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ABSTRACT

FORENSIC AND MANAGEMENT CHALLENGES IN
WIRELESS AND MOBILE NETWORK ENVIRONMENTS

SEPTEMBER 2015

SOOKHYUN YANG

B.Sc., YONSEI UNIVERSITY

M.Sc., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jim Kurose

The Internet recently passed an historic inflection point, with the number of

broadband wireless/mobile devices surpassing the number of wired PCs and servers

connected to the Internet. Smartphones, laptops, tablets, machine-to-machine (M2M)

devices, and other portable devices have penetrated our daily lives. According

to Cisco [8], by 2018, wired devices will account for only 39% of IP traffic, with

the remaining traffic produced by wireless/mobile devices. This proliferation of

wireless/mobile devices is profoundly changing many of the characteristics of network

applications, protocols, and operation, and posing fundamental challenges to the

Internet architecture. In light of this new trend, this thesis focuses on forensic and

mobility-management challenges in wireless/mobile network environments.

The first half of this thesis addresses two network-forensic challenges that arise

due to the broadcast nature of wireless communications. In the first network-forensic

vii



challenge, we develop a mechanism to detect anomalous forwarding behaviors such

as packet dropping, and packet reordering, and to identify the source of forwarding-

behavior attacks that can disrupt a wireless ad hoc network. Our mechanism employs

witness nodes that can overhear transmissions made by nearby wireless network nodes.

In the second challenge, we investigate a method for gathering network-based evidence,

based on constraints imposed by current U.S. law, for remotely disambiguating a

sender’s network access type (wired versus wireless); such a technique could be used

to determine that a sender is connected physically to a network inside a building.

We discuss several factors that might affect our classification results and identify the

scenarios in which residential network access type can be accurately determined.

The second half of this thesis takes a more global and network-level point of view

on mobility management and delves into a clean-state approach to designing a future

Internet architecture that considers mobility as a first-order property. Before discussing

architectural design issues, we present a measurement and modeling study of user

transitioning among points of attachment to today’s Internet. These transitions could

result from a user’s physical mobility or a stationary “multi-homed” user’s changing

his/her devices or NICs. This research provides insights and implications regarding

control-plane workload for a mobility-management architecture. Our measurement

results to date show that users spend the majority of their time attached to a small

number of networks, and that a surprisingly large number of users access two networks

contemporaneously. In the last part of our thesis research, we design techniques for

efficiently handling group mobility in the context of the MobilityFirst architecture [68];

MobilityFirst uses flat, globally unique names, binding a flat name to its network

location via a logically centralized name- and location-resolution server. Using the

empirical model from our measurement study as well as more abstract models of group

mobility, we evaluate our group mobility management techniques.
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INTRODUCTION

The Internet recently passed an historic inflection point, with the number of

broadband wireless/mobile devices surpassing the number of wired PCs and servers

connected to the Internet [8]. Smartphones, laptops, tablets, machine-to-machine

(M2M) devices, and other portable devices have penetrated our daily lives. New

wireless/mobile (accessory) devices such as Google glass [5] and smart watches [6]

that synchronously operate with other wireless/mobile devices, are emerging. The

growth in the wireless/mobile markets has been further accelerated by cloud computing

that extends the capabilities of resource-limited wireless/mobile devices to be able to

globally retrieve and store unlimited information anywhere, anytime from cloud storage.

According to Cisco [8], by 2018, wired devices will account for only 39% of IP traffic,

with the remaining traffic produced by wireless/mobile devices. This proliferation of

wireless/mobile devices is profoundly changing many of the characteristics of network

applications, protocols, and operation; among those of interest to us in this dissertation

are:

1. With the broadcast nature of wireless communications, it is possible for devices

to overhear and monitor each other, providing new opportunities for (among

other things) detecting misconfiguration or misbehavior.

2. The mobility of wireless/mobile devices and the openness of mixed mode

(wired/wireless) access points can disguise the physical location – inside a

house versus outside a house – of a user attached to an open access point. An

open access point would be more susceptible to the misuse of an uninvited

stranger and an individual suspected of a crime or misuse that had been traced
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to an access point could plausibly deny allegations. However, when the user is

attached via a wired connection, it is easier to physically locate a user inside a

house, making the resident user more easily associated with network traffic from

that access point.

3. Mobility among edge and provider networks. A mobile user, a multi-homed

user, or a user carrying multiple devices (or NICs) shifts his/her Internet access

among multiple wired/wireless/mobile networks or contemporaneously connects

to multiple networks while persistently keeping his/her identity (name). This

“virtual mobility” among edge and provider networks is a more recent concern

of location management and name/location translation protocols that map a

user’s identity to his/her current location in location-independent architectures

such as Mobile-IP, XIA and MobilityFirst.

4. Group mobility – a group of (mobile) users whose mobility among networks may

be correlated – occurs when users travel together (e.g., in a vehicle), when users

are engaged in social relationships (e.g., affiliation, conference attendance), when

users are regularly associated with a small number of preferred networks, or

when multiple devices are carried by a user. Such group mobility provides new

opportunities for efficiently handling user-location information for groups of users,

reducing the location management and name/location translation workload – a

central concern of modern location-independent architectures.

The first half of this thesis is motivated by the first two observations above, and

addresses two network-forensic challenges in wireless/mobile environments. In the first

network-forensic challenge, we propose a mechanism to detect anomalous behaviors and

identify the source of attacks disrupting the routing/forwarding operation of a wireless

ad hoc network. In the second challenge, from the perspective of law enforcement, we

develop a method for gathering network-based evidence, based on constraints imposed
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by current U.S. law, for remotely disambiguating a sender’s network access type (wired

versus wireless); such a technique could be used to locate a sender inside a building.

The second half of this thesis is motivated by the last two observations above, and

takes a more global and network-level point of view on mobility management and

delves into a clean-state approach to redesigning network architecture that considers

mobility as a first-order property. In the MobilityFirst architecture that we have

been developing [70], a globally unique flat-ID name (denoted by GUID) is used to

identify and locate an end-point or content. The name resolution functionality for

binding a name and its location is migrated into a cloud infrastructure as a logically

centralized service. In this thesis, we present a measurement and modeling study of

user mobility among networks; this research provides a workload model that can be

used in evaluating MobilityFirst and other mobility-centric architectures. Using this

model as well as more abstract models of group mobility, we then design and evaluate

techniques for efficiently handling group mobility in the MobilityFirst architecture.

Before delving into details of this thesis, we give a brief overview of the following

Chapters and the structure of this thesis.

Network-forensic challenges

Our first piece of research in wireless network forensics (Chapter 1) deals with

the problem of proactively protecting a wireless network resource from an attacker’s

disrupting hop-by-hop forwarding in a wireless ad hoc network. The second piece of

our network-forensic research (Chapter 2) considers a scenario in which a network

user does not harm the network but commits crimes by misusing a network resource,

such as distributing illegal content over a p2p network, or communicating with a

conspirator using an open wireless access point; we suggest a legal method (according

to US law) to locate a network user inside a building by disambiguating the network

access type (wired versus wireless) used by a user.
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Detection of forwarding misbehavior in a wireless ad hoc network

In Chapter 1, we consider the problem of detecting a malicious node that incorrectly

forwards data and disrupts network connectivity in a wireless ad hoc network. Since a

pre-authenticated node can be compromised and misused by adversaries, detecting a

maliciously behaving node is an orthogonal problem to blocking an adversary from

joining a network via secure authentication. Numerous studies [14, 33, 35, 48] have

suggested methods to monitor a node’s behavior for detecting a misbehaving node,

such as a watchdog scheme, and secure data forwarding (SDF). However, as we will see,

the detection metrics proposed in prior work can be easily thwarted by adversaries or

be faulty in a lossy link. We thus suggest a witness-based detection scheme to employ

a tamper-proof and reliable detection metric and enhance the accuracy of identifying a

misbehaving node in a lossy network environment.

Our witness-based detection scheme employs wireless nodes near a data path that

overhear a node’s transmissions and gather tamper-proof evidence during reliable

hop-by-hop data transmission. We describe how our scheme detects forwarding

misbehavior attacks such as packet dropping, and packet reordering, and examine how

our scheme successfully detects forwarding misbehavior in various threat scenarios

where adversaries compromise one or more wireless nodes near a data path or on a

data path. We also discuss how our scheme can identify compromised nodes. Using an

analytical model, we quantify the detection accuracy in identifying misbehaving nodes

on a data path and the communication overhead for detecting forwarding misbehavior

attacks. We also discuss the trade-off between detection accuracy and communication

overhead, compared with a previously suggested detection scheme not using wireless

nodes near a data path.

This work appeared in the IEEE Workshop on Wireless Mesh Networks 2010 [81].

Disambiguation of wired and wireless access in a forensic setting
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In Chapter 2, we tackle the problem of legally determining an alleged criminal’s

physical location in a forensic scenario from the perspective of law enforcement. Images

of child sexual exploitation have been common on BitTorrent, Gnutella, and other

file-sharing networks [47,67]. The end result of network-based investigations of these

crimes is evidence that supports a court-issued warrant to enter and search the home

associated with an observed IP address [45, 61]. A common alibi is that a third

party used the home’s open Wi-Fi. Thus, a useful first step during execution of the

warrant would be to determine if contraband was distributed on the p2p network

using the house’s wired network, therefore making the resident user more likely to be

the responsible party, or if Wi-Fi was used and that such an alibi might be justified.

We investigate methods that use remotely measured traffic to disambiguate wired

and wireless residential medium access. Importantly, we place our work in a practical

forensic setting by constraining our approaches to only use remotely gathered “plain

view” data that can be gathered legally from p2p networks before a warrant or wiretap

is required (in the US). This constraint distinguishes our work from previous research

on wired/wireless disambiguation, which has assumed that measurements are taken

from the target’s gateway router, which is not only a much less challenging problem

but impractical from a forensic setting since it violates the Wiretap Act [62]. Using a

set of traces that we collected, we evaluate the ability of a number of classifiers to

remotely distinguish wired from wireless access within the same house, considering

several residential factors that might affect our classification results but might not be

known to law enforcement before a warrant.

This work appeared in the IEEE INFOCOM Mini-conference 2013 [77].

MobilityFirst architecture

The second half of this thesis is part of a clean-state approach to developing the

MobilityFirst architecture. Our first piece of research here performs a measurement

and modeling study on a user’s transitioning among networks and provides insights
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and implications for our architectural design principles. In the second part, we describe

the detailed design of a group mobility mechanism for the MobilityFirst architecture,

and evaluate our approach using a model as well as empirical traces.

Characterization of a user’s transitioning among networks

Physical human mobility has played a central role in the design and operation

of mobile networks (including cellular, Wi-Fi, and mobile ad hoc networks) and

their protocols for hand-off, routing, location management, and more. However,

physical user mobility is quite different than mobility from a network or network-layer

addressing point of view. This distinction between physical mobility and mobility

among networks (i.e., a changing network address associated with a device or an end

user) is an important one, since it is this mobility among networks that is important

to location management protocols such as mobile-IP [40], HLR/VLR registration in

cellular networks [10], and name/address resolution protocols in current (e.g., LISP [24])

and next generation (e.g., MobilityFirst [70], XIA [32]) network architectures and

protocols.

In Chapter 3, we perform a measurement study of user-transitioning among access

networks and discuss insights and implications drawn from these measurements. Based

on these measurements, we also develop and validate a parsimonious Markov chain

model of canonical user transitioning among networks. Our measurement study,

conducted using two sets of IMAP server logs (a year-long log of approximately

80 users, and a four-month log of a different population of more than 7,000 users)

quantitatively characterizes network transitioning in terms of transition rates among

networks, network residency time, degree of contemporaneous connection to multiple

networks, and more.

This work appeared in the IEEE INFOCOM 2015 [78].

Group Mobility Management in the MobilityFirst Architecture
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In Chapter 4, we tackle the problem of efficiently handling the signaling traffic

needed to track the access networks (locations) to which each of a group of users

is attached. Intuitively, there can be significant savings in location-tracking traffic

and name/location translation in location-independent architectures (e.g., GNS in

MobilityFirst [68]), if users move as a group and we track the location of the group,

rather than each of the individuals in a group.

We introduce the notion of “group-mobility indirection” in which a single group

identifier, registered in the name/location translation server, references a group of

users and keeps track of the network location of the group (rather than the location of

all individual users). The major complexities of group-mobility indirection occur when

users associated with a group identifier are split from the group location, resulting

in different users being located in different access networks at a given point in time.

We describe the architectural design and algorithms of group-mobility indirection,

and then evaluate the reduction in the location-tracking workload using synthetic

traces (produced by our proposed group-mobility model) and using empirical traces

(consisting of approximately 4000 users).

Contributions

Having overviewed this thesis, we summarize the contributions of our research as

follows.

• In our research on forwarding misbehavior in a wireless ad hoc network, we

show that our witness-based detection scheme can unambiguously identify a

compromised node, as long as there is at least one uncompromised observing

node and compromised nodes do not collude. For the case when compromised

nodes do collude, we show that our scheme can detect the existence (but not

identity) of compromised nodes, as long as there is at least one uncompromised

observing node. In a lossy wireless network, our scheme can achieve very low
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false positive and false negative rates, requiring relatively low communication

overhead.

• In our research on disambiguating wired and wireless access in a forensic setting,

we use a simple decision-tree classifier that uses remotely measured traces

and identify 25th percentiles and entropy of inter-arrival times distribution as

classification features, achieving a true positive rate (TPR) of 0.9 to 1.0 and false

positive rate (FPR) of 0.0 to 0.1 in our studies. Overall, our findings suggest

that it is difficult at best to find a foolproof classifier for remote identification in

all scenarios, but we determine the scenarios in which network access type can

be accurately determined, and discuss when and why these techniques cannot

be reliably used in other scenarios.

• Our measurement study of users transitioning among networks finds that users

spend the majority of their time attached to a small number of access networks,

and that a surprisingly large number of users access two networks contemporane-

ously. We also show that our Markov chain model of a canonical individual user,

in spite of its many simplifying assumptions, can accurately predict aggregate

transition rates, the degree of contemporaneous multi-homing, and other key

network-transitioning performance metrics for an aggregate population.

• In our research on efficiently handling group mobility, we introduce signaling

strategies for handling group-mobility-indirection. We show that an event-based

algorithm which elects one group member as a “leader” and reactively associates

the group location with this leader’s location significantly reduces location-

tracking traffic, as long as a group of users move together frequently enough.

For the case that the sequence of networks associated with a group of users

has periodicity, we show that a periodicity-based algorithm that periodically

updates the group location with a predicted network location at a predicted
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time reduces location-tracking traffic more than the event-based algorithm. We

also show the gain in reducing the location-tracking signaling as the number of

groups increases.

Outline of Thesis

The rest of the thesis thesis is structured as follows. In Chapter 1, we present

our witness-based detection scheme and analyze its vulnerabilities and performance,

compared to a well-known data-path-based detection scheme. In Chapter 2, we discuss

the legal issues of network measurement methodologies and present a technique for

remotely disambiguating a suspect’s access network type for geographically locating

the suspect in illegal content distributing scenarios. Chapter 3 presents the results of a

measurement and modeling study of user transitioning among networks. In Chapter 4,

we describe our group-mobility-indirection architecture to efficiently handle a group of

users moving among networks and evaluate the architecture using our group mobility

model as well as empirical traces. Last, Chapter 5 concludes this thesis and discusses

future work.
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CHAPTER 1

WITNESS-BASED DETECTION OF FORWARDING
MISBEHAVIOR IN WIRELESS NETWORKS

1.1 Introduction

This Chapter deals with our first network-forensic challenge to detect the source of

an attack on forwarding behavior in a wireless MANET by leveraging the broadcast

nature of a wireless channel. In a wireless ad hoc network, secure data transmission

requires a mechanism to verify that an authenticated node on a path correctly forwards

packets and detects a compromised node. The detection of a compromised node is

particularly important in military MANETs [44,57,64] and other networks in which

nodes can be compromised either physically or remotely. Path-verification mechanisms

can be classified into two categories: (i) control-plane verification mechanisms that

detect routing disruption attacks that inject false routing control messages, and (ii)

data-plane verification mechanisms that deal with data forwarding misbehavior attacks

such as packet drops, reordering, and message corruption. This Chapter focuses on

detecting forwarding misbehavior attacks and identifying the source of attacks in the

data plane.

Prior work on detecting forwarding misbehavior can be divided into two broad

categories, based on whether evidence of forwarding behavior is gathered passively

or actively. In watchdog schemes employing passive measurements [14,33,48], each

node monitors its neighboring node’s forwarding behavior by checking the integrity of

the node’s incoming and outgoing data packet pairs. Even though they attempt to

precisely detect forwarding misbehavior by using a series of incoming and outgoing
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data packet pairs, or by gathering multiple observations from collaborating nodes,

these solutions can be easily thwarted by sending out false information signed using

a stolen key if a node becomes compromised. On the other hand, schemes using

active measurements (e.g., [35]) involve a node actively sending a probe packet to an

observing node. The absence of a response from the observing node within a predefined

time is used as evidence to indicate the existence of a compromised intermediate node.

These schemes are also vulnerable to an attacker generating a valid probe response

using a stolen key without correctly forwarding a data packet and are complicated in

a lossy network environment.

In this Chapter, we present a witness-based detection scheme that utilizes witness

nodes located in the neighborhood of a forwarding node, that improve the accuracy

of a detection metric using a new tamper-proof and packet-by-packet evidence format.

This Chapter focuses on discussing the impact of having witness nodes on detection

accuracy and communication overhead under diverse threat scenarios. We show that

our scheme can unambiguously identify a compromised node, as long as there is at

least one uncompromised observing node and compromised nodes do not collude. For

the case when compromised nodes do collude, we show that our scheme can detect the

existence (but not the identity) of compromised nodes, as long as there is at least one

uncompromised observing node. Using an analytical model, we also show that our

scheme can achieve very low false positive and false negative rates in a lossy wireless

network, requiring relatively low communication overhead.

The rest of this Chapter is organized as follows. In Section 1.2, we introduce our

network and detection model and threat scenarios. In Section 1.3, we describe the

witness-based detection scheme in more detail. Section 1.4 shows how our scheme

detects attacks in various threat scenarios. In Section 1.5, we evaluate our scheme’s

detection accuracy and communication overhead in the presence of lossy links. In the

last Section, we conclude the Chapter.
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1.2 Detecting Forwarding Misbehavior

In this Section, we describe our model with a list of assumptions, and briefly describe

two detection schemes: data-path-based detection and witness-based detection. Then

we define various forwarding misbehavior attacks.

1.2.1 Model

In our model, each node on a data path exchanges data and ACK packets with

its next-hop neighbor as part of the normal forwarding of packets. For simplicity, we

consider a “static” wireless ad hoc network that is composed of authenticated nodes

using public-key authentication and thus the data path is fixed during a detection

procedure. Without loss of generality, we consider data path S → A→ B → C → D,

where S is a source, D the ultimate destination, and A, B, C are intermediate nodes.

From now on, we focus on node B’s forwarding behavior verification by its upstream

node A1. We call node A a judge and node B a defendant. A witness is a node

that may overhear the data packet from B to C, or the ACK packet from C to B,

and is located within node B or node C’s transmission radius. Let W be the set of

witness nodes excluding nodes B and C. As evidence of B’s forwarding, witness

nodes, C and W , will use observed data and ACK packets by B. Then judge A will

make a decision on the state of defendant B using the evidence transmitted from C

or W 2. Our model assumes the following.

1. A judge node is a “trusted” node.

1The verification can operate by having each node on a data path verify the forwarding behavior
of its next hop neighbor, cumulatively resulting in the verification of every node in the path from S
to D.

2In this Chapter, we focus on a decentralized approach, i.e., each node on a source-destination
path is individually responsible for monitoring the forwarding behavior of its downstream node. By
having a single judge responsible for deciding the state of all nodes on a data path, our detection
model can be easily implemented in a centralized way.
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2. A judge node on a data path knows the next hop from its downstream node (i.e.,

the node two hops away along the path to the destination). Such information

is readily available in the case of link-state routing algorithms and distance

vector routing algorithms using source routing (e.g., DSR). As we will see, this

information is used by a judge to verify whether B forwards data to a correct

next-hop.

1.2.2 Evidence dissemination methods

As discussed above, the evidence of B’s forwarding behavior needs to be dissem-

inated to reach judge A. In accordance with the type of evidence or the role of

witnesses, we can have two evidence-dissemination methods as follows.

• Data-path-based detection was suggested in [35] and only relies on nodes on

the data path without the intervention of witness nodes. As the evidence of B’s

forwarding behavior, an ACK packet from downstream neighbor C is delivered

to A via B, not considering alternative paths.

• Witness-based detection is our newly proposed scheme. Witnesses operating

in promiscuous mode, can overhear a data packet as well as an ACK packet

as evidence, and transmit this evidence through diverse paths to node A. For

decision making, node A utilizes data and ACK packets as evidence received

from both defendant node B and a witness node in set W . If there are no

witnesses in range of nodes B and C, then this approach is the same as the

above data-path approach.

1.2.3 Forwarding misbehavior attacks

In our threat scenario, we consider the case that a previously authenticated node

is compromised and its private key is stolen. The compromised node then launches

one or more of the following forwarding misbehavior attacks:
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• Drop (Blackhole or Grayhole) is an attack in which a compromised node does not

forward a data packet. This drop attack includes complete, partial, or selective

dropping of packets.

• Fake forwarding is an attack in which a compromised node forwards a data

packet to a nonexistent node.

• Route deviation is an attack in which a compromised node forwards a data

packet to an incorrect next-hop neighbor.

• Power control is an attack in which a compromised node forwards a data packet

with insufficient transmission power, causing the data packet to be unreachable

to its nexthop neighbor on the data path.

• Reorder (Jellyfish) is an attack in which a compromised node forwards a data

packet out-of-order.

• Message corruption is an attack in which a compromised node corrupts a message

field in a data packet.

1.3 Witness-based Detection

In this Section, we explain the details of our witness-based detection scheme that

consists of three sequential steps: (i) evidence generation, (ii) evidence dissemination,

and (iii) judge’s decision. Without loss of generality, we focus our attention on

verifying the correctness of B’s forwarding behavior from now on.

1.3.1 Evidence generation

In the evidence generation step, tamper-proof evidence is generated as part of

packet forwarding, ensuring that the evidence of B’s forwarding behavior can be

created only if B indeed forwards that data packet, whose format is as follows:
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M,KB(θB), addr(A) (1.1)

As shown in (1.1), data forwarder B sends a packet that adds an evidence field KB(θB),

and a judge-address field addr(A), into a generic data packet which originally contains

message M – a copy of source S’s message in correct forwarding. Let θB be a message

checksum generated by B that is a one-way hash of message M and its next-hop

recipient address; for instance θB = H[M |addr(C)]. The evidence field, denoted by

KB(θB), is the checksum signed with node B’s private key KB. The judge-address

field is the address to which evidence associated with this packet is to be sent. (1.1)

claims that B sends M to C and such evidence needs to be delivered to A.

Once B forwards this data packet conveying message M to C, nodes C and W

who receive or overhear B’s data forwarding may have Data-based evidence or

ACK-based evidence per data packet, as we will see below. Data-based and ACK-

based evidence contain the claims made by two independent communication parties,

node B and the node who has overheard or received B’s data packet, so that this

can block either B or other nodes from fabricating valid evidence without collusion

between each other.

Data-based evidence. A witness node w in set W that successfully overhears a

data packet constructs Data-based evidence in the following manner:

1. KB(θB): w extracts KB(θB) from the data packet formatted in (1.1). Note that

KB(θB) means that B claims that B forwarded M to its next-hop recipient C.

2. θw: w computes its own message checksum, denoted by θw, from the overheard

data packet, without decrypting K(θB) with B’s public key. Thus θw is used for

w to claim that w has overheard that B forwarded M to C.
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3. tw: w records the timestamp3, denoted by tw, when it successfully overhears the

data packet.

4. concatenates and signs the above three pieces of information using its private key

(denoted by Kw), and returns Kw(KB(θB), θw, tw) as Data-based evidence. Thus,

Kw(KB(θB), θw, tw) means that w claims that w has overheard that B forwarded

the data packet that contained M and B’s claim of its correct forwarding at

time tw.

ACK-based evidence. Using the same procedure as in Data-based evidence,

node C generates ACK-based evidence, denoted by KC(KB(θB), θC , tC). Thus,

KC(KB(θB), θC , tC) means that C claims that C has received the data packet that

contained M and B’s claim on its correct forwarding at time tC .

1.3.2 Evidence dissemination

In this step, nodes W and C transmit Data-based and ACK-based evidence to A

using new control packets as follows.

• ED packet is used by W and C to convey evidence to A.

• ED ACK packet is used by A to acknowledge the receipt of the ED packet and

force C and W to retransmit evidence when node A did not receive the evidence.

The packet contains the message checksum signed by A for preventing malicious

ED ACK packets sent by a node other than node A. The ED ACK packet

traverses the data path (A-B-C) to reach all nodes participating in evidence

dissemination.

Since communication overhead during this step is directly proportional to witness node

density, randomized feedback suppression among witness nodes might be used. Witness

3The timestamp is used only if the network needs to detect a reorder attack, with the assumption
that there is a global clock in a network, or Lamport-like time ordering. The timestamp can be also
useful to block evidence replay attacks.
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nodes stay idle for a random time up to a maximum backoff duration. Witness nodes

are suppressed if they overhear an ED ACK packet that contains more than or equal

to the amount of evidence that they have to transmit. Highest priority might be given

to a witness node having both Data-based and ACK-based evidence by setting the

shortest maximum backoff duration.

1.3.3 Judge’s decision

After the above two steps, judge node A will have Data-based and ACK-based

evidence from W and C, respectively. Judge A uses a decision making algorithm that

exposes the presence of B’s forwarding misbehavior attacks, and identifies the source

of misbehaving nodes, extensively considering the cases when one or more than one

nodes among B, C, and W are compromised4.

We introduce the notion of evidence consistency. We let ξnx = Kx(KB(θB), θx, tx) be

evidence that is associated with data packet n and is generated by node x[∈ W ∪{C}].

We let θnx be a message checksum that is produced by x and is associated with data

packet n, and let tnx be the timestamp when x sends data packet n, or evidence

associated with data packet n. We let D[θnx ] and D[tnx] be a message checksum and a

timestamp that are decrypted from evidence ξnx , respectively. When node A receives

evidence ξnx , A evaluates the following.

f(ξnx ) ← {(θnA == D[θnB]) ∧ (θnA == D[θnx ])} ∧ {(tnA < D[tnx]) ∧
(
D[tn−1x ] < D[tnx]

)
}

f() first compares the equality of message checksum in the first and second terms.

The remaining terms check the correctness of message order. If f(ξnx ) evaluates to

true, we say that evidence ξnx is consistent. Otherwise, we call ξnx inconsistent.

4We also consider a Sybil attack, i.e., launching attacks using multiple fake IDs, as our threat
scenario. Note that a Sybil attack is equivalent to the case of multiple compromised nodes.
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Node A runs one of two decision-making algorithms based on evidence consistency,

depending on whether or not collusion is possible. Algorithm 1 assumes there is

no collusion among misbehaving nodes, and determines if node B is compromised,

uncompromised or suspicious. Under the assumption of collusion among misbehaving

nodes, Algorithm 2 exposes the presence of one or more compromised nodes among

node B, node C, and a set W . The two algorithms make a precise decision using three

cheat-proof lemmas below with the following assumptions:

1. Node B has at least one downstream neighbor that can generate ACK-based

evidence.

2. Generated evidence successfully reaches node A using one or more reliable paths.

3. At least one uncompromised node x is present.

Lemma 1 (Absence of evidence). The absence of evidence implies that defendant

node B is compromised.

Proof. The absence of evidence results from defendant B’s drop or power control

attack, loss of evidence in transit to judge node A, or the failure of a downstream

neighbor to reply with an ACK packet. Given assumptions 1) and 2) above, we infer

that absence of evidence implies that node B launches a drop or a power control

attack.

Lemma 2 (Existence of consistency). Suppose that there is no collusion (defined

in Section 1.4). Consistent evidence exists if and only if defendant node B is not

compromised.

Proof. (⇒) We first prove that the existence of consistent evidence implies that node

B is not compromised by proving its contrapositive version: if node B is compromised,

then no consistent evidence can be generated. Suppose that node B is compromised.

Without collusion, node x does not know if the sequence of message, message field,
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or next-hop recipient address in node B’s data packet is correct or not. Node x can

generate a message checksum and timestamp either randomly or using the incorrect

message field or recipient address of an incorrectly forwarded data packet by node

B. In either case, f(ξnx ) evaluates to false by node x’s message checksum (θx) or

timestamp (tx).

(⇐) Given assumptions 2) and 3) above, if node B is not compromised, f(ξnx )

evaluates to true because uncompromised node x puts the correct message checksum

and timestamps into evidence.

Thus, the lemma holds.

Lemma 3 (Existence of inconsistency). The existence of inconsistent evidence implies

the presence of one or more compromised nodes among nodes B, C, and set W of

witness nodes.

Proof. We prove this lemma by using its contrapositive version: if there are no

compromised nodes among nodes B, C, and set W , then inconsistent evidence does

not exist. Suppose that there are no compromised nodes among nodes B, C and set

W . For every evidence generated by nodes B, C, and set W , f(ξnx ) evaluates to true.

Thus, the lemma holds.

Algorithm 1 Identify defendant node’s state (w/o collusion)

1: χn ← false
2: while Timeout for which A awaits evidence does not expire do
3: χn ← χn ∨ f(ξnx )
4: if (χn == true) then
5: if (x == C, i.e., ξnx is ACK-based evidence) then
6: return uncompromised
7: else
8: return suspicious
9: end if

10: end if
11: end while
12: return compromised
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In Algorithm 1, if χn evaluates to true (in other words, there exists at least one

consistent piece of evidence) and if the evidence is ACK-based evidence, Algorithm 1

decides that the defendant node is not compromised, in accordance with Lemma 2.

However, if χn is true but all evidence is Data-based evidence, node A classifies node

B’s state as suspicious, since the absence of ACK-based evidence from node C leaves

open to the possibility of a power-control attack by node B, where node B transmits

with just enough power to be overheard by the witness nodes, but not high enough to

reach node C. Last, if χn is not true, node B is determined to be compromised, based

on Lemmas 1 and 2.

Algorithm 2 Expose the existence of attacks (w/ collusion)

1: χn ← true
2: while Timeout for which A awaits evidence does not expire do
3: χn ← χn ∧ f(ξnx )
4: if χn == false then
5: return existent
6: end if
7: end while
8: if No evidence has been received then
9: return existent

10: end if
11: if ACK-based evidence has been received then
12: return non-existent
13: else
14: return suspicious
15: end if

Algorithm 2 exposes the presence of a malicious attack potentially launched in

collusion by two or more among nodes B, C and set W of witness nodes. If inconsistent

evidence is received at line 4 or no evidence exists at line 8, Algorithm 2 declares that

an attack exists based on Lemma 3 and 1 respectively. On the other hand, if a judge

node only receives consistent evidence at line 11, Algorithm 2 declares that there is

an attack or that some node is suspicious, depending on whether or not ACK-based

evidence is present.
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1.4 Detection Properties

We show how Algorithm 1 identifies a compromised node launching various forward-

ing misbehavior described in Section 1.2. Additionally, we show that Algorithms 1 and

2 are invulnerable to three new attacks defined below, which attempt to circumvent

the witness-based detection scheme:

• Bypassing: Compromised defendant node B that launches forwarding misbe-

havior attempts to circumvent the witness-based detection scheme by including

a false message checksum or a false address of a judge in a data packet.

• Badmouthing: Compromised node x generates evidence that falsely accuses

uncompromised defendant node B.

• Collusion: Compromised node x and compromised node B generate fake

consistent evidence together by including a false message checksum or a false

timestamp to conceal node B’s forwarding misbehavior.

1.4.1 Forwarding misbehavior

We describe how our witness-based detection scheme identifies misbehaving defen-

dant node B based on Algorithm 1, when the remaining nodes behave correctly and

do not launch the three attacks described above.

• A drop attack results from node B not forwarding data packet n and causes

the absence of both Data-based evidence and ACK-based evidence at node A.

From Algorithm 1, χn evaluates to false because node A has no evidence. Thus,

node A decides that node B is compromised.

• Fake forwarding and Route deviation attacks are detected, based on in-

consistent Data-based evidence, which contains different message checksums.

Let us consider the scenario in which node B maliciously forwards its data

packet to a node E (as opposed to node C under correct behavior). When
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node E is non-existent, we term the attack as fake forwarding. Otherwise,

the attack is called a route deviation attack. For every received Data-based

evidence ξnw[= Kw(KB(θB), θw, tw)], it is easy to see that f(ξnx ) evaluates to

false, because θnA 6= D[θnB] and θnA 6= D[θnw], where θnA = H[M |addr(C)] and

D[θnB] = D[θnw] = H[M |addr(E)]. From Algorithm 1, node A decides that node

B is compromised. A route deviation attack is also detectable based on node E’s

inconsistent ACK-based evidence. Fake forwarding and Route deviation attacks

can be distinguished, based on whether or not node A receives ACK-based

evidence.

• A power control attack allows for node A to receive consistent Data-based

evidence. However, it also results in the absence of ACK-based evidence. After

expiry of a timeout period, node A determines node B to be suspicious.

Power control attacks are feasible only when node C is farther from node B

than node A and each of the witness nodes (assuming homogeneous wireless

signal propagation). Note that this attack requires precise distance calculations

by node B to its neighboring nodes in order for it to adjust its transmission

power appropriately.

• Reorder attacks are detected based on the timestamps in the received evidence.

Suppose node B transmits data packet n before data packet n− 1. As a result,

each witness node overhears data packet n before n− 1. Since D[tn−1x ] > D[tnx]

for all evidence, f(ξnx ) evaluates to false and node A, therefore, decides that B

is compromised.

• A message corruption attack is detected when node A receives evidence

with different checksums. Let M′ be the message transmitted by node B in

its data packet, which is different from the original message M received from

node A. For every received evidence, the message checksums are not equal, i.e.,
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θnA 6= D[θnB] and θnA 6= D[θnx ], where θnA = H[M |addr(C)] and D[θnB] = D[θnx ] =

H[M ′|addr(C)]. Thus, f(ξnx ) evaluates to false and node A decides that node B

is compromised.

1.4.2 Bypassing

In addition to launching forwarding misbehavior attacks, compromised node B

can potentially disrupt our witness-based detection scheme by launching a bypassing

attack as defined earlier. We explain why our witness-based detection scheme cannot

be disrupted by a bypassing attack.

First, a false judge’s address results in node A receiving no evidence because

evidence-generating nodes cannot transmit evidence to judge A. This attack causes

node A to decide that node B is compromised based on Lemma 1. Second, the

compromised node B may attempt to manipulate the evidence field in a data packet

so as to hide its forwarding misbehavior. For instance, suppose that node B launches

a message corruption attack manipulating the evidence field as follows:

B → {C,W} : KB(θB), addr(A),M′, where D[θnB] = θnA = H[M |addr(C)]

Through evidence field manipulation, node B bypasses the first equality check of

message checksum in equation (1.2). However, the evidence is still inconsistent,

because θnA 6= D[θnx ] if node x is not compromised. Node A decides that node B is

compromised based on Lemma 2 or 3.

1.4.3 Badmouthing

Thus far, we discussed attacks launched by node B. Let us now consider the

case when node C or a witness node is compromised but node B is uncompromised.

In particular, we consider the scenario where node C or a witness node includes

false evidence attributes (e.g., a random message checksum or a false timestamp) or
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transmits no evidence despite overhearing node B’s correct forwarding. This may

cause node A to decide that the uncompromised node B is compromised, which

produces a false positive. We refer to this attack as badmouthing.

In data-path-based detection, node A cannot distinguish a bypassing attack by

compromised node B from a badmouthing attack by compromised node C. However,

as long as at least one uncompromised witness node exists, this node can produce

consistent evidence of node B’s correct forwarding and allow node A to distinguish

that node C is compromised, as described in Algorithm 1.

Identifying a compromised node using consistent evidence also implies that the

detection accuracy of the witness-based detection scheme is unaffected by multiple

compromised nodes that badmouth node B, as long as there exists at least one

uncompromised node x. Our scheme results in false positive only if every witness node

in the neighborhood of node B badmouths node B.

1.4.4 Collusion

Now we consider the case when compromised nodes B and x attempt to bypass

the detection scheme by generating fake consistent evidence as defined earlier. For

each of node B’s forwarding misbehavior, we describe how nodes B and x generate

fake consistent evidence to conceal node B’s forwarding misbehavior as follows:

Fake forwarding, Route deviation, and Message corruption

1. Node B launches one or more of the three forwarding misbehavior above and

transmits a data packet with a false message checksum θnB = H[M |addr(C)] =

θnA.

2. After colluding node x receives or overhears the data packet from node B,

node x includes a false message checksum θnx = H[M |addr(C)] = θnA, either by

decrypting node B’s false evidence field in the data packet or randomly guessing

a message or message recipient. Finally, node x generates consistent but false
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evidence, Kx(KB(θB), θx, tx) where D[θnB] = D[θnx ] = θnA = H[M |addr(C)], even

though node B has launched one or more of the three forwarding misbehavior.

Reorder attack

1. Node B launches a reorder attack.

2. After colluding node x receives or overhears the data packets from node B,

node x includes false timestamps for the reordered data packets to conceal node

B’s reorder attack, and finally generates false inconsistent evidence. This step

requires that the correct sequence of data packets is known to node x.

Data-path-based detection cannot detect a collusion attack, whereas the witness-

based detection scheme can expose a collusion attack as long as there is at least one

inconsistent piece of evidence from an uncompromised witness node, as described

in Algorithm 2. That is, our scheme produces a false negative only if every node

surrounding node B is compromised and colludes with node B.

1.5 Performance Evaluation

In this Section, we compare the detection accuracy of the data-path-based and

the witness-based detection schemes in the presence of lossy links. We also quantify

the communication overhead of uncompromised nodes in the witness-based detection

scheme and study the efficacy of the feedback suppression mechanism.

1.5.1 Metrics of detection accuracy

In our detection accuracy analysis, we individually study the two decision-making

algorithms: one under the assumption of collusion, and the other when the malicious

nodes are assumed to act independently. The proposed model analyzes the detection

accuracy as a function of the following parameters:
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• ploss is the probability that a node fails to receive a packet from its one-hop

neighbor or overhear a neighboring node’s transmission. For simplicity, we do

not differentiate overhearing from data transmission and assume that both data

transmission and overhearing experience equivalent interference and the same

value of ploss.

• For simplicity, we restrict our attention to a witness’s Data-based evidence and

a witness directly reaching node A. Λ is the expected number of witness nodes

located in the intersection area between node A’s and node B’s transmission

ranges, where the number of witness nodes follows a 2D-Poisson distribution

with the density parameter λ.

• pc is the probability that a node is compromised. A compromised node launches

various attacks described in section 1.4 except drop or power control attacks, or

evidence drop. The event of a node being compromised and the event of packet

loss are thus mutually independent.

• N is the maximum number of data or ED packet retransmissions in the

data/ACK or ED/ED ACK exchange.

We use false positive probability (FPP) and false negative probability (FNP) as

detection accuracy metrics. For each of the non-collusion and the collusion cases,

Table 1.1 illustrates the conditions under which the two algorithms result in false

positives (i.e., (2), (3), (7)) and false negatives (i.e., (4), (8)). In the non-collusion

case, we only observe false positives. Fake consistent evidence that may generate

false negatives can be only created through collusion, as explained earlier (i.e., the

value of the FNP is equal to 0 in the non-collusion case). In Table 1.1(a), we divide

the occurrence of false positives in the non-collusion case into two disjoint events as

follows:
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Received evidence A’s decision
Node B’s actual state

Uncompromised Compromised

At least one evidence is
consistent

Uncompromised (1) True positive (4) False negative

No evidence
Compromised

(2) False positive
(5) True negative

All evidence is inconsis-
tent

(3) False positive

(a) Non-collusion case

Received evidence A’s decision
Actual attack presence among B, C, W

Nonexistent Existent

All evidence is consis-
tent

Nonexistent (6) True positive (8) False negative

No evidence
Existent

(7) False positive
(9) True negative

At least one evidence is
inconsistent

-

(b) Collusion case

Table 1.1: Occurrence of False positives and False Negatives

• Node A receives no evidence, given that node B is not compromised (labeled

(2)).

• Node A only receives inconsistent evidence, given that node B is not compromised

(labeled (3)).

In [80], we provide analytic expressions that quantify each of the FPPs and FNPs

for both data-path-based and witness-based detection. As an example, assuming

non-collusion, the probabilities of false positive event due to (2) in Table 1.1(a) for the

data-path-based detection (P [FP
(2)
d,nc]) and the witness-based detection (P [FP

(2)
w,nc]) is

given respectively by:

P [FP
(2)
d,nc] = 1−

(
1− (1− (1− ploss)2)N

)
·
(
1− pNloss

)
P [FP (2)

w,nc] =
(
1−

(
1− (1− (1− ploss)2)N

)
·
(
1− pNloss

))
× exp(−Λ(1− pNloss)2)
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P [FP
(2)
d,nc] computes the probability that node C’s ACK-based evidence fails to

reach node A via uncompromised node B. P [FP
(2)
w,nc] is the probability that neither

node C nor the witness nodes succeed in transmitting evidence to node A, when node

B is not compromised. The first term of P [FP
(2)
w,nc] is equal to P [FP

(2)
d,nc], and the

second term calculates witness nodes’ failure of evidence transmission to node A. The

probabilities of other events in the Table 1.1 are calculated similarly.

1.5.2 Numerical evaluation of detection accuracy

We now observe how the FPP and FNP vary with the expected number of witness

nodes and packet loss probability in both the non-collusion and the collusion cases.

Note that the case of data-path-based detection corresponds to the case of Λ = 0.

In our results below, we assume that a packet can be re-transmitted up to three

times (N = 3); once this maximum number of retransmission is reached, the packet is

considered lost (dropped) by the sender and is not received at the receiver.
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Figure 1.1: FPP in the no-collusion case

FPP in the non-collusion case: Figure 1.1 plots the FPP as a function of

the expected number of witness nodes (Λ) for ploss = 0.1, 0.5, 0.9, and pc = 0.1

(Figure 1.1(a)) and pc = 0.5 (Figure 1.1(b)). As expected, the FPP decreases

(improving detection accuracy) as Λ increases, since an increased number of witness
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Figure 1.2: Breakdown of the causes of false positives in the no-collusion, where
pc = 0.5

nodes improves the success probability of overhearing and the reliability of a path

to node A, thus providing the increased evidence to the judge node. The FPP also

decreases as ploss decreases, for the same reason. Figure 1.2 breaks down the causes

of the false positives for the case of pc = 0.5. When ploss is small (Figure 1.2(a)) the

source of false positives is primarily badmouthing (event (3) in Table 1.1(a)), while

the FPP due to lack of evidence (event (2) in Table 1.1(a)) is almost zero. When ploss

increases to 0.5 in Figure 1.2(b), the FPP resulting from a lack of evidence increases.
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Figure 1.3: FPP and FNP in the collusion case
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FPP and FNP in the collusion case: Figure 1.3 plots the FPP versus the

logarithm of FNP for pc = 0.1 (Figure 1.3(a)) and pc = 0.5 (Figure 1.3(b)). Each

curve corresponds to a different packet loss probability (ploss), and each point on a

curve corresponds to a different expected number of witness nodes (Λ). The highest

point on each curve represents the case that Λ = 0 (data-path-based detection). As Λ

increases, both the false positive and false negatives generally decrease, demonstrating

the overall value of using a witness-based approach. The one exception is in the case

of extremely high packet loss probability (ploss = 0.9). False negatives slowly increase

as Λ increase, unless witness density is high enough to successfully receive inconsistent

evidence, which exposes a collusion attack.

1.5.3 Communication overhead
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Figure 1.4: Communication overhead (when node x[∈ X = {C} ∪ W ] does not
retransmit ED packets)

We next consider the reduced number of redundant ED and ED ACK packets

by feedback suppression. Recall that since feedback suppression is based on an

ED ACK packet from node A, it does not decrease the probability of evidence

being successfully transmitted in the witness-based detection scheme. We define

communication overhead as the expected number of ED and ED ACK packets. Each

solid curve in Figure 1.4 plots the communication overhead for different feedback

suppression success probabilities (ps). ps is the probability that a node receives or
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overhears an ED ACK packet. Derivations can be found in [80]. A dotted curve

denotes the communication overhead without feedback suppression. Figure 1.4 shows

that feedback suppression results in relatively low communication overhead, almost

independent of the number of nodes in x over a wide range of values of ps.

1.6 Conclusion

In this Chapter, we presented a witness-based detection scheme that verifies

correct forwarding along data paths in wireless networks. Using observations from

multiple witness nodes, our scheme either identifies a source of forwarding misbehavior

(when there is no collusion among nodes) or exposes the presence of a misbehaving

node (when malicious nodes collude with one another). Unlike existing schemes,

the witness-based detection scheme detects misbehaving nodes without incurring

significant delays, even in the presence of multiple adversaries. Under the assumption

of reliable communication between nodes, we formally showed that the witness-based

detection scheme does not produce false positives or false negatives, as long as there

is at least one uncompromised witness node. Using an analytical model, we studied

the performance of our scheme in a realistic wireless setting. Our analysis showed

that witness-based detection can support low false positive and false negative rates

even in the presence of highly lossy wireless links, without incurring a significant

communication overhead.
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CHAPTER 2

DISAMBIGUATION OF RESIDENTIAL WIRED AND
WIRELESS ACCESS IN A FORENSIC SETTING

2.1 Introduction

As our second network forensic challenge, this Chapter considers the problem

of remotely disambiguating wired and wireless access for identifying a target in a

forensic scenario. Thousands of cases each year of child exploitation on p2p file sharing

networks [47, 67] lead from an IP address to a home. A first step upon execution

of a search warrant is to determine if the home’s open Wi-Fi or the closed wired

Ethernet was used for trafficking; in the latter case, a resident user is more likely to

be the responsible party. Indeed, drive-by abuse of open Wi-Fi by criminals has been

a documented practice for years [45,61], but methods to distinguish such access are

unavailable.

This Chapter thus investigates methods that use remotely measured traffic to

disambiguate wired and wireless residential medium access. Importantly, we place

our work in a practical forensic setting by constraining our approaches to only use

remotely gathered “plain view” data that can be gathered legally from p2p networks

before a warrant or wiretap is required (in the US). This constraint distinguishes our

work from previous wired/wireless disambiguation research, which has assumed that

measurements are taken from the target’s gateway router, which is not only a much

less challenging problem but impractical from a forensic setting since it violates the

Wiretap Act [62]. Our goal is to provide information to investigators as they execute a

search warrant inside a home. In addition to checking alibis and supplying information
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for a suspect’s interview, our techniques are also useful for forensic triage. Backlogs of

six months are typical for criminal forensics labs, and the easiest way to reduce the

queue is to not add to it by eliminating computers from consideration (for example,

those that have no wired interface) [50].

Our techniques work across the Internet by estimating the per-flow distribution of

inter-arrival times of packets transmitted over different types of home access networks,

as measured by an investigator at a remote Internet p2p client. Using a set of

traces that we collected, we evaluate the ability of a number of classifiers to remotely

distinguish wired from wireless access within the same house. We also develop a model

of packet spacing for residential traffic sent via a cable modem through the Internet

that illuminates and explains our classification results. We find that our approach for

classifying wired from wireless traffic can work well, but is subject to several residential

factors, including differences between OS network stacks, cable modem mechanisms,

and wireless channel contention. Specifically, our analysis reveals the following:

• We use a simple decision tree classifier that uses remotely measured traces and

identify 25th percentiles and entropy of inter-arrival times distribution of

the traces as classification features achieving a true positive rate (TPR) of 0.9

to 1.0 and false positive rate (FPR) of 0.0 to 0.1 in our studies. For Linux, we

can precisely classify wired from wireless using 25th percentiles or entropy in

accordance with a cable network’s state. But for Windows, we can only depend

on entropy as good classification features.

• High contention for a wireless channel locally at the target greatly affects

classification accuracy, though this can be overcome.

• We evaluate the cases of both single and multiple p2p flows from the source,

but we find that this distinction does not affect our results; only the individual

upstream throughput of each flow has an impact on the classifier.
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• Our classifier must be trained separately for significantly different upstream

throughputs from the target; fortunately, this throughput is easily observable

at the receiver. Such training can be performed when the search warrant is

executed from within the house; there is no reason to train a general classifier

ahead of the warrant for all houses.

• We also show that measurements from points “near” the target (i.e., in the same

cable network) do not guarantee better classification results.

Overall, our findings suggest that it is difficult at best to find a foolproof classifier

for remote identification in all scenarios. Our goal is to determine the scenarios in

which network access type can be accurately determined, and to understand when

and why these techniques cannot be reliably used in other scenarios.

The remainder of this Chapter is organized as follows. In Section 2.2, we discuss the

legal and practical issues that provide the background and motivation for the particular

problem addressed in this Chapter. In Section 2.3, we define the problem setting,

the classification problem, and the application, network, protocol and environmental

factors impacting our work. In Section 2.4, we describe the experimental setting

in which we obtained measurement traces. Section 2.5 discusses the properties of

the classification features. In Section 2.6, we describe the classification algorithms

that we use to distinguish wireless from wired access and then discuss our empirical

evaluation of classification. In Section 2.7, we discuss related past research in the

network measurement community. In the last Section, we summarize our conclusions.

2.2 Investigative Method and Justification

The general criminal procedure for child pornography (CP) cases is as follows.

Investigators search for content on p2p networks.
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1. CP files offered in plain view by a peer, identified by IP address, are downloaded

by investigators.

2. The download provides sufficient probable cause as part of an application for a

magistrate-issued search warrant of the home associated with the IP address’s

billing records.

3. The warrant is issued, and once inside the home, a triage-style search begins

for evidence associated with CP, which might not be the previously downloaded

content. Users of the home’s computers are interviewed.

4. Seized devices are sent to an off-site lab for detailed forensic examination.

5. Evidence found during search is then used to support a criminal trial for receipt,

possession, or distribution of CP.

The Step of searching a home is time consuming. Homes have an increasing

number of devices that can contain evidence, including Xboxes and ebook readers with

Web browsers, smart phones, desktops, and laptops. Investigators have three main

triage aims: (a) reducing the numbers of devices that must be examined on-scene

since warrants are time-limited; (b) reducing the number of devices that must be sent

to an off-site central forensics lab for in-depth examination since work queues are

months-long; and (c) quickly locating a subset of evidence, if it exists, so as to obtain

an admission of guilt by a suspect via an interview. All of these practical goals are

met more efficiently by knowing whether a computer used over the Internet is likely

wired or wireless.

Our goal is to examine whether it is possible to remotely infer the target’s access

type. Our technique would be used as follows. During Step (1) above, investigators

would keep a packet-level trace of the file download, which is already common practice.

Using the packet-level trace, investigators identify a criminal’s computer setting (such
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as operating systems, TCP parameters and p2p applications), and characterize the file-

downloading-flow’s throughput and concatenation rate, as we will see in Section 2.5.

This information is not a part of the warrant application. During Step (3), the

classifier is trained, which can be completed in minutes with a pre-configured program

and a laptop with both wired and wireless interfaces. The pre-configured program

regenerates the observed flow having equivalent throughput and concatenation rate

in Step (1) via wired and wireless interfaces. For accurate classification, the laptop

should be equivalently configured as a criminal’s computer setting. The information is

used on scene to inform triage and user interviews. We note that it would only reduce

accuracy to pre-train a classifier from general Internet scenarios.

Importantly, our collection takes place at the investigator’s end host. This mea-

surement is possible without warrant or wiretap since the investigator is a party to the

communication. In contrast, previous work proposes to collect packets at a network

gateway, which is illegal in our forensics context. It is also impractical as investigators

cannot know which gateway until they have a suspect; going back to the gateway after

the suspect has uploaded the CP to the investigator is too late.

A number of legal issues restrict the initial process of gathering the data we use to

infer a target’s medium access type [17,41]. First, US law prohibits government search

and seizure of evidence without a warrant if and only if the source of the data has a

reasonable expectation of privacy (REP) [4]. US courts have found consistently that

users of p2p file sharing networks have no REP when investigators are peers in the

network; see U.S. v. Breese, 2008 WL 1376269 and U.S. v. Gabel, 2010 WL 3927697.

Collecting information at a user’s gateway without a warrant is certainly illegal.

Second, prior to obtaining a warrant, law enforcement cannot use technology that is

not in “general public use” to obtain information that would otherwise be unavailable.

This restriction is a result of Kyllo v. U.S., 533 U.S. 27 (2001). For example, recently

the court ruled that software designed for law enforcement to monitor activity on p2p
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networks does not violate 4th Amendment protections since if it follows the protocol

as any peer on the network does. Similarly, in Massachusetts v. Karch (2011), the

court ruled that law enforcement programs that do not search the remote computer,

but “merely gather and evaluate publicly available information with greater efficiency

and with an eye toward obtaining evidence of criminal activity” do not violate Kyllo,

even if the software itself is unavailable for general public use.

Related work, in Section 2.7, that has been motivated by network monitoring and

measurement is also governed by several US federal laws. Sicker et al. [62] provide an

excellent overview and discussion of these laws and their consequences for the network

traffic measurement research community. Criminal investigations are not included in

that analysis since they lack the provider protection motive, which is measurement

with the aim of protecting the network infrastructure, e.g., detecting or characterizing

network attacks. In monitoring settings, clients typically consent to monitoring by

the provider as part of an acceptable use policy.

Information gathered in a criminal investigation ideally meets the standards of

criminal trials (beyond a reasonable doubt). However, information that meets the

probable cause (PC) standard used to issue search warrants is still useful. There is no

quantification of PC by courts; often it is defined qualitatively as a “fair probability”;

see U.S. v. Sokolow, 490 U.S. 1 (1989). We evaluate our work with these standards

in mind by quantifying true and false positive rates. Finally, we note that we expect

that the techniques we introduce in this Chapter are most useful as simple, practical

information to inform the process of search and triage, as noted above, rather than as

evidence.

2.3 Problem Statement

Our problem setting is illustrated in Figure 2.1. As described in Section 2.2, we

begin by assuming that investigators have already identified a peer, denoted as A
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Figure 2.1: An illustration of our expected network topology.

in the figure, who is a target that uploads illegal content to the investigator. Our

challenge is to determine whether A is connected to the home AP via a wireless 802.11

network or via a wired Ethernet. Investigators, denoted as B in the figure, can make

this determination using only traces measured, from a remote location, either within

the same cable network or in the larger Internet.

We assume the AP used by A is connected to the Internet via a cable modem (CM).

The coordination system of a regional head-end, known as a Cable Modem Termination

System (CMTS), regulates the use of upstream and downstream bandwidth based

on A’s level of contracted service with the cable network service provider. The

CM communicates with the CMTS using the Data Over Cable Service Interface

Specification (DOCSIS) [15, 21] protocol stack. In the downstream direction, the

CMTS broadcasts data and control frames to a set of CMs. The upstream channel

consists of a stream of time slots shared among CMs. Using the DOCSIS protocol,

the CMTS replies to CM time-slots requests and grants time-slots to CM usings MAP

messages every 2ms. Once a CM has acquired time slots from the CMTS, it usually

transmits a TCP segment per DOCSIS frame. In the case of congestion, a CM can

buffer multiple TCP segments and concatenate the segments in a DOCSIS frame

after waiting for a longer time-slot-granting delay. The size of a concatenated frame

is limited by a maximum burst frame size and TCP segments destined to different
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receivers can be concatenated in a frame. One manifestation of buffering at a CM has

been recently noted in bufferbloat [28, 52].

We evaluate two locations from which the investigator B can legally make mea-

surements. As discussed above, we assume that measurements cannot be made at

A’s location since that would violate the 4th Amendment or Wiretap Act protections.

Moreover, to provide the most general solution, we assume measurement is from

a typical Internet end-point, and not a gateway router or other specialized device.

Accordingly, the two locations we examine are as follows (see Figure 2.1):

• Blocal. In this case, the remote peer is connected to the same residential

cable network as A, but at a different residence (e.g., access purchased by the

investigator). The remote measurement point is thus “near” A, both in terms of

the number of intervening router hops and in terms of physical distance. Traffic

from A to Blocal would be likely routed through a small number of cable network

routers (and a final CM) before reaching Blocal.

• Bremote. In this case, the remote peer is located outside of the cable ISP network.

A’s traffic will be transmitted through the cable network and then through a

number of additional networks before arriving at Bremote. In our evaluation

scenarios, we assume Bremote has rich, high-speed connectivity to the Internet.

In both cases, B records the inter-arrival times of TCP data packets sent from A. We

expect the TCP stream to be offered by A as part of a p2p file sharing application. In

this case, the investigator would be typically located outside of the cable ISP network.

A’s traffic will be transmitted through the cable network and then through a number

of additional networks before arriving at B.

2.3.1 Factors Affecting TCP segment spacing and burst size

Since we will use the inter-arrival times between segments to distinguish between

wired and wireless access in the sender’s home, let us next consider how the TCP and
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DOCSIS protocols shape the time between transmission of A’s TCP segments. TCP’s

sliding window algorithm typically results in bursts of packets that are sent back-to-

back, i.e., with only short inter-departure times between back-to-back segments. These

bursts are then separated by a relatively longer interval of time, while the sender waits

for the receiver’s ACK.

When the CM transmits segments, the inter-departure time between two segments

can be different from those segments’ inter-arrival time to the CM. As we will see

shortly, these changes can be small or can be significant, and can depend on the level

of congestion in the cable network. Since the segments’ inter-arrival times to the CM

follow their departure from the (wired or wireless) access network to the CM, and

since our goal is to distinguish between wired and wireless access times based on these

inter arrival times, we will want to focus on segments whose inter-departure time from

the CM closely matches their inter-arrival time to the CM. In Section 2.5, we present

key insights that allow us to identify segments whose inter-departure time is relatively

unchanged from their inter-arrival time.

Several other factors found in a typical and default setting also affect TCP burst

sizes and segment inter-arrival times at the CM:

• p2p application rate limit. As a file sender, peer A is assumed to always

have file data to send. In some cases, a p2p application may use a rate-limiting

algorithm [63] to purposefully limit TCP throughput. In this case, TCP might

not send segments fast enough to fill the congestion window. Such a rate-limited

flow may have a larger number of smaller bursts (i.e., fewer segments with short

inter-departure times) and a larger number of longer inter-departure times than

an unconstrained TCP sender. But TCP’s burst-followed-by-an-inter-burst-delay

behavior - a feature we exploit in our classification - is still observed.

• Multiple flows from A. A p2p peer often exchanges data with multiple peers

simultaneously. Since upstream bandwidth is shared among these multiple flows,
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each individual flow will experience a lower throughput than in a single flow

scenario. This decreased throughput is evidenced in a decreased burst size and

increased inter-burst spacing. We find, however, that for accurate classification,

we only need determine (by measurement) the throughput of a target flow; the

number of competing flows need not be known.

• TCP send buffer size and Nagle’s algorithm for OSes. The TCP send

buffer size and Nagle’s algorithm play an important role in determining TCP’s

burst size. Linux has a large maximum send buffer size and disables Nagle’s

algorithm by default, and consequently can produce burst sizes adaptive to

TCP’s window size; conversely, Windows’ burst size is often equal to its very

small default send buffer size of 8 KB1. Windows buffers 8KB data and transmits

the 8KB data immediately without waiting for the ACK. The buffering of data

larger than Maximum Segment Size (MSS) bypasses Nagle’s algorithm which is

enabled by default for Windows. These TCP send buffer sizes can be overridden

by p2p applications such as eMule and ktorrent, and cause a flow to have different

burst size. (We verified these applications’ behavior by examining their source

code.)

• Wireless channel contention. Packets ready for departure from A must

gain access to a wired or wireless medium in order to reach the local CM.

Significant differences between PHY and MAC protocols of wired and wireless

access networks result in distinguishable distributions of inter-frame arrival (and

therefore inter-packet arrival) at the CM; these differences can survive through

the Internet as we show in Section 2.5. These differences are easier to detect

when local contention for the medium increases, as wireless MACs introduce

much greater delays between frames during contention than Ethernet MACs.

1See http://support.microsoft.com/kb/214397/EN-US.
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2.4 Experimental Environment and Methodology

This Section describes the experimental setting in which we obtained measurement

traces. Our experiments do not include results from law enforcement trials, as it would

violate IRB protocols to experiment on Internet users without consent.

2.4.1 Experimental setting

Figure 2.2: Our measurement network topology for experiments.

Figure 2.2 illustrates the experimental setting for our packet measurements. We

have three monitoring points: Bsniff, Blocal, and Bremote. Node A generates TCP

traffic to Blocal and Bremote using iPerf [53] to transmit TCP data at the maximum

rate possible; hence the TCP transmit queue is never starved for data. At Bsniff we

place a sniffer that captures frames before they are transmitted via the CM. We stress

that Bsniff is used here only for experimental research purposes here; as discussed

above, our practical forensic setting would preclude making measurements at this point

in practice. Our classification results are performed using only traces gathered at

either Blocal or Bremote.

Bremote is located at the University of Massachusetts Amherst. A and Blocal are

located in a house in a town near UMass Amherst, using Comcast’s residential cable

network. Blocal was measured to be 3 hops from A; and Bremote was 13 hops away

from A, as determined via traceroute. We used a node C as the sink for TCP flows

originating at A that competes with traffic to B. Node C was located at Purdue
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University. AP0 is the link type we seek to classify. A’s connection to AP0 was

either IEEE 802.11g with 54 Mbps or 1 Gbps Ethernet in our study. For 802.11g

measurement, we located A less than 1m away from the AP0 to obtain the wireless

traces least distinguishable from wired traces. For emulating contention traffic for the

wireless network, we set up an independent subnet near A as shown in Figure 2.2.

The subnet consisted of nodes E, F , and AP1, all using the same wireless channel as

AP0. The Comcast cable network supports DOCSIS v2.0 with 4 ticks per time-slot

as upstream framing and 8,160 bytes as a maximum burst frame size. Thus, we can

instantaneously see an upstream throughput of up to 10 Mbps, although the upstream

capacity of a contract is 3 Mbps.

We varied the experimental environment as follows.

• P2P application rate limiting algorithm. For some experiments, instead

of iPerf, we ran our own emulator that generates TCP data with different

inter-departure delays between application chunks and with different chunk

sizes.

• Competing flows. We separately evaluated cases of single and multiple com-

peting TCP flows. In the single flow case, A generated a single TCP flow sent

to Blocal or Bremote. In the multiple flows case, A generated one TCP flow sent

to Blocal or Bremote and four competing TCP flows in parallel that were sent to

C. These five flows generated from A were delivered to a single CM via either

wired or wireless access.

• Linux vs. Windows. Our traffic source was either Ubuntu with Linux Kernel

2.6.22 or Windows Vista at node A. Linux Kernel 2.6.22 uses CUBIC [30] and

Windows Vista uses CTCP [66]. In operating systems, the TCP send buffer

size can be globally assigned by the kernel, or applications can individually

override its maximum size using SO SNDBUF socket option. Since Kernel 2.4,

43



Linux takes 4 KB as minimum, 16 KB as default, and 4 MB as maximum, and

TCP dynamically adjusts the size of the send buffer based on these three values.

However, Windows Vista has a TCP send buffer size of 8 KB by default; the

same 8 KB default is also found in Windows XP and Windows 7. We observed

different inter-arrival time distributions for default or overridden send buffer

sizes.

• Wireless channel contention (0 Mbps or 10 Mbps). F continuously

received 0 Mbps or 10 Mbps TCP traffic from E on the same channel as A

and artificially generated 0 Mbps or 10 Mbps contention. In both cases, we

characterized non-artificial wireless channel contention caused by actual in-range

wireless transmitters as background traffic near A during our measurement. We

used a monitor mode to capture all traffic generated with the same or overlap

wireless channels across different SSIDs [49]. The measured background traffic

was commonly less than 1 Mbps.

Each above experiment setting was performed ten times for 10 sec, 1 min, or

10 mins. We captured a target flow via tcpdump at Bsniff and Bremote and then

derived inter-arrival time datasets. We calculated the inter-arrival time as the time

interval between the first bit of a first packet and the first bit of a second packet of two

back-to-back TCP segments and considered only segments that experienced neither

retransmission nor loss. The datasets mainly consisted of inter-arrival times generated

during the congestion avoidance phase.

2.5 Properties of Classification Features

This Section identifies the properties of the sender’s TCP and CM access protocol

that influence segment inter-departure times as they leave the CM and enter the cable

network, in some cases allowing the differences in inter-segment spacing introduced by a
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wired versus wireless access network at the sending host to be preserved and manifested

at the receiver. We then introduce percentiles and entropy of the inter-arrival time

distribution for a TCP flow observed at the receiver (Bremote) as classification features,

and discuss how to select inter-arrival times that have preserved the difference between

wired versus wireless access networks as a classification feature.

2.5.1 Model

Figure 2.3: An example on a TCP flow’s time-sequence diagram during the congestion
avoidance phase.

In order to preserve the differences in access delays between a wired versus wireless

access network at the sender (which will be central to our classification), a segment’s

inter-departure time from the sending host into the CM should not be greatly changed

by the CM. By carefully analyzing the change of the spacing between two successive

TCP segments, measured on their arrival to the CM at A and at Bremote, we will

see that a long segment inter-departure time from the sending host into the wired or

wireless channel at A, reflecting the characteristics of the PHY and MAC layers at

A, can be preserved when the segment arrives at Bremote. For simplicity, we assume
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the following about the flow (which we will see generally holds in practice in our

experimental evaluation):

• All TCP segment sizes are equal.

• An Internet path traversed by the flow is stable, i.e., that there is little delay

variation from the CM to Bremote.

• The propagation delay at a wired or wireless link is negligible.

Figure 2.3 shows a TCP flow’s time-sequence diagram observed at A, at the CM,

and at Bremote. A generates a series of short segment inter-departure times as a

burst (sometimes referred to as a “flight” of segments) followed by a relatively longer

inter-departure time. Let τwired(n) be segment n’s access and transmission delays at a

wired link. (τwired reflects the characteristics of the PHY and MAC protocols of wired

access.) Let τcable(n) be the sum of time-slot-granting and transmission delays at the

CM for segment n.

A bad inter-arrival time, as shown in Figure 2.3(a), occurs when the inter-

segment spacing at the receiver has been completely re-shaped (from the original

inter-segment spacing on arrival to the CM at A) by the CM; in this case, any difference

in access times due to the wired or wireless nature of the access network at A would be

lost. A bad inter-arrival time between two segments happens if (i) the latter segment is

queued before being served at the CM, or (ii) the CM concatenates these two segments

in a single DOCSIS frame. In Figure 2.3(a), segments n-1 and n show an example of

case (i). When segment n (the latter segment associated with an inter-arrival time)

arrives at time tn, the CM is serving segment n-1 and hence enqueues segment n.

After segment n-1 has been transmitted, segment n is transmitted and experiences

τcable(n) delay at the CM. Thus, the (bad) inter-arrival time (a) at Bremote equals

τcable(n).
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A good inter-arrival time, as shown in Figure 2.3(b), occurs when the inter-

segment spacing is long enough to be less affected by the CM, thus preserving the

difference between wired versus wireless access delay at A when the segments arrive at

Bremote. A good inter-arrival time occurs if no segments are being transmitted (or are

queued for transmission) at the CM when the second segment arrives. For instance,

suppose that segment n + 1 (as the latter segment associated with an inter-arrival

time) arrives at tn+1 when the CM is empty, and is instantly transmitted without

being queued. Then, a part of the inter-segment spacing (marked as a “blue” bar in

Figure 2.3) is unchanged by the CM and the difference between wired versus wireless

access networks would be preserved in the segment inter-arrival time at Bremote.

A consequence of the above observations is that the segment inter-arrival time

distribution observed at Bremote will consist of more good inter-arrival times when the

flow sends smaller bursts after longer inter-burst delays and when flow segments rarely

experience congestion or concatenation at the CM. A flow having smaller bursts and

longer inter-burst delays results in a lower throughput at Bremote than a flow with

long bursts separated by short inter-arrival times. Thus, in the following discussion,

we will characterize a target TCP flow using burst size, throughput, and concatenation

rate.

Burst size observed at Bsniff. Let α denote the burstiness of a segment arrival

process to the CM after leaving the host computer but before reaching the CM. Using

the dataset measured at Bsniff, we calculate α as

α =

(
no. of inter-arrival times below 1ms at Bsniff

total number of inter-arrival times at Bsniff

)
.

In our setting, 802.11g uses neither the RTS/CTS option nor CTS protection but

supports frame-burst. Since 802.11g spends 322µs on transmitting a full-sized TCP

segment without random-backoff and frame-burst [26], most short inter-depature times

in a burst are less than 1ms at Bsniff. We stress α would not be used during a forensic
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investigation, nor do we employ it in our classification procedure. However, we will

find it useful to use α to explain our classifier results, as α characterizes the burstiness

of the (unobservable) source.

Throughput observed at Bremote. We calculate an averageA-to-Bremote through-

put observed at Bremote and denote it by T . We will see that a flow with a lower

throughput is more likely to have more good inter-arrival times than a flow with a

higher throughput, and thus is more likely to result in more accurate classification.

Throughput is an important flow attribute to be considered in assessing the classifi-

cation accuracy in Step (1) (described in Section 2.2). During Step (3), T would be

used to generate a flow observed in Step (1).

Concatenation rate observed at Bremote. A flow’s concatenation rate (de-

noted by β) is the fraction of segment inter-arrival times at Bremote that indicate

that these two segments were concatenated in a single DOCSIS frame by the CM. We

calculate β using the dataset measured at Bremote as

β =

(
no. of inter-arrival times below 1ms at Bremote

total number of inter-arrival times at Bremote

)
.

A receiver can easily identify concatenated TCP segments as those segments having

an inter-arrival time of less than 1ms since the CM must wait for at least 2ms to be

granted a time slot from the CMTS. This assumes that giving delays in the Internet

backbone are small, which we would expect with Gigabit backbone links. As in the

case of T , β would be used to generate a flow having equivalent values of T and β

as observed in Step (1). As we will see, the value of β will be an important factor

in deciding whether to use percentiles or entropy values of the inter-arrival time

distribution observed at Bremote as classification features.
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2.5.2 Percentiles and entropy of a distribution observed at Bremote

This subsection discusses and motivates the use of percentiles and entropy of the

segment inter-arrival time distribution as classifiers at Bremote and the dependence

of this use on observed values of T and β. We will also use the (unobserved) values of

α to provide additional insight into the discussion.
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Figure 2.4: CDF of segment inter-arrival times at Bremote, wired versus wireless access
at A. (a): T = 80 bps (α = 0.00); (b): T = 2.3 Mbps (α = 0.50). No concatenation
(β = 0.00).

Percentiles. Figure 2.4(a) and (b) plot the CDF of segment inter-arrival times

at Bremote, for the case of wired versus wireless access at A. Figure 2.4(a) is for the

case of low throughput and low burstiness; these curves are for the case that the

sender sends only one 10-byte segment per second. Since 1 sec is much longer than the

100ms RTT in our setting, the CM handles only a single segment at a time (α = 0).

Figure 2.4(b) is for the case of higher throughput and higher burstiness (α = 0.5).

Here, the sender transmits at the fastest possible rate using iPerf, but we observed

that no concatenation occurred.

In Figure 2.4(a) and (b), the differences between the curves for wired and wireless

access suggest those features of the segment inter-arrival time distribution that might

best be used as a classifier to distinguish wired from wireless access. Specifically, we
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note that the difference between wired versus wireless access networks is manifested

most obviously in segment inter-arrival time percentiles lower than median.

In the case of concatenation (not shown), we observed only a small number of

“good” inter-arrival times, since most of segments are buffered and concatenated at

the CM. In this case, it is difficult to guarantee that those good inter-arrival times

are located at the lower percentiles and (as we will see), percentiles are not a reliable

classifier. This motivates our use of entropy (below) as a classifier in these cases.
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Figure 2.5: Entropy of segment inter-arrival times at Bremote, wired versus wireless
access at A. (a): T = 80 bps, β = 0.00, α = 0.00; (b): T = 2.3 Mbps,β = 0.00,
α = 0.50; (c): T = 2.5 Mbps, β = 0.17, α = 0.83; (d): T = 3.5 Mbps, β = 0.78,
α = 0.83.

Entropy. Figure 2.5 shows the entropy of the inter-arrival time distribution at

the receiver for ten wired and wireless access datasets with minimal and with high

concatenation rates, respectively. These datasets were obtained as described in the

previous Section. Figure 2.5(a) and 2.5(b) were generated in the same manner as
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Figure 2.4(a) and 2.4(b), respectively. Figure 2.5(c) and 2.5(d) were generated via

iPerf when a cable network experienced different amount of congestion.

A classifier using entropy would conceptually construct a horizontal line (repre-

senting a given entropy value) separating the wired points from wireless points in

Figure 2.5. In an ideal case, all entropy values for wireless access would fall above

the horizontal line and all the entropy values for wired access would fall below the

horizontal line. The blue dotted lines in Figure 2.5 are the result of running the

entropy-based classifier algorithms that we will discuss in the following Section. Two

of these four graphs, Figure 2.5(a) and 2.5(d), show that entropy is a good classifier,

but the two other graphs, Figure 2.5(b) and 2.5(c), show that entropy is not a good

classifier. We conjecture the following:

• Figure 2.5(a) has small values of throughput, α and β, and indicates that there

are few bad inter-arrival times. Thus, we conjecture that the inter-arrival time

distributions are different enough that inter-arrival time entropy (which considers

the entire distribution) is also sufficient (as is the lower percentile of inter-arrival

time distributions) to distinguish wired from wireless access.

• In Figure 2.5(b), the increased throughput (see earlier discussion) results in

larger bursts of arrivals (and likely queueing) at the sender, and consequently

has fewer good inter-arrival times. Although entropy is not a good classifier

in this case, we saw earlier that the lower percentile of the inter-arrival time

distribution is a good classifier in this case.

• Figure 2.5(c) is a scenario similar to Figure 2.5(b), except with a non-negligible

amount of concatenation, and thus the explanation is similar to that of Fig-

ure 2.5(b).

• In Figure 2.5(d), there are even fewer good inter-arrival times than in Fig-

ure 2.5(b). However, we conjecture that with a higher concatenation rate, many
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of the bad inter-arrival times are due to concatenation. Recall from our earlier

discussion that concatenation leads to nearly constant inter-arrival times between

segments at the receiver. Thus, when considering the difference in the entropy of

the inter-arrival time distribution for the wired and wireless access cases, these

identical, deterministic delays due to concatenation cancel each other out. This

then leaves a proportionally larger fraction of good inter-arrival times that then

contribute to the entropy difference of the wired and wireless access cases.

2.6 Evaluation of Classifier Performance

In this Section, we describe the classification algorithms we use to distinguish

wireless from wired access at the sending host A and the experimental procedure for

evaluating these classifiers using the traces described in Section 2.4. We present our

empirical evaluation of decision tree (DT) classification and verify our conjectures

above regarding the circumstances in which different classifiers would work well. We

also discuss the relationship of the classification results with other factors discussed in

Section 2.3.

2.6.1 Classification algorithms

The decision tree (DT) classification algorithm [59] builds a tree that predicts the

output value based on several features as an input. Each interior node represents a

feature, each branch descending from a feature node is one of the possible values for

that feature, and each leaf is an output value. During a training phase, a DT is built

by selecting the feature making the most difference to the classification at the root

and testing a path to a leaf.

In the course of our research, we also ran logistic regression (LR), and support

vector machine (SVM) classifiers. The LR classification produces linear decision

boundaries between data using a logistic function when the predicted output has only
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two possible values. SVM projects data into a new space using a kernel function that

seeks to create a clear gap between two possible output values and builds a hyperplane

to classify data. We found that LR and SVM typically provided similar classification

accuracy as DT and thus we do not report the results for LR and SVM here; see [79]

for these details.

2.6.2 Experimental procedure

For each experimental trace (consisting of ten wired and ten wireless datasets taken

in the same house using the methodology discussed in Section 2.4), we evaluated DT

classification as follows. We trained and cross-validated the classifier using datasets

of wired and wireless traffic “without channel contention” and investigated various

features such as the 25th, 50th, 75th percentiles of the inter-arrival time distribution

at the receiver, and the entropy of this distribution. We did not use cross-validation

for the following two cases. (i) The 10 Mbps wireless access cases were evaluated using

the trained model based on wired and wireless traffic without channel contention. We

expect to see that the classifier trained with less wireless contention traffic performs

well for classification when there is more contending traffic, since the gap between

wireless and wired access features would only increase as the amount of interfering

wireless traffic increases. (ii) A flow generated with competing flows was evaluated

using the trained model based on a single rate-limited flow. During Step (3) in

Section 2.2, it is not easy for an investigator to generate multiple flow cases (for

training purposes). Moreover, an investigator cannot remotely distinguish a single

rate-limited flow from a flow generated with multiple competing flows. We will see

that a single rate-limited flow’s training dataset can indeed be applied to evaluating

the multiple flow case.

We quantify classification accuracy using the true positive rate (TPR) and false

positive rate (FPR). TPR denotes the fraction of cases where the access network type
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is classified as wired given that it is wired. FPR denotes the fraction of cases when

the access network type is classified as wired given that it is actually wireless. If the

TPR were to be low, the classifier would wrongly argue for accepting the false alibi of

a true wired user. If the FPR were to be high, the classifier would wrongly argue for

not accepting a valid alibi (i.e., that the CP distributor actually did use a wireless

network). For our purposes here, we consider it as an acceptable result when the TPR

is located between 0.9 and 1 and the FPR is located between 0 and 0.1.

The tables in the following subsections show an average of ten classification results

for each experimental setting. All the traces shown in the tables were generated

from a single house. Each dataset contained at least one thousand inter-arrival times.

The inter-arrival times were produced by two successive full-sized (1,460 bytes) TCP

segments. But approximately 30% of the inter-arrival times in the Windows with an

8 KB send buffer traces were observed to be transmissions of a burst of five full-sized

segments followed by a 892-byte TCP segment. The tables show averages of α, β

and T values of ten datasets for wired and wireless access networks. The rows in the

tables show the TPR and FPR when we used the 25th-percentiles and the entropy of

inter-arrival time distributions as features. We do not show results for the use of the

50th and 75th percentiles as classifiers, as we found that that they do not work well

as classification features. We mark acceptable results using a bold-faced font marked

with a star (e.g., 1.0*) in the tables.

2.6.3 Evaluating classifiers for single full-rate flow cases

Let us begin our discussion of our DT classification results by considering what

we found to the most difficult classification scenario: classifying a single full-rate

flow (i.e., a flow whose sending rate is not constrained by the application, in this

case, iPerf), when there is no artificially generated wireless channel traffic. Intuitively,

we might expect this to be the most challenging case, since in this high throughput
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Linux Trace 1 Trace 2 Trace 3

wired wireless wired wireless wired wireless

α 0.50 0.48 0.74 0.72 0.73 0.73
β 0.00 0.00 0.80 0.80 0.79 0.79

Features TPR FPR TPR FPR TPR FPR

25th-percentile 1.0* 0.1* 0.7 0.1 0.7 0.1

entropy 0.6 0.1 0.9* 0.0* 0.5 0.1

Windows Trace 4 Trace 5 Trace 6

wired wireless wired wireless wired wireless

α 0.83 0.81 0.83 0.81 0.83 0.81
β 0.17 0.17 0.78 0.78 0.78 0.78

Features TPR FPR TPR FPR TPR FPR

25th-percentile 0.5 1.0 0.1 0.0 0.5 0.3

entropy 0.9 0.3 0.9* 0.1* 0.2 0.4

Table 2.1: DT classification results for a single flow case.

scenario, there are a large number of long bursts and minimal inter-burst-delay. In

our discussions, we distinguish between the OSes used at A (Linux, Windows), since

sometimes our classification results will differ based on the OS type. Also, for the

same send buffer size, we find that Windows and Linux can generate quite different

values of α and β and that Windows consistently generates traffic with a non-negligible

amount of concatenation. This result requires that an investigator identify the OS

type and p2p application’s send buffer configuration during Step (1). For a detailed

discussion of OS-related issues, see [79].

Table 2.1 shows the classification results for a single full-rate flow with no concate-

nation (very low values of β) and higher concatenation, using the default send buffer

size. For the six traces in the table, throughput saturated at a value less than the

contracted upstream service rate of 3 Mbps.

Linux. Trace 1, a case with no concatenation, shows that the 25th-percentile

classifier worked well but that the entropy classifier does not work well. Traces 2 and

3, cases with concatenation, show that the 25th-percentile classifier has a lower TPR
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(.7) and that neither the 25th-percentile classifier nor the entropy classifier work well

in both traces 2 and 3 (although entropy works well as a classifier for trace 2).

In additional traces (not shown here) taken at nine other houses in western MA, we

again found that neither classifier worked consistently well for single full-rate flows with

high concatenation rates. Also, for cases with low concatenation, the 25th-percentile

classifier generally worked well, but did not always perform well in densely populated

areas, where we might expect more cable network congestion.

Windows. Windows (with an 8 KB send buffer) consistently generated large

bursts (α ≈ 0.8) as a result of Winsock buffering, resulting in the CM performing a

mild degree of concatenation (0.17 ≤ β), regardless of a cable network’s congestion

state. Consistent with our discussion in the previous section, we thus see that 25th-

percentile classification does not work well for Windows. Additionally, we find that as

with Linux, the entropy classifier does not work consistently well for single full-rate

flows with high concatenation rates. Our observations for these three Windows traces

are consistent with what we observed in experiments run at other locations.

In summary, we found that accurate classification of a single full-rate flow is difficult,

with either classifier. We will see shortly that we find much better classification results

in other circumstances (e.g., non-full-rate single flows, or the case of multiple flows).

Accurate and reliable classification of single full-rate flows remains an open challenge.

2.6.4 Other Scenarios

In this subsection, we examine the classification results for the following three

scenarios.

• D1) Wireless channel contention. We consider a scenario when a host

transmits a single full-rate flow via a wireless access network, but in the presence

of other wireless hosts (not attached to the access point under study) that

transmit interfering traffic.
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• D2) Application-limited rate. In this case, a flow is limited by the appli-

cation. Here, we would expect that the inter-burst-delay at a sending host is

often greater than the RTT, resulting in a proportionally larger number of good

inter-arrival times.

• D3) Multiple competing flows at the sending host, A. The sender A

transmits full-rate multiple flows to the CM via either the wired or wireless

access network.

• D4) Local measurement results. The sender A transmits a single full-rate

flow from Blocal to the CM via either the wired or wireless access network.

We use the default send buffer size for Windows and Linux for above four cases.

As we will see, D1, D2, and D3 cases show better, and more consistent classification

performance than that of the full-rate single flow scenario.

Linux Windows

α, β 0.46, 0.00 0.81, 0.77
Features TPR, FPR TPR, FPR

25th-percentile 1.0*, 0.0* 0.0, 0.0
entropy 1.0, 1.0 1.0*, 0.0*

Table 2.2: DT classification results with 10 Mbps wireless cases

1) 10 Mbps wireless channel contention: Table 2.2 shows the classification results

for scenario D1 (10 Mbps wireless contention) using the classifiers trained by wired

and wireless (without contention) access datatsets for Linux and Windows. The

values of α, and β for 10 Mbps wireless datasets are shown in the table. The traces

used for training purposes are indicated at the top of columns two and three. For

Linux, the 25th-percentile classifier shows perfect performance in classifying 10 Mbps

wireless access, a trace with no concatenation. Similarly, for Windows the entropy

classifier also shows perfect performance for identifying 10 Mbps wireless datasets.

We note that, as we expected, the 25th-percentile classifier does not perform well in
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this high concatenation case, and the entropy classifier does not perform well for the

non-concatenation case.

Linux Windows
wired wireless wired wireless

α, β 0.00, 0.00 0.00, 0.00 0.81, 0.69 0.79, 0.68
T (Mbps) 0.11(±0.00) 0.11(±0.00) 0.10(±0.00) 0.10(±0.00)
Features TPR FPR TPR FPR

25th-percentile 1.0* 0.1* 0.1 0.1
entropy 0.9* 0.0* 1.0* 0.1*

Table 2.3: DT classification results, application-limited rates

2) Application-limited rates: Table 2.3 shows the classification results for Linux

and Windows. Here, traffic was generated by transmitting one full-sized TCP segment

every 100ms, thus mimicking the behavior of a rate-limited application. Comparing

Tables 2.1 and 2.3, we see that classification of rate-limited flows results in more

accurate classification than classification of full-rate flows for Linux and Windows.

For Linux, both the 25th-percentile and entropy classifiers indeed provide acceptable

classification. For Windows, a rate-limited flow consistently generates α ≈ 0.8. Thus,

the entropy classifier works well but the 25th-percentile classifier does not work well.

Linux (Trace 7) Windows (Trace 8) Windows (Trace 9)
wired wireless wired wireless wired wireless

α 0.29 0.28 0.83 0.81 0.83 0.81
β 0.00 0.00 0.65 0.65 0.65 0.65
T 0.53 0.54 0.89 0.86 0.89 0.85

(Mbps) (±0.00) (±0.01) (±0.01) (±0.03) (±0.00) (±0.03)
Features TPR FPR TPR FPR TPR FPR

25th-percentile 1.0* 0.0* 0.0 0.0 0.0 0.0
entropy 0.0 0.0 0.9* 0.0* 1.0* 0.1*

Table 2.4: DT classification results for multiple flow cases.

3) Multiple flow cases: Traces 7 and 8, as shown in Table 2.4 show the cross-

validated classification results for the multiple flow case. Comparing Tables 2.1 and

2.4, we see that classification of the multiple-flow scenario results in more accurate
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classification than classification of full-rate, single flows. We performed experiments

with other multiple-flow traces and consistently found these observations across all of

the experiments. Trace 9 column shows classification results for evaluating Trace 8

when we use a classifier trained based on Trace 9. Trace 9 is a rate-limited flow and

has equivalent values of β and T with Trace 8, as shown in Trace 9 column. In this

case, we see good classifier performance.

4) Local measurement results: We next discuss the classification results of traces

measured at Blocal. We focus on the concatenation-free case for Linux with a single flow

of 2.7Mbps upstream throughput, α = 0.52, and β = 0.00. At Blocal, the classification

result using 25th percentile degrades as TPR=0.7, and the entropy classifier does not

perform well. We conjecture that this happens because packet transmission between A

and Blocal experiences the upstream time-slot granting procedure of a cable network

in both directions, making the inter-arrival times more exposed to randomness and

obscuring the gap in the inter-arrival times between wired and wireless.

2.7 Related Work

Several past studies have addressed the problem of classifying a sender’s access

network type using traffic measurements. Wei et al. [74] classified sender network

access types into 802.11b, Ethernet, and low-bandwidth access (e.g., dial-up, cable

modem, ADSL) categories, using cooperatively transmitted back-to-back UDP packet

pairs between sender and receiver. Like our work, Wei et al. took measurements of

packet inter-arrival times at the receiver. However, unlike our work, they assume

UDP packet pairs are sent by a cooperative sender; instead we perform classification

without the sender’s knowledge, using only (p2p application) TCP traffic, with the

sender potentially engaging in multiple TCP sessions with multiple receivers.

In subsequent work, Wei et al. [72,73] monitored ACK packets exiting a university

gateway and built a classifier for distinguishing between Ethernet and 802.11b/g traffic.
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Gateway measurement is not possible in our forensic setting, as this would violate

the Wiretap Act. In contrast, we are focused on measurements taken from outside

the source’s network domain. Additionally, we see our problem as more challenging:

we expect bottleneck links in a heavily managed and shaped residential cable modem

network to more often obscure distinctions between wired and wireless, as compared

to a high-capacity university network.

More recently, Chen et al. [19] address the problem of identifying a suspect’s

mobile device despite being located behind a wireless AP/NAT router. However, they

mark the traffic flow and sniff wireless traffic. This marking and monitoring of traffic

broadcast without a warrant is a violation of the Wiretap Act. Moreover, courts

require that applications to wiretap traffic meet a significantly higher standard than

warrants issued to allow search and seizure of machines located in a residence.

2.8 Conclusions

This Chapter proposed legal methods that use remotely measured traffic to disam-

biguate wired and wireless residential medium access in a practical forensic setting,

based on characteristics of the inter-arrival times in the wired and wireless access

networks. We justified our method’s legality based on US law and extensively con-

sidered the effect of unknown or hidden factors in a forensic setting (such as wireless

channel contention, network stack parameters, and p2p application configuration) on

classification performance. We identified 25th-percentile or entropy of inter-arrival

times as the best performing features and figured out when and why these features

worked reliably or poorly in diverse scenarios.
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CHAPTER 3

MEASUREMENT AND MODELING STUDY OF USER
TRANSITIONING AMONG NETWORKS

3.1 Introduction

Now we take a broader and global network-level view and turn our attention to

challenges related to mobility management in a clean-state approach to designing a

mobility-centric architecture. Before investigating architectural design issues in mobile

environments, we first observe a study that measures and discusses user mobility

among points of attachment (access networks) to the larger Internet.

“Mobility” in computer networks takes two distinct forms: physical (human)

mobility among a network’s access points and base stations, and virtual mobility of

a user identity among the many access networks that make up the larger Internet.

Physical human mobility has played a central role in the design and operation of mobile

networks (including cellular, Wi-Fi, and mobile ad hoc networks) and their protocols

for hand-off, intra-network routing and location management, and more. Consequently,

numerous research studies have developed models of human physical mobility and

used these models in the design and evaluation of mobile network protocols. Virtual

mobility – mobility among networks – is a more recent concern of protocols such as

Mobile-IP and new architectures such as XIA [32] and MobilityFirst [68], which aim

to provide location independence (mobility transparency) by separating identifiers

(names) from addresses or network locations. Here, the need to map a user’s identity to

his/her current network location (i.e., the access network to which the user is attached)

via mobility registration and lookup/indirection protocols, are central concerns. Thus,
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a quantitative understanding of how a user identity transitions among access networks

– the networks through which that identity is addressed and ultimately reached – is of

great interest for mobility architecture and protocol design and analysis.

Recognizing the potential ambiguity between physical and virtual mobility, we

will refer to a user identity moving among networks from a network-layer/addressing

viewpoint as transitioning among networks. To appreciate this distinction, consider

an individual, say Alice, often connected to the Internet via numerous different

networks during the course of her day. She might begin her day reading email on a

tablet, connected to the Internet via a residential DSL or cable network or a wide-area

wireless network; she might later work a bit from home using a computer connected via

Ethernet to her residential network and then later connect wirelessly via a smartphone

to her wide-area wireless network service provider as she bikes or drives to work. At

work, Alice connects via the company network, but also uses a smartphone. At the

end of the day, her transitioning among networks is repeated in reverse. Together,

these networks might be considered Alice’s set of frequently used “home” networks.

When traveling, Alice connects via a smartphone’s wireless provider network and via

airport, airplane, cafe, hotel and remote institutional networks. Indeed, we see that

the identity that is “Alice” connects to the Internet via many different networks over

time and is sometimes connected using different devices on different networks at the

same time.

A user’s transition between networks can occur in a number of different scenarios:

(i) a user might detach from one network and attach to a new network (e.g., a user

explicitly disassociating from one wireless network and then associating with a different

wireless network); (ii) a user with multiple devices1 might move his/her activity from a

1The use of multiple devices is increasing rapidly. The Pew Internet Research Project [56] notes
that in addition to traditional Internet access via computers, 58% of Americans own a smartphone,
with approximately 50% of these users using a smartphone as their primary Internet-connected device.
43% of Americans own a tablet, a thirteen-fold increase in ownership over four years.
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device attached to one network to another device attached to a different network, or use

both devices concurrently; we will refer this latter as a user being “contemporaneously

connected” to two (or more) networks; (iii) a user with one device with multiple

NICs may change the interface being used, or use multiple NICs on the single device

contemporaneously (which we believe is relatively rare); (iv) a user may connect to a

VPN, thus changing its network-visible IP address.

In this Chapter, we perform a measurement study of user-transitioning among

networks and discuss insights and implications drawn from these measurements. Our

study thus differs from previous mobility studies that have developed models of a single

device moving between access points or base stations. Based on these measurements,

we also develop and validate a parsimonious Markov chain model of canonical user

transitioning among networks. Our measurement study, conducted using two sets of

IMAP server logs (a year-long log of approximately 80 users, and a four-month log of

a different population of more than 7,000 users) quantitatively characterizes network

transitioning in terms of transition rates among networks, network residency time,

degree of contemporaneous connection to multiple networks, and more. We find that

users spend the majority of their time attached to a small number of access networks,

and that a surprisingly large number of users access two networks contemporaneously.

We also show that our Markov chain model of a canonical individual user, in spite of

its many simplifying assumptions, can accurately predict aggregate transition rates,

the degree of contemporaneous multi-homing, and other key network-transitioning

performance metrics for an aggregate population.

Our measurements provide quantitative insight into the location management

signaling overhead needed by modern and proposed name/address translation and

location management protocols; our models provide the ability to design, dimension

and analyze such systems. More generally, we believe that while physical mobility

and the design of link-layer and intra-subnetwork handoff protocols are relatively well-
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understood, the behavior, modeling and measurement of users transitioning among

networks and the design of protocols for managing that mobility at global scale are

much less well-understood. This Chapter is an important step in deepening that

understanding.

The remainder of this Chapter is structured as follows. In Section 3.2, we describe

the information of our collected trace, and describe our measurement scenario and

methodology. In Section 3.3, we then quantify various aspects of user transitioning and

discuss insights drawn from these measurements. Section 3.4 presents and validates

a parsimonious Markov chain model of canonical transitioning. In Section 4.7, we

discuss related past research. Section 3.6 concludes this Chapter.

3.2 Measurement Methodology

In this Section, we first discuss the challenge of measuring user-transitioning at

large scale and our decision to use IMAP logs to do so. We then provide details of the

IMAP logs themselves and discuss the set of networks visited by users in our logs. We

conclude this Section with a discussion of how we estimate user session lengths based

on log data.

3.2.1 Why IMAP mail access logs?

Measuring user mobility between networks is itself a challenging task. Measuring

network connectivity directly at the end user requires a population of users willing to

install software on each of their network-connected devices (e.g., laptop, home/office

desktops, tablet and/or smartphone), periodically monitoring/logging network con-

nectivity on all interfaces on all devices, and then collecting measurement data. In

addition to the difficulty of finding and managing such a user base, the task is techni-

cally complicated by concerns regarding battery drain for monitoring connectivity on

mobile devices. For these reasons, a more centralized, server-based approach might
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seem preferable. In particular, since a client’s connection to a server provides that

client’s IP address, the (possibly changing) access network used by each of the server’s

multiple clients can thus be easily logged at a server.

Yet there are also many challenges associated with server-side measurement of user

transitioning among networks. Each server implements a single service/application and

each user runs many services and applications. Monitoring all service and application

servers is impossible - there are far too many servers, and many commonly-accessed

servers are proprietary. Moreover, a user invoking multiple applications has a different

“identity” in each application; correlating a user’s identity on one application with

his/her identity on another application is a difficult research problem [29]. From a

practical viewpoint then, we ideally need a server application that (i) is frequently

used by an online user, (ii) can be monitored at a non-proprietary server, and (iii)

provides both a user “identity” (so that the same user can be tracked across multiple

sessions) and the network address from which that identified user accesses that server.

Although no single application server meets this ideal, we believe that an IMAP

server [22] is a compelling choice. Email checking, polling, and delivery all create

entries in the IMAP server’s log containing an associated client IP address, as well as

a client’s identifier (i.e., the email account); the email account typically remains the

same across a user’s devices. A user who accesses the IMAP server from a desktop

while at work, and then from a mobile device while commuting, and then from a laptop

at home will create IMAP logs evidencing transitions from office network to cellular

provider network to home access network. Although many e-mail clients periodically

and automatically access their IMAP server while online (providing a rich source of

IMAP data), not all clients do so. Consequently, using IMAP logs to trace a user’s

transitioning among access networks may miss a network transition or underestimate

the amount of time spent in a network. And email is indeed but one application
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(albeit a popular one). Thus, we can think of our results here informally as a lower

bound on the actual amount of network-transitioning performed.

IMAP logs can be also used to discover a multi-homed user, or a user contempora-

neously belonging to multiple networks via multiple devices. In the former case, if

the user with a single device accesses the IMAP server using multiple NICs connected

to different networks, the multi-homed IMAP accesses via these different client IP

addresses (and networks) will be evidenced in the IMAP log. In the latter case, a

user accessing the IMAP server from multiple devices (e.g., working and reading email

on laptop or PC, while also having email pushed to a smartphone) within the same

period of time will have IMAP accesses via multiple contemporaneous connections

during this period of time evidenced in the IMAP logs.

3.2.2 IMAP log collection

Figure 3.1: CDF of the average number of IMAP entries per day over all users.

For this study, we collected two sets of traces from IMAP servers located at the

University of Massachusetts Amherst. The CS-IMAP set contains logs from IMAP

servers in the Computer Science Department from Apr 14, 2013 to Feb 22, 2014;

the CS-IMAP has a population of 81 users mostly consisting of CS faculty and staff

members. The OIT-IMAP set contains approximately four months of logs from IMAP

servers that supports a mail service for university students (primarily), faculty and

staff that is separate from the CS mail service. The OIT-IMAP has a campus-wide
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user population of 7,137 users; these traces were taken from Dec 1, 2013 to Mar

25, 2014. The total number of CS-IMAP and OIT-IMAP log entries per user over

the measurement ranged from 2 to 79,392, and from 1 to 1,490,473, respectively.

Figure 3.1 plots the CDF of the average number of daily IMAP entries per user and

shows that users in CS-IMAP (mostly faculty members) tend to access mail servers

more frequently than OIT-IMAP (mostly students).

Each trace consists of a series of individual IMAP log entries stored by syslog [27],

recording a user’s e-mail activities, including signing into the mail server, checking the

INBOX, deleting messages, and unilateral server decisions to close (idle) connections.

We processed only a user’s sign-in logs which allowed us to extract the following pieces

of information for each entry: (i) user’s account ID - we consistently anonymized

a user’s account ID (email address) using SHA2-hashing for privacy purposes, (ii)

timestamp - the time at which a user signs into the IMAP mail server to poll, check,

or retrieve email, and (iii) a client-side IP address - this is the IP address of user’s

(client-side) device when accessing the IMAP server2.

Given an IP address, we determined the user’s IP prefix network, Autonomous sys-

tem number (ASN), and network domain ownership via whois using whois.cymru.com

[7]. Information at whois.cymru.com is updated every 4 hours from the regional

registries including ARIN, RIPE, AFRINIC, APNIC, and LACNIC. The CS-IMAP

set contains 1,405 unique IP prefixes and 387 unique ASNs, and the OIT-IMAP set

contains 9,016 unique IP prefixes and 1,777 unique ASNs. The network information

for two IP addresses in the CS-IMAP and 63 IP addresses in the OIT-IMAP was

2Users in the CS-IMAP set occasionally accessed mail via a departmental web-based server, rather
than directly from a client email application. In this case, the user’s logged IP address is recorded
in the IMAP log as 127.0.0.1; we analyzed the server’s web logs to determine the client address of
the user browser associated with this IMAP access. Only 1.6% of all IMAP web-based log entries
could not be identified due to missing web logs; those entries were excluded from our analysis. VPN
access to the IMAP servers is not required. Anecdotally, we believe VPN access is used primarily for
accessing library and other restricted campus resources.
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unknown, but the number of IMAP logs generated from such unknown IP addresses

was negligible; these entries were excluded from our analysis.

3.2.3 IMAP traces: network information

Figure 3.2: CDF of the number of observed IP prefixes associated with an ASN over
all users.

Figure 3.2 shows the CDFs of the number of observed unique IP prefixes associated

with an ASN over all users in the CS-IMAP and the OIT-IMAP sets. Figure 3.2 shows

that approximately 61% and 57% of ASNs had only a single observed IP prefix in

the CS-IMAP, the OIT-IMAP, respectively. In the traces, the following ASN and IP

prefix information of frequently visited service providers have been observed (we will

investigate the length of time a user is resident in an IP prefix or ASN network in

Section 3.3). AT&T, Sprint, T-Mobile, and Verizon wireless are mobile access service

providers. Comcast, Charter, Cox, Time Warner, and Cablevision are residential

wired Internet service providers (e.g., cable and DSL access networks); the Hughes

network supports a satellite Internet service used in rural communities lacking wired

and cellular broadband service. The UMass Amherst network is part of the Five

Colleges (AS1249) network. SAS in the CS-IMAP (a DSL and Wi-Fi service provider

in France) and Unicom in the OIT-IMAP (a mobile service provider in China) were

used for a non-negligible amount of time in our measurements.
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Figure 3.3: CDF of the number of unique ASNs visited daily per user over all users.

Figure 3.3 plots the CDF of the number of unique ASNs visited daily per user over

all users, indicating that users in both OIT-IMAP and CS-IMAP access at most four

unique ASNs in a day, but users belonging to CS-IMAP (mostly faculty members)

access more ASNs than OIT-IMAP (mostly students).

(a) CS-IMAP.

(b) OIT-IMAP.

Figure 3.4: CS-IMAP. Cumulative number of unique ASNs accessed by all users over
time.

Figures 3.4(a) and (b) plot the daily cumulative numbers of unique IP prefixes

and ASNs accessed by all users over time. These figures indicate that the cumulative
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number of unique IP prefixes and ASNs each increase roughly linearly over time;

the slopes of two curves during vacations (when users would be out of town more

frequently) are steeper compared with the slope during the academic term. This

constant increase in the daily number of new networks accessed (after the initial

startup period) was initially surprising, as we had expected that users would generally

access the same set of networks over time. We’ll see later that a user typically does

indeed spend most of the time in the same (relatively small) number of networks over

time, but does visit new networks outside of this set of common networks at a roughly

constant rate, resulting in the positive slope in Figure 3.4.

3.2.4 From IMAP log data to sessions

We use the notion of a time window to determine intervals of time during which a

user is connected to a network.

Definition 1. Time is divided into consecutive time windows, each of length ∆t. A

session is defined as a series of consecutive time windows, each of which has one or

more IMAP log entries from the same network (distinguished by either its IP prefix

or ASN).

By Definition 1, two IMAP log entries in the same time window that have different IP

addresses but the same IP prefix (or the same ASN) would be regarded as belonging

to the same session. Our measurements indicate that a user may be also connected to

more than one network during a window of time.

Definition 2. Given time window of length ∆t, a multi-sessioned time window for

a user is one in which that user has IMAP entries from two or more different networks

(as distinguished by their IP prefix or ASN).

Choosing a value for ∆t for session identification via Definition 1. If we

choose a small time window value, this would break a user’s single session into multiple
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distinct sessions separated by empty ∆ts having no IMAP logs entries. If a user was

indeed connected during these empty ∆t intervals, then we would overestimate the

amount of user network-transitioning. Conversely, if the time window is too large,

intervals of time during which the user disconnects and then reconnects to that same

network would be coalesced into a single session, thus underestimating the amount

of user transitioning. This dilemma is often faced when reconstructing user session

behavior from discrete log entries [20,54]. We choose the length of the time window

∆t by observing the number of sessions as a function of ∆t, as discussed below.

Another caveat for session identification using IMAP logs is that IMAP logs may

not record all the network access behavior of a user. Inevitably, a session established

for other purposes (not mail checks via IMAP) is not counted and thus the location

tracking workload might be underestimated. Moreover, the best size of a time-window

resulted from only IMAP logs might be misled; for instance, if a user sporadically

checks mails but continues to use a network without being detached, then the best

size of a time-window is estimated smaller than it should be, and thus the location

tracking workload might be overestimated.

To investigate the challenge of choosing a value for ∆t, let us define the Definition

3 below and observe the best size of a time-window for different values of ρ.

Definition 3. Given time window ∆t that (i) contains no IMAP entries and (ii) fall

between two time windows that contain IMAP entries, we define ρ as the probability

that a user “indeed” remains connected to the network for that time window. Since

we didn’t know the ground truth of whether or not a user remains connected while

generating no IMAP entries, we will use ρ to consider the hypothetical case that the

user is connected in some fraction (ρ) of the time windows, even though no IMAP

entries are generated.
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(a) CS-IMAP. (b) OIT-IMAP.

Figure 3.5: Aggregate number of sessions over all users.

Figure 3.5 plots the total number of all users’ ASN-based sessions3 as a function

of a time-window length. The black curve in Figure 3.5(a) shows that the number of

sessions in CS-IMAP (as they were observed from our traces) initially decreases sharply

with increasing values of ∆t, and then, at around a time-window length of 15 minutes,

begins decreasing more slowly. Figure 3.5(a)’s red curve plots that the hypothetical

number of sessions with ρ = 0.1 for different time-window sizes in CS-IMAP. The red

curve is significantly lower than the black curve in the inital region, and then shows a

knee of the curve at 15 minutes; this pattern was also found for different values of ρ.

Similarly, the knees of the curves in OIT-IMAP appears at approximately 20 minutes

as shown in Figure 3.5(b). We also noted that approximately 97% of the time intervals

between a user’s two consecutive IMAP log entries in CS-IMAP were less than or

equal to 15 minutes, and approximately 82% of the time intervals between a user’s

two consecutive IMAP log entries in OIT-IMAP were less than or equal to 20 minutes.

A similar analysis can be applied to the case of a user being contemporaneously

connected to multiple networks. Figure 3.6 plots the total number of all users’ ASN-

based multi-sessioned time windows for different time-window sizes. Figure 3.6 shows

that the number of multi-sessioned time windows in CS-IMAP increases until a window

3A comparison of using IP prefix vs. ASN distinctions to identify the number and length of
sessions indicates that there is not a significant difference between IP prefix-based and ASN-based
session lengths. Thus we only show ASN results.
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(a) CS-IMAP. (b) OIT-IMAP.

Figure 3.6: Aggregate number of multi-sessioned time-slots over all users.

length of 15 minutes and then flattens out and the knee of the curve appears at 20

minutes, the same knee location found in the Figure 3.5. Thus, a user who has been

connected to multiple networks is likely to be completely offline for an amount of time

greater than the time interval length at the knee. We will thus choose 15 minutes in

CS-IMAP and 20 minutes in OIT-IMAP to be the length of the time window and

identify user sessions accordingly via Definition 1.

3.3 Measurement Analysis and Findings

In this Section, we present and discuss our measurement results regarding user

residence time in various networks and multi-sessioned behavior. The insights and

implications drawn from these results form the foundation for our Markov chain

modeling of user network transitioning in Section 3.4.

3.3.1 Network residence time

House Comcast (AS7015, AS7922, AS33651, AS33668), Charter (AS20115), Cox
(AS22773), Hughes (AS6621), Time Warner Cable (AS11351), Cablevision
(AS6128)

Work Five colleges AS (AS1249)

Mobile Verizon (AS22394, AS701, AS6167), AT&T (AS20057, AS7018), T-Mobile
(AS21928), Sprint (AS3651)

Table 3.1: House, work, and mobile categorization of a user’s home networks.
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Let us first consider the aggregate network residence time over all users spent

in various networks. Table 3.1 defines house, work, and mobile networks whose

constituent ASNs are registered in U.S. and are accessed by users for more than 0.5%

of aggregate network residence time. The MISC category, which includes all other

network domains observed in our logs, may thus include rarely-used residential wired

service provider or mobile access provider ASNs that account for negligible fractions

of network residence time. Broadly, we may consider the house/work/mobile networks

as a user’s “home” networks and the remaining MISC networks as a user’s “visited”

networks.

(a) Daily fractions of network residence times.

(b) Daily total network residence time.

(c) Daily user population.

Figure 3.7: OIT-IMAP. Time series plot of network residence time over all users.

Figures 3.7(a), 3.8(a) plot the daily fraction of aggregate residence time spent in

house, work, mobile and MISC ASNs over all users for OIT-IMAP, CS-IMAP respec-

tively. Given that the house, work and mobile networks are collectively constituted

by only 17 (as shown in Table 3.1) out of the 1,858 ASNs observed in CS-IMAP
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(a) Daily fractions of network residence times.

(b) Daily total network residence time.

Figure 3.8: CS-IMAP. Time series plot on network residence time over all users.

and OIT-IMAP, Figures 3.7(a), 3.8(a) show that users spend the majority of their

time (approximately 80% through a measurement period, and in particular more than

90% during fall semester in CS-IMAP) resident in only a small number of networks.

We also observed that just two ASNs (Comcast AS7015, and Five colleges AS1249)

account for more than half of the overall residency time in OIT-IMAP and CS-IMAP,

and that the ten most common ASNs collectively account for approximately 85% (for

OIT-IMAP) and 90% (for CS-IMAP) of the overall residency time, confirming the

observation that the lion share of aggregate user time is spent in a relatively small

number of networks.

Figures 3.7(a), 3.8(a) also show seasonality corresponding to the UMass Amherst

academic calendar; a decrease in work network occupancy and a concomitant increase

in MISC network occupancy during vacations; conversely, an increase in house network

occupancy and work network occupancy but a decrease in MISC network occupancy

during semesters. Not surprisingly, Figure 3.7(a), 3.8(a) also show per-week periodicity

for house and work network residence times, with the percentage of time in work
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networks higher on workdays and less on weekend days, and the percentage of time

in house networks higher on weekend days and less during workdays. Figures 3.7(b),

3.8(b) plot the daily total residence time spent in all networks over all users for

CS-IMAP, OIT-IMAP, respectively and Figure 3.7(c) plots the daily population of

users producing IMAP logs for OIT-IMAP, all showing similar periodic behavior.

(a) Hourly network residence time. (b) Weekly network residence time.

Figure 3.9: OIT-IMAP. Box plot with whiskers with average and maximum for hourly
and weekly network residence time over all users.

We also observe hourly and weekly patterns in the aggregate average and maximum

for hourly and weekly network residence times (shown as box plots with whiskers

with average and maximum in Figures 3.9(a) and 3.9(b)) over all users in OIT-IMAP.

Figure 3.9(a) shows that users tend to be connected approximately 10 minutes on

average and up to 35 minutes per hour. Network residence time during daytime is

longer than during nighttime, with an increase of residence time in work networks

during the day. Figure 3.9(b) shows that users are connected approximately 5 hours a

day on average up to 10 hours per day. Network residence time during workdays is

longer than during weekend days, with an increase of residence time in work networks

during the week. Similar hourly and weekly results are also found in CS-IMAP.

Let us now turn our analysis from the aggregate to the individual, and investigate

the fraction of an individual user’s residence time spent in the single network in which

it is most often resident, as well as in the three networks in which together it is most

often resident. Figure 3.10 plots the distribution (over all users) of the fraction of

time that a user in CS-IMAP spends resident in the network in which it is most often
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Figure 3.10: CS-IMAP. pdf of the fraction of the (three) longest residency ASNs’
residence times to the total residence times.

resident (grey line with triangle points), and in the three networks in which together

it is most often resident (black line with triangle points). The black curve indicates,

for example, that approximately 75% of the users spend between 90% and 100% of

their time in their top three networks, and that nearly 20% of the users spend between

80% and 90% of their time in their top three networks. Thus we see that individual

users generally also spend the lion share of their residency time in just a few (e.g.,

three) networks. A much smaller fraction of the users spend their time in just one

network - the gray curve indicates that roughly 25% of the users spend 90% to 100%

of their time in their most commonly resident network. Similar results are also found

in OIT-IMAP.

3.3.2 User’s multi-sessioned behavior

Having considered a user’s connectivity to individual networks, let us next examine

a user’s contemporaneous connection to two or more networks. In our measurements,

we observe that 99% of the ASN-based multi-sessioned time windows in OIT-IMAP

and 99.5% of the ASN-based multi-sessioned time windows in CS-IMAP consist of

only two ASNs.
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Figure 3.11: pdf of ASN-based multi-session time per user.

Figure 3.11 plots the fraction of users (y-axis) who spend a given fraction of

their time (x-axis) connected to multiple networks in CS-IMAP and OIT-IMAP.

Figure 3.11’s gray bar indicates, for example, that 20% of the users in CS-IMAP

were always connected to a single network (when online). Approximately 70% of

the users spent less than 10% (but greater than 0%) of their time multi-sessioned

and approximately 7% of users were multi-sessioned between 10 and 20% of their

time online. Figure 3.11’s black bar shows that approximately 50% of the users in

OIT-IMAP were always connected to just a single network. Overall, however, we

found the amount of multi-sessioned time to be much higher than we would have

expected, suggesting that contemporaneous connectivity to multiple networks should

not be considered “outlier” behavior.

A deeper investigation in the multi-sessioned time windows revealed three common

scenarios, with the following potential causes of multi-sessions:

1. Fixed and mobile networks. 55% of multi-sessioned time windows in OIT-

IMAP and 51% in CS-IMAP consisted of a fixed (residential or Five colleges) and

a mobile network (as defined in Table 3.1’s mobile category). (i) These scenarios

could correspond to the cases of a user carrying multiple devices or a single device

with multiple NICs being contemporaneously connected to different networks
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(e.g., a laptop connected to a wired network and a smartphone connected to

a cellular data network). (ii) Network transitions between fixed and mobile

networks within a time window could also have resulted from a user’s switching

his/her devices.

2. Fixed networks across different ISPs. 17% of multi-sessioned time-slots in

OIT-IMAP and 27% in CS-IMAP consisted of two fixed networks (residential

and Five colleges) with little overlap in their physical footprints - the Five

colleges network is generally confined to campus locations. (i) Contemporaneous

access to these two networks in the same time window could have resulted from a

user physically moving from one network to another (e.g., office to home or vice

versa) or (ii) could also have resulted from emails being automatically requested

by a user device in a different physical location that the user him/herself, or

from VPN access to the Five colleges network via the residential network.

3. Network transitions within the same ISP. 6% of multi-sessions in OIT-

IMAP and 4% in CS-IMAP show multiple networks access from two ASNs

owned by a single service provider such as SAS, Verizon, AT&T and Comcast.

This may correspond to the case of a user who is either physically moving and

connecting to different 3G/4G or 802.11 base stations while in motion, or a

stationary user connecting to different base stations within a time window.

Let us conclude this section by further dissecting the cases above to determine

which multi-sessioned time windows might result from a user’s transition between

networks (e.g., as indicated by a series of IMAP log entries from one network followed

by a series of IMAP log entries from another network during a time window) versus

a user switching back and forth between networks in that time window. Let St2t1 be

a sequence of networks to which a user is connected from t1 to t2. For instance, if

a user at t generates three consecutive IMAP log entries via network B followed by
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one IMAP log entry via network A, then Stt = {B,A}. We determine whether a user

performs a network transition or is contemporaneously connected to multiple networks

at multi-sessioned time window t based on the following proposition.

Proposition 4. Given a user’s IMAP log entries over three consecutive time-slots from

t− 1 to t+ 1, a user is regarded as performing a network transition at multi-sessioned

time-slot t if Stt = St+1
t−1 .

For example, suppose that St−1t−1 = {A}, Stt = {A,B}, and St+1
t+1 = {B}. Then we

derive St+1
t−1 = {A,B}, and thus Stt = St+1

t−1 , implying a network transition during

the time window. On the other hand, suppose that St−1t−1 = {A}, Stt = {A,B}, and

St+1
t+1 = {A}. In this case, St+1

t−1 = {A,B,A}, and thus Stt 6= St+1
t−1 , indicating the user

does not perform a network transition at t; instead we interpret this as there being

one session associated with network A from t− 1 to t+ 1, contemporaneously existing

with another session associated with network B during time window t.

Using Proposition 1, we observed that users performed network transitions in only

12% of multi-sessioned time windows in both OIT-IMAP and CS-IMAP, suggesting

that a user is more likely to be using multiple networks contemporaneously during a

multi-sessioned time window rather than being the process of transitioning between

networks.

3.4 A parsimonious Markov Chain model

In this Section, we develop a parsimonious discrete-time Markov chain model of

individual user transitioning among networks. This model can be used to design,

analyze and provision protocols and services that support mobility (e.g., Mobile-IP

home and foreign agents, or next generation services such as MobilityFirst’s GNS [70]).

A model of individual user behavior is particularly valuable, as it can be easily used

to scale up evaluation workloads. After presenting our model, we validate how well

performance measures determined via the aggregation of individual user-level models
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(in particular, signaling overhead due to user-transitioning between networks) match

those determined from the traces.

3.4.1 Markov Chain Model of User-Centric Network Transitioning

We develop a parsimonious discrete-time Markov chain model of individual user

network-transitioning. Our unit of discrete time is the time window discussed in

Section 3.2. The Markov chain states encode enough state information to compute

the cost of a user’s signaling at each time-step.

• Let Xt be the number of new networks to which a user is attached at time t,

with respect to time t-1. The first dimension of the Markov chain tracks the

value of Xt, which will be used to quantitatively compute signaling overhead

induced as a user transitions among networks, as we will discuss below.

• Let Yt be the number of networks to which a user is attached at time t. The

second dimension of the Markov chain tracks the value of Yt, which will be used

to quantitatively compute signaling overhead induced when a user detaches from

a network, as we will discuss below.

Xt and Yt may take value {0, 1, ∗}, where ∗ denotes two or more networks con-

temporaneously connected at t; for simplicity, we do not distinguish the case of more

than two contemporaneous sessions from the case of exactly two such sessions, since

approximately 99% of multi-sessioned time windows consist of only two network

domains in our traces, as discussed in Section 3.3. Our model can be easily extended

to cover the more general case. Our Markov model thus consists of six states,

{(0, 0), (0, 1), (1, 1), (0, ∗), (1, ∗), (∗, ∗)}.
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The model has a stochastic transition probability matrix P = [pij] where pij =

Pr{(Xt, Yt) = j|(Xt−1, Yt−1) = i} and
∑

j pij = 1. These transition probabilities will

be determined empirically from our traces.

The overall signaling cost from the user to a network-wide mobility management

service (e.g., a Mobile-IP home agent, or the MobilityFirst GNS) on a state transition

at t − 1 to t, denoted by COt, is computed as follows. Let A be the signaling cost

generated when a user joins a new network, and let D be the signaling cost generated

when a user departs from a network. (For simplicity, we will not consider signaling

costs in the reverse direction from the management service to the user, although these

can be easily included in the model.)

• Explicit detach. In the case that network detachment is explicitly signaled,

COt is computed by

COt = A ·Xt +D · (Yt−1 − (Yt −Xt))

• Implicit detach. In the case that network detachment is implicitly signaled

by attachment to a new network, COt is computed by

COt = A ·Xt.

3.4.2 Trace properties

We investigate the properties of our CS-IMAP and OIT-IMAP traces. We first

extract subtraces from the CS-IMAP and the OIT-IMAP traces and bisect each

subtrace into the training phase (also called phase 1) and the validation phase (also

called phase 2), which will be used in model parameter estimation and model validation,

respectively.
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(a) CS-Fall. Xt. (b) CS-Fall. Yt.

(c) OIT-IMAP. Xt. (d) OIT-IMAP. Yt.

Figure 3.12: Time series plot of “daily” aggregate cost of X, Y over all users (using
IP prefix distinction).

• CS-Fall subtrace. Figures 3.12(a), (b) show the time series plots of daily

aggregate values of Xt and Yt for 79 users during the Fall 2013 semester (using

IP prefix distinction). The CS-Fall subtrace’s training phase and validation

phase consist of data from September 3rd to October 25th and from October

26th to December 16th, respectively.

• OIT-Spring subtrace. Figures 3.12(c), (d) show the time series plots of daily

aggregate values of Xt and Yt over 7,137 users in OIT-IMAP (using IP prefix

distinction). Unlike the CS-Fall subtrace, Figure 3.12(d) shows a downward

drift, particularly during the first half of the trace, likely resulting from the

change in user population previously observed in Figure 3.7(c). Since our goal is

to model the system in steady state, we thus only consider the subtrace during

February and March for modeling, with the training phase and validation phase

consisting of data from February and March, respectively. This subtrace has

5,793 users generating IMAP logs.

For each subtrace, we derive one set of aggregate values of Xt over all users, and

another set of aggregate values of Yt over all users (using IP prefix distinction), sampled

at 15 minutes (for CS-Fall) or at 20 minutes (for OIT-Spring).
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Figure 3.13: Autocorrelation function for Xt and Yt at different time lags (n), OIT-
Spring data.

Patterns of ACFs. The sample autocorrelation function (ACF) measures the

degree of correlation between data at varying time lags (denoted by n), detects any

trends and periodicity in a data series, and is also used to check the randomness of

data. If random, the autocorrelation should be near zero for any and all time-lag

separations. Figure 3.13 plots the ACFs of values of Xt and Yt for the OIT-Spring

subtrace. Figures 3.13(a) and (b) demonstrate that Xt and Yt in the OIT-Spring

subtrace have daily (n = 72) and weekly (n = 504) periodicity, and drop to near zero

correlation at lag 20 so that Xt and Yt are considered independent at around every

seven hours (20·20 minutes). Similar periodicity and seven-hour independence results

were also encountered in CS-Fall trace, but with lower amplitudes.

Testing for Stationarity. We check the subtraces themselves for stationarity

using the KPSS test [46]. The KPSS assesses the null hypothesis that data is stationary

over a range of time lags. The tests at the 1% significance level suggest that Xt and

Yt data in OIT-Spring are stationary for n > 0, but Xt data in CS-Fall is stationary

for n > 1 and Yt data in CS-Fall is stationary for n > 4.
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Figure 3.14: CS-Fall. Aggregate cost over all users.

3.4.3 Model estimation and validation procedure

We use the observed relative transition rates during the training phase to estimate

the transition probabilities of our Markov chain model. To determine how well our

Markov chain model predicts user behavior we will compare signaling costs determined

by the model with those found in data from the validation phase. We proceed as

follows:

1. Transition probabilities for the Markov Chain Model. Using the training

phase data, we derive the transition probabilities for our Markov Chain model

of a canonical user by counting the number of times that U users move from

state i to state j per time-step and then normalize these counts so that the sum

of the transition counts out of each state equals 1. This gives us our empirical

transition probability matrix, P̂ = [P̂ij].

2. Generating a sequence of synthetic transitions between states for a

population of U users. For each of the U users, we start from state (0, 0)

and generate a next state using the transition probabilities P̂ . We repeat this

process for φ time-steps (5,000) and then generate a sequence of length φ of

state transitions made by the U users.
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3. Determining the signaling cost for U users. For each time-step, we com-

pute the aggregate signaling cost of the U users, using COt as in the previous

subsection; for simplicity, we assume that users explicitly signal network detach-

ment, with A = D = 1. Then we compute the distribution of signaling cost for

the U users.

4. Model validation. Once the baseline distribution is built, we test how well

our model predicts the number of signaling messages generated per time-step

for the U users. To validate our model, we compare the model-predicted values

(whose state transition probabilities were derived from training phase data) with

the empirical distribution found in validation phase.

3.4.4 Prediction with aggregate user population

CS-Fall. Figure 3.14(a) plots the pdf of the model-predicted and the observed

aggregate cost over all users for the CS-Fall data set. Figures 3.14(b), (c) show the

Q-Q plot of the randomly generated, independent standard normal data (N (0, 1)) on

x-axis versus the model cost data on y-axis, and the Q-Q plot of the model cost data on

x-axis versus the observed cost data on y-axis, respectively; a data point (x,y) on the

Q-Q plot corresponds to one of the quantiles of the distribution plotted on the y-axis

against the same quantile of the distribution on the x-axis; the plot has a red reference

line through the origin with slope 1; points denoted as + should lie roughly on this line

if the x-axis and y-axis data come from the same distribution. The linearity evidenced

in Figure 3.14(b) suggests that the data follows a Gaussian distribution with slightly

positive skew. Figures 3.14(a), (c) confirm that the model cost and the observed cost

datasets come from a Gaussian distribution and the model fits the observed data well,

passing the chi-square goodness of fit test with 5% significance level.

Recall that our model for U users aggregates the results from U independent

user-level models. Since the ACFs of empirical values of Xt and Yt show both positive
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and negative correlation at different time lags in Figure 3.13, it is not surprising

that signaling costs match the least well at the lower and upper extremes of the

distributions in Figures 3.14(a), (c). If the tail distribution of cost is of interest (e.g.,

for provisioning system resources at the 95% workload maximum), interesting future

work would be to develop a model that more accurately matches this tail behavior.
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Figure 3.15: OIT-Spring. pdf of aggregate cost over 5,793 users.

OIT-Spring. Figure 3.15 plots the pdf of the model-predicted and the observed

aggregate cost over all users for the OIT-Spring data set. Figure 3.15 shows that the

Gaussian distribution of cost predicted by the aggregation of individual user models

does not fit the observed multi-modal data, which shows three distinct peaks. Visually,

Figure 3.15 suggests that costs might better be modeled as a mixture of Gaussian

distributions. But what might each component of the mixture correspond to, and

how many distributions should be mixed? To answer this question, we performed a

clustering analysis.

3.4.5 Prediction with user clusters

Since a user’s affiliation is not known in our OIT-IMAP traces, we partitioned

the 5,793 users in OIT-Spring subtrace into K clusters based on their signaling cost,

using Expectation Maximization (EM) clustering [12]. Let ui be the average daily

signaling cost during the OIT-Spring’s training phase for user i, and let zi be the
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latent variable for the user cluster assignment for user i. We assume that ui follows a

mixture of K Gaussian distributions, i.e., ui|(zi = k) ∼ N (ui|µk, σk), with mixture

weight τk = Pr[zi = k] subject to
∑K

k=1 τk = 1. EM clustering iteratively estimates

θ = (τ, µ1, · · · , µK , σ1, · · · , σK) while maximizing the following likelihood function

until there is convergence of θ.

L(θ|u, z) = Pr[u, z|θ]

=
n∏
i=1

K∑
k=1

1(zi = k) · τk · N (ui|µk, σk),

where 1 is an indicator function.

Figure 3.16: OIT-Spring. Log likelihood of cross-validation data for different numbers
of clusters.

We use WEKA’s EM clustering implementation [9, 75] which determines the best

number of clusters using 10-fold cross-validation4. Figure 3.16 shows the negative log

likelihood of the cross-validation data as a function of the number of clusters; the

curve quickly decreases up to four clusters and then flattens out, suggesting that four

clusters be used.

4In the 10-fold cross validation, the data is partitioned into ten folds. Each of the folds is then set
aside at turn as a test set, a clustering model computed on the other nine training sets, and the value
of the log likelihood calculated for the test set. These ten values are averaged for each alternative
number of clusters. WEKA’s EM algorithm iterates until the change in log likelihood falls below
10−6 or 100 iterations have elapsed by default.
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Figure 3.17: OIT-Spring. pdfs of aggregate cost over cluster users.
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# users mean std. dev.

Light-user cluster 870 (15%) 0.25 0.19

Mid#1-user cluster 2,274 (39%) 2.30 1.16

Mid#2-user cluster 1,928 (33%) 6.57 2.65

Heavy-user cluster 721 (12%) 13.62 6.23

Table 3.2: OIT-Spring. Four clusters resulting from the EM clustering.

Table 3.2 shows the resulting four clusters, labeled as light-user, mid#1-user,

mid#2-user, and heavy-user clusters, according to the mean of ui values of each

cluster’s constituent users. The second column shows the number (and the percentage)

of users belonging to each cluster. The third and the fourth columns show the mean

and the standard deviation of values of ui in each cluster.

Figure 3.17 plots the pdf of the model-predicted and the observed aggregate cost

over the users belonging to each cluster. Figure 3.17 shows that the cost distributions

for the four-cluster model, with clustering based on signaling cost, are closer to

their empirically observed distributions when compared with the single cluster (i.e.,

non-clustered) case. However, even the clustered models do not pass the chi-square

goodness-of-fit test.
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(a) Light-user cluster. (b) Heavy-user cluster.

Figure 3.18: OIT-Spring. Q-Q plots for aggregate cost over manually picked 100 users.

We thus next handpicked the light-user cluster to consist of the 100 users having

the least signaling cost (a mean cost of 0.06) and a heavy-user cluster consisting of 100
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users having the highest signaling cost (a mean cost of 41) in OIT-Spring’s training

phase. Figure 3.18 shows the Q-Q plots for aggregate costs for the light-user cluster

and heavy-user cluster, and show a good fit, passing the chi-square goodness of fit

test with the 5% significance level. These results suggest that proper clustering can

improve model performance in predicting signaling costs, a topic we plan to pursue in

future research.

state (0, 0) (0,1) (0, *) (1, *) (*, *)

86%, 87% 7%, 7% 6%, 6% 0%, 0% 0%, 0%

(a) Aggregate user population.
state Light Mid#1 Mid#2 Heavy

(0, 0) 85%, 87% 85%, 86% 85%, 87% 85%, 86%

(0, 1) 7%, 7% 8%, 7% 7%, 7% 8%, 7%

(1, 1) 6%, 6% 6%, 6% 6%, 6% 6%, 6%

(0, ∗) 0%, 0% 0%, 0% 0%, 0% 0%, 0%

(1, ∗) 0%, 0% 0%, 0% 0%, 0% 0%, 0%

(∗, ∗) 0%, 0% 0%, 0% 0%, 0% 0%, 0%

(a) Clustered users.

Table 3.3: OIT-Spring. Model-based and empirically observed state occupancies.

Table 3.3 compares model-based and empirically-observed state occupancies of

OIT-Spring, showing good agreement for both the aggregate population of users and

for clustered users. Each entry of the table denotes the model-predicted value and the

observed value. For example, as shown in Table 3.3(a), the model predicts that a user

is offline (i.e., state (0, 0)) 86% of the time, while we empirically observe that a user

is offline 87% of the time.

3.5 Related Work

Numerous studies have characterized physical human movement using empirical

datasets and discussed the impact of physical user mobility patterns on network

performance and design. Human mobility traces have been collected from diverse

access networks such as WLAN [18, 34, 42], Bluetooth networks [18], and cellular
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networks [31,37,55]. Research using Wi-Fi access datasets has been done in a single,

physically-scoped network domain, such as a campus or enterprise, thus focusing on user

mobility within that limited physical domain. In this sense, cellular network data might

more fully model human mobility (since users typically carry their cellular phones);

such cellular data, however, is typically proprietary. But individual WiFi and cellular

traces by definition only include data from an individual type of network, and have not

considered contemporaneous residence within multiple networks nor transitions among

networks. More generally, we believe there is an important distinction to be made

between physical mobility and mobility among networks, as discussed in Section 3.1;

our work is the first to characterize and model mobility among networks (which we

have referred to as network transitioning).

[20,31,55] have related human mobility patterns to network resource use in Wi-Fi

access points or cellular network base stations. [31,55] have found that the extent of

users’ physical mobility is low and concentrated among a small number base stations,

with infrequent visits to other base stations in that network. Those conclusions,

however, are based on physical mobility within a single network.

3.6 Conclusion

In this Chapter, we performed a measurement study of user transitioning among

networks and discussed insights and implications from the measurements. Our mea-

surement study, conducted using two sets of IMAP server logs of populations of approx-

imately 80 users and more than 7,000 users, characterized user network transitioning

in terms of transition rates, network residency time, and degree of contemporaneously

resident network domains. Based on these measurements, we also developed and

validated a parsimonious discrete time Markov chain model of canonical user transi-

tioning among networks. Our measurements and models provide quantitative insight

into the location management signaling overhead needed by modern and proposed
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name/address translation and location management protocols; our models provide the

ability to design, dimension and analyze such systems.

93



CHAPTER 4

GROUP MOBILITY INDIRECTION

4.1 Introduction

Group mobility - a group of users whose mobility among networks may be correlated

- presents opportunities for efficiently handling the user-location information (e.g., the

access network with which a given user currently resides) associated with the mobile

users in that group. Such group mobility occurs when users travel together (e.g., in

a vehicle), when users are engaged in social relationships (e.g., affiliation), or when

users are regularly (and perhaps periodically) associated with a small set of networks.

Intuitively, we expect that there may be significant savings in the workload associated

with location-tracking protocols and name/location translation in location-independent

architectures (e.g., GNS in MobilityFirst [69], home/foreign agents in IP networks [39],

HLRs/VLRs in cellular networks [10], and SIP registrars [58]) if the network control

plane updates information associated with the group as a single entity, rather than

for each of the users individually.

In this Chapter, we introduce the notion of “group-mobility indirection” in which

a single group identifier, registered in the name/location translation service, references

a group of users, and updating the network location of the single group identifier,

rather than individually updating the location of all individual users, as the group’s

users moves. Our indirection technique differs from prior work (e.g., [16, 23]) that

employed hierarchical techniques to define a static and rigid subnet structure associ-

ated with wireless users. Leveraging a logically centralized but globally distributed

name/location resolution service [69], our approach provides for topology-independent
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group membership and handles diverse types of group mobility occurring at different

levels of network granularity, such as mobility among access networks or among APs

and BSs associated with different ISPs.

A central challenge for group-mobility indirection is to determine which (of the

perhaps multiple) network locations to associate with the group, when users asso-

ciated with a group identifier may be split among several networks. We design a

group-mobility indirection architecture that separately tracks the group location as-

sociated with only one of the networks in which group members are resident, and

then individually tracks the locations of users whose network location differs from

that single group location. We propose two algorithms to determine the network

location associated with the group location: (i) an event-based algorithm that elects

a leader among group members and reactively associates the group location with the

location of that leader as that leader moves, and (ii) a periodicity-based algorithm

that periodically updates the group location with a predicted network location at a

predicted time. We evaluate the performance of these algorithms by quantifying the

reduction in location-tracking overhead (over the case of no group indirection) via a

synthetic group-mobility model and via empirical traces of approximately 4000 mobile

users. We discuss the relation of the best performing algorithm to the periodicity

or predictability of user movements observed in these traces. Last, we cluster a set

of approximately 4000 users in our empirical traces into multiple groups, each with

a separate group identifier, and investigate performance as the number of groups

increases. We find that the indirection technique decreases up to approximately 50%

of location-tracking overhead by associating the 4000 users as a single group identifier,

and decreases up to approximately 70% by dividing the 4000 users into only five

clusters.

The remainder of this Chapter is structured as follows. In Section 4.2, we introduce

the notion of group-mobility indirection and discuss its challenges. In Section 4.3,

95



we describe our group-mobility indirection design. In Section 4.4, we describe the

above two algorithms. In Section 4.5, we describe a generative group-mobility model

and evaluate the performance of our group-mobility approaches using synthetic traces

generated via this model. In Section 4.6, we empirically investigate the reduction in

performance using real-world traces containing periodicity, and discuss the reduction

in performance as the number of groups resulting from clustering increases. We then

conclude this Chapter.

4.2 Group Mobility Indirection

In this Section, we begin by briefly describing the MobilityFirst architecture [69]

in order to set the context for, and motivate the need for, group-mobility indirection.

However, the concept of group-mobility indirection is more broadly applicable in

current and future Internet architectures beyond MobilityFirst. Then, we introduce

group-mobility indirection and discuss the challenges associated with individual nodes

splitting from and rejoining the larger group.

4.2.1 The MobilityFirst architecture

The MobilityFirst architecture uses a globally unique ID (GUID) that names

individual users, application identifiers, endpoints, content, and more. Similar to

home/foreign agents in IP networks, and HLRs/VLRs in cellular networks, Mobil-

ityFirst’s global name service (GNS) – a logically centralized but geographically

distributed name and location translation – tracks a GUID’s current network loca-

tion(s), i.e., the access network(s) in which the GUID resides, and resolves the network

location(s) of the GUID for a sender’s location query. The GNS also allows a GUID

to be associated with more than one network location, and can return one, some or

all of those multiple locations associated with the GUID for a sender’s location query

on the GUID.
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In order to track a GUID’s network location(s), the location-tracking signaling

between the GNS and a gateway router at the access network (or a mobility man-

agement agent/service for that access network), and between that gateway router1

and a GUID happens as follows. A GUID joining or leaving an access network sends

an attachment/detachment request to the gateway router in that access network.

On the receipt of an attachment/detachment request, a gateway router transmits a

location-update message to the GNS indicating the identity of the GUID that is

attaching/detaching, as well as the identity of network involved. In the case of a

detachment, the gateway router might not explicitly signal a location-update message

to the GNS, depending on whether soft-state timeout of a GUID’s residency informa-

tion may occur. Then, this gateway-to-GNS signaling causes the GNS to update the

GUID’s location.

4.2.2 Group-mobility indirection

Group-mobility indirection is used to track the locations of a group of (mobile)

GUIDs whose mobility among networks may be correlated. It does so by using a

single identifier – the AGUID2 – to represent the group’s default location, updating

the location of the single AGUID (i.e., the access network with which the AGUID is

associated), rather than individually updating the location of all individual GUIDs, as

members of the group move. Intuitively, there can be significant savings in signaling

overhead if the individual GUIDs often move together as a group, and only the location

of the single AGUID needs to be updated. We will consider two forms of mobility:

(i) network-aperiodic group mobility in which a group of users have correlated

1This functionality could be implemented in a gateway router, or in mobility management service
for that access network, as in the HLR/VLR in cellular networks or the home/foreign agent in Mobile
IP. In the following we will use the term ‘’gateway router.”

2The AGUID originates from an “affinity group” that represents group mobility in the context of
the MobilityFirst architecture.
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(but not necessarily identical) mobility but a sequence of associated networks does not

contain periodicity in time, and (ii) network-periodic group mobility in which

there is a sequence of networks associated with a group of users periodically or at the

same times of a day.

Group-mobility indirection is conceptually similar to existing grouping approaches,

such as multicast, in several respects. Group-mobility indirection references a group

of GUIDs using a single group identifier, similar to a multicast IP address. Similar

to IGMP’s multicast router [25], a gateway router in group-mobility indirection is

responsible for transmitting the connectivity of group members to the GNS on behalf

of group members. However, group-mobility indirection has several fundamental

differences from existing grouping.

(i) The purpose of group-mobility indirection is to reduce the location

tracking and name/location translation workload in the control plane, in-

cluding signaling overhead and name/location database updates. The main goal

of many existing grouping approaches in wired (e.g., multicast, geocast) and mo-

bile/wireless networks (e.g., MobiCast [65]) is to reduce communication overhead in

the data plane when a group of users receive the same data; existing approaches have

thus focused on building a communication-efficient data-forwarding tree for commu-

nication among the group of users. In contrast, the motivation for group-mobility

indirection is to reduce the location management and name/location translation

workload in the control plane. As we will see, these savings can be realized in cases

where, without group-mobility indirection, numerous mobile users would generate a

large burst of location-update messages in a short interval of time (and consequently

multiple updates to the GNS) when they move to a new network. Group-mobility

indirection replaces such a burst of location-update messages for individual mobile

users with a single update message, and single GNS update, for the single AGUID.
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(ii) The challenge of group splitting. The major complexities and challenges

of group-mobility indirection occur when group nodes “split” from the group, resulting

in different group members being located in different access networks at a given point

in time. In this case, the GNS might maintain multiple network locations for an

AGUID, or might associate the AGUID with just one network and track the location

of group members not in this single (default) network separately. Additionally, group

members may move from/to networks in a similar, correlated manner, but may not

all do so at exactly the same time.

(iii) Overhead in the data plane. In addition to differences in control-plane

signaling, there are important differences between multicast grouping and group-

mobility indirection in the data plane as well. In a multicast session, a sender’s goal

is to reach all members in the multicast group, so multicast must necessarily and

intentionally track the location of the multiple networks containing group members.

However, associating an AGUID with multiple networks incurs a data-plane cost – a

sender in a unicast session with one of an AGUID’s group members wants to reach

only one group member; delivering this sender’s data to multiple networks associated

with an AGUID results in unneeded transmission of data to networks other than the

one in which the receiving group member is located.

4.3 Group-mobility-indirection design

In this Section, we describe the design for group-mobility indirection in the

MobilityFirst architecture. At a high level, the GNS is designed to operate as a

logically centralized controller that initiates group membership, and then interacts via

gateway router(s) in access networks to manage location information of GUIDs in an

access network. A broad goal is to maintain location information as precisely as in

the case of no group indirection, where each GUID individually signals its location
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information changes and incurs the consequent increase in signaling overhead discussed

above.

4.3.1 AGUID-membership establishment

We assume that AGUID membership – a pairing of an AGUID and its constituent

GUIDs – is specified a priori based on a known shared context or is organized by

cluster analysis using historical GUID network-association data (as we will discuss

in Section 4.6). Once AGUID membership is initialized in the GNS, the GNS must

additionally announce membership to either (i) gateway router(s) or (ii) the individual

GUIDs associated with the AGUID. This enables a gateway router to determine that

a given AGUID is associated with the GUID of a mobile user potentially in the access

network managed by that gateway router.

4.3.2 Name/location resolution semantics at the GNS database

In this subsection, we describe how the GNS database manages an AGUID’s

network location(s), and resolves a query regarding the location(s) of the constituent

GUIDs3.

Given an AGUID and its constituent GUIDs, the GNS database maintains a

mapping of a GUID to its associated AGUID and the locations associated with that

AGUID and selected GUIDs as follows. (i) The GNS separately tracks the AGUID’s

(perhaps multiple) locations. In our work, we assume the GNS tracks exactly one

out of the (perhaps multiple) locations for each AGUID (as we will discuss below); we

call this network the default network. The default network may change over time

as the GUIDs associated with that AGUID move from one network to another. (ii)

The GNS may also maintain the individual location(s) of a GUID. If the GUID makes

a move independent of the AGUID’s default network, or if the GUID is simultaneously

3An AGUID is oblivious to senders, thus a sender which intends to transmit data to the GUID(s)
associated with an AGUID cannot directly make a query on the AGUID’s location(s).
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associated with other network location(s) as well as with the AGUID’s default network,

then the GNS separately keeps the location(s) – different from the default network –

as the GUID’s individual location(s). The GNS keeps the GUID’s individual location

as NULL when the GUID is associated only with the AGUID’s default network. We

will also assume in our discussion below that the GUID explicitly signals that it is

detaching from a network; a soft-state approach in which state times out when not

refreshed could be implemented, but introduces additional complexity [60].

We maintain only a single default network for an AGUID for data-plane efficiency.

If an AGUID were to be associated with multiple networks, then data destined for a

GUID would be delivered to each of these (multiple) networks, resulting in the delivery

of unneeded data to the networks in which the GUID was not resident. If GNS update

signaling and database update costs are of particular concern (with data-plane costs

being of lesser concern) then it might be preferable to associate multiple locations

with an AGUID to minimize signaling and update costs. A precise quantification of

these tradeoffs remains as future research.

The GNS resolves a query regarding the location(s) of the GUID associated with

an AGUID as follows. If the GUID is associated with only one network at a time, the

GNS employs a most-specific-lookup policy (similar in spirit to longest-prefix matching)

in which the GUID’s individual location has priority over its associated AGUID’s

default network. The GNS first looks up the GUID’s individual location(s) and returns

it as the GUID’s location. Otherwise, if the GUID’s individual location is NULL, the

GNS returns the AGUID’s default network as the GUID’s location. On the other

hand, if the GUID is simultaneously associated with more than one locations, the

GNS intelligently returns the GUID’s individual location(s), the AGUID’s default

network, or both.
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4.3.3 Location-tracking signaling

In this subsection, we describe how the GNS updates the default network associated

with an AGUID and the individual location(s) of the GUIDs associated with the

AGUID, as the GUIDs move from one network to another.

Using the algorithms discussed in Section 4.4, the GNS chooses one out of (perhaps

multiple) locations – where the GUIDs are resident or will be likely to be resident – to

be associated with the AGUID’s default network. When an AGUID’s default network

is associated with a new network, the GNS informs both the old default network and

the new default network of this change using ACK/NAK, as we describe below. Note

that the gateway router in the network associated with the AGUID’s default network

reduces location-tracking signaling overhead by not sending location-update message(s)

for each of the invidual GUID(s) associated with the AGUID.

ACK. When an AGUID’s default network changes, the GNS sends an ACK

message to this new default network, indicating that the GUIDs associated with that

AGUID and whose individual location state in the GNS indicates that they are in the

default network are now implicitly recognized as being resident in that new default

network. After the ACK, the gateway router in the new default network need not

transmit location-update message(s) for GUID(s) associated with that AGUID that

then later connect to this default network. Nor does the gateway router need to

signal any information regarding GUIDs already resident in the default network, since

changes in those GUIDs state can be done in the GNS itself. Thus no per-GUID

signaling is needed when an AGUID associates with a new network

NAK. When an AGUID’s default network changes, the GNS sends a NAK message

to the old default network, indicating that it is no longer the default network for that

AGUID. This means that any future arrivals of GUIDs associated with that AGUID

must be explicitly signaled by the gateway router in the old default network.
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Delayed NAK. It is possible to further minimize signaling with the use of delayed

NAKs in the case the GUIDs associated with the same AGUID move from one network

to another closely in time. Consider the scenario in which the AGUID has moved to

another network, but the old default network has yet to be informed of this change

(due to delayed NAK generation). Thinking that it is still the default network, this

old default network will suppress sending any signaling messages for other GUIDs

associated with that AGUID that leave the old network. (Note that those GUIDs will

have their individual locations set when they enter a non-default network. In the case

they enter the default network, their location remains NULL (i.e., that they are in

the default network) with no signaling required).

rLIST. Upon the receipt of a NAK, the gateway router in the old default network

sends the GNS a remaining list (rLIST) message containing a list of the GUID(s)

who are still connected to the old default network after the change of the default

network. The rLIST message thus allows the GNS to mark the old default network as

the individual location(s) of the GUID(s) contained in the rLIST.

4.4 Determining the network associated with an AGUID

In this Section, we propose event-based and periodicity-based algorithms to deter-

mine the network associated with an AGUID’s default network. In both algorithms,

we assume that time is evenly slotted into consecutive time windows and thus the

GNS attempts to decide an AGUID’s default network at each time window.

4.4.1 Event-based algorithm for determining an AGUID’s default net-

work

In the event-based algorithm, at the start of a time window, the GNS elects a

leader among the GUIDs associated with an AGUID. The GNS follows the location of

the leader to determine the AGUID’s default network, when the leader signals a move
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to a new network for the given time window. The event-based algorithm is reactive (as

opposed to the periodicity-based algorithm below), since the default-network update

is triggered by the location-update message indicating that the GUID elected as a

leader moves to a new network. Clearly, the amount of reduced location-tracking

signaling overhead will depend on how a leader is elected. We consider the following

three leader-election strategies for electing a leader among the GUIDs associated with

an AGUID:

First leader. In this strategy, the first GUID that connects to a new network at

a given time window is chosen as a leader.

Random leader. In this strategy, a GUID is randomly chosen as a leader.

Majority leader. This strategy is based on the insight that a GUID that belonged

to the subgroup containing the largest number of GUIDs resident in one network in

the previous time window is more likely to belong to the largest subgroup at the next

time window. Thus, at the start of a time window, one of the GUIDs who belonged

to a largest subgroup in a previous time window is (randomly) chosen as a leader.

4.4.2 Periodicity-based algorithm for determining an AGUID’s default

network

Given a series of historical network-association data for the GUIDs associated with

an AGUID, the periodicity-based algorithm seeks to exploit periodicity observed in

this data to determine the default network. We begin our discussion of this algorithm

with the following definitions:

Definition 4 (Period). Let X i = {X i
t}Tt=1, where X i

t is the network location which

GUIDi is most frequently associated with during time window t. Sequence X i is

periodic if there exists τ ∈ Z such that X i
t+τ = X i

t . Then, the value of τ is a period

of that sequence.
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Definition 5 (Periodic sequence). Given period τ , an AGUID’s periodic sequence

is defined as Z = {Zt}τt=1 where Zt is the network with which the AGUID’s constituent

GUIDs are most associated for all t, (t+ τ), · · · , (t+ bT−t
τ
c · τ) time windows.

The periodicity-based algorithm selects the AGUID’s default network at the start

of a time window according to the identified periodic sequence. The periodicity-based

algorithm is proactive, since the default-network update is performed without explicitly

receiving a location-update message indicating that the GUID connects to a new

network.

4.4.3 Optimal algorithm

Assuming that the GUIDs (associated with an AGUID) movements for next T

time windows are known, the optimal algorithm performs a brute-force search that

identifies a locally optimal sequence of networks associated with the AGUID’s default

network for next T time windows that produces the minimum amount of location-

tracking signaling overhead. Trivially, the optimal algorithm returns an amount of

location-tracking signaling overhead closer to a global optimum as T grows. The

optimal algorithm, while impossible to implement in practice, provides an upper bound

on the reduction in location-tracking signaling overhead for any feasible algorithm.

4.5 Evaluation of Event-based Group Indirection: Synthetic

Model

In this Section, we build a synthetic group-mobility model in which each of the

GUIDs associated with a single AGUID moves as a group or independently in discrete

time. We describe how the overall amount of signaling overhead for the mobile GUIDs

is quantified and then evaluate the performance of our group-mobility approaches by

quantifying signaling overhead reduction using the synthetic group mobility model.
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4.5.1 Synthetic group-mobility model

In our synthetic discrete-time group-mobility model, n GUIDs associated with a

single AGUID split from and rejoin the AGUID at each time window, while moving

among m networks. For simplicity, we assume that a GUID remains online at all

times and is associated with just one network at a time; thus a GUID moving into a

new network may simultaneously incurs two location-update messages: indicating its

connection with a new network and its disconnect from an old network, respectively.

The mobility of GUIDi [i = 1, · · · , n] is modeled using a two-state Markov chain;

the Markov chains of the n GUIDs are independent of each other. In the split

mode state, a GUID moves independent of other GUIDs; in the group mode state, a

GUID moves together with the AGUID. αi is the probability that GUIDi, given it

is in a split mode in a time window, remains in a split mode at the next time

window. βi is the probability that GUIDi, given it is in a group mode in a time

window, remains in a group mode at the next time window. Define α = E[αi], and

β = E[βi]. Then, we define the AGUID’s group coherence by

C =
β

α + β
.

C is the average fraction of GUIDs in a group mode and thus characterizes the degree

of location correlation of the AGUID’s constituent GUIDs on average.

In our model, after the n GUIDs determine their modes, each of the GUIDs in a

split mode and the AGUID (whose mobility will affect the rest of the GUIDs, who

are in a group mode) determine their network locations for the next time window

as follows. First, each of the GUIDs in a split mode and the AGUID separately

decide whether to stay in their current network or move: with probability γ, a GUID

or an AGUID stays in its current network. Alternatively, if a GUID in a split

mode (or the AGUID) moves to a new network, GUID i chooses the next location out

of m networks based on individual-transition matrix S i = [S iab] (or group-transition
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matrix G = [Gab]). Here, element S iab denotes the transition probability that GUID i

moves from network Na to network Nb (subject to
∑

b S iab = 1). Gab is the transition

probability that the GUIDs in a group mode transition together from Na to Nb

(subject to
∑

b Gab = 1). Our model can be easily extended to accommodate multiple

AGUIDs by having multiple group-transition matrices.

4.5.2 Quantifying the amount of signaling overhead
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Given a series of n GUIDs mobility among networks over T time windows, we must

determine the amount of signaling overhead incurred as a result of these moves using

group-mobility indirection. The overall amount of signaling overhead in the case of no

group indirection is solely calculated by counting the total number of location-update

messages incurred whenever the GUIDs move to a new network.

Function 1 indicates how the overall amount of signaling overhead is computed

under group-mobility indirection. First, lines 2-12 count signaling resulting from an

AGUID’s default-network change. In the case of a periodicity-based algorithm (as

shown in lines 2-4), the two ACK/NAK messages are counted as signaling overhead. In

the case of an event-based algorithm (as shown in lines 7-12), the ACK/NAK messages

and a location-update message for the leader’s connection to a new network are counted,

when the leader moves to a new network. At each time window, we must additionally

account for the signaling for each GUID that connects to a network, disconnects from

a network, or stays connected in a network; location-update message(s) and an rLIST

message must also be counted as part of signaling overhead, depending on whether

the GUID is associated with its AGUID’s default network in that time window. Lines

13-17 show the number of location-update messages incurred when the GUID connects

to a network; lines 18-22 show the number of location-update messages incurred when

the GUID disconnects from a network; lines 23-25 count an rLIST message if the

GUIDs remains in its AGUID’s old default network but its AGUID’s default network

changes.

4.5.3 Numerical results

We evaluate and discuss the reduction in signaling overhead using group-mobility

indirection for our event-based algorithms, under different leader-election strategies.

We consider different degrees of group coherence, C, for an AGUID, generating eleven

sets of synthetic traces whose degrees of group coherence are C = 0, 0.1, · · · , 1, as we
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describe below. Our analysis consists of 1000 GUIDs associated with an AGUID, with

20 networks and 10,000 time windows. We generate synthetic traces of GUID and

AGUID mobility as follows:

1) For each degree of group coherence, we arbitrarily assign the values of α and β

that satisfy the given group coherence degree by generating α between 0 and 1 and

then picking β = 1− α. For a given set of α, β values, we then randomly generate a

pair of αi, βi values (associated with each of the i GUIDi, i = 1, · · · , 1000) constrained

to be between 0 and 1 using exponential random variate [38] as follows. Assuming

that αi follows exponential(α), exponential random variate generates αi value using

function − lnU(0,1)
α

, where U(0, 1) is the uniform distribution on the unit interval (0,

1); here, we adopt the acceptance-rejection method [1] that rejects a returned value of

the function if the value is not between 0 and 1 and tries again to generate a value

until the value is between 0 and 1. The value of βi is produced similarly.

2) For each degree of group coherence and for each of the 1000 pairs of αi and βi

values in the Step 1), we generate a series of 10,000 time-window movements of GUIDi

(for all i). Recall that the next state of the Markov chain model for i is determined by

the values of αi and βi. The next network location is determined by matrices S i and

G. Here, we assume that a GUID equally likely moves to one of m− 1 networks (other

than a current network location), and thus define matrices S i and G as follows.

3) We run the above Steps 1) and 2) 100 times.

For each synthetic trace (each associated with a different degree of group coherence)

we use function 1 to calculate the overall amount of signaling overhead under each

of the proposed leader election strategies. Function 1 assumes the best case scenario

in which an ACK is delivered before GUIDs (other than a leader) connect to a new
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default network, and that a NAK is delivered after GUIDs disconnect from an old

default network.
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Figure 4.1: Normalized signaling overhead (γ = 0.5): event-based algorithm for three
leader strategies versus no group indirection

Figure 4.1 shows a box plot with whiskers (maximum, 75th percentile, median,

25th percentile, minimum as lines, and mean as a circle) for 100 independent runs.

The y-axis is the ratio of the amount of signaling overhead when group-mobility

indirection is used (for a given leader election strategy) and the amount of signaling

overhead when group-mobility indirection is not used. Three different degrees of group

coherence are considered: 0.1, 0.5, and 0.9. The first three columns show normalized

signaling overhead using our event-based algorithm with first-leader, random-leader,

and majority-leader strategies, respectively. The last column shows an optimum of

normalized signaling overhead using an optimal algorithm where T = 1. Figure 4.1

shows that the higher the degree of group coherence, the more reduced signaling.

Figure 4.1 also shows that all leader-election strategies for the event-based approach

to group indirection are useful – all normalized signaling overhead values are smaller

than 1. The event-based algorithm with a majority leader, as shown on the third

column, achieves the best performance, with a reduction of signalizing overhead that

is close to the optimal.

We have also investigated an additional group mobility model based on a two-

dimensional grid in which a GUID makes either a dependent or independent (of
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other GUIDs in its current cell) decision to stay in its current network of move. An

independent GUID decides whether to move up, down, left, or right from its current

cell. Dependent group movement follows a gravity model in which the probability to

move up, down, left or right is proportional to the number of group-members that are

strictly in a row above or below, or in a column to the left or right of that group’s

current cell. We observed quantitatively similar results to the above Figure 4.1.

4.6 Evaluation: Clustering and Empirical investigation

In this Section, we use measured traces of actual user mobility to evaluate the

performance of our two group-mobility approaches. Since our periodicity-based algo-

rithm seeks to exploit predictable correlation in user mobility, we begin by describing

our measurement traces, and then investigate the existence of multiple groups and

periodicity in these traces. Then, we cluster a set of GUIDs in the traces into multiple

AGUIDs, and evaluate the performance of our group-mobility approaches by again

(as in the previous Section) quantifying signaling overhead reduction.
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4.6.1 Empirical traces

We used a subset of IMAP mail logs [76] collected from University of Massachusetts

Amherst IMAP servers that support an email retrieval service for campus users, in order

to reconstruct a user’s mobility among networks. The subset contains 3660 UMass-

affiliated users; these users were associated with access networks in 1152 different

autonomous systems (ASes). As in [76], our results characterize a user’s (perhaps

minimally observed only via mail activities) mobility among AS-level networks.

From the IMAP mail logs, we reconstruct a user’s session as follows. Each IMAP

log entry, collected by syslog, consists of three attributes: (i) a timestamp when a

log entry is recorded, (ii) a user’s mail access activity (e.g., connection establishment,

sign-in, and mailbox access), and (iii) a process ID assigned when a successful session

starts and persistently kept until that session ends4. Then, given a series of logs

having the same process ID, we identify a set of (successfully established) associations

between a user and various access networks. The session start time is determined from

the time of an entry in the connection-establishment log, followed by sign-in and an

entry in the authentication log (as in [22]). The time of a last log entry recorded before

another connection-establishment log or before a unilateral server decision to close

an idle connection5 determine that session’s end time. A sign-in log entry recorded

between the connection-establishment log entry and the last log entry identifies the

user and that user’s access network.

Having described our traces, we next investigate the existence of multiple groups

and periodicity in these traces.

Number of potential AGUIDs in the empirical traces. We observed that

approximately 25% of users accessed only one AS; approximately 71% of users accessed

4When a user accesses an IMAP server, a process id is assigned by the user’s device or the IMAP
server [22]. In session reconstruction, we loosely assume that a process id is not reused until a session
associated with the process ID ends.

5An IMAP log entry rarely contains a user’s explicit disconnection from a mail server.
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Figure 4.3: User frequency over pairs of first and second most frequently associated
networks.

more than one ASes and produced more than 70% of their sessions in their “top

two” ASes. We also observed that all users produced approximately 90% of their

sessions from ten ASes out of the 1152 ASes observed in the traces: AS1249 (Five

colleges network including UMass Amherst), AS7015 (Comcast), AS701 (Verizon),

AS20115 (Charter communication), AS7922 (Comcast), AS22394 (Verizon), AS20057

(AT&T), AS11351 (Time Warner Cable), AS3651 (Sprint), and AS7018 (AT&T). Thus,

the empirical traces do potentially contain multiple groups of users with correlated

network associations, some of which consist of users mostly associated with a single

AS, suggesting that their default network would rarely change over time. Additional

groups might consist of users most frequently associated with two particular ASes,

with their default networks being (periodically) associated with either of the two ASes.

Figure 4.3 plots the asymmetric heatmap of the number of users over each pair of the

ten most popular ASes, and shows that 491 users, for instance, were most frequently

associated with AS7015 (first) and AS1249 (second). Thus a potential AGUID might

be for users transitioning between networks AS7015 and AS1249.

Periodicity in the empirical traces. Before assessing the daily and weekly

periodicity of network associations in the traces, we characterize the networks with
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which user i’s is associated in each time window as follows. Let T be the total number

of time windows (e.g., 1 hour) in a measurement period of the traces, and recall that

there are m networks. Let Ai = [Aitj] be a T ×m matrix whose element Aitj is the

network association probability that user i connects to network j in time window t,

subject to
∑

j Aitj = 1. We also define X i = {X i
t}Tt=1, where X i

t = arg maxj
(
Aitj
)
;

thus X i denotes a sequence of user i’s most associated network during each time

window t. Given the traces, we calculate Aitj as the number of times that user i

connects to network Nj at t, divided by the total number of times that user i connects

to any network(s) at t.

With a set of nominal data X = (X1, X2, · · · , X3660), we investigate the periodicity

of an individual user’s network associations using the autocorrelation function (ACF)

[71]. The ACF measures the degree of similarity among time-series data at varying

time lags, and detects periodicity in the data and its period. Consider that each

sequence X i consists of one or more network locations. For each of X i’s constituent

network(s), we convert X i to a boolean series by taking the network as 1 and the

rest of networks as 0s. Then we derive the ACF of the boolean series and identify

the period of the series associated with that network. Figure 4.2(a) plots the average

values of autocorrelations of all boolean series over all users as a function of time lags.

Figure 4.2(a) shows peaks at a time lag of every 24 hours, and thus identifies 24 hours

or multiples of 24 hours as periods in users network associations.

Variation among the networks to which an individual user connects

during each hour of the week. We use the Shannon entropy to characterize the

variability of the networks with which user i is associated at each hour, h, of the week:

H i
h = −

∑
j

(
Aihj · logAihj

)
.

The lower the entropy value, the lower the variability of the data. Figure 4.2(b) plots

the average entropy values for each hour of the week over all users. For all days, the
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hours roughly from 11pm to 7am have the lowest entropy (and thus exhibit more

similarity in these time periods); this is when most users are at home. The hours

roughly from 9am to 6pm have the highest entropy; this is when most users are at work

thus are more likely associated with diverse networks. Also, weekend days show lower

entropy values than week days. In summary, Figure 4.2(b) suggests that the network

with which a user is associated from 11pm-to-7am is likely to be more predictable

than the associated network from 9am-to-6pm.

Similarity in an individual user’s networks during different days of the

week. The correlation [3] measures the degree of similarity between two variables; the

reflective correlation is a variant of the correlation in which the data are not centered

around their mean values. The sample reflective correlation of user i’s networks

between two different days of the week d1, d2 is defined by:

rrid1d2 =

∑
j

(
Aid1j · A

i
d2j

)√∑
j(Aid1j)2 ·

∑
j(Aid2j)2

.

The closer the correlation is 1, the stronger the correlation between the variables.

Figure 4.2(c) plots the average correlation values between different days of the week

over all users, and shows that the networks associated with users during weekend

days are slightly different from those during weekdays. Thus, a periodic sequence of

networks associated with an AGUID has a natural “one week” (i.e., 168 hours) period

(see Definition 1).

4.6.2 User clustering for AGUID membership identification

We bisect the traces set into a training set (5 weeks of logs from Jan 21st to Feb

24th) and a validation set (4 weeks of logs from Feb 25th to Mar 24th). The training

set was used to cluster 3660 users into multiple AGUIDs; the validation set was used

to evaluate the performance (reduction in signaling overhead) of our two approaches

using the resultant AGUIDs.
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We use the training set to perform user clustering as follows. We characterize

user i by a one-week periodic sequence that consists of a series of that user’s most

frequently associated network for each hour of the week, denoted by X̃ i = {X̃ i
h}168h=1,

where X̃ i
h = arg maxj(Aihj)6. Given a set of nominal data X̃ = (X̃1, · · · , X̃3660), we

apply clustering algorithms to partition the 3660 users into K clusters based on the

similarity of their one-week sequences. We considered Expectation Maximization (EM)

and K-means clustering algorithms, and adopted WEKA’s nominal data clustering

implementation [75]. EM determines the probabilistic description (in terms of the

frequency counts for each associated network) of each cluster as the set of users that

maximizes the log-likelihood of the data. K-means describes each cluster as the set of

users that minimizes the distances from the centroids of the cluster.
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Figure 4.4: Best number of clusters.

When, then, is the best number of clusters? Figure 4.4(a) plots the average

log-likelihood values of 10-fold cross-validation data in EM clustering as a function

of the number of clusters. Figure 4.4(b) plots the sum-of-squared errors in K-means

clustering (with K-means++ [11] that carefully chooses the initial values of K-means

clustering) as a function of the number of clusters. Both figures show that the curve

quickly decreases up to five clusters and flattens out, suggesting five clusters be used.

6If user i gets offline at a given hour of the week h – no IMAP log, then Xi
h is set a last network

which user i is associated with.
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EM K-means
# of users networks # of users networks

[1] 1570 AS7015 (87%), 1510 AS1249 (100%)
AS1249 (13%)

[2] 931 AS1249 (100%) 916 AS7015 (100%)

[3] 651 AS20115 (81%), 613 AS7015 (73%),
AS1249 (19%) AS1249 (27%)

[4] 317 AS701 (93%), 365 AS701 (95%),
AS1249 (7%) AS1249 (5%)

[5] 191 AS7922 (88%), 238 AS20115 (96%)
AS1249 (12%) AS1249 (4%)

Table 4.1: Five clusters

Table 4.1 shows the resultant five clusters using EM and K-means clustering. The

first column shows cluster IDs. The next two columns show EM clustering results.

The last two columns show K-means clustering results. One of the two columns shows

the number of users belonging to each cluster, and the other shows the network(s)

that constitute a one-week periodic sequence of each cluster with the percent of such

network’s occupancy in that sequence.

As a baseline, while considering that 3660 users spent their most of time in one

or two ASes, it is also interesting to manually partitioning a set of users on the

basis of the network with which they are most frequently associated. This manual

clustering results in 161 clusters as follows. Seven clusters consist of more than 100

users, and their single most frequently-associated ASes. The AS and number of users

in such a clustering are AS1249 (1184 users), AS7015 (1150 users), AS701 (266 users),

AS20115(185 users), AS20057 (145 users), AS22394 (127 users), and AS7922 (119

users). 90 clusters contain only one user. The remaining clusters contain between 2

and 100 users.

4.6.3 Performance Results: reducing the normalized signaling overhead

Let us now quantitatively compare the performance of our event-based and

periodicity-based algorithms under three different approaches for determining the

117



first random majority optimalperiodicity most
N

o
rm

a
liz

e
d

 s
ig

n
a

lin
g

o
v
e

rh
e

a
d

0

0.2

0.4

0.6

0.8

1

UMass cluster 5 clusters (K-means) 161 clusters

Figure 4.5: Aggregate normalized signaling overhead over all clusters: diverse algo-
rithms for determining an AGUID’s default network versus no group indirection

members of the AGUID: (i) K-means clustering (with K=5), as discussed above; we

present K-means results only since it shows better performance (a decreased amount of

signaling) than that achieved by EM, (ii) manual clustering based on most-frequently-

associated network, which resulted in 161 custers, as discussed above, (iii) a single

cluster in which all 3660 users are associated with one AGUID. For each of clustering

results, Figure 4.5 plots a box plot with whiskers on one or 100 runs (as explained

below) of aggregate normalized signaling overhead over all clusters. We calculated

aggregate normalized signaling overhead using function 1 (as in Section 4.5) for each

algorithm.

The first three columns show the normalized signaling overhead for the event-

based first-leader, random-leader, and majority-leader strategies, respectively. The

fourth column shows an optimal algorithm (where T = 1). The fifth column shows

a periodicity-based algorithm in which each cluster’s default network is periodically

updated in accordance with its one-week periodic sequence, derived from the training

set using Definition 2. The last column considers the case where each cluster’s default

network is not changed in time; we study this case to determine the marginal utility of

adjustively changing each cluster’s default network over time, as in the results in the

fifth column. We evaluated normalized signaling overhead of the given traces only once
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in an event-based algorithm with a first leader, an optimal algorithm, a periodicity-

based algorithm, and the last column. However, we evaluated applying random-leader

and majority-leader strategies 100 times each, whose normalized signaling overhead

can change every run.

Figure 4.5 shows that our periodicity-based algorithm (Column 5) yields the most

significant reduction in signaling overhead among all of our algorithms, achieving

performance close to the optimal. Interestingly, the approach of adaptively changing

the predicted default network on a hourly basis for the group provides only a small

gain over the case where the cluster’s default network is not changed in time. In the

course of evaluating an individual cluster’s performance, K-means cluster [3] shows

non-negligible occupancy 27% of its second most frequently associated network (as

shown Table 4.1). Using the cluster [3]’s one-week periodic sequence (associating

AS1249 for weekdays 9am-to-6pm and AS7015 for the remained hours of weekdays and

all weekend days), a periodicity-based algorithm achieves approximately 33% reduced

normalized signaling, over fixing its first most frequently associated network AS7015.
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Figure 4.6: Relation of the number of AGUIDs (resulted from manual clustering) to
normalized signaling overhead.

As expected, comparing the cases of 1, 5 and 161 clusters, Figure 4.5 shows that

having more clusters results in an increased reduction in signaling overhead (i.e.,

improved performance). Figure 4.6 plots the aggregate normalized signaling overhead

in a periodicity-based algorithm over all clusters when only x out of the 161 clusters
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(in increasing order of the number of their constituent GUIDs) are used; the red solid

line denotes aggregate normalized signaling of K-means with K=5 using a periodicity-

based algorithm. For instance, star-shaped black dot on x = 6 denotes aggregate

signaling when the users associated with six largest clusters (listed above) are kept

track of by each cluster but the rest of users not associated with these six clusters

are individually tracked. Figure 4.6 shows that six manually partitioned clusters,

consisting of more than 100 users, achieve the reduction performance close to K-means

five clusters.

4.7 Related Work

Group mobility has been the subject of a number of past research studies. In

mobile ad hoc networks and delay tolerant networks, group mobility – a group of

mobile objects that are typically physically proximate – has been theoretically modeled

(e.g., [13,51]) and also empirically investigated using real-world traces (e.g., [36]). Data

mining researchers [43] have also performed trajectory clustering to detect a cluster

of objects moving physically close to each other for a long time interval. However,

from a network-architecture and -protocol perspective, group mobility mechanisms

and approaches (as defined in Section 4.1) have been less well-explored.

Several networking research efforts have employed hierarchy techniques to efficiently

handle a large burst of location-update signaling overhead resulted from the similarity

of a logically static group of users’ movement patterns. The IETF Network Mobility

(NEMO) Working Group [23] developed a protocol that defines a group of mobile

users as a logical subnet where a mobile gateway router – moving together with the

group – is only directly connected to the Internet and takes responsible for updating

a new location of the group on behalf of the users associated with the group, as the

group moves. On the other hand, [2, 16] clustered a set of BSs or APs in a wireless

infrastructure as a logical subnet based on the similarity of a group of users’ BS or
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AP association patterns, so that user mobility within such subnet does not generate

location-update overhead to inform a home agent of a new location. However, such

static hierarchical solutions require a mobile gateway router installed for each group,

or are only useful when the history of users who move among only a few APs or BSs

is available.

4.8 Conclusion

In this Chapter, we introduced the concept of group-mobility indirection and

proposed several algorithms to determine the network associated with a group’s

location. We evaluated the reduction in the location-tracking (signaling) overhead

for these algorithms via a synthetic group-mobility model and via empirical traces

of approximately 4000 mobile users. We found that an event-based algorithm that

elects one group member as a leader and reactively associates the group location with

this leader’s location significantly reduces location-tracking overhead, as long as a

group of users move together frequently enough. For the case that the sequence of

networks associated with a group of users has periodicity, we showed that an algorithm

that periodically updates the group location with a predicted network location at a

predicted time reduces location-tracking overhead more than the event-based algorithm.

We also showed the gain in reducing the location-tracking signaling as the number of

groups increases.
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CHAPTER 5

CONCLUSION

5.1 Thesis Summary

In this thesis, we have considered a number of forensics and mobility management

challenges that arise in wireless/mobile network environments, using diverse research

techniques such as measurement studies, modeling, machine learning algorithms,

architecture and protocol designs, and algorithms. The first half of this thesis addressed

two network forensic challenges that arise due to the broadcast nature of wireless

communications. In Chapter 1, we proposed a forwarding misbehavior attack detection

mechanism and analytically evaluated our mechanism’s detection accuracy in diverse

threat scenarios, in the case of lossy links. In Chapter 2, we presented a legal method

to remotely disambiguate a sender’s network access type (wired versus wireless) via

supervised learning classification and discussed classification performance using traffic

generated in controlled measurement environments. The second half of this thesis

delved into a clean-state approach to designing a future Internet architecture that

considers mobility as a first-order property. In Chapter 3, we presented and discussed

a measurement and modeling study of use-transitioning among points of attachment to

today’s Internet; this work provides insights and implications regarding control-plane

workloads for existing proposed and future mobility management architectures. In

the last Chapter, we designed an indirection technique to efficiently handle a group of

users moving together, and discussed the reduction in control-plane workloads using

synthetic traces (generated by our generative group mobility model) and empirical

traces.
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5.2 Future Work

The research in this thesis can be extended in several directions:

• In Chapter 1, our witness-based detection scheme, which was explored in a

static wireless environment, can be extended by considering a scenario in which

nodes on a data path and witness nodes are mobile. It would be interesting to

investigate the impact of node mobility on the detection accuracy of the scheme

as well as other possible threats on data forwarding in such mobile scenario.

• In Chapter 2, the problem of locating a user inside a building using remotely

measured traces in our forensic scenario by distinguishing wired access from

wireless access can be extended to consider diverse properties of wireless links,

such as a distance between an AP and a user, physical obstructions, and the

level of wireless network interference.

• In Chapter 3, the problem of a (multi-homed) user’s transitioning among access

networks, which was considered from the perspective of the control plane, can

be extended to investigate the impact of such user mobility on the data plane,

such as session continuity across devices or access networks.

• In Chapter 4, the analysis of group-mobility indirection can be extended to

consider the gain of latency reduction between the GNS and a user, and among

the distributed GNSes for user-location information synchronization, compared

with individually updating user-location information, as a group of users move.

It would also be interesting to investigate the performance impact of the level of

network granularity (e.g., APs, BSes) in establishing a group.

More broadly, the dramatic growth of mobile users makes it more important

to consider mobility scenarios in network and security research problems. Such an

emphasis on mobility requires the measurement and analysis of mobility (whether
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virtual or physical) on network architectures, system performance, and network

planning/dimensioning in the control and data plane. Statistical analytics of network

data and patterns in mobile environments will provide new opportunities to improve

network algorithms and protocols to work more robustly and intelligently in diversely

changing wireless and mobile network environments.
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