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ABSTRACT

RECONSTRUCTING GEOMETRIC STRUCTURES
FROM

COMBINATORIAL AND METRIC INFORMATION

FEBRUARY 2015

MD ASHRAFUL ALAM

B.Sc., BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ileana Streinu

In this dissertation, we address three reconstruction problems.

First, we address the problem of reconstructing a Delaunay triangulation from a

maximal planar graph. A maximal planar graphG is Delaunay realizable if there exists

a realization of G as a Delaunay triangulation on the plane. Several classes of graphs

with particular graph-theoretic properties are known to be Delaunay realizable. One

such class of graphs is outerplanar graph. In this dissertation, we present a new proof

that an outerplanar graph is Delaunay realizable.

Given a convex polyhedron P and a point s on the surface (the source), the ridge

tree or cut locus is a collection of points with multiple shortest paths from s on the

surface of P . If we compute the shortest paths from s to all polyhedral vertices of P

and cut the surface along these paths, we obtain a planar polygon called the shortest

vi



path star (sp-star) unfolding. It is known that for any convex polyhedron and a

source point, the ridge tree is contained in the sp-star unfolding polygon [8]. Given a

combinatorial structure of a ridge tree, we show how to construct the ridge tree and

the sp-star unfolding in which it lies. In this process, we address several problems

concerning the existence of sp-star unfoldings on specified source point sets.

Finally, we introduce and study a new variant of the sp-star unfolding called

(geodesic) star unfolding. In this unfolding, we cut the surface of the convex polyhe-

dron along a set of non-crossing geodesics (not-necessarily the shortest). We study

its properties and address its realization problem. Finally, we consider the following

problem: given a geodesic star unfolding of some convex polyhedron and a source

point, how can we derive the sp-star unfolding of the same polyhedron and the source

point? We introduce a new algorithmic operation and perform experiments using

that operation on a large number of geodesic star unfolding polygons. Experimental

data provides strong evidence that the successive applications of this operation on

geodesic star unfoldings will lead us to the sp-star unfolding.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. DELAUNAY REALIZATION OF OUTERPLANAR GRAPHS . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Delaunay realizability of outerplanar graph . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Inscribability criterion for outerplanar graphs . . . . . . . . . . . . . . . . . 12
2.3.2 Weight assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 The face condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Bounds on weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 The edge and cycle conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. SHORTEST PATH STAR UNFOLDING . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Su-Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



3.2.2 Polyhedral metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Ridge tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Reconstruction of ridge tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Characterization of sp-star unfolding polygons . . . . . . . . . . . . . . . . 27
3.3.3 Point sets supporting sp-star unfolding . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Characterization of sp-star unfolding polygons . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Points supporting star unfoldings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Source points in convex position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Source points in arbitrary position . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Realizations of combinatorial ridge trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Source angles and the angles of the Delaunay triangulation . . . . . 37
3.6.2 Realization of a Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . 42
3.6.3 Dillencourt’s Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.4 Delaunay realization supporting the sp-star unfolding . . . . . . . . . . 45

3.7 Tools for experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. GEODESIC STAR UNFOLDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Contrasts with sp-star unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Non-simple, self-overlapping polygon . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Placement of polyhedral vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 Self-intersecting core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Relation with su-polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Construction of geodesic star unfolding polygons . . . . . . . . . . . . . . . . . . . . . 58

4.6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 Point sets supporting geodesic star unfoldings . . . . . . . . . . . . . . . . . 58

4.7 Conversion to sp-star unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



4.7.1 Cut and paste operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7.2.1 Tools used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.2.2 Generation of input su-polygons . . . . . . . . . . . . . . . . . . . . . 64
4.7.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5. CONCLUSIONS AND OPEN PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Realization of Delaunay triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Ridge tree reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Geodesic star unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



LIST OF FIGURES

Figure Page

1.1 (a) An example of a Delaunay realizable graph. (b) An example of a
graph that is not Delaunay realizable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A classical example of an edge unfolding (right), obtained by cutting
the cube (left) along a spanning tree of its 1-skeleton. . . . . . . . . . . . . . . 3

1.3 (a) A tetrahedron and the shortest paths from a source vertex placed
on a face. (b) The corresponding sp-star unfolding polygon, with
source and polyhedral vertices colored, respectively, in red and
blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 (a) One of the shortest paths on the tetrahedron from Fig. 1.3(a) is
replaced by a geodesic. (b) The corresponding geodesic star
unfolding polygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 (a) A maximal outerplanar graph, with outer face cycle (black edges)
and interior edges (red). (b) Its stellation. Blue edges are the
stellating edges. (c) The dual graph of the stellated outerplanar
graph. The dual edges are dashed. Red, black and blue edges are
backbone, leaf and cycle edges, respectively. . . . . . . . . . . . . . . . . . . . . . 15

2.2 (a) The dual of a stellated outerplanar graph. Thick edges are
backbone edges. (b) Dual graph after contraction of all backbone
edges. (c) Expansion of a single backbone edge. . . . . . . . . . . . . . . . . . . . 16

2.3 Three possible cases when a backbone edge is expanded, leading to
the expansion of two faces, which have, as neighbors, (a) four
distinct faces, (b) two distinct faces and one common face and (c)
two common faces. When a backbone edge is expanded, only the
weights of these neighbor faces have to be adjusted; all the other
faces remain unchanged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xi



2.4 A stellated outerplanar graph where all diagonals emanate from a
single vertex. (b) Its dual. Backbone edges are thickened. The
cycle edge whose weight is decremented by ε/2 at each backbone
edge expansion step is labeled by c1. The cycle edges whose
weights are increased by ε/4 for each expansion of the backbone
edge are c2 and c3. A special case occurs when e1 and e2 are
expanded: the weights of c2 and c3 are then increased by ε/2. . . . . . . . 18

2.5 (a) A dual G∗s of a stellate outerplanar graph. (b) A non-facial cycle
C of G∗s, shown in thick lines, divides the plane into two regions.
The shaded region, containing e as an internal edge, has the
smaller number of faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 The two cases appearing in the proof of Theorem 14. . . . . . . . . . . . . . . . . 30

3.2 Dashed lines indicate the increase/decrease behavior of the two
source angles incident to a v-vertex vi, when displaced from its
position: (Left) increase, when the displacement is towards the
open end of the infinite Voronoi edge, and (Right) decrease, when
moved towards the closed end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 An extreme flap polygon (in green) together with the Voronoi
diagram of the s-vertices (in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 (a) An sp-star unfolding polygon (in green) together with the Voronoi
diagram of its s-vertices (in red). The s-vertices are in non-convex
position. (b) The corresponding extreme flap polygon on the
s-vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 An example of an su-polygon which violates condition (a): the
bisector of {s4, s1} is not in the Voronoi diagram. . . . . . . . . . . . . . . . . . 35

3.6 An example proving Lemma 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 A point set in convex position, together with its Voronoi diagram
(red), Delaunay triangulation (gray) and the extreme flap polygon
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 The base case analysis for the inductive proof of Lemma 24. Shown is
an extreme flap polygon for four convex points A,B,C and D.
The triangles 4ABD and 4BCD are Delaunay. . . . . . . . . . . . . . . . . . 39

3.9 The inductive step in the proof of Lemma 24. (a) An extreme flap
polygon with 5 s-vertices. (b) A new s-vertex is added. . . . . . . . . . . . 41

xii



3.10 Illustration of the steps in Dillencourt’s algorithm: (a) First visit of a
triangle; (b) Revisiting previously visited triangles and
readjusting the variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Illustration of the inductive step in the proof of Lemma 27. (a) In
this triangulation, b is a boundary angle. (b) At the next
iteration, a new triangle AED is added and b becomes an internal
angle; a and d are new boundary angles. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Diagonals of a simple polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 (a)Face angles of one vertex of the cube are shown. The curvature of
this point is 2π minus the sum of these face angles.(b) When
flattened on the plane, curvature of a point is the angle exterior to
the unfolding polygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 (a) One of the shortest paths on the tetrahedron from Fig. 1.3(a) is
replaced by a geodesic. (b) The corresponding geodesic star
unfolding polygon. Red and blue vertices are source images and
polyhedral vertices respectively. One an source angle is larger
than π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 An example of a self-overlapping geodesic star unfolding polygon.
The circular and square vertices are polyhedral vertices and
source images respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 An example of a geodesic star unfolding. Black edges denote the
Voronoi diagram. Polyhedral vertex v2 is on the extension of a
Voronoi segment and the bisector on which v4 lies is not present
in the Voronoi diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 An example of a geodesic star unfolding where the core, shown in
blue edges, is self-intersecting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 An example of a extreme flap polygon with larger than 2π s-angles.
It is difficult to push the v-vertices inwards to make the sum of
the s-angles equal to 2π while maintaining a valid geodesic star
unfolding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 (a) Six s-vertices on the circle. The Voronoi segments meet at the
center of the circle. (b) A flap polygon where all s-angles but one
(at si) are zero. (c) An su-polygon obtained from the given
s-vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



4.9 (a) An su-polygon where circled and squared vertices are v- and
s-vertices respectively. The cut-paste operation will be applied on
the red diagonal. The polygon will be cut along the red diagonal
and pasted along the two cut edges emanating from the v2. (b)
New su-polygon after the application of the cut-paste operation.
Blue diagonal was the old cut edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



CHAPTER 1

INTRODUCTION

In this dissertation, we focus on two well known structures in Computational

Geometry - Delaunay tessellation and the shortest path star unfolding and introduce

a new structure - geodesic star unfolding. We address three reconstruction problems

related to these structures. In this chapter, we briefly discuss the concepts, problems

and our contributions, which will occupy the rest of the dissertation.

Delaunay tessellation. A Delaunay tessellation of a set of points on the plane

is a planar subdivision where the circumcircle of any face does not contain any other

points inside it. If all faces, except possibly the outer face, are triangles, then it

is called the Delaunay triangulation. Because of their unique structural properties,

Delaunay triangulations have many applications, such as computing the minimum

spanning tree [41], or the alpha hull of a point set [25], or generating a mesh on a

polyhedral surface [9, 40, 26].

The problem of characterizing and reconstructing arbitrary Delaunay tessellations

(in two- or higher dimensions) is an old problem. A closely related problem, going

back to Steiner [29] asks for a characterization of the graphs of inscribable or cir-

cumscribable polyhedra1. The best result to date is due to Rivin[44], who proved

necessary and sufficient conditions for a polyhedral graph to be of inscribable or cir-

cumscribable type. Dillencourt and Smith [21] linked inscribability of a graph to its

1Inscribable and circumscribable polyhedra are those whose vertices lie on a sphere or whose
faces are tangent to a sphere, respectively

1



(a) (b)

Figure 1.1: (a) An example of a Delaunay realizable graph. (b) An example of a
graph that is not Delaunay realizable.

realizability as a Delaunay tessellation and identified several classes of graphs that

can be realized as Delaunay tessellations. See Fig 1.1.

An outerplanar graph is a graph with all vertices on the outer face. Dillencourt

proved, constructively, that any maximal outerplanar graph can be realized as a

Delaunay triangulation [19]. His proof used a simple and natural criterion on the

angles of the triangles in a Delaunay triangulation, and the algorithm takes O(n2)

time. The run time of this algorithm was later improved by Lambert [34]. However,

none of these algorithms used the inscribability criteria set by Rivin [44]. Moreover,

these algorithms fail when the outerplanar graph is not maximal, i.e, all faces are not

cycles of length 3.

Contributions. We show that every outerplanar graph can be realized as a De-

launay tessellation. Our proof uses Rivin’s [44] inscribability criterion and constructs

an explicit witness of this inscribability, in the form of certain weights assigned to the

edges of the graph. Our proof technique covers all outerplanar graphs, including those

which are not maximal; by contrast, Dillencourt’s algorithm works only for maximal

outerplanar graphs.

Unfolding. An unfolding of a polyhedron P in R3 is obtained by cutting the

surface of P along a collection of non-crossing geodesic arcs that span the vertices of

2



(a)
(b)

Figure 1.2: A classical example of an edge unfolding (right), obtained by cutting the
cube (left) along a spanning tree of its 1-skeleton.

P and then immersing the surface into the 2D plane such that it is locally flat. This

set of edges, known as cut edges, forms a tree (called a cut tree) whose leaves are the

polyhedral vertices. The unfolding is locally flat and non-overlapping. Globally, the

surface may self-overlap: its boundary is a planar polygon, which, in general, may

not be simple.

Different types of unfoldings are distinguished by the choice of the cut tree. If

the cut tree is a spanning tree of the 1-skeleton of the polyhedral surface, then the

resulting unfolding is called edge unfolding. The uncut edges appear as the diagonals

of the unfolding polygon. An example of an edge unfolding of a cube is shown in Fig

1.2.

Shortest path star unfolding. Another well known unfolding can be generated

by fixing a point s (the source vertex ) on the surface of the polyhedron P and cutting

along the shortest paths from s to all vertices v1, v2, . . . , vn of P . The resulting

unfolding is called a shortest-path star (sp-star) unfolding. Since the cut tree is a

star, and the resulting unfolding is non-overlapping, the boundary of the unfolding is

known as an sp-star unfolding polygon [8, 47]. See Fig 1.3.

Along with its application in computing shortest paths in polyhedral surfaces

[1, 16], the sp-star unfolding of a convex polyhedron P exhibits some interesting

structural properties. For example, if P has n vertices, then its sp-star unfolding has

3



(a) (b)

Figure 1.3: (a) A tetrahedron and the shortest paths from a source vertex placed on
a face. (b) The corresponding sp-star unfolding polygon, with source and polyhedral
vertices colored, respectively, in red and blue.

2n vertices when the source is not placed at one of the polyhedral vertices, and 2(n−1)

otherwise. To streamline the presentation, we work under the assumption that the

first case holds. Along the boundary of the unfolding, the n vertices corresponding

to the polyhedral vertices appear in alternation with n vertices which are copies of

the source vertex. The latter are known as source images. To fix the notation, we

label the source images as (si)i=1,..,n and the polyhedral vertices as (vi)i=1,..,n. The

sum of all the angles, interior to the surface, at the source images is exactly 2π under

our assumption that the source is not placed at a vertex of the polyhedron. Each

polyhedral vertex is placed on the perpendicular bisector of its adjacent two source

images. A detailed exposition on sp-star unfolding can be found in [18].

Ridge tree. Given a convex polyhedron P and a source point s on P , a ridge

tree is a set of points with multiple shortest paths from s on P . It is an embedded

tree on the surface of P and the vertices of P are its leaves. It is known that the ridge

tree is contained in the sp-star unfolding and is the Voronoi diagram of the source

images [8]. Since ridge trees are combinatorial trees, it will be interesting to know

whether all the combinatorial types of trees are represented as sp-star ridge trees. In

other words, given a combinatorial tree, we would like to know if it can be realized

as the ridge tree of some convex polyhedron and with respect to some source point.
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Contributions. We address the following problems related to the sp-star unfold-

ing and the ridge tree:

• We present the necessary and sufficient conditions for a polygon to arise as

the sp-star unfolding of some convex polyhedron and a source vertex. In other

words, we characterize the sp-star unfolding polygons. The necessary conditions

are implicit in [8]. We show that those conditions are also sufficient and thus

complete the characterization.

• Based on this characterization, we show that there may not exist an sp-star

unfolding polygon on a given set of cyclically ordered points designated as source

images. We present some examples and give some positive and negative results

on the existence of the sp-star unfolding on specified point sets.

• Finally, we show how to reconstruct a ridge tree and its underlying sp-star

unfolding from its combinatorial structure.

Geodesic star unfolding. We generalize the sp-star unfolding by cutting along

a star-tree so that the cut edges are non-crossing geodesics (i.e. not necessarily the

shortest geodesics) from the source vertex (Fig. 1.4). The result is a curvature zero

disk-like surface with a polygonal boundary. We refer to this more general setting as

a geodesic star unfolding and use the term geodesic star unfolding polygon to refer to

its polygonal boundary.

Geodesic star unfoldings share all properties of sp-star unfoldings as stated above.

However, it has two basic differences with an sp-star unfolding. First, all of its

boundary edges are not the shortest paths on the corresponding polyhedral surface,

where as the boundary edges of the sp-star unfolding are, by design, the shortest paths

on the polyhedral surface. Second, the source angles of the sp-star unfolding are all

acute angles but this is not necessarily true for geodesic star unfoldings. Although,
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(a) (b)

Figure 1.4: (a) One of the shortest paths on the tetrahedron from Fig. 1.3(a) is
replaced by a geodesic. (b) The corresponding geodesic star unfolding polygon.

it is possible that all of the source angles of a geodesic star unfolding may be acute,

there are cases when one angle is larger than π. See, for example, Fig 1.4(b).

Because of the close relationship between the geodesic and sp-star unfolding, it

is natural to ask the following question: given a geodesic star unfolding of a convex

polyhedron with respect to a source vertex, can we convert it into the sp-star unfolding

of the same polyhedron and the source vertex? A positive answer will give us an

alternative way to compute the shortest paths on polyhedral surfaces without using

the complex traditional algorithms. To the best of our knowledge, there are no

existing results on this problem.

Embedding the surface of an arbitrary polyhedron, particularly convex polyhe-

dron, on the plane is sometimes necessary to compute some geometric objects like

shortest paths, triangular mesh etc. One way to do this is to compute an arbitrary

convex polyhedron in R3, cut the surface according to certain rules and unfold it

onto the plane. All of these operations are complex and computationally intensive.

Therefore, it is desirable to have an algorithm that will directly generate the polyhe-

dral surface as a planar polygon. However, any arbitrary polygon does not represent

a convex polyhedral surface - Alexandrov [6] presented the characterizations of such

polygons. One of the main focuses of this dissertation is to present algorithms to

generate convex polyhedral surfaces in the forms of geodesic and sp-star unfoldings

without using unfolding operations.
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Contributions.We address the following problems related to the geodesic star

unfolding:

• We study the properties of the geodesic star unfolding of a convex polyhedron.

We compare these properties with those of the sp-star unfolding. We discover

several contrasting properties which are specific to the geodesic star unfolding.

• We consider the problem of constructing the geodesic star unfolding from a set

of cyclically ordered planar points. We discuss the challenges of this problem

and present algorithms to generate the geodesic star unfolding from a special

class of points.

• We address the problem of deriving an sp-star unfolding from the geodesic star

unfolding of the same convex polyhedron and the source vertex. We use a new

type of algorithmic operation, called cut-paste operation on geodesic star un-

folding polygons. Under this operation, we select and cut along a diagonal from

a polyhedral vertex to a source image and paste along the current cut edges

emanating from that polyhedral vertex. The result is a new geodesic star un-

folding (possibly sp-star) of the same convex polyhedron and the source vertex.

We have implemented this operation in Mathematica and performed experi-

ments on a large number of geodesic star unfolding polygons. Experimental

data provides strong evidence that successive applications of this operation on

geodesic unfolding polygons always lead us to the sp-star unfolding. However,

at the time this dissertation has been completed, only elements of the proof

have been completed.

1.1 Outline

The dissertation is organized as follows: the results on the Delaunay realization

problem are presented in Chapter 2. Chapter 3 addresses the ridge tree reconstruction
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problem and presents the characterization of sp-star unfolding polygons. Chapter 4

introduces the geodesic star unfolding and presents results, theoretical and experi-

mental, on deriving the sp-star unfolding from a geodesic star unfolding. Finally,

Chapter 5 summarizes the results with remaining open problems.
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CHAPTER 2

DELAUNAY REALIZATION OF OUTERPLANAR
GRAPHS

2.1 Introduction

A triangulation of set of planar points P is a planar subdivision where all faces,

except possibly the outerface, are triangles. If the circumcircle of any triangle does not

contain any other points inside it, it is called a Delaunay triangulation. Delaunay

triangulations possess some nice structural properties. For example, the minimum

angle among the angles of the triangles in a Delaunay triangulation is larger than

that of any possible triangulation of the same set of points. Due to these structural

properties, it is widely used in generating triangular meshes on 3D surfaces for surface

reconstruction [11, 23, 22, 28]. Besides, it is also used to compute several other

geometric objects like the Euclidean minimum spanning tree [41], the alpha hull [25],

Gabriel graphs [27] and relative neighborhood graphs [48].

Because of their importance in different fields, characterizing arbitrary Delaunay

triangulations has received significant attention. Although the problem is substan-

tially difficult, some progresss has been made. For example, Dillencourt [20] has

shown that all Delaunay triangulations are 1-tough1 and have perfect matching. A

more closely related problem, due to Steiner [30], asks to characterize the graph of

inscribable and circumscribable polyhedra. The most prominent result is due to Rivin

[44, 45] who presented a characterization of polyhedral graphs of inscribable and cir-

cumscribable type. Dillencourt and Smith [21] linked combinatorial characteristics

1A graph is 1-tough if removing k vertices splits the graph into at most k components.
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of inscribable graphs to their realizability as Delaunay triangulations. Using this

technique, they have identified a set of graphs which are Delaunay realizable. For

example, they have proved that all 4-connected maximal planar graphs are Delaunay

realizable. Recently, Ziegler et al [50] linked the inscribability of a set of polyhedral

graphs, called 1-skeletons of stacked polytopes, to Delaunay realizability.

The Delaunay realizability of an outerplanar graph was proved almost 25 years

ago by Dillencourt [19]. He used a simple and constructive proof using the natural

criterion on the angles of triangles in a Delaunay triangulation. The algorithm in-

crementally calculates the angles of each triangle and takes O(n2) time. Later, the

run time of the algorithm was improved by Lambert [34]. To the best of our knowl-

edge, no proofs or algorithms exploited the inscribability criterion to show that the

outerplanar graph is Delaunay realizable.

2.1.1 Results

The main result in this chapter is a new proof of the following theorem:

Theorem 1 Any outerplanar graph can be realized as a Delaunay tessellation.

Our proof links the Delaunay realizability of the outerplanar graph with the in-

scribability criterion set by Rivin [44]. We show, using a constructive proof, that

there exists a set of weights on the edges of any outerplanar graph that satisfies the

inscribability criterion.

2.2 Preliminaries

Given a graph G = (V,E), two paths between two vertices are independent if they

do not share other vertices besides the end-points. A graph is connected if there is a

path between any two vertices and it is k-connected if there are k independent paths

between any two vertices. All outerplanar graphs are 2-connected.
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A graph is planar if it can be drawn in the plane (or, equivalently, on the sphere)

with no crossings of endpoint-disjoint edges. A drawing of a planar graph on the

sphere, called a spherical graph, subdivides the sphere into regions called faces. For

2-connected spherical graph drawings, the faces are topological disks. In the plane,

exactly one face, called the outer face, is unbounded. A spherical graph is specified

by its sets of vertices, edges and faces: G = (V,E, F ). A plane graph is obtained from

a spherical graph by specifying a face f as the outer face: G = (V,E, F, f).

The stellation Gs of a plane graph G = (V,E, F, f) is the graph obtained by

adding one new vertex (the stellating vertex s) and connecting it to all the vertices

of f through edges called stellating edges. Stellation does not violate the planarity

property: a stellated planar graph remains planar, and a plane realization of it is

obtained by placing the stellating vertex inside the face f .

The dual G∗ = (V ∗, E∗, F ∗) of a spherical graph G = (V,E, F ) is obtained by

switching the roles of vertices and faces: V ∗ = F , E∗ = E, F ∗ = V .

A plane graph where all vertices lie on the outer face is called an outerplanar

graph. In a maximal outerplanar graph, all faces are triangular except the outer face.

A wheel graph is obtained by stellating a cycle.

A cutset of a graph is the minimal set of edges whose removal disconnects the

graph. A cutset is coterminous if all the edges emanate from a single vertex and

noncoterminous if its edges do not have a common endpoint. In the dual graph G∗

of a spherical graph G, a coterminous cut set of G becomes the set of edges of a face

in G∗; a noncoterminous cut set of G becomes a non-facial cycle of G∗ (a cycle which

is not a face).

A graph is polyhedral if it is planar and 3-connected. In this case, the faces

of a spherical realization are uniquely determined. Any polyhedral graph can be

realized as the 1-skeleton of a convex polyhedron in dimension 3 (Steinitz theorem,
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see Grünbaum [30]). A polyhedral graph is inscribable if it can be realized as the

1-skeleton of an convex polyhedron inscribed in a sphere.

Given a set P of points in the Euclidean plane, a triangulation of P is a plane

graph where all faces, with the possible exception of the outer face, are triangles.

The Delaunay triangulation of a point set P is a triangulation of P with the property

that the circumcircle of any face contains no other point of P inside. A Delaunay

tessellation is a geometric planar graph which has the circumcircle property for each

of its faces but not all faces need to be triangles.

A planar graph G = (V,E, F ) is Delaunay realizable if there exists an embedding

of the graph on the plane as Delaunay tessellation.

2.3 Delaunay realizability of outerplanar graph

In this section, we prove Theorem 1. For our convenience, we first reformulate the

inscribability criterion with respect to outerplanar graphs.

2.3.1 Inscribability criterion for outerplanar graphs

Igor Rivin [44, 45] gave a complete characterization of the graphs which are of

inscribable type :

Theorem 2 [Rivin] A planar graph G = (V,E) is of inscribable type if and only if:

1. G is 3-connected, and

2. There exists an assignment w : E → R of weights w(e) to the edges e ∈ E such

that :

(a) Edge condition For each edge e, 0 < w(e) ≤ 1/2.

(b) Vertex condition For each vertex v, the sum of all weights of edges

incident to v is 1.
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(c) Cutset condition For each non-coterminous cutset C ⊆ E, the sum of

all the weights of edges of C must exceed 1.

Theorem 2 can be found in [21] (page 65), as a reformulation in the Euclidean

space of the general, hyperbolic space result of Rivin et al [33] (page 247).

We also have the following lemma from [21]:

Lemma 3 A plane graph G = (V,E,F,f) is realizable as a Delaunay Tessellation if

and only if its stellation Gs is of inscribable type.

Combining Theorem 2 with this lemma, we have to prove that the stellation Gs

of any outerplanar graph G is 3-connected and has the weight assignment properties

from Theorem 2. We prove 3-connectivity first.

Lemma 4 Any outerplanar graph is 2-connected.

Proof In an outerplanar graph, all the vertices lie on the unbounded face f . If

we label the vertices as 1, 2, · · · , n in the order in which they appear on the outer

face, there are two independent paths between any pair of vertices i and j: one from

i, i+ 1, · · · , j and another is i, i− 1, · · · , j.

Lemma 5 The stellation of Gs of an outerplanar graph G = (V,E,F,f) is 3-connected.

Proof By definition, the stellation of a planar graph is also a planar graph. We must

show that there exist three independent paths between any two vertices i and j of Gs.

If i and j are the vertices of the outerplanar graph, Lemma 4 gives two independent

paths between i and j. A third independent path is (i, s, j) where s is the stellating

vertex. If i 6= s and j = s, then we obtain three independent paths (s, i), (s, i− 1, i)

and (s, i+ 1, i) (index arithmetic is done modulo n in the range 1,. . . ,n)

For the convenience, we restate the weight assignment conditions in terms of the

dual graph G∗ = (V ∗, E∗, F ∗).
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Theorem 6 [Dual formulation] A 3-connected planar graph G = (V,E) is of

inscribable type if and only if its dual G∗ has an assignment w : E → R of weights

on its edges e ∈ E∗ = E such that

1. Edge condition For each edge e ∈ E∗, 0 < w(e) ≤ 1/2.

2. Face condition For each face f ∈ F ∗, the sum of its edge wights is 1.

3. Cycle condition For each non-facial cycle C ⊆ E∗, the sum of its edge weights

is at least 1.

With this formulation, and using Lemma 3, the proof of Theorem 1 is reduced to

proving:

Theorem 7 Let Gs be the stellation of an outerplanar graph. Then there exists a

weight assignment on the edges of its dual graph G∗s such that the three edge, face and

cycle conditions of Theorem 6 are satisfied.

In the next two sections, we show the existence of a weight assignment satisfying

the face, edge and cycle conditions as required in Theorem 7.

2.3.2 Weight assignment

We start by having a closer look at the structure of the dual of a stellated outer-

planar graph G∗s. If we remove the cycle C made of the duals of the stellating edges

of Gs, what remains is a tree, whose leaves lie on the cycle C. Removing the leaf

edges of the tree, what remains is a smaller tree called the backbone; this is actually

the dual of the outerplanar graph without the outerface. We thus partition the edges

of G∗s into three classes; cycle, backbone and leaf edges. See Fig 2.1.

Edge contraction and expansion: The graph obtained by the contraction of

an edge ij has the two vertices i and j merged into one new vertex v and the edges
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(a) (b) (c)

Figure 2.1: (a) A maximal outerplanar graph, with outer face cycle (black edges) and
interior edges (red). (b) Its stellation. Blue edges are the stellating edges. (c) The
dual graph of the stellated outerplanar graph. The dual edges are dashed. Red, black
and blue edges are backbone, leaf and cycle edges, respectively.

incident to either i or j become incident to v. The opposite operation is called edge

expansion.

A graph G has an edge-expansion inductive construction, starting from a base

graph G0 if there exists a sequence of graphs G0, G1, . . . , Gk such that Gi+1 is obtained

from Gi by an edge expansion and Gk = G.

Lemma 8 The dual of a stellated outerplanar graph G∗s has an edge-expansive in-

ductive construction starting from a wheel graph.

Proof We perform the contraction and expansion operations on G∗s. A contraction is

applied on a backbone edge, one at a time, in an arbitrary order. When all backbone

edges are contracted, we obtain a wheel graph where boundary edges are cycle edges

and remaining edges are leaf edges of G∗s. See Fig 2.2. This sequence of contraction,

taken in reverse, gives an edge expansion inductive construction for G∗s.

Next we show that we can assign weights on the edges of G∗s to meet the condition

2 (the face condition) of Theorem 6.
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(a) (b) (c)

Figure 2.2: (a) The dual of a stellated outerplanar graph. Thick edges are backbone
edges. (b) Dual graph after contraction of all backbone edges. (c) Expansion of a
single backbone edge.

2.3.3 The face condition

We show that there exists a weight assignment scheme which will satisfy the face

condition of Theorem 6. In the following lemma, we show how we can assign those

weights.

Lemma 9 There exists a weight assignment on the dual of a stellated outerplanar

graph G∗s such that the sum of the edge weights of each face is 1.

Proof We assign weights on G∗s in an inductive fashion, based on an edge expansion

sequence G0, . . . , Gn−3 for G∗s.

Base case: G0 is the wheel graph. We assign 1
n

to the cycle edge and n−1
2n

to each

leaf edge. The sum of weights on the edges of each face is 1. See Fig 2.2(b).

Inductive step: Let f1, . . . , fn be the faces dual to the n vertices of G, labeled in

counter clockwise order. Assuming that we have completed a weight assignment for

Gk, let Gk+1 be obtained from Gk by the expansion of edge ij between faces fi and

fj. We assign a weight ε, (for a value of 0 < ε ≤ 1/2 that will be determined later) on

the edge ij. As a result, the sum of the weights on faces fi or fj is imbalanced. We

remove the imbalance by subtracting ε
4

from each of the two leaf edges of fi and fj,

respectively and by also subtracting ε
2

from the cycle edges of these faces. Although
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Figure 2.3: Three possible cases when a backbone edge is expanded, leading to the
expansion of two faces, which have, as neighbors, (a) four distinct faces, (b) two
distinct faces and one common face and (c) two common faces. When a backbone
edge is expanded, only the weights of these neighbor faces have to be adjusted; all
the other faces remain unchanged.

it restores the balance of weights in face fi and fj, it destroys the balances to the

faces adjacent to fi and fj, namely fi−1, fi+1, fj−1, fj+1 and the cycle edges. To fully

balance the weights, we add ε
4

to the cycle edges of these four faces. See Fig 2.3.

Now the sum of the weights of the edges of each face is 1. This weight assignment

obviously satisfies the face condition.

2.3.4 Bounds on weights

In previous section, we showed how to assign weights on the edges of G∗s. Based on

this weight assignment, we now try to calculate the maximum and minimum possible

weights on the edges of G∗s in terms of ε. These bounds will help us when we will

calculate the valid range of values for ε.

Lemma 10 Over all the stellated outerplanar graphs, the maximum possible weight

is 1
n

+ (n−2)ε
4

, and the minimum is 1
n
− (n−3)ε

2
.
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(a) (b)

Figure 2.4: A stellated outerplanar graph where all diagonals emanate from a single
vertex. (b) Its dual. Backbone edges are thickened. The cycle edge whose weight is
decremented by ε/2 at each backbone edge expansion step is labeled by c1. The cycle
edges whose weights are increased by ε/4 for each expansion of the backbone edge
are c2 and c3. A special case occurs when e1 and e2 are expanded: the weights of c2
and c3 are then increased by ε/2.

Proof As described in the inductive step of the proof for Lemma 9, when a backbone

edge e incident to faces fi and fj is expanded, the weights of the two cycle edges

of these faces are decremented by ε
2
. Similarly, the weights of the cycle edges of

all adjacent faces of these two faces are increased by ε
4
. However, if the expanded

backbone edge e is a leaf of the backbone tree, then fi−1 = fj+1 (and/or fi+1 = fj−1),

as illustrated in Fig 2.3(b) and 2.3(c). In this case, the weight of the cycle edge of

the face fj+1 and/or fi+1 is increased twice, each time by ε
4
.

The minimum, resp. maximum weight of an edge is attained when its weight

is reduced by ε
2
, resp, increased by ε

4
, at each backbone edge expansion step. This

happens when the original outerplanar graph G has all diagonals emanating from a

single vertex, or, equivalently, when the dual graph G∗ has one face incident to all

backbone edges. See Fig 2.4. Consider a face f in G∗s corresponding to such a vertex

in G.
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Each time a non-leaf edge of the backbone tree is expanded, the weight of each

of the two cycle edges on the two faces adjacent to f is increased by ε
4
. However, if

the expanded edge is a leaf edge of the backbone tree, then one of the cycle edges’

weight is increased twice, each time by ε
4
. See Fig 2.4(b). Thus the weight of each

such edge is increased by at most ε(k+1)
4

, where k is the number of backbone edges in

G∗s or, equivalently, diagonals in G. Since k is at most (n − 3) ((n − 3) when G is

maximal, otherwise less than (n − 3)), we obtain the maximum weight on any edge

of G∗s as being 1
n

+ ε(n−2)
4

( 1
n

is the initial weight on cycle edges).

Similarly, each time a backbone edge is expanded, the weight of the cycle edge of

f is reduced by ε
2
. When all backbone edges are expanded, the weight of this edge is

at least 1
n
− ε(n−3)

2
. This gives the minimum possible weight on any edge of G∗s.

2.3.5 The edge and cycle conditions

To conclude the proof of Theorem 1, we show now how to choose ε such that

conditions 1 (edge) and 3 (cycle) of Theorem 6 are also satisfied. Obviously, ε has to

be strictly greater than 0 to be a valid weight on backbone edges. Now we establish

an upper bound of ε.

Lemma 11 If 0 < ε < 2
n(n−3) , then 0 < w(e) ≤ 1/2 for any edge of e of G∗s.

Proof We find an upper bound on ε from the constraint that the weight on any

edge should be between 0 and 1/2. Bounding from the below the minimum possible

weight on an edge of G∗s (Lemma 10) and solving 1
n
− (n−3)ε

2
> 0, we obtain ε < 2

n(n−3) .

Similarly, for the maximum, bounded from the above by 1/2: solving 1
n

+ (n−2)ε
4
≤ 1/2

results in ε ≤ 2
n
. The final resulting bounds are 0 < ε < min{ 2

n(n−3) ,
2
n
} or 0 < ε <

2
n(n−3) .

Lemma 12 If 0 < ε < 4(n2−4n+9)
3n(n−2)(n−3) , then the sum of the weights on the edges of a

non-facial cycle of G∗s is striclty greater than 1.
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(a) (b)

Figure 2.5: (a) A dual G∗s of a stellate outerplanar graph. (b) A non-facial cycle C
of G∗s, shown in thick lines, divides the plane into two regions. The shaded region,
containing e as an internal edge, has the smaller number of faces.

Proof Any non-facial cycle C of G∗s divides the plane into two regions, each one

containing exactly one of the n + 1 faces of G∗s. Let Ri be the region containing the

smallest number k ≤ n+1
2

of faces. An edge is called internal to a region if it lies

inside it, i.e. not in the complementary region and not on the boundary cycle. See

Fig 2.5. Since the sum of the weights on the cycle C is k (sum of the weights on the

internal k faces) minus twice the sum of the internal edges of Ri (because these edges

are shared by two faces in Ri). Since k faces are dual of k vertices in the stellated

outerplanar graph Gs and the subgraph induced by k vertices are planar, there are

at most 3k − 6 internal edges of Ri. Since k ≤ n+1
2

, there are at most 3(n+1)
2
− 6

or 3n−9
2

internal edges of Ri. This bounds the sum of the weights on C by at most

n+1
2

minus twice the sum of the weights on 3n−9
2

internal edges. Let wmax be the

maximum possible weight on any of these internal edges. Then it suffices to show

that n+1
2
− 2wmax(3n−9)

2
> 1. Rearranging the terms, we get wmax <

n−1
6(n−3) .
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The maximum possible weight on any edge of G∗s is 1
n

+ (n−2)ε
4

(Lemma 10. Thus

1
n

+ (n−2)ε
4

< n−1
6(n−3 . Solving this equation, we get ε < 2(n2−7n+18)

3n(n−2)(n−3) . Therefore, the cycle

conditions is satisfied if ε < 2(n2−7n+18)
3n(n−2)(n−3) .

To satisfy both the edge and cycle conditions, we will choose an ε such that

0 < ε < min{ 2
n(n−3) ,

2(n2−7n+18
3n(n−2)(n−3)}. This completes the proof of Theorem 1.

2.4 Conclusion

We have presented a new proof of the Delaunay realizability of the outerplanar

graph. We have used the inscribability criterion, set by Rivin [44] using weights on

the edges of the graph. We have proved that such a weight assignment exists and

shown how to compute those weights.
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CHAPTER 3

SHORTEST PATH STAR UNFOLDING

3.1 Introduction

The shortest paths between two points on the polyhedral surface is the path with

the smallest length measured on the surface. Finding shortest paths between two

points on a surface is a well studied problem because of its wide range of applica-

tions in the field of robotics, geographic information systems and computer graphics

[5, 43, 38]. In two dimensions, the problem has been thoroughly studied and a num-

ber of efficient algorithms are known [49, 36, 47]. However, the problem becomes

significantly complex in three dimensions. Canny and Reif have shown that it is an

NP-hard problem [14] and only exponential time algorithms are known in such cases

[42, 13].

In certain special cases, however, the problem of computing shortest paths in three

dimensions becomes easier. One such case is computing shortest paths between two

points on the surface of a convex polyhedron P . Sharir and Schorr [47] proposed an

algorithm that computes the exact shortest path between two points on the surface of

P . The proposed algorithm is mainly based on three observations. First, any shortest

path intersecting an edge e of P enters and leaves e under the same angle. Second,

no shortest path on a convex polyhedron P can pass through a vertex p of P unless

p is the destination or source of the shortest path. Third, if the sequence of edges of

P intersected by the shortest path between s and p is known, the shortest path can

be computed as the straight line joining s and p after unfolding the faces, adjacent to

the edge sequence, on the plane. Their algorithm runs in O(n3logn). An improved
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algorithm for a convex polyhedron was given by Mount [39, 37] which reduces the

running time to O(n2logn). Chen and Han further improved the running time to

O(n2) [15]. Recently, Schreiber and Sharir [46] proposed an algorithm which runs in

O(nlogn) time and takes O(nlogn) space. Since all these algorithms to compute the

exact shortest paths are quite computationally intensive and complex, interest has

been growing in developing approximation algorithms to compute the shortest paths.

For a given ε > 0, a path between two points is (1 + ε)-approximate if its length is at

most (1 + ε) times the actual shortest paths. A lot of work has been going on in this

direction [3, 4, 31, 32].

An unfolding of a polyhedron P is an operation where we cut its surface and

immerse the bounded surface on the plane. Based on how we choose to cut the surface,

there are different types of unfoldings. One such unfolding is edge unfolding, in which,

the surface is cut along the polyhedral edges spanning its vertices. Polyhedral edges

are, in particular, shortest paths between the vertices. Since the cut edges are non-

crossing, the unfolding yields a planar polygon with an interior.

The edge unfolding of a polyhedron is a well-studied problem. A famous problem

on edge unfolding, named in the honor of Albrecht Dürer [24], is the following: does

every convex polyhedron have an edge unfolding to a simple, non-overlapping poly-

gon? The problem appears to be very difficult and is still open to date. As related

problems, researchers study different combinatorial and structural properties of the

cut tree to see if they yield non-overlapping unfoldings. For non-convex polytopes, it

is shown in [10] that there exist certain types of non-convex polyhedra which do not

unfold to simple non-overlapping polygons.

The two well known variants of the unfolding of a polyhedron are source unfolding

and shortest-path star unfolding. In source unfolding, the surface of the polyhedron

is cut along the ridge tree with respect to a given point on its surface. The source

unfolding of a convex polyhedron with respect to a source vertex always yields a non-
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overlapping simple polygon [18]. It has been used in computing shortest paths on

polyhedral surfaces [47]. The shortest path star unfolding, where the cut edges are

the shortest paths from the given source vertex to all polyhedral vertices, was first

mentioned in [7] and is also known as Alexandrov unfolding [35]. The non-overlapping

property of the shortest path star unfolding is studied in [8]. A number of applications

of this unfolding are presented in [1, 16].

An interesting direction of research leads us to the problem of reconstructing

polygons that arise as the unfolding of polytopes, particularly convex polyhedra.

This will enable us to generate polyhedral surfaces without actually realizing the

polyhedra. Alexandrov formulated a characterization of polygons that can be folded

into convex polyhedra [6]. However, this characterization does not give us methods

to generate such polygons algorithmically. Even, if we know that a polygon can be

folded into a polyhedron, the actual folding process is still difficult. The difficulty

arises from the fact that the edges along which a polygon will fold into a polyhedron

are not, usually, given. Finding those edges or creases is hard. Recently, Bobenko

gave a constructive proof of the Alexandrov’s theorem, which answers some of these

questions related to crease pattern [12].

3.2 Preliminaries

A polygon in two dimensions is the region bounded by a simple cycle formed by

finite number of line segments called edges. A polygon is convex if a line segment

connecting any of its two points lies fully inside its region, otherwise, it is non-convex.

A polyhedron is the region bounded by a finite number of polygons called faces such

that i) if two faces intersect, then it is only at a common edge or a vertex, ii) every

edge of every face is an edge of exactly one other face, and iii) faces surrounding each

vertex form a simple cycle [17]. A polyhedron is convex if a line segment connecting

any of its two points lies entirely in its interior. In other words, a convex polygon
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is a region bounded by finite number of half planes and a convex polyhedron is the

bounded intersection of a finite number of half-spaces.

A shortest path between two points on P is the smallest of all possible curves

between these two points, measured on P . Different properties of the shortest paths

in polyhedral surfaces can be found in [47, 39].

The unfolding of a convex polyhedron P is obtained by cutting its surface along the

edges of a tree where its leaves are the vertices of P . The shortest path star unfolding

or sp-star unfolding in short, is obtained by cutting its surface along the shortest

paths from a given point to all vertices of P . This point is called source vertex, s.

The sp-star unfolding has 2n vertices – n polyhedral vertices of P and n copies of

source vertex, known as source images. The source images and the polyhedral vertices

are placed alternately, meaning each source image has one polyhedral vertex on its

right and one on its left. The angle at each source image is called source angle. The

sum of the source angles of an sp- star unfolding is 2π when the source vertex is on a

polyhedral face or an edge and less than 2π when it is placed on a polyhedral vertex.

Given a set of n points Pn on the plane, the Voronoi diagram VD of Pn is the

planar subdivision composed of n regions, one for each point such that any point

x lies in the region corresponding to a point y in Pn if the distance of x from y is

smaller than its distance from any other point in Pn. The points of Pn are called the

Voronoi sites , or simply sites , and their corresponding planar regions are called the

Voronoi regions of VD. Voronoi regions meet at edges and vertices, called Voronoi

edges and Voronoi vertices respectively. There are two kinds of Voronoi edges in any

Voronoi diagram – one is bounded at both ends by two Voronoi vertices and the other

is bounded by a Voronoi vertex at one end but the other end is unbounded or infinite.

We call these edges bounded Voronoi edges and infinite Voronoi edges , respectively.

We call the bounded end of an infinite Voronoi edge the close end and the unbounded

end the open end .
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3.2.1 Su-Polygon

By definition, an su-polygon (short for abstract star-unfolding polygon1) is the

boundary of a flat disk-like polygon in the plane, satisfying the abstract version of

the following properties: (a) it has 2n vertices, alternately labeled as si and vi and

referred to as s-, resp. v-vertices. The angle (interior to the surface) at an s-vertex is

refered to as an s-angle; (b) the sum of all the s-angles is 2π, and (c) the v-vertices are

placed on the perpendicular bisectors of the two neighboring s-vertices. In particular,

this last property implies that the two edges incident to a v-vertex have equal lengths.

Intuitively, the s-vertices, v-vertices and s-angles are analogous to source images,

polyhedral vertices and source angles for the sp-star unfolding polygons.

Since the boundary edges of an sp-star-unfolding polygon must be the shortest

paths on the corresponding polyhedral surface, not all su-polygons arise as sp-star-

unfoldings. We remark that the definition allows for the self-overlap of the unfolded

surface, i.e. the su-polygon is not necessarily a simple polygon.

3.2.2 Polyhedral metric

A convex polyhedral metric is a presentation of the surface of a convex polyhedron

as a collection of (one or more) planar polygonal pieces together with rules for glueing

them, along pieces of their boundaries, into a surface that is topologically a sphere.

The glueing may result in a finite set of points of non-zero Gaussian curvature, called

the vertices of the surface. The metric is convex if the sum of the surface angles at

each vertex is at most 2π, i.e. if the curvature is positive. Alexandrov’s Theorem

[6] guarantees that any convex polyhedral metric has an isometric realization as a

convex polyhedron. As a side note, we remark that the edges of the polygonal pieces

need not be related in any way to the edges of the convex polyhedral realization.

1The modifier “abstract” is used to emphasize that, a priori, such polygons are not guaranteed
to arise from star unfoldings of 3D convex polyhedra.
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Su-polygons are special cases of polyhedral metrics, under the rule that the two equal

sized edges incident to a v-vertex are glued together.

3.2.3 Ridge tree

Given a convex polyhedron P and a source vertex s, a ridge point is a point on

the surface of P connected to s by multiple shortest paths. The collection of all such

points is a tree Ts, known as the ridge tree from s. In an sp-star unfolding of P on the

plane, this ridge tree becomes the part of the Voronoi diagram of the source images

contained inside the sp-star unfolding polygon, which is, in this case, non-overlapping

(see [47, 8] for details of these properties).

3.3 Results

We organize the results presented in this chapter in the following way:

3.3.1 Reconstruction of ridge tree

The ridge tree of a convex polyhedron P with respect to a source vertex s inherits

the combinatorics of a tree. We would like to know whether all combinatorial types of

such trees are represented among sp-star ridge trees. We prove the following geometric

reconstruction theorem for combinatorial types of ridge trees.

Theorem 13 Any combinatorial type of a topologically embedded tree can be realized

by the ridge tree of a convex polyhedron together with a source vertex.

3.3.2 Characterization of sp-star unfolding polygons

In order to prove Theorem 13, we first need to characterize the polygons that arise

as the sp-star unfolding polygons. Since the ridge tree is the Voronoi diagram of the

source images, the following characterization with respect to Voronoi diagram will be

very helpful:
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Theorem 14 A simple su-polygon is an sp-star unfolding polygon if and only if (a)

the perpendicular bisectors of the pairs of consecutive s-vertices are all present in

the Voronoi diagram of all the s-vertices; and (b) any v-vertex lies precisely on the

Voronoi edge corresponding to its two s-vertex neighbors.

The relationship between the ridge tree and the Voronoi diagram of the source

vertices has been identified and used in [47, 8], in the context of sp-star unfoldings.

Our contribution is to prove that these conditions are sufficient to characterize the

class of sp-star unfoldings. The fact that (in our formulation) they are also necessary

is implicit in [8]. We show that if either one of the (a) or (b) conditions is violated in

an su-polygon S, then S is not an sp-star unfolding.

3.3.3 Point sets supporting sp-star unfolding

We want to use Theorem 14 to construct examples of su-polygons which are, or are

not, sp-star unfolding polygons. We say that a cyclically ordered point set supports

an sp-star unfolding if there exists an sp-star unfolding polygon using these points as

s-vertices. In other words, we want to know whether it is always possible to place v-

vertices on the corresponding Voronoi edges to satisfy the source angle sum property

of an su-polygon. We present an algorithm to decide the question.

Theorem 15 There exist cyclically ordered point sets which do not support sp-star

unfoldings, and others that do. For a given point set, the corresponding decision

problem can be answered in O(n log n) time.

A special situation appears when all the s-vertices of an su-polygon that arises as

the sp-star unfolding are in convex position. In this case, condition (a) in Theorem

14 always holds. The Voronoi diagram is combinatorially a tree, and its leaf edges are

infinite rays separating the Voronoi regions of the s-vertices. We are now asking: is

it true that an su-polygon whose s-vertices are in convex position is in fact a shortest
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path star unfolding? We will answer this problem in the negative. The decision

problem can be answered by an algorithm whose structure is similar to the one for

general position, but whose individual components are computationally faster.

Theorem 16 There exist cyclically ordered point sets in convex position which do

not support sp-star unfoldings, and others that do. For a given convex point set, the

corresponding decision problem can be answered in O(n) time.

Organization of the proofs: We first characterize the polygons that arise as the

sp-star unfoldings. Then, using that characterization, we move to prove Theorem 15

and 16. Finally, we present the construction of ridge tree as presented in Theorem

13.

3.4 Characterization of sp-star unfolding polygons

In this section, we give a complete characterization of polygons that arise as the

sp-star unfolding of some convex polyhedron with respect to some source vertex. This

characterization will be pivotal in attaining our goal of reconstructing ridge tree and

its underlying sp-star star unfolding.

In Theorem 14, one direction is already implicit in [8]. We only need to show:

Theorem 17 Let S be a simple su-polygon satisfying two conditions: (a) the perpen-

dicular bisectors of the pairs of consecutive s-vertices are all present in the Voronoi

diagram of all the s-vertices; and (b) any v-vertex lies precisely on the Voronoi edge

corresponding to its two s-vertex neighbors. Then S is an sp-star unfolding polygon.

Proof The proof proceeds by contradiction. Let vi be a v-vertex with two adjacent

s-vertices si−1 and si. We assume that the segment visi (and its glueing mate of equal

length visi−1) does not correspond to the shortest geodesic on the polyhedral surface

P . Then, on the polyhedral surface, the shortest path is located (in the cut-star
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Figure 3.1: The two cases appearing in the proof of Theorem 14.

rotation around the source point s) between some pair of cut edges from the source

to vj and vj+1. In the su-polygon S, the shortest path induces a line segment starting

from the s-vertex sj and going towards the interior of the su-polygon.

Two scenarios are possible (Fig. 3.1): (a) Either the shortest path lies fully inside

the su-polygon and it is a straight line joining vi and sj, or (b) the shortest path is

broken and represented by a series of k line segments that exit the su-polygon through

an edge and re-enters it again through its corresponding gluing edge.

In case (a) the proof is straightforward. Since vi is on the Voronoi edge of si−1

and si, then vi is closer to si or si−1 than any other s-vertices on the plane. Thus visj

cannot be the shortest path. See Fig. 3.1(a) for an example illustrating this case.

In case (b), we use the fact that if vksk is an edge of the su-polygon, then any point

on this edge lies in the Voronoi region of sk. Let first segment of the broken shortest

path be viy1, where y1 is the point through which it exits the polygon; similarly, let

the last segment be ynsj. We know that yn is on the polygonal edge vksk, for k 6= i.

But then we must have sk 6= sj, because otherwise ynsj will make zero angle with the
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polygonal edge vksk (each line segment of the shortest path makes a non-zero angle

when it exits and enters the polygon). Since yn is on the edge of vksk, it is on the

Voronoi region of sk, hence |ynsk| < |ynsj|. Therefore, there exists another s-vertex

sk which has a shorter length path from vi. Thus the path from vi to sj is not the

shortest. See Fig. 3.1(b) for an example illustrating this case.

The derived contradictions conclude the proof that each polygonal edge of the

su-polygon comes from the shortest path unfolding of some convex polyhedron with

respect to some source vertex.

We turn now to applications for this characterization of sp-star unfolding polygons.

3.5 Points supporting star unfoldings

In this section we assume that a cyclically ordered point set has been given. We

want to decide if it supports an sp-star unfolding polygon and, if so, to construct one.

Flap polygon. This technical concept, needed to formulate and prove the results in

this section, is obtained by relaxing the third condition defining an su-polygon: we

no longer ask for the s-angle sum to be at most 2π (it can be anything).

3.5.1 Source points in convex position

We start with the simpler situation when the s-vertices lie in convex position. In

this case, their Voronoi diagram is a tree, and the leaf edges are infinite rays separating

consecutive s-vertices si and si+1. The conditions in Theorem 14 are violated only

when some v-vertex is placed on the extension of a Voronoi ray and not on the ray

itself.

To prove Theorem 16 we will construct a flap polygon with s-vertices in convex

position and show that there is no readjustment of its v-vertices, keeping them on the

Voronoi rays, so that the s-angle sum condition is satisfied. We need the following

simple lemma:
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Figure 3.2: Dashed lines indicate the increase/decrease behavior of the two source
angles incident to a v-vertex vi, when displaced from its position: (Left) increase,
when the displacement is towards the open end of the infinite Voronoi edge, and
(Right) decrease, when moved towards the closed end.

Lemma 18 Given a flap polygon, if a v-vertex moves towards the open end of the

Voronoi ray, the sum of the s-angles increases and if it moves towards the closed end,

the sum decreases.

Proof Let si and si+1 be two consecutive s-vertices on a flap polygon Px. Both of

these vertices are joined to a polyhedral vertex vi. Refer to Fig. 3.2. The sum of the

s-angles at these two s-vertices is ∠visivi−1 and ∠visi+1vi+1. Now we move vi towards

the open end of the Voronoi edge. Let this new position of vi be v′i. This movement

of vi only affects the angles at si and si+1. The new angles at these two vertices are

∠visivi−1 + visiv
′
i and visi+1vi+1 + visi+1v

′
i respectively. These two new angles are

clearly larger than the old ones. So the sum of s-angles is increased. Similarly, we

can prove that the sum of the s-angles decreases when a v-vertex moves towards the

closed end.

When the s-vertices of a flap polygon are in convex position, the bisector of

any consecutive s-vertices is an infinite edge (a ray) of the Voronoi diagram of the s-
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vertices. The v-vertices are placed on these rays. An extreme flap polygon arises when

the v-vertices are placed on the Voronoi vertices at the closed end of the corresponding

Voronoi rays. Note that an extreme flap polygon always has at least two pairs of

adjacent overlapping edges, as in Fig. 3.3. This can be seen on the dual Delaunay

triangulation, which is in this case a maximal outerplanar graph; thus, it has at least

two vertices of degree two. One such vertex gives rise to overlapping adjacent edges

in the extreme flap polygon.

The following is a straightforward consequence of Lemma 18:

Corollary 19 For a given set of s-points in convex position and variable v-vertices

placed on the Voronoi rays, the sum of the source angles is minimized when the cor-

responding flap polygon is extreme.

Figure 3.3: An extreme flap polygon (in green) together with the Voronoi diagram of
the s-vertices (in red).

Lemma 20 If the sum of the s-angles of an extreme flap polygon with s-vertices in

convex position is larger than 2π, then there are no valid placements for the v-vertices

that would result in an su-polygon supporting an sp-star unfolding.

Proof A flap polygon does not support a sp-star unfolding if the sum of its s-angles

is larger than 2π or if the v-vertices are not placed on the Voronoi rays. But in
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an extreme flap polygon, the sum of the s-angles cannot be reduced (Corollary 19)

without moving the v-vertices further inward, thus violating the condition that they

must lie on the Voronoi rays.

Proof of Theorem 16. Using Lemma 20, we only need to find a set of points in convex

position whose extreme flap polygon has total s-angle sum larger than 2π. This is

not unique, and not rare either. An example where the sum of the s-angles is larger

than 2π is illustrated in Fig. 3.3.

Algorithm. Given a set of points in convex position, the following simple algorithm

decides if they support an sp-star unfolding. We first compute the Voronoi diagram,

then we generate the extreme flap polygon by placing the v-vertices at the corre-

sponding Voronoi vertices on the infinite rays. If the sum of the s-angles exceeds 2π,

the given point set does not support an sp-star unfolding; otherwise, it does.

Computing the Voronoi diagram of n points in convex position can be done in

O(n) time using the algorithm in [2]. Constructing the extreme flap polygon takes

linear time. The whole algorithm is therefore linear.

3.5.2 Source points in arbitrary position

Not all sp-star unfolding polygons have s-vertices in convex position. An example

is given in Fig. 3.4(a).

We assume now that we are given a circularly ordered point set in non-convex

position. The polygon induced by the ordering need not be simple. Such a point

set may not even support a flap polygon, but when the perpendicular bisectors of

consecutive pairs of points are present in the Voronoi diagram of the point set, there

always exists at least one, namely the extreme flap polygon.

The definition of an extreme flap polygon can be extended naturally from the

convex case: instead of requiring that the v-vertices be on the closed end of a Voronoi

ray, we ask that it be placed on the endpoint of the Voronoi edge that is towards
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(a) (b)

Figure 3.4: (a) An sp-star unfolding polygon (in green) together with the Voronoi
diagram of its s-vertices (in red). The s-vertices are in non-convex position. (b) The
corresponding extreme flap polygon on the s-vertices.

the interior of the flap polygon. Fig. 3.4(b) illustrates an extreme flap polygon on

s-vertices in non-convex position. Lemmas 18 and 19 above can be extended in a

straightforward manner to the non-convex case.

Figure 3.5: An example of an su-polygon which violates condition (a): the bisector
of {s4, s1} is not in the Voronoi diagram.

The example illustrated in Fig. 3.5 has the property that not all of the consecutive

perpendicular bisectors of the s-vertices are part of the Voronoi diagram. This proves

that:

Lemma 21 There exist circularly given point sets in non-convex position that do not

support sp-star unfolding polygons by violating condition (a) of Theorem 17.
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For the example in Fig. 3.6, the consecutive perpendicular bisectors are present in

the Voronoi diagram of the s-vertices, but the extreme flap polygon does not satisfy

the s-angle condition: its s-angle sum is 3800 > 2π. This proves:

Lemma 22 There exist circularly given point sets in non-convex position that satisfy

condition (a) but violate condition (b) of Theorem 17: they do not support sp-star

unfolding polygons.

Figure 3.6: An example proving Lemma 22.

We complete the proof of Theorem 15 by giving an algorithm to decide whether

a cyclically ordered point set in non-convex position supports an sp-star unfolding

polygon. This is a straightforward extension of the one previously presented for the

convex case.

Algorithm. Given a cyclically ordered point set (si)i=1,..,n, construct its Voronoi

diagram in O(n log n) time and verify, in linear time, whether the perpendicular

bisectors of consecutive pairs of points appear in the Voronoi diagram. If not, stop

and return False. Otherwise, construct (in linear time) the extreme flap polygon and

compute the sum of the s-angles. If they exceed 2π, return False, otherwise return

True. The entire calculation takes O(n log n) time.
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3.6 Realizations of combinatorial ridge trees

In this section, we turn to realizations of sp-star unfolding polygons with pre-

scribed combinatorics for their ridge trees, and prove Theorem 13. The techniques

described in the previous sections reduce it to the following reformulation.

Theorem 23 Any combinatorial tree T arises as the Voronoi diagram of a point set

in convex position whose extreme flap polygon can be relaxed to an su-polygon that

supports an sp-star unfolding.

Proof overview. We first consider the maximal outerplanar graph which is the graph

dual of the given tree. We realize this graph as the Delaunay triangulation DT using

Dillencourt’s algorithm [19]. The dual of this Delaunay triangulation DT gives the

realization of the tree as the Voronoi diagram VD. The vertices of DT are the sites of

VD. Since the sites of VD are in convex position, there is an infinite Voronoi segment

in between two consecutive sites. We place one new vertex on the Voronoi vertex

located on the closed end of each of these infinite segments. If we alternately join the

sites and new vertices, we obtain an extreme flap polygon. We show that this flap

polygon supports an sp-star unfolding. For this, we establish a relationship between

the s-angles of this extreme flap polygon and the angles of the Delaunay triangulation.

We then use this relationship to prove that the sum of s-angles of this extreme flap

polygon is always smaller than 2π.

The proof details occupy the rest of this Section.

3.6.1 Source angles and the angles of the Delaunay triangulation

We start by establishing a relationship between the sum of the source angles of an

extreme flap polygon and the angles of the Delaunay triangulation of its s-vertices.

Let DT be the Delaunay triangulation of the s-vertices and let SA be the sum

of the s-angles of the extreme flap polygon. If VD is the Voronoi diagram of the

s-vertices, its internal edges are duals of the diagonals of DT .
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Figure 3.7: A point set in convex position, together with its Voronoi diagram (red),
Delaunay triangulation (gray) and the extreme flap polygon (green).

Each s-angle in an extreme flap polygon is spanned by one or more internal edges

of the Voronoi diagram. Therefore, the sum of the s-angles SA is actually the sum

of the angles spanned by each internal edge of the Voronoi diagram. We establish

the relationship between s-angles and the diagonals of the DT , which are dual of the

internal edges of VD. See Fig 3.7.

Given a Delaunay realization DT of a maximal outerplanar graph, we can classify

the angles of DT into two sets. One is the set of angles opposite to all diagonals,

known as internal angles and the other is the set of angles opposite to the boundary

edges of DT , known as boundary angles. Let α and β denote the sum of each of these

two sets of angles respectively. Since these two sets of angles comprise all the angles

of the convex polygon formed by the boundary edges of DT , α + β = (n− 2)π.

Lemma 24 Let DT be the Delaunay triangulation of n s-vertices and let SAn be the

sum of the s-angles of its extreme flap polygon. Then:

SAn = (n− 3)2π − 2αn

where αn is the sum of the angles opposite to the diagonals of DT .
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(a) (b)
(c)

Figure 3.8: The base case analysis for the inductive proof of Lemma 24. Shown is an
extreme flap polygon for four convex points A,B,C and D. The triangles 4ABD
and 4BCD are Delaunay.

Proof. By induction on the number n of s-vertices.

Base case, n = 4: In this case we have one diagonal in DT and one internal edge

in VD. Out of four s-angles, two of them are zero and the remaining two are spanned

by the internal edge of VD. We have to show that:

SA4 = 2π − 2α4

Let A,B,C and D be the four s-vertices in convex position and let XY be the

Voronoi edge dual to the diagonal BD. The source angles at A and B, the opposite

vertices of the diagonal BD, are both zero. The non-zero source angles are ∠XBY

and ∠XDY . In 4AXB, ∠BAX = ∠ABX (since X is on the perpendicular bisector

of A and B). Similarly,∠DAX = ∠ADX, ∠Y BC = ∠BCY and ∠DCY = ∠CDY .

We show that ∠XBY + ∠XDY = 2π − 2(A+ C).

We consider three possible cases, illustrated in Fig. 3.8: (a) ∠XBY is contained in

∠ABC, (b) ∠XBY is partially contained in ∠ABC and (c) ∠XBY is outside ∠ABC.

Three other cases are possible for the other source angle, but the same arguments

apply.

39



Case 1: The angle sum ∠ABC + ∠BCD + ∠CDA + ∠DAB of the quadrilateral

ABCD is 2π, hence ∠ABC + ∠CDA = 2π − (∠DAB + ∠BCD). Decomposing the

angles ∠ABC and ∠CDA we obtain:

∠ABX +∠XBY +∠Y BC +∠CDY +∠XDY +∠ADX = 2π− (∠DAB+∠BCD)

Using the bisector properties in the isosceles triangles 4AXB and 4BY C yields:

∠BAX +∠XBY +∠BCY +∠DCY +∠XDY +∠DAX = 2π− (∠DAB+∠BCD)

From here, we get ∠XBY + ∠XDY + ∠DAB + ∠BCD = 2π − (∠DAB + ∠BCD),

which implies the desired equality: ∠XBY + ∠XDY = 2π − 2(∠DAB + ∠BCD).

Cases 2 and 3: We have ∠ABC = ∠ABX + ∠XBY − ∠Y BC. Therefore:

∠ABC + ∠BCD + ∠CDA+ ∠DAB = 2π

∠ABC + ∠CDA = 2π − (∠DAB + ∠BCD)

∠ABX + ∠XBY − ∠Y BC + ∠CDY + ∠XDY + ∠ADX = 2π − (∠DAB + ∠BCD)

∠BAX + ∠XBY − ∠BCY + ∠DCY + ∠XDY + ∠DAX = 2π − (∠DAB + ∠BCD)

∠XBY + ∠XDY + ∠DAB + ∠BCD = 2π − (∠DAB + ∠BCD)

which yields the desired equality ∠XBY +∠XDY = 2π−2(∠DAB+∠BCD). Since

A and C are the opposite angles of the diagonal, we obtain:

SA4 = 2π − 2α4

Inductive step. The induction hypothesis for n− 1 s-vertices is that:

SAn−1 = (n− 4)2π − 2αn−1

We now add a new s-vertex in convex position. As a result, a new triangle will be

formed and one of the boundary edge will become a diagonal. Let e be this new
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(a) (b)

Figure 3.9: The inductive step in the proof of Lemma 24. (a) An extreme flap polygon
with 5 s-vertices. (b) A new s-vertex is added.

diagonal. One of the two opposite angles of e was a boundary angle which has now

become internal angle. The other opposite angle is a newly formed internal angle of

DT . Let us denote these angles by ae and be, respectively. All other internal angles

of DT remain the same.

The addition of the new s-vertex leads to a new diagonal or a new internal Voronoi

edge. The sum of s-angles increases by SA′, the sum of angles spanned by the new

Voronoi edge. See Fig 3.9. Using a similar argument as in the base case, we obtain:

SA′ = 2π − 2(ae + be)

The final SAn is:

SAn = SAn−1 + SA′ = (n− 4)2π − 2αn−1 + SA′

= (n− 4)2π − 2αn−1 + 2π − 2(ae + be) = (n− 3)2π − 2αn

Corollary 25 SA = 2β−2π, where β is the sum of boundary angles of the Delaunay

triangulation of DT .
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Proof In a Delaunay triangulation we have α + β = (n − 2)π. From Lemma 24 we

infer that SA = (n− 3)2π − 2α. Substituting α = (n− 2)π − β gives the result.

3.6.2 Realization of a Delaunay triangulation

The angles of the triangles in a Delaunay realization of an outerplanar graph

satisfy a set of constraints [19]. To each angle at a vertex of a triangle in a Delaunay

triangulation, associate a variable ai. The constraints are:

1. Positive: All angles are positive : ∀i, ai > 0.

2. Face angles: The three angles ai, aj, ak of a triangle add up to π:

ai + aj + ak = π

3. Convex: All the points are in convex position, hence the sum of the angles aij

at a vertex does not exceed π:

k∑
j=1

aij < π

4. Locally Delaunay: an edge shared by two triangles is locally Delaunay, i.e.

the sum of the two angles opposite to the edge does not exceed π. If ai and aj

are two angles opposite of an edge e, then ai + aj < π.

These constraints can be turned into a linear programming system on variables ai. If

the system has a feasible solution, it gives a set of angles from which the Delaunay

triangulation can be realized. Dillencourt [19] showed that, for any maximal outerpla-

nar graph, the linear programming system always has a feasible solution. However,

a maximal outerplanar graph may have multiple Delaunay triangulation realizations,
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but not all of them yield valid sp-star unfoldings. We now show that in fact Dillen-

court’s algorithm always yields a valid sp-star unfolding. Before proceeding with the

proof we outline the algorithm.

3.6.3 Dillencourt’s Algorithm.

A variable s is assigned to the whole triangulation T and a variable bi to each

angle of the triangulation, such that the following conditions are satisfied:

1. Each bi ≥ 1.

2. For each triangle, the sum of its angles is s: bi + bj + bk = s.

3. For each vertex, the sum of all angles incident on it is less than or equal to s :∑k
j=1 bij ≤ s.

4. If bi and bj are two opposite angles of an internal edge ij, then : bi + bj ≤ s− 1.

By setting each ai = π.bi
s

, these conditions become equivalent to the angle constraints.

An inductive argument now shows that such an assignment always exists.

Lemma 26 Dillencourt’s algorithm yields a valid Delaunay triangulation, with ver-

tices in convex position.

Proof. If a triangulation T has only one triangle, then we assign 1 to each angle

and set s = 3. This assignment satisfies all of the four conditions. We now proceed

inductively, visiting new triangles adjacent with the already visited ones. Each time a

new triangle is visited, we assign values to its angles and update s. Then we traverse

again the already visited triangles and modify their angles to reinstate the above

conditions. For example, if we have assigned values to the angles of the triangle ijk,

we may be moving to one of its adjacent triangle ijl whose angles will have to be

initialized (see Fig. 3.10(a)). Let x, y and z be, respectively, the angles at the vertices

i, j, k of 4ijk. Then we assign angle values of z+1, z+1 and s−z−1 to the vertices

43



k 

i 
j 

l 

r 

z 

x y 

s-z-1 

z+1 z+1 

x’ 

y’ 

z’ 

(a)

k 

i 
j 

l 

r 

2z+1 

x y 

s-z-1 

z+1 z+1 

x’ 

y’ 

z’+z+1 

(b)

Figure 3.10: Illustration of the steps in Dillencourt’s algorithm: (a) First visit of a
triangle; (b) Revisiting previously visited triangles and readjusting the variables.

i, j, and l of 4ijl. Then we update the value of s by setting s := s+ z+ 1. Since this

new value of s causes the second condition to fail (where sum of angles of a triangle is

equal to s), we traverse each of the visited triangles from our current 4ijl. When we

enter a visited triangle by crossing an internal edge (i.e. a diagonal of the outerplanar

graph), we increase the angle opposite to the internal edge by z + 1. For example,

when we move from the triangle ijl to ijk, we cross the edge ij and increase the value

of the angle at the vertex k by z + 1 (see Fig. 3.10(b)). We continue in this fashion

until we re-visit all the previously visited triangles. This whole process is repeated

each time we visit and initialize the angles of a new triangle.

These assignments guarantee that all four conditions are satisfied. Indeed, all as-

signments are ≥ 1. Every time we assign angles to a new triangle, s is increased by

z + 1. We increase exactly one angle of each visited triangle by z + 1 and second

condition is satisfied. When we update the angles of all visited triangles, the sum of

the angles at each vertex is increased by z+1 and at the same time s is also increased

by z + 1. So, the inequality of condition 3 still holds. Finally, when we visit a new

triangle, one of its angle is opposite to a diagonal (like angle at vertex l of triangle
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ijl). This angle is assigned s− z−1 and its opposite angle in the just visited triangle

(like angle at vertex k of triangle ijk) is assigned z + (z + 1) = 2z + 1. So, their

sum s+ z ≤ (s+ z + 1)− 1. After these assignments and modifications of these two

triangles, we increase the angles of each visited triangle and this inequality remains

valid.

We retain for further use the following properties of this algorithm:

1. Each time a new triangle is visited, the value of s is increased by z + 1.

2. After each iteration, one boundary angle (the one opposite to a boundary edge)

becomes an internal angle (i.e. opposite to a diagonal), and two new boundary

angles are introduced.

3. During the update phase, only internal angles are updated. Boundary angles

remain unchanged.

4. The time complexity of this algorithm is O(n) [34]

3.6.4 Delaunay realization supporting the sp-star unfolding

In this section, we show that if a maximal outerplanar graph is realized as a

Delaunay triangulation using Dillencourt’s algorithm, then the sum of the s-angles in

the extreme flap polygon is less than 2π.

Let DT , SA and β denote the resulting Delaunay triangulation using Dillencourt’s

algorithm, the sum of the s-angles in the extreme flap polygon and the sum of the

boundary angles (whose opposite edges are the boundary edges of the Delaunay trian-

gulation) respectively. We know from Corollary 25 that, SA = 2β− 2π. If β is larger

than π but smaller than 2π, then the resulting extreme flap polygon will support an

sp-star unfolding.
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(a) (b)

Figure 3.11: Illustration of the inductive step in the proof of Lemma 27. (a) In this
triangulation, b is a boundary angle. (b) At the next iteration, a new triangle AED
is added and b becomes an internal angle; a and d are new boundary angles.

Let us assume that Dillencourt’s algorithm assigns a total integer value a to the

boundary angles of DT . Let β = a.π
s

. We remind the reader that s is the sum of

integer values assigned to any triangle.

Lemma 27 Let an be the sum of the integer values assigned to the boundary angles

and sn be the sum of the integer values assigned to the angles of any triangle, where

n is the number of the triangles in DT . Then, sn < an < 2sn.

Proof By induction on the number of triangles of DT .

Base case. The conditions are satisfied when n = 2, since s2 = 5 and a2 = 6.

Induction Step. We assume as induction hypothesis that sn−1 < an−1 < 2sn−1.

Whenever we add a new triangle, one boundary angle becomes internal (whose op-

posite edge is a diagonal shared by the new triangle) and two new boundary angles

are added to the triangulation. See Fig 3.11. Each of the two new boundary angles

is assigned (z + 1) where z was the value of the now-converted internal angle. New
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value of sn is obtained by adding (z + 1) to sn−1. All other boundary angles remain

unchanged. Therefore:

an = an−1 − z + 2(z + 1) = an−1 + z + 2

Similarly, sn = sn−1+z+1. Using the induction hypothesis that sn−1 < an−1 < 2sn−1

and replacing sn−1 and an−1 in the above equation, we obtain:

sn−1 < an−1 < 2sn−1

sn − z − 1 < an − z − 2 < 2sn − 2z − 2

sn < an − 1 < 2sn − z − 1

sn + 1 < an < 2sn − z

sn < an < 2sn

This completes the proof.

Algorithm. The s-angles obtained from the Dillencourt’s algorithm sum up to less

than 2π. In a valid sp-star unfolding, the sum of these angles will have to be exactly

2π. In this section, we show how we can increase the angles such that they add up

to 2π.

We define the slack angle sa as the difference between 2π and the sum of the s-

angles SA obtained from Dillencourt’s algorithm, i.e, a = 2π−SA. All the v-vertices

V are placed on the Voronoi vertices when we apply Dillencourt’s algorithm. Now we

move each v-vertex v ∈ V along the infinite edge of the Voronoi diagram away the

corresponding Voronoi vertex (towards the open end). When we move v, each of the

two s-angles at its neighboring s-vertices increases equally. Therefore, we move each

v-vertex v such that each of the s-angles at its two neighboring s-vertices is increased

by exactly sa
2n

.
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The construction of the Delaunay triangulation from a maximal outerplanar graph

takes O(n) time [34]. The time complexity of moving the v-vertices to make the sum

of the s-angles equal to 2π is also O(n). Therefore, the whole algorithm runs in O(n)

time.

3.7 Tools for experimentation

We have written two programs, both in Mathematica, to facilitate the exploration

of several properties of the sp-star unfolding. First one computes the sp-star unfolding

of a convex polyhedron. It first computes a random convex polyhedron from the num-

ber of vertices given as input. Based on the user defined source vertex, it computes

the shortest paths from the source vertex to all polyhedral vertex and then lay out the

unfolding. For shortest path computation, we have used an existing implementation,

written in C, found at http://cs.smith.edu/ orourke/ShortestPaths/.

In the second tool, also written in Mathematica, we implemented the Dillencourt’s

algorithm. The program takes, as input, a tree as graph. Then it computes the

Delaunay triangulation and extreme flap polygon from that. Finally, we move all the

v-vertices to complete the sum of the s-angles to 2π.

3.8 Conclusion

We have presented several results on the characterization of sp-star unfolding

polygons and reconstruction of ridge trees. We have studied sp-star unfoldings with

source images in arbitrary position and shown that not all point sets, even if they are

in convex position, support an sp-star unfolding. We gave a reconstruction algorithm,

showing that any maximal outerplanar graph arises as the dual of the ridge tree of

a sp-star unfolding. Finally, we presented algorithms to check whether a given set of

points can be realized as the source images of an sp-star unfolding.
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CHAPTER 4

GEODESIC STAR UNFOLDING

4.1 Introduction

In the sp-star unfolding, we use the shortest paths from a source vertex s to the

vertices of a convex polyhedron P as the cut edges. We now present the following

version of the sp-star unfolding: we take a set of non-crossing geodesic paths, all of

which are not necessarily the shortest and cut along these paths. The result is a

curvature-zero disk like surface on the plane. We refer to this more general setting

as geodesic star unfolding. Since it is a relaxed version of the sp-star unfolding, it

shares some of the properties of the sp-star unfolding, and for the same reason, also

possesses some contrasting properties.

Geodesic star unfolding polygons are polyhedral metric. Therefore, any polygon

that is geometrically equivalent to a geodesic star unfolding of a convex polyhedron

is also a convex polyhedral metric. In Chapter 3, we have seen how we can generate

an sp-star unfolding polygon. One might naturally wonder if the same techniques

can be applied here to generate geodesic star unfolding polygons, which will give us

another way of generating polyhedral metric.

Because of the close relationship between these two types of unfolding, the follow-

ing interesting question arises: given a geodesic star unfolding of a convex polyhedron

with respect to a source vertex, can we convert it to the sp-star unfolding of the same

polyhedron and the source vertex? If it is possible, then we can, in fact, compute the

shortest paths from the source vertex to all polyhedral vertices using a geodesic star

unfolding.
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4.1.1 Results

The results presented in this chapter are the following :

First, we study the properties of the geodesic star unfolding of a convex polyhedron.

We compare these properties with those of the sp-star unfolding and try to answer

the following question:

Problem 1 Does the geodesic star unfolding have the same properties as the sp-star

unfolding?

We find that the statement is partially true and identify some properties unique to

the geodesic star unfolding.

Second, we discuss the reconstruction problem of the geodesic star unfolding poly-

gons. We are asking the following question:

Problem 2 Can we construct a geodesic star unfolding polygon from a given set of

cyclically ordered points, designated as the source images?

We discuss this problem in the context of the su-polygon and prove that su-polygons

are, by definition, equivalent to geodesic star unfoldings (refer to Section 3.2.1 for

detailed definition of the su-polygon). Therefore, this problem reduces to the recon-

struction problem of the su-polygon from a set of s-vertices. We define some challenges

of this problem and present an algorithm to generate an su-polygon when all but one

s-vertices are on a circle.

Finally, we address the problem of computing the sp-star unfolding polygon from

the geodesic star unfolding of the same polyhedron. We formulate the problem as

follows:

Problem 3 Given a geodesic star unfolding of a convex polyhedron with respect to

some source vertex, can we obtain the sp-star unfolding of the same polyhedron from

it?
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Figure 4.1: Diagonals of a simple polygon

We show, using experimental data, that we can always derive the sp-star unfolding

from the geodesic star unfolding of the same convex polyhedron and the source vertex.

4.2 Preliminaries

A geodesic path between two points on the surface is a locally shortest path.

Given two points on the polyhedral surface, there may be more than one, even infinite

number of geodesic paths between the points. In the remainder of the text, we consider

the geodesic paths between a source vertex and the polyhedral vertices of a convex

polyhedron. In this setting, the geodesic path cannot pass through a polyhedral

vertex. Although the shortest paths, by definition, are geodesics, we use geodesics,

in this text, to refer to non-shortest paths.

Given a convex polyhedron and a source vertex, the geodesic star unfolding is

obtained by cutting along a set of non-crossing paths where some or all of these paths

are geodesics. The result is a flat disk-like surface with a polygonal boundary.

Given a polyhedron and a source vetex, we can angularly sort the geodesic paths

from the source vertex to all polyhedral vertices around the source vertex. This map

of geodesic paths gives us an ordering of the polyhedral vertices. The boundary of

the core is the lines joining these vertices in this order.
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(a) (b)

Figure 4.2: (a)Face angles of one vertex of the cube are shown. The curvature of
this point is 2π minus the sum of these face angles.(b) When flattened on the plane,
curvature of a point is the angle exterior to the unfolding polygon.

The diagonal of a simple polygon joins two non-consecutive vertices and lies en-

tirely inside the polygon. Any simple polygon has at least (n−3) (excluding boundary

edges) and at most O(n2) diagonals. See Fig 4.1.

The Gaussian curvature or curvature, in short, of any point p on a polyhedral

surface is the angle deficit at p: 2π minus the sum of the face angles incident to p

[18].The vertices of a convex polyhedron always have positive curvature. See Fig 4.2.

4.3 Properties

Let n be the number of the vertices of the convex polyhedron P . The geodesic

star unfolding Ss, obtained by cutting along a set of non-crossing geodesic paths, is

a polygon with an interior. It has 2n vertices if the source vertex is on the face or on

an edge, and 2(n− 1) otherwise. Along the boundary of the polygon, the polyhedral

vertices and the source images appear alternately. The sum of the angles, interior to

the surface, at the source images is exactly 2π under the assumption that the source

vertex is on a face or on an edge of the polyhedron. Each polyhedral vertex lies on

the perpendicular bisectors of its two neighboring source images.
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(a) (b)

Figure 4.3: (a) One of the shortest paths on the tetrahedron from Fig. 1.3(a) is
replaced by a geodesic. (b) The corresponding geodesic star unfolding polygon. Red
and blue vertices are source images and polyhedral vertices respectively. One an
source angle is larger than π.

4.4 Contrasts with sp-star unfolding

Although geodesic star unfoldings share some basic properties with sp-star unfold-

ings, there are some surprising differences between them. One immediate difference

is on the source angle - in an sp-star unfolding, all source angles are acute. Although

it is possible for all source angles to be acute in a geodesic star unfolding, in some

instances, however, one of the angles is larger than π. See Fig 4.3. Some of the other,

non-obvious differences are described below.

4.4.1 Non-simple, self-overlapping polygon

Unlike sp-star unfolding polygons, geodesic star unfolding polygons may be self-

overlapping. We found an example where the geodesic star unfolding polygon of a

convex polyhedron has an overlap.

Theorem 28 Not all geodesic star unfolding polygons of a convex polyhedron and a

source vertex are simple, non-overlapping.

Proof We present a counter example of a geodesic star unfolding, in Fig 4.4, which

shows that it is not always a simple polygon.
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Figure 4.4: An example of a self-overlapping geodesic star unfolding polygon. The
circular and square vertices are polyhedral vertices and source images respectively.

4.4.2 Placement of polyhedral vertices

We know, from the characterization of the sp-star unfolding, that each polyhedral

vertex lies exactly on the corresponding Voronoi segment. One might expect that

this property extends to the geodesic star unfolding. On the contrary, we find that,

in certain occasions, the polyhedral vertices lie on the extension of the corresponding

Voronoi segments. Even surprisingly, we discover that some of the perpendicular

bisectors on which the polyhedral vertices lie are not even part of the Voronoi diagram.

Both cases are illustrated in Fig 4.5.

In the sp-star unfolding, we know that the ridge tree is the Voronoi diagram of the

source images. But the counter example shown here indicates that we cannot relate

the Voronoi diagram of the source images of the geodesic star unfolding to similar

type of geometric objects.
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Figure 4.5: An example of a geodesic star unfolding. Black edges denote the Voronoi
diagram. Polyhedral vertex v2 is on the extension of a Voronoi segment and the
bisector on which v4 lies is not present in the Voronoi diagram.

4.4.3 Self-intersecting core

It is known that the core of an sp-star unfolding is a simple polygon [18]. In fact,

the core contains the ridge tree in the unfolding. This property does not extend to

the geodesic star unfolding and we discover an example where the core is not simple.

Theorem 29 There exist a convex polyhedron P , a source vertex s and a set of non-

crossing geodesic paths from s to the vertices of P such that the core of the resulting

geodesic star unfolding polygon is self-intersecting.

Proof An example of a self-intersecting core of a geodesic star unfolding is shown in

Fig 4.6.

4.5 Relation with su-polygon

An su-polygon is the boundary of a flat disk-like polygon satisfying the following

properties: (a) it has 2n vertices, alternately labeled as si and vi and referred to as

s-, resp. v-vertices. The angle (interior to the surface) at an s-vertex is referred to as

an s-angle; (b) the sum of all the s-angles is 2π, and (c) the v-vertices are placed on

the perpendicular bisectors of the two neighboring s-vertices. In particular, this last

property implies that the two edges incident to a v-vertex have equal lengths.
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Figure 4.6: An example of a geodesic star unfolding where the core, shown in blue
edges, is self-intersecting.

We show that, every su-polygon arises from a geodesic star unfolding of some

convex polyhedron with respect to some source vertex. Before that, we need to

explain Alexandrov’s theorem on polyhedral metric.

Alexandrov’s theorem: A. D. Alexandrov proved a significant theorem on the

existence of convex polyhedra [6] as stated in [18]:

Theorem 30 For every convex polyhedral metric, there exists a unique convex poly-

hedron (up to translation or a translation with a symmetry) realizing this metric.

A convex polyhedral metric is a presentation of the surface of a convex polyhedron

as a collection of (one or more) planar polygonal pieces together with rules for glue-

ing them, along pieces of their boundaries, into a surface that is topologically a

sphere. The glueing must satisfy the following properties : i) Each edge of the poly-

gon can be glued to exactly one other polygonal edge. ii) the curvature at any point

is non-negative and iii) the glueing results in a complex homeomorphic to sphere, or

equivalently, the total curvature of the surface is 4π.

Now we show that every su-polygon is a convex polyhedral metric.
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Theorem 31 Any su-polygon is a convex polyhedral metric

Proof Since each v-vertex of an su-polygon P is on the perpendicular bisector of its

two neighboring s-vertices, the two edges emanating from a v-vertex can be glued

together. So, each edge of P glues to exactly one other edge of P .

All points except v-vertices on P have zero curvature. Each v-vertex has positive

curvature which is the the angle at the v-vertex exterior to P . We show that the sum

of the curvature at all v-vertices is 4π.

The sum of the angles at all v- and s-vertices interior to P is (2n− 2)π, where 2n

is the number of vertices of P (n s-vertices and n v-vertices). Since the sum of the

s-angles is 2π (by the definition of su-polygon), the sum of the angles at v-vertices

interior to P is 2nπ − 4π. The sum of all the angles, interior and exterior to P ,

at v-vertices is 2nπ. Therefore, the sum of the angles exterior to P at v-vertices,

or equivalently, the total curvature of P is 4π. Therefore, P is a convex polyhedral

metric.

Since an su-polygon is a convex polyhedral metric, it can be folded back into a

convex polyhedron. After folding, its boundary edges represent the cut edges on the

polyhedral surface. Since these cut edges are straight lines, these are also geodesics

(some of which may be the shortest) from the source to the polyhedral vertices.

Therefore, we have the following result:

Theorem 32 Any su-polygon is a geodesic star unfolding of some convex polyhedron

and a source vertex.

From now on, we will be using su-polygons and geodesic star unfolding polygons

interchangeably when there is no chance of confusion.
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4.6 Construction of geodesic star unfolding polygons

In Chapter 3, we characterized polygons that arise as the sp-star unfoldings and

used that characteristics to present an algorithm to reconstruct the ridge tree and its

underlying sp-star unfolding. Since the geodesic star unfolding is a relaxed version

of the sp-star unfolding, one might expect that the similar technique can be applied

here to its reconstruction. However, we have a different experience and describe some

challenges in this regard.

4.6.1 Challenges

We showed, in Chapter 3, that some set of s-vertices do not support sp-star un-

folding polygons. In those cases, the sum of the s-angles of the extreme flap polygon,

built upon those s-vertices, exceeds 2π. Although that poses a problem for the sp-

star unfolding reconstruction, but for the geodesic star unfolding, that is in fact, not

prohibitive. In a geodesic star unfolding, all of the polyhedral vertices can not be on

the corresponding Voronoi segments. If the sum of the s-angles of an extreme flap

polygon is larger than 2π, we should be able to push some v-vertices inwards until

the s-angles sum up to 2π. It will cause some v-vertices to be placed on the extension

of their corresponding Voronoi segments. Then, according to Theorem 14 and 32, the

resulting polygon is a geodesic star unfolding.

However, the problem with this approach is that we do not know how far we can

push each v-vertex inwards. There is no geometric properties that will guarantee that

we can push a set of v-vertices inwards enough to make the sum of s-angles to 2π

without crossing through other vertices or edges. See Fig 4.7. This complicates the

development of an algorithm for the construction of a geodesic star unfolding.

4.6.2 Point sets supporting geodesic star unfoldings

Due to the problem discussed in the previous section, we need to have a set

of points, designated as s-vertices, such that the v-vertices can freely move on the
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Figure 4.7: An example of a extreme flap polygon with larger than 2π s-angles. It is
difficult to push the v-vertices inwards to make the sum of the s-angles equal to 2π
while maintaining a valid geodesic star unfolding.

extension of the Voronoi segments. One such configuration is to place all s-vertices

on the circle. The bisectors of all pair of consecutive s-vertices, also part of the

Voronoi diagram, meet each other exactly at the center of the circle. See Fig 4.8(a).

In other words, the Voronoi diagram of these points has n line segments which meet

at the center of the circle. The sum of s-angle of the extreme flap polygon is zero.

We move one s-vertex to the interior of the circle as follows : let c be the center

of the circle and si−1, si, si+1 be three consecutive s-vertices on the circle. We move

si somewhere inside the triangle (c, si−1, si+1). We place the v-vertices on the corre-

sponding Voronoi segments and build the flap polygon by joining the s- and v-vertices

alternately. Let the vertices of su-polygon be s1, v1, s2, v2, . . . , si, vi, . . . , sn, vn. We

move all v-vertices to the center of the circle except vi−1 and vi. The lines si−1c and

si+1c will intersect the Voronoi segments corresponding to vi−1 and vi respectively.

Finally, we place vi−1 and vi on those intersection points respectively. See Fig 4.8(b).

At this configuration, the s-angles at all s-vertices except si are zero. Therefore, the

sum of the s-angles at s-vertices is less than 2π and all v-vertices except vi−1 and
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(a) (b) (c)

Figure 4.8: (a) Six s-vertices on the circle. The Voronoi segments meet at the center
of the circle. (b) A flap polygon where all s-angles but one (at si) are zero. (c) An
su-polygon obtained from the given s-vertices.

vi are on the extension of their corresponding Voronoi segments. We now move the

v-vertices, placed on the center of the circle, outwards by enough amount such that

the sum of the s-angles become 2π. This results in a geodesic star unfolding polygon.

Based on the construction described here, we have the following result:

Theorem 33 We can always construct a geodesic star unfolding where all but one

s-vertices are on a circle.

4.7 Conversion to sp-star unfolding

In this section, we address the following problem: given a geodesic star unfolding

of a convex polyhedron, how can we convert it into the sp-star unfolding of the same

polyhedron? To address this problem, we introduce a new operation on geodesic star

unfolding polygons called cut and paste operation.

4.7.1 Cut and paste operation

Let S be an su-polygon with v-vertices v1, . . . , vn and s-vertices s1, . . . , sn. Since

S is a polygon, it has at least (n− 3) diagonals, fully contained in the interior of the

polygon. We are not interested in all diagonals, only in those diagonals that connect
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(a) (b)

Figure 4.9: (a) An su-polygon where circled and squared vertices are v- and s-vertices
respectively. The cut-paste operation will be applied on the red diagonal. The poly-
gon will be cut along the red diagonal and pasted along the two cut edges emanating
from the v2. (b) New su-polygon after the application of the cut-paste operation.
Blue diagonal was the old cut edge.

s-vertices to v-vertices. We call those v-s diagonals or diagonals in short. Let d be

one such diagonal that connects vi to sj. The v-vertex vi is incident on the cut edges

from si and si+1. If we cut along the diagonal d and paste along visi and visi+1, we

will obtain a new su-polygon with the same polyhedral metric. We call this cut-paste

operation. See Fig 4.9.

Each cut-paste operation replaces the current geodesic cut edge with a new geodesic

cut edge. If the diagonal d is longer than the cut edge the v-vertex is currently on, the

cut-paste operation will yield an su-polygon where the length of the corresponding

new cut edge will increase. This means that the perimeter of the new su-polygon will

increase. On the other hand, if d is shorter than the current cut-edge, then, after

the cut-paste operation, the corresponding v-vertex will be on a shorter cut edge,

meaning the perimeter of the su-polygon will decrease. In the former case, d is called

a negative-gain diagonal, whereas, in latter case, it is called a positive-gain diagonal.

It should be noted that there is no positive gain diagonal in an sp-star unfolding

polygon.
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Each application of the cut-paste operation on a positive gain diagonal will re-

place the current geodesic with a shorter one. Let S1 be the initial su-polygon of

a fixed convex polyhedron and a source vertex and Ss be the sp-star unfolding of

that polyhedron and source vertex. We argue that we can reach from S1 to Ss after

finite number of application of the cut-paste operation, assuming that there exists

at least one positive gain diagonal at every step. If there are multiple positive gain

diagonals at any step, we choose the one with the highest gain (the difference between

the length of the diagonal and the length of the cut edge it replaces). We have the

following proof:

Lemma 34 We can obtain the sp-star polygon of a convex polyhedron with respect

to a source vertex from an su-polygon S of the same polyhedron and the source vertex

using cut-paste operation in finite number of steps, provided that there exists at least

one positive gain diagonal at every step.

Proof If S is the sp-star unfolding polygon, then we are done. Otherwise, Let

v1, v2, . . . , vk are the v-vertices of S which are not incident on shortest paths. Let

gli and sli denote the lengths of the current geodesic path and the actual shortest

path of vi from the source vertex, respectively. There exist only finite number of

geodesic paths from the source vertex to vi with lengths in between gli and sli. (if

there are infinite geodesic paths, the lengths of those geodesic paths extend to infinity

contradicting our condition). Let this number be mi. Since we perform the cut-paste

operation only on positive gain diagonals, every time we perform such operation on

vi, we obtain a geodesic cut edge with shorter length. Therefore, after at most mi

such operations on vi, it will be on the shortest path. Similar arguement holds for

other v-vertices which are on non-shortest geodesic paths.

We use an experimental method to verify that there exists at least one positive

gain diagonal at each step until we obtain the sp-star unfolding. Our experimental
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result shows that we can move from the given su-polygon to the sp-star unfolding

using only positive gain diagonals.

4.7.2 Experimental setup

We conduct experimentation to answer the following two questions:

1. Starting from a geodesic star unfolding S1 of a convex polyhedron and a source

point, can we obtain the sp-star unfolding of the same polyhedron and the

source vertex by repeatedly applying the cut-paste operation on positive gain

diagonals?

2. If there exists multiple positive gain diagonals, does the choice of the diagonals

affect the process? For example, if we choose the highest gain diagonals at every

step, does it lead us to the sp-star unfolding faster?

We conduct experiments on large number of geodesic star unfolding polygons. For

each such polygon, we apply cut-paste operation using both highest positive gain and

lowest positive gain diagonals. When there exists no positive gain diagonal, we check

if the final polygon is the sp-star unfolding (using Voronoi diagram property). We

also keep note of the number of steps required to reach the sp-star unfolding using

both types of positive gain diagonals.

4.7.2.1 Tools used

We have used three tools, all written in Mathematica, to conduct the experiments.

The first program is written to perform the cut-paste opertion on an su-polygon.

It takes an su-polygon as input and compute all v-s diagonals. It classifies these

diagonals into positive gain and negative gain diagonals and sort them in ascending

order, within these classes. Based on the chosen diagonal, the program performs the

cut-paste operation and computes a new geodesic star unfolding polygon.
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The second program computes the su-polygon from some input s-vertices. Given

a cyclically ordered s-vertices, the program computes the flap polygon (an su-polygon

where the sum of the s-angles is not 2π). The user then can move the v-vertices along

the corresponding Voronoi edges (on the segments and their extensions). This way

the user can manually generate an su-polygon, even with s-vertices in non-convex

position.

The third program is the implementation of the algorithm to generate su-polygons

from co-circular point sets presented in Section 4.6.2. It takes a set of points on the

circle and compute the su-polygon.

4.7.2.2 Generation of input su-polygons

To conduct the experiments, we have generated 3500 su-polygons with 10,15 and

20 v-vertices (or s-vertices) in three different ways:

First, we used the second program stated in Section 4.7.2.1 to manually generate

su-polygons.

Second, we used the third program to generate su-polygons with all s-vertices but

one in co-circular positions.

Third, we first generated the sp-star unfolding polygons with the algorithm and tools

discussed in Chapter 3. Then we repeatedly apply the cut-paste operation on each

of these sp-star unfoldings with randomly chosen negative gain diagonals. Because of

the negative gain diagonals, some or all of the shortest paths in the sp-star unfolding

will be replaced by longer geodesics. As a result, we will obtain geodesic unfolding

polygons from sp-star unfolding polygons.

4.7.2.3 Experimental results

After conducting the experiments, we observe the following results:

1. For every input su-polygon, there exists at least one positive gain diagonal at

every step.
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2. Irrespective of our choice of the highest or the lowest positive gain diagonals,

we can always obtain the sp-star unfolding from each of the input su-polygon.

3. There is no guarantee that the highest positive gain diagonals will lead us to the

sp-star unfolding polygons faster. Sometimes, we reach to the sp-star unfolding

in a smaller number of steps using only the lowest gain positive diagonals.

The immediate consequence of these observations leads us to a simple algorithm

to compute the sp-star unfolding from the geodesic star unfolding.

4.7.2.4 Algorithm

Given an su-polygon, we compute the v-s diagonals and select the diagonal with

the highest positive gain. We cut along this diagonal and paste along the cut edges

the corresponding v-vertex is on. We keep performing this operation, until there is

no diagonal with positive gain. The final polygon is the sp-star unfolding.

4.8 Conclusion

We have introduced a new kind of unfolding called geodesic star unfolding. We

have examined its properties and found that it has some unique properties. We

have discussed some challenges to construct the geodesic star unfolding from a given

point set and presented an algorithm to construct the geodesic star unfolding from

all but one co-circular s-vertices. Finally, we have introduced the cut and paste

operation. We have conducted experiments which show that we can obtain the sp-

star unfolding from any given geodesic star unfolding using this operation. We have

given heuristics on how we can choose diagonals for the cut and paste operation and

find the performance of the algorithm based on these heuristics.
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CHAPTER 5

CONCLUSIONS AND OPEN PROBLEMS

In this dissertation, we have addressed several problems for two well-known ge-

ometric structures: Delaunay tessellation and the shortest path star unfolding. We

have also introduced a new structure, called geodesic star unfolding, and investigated

several problems on this structure. In the rest of this chapter, we summarize our

results and state some related open problems.

5.1 Realization of Delaunay triangulations

We have considered the decision problem if an outerplanar graph is realizable as a

Delaunay triangulation. We have used a new proof technique, utilizing the criterion

of inscribable graphs set by Rivin [44, 45], to show that any outerplanar graph can

be realized as a Delaunay tessellation. This inscribability criterion requires a set of

weights on the edges of the graph such that they satisfy some conditions. We have

shown, inductively, how we can assign weights to the edges of an outerplanar graph

while maintaining these conditions.

Although we know certain classes of planar graphs are Delaunay realizable, the

combinatorial characterization of all Delaunay realizable planar graphs is still un-

known. Therefore, we have the following problem:

Problem 4 Give a complete combinatorial characterization of the planar graphs

which are Delaunay realizable.
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5.2 Ridge tree reconstruction

We have shown that every combinatorial tree can be embedded as a ridge tree of

some convex polyhedron with respect to some source vertex. We have presented a

complete characterization of the polygons that arise as the shortest path star unfold-

ings. In the process, we have addressed several problems concerning the realization of

the sp-star unfolding polygons on a specified point set. We have shown, using counter

examples, that arbitrary set of points cannot be used to construct this unfolding. We

have connected Dillencourt’s algorithm for Delaunay realization to the realization

problem of the sp-star unfolding and its underlying ridge tree. Our reconstruction

algorithm, however, puts the source images in convex position. Since the source im-

ages of an sp-star unfolding are not always placed in convex position, developing an

algorithm that puts the source images in arbitrary position for any combinatorial

ridge tree will address the reconstruction problem for the whole class of the sp-star

unfolding. An open problem is the following:

Problem 5 Given a tree, can we realize it as the ridge tree of an sp-star unfolding

where the source images are not necessarily in convex position?

5.3 Geodesic star unfolding

Being inspired by the sp-star unfolding, we have introduced a new type of unfold-

ing called geodesic star unfolding. In this unfolding, we take a set of non-crossing

geodesic paths, one for each polyhedral vertex, from the source vertex to the ver-

tices of the convex polyhedron. All of these paths are not necessarily the shortest.

The resulting unfolding is called a geodesic star unfolding. We have found that

this unfolding has several unique properties: a geodesic star unfolding polygon may

be self-overlapping, its polyhedral vertices are not necessarily placed exactly on the

corresponding Voronoi segments and its core may be self-intersecting. We have also

considered the reconstruction problem for geodesic star unfolding. We discussed some
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challenges of this problem and presented a reconstruction algorithm for a small class

of s-vertices. Finally, we introduced a new operation, called cut-paste operation. This

operation cuts an su-polygon along a diagonal joining a v-vertex to an s-vertex and

pastes along the current cut edges of this v-vertex. The result is a new su-polygon.

We have shown, using experimental data, that using this operation on geodesic star

unfoldings, we can always obtain the sp-star unfolding of the same convex polyhedron

and the source vertex. However, we would like to see our experimental result being

backed by a theoretical proof. Therefore we have the following open problem:

Problem 6 Does there always exist a diagonal connecting a polyhedral vertex to a

source image and lying entirely inside the geodesic star unfolding polygon such that

its length is smaller than the length of the cut edge of the corresponding v-vertex?

We believe a solution to this problem requires the exploration of the properties

of geodesic paths on the polyhedral surface. Therefore, we find that some of the

following problems are relevant:

Problem 7 What is the bound on the number of geodesic paths between two points

on the convex polyhedral surface whose lengths are equal or smaller than l, l ∈ R?

Problem 8 What are the necessary and sufficient conditions for two points on convex

polyhedral surface to have infinite number of geodesic paths?
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[24] Dürer, Albrecht. Unterweysung der messung mit dem zyrkel und rychtscheyd,
1525. English translation with commentary by Walter L. Strauss The Painter’s
Manual, New York (1977).

[25] Edelsbrunner, H., Kirkpatrick, D. G., and Seidel, R. On the shape of a set of
points in the plane. 551–558.

[26] Edelsbrunner, Herbert, Ablowitz, M. J., Davis, S. H., Hinch, E. J., Iserles, A.,
Ockendon, J., and Olver, P. J. Geometry and Topology for Mesh Generation
(Cambridge Monographs on Applied and Computational Mathematics). Cam-
bridge University Press, New York, NY, USA, 2006.

[27] Gabriel, K. Ruben, and Sokal, Robert R. A new statistical approach to geo-
graphic variation analysis. Systematic Zoology 18, 3 (1969), pp. 259–278.

[28] George, P.L., Hecht, F., and Saltel, E. Automatic mesh generator with speci-
fied boundary. Computer Methods in Applied Mechanics and Engineering 92, 3
(1991), 269 – 288.
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