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ABSTRACT

FUNDAMENTAL LIMITS OF
COVERT COMMUNICATION

FEBRUARY 2015

BOULAT A. BASH

A.B., DARTMOUTH COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Donald F. Towsley

Traditional security (e.g., encryption) prevents unauthorized access to message

content; however, detection of the mere presence of a message can have significant

negative impact on the privacy of the communicating parties. Unlike these standard

methods, covert or low probability of detection (LPD) communication not only pro-

tects the information contained in a transmission from unauthorized decoding, but

also prevents the detection of a transmission in the first place. In this thesis we

investigate the fundamental laws of covert communication.

We first study covert communication over additive white Gaussian noise (AWGN)

channels, a standard model for radio-frequency (RF) communication. We present

a square root limit on the amount of information transmitted covertly and reliably

over such channels. Specifically, we prove that if the transmitter has channels to the

intended receiver and the warden that are both AWGN, thenO(
√
n) covert bits can be

ix



reliably transmitted to the receiver in n uses of the channel. Conversely, attempting

to transmit more than O(
√
n) bits either results in detection by the warden with

probability one or a non-zero probability of decoding error at the receiver as n→∞.

Next we study the impact of warden’s ignorance of the communication attempt

time. We prove that if the channels from the transmitter to the intended receiver

and the warden are both AWGN, and if a single n-symbol period slot out of T (n)

such slots is selected secretly (forcing the warden to monitor all T (n) slots), then

O(min{
√
n log T (n), n}) covert bits can be transmitted reliably using this slot. Con-

versely, attempting to transmit more than O(
√
n log T (n)) bits either results in detec-

tion with probability one or a non-zero probability of decoding error at the receiver.

We then study covert optical communication and characterize the ultimate limit of

covert communication that is secure against the most powerful physically-permissible

adversary. We show that, although covert communication is impossible when a chan-

nel injects the minimum noise allowed by quantum mechanics, it is attainable in the

presence of any noise excess of this minimum (such as the thermal background). In

this case, O(
√
n) covert bits can be transmitted reliably in n optical channel uses

using standard optical communication equipment. The all-powerful adversary may

intercept all transmitted photons not received by the intended receiver, and employ

arbitrary quantum memory and measurements. Conversely, we show that this square

root scaling cannot be circumvented. Finally, we corroborate our theory in a proof-

of-concept experiment on an optical testbed.
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CHAPTER 1

INTRODUCTION

Security and privacy are critical in modern-day wireless communications, with con-

ventional cryptography [67, 80], information-theoretic secrecy [90, 22], and quantum

cryptography [7] offering progressively higher levels of security against the unautho-

rized access to transmitted information. Widely-deployed conventional cryptography

presents the adversary with a problem that he/she is assumed not to be able to solve

because of computational constraints, while information-theoretic secrecy presents

the adversary with a signal from which he/she cannot extract information about the

message contained therein. Quantum key distribution (QKD) lets two distant parties

generate a shared secret key that is secure from the most powerful adversary allowed

by physics. This key, when used as a one-time pad [76], yields an unconditionally-

secure cipher. However, while these approaches address security in many domains

by protecting the content of the message, they do not mitigate the threat to users’

privacy from the discovery of the very existence of the message itself.

Indeed, transmission attempts expose connections between the parties involved,

and recent disclosures [6] of massive surveillance programs revealed that this “meta-

data” is widely collected and often used for nefarious means. Furthermore, the trans-

mission of encrypted data can arouse suspicion, and many cryptographic schemes can

be defeated by a determined adversary using non-computational means such as side-

channel analysis. Anonymous communication tools [23] such as Tor resist metadata

collection and traffic analysis by randomly directing encrypted traffic through a large

network. While these tools conceal the identities of source and destination nodes in

1



Figure 1.1: Our vision of a “shadow network” assembled from “friendly” nodes. Re-
lays (each indicated by a filled red circle with lines expressing active connections to
other relays) generate, transmit, receive, and consume data, while jammers (each in-
dicated by a filled red circle with a concentric red circle) generate artificial noise that
impairs the ability of wardens (indicated by the blue crosses) to detect the presence
of communication. Inactive friendly nodes (indicated by filled red circles with nei-
ther connections to other nodes nor the concentric circles) are capable of receiving,
transmitting and jamming, while the neutral nodes (indicated by empty green cir-
cles) produce background interference but do not participate in the shadow network
nor assist the wardens. Most of this article focuses on the scenario involving only
three nodes: transmitter Alice, receiver Bob, and warden Willie, as indicated in the
diagram.

a “crowd” of relays, they are designed for the Internet and are not effective in wire-

less networks, which are typically orders of magnitude smaller. Moreover, such tools

offer little protection to users whose communications are already being monitored

by the adversaries. Thus, secure communication systems should also provide covert,

or low probability of detection (LPD) communication. Such systems not only pro-

tect the information contained in the message from being decoded, but also prevent

the adversary from detecting the transmission attempt in the first place and allow

communication where it is prohibited.

2



While traditionally covert communication received relatively little attention, our

recent work [4] on its fundamental limits has spurred a revival of interest. The

overarching goal of covert communication research is the establishment of “shadow

networks,” an example of which is depicted in Figure 1.1. However, to create such

networks, we must first learn how to connect its component nodes by stealthy com-

munication links. Therefore, in this thesis we focus on the fundamental limits of such

point-to-point links and address the following question: how much information can a

sender Alice reliably transmit (if she chooses to transmit) to the intended recipient

Bob while hiding it from the adversary, warden Willie?

The contributions of this thesis are:

• The development of the fundamental theory of covert communication over

additive white Gaussian noise (AWGN) channels (Chapters 4 and 5):

– We show that Shannon capacity [75] does not apply to quantifying the lim-

its of covert communication. Unlike standard secure communication (e.g.,

encryption and information-theoretic secrecy) that only protects the mes-

sage content, covert communication is subject to the square root law : when

both Bob and Willie have AWGN channels from Alice, she can reliably

transmit O(
√
n) covert bits in n uses of her channel to Bob; attempting to

transmit more information either results in detection with high probability

or unreliable communication [4]. Since Shannon capacity is the number of

bits that can be transmitted per channel use as the number of channel uses

approaches infinity, our result implies that the Shannon capacity of covert

communication over AWGN channel is zero.

– We also demonstrate that ignorance on the part of Willie as to when Alice

might transmit can be used to increase the covert communication through-

put [5].
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• The development of the fundamental theory of covert optical communication

(Chapter 6): Since modern high-sensitivity optical components are primarily

limited by noise of quantum-mechanical origin, we employ quantum informa-

tion theory to derive the ultimate limit of covert communication that is secure

against the most powerful adversary physically permissible. This is the same

benchmark of security to which quantum cryptography adheres for encrypted

communication. As in the AWGN case, the standard result on the limits of com-

munication over a quantum channel (the Holevo capacity [43], a generalization

of Shannon capacity to quantum channels) does not apply to quantum-noise

limited covert optical communication. We demonstrate that a square root law

similar to the one for AWGN channels holds for covert optical communication as

long as there is a positive amount of non-adversarial noise (e.g., thermal back-

ground). We also show that non-adversarial noise is critical as covert commu-

nication is impossible in its absence, which also sharply contrasts the standard

quantum cryptography results [3].

• Experimental validation of the square root law for covert optical communication

(Chapter 7): We corroborate the theory developed in Chapter 6 in a proof-of-

concept experiment. This is the first known implementation of a truly quantum-

information-theoretically secure covert communication system that allows com-

munication when all transmissions are prohibited [3].

This thesis is structured as follows: we begin with a high-level overview of covert

communication in Chapter 2, including both the intuitive treatment of our results as

well as the related work. We provide the mathematical prerequisites in Chapter 3, in-

cluding the rigorous definition of covert communication. In Chapter 4 we study covert

communication over the additive white Gaussian noise (AWGN) channels, establish-

ing the fundamental square root limit. In Chapter 5 we relax the assumption that

Willie knows when to monitor his AWGN channel from Alice for a possible transmis-
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sion and show that this increases the covert communication throughput. We employ

quantum information theory to analyze covert optical communication in Chapter 6.

In Chapter 7 we describe our proof-of-concept experiment that corroborates the the-

ory developed in Chapter 6. We conclude the thesis in Chapter 8 by summarizing

our contributions and discussing both the ongoing research and the potential future

work in covert communication.
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CHAPTER 2

OVERVIEW OF COVERT COMMUNICATION

The objective of this chapter is to frame the thesis in the context of previous work

on covert communication as well as to intuitively sketch the results of the technical

chapters that follow. We limit the prerequisite mathematical knowledge for this chap-

ter to the basic asymptotic notation (which is formally defined in Section 3.1). We

begin by briefly reviewing the ancient field of steganography in Section 2.1. Steganog-

raphy is the practice of hiding messages in innocuous objects. It is important because

not only was the first covert communication system based on steganography, but it

also was the subject of the first information-theoretic investigation of stealthy com-

munication.

However, the use of steganography for covert communication requires the trans-

mission of objects containing the hidden messages, which is challenging when all

transmissions are prohibited. Thus, in Section 2.2, we discuss covert communication

over noisy channels. The focus of the bulk of Section 2.2 are analog radio frequency

(RF) channels, where the information is hidden in the channel artifacts such as ad-

ditive white Gaussian noise (AWGN). After a brief overview of the classical spread

spectrum methods, we introduce our work on the fundamental limits of covert com-

munication over AWGN channels. Our presentation in Section 2.2 is largely intuitive

and we defer the technical details to Chapters 4 and 5. At the end of Section 2.2

we discuss covert communication over digital communication channels, where the

progress by other research groups was inspired by our work, as well as briefly touch

upon the covert broadcast scenario.
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Optical communication has intrinsically high resistance to detection, however,

analysis of optical systems demands the use of quantum mechanics. We outline our

results on covert optical communication in Section 2.3 while deferring the technical

details to Chapter 6. At the end of Section 2.3 we touch on the experimental work

from Chapter 7. We conclude this chapter in Section 2.4 by discussing the relationship

of this thesis to other work in communication.

2.1 Steganography

The first known description of covert communication is by Herodotus circa 440

BCE in The Histories [42], an account of the Greco-Persian Wars: in Chapter 5

Paragraph 35, Histiaeus shaves the head of his slave, tattoos the message on his

scalp, waits until the hair grows back, and then sends the slave to Aristagoras with

instructions to shave the head and read the message that calls for an anti-Persian

revolt in Ionia; in Chapter 7 Paragraph 239, Demaratus warns Sparta of an imminent

Persian invasion by scraping the wax off a wax tablet, scribbling a message on the

exposed wood, and concealing the message by covering the tablet with wax. This

practice of hiding sensitive messages in innocuous objects is known as steganography.

Modern digital steganography conceals messages in finite-length, finite-alphabet

covertext objects, such as images or software binary code. Embedding hidden mes-

sages in covertext produces stegotext, necessarily changing the properties of the cover-

text. The countermeasure for steganography, steganalysis (an analog of cryptanalysis

for cryptography), looks for these changes. Covertext is usually unavailable for ste-

ganalysis (when it is, steganalysis consists of the trivial comparison between the cover-

text and the suspected stegotext). However, Willie is assumed to have a complete

statistical model of the covertext. The amount of information that can be embedded

without being discovered depends on whether Alice also has access to this model.
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If she does, then positive-rate steganography is achievable: given an O(n)-bit1 secret

“key” that is shared with Bob prior to the embedding, O(n) bits can be embedded

in an n-symbol covertext without being detected by Willie [29, Chapter 13.1].

Recent work focuses on the more general scenario where the complete statisti-

cal model of the covertext is unavailable to Alice. Then, Alice can safely embed

O(
√
n log n) bits by modifying O(

√
n) symbols out of n in the covertext, at the

cost of pre-sharing O(
√
n log n) secret bits with Bob. Note that this square root law

of digital steganography yields zero-rate steganography since limn→∞
O(
√
n logn)
n

= 0

bits/symbol. The square root law was first observed empirically in the experimental

analysis of existing steganalysis systems and the proof is available in Chapter 13.2.1

of the review of pre-2009 work in digital steganography [29]. More recent work shows

that an empirical model of covertext suffices to break the square root law and achieve

positive-rate steganography [20]. Essentially, while embedding at a positive rate lets

Willie obtain O(n) stegotext observations (enabling detection of Alice when statistics

of covertext and stegotext differ), the increasing size n of the covertext allows Alice

to improve her covertext model and produce statistically-matching stegotext.

Although it is an active research area, steganography has limited application for

covert communication. First, analysis of the steganographic systems generally as-

sumes that stegotext is not corrupted by a noisy channel. Second, the generalization

of the results for steganographic systems is limited because of their finite-alphabet

discrete nature. Finally, the most serious drawback of using steganography for covert

communication is the necessity of transmitting the stegotext from Alice to Bob—a

potentially unrealizable requirement when all communication is prohibited. We thus

consider covert communication over noisy channels.

1The asymptotic notation is formally defined in Section 3.1.
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2.2 Covert Communication over Noisy Channels

We begin the investigation of covert communication over noisy channels by con-

sidering RF wireless communication. Since its emergence in the early 20th century,

protecting wireless RF communication from detection, jamming and eavesdropping

has been of paramount concern. Spread spectrum techniques, devised between the

two world wars to address this issue, have constituted the earliest and, arguably, the

most enduring form of physical layer security.

2.2.1 Spread Spectrum Communication

Essentially, the spread spectrum approach involves transmitting a signal that re-

quires a bandwidth WM on a much wider bandwidth Ws � WM , thereby suppressing

the power spectral density of the transmission below the noise floor. Spread spec-

trum systems provide both a covert communication capability as well as resistance

to jamming, fading, and other forms of interference. A comprehensive review of this

field is available in [78, 81]. Typical spread spectrum techniques include direct se-

quence spread spectrum (DSSS), frequency-hopping spread spectrum (FHSS), and

their combination.

When Alice uses DSSS, she multiplies the signal waveform by the spreading se-

quence—a randomly-generated binary waveform with a substantially higher band-

width than the original signal. The resulting waveform is thus “spread” over a wider

bandwidth, which reduces the power spectral density of the transmitted signal. Bob

uses the same spreading sequence to de-spread the received waveform and obtain the

original signal. The spreading sequence is exchanged by the communicating parties

prior to transmission and is kept secret from Willie.2 Outside of security applications,

2While an exchange of a secret prior to covert communication is similar to a key exchange in
symmetric-key cryptography [67, Chapter 1.5] (e.g., one-time pad [76]), an important distinction is
that public-key cryptography techniques [67, Chapter 1.8] cannot be used to exchange this secret
on a channel monitored by Willie without revealing the intention to communicate.

9



(a) DSSS (b) FHSS with OFDM and time-hopping.

Figure 2.1: Illustration of spread spectrum techniques. Direct sequence spread spec-
trum (DSSS) is described in (a): the signal with bandwidth WM is multiplied by a
spreading sequence with bandwidth Ws � WM prior to the transmission, reducing
below the noise floor the power spectral density of the transmission. Frequency-
hopping spread spectrum (FHSS) achieves the same by re-tuning the transmitter to
a different carrier frequency within a wide frequency band. As illustrated in (b),
orthogonal frequency-division multiplexing (OFDM) enables the use of multiple fre-
quency bands at each transmission and time-hopping allows arbitrary varying of the
transmission duty cycle. Note that the spreading sequence and the frequency/time
hopping pattern are kept secret from the adversaries.

the use of public uncorrelated spreading sequences between transmitter/receiver pairs

enables multiple access; DSSS thus forms the basis of code-division multiple access

(CDMA) protocols used in cellular telephony [85]. The operation of DSSS is illus-

trated in Figure 2.1(a).

Unlike DSSS, FHSS re-tunes the carrier frequency for each transmitted symbol.

However, like the spreading sequence in DSSS, the frequency-hopping pattern is also

randomly generated and secretly shared between the communicating parties prior to

the transmission. FHSS can be combined with orthogonal frequency-division multi-

plexing (OFDM), enabling the use of multiple carrier frequencies. To further reduce

the average transmitted symbol power, FHSS can be used with time-hopping tech-

niques that randomly vary the duty cycle (the time-hopping pattern is also secretly
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pre-shared between the communicating parties prior to the transmission). The oper-

ation of FHSS with OFDM and time-hopping is illustrated in Figure 2.1(b).

Although spread spectrum architectures for covert communication are well-developed,

their fundamental information-theoretic limits have not been explored. Knowledge of

the limits of communication systems is important, particularly since modern coding

techniques (such as Turbo codes [8] and low-density parity check [31, 61] codes) allow

3G/4G cellular systems to operate near their theoretical channel capacity, the maxi-

mum rate of reliable communication without imposing any security requirement [75].

We thus discuss the fundamental limits of covert communication next.

2.2.2 Square Root Law for Covert Communication over AWGN Channels

Spread spectrum systems allow communication where it is prohibited because

spreading the signal power over a large time-frequency space substantially reduces

the adversary’s signal-to-noise ratio (SNR). This impairs his/her capability to dis-

criminate between the noise and the information-carrying signal corrupted by noise.

Here we determine just how small the power has to be for the communication to be

fundamentally undetectable, and how much covert information can be transmitted

reliably.

Consider an additive white Gaussian noise (AWGN) channel model where the

signaling sequence is corrupted by the addition of a sequence of independent and

identically distributed zero-mean Gaussian random variables with variance σ2. This

is the standard model for a free-space RF channel. Suppose that the channels from

Alice to Bob and to Willie are subject to AWGN with respective variances σ2
b >

0 and σ2
w > 0,3 as illustrated in Figure 2.2(a). Let channel use denote the unit

of communication resource—a fixed time period that is used to transmit a fixed-

3If the channel from Alice to Bob is noiseless (σ2
b = 0) and the channel from Alice to Willie is

noisy (σ2
w > 0), then Alice can transmit an infinite amount of information to Bob; if the channel

from Alice to Willie is noiseless (σ2
w = 0), then covert communication is impossible.
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(a) Additive white Gaussian noise chan-
nel. (b) Discrete memoryless channel.

(c) Binary symmetric channel. (d) Lossy-noisy optical channel.

Figure 2.2: Channel models.

bandwidth signal—and let n be the total number of channel uses available to Alice and

Bob (e.g., n = WsTs in Figure 2.1(b)). Willie’s ability to detect Alice’s transmission

depends on the amount of total power that she uses. Let’s intuitively derive4 Alice’s

power constraint assuming that Willie observes these n channel uses. When Alice

is not transmitting, Willie observes AWGN with total power σ2
wn over n channel

observations on average. By standard statistical arguments, with high probability,

observations of the total power lie within ±cσ2
w

√
n of this average, where c is a

4The formal proof is in Chapter 4.
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Figure 2.3: Design of a covert communication system that allows Alice and Bob to
use any error-correction codes (including those known to Willie) to reliably transmit
O(
√
n) covert bits using O(

√
n log n) pre-shared secret bits. Subset S is effectively a

frequency/time-hopping pattern, generated by flipping a biased random coin n times,
with probability of heads O(1/

√
n): the ith channel use is selected for transmission if

the ith flip is heads. On average, the number of channel uses selected |S| = O(
√
n).

Knowledge of S allows Bob to discard the observations of his channel from Alice that
are not in S and decode her message; Willie observes mostly noise since he does not
know S. Furthermore, application of a one-time pad prevents Willie’s exploitation
of the error correction code’s structure to detect Alice (rather than protects the
message content). In Appendix A.4 a binary amplitude modulation is used while
in Chapter 7 this scheme is implemented on an optical testbed using a Q-ary pulse
position modulation.

constant. Since Willie observes Alice’s signal power when she transmits in addition to

the noise power, to prevent Willie from getting suspicious, the total amount of power

that Alice can use is limited to O(
√
n), or P = O(1/

√
n) per symbol; otherwise her

transmission will be detected. We show (Chapter 4) that this allows her to reliably

transmit O(
√
n) covert bits to Bob in n channel uses, but no more than that. The

similarity of this square root law for covert communications to the steganographic

square root law from Section 2.1 is attributable to the mathematics of statistical

hypothesis testing (as discussed in Section 4.2.3.2). The additional log n factor in the

steganographic square root law comes from the fact that the steganographic “channel”

to Bob is noiseless.
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As in steganography and spread spectrum communication, prior to communicat-

ing, Alice and Bob may share a secret signaling scheme. Figure 2.3 depicts a method

used in Appendix A.4 that allows Alice and Bob to use any error-correction code

(which can be known to Willie) on top of binary modulation to reliably transmit

O(
√
n) covert bits using O(

√
n log n) pre-shared secret bits; this method is trivially

extended to higher-order modulation schemes (e.g., in Chapter 7 is is used with Q-

ary pulse position modulation to implement optical communication on an optical

testbed.) While the size of the key is asymptotically larger than the size of the

transmitted message, there are many real-world scenarios where this is an accept-

able trade-off to being detected. Furthermore, the recent extension of our work in

Chapter 4 to digital covert communication that we describe next suggests that the

pre-shared secret can be eliminated in some scenarios.

2.2.3 Digital Covert Communication

The discrete memoryless channel (DMC) model [19, Chapter 7] describing dig-

ital communication often sheds light on what is feasible in practical communica-

tion systems. Discrete input and output allow the DMC to be represented using a

bipartite graph where the two sets of vertices correspond to input and output al-

phabets, and edges correspond to the stochastic transitions from input to output

symbols. The memoryless nature of the DMC means that its output is statistically

independent from any symbol other than the input at that time. We illustrate this

model in Figure 2.2(b), which we augment by designating one of Alice’s inputs as “no

transmission”—a necessary default channel input permitted by Willie.5

We first consider the binary symmetric channel (BSC) illustrated in Figure 2.2(c),

which restricts the DMC to binary input and output alphabet {0, 1}, and the proba-

bility of a crossover from zero at the input to one at the output being equal to that of

5For example, this could be the zero-signal in the AWGN channel scenario.
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a crossover from one to zero. Denote by pb > 0 and pw > 0 the crossover probabilities

on Bob’s and Willie’s BSCs, respectively. It has been shown that, while no more than

O(
√
n) covert bits can be reliably transmitted in n BSC uses, if pw > pb, then the

pre-shared secret is unnecessary [15].

Channel resolvability can be employed to generalize the square root law in [15]

to DMCs. Channel resolvability is the minimum input entropy6 needed to generate

a channel output distribution that is “close” (by some measure of closeness between

probability distributions7) to the channel output distribution for a given input; re-

solvability has been used to obtain new, stronger results for the information-theoretic

secrecy capacity [10]. If the channels from Alice to both Willie and Bob are DMCs,

and Willie’s channel capacity is smaller than Bob’s, then techniques in [44] can be

used to demonstrate the square root law without a pre-shared secret [54]. The re-

sults in [15] and [54] provide evidence that secret-less covert communication over the

AWGN channel should be possible.

2.2.4 Willie’s Ignorance of Transmission Time Helps Alice

When deriving the square root laws, we assume that Willie knows when the trans-

mission takes place, if it does. However, in many scenarios Alice and Bob have a

pre-arranged time for communication that is unknown to Willie (e.g., a certain time

and day). The transmission might also be short relative to the total time during

which it may take place (e.g., a few seconds out of the day). If Willie does not know

when the message may be transmitted, he has to monitor a much longer time period

6Essentially, entropy measures “surprise” associated with a random variable, or its “uncertainty”.
For example, a binary random variable describing a flip of a fair coin with equal probabilities of
heads and tails has higher entropy than the binary random variable describing a flip of a biased
coin with probability of heads larger than tails. The output of the biased coin is more predictable,
and less surprising, as one should observe more heads. Introductory texts on the information theory
(such as [19]) provide the in-depth discussion of entropy and other information-theoretic concepts.

7Examples of measures of closeness are variational distance and relative entropy (see Section 4.2.1
and [19, Chapter 11]).
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than the time required for the transmission. It turns out that Willie’s ignorance of

Alice’s transmission time allows her to transmit additional information to Bob. Sur-

prisingly, under some mild conditions on the relationship between the total available

transmission time and the transmission duration, Alice and Bob do not even have to

pre-arrange the communication time.

slot 1

n︷ ︸︸ ︷
slot 2

n︷ ︸︸ ︷
· · · slot tA

n︷ ︸︸ ︷
· · · slot T (n)

n︷ ︸︸ ︷
︸ ︷︷ ︸

nT (n) total symbol periods

�
���

Slot used by Alice and Bob

Figure 2.4: Slotted channel: each of the T (n) slots contains n symbols. Alice and
Bob use slot tA to communicate.

Consider the scenario of Section 2.2.2 where the channels from Alice to Bob and

to Willie are subject to AWGN. Suppose that time is slotted, with each of T (n) slots

containing n channel uses and T (n) being an increasing function of n, as depicted in

Figure 2.4. Clearly, if Alice used all T (n) slots, by the square root law, she could

reliably transmit O(
√
nT (n)) covert bits in nT (n) channel uses. However, suppose

that she only employs a single time slot tA, selected uniformly at random. While

the näıve application of the square root law states that she can reliably transmit

O(
√
n) covert bits, in fact, as we show in Chapter 5, Willie being subject to much

more noise from having to monitor all T (n) slots allows Alice to reliably transmit

O(min{
√
n log T (n), n}) covert bits during the selected time slot, if she chooses to

transmit. Furthermore, no additional bits of pre-shared secret are required if T (n) <

2cTn, where constant cT > 0 depends on the relative power of AWGN on Bob’s and

Willie’s channels. Conversely, no more than O(
√
n log T (n)) can be transmitted both

reliably and covertly.

While it has been established that the absence of transmission timing knowledge

by Willie allows Alice to transmit more covert bits, the proof in Chapter 5 is valid
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only for an AWGN channel. The problem is open for DMCs; however, we suspect

that the same scaling laws hold.

2.2.5 Positive-rate Covert Communication

The covert communication channels described above have zero rates, since the

average number of bits that can be covertly transmitted per channel use tends to

zero as the number of channel uses n gets large. Here we discuss the possibility of

positive-rate covert communication, i.e. reliable transmission of O(n) covert bits in n

channel uses. In general, the circumstances that allow Alice to covertly communicate

with Bob at positive rates occur either when Willie allows Alice to transmit positive-

entropy messages or when he is ignorant of the probabilistic structure of the noise

on his channel (note that the applicability of the steganographic results [20] here is

limited since estimation of the probabilistic structure of the noise on Willie’s channel is

insufficient unless Alice can “replace” this noise rather than add to it). When Willie

allows transmissions, the covert capacity is the same as the information-theoretic

secrecy capacity (see [44] for treatment of the DMCs). Incompleteness of Willie’s

noise model can also allow positive-rate covert communication: in the noisy digital

channel setting, Willie’s ignorance of the channel model is a special case of the scenario

in [44]; while in the AWGN channel setting, random noise power fluctuations have

been shown to yield positive-rate covert communication [57, 58]. The latter result

holds even when the noise power can be bounded; a positive rate is achieved because

Willie does not have a constant baseline of noise for comparison.

2.2.6 Covert Broadcast

Some of the results for the point-to-point covert communication in the presence of

a single warden that are discussed in this section can easily be extended to scenarios

with multiple receivers. For example, covert communication over an AWGN channel

effectively imposes a power constraint on Alice. Since a pre-shared secret enables
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covert communication in this setting, if each receiver obtains it prior to communica-

tion, Alice can use standard techniques [19, Chapter 15] to encode covert messages

to multiple recipients. The extension to a multi-warden setting as well as other net-

worked scenarios is the ongoing work discussed in Chapter 8.

2.3 Covert Optical Communication

Optical signaling enables such important cryptographic security techniques as

QKD [7]. It is also ideal for covert communication because of the narrow beam

spread of laser-based communication systems [30, 35] and the availability of time-

domain reflectometry devices [2] for detecting taps in optical fiber. Therefore, in this

section we outline the main results for covert optical communication from Chapters 6

and 7.

2.3.1 Optical channel: model and analysis

A lossy-noisy optical channel is typically modeled by a beamsplitter that takes

inputs from Alice and the environment and outputs to Bob and Willie, as depicted

in Figure 2.2(d). The analysis of Section 2.2.2 applies to an optical channel with

a thermal environment (described later) where Alice uses a laser-light transmit-

ter while both Bob and Willie use coherent-detection (i.e., homodyne or hetero-

dyne) receivers. However, modern high-sensitivity optical components are limited

by noise of quantum-mechanical origin. Thus, establishing the ultimate limit of

covert communication that is secure against the most powerful adversary allowed

by physics—the standard of security to which quantum cryptography adheres for

encrypted communication—requires quantum information theory.

2.3.2 Covert communication is impossible over pure-loss channels

Consider a pure loss optical channel, i.e., one with a “vacuum” environment, which

corresponds to the minimum noise the channel must inject to preserve the Heisen-
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berg inequality of quantum mechanics. If Willie has such a channel from Alice and

is limited only by the laws of physics in his choice of a detector, regardless of the

resources available to Alice and Bob, he can prevent any reliable covert communica-

tion by using an ideal single photon detector (SPD). An ideal SPD registers detection

events only when one or more photons impinge on its receiver aperture, and, thus,

Willie does not experience false alarms. A detection of a single photon gives away

Alice’s transmission attempt regardless of her signaling scheme. This restricts Alice

to transmissions that are nearly indistinguishable from vacuum, rendering unreliable

any communication designed to be covert and vice-versa.

2.3.3 Square root law for covert optical communication

The analysis of quantum cryptography schemes such as QKD assumes a nearly-

omnipotent adversary that is in control of the channel noise and is capable of employ-

ing ideal detectors. While providing the highest level of security, such assumptions are

unreasonably strong for covert communication: a positive amount of noise in addition

to the quantum minimum is unavoidable in any practical setting. This excess noise is

not controlled by the adversary and originates either from the thermal environment or

the detector itself. First, consider the thermal noise channel, where the noise source

is the thermal environment. The thermal environment, such as the background radi-

ation from a 300K thermal blackbody, is modeled by a mixture of zero-mean complex

Gaussian-distributed coherent states, where a coherent state is a quantum-mechanical

description of ideal laser light. The thermal noise channel allows covert communi-

cation when Alice transmits O(1/
√
n) photons per optical mode averaged over n

available modes8. Signaling photons then blend in with the noise photons, resulting

in the square root law for covert optical communication: Alice can reliably transmit

8Here an optical channel mode is a communication resource unit, equivalent to the channel use
in the previous section. A more formal description is provided in the footnote on page 65 and in
Appendix B.4.
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O(
√
n) covert bits to Bob using n modes. For the thermal noise channel the square

root law holds even when Willie has access to all of Alice’s signaling photons not cap-

tured by Bob and arbitrary quantum measurement and computation resources. Alice

and Bob pre-share a secret codebook prior to communication and Bob needs only

a suboptimal homodyne-detection receiver to decode Alice’s transmissions. We note

that these results are also relevant to the RF covert communication systems because

of the recent advances in quantum-limited microwave-frequency coherent detectors

and amplifiers [1].

However, assuming single-mode detection for Willie, thermal noise is negligible at

optical frequencies. It is easy to show that the ideal photon number resolving (PNR)

detector is asymptotically optimal in this (hypothetical) pure-loss channel scenario.

PNR detectors count the number of photons observed in a mode. However, their prac-

tical implementations suffer from various excess noise sources, with dark counts being

most prevalent. Dark counts are false photon detection events triggered by the inter-

nal spontaneous emission process, rather than photons impinging on the detector’s

active surface (they also plague practical implementations of SPDs). The square root

law holds in this scenario, and Alice can use laser pulses to reliably transmit O(
√
n)

covert bits in n modes. A noisy PNR detector can also be used to prove the converse

of the square root law, i.e., more than O(
√
n) covert bits cannot be transmitted us-

ing n modes without either being detected or suffering from uncorrectable decoding

errors. In fact, a noisy SPD suffices to prove the converse in all practical scenar-

ios when codewords with bounded photon number per mode. In Chapter 7 we use

noisy SPDs, laser-light pulse-position modulation and Reed-Solomon error-correction

coding (implementing the covert communication system depicted in Figure 2.3) to

experimentally demonstrate the square root law for covert optical communication on

a testbed.
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2.4 Relationship to Previous Work in Communications

Here we relate our thesis to other work in communication.

2.4.1 Information-theoretic secrecy

There exists a rich body of literature on the information-theoretic secrecy result-

ing from the legitimate receiver having a better channel to the transmitter than the

adversary. Wyner was the first to show that if the adversary only has access to a noisy

version of the signal received by the legitimate receiver (using a wire-tap channel),

then the legitimate receiver can achieve a positive secure communication rate to the

sender without the use of a shared one-time pad [90]. Cheong and Hellman extended

this result to Gaussian channels [60], and Csiszár and Körner generalized it to broad-

cast channels [21]. Our approach considers the adversary’s ability to detect rather

than decode the transmissions, and it does not rely on the channel to the legitimate

receiver being better than the channel to the adversary. However, as discussed in

Section 2.2.3, the legitimate receiver having a better channel than the adversary may

allow achievability of covert communication without a pre-shared secret.

2.4.2 Anonymous communication

Our problem is related to that of anonymous communication [23], specifically

the task of defeating the network traffic timing analysis. While the objective is

fundamentally the same, the setting and approaches are vastly different. The network

traffic analysis involves the adversary inferring network properties (such as source-

relay pairs) by correlating properties (such as the inter-packet timing) of two or more

encrypted packet flows. Protecting against this kind of analysis is costly, as one

needs to make flows look statistically independent by randomizing the timing of the

packets, inserting dummy packets, or dropping a portion of the data packets. Recent

work thus addressed the amount of common information that can be embedded into

two flows that are generated by independent renewal processes [65]. However, in our
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scenario Willie cannot perform traffic analysis (or any kind of network layer analysis),

as Alice prevents him (with high probability) from detecting her transmission in the

first place.

2.4.3 Cognitive Radio

The covert communication problem is also related to that of establishing a cog-

nitive radio (CR) network [91]. Aspects of covert communication can be cast in the

CR context by considering a problem of secondary users communicating while mini-

mizing the interference from their transmissions to the primary users of the network.

To do so, secondary users must monitor the channel for primary users and back off

if their transmissions are detected. This task is identical to that of Willie in the

covert communication scenario. In fact, the work showing that positive-rate covert

communication is possible when Willie uses a power detector and has uncertainty

about his noise variance was inspired by the primary user detection problem in CR

networks [57, 58].
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CHAPTER 3

INFORMATION-THEORETICALLY COVERT
COMMUNICATION

Quantum and classical information-theoretic analyses of covert communication

consider the reliability and detectability of a transmission. We introduce these con-

cepts after a brief overview of the asymptotic notation used in this thesis. We conclude

this chapter by presenting the general mathematical methodology of the proofs that

follow.

3.1 Asymptotic Notation

We use asymptotic notation [18, Ch. 3.1] where:

• f(n) = O(g(n)) denotes an asymptotic upper bound on f(n) (i.e., there exist

constants m,n0 > 0 such that 0 ≤ f(n) ≤ mg(n) for all n ≥ n0),

• f(n) = o(g(n)) denotes an upper bound on f(n) that is not asymptotically

tight (i.e., for any constant m > 0, there exists constant n0 > 0 such that

0 ≤ f(n) < mg(n) for all n ≥ n0),

• f(n) = Ω(g(n)) denotes an asymptotic lower bound on f(n) (i.e., there exist

constants m,n0 > 0 such that 0 ≤ mg(n) ≤ f(n) for all n ≥ n0),

• f(n) = ω(g(n)) denotes a lower bound on f(n) that is not asymptotically

tight (i.e., for any constant m > 0, there exists constant n0 > 0 such that

0 ≤ mg(n) < f(n) for all n ≥ n0), and
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• f(n) = Θ(g(n)) denotes an asymptotically tight bound on f(n) (i.e., there

exist constants m1,m2, n0 > 0 such that 0 ≤ m1g(n) ≤ f(n) ≤ m2g(n) for all

n ≥ n0). f(n) = Θ(g(n)) implies that f(n) = Ω(g(n)) and f(n) = O(g(n)).

3.2 Reliability

We consider a scenario where Alice attempts to transmit M bits to Bob over n

uses of the channel while Willie attempts to detect her transmission attempt. A chan-

nel use corresponds to a signaling interval carrying one fixed-bandwidth modulation

symbol. Each of the 2M possible M -bit messages maps to an n-symbol codeword, and

their collection forms a codebook. Desirable codebooks ensure that the codewords,

when corrupted by the channel, are distinguishable from one another. This provides

reliability : a guarantee that the probability of Bob’s error in decoding Alice’s message

P(b)
e < δ with arbitrarily small δ > 0 for n large enough. In practice, error-correction

codes (ECCs) are used to enable reliability.

3.3 Detectability

Willie’s detector reduces to a binary hypothesis test of Alice’s transmission state

given his observations of the channel, where the null hypothesis H0 corresponds to

the hypothesis that Alice does not transmit and the alternate hypothesis H1 corre-

sponds to the hypothesis that Alice transmits. Denote by PFA the probability that

Willie raises a false alarm when Alice does not transmit, and by PMD the probabil-

ity that Willie misses the detection of Alice’s transmission. We assume equal prior

probabilities for hypotheses H0 and H1, i.e., P(H0 true) = P(H1 true) = 1
2
, which

corresponds to Willie’s complete ignorance of Alice’s transmission state. We examine

the impact of using unequal prior probabilities (which corresponds to Willie possess-

ing some information about the likelihood of Alice transmitting) in Appendix A.1

for classical hypothesis testing and in Appendix B.2 for quantum hypothesis testing,
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Figure 3.1: Illustration of Willie’s ROC curve when Alice’s maintains P(w)
e ≥ 1/2− ε.

The ROC for a detector that makes random decisions is the diagonal line of no
discrimination. Since PFA ≤ 1 − PMD, P(w)

e ≥ 1
2
− ε implies PFA ≤ 1 − PMD ≤

PFA + 2ε. Thus, Willie’s ROC curve is confined to a narrow region near the line of no
discrimination.

and find that, unless one of the prior probabilities is unity, the asymptotic results

that follow are unaffected. Under the assumption of equal prior probabilities, Willie’s

detection error probability, P(w)
e = PFA+PMD

2
. Since P(w)

e = 1
2

for a detector that guesses

Alice’s transmission state, P(w)
e ≤ 1

2
. We call a signaling scheme covert if it ensures

P(w)
e ≥ 1/2−ε for an arbitrarily small ε > 0 regardless of Willie’s detector choice. This

has a natural signal processing interpretation via the receiver operating characteristic

(ROC) curve [83, Ch. 2.2.2], which plots the probability of true detection 1 − PMD

versus the probability of false detection PFA. Since PFA ≤ 1− PMD and P(w)
e ≥ 1

2
− ε

imply that PFA ≤ 1 − PMD ≤ PFA + 2ε, when ε is small, the ROC curve lies very

close to the line of no discrimination (the diagonal line where 1 − PMD = PFA), as

illustrated in Figure 3.1. Since the line of no discrimination corresponds to a detec-
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tor that guesses Alice’s transmission state randomly, a small ε implies that the best

detector available to Willie does only slightly better than a random guess.

By decreasing her transmission power, Alice can decrease the effectiveness of

Willie’s hypothesis test at the expense of the reliability of Bob’s decoding. Information-

theoretically secure covert communication is both reliable and covert. To achieve it,

prior to transmission, Alice and Bob share a secret, the cost of which we assume to

be substantially less than that of being detected by Willie. This secret allows Alice

to encode the message in such a way that it is reliably decoded Bob, but not distin-

guished from the noise by Willie; in fact, it is a codebook secretly shared between

Alice and Bob prior to communication in some of the achievability proofs that follow.

This follows “best practices” in security system design as the security of the covert

communication system depends only on the shared secret [52, 67]. Secret-sharing is

also consistent with other information-hiding systems [47, 29, 27, 50, 51, 77]; how-

ever, as evidenced by the recent results for a restricted class of channels [16, 46],

certain scenarios (e.g., Willie’s channel from Alice being worse than Bob’s) may allow

secret-less covert communication [54].

3.4 Covert Communication Proof Methodology

Each theorem presented in this thesis can be classified as either an “achievability”

or a “converse”. Achievability theorems (4.2.1, 4.2.2, 5.2.1, 6.3.1, 6.4.1, and 7.1.1)

establish the lower limit on the amount of information that can be covertly trans-

mitted from Alice to Bob, while the converse theorems (4.3.1, 5.3.1, 6.2.1 and 6.5.1)

demonstrate the upper limit. In essence, the achievability results are obtained by

1. fixing Alice’s and Bob’s communication system and revealing its construction

in entirety (except the shared secret) to Willie;
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2. showing that, even with such information, Willie’s optimal detector (that also

satisfies the constraints of a particular scenario discussed) is ineffective at dis-

criminating Alice’s transmission state; and

3. demonstrating that the transmission can be reliably decoded by Bob using the

shared secret.

On the other hand, converses are established by

1. fixing Willie’s detection scheme (and revealing it to Alice and Bob); and

2. demonstrating that no amount of resources allows Alice to both remain unde-

tected by Willie and exceed the upper limit on the amount of information that

is reliably transmitted to Bob.
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CHAPTER 4

COVERT COMMUNICATION OVER AWGN CHANNELS

In this chapter we develop the fundamental bounds on covert communication over

channels that are subject to additive white Gaussian noise (AWGN). AWGN chan-

nel model is standard for many practical communication systems, including wireless

devices operating on radio frequencies (RF). In our scenario, Alice has an AWGN

channel to Bob, while passive warden Willie attempts to detect transmissions on this

channel. The channel between Alice and Willie is also AWGN. Willie is passive in

that he only observes and does not actively jam Alice’s channel. Willie attempts to

classify his observations as either noise on his channel from Alice or Alice’s signals

to Bob. If he detects communication, Willie can potentially shut the channel down

or otherwise punish Alice (however, punishing innocent Alice is costly). If the noise

on the channel between Willie and Alice has non-zero power, Alice can communicate

with Bob while tolerating a certain probability of detection, which she can drive down

by transmitting with low enough power. Thus, Alice potentially transmits non-zero

mutual information covertly to Bob in n uses of the channel.

The main result of this chapter is the following theorem:

Theorem 4.1 (Square root law for covert communication over AWGN channels).

Suppose the channels between Alice and each of Bob and Willie experience additive

white Gaussian noise (AWGN) with powers σ2
b > 0 and σ2

w > 0, respectively, where

σ2
b and σ2

w are constants. Then, provided that Alice and Bob have a shared secret of

sufficient length, for any ε > 0 and unknown σ2
w, Alice can reliably (i.e., with Bob’s

decoding error probability P(b)
e ≤ δ for arbitrary δ > 0) transmit o(

√
n) information
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bits to Bob in n channel uses while lower-bounding Willie’s detection error probability

P(w)
e ≥ 1

2
− ε. Moreover, if Alice knows a lower bound σ̂2

w > 0 to the power of the

AWGN on Willie’s channel σ2
w (i.e. σ2

w ≥ σ̂2
w), she can transmit O(

√
n) bits in n

channel uses while maintaining the lower bound P(w)
e ≥ 1

2
− ε. Conversely, if Alice

attempts to transmit ω(
√
n) bits in n channel uses, then, as n → ∞, either Willie

detects her with arbitrarily low probability of error or Bob cannot decode her message

reliably, regardless of the length of the shared secret.

We note that, since covert communication allows transmission of O(
√
n) bits in n

channel uses and, considering limn→∞
O(
√
n)

n
= 0, the information-theoretic capacity

of the covert channel is zero, unlike many other communications settings where it

is a positive constant. However, a significant amount of information can still be

transmitted using this channel. We are thus concerned with the number of information

bits transmitted in n channel uses, as opposed to the number of bits per channel use.

After introducing our channel model in Section 4.1, we prove the achievability of

the square root law in Section 4.2. We then prove the converse in Section 4.3.

4.1 Channel Model

The discrete-time AWGN channel model with real-valued symbols is a standard

mathematical description of the free-space radio-frequency (RF) communication sys-

tem, as well as of certain optical communications systems (see the introduction to

Chapter 6). We defer discussion of the mapping to a continuous-time channel to Ap-

pendix A.2. Our formal system framework is depicted in Figure 4.1. Alice transmits

a vector of n real-valued symbols f = {fi}ni=1. Bob receives vector yb = {y(b)
i }ni=1

where y
(b)
i = fi + z

(b)
i with an independent and identically distributed (i.i.d.) se-

quence {z(b)
i }ni=1 of zero-mean Gaussian random variables with variance σ2

b (i.e.,

z
(b)
i ∼ N (0, σ2

b )). Willie observes vector yw = {y(w)
i }ni=1 where y

(w)
i = fi + z

(w)
i , with

an i.i.d. sequence {z(w)
i }ni=1 of zero-mean Gaussian random variables with variance σ2

w
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Figure 4.1: System framework: Alice and Bob share a secret before the transmission.
Alice encodes information into a vector of real symbols f = {fi}ni=1 and transmits it on
an AWGN channel to Bob, while Willie attempts to classify his vector of observations
of the channel from Alice yw as either an AWGN vector zw = {z(w)

i }ni=1 or a vector

{fi + z
(w)
i }ni=1 of transmissions corrupted by AWGN.

(i.e., z
(w)
i ∼ N (0, σ2

w)). Thus, when Alice does not transmit (i.e., the null hypothesis

H0 is true), samples are i.i.d. with y
(w)
i ∼ N (0, σ2

w); and when Alice transmits (i.e.,

the alternate hypothesis H1 is true), samples y
(w)
i come from a different distribution.

4.2 Achievability

4.2.1 Information-theoretic analysis of classical hypothesis testing

Willie’s objective is to determine whether Alice transmits given the vector of

observations yw of his channel from Alice. For converse results, we demonstrate

existence of a detector that allows Willie to upper-bound P(w)
e arbitrarily close to zero.

The necessary upper bounds are typically derived using probability concentration

inequalities such as Chebyshev’s and Chernoff’s. On the other hand, achievability

proofs require analyzing the performance of an arbitrary detector. Here we provide

the mathematical machinery for such analysis.

Denote the probability distribution of Willie’s channel observations when Alice

does not transmit (i.e. when H0 is true) as P0, and the probability distribution of

the observations when Alice transmits (i.e. when H1 is true) as P1. To strengthen
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the achievability results, we assume that Alice’s channel input distribution, as well

as the statistics of the AWGN on the channel between Alice and Willie, are known

to Willie. Then P0 and P1 are known to Willie, and he can construct an optimal

statistical hypothesis test (such as the Neyman–Pearson test) that minimizes the

detection error probability P(w)
e [59, Ch. 13]. The following holds for such a test:

Lemma 4.1 (Theorem 13.1.1 in [59]). For the optimal test,

P(w)
e =

1

2
− 1

2
V (P0,P1)

where V (P0,P1) is the variational distance between P0 and P1 defined as follows:

Definition 4.1 (Variational distance [59]). The variational distance (also known as

the total variation distance) between two probability measures P0 and P1 is

V (P0,P1) =
1

2
‖p0(x)− p1(x)‖1 (4.1)

where p0(x) and p1(x) are the density functions of P0 and P1, respectively, and ‖a−b‖1

is the L1 norm.

Proof of Lemma A.1 in Appendix A.1 includes Lemma 4.1 as a special case,

since Lemma A.1 is a generalization of Lemma 4.1 to unequal prior probabilities of

hypotheses H0 and H1.

Since variational distance lower-bounds the error of all hypothesis tests Willie can

use, a clever choice of f allows Alice to limit Willie’s detector performance. Unfor-

tunately, the variational distance is unwieldy for products of probability measures,

which are used in the analysis of the vectors of observations. We thus use Pinsker’s

inequality:
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Lemma 4.2 (Pinsker’s inequality (Lemma 11.6.1 in [19])).

V (P0,P1) ≤
√

1

2
D(P0‖P1)

where relative entropy D(P0‖P1) is defined as follows:

Definition 4.2. The relative entropy (also known as Kullback–Leibler divergence)

between two continuous probability measures P0 and P1 is:

D(P0‖P1) =

∫
X
p0(x) ln

p0(x)

p1(x)
dx, (4.2)

while if the probability measures P0 and P1 are discrete, the relative entropy is:

D(P0‖P1) =
∑
x∈X

p0(x) ln
p0(x)

p1(x)
, (4.3)

where X is the support of p1(x).

If Pn is the distribution of a sequence {Xi}ni=1 where each Xi ∼ P is i.i.d., then:

Lemma 4.3 (Relative entropy product). From the chain rule for relative entropy

[19, Eq. (2.67)]:

D(Pn0‖Pn1 ) = nD(P0‖P1)

Relative entropy is directly related to Neyman–Pearson hypothesis testing via

the Chernoff–Stein Lemma [19, Ch. 11.8]: for a given PFA < ν with 0 < ν <

1
2
, limν→0 limn→∞

1
n

lnP∗MD = −D(P0‖P1) where P∗MD = minPMD. Thus, upper-

bounding the relative entropy limits the performance of the Neyman–Pearson hy-

pothesis test. Indeed, the steganography community often concludes their proofs by
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showing an upper bound on the relative entropy [12, 29]. However, we take the extra

step of lower-bounding P(w)
e since it has a natural signal processing interpretation, as

described in Section 3.3. Next we show that this results in the square root limit on

the amount of information that can be covertly transmitted between Alice and Bob

when Bob and Willie both have AWGN channels from Alice.

4.2.2 Achievability of the square root law for covert communication over

AWGN channels

We use Taylor’s theorem with the Lagrange form of the remainder to upper-bound

the relative entropy, and here we restate it as a lemma.

Lemma 4.4 (Taylor’s theorem with the remainder). If f(x) is a function with n+ 1

continuous derivatives on the interval [u, v], then

f(v) =f(u) + f ′(u)(v − u) + . . .+
f (n)(u)

n!
(v − u)n +

f (n+1)(ξ)

(n+ 1)!
(v − u)n+1,

where f (n)(x) denotes the nth derivative of f(x), and ξ satisfies u ≤ ξ ≤ v.

The proof is available in [56, Ch. V.3]. Note that if the remainder term is negative

on [u, v], then the sum of the zeroth through nth order terms yields an upper bound

on f(v).

We now state the achievability theorem under an average power constraint:

Theorem 4.2.1 (Achievability under an average power constraint). Suppose Willie’s

channel is subject to AWGN with average power σ2
w > 0 and suppose that Alice and

Bob share a secret of sufficient length. Then Alice can maintain Willie’s detection

error probability P(w)
e ≥ 1

2
− ε for any ε > 0 while reliably transmitting o(

√
n) bits to

Bob over n uses of an AWGN channel when σ2
w is unknown and O(

√
n) bits over n

channel uses if she knows a lower bound σ2
w ≥ σ̂2

w for some σ̂2
w > 0.
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Proof. Construction: Alice’s channel encoder takes as inputs blocks of lengthM bits

and encodes them into codewords of length n. We employ random coding arguments

and independently generate 2M codewords {c(Wk), k = 1, 2, . . . , 2M} from Rn for

messages {Wk}2M

k=1, each according to pX(x) =
∏n

i=1 pX(xi), where X ∼ N (0, Pf ) and

Pf is defined later. The codebook is used only to send a single message and is the

secret not revealed to Willie, though he knows how it is constructed, including the

value of Pf . The size of this secret is discussed following the proof of Theorem 4.2.2.

The channel between Alice and Willie is corrupted by AWGN with power σ2
w.

Willie applies statistical hypothesis testing on a vector of n channel readings yw to

decide whether Alice transmits. Next we show how Alice can limit the performance

of Willie’s methods.

Analysis: Consider the case when Alice transmits codeword c(Wk). Suppose that

Willie employs a detector that implements an optimal hypothesis test on his n channel

readings. His null hypothesis H0 is that Alice does not transmit and that he observes

noise on his channel. His alternate hypothesis H1 is that Alice transmits and that he

observes Alice’s codeword corrupted by noise. By Fact 4.1, Willie’s detection error

probability is expressed by P(w)
e = 1

2
− 1

2
V (P0,P1), where the variational distance is

between the distribution P0 of n noise readings that Willie expects to observe under

his null hypothesis and the distribution P1 of the codeword transmitted by Alice

corrupted by noise. Alice can lower-bound P(w)
e by upper-bounding the variational

distance: V (P0,P1) ≤ 2ε.

The realizations of noise z
(w)
i in vector zw are zero-mean i.i.d. Gaussian random

variables with variance σ2
w, and, thus, P0 = Pnw where Pw = N (0, σ2

w). Recall that

Willie does not know the codebook and that noise is independent of the transmitted

symbols. Therefore, when Alice transmits, Willie observes vector yw, where y
(w)
i ∼

N (0, Pf + σ2
w) = Ps is i.i.d., and thus, P1 = Pns . By Facts 4.2 and 4.3:
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V (Pnw,Pns ) ≤
√

1

2
D(Pnw‖Pns ) =

√
n

2
D(Pw‖Ps).

In our case the relative entropy is:

D(Pw‖Ps) =
1

2

ln

(
1 +

Pf
σ2
w

)
−

(
1 +

(
Pf
σ2
w

)−1
)−1

 .
Since the first three derivatives of D(Pw‖Ps) with respect to Pf are continuous, we

can apply Lemma 4.4. The zeroth and first order terms of the Taylor series expansion

with respect to Pf around Pf = 0 are zero. However, the second order term is:

P 2
f

2!
× ∂2D(Pw‖Ps)

∂P 2
f

∣∣∣∣∣
Pf=0

=
P 2
f

4σ4
w

.

That relative entropy is locally quadratic is well-known; in fact ∂2D(Pw‖Ps)
∂P 2

f

∣∣∣
Pf=0

= 1
2σ4
w

is the Fisher information that an observation of noise carries about its power [55,

Ch. 2.6]. Now, the remainder term is:

P 3
f

3!
× ∂3D(Pw‖Ps)

∂P 3
f

∣∣∣∣∣
Pf=ξ

=
P 3
f

3!
× ξ − 2σ2

w

(ξ + σ2
w)4

,

where ξ satisfies 0 ≤ ξ ≤ Pf . Suppose Alice sets her average symbol power Pf ≤ cf(n)√
n

,

where c = 4ε
√

2 and f(n) = O(1) is a function defined later. Since the remainder is

negative when Pf < 2σ2
w, for n large enough, we can upper-bound relative entropy

with the second order term as follows:

V (Pnw,Pns ) ≤ Pf
2σ2

w

√
n

2
≤ εf(n)

σ2
w

. (4.4)

In most practical scenarios Alice knows a lower bound σ2
w ≥ σ̂2

w and can set

f(n) = σ̂2
w (a conservative lower bound is the thermal noise power of the best cur-

rently available receiver). If σ2
w is unknown, Alice can set f(n) such that f(n) = o(1)

35



and f(n) = ω(1/
√
n) (the latter condition is needed to bound Bob’s decoding er-

ror probability). In either case, Alice upper-bounds V (Pnw,Pns ) ≤ 2ε, limiting the

performance of Willie’s detector.

Next we examine the probability P(b)
e of Bob’s decoding error averaged over all

possible codebooks. Since Alice’s symbol power Pf is a decreasing function of the

codeword length n, the standard channel coding results for constant power (and

constant rate) do not directly apply. Let Bob employ a maximum-likelihood (ML)

decoder (i.e. minimum distance decoder) to process the received vector yb when c(Wk)

was sent. The decoder suffers an error event Ei(c(Wk)) when yb is closer to another

codeword c(Wi), i 6= k. The decoding error probability, averaged over all codebooks,

is then:

P(b)
e = Ec(Wk)

[
P
(
∪2M

i=1,i 6=kEi(c(Wk))
)]

≤ Ec(Wk)

 2M∑
i=1,i 6=k

P (Ei(c(Wk)))

 (4.5)

=
2M∑

i=1,i 6=k

Ec(Wk) [P (Ei(c(Wk)))] , (4.6)

where EX [·] denotes the expectation operator over random variable X and (4.5) fol-

lows from the union bound. Let d = c(Wk) − c(Wi). Then ‖d‖2 is the distance

between two codewords, where ‖ · ‖2 is the L2 norm. Since codewords are indepen-

dent and Gaussian, dj ∼ N (0, 2Pf ) for j = 1, 2, . . . , n and ‖d‖2
2 = 2PfU , where

U ∼ χ2
n, with χ2

n denoting the chi-squared distribution with n degrees of freedom.

Therefore, by [62, Eq. (3.44)]:

Ec(Wk) [P (Ei(c(Wk)))] = EU

[
Q

(√
PfU

2σ2
b

)]
,

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt. Since Q(x) ≤ 1
2
e−x

2/2 [17, Eq. (5)]:
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EU

[
Q

(√
PfU

2σ2
b

)]
≤ EU

[
exp

(
−PfU

4σ2
b

)]

=

∫ ∞
0

e
−
Pfu

4σ2
b

−u
2 2−

n
2 u

n
2
−1

Γ(n/2)
du (4.7)

= 2−n/2
(

1

2
+

Pf
4σ2

b

)−n/2
, (4.8)

where (4.8) follows from the substitution v = u
(

1
2

+
Pf
4σ2
b

)
in (4.7) and the definition

of the Gamma function Γ(n) =
∫∞

0
xn−1e−xdx. Since 1

2
+

Pf
4σ2
b

= 2
log2

(
1
2

+
Pf

4σ2
b

)
:

Ec(Wk) [P (Ei(c(Wk)))] ≤ 2
−n

2
log2

(
1+

Pf

2σ2
b

)

for all i, and (4.6) becomes:

P(b)
e ≤ 2

M−n
2

log2

(
1+

Pf

2σ2
b

)
. (4.9)

Since Pf = cf(n)√
n

with f(n) = ω(1/
√
n), if, for some constant γ < 1, Alice at-

tempts to transmit M = nγ
2

log2

(
1 + cf(n)

2
√
nσ2

b

)
bits, as n increases, the probability of

Bob’s decoding error averaged over all codebooks decays exponentially to zero. Since

log2(1 + x) ≥ x when x ∈ [0, 1], M ≥
√
nγcf(n)

4σ2
b

for large n. Thus, Bob receives o(
√
n)

bits in n channel uses, and O(
√
n) bits in n channel uses if f(n) = σ̂2

w.

Unlike Shannon’s coding theorem for AWGN channels [19, Theorem 9.1.1, p. 268],

we cannot purge codewords from our codebook to lower the maximal decoding error

probability, as that would violate the i.i.d. condition for the codeword construction

that is needed to limit Willie’s detection ability in our proof. However, it is rea-

sonable that users in sensitive situations attempting to hide their communications

would prefer uniform rather than average decoding error performance, in essence de-

manding that the specific codebook they use be effective. In such a scenario, the
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construction of Theorem 4.2.2 can be used with the modification given by the remark

following its proof. This construction also satisfies both the peak and the average

power constraints, as demonstrated below.

Theorem 4.2.2 (Achievability under a peak power constraint). Suppose Alice’s

transmitter is subject to the peak power constraint b, 0 < b <∞, and Willie’s channel

is subject to AWGN with power σ2
w > 0. Also suppose that Alice and Bob share a se-

cret of sufficient length. Then Alice can maintain Willie’s detection error probability

P(w)
e ≥ 1

2
− ε for any ε > 0 while reliably transmitting o(

√
n) bits to Bob over n uses

of an AWGN channel when σ2
w is unknown and O(

√
n) bits in n channel uses if she

knows a lower bound σ2
w ≥ σ̂2

w for some σ̂2
w > 0.

To prove Theorem 4.2.2, we introduce a variant of the Leibniz integral rule as a

lemma:

Lemma 4.5 (Leibniz integral rule). Suppose that f(x, a) is defined for x ≥ x0 and

a ∈ [u, v], u < v, and satisfies the following properties:

1. f(x, a) is continuous on [u, v] for x ≥ x0;

2. ∂f(x,a)
∂a

is continuous on [u, v] for x ≥ x0;

3. There is a function g(x) such that |f(x, a)| ≤ g(x) and
∫∞
x0
g(x)dx <∞;

4. There is a function h(x) such that |∂f(x,a)
∂a
| ≤ h(x) and

∫∞
x0
h(x)dx <∞.

Then ∂
∂a

∫∞
x0
f(x, a)dx =

∫∞
x0

∂f(x,a)
∂a

dx.

The proof is available in [56, Ch. XIII.3]. We now prove Theorem 4.2.2.

Proof (Theorem 4.2.2). Construction: Alice encodes the input in blocks of length

M bits into codewords of length n with the symbols drawn from alphabet {−a, a},

where a satisfies the peak power constraint a2 < b and is defined later. We inde-

pendently generate 2M codewords {c(Wk), k = 1, 2, . . . , 2M} for messages {Wk} from
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{−a, a}n according to pX(x) =
∏n

i=1 pX(xi), where pX(−a) = pX(a) = 1
2
. As in the

proof of Theorem 4.2.1, this single-use codebook is not revealed to Willie, though he

knows how it is constructed, including the value of a. While the entire codebook is

secretly shared between Alice and Bob, in the remark following the proof we discuss

how to reduce the amount of shared secret information.

Analysis: When Alice transmits a symbol during the ith symbol period, she trans-

mits −a or a equiprobably by construction and Willie observes the symbol corrupted

by AWGN. Therefore, Ps = 1
2

(N (−a, σ2
w) +N (a, σ2

w)), and, with Pw = N (0, σ2
w), we

have

D(Pw‖Ps) =

∫ ∞
−∞

e
− x2

2σ2w

√
2πσw

ln
e
− x2

2σ2w

1
2

(
e
− (x+a)2

2σ2w + e
− (x−a)2

2σ2w

)dx. (4.10)

Since (4.10) is an even function, we assume a ≥ 0.

While there is no closed-form expression for (4.10), its integrand is well-behaved,

allowing the application of Lemma 4.4 to (4.10). The Taylor series expansion with

respect to a around a = 0 can be performed using Lemma 4.5. We demonstrate that

the conditions for Lemmas 4.4 and 4.5 hold in Appendix A.3. The zeroth through

third order terms of the Taylor series expansion of (4.10) are zero, as is the fifth term.

The fourth order term is:

a4

4!
× ∂4D(Pw‖Ps)

∂a4

∣∣∣∣
a=0

=
a4

4σ4
w

.

Suppose Alice sets a2 ≤ cf(n)√
n

, where c and f(n) are defined as in Theorem 4.2.1. The

sixth derivative of (4.10) with respect to a is:

∂6D(Pw‖Ps)
∂a6

= −
∫ ∞
−∞

8x6e
− x2

2σ2w

σ12
w

√
2πσw

[
15 sech6 ax

σ2
w

− 15 sech4 ax

σ2
w

+ 2 sech2 ax

σ2
w

]
dx,

(4.11)
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where sechx = 2
ex+e−x

is the hyperbolic secant function. Evaluated at zero, the sixth

derivative is ∂6D(Pw‖Ps)
∂a6

∣∣∣
a=0

= −240
σ6
w

. Since (4.11) is continuous (see Appendix A.3),

there exists a neighborhood [0, µ] such that, for all ξ ∈ [0, µ], the remainder term

a6

6!
× ∂6D(Pw‖Ps)

∂a6

∣∣∣
a=ξ
≤ 0. Then, for n large enough, we can apply Lemma 4.4 to

upper-bound relative entropy with the fourth order term as follows:

V (Pnw,Pns ) ≤ a2

2σ2
w

√
n

2
≤ 2εf(n)

σ2
w

. (4.12)

Since the power of Alice’s symbol is a2 = Pf , (4.12) is identical to (4.4) and

Alice obtains the upper bound V (Pnw,Pns ) ≤ 2ε, limiting the performance of Willie’s

detector.

Next let’s examine the probability P(b)
e of Bob’s decoding error averaged over

all possible codebooks. As in Theorem 4.2.1, we cannot directly apply the stan-

dard constant-power channel coding results to our system where the symbol power

is a decreasing function of the codeword length. We upper-bound Bob’s decod-

ing error probability by analyzing a suboptimal decoding scheme. Suppose Bob

uses a hard-decision device on each received symbol y
(b)
i = fi + z

(b)
i via the rule

f̂i =
{
a if y

(b)
i ≥ 0;−a otherwise

}
, and applies an ML decoder on its output. The

effective channel for the encoder/decoder pair is a binary symmetric channel with

cross-over probability pe = Q(a/σb) and the probability of the decoding error aver-

aged over all possible codebooks is [32, Theorem 5.6.2]:

P(b)
e ≤ eM−nE0(pe), (4.13)

where E0(pe) = ln(2)−2 ln
(√

1− pe +
√
pe
)

is the error exponent for a BSC from [32,

Theorem 5.6.2] with parameter ρ = 1. We expand the analysis in [63, Section I.2.1]

to characterize the rate R. We use Lemma 4.4 to upper-bound
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pe ≤
1

2
− 1√

2π

(
a

σb
− a3

6σ3
b

)
, p(UB)

e ,

where p
(UB)
e denotes the sum of the zeroth through second terms of the Taylor series

expansion of Q(a/σb) around a = 0. The remainder term is non-positive for a/σb

satisfying 8a6

σ6
b
− 60a4

σ4
b

+ 90a2

σ2
b
−15 ≤ 0, and, since a2 = cf(n)√

n
, the upper bound thus holds

for large enough n. Since E0(p) is a monotonically increasing function on the interval[
0, 1

2

]
, E0(pe) ≤ E0(p

(UB)
e ). The Taylor series expansion of E0(p

(UB)
e ) with respect

to a around a = 0 yields E0(p
(UB)
e ) = a2

2πσ2
b

+ O(a4). Substituting a2 = cf(n)√
n

, we

obtain P(b)
e ≤ e

M−
√
ncf(n)

2πσ2
b

+O(1)
. Since f(n) = ω(1/

√
n), if Alice attempts to transmit

M = γcf(n)
√
n

2πσ2
b ln 2

bits with a constant γ < 1, the probability of Bob’s decoding error

averaged over all codebooks decays exponentially to zero as n increases and Bob

obtains M = o(
√
n) bits in n channel uses, and O(

√
n) bits in n channel uses if

f(n) = σ̂2
w.

4.2.3 Remarks

4.2.3.1 Employing the best codebook

The proof of Theorem 4.2.2 guarantees Bob’s decoding error performance averaged

over all binary codebooks. Following the standard coding arguments [19, p. 204], there

must be at least one binary alphabet codebook that has at least average probability

of error. Thus, to guarantee uniform performance, Alice and Bob must select “good”

codebooks for communications. However, choosing specific codebooks would violate

the i.i.d. condition for the codeword construction that is needed to limit Willie’s

detection capability in our proof.

Consider a codebook that has at least average probability of error, but now assume

that it is public (i.e. known to Willie). Theorem 4.2.2 shows that Alice can use

it to transmit O(
√
n) bits to Bob in n channel uses with exponentially-decaying

probability of error. However, since the codebook is public, unless Alice and Bob
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take steps to protect their communication, Willie can use this codebook to detect

Alice’s transmissions by performing the same decoding as Bob. Here we demonstrate

that to use a public codebook it suffices for Alice and Bob to share a secret random

binary vector and note that this resembles the one-time pad scheme from traditional

cryptography [76], but employed here for a very different application.

Suppose that, prior to communication, Alice and Bob generate and share binary

vector k where pK(k) =
∏n

i=1 pK(ki) with pK(0) = pK(1) = 1
2
. Alice XORs k

and the binary representation of the codeword c(Wk), resulting in an equiprobable

transmission of −a and a when Alice transmits a symbol during the ith symbol period.

Provided k is never re-used and is kept secret from Willie, the i.i.d. assumption for

the vector yw in Theorem 4.2.2 holds without the need to exchange an entire secret

codebook between Alice and Bob. Bob decodes by XORing k with the output of the

hard-decision device prior to applying the ML decoder. While the square root law

implies that the shared O(n)-bit secret here is quadratic in the length M = O(
√
n)

of a message, we offer a coding scheme that, on average, requires an O(
√
n log n)-

bit secret in Appendix A.4. The development of covert communication with a shared

secret either linear or sublinear in the message size is a subject of the ongoing research.

4.2.3.2 Relationship with Square Root Law in Steganography

The covert communication problem is related to steganography. A comprehensive

review of steganography is available in a book by Fridrich [29]. In finite-alphabet

imperfect steganographic systems at most O(
√
n) symbols in the original cover-

text of length n may safely be modified to hide a steganographic message of length

O(
√
n log n) bits [29, Ch. 13] [48]. This result was extended to Markov covertext

[27] and was shown to either require a key linear in the size of the message [50] or

encryption of the message prior to embedding [51].
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The square root law in steganography has the same form as our square root law

because both laws follow from the property that relative entropy is locally quadratic

[55, Ch. 2.6]: D(P0‖P1) = δ2

2
J(θ) +O(δ3), where J(θ) =

∫
X

(
∂
∂θ

ln f(x; θ)
)2
f(x; θ)dx

is the Fisher information associated with parameter θ, and P0 and P1 are probability

measures with density functions from the same family over the support X , but with

parameters differing by δ: p0(x) = f(x; θ) and p1(x) = f(x; θ+δ). Fisher information

is thus used as a metric for steganographic security [26, 49].

In a typical steganography scenario with a passive warden, coding techniques

similar to Hamming codes allow embedding of log(n) bits per changed symbol [29,

Ch. 8], which make hiding O(
√
n log n) bits in n symbols possible. However, because

of the noise on the channel between Alice and Bob, and the resultant need for error

correction, no more than O(
√
n) bits can be transmitted both reliably and covertly

in n channel uses, as we prove in the following section.

4.3 Converse

Here, as in the proof of achievability, the channel between Alice and Bob is AWGN

with power σ2
b . Alice desires to transmit one of 2M (equally likely) M -bit messages

to Bob in n channel uses, where M = ω(
√
n), with arbitrarily small probability of

decoding error as n gets large, while limiting Willie’s ability to detect her transmission.

To this end, Alice encodes each message arbitrarily into n symbols.

Willie observes all n of Alice’s channel uses, but he is oblivious to her signal

properties and employs only a simple power detector. Nevertheless, we prove that,

even if Willie only has these limited capabilities, Alice cannot transmit a message

with ω(
√
n) bits of information in n channel uses without either being detected by

Willie or having Bob suffer a non-zero decoding error probability.
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Theorem 4.3.1. If over n channel uses, Alice attempts to transmit a message to

Bob that is ω(
√
n) bits long, then, as n → ∞, either Willie can detect her with high

probability, or Bob cannot decode with arbitrarily low probability of error.

Proof. Suppose Alice employs an arbitrary codebook {c(Wk), k = 1, 2, . . . , 2M}. De-

tection of Alice’s transmissions entails Willie deciding between the following hypothe-

ses:

H0 : y
(w)
i = z

(w)
i , i = 1, . . . , n

H1 : y
(w)
i = fi + z

(w)
i , i = 1, . . . , n

Suppose Willie uses a power detector to perform the hypothesis test as follows: first,

he collects a row vector of n independent readings yw from his channel to Alice. Then

he generates the test statistic S = ywyTw
n

where xT denotes the transpose of vector x,

and rejects or accepts the null hypothesis based on a comparison of S to a threshold

that we discuss later. We first show how Willie can bound the error probabilities PFA

and PMD of the power detector as a function of Alice’s signal parameters. Then we

show that if Alice’s codebook prevents Willie’s test from detecting her, Bob cannot

decode her transmissions without error.

If the null hypothesis H0 is true, Alice does not transmit and Willie observes

AWGN on his channel. Thus, y
(w)
i ∼ N (0, σ2

w), and the mean and the variance of S

when H0 is true are:

E [S] = σ2
w (4.14)

Var [S] =
2σ4

w

n
(4.15)

Suppose Alice transmits codeword c(Wk) = {f (k)
i }ni=1. Then Willie’s vector of

observations yw,k = {y(w,k)
i }ni=1 contains readings of mean-shifted noise y

(w,k)
i ∼
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N (f
(k)
i , σ2

w). The mean of each squared observation is E [y2
i ] = σ2

w +
(
f

(k)
i

)2

and

the variance is Var [y2
i ] = E [y4

i ]− (E [y2
i ])

2
= 4

(
f

(k)
i

)2

σ2
w + 2σ4

w. Denote the average

symbol power of codeword c(Wk) by Pk = c(Wk)cT (Wk)
n

. Then the mean and variance

of S when Alice transmits codeword c(Wk) are:

E [S] = σ2
w + Pk (4.16)

Var [S] =
4Pkσ

2
w + 2σ4

w

n
(4.17)

The variance of Willie’s test statistic (4.17) is computed by adding the variances

conditioned on c(Wk) of the squared individual observations Var [y2
i ] (and dividing

by n2) since the noise on the individual observations is independent.

The probability distribution for the vector of Willie’s observations depends on

which hypothesis is true. Denote by P0 the distribution when H0 holds, and P(k)
1 when

H1 holds with Alice transmitting message Wk. While P(k)
1 is conditioned on Alice’s

codeword, we show that the average symbol power Pk = c(Wk)cT (Wk)
n

of codeword

c(Wk) determines its detectability by this detector, and that our result applies to all

codewords with power of the same order.

If H0 is true, then S should be close to (4.14). Willie picks a threshold t and

compares the value of S to σ2
w+t. He accepts H0 if S < σ2

w+t and rejects it otherwise.

Suppose that he desires false positive probability P∗FA, which is the probability that

S ≥ σ2
w + t when H0 is true. We bound it using (4.14) and (4.15) with Chebyshev’s

Inequality [19, Eq. (3.32)]:

PFA = P0

(
S ≥ σ2

w + t
)

≤ P0

(
|S − σ2

w| ≥ t
)

≤ 2σ4
w

nt2
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Thus, to obtain P∗FA, Willie sets t = d√
n
, where d =

√
2σ2
w√

P∗FA
is a constant. As n

increases, t decreases, which is consistent with Willie gaining greater confidence with

more observations.

Suppose Alice transmits codeword c(Wk). Then the probability of a miss P(k)
MD is

the probability that S < σ2
w + t, where t = d√

n
. We bound P(k)

MD using (4.16) and

(4.17) with Chebyshev’s Inequality:

P(k)
MD = P(k)

1

(
S < σ2

w + t
)

≤ P(k)
1

(∣∣S − σ2
w − Pk

∣∣ ≥ Pk − t
)

≤ 4Pkσ
2
w + 2σ4

w

(
√
nPk − d)2

(4.18)

If the average symbol power Pk = ω(1/
√
n), limn→∞ P(k)

MD = 0. Thus, with enough

observations, Willie can detect with arbitrarily low error probability Alice’s codewords

with the average symbol power Pk = c(Wk)cT (Wk)
n

= ω(1/
√
n). Note that Willie’s

detector is oblivious to any details of Alice’s codebook construction.

On the other hand, if the transmitted codeword has the average symbol power

PU = O(1/
√
n), then (4.18) does not upper-bound the probability of a missed de-

tection arbitrarily close to zero regardless of the number of observations. Thus, if

Alice desires to lower-bound Willie’s detection error probability by P(w)
e ≥ ζ > 0,

her codebook must contain a positive fraction γ of such low-power codewords. Let’s

denote this subset of codewords with the average symbol power PU = O(1/
√
n) as

U and examine the probability of Bob’s decoding error P(b)
e . The probability that a

message from set U is sent is P (U) = γ, as all messages are equiprobable. We bound

P(b)
e = Pe (U)P (U) + Pe

(
U
)
P
(
U
)
≥ γPe (U), where U is the complement of U and

Pe (U) is the probability of decoding error when a message from U is sent:

Pe (U) =
1

|U|
∑
W∈U

Pe (c(W ) sent) (4.19)
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where Pe (c(W ) sent) is the probability of error when codeword c(W ) is transmitted,

| · | denotes the set cardinality operator, and (4.19) holds because all messages are

equiprobable.

When Bob uses the optimal decoder, Pe (c(W ) sent) is the probability that Bob

decodes the received signal as Ŵ 6= W . This is the probability of a union of events

Ej, where Ej is the event that sent message W is decoded as some other message

Wj 6= W :

Pe (c(W ) sent) = P
(
∪2M

j=1,Wj 6=WEj

)
≥ P

(
∪Wj∈U\{W}Ej

)
, P(U)

e (4.20)

Here the inequality in (4.20) is from the observation that the sets in the second union

are contained in the first. From the decoder perspective, this is because the decoding

error probability decreases when Bob knows that the message is from U (the set of

messages on which the decoder can err is reduced).

Our analysis of P(U)
e uses Cover’s simplification of Fano’s inequality similar to the

proof of the converse to the coding theorem for Gaussian channels in [19, Ch. 9.2].

Since we are interested in P(U)
e , we do not absorb it into εn as done in (9.37) of [19].

Rather, we explicitly use:

H(W |Ŵ ) ≤ 1 + (log2 |U|)P(U)
e (4.21)

where H(W |Ŵ ) denotes the entropy of message W conditioned on Bob’s decoding

Ŵ of W .

Noting that the size of the set U from which the messages are drawn is γ2M

and that, since each message is equiprobable, the entropy of a message W from U is
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H(W ) = log2 |U| = log2 γ +M , we utilize (4.21) and carry out steps (9.38)–(9.53) in

[19] to obtain:

P(U)
e ≥ 1− PU/2σ

2
b + 1/n

log2 γ
n

+ M
n

(4.22)

Since Alice transmits M = ω(
√
n) bits in n channel uses, M

n
= ω(1/

√
n). However,

PU = O(1/
√
n), and, as n→∞, P(U)

e is bounded away from zero. Since γ > 0, P(b)
e is

bounded away from zero if Alice tries to transmit ω(
√
n) bits reliably while beating

Willie’s simple power detector.

Goodput of Alice’s Communication

Define the goodput G(n) of Alice’s communication as the average number of bits

that Bob can receive from Alice over n channel uses with non-zero probability of a

message being undetected as n→∞. Since only U contains such messages, by (4.22),

the probability of her message being successfully decoded by Bob is P(U)
s = 1−P(U)

e =

O
(√

n
M

)
and the goodput is G(n) = γP(U)

s M = O(
√
n). Thus, Alice cannot break the

square root law using an arbitrarily high transmission rate and retransmissions while

keeping the power below Willie’s detection threshold.
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CHAPTER 5

WARDEN’S IGNORANCE OF TRANSMISSION TIME
INCREASES COVERT THROUGHPUT

In the previous chapter we assume that Willie knows when Alice starts trans-

mitting (if she transmits). However, there are many practical scenarios where this

assumption can be relaxed and Alice’s time of communication is unknown to Willie.

Alice’s message may also be much shorter than the total time available to transmit

it (e.g., a few seconds out of the day when both Alice and Bob are available). Thus,

since Willie does not know when Alice transmits, he has to monitor a much longer

time period than the duration of Alice’s transmission. In this chapter we show how

Alice can leverage Willie’s ignorance of her transmission time to transmit significant

additional information to Bob.

slot 1

n︷ ︸︸ ︷
slot 2

n︷ ︸︸ ︷
· · · slot tA

n︷ ︸︸ ︷
· · · slot T (n)

n︷ ︸︸ ︷
︸ ︷︷ ︸

nT (n) total symbol periods

�
���

Slot used by Alice and Bob

Figure 5.1: Slotted channel: each of the T (n) slots contains n symbol periods. Alice
and Bob use slot tA to communicate (reprint of Figure 2.4).

In our scenario, Alice communicates with Bob over an additive white Gaussian

noise (AWGN) channel. Willie also has an AWGN channel from Alice. Unlike the

setting in Chapter 4, the channel is slotted, as described in Figure 5.1. Each of

T (n) slots contains n symbol periods, where T (n) is an increasing function of n. If

Alice used all nT (n) symbol periods for transmission, then, by the square root law

in Chapter 4, she could reliably transmit O(
√
nT (n)) covert bits to Bob. However,
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Alice uses only a single slot tA, which she keeps secret from Willie, who is thus forced

to monitor all T (n) slots. A näıve application of the square root law from Chapter 4

allows Alice to reliably transmit O(
√
n) covert bits in this scenario. We demonstrate

that Alice can transmit O
(

min{
√
n log T (n), n}

)
bits reliably on this channel while

maintaining arbitrarily low probability of detection by Willie. Conversely, we show

that the transmission of ω(
√
n log T (n)) bits either results in Alice being detected

with high probability or unreliable communication.

The cost of covert communication on the AWGN channel is the secret that Alice

and Bob share before the transmission. Remarkably, we demonstrate that the multi-

plicative increase (by a factor of
√

log T (n)) in the number of covert bits that Alice

can transmit reliably to Bob comes without any increase in the size of the pre-shared

secret if T (n) < 2cTn, where cT is a constant; to realize the
√

log T (n) gain when

T (n) ≥ 2cTn only an additive expense of an extra log T (n) secret bits is needed to

indicate to Bob the slot employed by Alice. Timing is thus a very efficient resource

for covert communication. It also necessitates a vastly different analysis than that of

the power alone in Chapter 4. Specifically, the relative entropy based bounds on the

probability of detection error employed in Chapter 4 are too loose to yield our achiev-

ability results, and we therefore have to apply other techniques from mathematical

statistics.

The main result of this chapter is the following theorem:

Theorem 5.1. Suppose the channel between Alice and each of Bob and Willie ex-

periences independent additive white Gaussian noise (AWGN) with constant power

σ2
b > 0 and σ2

w > 0, respectively. Also suppose that, if Alice chooses to transmit, she

uses one of the T (n) slots chosen randomly. Each slot contains n symbol periods,

where T (n) = ω(1). Then, for any ε > 0, there exists n0 such that, for all n ≥ n0, Al-

ice can reliably transmit O
(

min{
√
n log T (n), n}

)
bits to Bob in a selected slot while

maintaining a probability of detection error by Willie greater than 1
2
− ε. Conversely,
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if Alice tries to transmit ω(
√
n log T (n)) bits using n consecutive symbol periods, ei-

ther Willie detects with arbitrarily low probability of error or Bob cannot decode her

message with arbitrary low probability of decoding error.

After introducing our slotted channel model in Section 5.1, we prove the achiev-

ability and the converse in Sections 5.2 and 5.3, respectively. We conclude this chapter

by discussing its relationship to steganography in Section 5.4.

5.1 Channel Model

secret
? ?

Alice -

..., 0, f1, ..., fn︸ ︷︷ ︸, 0, ...
transmit in slot tA

r

?��� - Willie

decide: zw or not?

-z
(w)
i

z
(b)
i

���
6

- Bob

decode f1, . . . , fn

Figure 5.2: System framework: Alice and Bob share a secret before transmission.
If Alice chooses to transmit, she encodes information into a vector of real symbols
f = {fi}ni=1 and uses random slot tA to send it on an AWGN channel to Bob (to
ensure reliable decoding tA is secretly shared with Bob before the transmission if
T (n) ≥ 2cTn, where cT is a constant). Upon observing the channel from Alice, Willie

has to classify his vector of readings yw as either an AWGN vector zw = {z(w)
i }

nT (n)
i=1

or an AWGN vector that contains a slot with transmissions corrupted by AWGN.

We use the discrete-time slotted AWGN channel model with real-valued symbols

depicted in Figures 5.1 and 5.2. The channel has T (n) slots, each containing n

symbol periods. Alice selects slot tA uniformly at random prior to transmission; it

is shared secretly with Bob before the transmission if T (n) ≥ 2cTn, where cT is a

constant that we determine later. If Alice chooses to transmit, she uses tA to send a

vector of n real-valued symbols f = {fi}ni=1. Bob receives a vector yb = {yb(t)}T (n)
t=1

where yb(t) = [y
(b)
(t−1)n+1, . . . , y

(b)
tn ] is a vector of observations of slot t, y

(b)
(tA−1)n+i =
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fi + z
(b)
(tA−1)n+i and y

(b)
(t−1)n+i = z

(b)
(t−1)n+i for all t 6= tA, with an independent and

identically distributed (i.i.d.) sequence {z(b)
i }

nT (n)
i=1 of zero-mean Gaussian random

variables with variance σ2
b (i.e., z

(b)
i ∼ N (0, σ2

b )). Similarly, Willie observes vector

yw = {yw(t)}T (n)
t=1 where yw(t) = [y

(w)
(t−1)n+1, . . . , y

(w)
tn ] is a vector of observations of

slot t, y
(w)
(tA−1)n+i = fi + z

(w)
(tA−1)n+i and y

(w)
(t−1)n+i = z

(w)
(t−1)n+i for all t 6= tA, with an

i.i.d. sequence {z(w)
i }

nT (n)
i=1 of zero-mean Gaussian random variables with variance σ2

w

(i.e., z
(w)
i ∼ N (0, σ2

w)). Willie does not know tA and has to examine the entire yw to

determine whether Alice is communicating.

5.2 Achievability

We first state the achievability theorem, then discuss the proof idea before pro-

ceeding with the proof.

Theorem 5.2.1 (Achievability). Suppose Alice has a slotted AWGN channel to Bob

with T (n) = ω(1) slots, each containing n symbol periods. Then, provided that Al-

ice and Bob have a secret of sufficient length, if Alice chooses to, she can trans-

mit O
(

min{
√
n log T (n), n}

)
bits in a single slot while limn→∞ P(w)

e > 1
2
− ε and

limn→∞ P(b)
e ≤ δ for arbitrary ε > 0 and δ > 0.

Proof idea. The techniques used to bound the performance of Willie’s optimal detector

in the proofs of Theorems 4.2.1 and 4.2.2 are ineffective here, as the resulting bounds

lack the necessary tightness. Therefore, we take a different approach by explicitly

deriving the test statistic for Willie’s optimal detector assuming that Alice’s channel

input distribution, as well as the distribution of the AWGN on the channel between

Alice and Willie, are known to Willie. Furthermore, it is assumed that Alice confines

her transmission (if she transmits) to one of the slots depicted in Figure 5.2 with

the slot boundaries known to Willie. Since Willie has to discriminate between two

simple hypotheses on Alice’s transmission state, the optimal detector, given by the

Neyman–Pearson lemma, employs the likelihood ratio test (LRT) [59, Ch. 3.2].
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Willie’s LRT statistic is a sum of T (n) independent random variables. Regardless

of Alice’s transmission state, T (n) − 1 terms of this sum are identically distributed

since they correspond to the slots that Alice does not select for potential transmission

(i.e., slots that are not tA). We show that these T (n) − 1 terms are i.i.d. zero-mean

unit-variance random variables, each weighted by 1√
T (n)−1

. Thus, by the central

limit theorem, asymptotically, their sum is a standard Gaussian random variable

Z ∼ N (0, 1). The distribution of the term that corresponds to slot tA depends on

Alice’s transmission state. This term effectively offsets Z’s mean away from zero,

however, we show that it converges to zero in probability under either hypothesis as

long as Alice uses per-symbol power Pf = O
(√

log T (n)
√
n

)
. This allows us to lower-

bound P(w)
e ≥ 1

2
− ε for a sufficiently large n and prove the covertness of Alice’s

transmission. We conclude the proof by extending the analysis of Bob’s probability

of error from the proof of Theorem 4.2.1 to T (n) slots via a standard union bound.

Proof. (Theorem 5.2.1) Construction: Alice secretly selects slot tA uniformly at

random out of the T (n) slots in which to communicate. Alice’s channel encoder

takes as input blocks of length M bits and encodes them into codewords of length

n symbols. We employ random coding arguments and independently generate 2M

codewords {c(Wk), k = 1, 2, . . . , 2M} from Rn for messages {Wk}2M

k=1, each according

to pX(x) =
∏n

i=1 pX(xi), where X ∼ N (0, Pf ) and symbol power Pf <
σ2
w

2
is defined

later. The codebook is used only to send a single message and, along with tA, is the

secret not revealed to Willie, though he knows how it is constructed, including the

value Pf .

Another way of viewing the construction is as a choice of one of T (n) codebooks,

where the ith codebook has a block of non-zero symbols in the ith slot. Agreement on

the timing is equivalent to selection of the tA-th codebook and the message is encoded

by choosing a codeword from the selected codebook.
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Analysis (Willie): Willie is interested in performing the following hypothesis

test on his vector of observations yw:

H0 : Alice does not transmit

H1 : ∃ a slot tA ∈ {1, . . . , T (n)} in which Alice transmits

Let Yt =
∑

yi∈yw(t) y
2
i be the power in slot t. Since Willie’s channel from Alice is

corrupted by AWGN with power σ2
w, the likelihood function of the observations yw

under H0 is:

f0(yw) =

(
1

2πσ2
w

)nT (n)
2

exp

− 1

2σ2
w

T (n)∑
t=1

Yt

 . (5.1)

Since Willie does not know which of the T (n) slots Alice and Bob randomly select for

communication, nor the codebook they use, but knows that Alice’s signal is Gaussian,

the likelihood function of the observations yw under H1 is:

f1(yw) =
1

A(n)(2π)
nT (n)

2 T (n)

T (n)∑
t=1

e
− Yt

2(σ2w+Pf )
−B(t)

2σ2w , (5.2)

where A(n) = σ
(T (n)−1)n
w (σ2

w + Pf )
n
2 and B(t) =

∑T (n)
r=1
r 6=t

Yr.

Since the test is between two simple hypotheses on Alice’s transmission state,

the likelihood ratio test (LRT) is optimal under the Neyman–Pearson criterion [59,

Ch. 3.2]. Taking the ratio between (5.1) and (5.2), and re-arranging terms, we obtain:

Λ(yw) =
f1(yw)

f0(yw)
=

(
σ2
w

σ2
w + Pf

)n
2 1

T (n)

T (n)∑
t=1

e
PfYt

2σ2w(σ2w+Pf ) . (5.3)

The likelihood ratio Λ(yw) is compared to a threshold τ(n), which is a function of

the information known to Willie, and H0 or H1 is chosen based on whether Λ(yw) is
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smaller or larger than τ(n) (if it is equal, a random decision is made):

Λ(yw)
H0

≶
H1

τ(n) (5.4)

When Alice does not transmit in the ith symbol period, yi ∼ N (0, σ2
w) since Willie

observes AWGN; when Alice transmits, yi ∼ N (0, σ2
w + Pf ) by construction. Let

{Xt}, Xt ∼ χ2
n, t = 1, . . . , T (n) be a sequence of i.i.d. chi-squared random variables

with n degrees of freedom. Then Yt = σ2
wXt for all t ∈ {1, . . . , T (n)} under H0 and

t ∈ {1, . . . , T (n)} \ {tA} under H1. However, under H1, YtA = (σ2
w + Pf )XtA .

Consider a random variable L(n) defined as follows:

L(n) =
M(n)T (n)Λ(yw)− (T (n)− 1)M(n)√

V (n)
(5.5)

where M(n) =
(
σ2
w+Pf
σ2
w

)n
2

and

V (n) = (T (n)− 1)

[(
σ2
w + Pf
σ2
w − Pf

)n
2

−
(
σ2
w + Pf
σ2
w

)n]
. (5.6)

This is just a deterministically re-normalized LRT statistic. Since n, T (n), σ2
w, and Pf

are known to Willie, and M(n) and V (n) are deterministic functions, the hypothesis

test:

L(n) =

∑T (n)
t=1 e

PfYt

2σ2w(σ2w+Pf ) − (T (n)− 1)M(n)√
V (n)

H0

≶
H1

S(n) (5.7)

is equivalent to that in (5.4), with the threshold

S(n) =
M(n)T (n)τ(n)− (T (n)− 1)M(n)√

V (n)
. (5.8)
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The performance of both tests is equal. The probability of error is thus

P(w)
e =

P(L(n) > S(n)|H0 true) + P(L(n) ≤ S(n)|H1 true)

2
(5.9)

When H0 is true, we can write (5.7) as the normalized sum of T (n)−1 i.i.d. random

variables {Ut}T (n)−1
t=1 and an independent random variable

UT (n)√
V (n)

as follows:

L(n) =
1√
V (n)

T (n)−1∑
t=1

(Ut −M(n)) +
UT (n)√
V (n)

, (5.10)

where UT (n) is identical to Ut that is defined as

Ut = exp

[
PfXt

2(σ2
w + Pf )

]
. (5.11)

When H1 is true, we can write (5.7) as the normalized sum of T (n)−1 i.i.d. random

variables {Ut}T (n)
t=1,t6=tA and an independent random variable

UtA√
V (n)

as follows:

L(n) =
1√
V (n)

T (n)∑
t=1,t 6=tA

(Ut −M(n)) +
UtA√
V (n)

, (5.12)

where Ut in the sum is defined as in (5.11), and

UtA = exp

[
PfXtA

2σ2
w

]
. (5.13)

We first show that the normalized sums in (5.10) and (5.12) contain i.i.d. zero-

mean unit-variance random variables, thus both converging in distribution to the

standard Gaussian distribution N (0, 1) by the central limit theorem (CLT). We then

show that, outside the sums,
UT (n)√
V (n)

P−→ 0 and
UtA√
V (n)

P−→ 0, where Kn
P−→ Q denotes
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convergence of random variable Kn to random variable Q in probability. This allows

us to lower bound Willie’s probability of error for all values of threshold S(n).

First let’s calculate the moments of Ut defined in (5.11). The expectation of Ut

is the moment generating function (MGF) Mχ2
n
(x) = (1 − 2x)−n/2 of a chi-squared

random variable evaluated at x =
Pf

2(σ2
w+Pf )

:

E[Ut] = E
[
exp

(
PfXt

2(σ2
w + Pf )

)]
=

(
σ2
w + Pf
σ2
w

)n
2

(5.14)

Thus, M(n) = E[Ut], and the terms inside the sum in (5.10) and (5.12) have zero

mean. The second moment of Ut is:

E[U2
t ] = E

[
exp

(
PfXt

σ2
w + Pf

)]
=

(
σ2
w + Pf
σ2
w − Pf

)n
2

(5.15)

Thus V (n) = (T (n)− 1) Var[Ut], and, by the Lindenberg CLT for a triangular array

[9, Th. 27.2], the normalized sums in both (5.10) and (5.12) converge in distribution

to N (0, 1).

The probability that the magnitude of
UT (n)√
V (n)

in (5.10) exceeds δ > 0 is upper-

bounded using the Chebyshev’s inequality:

P

(∣∣∣∣∣ UT (n)√
V (n)

∣∣∣∣∣ > δ

)
≤
(
δ
√
T (n)− 1−R(n)

)−2

(5.16)

where R(n) = E[Ut]√
Var[Ut]

=

[(
σ4
w

σ4
w−P 2

f

)n
2 − 1

]− 1
2

. Since T (n) is increasing and Pf <
σ2
w

2
,

UT (n)√
T (n)

P−→ 0 as n→∞.

To show that
UtA√
V (n)

in (5.12) also converges in probability to zero, we need the

first two moments of UtA defined in (5.13). We use the MGFMχ2
n
(x) = (1− 2x)−n/2

evaluated at x =
Pf

2σ2
w

to compute the expectation:

E[UtA ] = E
[
exp

(
PfXtA

2σ2
w

)]
=

(
σ2
w

σ2
w − Pf

)n
2

(5.17)
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The second moment of UtA is:

E[U2
tA

] = E
[
exp

(
PfXtA

σ2
w

)]
=

(
σ2
w

σ2
w − 2Pf

)n
2

(5.18)

The probability that the magnitude of the term
UtA√
V (n)

in (5.12) exceeds δ > 0 is

upper-bounded using Chebyshev’s inequality:

P

(∣∣∣∣∣ UtA√
V (n)

∣∣∣∣∣ > δ

)
≤ Var[UtA ](

δ
√
V (n)− E[UtA ]

)2 (5.19)

Dividing the numerator and denominator in the RHS of (5.19) by Var[UtA ], we note

that
E[UtA ]√
Var[UtA ]

=

((
1 +

P 2
f

σ4
w−2Pfσ2

w

)n
2 − 1

)− 1
2

< C, with C a constant for Pf <
σ2
w

2
.

Also, V (n)
Var[UtA ]

≥ V (n)

E[U2
tA

]
and

V (n)

E[U2
tA

]
≥ (T (n)− 1)

[(
1−

2P 2
f

σ4
w

)n
2

−
(

1−
3P 2

f

σ4
w

)n
2

]
. (5.20)

The dominant term inside the square brackets in (5.20) is
(

1− 2P 2
f

σ4
w

)n
2

= e
n
2

log

(
1−

2P2
f

σ4w

)
.

When T (n) = o(en), we demonstrate that
UtA√
V (n)

P−→ 0 by setting the symbol power

to Pf =
cP σ

2
w

√
log T (n)
√
n

for a constant cP ∈ (0, 1) and using the Taylor series ex-

pansion of log(1 − x) at x = 0. When T (n) = Ω(en), convergence is obtained

with Pf = cP σ
2
w

2
. Thus, effectively, the symbol power that guarantees convergence

is Pf = cPσ
2
w min

{√
log T (n)
√
n

, 1
2

}
.

When

∣∣∣∣ UT (n)√
V (n)

∣∣∣∣ < δ, the false alarm probability is lower-bounded as follows:

P(L(n) > S(n)|H0 is true) ≥ P (Eg(S(n), δ)) , (5.21)
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where Eg(S(n), δ) denotes the event that 1√
V (n)

∑T (n)−1
t=1 (Ut −M(n)) ≥ S(n) + δ.

Similarly, when

∣∣∣∣ UtA√
V (n)

∣∣∣∣ < δ, the probability of missed detection is lower-bounded as

follows:

P(L(n) ≤ S(n)|H1 is true) ≥ P (El(S(n), δ)) , (5.22)

where El(S(n), δ) denotes the event that 1√
V (n)

∑T (n)
t=1,t6=tA (Ut −M(n)) ≤ S(n) − δ.

Denote by EC(S(n), δ) the event when either event Eg(S(n), δ) occurs when Alice is

quiet or event El(S(n), δ) occurs when Alice transmits. Since we assume equiprobable

priors,

P(EC(S(n), δ)) =
P (Eg(S(n), δ)) + P (El(S(n), δ))

2
. (5.23)

By the CLT for triangular arrays in [9, Th. 27.2], the normalized sums in the events

Eg(S(n), δ) and El(S(n), δ) converge in distribution to standard Gaussian random

variables. This result only provides pointwise convergence in the argument of the

distribution function, but S(n) is the nth value in an arbitrary sequence. Instead,

in Appendix A.5, we exploit the uniform convergence on any finite number of points

and the monotonicity of the distribution function to show that, for each normalized

sum, setting δ = ε
√

2π/9 yields n0 such that for all n ≥ n0 and any S(n),

P

(
EC

(
S(n),

ε
√

2π

9

))
≥ 1

2
− ε

3
. (5.24)

By (5.16) and (5.19), there exists n1 such that for all n ≥ n1, P
(∣∣∣∣ UT (n)√

V (n)

∣∣∣∣ > ε
√

2π
9

)
<

ε
3

and P
(∣∣∣∣ UtA√

V (n)

∣∣∣∣ > ε
√

2π
9

)
< ε

3
. The intersection of these events and the event

EC(S(n), ε
√

2π/9) yields an error event. By combining their probabilities using

DeMorgan’s Law and the union bound, we can lower-bound P(w)
e ≥ 1

2
− ε for all

n ≥ max{n0, n1}, concluding the analysis of Willie’s detector.
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Analysis (Bob): Let Bob employ the maximum likelihood (ML) decoder (i.e.,

minimum distance decoder). If Bob knows the value of tA, his probability of de-

coding error is given directly by (4.9). Since Pf = cPσ
2
w min{

√
log T (n)
√
n

, 1
2
}, Alice can

covertly transmit M = nγ
2

log2

(
1 + cP σ

2
w

2σ2
b

min

{√
log T (n)
√
n

, 1
2

})
bits, where γ ∈ (0, 1) is

a constant, with Bob’s probability of decoding error (averaged over all the codebooks)

decaying to zero as n → ∞. Therefore, O(min{
√
n log T (n), n}) covert bits can be

transmitted reliably using slot tA.

However, knowledge of tA is unnecessary for Bob if T (n) < 2cTn, where cT is a

constant. Let’s augment Alice and Bob’s Gaussian codebook with the origin c(0) =

{0, . . . , 0} (indicating “no transmission”) and have Bob attempt to decode each of the

T (n) slots. The squared distance between a codeword c(Wk) and c(0) is PfX while

the squared distance between any pair of codewords {c(Wk), c(Wi)} is 2PfX, where

X ∼ χ2
n. Repeating the analysis that leads to (4.9) using the distance between c(Wk)

and c(0) instead of c(Wi) yields a slightly looser upper bound on the probability of

the decoding error in each slot. By the union bound over all T (n) slots, the overall

probability of error is:

P(b)
e ≤ T (n)2

M−n
2

log2

(
1+

Pf

4σ2
b

)
(5.25)

If T (n) = o(en), then clearly Bob’s decoding error probability decays to zero if Alice

attempts to transmit M = nγ
2

log2

(
1 +

cP σ
2
w

√
log T (n)

4σ2
b

√
n

)
bits in a randomly selected

n-symbol slot tA. If T (n) = Ω(en), then, Pf = σ2
w

2
, and T (n) < 2cTn where cT =

1−γ
2

log2

(
1 + σ2

w

8σ2
b

)
ensures that Bob’s decoding error probability decays to zero if

Alice attempts to transmit M = nγ
2

log2

(
1 + cP σ

2
w

8σ2
b

)
bits in a randomly selected n-

symbol slot tA.
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5.3 Converse

Suppose Alice attempts to transmit one of 2M (equally likely) M -bit messages

reliably to Bob using a sequence of n consecutive symbol periods inside a sequence of

nT (n) symbol periods, where M = ω(
√
n log T (n)), while limiting Willie’s ability to

detect her transmission. She thus encodes each message arbitrarily into n symbols.

If Alice transmits, Willie’s nT (n) observations of his channel from Alice contain

Alice’s sequence of n consecutive channel uses, however, Willie is oblivious to the

location of the start of Alice’s transmission as well as other properties of her signal.

Nevertheless, we prove that, by dividing his sequence of nT (n) observations into a set

of T (n) non-overlapping subsequences, and employing a simple threshold detector on

the maximum subsequence power, Willie can detect Alice if she attempts to transmit

ω(
√
n log T (n)) bits reliably.

Theorem 5.3.1. If Alice attempts to transmit ω(
√
n log T (n)) bits using a sequence

of n consecutive symbol periods that are arbitrarily located inside a sequence of nT (n)

symbol periods, then, as n→∞, either Willie can detect her with high probability, or

Bob cannot decode with arbitrarily low probability of error.

Proof. Let Willie divide the sequence yw of nT (n) observations of his channel from

Alice into a set of T (n) non-overlapping subsequences {yw(t)}T (n)
t=1 , with each yw(t)

containing n consecutive observations. Denote by Yt =
∑

yi∈yw(t) y
2
i the observed

power in each subsequence and Ymax = maxt∈{1,...,T (n)} Yt. For a threshold S, Willie

accuses Alice of transmitting if Ymax > S.

Suppose Alice does not transmit. Willie’s probability of false alarm is P(Ymax > S).

Let S = σ2
w(n+

√
nδ). To find δ so that Willie’s detector has an arbitrary probability

of false alarm P∗FA as n → ∞, note that each Yt = σ2
wXt where {Xt}, Xt ∼ χ2

n,

t = 1, . . . , T (n) is a sequence of i.i.d. chi-squared random variables each with n degrees

of freedom. We have
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P(Ymax > S) = 1− P
(
Xmax ≤ S/σ2

w

)
(5.26)

= 1−
(
1− P

(
X1 > n+

√
nδ
))T (n)

(5.27)

where Xmax = maxt∈{1,...,T}Xt. For the desired P∗FA,

1− (1− P∗FA)1/T (n) = P
(
X1 > n+

√
nδ
)
. (5.28)

Using a Chernoff bound for the tail of a chi-squared distribution [24, Lemma 2.2], we

obtain:

P
(
X1 > n+

√
nδ
)
≤
(
1 + δ/

√
n
)n/2

e−
√
nδ
2 (5.29)

= e
n
2

log
(

1+ δ√
n

)
−
√
nδ
2 (5.30)

= e−δ
2/4+O(1/

√
n) (5.31)

with (5.31) is from the Taylor series expansion of log(1 +x) at x = 0. Discarding low

order terms and solving (5.31) for δ yields δ = 2
√
− log (1− (1− P∗FA)1/T (n)). Taylor

series expansion of 1 − cx at x = 0 yields 1 − (1 − P∗FA)1/T (n) = 1
T (n)

log
(

1
1−P∗FA

)
+

O( 1
T 2(n)

). Thus, setting δ = c
√

log T (n) with some constant c > 0 yields the desired

probability of false alarm P∗FA.

Now suppose Alice uses an arbitrary codebook {c(Wk), k = 1, . . . , 2nR} and trans-

mits codeword c(Wk) using n consecutive symbol periods. Denote average symbol

power of c(Wk) by Pf = ‖c(Wk)‖2
n

. Since Alice uses n consecutive symbols, her trans-

mission overlaps at most two of Willie’s subsequences, which we denote tA and tB.

Denote by PA and PB the power from Alice’s transmission in subsequences tA and tB,

respectively, with PA+PB = nPf . Willie’s probability of missing Alice’s transmission

is
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P(k)
MD = P(Ymax ≤ S) = P(YtA ≤ S)P(YtB ≤ S)

T (n)∏
t=1

t/∈{tA,tB}

P(Yt ≤ S) (5.32)

where the factorization in (5.32) is because Alice’s codeword and the noise in other

subsequences are independent.
∏T (n)

t=1,t/∈{tA,tB} P(Yt ≤ S) ≤ 1 does not depend on

Alice’s codeword. However, since the codeword is an unknown deterministic signal

that is added to AWGN on Willie’s channel to Alice,
YtA
σ2
w
∼ χ2

n(PA) and
YtB
σ2
w
∼ χ2

n(PB)

are non-central chi-squared random variables with n degrees of freedom and respective

non-centrality parameters PA
σ2
w

and PB
σ2
w

. Without loss of generality, assume that PA ≥

PB. Thus, PA satisfies
nPf

2
≤ PA ≤ nPf and the expected value and variance of YtA

are bounded as follows [82, App. D.1]:

E [YtA ] ≥ σ2
wn+

nPf
2

(5.33)

Var [YtA ] ≤ 2nσ4
w + 4nσ2

wPf (5.34)

Since P(YtB ≤ S) ≤ 1, Chebyshev’s inequality with (5.33) and (5.34) yields

P(k)
MD ≤ P

(
|YtA − E[YtA ]| > E[YtA ]− σ2

w(n− c
√
n log T (n))

)
≤ 2σ4

w + 4σ2
wPf(√

nPf
2
− cσ2

w

√
log T (n)

)2 . (5.35)

If Pf = ω

(√
log T (n)

n

)
, as n → ∞, Willie’s average probability of error can be made

arbitrarily low.

The proof of the non-zero lower bound on Bob’s probability of decoding error

if Alice tries to transmit ω(
√
n log T (n)) bits using average symbol power Pf =

O
(√

log T (n)
n

)
follows from a similar proof in Chapter 4.3.
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5.4 Relationship with Steganography

Steganographic systems discussed in Section 2.1 hide information by altering the

properties of fixed-size, finite-alphabet covertext objects (e.g. images), and are subject

to a similar square root law as covert communication: O(
√
n) symbols in covertext of

size n may safely be modified to hide an O(
√
n log n)-bit message [51]. The similarity

between the square root laws in these disciplines is from the mathematics of statistical

hypothesis testing, as discussed in Section 4.2.3.2. However, in steganography, the

transmission to Bob is noiseless, which allows the extra log n factor.

Batch steganography uses multiple covertext objects to hide a message and is

subject to the steganographic square root law described above [48, 47]. The batch

steganography interpretation of covert communication using timing as described in

this work is equivalent to using only one of T (n) covertext objects of size n to embed

a message. Willie, who knows that one covertext object is used but not which one,

has to examine all of them. We are not aware of any work on this particular problem,

but it is likely that our result extends to it.
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CHAPTER 6

ANALYSIS OF COVERT OPTICAL COMMUNICATION

Optical signaling [11, 74] is particularly attractive for covert communication be-

cause of its narrow diffraction-limited beam spread in free space [30, 35] and the ease

of detecting fiber taps using time-domain reflectometry [2]. Our information-theoretic

analysis of covert communication on the AWGN channel in Chapter 4 also applies

to a lossy optical channel with additive Gaussian noise when Alice uses a laser-light

transmitter and both Bob and Willie use coherent-detection receivers. However, mod-

ern high-sensitivity optical communication components are primarily limited by noise

of quantum-mechanical origin. Thus, recent studies on the performance of physical

optical communication have focused on this quantum-limited regime [33, 89, 87]. We

provide the background material on quantum information theory and quantum optics

in Appendix B.

In this chapter we establish the quantum limits of covert communication. We

begin by introducing our optical channel model in Section 6.1. In Section 6.2 we

demonstrate that covert communication is impossible over a pure-loss channel. How-

ever, in Section 6.3 we show that, when the channel has any excess noise (e.g., the

unavoidable thermal noise from the blackbody radiation at the operating tempera-

ture), Alice can reliably transmit O(
√
n) covert bits to Bob using n optical modes1

1This chapter and Chapter 7 address optical communication where we treat one spatio-temporal-
polarization mode of the optical-frequency electromagnetic field as the fundamental transmission
unit over the channel, which can be likened to “channel use” of the previous chapters. A mode is
a spatio-temporal electromagnetic field pattern of a given polarization, which can act as a unit of
communication over an optical channel. A mode can be excited in a coherent state—the quantum
description of ideal laser light—of a given amplitude and phase, as is done in standard classical
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even if Willie intercepts all the photons not reaching Bob and employs arbitrary

quantum memory and measurements. This is achievable using standard laser-light

modulation and homodyne detection (thus the Alice-Bob channel is still an AWGN

channel). Thus, noise enables stealth. Indeed, we demonstrate in Section 6.4 that

if Willie’s detector contributes excess noise (e.g., dark counts in photon-counting de-

tectors), Alice can covertly communicate to Bob, even when the channel itself is

pure-loss. We conclude this chapter by showing that the square-root limit cannot be

circumvented in Section 6.5.

6.1 Channel model

Consider a single-mode quasi-monochromatic lossy optical channel E n̄Tηb of trans-

missivity ηb ∈ (0, 1] and thermal noise mean photon number per mode n̄T ≥ 0, as

depicted in Figure 6.1. Willie collects the entire ηw = 1 − ηb fraction of Alice’s pho-

tons that do not reach Bob but otherwise remains passive, not injecting any light into

the channel. Later we argue that being active does not help Willie to detect Alice’s

transmissions. For a pure loss channel (n̄T = 0), the environment input is in the

vacuum state ρ̂E0 = |0〉〈0|E, corresponding to the minimum noise the channel must

inject to preserve the Heisenberg inequality of quantum mechanics.

6.2 Pure loss insufficient for covert communication

Regardless of Alice’s strategy, reliable and covert communication over a pure-loss

channel to Bob is impossible, as Willie can effectively use an ideal single photon de-

tector (SPD) on each mode to discriminate between an n-mode vacuum state and any

optical communication. On other hand, quantum optics allows for a mode to be excited in other,
non-classical states of light such as a squeezed state or a Fock state. For example, each temporal
mode of a single (spatial) mode optical fiber can carry one of the two coherent-state pulses of the
binary phase shift keying (BPSK) modulation format. We provide a more formal description of
optical modes in Appendix B.4.
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Figure 6.1: Optical channel model. The input-output relationship is captured by a
beamsplitter of transmissivity ηb, with the transmitter Alice at one of the input ports
and the intended receiver Bob at one of the output ports, and ηb being the fraction
of Alice’s signaling photons that reach Bob. The other input and output ports of the
beamsplitter correspond to the environment and the adversary Willie. Willie collects
the entire ηw = 1− ηb fraction of Alice’s photons that do not reach Bob. This models
single-spatial-mode free-space and single-mode fiber optical channels. Alice and Bob
share a secret before the transmission.

non-vacuum state in Alice’s codebook. Willie avoids false alarms since no photons

impinge on his SPD when Alice is silent. However, a single click—detection of one

or more photons—gives away Alice’s transmission attempt regardless of the actual

quantum state of Alice’s signaling photons. Alice is thus constrained to codewords

that are nearly indistinguishable from vacuum, rendering unreliable any communica-

tion attempt that is designed to be covert. Furthermore, any communication attempt

that is designed to be reliable cannot remain covert, as Willie detects it with high

probability for large n. This is true even when Alice and Bob have access to an

infinitely-large pre-shared secret. The following theorem formally states this result.

Theorem 6.2.1. (Insufficiency of pure-loss for covert communication) Suppose Willie

has a pure-loss channel from Alice and is limited only by the laws of physics in his

receiver measurement choice. Then Alice cannot communicate to Bob reliably and
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covertly even if Alice and Bob have access to a pre-shared secret of unbounded size,

an unattenuated observation of the transmission, and a quantum-optimal receiver.

In the proof of this theorem we denote a tensor product of n Fock (or photon

number) states by |u〉 ≡ |u1〉 ⊗ |u2〉 ⊗ · · · ⊗ |un〉, where vector u ∈ Nn
0 with N0 being

the set of non-negative integers. Specifically, |0〉 ≡ |0〉⊗n. Before proceeding with the

proof, we state the following lemma.

Lemma 6.1. Given the input of n-mode vacuum state |0〉E
n

on the “environment”

port and an n-mode entangled state |ψ〉A
n

=
∑

k ak |k〉
An on the “Alice” port of a

beamsplitter with transmissivity ηb = 1−ηw, the diagonal elements of the output state

ρW
n

on the “Willie” port can be expressed in the n-fold Fock state basis as follows:

Wn

〈s| ρ̂Wn |s〉W
n

=
∑
k∈Nn0

|ak|2
n∏
i=1

(
ki
si

)
(1− ηw)ki−siηsiw . (6.1)

Proof. See Appendix C.1

Proof. (Theorem 6.2.1) Alice sends one of 2M (equally likely) M -bit messages by

choosing an element from an arbitrary codebook {ρ̂Anx , x = 1, . . . , 2M}, where a state

ρ̂A
n

x = |ψx〉A
nAn〈ψx| encodes an M -bit message Wx. |ψx〉A

n

=
∑

k∈Nn0
ak(x) |k〉A

n

is a

general n-mode pure state, where |k〉 ≡ |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kn〉 is a tensor product of

n Fock states. We limit our analysis to pure input states since, by convexity, using

mixed states as inputs can only degrade the performance (since that is equivalent

to transmitting a randomly chosen pure state from an ensemble and discarding the

knowledge of that choice).

Let Willie use an ideal SPD on all n modes, given by positive operator-valued mea-

sure (POVM)
{
|0〉 〈0| ,

∑∞
j=1 |j〉 〈j|

}⊗n
. When Wu is transmitted, Willie’s hypothesis

test reduces to discriminating between the states
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ρ̂W
n

0 = |0〉W
nWn

〈0| and (6.2)

ρ̂W
n

1 = ρ̂W
n

u , (6.3)

where ρ̂W
n

u is the output state of a pure-loss channel with transmissivity ηw corre-

sponding to an input state ρ̂A
n

u . Thus, Willie’s average error probability is:

P(w)
e =

1

2M+1

2M∑
u=1

Wn

〈0| ρ̂Wn

u |0〉W
n

, (6.4)

since messages are sent equiprobably. Note that the error is entirely because of missed

codeword detections, as Willie’s receiver never raises a false alarm. By Lemma 6.1,

Wn

〈0| ρ̂Wu |0〉
Wn

=
∑
k∈Nn0

|ak(u)|2 (1− ηw)
∑n
i=1 ki

≤ |a0(u)|2 + (1− |a0(u)|2)(1− ηw)

= 1− ηw
(
1− |a0(u)|2

)
. (6.5)

Substituting equation (6.5) into equation (6.4) yields

P(w)
e ≤ 1

2
− ηw

2

1− 1

2M

2M∑
u=1

|a0(u)|2
 .

Thus, to ensure P(w)
e ≥ 1

2
− ε, Alice must use a codebook with the probability of

transmitting zero photons:

1

2M

2M∑
u=1

|a0(u)|2 ≥ 1− 2ε

ηw
. (6.6)

Equation (6.6) can be restated as an upper bound on the probability of transmitting

one or more photons:

69



1

2M

2M∑
u=1

(
1− |a0(u)|2

)
≤ 2ε

ηw
. (6.7)

Now we show that there exists an interval (0, ε0], ε0 > 0 such that if ε ∈ (0, ε0],

Bob’s average decoding error probability P(b)
e ≥ δ0 where δ0 > 0, thus making covert

communication over a pure-loss channel unreliable.

Denote by Eu→v the event that the transmitted message Wu is decoded by Bob

as Wv 6= Wu. Given that Wu is transmitted, the decoding error probability is the

probability of the union of events ∪2M

v=0,v 6=uEu→v. Let Bob choose a POVM {Λ̂∗j} that

minimizes the average probability of error over n optical channel modes:

P(b)
e = inf

{Λ̂j}

1

2M

2M∑
u=1

P
(
∪2M

v=0,v 6=uEu→v

)
. (6.8)

Now consider a codebook that meets the necessary condition for covert communica-

tion given in equation (6.7). Define the subset of this codebook
{
ρ̂A

n

u , u ∈ A
}

where

A =
{
u : 1− |a0(u)|2 ≤ 4ε

ηw

}
. We lower-bound (6.8) as follows:

P(b)
e =

1

2M

∑
u∈Ā

P
(
∪2M

v=0,v 6=uEu→v

)
+

1

2M

∑
u∈A

P
(
∪2M

v=0,v 6=uEu→v

)
(6.9)

≥ 1

2M

∑
u∈A

P
(
∪2M

v=0,v 6=uEu→v

)
, (6.10)

where the probabilities in equation (6.9) are with respect to the POVM {Λ̂∗j} that

minimizes equation (6.8) over the entire codebook. Without loss of generality, let’s

assume that |A| is even, and split A into two equal-sized non-overlapping subsets

A(left) and A(right) (formally, A(left) ∪ A(right) = A, A(left) ∩ A(right) = ∅, and |A(left)| =

|A(right)|). Let g : A(left) → A(right) be a bijection. We can thus re-write (6.10):
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P(b)
e ≥

1

2M

∑
u∈A(left)

2

P
(
∪2M

v=0,v 6=uEu→v

)
2

+
P
(
∪2M

v=0,v 6=g(u)Eg(u)→v

)
2


≥ 1

2M

∑
u∈A(left)

2

(
P
(
Eu→g(u)

)
2

+
P
(
Eg(u)→u

)
2

)
, (6.11)

where the second lower bound is because the events Eu→g(u) and Eg(u)→u are contained

in the unions ∪2M

v=0,v 6=uEu→v and ∪2M

v=0,v 6=g(u)Eg(u)→v, respectively. The summation term

in equation (6.11),

Pe(u) ≡
P
(
Eu→g(u)

)
2

+
P
(
Eg(u)→u

)
2

, (6.12)

is Bob’s average probability of error when Alice only sends messages Wu and Wg(u)

equiprobably. We thus reduce the analytically intractable problem of discriminating

between many states in equation (6.8) to a quantum binary hypothesis test.

The lower bound on the probability of error in discriminating two received code-

words is obtained by lower-bounding the probability of error in discriminating two

codewords before they are sent (this is equivalent to Bob having an unattenuated

unity-transmissivity channel from Alice). Recalling that ρ̂A
n

u = |ψu〉A
nAn〈ψu| and

ρ̂A
n

g(u) =
∣∣ψg(u)

〉AnAn〈
ψg(u)

∣∣ are pure states, the lower bound on the probability of er-

ror in discriminating between
∣∣ψAnu 〉 and

∣∣∣ψAng(u)

〉
is [41, Chapter IV.2 (c), Equation

(2.34)]:

Pe(u) ≥

[
1−

√
1− F

(
|ψu〉A

n

,
∣∣ψg(u)

〉An)]/
2 , (6.13)

where F (|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2 is the fidelity between the pure states |ψ〉 and |φ〉.

Lower-bounding F
(
|ψu〉A

n

,
∣∣ψg(u)

〉An)
lower-bounds the RHS of equation (6.13). For
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pure states |ψ〉 and |φ〉, F (|ψ〉 , |φ〉) = 1 −
(

1
2
‖ |ψ〉 〈ψ| − |φ〉 〈φ| ‖1

)2
, where ‖ρ − σ‖1

is the trace distance [88, Equation (9.134)]. Thus,

F
(
|ψu〉A

n

,
∣∣ψg(u)

〉An)
= 1−

(
1

2
‖ρ̂Anu − ρ̂A

n

g(u)‖1

)2

≥ 1−

(
‖ρ̂Anu − |0〉

AnAn〈0| ‖1

2
+
‖ρ̂Ang(u) − |0〉

AnAn〈0| ‖1

2

)2

= 1−

(√
1−

∣∣∣An〈0|ψu〉An∣∣∣2 +

√
1−

∣∣∣An〈0|ψg(u)

〉An∣∣∣2)2

,

(6.14)

where the inequality is from the triangle inequality for trace distance. Substituting

(6.14) into (6.13) yields

Pe(u) ≥

[
1−

√
1−

∣∣∣An〈0|ψu〉An∣∣∣2 −√1−
∣∣∣An〈0|ψg(u)

〉An∣∣∣2]/2 . (6.15)

Since
∣∣∣An〈0|ψu〉An∣∣∣2 = |a0(u)|2 and, by the construction of A, 1 − |a0(u)|2 ≤ 4ε

ηw
and

1− |a0(g(u))|2 ≤ 4ε
ηw

, we have

Pe(u) ≥ 1

2
− 2

√
ε

ηw
. (6.16)

Recalling the definition of Pe(u) in equation (6.12), we substitute (6.16) into (6.11)

to obtain

P(b)
e ≥

|A|
2M

(
1

2
− 2

√
ε

ηw

)
, (6.17)

Now, re-stating the condition for covert communication (6.7) yields

2ε

ηw
≥ 1

2M

∑
u∈A

(
1− |a0(u)|2

)
≥
(
2M − |A|

)
2M

4ε

ηw
(6.18)
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with equality (6.18) because 1−|a0(u)|2 > 4ε
ηw

for all codewords in A by the construc-

tion of A. Solving inequality in (6.18) for |A|
2M

yields the lower bound on the fraction

of the codewords in A,

|A|
2M
≥ 1

2
. (6.19)

Combining equations (6.17) and (6.19) results in a positive lower bound on Bob’s

probability of decoding error P(b)
e ≥ 1

4
−
√

ε
ηw

for ε ∈
(
0, ηw

16

]
and any n, and demon-

strates that reliable covert communication over a pure-loss channel is impossible.

Thus, if Willie controlled the environment (as assumed in QKD proofs), by setting

it to vacuum, he could deny covert communication between Alice and Bob. However,

a positive amount of non-adversarial excess noise—whether from the thermal back-

ground or the detector itself—is unavoidable, which enables covert communication.

6.3 Channel noise yields the square root law

Now consider a lossy bosonic channel E n̄Tηb , where the environment mode is in

a thermal state with mean photon number n̄T > 0. A thermal state ρ̂En̄T is rep-

resented by a mixture of coherent states |α〉—quantum descriptors of ideal laser-

light—weighted by a Gaussian distribution over the field amplitude α ∈ C:

ρ̂En̄T =
1

πn̄T

∫
C
e−|α|

2/n̄T |α〉〈α|Ed2α.

This thermal noise masks Alice’s transmission attempt, enabling covert communica-

tion even when Willie has arbitrary resources, such as any quantum-limited measure-

ment on the isometric extension of the Alice-to-Bob quantum channel (i.e., access

to all signaling photons not captured by Bob). The following theorem demonstrates

that in this scenario Alice can use mean photon number per mode n̄ = O(1/
√
n) to
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reliably transmit O(
√
n) covert bits using n optical modes to Bob, who needs only a

conventional homodyne-detection receiver:

Theorem 6.3.1. (Square root law for the thermal noise channel) Suppose Willie

has access to an arbitrarily complex receiver measurement as permitted by the laws of

quantum physics and can capture all the photons transmitted by Alice that do not reach

Bob. Let Willie’s channel from Alice be subject to noise from a thermal environment

that injects n̄T > 0 photons per optical mode on average, and let Alice and Bob share a

secret of sufficient length before communicating. Then Alice can lower-bound Willie’s

detection error probability P(w)
e ≥ 1

2
− ε for any ε > 0 while reliably transmitting

O(
√
n) bits to Bob in n optical modes even if Bob only has access to a (sub-optimal)

coherent detection receiver, such as an optical homodyne detector.

First, we define quantum relative entropy.

Definition 6.1. Quantum relative entropy between states ρ̂0 and ρ̂1 is D(ρ̂0‖ρ̂1) ≡

Tr{ρ̂0(ln ρ̂0 − ln ρ̂1)}.

The following lemma provides the expression for the quantum relative entropy

between two thermal states.

Lemma 6.2. If ρ̂0 =
∑∞

n=0
n̄n0

(1+n̄0)1+n
|n〉 〈n| and ρ̂1 =

∑∞
n=0

n̄n1
(1+n̄1)1+n

|n〉 〈n|, then

D(ρ̂0‖ρ̂1) = n̄0 ln n̄0(1+n̄1)
n̄1(1+n̄0)

+ ln 1+n̄1

1+n̄0

Proof. See Appendix C.2.

Proof. (Theorem 6.3.1) Construction: Let Alice use a zero-mean isotropic Gaussian-

distributed coherent state input {p(α), |α〉}, where α ∈ C, p(α) = e−|α|
2/n̄/πn̄ with

mean photon number per symbol n̄ =
∫
C |α|

2p(α)d2α. Alice encodes M -bit blocks of

input into codewords of length n symbols by generating 2M codewords {
⊗n

i=1 |αi〉k}2M

k=1,

each according to p(
⊗n

i=1 |αi〉) =
∏n

i=1 p(αi), where
⊗n

i=1 |αi〉 = |α1 . . . αn〉 is an n-

mode tensor-product coherent state. The codebook is used only once to send a single

message and is kept secret from Willie, though he knows how it is constructed.
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Analysis (Willie): Since Willie does not have access to Alice’s codebook, Willie

has to discriminate between the following n-copy quantum states:

ρ̂⊗n0 =

(
∞∑
i=0

(ηbn̄T )i

(1 + ηbn̄T )1+i
|i〉 〈i|

)⊗n
,

and

ρ̂⊗n1 =

(
∞∑
i=0

(ηwn̄+ ηbn̄T )i

(1 + ηwn̄+ η(n)n̄T )1+i
|i〉 〈i|

)⊗n
.

Assuming equal prior probabilities, by Lemma B.2, Willie’s average probability of

error in discriminating between ρ̂⊗n0 and ρ̂⊗n1 is:

P(w)
e ≥ 1

2

[
1− 1

2
‖ρ̂⊗n1 − ρ̂⊗n0 ‖1

]
,

where the minimum in this case is attained by a PNR detection. The trace distance

‖ρ̂0−ρ̂1‖1 between states ρ̂1 and ρ̂1 (see Appendix B.2) is upper-bounded the quantum

relative entropy (QRE) using quantum Pinsker’s Inequality [88, Theorem 11.9.2] as

follows:

‖ρ̂0 − ρ̂1‖1 ≤
√

2D(ρ̂0‖ρ̂1),

Thus,

P(w)
e ≥ 1

2
−
√

1

8
D(ρ̂⊗n0 ‖ρ̂⊗n1 ). (6.20)

QRE is additive for tensor product states:

D(ρ̂⊗n0 ‖ρ̂⊗n1 ) = nD(ρ̂0‖ρ̂1). (6.21)
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By Lemma 6.2,

D(ρ̂0‖ρ̂1) = ηbn̄T ln
(1 + ηwn̄+ ηbn̄T )ηbn̄T

(ηwn̄+ ηbn̄T )(1 + ηbn̄T )
+ ln

1 + ηwn̄+ ηbn̄T
1 + ηbn̄T

. (6.22)

The first two terms of the Taylor series expansion of the RHS of (6.22) with respect

to n̄ at n̄ = 0 are zero and the fourth term is negative. Thus, using Taylor’s Theorem

with the remainder, we can upper-bound equation (6.22) by the third term as follows:

D(ρ̂0‖ρ̂1) ≤ η2
wn̄

2

2ηbn̄T (1 + ηbn̄T )
. (6.23)

Combining equations (6.20), (6.21), and (6.23) yields

P(w)
e ≥ 1

2
− ηwn̄

√
n

4
√
ηbn̄T (1 + ηbn̄T )

(6.24)

Therefore, setting

n̄ =
4ε
√
ηbn̄T (1 + ηbn̄T )√

nηw
(6.25)

ensures that Willie’s error probability is lower-bounded by P(w)
e ≥ 1

2
− ε over n optical

modes.

Analysis (Bob): Suppose Bob uses a coherent detection receiver. A homodyne

receiver, which is more efficient than a heterodyne receiver in the low photon number

regime [33], induces an AWGN channel with noise power σ2
b = 2(1−ηb)n̄T+1

4ηb
. Since

Alice uses Gaussian modulation with symbol power n̄ defined in equation (6.25), we

can upper-bound P(b)
e by equation (4.9):

P(b)
e ≤ 2M−

n
2

log2(1+n̄/2σ2
b). (6.26)
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Substitution of n̄ from (6.25) into (6.26) shows that O(
√
n) bits can be covertly

transmitted from Alice to Bob with P(b)
e < δ for arbitrary δ > 0 given large enough

n.

6.4 Detector noise also enables covert communication

While any n̄T > 0 enables covert communication, the number of covertly-transmitted

bits decreases with n̄T . Blackbody radiation is negligible at optical frequencies (e.g.,

a typical daytime value of n̄T ≈ 10−6 photons per mode at the optical telecom wave-

length of 1.55µm [53]). However, other sources of excess noise can also hide the

transmissions (e.g. detector dark counts and Johnson noise).

To illustrate the information-hiding capabilities of these noise sources, we consider

the (hypothetical) pure-loss channel. Willie’s task reduces to that of discriminating

between the states corresponding to n-mode vacuum state and the output state ρ̂W
n

u

of a pure-loss channel with transmissivity ηw corresponding to an input state ρ̂A
n

u ,

i.e., the states given by equations (6.2) and (6.3) in the proof of Theorem 6.2.1. The

minimum probability of discrimination error satisfies [70, Section III]:

1−
√

1− Wn〈0| ρ̂Wn

u |0〉Wn

2
≤ minP(w)

e ≤ 1

2
Wn

〈0| ρ̂Wn

u |0〉W
n

.

Since
Wn
〈0|ρ̂Wn

u |0〉W
n

4
≤ 1−

√
1−Wn〈0|ρ̂Wn

u |0〉Wn

2
, the error probability for the SPD is at

most twice that of an optimal detector. Thus, the SPD is an asymptotically optimal

detector when the channel from Alice is pure-loss. Since the photon number resolving

(PNR) receiver, given by the POVM elements {|0〉 〈0| , |1〉 〈1| , |2〉 〈2| , . . .}⊗n, could be

used to mimic the SPD with the detection event threshold set at one photon, the PNR

receiver is also asymptotically optimal in this scenario.

Thus, we consider a pure-loss channel where Willie is equipped with a PNR de-

tector. However, any practical implementation of a PNR receiver has a non-zero dark
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current, with the noise from the resulting dark counts enabling covert communication

even over a pure-loss channel. We model the dark counts per mode in Willie’s PNR

detector as a Poisson process with average number of dark counts per mode λw.

We note that, since his receiver is fixed, lower-bounding Willie’s probability of

detection error is a classical problem, and we, therefore, can apply Lemmas 4.1 and

4.2. The following theorem demonstrates that, using an on-off keying (OOK) co-

herent state modulation where Alice transmits the on symbol |α〉 with probability

q = O(1/
√
n) and the off symbol |0〉 with probability 1− q, Alice can reliably trans-

mit O(
√
n) covert bits using n OOK symbols:

Theorem 6.4.1. (Dark counts yield square root law) Suppose that Willie has a

pure-loss channel from Alice, captures all photons transmitted by Alice that do not

reach Bob, but is limited to a receiver with a non-zero dark current. Let Alice and

Bob share a secret of sufficient length before communicating. Then Alice can lower-

bound Willie’s detection error probability P(w)
e ≥ 1

2
− ε for any ε > 0 while reliably

transmitting O(
√
n) bits to Bob in n optical modes.

Proof. Construction: Let Alice use a coherent state on-off keying (OOK) modulation

{πi, |ψi〉〈ψi|}, i = 1, 2, where π1 = 1 − q, π2 = q, |ψ1〉 = |0〉, |ψ2〉 = |α〉. Alice and

Bob generate a random codebook with each codeword symbol chosen i.i.d. from the

above binary OOK constellation.

Analysis (Willie): Willie records vector yw = [y1, . . . , yn], where yi is the number

of photons observed in the ith mode. Denote by P0 the distribution of yw when Alice

does not transmit and by P1 the distribution when she transmits. When Alice does not

transmit, Willie’s receiver observes a Poisson dark count process with rate λw photons

per mode. Thus, {yi} is independent and identically distributed (i.i.d.) sequence of

Poisson random variables with rate λw, and P0 = Pnw where Pw = Poisson(λw). When

Alice transmits, although Willie captures all of her transmitted energy that does

not reach Bob, he does not have access to Alice’s and Bob’s codebook. Since the
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dark counts are independent of the transmitted pulses, each observation is a mixture

of two independent Poisson random variables. Thus, each yi ∼ Ps is i.i.d., with

Ps = (1− q)Poisson(λw) + qPoisson(λw + ηw|α|2) and P1 = Pns . By Lemmas 4.1 and

4.2, P(w)
e ≥ 1

2
−
√

1
8
D(P0‖P1). By Lemma 4.3, D(P0‖P1) = nD(Pw‖Ps). Now,

D(Pw‖Ps) = −
∞∑
y=0

λywe
−λw

y!
log

[
1− q + q

(
1 +

ηw|α|2

λw

)
e−ηw|α|

2

]
(6.27)

≤
q2
(
e(ηw|α|2)2/λw − 1

)
2

where the inequality is from the application of Lemma 4.4 to the Taylor series expan-

sion of equation (6.27) with respect to q at q = 0. Thus,

P(w)
e ≥ 1

2
− q

4

√
n (e(ηw|α|2)2/λw − 1). (6.28)

Therefore, to ensure that P(w)
e ≥ 1

2
− ε, Alice sets

q =
4ε√

n (e(ηw|α|2)2/λw − 1)
. (6.29)

Analysis (Bob): Suppose Bob uses a practical single photon detector (SPD) re-

ceiver with probability of a dark click per mode p
(b)
D . This induces a binary asymmetric

channel between Alice and Bob, where the click probabilities, conditioned on the in-

put, are P(click | input |0〉) = p
(b)
D and P(click | input |α〉) = 1− e−ηb|α|2(1− p(b)

D ) ≡

p
(b)
C , with corresponding no-click probabilities P(no-click | input |0〉) = 1 − p(b)

D and

P(no-click | input |α〉) = e−ηb|α|
2
(1 − p

(b)
D ) ≡ 1 − p

(b)
C . At each mode, a click corre-

sponds to “1” and a no-click to “0”. Let Bob use a maximum likelihood decoder

on this sequence. Then the standard upper bound on Bob’s average decoding error

probability is2 P(b)
e ≤ eM−nE0 , where

2We use [32, Theorem 5.6.2], setting parameter ρ = 1.
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E0 = − ln

[(
q

√
p

(b)
C + (1− q)

√
p

(b)
D

)2

+

(
q

√
1− p(b)

C + (1− q)
√

1− p(b)
D

)2
]
.

The Taylor series expansion of E0 with respect to q at q = 0 yields E0 = qC +O(q2),

where

C = 2e−ηb|α|
2/2

(
eηb|α|

2/2 − 1 + p
(b)
D −

√
p

(b)
D

(
eηb|α|2/2 − 1 + p

(b)
D

))

is a positive constant. Since q = O(1/
√
n), this demonstrates that O(

√
n) bits can

be covertly transmitted from Alice to Bob with P(b)
e < δ for arbitrary δ > 0 given

large enough n.

6.5 Quantum-strong converse of the square root law

Finally, we claim the ultimate unsurmountability of the square root law. We

assume non-zero thermal noise (n̄T > 0) in the channel and non-zero dark count rate

(λw > 0) in Willie’s detector. We restrict the photon number variance of Alice’s

input states to σ2
x = O(n). However, this restriction is not onerous since it subsumes

all well-known quantum states of a bosonic mode. However, proving this theorem

for input states with unbounded photon number variance per mode remains an open

problem. Setting λw = 0 yields the converse for Theorem 6.3.1, and setting n̄T = 0

yields the converse for Theorems 6.4.1 and 7.1.1. Setting λw = 0 and n̄T = 0 yields

the conditions for Theorem 6.2.1.

Theorem 6.5.1. (Converse of the square root law) Suppose Alice only uses n-mode

codewords with total photon number variance σ2
x = O(n). Then, if she attempts to

transmit ω(
√
n) bits in n modes, as n → ∞, she is either detected by Willie with

arbitrarily low detection error probability, or Bob cannot decode with arbitrarily low

decoding error probability.
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Proof. As in the proof of Theorem 6.2.1, Alice sends one of 2M (equally likely) M -bit

messages by choosing an element from an arbitrary codebook {ρ̂Anx }2M

x=1, where a state

ρ̂A
n

x = |ψx〉A
nAn〈ψx| encodes an M -bit message Wx. |ψx〉A

n

=
∑

k∈Nn0
ak(x) |k〉 is a gen-

eral n-mode pure state, where |k〉 ≡ |k1〉⊗|k2〉⊗· · ·⊗|kn〉 is a tensor product of n Fock

states. The mean photon number of a codeword ρ̂A
n

x is n̄x =
∑

k∈Nn0
(
∑n

i=1 ki)|ak(x)|2,

and the photon number variance is σ2
x =

∑
k∈Nn0

(
∑n

i=1 ki)
2|ak(x)|2 − n̄2

x = O(n). We

limit our analysis to pure input states since, by convexity, using mixed states as in-

puts can only deteriorate the performance (since that is equivalent to transmitting a

randomly chosen pure state from an ensemble and discarding the knowledge of that

choice).

Willie uses a noisy PNR receiver to observe his channel from Alice, and records the

total photon count Xtot over n modes. For some threshold S that we discuss later,

Willie declares that Alice transmitted when Xtot ≥ S, and did not transmit when

Xtot < S. When Alice does not transmit, Willie observes noise: X
(0)
tot = XD + XT ,

where XD is the number of dark counts from the spontaneous emission process at the

detector, and XT is the number of photons observed from the thermal background.

Since the dark counts are modeled by a Poisson process with rate λw photons per

mode, both the mean and variance of the observed dark counts per mode is λw. The

mean of the number of photons observed per mode from the thermal background with

mean photon number per mode n̄T is (1−ηw)n̄T and the variance is (1−ηw)2(n̄T +n̄2
T ).

Thus, the mean of the total number of noise photons observed per mode is µN =

λw + (1− ηw)n̄T , and, because of the statistical independence of the noise processes,

the variance is σ2
N = λw + (1 − ηw)2(n̄T + n̄2

T ). We upper-bound the false alarm

probability using Chebyshev’s inequality:

PFA = P(X
(0)
tot ≥ S)

≤ nσ2
N

(S − nµN)2
, (6.30)
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where equation (6.30) is because of the memorylessness of the noise processes. Thus,

to obtain the desired P∗FA, Willie sets threshold S = nµN +
√
nσ2

N/P∗FA.

When Alice transmits codeword ρ̂A
n

u corresponding to message Wu, Willie observes

X
(1)
tot = Xu +XD +XT , where Xu is the count from Alice’s transmission. We upper-

bound the missed detection probability using Chebyshev’s inequality:

PMD = P(X
(1)
tot < S)

≤ P

(
|X(1)

tot − ηwn̄u − nµN | ≥ ηwn̄u −

√
nσ2

N

P∗FA

)

≤ nσ2
N + η2

wσ
2
u

(ηwn̄u −
√
nσ2

N/P∗FA)2
, (6.31)

where equation (6.31) is because the noise and Alice’s codeword are independent.

Since σ2
u = O(n), if n̄u = ω(

√
n), then limn→∞ PMD = 0. Thus, given large enough

n, Willie can detect Alice’s codewords that have mean photon number n̄u = ω(
√
n)

with probability of error P(w)
e ≤ ε for any ε > 0.

If Alice wants to lower-bound P(w)
e , her codebook must contain a positive fraction

of codewords with mean photon number upper-bounded by n̄U = O(
√
n). Formally,

there must exist a subset of the codebook
{
ρ̂A

n

u , u ∈ U
}

, where U = {u : n̄u ≤ n̄U},

with |U|
2M
≥ κ and κ > 0. Suppose Bob has an unattenuated pure-loss channel from

Alice (ηb = 0 and n̄T = 0) and access to any receiver allowed by quantum mechanics.

The decoding error probability P(b)
e in such scenario clearly lower-bounds the decod-

ing error probability in a practical scenario where the channel from Alice is lossy and

either the channel or the receiver are noisy. Denote by Ea→k the event that a trans-

mitted message Wa is decoded as Wk 6= Wa. Since the messages are equiprobable,

the average probability of error for the codebook containing only the codewords in U

is
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P(b)
e (U) =

1

|U|
∑
a∈U

P
(
∪k∈U\{a}Ea→k

)
. (6.32)

Since the probability that a message is sent from U is κ,

P(b)
e ≥ κP(b)

e (U). (6.33)

Equality holds only when Bob receives messages that are not in U error-free and

knows when the messages from U are sent (in other words, equality holds when the

set of messages on which decoder can err is reduced to U). Denote by Wa, a ∈ U , the

message transmitted by Alice, and by Ŵa Bob’s decoding of Wa. Then, since each

message is equiprobable and |U| = κ2M ,

log2 κ+M = H(Wa) (6.34)

= I(Wa; Ŵa) +H(Wa|Ŵa) (6.35)

≤ I(Wa; Ŵa) + 1 + (log2 κ+M)P(b)
e (U) (6.36)

≤ χ

({
1

|U|
, ρ̂A

n

u

})
+ 1 + (log2 κ+M)P(b)

e (U) (6.37)

where (6.35) is from the definition of mutual information, (6.36) is because of classical

Fano’s inequality [19, Equation (9.37)], and (6.37) is the Holevo bound I(X;Y ) ≤

χ({pX(x), ρ̂x}) (see Appendix B.3.6). The mutual information I(X;Y ) is between a

classical input X and a classical output Y , which is a function of the prior probability

distribution pX(x), and the conditional probability distribution pY |X(y|x), with x ∈ X

and y ∈ Y . The classical input x maps to a quantum state ρ̂x. A specific choice of

a quantum measurement, described by POVM elements {Π̂y, y ∈ Y}, induces the

conditional probability distribution pY |X(y|x) = Tr
[
Π̂yρ̂x

]
. The Holevo information,

χ({px, ρ̂x}) = S
(∑

x∈X pxρ̂x
)
−
∑

x∈X pxS(ρ̂x), where S(ρ̂) ≡ −Tr[ρ̂ ln ρ̂] is the von

Neumann entropy of the state ρ̂, is not a function of the quantum measurement.
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Since ρ̂A
n

u = |ψu〉A
nAn〈ψu| is a pure state, χ

(
{ 1
|U| , ρ̂

An

u }
)

= S
(

1
|U|
∑

u∈U |ψu〉
AnAn〈ψu|

)
.

Denote the “average codeword” in U by ρ̄A
n

= 1
|U|
∑

u∈U |ψu〉
AnAn〈ψu|, and the state of

the jth mode of ρ̄A
n

by ρ̄A
n

j . We obtain ρ̄A
n

j by taking the partial trace over all the other

modes in ρ̄A
n

and denote its mean photon number by n̄j (i.e. n̄j is the mean photon

number of the jth mode of ρ̄A
n
). Finally, denote a coherent state ensemble with a

zero-mean circularly-symmetric Gaussian distribution by ρ̂Tn̄ = 1
πn̄

∫
e−|α|

2/n̄|α〉〈α|d2α.

The von Neumann entropy of ρ̂Tn̄ , S
(
ρ̂Tn̄
)

= log2(1 + n̄) + n̄ log2

(
1 + 1

n̄

)
. Now,

S
(
ρ̄A

n) ≤ n∑
j=1

S
(
ρ̄A

n

j

)
(6.38)

≤
n∑
i=1

log2(1 + n̄j) + n̄j log2

(
1 +

1

n̄j

)
(6.39)

≤ n

(
log2

(
1 +

n̄U
n

)
+
n̄U
n

log2

(
1 +

n

n̄U

))
, (6.40)

where (6.38) follows from the subadditivity of the von Neumann entropy (see Ap-

pendix B.3.2) and (6.39) is because ρ̂Tn̄ maximizes the von Neumann entropy of a

single-mode state with mean photon number constraint n̄ [33]. Now, S
(
ρ̂Tn̄
)

is con-

cave and increasing for n̄ > 0, and, since
∑n

j=1 n̄j ≤ n̄U by construction of U , the

application of Jensen’s inequality yields (6.40). Combining (6.37) and (6.40) and

solving for P(b)
e (U) yields:

P(b)
e (U) ≥ 1−

log2

(
1 + n̄U

n

)
+ n̄U

n
log2

(
1 + n

n̄U

)
+ 1

n

log2 κ
n

+ M
n

. (6.41)

Substituting (6.41) into (6.33) yields the following lower bound on Bob’s decoding

error probability:

P(b)
e ≥ κ

1−
log2

(
1 + n̄U

n

)
+ n̄U

n
log2

(
1 + n

n̄U

)
+ 1

n

log2 κ
n

+ M
n

 . (6.42)

84



Since Alice transmits ω(
√
n) bits in n modes, M/n = ω(1/

√
n) bits/symbol. However,

since n̄U = O(
√
n), as n→∞, P(b)

e is bounded away from zero for any κ > 0. Thus,

Alice cannot transmit ω(
√
n) bits in n optical modes both covertly and reliably.
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CHAPTER 7

EXPERIMENTAL EVALUATION OF COVERT OPTICAL
COMMUNICATION

In this chapter we corroborate the theoretical results from the previous chapter

with a proof-of-concept experiment, where the excess noise in Willie’s detection is

emulated by dark counts of his single photon detector. This is the first known imple-

mentation of a truly quantum-information-theoretically secure covert communication

system that allows communication when all transmissions are prohibited.

We use pulse position modulation (PPM) in our experiments, as it allows us to

use a practical error correction code (ECC). In Section 7.1 we prove that it can be

used for achieving covert communication, and in Section 7.2 we describe our testbed

and report the results of our experiments demonstrating the feasibility of quantum-

information-theoretically secure covert communication.

7.1 A structured strategy for covert communication

The assumptions of Section 6.4 (hypothetical pure-loss channel, with detector

afflicted by the dark counts) describe many optical communication scenarios. While

Theorem 6.4.1 states that such settings allow Alice to covertly communicate with

Bob, however the skewed on-off duty cycle of OOK modulation used in the proof

makes construction of an efficient ECC challenging. Constraining OOK signaling to

Q-ary pulse position modulation (PPM) addresses this issue by sacrificing a constant

fraction of throughput. Each PPM symbol uses a PPM frame to transmit a sequence

of Q coherent state pulses, |0〉 . . . |α〉 . . . |0〉, encoding message i ∈ {1, 2, . . . , Q} by
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transmitting |α〉 in the ith mode of the PPM frame. Thus, instead ofO(n) bits allowed

by OOK, PPM lets O
(
n
Q

logQ
)

bits be transmitted in n optical modes. However,

PPM performs well in the low photon number regime [86] and the symmetry of its

symbols enables us to use any one of efficient ECCs.

To communicate covertly, Alice and Bob use a fraction ζ = O
(√

Q/n
)

of n/Q

available PPM frames on average, effectively using n̄ = O(1/
√
n) photons per mode.

By keeping secret which frames they use, Alice and Bob force Willie to examine all of

them, increasing the likelihood of dark counts. An ECC ensures the reliability of the

communication between Alice and Bob (if it occurs). While the ECC is revealed to

Willie, the transmitted pulse positions are scrambled within the corresponding PPM

frames via an operation resembling one-time pad encryption [76], preventing Willie’s

exploitation of the ECC’s structure for detection (rather than protecting the message

content). The following theorem demonstrates that, using this scheme, Alice reliably

transmits O
(√

n
Q

logQ

)
covert bits at the cost of pre-sharing O

(√
n
Q

log n

)
secret

bits:

Theorem 7.1.1. (Dark counts yield square root law under structured modulation)

Suppose that Willie has a pure-loss channel from Alice, can capture all photons trans-

mitted by Alice that do not reach Bob, but is limited to a PNR receiver with a non-zero

dark current. Let Alice and Bob share a secret of sufficient length before communicat-

ing. Then Alice can lower-bound Willie’s detection error probability P(w)
e ≥ 1

2
− ε for

any ε > 0 while reliably transmitting O(
√

n
Q

logQ) bits to Bob using n optical modes

and a Q-ary PPM constellation.

Proof. Construction: Prior to communication, Alice and Bob secretly choose a ran-

dom subset S of PPM frames to use for transmission by selecting each of n/Q available

PPM frames independently with probability ζ. Alice and Bob then secretly generate

a vector k containing |S| integers selected independently uniformly at random from

{0, 1, . . . , Q − 1}, where |S| denotes the cardinality of S. Alice encodes a message
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into a codeword of size |S| using an ECC that may be known to Willie. She adds k

modulo Q to this message and transmits it on the PPM frames in S.

Analysis (Willie): Willie detects each PPM frame received from Alice, recording

the photon counts in yw = [y
(w)
1 , . . . ,y

(w)
n ] where y

(w)
i = [y

(w)
i,1 , . . . , y

(w)
i,Q ] and y

(w)
i,j it the

number of photons observed in the jth mode of the ith PPM frame. Denote by P0 the

distribution of yw when Alice does not transmit and by P1 the distribution when she

transmits. When Alice does not transmit, Willie’s receiver observes a Poisson dark

count process with rate λw photons per mode, implying that yw is a vector of nQ

i.i.d. Poisson(λw) random variables. Therefore, {y(w)
i } is i.i.d. with y

(w)
i ∼ Pw and

P0 = Pnw, where Pw is the distribution of Q i.i.d. Poisson(λw) random variables with

p.m.f.:

p0(y
(w)
i ) =

Q∏
j=1

λ
y
(w)
i,j
w e−λw

y
(w)
i,j !

. (7.1)

When Alice transmits, by construction, each PPM frame is randomly selected for

transmission with probability ζ. In each selected PPM frame, a pulse is transmitted

using one of Q modes chosen equiprobably. Therefore, in this case {y(w)
i } is also

i.i.d. with y
(w)
i ∼ Ps and P1 = Pns , where the p.m.f. of Ps is:

p1(y
(w)
i ) = (1− ζ)

Q∏
j=1

λ
y
(w)
i,j
w e−λw

y
(w)
i,j !

+
ζ

Q

Q∑
m=1

(ηw|α|2 + λw)y
(w)
i,me−ηw|α|

2−λw

y
(w)
i,m !

Q∏
j=1
j 6=m

λ
y
(w)
i,j
w e−λw

y
(w)
i,j !

.

(7.2)

By Lemma 4.3, D(P0‖P1) = n
Q
D(Pw‖Ps). Now, denoting by x = [x1, · · · , xQ]

where xj ∈ N0, we have
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D(Pw‖Ps) = −
∑
x∈NQ0

Q∏
j=1

λ
xj
w e−λw

xj!
log

[
1− ζ +

ζ

Q

Q∑
m=1

(
1 +

ηw|α|2

λw

)xm
e−ηw|α|

2

]
(7.3)

≤
ζ2

(
e

(ηw|α|2)2
λw − 1

)
2Q

where the inequality is from Lemma 4.4 applied to the Taylor series expansion of equa-

tion (7.3) with respect to ζ at ζ = 0. By Lemmas 4.1 and 4.2, ζ = 4εQ√√√√n

(
e
(ηw|α|2)2

λw −1

)

ensures that Willie’s error probability is lower-bounded by P(w)
e ≥ 1

2
− ε.

Analysis (Bob): As in the proof of Theorem 6.4.1, Bob uses a practical SPD

receiver with probability of a dark click p
(b)
D . Bob examines only the PPM frames in

S. If two or more clicks are detected in a PPM frame, a PPM symbol is assigned

by selecting one of the clicks uniformly at random. If no clicks are detected, the

PPM frame is labeled as an erasure. After subtracting k modulo Q from this vector

of PPM symbols (subtraction is not performed on erasures), the resultant vector is

passed to the decoder. A random coding argument [32, Theorem 5.6.2] yields reliable

transmission of O
(√

n
Q

logQ

)
covert bits.

7.2 Implementation of experimental covert optical commu-

nication system

7.2.1 System design and implementation

To demonstrate the square-root law of covert optical communication we realized

a proof-of-concept test-bed implementation. Here we describe its design and imple-

mentation.

7.2.1.1 Alice’s encoder

Alice and Bob engage in an n-mode communication session consisting of n/Q

Q-ary PPM frames with Q = 32. As in the construction of the coding scheme in
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the proof of Theorem 7.1.1, prior to communication, Alice and Bob secretly select

a random subset S of PPM frames to use for transmission: each of the n/Q avail-

able PPM frames is selected independently with probability ζ. Alice and Bob then

secretly generate a vector k containing |S| integers selected independently uniformly

at random from {0, 1, . . . , Q − 1}, where |S| denotes the cardinality of S. However,

instead of using a random codebook as in the proof of Theorem 7.1.1, Alice encodes

a message into a codeword of size |S| using a (31, 15) Reed-Solomon (RS) error cor-

rection code. She adds k modulo Q to this message and transmits it on the PPM

frames in S. RS codes perform well on channels dominated by erasures, which occur

in low receive-power scenarios, e.g., covert and deep space communication [68].

7.2.1.2 Generation of transmitted symbols

Alice generates the binary sequence of length n describing the transmitted signal,

with a “1” at a given location indicating a pulse in that mode, and a “0” indicating the

absence of a pulse. First, Alice encodes random data, organized into Q-ary symbols,

with an RS code and modulo-Q addition of k to produce a coded sequence of Q-ary

symbols. The value of the ith symbol in this sequence indicates which mode in the

ith PPM symbol in the set S contains a pulse, whereas all modes of the PPM frames

not in S remain empty. Mapping occupied modes to “1” and unoccupied modes to

“0” results in the desired length-n binary sequence.

To accurately estimate Willie’s detection error probability in the face of optical

power fluctuations, the above binary sequence is alternated with a sequence of n

“0”s, to produce a final length-2n sequence that is passed to the experimental setup.

Willie gets a “clean” look at the channel when Alice is silent using these interleaved

“0”s, thus allowing the estimation of both the false alarm and the missed detection

probabilities under the same conditions. Bob simply discards the interleaved “0”s.
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Figure 7.1: Experimental setup. A National Instruments PCIe-6537 data acquisi-
tion card (DAQ), driven by a 1 MHz clock, controlled the experiment, generating
transmissions and reading detection events. Alice generated 1 ns optical pulses using
a temperature-stabilized laser diode with center wavelength 1550.2 nm. The pulses
were sent into a free-space optical channel, where a half-wave plate (HWP) and polar-
izing beamsplitter cube (PBSC) sent a fraction ηb of light to Bob, and the remaining
light to Willie. Bob and Willie’s receivers operated InGaAs Geiger-mode avalanche
photodiode SPDs that were gated with 1 ns reverse bias triggered to match the arrival
of Alice’s pulses.

We varied n from 3.2×106 to 3.2×107 in several communication regimes: “careful

Alice” (ζ = 0.25
√
Q/n), “careless Alice” (ζ = 0.03 4

√
Q/n), and “dangerously careless

Alice” (ζ = 0.003 and ζ = 0.008). For each (n, ζ) pair we conducted 100 experiments

and 105 Monte-Carlo simulations, measuring Bob’s total number of bits received and

Willie’s detection error probability.

7.2.1.3 Implementation

The experiment was conducted using a mixture of fiber-based and free-space opti-

cal elements implementing channels from Alice to both Bob and Willie. As depicted

by the schematic in Figure 7.1, we used a National Instruments PCIe-6537 data ac-

quisition card, driven by a 1 MHz clock, to control the experiment. Alice generated

1 ns optical pulses using a temperature-stabilized laser diode with center wavelength

1550.2 nm, the standard optical telecom wavelength. The pulses were sent into a
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Table 7.1: Optical channel characteristics

Willie Bob
Experimental
estimates

p
(w)
D n̄

(w)
det p

(b)
D n̄

(b)
det

ζ = 0.25
√
Q/n 9.15× 10−5 0.036 2.96× 10−6 1.52

ζ = 0.03 4
√
Q/n 9.12× 10−5 0.031 2.54× 10−6 1.14

ζ = 0.003 9.29× 10−5 0.033 2.62× 10−6 1.19
ζ = 0.008 9.28× 10−5 0.028 2.63× 10−6 1.05

Target: 9× 10−5 0.03 3× 10−6 1.4

free-space optical channel, where a half-wave plate and polarizing beamsplitter cube

were employed to send a fraction ηb of light to Bob, and the remaining light to Willie.

Because of the low intensity of Alice’s pulses, direct detection using single photon de-

tectors (SPDs), rather than PNR receivers, was sufficient. Bob and Willie’s receivers

operated InGaAs Geiger-mode avalanche photodiode SPDs that were gated with 1

ns reverse bias triggered to match the arrival of Alice’s pulses. Geiger-mode photodi-

odes have to reset after each detection event, resulting in a deterministic number of

no-clicks always following a click [45]. This is known as the dead time td of a detector,

and, in our experiment, td = 16 observation periods.1,2

While some thermal noise is unavoidable, in order to control the experimental en-

vironment, several configurations were considered for implementing the background

1We note that td is adjustable. The detector is forced to reset in order to suppress the after-
pulses: a sequence of erroneous clicks that immediately follow detection events in Geiger-mode
avalanche photodiodes because of the imperfections in their circuitry. To verify our choice of td = 16
we performed Pearson chi-squared tests of independence [36] between observations xi and xi+k on
each of the four click records corresponding to different communication regimes (i.e., values of ζ) in
our experiments. None of the tests rejected the null hypothesis (independence between xi and xi+k)
for k = 17 at 5% significance level, while rejecting it for smaller k, thus providing evidence for the
correctness of td = 16 used in our study.

2While we account for the dead time in our evaluation of the experiments and the Monte-
Carlo simulation, in Appendix D.2 we argue that its impact on Willie’s detector’s performance is
insignificant. We thus do not account for the detector dead time in the proof of Theorem 7.1.1: the
construction of Alice and Bob’s signaling scheme ensures covert communication since the positive
dead time only hurts Willie’s detector performance.
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noise at the receivers. We provided noise only during the gating period of the de-

tectors since continuous wave light irradiating Geiger-mode avalanche photodiodes

(APDs) suppresses detection efficiency [64]. Instead of providing extraneous optical

pulses during the gating window of the APD, we emulated optical noise at the detec-

tors by increasing the detector gate voltage, thus increasing the detector’s dark click

probability. While the APD dark counts are Poisson-distributed with mean rate n̄N

photons per mode, when n̄N � 1, the dark click probability 1−e−n̄N is close to n̄N
1+n̄N

,

the probability that an incoherent thermal background with mean photon number per

mode n̄N produces a click. In Table 7.1 we report the experimentally-observed esti-

mates and targeted values of dark click probabilities p
(b)
D and p

(w)
D of Bob’s and Willie’s

detectors, as well as the mean number of photons detected by Bob n̄
(b)
det = ηbη

(b)
QEn̄ and

Willie n̄
(w)
det = (1−ηb)η(w)

QE n̄, where n̄ = 5 is the mean photon number of Alice’s pulses,

ηb = 0.97 is the fraction of light sent to Bob, and η
(b)
QE and η

(w)
QE are the quantum

efficiencies of Bob’s and Willie’s detectors, which can be approximated using the es-

timates in Table 7.1 (we note that quantum efficiency is strongly correlated with the

detector’s dark click probability [71]). We provide the details of estimating the dark

click probability in Appendix D.4. While we observed slight temporal variations in

dark counts during our experiments, in Appendix D.4 we argue that their effect on

our analysis is minimal.

The amount of transmitted information, with other parameters fixed, is propor-

tional to n̄
(b)
det/n̄

(w)
det . Our choice of n̄

(b)
det � n̄

(w)
det allowed the experiment to gather a

statistically meaningful data sample in a reasonable duration. In an operational free-

space laser communication system, a directional transmitter will likely yield just such

an asymmetry in coupling between Bob and Willie; however, we note that the only

fundamental requirement for implementing information-theoretically secure covert

communication is p
(w)
D > 0, or n̄T > 0.
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Figure 7.2: Number of bits decoded by Bob. Each data point is an average from 100
experiments, with negligibly small 95% confidence intervals. The symbol error rates
are: 1.1 × 10−4 for ζ = 0.25

√
Q/n, 8.3 × 10−3 for ζ = 0.03/ 4

√
Q/n, 4.5 × 10−3 for

ζ = 0.003, and 1.8 × 10−2 for ζ = 0.008. We also report the maximum throughput
Csζn
Q

computed using the experimentally-observed values from Table 7.1, where Cs
is the per-symbol Shannon capacity [75]. Given the low observed symbol error rate
for ζ = 0.25

√
Q/n, we note that a square root scaling is achievable even using a

relatively short RS code; Figure 7.3 demonstrates that this is achieved covertly.

7.2.2 Analysis

7.2.2.1 Bob’s decoder

Bob examines only the PPM frames in S. If two or more pulses are detected in a

PPM frame, one of them is selected uniformly at random. If no pulses are detected,

it is labeled as an erasure. After subtracting k modulo Q from this vector of PPM

symbols (subtraction is not performed on erasures), the resultant vector is passed to

the RS decoder.

For each experiment we record the total number of bits in the successfully-decoded

codewords; the undecoded codewords are discarded. For each pair of parameters (ζ, n)

we report the mean of the total number of bits decoded by Bob over 100 experiments

in Figure 7.2. For each communication regime we report the symbol error rate in the

caption of Figure 7.2. The symbol error rate is the total number of lost data symbols
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during all the experiments at the specified communication regime divided by the total

number of data symbols transmitted during these experiments. We also report Bob’s

maximum throughput from Alice in Figure 7.2, which is the per-symbol Shannon

capacity Cs multiplied by the expected number of transmitted PPM symbols ζn
Q

. Cs

is calculated for each regime using the experimentally-observed channel characteristics

in Table 7.1), with the details of the calculation deferred to Appendix D.1.

Our relatively short (31, 15) RS code achieves between 45% and 60% of the max-

imum throughput in the “careful Alice” regime and between 55% and 75% of the

maximum in other regimes at reasonable error rates, showing that even a basic code

demonstrates our theoretical scaling.

7.2.2.2 Willie’s detector

Estimation of P(w)
e —Willie’s detection problem can be reduced to a test between

two simple hypotheses where the log-likelihood ratio test minimizes P(w)
e [59, The-

orem 13.1.1]. The test statistic for the log-likelihood ratio test is derived in Ap-

pendix D.2 and is simply the total number of clicks Y observed by Willie. Willie

compares Y to a threshold S, accusing Alice if Y ≥ S. Willie chooses the value of S

that minimizes Willie’s detection error probability P(w)
e .

For each pair of parameters (n, ζ) as well as Alice’s transmission state, we perform

m experiments, recording the observed number of clicks Y . We denote by
{
Y

(0)
i

}m
i=1

and
{
Y

(1)
i

}m
i=1

the sequences of experimentally observed click counts when Alice does

not transmit and transmits, respectively. To estimate Willie’s detection error proba-

bility P(w)
e , we construct empirical distribution functions F̂

(0)
m (x) = 1

n

∑m
i=1 1

Y
(0)
i ≤x

(x)

and F̂
(1)
m (x) = 1

m

∑m
i=1 1

Y
(1)
i ≤x

(x), where 1A(x) = {1 if x ∈ A; 0 if x /∈ A} denotes

the indicator function. The estimated detection error probability is then

P̂(w)
e =

1

2
min
S

(1− F̂ (0)
m (S) + F̂ (1)

m (S)). (7.4)
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Monte-Carlo simulation and Gaussian approximation—We perform a Monte-Carlo

study using 105 simulations per (n, ζ) pair. We generate, encode, and detect the

messages as in the physical experiment, and use equation (7.4) to estimate Willie’s

probability of error, but simulate the optical channel induced by our choice of a laser-

light transmitter and an SPD using its estimated characteristics reported in Table 7.1.

Similarly, we use the values in Table 7.1 for our analytical Gaussian approximation

of P(w)
e described in Appendix D.3.

Confidence intervals—We compute the confidence intervals for the estimate in

equation (7.4) using Dvoretzky-Keifer-Wolfowitz inequality [25, 66], which relates the

distribution function FX(x) of random variable X to the empirical distribution func-

tion F̂m(x) = 1
m

∑m
i=1 1Xi≤x(x) associated with a sequence {Xi}mi=1 of m i.i.d. draws

of the random variable X as follows:

P(sup
x
|F̂m(x)− FX(x)| > ξ) ≤ 2e−2mξ2 , (7.5)

where ξ > 0. For x0, the (1−α) confidence interval for the empirical estimate of F (x0)

is given by [max{F̂m(x0)− ξ, 0},min{F̂m(x0) + ξ, 1}] where ξ =
√

log(2/α)
2m

. Thus, ±ξ

is used for reporting the confidence intervals in Figure 7.3.

Results—Figure 7.3 reports Willie’s probability of error estimated from the exper-

iments and the Monte-Carlo study, as well as its analytical Gaussian approximation.

Monte-Carlo simulations show that the Gaussian approximation is accurate. More

importantly, Figure 7.3 highlights Alice’s safety when she obeys the square root law

and her peril when she does not. When ζ = O(1/
√
n), P(w)

e remains constant as n

increases. However, for asymptotically larger ζ, P(w)
e drops at a rate that depends on

Alice’s carelessness. The drop at ζ = 0.008 vividly demonstrates our converse.
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Figure 7.3: Willie’s error probability. Estimates from 100 experiments have solid fill;
estimates from 105 Monte-Carlo simulations have clear fill; and Gaussian approxi-
mations are lines. The 95% confidence intervals for the experimental estimates are
±0.136; for the Monte-Carlo simulations they are ±0.014. Alice transmits ζn/Q PPM
symbols on average and Willie’s error probability remains constant when Alice obeys
the square root law and uses ζ = O(

√
Q/n); it drops as n increases if Alice breaks

the square root law by using an asymptotically larger ζ.
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CHAPTER 8

CONCLUSION AND FURTHER WORK

8.1 Summary

In this thesis we developed the information-theoretic foundation for covert com-

munication. We established the square root limit on the amount of information that

can be transmitted both over the AWGN and noisy optical channels. Specifically, we

determined that O(
√
n) covert bits can be sent reliably in n uses of either an AWGN

or a single-mode noisy optical channel. Conversely, attempting to transmit more

than that either results in detection by the warden with probability one, or a non-

zero probability of decoding error as n→∞. We have also shown that the warden’s

ignorance of the transmission time provides additional throughput gain, and demon-

strated that additive noise is critical for establishing covert communication, whether

the source of this noise is the channel or the warden’s detection equipment. We cor-

roborated our theory in a proof-of-concept experiment on an optical testbed, which, to

our knowledge, is the first known implementation of information-theoretically secure

covert communication system.

8.2 Further Work

The field of covert communication is rich with research opportunities. As discussed

in the introduction, there are ongoing projects to reduce the size of the secret shared

between the parties prior to the communication attempt, as well as to eliminate it

completely in some scenarios [16, 54]. The converse of the square root law for covert
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optical communication can also be improved by lifting the restriction on the photon

number variance in the signaling states.

The investigation of the impact of Alice’s message being short relative to the

amount of time that she has to send it combined with warden’s ignorance of her

choice of the transmission time should also be continued. The results in Chapter

5 are for AWGN channels, and the throughput improvement is shown only using

the Gaussian random coding with average power constraint. The proof of Theorem

5.2.1 needs to extended to peak power constrained signaling, as well as other channel

models (such as DMCs). This would also allow significant reduction in the size of

the pre-shared secret, as the exchange of full Gaussian codebooks would no longer

be needed. Furthermore, the constraint on the length of Alice’s message could be

beneficial to Willie in that the time when Alice is not transmitting could be used to

calibrate Willie’s detector (even when the time of the actual transmission is unknown).

For example, this could allow him to accurately estimate his receiver’s noise power,

and thus nullify the positive covert communication rate when his knowledge of his

receiver’s noise power is incomplete as in [57, 58]

Our ultimate objective is to enable a “shadow network”, illustrated in Figure 1.1,

comprised of transmitters, receivers, and friendly jammers that generate artificial

noise, impairing wardens’ ability to detect transmissions. Relays in covert networks

are valuable and require protection while the jammers are cheap, numerous, and

disposable (i.e., a warden can silence a particular jammer easily, but, because of

their great numbers, silencing enough of them to produce a significant impact is

infeasible). Jammer activities are independent from the relay transmission states:

that is, wardens cannot detect transmissions by listening to the jammers. Thus,

jammers have a parasitic effect on the wardens’ SNRs and are a nuisance.

It is important to characterize the scaling behavior of such a network, akin to

how [14, 34, 84] extend the results of [28, 39] to the secure (but not covert) multi-
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path unicast communication in a large wireless network. The first step towards this

goal is extending the covert communication scenario of this thesis to point-to-point

jammer-assisted covert communication in the presence of multiple wardens. Prelim-

inary results [79] assume that jammers operate at a constant power, and the signal

propagation model accounts only for path loss and AWGN. However, as [57, 58]

demonstrate, uncertainty in noise experienced by the warden is beneficial to Alice.

Thus, variable jamming power and multipath fading should be incorporated into the

jammer-assisted covert communication model, as it may enable covert communica-

tion at a positive rate. Completing the characterization of the point-to-point covert

link in a multi-warden multi-jammer environment is an important step towards un-

derstanding the behavior of “shadow networks”, and their eventual implementation.
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APPENDIX A

CLASSICAL COVERT COMMUNICATION
MISCELLANEA

A.1 Impact of Warden’s a priori Knowledge of the Trans-

mission State

Our proofs assume that Willie has no prior knowledge on whether Alice transmits

or not. Here we argue that the assumption of a non-trivial prior distribution on Al-

ice’s transmission state does not impact our asymptotic results. Suppose that Willie

knows that Alice will not transmit (i.e. H0 is true) with probability π0 and that she

will transmit (i.e. H0 is true) with probability π1 = 1 − π0. Denote the probability

distribution of Willie’s channel observations conditioned on Alice not transmitting

(i.e. on H0 being true) as P0, and the probability distribution of the observations con-

ditioned on Alice transmitting (i.e. on H1 being true) as P1. The following generalized

version of Lemma 4.1 then holds:

Lemma A.1 (Generalized Lemma 4.1). P(w)
e ≥ min(π0, π1)−max(π0, π1)V (P0,P1)

Proof. Upon observing x, Willie’s hypothesis test selects either the null hypothesis

H0 or the alternate hypothesis H1. Denote by p0(x) = p(x|H0) and p1(x) = p(x|H1)

the probability density functions of x conditioned on either hypothesis H0 or H1

being true; p0(x) and p1(x) are therefore the probability density functions of P0 and

P1. Denote by p(H0|x) and p(H1|x) the probabilities of hypotheses H0 and H0 being

true conditioned on the observation x. Since the optimal hypothesis test uses the
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maximum a posteriori probability rule, the probability P(b)
c of Willie’s optimal test

being correct, averaged over all observations, is as follows:

P(w)
c =

∫
X

max(p(H0|x), p(H1|x))p(x)dx (A.1)

=

∫
X

max(π0p0(x), π1p1(x))dx (A.2)

where X is the support of p0(x) and p1(x), and (A.2) follows from Bayes’ theo-

rem. Denote the error probability of Willie’s optimal test by P(w)
e = 1 − Pc =

1 −
∫
X max(π0p0(x), π1p1(x))dx. Now, since max(a, b) = a+b+|a−b|

2
, P(w)

e can be ex-

pressed as follows:

P(w)
e = 1− 1

2

(
π0

∫
X
p0(x)dx+ π1

∫
X
p1(x)dx

)
− 1

2

∫
X
|π0p0(x)− π1p1(x)|dx (A.3)

=
1

2
− 1

2
‖π0p0(x)− π1p1(x)‖1 (A.4)

where (A.4) is because of the probability densities integrating to one over their sup-

ports in the first two integrals of (A.3), π0 + π1 = 1, and the last integral in (A.3)

being the L1 norm.

When the prior probabilities of the hypotheses are equal: π0 = π1 = 1
2
, (A.4)

yields the proof of Lemma A.1. When π0 6= π1, we can lower-bound (A.4) using the

triangle inequality for the L1 norm:

P(w)
e ≥ 1

2
− 1

2
(‖π0p0(x)− π0p1(x)‖1 + ‖π0p1(x)− π1p1(x)‖1) (A.5)

=
1

2
− |π0 − π1|

2
− π0

2
‖p0(x)− p1(x)‖1 (A.6)

where (A.6) follows from the L1 norm of a probability density function evaluating to

one and π0 > 0. If π1 > π0, the following application of the triangle inequality yields

a tighter bound:
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P(w)
e ≥ 1

2
− 1

2
(‖π1p1(x)− π1p0(x)‖1 + ‖π1p0(x)− π0p0(x)‖1) (A.7)

=
1

2
− |π0 − π1|

2
− π1

2
‖p0(x)− p1(x)‖1 (A.8)

By Definition 4.1, 1
2
‖p0(x)− p1(x)‖1 = V (P0,P1). Since min(a, b) = a+b−|a−b|

2
, we can

combine (A.6) and (A.8) to yield

P(w)
e ≥ min(π0, π1)−max(π0, π1)V (P0,P1) (A.9)

which completes the proof.

Thus, while Lemma A.1 demonstrates that additional information about the like-

lihood of Alice transmitting (in the form of unequal prior probabilities π0 6= π1) helps

Willie, the square root law still holds via the bounds on the variational distance

V (P0,P1).

A.2 Mapping to a Continuous-time Channel

We employ a discrete-time model in Chapters 4 and 5. However, while this is

commonly assumed without loss of generality in standard communication theory, it

is important to consider whether we have missed some aspect of the covert commu-

nication problem by focusing on discrete time.

Consider the standard communication system model, where Alice’s (baseband)

continuous-time waveform is given in terms of her discrete time transmitted sequence

by:

x(t) =
n∑
i=1

fi p(t− iTs)

where Ts is the symbol period and p(·) is the pulse shaping waveform. Consider a

(baseband) system bandwidth constraint of W Hz. Now, if Alice chooses p(·) ideally
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as sinc(2Wt), where sinc(x) = sin(πx)
πx

, then the natural choice of Ts = 1/2W results in

no intersymbol interference (ISI). From the Nyquist sampling criterion, both Willie

(and Bob) can extract all of the information from the signaling band by sampling at

a rate of 2W samples/second, which then leads directly to the discrete-time model of

Sections 4.1 and 5.1, and suits our demonstration of the fundamental limits to Alice’s

covert communication capabilities over AWGN channels. However, when p(·) is cho-

sen in a more practical fashion, for example, as a raised cosine pulse with some excess

bandwidth, then sampling at a rate higher than 2W has utility for signal detection

even if the Nyquist ISI criterion is satisfied. In particular, techniques involving cyclo-

stationary detection are now applicable, and we consider such a scenario a promising

area for future work.

A.3 D(Pw‖Ps) in the Proof of Theorem 4.2.2 Meets the Con-

ditions of Lemmas 4.4 and 4.5

Here we show that the expression (4.10) for the relative entropy D(Pw‖Ps) be-

tween the distributions Pw and Ps of an observation on Willie’s channel from Alice

corresponding to Alice’s transmission state meets the regularity conditions of Tay-

lor’s theorem (Lemma 4.4) and Leibniz integral rule (Lemma 4.5). Specifically, we

need to show that D(Pw‖Ps) and its first six derivatives are continuous on [0,
√
b] and

integrable.

Re-arranging the terms of (4.10) results in the following expression:

D(Pw‖Ps) =
a2

2σ2
w

−
∫ ∞
−∞

e
− x2

2σ2w

√
2πσw

ln cosh

(
ax

σ2
w

)
dx (A.10)

where cosh(x) = ex+e−x

2
is the hyperbolic cosine function. Since a2

2σ2
w

is clearly continu-

ous and differentiable with respect to a, we focus on the integral in (A.10), specifically

on its integrand:
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K(x, a) =
e
− x2

2σ2w

√
2πσw

ln cosh

(
ax

σ2
w

)
(A.11)

Because of the peak power constraint, 0 ≤ a ≤
√
b. Also, ln cosh(x) ≤ |x| since

ln
(
ex+e−x

2

)
− |x| = ln

(
1+e−2|x|

2

)
≤ 0. Therefore, g(x) =

√
b|x|e

− x2

2σ2w√
2πσ3

w
≥ |K(x, a)|, in

other words, g(x) dominates K(x, a). g(x) is integrable since
∫∞
−∞ g(x)dx =

√
2b
πσ2

w
<

∞.

The derivatives of K(x, a) with respect to a can be written in the following form:

∂iK(x, a)

∂ai
=


e
− x2

2σ2w√
2πσw

xi

σ2i
w

tanh
(
ax
σ2
w

)∑(i−1)/2
k=1 ci,k sech2k

(
ax
σ2
w

)
, i odd

e
− x2

2σ2w√
2πσw

xi

σ2i
w

∑i/2
k=1 ci,k sech2k

(
ax
σ2
w

)
, i even

(A.12)

where sech(x) = 2
ex+e−x

and tanh(x) = ex−e−x
ex+e−x

are the hyperbolic secant and tangent

functions, respectively, ci,k are constants, and
∑0

k=1 ci,k = 1. The first six derivatives

of K(x, a) with respect to a are as follows:

∂K(x, a)

∂a
=

e
− x2

2σ2w

√
2πσw

x

σ2
w

tanh

(
ax

σ2
w

)
(A.13)

∂2K(x, a)

∂a2
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e
− x2

2σ2w

√
2πσw

x2

σ4
w

sech2

(
ax

σ2
w

)
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∂3K(x, a)
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√
2πσw

2x3
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∂4K(x, a)
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∂5K(x, a)
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2σ2w

√
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∂6K(x, a)

∂a6
=

e
− x2

2σ2w

√
2πσw

8x6
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w

(
15 sech6

(
ax
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w

)
− 15 sech4

(
ax
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w

)
+ 2 sech2

(
ax

σ2
w
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(A.18)
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Clearly, K(x, a) and its derivatives are continuous, satisfying conditions 1 and 2 of

Lemma 4.5. Since −1 ≤ tanh(x) ≤ 1 and 0 ≤ sech(x) ≤ 1 for all real x, we can use

the triangle inequality to show that
∣∣∣∂iK(x,a)

∂ai

∣∣∣ ≤ hi(x) where

hi(x) =
e
− x2

2σ2w

√
2πσw

|x|i

σ2i
w

bi/2c∑
k=1

|ci,k| (A.19)

with bxc denoting the largest integer y ≤ x. Therefore, the following relations show

dominating functions of the corresponding derivatives of K(x, a):

∣∣∣∣∂K(x, a)

∂a

∣∣∣∣ ≤ h1(x) =
e
− x2

2σ2w

√
2πσw

|x|
σ2
w

(A.20)

∣∣∣∣∂2K(x, a)

∂a2

∣∣∣∣ ≤ h2(x) =
e
− x2

2σ2w

√
2πσw

|x|2

σ4
w

(A.21)

∣∣∣∣∂3K(x, a)

∂a3

∣∣∣∣ ≤ h3(x) =
e
− x2

2σ2w

√
2πσw

2|x|3

σ6
w
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∣∣∣∣∂4K(x, a)
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∣∣∣∣ ≤ h4(x) =
e
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√
2πσw

10|x|4

σ8
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∣∣∣∣∂5K(x, a)

∂a5
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e
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√
2πσw
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∣∣∣∣∂6K(x, a)

∂a6

∣∣∣∣ ≤ h6(x) =
e
− x2

2σ2w

√
2πσw

256|x|6

σ12
w

(A.25)

Clearly, the above functions are integrable since they are found in the integrands of

the central absolute moments of the Gaussian distribution. Therefore, conditions 3

and 4 of Lemma 4.5 are met by the integrand of (4.10) and the integrand’s derivatives.

The use of Lemma 4.4 is conditional on the integrals over x of K(x, a) and its

derivatives in (A.12) being continuous on a ∈ [0,
√
b]. To prove the continuity of a

function f(x) on the interval [u, v], it is sufficient to show that limx→x0 f(x) = f(x0)

for all x0 ∈ [u, v]. We prove that
∫∞
−∞K(x, a)dx is continuous as follows:
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lim
a→a0

∫ ∞
−∞

K(x, a)dx =

∫ ∞
−∞

lim
a→a0

K(x, a)dx =

∫ ∞
−∞

K(x, a0)dx (A.26)

where the first equality is because of the application of the dominated convergence

theorem, which is valid since we provide the function g(x) above that dominates

K(x, a) and is integrable, and the second equality is because of the continuity of

K(x, a). Similar steps can be used to prove the continuity of the integrals of the

derivatives of K(x, a), with the ultimate result being the satisfaction of the continuity

condition of Lemma 4.4.

A.4 Size of Secret for Covert Communication over AWGN

Channels is O(
√
n log n) Bits

Here we demonstrate how Alice and Bob can construct a binary coding scheme

for covert communication over the AWGN channel described in Chapter 4 that, on

average, requires an O(
√
n log n)-bit secret. Figure A.1 depicts the construction and

operation of this scheme.

The scheme is constructed in two stages. First, Alice and Bob randomly select

the symbol periods that they will use for their transmission by flipping a biased coin

n times, with probability of heads τ to be assigned later. The ith symbol period

is selected if the ith flip is heads. Denote the number of selected symbol periods

by ns and note that E [ns] = τn. Alice and Bob then use the best public binary

codebook with codewords of length ns on these selected ns symbol periods. They

also generate and share a random binary vector k where pK(k) =
∏ns

i=1 pK(ki) with

pK(0) = pK(1) = 1
2
. Alice XORs k and the binary representation of the codeword

c(Wk). The symbol location selection is independent of both the symbol and the

channel noise. When Alice is transmitting a codeword, the distribution of each of

Willie’s observations is Ps = (1− τ)N (0, σ2
w) + τ

2
(N (−a, σ2

w) +N (a, σ2
w)) and, thus,
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Figure A.1: Design of a covert communication system that allows Alice and Bob to
use any error-correction codes (including those known to Willie) to reliably transmit
O(
√
n) covert bits using O(

√
n log n) pre-shared secret bits. Step 1 (a) effectively

constructs a frequency/time-hopping pattern, as m symbol periods are selected to be
used in the transmission by flipping biased random coin n times, with probability of
heads O(

√
n): the ith symbol period is chosen if the ith flip is heads. On average,

O(
√
n) symbol periods is selected . Bob simply ignores the discarded symbol periods,

however, Willie cannot do so and thus observes mostly noise. Furthermore, XORing
by vector k prevents Willie’s exploitation of the error correction code’s structure to
detect Alice (rather than protects the message content). Note that in Chapter 7 the
extension of this scheme to Q-ary pulse-position modulation is implemented on an
optical testbed.
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D(Pw‖Ps) =

∫ ∞
−∞

e
− x2

2σ2w

√
2πσw

ln
e
− x2

2σ2w /
√

2πσw

(1−τ)e
− x2

2σ2w√
2πσw

+ τ
2

(
e
− (x+a)2

2σ2w√
2πσw

+ e
− (x−a)2

2σ2w√
2πσw

)dx (A.27)

There is no closed-form expression for (A.27), but we can upper-bound it using Lemma

4.4. The Taylor series expansion with respect to a around a = 0 can be done using

Lemma 4.5, with conditions for Lemmas 4.4 and 4.5 proven similarly as in Theorem

4.2.2. This yields the following bound:

V (Pnw,Pns ) ≤ τa2

2σ2
w

√
n

2
(A.28)

The only difference in (A.28) from (4.12) is τ in the numerator. Thus, if Alice sets the

product τa2 ≤ cf(n)√
n

, with c and f(n) as previously defined, she limits the performance

of Willie’s detector. This product is the average symbol power used by Alice. Now

fix a and set τ = O(1/
√
n). Since, on average, τn symbol periods are selected, it

takes (again, on average) O(
√
n) positive integers to enumerate the selected symbols.

There are n total symbols, and, thus, it takes at most log(n) bits to represent each

selected symbol location and O(
√
n log n) bits to represent all the locations of selected

symbols. Also, the average length of the secret binary vector k is O(
√
n) bits. Thus,

on average, Alice and Bob need to share O(
√
n log n) secret bits for Alice to reliably

transmit O(
√
n) covert bits in n channel uses employing this coding scheme.

A.5 Derivation of (5.24)

The normalized sums 1√
V (n)

∑T (n)
t=1,t6=tA (Ut −M(n)) and 1√

V (n)

∑T (n)−1
t=1 (Ut −M(n))

in the events Eg(S(n), δ) and El(S(n), δ) are identically distributed. Thus, we denote

both of them by Z(n), and the distribution function of Z(n) by FZ(n)(z). Then (5.23)

can be re-written as follows:
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P(EC(S(n), δ)) =
1− FZ(n)(S(n) + δ) + FZ(n)(S(n)− δ)

2
. (A.29)

Denote the standard Gaussian distribution function by Φ(z) =
∫ z
−∞ φ(t)dt where

φ(t) = e−t
2/2
√

2π
is the standard Gaussian density function. The convergence of FZ(n)(z)

to Φ(z) as provided by the CLT for the triangular arrays in [9, Th. 27.2] is pointwise

in the argument z, and, since S(n) is the nth value in an arbitrary sequence, we cannot

use this result directly.

-� . . .. . .
0

← Region 1 Region 3 →Region 2

G HG−δ G+δ H−δ H+δ

S(n)+δS(n)S(n)−δ

xk xk + 3δ

Figure A.2: The real number line partitioned into three regions for the analysis
of P(EC(S(n), δ)). G, H and δ are the constants that we select. S(n) satisfying
G ≤ S(n) ≤ H is illustrated.

However, let’s choose finite constants G < 0 and H > 0, and partition the real

number line into three regions as shown in Figure A.2. Clearly, for any n, S(n) is in

one of these regions. Next we demonstrate that (5.24) holds for an arbitrary S(n) by

appropriately selecting G, H, and δ.

Consider S(n) < G, or region 1 in Figure A.2:

P(EC(S(n), δ)) ≥ 1

2

(
1− FZ(n)(S(n) + δ)

)
(A.30)

≥ 1

2

(
1− FZ(n)(G+ δ)

)
. (A.31)

Because the convergence of FZ(n)(z) to Φ(z) is pointwise, given δ, ε, and G =

Φ−1(ε/3)− δ, there exists n2 such that, for all n ≥ n2,

P(EC(S(n), δ)) ≥ 1

2

(
1− Φ(G+ δ)− ε

3

)
=

1

2
− ε

3
(A.32)
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when S(n) < G. Similarly for S(n) > H, or region 3 in Figure A.2:

P(EC(S(n), δ)) ≥ 1

2
FZ(n)(S(n)− δ) (A.33)

≥ 1

2
FZ(n)(H + δ). (A.34)

Again, because the convergence of FZ(n)(z) to Φ(z) is pointwise, given δ, ε, and

H = Φ−1(1− ε/3) + δ, there exists n3 such that, for all n ≥ n3,

P(EC(S(n), δ)) ≥ 1

2

(
Φ(H + δ)− ε

3

)
=

1

2
− ε

3
(A.35)

when S(n) > H.

Finally, consider S(n) satisfying G ≤ S(n) ≤ H, or region 2 in Figure A.2).

Let’s assume that H and G are selected so that H − G is an integer multiple of

δ (e.g., using larger H than necessary, which results in the RHS of (A.35) being

smaller). Consider a sequence (xk)
(H−G)/δ+2
k=0 where x0 = G− δ, x1 = G, x2 = G + δ,

x3 = G + 2δ, . . . , x(H−G)/δ = H − δ, x(H−G)/δ+1 = H, x(H−G)/δ+2 = H + δ. Sequence

(xk)
(H−G)/δ+2
k=0 partitions region 2 into H−G

δ
+2 subregions, and, for any S(n) satisfying

G ≤ S(n) ≤ H, there exists k ∈
{

0, . . . , H−G
δ

+ 2
}

such that xk ≤ S(n) − δ <

S(n)+δ ≤ xk+3δ, as illustrated in Figure A.2. Therefore, since FZ(n)(z) is monotonic,

P(EC(S(n), δ)) ≥
1− FZ(n)(xk + 3δ) + FZ(n)(xk)

2
. (A.36)

Since the convergence of FZ(n)(z) to Φ(z) is pointwise, for a given xk, δ, and ε, there

exists mk such that for all n ≥ mk,

P(EC(S(n), δ)) ≥
1−

(
Φ(xk + 3δ) + ε

6

)
+
(
Φ(xk)− ε

6

)
2

=
1

2

(
1−

∫ xk+3δ

xk

φ(t)dt− ε

3

)
(A.37)

≥ 1

2
− 3δ

2
√

2π
− ε

6
(A.38)
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where (A.38) follows from φ(t) ≤ 1√
2π

. Setting δ = ε
√

2π
9

and n4 = max{0,...,H−G
δ }(mk)

yields the desired lower bound for all n ≥ n4 when S(n) satisfies G ≤ S(n) ≤ H.

Therefore, for an arbitrary S(n) when n ≥ n0 where n0 = max(n2, n3, n4),

P

(
EC

(
S(n),

ε
√

2π

9

))
≥ 1

2
− ε

3
. (A.39)
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APPENDIX B

QUANTUM COMMUNICATION AND INFORMATION
THEORY PRELIMINARIES

This appendix provides a brief background on quantum mechanics, quantum op-

tics, and quantum information theory that will be useful in reading this thesis.

B.1 Quantum Mechanics: States, Evolution, and Measure-

ment1

While the foundations of quantum mechanics date to the early 1800s, the modern

discipline began with Max Planck’s work in the early 1900s. Max Planck discovered

that the energy of electromagnetic waves must be described as consisting of small

packets of energy or “quanta” in order to explain the spectrum of black-body ra-

diation. He postulated that a radiating body consisted of an enormous number of

elementary electronic oscillators, some vibrating at one frequency and some at an-

other, with all frequencies from zero to infinity being represented. The energy E of

any one oscillator was not permitted to take on any arbitrary value, but was pro-

portional to an integer multiple of the frequency f of the oscillator, i.e., E = hf ,

where h = 6.626× 10−34 Joule seconds is the Planck’s constant. In 1905, Albert Ein-

stein used Planck’s constant to explain the photoelectric effect by postulating that

the energy in a beam of light occurs in concentrations that he called “light quanta,”

which later became known as photons. This led to a theory that established a duality

1The content of this section was adapted from [38, Appendix A.1] with permission of the author.
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between subatomic particles and electromagnetic waves in which particles and waves

were neither one nor the other, but had certain properties of both.

The acceptance of quantum mechanics2 by the general physics community stems

from its accurate prediction of the physical behavior of systems, particularly of sys-

tems showing previously unexplained phenomena in which Newtonian mechanics fails,

such as the black body radiation, photoelectric effect, and stable electron orbits. Most

of classical physics is now recognized to be composed of special cases of quantum

mechanics and/or relativity theory. Paul Dirac brought relativity theory to bear on

quantum physics so that it could properly deal with events that occur at a substantial

fraction of the speed of light. Classical physics, however, also deals with gravitational

forces, and no one has yet been able to bring gravity into a unified theory with the

relativized quantum theory.

Here we provide a very brief account of the mathematical formulation of quantum

mechanics that serves as a background for the material in Chapter 6 of this thesis.

The detailed study of quantum mechanics is available in many popular texts on the

subject, such as [37] and [72].

B.1.1 Pure and Mixed States

A pure state in quantum mechanics is the entirety of information that can be

known about a physical system. Mathematically, a pure state is a unit length vector

|ψ〉 (known as a ket in Dirac notation) that lives in a complex Hilbert space H of

possible states for that system. Expressed in terms of a set of complete basis vectors

{|φn〉} ∈ H, |ψ〉 =
∑

n cn|φn〉 becomes a column vector of (a possibly infinite) set

of complex numbers cn, where
∑

n |cn|2 = 1. With each pure state |ψ〉 we associate

its Hermitian conjugate vector (known as a bra) 〈ψ|, which is a row vector when

expressed in a basis of H. The simplest example of a pure state is the state of a two-

2The term “quantum mechanics” was coined by Max Born in 1924.
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level system known as a qubit, which is the fundamental unit of quantum information,

in analogy with a bit of classical information. A qubit lives in the two-dimensional

complex vector space C2 spanned by two orthonormal vectors |0〉 and |1〉, and can be

expressed as |ψ〉 = α|0〉+ β|1〉, where α, β ∈ C, and |α|2 + |β|2 = 1.

A mixed state in quantum mechanics represents classical (statistical) uncertainty

about a physical system. Mathematically, a mixed state is represented by a density

matrix (or a density operator) ρ̂, which is a positive definite, unit-trace operator in

H. The canonical form of a density matrix is

ρ̂ =
∑
k

pk|ψk〉〈ψk| (B.1)

for any collection of pure states {|ψk〉}, and
∑

k pk = 1. The mixed state ρ̂ can be

thought of as a statistical mixture of pure states |ψk〉, where the projection |ψk〉〈ψk|

is the density operator for the pure state |ψk〉, though it is worth pointing out that

the decomposition of a mixed state ρ̂ as a mixture of pure states (B.1) is by no means

unique. A positive definite operator ρ̂ has a spectral decomposition ρ̂ =
∑

i λi|λi〉〈λi|

in terms of the eigenkets |λi〉, with the unit-trace condition on ρ̂ requiring that the

eigenvalues λi form a probability distribution.

B.1.2 Composite Quantum Systems

We shall henceforth use symbols such as A,B,C to refer to quantum systems,

with HA referring to the Hilbert space whose unit vectors are the pure states of the

quantum system A. Given two systems A and B, the pure states of the composite

system AB correspond to unit vectors in HAB ≡ HA ⊗HB. We use superscripts on

pure state vectors and density matrices to identify the quantum system with which

they are associated. For a multipartite density matrix ρ̂ABC , we use the notation

ρ̂AB = TrC{ρ̂ABC} ≡
∑

n
C〈φn|ρ̂ABC |φn〉C to denote the partial trace over one of the

constituent quantum systems.
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Let
{
|φm〉A

}
and

{
|φn〉B

}
represent sets of basis vectors for the state spaces HA

and HB of quantum systems A and B respectively. Pure states |ψ〉AB and mixed

states ρ̂AB of the composite system AB are defined similarly with an underlying set

of basis vectors |φmn〉AB , |φm〉A ⊗ |φn〉B ∈ HAB, viz.,

|ψ〉AB =
∑
mn

cmn|φmn〉AB, with
∑
mn

|cmn|2 = 1, and (B.2)

ρ̂AB =
∑
k

pk|ψk〉ABAB〈ψk|, with pk ≥ 0,
∑
k

pk = 1, (B.3)

for pure states |ψk〉AB ∈ HAB.

A pure state |ψ〉AB ∈ HAB of a composite system AB can be classified into:

1. A product state: when |ψ〉AB can be decomposed into a tensor product of two

pure states in A and B, i.e., |ψ〉AB = |ψ〉A ⊗ |ψ〉B.

2. An entangled state: when |ψ〉AB cannot be expressed as a tensor product of two

pure states in A and B (for instance, the state (|0〉|0〉 + |1〉|1〉)/
√

2 is a pure

entangled state of a two-qubit system).3

A mixed state ρ̂AB ∈ B(HAB) of a composite system4 AB can be classified into:

1. A product state: when ρ̂AB can be decomposed into a tensor product of two

states in A and B, i.e. ρ̂AB = ρ̂A ⊗ ρ̂B, with at least one of ρ̂A or ρ̂B being a

mixed state.

2. A classically-correlated state: when ρ̂AB is not a product state, but nevertheless

can be expressed as a statistical mixture of product pure states of the systems

3Entanglement is inherently a quantum-mechanical property of composite physical systems and
is stronger than any probabilistic correlation between the constituent systems that classical physics
permits. The individual states of the systems A and B, when their joint state |ψ〉AB is pure and
entangled, are mixed states, which are obtained by taking a partial trace over the other system, i.e.,
ρ̂A = TrB{ρ̂AB} = TrB{|ψ〉ABAB〈ψ|} ≡

∑
n

B〈φn|ρ̂AB |φn〉B , and vice versa.

4B(H) is the set of all bounded operators in H.
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A and B, i.e. ρ̂AB =
∑

k pk(|αk〉A ⊗ |βk〉B)(A〈αk| ⊗ B〈βk|) for any set of pure

states |αk〉 ∈ HA and |βk〉 ∈ HB, with pk ≥ 0 and
∑

k pk = 1.

3. An entangled state: when ρ̂AB is a mixed state of the composite system AB

which is neither a product state nor a classically-correlated state, i.e., the joint

state of the composite system has a correlation between the systems A and B,

which is stronger than any (classical) probabilistic correlation. For instance,

consider equal mixtures of the Bell states |α〉 = (|0〉|0〉+ |1〉|1〉)/
√

2 and |β〉 =

(|1〉|0〉 + |0〉|1〉)/
√

2. This is a mixed entangled state, (|α〉〈α| + |β〉〈β|)/2, of a

two-qubit system.5

B.1.3 Evolution

The time evolution of a closed system is defined in terms of the unitary time-

evolution operator Û(t, t0) = exp(−iĤ(t − t0)/~), where Ĥ is the time-independent

Hamiltonian of the closed system. The evolution of the system when it is in a pure

state |ψ(t0)〉 at time t0, and when it is in a mixed state ρ̂(t0) at time t0 are respectively

given by:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉, and (B.4)

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0). (B.5)

The time evolution of a general open system, i.e., a system that interacts with an

environment, is not unitary. While the joint state of the system and the environment

is a closed system and hence follows a unitary evolution,6 the evolution of the state of

5We reiterate that if a mixed state ρ̂AB is not decomposable into a tensor product of mixed
states, i.e. ρ̂AB 6= ρ̂A⊗ ρ̂B , the joint state ρ̂AB is NOT necessarily entangled, and it could just have
classical correlations between the two constituent systems.

6We use a unitary transformation describing the beamsplitter model of the optical channel to
prove Lemma 6.1 in Appendix C.1. However, in that particular case, the derivation of the expression
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the system alone is non-unitary and is represented by a trace-preserving, completely-

positive (TPCP) map. A TPCP map E takes density operator ρ̂in ∈ B(Hin) to density

operator ρ̂out ∈ B(Hout), and satisfies the following properties:

1. E preserves the trace, i.e., Tr{E(ρ̂)} = 1 for any ρ̂in ∈ B(Hin).

2. E is a convex linear map on the set of density operators ρ̂in ∈ B(Hin), i.e.

E(
∑

k pkρ̂k) =
∑

k pkE(ρ̂k) for any probability distribution {pk}.

3. E is a completely positive map. This means that E maps positive operators in

B(Hin) to positive operators on B(Hout), and, for any reference system R and

for any positive operator ρ̂ ∈ B(Hin ⊗ R), we have that (E ⊗ IR)ρ̂ ≥ 0, where

ÎR is the identity operator on R.

It can be shown that any TPCP map can be expressed in an operator sum representa-

tion [69], E(ρ̂) =
∑

k Âkρ̂Â
†
k, where the Kraus operators Ak must satisfy

∑
k Â
†
kÂk = Î

in order to preserve the trace of E(ρ̂).

B.1.4 Observables and Measurement

In quantum mechanics, each dynamical observable (for instance position, momen-

tum, energy, angular momentum, etc.) is represented by a Hermitian operator M̂ .

Being a Hermitian operator, M̂ must have a complete orthonormal set of eigenvec-

tors {|φm〉} with associated real eigenvalues φm that satisfy M̂ |φm〉 = φm|φm〉. The

outcome of a measurement of M̂ on a quantum state ρ̂ always leads to an eigenvalue

φn with probability p(n) = 〈φn|ρ̂|φn〉. Given that the measurement result obtained is

φn, the post-measurement state of the system is the eigenstate |φn〉 corresponding to

the eigenvalue φn. This phenomenon is known as the “collapse” of the wave function.

Thus, if the system is in an eigenstate of a measurement operator M̂ to begin with,

for the output state of the beamsplitter is relatively simple since the environment port is in a vacuum
state; the derivation is substantially more complicated for a non-vacuum environment.
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the measurement result is known with certainty and the measurement of M̂ does not

alter the state of the system. The Hermitian operator Ĥ corresponding to measuring

the total energy of a closed quantum system is known as the Hamiltonian for the

system. The measurement of an observable as described above is also known as a

projective measurement, as the measurement projects the state onto an eigenspace of

the measurement operator.

In analogy to the evolution of an open system described above, a more general

measurement on a system entails a projective measurement performed on the joint

state of the system in question along with an auxiliary environment prepared in some

initial state. This general measurement scheme can be described by a set of positive

semi-definite operators
{

Π̂m

}
that satisfy

∑
m Π̂m = Î. If a measurement is per-

formed on a quantum state ρ̂, the outcome of the measurement is n with probability

p(n) = Tr{ρ̂Π̂n}. The above description of a quantum measurement is known as the

positive operator-valued measure (POVM) formalism and the operators
{

Π̂m

}
are

known as POVM operators. The POVM operators by themselves do not determine a

post-measurement state. POVM formalism is crucial to quantum hypothesis testing

which is why we use it extensively in Chapter 6.

B.2 Trace Distance and Quantum Binary Hypothesis Testing

Willie has to perform a quantum binary hypothesis test to determine whether Alice

is transmitting. Here we develop the trace distance lower bound on the probability

of error in discriminating between two quantum states ρ̂0 and ρ̂1, which we use in the

proof of Theorem 6.3.1. We prove the quantum analog of Lemma A.1, thus arguing

that the assumption of a non-trivial prior distribution on Alice’s transmission state

does not impact our asymptotic results.

First, the trace distance between two quantum states is defined as follows:
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Definition B.1 (Trace distance [88]). The trace distance between two density oper-

ators σ̂ and ρ̂ is

‖σ̂ − ρ̂‖1 = Tr{
√

(σ̂ − ρ̂)†(σ̂ − ρ̂)}. (B.6)

Trace distance relates to the probability of successful discrimination between two

quantum states via the following lemma:

Lemma B.1. One half of the trace distance 1
2
‖ρ̂− σ̂‖1 between quantum states ρ̂ and

σ̂ is equal to the largest probability difference that two states ρ̂ and σ̂ could give to the

outcome of the same measurement given by the positive semi-definite operator Λ̂ with

eigenvalues upper-bounded by one:

1

2
‖ρ̂− σ̂‖1 = max

0≤Λ̂≤Î
Tr {Λ (ρ̂− σ̂)} . (B.7)

Proof. See [88, Lemma 9.1.1].

Denote by ρ̂0 and ρ̂1 the respective quantum states that Willie observes on his

channel from Alice when she does not transmit and transmits. Willie constructs a

binary POVM {Λ̂0, Λ̂1} to discriminate between these states. Suppose that Willie

knows that Alice will not transmit (i.e., H0 is true) with probability π0 and that she

will transmit (i.e., H1 is true) with probability π1 = 1− π0. Thus, π0 and π1 denote

the prior probabilities of states ρ̂0 and ρ̂1, respectively, and the probability of error

in discriminating between ρ̂0 and ρ̂1 is

P(w)
e = π0 Tr{Λ̂1ρ̂0}+ π1 Tr{Λ̂0ρ̂1}. (B.8)

The following lemma generalizes the result for π0 = π1 = 1
2

given in [88, Section 9.1.4]

to π0 6= π1:
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Lemma B.2 (Quantum version of Lemma A.1).

P(w)
e ≥ min(π0, π1)− max(π0, π1)

2
‖ρ̂0 − ρ̂1‖1. (B.9)

Proof. First, suppose that π0 ≤ π1. Since {Λ̂0, Λ̂1} is a POVM, Λ̂0 + Λ̂1 = Î. Substi-

tuting Λ̂1 = Î − Λ̂0 in (B.8) and re-arranging the terms, we obtain

P(w)
e = π0 Tr{ρ̂0} − π0 Tr{Λ̂0ρ̂0}+ π1 Tr{Λ̂0ρ̂1} (B.10)

= π0 − Tr{Λ̂0(π0ρ̂0 − π1ρ̂1)}, (B.11)

where (B.11) is because the eigenvalues of a density operator sum to one. When

the prior probabilities of the hypotheses are equal: π0 = π1 = 1
2
, an application of

Lemma B.1 yields the lower bound P(w)
e ≥ 1

2
− 1

4
‖ρ̂0 − ρ̂1‖1. Now,

P(w)
e = π0 − Tr{Λ̂0(π0ρ̂0 − π1ρ̂1 + π1ρ̂0 − π1ρ̂0)} (B.12)

= π0 − π1 Tr{Λ̂0(ρ̂0 − ρ̂1)}+ (π1 − π0) Tr{Λ̂0ρ̂0} (B.13)

≥ π0 − π1 Tr{Λ̂0(ρ̂0 − ρ̂1)} (B.14)

≥ π0 −
π1

2
‖ρ̂0 − ρ̂1‖1, (B.15)

where (B.14) follows since π0 ≤ π1 and Tr{Λ̂0ρ̂0} ≥ 0, and (B.15) follows by Lemma B.1.

When π1 ≤ π0, the same steps are used with substitution of Λ̂0 = Î − Λ̂1 in (B.8)

instead of Λ̂1 = Î − Λ̂0, and replacement of π1ρ̂0 − π1ρ̂0 with π0ρ̂1 − π0ρ̂1 inside the

trace operator in (B.12). This yields

P(w)
e ≥ π1 −

π0

2
‖ρ̂0 − ρ̂1‖1, (B.16)

and the lemma.
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Thus, while Lemma B.2 demonstrates that additional information about the like-

lihood of Alice transmitting (in the form of unequal prior probabilities π0 6= π1) helps

Willie, the square root law still holds via the bounds on the trace distance ‖ρ̂0− ρ̂1‖1.

B.3 Quantum Entropy and Information Measures7

Amongst various measures of how mixed is a quantum state ρ̂, the most relevant

one information-theoretically is the von Neumann entropy S(ρ̂), which is defined as

S(ρ̂) = −Tr{ρ̂ ln ρ̂} (B.17)

= H({λn}), (B.18)

where H({λn}) ≡ −
∑

n λn lnλn is the Shannon entropy of the eigenvalues λn of

ρ̂. Hence, it is obvious that the von Neumann entropy of a pure state is zero, i.e.,

S(|ψ〉〈ψ|) = 0. Most of quantum information theory is built around the von Neumann

entropy measure of a quantum state. We now review a few important properties of

von Neumann entropy.

B.3.1 Data Compression

In analogy with the role that Shannon entropy plays in classical information the-

ory, it can be shown that S(ρ̂A) is the optimal compression rate on the quantum

system A in the state ρ̂A ∈ B(HA). In other words, for large n, the density matrix

ρ̂A⊗n has nearly all of its support on a subspace of H⊗nA (called the typical subspace)

of dimension 2nS(ρ̂A). We will henceforth use the notation S(A) interchangeably with

S(ρ̂A) to mean von Neumann entropy of the system A (or the von Neumann entropy

of the state ρ̂A). If A is a classical random variable, we use the function H(A) to

denote the Shannon entropy of A.

7The content of this section was adapted from [38, Appendix A.2] with permission of the author.
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B.3.2 Subadditivity

The joint entropy S(A,B) of a bipartite system AB is always upper bounded by

the sum of the entropies of the individual systems A and B, i.e.,

S(A,B) ≤ S(A) + S(B), (B.19)

with equality when the joint state of AB is a product state, i.e., ρ̂AB = ρ̂A ⊗ ρ̂B. We

use the subadditivity of von Neumann entropy in the proof of Theorem 6.5.1.

B.3.3 Joint and Conditional Entropy

The entropy of a bipartite system AB in a joint state ρ̂AB is defined as S(A,B) =

−Tr{ρ̂AB ln ρ̂AB}. Even though there is no direct definition of quantum condi-

tional entropy as in classical information theory, one may define a conditional en-

tropy (in analogy to its classical counterpart) as S(A|B) = S(A,B) − S(B). The

quantum conditional entropy can be negative, contrary to its classical counterpart.8

However, like its classical counterpart, conditioning can only reduce entropy, i.e.,

S(A|B,C) ≤ S(A|B). Discarding a quantum system can never increase quantum

mutual information (see Section B.3.5, i.e., I(A;B) ≤ I(A;B,C).

B.3.4 Classical-quantum States

Here we define the notion of classical-quantum states and classical-quantum chan-

nels. We associate any classical set X with a Hilbert space HX having orthonormal

basis
{
|x〉X

}
x∈X . Thus, for any classical random variable X which takes the values

x ∈ X with probability p(x), we can write a density matrix

8For the bipartite two-qubit Bell state |ψ〉AB = (|00〉+ |11〉)/
√

2, S(A|B) = S(A,B)− S(B) =
0− 1 = −1. The joint state of the system AB is a pure state, hence S(A,B) = 0, whereas the state
of system B, ρ̂B = TrA{ρ̂AB} = (|0〉〈0|+ |1〉〈1|)/2 is a mixed state with entropy S(B) = 1.
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ρ̂X =
∑
x

p(x)|x〉〈x|X ≡
⊕
x

p(x) (B.20)

which is diagonal in the orthonormal basis
{
|x〉X

}
x∈X . Similarly, an ensemble of

quantum states
{
ρ̂Bx , p(x)

}
can be associated with a block diagonal classical-quantum

(cq) state for the system XB:

ρ̂XB =
∑
x

p(x)|x〉〈x|X ⊗ ρ̂Bx ≡
⊕
x

p(x)ρ̂Bx , (B.21)

where X is a classical random variable and B is a quantum system with conditional

density matrices ρ̂Bx . The conditional entropy S(B|X) is then

S(B|X) =
∑
x

p(x)S(ρ̂Bx ). (B.22)

B.3.5 Quantum Mutual Information

The quantum mutual information I(A;B) of a bipartite system AB is defined

analogously to Shannon mutual information as:

I(A;B) = S(A) + S(B)− S(A,B) (B.23)

= S(A)− S(A|B) (B.24)

= S(B)− S(B|A). (B.25)

A bipartite product mixed state ρ̂A⊗ ρ̂B has zero quantum mutual information. The

quantum mutual information of a cq-state (B.21) is given by

I(X;B) = S(B)− S(B|X) (B.26)

= S

(∑
x

p(x)ρ̂Bx

)
−
∑
x

p(x)S(ρ̂Bx ) (B.27)

, χ
(
p(x), ρ̂Bx

)
, (B.28)
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where χ
(
p(x), ρ̂Bx

)
is defined as the Holevo information of the ensemble of states{

p(x), ρ̂Bx
}

.

B.3.6 The Holevo Bound

Suppose Alice chooses a classical message index x ∈ X with probability p(x) and

encodes x by preparing a quantum state ρ̂Ax . She sends her state to Bob through a

channel E , which then produces a state ρ̂Bx = E(ρ̂Ax ) at Bob’s end, conditioned on the

classical index x. In order to obtain information about x, Bob measures his state ρ̂Bx

using a POVM
{

Π̂y

}
. The probability that the outcome of his POVM measurement

is y given that Alice sent x is p(y|x) = Tr{ρ̂Bx Π̂y}. Using X and Y to denote the

random variables of which x and y are instances, we know from Shannon information

theory that, when Bob uses the POVM
{

Π̂y

}
, the maximum rate at which Alice can

transmit information to Bob using a suitable encoding and decoding scheme is given

by the maximum of the mutual information I(X;Y ) over all input distributions p(x).

Holevo, Schumacher and Westmoreland showed [43, 40, 73] that for a given prior p(x)

and POVM
{

Π̂y

}
, the single-use Holevo information is an upper bound on Shannon

mutual information,

I(X;Y ) ≤ χ
(
p(x), ρ̂Bx

)
, (B.29)

which is known as the Holevo bound. Maximizing over p(x) on both sides, one obtains

max
p(x)

I(X;Y ) ≤ max
p(x)

χ
(
p(x), E(ρ̂Ax )

)
. (B.30)

As the right-hand side does not depend on the choice of the POVM elements
{

Π̂y

}
,

the inequality is preserved by a further maximization of the left hand side over the

measurements,
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max
p(x),{Π̂y}

I(X;Y ) ≤ max
p(x)

χ
(
p(x), E(ρ̂Ax )

)
, or (B.31)

C1,1(E) ≤ C1,∞(E), (B.32)

where C1,1(E) is the maximum value of the Shannon Information I(X;Y ) optimized

over all possible symbol-by-symbol POVM measurements
{

Π̂y

}
. C1,∞(E) on the other

hand, is the maximum value of the Shannon Information I(X;Y ) optimized not only

over all possible symbol-by-symbol POVM measurements, but also over arbitrary

multiple-channel-use POVM measurements. As we see below, C1,∞(E) is the capacity

of the channel E for transmission of classical information if Alice is limited to single

channel uses (i.e., symbols ρ̂Ax ) and Bob may choose any joint measurement at the

receiver.

B.3.7 Ultimate Classical Communication Capacity: the HSW Theorem

The classical capacity of a quantum channel is established by random coding

arguments akin to those employed in classical information theory. A set of symbols

{j} is represented by a collection of input states {ρ̂j} that are selected according to

some prior distribution {pj}. The output states {ρ̂′j} are obtained by applying the

channel’s TPCP map E(·) to these input symbols. According to the HSW Theorem,

the capacity of this channel, in nats per use, is

C = sup
n

(Cn,∞/n) = sup
n
{max
{pj ,ρ̂j}

[χ(pj, E⊗n(ρ̂j))/n]}, (B.33)

where Cn,∞ is the capacity achieved when coding is performed over n-channel-use

symbols and arbitrary joint-detection measurement is used at the receiver. The supre-

mum over n is necessitated by the fact that channel capacity may be superadditive,

viz., Cn,∞ > nC1,∞ is possible for quantum channels, whereas such is not the case for

classical channels. The HSW Theorem tells us that Holevo information plays the role
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for classical information transmission over a quantum channel that Shannon mutual

information does for a classical channel.

Neither (B.28) nor (B.33) have any explicit dependence on the quantum mea-

surement used at the receiver, thus, measurement optimization is implicit within

the HSW Theorem. To obtain the same capacity C by maximizing Shannon mu-

tual information we can introduce a positive-operator-valued measure (POVM) [69],

representing the multi-symbol quantum measurement (a joint measurement over an

entire codeword) performed at the receiver. For example, if single-use encoding is per-

formed with priors {pj}, the probability of receiving a particular m-symbol codeword,

k ≡ (k1, k1, . . . , km), given that j ≡ (j1, j2, . . . , jm) was sent is

Pr( k | j ) ≡ Tr

{
Π̂k

[
m⊗
l=1

E(ρ̂jl)

]}
, (B.34)

where the POVM, {Π̂k}, is a set of Hermitian operators on the Hilbert space of

output states for m channel uses that resolve the identity (i.e.,
∑

k Π̂k = Î). From

{ pj,Pr( k | j )} we can then write down Shannon mutual information for single-

use encoding and m-symbol codewords that must be maximized. Ultimately, by

allowing for n-channel-use symbols and optimizing over the priors, the signal states,

and the POVM, we would arrive at the capacity predicted by the HSW Theorem.

Evidently, determining capacity is easier via the HSW Theorem than it is via Shannon

mutual information, because one less optimization is required. However, finding a

practical system that can approach capacity requires paying attention to the receiver

measurement.

B.4 Basic Description of Optical Modes

An optical mode is an optical field function that couples an input at the trans-

mitter with an output at the receiver. To define the number of optical modes n
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available to Alice and Bob more formally, consider a free-space L meter line-of-sight

optical channel with areas of transmitter and receiver apertures At and Ar, respec-

tively. Let’s assume quasi-monochromatic transmission at center-wavelength λ. The

free-space Fresnel number product of this channel is Df = AtAr
(λL)2

. When Df � 1, the

channel is in the far-field regime, and only one spatial mode—the spatial optical field

function at the transmitter aperture—can couple any appreciable fraction of power

into the receiver aperture. In this case, the transmitter-to-receiver power transmis-

sivity η ≈ Df . On the other hand, when Df � 1, the channel is in the near-field

regime, and there are approximately Df mutually-orthogonal transmitter-receiver

spatial modes, with each having near-unit receiver-to-transmitter power transmissiv-

ity. These spatial modes are analogous to parallel channels.

Suppose the transmitter employs M orthogonal spatial modes with transmissiv-

ities η1, η2, . . . , ηM . Now consider a time-bandwidth product K = WT , where T is

the length of the total transmission window (in seconds), and W is the total fre-

quency bandwidth (in Hz and determined by bandwidths of the transmitter and the

receiver). Thus, there are K mutually-orthogonal temporal modes that can be accom-

modated within that time-bandwidth product. A burst of communication that uses

K temporal modes on each of M spatial modes transmits using n = MK = MWT

spatio-temporal modes. Furthermore, both orthogonal polarizations of light can be

used to increase the total to n = 2MWT spatio-temporal-polarization modes.

Typically, single-mode fiber is used in commercial applications. A single-mode L

meter fiber link supports communication using a single spatial mode (M = 1) with

power transmissivity η = e−αL, where α denotes the fiber’s loss coefficient. In that

case n = 2WT , assuming the fiber can transmit both polarizations.
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APPENDIX C

QUANTUM COVERT COMMUNICATION
MISCELLANEA

C.1 Proof of Lemma 6.1

A beamsplitter can be described as a unitary transformation UBS from the two

input modes (Alice’s and the environment’s ports) to the two output modes (Bob’s

and Willie’s ports). Given a Fock state input |t〉A on Alice’s port and vacuum input

|0〉E on the environment’s port, the output at Bob’s and Willie’s ports is described

as follows [13, Section IV.D]:

UBS |t〉A |0〉E =
t∑

m=0

√(
t

m

)
ηmw (1− ηw)t−m |m〉W |t−m〉B .

Thus,

U⊗nBS |t〉
An |0〉E

n

=
n⊗
i=1

ti∑
mi=0

√(
ti
mi

)
ηmiw (1− ηw)ti−mi |mi〉Wi |ti −mi〉Bi ,

which implies

U⊗nBS |ψ〉
An |0〉E

n

=
∑
t∈Nn0

at

n⊗
i=1

ti∑
mi=0

√(
ti
mi

)
ηmiw (1− ηw)ti−mi |mi〉Wi |ti −mi〉Bi

≡ |φ〉W
nBn .
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Now, the partial trace of the output state ρBW = |φ〉W
nBn over Bob’s system reveals

Willie’s output state:

ρW
n

= TrBn
[
|φ〉W

nBn WnBn〈φ|
]

=
∑
x∈Nn0

∣∣∣Bn〈x|φ〉WnBn
∣∣∣2 ,

with

Bn〈x|φ〉WnBn =
∑
t∈Nn0

at

n⊗
i=1

ti∑
mi=0

√(
ti
mi

)
ηmiw (1− ηw)ti−mi |mi〉Wi Bi〈xi|ti −mi〉Bi

=
∑
t∈Nn0

at

n⊗
i=1

√(
ti
xi

)
ηti−xiw (1− ηw)xi |ti − xi〉Wi , (C.1)

where equation (C.1) is because the Fock states are orthogonal. Thus,

Wn

〈s| ρ̂Wn |s〉W
n

=
∑
x∈Nn0

∣∣∣Wn

〈s| B
n

〈x|φ〉WnBn
∣∣∣2 , (C.2)

where

Wn

〈s| B
n

〈x|φ〉WnBn =
∑
t∈Nn0

at

n∏
i=1

√(
ti
xi

)
ηti−xiw (1− ηw)xiδsi,ti−xi

= ax+s

n∏
i=1

√(
xi + si
xi

)
ηsiw (1− ηw)xi , (C.3)

with δa,b =

 1 if a = b

0 otherwise
. Substituting k = x + s into equation (C.3) and substi-

tuting the right-hand side (RHS) of (C.3) into equation (C.2) yields

Wn

〈s| ρ̂Wn |s〉W
n

=
∑
k∈Nn0

∣∣∣∣∣ak
n∏
i=1

√(
ki
si

)
ηsiw (1− ηw)ki−si

∣∣∣∣∣
2

=
∑
k∈Nn0

|ak|2
n∏
i=1

(
ki
si

)
ηsiw (1− ηw)ki−si (C.4)
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where equation (C.4) is because ηw ∈ [0, 1).

C.2 Proof of Lemma 6.2

Express D(ρ̂0‖ρ̂1) = −Tr{ρ̂0 ln ρ̂1} − S(ρ̂0), where S(ρ̂0) ≡ −Tr[ρ̂0 ln ρ̂0] is the

von Neumann entropy of the state ρ̂0:

S(ρ̂0) = ln(1 + n̄0) + n̄0 ln

(
1 +

1

n̄0

)
. (C.5)

Now,

Tr[ρ̂0 ln ρ̂1] = Tr

[(
∞∑
n=0

n̄n0
(1 + n̄0)1+n

|n〉 〈n|

)(
∞∑
n=0

ln
n̄n1

(1 + n̄1)1+n
|n〉 〈n|

)]

=
∞∑
n=0

n̄n0
(1 + n̄0)1+n

ln
n̄n1

(1 + n̄1)1+n

=
1

1 + n̄0

ln
1

1 + n̄1

∞∑
n=0

(
n̄0

1 + n̄0

)n
+ ln

n̄1

1 + n̄1

∞∑
n=0

n

1 + n̄0

·
(

n̄0

1 + n̄0

)n
= ln

1

1 + n̄1

+ n̄0 ln
n̄1

1 + n̄1

, (C.6)

where (C.6) is because the geometric series

∞∑
n=0

(
n̄0

1 + n̄0

)n
=

(
1− n̄0

1 + n̄0

)−1

and

∞∑
n=0

n

1 + n̄0

(
n̄0

1 + n̄0

)n
= n̄0

is the expression for the mean of geometrically-distributed random variable X ∼

Geom
(

1
1+n̄0

)
. Combining (C.5) and (C.6) yields the lemma.
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APPENDIX D

EXPERIMENTAL MISCELLANEA

D.1 Calculation of Bob’s Maximum Throughput

The Q-ary PPM signaling combined with Bob’s device for assigning symbols to

received PPM frames induces a discrete memoryless channel described by a con-

ditional distribution P(Y |X), where X ∈ {1, . . . , Q} is Alice’s input symbol and

Y ∈ {1, . . . , Q, E} is Bob’s output symbol with E indicating an erasure. Since Bob

observes Alice’s pulse with probability 1− e−n̄
(b)
det , P(Y |X) is characterized as follows:

P(Y = x|X = x) =
(

1− e−n̄
(b)
det

)Q−1∑
i=0

1

i+ 1

(
p

(b)
D

)i (
1− p(b)

D

)Q−1−i

+ e−n̄
(b)
det

Q∑
i=1

1

i

(
p

(b)
D

)i (
1− p(b)

D

)Q−i
P(Y = E|X = x) = e−n̄

(b)
det

(
1− p(b)

D

)Q
P(Y = y, y /∈ {x, E}|X = x) =

1− P(Y = x|x)− P(Y = E|x)

Q− 1

The symmetry of this channel allows straightforward computation of its Shannon

capacity [75] Cs = I(X;Y ), where P(X = x) = 1
Q

for x = 1, . . . , Q and I(X;Y )

is the mutual information between X and Y . We use the estimates from Table 7.1

to compute Cs for each regime, and plot Csζn
Q

in Figure 7.2 since ζn
Q

is the expected

number of PPM frames selected for transmission.
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D.2 Mathematical Details of Willie’s Hypothesis Test

Willie collects the click record : a binary sequence xw =
{
x

(w)
j

}n
j=1

, x
(w)
j ∈ {0, 1}

of his single photon detector’s (SPD’s) observations of the channel from Alice, where

“0” and “1” indicate the absence and the presence of a click, respectively. The

hypothesis test on Alice’s transmission state is between two point hypotheses, as

Alice is either not transmitting (H0) or transmitting (H1). Thus, the log-likelihood

ratio test minimizes Willie’s detection error probability P(w)
e [59, Theorem 13.1.1].

Here we derive Willie’s test statistic.

The log-likelihood ratio is L = ln f1(xw)
f0(xw)

, where f0(xw) and f1(xw) are the likeli-

hood functions of the click record xw corresponding respectively to Alice being quiet

and transmitting. When Alice does not transmit, Willie only observes dark clicks.

Suppose that the dead time of Willie’s SPD td = 0. Then Willie’s detector readings

are independent, and xw is a vector of i.i.d. Bernoulli
(
p

(w)
D

)
random variables. The

likelihood function of xw under H0 is then:

f0(xw) =
(
p

(w)
D

)∑n
j=1 x

(w)
j
(

1− p(w)
D

)∑n
j=1 1−x(w)

j

(D.1)

=

n/Q∏
i=1

(
p

(w)
D

)∑Q
j=1 x

(w)
lij
(

1− p(w)
D

)∑Q
j=1 1−x(w)

lij , (D.2)

where lij = (i − 1)Q + j and in (D.2) we evaluate each PPM symbol separately, as

that would be convenient later.

When the dead time of the detectors td > 0, as is the case for our SPDs, the

observations are not completely independent. Since a click is always followed by

td observations without any clicks, each occurrence of “1” in xw is followed by td

occurrences of “0” with probability one. Thus, the likelihood function given in (D.2)

has to be adjusted as follows:

f0(xw) =

n/Q∏
i=1

(
p

(w)
D

)∑Q
j=1 x

(w)
lij
(

1− p(w)
D

)∑Q
j=1 x

(w)
lij
, (D.3)

133



where x
(w)
lij

= (1 − x(w)
lij

)(1 −
∑td

k=1 xlij−k), and the sum
∑td

k=1 xlij−k ∈ {0, 1} for i =

1, . . . , n/Q and j = 1, . . . , Q, since the clicks are at least td observations apart. We

note that, adopting the convention
∑0

i=1 f(i) = 0, equations (D.2) and (D.3) are

identical when td = 0.

Now consider the scenario when Alice transmits. Again, we first derive the likeli-

hood function assuming the dead time td = 0, and then adjust for td > 0. The secret

shared between Alice and Bob identifies the random subset S of the PPM frames

used for transmission, and a random vector k which is modulo-added to the code-

word. Modulo addition of k effectively selects a random pulse location within each

PPM frame. Note that, while both the construction in the proof of Theorem 7.1.1

and Alice’s encoder described in Section 7.2.1.1 generate S first and then k, the order

of these operations can be reversed: we can first fix a random location of a pulse in

each of n/Q PPM frames, and then select a random subset of these frames. Consider

Willie’s observation of the ith PPM frame, and assume that the mth mode is used

if the frame is selected for transmission. Denote the probability of Willie’s detector

observing Alice’s pulse by p
(w)
r = 1− e−n̄

(w)
det . By construction, frames are selected for

transmission independent of each other with probability ζ. Willie’s detector registers

a click on the mth mode of the ith PPM frame when one of the following disjoint

events occurs:

• The ith PPM frame is selected and pulse is detected by Willie in the mth mode

of this frame (probability ζp
(w)
r );

• The ith PPM frame is selected, but Willie, instead of detecting the pulse, records

a dark click in the mth mode of this frame (probability ζ
(

1− p(w)
r

)
p

(w)
D ); and,

• Even though the ith PPM frame is not selected, Willie records a dark click in

the mth mode of this frame (probability (1− ζ)p
(w)
D ).
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The probability of the union of these events is

p(w)
s = ζp(w)

r

(
1− p(w)

D

)
+ p

(w)
D . (D.4)

Therefore, assuming detector dead time td = 0, Willie observes an independent

Bernoulli
(
p

(w)
s

)
random variable in the mth mode of the ith PPM frame. Since

Alice only uses the mth mode for transmission, in modes other than the mth, Willie

observes a set of Q− 1 i.i.d. Bernoulli
(
p

(w)
D

)
random variables corresponding to dark

clicks, again, assuming td = 0. Thus, the likelihood function of xw under H1 when

td = 0 is

f1(xw) =

n/Q∏
i=1

1

Q

Q∑
m=1

(
p(w)
s

)x(w)
lim
(
1− p(w)

s

)1−x(w)
lim

(
p

(w)
D

)∑Q
j=1
j 6=l

x
(w)
lij
(

1− p(w)
D

)∑Q
j=1
j 6=l

1−x(w)
lij
,

where, as before, lij = (i− 1)Q+ j. Adjustment for td > 0 yields

f1(xw) =

n/Q∏
i=1

1

Q

Q∑
m=1

(
p(w)
s

)x(w)
lim
(
1− p(w)

s

)x(w)
lim

(
p

(w)
D

)∑Q
j=1
j 6=l

x
(w)
lij
(

1− p(w)
D

)∑Q
j=1
j 6=l

x
(w)
lij
,

where, as before, x
(w)
lij

= (1− x(w)
lij

)(1−
∑td

k=1 xlij−k).

The likelihood ratio is

f1(xw)

f0(xw)
=

n/Q∏
i=1

1

Q

Q∑
m=1

(
p

(w)
s

p
(w)
D

)x
(w)
lim
(

1− p(w)
s

1− p(w)
D

)(1−x(w)
lim

)(1−
∑td
k=1 xlim−k)

. (D.5)

Now, when x
(w)
lim

= 1, the corresponding summation term in (D.5) is p
(w)
s

p
(w)
D

. When x
(w)
lim

=

0 and the no-click event is within the detector dead time (that is, 1−
∑td

k=1 xlim−k = 0),

then the corresponding summation term is one; otherwise the corresponding summa-

tion term is 1−p(w)
s

1−p(w)
D

. Denote by y
(w)
i =

∑Q
m=1 x

(w)
lim

the number of clicks observed in

the ith PPM frame, and by y
(w)
i the number of no-click events in the ith PPM frame
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within the detector dead time (where the click that triggered the detector reset may

not necessarily be in the same frame). Equation (D.5) can thus be simplified as

follows:

f1(xw)

f0(xw)
=

n/Q∏
i=1

1

Q

p(w)
s y

(w)
i

p
(w)
D

+ y
(w)
i +

(
1− p(w)

s

)(
Q− y(w)

i − y(w)
i

)
1− p(w)

D


=

n/Q∏
i=1

[
1 + ζp(w)

r

(
y

(w)
i

Qp
(w)
D

+
y

(w)
i

Q
− 1

)]
. (D.6)

where equation (D.6) is obtained by noting that p
(w)
s

p
(w)
D

=
ζp

(w)
r (1−p(w)

D )

p
(w)
D

+ 1 and 1−p(w)
s

1−p(w)
D

=

1− ζp(w)
r . Taking the logarithm of (D.6) yields the log-likelihood ratio

ln
f1(xw)

f0(xw)
=

n/Q∑
i=1

ln

[
1 + ζp(w)

r

(
y

(w)
i

Qp
(w)
D

+
y

(w)
i

Q
− 1

)]
. (D.7)

For small ζ, the Taylor series expansion of the summand in (D.7) at ζ = 0 yields

ln

[
1 + ζp(w)

r

(
y

(w)
i

Qp
(w)
D

+
y

(w)
i

Q
− 1

)]
≈ ζp(w)

r

(
y

(w)
i

Qp
(w)
D

+
y

(w)
i

Q
− 1

)
. (D.8)

Since
∑n/Q

i=1 y
(w)
i = Y td, where Y =

∑n/Q
i=1 y

(w)
i is the total click count, the log-

likelihood ratio can be approximated as follows:

ln
f1(xw)

f0(xw)
≈ ζp

(w)
r

Qp
(w)
D

(Y (1 + p
(w)
D td)− np(w)

D ). (D.9)

Since the approximation in (D.9) is an invertible function of the total click count Y ,

we use it as the test statistic for Willie. We also note that, because p
(w)
D td � 1 in

our experiments, the dead time causes only a minimal performance degradation for

Willie’s detector.1

1We also conjecture that the availability of a detector with shorter dead time to Bob would
only increase the number of covert bits that Alice can reliably transmit by a multiplicative constant
related to Willie’s detector dead time and not affect the square root scaling law.
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D.3 Gaussian Approximation of P(w)
e

At the end of the previous section we argued that the detector dead time does

not substantially impact Willie’s performance, as the dead time is short relative to

the average time between clicks. Here we show how setting td = 0 yields a useful

analytical approximation of P(w)
e .

First consider the case when Alice does not transmit. Since td = 0, the to-

tal click count is a binomial random variable Y ∼ B
(
y; p

(w)
D , n

)
whose distribu-

tion, for large n, can be approximated using the central limit theorem by a Gaus-

sian distribution Φ (y;µ0, σ
2
0) with µ0 = np

(w)
D and σ2

0 = np
(w)
D

(
1− p(w)

D

)
, where

Φ (x;µ, σ2) = 1√
2πσ

∫ x
−∞ e

− |t−µ|
2

2σ2 dt is the distribution function of a Gaussian random

variable N (x;µ, σ2).

Now consider the case when Alice transmits. Since S and k are unknown to Willie,

the total click count is the sum of two independent but not identical binomial random

variables Y = X + Z, where X ∼ B
(
x; p

(w)
D , n− n

Q

)
is the number of dark clicks in

the n − n
Q

modes that Alice never uses in a PPM scheme and Z ∼ B
(
z; p

(w)
s , n

Q

)
is

the contribution from the n
Q

modes that Alice can use to transmit, with p
(w)
s defined

in (D.4). By the central limit theorem, for large n, the distribution of X can be ap-

proximated using a Gaussian distribution Φ(x;µX , σ
2
X) where µX =

(
n− n

Q

)
p

(w)
D and

σ2
X =

(
n− n

Q

)
p

(w)
D

(
1− p(w)

D

)
. Similarly, the distribution of Z can be approximated

by a Gaussian distribution Φ (z;µZ , σ
2
Z) where µZ = n

Q

(
ζp

(w)
r +

(
1− ζp(w)

r

)
p

(w)
D

)
and

σ2
Z = n

Q

(
ζp

(w)
r +

(
1− ζp(w)

r

)
p

(w)
D

)(
1− ζp(w)

r

)(
1− p(w)

D

)
. Thus, the distribution of

Y can be approximated by a Gaussian distribution Φ (y;µ1, σ
2
1) with µ1 = µX+µZ and

σ2
1 = σ2

X + σ2
Z via the additivity property of independent Gaussian random variables.

Willie’s probability of error is thus approximated by:

P̃(w)
e =

1

2
min
S

(1− Φ(S;µ0, σ
2
0) + Φ(S;µ1, σ

2
1)). (D.10)
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The value of the threshold S∗ that minimizes the RHS of (D.10) satisfies |S
∗−µ0|2
σ2
0
−

log(σ2
1/σ

2
0) = |S∗−µ1|2

σ2
1

.

D.4 Analysis of the Detector Dark Clicks

Here we provide the detailed analysis of detector dark clicks, focusing on how

their temporal variation affected our experiments. While we took great care in main-

taining uniform conditions throughout our experiments, controlling every aspect of

our environment was beyond our capabilities. However, we argue that the temporal

variation in the dark click probability that we experienced had no significant impact

on our results.

We maximize the logarithm of the likelihood function in equation (D.1) and obtain

the following maximum likelihood estimator of the dark click probability:

p̂D =

∑nD
i=1 xi

nD − td
∑nD

i=1 xi
, (D.11)

where x1, . . . , xnD is the sequence of nD observations where only the dark clicks can

be observed, i.e, it is the experimental click record that excludes the observations of

Alice’s transmissions as well as the dead time following the detected transmissions.

The entire click record contains 100 experiments at each value of n for both Alice us-

ing and not using the channel, totalling 2.72× 1010 observations when ζ = 0.25/
√
n,

and 3.0784 × 1010 observations when ζ ∈ {0.03/ 4
√
n, 0.003, 0.008}. For each of the

four communication regimes, we divide the click record (sorted by time) into seg-

ments of nDs = 3.2 × 107 consecutive observations. The estimates of Willie’s and

Bob’s dark click probabilities for these segments are denoted by p̂
(w)
D,s(j) and p̂

(b)
D,s,

j = 1, . . . , nS,s(ζ), where nS,s(0.25/
√
n) = 850 and nS,s(0.03/ 4

√
n) = nS,s(0.003) =

nS,s(0.008) = 962. The plots of p̂
(w)
D,s(j) and p̂

(b)
D,s(j) in Figure D.1 illustrate the tem-

poral variations in dark click probability. However, they also show homogeneity over
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Figure D.1: Temporal variation in dark click probability. The estimates of Willie’s
dark click probability are plotted using the left y-axis; the estimates of Bob’s dark click
probability are plotted using the right y-axis. Dark click probability is estimated using
equation (D.11) for consecutive segments, each containing nDs = 3.2×107 consecutive
observations, as well as for consecutive blocks, each containing nDb = 1.184 × 109

consecutive observations (with the exception of the last block for ζ = 0.25/
√
n in

panel (a) where nDb = 1.152× 109 observations).

relatively long periods of time. We thus estimate the dark click probability for blocks

of 37 consecutive segments using nDb = 1.184× 109 observations (except for the last,

23rd, block of the click record for ζ = 0.25/
√
n containing 36 (nDb = 1.152 × 109

observations) segments instead of 37). The estimates of Willie’s and Bob’s dark click

probabilities for these blocks are denoted by p̂
(w)
D,b(k) and p̂

(b)
D,b(k), k = 1, . . . , nS,b(ζ),

where nS,b(0.25/
√
n) = 23 and nS,s(0.03/ 4

√
n) = nS,s(0.003) = nS,s(0.008) = 26. The

block dark click probability estimate is close to the average of the estimates for its
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Figure D.2: Correlation in Willie’s and Bob’s dark click probabilities. A glitch in
the PCIe-6537 data acquisition card resulted in a slight change in setup between the
experiments corresponding to ζ = 0.25/

√
n and ζ ∈ {0.03/ 4

√
n, 0.003, 0.008}.

component segments, and over most of the 101 blocks, the segment estimates of the

dark click probability are homogeneous.2

We also plot p̂
(w)
D,b(j) versus p̂

(b)
D,b(j) in Figure D.2, revealing strong correlation be-

tween the dark click probabilities of Bob’s and Willie’s detectors. Thus the temporal

variations in the dark click probabilities likely stem from the external environmental

factors (such as laboratory temperature changes) rather than the detectors them-

selves.

Intuitively, clicks observed under less noisy channel conditions carry more evidence

for the hypothesis that Alice is transmitting than clicks observed when the channel

2Assuming that the dark click probability stays constant over the period of time corresponding
to a segment, the number of observed dark clicks would be binomially-distributed if our detectors
had zero dead time. However, we argue in Appendix D.2 that the dead time has a minimal impact
on our experiment, making the binomial distribution a good approximation for the distribution of
the number of observed dark clicks. Thus, for each of blocks, we performed the Pearson chi-squared
test for homogeneity [36] in the estimated dark click probability of its component segments. We
found that the test rejects the null hypothesis (that the estimates are homogeneous) in only 29 out
of 202 blocks, consistent with the visual inspection of Figure D.1.
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Figure D.3: Impact of variations in dark click probability on the estimates of Willie’s
detection error. The probability of detection error estimated from the block-weighted
test statistic given in equation (D.12) is plotted using the asterisks alongside the plots
from Figure 7.3 of the estimates using the (unweighted) total click count. Weighting
does not substantially change the detection error probability estimates.

is noisier. Indeed, in the derivation of the total click count Y as Willie’s test statistic

in Section D.2, the contribution to Y from the ith channel observation x
(w)
i ∈ {0, 1}

is effectively weighted by 1/p
(w)
D (we ignore the term corresponding to the detector

dead time for simplicity of exposition and since it has no tangible impact on our

experimental results). In the analysis of Section 7.2 we used the average dark click

probability, however, if the dark click probability p
(w)
D (i) is available for i = 1, . . . , n,

Yweighted =
∑n

i=1
x
(w)
i

p
(w)
D (i)

is a better test statistic. Since the exact p
(w)
D (i) is unavailable,

and since the estimates are (mostly) homogeneous over the duration of the blocks,
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we study the impact of temporal variation of dark clicks on Willie’s detection error

by weighting the observations by the block estimates p̂
(w)
D,b(j). Denoting the set of

observations in the jth block by Wj, we block-weight Willie’s test statistic as follows:

Yblock-weighted =

nS,l(ζ)∑
j=1

1

p̂
(w)
D,b(j)

∑
x
(w)
i ∈Wj

x
(w)
i . (D.12)

We plot the estimates of detection error probability that are calculated using the

block-weighted test statistic given by (D.12) in Figure D.3 alongside the estimates

from Figure 7.3 that are calculated using the (unweighted) total click count. While

the estimated probability of detection error decreases in some cases (and increases

or remains the same in others), the overall impact is small. The square root scaling

law is unaffected since Alice and Bob can design their covert communication using

a lower bound on p
(w)
D (e.g., the dark click probability for the best available photon

detector operating in near-ideal conditions). However, since the random fluctuations

in noise power have been shown to yield positive-rate covert communication in AWGN

channel setting [57, 58], Alice and Bob could potentially exploit the random process

governing p
(w)
D to transmit covert information at a positive rate.
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