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ABSTRACT
Programs written in unsafe languages like C and C++ often suffer
from errors like buffer overflows, dangling pointers, and memory
leaks. Dynamic analysis tools like Valgrind can detect these er-
rors, but their overhead—primarily due to the cost of instrumenting
every memory read and write—makes them too heavyweight for
use in deployed applications and makes testing with them painfully
slow. The result is that much deployed software remains suscepti-
ble to these bugs, which are notoriously difficult to track down.

This paper presents evidence-based dynamic analysis, an ap-
proach that enables lightweight analyses—under 5% overhead for
these bugs—making it practical for the first time to perform these
analyses in deployed settings. The key insight of evidence-based
dynamic analysis is that for a class of errors, it is possible to ensure
that evidence that they happened at some point in the past remains
for later detection. Evidence-based dynamic analysis allows ex-
ecution to proceed at nearly full speed until the end of an epoch
(e.g., a heavyweight system call). It then examines program state
to check for evidence that an error occurred at some time during
that epoch. If so, it rolls back execution and re-executes the code
with instrumentation activated to pinpoint the error.

We present DOUBLETAKE, a prototype evidence-based dynamic
analysis framework. DOUBLETAKE is practical and easy to de-
ploy, requiring neither custom hardware, compiler, nor operating
system support. We demonstrate DOUBLETAKE’s generality and
efficiency by building dynamic analyses that find buffer overflows,
memory use-after-free errors, and memory leaks. Our evaluation
shows that DOUBLETAKE is efficient, imposing just 4% overhead
on average, making it the fastest such system to date. It is also
precise: DOUBLETAKE pinpoints the location of these errors to the
exact line and memory addresses where they occur, providing valu-
able debugging information to programmers.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging–Debugging
Aids, Monitors, Tracing; D.2.4 [Software Engineering]: Soft-
ware/Program Verification–Reliability; D.3.4 [Programming Lan-
guages]: Run-time environments

General Terms
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1. INTRODUCTION
Dynamic analysis tools are widely used to find bugs in appli-

cations. They are popular among programmers because of their
precision—for many analyses, they report no false positives—and
can pinpoint the exact location of errors, down to the individual
line of code. Perhaps the most prominent and widely used dynamic
analysis tool for C/C++ binaries is Valgrind [28]. Valgrind’s most
popular use case, via its default tool, MemCheck, can find a wide
range of memory errors, including buffer overflows, use-after-free
errors, and memory leaks.

Unfortunately, these dynamic analysis tools often impose sig-
nificant performance overheads that make them prohibitive for use
outside of testing scenarios. An extreme example is the widely-
used tool Valgrind. Across the SPEC CPU2006 benchmark suite,
Valgrind degrades performance by almost 17× on average (geo-
metric mean); its overhead ranges from 4.5× and 42.8×, making it
often too slow to use even for testing (see Table 1).

While faster dynamic analysis frameworks exist for finding par-
ticular errors (leveraging compiler support to reduce overhead),
they sacrifice precision while continuing to impose substantial over-
head that would impede their use in deployed settings. The current
state-of-the-art, Google’s AddressSanitizer, detects buffer overflows
and use-after-free errors, but slows applications by around 30% [38].
AddressSanitizer also identifies memory leaks but only at the end
of program execution, which is not useful for servers or other long-
lived applications.

Because of their overhead, this class of dynamic analysis tools
can generally only be used during testing. However, they are lim-
ited by definition to the executions that are tested prior to deploy-
ment. Even exhaustive testing regimes will inevitably fail to un-
cover these errors, which are notoriously difficult to debug.

This paper presents an approach called evidence-based dynamic
analysis that is based on the following key insight: it is often possi-
ble to discover evidence that an error occurred or plant markers that
ensure that such evidence exists. By combining evidence place-
ment with checkpointing and infrequent checking, we can run app-
plications at nearly full speed in the common case (no errors). If
we find an error, we can use the checkpoint to roll back and re-
execute the program with instrumentation activated to pinpoint the
exact cause of the error.

Certain errors, including the ones we describe here, naturally ex-
hibit a monotonicity property: when an error occurs, evidence that it



happened tends to remain or even grow so that it can be discovered
at a later point during execution. When this evidence is not natu-
rally occurring or not naturally monotonic, it can be forced to ex-
hibit this property by planting evidence via what we call tripwires
to ensure later detection. A canonical example of such a tripwire
is a random value, also known as a canary, placed in unallocated
space between heap objects [11]. A corrupted canary is incontro-
vertible evidence that a buffer overflow occurred at some time in
the past.

This paper presents a prototype evidence-based dynamic analy-
sis framework called DOUBLETAKE that locates such errors with
extremely low overhead and no false positives. DOUBLETAKE
checkpoints program state and performs most of its error analyses
only at epoch boundaries (what we call irrevocable system calls) or
when segfaults occur; these occur relatively infrequently, amortiz-
ing DOUBLETAKE’s overhead.

If DOUBLETAKE finds evidence of an error at an epoch bound-
ary or after a segmentation violation, it re-executes the application
from the most recent checkpoint. During re-execution, DOUBLE-
TAKE enables instrumentation to let it precisely locate the source
of the error. For example, for buffer overflows, DOUBLETAKE sets
hardware watchpoints on the tripwire memory locations that were
found to be corrupted. During re-execution, DOUBLETAKE pin-
points exactly the point where the buffer overflow occurred.

We have implemented DOUBLETAKE as a drop-in library that
can be linked directly with the application, without the need to
modify code or even recompile the program. DOUBLETAKE works
without the need for custom hardware, compiler, or OS support.

Using DOUBLETAKE as a framework, we have built three differ-
ent analyses that attack three of the most salient problems for un-
safe code: the buffer overflow detector described above as well as
a use-after-free detector and memory leak detector. These analyses
can all run concurrently. By virtue of being evidence-based, they
have a zero false positive rate, precisely pinpoint the error location,
and operate with extremely low overhead: for example, with DOU-
BLETAKE, buffer overflow analysis alone operates with just 3%
overhead on average. When all three of these analyses are enabled,
DOUBLETAKE’s average overhead is under 5%.

For all of the analyses we have implemented, DOUBLETAKE is
the fastest detector of these errors to date, providing compelling
evidence for the promise of evidence-based dynamic analyses. Its
overhead is already low enough to dramatically speed testing and
often low enough to enable the use of these formerly-prohibitive
analyses in deployed settings. This work thus promises to signifi-
cantly extend the reach of dynamic analyses.

Contributions
The contributions of this paper are the following:

1. It introduces evidence-based dynamic analysis, a new anal-
ysis technique that combines checkpointing with evidence
gathering and instrumented replay to enable precise error de-
tection with extremely low overhead.

2. It presents DOUBLETAKE, a prototype framework that im-
plements evidence-based dynamic analyses for C/C++ pro-
grams: each of the analyses we have built using DOUBLE-
TAKE – detecting buffer overflows, use-after-frees, and mem-
ory leaks – are the fastest reported to date.

Outline
This paper first provides an overview of the basic operation of
DOUBLETAKE in Section 2. Section 3 details the dynamic anal-
yses we have built using DOUBLETAKE. Section 4 describes key

Valgrind Execution Time Overhead
Benchmark Overhead Benchmark Overhead
400.perlbench 20.5× 458.sjeng 20.3×
401.bzip2 16.8× 471.omnetpp 13.9×
403.gcc 18.7× 473.astar 11.9×
429.mcf 4.5× 433.milc 11.0×
445.gobmk 28.9× 444.namd 24.9×
456.hmmer 13.8× 450.dealII 42.8×

Table 1: Valgrind’s execution time overhead across the SPEC
benchmark suite. Valgrind imposes on average 17× overhead
(geometric mean), making it prohibitively high for use in de-
ployment and quite expensive even for testing purposes.
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Figure 1: Overview of DOUBLETAKE in action: execution is
divided into epochs at the boundary of irrevocable system calls.
Each epoch begins by taking a snapshot of program state. Exe-
cution runs at nearly full-speed during epochs. Evidence-based
analysis takes place once an epoch ends, replaying execution
from the previous snapshot until it pinpoints the exact location
where the error is introduced. Relatively-long epochs amortize
the cost of snapshots and analysis, keeping overhead low.

implementation details. Section 5 evaluates DOUBLETAKE’s effec-
tiveness, performance, and memory overhead, and compares these
to the state of the art. Section 6 discusses limitations of evidence-
based analysis and the detectors we implement. Section 7 describes
key related work and Section 8 concludes.

2. OVERVIEW
DOUBLETAKE is an efficient dynamic analysis framework for

a class of errors that exhibit or can be forced to exhibit a mono-
tonicity property: evidence of the error is persistent and can be
gathered after-the-fact. With DOUBLETAKE, program execution is
divided into epochs, during which execution proceeds at full speed
(Figure 1). At the beginning of an epoch, DOUBLETAKE check-
points program state. Epochs end only when the application issues
an irrevocable system call (e.g., a socket read); most system calls
are not irrevocable (see 4.3 for full details). Once an epoch ends,
DOUBLETAKE checks the program state for evidence of memory
errors. Because epochs are relatively long-lived, the cost of check-
pointing and error analysis is amortized over program execution.
If DOUBLETAKE finds an error, it re-executes code executed from
the previous epoch with additional instrumentation to pinpoint the
exact cause of the error.

To demonstrate DOUBLETAKE’s effectiveness, we have imple-
mented detection tools for three of the most important classes of
errors in C and C++ code: heap buffer overflows, use-after-free er-
rors, and memory leaks (Section 3 describes these in detail). All
detection tools share the following core infrastructure that DOU-
BLETAKE provides.



2.1 Efficient Recording
At the beginning of every epoch, DOUBLETAKE saves a snap-

shot of program registers and all writable memory. An epoch ends
when the program attempts to issue an irrevocable system call, but
most system calls do not end the current epoch. DOUBLETAKE
also records a small amount of system state at the beginning of
each epoch (e.g., file offsets), which lets it unroll the effect of sys-
tem calls that modify this state when re-execution is required.

During execution, DOUBLETAKE manages various types of sys-
tem calls in an effort to reduce the number of epochs, which Sec-
tion 4.3 discusses. In practice, DOUBLETAKE limits the number of
epoch boundaries, amortizing the cost of program state checks. The
kind of checks employed depend on the particular dynamic analy-
sis being performed; Section 3 describes the details of the analyses
we have built on top of DOUBLETAKE.

2.2 Lightweight Replay
When program state checks indicate that an error occurred dur-

ing the current epoch, DOUBLETAKE replays execution from the
last epoch to pinpoint the error’s root cause. DOUBLETAKE en-
sures that all program-visible state, including system call results
and memory allocations and deallocations, is identical to the orig-
inal run. During replay, DOUBLETAKE returns cached return val-
ues for most system calls, with special handling for some cases.
Section 4 describes in detail how DOUBLETAKE records and re-
executes system calls.

2.3 Deterministic Memory Management and
Tripwire Support

One key challenge to using replay to find the exact location of
errors is that we cannot rely on the default system-supplied heap
allocator. The reason for this is that it does not provide a replayable
sequence of addresses. The default heap grows on demand by in-
voking mmap (or a similar call on other operating systems) to ob-
tain memory from the system. However, because of address-space
layout randomization, now implemented on all modern operating
systems to increase security, mmap almost always returns different
addresses when invoked. This effect means that heap addresses in
a replayed execution would likely differ from the original.

DOUBLETAKE therefore replaces the default heap allocator with
a heap built with the HEAP LAYERS framework [4]. In addition
to providing repeatable sequences of addresses, DOUBLETAKE’s
heap provides a number of other useful features that improve DOU-
BLETAKE’s efficiency and simplify building analyses using it:

• Efficiency via large chunk allocation. The DOUBLETAKE
heap obtains memory from the operating system in large chunks
and satisfies all memory allocations from it, reducing the
number of system calls that DOUBLETAKE must track and
thus lowering its overhead.

• Simplified tripwire installation. DOUBLETAKE’s heap also
makes the process of implanting tripwires easier. For exam-
ple, detection tools can easily interpose on heap operations to
alter memory allocation requests or defer the reuse of freed
memory, and can mark the status of each object in metadata
(e.g., via a dedicated object header that the heap provides for
this purpose).

• Efficient tripwire checking. Finally, DOUBLETAKE’s heap
makes tripwire checking far more efficient. It maintains a
shadow bitmap to identify the locations and status of heap
canaries, which allows it to use vectorized bit operations to
perform efficient checking at the end of each epoch.

canary&requested&header&

allocated(object(1( allocated(object(2(

requested& canary&header&

Figure 2: Heap organization used to provide evidence of buffer
overflow errors. Object headers and unrequested space within
allocated objects are filled with canaries; a corrupted canary
indicates an overflow occurred.
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Figure 3: Evidence-based detection of dangling pointer (use-
after-free) errors. Freed objects are deferred in a quarantine
in FIFO order and filled with canaries. A corrupted canary
indicates that a write was performed after an object was freed.

Section 4.3 presents full details of DOUBLETAKE’s heap imple-
mentation.

2.4 Pinpointing Error Locations
During replay, DOUBLETAKE lets detection tools set hardware

watchpoints during re-execution to pinpoint error locations (i.e.,
on an overwritten canary). Modern architectures make available
a small number of watchpoints (four on x86). Each watchpoint
can be configured to pause program execution when a specific byte
or word of memory is accessed. While watchpoints are primarily
used by debuggers, DOUBLETAKE uses them to speed error loca-
tion during re-execution.

DOUBLETAKE’s watchpoints are particularly useful in combina-
tion with heap canaries. For example, during re-execution, DOU-
BLETAKE’s buffer overflow and use-after-free detectors place a watch-
point at the location of the overwritten canary to trap the instruc-
tion(s) responsible for the error.

3. ANALYSES
To demonstrate DOUBLETAKE’s generality and efficiency, we

implement a range of error-detection tools as evidence-based dy-
namic analyses. In particular, we implement the following three
detection tools with DOUBLETAKE:

• Heap buffer overflow detection (§3.1): when an application
writes outside the bounds of an allocated object,

• Use-after-free detection (§3.2): when an application writes
to freed memory (i.e., through a dangling pointer), and

• Memory leak detection (§3.3): when a heap object becomes
inaccessible but has not been explicitly freed.

For each of these tools, we describe the evidence that DOU-
BLETAKE observes or places to detect these errors, and how re-
execution and error isolation proceeds once an error is detected.
Note that because these analyses are orthogonal, they can all be
used simultaneously.



3.1 Heap Buffer Overflow Detection
Heap buffer overflows occur when programs write outside the

bounds of an allocated object. DOUBLETAKE reports an error when
it discovers that a canary value has been overwritten. When it finds
an overwritten canary, the detector places watchpoints during re-
execution to identify the instruction responsible for the overflow.

Evidence-Based Error Detection
Figure 2 presents an overview of the approach used to locate buffer
overflows. Our buffer overflow detector places canaries between
heap objects so that an overflow from one object into an adjacent
one can be detected.

In addition, the overflow detector fills any remaining empty space
inside allocated objects with canaries; DOUBLETAKE’s allocator
rounds all object size requests up to the nearest power of two. This
approach lets DOUBLETAKE identify small overflows that would
otherwise be missed because they did not actually go beyond the
object’s allocated space.

At memory deallocation time (calls to free or delete), DOU-
BLETAKE checks for buffer overflows in objects whose requested
size is less than a power of two. It defers the checking of power-of-
two sized objects to the end of the current epoch.

At the end of each epoch, DOUBLETAKE checks whether any
canaries have been overwritten (including those for exact power-
of-two requests). If it finds any overwritten canaries, it has incon-
trovertible evidence that a buffer overflow has occurred. DOUBLE-
TAKE then triggers a re-execution to locate the exact point in the
program when the overflow happened.

Re-Execution and Error Isolation
DOUBLETAKE installs a watchpoint at the address of the corrupted
canary before re-execution. When the program is re-executed, any
instruction that writes to this address will trigger the watchpoint.
The operating system will deliver a SIGTRAP signal to DOUBLE-
TAKE before the instruction is executed. By handling this signal,
DOUBLETAKE reports the complete call stack of the trapped in-
struction by invoking the backtrace function.

3.2 Use-After-Free Detection
Use-after-free or dangling pointer overflow errors occur when an

application continues to access memory through pointers that have
been passed to free() or delete. Writes to freed memory can
overwrite the contents of other live objects, leading to unexpected
program behavior. Like the buffer overflow detector, our use-after-
free detector uses canaries to detect writes to freed memory. When
a use-after-free error is detected, DOUBLETAKE reports the alloca-
tion and deallocation sites of the object, and all instruction(s) that
wrote to the object after it was freed.

Evidence-Based Error Detection
Figure 3 illustrates how we detect use-after-free errors using DOU-
BLETAKE. Our use-after-free detector delays the re-allocation of
freed memory. We adopt the approach used by AddressSanitizer
of maintaining a FIFO quarantine list [38]. In our implementation,
objects are released from the quarantine list when the total size of
quarantined objects exceeds 16 megabytes, or when there are more
than 1,024 quarantined objects. (Note that all thresholds used by
the detector are easily configurable.)

The detector overwrites the first 128 bytes of all objects in the
quarantine list (which have all been freed by the program) with ca-
nary values. This threshold strikes a compromise between error de-
tection and efficiency. We have found empirically that filling larger
objects with canaries (i.e., going beyond 128 bytes to the full size

of allocated objects) introduces substantial overhead during normal
execution, but is unlikely to catch any additional errors. This is be-
cause large objects often consist of a header followed by a buffer.
A prematurely reused object is likely to have its prologue scram-
bled by a constructor, while the remainder of the object (the buffer
contents) may remain unmodified for a long time.

Before an object can be returned to the program heap, DOUBLE-
TAKE verifies that no canaries have been overwritten. It also checks
all canaries in the entire heap at epoch boundaries. In either case, if
a canary has been overwritten, the detector knows that a use-after-
free error has occurred. It then immediately triggers re-execution
to identify the cause of this error.

Re-Execution and Error Isolation
During re-execution, the use-after-free detector interposes on malloc
and free calls to find the allocation and deallocation sites of the
overwritten object. The detector records a call stack for both sites
using the backtrace function. The detector also installs a watch-
point at the address of the overwritten canary. As with buffer over-
flow detection, any writes to the watched address will generate a
SIGTRAP signal. When this signal is triggered, the detector reports
information about the object’s allocation and deallocation sites, as
well as call stack and line number information for the instructions
responsible for the use-after-free error.

3.3 Memory Leak Detection
Heap memory is leaked when it becomes inaccessible without

being freed. Memory leaks can significantly degrade program per-
formance due to an increased memory footprint. Our leak detec-
tor identifies possible unreachable allocated objects at the end of
each epoch. Allocation sites can help users fix memory leaks, but
collecting this information for allmalloc calls in normal execution
would unnecessarily slow down the program for the common case
(no memory leaks). Instead, DOUBLETAKE only records the al-
location sites of leaked memory during re-execution, and adds no
overhead for normal execution.

Evidence-Based Error Detection
Unlike the previously-described detectors, memory leak detection
does not need tripwires. Instead, the evidence of a memory leak is
latent in the heap organization itself.

Our detector finds memory leaks using the same marking ap-
proach as conservative garbage collection [42]. The marking phase
performs a breadth-first scan of reachable memory using a work
queue. Initially, all values in registers, globals, and the stack that
look like pointers are added to the work queue. Any eight-byte
aligned value that falls within the range of allocated heap memory
is treated as a pointer.

At each step in the scan, the detector takes the first item off the
work queue. Using the heap metadata located before each object,
the detector finds the bounds of each object. Each object has a
header containing a marked bit and an allocated bit. If the marked
bit is set, this object has already been visited. The detector then
removes this object and moves on to the next item in the queue.
If the object is allocated but not yet marked, the detector marks it
as reachable by setting the marked bit and adds all pointer values
within the object’s bounds to the work queue. Once the work queue
is empty, DOUBLETAKE ends its scan.

DOUBLETAKE then traverses the entire heap to find any leaked
objects: these are allocated but unmarked (unreachable). If it finds
memory leaks, re-execution begins. Note that using this approach,
our detector can also find potential dangling pointers (that is, reach-
able freed objects). This option is disabled by default because, un-



like other applications, potential dangling pointer detection could
produce false positives.

Re-Execution and Error Isolation
During re-execution, the leak detector checks the results of each
malloc call. When the allocation of a leaked object is found, the
detector records the call stack using the backtrace function. At
the end of the epoch re-execution, the detector reports the last call
stack for each leaked object since the last site is responsible for the
memory leak.

4. IMPLEMENTATION DETAILS
DOUBLETAKE is implemented as a library for Linux applica-

tions. It can be linked directly or at runtime using the LD_PRELOAD
mechanism. DOUBLETAKE is thus convenient to use: there is no
need to change or recompile applications, to use a specialized hard-
ware platform, run inside a virtual machine, or modify the OS.

At startup, DOUBLETAKE begins the first epoch. This epoch
continues until the program issues an irrevocable system call (see
Section 4.3 for details). Before an irrevocable system call, DOU-
BLETAKE checks program state for evidence of errors. The details
are presented in Section 3.

If no errors are found, DOUBLETAKE ends the current epoch,
issues the irrevocable system call, and begins a new epoch. If
it finds evidence of an error, DOUBLETAKE enters re-execution
mode. DOUBLETAKE will then re-execute with instrumentation
activated and report the lines of code responsible for the error(s).

The remainder of this section describes the implementation of
DOUBLETAKE’s core functionality.

4.1 Startup and Shutdown
At program startup, DOUBLETAKE performs initialization and

starts the first epoch. DOUBLETAKE needs to get in early to inter-
pose on system calls and install its own heap implementation. It
accomplishes this by marking its own initialization function with
the constructor attribute. Since DOUBLETAKE must wrap library
functions that eventually invoke with system calls, as described in
Section 4.3, it collects the addresses of all intercepted functions
during this initialization phase. DOUBLETAKE acquires memory
from the OS to hold its heap, collects the names and ranges of all
globals by analyzing /proc/self/maps, installs signal handler for
segmentation violations, and prepares the data structure for record-
ing and handling system calls.

For technical reasons, DOUBLETAKE must postpone the check-
pointing of program state (and thus the beginning of the first epoch)
until just before execution enters the application enters its main
function. This delay is necessary to let key low-level startup tasks
complete. For example, C++ performs its initialization for the stan-
dard stream after the execution of constructor functions (including,
in this case, DOUBLETAKE itself). Because DOUBLETAKE relies
on streams to report any errors it detects, by definition it cannot
start the first epoch before that point. To make this all possible,
we interpose on the libc_start_main function, and pass a cus-
tom main function implemented by DOUBLETAKE that performs a
snapshot just before entering the application’s real main routine.

DOUBLETAKE treats program termination as the end of the final
epoch. As with any other epoch, if it finds evidence of program er-
rors, DOUBLETAKE re-executes the program to pinpoint the exact
causes of errors. This logic is embedded in a finalizer marked with
the deconstructor attribute that DOUBLETAKE installs.

Category Functions

Repeatable getpid, sleep, pause

Recordable mmap, gettimeofday, time, clone , open

Revocable write, read

Deferrable close, munmap

Irrevocable fork, exec, exit, lseek, pipe, flock, socket
related system calls

Table 2: System calls handled by DOUBLETAKE. All unlisted
system calls are conservatively treated as irrevocable, and will
end the current epoch. Section 4.3 describes how DOUBLE-
TAKE handles calls in each category.

4.2 Epoch Start
At the beginning of each epoch, DOUBLETAKE takes a snapshot

of program state. DOUBLETAKE saves all writable memory (stack,
heap, and globals) from the main program and any linked libraries,
and saves the register state of each thread with the getcontext
function. To reduce the cost of snapshots, DOUBLETAKE does
not checkpoint any read-only memory. To identify all writable
mapped memory, DOUBLETAKE processes the /proc/self/map
file, which on Linux identifies every mapped memory region and
its attributes (other operating systems implement similar function-
ality). DOUBLETAKE also records the file positions of all open
files, which lets programs issue read and write system calls with-
out ending the current epoch. DOUBLETAKE uses the combination
of saved memory state, file positions and registers to rollback exe-
cution if it finds evidence of an error.

4.3 Normal Execution
Once a snapshot has been written, DOUBLETAKE lets the pro-

gram execute normally but interposes on heap allocations/deallo-
cations and system calls in order to set tripwires and support re-
execution.

System Calls
DOUBLETAKE ends each epoch when the program attempts to is-
sue an irrevocable system call. However, most system calls can
safely be re-executed or undone to enable re-execution.

DOUBLETAKE divides system calls into five categories, shown
in Table 2. System calls could be intercepted using ptrace, but this
would add unacceptable overhead during normal execution. In-
stead, DOUBLETAKE interposes on all library functions that may
issue system calls.

• Repeatable system calls do not modify system state, and re-
turn the same result during normal execution and re-execution.
No special handling is required for these calls.

• Recordable system calls may return different results if they
are re-executed. DOUBLETAKE records the result of these
system calls during normal execution, and returns the saved
result during re-execution. Some recordable system calls,
such as mmap, change the state of underlying OS.

• Revocable system calls modify system state, but DOUBLE-
TAKE can save the original state beforehand and restore it
prior to re-execution. Most file I/O operations fall into this
category. For example, although write modifies file con-
tents, DOUBLETAKE can write the same content during re-
execution. The write function also changes the current file



position, but the file position can be restored to the saved one
using lseek prior to re-execution.

At the beginning of each epoch, DOUBLETAKE saves all file
descriptors of opened files in a hash table. Maintaining this
hash table helps to identify whether a read and write call
is operating on sockets or not, because socket communica-
tions must be treated as irrevocable system calls. In addition,
DOUBLETAKE must save stream contents returned by fread
in order to support re-execution.

• Deferrable system calls will irrevocably change program
state, but can safely be delayed until the end of the current
epoch. DOUBLETAKE delays all calls to munmap and close,
and executes these system calls before starting a new epoch
when there is no need to re-execute the program.

• Irrevocable system calls change internally-visible program
state, and cannot be rolled back and re-executed. DOUBLE-
TAKE ends the current epoch before these system calls.

DOUBLETAKE reduces the number of irrevocable system calls
by observing their arguments; in some cases, they are not neces-
sarily irrevocable. For example, when fcntl invoked with F_GET,
DOUBLETAKE treats it as a repeatable system call since it is simply
a read of file system state. However, it treats this call as irrevocable
if invoked with F_SET, since the call then actually updates the file
system.

Memory Management
As described in Section 2.3, DOUBLETAKE intercepts memory al-
locations and deallocations to implant tripwires, identify heap cor-
ruption, and facilitate re-execution. DOUBLETAKE replaces the de-
fault heap with a fixed-size BiBOP-style allocator with per-thread
subheaps and power-of-two size classes. We built this heap using
the HEAP LAYERS framework [4].

DOUBLETAKE implants tripwires differently for different anal-
yses. To detect heap-based buffer overflows, DOUBLETAKE places
canaries along with each heap object. In order to find use-after-
free errors, DOUBLETAKE postpones the reuse of freed objects by
putting them into a quarantine list and filling them with canaries.
For memory leak detection, there is no need to implant tripwires,
because the evidence of a leak can be found without them.

To identify heap corruption, DOUBLETAKE maintains a bitmap
that records the locations of all heap canaries. The bitmap records
every word of heap memory that contains a canary, which will be
checked at the end of each epoch. If any of these words are modi-
fied, DOUBLETAKE notifies the detection tool.

To speed re-execution, DOUBLETAKE uses its heap allocator to
satisfy memory requests from the application and corresponding li-
braries, and maintains a separate heap for internal use only. For ex-
ample, the memory that DOUBLETAKE uses to record system calls
results is allocated from its internal heap and there is no need to
replay these allocations during re-execution. Any additional mem-
ory allocations during the replay phase are also satisfied from its
internal heap.

4.4 Epoch End
Each epoch ends when the program issues an irrevocable sys-

tem call. At the end of each epoch, DOUBLETAKE checks program
state for errors. These analysis-specific error checks are described
in Section 3. If an error is found, DOUBLETAKE rolls back ex-
ecution to the immediately-preceding epoch, and switches to re-
execution mode. If no error is found, DOUBLETAKE issues any

deferred system calls, clears the logs for all recorded system calls,
and begins the next epoch.

4.5 Rollback
If an error is found, DOUBLETAKE rolls back program state prior

to beginning re-execution. This rollback must be handled with care.
For example, restoring the saved stack may corrupt the current

stack if the size of the saved stack is larger than that of the current
stack. DOUBLETAKE thus switches to a temporary stack during its
rollback phase. When performing rollback, the saved state of all
writable memory is copied back, which also recovers the status of
its heap. DOUBLETAKE also recovers the file positions of opened
files so that all read/write calls can be issued normally during re-
execution.

DOUBLETAKE then sets hardware watchpoints on all corrupted
addresses in order to report the root causes of buffer overflows or
dangling pointers. Since debug registers are not directly accessible
in user mode, DOUBLETAKE utilizes the perf_event_open call
to load watched addresses into the debug registers. DOUBLETAKE
also sets a SIGTRAP handler for watchpoints so that it will get noti-
fied when these addresses are overwritten (e.g., during buffer over-
flows or uses of freed objects).

Once all watchpoints have been placed, DOUBLETAKE uses the
setcontext call to restore register state and begin re-execution.

4.6 Re-Execution
During re-execution, DOUBLETAKE replays the saved results of

recordable system calls from the log collected during normal ex-
ecution, while avoiding invoking actual system calls; that is, their
execution is simulated. All deferred system calls are converted to
no-ops while the program is re-executing. DOUBLETAKE issues
other types of system calls normally.

DOUBLETAKE’s heap design and its rollback has recovered the
memory state to the snapshotted state. To repeat the replayable
memory uses, DOUBLETAKE simply repeats memory allocations
and deallocations from applications and libraries according to the
program order. The additional memory uses happened in the replay
phase, such as bookkeeping the call stack of memory uses, will be
satisfied from DOUBLETAKE’s internal heap and will not affect the
memory uses of applications.

During replay, DOUBLETAKE enables tracking of precise infor-
mation in the memory allocator: all allocations and deallocations
record their calling context so these can be reported later, if needed.
Note that recording call sites during ordinary execution would be
prohibitively expensive, imposing 20–30% overhead; DOUBLE-
TAKE’s strategy removes this overhead from normal execution.

Finally, DOUBLETAKE handles traps caused by accesses to watch-
points. Inside the trap handler, DOUBLETAKE first determines
which watchpoint caused the current trap if there are multiple watch-
points. It also filters out any accesses from DOUBLETAKE itself.
DOUBLETAKE prints the callsite stack of the instruction respon-
sible for a buffer overflow or use-after-free errors and their mem-
ory allocation (or deallocation) sites. For memory leaks, DOUBLE-
TAKE reports the allocation callsite of the leaked object.

5. EVALUATION
We evaluate DOUBLETAKE to demonstrate its efficiency, in terms

of execution time, memory overhead, and effectiveness at detecting
errors. All experiments are performed on a quiescent Intel Core
2 dual-processor system with 16GB of RAM, running on Linux
3.13.0-53-generic with glibc-2.19. Each processor is a 4-core
64-bit Intel Xeon, operating at 2.33GHz with a 4MB shared L2
cache and a 32KB per-core L1 cache. All programs are built as 64-
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Figure 4: Runtime overhead of DOUBLETAKE (OF = Buffer Overflow Detection, ML = Memory Leak Detection, DP = Dangling
Pointers Detection) and AddressSanitizer, normalized to each benchmark’s original execution time. With all detections enabled,
DOUBLETAKE only introduces 4% performance overhead on average.

bit executables using LLVM 3.2 with the clang front-end and -O2
optimizations. All evaluations on SPEC CPU2006 are exercised
with the “ref” (reference) input set.

5.1 Runtime Overhead
We evaluate DOUBLETAKE’s runtime and memory overhead across

all of the C and C++ SPEC CPU2006 benchmarks, 19 in total.
We compare DOUBLETAKE with the previous state-of-the-art tool,
Google’s AddressSanitizer [38]. As mentioned earlier, Address-
Sanitizer can detect buffer overflows and use-after-free errors, but
it only detects memory leaks at the end of execution. By contrast,
DOUBLETAKE detects all of these errors at the end of every epoch.

In our evaluation, DOUBLETAKE discovered several memory
leaks, which trigger rollback and error identification. To isolate
normal execution overhead, we disable DOUBLETAKE’s rollback
in our evaluation. That is, our runs with DOUBLETAKE incur all
of the overhead of ordinary tracking (including implanting of trip-
wires and examining state) but do not measure the time to rollback
and locate errors; in general, this cost is low and in any event does
not affect bug-free execution, which is the common case. For each
benchmark, we report the average runtime of three runs.

Figure 4 presents execution time overhead results for DOUBLE-
TAKE and AddressSanitizer. On average, DOUBLETAKE imposes
only 4% overhead with all three error detectors enabled. When
use-after-free detection (DP) is disabled, DOUBLETAKE exhibits
no observable overhead. AddressSanitizer has an average runtime
overhead over 30%; recall that AddressSanitizer only performs leak
detection at the end of program execution, while DOUBLETAKE
performs it every epoch.

For 17 out of 19 benchmarks, DOUBLETAKE outperforms Ad-
dressSanitizer. For 14 benchmarks, DOUBLETAKE’s runtime over-
head with all detectors enabled is under 3%. Unsurprisingly, both
DOUBLETAKE and AddressSanitizer substantially outperform Val-
grind on all benchmarks.

Four of the benchmarks have higher than average overhead for
DOUBLETAKE and AddressSanitizer (400.perlbench, 403.gcc,
464.h264ref, and 483.xalancbmk). Both DOUBLETAKE and Ad-
dressSanitizer substantially increase these applications’ memory
footprints (see Table 3). We attribute their increased execution time
to this increased memory footprint and its corresponding increased
cache and TLB pressure.

DOUBLETAKE’s use-after-free detection adds roughly 4% run-
time overhead, but only gcc and h264ref run with more than 20%
overhead. As described in Section 3.2, all freed objects are filled
with canaries (up to 128 bytes). DOUBLETAKE spends a substan-

tial amount of time filling freed memory with canaries for applica-
tions with a large number of malloc and free calls. Thus, DOU-
BLETAKE runs much slower for the application gcc when the de-
tection of use-after-free errors is enabled. h264ref adds significant
overhead on DOUBLETAKE because of its large number of epochs.

Table 5 presents detailed benchmark characteristics. The “Pro-
cesses” column shows the number of different process invocations
(by calling fork). The number of epochs is significantly lower than
the number of actual system calls, demonstrating DOUBLETAKE’s
effectiveness at reducing epochs via its lightweight system call han-
dling. The benchmarks with the highest overhead share the follow-
ing characteristics: they consist of a substantial number of epochs
(e.g., perlbench and h264ref) or are unusually malloc-intensive
(e.g., gcc, omnetpp, and xalancbmk).

Runtime Overhead Summary: For nearly all of the bench-
marks we examine, DOUBLETAKE substantially outperforms the
state of the art. For most benchmarks, DOUBLETAKE’s runtime
overhead is under 3%.

5.2 Memory Overhead
We measure program memory usage by recording the peak phys-

ical memory usage. Virtual memory consumption is generally not
relevant for 64-bit platforms, which have enormous virtual address
ranges. DOUBLETAKE’s pre-allocated heap and internal heap con-
sume 8GB of virtual memory space. We compute peak physical
memory usage by periodically collecting process-level information
(on Linux, this is available in the /proc/self/smaps pseudo-file),
and summing the proportional set sizes of memory segments.

Figure 5 presents memory overhead for DOUBLETAKE and Ad-
dressSanitizer (Table 3 has full details). On average, both across
the benchmark suite and when broken down by footprint (large (>
100MB) and small (< 100MB)), DOUBLETAKE imposes consid-
erably lower memory overhead than AddressSanitizer. DOUBLE-
TAKE imposes lower memory overhead than AddressSanitizer on
all but three benchmarks: perlbench, h264, and namd.

We drill down to explore the application and analysis character-
istics that contribute to DOUBLETAKE’s memory overhead:

• Number of epochs: Much of DOUBLETAKE’s memory over-
head comes from the snapshot of writable memory taken at
the beginning of each epoch. However, the first snapshot is
often small because the heap is almost empty before the main
routine. For example, the benchmarks bzip2, mcf, sjeng,
milc, and lbm run in a single epoch, and accordingly exhibit
very low memory overhead.
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Figure 5: Memory overhead of DOUBLETAKE and AddressSanitizer.

• System call logs: System call logs introduce additional mem-
ory overhead that depends on the number of recorded system
calls.

• Analysis-specific overhead: Other sources of memory over-
head are analysis-specific. Buffer overflow detection adds
canaries between heap objects, which can increase memory
usage for programs with many small allocations. For this
analysis, DOUBLETAKE also maintains a bit map that marks
the placement of canaries: for each eight-bytes word of the
heap, DOUBLETAKE adds a bit to mark whether this word
has the canaries or not. Finally, use-after-free detection adds
constant-size memory overhead by delaying memory reuse.
Note that any similar dynamic analyses must impose similar
overheads.

Memory Overhead Summary: On average, DOUBLETAKE im-
poses lower memory overhead than AddressSanitizer. For large
footprint applications, it increases memory consumption for appli-
cations by 72% on average.

5.3 Effectiveness
We evaluate the effectiveness of DOUBLETAKE on a range of

applications, including synthetic test cases, standard benchmarks,
and real-world applications.

Synthetic test cases and benchmarks: We first evaluate DOU-
BLETAKE on 3 synthetic test cases, 26 test cases from the NIST
SAMATE Reference Dataset Project. This corpus includes 14 cases
with buffer overflows and 12 cases without overflows [17]. We also
evaluate DOUBLETAKE on 19 C/C++ benchmarks from the SPEC
CPU2006 benchmark suite.

For heap overflows, DOUBLETAKE detects all known overflows
in one synthetic test case and 14 test cases of SAMATE suite.
For the 12 cases without overflows in SAMATE suite, DOUBLE-
TAKE has no false positives. For the SPEC CPU2006 benchmarks,
DOUBLETAKE did not find any heap buffer overflows and use-
after-frees, which is the same result found with AddressSanitizer.
However, DOUBLETAKE detected a significant number of memory
leaks in perlbench and gcc of SPEC CPU2006, which we verified
using Valgrind’s Memcheck tool.

Real applications: We also ran DOUBLETAKE with a variety
of applications with known errors or implanted errors, listed in Ta-
ble 4. To verify the effectiveness of DOUBLETAKE’s buffer over-
flow detection, we collected applications from evaluations of prior
buffer overflow detection tools, Bugzilla, and bugbench [16, 20,

Memory Usage (MB)
Benchmark Original Address DOUBLE

Sanitizer TAKE
large footprint (> 100MB)

400.perlbench 656 1481 1834
401.bzip2 870 1020 989
403.gcc 683 2293 1791
429.mcf 1716 1951 2000
458.sjeng 179 220 212
471.omnetpp 172 538 299
473.astar 333 923 479
483.xalancbmk 428 1149 801
433.milc 695 1008 917
447.dealII 514 2496 1724
450.soplex 441 1991 1104
470.lbm 418 496 477
geometric mean +117% +72%

small footprint (< 100MB)
445.gobmk 28 137 66
456.hmmer 24 256 82
462.libquantum 66 144 132
464.h264ref 65 179 247
444.namd 46 79 96
453.povray 3 133 37
482.sphinx3 45 181 103
geometric mean +395% +208%
overall geometric mean +194% +114%

Table 3: AddressSanitizer and DOUBLETAKE memory usage,
in megabytes. The top section lists memory overhead for large-
footprint applications (over 100 MB), while the bottom section
presents overhead for small-footprint applications. DOUBLE-
TAKE’s memory overhead is generally less than AddressSani-
tizer’s.

23, 43], including bc, gcc-4.4.7, gzip, libHX, polymorph, and
vim-6.3.

In every case, DOUBLETAKE detected all known or converted
errors. Converted errors are existing global or array overflows that
DOUBLETAKE currently cannnot detect; we converted these to heap
overflows to verify its effectiveness. DOUBLETAKE also identified
memory leaks in gcc-4.4.7 and vim-6.3, which we confirmed
with Valgrind. To evaluate the detection of use-after-free errors,
we manually injected errors on real applications, such as vim-7.3,
ls and wc. DOUBLETAKE identified all of these memory errors.

Note that the errors observed in these applications are triggered
only by specific inputs. In the common case, these applications per-
form as expected. This is exactly the case for which DOUBLETAKE



Application Description LOC Error Type
bc basic calculator 12K Known Overflow
gzip compress or expand files 5K Converted Overflow
libHX common library 7K Known Overflow
polymorph filename converter 0.4K Converted Overflow
vim-6.3 text editor 282K Known Overflow
gcc-4.7 GNU Compiler Collection 5784K Unknown leaks
vim-6.3 text editor 282K Unknown leak
ls directory listing 3.5K Implanted UAF
wc word count 0.6K Implanted UAF
vim-7.4 text editor 332K Implanted UAF

Table 4: Error detection: DOUBLETAKE detects both known
(injected and non-injected) and previously unknown errors on
the above applications (any reported errors are real, as DOU-
BLETAKE has a zero false positive rate).

Benchmark Processes Epochs Syscalls # Mallocs
400.perlbench 3 43 60068 360605640
401.bzip2 6 6 968 168
403.gcc 9 9 155505 28458514
429.mcf 1 1 24443 5
445.gobmk 5 5 2248 658034
456.hmmer 2 2 46 2474268
458.sjeng 1 1 23 5
462.libquantum 1 1 11 179
464.h264ref 3 825 2592 146827
471.omnetpp 1 1 19 267168472
473.astar 2 2 102 4799955
483.xalancbmk 1 1 123706 135155557
433.milc 1 1 12 6517
444.namd 1 1 470 1324
447.dealII 1 1 8131 151332314
450.soplex 2 2 37900 310619
453.povray 1 1 25721 2461141

Table 5: Benchmark characteristics.

is ideal, since its low overhead is designed to make it feasible to use
it in deployed settings.

Detailed reporting: DOUBLETAKE reports precise information
aimed at helping programmers identify the exact causes of dif-
ferent memory errors, as shown in Figure 6(a). For buffer over-
flows, DOUBLETAKE reports the call sites and line numbers of the
overflow and the original memory allocation. For memory leaks,
DOUBLETAKE reports the last call site of its memory allocation.
For use-after-frees error, DOUBLETAKE reports both allocation and
deallocation call sites, and the instruction(s) that wrote to the ob-
ject after it was freed. In general, DOUBLETAKE provides more
detailed information than AddressSanitizer, as seen in Figure 6(b).

In addition, DOUBLETAKE can identify more errors than Ad-
dressSanitizer. DOUBLETAKE can track up to four buffer overflows
or use-after-free errors during the same epoch because its isolation
is based on the use of hardware debugging registers. AddressSani-
tizer always stops at the detection of the first such error.

Effectiveness Summary: Across the applications we examine,
DOUBLETAKE detects all known or injected errors with no false
positives. DOUBLETAKE is as effective at finding errors as Ad-
dressSanitizer, but with much lower performance and memory over-
head. It also provides more detailed reports for these errors.

6. DISCUSSION
The analyses we have built using DOUBLETAKE (heap buffer

overflows, use-after-free errors, and memory leaks) have no false
positives, but they can have false negatives. Our heap buffer over-
flow detector cannot identify all non-contiguous buffer overflows,

a limitation of as all canary-based detectors. If an overflow touches
memory only in adjacent objects and skips over canaries, DOU-
BLETAKE’s end-of-epoch scan will not reveal any evidence of the
overflow. Both the buffer overflow and use-after-free detectors can
detect errors only on writes. To reduce overhead, the use-after-free
detector only places canaries in the first 128 bytes of freed objects.
If a write to freed memory goes beyond this threshold, our detector
will not find it. The memory leak detector will not produce false
positives, but non-pointer values that look like pointers to leaked
objects can lead to false negatives. Finally, if a leaked object was
not allocated in the current epoch, DOUBLETAKE’s re-execution
will not be able to find the object’s allocation site (a limitation
shared by AddressSanitizer). In practice, DOUBLETAKE’s epochs
are long enough to collect allocation site information for all leaks
detected during our evaluation.

While evidence-based dynamic analyses can run with very low
overhead, they cannot detect errors if there is no evidence, or it is
not practical to force evidence of their existence. Evidence-based
analysis also depends on errors being generally monotonic: once
an error has occurred, its evidence needs to persist until the end of
the epoch in order to ensure detection.

Finally, the current prototype of DOUBLETAKE is limited to exe-
cuting single-threaded code. However, we believe this is primarily
an engineering question. Evidence-based analysis does not depend
on fully deterministic replay. Consider the case of a memory error
arising due to a race. During replay, the same sequence of writes
may not recur, and thus the hardware watchpoints in those ad-
dresses might not be triggered. In this scenario, DOUBLETAKE can
simply continue execution having successfully masked the error,
or repeatedly re-execute the epoch in an effort to expose the data
race. Because of this flexibility, DOUBLETAKE will not need to
track details about the ordering of memory accesses, which is what
makes deterministic record-and-replay systems expensive. Sup-
porting multithreaded programs will only require interception of
synchronization operations to allow DOUBLETAKE to pause threads
at epoch boundaries and to track the order of synchronization oper-
ations.

7. RELATED WORK
Dynamic Instrumentation: Numerous error detection tools use

dynamic instrumentation, including many commercial tools. Val-
grind’s Memcheck tool, Dr. Memory, Purify, Intel Inspector, and
Sun Discover all fall into this category [8, 14, 18, 28, 32]. These
tools use dynamic instrumentation engines, such as Pin, Valgrind,
and DynamiRIO [7, 24, 28]. These tools can detect memory leaks,
use-after-free errors, uninitialized reads, and buffer overflows. Dy-
namic instrumentation tools are typically easy to use because they
do not require recompilation, but this ease of use generally comes
at the cost of high overhead. Programs run with Valgrind take 20×
longer than usual, and Dr. Memory introduces 10× runtime over-
head. DOUBLETAKE is significantly more efficient than prior dy-
namic instrumentation tools, with under 5% performance overhead.

Several dynamic analysis tools leverage static analysis to reduce
the amount and thus the overhead of instrumentation [1, 12, 13,
27, 33, 38]. While these tools generally reduce overhead over ap-
proaches based exclusively on dynamic instrumentation, but can-
not detect errors in code that was not recompiled with this instru-
mentation in place (e.g., inside libraries). In addition, our results
show that AddressSanitizer (the previous state-of-the-art, which
depends on static analysis) is considerably slower than DOUBLE-
TAKE, which can also perform its analysis on the entire program
(including libraries) with no recompilation.

Interposition: DOUBLETAKE uses library interposition exclu-



DoubleTake:+Heap+buffer+overflow+at+address+0x100000120+with+value+0x2038313a31312032.++
The+heap+object+has+size+100+and+starts+at+0x100000020.!
Caught!a!heap!overflow!at!0x100000120.!Current!call!stack:!
tests/SAMATE/overflow/Heap_overflow_15.cpp:16!
!
Memory!allocaFon!site:!!
tests/SAMATE/overflow/Heap_overflow_15.cpp:13!

(a) DOUBLETAKE Report

ERROR:%AddressSani/zer:%heap3buffer3overflow%on%address%0x7ffff7f521c7%at%pc%0x40a396%%
bp%0x7fffffffe800%sp%0x7fffffffdI0.%WRITE%of%size%1%at%0x7ffff7f521c7%thread%T0%
%%%%#0%0x40a395%(tests/SAMATE/overflow/Heap_overflow_153pthread+0x40a395)%
%%%%#1%0x407ff9%(tests/SAMATE/overflow/Heap_overflow_153pthread+0x407ff9)%
%%%%#2%0x7ffff6d7bec4%(/lib/x86_643linux3gnu/libc32.19.so+0x21ec4)%

(b) AddressSanitizer Report

Figure 6: Example reports of DOUBLETAKE and AddressSanitizer for buffer overflow identification.

sively during normal execution. More expensive instrumentation is
only introduced after an error has been detected. BoundsChecker
interposes on Windows heap library calls to detect memory leaks,
use-after-free errors and buffer overflows [26]. Many prior ap-
proaches use a mix of library interposition and virtual memory
techniques to detect memory errors [3, 5, 9, 15, 21, 25, 30, 31, 35,
43], though their overhead is much higher than DOUBLETAKE’s.

Record and replay: Several replay-based approaches target soft-
ware debugging and/or fault tolerance [6, 19, 36, 37, 39, 40]. Flash-
back supports replay debugging by employing a shadow process to
checkpoint the state of an application, and recording the results of
system calls to facilitate the replay. Triage uses replay to automate
the failure diagnosis process for crashing bugs [40]. Both Flash-
back and Triage need custom kernel support.

Aftersight is the related work that is closest in spirit to DOUBLE-
TAKE [10]. It separates analysis from normal execution by log-
ging inputs to a virtual machine and exporting them to a separate
virtual machine for detailed (slow) analysis that can run offline or
concurrently with application execution. Aftersight monitors appli-
cations running in a virtual machine, which adds some amount of
workload-dependent overhead. VM-based recording alone adds ad-
ditional runtime overhead, an average of 5% on the SPEC CPU2006
benchmarks. Aftersight’s dynamic analyses are offloaded to unused
processors, which may not be available in some deployments. Un-
like Aftersight, DOUBLETAKE does not require the use of a virtual
machine, does not rely on additional processors for dynamic anal-
yses, and incurs lower average overhead.

Speck is another replay-based system focused on security check-
ing, including taint analysis and virus scanning [29]. Security checks
generally require applications to halt immediately upon detecting
an error, functionality that DOUBLETAKE by design does not pro-
vide. Other systems have focused on reducing the performance
overhead of recording [2, 22, 34, 41].

8. CONCLUSION
This paper introduces evidence-based dynamic analysis, a new

lightweight dynamic analysis technique. Evidence-based dynamic
analysis works for errors that naturally leave evidence of their oc-
currence, or can be forced to do so. These errors include key prob-
lems for C and C++ programs: buffer overflows, dangling-pointer
errors, and memory leaks. Evidence-based dynamic analysis is fast
because it lets the application run at full speed until an error is
detected; execution is then rolled back and replayed with instru-
mentation at the point where the evidence was found, pinpointing
the error. We present DOUBLETAKE, an evidence-based dynamic
analysis framework, and implement these analyses using it. The
resulting analyses are the fastest to date, imposing on average un-
der 5% overhead. These results demonstrate the effectiveness and
efficiency of this approach, which promises to speed testing and
dramatically increase the reach of dynamic analysis by extending
it to deployed settings. DOUBLETAKE is available for download at
http://github.com/plasma-umass/DoubleTake.
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