use any on-site renewables and depends
entirely on the local utility company for its power needs. The lo-
cal utility, Holyoke Gas and Electric (HG&E), generates a large
fraction of its electricity using hydroelectric power from a sophis-
ticated canal system. This hydro-electric power is not only inex-
pensive, but also a clean source of renewable energy. The mix of
generation sources used by HG&E to generate power for its cus-
tomers is shown in Table 2. As the table shows, HG&E generates or
purchases 94.3% of the electricity from carbon-free sources, two-
thirds of which derives from the local canal system. In addition,
HG&E operates one of the largest solar deployments in New Eng-
land, totaling 5.3MW of installed capacity. In addition, 15% of its
power derives from nuclear power plants, which are also carbon
free. HG&E also purchases electricity in the wholesale electric-
ity market through a variety of contracts. Roughly 16% of its needs
are met from these contracted sources, of which 10.4% comes from
carbon-free sources. Thus, their high fraction (94.3%) of carbon-
free electricity in their generation mix yields a low ratio (of 0.0231)
in the amount of kilograms of CO2 emitted per kWh of energy gen-
erated. This ratio, which is nearly an order of magnitude lower than
the most carbon efficient region in the U.S., is shown in Table 3.

Consequently, 94.3% of electricity consumed by the MGHPCC is



Utility HG&E U.S grid
mean min max

kg CO2
kWh 0.0231 0.559 0.203 0.860

Table 3: Power producer carbon intensity [2].

Figure 13: Monthly CUE of the data center.

carbon-free. Figure 13 depicts the monthly CUE of the data center.
The CUE varies from 0.0297 to 0.0349 with an annual average
of 0.0318. By way of comparison, an “average” data center that
draws power form the “average” utility mix in the U.S. will have
25× higher CUE at the same PUE level (and an even higher CUE
at higher typical values of 1.8 PUE). Recently, Apple claimed that
100% of its data centers are powered using renewables and Google
has followed a similar strategy of using contracted wind energy for
its data centers. Our data center compares favorably to these state-
of-the-art data centers in terms of CUE, but has achieved its low
CUE by careful choice of location and utility rather than building
or contracting renewable energy.

6. CONCLUDING REMARKS
In this paper, we present an empirical analysis of the efficiency
of a green academic data center. The data center we study, the
MGHPCC, is a multi-tenant facility that is designed to house colo
research clusters running batch-oriented workloads. Our temporal
PUE analysis reveals that the data center has PUE values that range
from 1.285 to 1.509, with higher PUEs in warmer summer months.
We show that free cooling, which avoids the use of chillers can re-
duce PUE by as much as 0.224 in cool seasons. Our spatial multi-
tenant analysis reveals the non-proportional nature of the cooling
equipment, which causes its efficiency to increase as each pod of
racks becomes fully utilized, yielding lower PUEs. Our water us-
age analysis shows that the WUE of the data center is between 1.5
and 3 L/kWh. Finally, we show that data center has a CUE of 0.03,
which is 25× lower than a typical data center. The low CUE is
mainly due to the large portion of renewable energy within the elec-
tricity mix supplied by the local utility. Overall, our results validate
the green design of the data center and point to further efficiencies
in the future at higher utilizations.
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