
GENERAL PROGRAM SYNTHESIS FROM EXAMPLES
USING GENETIC PROGRAMMING WITH PARENT

SELECTION BASED ON RANDOM LEXICOGRAPHIC
ORDERINGS OF TEST CASES

A Dissertation Presented

by

THOMAS HELMUTH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2015

College of Information and Computer Sciences

c© Copyright by Thomas Helmuth 2015

All Rights Reserved

GENERAL PROGRAM SYNTHESIS FROM EXAMPLES
USING GENETIC PROGRAMMING WITH PARENT

SELECTION BASED ON RANDOM LEXICOGRAPHIC
ORDERINGS OF TEST CASES

A Dissertation Presented

by

THOMAS HELMUTH

Approved as to style and content by:

Lee Spector, Chair

David Jensen, Member

Yuriy Brun, Member

Adam Porter, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

ACKNOWLEDGMENTS

No research is conducted in a void. My collaborators have contributed greatly

to the ideas and efforts presented here: Lee Spector, James Matheson, William La

Cava, Kourosh Danai, Nicholas Freitag McPhee, David Donatucci, Krzysztof Kraw-

iec, Pawe l Liskowski, Kyle Harrington, and Brian Martin. Additionally, the mem-

bers of the Hampshire College Computational Intelligence Lab and Bill Tozier have

contributed enumerable conversations that have shaped my work. My committee

members, David Jensen, Yuriy Brun, and Adam Porter have helped me see my work

through different lenses and gave new dimensions to this dissertation.

I cannot overstate my appreciation of my advisor, Lee Spector, who has guided

me throughout graduate school. I will always appreciate his creativity and ability to

focus on interesting questions. Lee has done a wonderful job teaching me how to be

an academic, both in research and teaching.

I’d like to specifically thank Nicholas McPhee, who over the past year has been

a tremendous mentor and collaborator. Our talks over tea have had an enormous

impact on both the work in this dissertation and my skills as a researcher.

Some of my most enjoyable and productive hours in grad school were spent driving

to and from the curling rink with Robert Walls, who always provided enriching and

entertaining conversation. Thanks to him and Jason Beers for great times on the disc

golf course and playing board games.

Josiah Erikson’s systems support has been irreplaceable, allowing me to generate

all of the data in this dissertation using the Hampshire College computing cluster.

iv

Most importantly, my family has been ever supportive of my goals. Fiona (and

Ben!) have brightened every day of my long graduate school experience. My parents

and sister have always shown interest in my work, even when it sounded like gibberish.

This material is based upon work supported by the National Science Foundation

under Grants No. 1017817, 1129139, and 1331283. Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

v

ABSTRACT

GENERAL PROGRAM SYNTHESIS FROM EXAMPLES
USING GENETIC PROGRAMMING WITH PARENT

SELECTION BASED ON RANDOM LEXICOGRAPHIC
ORDERINGS OF TEST CASES

SEPTEMBER 2015

THOMAS HELMUTH

B.A., HAMILTON COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lee Spector

Software developers routinely create tests before writing code, to ensure that their

programs fulfill their requirements. Instead of having human programmers write the

code to meet these tests, automatic program synthesis systems can create programs

to meet specifications without human intervention, only requiring examples of desired

behavior. In the long-term, we envision using genetic programming to synthesize large

pieces of software. This dissertation takes steps toward this goal by investigating the

ability of genetic programming to solve introductory computer science programming

problems.

We present a suite of 29 benchmark problems intended to test general program

synthesis systems, which we systematically selected from sources of introductory com-

vi

puter science programming problems. This suite is suitable for experiments with any

program synthesis system driven by input/output examples. Unlike existing bench-

marks that concentrate on constrained problem domains such as list manipulation,

symbolic regression, or boolean functions, this suite contains general programming

problems that require a range of programming constructs, such as multiple data

types and data structures, control flow statements, and I/O. The problems encom-

pass a range of difficulties and requirements as necessary to thoroughly assess the

capabilities of a program synthesis system. Besides describing the specifications for

each problem, we make recommendations for experimental protocols and statistical

methods to use with the problems.

This dissertation’s second contribution is an investigation of behavior-based par-

ent selection in genetic programming, concentrating on a new method called lexicase

selection. Most parent selection techniques aggregate errors from test cases to com-

pute a single scalar fitness value; lexicase selection instead treats test cases separately,

never comparing error values of different test cases. This property allows it to select

parents that specialize on some test cases even if they perform poorly on others. We

compare lexicase selection to other parent selection techniques on our benchmark

suite, showing better performance for lexicase selection. After observing that lexicase

selection increases exploration of the search space while also increasing exploitation

of promising programs, we conduct a range of experiments to identify which charac-

teristics of lexicase selection influence its utility.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Applications . 2
1.2 Program Synthesis System Requirements . 3
1.3 General Program Synthesis Benchmarking . 5
1.4 Formalization of Program Synthesis from Examples 6
1.5 Parent Selection in Genetic Programming . 7
1.6 Comparisons to Other Systems . 9
1.7 Collaborators . 9

2. RELATED WORK . 10

2.1 Program Synthesis From Examples . 11

2.1.1 Analytic Methods . 12
2.1.2 Search-Based Methods . 14
2.1.3 Genetic Programming . 16

2.1.3.1 Push and PushGP . 19

2.2 Parent Selection in Genetic Programming . 23

3. GENERAL PROGRAM SYNTHESIS BENCHMARKS 29

3.1 Benchmark-Based Comparisons . 30

viii

3.1.1 Performance Measures . 30
3.1.2 Computational Budget . 32
3.1.3 Statistical Procedure . 34

3.2 Problem Selection Criteria . 35
3.3 Problem Descriptions . 36

3.3.1 iJava . 36
3.3.2 IntroClass . 40

3.4 Synthesis Specifications . 41
3.5 System-Specific Parameters . 45

3.5.1 Generation of Example Data . 45
3.5.2 Error Functions . 47
3.5.3 Instruction Sets . 57
3.5.4 PushGP Parameters . 64

4. LEXICASE SELECTION . 67

4.1 Lexicase Selection Algorithm . 68
4.2 Performance Results . 70

4.2.1 Experimental Significance to Benchmark Suite 74

4.3 Anecdotal Example . 76
4.4 Exploration and Exploitation . 81

4.4.1 Exploration . 82
4.4.2 Exploitation . 89

4.5 Experimental Analysis of Lexicase Selection . 94

4.5.1 Hyper-Selection and Lexicase Performance . 95
4.5.2 Specialists with Poor Total Error . 99
4.5.3 Population Clustering . 107

4.6 Summary and Conclusions . 116

5. COMPARISONS TO OTHER PROGRAM SYNTHESIS
SYSTEMS . 118

5.1 Flash Fill . 118
5.2 MagicHaskeller . 121
5.3 Sketch . 122

6. SUMMARY, CONCLUSIONS, AND FUTURE WORK 124

ix

BIBLIOGRAPHY . 129

x

LIST OF TABLES

Table Page

3.1 For each problem, we give the types of the input and output
examples, and the limits imposed on the inputs. Any printed
outputs should be printed by the program to standard output.
The columns Train and Test indicate the recommended number of
input/output examples in the training set and unseen test set
respectively. 42

3.2 Continuation of Table 3.1. 43

3.3 Data domains for each benchmark problem (part 1). 48

3.4 Data domains for each benchmark problem (part 2). 49

3.5 Data domains for each benchmark problem (part 3). 50

3.6 Data domains for each benchmark problem (part 4). 51

3.7 Data domains for each benchmark problem (part 5). 52

3.8 Data domains for each benchmark problem (part 6). 53

3.9 Data domains for each benchmark problem (part 7). 54

3.10 Data domains for each benchmark problem (part 8). 55

3.11 The error functions used for each problem. For problems that require
the program to print, we usually use Levenshtein distance on the
printed string and the correct output. Additionally, we add a
second error function to many problems by parsing part or all of a
printed string as a different data type and comparing to the
correct output. For example, for the Number IO problem, if the
printed output can be parsed as a float, it is done so and used as
a float error. For such problems, an output that cannot be parsed
correctly receives a penalty error. Continued in Table 3.12. 56

xi

3.12 Error functions, continued from Table 3.11. 57

3.13 Instructions and data types used in our PushGP implementation of
each problem. See text for details. 58

3.14 The terminals (constants and ERCs) used for the problem; ERC
ranges are given in Table 3.15. Here, char constants are
represented in the Clojure style, starting with a backslash, and
strings are surrounded by double quotation marks. 59

3.15 ERC ranges used in our problems. For char and string ERCs, “visible
chars” indicates all visible ASCII characters plus space, newline,
and tab. 60

3.16 Push data types and instructions used in our experiments. For each
combination of data types listed in the first column, we list all of
the Push instructions that are included in the instruction set
when those data types are present for the problem. Continued in
Tables 3.17 and 3.18. 61

3.17 Push data types and instructions (part 2). 62

3.18 Push data types and instructions (part 3). 63

3.19 The PushGP parameters that were held constant across the
problems. See Section 2.1.3.1 for more information about these
parameters. The alignment deviation was set to 5 for four
problems: Number IO, Small Or Large, Median, and Smallest. 65

3.20 The PushGP parameters that we varied per problem. “Max Genome
Size” gives the maximum number of instructions that can appear
in an individual’s genome. “Eval Limit” is the number of steps of
the Push interpreter that are executed before stopping a
program’s execution; programs halted in this way may still
achieve good results if they print or leave results on the
appropriate stack(s) before they are stopped. “Max Gens” gives
the maximum number of generations in a single PushGP run.
“Program Execution Budget” is the maximum number of
programs that will be executed before a run is terminated, which
is the product of the maximum generations, the population size,
and the size of the training set. 66

xii

4.1 The first three columns give the number of successful runs out of 100
for each setting, where L is lexicase selection, T is tournament
selection, and I is implicit fitness sharing. For each problem,
underline indicates significant improvement over the other two
selection methods (see Section 3.1.3). The columns L−T and
L−I give the differences in success rate (successful runs divided
by total runs) between lexicase and the other two settings. The
columns L−T CI and L−I CI give 95% confidence intervals of
the differences in success rate. Note that we omitted the 7
problems on which no solutions were found: Collatz Numbers,
String Differences, Wallis Pi, Super Anagrams, Pig Latin, Word
Stats, and Checksum. 72

4.2 The smallest size of any simplified solution program (in Push points,
which includes instructions and nested parenthesis pairs) for each
problem on which PushGP found at least one solution. 75

4.3 The total error, rank in the population (by total error; out of 1000
individuals), and number of children of the individuals along the
dashed line in Figure 4.2. 79

4.4 The average number of hyper-selected individuals at the 1%, 5%, and
10% levels per generation for both lexicase selection and
tournament selection. 92

4.5 The average number of hyper-selected individuals at the 1%, 5%, and
10% levels per generation for lexicase selection, tournament
selection and SLT selection. This table adds SLT to the results in
Table 4.4. 96

4.6 Number of successful runs out of 100 for each setting on each
problem. Lexicase selection and tournament selection results are
same as those in Table 4.1. 98

4.7 The probability of tournament selection selecting an individual that
would be removed by X% elitist survival. For example, the
probability of selecting an individual removed by 50% elitist
survival is 0.00781, meaning that individuals with total error
worse than the median make up less than 0.8% of the parents
when using tournament selection. 100

xiii

4.8 Number of successful runs out of 100 for each setting of elitist
survival. The column headers indicate what percent of the
population is kept by elitist survival with each selection
technique. The 100% elitist survival runs are equivalent to not
using elitist survival, and as such the results are the same as those
in Table 4.1. Underline indicates results that are significantly
worse than the 100% column, and asterisk (*) indicates results
that are significantly better than the 100% column. No
tournament selection runs were significantly different from the
100% tournament selection column. 101

5.1 For the four problems that Flash Fill synthesized a program from the
training data, we tested the program on the unseen test set. This
table gives the percent of the cases in the unseen test set that the
synthesized program passed for each problem. 120

xiv

LIST OF FIGURES

Figure Page

4.1 Pseudocode for the lexicase selection algorithm. 68

4.2 Ancestry of the 45 “winners” (individuals that achieve zero error on
all test cases in the training set) from a successful run of the
Replace Space With Newline problem using lexicase selection.
Nodes in the graph represent individuals, and edges represent
parent-child relationships, directed from parent to child.
Diamond-shaped nodes had over 100 offspring each. Shaded nodes
had at least five offspring that were winners or ancestors of
winners. 77

4.3 Replace Space With Newline – error diversity median (line) and
quartiles (shaded) . 84

4.4 Syllables – error diversity median (line) and quartiles (shaded) 84

4.5 String Lengths Backwards – error diversity median (line) and
quartiles (shaded) . 85

4.6 Negative To Zero – error diversity median (line) and quartiles
(shaded) . 85

4.7 Double Letters – error diversity median (line) and quartiles
(shaded) . 86

4.8 Scrabble Score – error diversity median (line) and quartiles
(shaded) . 86

4.9 Checksum – error diversity median (line) and quartiles (shaded) 87

4.10 Count Odds – error diversity median (line) and quartiles (shaded) 87

4.11 Probability mass function of selecting individual with rank i out of a
population of 1000 individuals using tournament selection with
tournament size 7, assuming no two individuals have the same
rank. This plots Equation 4.1. 91

xv

4.12 Replace Space With Newline – Median error diversity for lexicase and
tournament selections using elitist survival at different
percents. 103

4.13 Syllables – Median error diversity for lexicase and tournament
selections using elitist survival at different percents. 103

4.14 String Lengths Backwards – Median error diversity for lexicase and
tournament selections using elitist survival at different
percents. 104

4.15 Negative To Zero – Median error diversity for lexicase and
tournament selections using elitist survival at different
percents. 104

4.16 Double Letters – Median error diversity for lexicase and tournament
selections using elitist survival at different percents. 105

4.17 Count Odds – Median error diversity for lexicase and tournament
selections using elitist survival at different percents. 105

4.18 Vector Average – Median error diversity for lexicase and tournament
selections using elitist survival at different percents. 106

4.19 Example of a dendrogram created by agglomerative clustering. The
red line at height 10 shows that this data has 4 clusters that are
at least distance 10 apart from each other. 109

4.20 Replace Space With Newline – cluster counts median (line) and
quartiles (shaded) . 111

4.21 Syllables – cluster counts median (line) and quartiles (shaded) 111

4.22 String Lengths Backwards – cluster counts median (line) and
quartiles (shaded) . 112

4.23 Negative To Zero – cluster counts median (line) and quartiles
(shaded) . 112

4.24 Double Letters – cluster counts median (line) and quartiles
(shaded) . 113

4.25 Scrabble Score – cluster counts median (line) and quartiles
(shaded) . 113

xvi

4.26 Checksum – cluster counts median (line) and quartiles (shaded) 114

4.27 Count Odds – cluster counts median (line) and quartiles (shaded) 114

xvii

CHAPTER 1

INTRODUCTION

Automatic programming of general software, long a goal of computer science

[84, 44], requires a specification of the desired program. While formal specifica-

tions offer one approach, they require some understanding of the algorithmic basis of

the synthesized program. A simpler alternative requires only the specification of the

desired program behavior in the form of input/output pairs, or examples. Despite

recent advances in the synthesis of specialized, domain-specific code, the synthesis of

general-purpose software from examples remains unachieved.

Genetic programming (GP) borrows ideas from biological evolution to synthesize

functions or programs [61]. In GP, a population of programs (or individuals) under-

goes selection and variation to stochastically search for a desired program. GP has

traditionally been used to solve many different types of problems, including general

and domain-specific program synthesis, symbolic regression, boolean logic, design,

and classification. A significant amount of recent GP research and application has

focused on symbolic regression, classification and other domains that only require

small, domain-specific instruction sets [107, Ch. 12], [45]. Relatively little recent

work has explored general programming with large general-purpose instruction sets.

The primary contributions of this dissertation include:

• We have created a program synthesis benchmark suite based on examples as

specifications. These 29 problems, along with our recommendations for ex-

perimental and statistical methods, fill a void of general program synthesis

benchmark problems in both GP and other program synthesis fields.

1

• We show that a GP system, PushGP, can solve many of the problems in our

benchmark suite. We attempt to solve the problems with other common pro-

gram synthesis systems without success. This demonstrates PushGP as the first

general-purpose program synthesis system.

• We investigate lexicase selection, a new parent selection technique for GP. This

investigation shows that lexicase selection significantly outperforms other com-

mon parent selection mechanisms. We then present empirical evidence to help

explain the differences in success that we observed, contributing to the under-

standing of parent selection in GP.

1.1 Applications

The ability to automatically synthesize programs from examples can enable or

improve a variety of applications. For example, the narrow, domain-specific program

synthesis system Flash Fill has recently been included in Microsoft Excel, enabling

non-technical users to perform repetitive string manipulation tasks by providing ex-

amples. This would otherwise require them to write short macros, which are instead

synthesized on the fly [25].

General program synthesis could assist advanced programmers, allowing a pro-

grammer to write the higher-level program structure while leaving the lower-level

functions to be implemented by the synthesis system. Additionally, many companies

need to modernize legacy code; automatic program synthesis could make use of the

legacy code as an “oracle” to provide the desired outputs for given inputs, allow-

ing code to be generated without intervention from a human programmer. General

program synthesis from examples may also have applications to computer science ed-

ucation, where a new programmer can demonstrate the inputs and outputs they wish

their program to handle, and the synthesis system can lead them toward a working

program. Our longer-term goal is to enable the synthesis of large parts of software

2

applications entirely from examples, allowing software engineers to concentrate on

creating tests for the software.

The related fields of automatic debugging and automatic program improvement

have recently seen much interest, in particular systems that make use of GP. In

automatic program debugging, programs that fail some test cases but pass others

are altered until they pass all available test cases [74, 76, 73, 77, 133, 75, 116, 2, 5,

105, 104]. An automatic program improvement system takes a program that passes its

functional test cases and improves its other characteristics such as runtime or memory

requirements [69, 68, 3, 29, 134]. While we will not focus on automatic debugging or

improvement, our techniques presented here may be applicable in these fields as well.

1.2 Program Synthesis System Requirements

We wish to investigate systems that can perform domain-agnostic program syn-

thesis from examples. In order for such a system to prove useful for a variety of

applications, it should meet the following requirements, which ensure that the system

can synthesize arbitrary, domain-specific programs that generalize the given examples

to unseen inputs:

1. The system should not assume the existence of any code on which

it can build or improve, but should synthesize code from scratch.

Although synthesis systems can perform interesting tasks in the areas of auto-

matic bug fixing and code improvements, the applications listed above require

synthesis to start from nothing and create code to meet specifications.

2. Specifications for the desired programs are given as a set of input/

output examples without a specific order. No other domain knowledge

should be needed, unless specialized instructions are required beyond a standard

general-purpose instruction set. In order to improve accessibility, we do not

3

want the user to have to know the form of or constraints on the program they

wish to create, meaning they should not have to provide formal specifications.

Some systems require examples to be given in a particular order, such as “in

increasing complexity” [56, 106, 57]. This requires the user to have at least basic

knowledge of the program they wish to synthesize, possibly even requiring an

understanding of recursion; we wish to avoid such requirements as they restrict

potential users and applications.

3. The system must be able to find solutions to problems that require

a moderate number of instructions, at least equivalent to a complex

function or method written by a human programmer. Small programs

can be trivially synthesized through brute-force search. Even when using more

advanced techniques, many program synthesis systems can generate relatively

small programs in reasonable amounts of time, but fail after a certain point

because they cannot handle the exponential nature of the search space.

4. The system must be able to generate programs that use a large set of

general-purpose instructions and operate on a variety of data types.

At minimum the instructions should operate on integers, strings, and booleans,

with other options including floating-point numbers, characters, and data struc-

tures such as lists and trees. Instruction sets should be general enough to

represent solution programs for a wide variety of synthesis problems, not only

problems from a specific domain.

5. The language of synthesis must be able to perform arbitrary calcu-

lations, meaning it must be Turing-complete. This constraint means

that the programming language must be able to express control flow, possibly

including conditional execution, iteration, and recursion.

4

6. The synthesized program must generalize to unseen example inputs.

The goal of program synthesis is to create a program that generates the correct

outputs on all inputs in the input space, not just those used to synthesize the

program. One can trivially synthesize a program that produces the example

outputs by memorizing them; this type of overfitting would likely have no utility

to a user.

To our knowledge, no existing program synthesis systems have been shown to meet

all of these requirements.

Depending on the scope and complexity of the desired program, a synthesis system

may create a single program that fulfills the requirements, or may need to synthesize

multiple interconnected smaller programs that make up a larger program. Some recent

work in software synthesis using GP suggests one way in which multiple programs

can evolve while making use of each other to create a larger piece of software [6].

We could envision other viable methods, such as a hierarchical software synthesis

system that identifies requirements of modules and then recursively creates them in a

top-down synthesis approach. For now, we simply wish to synthesize single programs

(which may create helper functions) that perform the desired behaviors, which could

potentially be adopted into larger synthesis systems.

1.3 General Program Synthesis Benchmarking

Several GP researchers have highlighted the need for better benchmark problems

to guide research in the field [85, 135, 138]. While various benchmark problems have

been proposed, very few test for the ability to perform general program synthesis, even

though this type of benchmark received high interest in a recent community survey

[135]. Our survey of problems that have been used to test program synthesis systems

outside of GP found no acceptable problems as well; most such problems test for the

5

ability to generate small programs in domain-specific fields such as list manipulation

or string processing ([40] for example), failing one or more of the requirements above.

In order to enable the benchmarking of general program synthesis systems, we have

developed a suite of 29 problems, which we present in Chapter 3. We systematically

selected these programs from sources of introductory-level computer science course

homework problems. The problems require a wide range of programming techniques,

data types, and program structures representative of the types of programs solved by

undergraduate programmers, and hopefully programmers more generally. We describe

each problem in natural language and give recommendations for specifications in

the form of input/output examples. We additionally suggest experimental protocols

and statistical methods to be used with the benchmark problems. We show that

this benchmark suite can help differentiate the strengths and weaknesses of general

program synthesis systems.

1.4 Formalization of Program Synthesis from Examples

Before proceeding further, let us formalize some definitions we use when discussing

general program synthesis from examples. The specification for a desired program

is given by a set of examples E ⊂ X × Y , where X is the space of inputs and Y is

the space of outputs. Each example (x,y) ∈ E consists of program input(s) x and

expected output(s) y1. The synthesis system defines a space of considered programs

P , constrained by system parameters such as instruction set, program syntax or

grammar, maximum program size, etc. Each program p ∈ P can be interpreted as a

function p : X → Y . The objective of synthesis is to generate a program p∗ ∈ P that

passes all of the examples, such that for every example (x,y) ∈ E, p∗(x) = y.

1x may consist of one or more inputs and y one or more expected outputs, all of which may have
different data types.

6

When using GP for program synthesis, we define one or more error functions

f1, ..., fn ∈ F . Each error function takes an example and a program, and returns

a positive, real number error value; thus fi : E × P → [0,∞). The purpose of an

error function is to indicate the distance2 between a program’s output p(x) and the

desired output y, with 0 being the optimal error value. For example, one common

error function used for numeric outputs is the absolute difference |p(x)− y|.

We call a pair composed of an example and an error function a test case in the

space E×F . We often split the set of test cases into a training set Ts, used for guiding

the synthesis algorithm, and an unseen test set Tu, used to test the generalization of

a program on withheld data. In GP it is common to define the fitness of a program

as the summed total error across the test cases in the training set; in particular

fTE(p) =
∑

((x,y),fi)∈Ts

fi((x,y), p) (1.1)

When using absolute difference as the error function, Equation 1.1 is equivalent to

the absolute value norm3. Thus, the objective of program synthesis can be restated

as finding a program p∗ ∈ P such that fTE(p∗) = 0. Such a program may or may not

also achieve zero error on the unseen test set Tu; if it does, we call it a solution or

successful program.

1.5 Parent Selection in Genetic Programming

Within our chosen synthesis paradigm of GP, we wish to investigate the effects of

parent selection mechanisms on problem-solving performance. The parent selection

algorithm chooses a program from the population to genetically vary through muta-

tion or crossover to produce a child for the next generation. Most common parent

2Note that error functions do not need to satisfy the conditions of being a metric.

3Other norms are commonly used as fitness functions, such as Euclidean distance.

7

selection methods use a single scalar fitness value such as total error (Equation 1.1) to

bias stochastic selection toward fitter individuals. For example, tournament selection

with tournament size N uniformly chooses a tournament pool of N individuals from

the population and then selects the one with the best fitness.

While it is convenient to define the objective of GP in terms of an aggregate fitness

value such as total error, this does not necessarily make it an efficient driver for guiding

search [63, 65]. An aggregate fitness value necessarily discards information about a

program’s performance across the test cases in the training set, which could otherwise

be useful for directing selection. For example, some test cases might be easier to pass

than others, yet a scalar fitness treats all tests as equally valuable. As Krawiec

et al. [65] summarize, “The conventional scalar evaluation denies a search algorithm

access to the more detailed information on program’s behavioral characteristics, while

that information could help to drive the search process more efficiently”. While this

view is not unique in GP, the conventional aggregate fitness approach still dominates

the field.

Instead, Krawiec et al. recommend the development of behavior-based search drivers

that utilize more information-rich sources of program performance than a scalar fitness

value can provide [65]. Such sources range from a program’s error values across the

training set to execution traces of a program’s effects on an instruction-by-instruction

basis. Krawiec et al. claim that behavior-driven GP can contribute to a range of ben-

efits, from increased population diversity to better performance [65].

In this work we explore lexicase selection, a behavior-based parent selection tech-

nique that only compares individuals’ results on single test cases at a time, never

directly comparing results on separate test cases [123]. Initial tests indicate that lex-

icase selection improves performance of GP on a range of problems, including one

software synthesis problem [39]. In Chapter 4, we describe and extensively test lex-

icase selection in comparison to other parent selection techniques. In particular, we

8

examine ways in which lexicase selection affects the breadth and depth of the GP

search, allowing it to maintain a diverse population while concentrating search ef-

fort on promising individuals. We also conduct systematic experiments that present

evidence both for and against hypotheses that attempt to explain the improved per-

formance and population diversity observed when using lexicase selection.

1.6 Comparisons to Other Systems

Our final contribution is a brief comparison of our results using GP to other pro-

gram synthesis techniques. In Chapter 5, we attempt to solve problems from our

benchmark suite using Flash Fill [25], MagicHaskeller [48, 46], and Sketch [120, 119],

three techniques representative of the field as a whole. We hope that similar experi-

ments using our benchmark suite can help advance the field of program synthesis.

1.7 Collaborators

All research undertaken here was conducted under the supervision of Lee Spector.

The work in Chapter 2 contains contributions from Lee Spector [124, 39]. Chapter 3

presents research conducted with Lee Spector and James Matheson [36, 38, 37, 39].

Collaborators on work in Chapter 4 include Lee Spector, Nicholas Freitag McPhee,

James Matheson, and David Donatucci [39, 37, 88, 33]. Karthik Kannappan con-

tributed to the research presented in Chapter 5.

9

CHAPTER 2

RELATED WORK

Systems that perform automatic program synthesis require a specification for the

program that the user wishes to create. Some systems use functional or logical pro-

gram specifications, which require the user to know how to create one of these formal

specifications for their problem and often require insight into the structure of the de-

sired program. Other systems only require input/output examples that show correct

behavior for the desired program; we concentrate on such systems, which place less

burden on the user to know how the program should work since they only need to

specify what the program should do.

All program synthesis systems also require a description of the programming lan-

guage in which the synthesized programs will be written. A variety of options exist

for specifying the language of synthesis. Many systems, including many forms of GP,

define the language by providing an instruction set of the statements allowable in the

programs, which may be broken into sets of functions and terminals. Other systems

define the language through a grammar, which may provide more information as to

the allowable structure of the synthesized programs. No matter how the language is

specified, a system should be able to synthesize programs that use a wide variety of

instructions over multiple data types in order to solve general-purpose programming

tasks.

10

2.1 Program Synthesis From Examples

Inductive program synthesis systems automatically create programs based on in-

complete specifications [24, 21, 55, 40]. In particular, in program synthesis from exam-

ples (which others have called programming by example), specifications are limited to

desired program behaviors given as input/output examples [26, 79, 112]. The related

field of programming by demonstration has users provide more informative specifica-

tions, such as demonstrating the steps required to perform the task [16, 72, 71, 70].

Another system, Sketch, requires the user to provide a partial program with pieces

missing to be filled in by synthesis [120, 119]. An abundance of other techniques exist

if you relax specifications further, for example by requiring formal specifications of

the desired program, with [55, 24, 21, 13, 95] providing good surveys of inductive

program synthesis. We will concentrate solely on program synthesis from examples,

where the specification is entirely contained in the examples and does not rely on

additional information.

Many program synthesis from examples systems assume that the user can only

specify a small number of examples, often five or fewer. Since a small number of

examples does not strongly specify a particular program, these systems must make

other assumptions about the space of problems from which the problem is selected,

or must require the user to provide hand-crafted clues about examples in the problem

domain. On the other hand, we wish to synthesize general programs based entirely on

behavioral examples, and want the resulting programs to generalize to unseen inputs,

meaning we will require many more examples, often 100 or more.

Many existing inductive program synthesis systems will have difficulties with

general-purpose program synthesis. In particular, many of them have been shown

to exhibit prohibitively long run times if presented with the number of examples we

expect to use. Additionally, some will not perform well with the large, general in-

struction sets we expect our synthesis systems to use. Almost all synthesis systems

11

perform well for problems that have solutions with small numbers of instructions, but

do not scale well to more complex problems that require larger solution programs.

Two major categories of methods exist for synthesizing programs from examples:

analytic methods, which use logic-based techniques to only synthesize programs that

fulfill the example specifications, and search-based (or “generate-and-test”) methods

that create many programs to search for those that pass the examples. Genetic pro-

gramming is a search-based program synthesis method but will be treated separately

in Section 2.1.3.

2.1.1 Analytic Methods

Igor2 combines analytic and generate-and-test inductive function programming

into a system that generates recursive programs from examples [56, 53, 54]. This

type of inductive programming performs well on structural problems such as list ma-

nipulations. Though this system can quickly synthesize programs for some simple

benchmarks, it has not been tested on problems that require more general program-

ming techniques. Its performance is greatly diminished when the given instruction set

(referred to in these papers and in other inductive programming settings as “back-

ground knowledge”) contains many unnecessary instructions. This means if many

different instructions are likely necessary to solve the problem, but it is not clear

which ones are necessary, Igor2 will find it difficult to distinguish which instruc-

tions are important and will incur significant slowdowns. Another disadvantage of

Igor2, as well as some other analytic inductive programming systems [131, 57], is

that the examples must be “complete” and presented in order of most simple to most

complex. Though it is unclear what is meant by “complete,” it appears that this

requires the user to have some intuition about the recursive nature of the program

in order to present the examples properly. Igor2 requires enough examples to fully

specify the problem, but too many more additional examples cause the system to slow

12

significantly, even for a version of the system that was designed to be more robust

to changes in the examples [49]. These requirements of the examples greatly limit

Igor2’s applications, in that the user must carefully prescribe the examples in correct

order without giving too many. While these constraints on examples have proven to

work for simple benchmark problems, they have not yet been demonstrated to work

on more general program synthesis problems. Additionally, they limit Igor2’s users

to those who can correctly specify the examples.

Flash Fill, recently added to Microsoft Excel, uses version-space algebras to per-

form program synthesis from examples on string manipulation tasks [25]. This re-

search has developed methods for quickly creating simple programs for one-off repeti-

tive tasks in spreadsheet applications for non-programmers [27, 32, 113, 114]. Building

on the use of version-space algebras for programming by demonstration [72], Flash

Fill assumes few example inputs and must make simplifying assumptions about the

problem space. In particular, the domain-specific language used here is designed

for small string manipulation tasks that an end-user may want to perform without

knowing how to program them. Adapting the technique for new domains would re-

quire a different domain-specific language that is carefully crafted to meet problem

requirements while restrictive enough to allow for quick searching. Each different

domain-specific language would also require a new synthesis technique; it is unclear

whether Flash Fill’s methods could even be adapted for general program synthesis, or

if they require a more restricted domain. Related work uses Bayesian inference and

represents programs using combinatory logic with similar assumptions and restric-

tions [78]. We aim to synthesize programs from wider domains using general-purpose

programming.

13

2.1.2 Search-Based Methods

Menon et al. [89] use machine learning to more efficiently search for programs

to perform string manipulation for end-users. Here, parameters for a probabilistic

context-free grammar are learned, and then the space of programs is searched starting

with the most likely program based on the grammar. This work assumes that the

user will provide very few examples, usually one or two. In order to find correct

programs from such few examples, the parameters for the model must be learned

ahead of time, based on a corpus of training data made up of correct program outputs.

These correct training examples must be drawn from similar tasks to the those on

which the model will run. Each training example needs to have an associated correct

program, although this arduous step could possibly be avoided using bootstrapping.

Additionally, a large set of hand-written clues must be provided that are used to

determine which rules in the grammar may be relevant for a particular input. The

hand-crafted clues and extra training data, especially the correct programs, go beyond

what is necessary in our problem formulation and put a large burden on the user for

any new problem domain.

Escher synthesizes recursive programs using only examples for specifications

and no domain-specific knowledge beyond the instructions to use in the synthesized

programs [1]. It guides an exhaustive search for programs primarily by program

size, with smaller programs being preferred. Escher’s assumptions about the use of

examples as specification line up well with ours. It also seems to gracefully handle

large instruction sets, multiple instruction and literal types, and control flow. But,

it has only been tested on toy problems using artificially simple instructions. The

method used for program generation raises concerns over how well the synthesized

programs will generalize to unseen inputs, and no generalization data is presented.

It is unclear whether Escher could handle problems that require more than 20 or

so instructions, since all programs with fewer instructions are tried first. To ensure

14

termination, Escher requires that the arguments to synthesized recursive functions

“decrease” based on a type-dependent ordering, meaning that some programs cannot

be synthesized since the language for the programs is not Turing complete; this could

cause issues with a problem such as generating the Collatz sequence. Finally, Escher

seems to require examples showing the results of every recursive call, meaning the

inputs are restricted in a similar way to systems such as Igor2. This system shows

a lot of promise, but needs to show results on more realistic problems with looser

requirements on examples in order to fully evaluate it.

Test-driven synthesis [106] uses ideas from test-driven development along with

component-based synthesis to build programs while incrementally adding increasingly

complicated examples. Although this system only requires binary examples (right

or wrong), the dependence on ordered examples places extra burden on the user.

Additionally, an expert-written domain-specific language as a context-free grammar

is required for each new problem domain, making it difficult for users to add new

problem domains. This system performs well at doing general program synthesis

when numbers of instructions and program sizes are relatively small. But since the

search is mostly exhaustive using the provided CFG, it does not scale well; it cannot

create programs with more than about 20 instructions or when more than about 50

instructions are provided in the domain-specific language.

MagicHaskeller [48, 46] synthesizes functional Haskell programs through an ex-

haustive search of programs with the correct type signatures. It uses a Monte-Carlo

algorithm to remove semantically equivalent programs from the search space [47].

More recently, it has also integrated an analytic component based on Igor2, which

allows it to synthesize a greater range of programs than can be found in reasonable

time using exhaustive search [50]. Additionally, a web interface is available running

a time-limited version of MagicHaskeller intended as a Haskell teaching tool for new

programmers [51]. These implementations make great use of Haskell’s functional in-

15

structions, and they perform well on problems that require list manipulations and

structural changes. While MagicHaskeller performs very quickly on simple problems

without too many examples, like Igor2 it has trouble with problems that require a

large number of examples to illuminate the relevant edge cases. Additionally, it seems

to have trouble with problems that require conditional control flow.

Adate is a search-based synthesis system inspired by biological evolution, but is

not typically considered genetic programming [98, 100, 99]. In particular, it uses spe-

cialized deterministic genetic operators to exhaustively search for programs. Adate

requires specifications similar to GP, as example inputs and outputs with an output

evaluation function similar to a fitness function in GP. Since Adate creates programs

of increasing size exhaustively, it has trouble solving problems requiring larger pro-

grams. In [40] Adate was compared to other synthesis techniques including Igor2

and MagicHaskeller on some list manipulation problems; it had moderate success,

solving one problem that no other system could but taking much longer than the

other systems on most other problems while being unable to solve two problems.

2.1.3 Genetic Programming

Although much of the research in GP could be considered relevant to general pro-

gram synthesis from examples, we will focus only on recent developments specifically

related to general program synthesis or the creation of Turing-complete programs.

Arcuri and Yao use GP to synthesize programs based on formal specifications

[6, 4]. This research works toward the long-term goal of evolving general software from

scratch, and makes some advances not seen elsewhere. Their system uses co-evolution

to adapt the set of examples during evolution to try to find areas to test that will make

the programs fail. This is reminiscent of the co-evolution of fitness predictors [110,

109, 111], though these co-evolutionary methods have different goals and behaviors.

Another interesting aspect of their system is the use of N-version programming [7,

16

19] to create ensembles of synthesized programs that usually perform better than

individually synthesized programs. Since they are interested in evolving full software,

they propose a framework for evolving multiple interrelated programs that compose

a larger whole; their experiments only make rudimentary use of this system, but it

lays the groundwork for the evolution of full software systems. Although this line of

research makes strides toward general program synthesis using GP, it also does not

meet some of the constraints we suggest as fundamental to general program synthesis

from examples. In particular, this system requires formal specifications in order to

create the examples they co-evolve to test their programs, where we would prefer the

user to only need to provide input/output examples. They use a somewhat minimal

instruction set that features booleans, integers, and array access. These instructions

are not general enough to solve the majority of problems; for example, they only

allow for one variable and one array. They provide only a single iteration instruction,

which is highly constrained to ensure good behavior. Finally, while they test their

system on a handful of problems and also check for generalization to unseen data, the

problems they test on are all moderately simple array manipulation problems such as

sorting; we would be very interested to see results of their system on a wider variety

of problems that require larger programs.

The recent GP system Finch evolves Java bytecode, allowing general Java pro-

grams to be synthesized by decompiling the bytecode [105, 104, 103]. The evolved

programs can make use of Turing-complete instructions including iteration and re-

cursion. Finch requires a Java program to be provided as input, which is used to

initialize the entire population; this program could be a partially completed or buggy

program, but in some examples they simply provide junk code that simply exhibits all

of the provided instructions. Still, it is unclear how well this system would perform if

initialized with random programs, as is typically used in GP, instead of code crafted

for each problem. The instruction sets used in these experiments tend to be small

17

and problem-specific; since Finch is evolving low-level Java bytecode, it is unclear

how well it would do when given a large set of more advanced instructions. So far

Finch has only been tested on relatively simple toy problems, so we are interested

in how it would fare on more difficult problems.

In order for a GP system to perform general program synthesis, it must be able

to handle multiple data types. The most common mechanism for allowing multiple

data types in GP is based on strongly-typed GP [92], in which each instruction has

input and output types and genetic operators ensure that type constraints are obeyed.

Recent work in Cartesian genetic programming has allowed for multiple data types,

though thus far has been limited to floating point numbers and lists of numbers and

does not have general control flow available [28].

Grammar guided genetic programming, and in particular grammatical evolution,

have become common frameworks for GP [101, 102]. Even though having the guidance

of a grammar seems like it could be a boon for evolving general programs with multiple

data types, little work has been done in this area, possibly because of difficulties

related to recursion and iteration [87].

Various GP practitioners have added looping or recursion to their evolutionary

languages in order to evolve programs in a Turing-complete language, but most of

these lack other abilities required for synthesizing general software. For example, most

only provide a very limited and problem-specific instruction set. Teller describes a

general framework for Turing-complete GP without meeting most of the other con-

straints for general program synthesis [132]. Woodward presents a Turing-complete

tree-based GP using a specialized crossover operator that respects modules, but uses

a small instruction set and does not present substantial results [139]. Moraglio et

al. [94] facilitate the evolution of recursive functions by replacing recursive calls in

evolving programs with the correct value, which must be given as an example; this

requires examples to be “complete” up to a certain point, resulting in similar issues

18

to other analytic and search-based synthesis methods described above. Withall et

al. [136] use a block-based representation including restricted looping and a small

set of integer and list instructions to synthesize solutions to moderately simple list

manipulation problems such as summing or reversing a list, similar to problems used

in many inductive programming experiments such as [40]. This work does test the

generality of the evolved programs on unseen examples, though all examples use small

input lists with less than ten elements. Binard and Felty develop a simple lambda

calculus program representation that allows for various forms of recursion and itera-

tion, though they only show results on simple problems [10, 9]. None of these systems

have been shown to perform general program synthesis as we have defined it.

Yu allows GP to synthesize recursive programs by providing higher-order functions

that implement recursion instead of allowing recursive calls directly [140]. This ap-

proach seems noteworthy and a potential direction for future research. Unfortunately,

Yu uses tiny instruction and terminal sets tailored very specifically to the substring

and Fibonacci problems that are presented, as opposed to the large, general-purpose

instruction sets needed to solve general programming problems.

2.1.3.1 Push and PushGP1

Our work primarily uses the GP system PushGP, which evolves programs ex-

pressed in the Push programming language. Push is a stack-based postfix language

that was designed specifically for use in GP systems [121, 128, 126]. Push is general

purpose and Turing complete, with support for iteration, recursion, conditional ex-

ecution, and automatically-defined subroutines through runtime code manipulation

and tagging [126, 127]. Push and PushGP implementations exist in C++, Java,

JavaScript, Python, Common Lisp, Clojure, Scheme, Erlang, Scala and R. Many

1Parts of this section originally appeared in a book chapter co-authored with Lee Spector [124].

19

of these are available for free download from the Push project page.2 The results

presented here were obtained using the Clojure implementation of PushGP called

Clojush3.

Push dedicates a separate stack for each data type. Instructions take their argu-

ments from stacks of the appropriate types and they leave their results on stacks of

the appropriate types. This allows instructions and literals to be freely intermixed

regardless of type while still ensuring execution safety. The convention in Push re-

garding instructions that are executed in contexts that provide insufficient arguments

on the relevant stacks is that these instructions act as “no-ops”; that is, they do

nothing.

Push traditionally takes results from the top items on stacks after executing a

program. For example, a program that returns an integer will take the top value on

the integer stack as its output. This convention means that some evolved programs

might not return a value of the correct type, if the relevant stack is empty following

execution; in this scenario, we penalize the program for failing to return a result.

Push also has the ability to print literals to standard output; in our implementation

this simply concatenates printed material to a string of whatever has been printed so

far, but this could easily be changed to print to standard output.

Many of Push’s most unusual and powerful features stem from the fact that code

is itself a Push data type, and from the fact that Push programs can easily (and often

do) manipulate their own code as they run. Push programs may be hierarchically

structured into code blocks delimited by parentheses. This hierarchical structure

affects the evaluation of code-manipulation instructions. For example, the exec_if

instruction removes the second code block on the exec stack if the top item on the

boolean stack is true, and removes the first code block on the exec stack if it is false.

2http://pushlanguage.org/

3https://github.com/lspector/Clojush

20

In a change from previous versions of PushGP, the most recent version of Clojush

does not evolve Push programs directly, but instead uses a separate linear genome rep-

resentation that we translate into Push programs prior to execution. The new Plush4

genomes are linear sequences of instructions that may have one or more epigenetic

markers attached to each instruction. The epigenetic markers affect the translation of

the Plush genomes into Push programs. For example, the silent marker is a boolean

that tells whether a particular instruction will appear in the translated program.

When evolving Push programs directly, we often found that parenthesis-delimited

code blocks would rarely evolve in conjunction with instructions that made use of

them. One of the motivations for moving to linear Plush genomes was that we could

require that Push instructions that make use of code blocks be followed by them. With

this change, every instruction that takes one or more argument from the exec stack

implicitly opens one or more code blocks. Additionally, each instruction has a close

epigenetic marker that tells the number of code blocks to end after that instruction.

Thus, during translation from Plush genome to Push program, an open parenthesis

is placed after each instruction that requires a code block, and a matching closing

parenthesis is placed after a later instruction with a non-zero close marker. Note that

these code blocks can create hierarchically nested Push programs. For example, if a

new code block B is opened after the start of code block A, the next close marker

will close block B, not block A. If not enough close markers occur by the end of a

program to match all opened code blocks, all opened blocks are simply closed.

Another advantage of moving to linear Plush genomes instead of traditional tree

genomes or hierarchical Push programs is that it enables simple use of uniform ge-

netic operators. The uniform genetic operators implemented in Clojush are inspired

by the operator ULTRA, which was designed for Push programs, requiring them

4Linear Push

21

to be translated into a linear form and back [124]. The main crossover operator,

alternation, traverses two parents in parallel while copying instructions from one par-

ent or the other to the child. While traversing the parents, copying can jump from

one parent to the other with probability specified by the alternation rate parameter.

When alternating between parents, the index at which to continue copying may be

offset backward or forward some amount based on a random sample from a normal

distribution with mean 0 and standard deviation set by the alignment deviation pa-

rameter. We also use a uniform mutation operator that traverses a parent and with

some probability replaces each instruction with a random one. In order to manipulate

the locations of closing parentheses, we include a uniform close mutation operator

that may increment or decrement the close epigenetic marker of any given instruc-

tion. Finally, we allow genetic operator pipelines that combine multiple operators;

for example, we often use alternation followed by uniform mutation, which closely

resembles ULTRA [124].

We have used PushGP for a variety of program synthesis tasks, including mimick-

ing the Unix word count utility wc [36], creating the factorial function using a large

instruction set [124], creating digital multiplier programs [35], and developmentally

evolving SQL queries [34]; of these, only the wc problem meets all of our constraints

of general program synthesis. Some of the work in Push has been motivated by au-

toconstructive evolution, where the programs themselves are executed to create the

children programs for the next generation [122, 128, 121, 31]. Keijzer developed push-

forth as a single-stack language for evolving programs [52]. All considered, very little

of this work has synthesized programs using large, general-purpose instruction sets.

22

2.2 Parent Selection in Genetic Programming5

Since this dissertation focuses on effects of parent selection on GP’s ability to

perform general program synthesis from examples, here we will survey related parent

selection mechanisms. In particular, we concentrate on the effects of population diver-

sity on performance, and present parent selection methods that implicitly or explicitly

affect diversity preservation. This section covers work including multiobjective GP

and fitness sharing.

To some extent one can consider multiple test cases that a program must pass

to be the multiple objectives in a multiobjective optimization problem [97]. This

approach has been called the multi-objectivization of a single-objective problem into

a multi-objective problem [59]. The match is not perfect, however, because objectives

are goals that we want to achieve while test cases are tools for measuring how well we

meet our objectives. Nonetheless, many of the techniques that have been developed

to cope with multiple objectives can also be applied to the problem of coping with

multiple test cases.

A variety of multiobjective approaches have been presented in the literature. A

priori methods express preferences prior to running an algorithm. For example, in

the the lexicographic ordering method [107, p. 80] the objectives are sorted based on

the user’s prediction of relative importance ahead of time, and solutions are compared

lexicographically on the objectives.

By contrast, a posteriori methods do not incorporate user input regarding the rel-

ative importance of different objectives. Several a posteriori multiobjective methods

build on the concept of “Pareto dominance”: program A is said to Pareto dominate

program B if A is at least as good as B on all objectives and better on at least one.

In GP, Pareto-based systems have often been used with “size” as one objective and

5Some of the text in this section is adapted from a journal article submission co-authored with
Lee Spector [39].

23

“fitness” as another, where fitness is calculated using a standard method for combin-

ing individual test case errors into a scalar fitness value. Examples of Pareto-based

approaches in GP include using information about Pareto dominance directly in the

parent selection algorithm [18] or as the foundation for an approach that produces not

a single solution but rather an archive of programs along the “Pareto front,” where

none of the programs are Pareto dominated by others [118, 60].

As far as we are aware, Langdon’s work on evolving data structures is the only

work that has used any type of Pareto-aware selection where the test cases are used

as the objectives of the Pareto selection. In one example, he uses Pareto tournaments

for parent selection while evolving queues [66]. This problem uses six objectives, five

of which are based on the performance of the individual, and the sixth minimizes

memory use. He has similarly used Pareto tournaments when evolving a list data

structure [67]. This problem uses 21 normal test cases, and two other objectives of

memory and time. The Pareto tournaments in these papers are modeled after those

proposed in [42].

Modern multiobjective genetic algorithms such as NSGA-II [17] and SPEA2 [141]

have been shown to perform well on genetic algorithms problems with small numbers

of objectives. Additionally, SPEA2 has been used in GP for reducing code bloat

by treating size as one objective and fitness as a second [11]. Kotanchek, Smits,

and Vladislavleva have used other Pareto-based methods to reduce code bloat and

search for an ensemble of solutions that make trade-offs between size and fitness

[118, 60]. But, as far as we know, these modern multiobjective approaches have not

been applied to GP problems where the test cases are treated as objectives. This

may be attributed to assumptions that must be made about the objectives in many

multiobjective methods that don’t hold for the GP test cases—in particular, the large

number of test cases used for many problems. Multiobjective algorithms are typically

tested on problems with very few objectives; often two objectives are used, and rarely

24

more than four or five. GP problems frequently have many more test cases than this,

sometimes ranging from 50 to 100 or even more. With this many objectives, Pareto-

based algorithms may have trouble, since most individuals will not dominate each

other leading to little performance information on which to base selection [141, 118].

This “curse of dimensionality” must be overcome to apply multiobjective algorithms

to GP problems with many test cases.

Fieldsend and Moraglio use multi-objectivization of total fitness into separate test

cases to determine which individuals cannot be replaced by a new child in steady-state

GP [20]. Although designed for replacement selection as opposed to parent selection,

this method has some similar motivations to lexicase selection. In particular, pro-

grams that perform poorly on some test cases may still survive if they solve test cases

that other programs do not. This paper postulates that this method helps increase

population diversity, though they do not give diversity measurements.

Besides multiobjective methods, other efforts have been made to create parent

selection techniques that give different weights to different test cases during selection.

Fitness sharing [23] decreases selection pressure for individuals that are similar to

other individuals in the population. Each individual’s fitness is penalized based on

how many individuals are within a specified distance, with closer individuals giving

more penalty. This requires the user to specify a distance metric between individuals;

in GP, researchers have used both a syntactic distance of programs themselves and

a semantic distance based on the outputs of the programs. Fitness sharing using

semantic distance requires each individual to be compared with each other individual

in the population, giving a time complexity of O(P 2T) for population size P and

T test cases. Undesirably, fitness sharing requires the user to set three sensitive

parameters that can significantly affect its performance [81].

Implicit fitness sharing (IFS), first described in [117] and adapted for GP in [86],

aims to preserve population diversity by distributing reward among the individuals

25

that solve a test case, giving more reward for cases solved by fewer individuals. In

this way it is similar to fitness sharing, without requiring the calculation of distances

between individuals. It is typically only applied to problems with binary test cases,

where an individual either solves a test case or does not. Like fitness sharing, implicit

fitness sharing produces weighted scalar fitnesses, with a tournament then used to

select parents. The implicit fitness sharing fitness function is defined as

fIFS(i) =
∑
t∈Ti

1

n(t)
(2.1)

where Ti ⊆ T is the set of test cases solved by individual i, and n(t) is the number

of individuals in the population that solve test case t. Note that fitness is to be

maximized in implicit fitness sharing. Since the number of individuals solving each

test case only needs to be computed once per generation, implicit fitness sharing has

a time complexity of O(PT), similar to traditional tournament selection.

Implicit fitness sharing has been adapted for non-binary test cases in [64]. Here,

the raw error value f(t, i) of individual i on test case t falls in the range [0, 1] with

0 being worst and 1 being best. This version of IFS can be used on problems with

error values in [0,∞) by normalizing them to [0, 1] and subtracting the normalized

error from 1. Implicit fitness sharing is then redefined as

fNBIFS(i) =
∑
t∈T

f(t, i)∑
i′∈P f(t, i′)

(2.2)

This non-binary implicit fitness sharing still scales errors based on the errors of the

rest of the population, and even reduces to traditional implicit fitness sharing when

errors are binary. The time complexity is still O(PT).

The historically assessed hardness technique uses a different generalization of im-

plicit fitness sharing for non-binary test cases, where the error value on each test case

is scaled by the success rate of the population [58].

26

Co-solvability fitness extends implicit fitness sharing to consider pairs of test cases

instead of single test cases [62]. This method emphasizes solving subsets of the test

cases, similarly to lexicase selection. For each pair of test cases, reward is given to

each individual that solves both test cases, with the reward being higher for pairs of

cases not solved by many individuals. The co-solvability fitness function is defined as

fCS(i) =
∑

tj ,tk∈Ti:j<k

1

n(tj, tk)

where Ti ⊆ T is the set of test cases solved by individual i, and n(tj, tk) is the

number of individuals that solve both case tj and case tk. Although this enhancement

to implicit fitness sharing shares some motivations with lexicase selection, it only

considers pairs of test cases, whereas lexicase selection considers prioritized lists of

all test cases. This method has only been described for binary test cases, and it

does not have an obvious generalization for non-binary test cases. Calculating co-

solvability fitness requires each pair of test cases to be considered for each member of

the population, giving a time complexity of O(PT 2).

In discovery of objectives by clustering (DOC) [63, 80], test cases are clustered by

X-Means into groups based on population performance. DOC then considers each

cluster as an objective, with error for the objective calculated by summing errors on

test cases within the objective. Then, either a multi-objective optimizer (NSGA-II) or

a fitness based on the hypervolume product of the objective errors is used on the new

objectives to select parents. DOC outperformed IFS and tournament selection on a

range of binary-outcome problems, though in a subsequent study was outperformed

by lexicase selection [80].

In order to move semantic-based GP approaches away from genetic operators (such

as geometric semantic GP [93]) and into parent selection, Galván-López et al. use

semantics in selection to ensure that the two parents in a crossover operator have

different semantics [22]. In particular, they use tournament selection to select one

27

parent based on total error, and then use a second tournament based on total error to

select the second parent, in which any individual that has equivalent semantics to the

first parent is automatically rejected. This method experimentally achieves similar

performance to a crossover-based semantics technique, while requiring fewer program

evaluations, since the crossover-based technique must test children to see whether

they have equivalent semantics to the parents, which may require many iterations.

28

CHAPTER 3

GENERAL PROGRAM SYNTHESIS BENCHMARKS

In this chapter1 we present a suite of 29 general program synthesis benchmark

problems, systematically selected from sources of introductory computer science pro-

gramming problems—Section 3.2 presents our selection criteria. This suite is de-

signed to fill the void of general-purpose programming problems in GP and replace

the domain-specific problems used for benchmarking in other example-based pro-

gram synthesis fields. We describe each problem in natural language in Section 3.3

and present each problem’s specifications in the form of input/output examples in

Section 3.4, making them suitable to a wide range of program synthesis techniques.

While the problems are not particularly challenging for skilled human programmers,

they are reasonably challenging for beginners and many are arguably too difficult

for existing program synthesis systems, including GP. As textbook problems, they

are not likely representative of real general program synthesis applications, yet they

should prove useful for assessing progress toward this goal.

Beyond describing the 29 problems and the general problem specification, we also

discuss the system-specific implementation decisions that must be made and provide

details of our reference implementation in the PushGP system in Section 3.5. Aside

from the problems themselves, we include recommendations for the performance mea-

sures and statistical procedures required to use them experimentally in Section 3.1.

1Much of the work and writing in this chapter was developed in submissions to GECCO 2014
[36] and GECCO 2015 [38] (the latter of which was expanded into a technical report [37]), both
co-authored with Lee Spector, as well as a journal article submission co-authored with Lee Spector
and James Matheson [39].

29

3.1 Benchmark-Based Comparisons

This section describes the experimental and statistical procedures we recommend

for general program synthesis benchmarking. It covers the methods we use to measure

performance of a program synthesis system, our recommendations for how to limit

the computation used by a system during benchmarking, and statistical procedures

for comparing results. These recommendations constitute a significant portion of the

contribution of this benchmark suite to GP.

3.1.1 Performance Measures

The primary goal of a benchmark problem is to compare the characteristics, in

particular performance, of different methods or algorithms on problems with traits

similar to actual applications of those methods. Here we explore options for measuring

the performance of GP systems on general program synthesis benchmark problems.

General program synthesis problems fall into the category of “uncompromising”

problems: problems for which any acceptable solution must perform as well on each

test case as it is possible to perform on that test case; that is, an uncompromising

problem is a problem for which it is not acceptable for a solution to perform sub-

optimally on any one test case in exchange for good performance on others [39].

More formally, consider a problem defined by the set of test cases T where the set of

programs in the search space is P and pj(ti) is the error produced by program pj ∈ P

on test case ti ∈ T with lower error being better. This problem is uncompromising

if a program p ∈ P would be considered a successful program to the problem if and

only if p(ti) ≤ pj(ti) for all ti ∈ T and pj ∈ P .

The most frequently used performance metrics in GP papers include success rate,

computational effort, and mean best fitness. Success rate measures the percent of

runs performed that find a successful program (sometimes called an “ideal solution”

or “correct program”). Computational effort extends success rate to estimate the

30

number of program evaluations necessary to find a successful program with high

probability [61]. The best fitness of a run is simply the best fitness achieved by a

program during the run; the mean best fitness of a set of runs is the mean of the best

fitnesses found in the runs.

Recent discussions of benchmarks in GP have criticized the use of success rate and

computational effort, instead recommending either mean best fitness or testing with a

withheld generalization data set [85, 135]. The main criticisms cited are that success

rate and computational effort “measure how well a method solves trivial problems”

and that they have “poor accuracy and statistical invalidity” [85]. Luke and Panait

argue that comparisons of genetic programming techniques based on solution counts

could be misleading for types of problems in which ideal solutions are unlikely to be

found, and for which one seeks a program with minimal—but probably not zero—

error [82]. We have no quarrel with Luke and Panait on this point in the context of

such problems. But for many uncompromising problems, including general program

synthesis problems, programs that do not pass all tests do not count as solutions.

Therefore, we are not interested in programs that are only approximately correct, as

might be appropriate in the context of other problems for which GP is used, such as

symbolic regression and classification.

The success rate of a set of GP runs gives more information than best fitness about

how well the system performs on uncompromising problems, since it measures how

often the system finds perfect programs. We do agree with White et al. [135] that

programs that achieve perfection on the training set should be checked for overfitting

by testing on withheld generalization data, which we call the unseen test set. A

program should only count as a successful program if it achieves zero error on both

the training set and the unseen test set, ensuring that it does not simply memorize

the training set. While we agree that computational effort seems to have statistical

problems, statistics for success rates are relatively straight forward.

31

We argue more generally that the ability to solve a traditional programming bench-

mark problem perfectly does not indicate the triviality of the problem. If our goal is

to someday have GP evolve complex software that performs important functionality

without having to be coded by humans, we would hope that such a system would

pass all of its tests before going into use2. The purpose of program synthesis bench-

mark problems is to compare the performances of GP methods on program synthesis

problems; as such, we would expect GP to be able to solve them in order to have a

hope of solving real program synthesis problems.

3.1.2 Computational Budget

When comparing success rates of different GP methods, we advise taking care to

ensure each method receives similar amounts of computation. Using CPU time or wall

time as a proxy for computational requirements has many flaws, including differing

greatly for the same computation based on the machine used, the machine’s load,

and the optimization of the GP system. Instead, since program evaluations often

dominate the runtime of GP algorithms, most comparisons in the literature use a

unit related to program evaluation to measure the computation used by the system.

The computational effort measurement takes into account program evaluations by

including population size and generation of found solutions in its calculation, but we

would like to avoid using computational effort since it may have statistical issues.

The approach that we prefer prescribes a budget to limit the computation of the GP

system. Options for computation budgets offered by the community survey in [135]

include, in increasing level of granularity: number of generations, number of program

fitness evaluations, number of program executions (i.e. number of times any program

2We note that for many large-scale software applications, it is not normal or reasonable to expect
all test cases to be passed. Indeed, most applications are released with known bugs. Nonetheless, the
goal of passing all test cases is a useful approximation even for these cases, and is strictly required
for mission critical programs and for the most important subset of the tests in all systems.

32

is executed), and number of point evaluations (i.e. number of instructions or literals

executed).

Using the number of generations as the computational budget is equivalent to us-

ing the number of program fitness evaluations if the population size is also prescribed,

with the drawback that it does not allow for varying population sizes. Prescribing

the number of program fitness evaluations provides a good level of control, assuming

that each GP system tests every test case during every program evaluation. But,

some recent GP techniques require a small subset of the test cases be used during

each program evaluation [109, 30]. These techniques would be at a disadvantage if

they must adhere to numbers of program evaluations equivalent to techniques that

use every test case during evaluation. In fact, both of these papers report results

relative to the number of program executions in order to make the comparisons fair.

Limiting the number of point evaluations seems too fine of a measurement that could

vary largely based on the GP system and how high-level the language is in which

programs evolve. This method may be more accurate than using number of program

executions when using a single GP system with the same instruction set, but likely

includes too much variation when comparing different GP systems.

After considering all of the options, we recommend limiting computation with a

budget based on the maximum number of program executions allowed in a run. This

method allows for flexibility in many areas of algorithm design while ensuring sys-

tems receive similar computation. That said, it may nonetheless be difficult to justify

fine-grained numerical comparisons between different systems that may involve qual-

itatively different kinds of costs and each may be parameterized in radically different

ways. In many cases, the most interesting question to ask vis-a-vis a particular sys-

tem on a particular problem may just be whether the system can solve the problem

at all, and if so, whether it can solve it reasonably reliably. Nevertheless, we aim here

33

to describe specifications that will allow for as much cross-system comparability as

possible.

If we want to compare results with non-GP program synthesis techniques, we

must look for other performance measures since many other techniques are not based

on generating and testing full programs. Outside of GP, other program synthesis

research primarily uses execution time to measure performance of synthesis systems.

Often these papers set a execution time limit, and report runs as failed if they do

not find perfect solution programs within that limit. Many systems, especially those

that are deterministic, use a single run of the system to collect results. As we discuss

above, there are issues with using execution times in performance measures. But,

when comparing GP to systems not based on program evaluations, this may be the

best option.

3.1.3 Statistical Procedure

In order to determine the statistical significance and reliability of the differences

in success rates between two sets of GP runs, we recommend the use of both the

chi-square test and confidence intervals on the difference in success rates.

The chi-square test can be used to test the null hypothesis that there is no asso-

ciation between the success rates of two methods. We will reject the null hypothesis

if the p-value is less than 0.05. We use the R implementation of the chi-square test

(pairwise.prop.test) with Holm correction when more than two systems are com-

pared on the same problem [108]. Since the chi-squared test is inaccurate if the

number of successes or failures is near zero, we instead use the similar but more ac-

curate Fisher’s exact test with Holm correction if any number of successes or failures

is below 5 [96].

There has recently been increasing criticism of null hypothesis significance testing

in the sciences, for example [15], which instead recommends the use of confidence

34

intervals to indicate the reliability and precision of results. To supplement null hy-

pothesis significance testing, we recommend reporting the difference in success rates

along with a confidence interval of the difference. We will calculate confidence inter-

vals using the R implementation in the prop.test function [108].

3.2 Problem Selection Criteria

Here we describe the criteria we used for selecting problems for the benchmark

suite. Several of our criteria overlap with those described in the GP benchmarks

papers [85, 135], such as selecting problems that are varied, relevant, realistically

difficult, representation-independent, and precisely defined.

This benchmark suite is designed for systems that use example inputs and their

corresponding outputs as the specifications for the desired programs. Thus, a problem

must be defined on a range of inputs that have known correct outputs; it cannot simply

specify the calculation of a single value. For example, a problem that requires the

program to calculate the number of prime numbers less than 1000 would not qualify,

since a correct program takes no inputs and always returns the same value; but, a

similar problem that requires the program to calculate the number of prime numbers

less than an input integer n would meet this requirement, since we could then provide

example inputs for n and their corresponding outputs. This requirement also ensures

that we can generated examples to fill the training set and unseen test set.

The breadth of the problems in the suite should present challenges typical of real

programming tasks. This criterion leads us to choose problems that call for a range

of programming constructs and data types. The problems should require a variety of

sizes and shapes for solution programs, not just artificially small programs.

The benchmark suite should not be biased toward a particular method of synthesis;

it should be possible to attempt to solve them using various GP systems as well

as analytic and search-based program synthesis systems. Since systems generate

35

programs in a variety of languages, we avoid problems that require a specific language

feature or non-standard data type (such as Java objects).

We take our problems from pre-existing sources of introductory programming

problems. From each source, we include all problems that meet the criteria described

above, aiming to avoid biasing the selection of problems. We rejected problems from

other sources that did not meet our criteria, such as the inductive programming

benchmark repository3, other program synthesis and inductive programming papers,

and programming competitions.

3.3 Problem Descriptions

We selected problems from two sources: iJava [91, 90], an interactive textbook

for introductory computer science, and IntroClass [75, 14, 116], a set of problems

originally designed as benchmarks for automatic program repair. Below we describe

each of these sources in further detail and present our natural language description of

each problem, paraphrased from the original source. All problems use functional ar-

guments as inputs besides one that requires reading input from a file. Some problems

require programs to return functional outputs, where others require the program to

print results.

3.3.1 iJava

iJava is an interactive introductory computer science textbook that contains a

number of automatically graded programming problems [91, 90]. Many of its problems

are graded by testing programs against a range of inputs, making them suitable for

automatic generation of input/output examples.

When systematically searching through problems in iJava, we found some groups

of problems that meet our criteria but test similar programming techniques; for each of

3http://www.inductive-programming.org/repository.html

36

these groups, we chose one representative problem, ensuring a reasonable distribution

of problem requirements. Along with each problem name and description, we provide

the question or project number associated with the problem in iJava 3.1.

1. Number IO (Q 3.5.1) Given an integer and a float, print their sum.

2. Small or Large (Q 4.6.3) Given an integer n, print “small” if n < 1000 and

“large” if n ≥ 2000 (and nothing if 1000 ≤ n < 2000).

3. For Loop Index (Q 4.11.7) Given 3 integer inputs start, end, and step, print

the integers in the sequence

n0 = start

ni = ni−1 + step

for each ni < end, each on their own line.

4. Compare String Lengths (Q 4.11.13) Given three strings n1, n2, and n3,

return true if length(n1) < length(n2) < length(n3), and false otherwise.

5. Double Letters (P 4.1) Given a string, print the string, doubling every letter

character, and tripling every exclamation point. All other non-alphabetic and

non-exclamation characters should be printed a single time each.

6. Collatz Numbers (P 4.2) Given a positive integer, find the number of terms

in the Collatz (hailstone) sequence starting from that integer.

7. Replace Space with Newline (P 4.3) Given a string input, print the string,

replacing spaces with newlines. Also, return the integer count of the non-

whitespace characters. The input string will not have tabs or newlines.

37

8. String Differences (P 4.4) Given 2 strings (without whitespace) as input,

find the indices at which the strings have different characters, stopping at the

end of the shorter one. For each such index, print a line containing the index

as well as the character in each string. For example, if the strings are “dealer”

and “dollars”, the program should print:

1 e o

2 a l

4 e a

9. Even Squares (Q 5.4.1) Given an integer n, print all of the positive even

perfect squares less than n on separate lines.

10. Wallis Pi (P 6.4)) John Wallis gave the following infinite product that con-

verges to π/4:

2

3
× 4

3
× 4

5
× 6

5
× 6

7
× 8

7
× 8

9
× 10

9
× ...

Given an integer input n, compute an approximation of this product out to n

terms. Results are rounded to 5 decimal places.

11. String Lengths Backwards (Q 7.2.5) Given a vector of strings, print the

length of each string in the vector starting with the last and ending with the

first, each on a separate line.

12. Last Index of Zero (Q 7.7.8) Given a vector of integers, at least one of which

is 0, return the index of the last occurrence of 0 in the vector.

13. Vector Average (Q 7.7.11) Given a vector of floats, return the average of

those floats. Results are rounded to 4 decimal places.

14. Count Odds (Q 7.7.12) Given a vector of integers, return the number of

integers that are odd, without use of a specific even or odd instruction (but

allowing instructions such as mod and quotient).

38

15. Mirror Image (Q 7.7.15) Given two vectors of integers, return true if one

vector is the reverse of the other, and false otherwise.

16. Super Anagrams (P 7.3) Given strings x and y of lowercase letters, return

true if y is a super anagram of x, which is the case if every character in x is in

y (and false otherwise). To be true, y may contain extra characters, but must

have at least as many copies of each character as x does.

17. Sum of Squares (Q 8.5.4) Given integer n, return the sum of squaring each

integer in the range [1, n].

18. Vectors Summed (Q 8.7.6) Given two equal-sized vectors of integers, return

a vector of integers that contains the sum of the input vectors at each index.

19. X-Word Lines (P 8.1) Given an integer X and a string that can contain

spaces and newlines, print the string with exactly X words per line. The last

line may have fewer than X words.

20. Pig Latin (P 8.2) Given a string containing lowercase words separated by sin-

gle spaces, print the string with each word translated to pig Latin. Specifically,

if a word starts with a vowel, it should have “ay” added to its end; otherwise,

the first letter is moved to the end of the word, followed by “ay”.

21. Negative To Zero (Q 9.6.8) Given a vector of integers, return the vector

where all negative integers have been replaced by 0.

22. Scrabble Score (P 10.1) Given a string of visible ASCII characters, return the

Scrabble score for that string. Each letter has a corresponding value according

to normal Scrabble rules, and non-letter characters are worth zero.

23. Word Stats (P 10.5) Given a file, print the number of words containing n

characters for n from 1 to the length of the longest word, in the format:

39

words of length 1: 12

words of length 2: 3

words of length 3: 0

words of length 4: 5

...

At the end of the output, print a line that gives the number of sentences and a

line that gives the average sentence length using the form:

number of sentences: 4

average sentence length: 7.452423455

A word is any string of consecutive non-whitespace characters (including sen-

tence terminators). Every file will contain at least one sentence terminator

(period, exclamation point, or question mark). The average sentence length is

the number of words in the file divided by the number of sentence terminator

characters.

3.3.2 IntroClass

The set of 6 problems in the IntroClass dataset [75, 14, 116] was designed for

the purpose of benchmarking automatic software defect repair systems. As such,

the authors of this dataset provide a number of buggy programs written by students

trying to solve each problem, taken from students in an introductory computer science

class. For the purposes of general program synthesis from scratch, we will use the

problems themselves but not the accompanying buggy programs.

24. Checksum Given a string, convert each character in the string into its integer

ASCII value, sum them, take the sum modulo 64, add the integer value of

the space character, and then convert that integer back into its corresponding

character (the checksum character). The program must print Check sum is X,

where X is replaced by the correct checksum character.

40

25. Digits Given an integer, print that integer’s digits each on their own line start-

ing with the least significant digit. A negative integer should have the negative

sign printed before the most significant digit.

26. Grade Given 5 integers, the first four represent the lower numeric thresholds

for achieving the grades A, B, C, and D, and will be distinct and in descending

order. The fifth represents the student’s numeric grade. The program must

print Student has a X grade., where X is A, B, C, D, or F depending on the

thresholds and the numeric grade.

27. Median Given 3 integers, print their median.

28. Smallest Given 4 integers, print the smallest of them.

29. Syllables Given a string containing symbols, spaces, digits, and lowercase let-

ters, count the number of occurrences of vowels (a, e, i, o, u, y) in the string

and print that number as X in The number of syllables is X.

3.4 Synthesis Specifications

The natural language descriptions of the problems in Section 3.3 do not provide

all of the information needed to apply program synthesis systems to the problems.

Here we provide additional specifications, aiming to do so in a technique-independent

and system-independent way.

Tables 3.1 and 3.2 present recommendations regarding training and test data for

each problem. While these are merely guidelines, and there may be good reasons

to diverge from them when using different techniques or systems, adhering to these

guidelines will clarify comparisons among techniques and systems. These tables de-

scribe the data types of the inputs and outputs and give reasonable ranges for program

inputs.

41

Table 3.1. For each problem, we give the types of the input and output examples,
and the limits imposed on the inputs. Any printed outputs should be printed by the
program to standard output. The columns Train and Test indicate the recommended
number of input/output examples in the training set and unseen test set respectively.

Name Inputs Outputs Train Test

Number IO integer in [−100, 100], float in
[−100.0, 100.0]

printed
float

25 1000

Small Or Large integer in [−10000, 10000] printed
string

100 1000

For Loop Index integers start and end in
[−500, 500], step in [1, 10]

printed
integers

100 1000

Compare String
Lengths

3 strings of length [0, 49] boolean 100 1000

Double Letters string of length [0, 20] printed
string

100 1000

Collatz Numbers integer in [1, 10000] integer 200 2000
Replace Space
with Newline

string of length [0, 20] printed
string,
integer

100 1000

String
Differences

2 strings of length [0, 10] printed
string

200 2000

Even Squares integer in [1, 9999] printed
string

100 1000

Wallis Pi integer in [1, 200] float 150 50
String Lengths
Backwards

vector of length [0, 50] of strings
of length [0, 50]

printed
string

100 1000

Last Index of
Zero

vector of integers of length [1, 50]
with each integer in [−50, 50]

integer 150 1000

Vector Average vector of floats of length [1, 50]
with each float in
[−1000.0, 1000.0]

float 100 1000

Count Odds vector of integers of length [0, 50]
with each integer in [−1000, 1000]

integer 200 2000

Mirror Image 2 vectors of integers of length
[0, 50] with each integer in
[−1000, 1000]

boolean 100 1000

Super Anagrams 2 strings of length [0, 20] boolean 200 2000
Sum of Squares integer in [1, 100] integer 50 50
Vectors Summed 2 vectors of integers of length

[0, 50] with each integer in
[−1000, 1000]

vector of
integers

150 1500

42

Table 3.2. Continuation of Table 3.1.

Name Inputs Outputs Train Test

X-Word Lines integer in [1, 10], string of length
[0, 100]

printed
string

150 2000

Pig Latin string of length [0, 50] printed
string

200 1000

Negative To Zero vector of integers of length [0, 50]
with each integer in [−1000, 1000]

vector of
integers

200 2000

Scrabble Score string of length [0, 20] integer 200 1000
Word Stats file containing [1, 100] chars printed

string
100 1000

Checksum string of length [0, 50] printed
string

100 1000

Digits integer in
[−9999999999, 9999999999]

printed
integers

100 1000

Grade 5 integers in [0, 100] printed
string

200 2000

Median 3 integers in [−100, 100] printed
integer

100 1000

Smallest 4 integers in [−100, 100] printed
integer

100 1000

Syllables string of length [0, 20] printed
string

100 1000

43

We also provide recommendations for numbers of examples to use in the training

and unseen test sets in Tables 3.1 and 3.24. For most problems, we recommend

between 100 and 200 examples in the training set, depending on the difficulty of

the problem as well as the dimensionality of the input space. A few problems use

fewer examples, either because they have limited input spaces or are simple enough

to solve with fewer cases. We usually recommend using a unseen test set ten times as

large as the training set; again, there are exceptions for problems with limited input

spaces. The method of producing the examples is system-specific; we recommend a

combination of hand-chosen edge cases with randomly generated examples, and will

describe our method in more detail in Section 3.5.

The question of which instructions to make available for a synthesis system to use

for each problem is a complex one. It is important to not cherry pick a small set of

instructions that are known to be sufficient to solve a problem; such a selection may

be difficult for a real-world problem, where it might not be clear which instructions

will be useful. On the other hand, using all available instructions for every problem

expands the search space and may make problems more difficult than necessary. We

recommend a compromise between these approaches in which one first determines

which data types are likely to be useful for solving the problem and then uses all

instructions that operate on those data types. For example, an instruction that

compares the equality of two integers and returns a boolean would be included if

the problem could potentially make use of integers and booleans. By specifying only

the data type requirements for a problem, we can limit the number of instructions

without cherry picking.

4Note that problems using multiple error functions will have multiple test cases per example.

44

3.5 System-Specific Parameters

Whereas Section 3.4 gave technique-independent recommendations for specifying

the benchmark problems for a synthesis system, this section will give more detail

about the system-specific parameters and decisions that must be made in order to

implement these problems in a given program synthesis system. Here we will focus on

our implementation in the PushGP genetic programming system, but we emphasize

that this is just one possible approach and implementation, and that the problems

here could be used in any system that meets the requirements in Section 3.2.

PushGP evolves programs in Push, a stack-based programming language designed

specifically for GP (see Section 2.1.3.1 for more details). We provide a PushGP

reference implementation5 for others to use and to guide other implementations of

these problems. In the rest of this section, we will describe some of the major decisions

necessary for implementing these benchmark problems in PushGP, many of which are

relevant to other implementations.

3.5.1 Generation of Example Data

It is important to experimentally test a synthesis system, regardless of whether

it is deterministic or stochastic, on different sets of examples for a single problem

to ensure that its measured performance is not tied to a particular set of examples.

We would like to create the labeled examples for the training and unseen test sets

automatically so that we do not have to create hundreds of such sets by hand. While

the synthesis system itself will only use a set of examples as specifications, example

generation itself requires more detailed problem specifications.

In order to facilitate the creation of training and test data, we designed a general

system for automatic example generation based on data domains [36]. A data domain

D is a set of program inputs described by either a list of inputs or a random input

5http://thelmuth.github.io/GECCO_2015_Benchmarks_Materials/

45

generator function. The list ("hi", "hello", "howdy", "hey") and a function that

returns "zoo" followed by 0 to 17 random lowercase letters are examples of data

domains, where the former is an enumerated list of four inputs and the latter is

random input generator function of strings at most 20 characters long that start with

the substring "zoo". Along with each data domain D, the user must provide the

integers train(D) and test(D) that indicate the number of training and test examples

respectively to generate from D.

To generate training and test data from a set of data domains {D1, D2, ..., Dn},

we simply take each domain and create the required number of examples. If the

domain Di is an enumerated list of inputs, we select train(Di) and test(Di) of them

at random, without replacement within the training examples or test examples. If the

domain is described by a random input generator, we run it train(Di) and test(Di)

times (with replacement) to create the data. This automatic data generation system

allows for the generation of training and test examples for a wide range of problems.

The freedom to specify hand-chosen examples as well as generate random examples

gives us flexibility to define a wide range of problems. For each problem we include a

small set of hard coded examples that cover edge cases on which synthesized programs

may otherwise fail. These handcrafted examples are added to a larger set of randomly

generated examples designed to cover the remaining space of possible inputs. This

combination ensures that the training and unseen test sets provide sufficient coverage

of difficult edge cases while also allowing us to use a variety of training sets.

Tables 3.3 through 3.10 present detailed descriptions of the data domains we used

to generate training and test examples for each benchmark problem. These tables

have two types of data domains: hard coded lists of inputs (HC) and random input

generators (RNGs). For HC data domains, we give the list of inputs; for RNGs, we

describe the generator. Ranges for inputs are given in Table 3.1. For integer and

float RNGs, inputs are sampled uniformly across the given range; for string RNGs,

46

lengths are sampled uniformly between 1 and the max length given in Table 3.1, and

characters are distributed uniformly across visible ASCII characters along with space,

newline, and tab. If a HC domain is specified by a range such as [40, 50], it includes

every integer in the range inclusive. For HC string inputs, we use " " for the space

character, "\t" for tab, and "\n" for newline.

3.5.2 Error Functions

In software testing or test-driven development, each test usually only tells whether

a program passes or fails. On the other hand, in GP it is common (though not strictly

necessary) to also provide an error function that not only tests whether a program

passes or fails each test case, but also gives an estimate of how badly it failed in

the form of an error value. Error values create a richer search space with more

informative search gradients compared to binary pass/fail tests. Requiring a user

to provide a problem-specific error function does add additional burden on the user

beyond simply providing input/output examples. As such, we have used generic error

functions based simply on output type for most of our benchmark problems; these

standard error functions can easily be defined for their output types. Only when

necessary do we provide problem-specific error functions.

Many of the problems in this suite print results to standard output; our generic

error function for these problems treats the printed outputs as strings and uses Leven-

shtein distance (a measure of string edit distance). Other problems produce numeric

outputs, either returned or printed; for these problems we use absolute error for

our generic error function, parsing printed numbers when possible. Some problems

produce boolean values, or are best measured by a simple binary right or wrong;

here, we use an error of 0 for right and 1 for wrong. Finally, some problems require

problem-tailored error functions, such as vector edit distance or string formatting re-

47

Table 3.3. Data domains for each benchmark problem (part 1).

Name Type Domain Train Test

Number
IO

RNG integer, float 25 1000

Small Or
Large

HC -10000, 0, 980, 1020, 1980, 2020, 10000, [995,
1004], [1995, 2004]

27 0

HC integers in ranges [980, 1019] and [1980, 2019] 0 80
RNG integer 73 920

For Loop
Index

RNG integers: start < 0 < end,
start + (20× step) + 1 > end

10 100

RNG integers: start < end,
start + (20× step) + 1 > end

90 900

Compare HC triplet ("", "", "") 1 0
String HC all permutations of ("", "a", "bc") 6 0
Lengths RNG (repeated twice) all permutations of 2 empty

strings and a string
6 0

RNG (repeated 3 times) all permutations of 2
copies of a string and another string

9 0

RNG random string repeated 3 times 3 100
RNG 3 strings in sorted length order 25 200
RNG 3 strings 50 700

Double
Letters

HC "", "A", "!", " ", "*", "\t", "\n",
"B\n", "\n\n", "CD", "ef", "!!",

"q!", "!R", "!#", "@!", "!F!", "T$L",

"4ps", "q\t ", "!!!",

"i:!i:!i:!i:!i",

"88888888888888888888",

" ",

"ssssssssssssssssssss",

"!!!!!!!!!!!!!!!!!!!!",

"Ha Ha Ha Ha Ha Ha Ha",

"x\ny!x\ny!x\ny!x\ny!x\ny!",
"1!1!1!1!1!1!1!1!1!1!",

"G5G5G5G5G5G5G5G5G5G5",

">_=]>_=]>_=]>_=]>_=]",

"k!!k!!k!!k!!k!!k!!k!"

32 0

RNG string 68 1000
Collatz
Numbers

HC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6171, 6943, 7963,
9257, 9999, 10000

16 0

RNG integer 184 2000

48

Table 3.4. Data domains for each benchmark problem (part 2).

Name Type Domain Train Test

Replace
Space
With
Newline

HC "", "A", "*", " ", "s", "B ", " ",

" D", "ef", "!!", " F ", "T L", "4ps",

"q ", " ", " e", "hi ", " $ ",

" 9", "i !i !i !i !i",

"88888888888888888888",

" ",

"ssssssssssssssssssss",

"1 1 1 1 1 1 1 1 1 1 ",

" v v v v v v v v v v",

"Ha Ha Ha Ha Ha Ha Ha",

"x y!x y!x y!x y!x y!",

"G5G5G5G5G5G5G5G5G5G5",

">_=]>_=]>_=]>_=]>_=]",

"^_^ ^_^ ^_^ ^_^ ^_^ "

30 0

RNG string (with as 20% of characters) 70 1000
String
Differ-
ences

HC pairs of strings: ("" ""), ("" "hi"),

("ThereWorld" ""), ("A" "A"),

("B" "C"), ("&" "#"), ("4" "456789"),

("rat" "hat"), ("new" "net"),

("big" "bag"), ("STOP" "SIGN"),

("abcde" "a"), ("abcde" "abcde"),

("abcde" "edcba"), ("2n" "nn"),

("hi" "zipper"),

("dealer" "dollars"),

("nacho" "cheese"),

("loud" "louder"),

("qwertyuiop" "asdfghjkl;"),

("LALALALALA" "LLLLLLLLLL"),

("!!!!!!" ".?."),

("9r2334" "9223d4r"),

("WellWell" "wellwell"),

("TakeThat!" "TAKETHAT!!"),

("CHOCOLATE^" "CHOCOLATE^"),

("ssssssssss" "~~~~~~~~~~"),

(">_=]>_=]>_" "q_q_q_q_q_"),

("()()()()()" "pp)pp)pp)p"),

("HaHaHaHaHa" "HiHiHiHiHi")

30 0

RNG pair of strings, length > 1 170 0
RNG pair of strings 0 2000

49

Table 3.5. Data domains for each benchmark problem (part 3).

Name Type Domain Train Test

Even
Squares

HC 1, 2, 3, 4, 5, 6, 15, 16, 17, 18, 36, 37, 64, 65,
9600, 9700, 9999

17 0

RNG integer 83 1000
Wallis Pi HC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 198, 199,

200
15 0

RNG integer 135 50
String
Lengths
Back-
wards

HC vector of strings: [], [""], ["" ""], [""

"" ""], ["" "" "" "" "" "" "" "" ""

""], ["abcde"], ["1"], ["abc"

"hi there"], ["!@#" "\n\n\t\t"
"5552\na r"], ["tt" "333" "1" "ccc"]

10 0

RNG vector of strings 90 1000
Last
Index of
Zero

HC vector of integers: [0 1], [1 0], [7 0],

[0 8], [0 -1], [-1 0], [-7 0], [0 -8]

8 0

HC every vector of zeros of length between 1 and
50

30 20

HC all permutations of vector [0 5 -8 9] 20 4
HC all permutations of vector [0 0 -8 9] 10 2
HC all permutations of vector [0 0 0 9] 4 0
RNG vector of integers with at least one 0 78 974

Vector
Average

HC vector of floats: [0.0], [100.0],

[-100.0], [2.0 129.0], [0.12345

-4.678], [999.99 74.113]

6 0

RNG length 50 vector of floats 4 50
RNG vector of floats 90 950

Count
Odds

HC vector of integers: [], [-10], [-9], [-8],

[-7], [-6], [-5], [-4], [-3], [-2],

[-1], [0], [1], [2], [3], [4], [5],

[6], [7], [8], [9], [10], [-947],

[-450], [303], [886], [0 0], [0 1],

[7 1], [-9 -1], [-11 40], [944 77]

32 0

RNG vector of integers, all odd 9 100
RNG vector of integers, all even 9 100
RNG vector of integers, random probability of odd

per vector
150 1800

50

Table 3.6. Data domains for each benchmark problem (part 4).

Name Type Domain Train Test

Mirror
Image

HC pair of vectors of integers: ([] []), ([1]

[1]), ([0] [1]), ([1] [0]), ([-44]

[16]), ([-13] [-12]), ([2 1] [1 2]),

([0 1] [1 1]), ([0 7] [7 0]), ([5 8]

[5 8]), ([34 12] [34 12]), ([456 456]

[456 456]), ([40 831] [-431 -680]),

([1 2 1] [1 2 1]), ([1 2 3 4 5 4 3 2

1] [1 2 3 4 5 4 3 2 1]), ([45 99 0 12

44 7 7 44 12 0 99 45] [45 99 0 12 44

7 7 44 12 0 99 45]), ([24 23 22 21 20

19 18 17 16 15 14 13 12 11 10 9 8 7 6

5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24] [24 23 22 21 20 19 18 17 16 15 14

13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24]), ([33 45 -941]

[33 45 -941]), ([33 -941 45] [33 45

-941]), ([45 33 -941] [33 45 -941]),

([45 -941 33] [33 45 -941]), ([-941

33 45] [33 45 -941]), ([-941 45 33]

[33 45 -941])

23 0

RNG pair of vectors of integers that are mirror
image

37 500

RNG pair of equal vectors of integers 10 100
RNG pair of vectors of integers that are close to

mirror image, but have a few elements
changed

20 200

RNG pair of vectors of integers 10 200

51

Table 3.7. Data domains for each benchmark problem (part 5).

Name Type Domain Train Test

Super
Anagrams

HC pair of strings: ("" ""), ("h" ""), (""

"i"), ("a" "a"), ("c" "b"), ("nn"

"n"), ("c" "abcde"), ("abcde" "c"),

("mnbvccxz" "r"), ("aabc" "abc"),

("abcde" "aabc"), ("edcba" "abcde"),

("moo" "mo"), ("mo" "moo"), ("though"

"tree"), ("zipper" "rip"), ("rip"

"flipper"), ("zipper" "hi"),

("dollars" "dealer"), ("louder"

"loud"), ("ccccc" "ccccccccc"),

("oldwestaction" "clinteastwood"),

("ldwestaction" "clinteastwood"),

("verificationcomplete"

"verificationcomplete"),

("hhhhhhhhhhaaaaaaaaaa"

"hahahahahahahahahaha"), ("aahhhh"

"hahahahahahahahahaha"),

("qwqeqrqtqyquqiqoqpqs" ""),

("qazwsxedcrfvtgbyhnuj" "wxyz"),

("gggffggfefeededdd"

"dddeeefffgggg"), ("dddeeefffgggg"

"gggffggfefeededdd")

30 0

RNG pair of strings, chosen to be close to (or
actually) super anagrams

170 2000

Sum of
Squares

HC 1, 2, 3, 4, 5, 100 6 0

RNG integer 44 50
Vectors
Summed

HC pair of vectors of integers: ([] []), ([0]

[0]), ([10] [0]), ([5] [3]), ([-9]

[7]), ([0 0] [0 0]), ([-4 2] [0 1]),

([-3 0] [-1 0]), ([-323 49] [-90 -6])

10 0

RNG pair of length 1 vectors of integers 5 0
RNG pair of length 50 vectors of integers 10 100
RNG pairs of vectors of integers 125 1400

X-Word
Lines

HC pair of strings and integers (too long to print,
see reference implementation for details)

46 0

RNG pair of strings and integers 104 2000

52

Table 3.8. Data domains for each benchmark problem (part 6).

Name Type Domain Train Test

Pig Latin HC "", "a", "b", "c", "d", "e", "i",

"m", "o", "u", "y", "z", "hello",

"there", "world", "eat", "apple",

"yellow", "orange", "umbrella",

"ouch", "in", "hello there world",

"out at the plate",

"nap time on planets",

"supercalifragilistic",

"expialidocious", "u" repeated for 50
characters, "s" repeated for 50 characters,
"w " repeated for 50 characters, "e "

repeated for 50 characters, "ha " repeated
for 50 characters, "x y" repeated for 50
characters

33 0

RNG string 167 1000
Negative
To Zero

HC vector of integers: [], [-10], [-1], [0],

[1], [10], [0 0], [0 1], [-1 0], [-90

-6], [-16 33], [412 111]

12 0

RNG length 1 vector of integers 5 0
RNG vector of negative integers 9 100
RNG vector of positive integers 9 100
RNG vector of integers 165 1800

Scrabble HC each single lowercase letter 26 0
Score HC each single uppercase letter 0 26

HC "", "*", " ", "Q ", "zx", " Dw", "ef",

"!!", " F@", "ydp", "4ps",

"abcdefghijklmnopqrst",

"ghijklmnopqrstuvwxyz",

"zxyzxyqQQZXYqqjjawp",

"h w h j##r##r\ n+JJL",

"i !i !i !i !i",

"QQQQQQQQQQQQQQQQQQQQ",

"$$$$$$$$$$$$$$$$$$$$",

"wwwwwwwwwwwwwwwwwwww",

"1 1 1 1 1 1 1 1 1 1 ",

" v v v v v v v v v v",

"Ha Ha Ha Ha Ha Ha Ha",

"x y!x y!x y!x y!x y!",

"G5G5G5G5G5G5G5G5G5G5"

24 0

RNG string with at least 2 characters 150 974

53

Table 3.9. Data domains for each benchmark problem (part 7).

Name Type Domain Train Test

Word
Stats

HC string (too long to print, see reference
implementation for details)

36 0

RNG string containing at least one sentence
terminator

64 1000

Checksum HC string (too long to print, see reference
implementation for details)

12 0

RNG string 88 1000
Digits HC -9495969798, -20008000, -777777, -9876, -482,

-97, -20, 0, 19, 620, 24068, 512000, 8313227,
30000000, 9998887776

15 0

RNG integer taken from logarithmic distribution 85 1000
Grade HC quintuplet of integers: (80 70 60 50 85),

(80 70 60 50 80), (80 70 60 50 79),

(80 70 60 50 75), (80 70 60 50 70),

(80 70 60 50 69), (80 70 60 50 65),

(80 70 60 50 60), (80 70 60 50 59),

(80 70 60 50 55), (80 70 60 50 50),

(80 70 60 50 49), (80 70 60 50 45),

(90 80 70 60 100), (90 80 70 60 0),

(4 3 2 1 5), (4 3 2 1 4), (4 3 2 1

3), (4 3 2 1 2), (4 3 2 1 1), (4 3 2

1 0), (100 99 98 97 100), (100 99 98

97 99), (100 99 98 97 98), (100 99 98

97 97), (100 99 98 97 96), (98 48 27

3 55), (98 48 27 3 14), (98 48 27 3

1), (45 30 27 0 1), (45 30 27 0 0),

(48 46 44 42 40), (48 46 44 42 41),

(48 46 44 42 42), (48 46 44 42 43),

(48 46 44 42 44), (48 46 44 42 45),

(48 46 44 42 46), (48 46 44 42 47),

(48 46 44 42 48), (48 46 44 42 49)

41 0

RNG quintuplet of integers, with the first four
distinct and decreasing

159 2000

Median RNG triplet of integers, all equal 10 100
RNG triplet of integers, two of three equal 30 300
RNG triplet of integers 60 600

54

Table 3.10. Data domains for each benchmark problem (part 8).

Name Type Domain Train Test

Smallest HC quadruplet of integers: (0 0 0 0), (-44

-44 -7 -13), (0 4 -99 -33), (-22 -22

-22 -22), (99 100 99 100)

5 0

RNG quadruplet of integers, all equal 5 100
RNG quadruplet of integers, three of four equal 10 100
RNG quadruplet of integers in range [0, 100] 20 200
RNG quadruplet of integers 60 600

Syllables HC "", "a", "v", "4", "o", " ", "aei",

"ouy", "chf", "quite", "a r e9j>",

"you are many yay yea",

"ssssssssssssssssssss",

"oooooooooooooooooooo",

"wi wi wi wi wi wi wi",

"x y x y x y x y x y ",

"eioyeioyeioyeioyeioy"

17 0

RNG string (with each char having 20% chance of
being a vowel)

83 1000

quirements. We give the details of the error functions for each problem in Tables 3.11

and 3.12.

In PushGP, it is conventional to take functional return values from the tops of

stacks after a program finishes executing (see Section 2.1.3.1). But, some evolved

programs finish executing with an empty return stack, resulting in no value to return.

In these cases we give a penalty error value. We choose problem-specific penalties

that should be larger than any reasonable error for an actual return value.

For some problems we found it appropriate to use multiple error functions per in-

put/output example. For example, the Replace Space With Newline problem requires

both a printed string and a returned integer. For problems like this, we produce mul-

tiple error values for a single example. Additionally, we find that PushGP performs

better on some problems when we use more than one error function per example,

even where not strictly necessary. For example, we found no solutions to the X-Word

Lines problem when using Levenshtein distance as the only error function, but found

55

Table 3.11. The error functions used for each problem. For problems that require
the program to print, we usually use Levenshtein distance on the printed string and
the correct output. Additionally, we add a second error function to many problems
by parsing part or all of a printed string as a different data type and comparing to
the correct output. For example, for the Number IO problem, if the printed output
can be parsed as a float, it is done so and used as a float error. For such problems,
an output that cannot be parsed correctly receives a penalty error. Continued in
Table 3.12.

Problem Error Function

Number IO printed string Levenshtein distance; printed float error
Small Or Large printed string Levenshtein distance
For Loop Index printed string Levenshtein distance
Compare String
Lengths

boolean error

Double Letters printed string Levenshtein distance
Collatz Numbers integer error
Replace Space with
Newline

printed string Levenshtein distance; integer error

String Differences printed string Levenshtein distance; numeric difference in
number of lines with correct format

Even Squares printed string Levenshtein distance; numeric difference in
number of lines with correct format; printed integer error
on each line

Wallis Pi float error; Levenshtein distance of string version of float
String Lengths
Backwards

printed string Levenshtein distance

Last Index of Zero integer error
Vector Average float error
Count Odds integer error
Mirror Image boolean error
Super Anagrams boolean error
Sum of Squares integer error
Vectors Summed integer error at each position in vector
X-Word Lines printed string Levenshtein distance; integer error for

number of newlines; numeric difference in correct words on
each line summed over lines

Pig Latin printed string Levenshtein distance
Negative To Zero integer vector Levenshtein distance
Scrabble Score integer error
Word Stats printed string Levenshtein distance; integer error for

printed number of sentences; float error for printed average
sentence length

Checksum printed string Levenshtein distance; for last printed char in
string, ASCII value error

56

Table 3.12. Error functions, continued from Table 3.11.

Problem Error Function

Digits printed string Levenshtein distance
Grade printed string Levenshtein distance; printed char error for

grade char
Median printed string right/wrong
Smallest printed string right/wrong
Syllables printed string Levenshtein distance; printed integer error

solutions after adding additional error functions calculating the number of newline

characters and summed errors of differences in number of words on each line. When

using multiple error functions for a single input/output example, we say that there

are multiple test cases per example. We can then treat each test case separately when

the parent selection method requires it.

3.5.3 Instruction Sets

As discussed in Section 3.4, we have chosen to specify the data types relevant

to each problem and then include all instructions that use those data types in each

problem’s instruction set. Table 3.13 presents the Push data types we chose for each

problem. The column “# Instructions” reports the number of instructions, terminals,

and ERCs used for each problem. The remaining columns show which data types were

used for each problem. For example, the Number IO problem used all instructions

relevant to integers, floats, and printing. The “exec” column signifies instructions that

use Push’s exec stack, which typically perform control flow manipulations such as

conditionals, iteration, and subfunctions defined through tagging [127]. The “print”

column includes instructions that print data to standard output, and “file input”

includes a small set of file reading instructions. The “Problems” row simply counts

how many problems use each data type. The “Instructions” row shows the number

of Push instructions that primarily use each data type; some use multiple types but

are only counted once.

57

Table 3.13. Instructions and data types used in our PushGP implementation of
each problem. See text for details.

Problem #
In

st
ru

ct
io

n
s

e
x
e
c

in
te

g
e
r

fl
o
a
t

b
o
o
le

a
n

ch
a
r

st
ri

n
g

v
e
ct

o
r

o
f

in
te

g
e
rs

v
e
ct

o
r

o
f

fl
o
a
ts

v
e
ct

o
r

o
f

st
ri

n
g
s

p
ri

n
t

fi
le

in
p
u
t

Number IO 50 x x x
Small Or Large 103 x x x x x
For Loop Index 74 x x x x
Compare String Lengths 98 x x x x
Double Letters 132 x x x x x x
Collatz Numbers 102 x x x x
Replace Space with
Newline

135 x x x x x x

String Differences 135 x x x x x x
Even Squares 72 x x x x
Wallis Pi 103 x x x x
String Lengths
Backwards

134 x x x x x x

Last Index of Zero 101 x x x x
Vector Average 88 x x x x
Count Odds 104 x x x x
Mirror Image 102 x x x x
Super Anagrams 129 x x x x x
Sum of Squares 71 x x x
Vectors Summed 68 x x x
X-Word Lines 134 x x x x x x
Pig Latin 141 x x x x x x
Negative To Zero 102 x x x x
Scrabble Score 158 x x x x x x
Word Stats 281 x x x x x x x x x x x
Checksum 136 x x x x x x
Digits 133 x x x x x x
Grade 112 x x x x x
Median 75 x x x x
Smallest 76 x x x x
Syllables 141 x x x x x x

Problems 28 29 5 26 11 15 7 2 2 17 1
Instructions 28 28 31 19 17 39 31 31 31 10 4

58

Table 3.14. The terminals (constants and ERCs) used for the problem; ERC ranges
are given in Table 3.15. Here, char constants are represented in the Clojure style,
starting with a backslash, and strings are surrounded by double quotation marks.

Problem Terminals (besides inputs)

Number IO integer ERC, float ERC
Small Or Large “small”, “large”, integer ERC
For Loop Index
Compare String Lengths boolean ERC
Double Letters \!
Collatz Numbers 0, 1, integer ERC
Replace Space with Newline \space, \newline, string ERC, char ERC
String Differences \space, \newline, integer ERC
Even Squares
Wallis Pi 2 integer ERCs, 2 float ERCs
String Lengths Backwards integer ERC
Last Index of Zero 0
Vector Average
Count Odds 0, 1, 2, integer ERC
Mirror Image boolean ERC
Super Anagrams boolean ERC, char ERC, integer ERC
Sum of Squares 0, 1, integer ERC
Vectors Summed [], integer ERC
X-Word Lines \newline, \space
Pig Latin “ay”, \space, \a, \e, \i, \o, \u, “aeiou”, string

ERC, char ERC
Negative To Zero 0, []
Scrabble Score vector containing Scrabble values (indexed by

ASCII values)
Word Stats \., \?, \!, \space, \tab, \newline, [], “words of

length ”, “: ”, “number of sentences: ”, “average
sentence length: ”, integer ERC

Checksum “Check sum is ”, \space, 64, integer ERC, char
ERC

Digits \newline, integer ERC [-10, 10]
Grade “Student has a ”, “ grade.”, “A”, “B”, “C”, “D”,

“F”, integer ERC
Median integer ERC
Smallest integer ERC
Syllables “The number of syllables is ”, “aeiouy”, \a, \e, \i,

\o, \u, \y, char ERC, string ERC

59

Table 3.15. ERC ranges used in our problems. For char and string ERCs, “visible
chars” indicates all visible ASCII characters plus space, newline, and tab.

Problem ERC Ranges

Number IO integer ERC [−100, 100], float ERC [−100.0, 100.0)
Small Or Large integer ERC [−10000, 10000]
For Loop Index
Compare String Lengths boolean ERC [true, false]
Double Letters
Collatz Numbers integer ERC [−100, 100]
Replace Space with Newline char ERC (visible chars), string ERC (lowercase

letters and spaces, with space having 20% chance
at each character)

String Differences integer ERC [−10, 10]
Even Squares
Wallis Pi integer ERC [−10, 10], integer ERC [−500, 500],

float ERC [−500.0, 500.0)
String Lengths Backwards integer ERC [−100, 100]
Last Index of Zero integer ERC [−50, 50]
Vector Average
Count Odds integer ERC [−1000, 1000]
Mirror Image boolean ERC [true, false]
Super Anagrams boolean ERC [true, false], integer ERC

[−1000, 1000], char ERC (visible chars)
Sum of Squares integer ERC [−100, 100]
Vectors Summed integer ERC [−1000, 1000]
X-Word Lines
Pig Latin char ERC (visible chars), string ERC (lowercase

letters and spaces, with space having 20% chance
at each character)

Negative To Zero
Scrabble Score
Word Stats integer ERC [−100, 100]
Checksum integer ERC [−128, 128], char ERC (visible chars)
Digits integer ERC [−10, 10]
Grade integer ERC [0, 100]
Median integer ERC [−100, 100]
Smallest integer ERC [−100, 100]
Syllables char ERC (visible chars), string ERC (lowercase

letters, spaces, digits, and symbols, with vowels
having 20% chance at each character)

60

Table 3.16. Push data types and instructions used in our experiments. For each
combination of data types listed in the first column, we list all of the Push instructions
that are included in the instruction set when those data types are present for the
problem. Continued in Tables 3.17 and 3.18.

Data Types Instructions

boolean boolean empty, boolean swap, boolean eq,
boolean invert first then and, boolean flush, boolean rot,
boolean and, boolean invert second then and, boolean xor,
boolean not, boolean or, boolean dup, boolean pop

boolean, char char iswhitespace, char empty, char isletter, char eq,
char isdigit

boolean, char,
string

string containschar

boolean, exec exec eq, exec when, exec if, exec do*while, exec while,
exec empty

boolean, float float lt, boolean fromfloat, float empty, float lte, float gte,
float fromboolean, float gt, float eq

boolean, float,
vector float

vector float contains

boolean, integer integer eq, boolean yank, integer gte, integer lt, integer lte,
boolean shove, integer empty, integer gt,
integer fromboolean, boolean frominteger,
boolean stackdepth, boolean yankdup

boolean, integer,
vector integer

vector integer contains

boolean, string string eq, string emptystring, string fromboolean,
string contains, string empty

boolean, string,
vector string

vector string contains

boolean,
vector float

vector float emptyvector, vector float empty,
vector float eq

boolean,
vector integer

vector integer eq, vector integer empty,
vector integer emptyvector

boolean,
vector string

vector string empty, vector string emptyvector,
vector string eq

char char dup, char swap, char flush, char rot, char pop
char, exec, string exec string iterate
char, float char fromfloat, float fromchar
char, integer char shove, char stackdepth, integer fromchar, char yank,

char yankdup, char frominteger
char, integer, string string occurrencesofchar, string setchar, string nth,

string indexofchar

61

Table 3.17. Push data types and instructions (part 2).

Data Types Instructions

char, string string removechar, char allfromstring,
string replacefirstchar, string replacechar, string conjchar,
string fromchar, string first, string last

exec exec y, exec pop, exec rot, exec s, exec k, exec flush,
exec swap, exec dup, exec noop, tag, tagged

exec, float,
vector float

exec do*vector float

exec, integer exec stackdepth, exec do*times, exec do*count,
exec do*range, exec yank, exec yankdup, exec shove

exec, integer,
vector integer

exec do*vector integer

exec, string,
vector string

exec do*vector string

file file readline, file readchar, file EOF, file begin
float float rot, float sin, float cos, float swap, float div, float inc,

float sub, float flush, float add, float tan, float mult,
float max, float pop, float min, float dup, float dec,
float mod

float, integer float yank, float frominteger, float stackdepth, float shove,
float yankdup, integer fromfloat

float, integer,
vector float

vector float indexof, vector float occurrencesof,
vector float nth, vector float set

float, string float fromstring, string fromfloat
float, vector float vector float conj, vector float remove, vector float last,

vector float first, vector float replacefirst,
vector float pushall, vector float replace

integer integer add, integer swap, integer yank, integer dup,
integer yankdup, integer flush, integer shove, integer mult,
integer stackdepth, integer div, integer inc, integer max,
integer sub, integer mod, integer rot, integer dec,
integer min, integer pop

integer, string string substring, string take, string frominteger,
string stackdepth, integer fromstring, string yank,
string yankdup, string length, string shove

integer, string,
vector string

vector string indexof, vector string set, vector string nth,
vector string occurrencesof

integer, vector float vector float shove, vector float length,
vector float stackdepth, vector float subvec,
vector float yank, vector float take, vector float yankdup

62

Table 3.18. Push data types and instructions (part 3).

Data Types Instructions

integer,
vector integer

vector integer remove, vector integer pushall,
vector integer yank, vector integer subvec, vector integer last,
vector integer first, vector integer shove, vector integer indexof,
vector integer occurrencesof, vector integer replace,
vector integer replacefirst, vector integer take,
vector integer stackdepth, vector integer nth, vector integer set,
vector integer length, vector integer yankdup, vector integer conj

integer,
vector string

vector string stackdepth, vector string subvec,
vector string take, vector string shove, vector string yank,
vector string length, vector string yankdup

print print newline
print, boolean print boolean
print, char print char
print, exec print exec
print, float print float
print, integer print integer
print, string print string
print,
vector float

print vector float

print,
vector integer

print vector integer

print,
vector string

print vector string

string string pop, string rot, string rest, string parse to chars,
string reverse, string swap, string split, string flush,
string replacefirst, string butlast, string concat, string replace,
string dup

string,
vector string

vector string remove, vector string conj, vector string first,
vector string pushall, vector string last,
vector string replacefirst, vector string replace

vector float vector float dup, vector float pop, vector float rot,
vector float swap, vector float flush, vector float reverse,
vector float rest, vector float concat, vector float butlast

vector integer vector integer swap, vector integer butlast, vector integer flush,
vector integer rest, vector integer concat, vector integer rot,
vector integer reverse, vector integer pop, vector integer dup

vector string vector string dup, vector string rot, vector string rest,
vector string reverse, vector string butlast, vector string concat,
vector string pop, vector string flush, vector string swap

63

Table 3.14 gives the terminals used for each problem, which encompass constants

and ephemeral random constants (ERCs). ERCs allow for the creation of random

constants in randomly generated code during initialization and mutation. We used

problem-specific ERC ranges, which can be found in Table 3.15. These ranges were

selected as seemed appropriate for each problem; we do not expect that changing

these ranges would have significant impact on results.

Tables 3.16, 3.17, and 3.18 show every Push instruction used in our experiments

and the data types that they require. For example, the string_containschar in-

struction requires that the boolean, char, and string data types be used for a problem

in order to be included; this is because it must use a string and a char as inputs,

and returns a boolean of whether the input string contains the input char. These

tables are intended to give an idea of the scope and complexity of the instructions

used in our experiments. Attempting the problems in another system would obvi-

ously require a different set of instructions specific to the programming language of

the search. While we would expect such a system to use different instructions, we

would also expect similar numbers of instructions that are not cherry-picked for the

individual problems.

3.5.4 PushGP Parameters

In the most recent version of PushGP, genomes are represented by flat sequences

of instructions that may have one or more epigenetic markers attached to each in-

struction (see Section 2.1.3.1). In this work, we use the default epigenetic markers,

which only include a marker that tells how many pairs of parentheses to close after

each instruction when translating the genome into a Push program. We initialize

genomes by selecting a genome size uniformly between 0 and the maximum initial

genome size, which for these runs we set to half of the maximum genome size. Each

64

Table 3.19. The PushGP parameters that were held constant across the problems.
See Section 2.1.3.1 for more information about these parameters. The alignment
deviation was set to 5 for four problems: Number IO, Small Or Large, Median, and
Smallest.

Parameter Value

population size 1000
alternation rate 0.01
alignment deviation 10
uniform mutation rate 0.01
uniform close mutation rate 0.1

Genetic Operator Prob

alternation 0.2
uniform mutation 0.2
uniform close mutation 0.1
alternation followed by uniform mutation 0.5

gene is composed of an instruction taken uniformly from the instruction set, as well

as an epigenetic marker for parentheses ranging from 0 to 3, weighted toward 0.

In our experiments, we keep most of our PushGP system parameters constant

across all problems, with specific details in Table 3.19. The genetic operators in

our system work on the linear Push genomes as described in Section 2.1.3.1. The

only significant PushGP parameters that we vary per problem are the maximum

program size, the maximum number of instruction evaluations that a program may

use per execution, and the maximum number of generations per run. We varied these

parameters based on expected problem difficulty and expected program size necessary

to solve each problem; the exact values are given in Table 3.20. By specifying the

maximum generations, the population size (1000 for all of our runs), and the size of

the training set (see Table 3.1), we also specify the program execution budget, which

is the product of those values.

65

Table 3.20. The PushGP parameters that we varied per problem. “Max Genome
Size” gives the maximum number of instructions that can appear in an individual’s
genome. “Eval Limit” is the number of steps of the Push interpreter that are executed
before stopping a program’s execution; programs halted in this way may still achieve
good results if they print or leave results on the appropriate stack(s) before they are
stopped. “Max Gens” gives the maximum number of generations in a single PushGP
run. “Program Execution Budget” is the maximum number of programs that will be
executed before a run is terminated, which is the product of the maximum generations,
the population size, and the size of the training set.

Problem Max
Genome

Size

Eval
Limit

Max
Gens

Program
Execution

Budget

Number IO 200 200 200 5,000,000
Small Or Large 200 300 300 30,000,000
For Loop Index 300 600 300 30,000,000
Compare String Lengths 400 600 300 30,000,000
Double Letters 800 1600 300 30,000,000
Collatz Numbers 600 15000 300 60,000,000
Replace Space with Newline 800 1600 300 30,000,000
String Differences 1000 2000 300 60,000,000
Even Squares 400 2000 300 30,000,000
Wallis Pi 600 8000 300 45,000,000
String Lengths Backwards 300 600 300 30,000,000
Last Index of Zero 300 600 300 45,000,000
Vector Average 400 800 300 30,000,000
Count Odds 500 1500 300 60,000,000
Mirror Image 300 600 300 30,000,000
Super Anagrams 800 1600 300 60,000,000
Sum of Squares 400 4000 300 15,000,000
Vectors Summed 500 1500 300 45,000,000
X-Word Lines 800 1600 300 45,000,000
Pig Latin 1000 2000 300 60,000,000
Negative To Zero 500 1500 300 60,000,000
Scrabble Score 1000 2000 300 60,000,000
Word Stats 1000 6000 300 30,000,000
Checksum 800 1500 300 30,000,000
Digits 300 600 300 30,000,000
Grade 400 800 300 60,000,000
Median 200 200 200 20,000,000
Smallest 200 200 200 20,000,000
Syllables 800 1600 300 30,000,000

66

CHAPTER 4

LEXICASE SELECTION

In a population-based stochastic search algorithm such as GP, lexicase1 selection

provides a method for selecting individuals to serve as parents of new individuals. As

a behavior-based search driver [65], it can be used any time that potential parents are

assessed with respect to multiple test cases. We give details of the lexicase selection

algorithm in Section 4.1.

We have previously shown that lexicase selection can effectively increase per-

formance while also increasing behavioral diversity on a variety of GP problems

[39, 36, 80, 35]. In Section 4.2, we compare the performance of GP using lexicase

selection to two other common parent selection methods, tournament selection and

IFS, on the general program synthesis benchmark problems given in Chapter 3. Our

results again show marked performance gains by lexicase selection.

In the remainder of the chapter, we explore the properties of lexicase selection to

gather insight into why it performs well compared to other methods. Looking at the

details of a single run of lexicase in Section 4.3 motivated research questions that we

explore further in Sections 4.4 and 4.5. In particular, we examine how lexicase selec-

tion allows GP to explore the search space of programs while concentrating effort on

promising programs. These experiments help explain the performance improvements

we see when using lexicase selection.

1The term “lexicase” has been used previously in unrelated work [130, 129].

67

To select a single parent program for use in a genetic operation:

1. Initialize:

(a) Set candidates to be the entire population of programs.

(b) Set cases to be a list of all of the test cases in the training set in
random order.

2. Loop:

(a) Set candidates to be the subset of the current candidates that
have exactly the best performance of any individual currently in
candidates for the first case in cases.

(b) If candidates contains just a single individual then return it.

(c) If cases contains just a single test case then return a randomly
selected individual from candidates.

(d) Otherwise remove the first case from cases and go to Loop.

Figure 4.1. Pseudocode for the lexicase selection algorithm.

4.1 Lexicase Selection Algorithm2

While variations of the lexicase selection algorithm have been discussed and tested,

the primary version of the algorithm explored in this work is described in pseudocode

in Figure 4.1; in the original publication of lexicase selection, this was called “global

pool, uniform random sequence, elitist lexicase parent selection” [123]. In each parent

selection event, the lexicase selection algorithm first randomly orders the test cases

from the training set. It then eliminates any individuals in the population that do

not have the best performance on the first test case3. Assuming that more than one

individual remains, it then loops, eliminating any individuals that do not have the

2Much of the text in this section is adapted from a journal article submission co-authored with
Lee Spector and James Matheson [39].

3One variation of lexicase that has been suggested is that the retention of only “the best” could
be relaxed to retain all individuals within some distance of the best, but the form of lexicase selection
here is “elitist” in that it retains only the best. This idea seems particularly appealing for problems
that produce floating point errors, such as symbolic regression.

68

best performance of the remaining individuals on the second test case. This process

continues until only one individual remains and is selected, or until all test cases have

been used, in which case it randomly selects one of the remaining individuals.

The theoretical worst-case time complexity of the lexicase selection algorithm for

selecting parents each generation is O(P 2T), where P is the population size and T

is the number of test cases. In comparison, traditional tournament selection must

sum the errors from every test case for every individual, giving a time complexity of

O(PT). While lexicase selection is theoretically slower in the worst case, in practice

it often quickly eliminates many candidates and does not need to loop over every test

case, leading to better running times. Additionally, if lexicase selection allows us to

more often solve problems than other selection methods, it may be preferred even if

it runs slower than those methods. In practice, we have found that lexicase is about

2 to 10 times slower per generation than tournament selection [39].

Lexicase selection sometimes selects individuals that perform well on a relatively

small number of test cases, even if they perform very poorly on other cases. This

differs from most other selection algorithms, which select individuals based on aggre-

gations of performance on all test cases into a single scalar fitness value. As such,

lexicase often selects specialist individuals that solve parts of the problem extremely

well, as opposed to tournament selection and IFS, which select generalist individuals

that have good performance on average across the test cases. Although these individ-

uals may have worse summed error across all test cases, the hope is they will be able

to reproduce in ways that pass on their preeminence on certain cases while improving

with respect to others. In order to give every test case equal selection pressure, each

lexicase selection event uses a randomly shuffled list of test cases to determine which

test cases are treated as most important.

69

4.2 Performance Results4

A primary goal of this work is to empirically compare the performance of GP with

lexicase selection to other selection methods on the general program synthesis bench-

mark problems described in Chapter 3. Here we present results using four different

parent selection methods: lexicase selection, baseline uniform selection, tournament

selection, and implicit fitness sharing. These experiments use 100 runs of PushGP

per selection method (using different random seeds), with other system parameters

given in Section 3.5.4.

Our first comparison method, uniform selection, provides a simple baseline parent

selection operator5. Uniform selection selects parents at random without bias from the

population. This approach does not take into account performance on the training set

when selecting parents; as such, it conducts a random walk using the same variation

operators as with other techniques without providing selection pressure. The purpose

of this baseline is to explore whether or not parent selection plays any role in GP

performance, or whether the other components of GP are sufficient.

We also compare lexicase selection to parent selection methods that aggregate

errors on test cases into a single scalar fitness value per individual. Most common

parent selection methods, including tournament selection and implicit fitness sharing,

fall into this category. Implicit fitness sharing (IFS), an extension of tournament

selection, makes an especially interesting comparison to lexicase selection, since it

was designed specifically with the goal of increasing population diversity [86, 117] (see

4Much of the text in this section is adapted from a technical report co-authored with Lee Spec-
tor [37].

5Due to a bug, an instruction equivalent to exec_noop was included in the instruction set for the
runs using uniform selection. We believe that this has a negligible to zero effect on our results. This
instruction does nothing when evaluated, simply leaving the stack states unchanged. The instruction
exec_noop already appeared in each instruction set once, so this simply added a second equivalent
instruction. Additionally, the instruction sets we used always have 50 or more instructions, and
usually more than 100 (see Table 3.13). Such large instruction sets dilute the importance of a single
instruction, especially one that does nothing.

70

Section 2.2 for more details). Most of the problems here produce non-binary error

values, for which we use the non-binary adaptation of IFS given in Equation 2.2. As

required by this method, we normalize error values to [0, 1] by dividing each error by

a maximum allowed error value, which differs per problem based on the problem’s

error function. Tournament selection and IFS base selection on tournaments; we use

a tournament size of 7 for both methods.

When using uniform selection, PushGP only found successful programs for two

problems. It found 6 generalizing solutions on the Number IO problem, and 19

generalizing solutions on the Mirror Image problem. Considering uniform selection

makes GP into a random walk, it is surprising that even as many as 19 solutions were

found on any problem, no matter how easy. Still, it failed completely in 100 runs on

the other 27 problems.

Table 4.1 gives the results of using lexicase selection, tournament selection, and im-

plicit fitness sharing. Over the 29 problems, PushGP with lexicase selection produced

at least one successful run on nine more problems than either tournament selection

or IFS. Additionally, there were 8 problems where lexicase selection achieved a sig-

nificantly higher number of successful runs than the other two using the chi-square

test, where IFS showed significant improvement on just one problem and tournament

selection none. Lexicase selection had more successes on 21 of the 29 problems. The

confidence intervals of the difference in success rate between lexicase and tournament

or IFS generally show positive or neutral effects of using lexicase. All three of these

parent selection methods clearly outperform the baseline uniform selection method.

To examine aggregate performance of lexicase compared to the other selection

methods, we examine the hypothesis that lexicase selection does not affect GP’s

performance compared to the other two methods. If we assume that all three methods

have equal probability of achieving the best performance on a given problem, then we

can use the binomial distribution with p = 1
3

to calculate the probability of lexicase

71

Table 4.1. The first three columns give the number of successful runs out of 100 for
each setting, where L is lexicase selection, T is tournament selection, and I is implicit
fitness sharing. For each problem, underline indicates significant improvement over
the other two selection methods (see Section 3.1.3). The columns L−T and L−I give
the differences in success rate (successful runs divided by total runs) between lexicase
and the other two settings. The columns L−T CI and L−I CI give 95% confidence
intervals of the differences in success rate. Note that we omitted the 7 problems on
which no solutions were found: Collatz Numbers, String Differences, Wallis Pi, Super
Anagrams, Pig Latin, Word Stats, and Checksum.

Problem L T I L−T L−T CI L−I L−I CI

Number IO 98 68 72 0.30 [0.19, 0.41] 0.26 [0.16, 0.36]
Small Or
Large

5 3 3 0.02 [−0.04, 0.08] 0.02 [−0.04, 0.08]

For Loop
Index

1 0 0 0.01 [−0.02, 0.04] 0.01 [−0.02, 0.04]

Compare
String Lengths

7 3 6 0.04 [−0.03, 0.11] 0.01 [−0.07, 0.09]

Double Letters 6 0 0 0.06 [0.00, 0.12] 0.06 [0.00, 0.12]
Replace Space
with Newline

51 8 16 0.43 [0.31, 0.55] 0.35 [0.22, 0.48]

Even Squares 2 0 0 0.02 [−0.02, 0.06] 0.02 [−0.02, 0.06]
String Lengths
Backwards

66 7 10 0.59 [0.47, 0.71] 0.56 [0.44, 0.68]

Last Index of
Zero

21 8 4 0.13 [0.02, 0.24] 0.17 [0.07, 0.27]

Vector
Average

16 14 13 0.02 [−0.09, 0.13] 0.03 [−0.08, 0.14]

Count Odds 8 0 0 0.08 [0.02, 0.14] 0.08 [0.02, 0.14]
Mirror Image 78 46 64 0.32 [0.18, 0.46] 0.14 [0.01, 0.27]
Sum of
Squares

6 2 0 0.04 [−0.02, 0.10] 0.06 [0.00, 0.12]

Vectors
Summed

1 0 0 0.01 [−0.02, 0.04] 0.01 [−0.02, 0.04]

X-Word Lines 8 0 0 0.08 [0.02, 0.14] 0.08 [0.02, 0.14]
Negative To
Zero

45 10 8 0.35 [0.23, 0.47] 0.37 [0.25, 0.49]

Scrabble Score 2 0 0 0.02 [−0.02, 0.06] 0.02 [−0.02, 0.06]
Digits 7 0 1 0.07 [0.01, 0.13] 0.06 [0.00, 0.12]
Grade 4 0 0 0.04 [−0.01, 0.09] 0.04 [−0.01, 0.09]
Median 45 7 43 0.38 [0.26, 0.50] 0.02 [−0.13, 0.17]
Smallest 81 75 98 0.06 [−0.06, 0.18] −0.17 [−0.26,−0.08]
Syllables 18 1 7 0.17 [0.08, 0.26] 0.11 [0.01, 0.21]

Solved 22 13 13

72

selection achieving the best performance on 21 of the 29 problems as 1.6 × 10−5, an

extremely unlikely event. On the other hand, if we assume that lexicase selection has

a 2
3

chance of achieving better performance than the other methods, we get a much

more likely probability of 0.13. This shows that it is highly unlikely that lexicase

selection achieved more successful runs on 21 problems simply by chance.

As another method of examining aggregate performance, we calculate the average

rank of each method across the 29 problems, with 1 being best and 3 being worst (on

tied problems, such as the 7 problems for which no method found a single solution,

each method gets the average of the tied ranks):

Lexicase IFS Tournament

1.28 2.26 2.47

Lexicase achieves the lowest average rank, as it has the most or tied for the most

successes on every problem except for one. The Friedman test on this data gives

us a p-value of 3.4× 10−8, indicating that at least one method performs significantly

differently from the others. A post-hoc Wilcoxon-Nemenyi-McDonald-Thompson test

[41] indicates that lexicase significantly outranks both IFS and tournament (p <

0.0001). These results strongly indicate the utility of lexicase selection for general

program synthesis problems.

The data in Table 4.1 only reflect solutions that generalize by achieving zero error

on the unseen test set. Some problems seem to lend themselves to generalization

more than others; for example, PushGP using lexicase selection found 14 programs

with zero error on the training set for the Super Anagrams problem, none of which

generalized to the unseen test set. On the other hand, 51 out of the 54 programs

with zero training error on the Replace Space With Newline problem generalized to

the unseen test set. For lexicase selection, five problems resulted in 20 or more runs

that passed the training set that did not generalize (Small Or Large, Compare String

Lengths, Last Index of Zero, Negative To Zero, and Median), and five problems

73

had between 10 and 20 runs that did not generalize (String Lengths Backwards,

Mirror Image, Super Anagrams, Digits, and Smallest)6. These 10 problems show an

important area for future study: how to evolve programs that generalize to unseen

data for general program synthesis problems. Among these problems are the only five

in the suite that give a correct/incorrect binary error as fitness in our implementation:

Compare String Lengths, Mirror Image, Super Anagrams, Median, and Smallest.

This shows the difficulty of evolving general programs based entirely on correctness

of output, and suggests that these problems might be better tackled if they can be

transformed into problems with more informative fitness functions.

4.2.1 Experimental Significance to Benchmark Suite

With regard to the problems themselves, this experiment illustrates the ability

of this benchmark suite to provide useful comparisons between multiple systems or

parameter settings. By looking at the number of problems solved by each technique,

how often each technique showed significant improvements over the others, and the

average rank of each technique across the problems, we can clearly see that lexi-

case selection increases PushGP’s ability to solve general program synthesis problems

compared to tournament selection and IFS. The main goal of a benchmark suite is to

support this type of experiment. Additionally, some problems in the suite were solved

frequently by each system, whereas others were solved infrequently or not at all. This

range of difficulties permits the suite to be useful for a variety of experiments and

allows it to remain relevant as program synthesis systems improve.

Of the seven problems on which PushGP found no generalizing solution, most are

not surprising in that they involve extensive use of multiple programming constructs,

the linking of many distinct steps, or a deceptive fitness space where fitness improve-

6Three of these problems come from the IntroClass set of problems. Work in the field of automatic
program repair has also noted significant overfitting on these problems [116].

74

Table 4.2. The smallest size of any simplified solution program (in Push points,
which includes instructions and nested parenthesis pairs) for each problem on which
PushGP found at least one solution.

Problem Size

Number IO 5
Small Or Large 27
For Loop Index 21
Compare String Lengths 11
Double Letters 20
Replace Space with Newline 9
Even Squares 37
String Lengths Backwards 9
Last Index of Zero 5
Vector Average 7
Count Odds 7
Mirror Image 4
Sum of Squares 7
Vectors Summed 11
X-Word Lines 15
Negative To Zero 8
Scrabble Score 14
Digits 20
Grade 52
Median 10
Smallest 8
Syllables 14

ments do not lead toward perfect programs. We have written solutions to each of

the unsolved problems by hand to ensure that each problem is solvable within the

constraints we put on the system and instruction set.

Table 4.2 gives the size (in Push points, which includes instructions and nested

parenthesis pairs) of the smallest simplified solution program for each problem. Here,

we’ve used post-run simplification to automatically reduce the sizes of solution pro-

grams without changing their semantics on the training data [125]. While this hill-

climbing simplification is not guaranteed to find the smallest semantically equivalent

program, it reliably removes excess code, leaving the core functionality of the pro-

gram [125]. The simplified program sizes present a reasonable proxy for the smallest

75

solution program for each problem (using our instruction sets). While some problems

can be solved with programs containing fewer than 10 instructions, this does not nec-

essarily make them trivial; only two were solved using the baseline uniform selection,

which essentially implements a random walk over the search space.

4.3 Anecdotal Example7

To exemplify the differences between lexicase selection and traditional tournament

selection, here we present an anecdote from a single PushGP run using lexicase se-

lection on the Replace Space With Newline problem. We analyzed this run using the

open-source graph database Neo4j 8 to better understand the evolutionary dynamics

introduced by lexicase selection; more details can be found in [88]. Our observations

of this single run motivated some of the systematic experiments presented later in

this chapter.

We will concentrate this analysis at the end of the run, when the GP system

created multiple individuals that solved the problem. We used Neo4j to find all the

ancestors of any “winning” individual, i.e., an individual with a total error of zero on

all 200 test cases. Figure 4.2 shows the ancestry of all of the winners starting from

generation 79 and ending in generation 87, when multiple winners were found. The

numbers inside the nodes are Neo4j internal IDs; we will use these as “names” for

the individuals. Each ID has two parts: the part before the colon is that individual’s

generation, and the part after is simply a random three digit identifier.

GP found 45 distinct winners in the final generation of this run, or 4.5% of the

population of 1,000 individuals. All 45 winners had a single individual (86:261) as

at least one of their parents, and 42 of them had 86:261 as their only parent, i.e.

7Much of the text in this section is adapted from a book chapter co-authored with Nicholas
Freitag McPhee and David Donatucci [88].

8http://neo4j.com/

76

Gen 79

Gen 80

Gen 81

Gen 82

Gen 83

Gen 84

Gen 85

Gen 86

Gen 87

80:220

82:447

83:04783:124 83:619

84:319

85:086

86:261

87:71987:941 87:94742 Other Winners

Figure 4.2. Ancestry of the 45 “winners” (individuals that achieve zero error on all
test cases in the training set) from a successful run of the Replace Space With Newline
problem using lexicase selection. Nodes in the graph represent individuals, and edges
represent parent-child relationships, directed from parent to child. Diamond-shaped
nodes had over 100 offspring each. Shaded nodes had at least five offspring that were
winners or ancestors of winners.

77

they were mutations of 86:261 or were the result of self-crosses of 86:261. To simplify

the graph, we’ve combined those 42 individuals into a single node labeled “42 Other

Winners”.

Looking at Figure 4.2 we can see that a few individuals have more offspring than

others. Each diamond-shaped node in the graph represents an individual that had

at least 100 children. The most remarkable is individual 86:261, which was a parent

of 934 of the 1,000 individuals in generation 87, including every winner. This level

of selection focus, or hyper-selection, would simply be impossible using almost any

other common type of selection. For example, in a comparable run of tournament

selection, which found a solution after 150 generations, the most prolific parent in any

generation created only 24 children. For tournament selection, the maximum number

of times an individual can be a parent is limited by the number of tournaments in

which it participates; for tournament size 7 and a population of 1,000 individuals,

an individual would only participate in about 0.7% of the tournaments on average.

PushGP averages around 1,700 selections per generation9, resulting in about 12 tour-

naments per individual. Thus, no matter how good an individual is, it will likely

never have the opportunity to participate in enough tournaments to be parent of over

100 children, let alone 934.

If we look at the total error of the individuals in Figure 4.2, we again find some

surprises that tell us quite a lot about lexicase selection. Table 4.3 presents the

total error for each individual along the dashed path from 80:220 to 86:261. The

first five individuals in this chain have reasonably low total error. One individual

(82:447) has the best total error in its generation and all but 81:691 are in the top

fifth of the population when ranked by total fitness. However, individuals 86:261

(the parent of every winner) and 85:086 (its parent and therefore the grandparent

9Selections per generation varies, since some genetic operators require two parents and others
one, and operators are randomly selected.

78

Table 4.3. The total error, rank in the population (by total error; out of 1000 indi-
viduals), and number of children of the individuals along the dashed line in Figure 4.2.

Individual Total Error Rank in Population Number of Children

80:220 321 147 200
81:691 441 268 17
82:447 107 1 443
83:124 157 85 170
84:319 240 188 279
85:086 100,000 971 180
86:261 4,034 765 934

of every winner) achieved considerably worse total error. Both individuals ranked

in the bottom quartile of their respective generations by total error, with the 85:086

coming very near absolute worst in its population by this ranking. Yet both of these

individuals had over 100 children, and as we saw previously, 86:261 was parent of over

93% of the children in the next generation.

How could individuals with such terrible total fitness end up being selected so

often as parents? As a reminder, the Replace Space With Newline problem requires

the program to print a string and return an integer for each input example, resulting

in two different types of test cases. Exploring the specific test case errors reveals that

individual 85:086 is perfect on half of the test cases (all those that involve printing),

but gets a penalty error of 1,000 on the other half because it never returns an integer.

None of the other programs in the population achieve zero error on all 100 of the

printing test cases. So, even though it completely fails at half of the test cases,

individual 85:086 was often selected by lexicase, presumably when the first few test

cases in lexicase’s random ordering came from the half of the cases that test for

printing.

Perhaps more extremely, individual 86:261 had 934 offspring while its total error

ranked in the bottom quartile of the population. This individual has zero error on

79

194 of the 200 test cases. On four of the remaining six test cases it fails to return a

value and gets the penalty of 1,000; it has an error of 17 on the other two. When

examining why 86:261 failed entirely on four test cases, we found that it is essentially

a correct program, but exceeded the instruction evaluation limit on those four test

cases—which were four of the longest input strings. In PushGP, when a program

exceeds the execution limit, it is halted as if it terminated on its own, and return

values are taken from the top of the stacks. For the two test cases on which it

achieved 17 error, it also exceeded the evaluation limit, but in those cases the partial

calculation left an integer on the integer stack, which was 17 away from the correct

answer; for the penalized cases, the program left no output on the stack. With this

in mind, this program can easily be fixed by decreasing its execution time without

otherwise altering its behavior, which is likely what most or all of the 45 winners did.

The individuals 85:086 and 86:261 present extreme examples of how lexicase selec-

tion may select specialist individuals that perform very well on some test cases while

receiving terrible error on others. Both of these individuals had total error ranking in

the bottom quartiles of their populations, yet received large percentages of the parent

selections in their generations. These selections were rewarded by quickly solving the

problem. If we selected from these populations using tournament selection, both of

these individuals would be highly unlikely to receive a single selection. Even with

IFS, a parent selection technique designed to reward programs that perform well on

difficult test cases, these individuals would likely not receive any selections due to

their horrible performance on some test cases.

While this anecdote provides interesting observations of a single GP run using

lexicase selection, it may not be representative of runs using lexicase in general. In

the Sections 4.4 and 4.5 we explore some of these observations across systematic

experiments to determine the important characteristics of lexicase selection.

80

4.4 Exploration and Exploitation

The results presented in Section 4.2 raise the question of why lexicase selection

performs significantly better on general program synthesis problems than tournament

selection or IFS. A large factor may be that the way lexicase selection emphasizes

the selection of specialist individuals allows runs using lexicase selection to maintain

higher levels of population diversity than techniques that reduce fitnesses to a single

value. Although maintaining higher levels of diversity may help widen the evolu-

tionary search, it is also necessary to provide sufficient selection pressure to exploit

good programs in order to find better ones; simply maintaining a diverse set of in-

dividuals does not single-handedly help find a solution without pressure toward the

goal. This tension between exploration and exploitation is well known in evolutionary

algorithms.

In our earlier work, we found that lexicase selection maintained substantially

higher population diversity compared to tournament selection and IFS on a few bench-

mark problems, including one program synthesis problem [39]. Increasing exploration

through higher diversity allows GP to locate areas of the search space with potentially

useful programs and to leave local optima. In Section 4.3 we anecdotally noted high

levels of exploitation when using lexicase selection in the form of individuals selected

a very large percent of the time, especially compared to their rank in the population.

Increased exploitation allows GP to incrementally improve good programs to refine

them into better programs and find solutions.

Many search operators can increase either exploration or exploitation by sacrificing

the other; for example, tournament selection can use smaller tournament sizes in

order to increase exploratory diversity at the cost of reducing exploitative selection

pressure, and vice versa by increasing tournament sizes. In this section we present

observations that confirm lexicase selection’s increased exploration (Section 4.4.1)

and exploitation (Section 4.4.2) compared to tournament selection and IFS in the

81

context of general program synthesis problems, which help explain lexicase selection’s

increased performance on these problems.

4.4.1 Exploration10

Maintaining a diverse population allows GP to explore multiple interesting areas

of the search space simultaneously, instead of limiting search to a local neighborhood.

Many evolutionary techniques have been developed to try to increase diversity in the

search space, including IFS and other methods discussed in Section 2.2. While these

techniques have all proven useful in different settings, they all aggregate errors on test

cases into a single fitness value. Lexicase selection sets itself apart by never comparing

or aggregating error values from different test cases; this may allow it to explore areas

of the search space unreachable using other methods that put too little pressure on

selecting individuals that perform very poorly on a subset of the test cases.

Various measures of diversity have been proposed in the genetic programming

literature. Because the way a genetic programming population explores the semantic

space of programs, as opposed to the syntactic space, is more indicative of its ability

to synthesize programs that perform different actions on a problem, we will focus on

methods of measuring semantic diversity. When evaluating a program, we run it on

a set of input/output examples and create a behavior vector of its outputs. Then,

we apply one or more error functions to each of the program’s outputs, comparing

them to the desired output to create an error vector. We define error diversity to be

the percentage of distinct error vectors in the population. Error diversity is similar

to behavioral diversity, which is the percentage of distinct behavior vectors in the

population [43]. The error diversity of a population will be less than or equal to its

behavioral diversity, since two different behavior vectors may produce the same error

10Much of the text in this section is adapted from a book chapter co-authored with Nicholas
Freitag McPhee and Lee Spector [33].

82

vector, but two different error vectors must come from different behavior vectors; still,

we expect these two measurements to convey similar information. Jackson shows that

there is correlation, if not causation, between higher levels of behavioral diversity and

higher solution rates on a variety of small benchmark problems [43]. Additionally,

we have previously shown that lexicase selection maintained higher diversity than

tournament and IFS selection on three problems, only one of which was a general

program synthesis problem (the wc problem) [39].

To examine population diversity on general program synthesis problems, we col-

lected data from 100 runs on each 8 of the benchmark problems, chosen to cover a

range of difficulties, data types, and requirements. Since these runs were conducted

after the initial experiments in Section 4.2, the numbers of successes varied slightly

from those in Table 4.1. Figures 4.3–4.10 show error diversity over time for each of

the problems. Below each plot is a smaller sub-plot showing the number of successes

over time; since runs end when a solution is found, the successes plot gives a sense of

how many runs are still being represented in the primary plot at a given generation.

Additionally, since runs terminate once they find a program that passes all test cases

in the training set, the success counts plotted here are on the training set, not the

unseen test set.

In Figure 4.3, for example, the number of lexicase successes is nearly 25 by gen-

eration 50, and nearly 50 by generation 150. Thus there are slightly more than 75

data points still represented in the lexicase data at generation 50, but only about

50 data points represented from generations 150 to 300. Each plot includes a line

indicating the median error diversity across whichever of the 100 runs is still active

at that generation. We also indicate the range from the 25th percentile to the 75th

percentile with a gray band around the median line; unfortunately the tournament

and IFS results are often very similar and strongly overlap, making them difficult to

differentiate.

83

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.3. Replace Space With Newline – error diversity median (line) and quartiles
(shaded)

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.4. Syllables – error diversity median (line) and quartiles (shaded)

84

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.5. String Lengths Backwards – error diversity median (line) and quartiles
(shaded)

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.6. Negative To Zero – error diversity median (line) and quartiles (shaded)

85

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.7. Double Letters – error diversity median (line) and quartiles (shaded)

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.8. Scrabble Score – error diversity median (line) and quartiles (shaded)

86

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.9. Checksum – error diversity median (line) and quartiles (shaded)

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.10. Count Odds – error diversity median (line) and quartiles (shaded)

87

In general the error diversity numbers for lexicase selection are significantly higher

than those for either tournament selection or IFS, which tend to be extremely similar.

The String Lengths Backwards problem was the only problem for which we found any

substantial overlap between the range of values for lexicase and the other two selection

mechanisms (see Figure 4.5). Typically the lexicase error diversity rises very sharply

in the early generations and levels off somewhere between 0.75 and 1.0, meaning that

3
4

or more of the individuals in the lexicase runs have distinct error vectors. This is

in contrast to the tournament selection and IFS results, in which the median error

diversity values rarely rise above 0.5; the two exceptions are on the Scrabble Score

and Count Odds problems (Figures 4.8 and 4.10), on which the error diversity values

approach or exceed 0.75, but neither problem was solved by tournament selection or

IFS.

The error diversity for the lexicase runs was much higher than for tournament and

IFS for most problems, which is consistent with the hypothesis that lexicase selection

helps maintain diversity. The lexicase error diversity values tended to plateau at

or above 0.75, meaning that in a population of 1, 000 individuals there were over

750 distinct error vectors. This doesn’t mean that different individuals were solving

different test cases; it could just be that many had different incorrect answers and

error values. From a search perspective, though, this still seems useful, as those

different error values may represent different starting points for subsequent search.

We found it remarkable that while IFS was designed to maintain population diver-

sity, in our experiments it never achieved higher levels of error diversity than lexicase

selection, but instead showed very similar levels of diversity to tournament selection

on all problems. Since others ([86, 64]) have shown clear increases in diversity using

IFS, it is unclear why these experiments did not replicate those results; this could be

a product of testing on different types of problems, since no prior results were on gen-

eral program synthesis problems. At the same time, both tournament selection and

88

IFS aggregate test case errors into a single value on which they base tournaments for

selection, with IFS just weighting the components differently; this may be partially

responsible for the similar rates in diversity.

On problems for which solutions were discovered, lexicase selection runs found

solutions throughout the 300 generations. This, combined with the high levels of

error diversity, gives one hope that meaningful search can still occur late in a lexicase

selection run. The plots of successes over time under the primary plots typically

appear to have positive slope even at generation 300, so it would be interesting to

extend these runs to 500 or 1,000 generations and see how many additional solutions

are discovered. If lexicase selection is indeed maintaining meaningful diversity then we

would expect to see continued discovery of solutions, at a higher rate than for either

tournament selection or IFS. This might be particularly interesting for problems for

which solution discovery is rare but possible, such as Double Letters and Count Odds,

which are solved using lexicase selection 5 and 3 times respectively, but not at all using

tournament selection or IFS. Solutions for these two problems tended to be discovered

later in the run (Double Letters in generations 109, 122, 192, 275, and 291; Count

Odds in 65, 233, 279), so letting runs on those problems go longer might increase

their successes.

4.4.2 Exploitation

Evolutionary algorithms use selection pressure to direct search, with the goal of

refining promising programs into better ones. This exploitation of already-discovered

individuals helps drive search toward solutions. All parent selection mechanisms

select some individuals more than others, but vary in how they bias selection. The

lone exception is uniform selection, which does not bias selection; in our performance

trials in Section 4.2, it unsurprisingly performed very poorly.

89

In Section 4.3 we noted some interesting behaviors of lexicase selection, in particu-

lar that it often seemed to give many parent selections to single individuals, including

some individuals that fell quite low in rankings based on total error. This extreme

exploitation of specific individuals strongly contrasts to how often we would expect

tournament selection to select any individual, let alone one with poor total error. In

this section, we will systematically investigate the hyper-selection of single individuals

in GP using lexicase selection.

Let us call an individual hyper-selected at the X% level if that individual receives

at least X% of the parent selections in a single generation. For example, an individual

that receives at least 170 selections out of 1700 total in a generation is considered

hyper-selected at the 10% level (as well as any level below 10%). Examining hyper-

selection events can help us characterize how often single individuals receive a large

percent of the selection pressure in their generations; here, we will look at hyper-

selection events at the 1%, 5%, and 10% levels.

With tournament selection, the number of times an individual can be selected is

limited by the number of tournaments in which it participates. If the best member

of the population participates in 1% of the tournaments for a given generation, it

will be selected 1% of the time that generation, but no more. Since the expected

number of tournaments in which each individual participates is constant for a partic-

ular population size P and tournament size t, the probability of an individual being

selected by tournament selection is entirely determined by its rank in the population.

In particular, Bäck [8, 12] shows that the probability of selecting an individual with

rank i ∈ [1, P], with i = 1 being the best rank, is

p(i) =
(P − i+ 1)t − (P − i)t

P t
(4.1)

90

0.000

0.002

0.004

0.006

0.008

0 250 500 750 1000
Individual's Rank in Population

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

Figure 4.11. Probability mass function of selecting individual with rank i out of
a population of 1000 individuals using tournament selection with tournament size 7,
assuming no two individuals have the same rank. This plots Equation 4.1.

assuming no two individuals have the same fitness. With ties in the rankings, this

equation does not hold exactly, but is approximately correct unless there are many

tied individuals. We plot this probability mass function in Figure 4.11.

From Equation 4.1, we see that in our runs using population size 1000 and tourna-

ment size 7, the best few individuals will be selected approximately 0.7% of the time

each. This also follows from the fact that every individual will participate in approx-

imately 0.7% of the tournaments, and the best individual will win each tournament

in which it participates. With tournament selection it would therefore be unlikely to

hyper-select many individuals at the 1% level in a generation, and extremely unlikely

for any individuals to be hyper selected at the 5% or 10% level. On the other hand,

in Section 4.3 we saw an example of lexicase selection rewarding an interesting indi-

vidual with over 90% of the selections in a generation. We therefore expect lexicase

91

Table 4.4. The average number of hyper-selected individuals at the 1%, 5%, and
10% levels per generation for both lexicase selection and tournament selection.

Lexicase Tournament
Problem 1% 5% 10% 1% 5% 10%

Double Letters 12.28 0.29 0.09 0.36 0.00 0.00
Replace Space with Newline 13.39 0.38 0.11 0.28 0.00 0.00
String Lengths Backwards 6.21 0.54 0.25 0.42 0.00 0.00
Vector Average 6.99 0.02 0.01 0.91 0.00 0.00
Count Odds 0.49 0.02 0.00 0.70 0.00 0.00
Mirror Image 9.72 0.23 0.05 0.22 0.00 0.00
X-Word Lines 5.31 0.13 0.04 0.36 0.00 0.00
Negative To Zero 8.21 0.39 0.16 0.43 0.00 0.00
Syllables 5.74 0.13 0.05 0.38 0.00 0.00

selection to produce non-zero numbers of hyper-selections at the 5% and 10% levels,

though without empirical data it is unclear how common these will be.

To measure hyper-selection, we gathered data from using lexicase selection and

tournament selection with size 7 tournaments on nine benchmark problems, a subset

chosen to exhibit a range of problem requirements and difficulties11. We then cal-

culated the average number of hyper-selected individuals at the 1%, 5%, and 10%

levels per generation, which we present in Table 4.4. On all problems except one,

lexicase selection hyper-selects 5 or more individuals per generation on average at the

1% level; tournament selection averages less than one per generation on all problems,

though always greater than 0.2. Unsurprisingly, tournament selection never hyper-

selected an individual at the 5% or 10% levels. On 7 of the 9 problems, lexicase

selection hyper-selected one individual at the 5% level in every 2 to 10 generations

on average, and one individual at the 10% level every 4 to 25 generations on aver-

age. The two problems Vector Average and Count Odds showed much lower levels

of hyper-selection with lexicase selection, indicating that selecting a single individual

11Due to a bug, an instruction equivalent to exec_noop was included in the instruction set for the
runs on the problems Count Odds, Mirror Image, Vector Average, Double Letters, String Lengths
Backwards, and X-Word Lines. See Footnote 5 on page 70 for more details on this bug.

92

to parent many of the children in a single generation was rarer on those problems.

These two problems were also among the least-solved problems in this subset of the

benchmark problems; one hypothesis is that most of the GP runs had trouble getting

any traction on these problems, leading to more homogeneous populations and fewer

hyper-selection events than on other problems.

Considering that tournament selection conforms to the probability of selection

given in Equation 4.1 regardless of problem, it is at first surprising that its hyper-

selections at the 1% level vary as much as they do across problems. This difference is

likely explained by how often tied individuals appear near the top of the rankings for

different problems, since ties make Equation 4.1 not strictly hold. Intuitively, if many

individuals tie for the best rank, they will each win fewer tournaments than a single

best individual would, since ties in tournaments are broken randomly. Therefore,

lower hyper-selection for tournament selection on a problem likely indicates that ties

happened more often on those problems, which we have observed anecdotally in a few

runs.

We do not present hyper-selection results for our runs using IFS selection here.

In fact, without ties, we would expect IFS to give identical results to tournament

selection. IFS is a variation on tournament selection where the fitness of individuals

weights some test cases more heavily than others; it then uses tournament selection

over the weighted fitnesses. Even though the ranking of individuals is different than

when simply using total error, the probability of selecting the individual ranked i

still follows Equation 4.1. Therefore, hyper-selection results using IFS should be very

close to tournament selection, only differing when the two methods produce different

numbers of tied individuals.

The results in Table 4.4 clearly show that lexicase selection gives more of its parent

selections to single individuals than tournament selection, both at low levels (1%) and

higher levels (5% and 10%) of hyper-selection. This indicates that lexicase selection

93

more often concentrates its selection pressure on single individuals or small groups of

individuals than tournament selection, increasing its exploitation of the individuals

it selects most often. This data does not indicate whether lexicase selection is hyper-

selecting the same individuals that tournament selection ranks highest (those with

best total error), or if it actually selects individuals that would receive few or no

selections with tournament selection.

We have previously noted lexicase selection outperforming tournament selection

across many benchmark problems, and now observe that it often concentrates selec-

tion pressure into small numbers of individuals. This raises important questions: can

we attribute lexicase selection’s success to its ability to concentrate selection in hyper-

selection events? Or, is it more important that lexicase selects different individuals

than tournament selection, in some sense the “right” individuals to drive evolution

toward a solution? We will investigate these questions in Section 4.5.1.

4.5 Experimental Analysis of Lexicase Selection

In this section, we present three experiments that help explain why lexicase se-

lection performs better than tournament selection and IFS. These experiments sys-

tematically test hypotheses building upon our prior observations, shedding light upon

which aspects of lexicase are crucial to its success, and which are simply byproducts

of the algorithm.

In Section 4.5.1 we extend our study of exploitation through hyper-selection to

see whether lexicase selection’s significant exploitation of single individuals helps it

steer evolution toward solutions. Next, in Section 4.5.2 we look into individuals

that specialize in some test cases while performing poorly on others, and whether

these contribute significantly to lexicase selection’s success. Finally, we delve into the

importance of the clustering of individuals that perform well on similar test cases in

Section 4.5.3.

94

4.5.1 Hyper-Selection and Lexicase Performance

In Section 4.4.2 we saw that lexicase selection often ends up selecting the same

individual many times in one generation, much more often than tournament selection

does. This leads to the question of whether the hyper-selections observed in lexicase

selection runs are important in driving evolution toward solutions, or if they are

simply a side effect of lexicase’s algorithm. The alternative is that the individuals

that lexicase selection selects the most often are simply different from those that

tournament selection selects most often, in particular those with poor total error.

In this section we test the hypothesis that the hyper-selections we observed in runs

using lexicase are integral to its success, and that without these extreme exploitative

events, lexicase selection would perform significantly worse than it does with them.

To test this hypothesis, we designed a new parent selection algorithm that selects

the same individuals most often that lexicase does, but has hyper-selection charac-

teristics much closer to tournament selection. The new algorithm, sampled lexicase-

tournament selection (SLT), starts by sampling the population, which only happens

once per generation before selecting any parents. We sample k individuals from the

population by running the lexicase selection algorithm and tracking how often each

individual is selected. In this work we set k = 2P , where P is the population size (set

to 1000 in our runs), guaranteeing at least as many samples as the number of parents

that will be selected in that generation12. We then use the number of samples each

individual received to rank the population from best (most samples) to worst (least

samples). Next, every time we need to select a parent, we conduct a tournament,

where the winner of the tournament is based on the lexicase-sampled ranking instead

12We observe around 1700 parent selections per generation on average, which varies since we
randomly select genetic operators, and some operators require one parent where others require two.
This means that at most, 2000 parents could be selected in a generation.

95

Table 4.5. The average number of hyper-selected individuals at the 1%, 5%, and 10%
levels per generation for lexicase selection, tournament selection and SLT selection.
This table adds SLT to the results in Table 4.4.

Lexicase Tournament SLT
Problem 1% 5% 10% 1% 5% 10% 1% 5% 10%

Double Letters 12.28 0.29 0.09 0.36 0.00 0.00 1.54 0.00 0.00
Replace Space with
Newline

13.39 0.38 0.11 0.28 0.00 0.00 1.56 0.00 0.00

String Lengths
Backwards

6.21 0.54 0.25 0.42 0.00 0.00 1.53 0.00 0.00

Vector Average 6.99 0.02 0.01 0.91 0.00 0.00 1.56 0.00 0.00
Count Odds 0.49 0.02 0.00 0.70 0.00 0.00 1.54 0.00 0.00
Mirror Image 9.72 0.23 0.05 0.22 0.00 0.00 1.55 0.00 0.00
X-Word Lines 5.31 0.13 0.04 0.36 0.00 0.00 1.55 0.00 0.00
Negative To Zero 8.21 0.39 0.16 0.43 0.00 0.00 1.55 0.00 0.00
Syllables 5.74 0.13 0.05 0.38 0.00 0.00 1.55 0.00 0.00

of total error. In this experiment we used size 7 tournaments, just like we did with

tournament selection and IFS in our experiments.

SLT can be seen as a variation of tournament selection in which fitness is based on

lexicase sampling instead of total error. SLT gives the highest probabilities of selection

to those individuals that lexicase would select the most often in the population. But,

since it uses tournaments for selection, its probability of selecting the individual

ranked i in the lexicase-sampled ranking will be same as in tournament selection, as

given in Equation 4.1. Therefore, we would expect the hyper-selection characteristics

of SLT to mirror those of tournament selection, and differ only when the two behave

differently with respect to tied individuals in the rankings, especially ties amongst

the best individuals.

We conducted 100 runs of PushGP13 using SLT on the same 9 benchmark problems

from Table 4.4. We present the hyper-selection results for SLT, in addition to those

for lexicase selection and tournament selection, in Table 4.5. The first thing to note

13Due to a bug, an instruction equivalent to exec_noop was included in the instruction set for the
runs using SLT. See Footnote 5 on page 70 for more details on this bug.

96

is that SLT has higher hyper-selection at the 1% level than tournament selection.

Theoretically, we would expect SLT to behave similarly to tournament selection if

neither had ties in rank within the population. We believe the differences we see here

are a product of ties in total error when using tournament selection, especially near

the top of the rankings. The relative consistency of SLT’s 1%-level hyper-selection

likely comes from the fact that it rarely had large numbers of tied individuals near

the top of the rankings—we expect that tournament selection without ranking ties

would also average around 1.55 hyper-selections at the 1% level per generation.

In these runs, SLT usually had lower hyper-selection at the 1% level than lexicase

selection, and always lower at the 5% and 10% levels, on which it never had a non-

zero result. Since SLT was designed to have similar hyper-selection characteristics

as tournament selection, it is unsurprising that it received no hyper-selections at

the upper levels. This means that SLT succeeds in our goal of creating a lexicase-

based selection mechanism that never puts as much as 5% of the parent selections

in a generation on a single individual. This contrasts with lexicase selection, which

often selects single individuals to make large numbers of the children for the next

generation.

Since we have shown that SLT has similar hyper-selection characteristics to tour-

nament selection, let us now examine its performance results in these runs, which we

present in Table 4.6. Across these 9 problems, SLT shows very similar performance to

lexicase selection, and better performance than tournament selection on every prob-

lem. Both SLT and lexicase found at least one solution on each of the 9 problems,

where tournament selection only found solutions to 6 of the problems. Comparing

these methods using a chi-square test with the Holm correction, SLT never has a

significantly different success rate compared to lexicase selection. SLT is significantly

better than tournament selection on the same problems as lexicase except for Count

Odds and X-Word Lines, on which it achieved fewer than the 8 successes necessary to

97

Table 4.6. Number of successful runs out of 100 for each setting on each problem.
Lexicase selection and tournament selection results are same as those in Table 4.1.

Problem Lexicase Tournament SLT

Double Letters 6 0 4
Replace Space with Newline 51 8 61
String Lengths Backwards 66 7 79
Vector Average 16 14 30
Count Odds 8 0 5
Mirror Image 78 46 84
X-Word Lines 8 0 4
Negative To Zero 45 10 53
Syllables 18 1 13

be significantly better than tournament. SLT seems to slightly outperform lexicase

selection on the easier problems where both find more solutions, and lexicase selec-

tion slightly outperforms SLT on the more difficult problems where both find fewer

solutions, though the difference is never significant.

We plotted the diversity across generations from the runs using SLT, as we did

for other techniques in Section 4.4.1. Interestingly, the diversity plots for SLT were

virtually indistinguishable from those of lexicase selection, so we omit them here.

Thus, even though the techniques produce significantly different hyper-selection rates,

their populations still maintain similar abilities to search widely.

These results show that even though SLT has much lower hyper-selection char-

acteristics than lexicase selection, never selecting a single individual to parent more

than 5% of the children in a generation, it nevertheless maintains the problem-solving

performance shown by lexicase selection. These results give strong evidence against

the hypothesis that lexicase selection’s increased exploitation of hyper-selected in-

dividuals is important in its ability to outperform tournament selection and IFS.

Instead, this suggests that it is more important which individuals lexicase selection

selects most often, which it has in common with SLT but not tournament selection.

98

While SLT achieved similar performance to lexicase selection in this experiment, it

does not otherwise indicate that it would make a better parent selection mechanism.

Notably, it will perform slightly slower than lexicase selection in practice, since it

performs both lexicase sampling and then tournaments for selection. Even so, it may

merit further examination on other types of problems to see if it behaves differently

in other settings.

4.5.2 Specialists with Poor Total Error

By considering test cases one at a time, lexicase selection often selects an individual

without considering all of the test cases; this idea explicitly influenced the design

of lexicase selection. When halting before seeing all of the test cases, the lexicase

algorithm will ignore the error values on all other test cases, regardless of whether

they are relatively good or relatively poor compared to the rest of the population.

Lexicase selection therefore has the ability to select specialist individuals that perform

extremely well on some cases while having very poor error on other cases. Tournament

selection very rarely selects such specialists, since it bases fitness on total error, which

would include the error values on which the individuals performed poorly.

In Section 4.3 we described a single run that featured two individuals in the bottom

quartile of the population (when sorted by total error) that had over 100 children each;

one of those programs was the parent of 45 successful programs. While this anecdote

shows that lexicase selection selects specialists, it is unclear whether such individuals

receive any significant portion of parent selections, and if their selection is important

in directing search when using lexicase selection. Does lexicase selection perform well

because it selects specialists, or can it maintain good performance without selecting

individuals with poor total error? We hypothesize that lexicase selection’s ability to

select specialist individuals with poor total error allows it to more effectively explore

the search space than if it were limited to selecting individuals with good performance

99

Table 4.7. The probability of tournament selection selecting an individual that
would be removed by X% elitist survival. For example, the probability of selecting
an individual removed by 50% elitist survival is 0.00781, meaning that individuals
with total error worse than the median make up less than 0.8% of the parents when
using tournament selection.

% Elitist
Survival

Probability of Selecting
A Removed Individual

25 0.13348
50 0.00781
75 0.00006

when measured by total error. We do not expect to see nearly as dramatic decreases

in performance by tournament selection, which does not often select individuals with

poor total error. Additionally, we expect that limiting lexicase selection to individuals

with better total error will decrease population diversity.

To test our hypotheses, we propose an experiment where parent selection cannot

select individuals with poor total error relative to the population. We devised a new

survival selection step to run before parent selection called elitist survival selection.

During elitist survival selection, we sort the population by total error and only allow

the best X% of the population to “survive” to be available to make children. We

then conduct parent selection using this reduced population as normal. With 100%

elitist survival we would keep the entire population (i.e. no individuals are removed);

75% elitist survival would keep three quarters of the population, etc.

We conducted runs of PushGP14 using elitist survival to remove 75%, 50%, and

25% of the population. Based on Equation 4.1, we can calculate how often we would

expect tournament selection to select the individuals excluded by elitist survival15.

14Due to a bug, an instruction equivalent to exec_noop was included in the instruction set for
the runs using elitist survival at the 75%, 50%, and 25% levels. See Footnote 5 on page 70 for more
details on this bug.

15Figure 4.11 on page 91, which plots the probability distribution defined by Equation 4.1, is
useful when visualizing these cumulative probabilities..

100

Table 4.8. Number of successful runs out of 100 for each setting of elitist survival.
The column headers indicate what percent of the population is kept by elitist survival
with each selection technique. The 100% elitist survival runs are equivalent to not
using elitist survival, and as such the results are the same as those in Table 4.1.
Underline indicates results that are significantly worse than the 100% column, and
asterisk (*) indicates results that are significantly better than the 100% column.
No tournament selection runs were significantly different from the 100% tournament
selection column.

Lexicase Tournament
Problem 100% 75% 50% 25% 100% 75% 50% 25%

Double Letters 6 1 1 0 0 0 0 0
Replace Space with
Newline

51 46 20 24 8 13 11 9

String Lengths
Backwards

66 47 17 17 7 6 12 10

Vector Average 16 *33 *49 25 14 11 5 8
Count Odds 8 3 0 1 0 0 0 0
Mirror Image 78 78 67 48 46 41 34 44
X-Word Lines 8 17 4 0 0 0 0 0
Negative To Zero 45 28 19 9 10 5 10 7
Syllables 18 13 10 8 1 2 1 3

The probabilities of tournament selection choosing an individual removed by elitist

survival are given in Table 4.7. Tournament selection would select a decent propor-

tion of the individuals removed by 25% elitist survival, at around 0.13. We can see

that most of those individuals are ranked between 25% and 50%, since tournament

selection selects individuals worse than the median with probability of only about

0.008. Thus, we would not expect 50% survival elitism to affect the performance

of tournament selection, and certainly not 75% survival elitism. Even 25% survival

elitism may have negligible effects.

Table 4.8 gives the number of successful runs on 9 benchmark problems using 75%,

50%, and 25% elitist survival with lexicase and tournament selection. We compare

these results to 100% elitist survival, which is equivalent to not using elitist survival,

since the entire population is kept. On 6 of the problems, the number of successes

using lexicase selection was significantly lower when using either 50% or 25% elitist

101

survival, and for 3 problems both. On the String Lengths Backwards problem, the

number of successes was significantly lower even using 75% elitist survival. On the

other hand, on the Vector Average problem, lexicase selection found more successes

with 75% and 50% elitist survival. Results using tournament selection were not

significantly different with any ratio of elitist survival on any problem.

We plot the population error diversity for most of these problems in Figures 4.12–

4.18. On all problems, the diversity of runs using tournament selection remains

essentially the same at all levels of elitist survival. This result is consistent with the

unchanged performance of tournament selection with elitist survival, both of which

can be explained by the small portion of selections affected by elitist survival.

On the other hand, for most problems the median diversity of runs using lexicase

selection decreases as the number of individuals removed by elitist survival increases.

We see this decrease across all problems besides Vector Average, though the impact

varies per problem. On the Replace Space With Newline (Figure 4.12) and String

Lengths Backwards (Figure 4.14) problems, lexicase selection with 50% and 25%

elitist survival grow in diversity early, but then lose diversity and finish the remainder

of the run with similar diversity to tournament selection. On the other problems, the

lower percents of elitist survival have similar curves to the higher percents, just with

lower diversity.

One interesting finding here is that the one problem where elitist survival seems to

help lexicase selection—Vector Average—is also the only problem on which lexicase

selection did not perform significantly better than tournament selection. Addition-

ally, this is the only problem for which removing individuals through elitist survival

increases the population diversity, as shown in Figure 4.18. These results suggest that

for this problem, total error is a good search driver, since removing the individuals

with worst total error helped lexicase.

102

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.12. Replace Space With Newline – Median error diversity for lexicase and
tournament selections using elitist survival at different percents.

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.13. Syllables – Median error diversity for lexicase and tournament selec-
tions using elitist survival at different percents.

103

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.14. String Lengths Backwards – Median error diversity for lexicase and
tournament selections using elitist survival at different percents.

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.15. Negative To Zero – Median error diversity for lexicase and tournament
selections using elitist survival at different percents.

104

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.16. Double Letters – Median error diversity for lexicase and tournament
selections using elitist survival at different percents.

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.17. Count Odds – Median error diversity for lexicase and tournament
selections using elitist survival at different percents.

105

0.00

0.25

0.50

0.75

1.00

E
rr

or
 D

iv
er

si
ty

lex 100%

lex 75%

lex 50%

lex 25%

tourney 100%

tourney 75%

tourney 50%

tourney 25%

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.18. Vector Average – Median error diversity for lexicase and tournament
selections using elitist survival at different percents.

These results provide evidence for our hypothesis that lexicase selection makes use

of specialist individuals with poor total error relative to the rest of the population—

individuals that presumably have poor errors on some test cases but good errors

on others. Since lexicase performs worse when we remove the bottom half or three

quarters of the population on most of the problems, it is clear that lexicase selects

specialists in these parts of the population and that they help drive the direction of

evolution. Even removing the bottom quarter of the population (75% elitist survival)

resulted in fewer successes on 6 out of the 9 problems, albeit significantly so on only 1.

Our plots show that error diversity in lexicase runs decreases, sometimes signifi-

cantly, as we decrease the number of individuals that survive elitist survival. These

plots support our hypothesis that the high diversity seen in runs using lexicase selec-

tion is influenced by lexicase’s ability to select individuals with relatively poor total

106

error. The decreased diversity in runs using lower percents of elitist survival likely

contributes to the corresponding decreases in performance observed in Table 4.8.

As expected, tournament selection was not significantly affected by elitist survival

selection at any level, even when removing the bottom three quarters of the popu-

lation. As we saw in Table 4.7, tournament selection simply does not often select

specialist parents from the bottom ranks of the population. Instead, it concentrates

on the individuals with the best total error, and mostly selects from the top quarter of

the population. This difference between lexicase selection and tournament selection

likely explains at least part of their difference in performance.

4.5.3 Population Clustering16

In Section 4.5.2 we showed that lexicase selection makes use of specialist individ-

uals to direct evolution. With this in mind, it seems possible that lexicase selection

enables groups of specialists that solve different parts of the problem to evolve inde-

pendently side-by-side, implicitly maintaining the kind of niches that are maintained

more explicitly by island models [115] and related methods. We expect that evolution

may sometimes progress when individuals from different groups mate, producing a

child that combines the abilities of its parents. The hope is that this process, iterated,

will eventually produce an individual that solves the entire problem.

Here we explore the effects of different parent selection methods on the devel-

opment of clusters of individuals that perform similarly across the test cases. We

hypothesize that using lexicase selection will result in relatively larger numbers of

clusters, since it selects individuals on the basis of specific cases and groups of cases

rather than on overall performance, and that the combination of these clusters through

crossover helps lead evolution toward a solution.

16Much of the text in this section is adapted from a book chapter co-authored with Nicholas
Freitag McPhee and Lee Spector [33].

107

To examine this idea, we must be able to measure the clustering of a population

with respect to the test cases. We base the clustering of the population on the

individuals’ error vectors across the test cases in the training set. Since lexicase

selection concentrates on individuals that perform at least as well as every other

individual in the population, we convert the error vectors into binary “elitized” error

vectors that indicate whether an individual achieved the best error on each test case

in that generation. More formally, if each individual j in the population P has error

vector error j containing error values on the test cases T , then the elitized error vector

for individual i is defined by

elitized i[t] =


0, if error i[t] = min

j∈P
(error j[t])

1, otherwise

for t ∈ T . By elitizing the error vectors, we can ignore the differences between

individuals that perform poorly on cases in different ways, and concentrate on how

individuals cluster based on the cases on which they perform well.

In this work we use agglomerative clustering17 to count the number of clusters

in the population at each generation. Agglomerative clustering creates a hierarchi-

cal clustering model by first placing each individual into its own cluster. It then

iteratively combines the two closest clusters into a single cluster, until all clusters

have been combined into one cluster, recording at each step the distance between

the clusters in each merged pair. We can then find the number of clusters separated

by a specified distance by counting the number of clusters merged beyond that dis-

tance. For example, in Figure 4.19 we have plotted a dendrogram generated through

agglomerative clustering, where the joining of clusters is represented by two vertical

17We used the agnes [83] implementation of agglomerative clustering in R [108], using the average
linkage when combining clusters.

108

1
18 26

6 21 14 15
7 13 2
4 2

16 23
3 30 8 27 20 25
5

10 12 22 1
7

19 29
9 28 1
1 4 1

21
12

2
12

7
14

8
14

5
14

3
12

5
13

0
14

7
12

8
13

6
14

4
13

1
13

5
13

3
14

1
14

0
14

2
13

7
14

9
12

3
13

2
15

0
12

9
13

4
12

4
13

8
14

6
12

6
13

9
31 41 33 49 4
0 60 5
1 44 37 43 52 58 3
8

50 54 4
7 57 32 34 42 48 3
9 46 5

3 35
36 45 5

9 55
56

61 70 6
2 79 8
7

64 76 82 85 86 7
8

67 90 8
1

80 88 6
9 77 71 84 8
9

73 75 65 72 6
6 83 7
4

68 6
3

91 92 9
9

10
1

10
5

11
8

10
7

11
1

11
2 10

4
93

10
9

11
3

11
4

11
0

11
7

96 10
6

10
8

11
5

94 97 10
3

11
9

95 12
0

10
2

98
10

0
11

6

0
5

10
15

20
25

30

H
ei

gh
t

Figure 4.19. Example of a dendrogram created by agglomerative clustering. The
red line at height 10 shows that this data has 4 clusters that are at least distance 10
apart from each other.

lines connected by a horizontal line. On this dendrogram, we have drawn a red line

at height 10. We can see that their are 4 clusters that are at least distance 10 from

each other, represented by the 4 vertical lines that the red line crosses.

Since we are using binary elitized error vectors, we use the Manhattan distance

as our distance metric, which makes the distance between two error vectors a count

of the number of test cases on which those two individuals have different “eliteness”

results. We chose to count the number of clusters that differed on at least 10% of

the test cases in the training set; for example, if a problem has 200 test cases, we

count the number of clusters that differ in binary eliteness on at least 20 test cases.

While somewhat arbitrary, this distance gives a reasonable and consistent estimate

109

of how many groups of individuals are doing significantly different things in a given

generation.

To plot counts of clusters, we used data from the same PushGP runs that produced

the diversity figures in Section 4.4.1. Figures 4.20–4.27 show cluster counts over time

for each of the test problems. As in Section 4.4.1, below each plot is a smaller sub-plot

showing the number of successes over time for each selection to give an idea of how

many data points are represented in each generation. We again aggregate data per

generation across runs, indicating the range of cluster counts from the 25th percentile

to the 75th percentile with a gray band around the median line.

The cluster count results show more variation than the corresponding error di-

versity figures. Lexicase selection has clearly higher cluster counts for half of the

problems (Replace Space With Newline, Syllables, Scrabble Score, and Count Odds;

Figures 4.20, 4.21, 4.25 and 4.27). It also starts with much higher counts on the Dou-

ble Letters problem (Figure 4.24), but those numbers drop again quickly, matching

tournament selection and IFS by around generation 100. On the Negative To Zero

problem (Figure 4.23), the lexicase cluster counts remain small (about the same as

tournament and IFS) throughout the runs. Particularly striking are lexicase clus-

ter counts for String Lengths Backwards (Figure 4.22) and Checksum (Figure 4.26),

where the number of clusters with lexicase selection is actually lower than tournament

selection or IFS for significant parts of the run.

For the Count Odds problem the median is over 100 clusters for much of the run,

and for Syllables the median cluster count is over 400 from generation 100 forward.

For the Replace Space With Newline and Scrabble Score problems, cluster counts were

also much higher for lexicase selection than tournament selection or IFS, though not

as high as for the other problems. This suggests that lexicase selection is maintaining

large numbers of sub-groups of the population that are capable of solving different

parts of the problem. For problems with no solutions found, this might indicate that

110

0

50

100

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.20. Replace Space With Newline – cluster counts median (line) and quar-
tiles (shaded)

0

100

200

300

400

500

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.21. Syllables – cluster counts median (line) and quartiles (shaded)

111

0

10

20

30

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.22. String Lengths Backwards – cluster counts median (line) and quartiles
(shaded)

0

50

100

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.23. Negative To Zero – cluster counts median (line) and quartiles (shaded)

112

0

25

50

75

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.24. Double Letters – cluster counts median (line) and quartiles (shaded)

0

25

50

75

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.25. Scrabble Score – cluster counts median (line) and quartiles (shaded)

113

0

10

20

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.26. Checksum – cluster counts median (line) and quartiles (shaded)

0

50

100

150

200

C
lu

st
er

 C
ou

nt

lexicase

tourney

ifs

0

25

50

75

100

0 100 200 300
Generation

S
uc

ce
ss

es

Figure 4.27. Count Odds – cluster counts median (line) and quartiles (shaded)

114

the genetic operators are not able to act on the structure of the programs in those

sub-populations in ways that allow progress.

Interpretation of the cluster count results on the other four problems is more

difficult. For example, analysis of the lexicase Checksum runs suggests that the lack

of clustering might be a function of structural issues with the test cases. For this

problem, there are 100 input/output examples, with two error functions per example:

the Levenshtein edit distance on the printed string, and the integer difference between

the ASCII values of the last character of the printed string and the correct checksum

character. It appears that populations quickly evolve the ability to print Check sum

is, but then stall, with each program printing different final characters. This allows

for fairly high error diversity (over 0.75), but any given program tends to get at most

two or three examples right by guessing. This means that the Manhattan distance

between any two elitized error vectors is typically only 5 or 6 at most, shy of the

10% threshold of 20 for this problem, resulting in only one or two clusters. Adding

examples that explore different inputs might allow evolution to first stumble upon

and then exploit code that produces actual checksums for this problem.

On the set of problems explored here, error diversity seems to be a better predictor

of performance than cluster counts. In fact, on two of the problems for which solutions

were found in over half the runs (String Lengths Backwards and Negative To Zero),

lexicase selection maintained very small numbers of clusters, similar to tournament

and IFS. On problems for which lexicase selection created many more clusters than

the other methods (Syllables, Scrabble Score, and Count Odds), it found many fewer

solutions than it did on three of the other problems (Replace Space With Newline,

String Lengths Backwards, and Negative To Zero). On the other hand, lexicase

selection consistently maintained higher error diversity than other methods. This

may indicate that the ability to form clusters on a problem is more indicative of the

problem itself than the parent selection method and its ability to solve the problem.

115

This provides evidence against our hypothesis that lexicase selection performs better

because it maintains clusters of individuals that genetic operators can combine to

solve increasingly large numbers of test cases. This result might say more about the

genetic operators we employ than about parent selection; using a different crossover

operator may more readily combine programs in ways so that their children acquire

both of their parents’ skill sets.

4.6 Summary and Conclusions

In this chapter we described the lexicase selection algorithm and compared its

utility to two common parent selection techniques. We found that lexicase selection

allowed PushGP to find many more solutions than tournament selection and IFS on a

range of general program synthesis benchmark problems. After anecdotally exploring

a single GP run, we observed that lexicase selection seems to increase both exploration

and exploitation of the evolutionary algorithm, as evidenced by increased diversity

and hyper-selections of single individuals. We then conducted experiments to identify

the important characteristics of lexicase selection.

Our experiments confirm our hypothesis that lexicase selection often selects spe-

cialist individuals that perform very well on some cases but poorly on others, and that

these individuals, which tournament selection would very rarely select, are important

in driving GP toward solutions. While lexicase sometimes selects such individuals

very often as evidenced by our hyper-selection observations, it seems to matter more

which individuals lexicase selects, and not that it selects them so often. These individ-

uals contribute significantly to lexicase selection’s ability to maintain high population

diversity, allowing it to more widely explore the search space without sacrificing se-

lection pressure when evolution finds promising programs.

By clustering populations into groups of individuals that perform similarly across

the training set, we saw that lexicase sometimes maintains many clusters in one

116

population, and other times very few. As such, this clustering behavior does not seem

like an important attribute of lexicase selection across all problems, though it might

help in some cases. While the exploration of different genetic operators is beyond the

scope of this research, future work in this area might lead to better recombination of

programs specializing in different test cases and gains in performance.

117

CHAPTER 5

COMPARISONS TO OTHER PROGRAM SYNTHESIS
SYSTEMS

In this chapter we make some initial comparisons of our results using PushGP with

other program synthesis systems on our benchmark suite from Chapter 3. While we

cannot exhaustively assess every program synthesis system, we hope to provide some

comparisons to common synthesis systems that represent the field as a whole. We

hope that others, especially those with more experience using other synthesis systems,

will adopt our benchmark suite and report on their results. We will concentrate on

FlashFill, MagicHaskeller, and Sketch, all popular synthesis systems.

From our survey of other program synthesis systems in Section 2.1, we expect

that these systems will achieve, at best, mixed results on our benchmark problems.

We presume that some of these systems will not be able to solve any of our problems

simply because they cannot handle a large instruction set in a reasonable amount

of time. Some of these systems recommend or require the test cases to be given

in a specific order, where we provide an unordered set of test cases. It will prove

interesting to see how well different systems perform with a large set of unordered

test cases.

5.1 Flash Fill

Flash Fill, as discussed in Section 2.1.1, is a analytic program synthesis technique

available in Microsoft Excel [25]. It was designed to help non-programmers perform

repetitive tasks that would otherwise require them to write Excel macro programs.

118

It specializes in tasks that require string manipulations. Flash Fill is designed to

work with only one or a few examples of the desired behavior; since the programs in

our suite would be under-specified with such few examples, we will use the full-sized

training and test sets we use with other systems. It is unclear how much use Flash

Fill can make of this many examples.

We attempted to solve problems from our benchmark suite using Flash Fill. To do

so, we created Excel spreadsheets that had one column per input and one column per

output for each problem. Each spreadsheet included training data, which was filled

in for Flash Fill to use, and unseen testing data to evaluate the results of Flash Fill.

These data sets were generated using the same methods we used to generate data for

our PushGP runs, described in Section 3.5.1. Since Flash Fill is deterministic and

analytic, and since we lacked an automated way to import and test many data sets,

we ran Flash Fill only once per problem on a single data set.

Since Excel does not include a native vector or list data structure, we were not

able to find an easy way to run Flash Fill on problems that require vectors for inputs

or outputs. We considered using a string representation of vectors, which seemed

unsuitable. We also considered putting each item from each vector in a separate cell,

but it was unclear how to handle vectors of different sizes. So, we have only tested it

on the 22 problems from out suite that do not require vectors for inputs or outputs.

Of the 22 problems we tested, Flash Fill was unable to produce a program that

passed the training data on 18 of them. When Flash Fill cannot find a program, it

creates an error box that states:

We looked at all the data next to your selection and didn’t see a pattern
for filling in values for you. To use Flash Fill, enter a couple of examples
of the output you’d like to see, keep the active cell in the column you want
filled in, and click the Flash Fill button again.

Flash Fill synthesized a program that passed the training data for the remaining 4

problems. On these 4 problems, we then looked at how it performed on the unseen

119

Table 5.1. For the four problems that Flash Fill synthesized a program from the
training data, we tested the program on the unseen test set. This table gives the
percent of the cases in the unseen test set that the synthesized program passed for
each problem.

Problem Test Set Percent Correct

Digits 35.4
Pig Latin 2.5
Smallest 47.8
X-Word Lines 3.6

test set to test its generalization. Flash Fill did not pass every example in the unseen

test set for any of the 4 problems, and therefore had a success rate of 0 for all 22

problems on which we were able to test it. As a comparison, PushGP with lexicase

selection found generalizing solutions to 22 of the 29 benchmark problems.

We additionally looked at what percent of the test set the Flash Fill program

passed, which we give in Table 5.1. On two problems, Flash Fill creates a program

that passes at least 35% of the unseen test set. On these problems, it seems that it

was able to identify potentially relevant parts of the problem, but was not able to

entirely pass the task. On the other two problems, the synthesized program passed

less than 5% of the test set; on these problems, it seems that Flash Fill only is able

to pass test cases with the most basic input.

Interestingly, Flash Fill performed best on Smallest, which is a number-based

problem, where Flash Fill is designed to work on string manipulation tasks. We tried

and failed to find a pattern in Flash Fill’s outputs for this problem; it is possible that

Flash Fill is interpreting the integer inputs as strings. Note that the correct output

for this problem is always one of the four inputs, meaning that randomly guessing

one of the four inputs to output should solve approximately 25% of the cases.

120

5.2 MagicHaskeller

In our survey of relevant program synthesis systems, MagicHaskeller seemed to

show more promise for general-purpose synthesis than most other systems, since it

makes use of a wide range of Haskell instructions [48, 46]. It can synthesize programs

for a variety of input and output data types, unlike Flash Fill, which concentrates on

string manipulation tasks. Still, it was unclear from the literature if MagicHaskeller

would have trouble with problems that require many examples to specify a program.

Unfortunately, we were unable to install and use the stand alone version of

MagicHaskeller. It appears that the system’s website1 has not been updated since

2013, and based on the documentation, we were unable to run MagicHaskeller on

OS X or Windows. MagicHaskeler has a web interface2 that is sufficient for syn-

thesizing simple programs, but is time-limited and did not allow us to specify many

examples at once.

MagicExceller, inspired by Flash Fill, uses MagicHaskeller’s engine to synthesize

macros in Microsoft Excel3. We were able to test this version on the Excel spread-

sheets we created to test Flash Fill.

Of the 22 problems we ran MagicExceller on, it was not able to synthesize a pro-

gram for any of them. For a few problems, it simply printed “Could not synthesize.”

The remaining problems encountered one of two runtime errors. On problems that

use string inputs or outputs, it printed “Run-time error ‘28’: Out of stack space.” For

the remaining problems that used numeric or boolean inputs and outputs, it printed

“Run-time error ‘424’: Object required”. It is unclear why these errors occurred. We

were able to get MagicExceller to work on the simple examples given with its docu-

1http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskellerLib.html

2http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

3http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicExceller.html

121

mentation; it might simply not be able to handle the 50 to 200 examples we provide

to specify the desired program.

5.3 Sketch4

Sketch is a program synthesis system that expects users to provide partially-

written programs, or sketches, that omit some details of the program, such as integer

constants or single instructions [120, 119]. Sketch can then fill in those holes with the

correct details, allowing the user to skip working out the complex, error prone parts

of the program. Thus, Sketch’s intended use is as a programmer assistant, enabling

a programmer to concentrate on the overall structure of a program instead of the

small details. While Sketch is not generally intended for synthesis of programs from

scratch, it may also be able to synthesize correct programs using minimal sketches.

In our experience, we were unable to get Sketch to perform synthesis based on

extremely minimal sketches, such as an empty program. Instead, we found that we

needed to provide significantly more structure for it to work with. For example, the

sketch below represents the minimum structure we were able to provide Sketch in

order to get it to synthesize a program that solves the Number IO problem:

float numberIOSketch(int a, float b) {

float a2 = (float)a;

float expression = {|((a2|b) (+|-|*|/) (a2|b))|};

return expression;

}

This information greatly constrains the space of possible programs. We have specified

that the integer input must be cast into a float, that the two floats must then undergo

a basic arithmetic operator, and the result returned. This narrows the search space

4The work presented in this section was conducted with Karthik Kannappan.

122

significantly, down to only 2 ∗ 4 ∗ 2 = 16 possible programs, which can easily be

tested using brute force. Providing more generic specification, such as saying that

any number of arbitrary operations may be performed on the input variables to the

function, does not seem to be currently supported by Sketch. This highlights the

difference in intended use between Sketch and program synthesis from scratch: a

programmer writing a complex function could leave open 30 holes, leading to billions

of possible programs, and Sketch should be able to fill them in, beyond what could

be done quickly with brute force.

We ran into other difficulties while running Sketch, even on the simple Number

IO problem, which make it not user-friendly and not viable for many of our potential

applications. For instance, while running a Sketch on the Number IO problem with

the default settings, we encountered the following error:

[ERROR] [SKETCH] Error at node: You can’t cast from ints to dou-
bles/floats if you are using –fe-fpencoding AS BIT.((float)a 5)

This issue is solvable by using a different floating-point encoding as suggested in the

Sketch manual, but we consider this beyond the abilities of a standard user.

Overall, we found Sketch to not be useful for general program synthesis from

examples for a variety of reasons, including that it requires a mostly-finished sketch

of the desired program. This experience shows how Sketch is designed to assist

programmers, not to synthesize code from scratch. It simply does not seem suitable for

synthesis based entirely on input/output examples, as it requires significant additional

guidance in the form of the sketch.

123

CHAPTER 6

SUMMARY, CONCLUSIONS, AND FUTURE WORK

To help fill a void of general program synthesis from examples problems, we have

developed a benchmark suite composed of 29 problems taken from introductory com-

puter science homework sets. These problems exhibit a range of requirements and

difficulties, but all specify the desired program entirely through input/output exam-

ples of expected behavior. Our descriptions and reference implementation of these

problems allows them to be useful for assessing the abilities of a wide range of systems

on general program synthesis tasks. Results show that PushGP is able to solve many

of the problems in this suite and meets the six requirements for general program

synthesis from examples that we set out in in Section 1; to our knowledge this is the

first program synthesis system to meet all six requirements.

Our exploration of lexicase selection, a parent selection technique for evolutionary

computation, shows that it outperforms two conventional techniques based on ag-

gregate fitness functions, tournament selection and IFS. Lexicase selection sets itself

apart by considering one test case at a time, potentially terminating before seeing

all test cases. This allows it to select individuals that specialize their efforts in some

test cases while potentially performing poorly on others. Compared to the other

approaches, lexicase selection manages to maintain higher population diversity while

sometimes focusing many selections on promising individuals. Our systematic experi-

ments confirm some of our hypotheses about lexicase’s important characteristics while

invalidating others, leading to a fuller picture of behavior-based parent selection.

124

We have also provided first attempts at solving problems from our benchmark

suite using other, non-GP program synthesis techniques. We were unable to generate

programs that generalized to unseen data using Flash Fill. While unable to run

standalone versions of MagicHaskeller, we were able to use its cousin MagicExceller,

which did not solve any of the benchmark problems. We found Sketch to not be

the right tool for synthesizing programs from scratch based entirely on input/output

examples. These representative systems had trouble with our benchmark suite; we

hope others attempt these problems in other systems, and that the benchmarks help

drive the creation of stronger synthesis systems.

While GP has conventionally used scalar fitness functions both as objective func-

tions and search drivers, this work adds to increasing evidence to the benefit of

alternate search drivers that take into account program behavior instead of aggre-

gate outcomes. This lesson even applies to most multiobjective approaches in GP,

in which fitness across all tests is used as a single objective alongside qualitatively

different objectives such as program size. We also believe methods such as lexicase

selection could prove beneficial in other forms of evolutionary computation.

Our exploration of lexicase selection has highlighted the need for approaches that

take into account good performance on combinations of test cases while potentially

ignoring others. Our experiments with elitist survival showed that the performance

of lexicase selection usually diminishes when we remove its ability to select specialists

that perform very well on some test cases but poorly on others. By allowing lexicase

to select and propagate such individuals, it maintains higher population diversity and

finds more solutions. We also showed that even though lexicase selection more often

selects single individuals to create extreme numbers of children than other methods,

this property of lexicase is not paramount to its success.

In this work we have concentrated on the effects of parent selection for general

program synthesis. Our initial experiments on problems in other domains have also

125

shown the utility of lexicase selection [39, 36, 80, 35], though we have had mixed results

when applying lexicase selection to some popular domains for genetic programming,

such as symbolic regression and classification. Even if lexicase selection does not prove

a panacea1, we hope that the lessons learned here can transfer to other behavior-based

parent selection techniques for these fields. For example, while other methods might

not use random orderings of test cases, we would recommend that they allow for the

selection of specialists.

While our clustering of the population based on test cases did not definitively

show that lexicase more readily forms clusters of similar individuals, we did see that

different problems showed different clustering properties. Further exploration of clus-

tering could prove a useful tool for assessing problem difficulty and guiding the design

of test cases and fitness functions to improve GP performance.

While we have provided sufficient information for others to implement our method

of data generation, this obstacle might discourage others from experimenting with

our benchmark problems. In the future we would like to provide a web interface

from which others could download randomly generated example data for each of the

benchmark problems. This would likely enable wider adoption of these problems as

benchmarks for GP and other program synthesis techniques.

In our anecdotal looks into individual GP runs, we noticed that tournament se-

lection seems to be much more susceptible to the effects of penalty error values than

lexicase selection. In PushGP we have conventionally given large penalties to pro-

grams that do not return an output value, as discussed in Section 3.5.2. It is unclear

how detrimental these penalties are to the progress of GP using tournament selection;

on the other hand, we saw lexicase select individuals that had many penalties, leading

to a successful program. We found no obvious alternative to penalties, since total

1Which would not be surprising considering the “no free lunch” theorem [137].

126

error fitness expects an error value from every test case. This may simply be one

of the unintended and unavoidable consequences of aggregate fitness measures and

another argument for using behavior-based parent selection. Still, finding a suitable

alternative, if possible, may increase the utility of aggregate fitness approaches to

parent selection, especially in problem domains where such approaches show more

promise.

When a single individual receives a very large portion of the selections in a gen-

eration, diversity tends to drop since most children have that individual as a par-

ent. We wondered if such events could catastrophically decrease population diversity

when using lexicase selection. But, we have anecdotally observed rapid diversifica-

tion following such events under lexicase selection. We would like to systematically

investigate whether these rapid drops and climbs in diversity are common when using

lexicase selection. This could give even stronger evidence to lexicase’s ability to both

explore and exploit the search space.

There remain unanswered questions about lexicase selection that could further

differentiate which situations it will have the highest utility. For example, we have

long wondered whether lexicase might be susceptible to large numbers of test cases

that essentially duplicate the testing of the same functionality. Lexicase selection

might then place more selection pressure on individuals that perform well on that

functionality, since a representative of those test cases will be more likely to come

early in the random test case ordering. Early results on this question indicate that

lexicase is more robust to duplicate test cases than we had hypothesized, but more

systematic testing is warranted. We have started exploring methods to neutralize

potentially problematic duplication of test cases, such as by clustering similar test

cases into a single case for the purposes of lexicase selection [80]; early results suggest

that even these modifications might not be helpful.

127

Similarly, we hope to investigate whether the uniform random test case ordering

used in our lexicase algorithm leads to the best results, or whether some type of

biased ordering could lead to better performance. For example, we could imagine

using a very different (or very similar) test case ordering for selecting the two mates

for a crossover operator. We have also considered biasing the test case ordering to

have easier (or harder) test cases come near the front of the list. Such efforts could

potentially encourage the selection of individuals that lead to a solution without

forfeiting lexicase selection’s other beneficial characteristics.

128

BIBLIOGRAPHY

[1] Albarghouthi, Aws, Gulwani, Sumit, and Kincaid, Zachary. Recursive program
synthesis. In Computer Aided Verification, Natasha Sharygina and Helmut
Veith, Eds., vol. 8044 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 934–950.

[2] Arcuri, Andrea. On the automation of fixing software bugs. In ICSE Companion
’08: Companion of the 30th international conference on Software engineering
(Leipzig, Germany, 2008), ACM, pp. 1003–1006. Doctoral symposium session.

[3] Arcuri, Andrea, White, David Robert, Clark, John, and Yao, Xin. Multi-
objective improvement of software using co-evolution and smart seeding. In
Proceedings of the 7th International Conference on Simulated Evolution And
Learning (SEAL ’08) (Melbourne, Australia, Dec. 7-10 2008), vol. 5361 of Lec-
ture Notes in Computer Science, Springer, pp. 61–70.

[4] Arcuri, Andrea, and Yao, Xin. Coevolving programs and unit tests from their
specification. In IEEE International Conference on Automated Software Engi-
neering (ASE) (Atlanta, Georgia, USA, Nov. 5-9 2007).

[5] Arcuri, Andrea, and Yao, Xin. A novel co-evolutionary approach to automatic
software bug fixing. In 2008 IEEE World Congress on Computational Intel-
ligence (Hong Kong, 1-6 June 2008), Jun Wang, Ed., IEEE Computational
Intelligence Society, IEEE Press, pp. 162–168.

[6] Arcuri, Andrea, and Yao, Xin. Co-evolutionary automatic programming for
software development. Information Sciences 259 (2014), 412–432.

[7] Avizienis, A. The N-version approach to fault-tolerant software. IEEE Trans.
Softw. Eng. 11, 12 (Dec. 1985), 1491–1501.

[8] Bäck, Thomas. Selective pressure in evolutionary algorithms: a characteriza-
tion of selection mechanisms. In Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the First IEEE Con-
ference on (Jun 1994), pp. 57–62 vol.1.

[9] Binard, Franck, and Felty, Amy. An abstraction-based genetic programming
system. In Late breaking paper at Genetic and Evolutionary Computation Con-
ference (GECCO’2007) (London, United Kingdom, 7-11 July 2007), Peter A. N.
Bosman, Ed., ACM Press, pp. 2415–2422.

129

[10] Binard, Franck, and Felty, Amy. Genetic programming with polymorphic types
and higher-order functions. In GECCO ’08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation (Atlanta, GA, USA, 12-
16 July 2008), ACM, pp. 1187–1194.

[11] Bleuler, S., Brack, M., Thiele, L., and Zitzler, E. Multiobjective genetic pro-
gramming: reducing bloat using spea2. In Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on (2001), vol. 1, pp. 536–543 vol. 1.

[12] Blickle, Tobias, and Thiele, Lothar. A mathematical analysis of tournament
selection. In Proceedings of the 6th International Conference on Genetic Al-
gorithms (San Francisco, CA, USA, 1995), Morgan Kaufmann Publishers Inc.,
pp. 9–16.

[13] Bodik, Rastislav, and Jobstmann, Barbara. Algorithmic program synthesis:
introduction. International Journal on Software Tools for Technology Transfer
15, 5-6 (2013), 397–411.

[14] Brun, Yuriy, Barr, Earl, Xiao, Ming, Le Goues, Claire, and Devanbu, Prem.
Evolution vs. intelligent design in program patching. Tech. Rep. https:

//escholarship.org/uc/item/3z8926ks, UC Davis: College of Engineering,
2013.

[15] Cumming, Geoff. The new statistics: Why and how. Psychological Science 25,
1 (2014), 7–29.

[16] Cypher, A., and Halbert, D.C. Watch what I Do: Programming by Demonstra-
tion. MIT Press, 1993.

[17] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Trans-
actions on 6, 2 (2002), 182–197.

[18] Ekart, Aniko, and Nemeth, S. Z. Selection based on the pareto nondomination
criterion for controlling code growth in genetic programming. Genetic Program-
ming and Evolvable Machines 2, 1 (Mar. 2001), 61–73.

[19] Feldt, Robert. Generating multiple diverse software versions with genetic pro-
gramming. In Proceedings of the 24th EUROMICRO Conference, Workshop
on Dependable Computing Systems (Vaesteraas, Sweden, 25-27th Aug. 1998),
pp. 387–396.

[20] Fieldsend, Jonathan E., and Moraglio, Alberto. Strength through diversity:
Disaggregation and multi-objectivisation approaches for genetic programming.
In GECCO ’15: Proceedings of the 2015 conference on Genetic and evolutionary
computation (2015), ACM.

[21] Flener, Pierre, and Schmid, Ute. An introduction to inductive programming.
Artificial Intelligence Review 29, 1 (2008), 45–62.

130

[22] Galván-López, Edgar, Cody-Kenny, Brendan, Trujillo, Leonardo, and Kattan,
Ahmed. Using semantics in the selection mechanism in genetic programming: a
simple method for promoting semantic diversity. In 2013 IEEE Conference on
Evolutionary Computation (Cancun, Mexico, June 20-23 2013), Luis Gerardo
de la Fraga, Ed., vol. 1, pp. 2972–2979.

[23] Goldberg, David E., and Richardson, Jon. Genetic algorithms with sharing for
multimodal function optimization. In Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Applica-
tion (Hillsdale, NJ, USA, 1987), L. Erlbaum Associates Inc., pp. 41–49.

[24] Gulwani, Sumit. Dimensions in program synthesis. In Proceedings of the 12th
international ACM SIGPLAN symposium on Principles and practice of declar-
ative programming (2010), ACM, pp. 13–24.

[25] Gulwani, Sumit. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New York, NY, USA,
2011), POPL ’11, ACM, pp. 317–330.

[26] Gulwani, Sumit. Synthesis from examples: Interaction models and algorithms.
In 14th International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing (2012). Invited talk paper.

[27] Gulwani, Sumit, Harris, William R., and Singh, Rishabh. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8 (Aug. 2012), 97–105.

[28] Harding, Simon, Graziano, Vincent, Leitner, Juergen, and Schmidhuber, Juer-
gen. MT-CGP: mixed type cartesian genetic programming. In GECCO ’12:
Proceedings of the fourteenth international conference on Genetic and evolu-
tionary computation conference (Philadelphia, Pennsylvania, USA, 7-11 July
2012), ACM, pp. 751–758.

[29] Harman, Mark, Langdon, William B., Jia, Yue, White, David R., Arcuri, An-
drea, and Clark, John A. The GISMOE challenge: Constructing the Pareto
program surface using genetic programming to find better programs. In The
27th IEEE/ACM International Conference on Automated Software Engineering
(ASE 12) (Essen, Germany, Sept. 3-7 2012), ACM, pp. 1–14.

[30] Harper, Robin. Spatial co-evolution: quicker, fitter and less bloated. In GECCO
’12: Proceedings of the fourteenth international conference on Genetic and evo-
lutionary computation conference (Philadelphia, Pennsylvania, USA, 7-11 July
2012), ACM, pp. 759–766.

[31] Harrington, Kyle I., Spector, Lee, Pollack, Jordan B., and O’Reilly, Una-
May. Autoconstructive evolution for structural problems. In GECCO 2012
2nd Workshop on Evolutionary Computation for the Automated Design of Al-
gorithms (Philadelphia, Pennsylvania, USA, 7-11 July 2012), Gisele L. Pappa,
John Woodward, Matthew R. Hyde, and Jerry Swan, Eds., ACM, pp. 75–82.

131

[32] Harris, William R, and Gulwani, Sumit. Spreadsheet table transformations
from examples. In ACM SIGPLAN Notices (2011), vol. 46, ACM, pp. 317–328.

[33] Helmuth, Thomas, McPhee, Nicholas Freitag, and Spector, Lee. Lexicase se-
lection for program synthesis: a diversity analysis. In Genetic Programming
Theory and Practice XIII, Genetic and Evolutionary Computation. Springer,
2015.

[34] Helmuth, Thomas, and Spector, Lee. Evolving SQL queries from examples
with developmental genetic programming. In Genetic Programming Theory
and Practice X, Rick Riolo, Ekaterina Vladislavleva, Marylyn D. Ritchie, and
Jason H. Moore, Eds., Genetic and Evolutionary Computation. Springer, Ann
Arbor, USA, 12-14 May 2012, ch. 1, pp. 1–14.

[35] Helmuth, Thomas, and Spector, Lee. Evolving a digital multiplier with the
pushgp genetic programming system. In GECCO ’13 Companion: Proceeding
of the fifteenth annual conference companion on Genetic and evolutionary com-
putation conference companion (Amsterdam, The Netherlands, 6-10 July 2013),
ACM, pp. 1627–1634.

[36] Helmuth, Thomas, and Spector, Lee. Word count as a traditional programming
benchmark problem for genetic programming. In GECCO ’14: Proceedings of
the 2014 conference on Genetic and evolutionary computation (Vancouver, BC,
Canada, 12-16 July 2014), ACM, pp. 919–926.

[37] Helmuth, Thomas, and Spector, Lee. Detailed problem descriptions for gen-
eral program synthesis benchmark suite. Technical Report UM-CS-2015-006,
Computer Science, University of Massachusetts, Amherst, June 2015.

[38] Helmuth, Thomas, and Spector, Lee. General program synthesis benchmark
suite. In GECCO ’15: Proceedings of the 2015 Conference on Genetic and
Evolutionary Computation (July 2015).

[39] Helmuth, Thomas, Spector, Lee, and Matheson, James. Solving uncompro-
mising problems with lexicase selection. IEEE Transactions on Evolutionary
Computation (2014). Accepted for future publication.

[40] Hofmann, Martin, Kitzelmann, Emanuel, and Schmid, Ute. A unifying frame-
work for analysis and evaluation of inductive programming systems. In Pro-
ceedings of the Second Conference on Artificial General Intelligence (2009),
Citeseer, pp. 55–60.

[41] Hollander, M., and Wolfe, D.A. Nonparametric Statistical Methods. Wiley
Series in Probability and Statistics. Wiley, 1999.

[42] Horn, Jeffrey, Nafpliotis, Nicholas, and Goldberg, David E. Multiobjective
optimization using the niched pareto genetic algorithm. Tech. Rep. IlliGAL
93005, University of Illinois at Urbana-Champaign, 104 South Mathews Avenue,
Urbana, IL 61801, 1993.

132

[43] Jackson, David. Promoting phenotypic diversity in genetic programming. In
PPSN 2010 11th International Conference on Parallel Problem Solving From
Nature (Krakow, Poland, 11-15 Sept. 2010), Robert Schaefer, Carlos Cotta,
Joanna Kolodziej, and Guenter Rudolph, Eds., vol. 6239 of Lecture Notes in
Computer Science, Springer, pp. 472–481.

[44] Jazayeri, Mehdi. Formal specification and automatic programming. In Pro-
ceedings of the 2Nd International Conference on Software Engineering (Los
Alamitos, CA, USA, 1976), ICSE ’76, IEEE Computer Society Press, pp. 293–
296.

[45] Kannappan, Karthik, Spector, Lee, Sipper, Moshe, Helmuth, Thomas, La Cava,
William, Wisdom, Jake, and Bernstein, Omri. Analyzing a decade of human-
competitive (HUMIE) winners:what can we learn? In Genetic Programming
Theory and Practice XII, Genetic and Evolutionary Computation. Springer,
Ann Arbor, USA, May 2014.

[46] Katayama, Susumu. Systematic search for lambda expressions. In Trends in
Functional Programming (2005), Marko C. J. D. van Eekelen, Ed., vol. 6 of
Trends in Functional Programming, Intellect, pp. 111–126.

[47] Katayama, Susumu. Efficient exhaustive generation of functional programs
using monte-carlo search with iterative deepening. In PRICAI 2008: Trends in
Artificial Intelligence, Tu-Bao Ho and Zhi-Hua Zhou, Eds., vol. 5351 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 199–210.

[48] Katayama, Susumu. Recent improvements of magichaskeller. In Approaches
and Applications of Inductive Programming, Ute Schmid, Emanuel Kitzelmann,
and Rinus Plasmeijer, Eds., vol. 5812 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, pp. 174–193.

[49] Katayama, Susumu. An analytical inductive functional programming system
that avoids unintended programs. In Proceedings of AAIP 2011 4th Interna-
tional Workshop on Approaches and Applications of Inductive Programming
(2011).

[50] Katayama, Susumu. Magichaskeller: System demonstration. In Proceedings
of AAIP 2011 4th International Workshop on Approaches and Applications of
Inductive Programming (2011).

[51] Katayama, Susumu. Magichaskeller on the web: Automated programming as
a service. In Haskell ’13: Proceedings of the 2013 ACM SIGPLAN Symposium
on Haskell (2013), ACM.

[52] Keijzer, Maarten. Push-forth: a light-weight, strongly-typed, stack-based ge-
netic programming language. In GECCO ’13 Companion: Proceeding of the
fifteenth annual conference companion on Genetic and evolutionary computa-
tion conference companion (Amsterdam, The Netherlands, 6-10 July 2013),
ACM, pp. 1635–1640.

133

[53] Kitzelmann, Emanuel. Data-driven induction of recursive functions from
input/output-examples. In Proceedings of the ECML/PKDD 2007 Workshop on
Approaches and Applications of Inductive Programming (AAIP 2007) (2007),
pp. 15–26.

[54] Kitzelmann, Emanuel. Analytical inductive functional programming. In Logic-
Based Program Synthesis and Transformation, Michael Hanus, Ed., vol. 5438 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 87–
102.

[55] Kitzelmann, Emanuel. Inductive programming: A survey of program synthesis
techniques. In Approaches and Applications of Inductive Programming, Ute
Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer, Eds., vol. 5812 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 50–73.

[56] Kitzelmann, Emanuel. Two new operators for IGOR2 to increase synthesis effi-
cieny. In Proceedings of AAIP 2011 4th International Workshop on Approaches
and Applications of Inductive Programming (2011).

[57] Kitzelmann, Emanuel, and Schmid, Ute. Inductive synthesis of functional pro-
grams: An explanation based generalization approach. J. Mach. Learn. Res. 7
(Dec. 2006), 429–454.

[58] Klein, Jon, and Spector, Lee. Genetic programming with historically assessed
hardness. In Genetic Programming Theory and Practice VI, Rick L. Riolo,
Terence Soule, and Bill Worzel, Eds., Genetic and Evolutionary Computation.
Springer, Ann Arbor, 15-17 May 2008, ch. 5, pp. 61–75.

[59] Knowles, Joshua D., Watson, Richard A., and Corne, David. Reducing local
optima in single-objective problems by multi-objectivization. In Proceedings of
the First International Conference on Evolutionary Multi-Criterion Optimiza-
tion (London, UK, UK, 2001), EMO ’01, Springer-Verlag, pp. 269–283.

[60] Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina. Pursuing the
pareto paradigm: Tournaments, algorithm variations and ordinal optimization.
In Genetic Programming Theory and Practice IV, Rick Riolo, Terence Soule,
and Bill Worzel, Eds., Genetic and Evolutionary Computation. Springer US,
2007, pp. 167–185.

[61] Koza, John R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[62] Krawiec, Krzysztof, and Lichocki, Pawel. Using co-solvability to model and
exploit synergetic effects in evolution. In PPSN 2010 11th International Con-
ference on Parallel Problem Solving From Nature (Krakow, Poland, 11-15 Sept.
2010), Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Guenter Rudolph,
Eds., vol. 6239 of Lecture Notes in Computer Science, Springer, pp. 492–501.

134

[63] Krawiec, Krzysztof, and Liskowski, Pawel. Automatic derivation of search ob-
jectives for test-based genetic programming. In 18th European Conference on
Genetic Programming (Copenhagen, 8-10 Apr. 2015), Penousal Machado, Mal-
colm I. Heywood, James McDermott, Mauro Castelli, Pablo Garcia-Sanchez,
Paolo Burelli, Sebastian Risi, and Kevin Sim, Eds., vol. 9025 of LNCS, Springer,
pp. 53–65.

[64] Krawiec, Krzysztof, and Nawrocki, Mateusz. Implicit fitness sharing for evo-
lutionary synthesis of license plate detectors. In Applications of Evolutionary
Computing (Vienna, Austria, 3-5 Apr. 2013), vol. 7835 of Lecture Notes in
Computer Science, Springer, pp. 376–386.

[65] Krawiec, Krzysztof, Swan, Jerry, and O’Reilly, Una-May. Behavioral program
synthesis: Insights and prospects. In Genetic Programming Theory and Practice
XIII, Genetic and Evolutionary Computation. Springer, 2015.

[66] Langdon, William B. Evolving data structures with genetic programming. In
Proceedings of the 6th International Conference on Genetic Algorithms (San
Francisco, CA, USA, 1995), Morgan Kaufmann Publishers Inc., pp. 295–302.

[67] Langdon, William B. Advances in genetic programming. MIT Press, Cam-
bridge, MA, USA, 1996, ch. Data structures and genetic programming, pp. 395–
414.

[68] Langdon, William B., and Harman, Mark. Genetically improving 50000 lines of
C++. Research Note RN/12/09, Department of Computer Science, University
College London, Gower Street, London WC1E 6BT, UK, 19 Sept. 2012.

[69] Langdon, William B., and Harman, Mark. Optimising existing software with
genetic programming. IEEE Transactions on Evolutionary Computation 19, 1
(Feb. 2015), 118–135.

[70] Lau, Tessa, Bergman, Lawrence, Castelli, Vittorio, and Oblinger, Daniel. Pro-
gramming shell scripts by demonstration. In Workshop on Supervisory Control
of Learning and Adaptive Systems, AAAI (2004), vol. 4.

[71] Lau, Tessa, Domingos, Pedro, and Weld, Daniel S. Learning programs from
traces using version space algebra. In Proceedings of the 2Nd International
Conference on Knowledge Capture (New York, NY, USA, 2003), K-CAP ’03,
ACM, pp. 36–43.

[72] Lau, Tessa, Wolfman, Steven A, Domingos, Pedro, and Weld, Daniel S. Pro-
gramming by demonstration using version space algebra. Machine Learning 53,
1-2 (2003), 111–156.

[73] Le Goues, Claire, Dewey-Vogt, Michael, Forrest, Stephanie, and Weimer, West-
ley. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 34th International Conference on Software Engineering (ICSE
2012) (Zurich, June 2-9 2012), Martin Glinz, Ed., pp. 3–13.

135

[74] Le Goues, Claire, Forrest, Stephanie, and Weimer, Westley. Current challenges
in automatic software repair. Software Quality Journal 21 (Sept. 2013), 421–
443.

[75] Le Goues, Claire, Holtschulte, Neal, Smith, Edward K., Brun, Yuriy, Devanbu,
Premkumar, Forrest, Stephanie, and Weimer, Westley. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering (TSE), in press, 22 pages (2015).

[76] Le Goues, Claire, Nguyen, ThanhVu, Forrest, Stephanie, and Weimer, Westley.
GenProg: A generic method for automatic software repair. IEEE Transactions
on Software Engineering 38, 1 (Jan.-Feb. 2012), 54–72.

[77] Le Goues, Claire, Weimer, Westley, and Forrest, Stephanie. Representations
and operators for improving evolutionary software repair. In GECCO ’12:
Proceedings of the fourteenth international conference on Genetic and evolu-
tionary computation conference (Philadelphia, Pennsylvania, USA, 7-11 July
2012), ACM, pp. 959–966.

[78] Liang, Percy, Jordan, Michael I, and Klein, Dan. Learning programs: A hierar-
chical bayesian approach. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10) (2010), pp. 639–646.

[79] Lieberman, Henry. Your wish is my command: Programming by example. Mor-
gan Kaufmann, 2001.

[80] Liskowski, Pawe l, Krawiec, Krzysztof, Helmuth, Thomas, and Spector, Lee.
Comparison of semantic-aware selection methods in genetic programming. In
GECCO 2015 workshop on Semantic Methods in Genetic Programming (2015),
ACM.

[81] Luke, Sean. Essentials of Metaheuristics, first ed. lulu.com, 2009. Available at
http://cs.gmu.edu/∼sean/books/metaheuristics/.

[82] Luke, Sean, and Panait, Liviu. Is the perfect the enemy of the good? In GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference
(New York, 9-13 July 2002), Morgan Kaufmann Publishers, pp. 820–828.

[83] Maechler, Martin, Rousseeuw, Peter, Struyf, Anja, Hubert, Mia, and Hornik,
Kurt. cluster: Cluster Analysis Basics and Extensions, 2014. R package version
1.15.3.

[84] Manna, Zohar, and Waldinger, Richard J. Toward automatic program synthesis.
Commun. ACM 14, 3 (Mar. 1971), 151–165.

136

[85] McDermott, James, White, David R., Luke, Sean, Manzoni, Luca, Castelli,
Mauro, Vanneschi, Leonardo, Jaskowski, Wojciech, Krawiec, Krzysztof, Harper,
Robin, De Jong, Kenneth, and O’Reilly, Una-May. Genetic programming needs
better benchmarks. In GECCO ’12: Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference (Philadelphia,
Pennsylvania, USA, 7-11 July 2012), ACM, pp. 791–798.

[86] McKay, Robert I. Fitness sharing in genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2000) (Las
Vegas, Nevada, USA, 10-12 July 2000), Darrell Whitley, David Goldberg, Erick
Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, Eds., Morgan
Kaufmann, pp. 435–442.

[87] McKay, Robert I., Hoai, Nguyen Xuan, Whigham, Peter Alexander, Shan, Yin,
and ONeill, Michael. Grammar-based genetic programming: a survey. Genetic
Programming and Evolvable Machines 11, 3-4 (2010), 365–396.

[88] McPhee, Nicholas Freitag, Donatucci, David, and Helmuth, Thomas. Using
graph databases to explore the dynamics of genetic programming runs. In Ge-
netic Programming Theory and Practice XIII, Genetic and Evolutionary Com-
putation. Springer, 2015.

[89] Menon, Aditya Krishna, Tamuz, Omer, Gulwani, Sumit, Lampson, Butler W.,
and Kalai, Adam. A machine learning framework for programming by example.
In ICML (1) (2013), vol. 28 of JMLR Proceedings, JMLR.org, pp. 187–195.

[90] Moll, Robert. iJava—an online interactive textbook for elementary Java in-
struction: Demonstration. Journal of Computing Sciences in Colleges 26, 6
(June 2011), 55–57.

[91] Moll, Robert. iJava. http://ijava.cs.umass.edu/index.html, 2014. Edition
3.1. Online; accessed September 2015.

[92] Montana, David J. Strongly typed genetic programming. Evolutionary compu-
tation 3, 2 (1995), 199–230.

[93] Moraglio, Alberto, Krawiec, Krzysztof, and Johnson, Colin G. Geometric se-
mantic genetic programming. In Parallel Problem Solving from Nature, PPSN
XII (part 1) (Taormina, Italy, Sept. 1-5 2012), vol. 7491 of Lecture Notes in
Computer Science, Springer, pp. 21–31.

[94] Moraglio, Alberto, Otero, Fernando, Johnson, Colin, Thompson, Simon, and
Freitas, Alex. Evolving recursive programs using non-recursive scaffolding. In
Proceedings of the 2012 IEEE Congress on Evolutionary Computation (Bris-
bane, Australia, 10-15 June 2012), Xiaodong Li, Ed., pp. 2242–2249.

[95] Muggleton, Stephen, De Raedt, Luc, Poole, David, Bratko, Ivan, Flach, Peter,
Inoue, Katsumi, and Srinivasan, Ashwin. Ilp turns 20. Machine Learning 86, 1
(2012), 3–23.

137

[96] Nakazawa, Minato. fmsb: Functions for medical statistics book with some de-
mographic data, 2014. R package.

[97] Noble, Jason, and Watson, Richard A. Pareto coevolution: Using perfor-
mance against coevolved opponents in a game as dimensions for pareto selec-
tion. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001 (2001), Morgan Kaufmann, pp. 493–500.

[98] Olsson, J Roland. Inductive functional programming using incremental program
transformation. Artificial intelligence 74, 1 (1995), 55–81.

[99] Olsson, J Roland. The art of writing specifications for the adate automatic
programming system. In Proceedings of the 3rd Annual Conference on Genetic
Programming (1998), Citeseer, pp. 278–283.

[100] Olsson, J Roland. Population management for automatic design of algorithms
through evolution. In Evolutionary Computation Proceedings, 1998. IEEE
World Congress on Computational Intelligence., The 1998 IEEE International
Conference on (1998), IEEE, pp. 592–597.

[101] O’Neill, Michael, and Ryan, Conor. Grammatical evolution. IEEE Transactions
on Evolutionary Computation 5, 4 (Aug. 2001), 349–358.

[102] O’Neill, Michael, and Ryan, Conor. Grammatical Evolution: Evolutionary Au-
tomatic Programming in a Arbitrary Language, vol. 4 of Genetic programming.
Kluwer Academic Publishers, 2003.

[103] Orlov, Michael, and Sipper, Moshe. Genetic programming in the wild: Evolving
unrestricted bytecode. In GECCO ’09: Proceedings of the 11th Annual con-
ference on Genetic and evolutionary computation (Montreal, 8-12 July 2009),
ACM, pp. 1043–1050.

[104] Orlov, Michael, and Sipper, Moshe. FINCH: A system for evolving Java (byte-
code). In Genetic Programming Theory and Practice VIII, Rick Riolo, Trent
McConaghy, and Ekaterina Vladislavleva, Eds., vol. 8 of Genetic and Evolution-
ary Computation. Springer, Ann Arbor, USA, 20-22 May 2010, ch. 1, pp. 1–16.

[105] Orlov, Michael, and Sipper, Moshe. Flight of the FINCH through the Java
wilderness. IEEE Transactions on Evolutionary Computation 15, 2 (Apr. 2011),
166–182.

[106] Perelman, Daniel, Gulwani, Sumit, Grossman, Dan, and Provost, Peter. Test-
driven synthesis. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2014), ACM, p. 43.

[107] Poli, Riccardo, Langdon, William B., and McPhee, Nicholas Freitag. A field
guide to genetic programming. Published via http://lulu.com and freely avail-
able at http://www.gp-field-guide.org.uk, 2008. (With contributions by J.
R. Koza).

138

[108] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-
07-0.

[109] Schmidt, Michael D., and Lipson, Hod. Co-evolving fitness predictors for accel-
erating and reducing evaluations. In Genetic Programming Theory and Practice
IV, vol. 5 of Genetic and Evolutionary Computation. Springer, Ann Arbor, 11-
13 May 2006, pp. 113–130.

[110] Schmidt, Michael D., and Lipson, Hod. Coevolution of fitness predictors. IEEE
Transactions on Evolutionary Computation 12, 6 (Dec. 2008), 736–749.

[111] Schmidt, Michael D., and Lipson, Hod. Predicting solution rank to improve per-
formance. In GECCO ’10: Proceedings of the 12th annual conference on Genetic
and evolutionary computation (Portland, Oregon, USA, 7-11 July 2010), ACM,
pp. 949–956.

[112] Shaw, David Elliot, Swartout, William R, and Green, C Cordell. Inferring
lisp programs from examples. In Proceedings of the Fourth International Joint
Conference on Artificial Intelligence (1975), Morgan Kaufmann.

[113] Singh, Rishabh, and Gulwani, Sumit. Learning semantic string transformations
from examples. Proc. VLDB Endow. 5, 8 (Apr. 2012), 740–751.

[114] Singh, Rishabh, and Gulwani, Sumit. Synthesizing number transformations
from input-output examples. In Computer Aided Verification (2012), Springer,
pp. 634–651.

[115] Skolicki, Zbigniew. An analysis of island models in evolutionary computation.
In Proceedings of the 7th Annual Workshop on Genetic and Evolutionary Com-
putation (New York, NY, USA, 2005), GECCO ’05, ACM, pp. 386–389.

[116] Smith, Edward K, Barr, Earl T, Le Goues, Claire, and Brun, Yuriy. Is the cure
worse than the disease? overfitting in automated program repair. In ESEC/FSE
(2015), ACM.

[117] Smith, Robert, Forrest, Stephanie, and Perelson, Alan S. Population diversity
in an immune system model: Implications for genetic search. In Foundations
of Genetic Algorithms 2 (1992), Morgan Kaufmann, pp. 153–166.

[118] Smits, Guido F., and Kotanchek, Mark. Pareto-front exploitation in symbolic
regression. In Genetic Programming Theory and Practice II, Una-May OReilly,
Tina Yu, Rick Riolo, and Bill Worzel, Eds., vol. 8 of Genetic Programming.
Springer US, 2005, pp. 283–299.

[119] Solar-Lezama, Armando, Arnold, Gilad, Tancau, Liviu, Bodik, Rastislav,
Saraswat, Vijay, and Seshia, Sanjit. Sketching stencils. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (New York, NY, USA, 2007), PLDI ’07, ACM, pp. 167–178.

139

[120] Solar-Lezama, Armando, Jones, Christopher Grant, and Bodik, Rastislav.
Sketching concurrent data structures. In Proceedings of the 2008 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (New
York, NY, USA, 2008), PLDI ’08, ACM, pp. 136–148.

[121] Spector, Lee. Autoconstructive evolution: Push, pushGP, and pushpop. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001) (San Francisco, California, USA, 7-11 July 2001), Morgan Kaufmann,
pp. 137–146.

[122] Spector, Lee. Towards practical autoconstructive evolution: Self-evolution of
problem-solving genetic programming systems. In Genetic Programming Theory
and Practice VIII, Rick Riolo, Trent McConaghy, and Ekaterina Vladislavleva,
Eds., vol. 8 of Genetic and Evolutionary Computation. Springer, Ann Arbor,
USA, 20-22 May 2010, ch. 2, pp. 17–33.

[123] Spector, Lee. Assessment of problem modality by differential performance of
lexicase selection in genetic programming: a preliminary report. In Proceedings
of the fourteenth international conference on Genetic and evolutionary compu-
tation conference companion (New York, NY, USA, 2012), GECCO Companion
’12, ACM, pp. 401–408.

[124] Spector, Lee, and Helmuth, Thomas. Uniform linear transformation with repair
and alternation in genetic programming. In Genetic Programming Theory and
Practice XI, Rick Riolo, Jason H. Moore, and Mark Kotanchek, Eds., Genetic
and Evolutionary Computation. Springer, Ann Arbor, USA, 9-11 May 2013,
ch. 8, pp. 137–153.

[125] Spector, Lee, and Helmuth, Thomas. Effective simplification of evolved Push
programs using a simple, stochastic hill-climber. In GECCO Companion ’14
(Vancouver, BC, Canada, 12-16 July 2014), ACM, pp. 147–148.

[126] Spector, Lee, Klein, Jon, and Keijzer, Maarten. The Push3 execution stack and
the evolution of control. In GECCO 2005: Proceedings of the 2005 conference
on Genetic and evolutionary computation (Washington DC, USA, 25-29 June
2005), vol. 2, ACM Press, pp. 1689–1696.

[127] Spector, Lee, Martin, Brian, Harrington, Kyle, and Helmuth, Thomas. Tag-
based modules in genetic programming. In GECCO ’11: Proceedings of the 13th
annual conference on Genetic and evolutionary computation (Dublin, Ireland,
12-16 July 2011), ACM, pp. 1419–1426.

[128] Spector, Lee, and Robinson, Alan. Genetic programming and autoconstructive
evolution with the push programming language. Genetic Programming and
Evolvable Machines 3, 1 (Mar. 2002), 7–40.

[129] Starosta, S. The Case for Lexicase: An Outline of Lexicase Grammatical The-
ory. Open linguistics series. Pinter Publishers, 1988.

140

[130] Starosta, Stanley, and Nomura, Hirosato. Lexicase parsing: A lexicon-driven
approach to syntactic analysis. In Proceedings of the 11th Coference on Compu-
tational Linguistics (Stroudsburg, PA, USA, 1986), COLING ’86, Association
for Computational Linguistics, pp. 127–132.

[131] Summers, Phillip D. A methodology for lisp program construction from exam-
ples. J. ACM 24, 1 (Jan. 1977), 161–175.

[132] Teller, A. Turing completeness in the language of genetic programming with
indexed memory. In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on
(Jun 1994), pp. 136–141 vol.1.

[133] Weimer, Westley, Nguyen, ThanhVu, Le Goues, Claire, and Forrest, Stephanie.
Automatically finding patches using genetic programming. In International
Conference on Software Engineering (ICSE) 2009 (Vancouver, May 16-24
2009), Stephen Fickas, Ed., pp. 364–374.

[134] White, David R., Arcuri, Andrea, and Clark, John A. Evolutionary improve-
ment of programs. IEEE Transactions on Evolutionary Computation 15, 4
(Aug. 2011), 515–538.

[135] White, David R., Mcdermott, James, Castelli, Mauro, Manzoni, Luca, Gold-
man, Brian W., Kronberger, Gabriel, Jaśkowski, Wojciech, O’Reilly, Una-May,
and Luke, Sean. Better GP benchmarks: community survey results and pro-
posals. Genetic Programming and Evolvable Machines 14, 1 (Mar. 2013), 3–29.

[136] Withall, M. S., Hinde, C. J., and Stone, R. G. An improved representation for
evolving programs. Genetic Programming and Evolvable Machines 10, 1 (Mar.
2009), 37–70.

[137] Wolpert, D.H., and Macready, W.G. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on 1, 1 (1997), 67–82.

[138] Woodward, John, Martin, Simon, and Swan, Jerry. Benchmarks that matter for
genetic programming. In GECCO 2014 4th workshop on evolutionary compu-
tation for the automated design of algorithms (Vancouver, BC, Canada, 12-16
July 2014), ACM, pp. 1397–1404.

[139] Woodward, John R. Evolving turing complete representations. In Evolution-
ary Computation, 2003. CEC’03. The 2003 Congress on (2003), vol. 2, IEEE,
pp. 830–837.

[140] Yu, Tina. A higher-order function approach to evolve recursive programs. In
Genetic Programming Theory and Practice III, Tina Yu, Rick L. Riolo, and Bill
Worzel, Eds., vol. 9 of Genetic Programming. Springer, Ann Arbor, 12-14 May
2005, ch. 7, pp. 93–108.

141

[141] Zitzler, Eckart, Laumanns, Marco, and Thiele, Lothar. Spea2: Improving the
strength pareto evolutionary algorithm. Tech. Rep. 103, Swiss Federal Institute
of Technology (ETH) Zurich, 2001.

142

