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ABSTRACT

ALGORITHMS FOR FIRST-ORDER SPARSE
REINFORCEMENT LEARNING

December 11, 2015

BO LIU

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

This thesis presents a general framework for first-order temporal difference learning

algorithms with an in-depth theoretical analysis.

The main contribution of the thesis is the development and design of a family of first-

order regularized temporal-difference (TD) algorithms using stochastic approximation

and stochastic optimization. To scale up TD algorithms to large-scale problems, we

use first-order optimization to explore regularized TD methods using linear value

function approximation. Previous regularized TD methods often use matrix inver-

sion, which requires cubic time and quadratic memory complexity. We propose two

algorithms, sparse-Q and RO-TD, for on-policy and off-policy learning, respectively.

These two algorithms exhibit linear computational complexity per-step, and their

vi



asymptotic convergence guarantee and error bound analysis are given using stochas-

tic optimization and stochastic approximation.

The second major contribution of the thesis is the establishment of a unified general

framework for stochastic-gradient-based temporal-difference learning algorithms that

use proximal gradient methods. The primal-dual saddle-point formulation is intro-

duced, and state-of-the-art stochastic gradient solvers, such as mirror descent and

extragradient are used to design several novel RL algorithms. Theoretical analysis is

given, including regularization, acceleration analysis and finite-sample analysis, along

with detailed empirical experiments to demonstrate the effectiveness of the proposed

algorithms.

vii



CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Summary of the Remaining Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Basics of MDP and RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Mathematical Formulations of Policy Evaluation Algorithms . . . . . 9

2.1.2.1 Stochastic Variational Inequality Formulation of
TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

viii



2.1.2.2 Matrix Inversion Formulation of LSTD . . . . . . . . . . . . . . . 14

2.1.2.3 Gradient-Motivated Algorithms . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Biased Sampling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 First-Order Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Proximal Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1.1 Stochastic Composite Optimization Formulation . . . . . . . 19

2.2.1.2 Proximal Gradient Method and Mirror Descent . . . . . . . 20

2.2.2 Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2.1 Proximal Splitting: Coupled Objective Functions . . . . . . 23

2.2.2.2 Operator Splitting: Coupled Constraints . . . . . . . . . . . . . 25

2.3 Primal-Dual Splitting: Compound Operator Splitting . . . . . . . . . . . . . . . . . 26

2.3.1 Primal-Dual Saddle-Point Formulation . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1.1 Basics of Saddle-Point Problems . . . . . . . . . . . . . . . . . . . . 26

2.3.1.2 Primal-Dual Splitting and Convex Conjugate
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1.3 Dual-norm Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Primal-Dual Algorithm: An Overview . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2.1 Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2.2 Extragradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2.3 Mirror-Prox Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



3. SPARSE Q-LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 TD Learning with Mirror Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Sparse Temporal Difference Learning with Mirror Descent . . . . . . 40

3.2.3 Mirror Descent TD with AdaGrad . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Choice of Distance-Generating Function . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4.1 Vanilla Gradient and Regular TD Algorithm . . . . . . . . . . 44

3.2.4.2 Multiplicative Gradient and p-norm TD
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4.3 Exponentiated Gradient and Exponentiated TD
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Empirical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Discrete MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Continuous MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. REGULARIZED OFF-POLICY TD LEARNING . . . . . . . . . . . . . . . . . 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Off-Policy Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Convex-concave Saddle-point First-order Algorithms . . . . . . . . . . 57

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



4.2.1 Linear Inverse Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Un-squared Loss Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Squared Loss Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 RO-TD Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 RO-GQ(λ) Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 MSPBE Minimization and Off-Policy Convergence . . . . . . . . . . . . . 68

4.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3 High-dimensional Under-actuated Systems . . . . . . . . . . . . . . . . . . . . 71

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. FINITE-SAMPLE ANALYSIS OF PROXIMAL GRADIENT
TD ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Gradient-based TD Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Saddle-point Formulation Of GTD Algorithms . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Finite-sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 The Revised GTD Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.3 Finite-Sample Performance Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



5.4.3.1 On-Policy Performance Bound . . . . . . . . . . . . . . . . . . . . . . 92

5.4.3.2 Off-Policy Performance Bound . . . . . . . . . . . . . . . . . . . . . . 94

5.4.4 Accelerated Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Acceleration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Learning With Biased ρt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.3 Finite-sample Analysis Of Online Learning . . . . . . . . . . . . . . . . . . . 99

5.5.4 Discussion Of TDC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Control Learning Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.1 Extension to Eligibility Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.2 Greedy-GQ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.1 Baird Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.2 50-State Chain Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7.3 Energy Management Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.4 Bicycle Balancing and Riding Task . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7.5 Comparison with Other First-Order Policy Evaluation
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xii



APPENDIX: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xiii



LIST OF TABLES

Table Page

2.1 Mathematical Foundations of Policy Evaluation Algorithms . . . . . . . . . . . 16

3.1 A Comparison of Different Mirror Descent Formulations . . . . . . . . . . . . . . 46

3.2 Results on Triple-Link Inverted Pendulum Task . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Comparison of TD, LARS-TD, RO-TD, l2 LSTD, TDC and TD . . . . . . . 71

4.2 Comparison of RO-GQ(λ), GQ(λ), and LARS-TD on Triple-Link
Inverted Pendulum Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Steady State Performance Comparison of Battery Management
Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Steady State Performance Comparison of Bicycle Domain . . . . . . . . . . . . 107

xiv



LIST OF FIGURES

Figure Page

1.1 Contribution of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The mirror descent method. This figure is adapted from Bubeck
[2014]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 The extragradient method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 The Mirror-Prox method. This figure is adapted from Bubeck
[2014]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Mirror-descent Q-learning converges significantly faster than
LARS-TD on a “two-room” grid world MDP for γ = 0.9 (top left)
and γ = 0.8 (top right). The y-axis measures the l2 (red curve)
and l∞ (blue curve) norm difference between successive weights
during policy iteration. Bottom: running times for LARS-TD
(blue solid) and mirror-descent Q (red dashed). Regularization
ρ = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Top figure: convergence of mirror-descent Q-learning with a fixed
p-norm link function. Bottom figure: decaying p-norm link
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Top: Convergence of AdaGrad Mirror-descent Q-learning on
two-room gridworld domain. Bottom: Approximated value
function, using 50 proto-value function bases . . . . . . . . . . . . . . . . . . . . . 53

xv



3.4 Top: Q-learning; Bottom: mirror-descent Q-learning with p-norm link
function, both with 25 fixed Fourier bases [Konidaris et al., 2011]
for the mountain car task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Mirror-descent Q-learning on the Acrobot task using automatically
generated diffusion wavelet bases averaged over 5 trials. . . . . . . . . . . . 55

4.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Illustrative examples of the convergence of RO-TD using the Star and
Random-walk MDPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Off-Policy Convergence Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Chain Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Energy Management Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Energy Management Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Summary of Comparisons between TD and GTD algorithm
family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Error Bound and Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvi



CHAPTER 1

INTRODUCTION

A fundamental challenge in artificial intelligence (AI) is to develop a computational

framework for autonomous sequential decision-making through interactions with com-

plex stochastic environments. One of the most widely studied frameworks for au-

tonomous sequential decision-making is reinforcement learning (RL)[Sutton and Barto,

1998] that maximizes long-term reward in which an agent learns a policy which maps

states to actions. RL models the interaction between the agent and an environment

as a Markov Decision Process (MDP)[Puterman, 1994], and RL algorithms can be

viewed as sample-based variants of classical methods for solving MDPs, such as pol-

icy iteration and value iteration. Temporal difference (TD) learning methods, which

are widely used in solving RL problems [Sutton and Barto, 1998], have the ability

to learn incrementally from samples of state transitions and rewards with complexity

linear in the number of samples and stare space representation, without requiring a

model.

To ensure the learning algorithms tractable, a reasonable computational complexity

is desired. This is especially important in domains whose state variables have many

many values, or that are high-dimensional, that is, that have many state variables. An

algorithm should have a reasonable computational complexity that scales gracefully

1



with the number of dimensions of real-world problems. With the help of modern

stochastic optimization theories and tools, all the algorithms in the thesis have linear

computational complexity with respect to both memory and the number of samples.

The major contribution of this thesis is a principled framework for finite-sample anal-

ysis of a new family of proximal gradient TD algorithms with linear (in both memory

and time) computational complexity per-step. To the best of our knowledge, this

thesis gives the first finite-sample analysis of linear TD algorithms. The thesis also

explores a unified framework for designing stochastic gradient-based TD algorithms

along with a detailed theoretical analysis of both asymptotic convergence and con-

vergence rate analysis.

Regularization is known to play an important role in scaling up machine learning al-

gorithms [Hastie et al., 2001]. Motivated by this, we explore regularization, especially

`1 sparsification of RL algorithms. Incorporating `1 regularization in RL may help

enhance model simplicity and generalization capability which will further help in-

duce robust representations. This dissertation reports our design of a novel family of

algorithms with the aforementioned properties, along with rigorous theoretical anal-

ysis including error-bound analysis and asymptotic convergence guarantees. We also

evaluate the performance of the developed algorithms on various benchmark testbeds.

1.1 Related Work

First-order algorithms refer to algorithms that only make use of first-order informa-

tion of the objective function, including the value of the objective function, and the

gradient/subgradient of the objective function. It also refers to algorithms with linear
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computational complexity per step with respect to the number of samples and the

number of features of the problem. In this thesis, the term “first-order” refers to both:

the algorithms only make use of the gradient/subgradient information, and also have

linear computational complexity with respect to the sample size and the feature size.

TD algorithms form a widely-used class of first-order policy evaluation algorithms for

RL problems. TD learning uses bootstrapping, i.e., the estimation of the value of the

current state depends on the estimation of the value of the next state. Although TD

converges when samples are drawn “on-policy” by sampling from the Markov chain

underlying a policy in an MDP, it can be shown to be divergent when samples are

drawn “off-policy.” Off-policy methods are more applicable since they can be used

to learn while executing an exploratory policy, learn from demonstrations, and learn

multiple tasks in parallel [Degris et al., 2012]. Sutton et al. [Sutton et al., 2008, 2009]

introduced off-policy convergent algorithms, whose computation time per-step scales

linearly with the number of samples and the number of features.

Regularizing RL algorithms lead to more robust methods that can scale up to large

problems with many potentially irrelevant features. Regularized Policy Iteration

[Farahmand et al., 2008] is an example of `2-regularized approaches in kernelized

reinforcement learning. Kolter and Ng [2009] introduced the LARS-TD approach, by

combining `1 regularization using Least Angle Regression (LARS) [Efron et al., 2004]

with the LSTD framework. Another approach was introduced in [Johns et al., 2010],

termed LCP-TD, based on the Linear Complementary Problem (LCP) formulation,

a variational inequality (VI) approach. LCP-TD uses “warm-starts”, which helps to

significantly reduce the burden of `1 regularization. A theoretical analysis of `1 reg-

ularization was given in [Ghavamzadeh et al., 2011], including error bound analysis
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with finite samples in the on-policy setting. Another approach [Geist et al., 2012] in-

tegrates the Dantzig Selector [Candes and Tao, 2007] with LSTD, and thus overcomes

some of the drawbacks of LARS-TD. An approximate linear programming approach

for finding `1 regularized solutions of the Bellman equation was presented in [Petrik et

al., 2010]. All of these approaches require per-step complexity approximately cubic in

the number of (active) features, and thus only work well for moderate-sized problems.

1.2 Thesis Contributions

The major contribution of this thesis is a new framework for first-order RL algorithms

leveraged by the advances in first-order stochastic optimization.

• We propose a framework for designing first-order RL algorithms with stochastic

optimization. One long-standing problem with current first-order RL algorithms

is that very few first-order TD algorithms are true stochastic gradient methods

with respect to an objective function. Barnard [1993] proved that the TD

learning is not a true stochastic gradient method by showing that the TD update

cannot be derived as the gradient of any function [Barnard, 1993]; Although

the GTD family of algorithms [Maei, 2011] are derived from the gradient of an

objective function such as MSPBE and NEU, they have not been proven to be

true stochastic gradient methods in the sense

that the expected weight update direction can be different from the direction

descending the gradient of the objective function for which they were designed

[Szepesvári, 2010]. Residual gradient (RG) [Baird, 1995] method, which min-

imizes the mean-square TD error, might be the only gradient-based TD algo-
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rithm thus far. However, both empirical results [Dann et al., 2014] and theo-

retical analysis [Sutton et al., 2009] show that the solution of the RG method

is inferior to other solutions. Therefore, there is a large gap between stochastic

optimization and first-order RL algorithms, which makes the complexity anal-

ysis, incremental regularization and convergence rate acceleration difficult for

first-order RL algorithms.

In this thesis, our goal is to formulate RL algorithms using a stochastic op-

timization framework. We introduce convex-concave saddle-point formulation

into first-order RL and present a novel framework for regularized off-policy RL

algorithms. More specifically, we use the saddle-point representation to design

regularized RL algorithms, and we propose the first off-policy convergent TD al-

gorithm with linear computational complexity. The merit of this work is that it

provides a general primal-dual framework that allows a variety of regularization

schemes (not limited to `1 sparsification) with provable results on convergence

rate and error bound.

• We introduce several stochastic optimization tools to help accelerate first-order

RL algorithms and help achieve (near)-optimal convergence rate. Such opti-

mization tools include mirror descent and extragradient acceleration. Experi-

mental results show that these tools are powerful for RL algorithms in reducing

variance, accelerating convergence rate and increasing the robustness of the

algorithms.

The contributions of the thesis are illustrated in Figure 1.1.
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Figure 1.1. Contribution of The Thesis

1.3 Summary of the Remaining Chapters

In Chapter 2, we provide background knowledge of RL and stochastic optimization.

In Chapter 3, we propose a dual space sparse TD algorithm and the control learning

extension, SparseQ. In Chapter 4, we introduce the saddle-point framework into RL

and propose the RO-TD algorithm. In Chapter 5, we present finite-sample analysis of

TD learning with linear computational complexity (per-step), and propose accelerated

algorithms based on the primal-dual saddle-point formulation.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the basics of RL, including the Markov decision process

(MDP) model, and value function approximation. For stochastic optimization, we

first introduce two key ingredients, the proximal point method and primal-dual op-

erator splitting, and then some algorithms, such as mirror descent and extragradient

methods.

2.1 Reinforcement Learning

2.1.1 Basics of MDP and RL

RL [Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998] is a class of algorithms

for finding good approximations to a class of learning problems in which an agent

interacts with an unfamiliar, dynamic and stochastic environment with the goal of

optimizing some measure of its long-term performance. This interaction is conven-

tionally modeled as a Markov decision process (MDP). A MDP is defined as the tuple

(S,A, P, R, γ), where S and A are finite sets of states and actions, the transition ker-

nel P (s, a, s′) : S × A × S → [0, 1] specifies the probability of transition from state

s ∈ S to state s′ ∈ S by taking action a ∈ A, R(s, a) : S × A → R is the reward

function bounded by Rmax, and 0 ≤ γ < 1 is a discount factor. A stationary policy
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π : S ×A → [0, 1] is a mapping from states to actions. The main objective of an RL

algorithm is to find an good approximation to the optimal policy. In order to achieve

this goal, a key step in many algorithms is to calculate the value function of a given

policy π, i.e., V π : S → R, a process known as policy evaluation. It is known that V π

is the unique fixed-point of the Bellman operator T π, i.e.,

V π = T πV π = Rπ + γP πV π, (2.1)

where Rπ and P π are the reward function and transition kernel of the Markov chain

induced by policy π. In Eq. (2.1), we may imagine V π as an |S|-dimensional vector

and write everything in vector/matrix form. In the following, to simplify the notation,

we often drop the dependence of T π, V π, Rπ, and P π on π.

Let πb denote the behavior policy that generates the data, and let π denote the

target policy that we want to evaluate They are the same in the on-policy setting

and different in the off-policy setting. For each state-action pair (si, ai), such that

πb(ai|si) > 0, we define the importance-weighting factor ρi = π(ai|si)/πb(ai|si) with

ρmax ≥ 0 being its maximum value over the state-action pairs.

When S is too large to use the tabular representation method, we often use a lin-

ear approximation architecture for V π with parameters θ ∈ Rd and L-bounded

basis functions {ϕi}di=1, i.e., ϕi : S → R and maxi ||ϕi||∞ ≤ L. We denote by

φ(·) =
(
ϕ1(·), . . . , ϕd(·)

)> the feature vector and by F the linear function space

spanned by the basis functions {ϕi}di=1, i.e., F =
{
fθ | θ ∈ Rd and fθ(·) = φ(·)>θ

}
.

We may write the approximation of V in F in the vector form as v̂ = Φθ, where

Φ is the |S| × d feature matrix. When only n training samples of the form D =
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{(
si, ai, ri = r(si, ai), s

′
i

)}n
i=1
, si ∼ ξ, ai ∼ πb(·|si), s′i ∼ P (·|si, ai), are available (ξ is

a distribution over the state space S), we may write the empirical Bellman operator

T̂ for a function in F as

T̂ (Φ̂θ) = R̂ + γΦ̂′θ, (2.2)

where Φ̂ (respectively Φ̂′) is the empirical feature matrix of size n×d, whose i-th row

is the feature vector φ(si)
> (respectively φ(s′i)

>), and R̂ ∈ Rn is the reward vector,

whose i-th element is ri. We denote by δi(θ) = ri + γφ
′>
i θ − φ>i θ, the TD error for

the i-th sample (si, ri, s
′
i) and define ∆φi = φi − γφ′i. Finally, we define the matrices

A and C, and the vector b as

A := E
[
φi(∆φi)

>], b := E [φiri] , C := E[φiφ
>
i ], (2.3)

where the expectations are with respect to ξ and P πb . We also denote by Ξ, the

diagonal matrix whose elements are ξ(s), and ξmax := maxsξ(s). For each sample i

in the training set D, we can calculate unbiased estimates of A, b, and C as follows:

Âi := φi∆φ
>
i , b̂i := riφi, Ĉi := φiφ

>
i . (2.4)

2.1.2 Mathematical Formulations of Policy Evaluation Algorithms

In this section, we give a comprehensive overview of the mathematical formulations of

existing policy evaluation algorithms. It should be mentioned that in contrast to the

empirical comparison of existing surveys such as Dann et al. [2014], this section does

not provide any empirical comparison but tries to set up the mathematical framework

of existing policy evaluation algorithms.
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2.1.2.1 Stochastic Variational Inequality Formulation of TD

The first type of policy evaluation algorithm is the stochastic variational inequality

family of algorithms. A common characteristic of this family of algorithms is that

at each step, the weights are updated in a recursive way. A lot of policy evaluation

methods can be categorized as recursive least-squares methods [Scherrer and Geist,

2012], such as Fixed-point Kalman Filter (FPKF) [Choi and Van Roy, 2006], Least-

squares Policy Evaluation (LSPE) [Bertsekas and Ioffe, 1996], etc. To illustrate this

framework, let us first review TD learning. Here, we give two perspectives of the TD

algorithm The first perspective interprets TD algorithm as a stochastic approximation

approach, i.e, the stochastic approximation of the solution of a linear inverse problem

Aθ = b, where A, b are defined in Eq. (2.3).

The TD algorithm, in essence, solves the linear equation Aθ = b using a stochastic

approximation approach as

θ0 = 0, (2.5)

θt+1 = θt+1 + αt(b̂t − Âtθt), (2.6)

Ât, b̂t are the stochastic unbiased estimation of A, b respectively, which are defined

in Eq. (2.4). Although Ât is a square matrix, and the computation looks like O(n2)

per-step, since Ât is a rank-1 matrix, using matrix computation association rule, the

computational cost is linear per-step, which is computationally attractive.

This is a very straightforward perspective, and is widely recognized. However, an

obvious drawback of this perspective is that this formulation does not easily allow

regularization. Furthermore, it does not reveal the intrinsic relation between TD al-
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gorithm and other recursive least-squares based algorithms, such as FPKF and LSPE.

Hence, we shed another perspective, which formulates TD algorithm as a stochastic

variational inequality (SVI) problem, which is motivated by Bertsekas [2011].

The (deterministic) variational inequality (VI) problem formulation of the linear equa-

tion Aθ = b is formulated as

〈Aθ∗ − b, θ − θ∗〉 ≥ 0 (2.7)

This can be solved by a recursive proximal mapping

θt+1 = arg min
x

{
〈x,Aθt − b〉+

1

2αt
||x− θt||22

}
(2.8)

However, in real applications, A, b are not accessible. If we replace A, b with Ât, b̂t

defined in Eq. (2.4), and define the TD error for the t-th sample as

δt(θ) := ri + γφ
′>
t θt − φ>i θt. (2.9)

It is easy to verify that δt(θ) = b̂t− Âtθt. Then we have the SVI problem formulation

of TD as solving a recursive proximal mapping at each step, i.e.,

θt+1 = arg min
x

{〈
x, Âtθt − b̂t

〉
+

1

2αt
||x− θt||22

}
(2.10)

= arg min
x

{
〈x,−φtδt〉+

1

2αt
||x− θt||22

}
(2.11)

So at each iteration, the update law is

θt+1 = θt + αtφtδt (2.12)
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which is the update law of the TD algorithm. Note that in the TD algorithm, at each

iteration,

1. The quadratic term (termed as prox-function) in the recursive proximal map-

ping in Eq. (2.11) is currently used as 1
2
||x − θt||22, which does not take into

consideration the sample distribution Ξ. It would be preferable to use the prox-

imal function as

1

2
||Φx− Φθt||2Ξ =

1

2
||x− θt||2C , (2.13)

where C := Φ>ΞΦ = E[φiφ
>
i ]. So if we use the prox-function as defined in

Eq. (2.13), we have the recursive proximal update as

θt+1 = arg min
x

{
〈x,Atθt − bt〉+

1

2αt
||x− θt||2C

}
(2.14)

The update law is written as

θt+1 = θt + αtC
−1(bt − Atθt) (2.15)

This requires computing C−1, which is usually O(d3) and hence, computation-

ally expensive. Using Sherman-Morris-Woodbury theorem, C−1 can be com-

puted iteratively with O(d2) computational complexity per-step.1 The update

1According to Sherman-Morris-Woodbury theorem, given a square nonsingular matrix A, there
is

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
(2.16)
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law is

Zt+1 = Zt −
Ztφtφ

>
t Zt

1 + φ>t Ztφt
(2.17)

θt+1 = θt + αtZtφtδt, (2.18)

where Zt is used to approximate C−1.

2. The stochastic unbiased estimation At, bt is based on the current example. The

estimation based on a single sample often suffers from high variance. If we can

use the information of all the samples along the trajectory, then the estimation

of A, b will be of lower variance. i.e., a more sample efficient approach is to store

a trajectory-based estimation of the A, b matrix as

Āt =
1

t

∑>

i=1
Âi =

1

t

∑t

i=1
φi(φi − γφ′i)>, (2.19)

b̄t =
1

t

∑t

i=1
b̂i =

1

t

∑t

i=1
φiri (2.20)

If we use all the samples along the whole trajectory, we obtain the recursive proximal

mapping as follows,

θt+1 = arg min
x

{〈
x, Ātθt − b̄t

〉
+

1

2αt
||x− θt||2C

}
, (2.21)

where Āt, b̄t is defined as Eq. (2.20). Thus the update law is

Zt+1 = Zt −
Ztφtφ

>
t Zt

1 + φ>t Ztφt
(2.22)

θt+1 = θt + αtZt(b̄t − Ātθt) (2.23)
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It should be mentioned that with these changes, the SVI problem formulation of

FPKF and LSPE also change correspondingly. The VI formulation of FPKF and

LSPE can be written as

〈
C−1(Aθ∗ − b), θ − θ∗

〉
≥ 0, (2.24)

The aforementioned stochastic variational inequality formulation requires that the

Bellman operator T should be a contraction mapping.

2.1.2.2 Matrix Inversion Formulation of LSTD

The LSTD solution is using matrix inversion to solve the linear equation Aθ = b since

A is a full-rank square matrix. The solution is θ = A−1b, and the computational

cost for computing A−1 is O(d2) by using the Sherman-Morris-Woodbury theorem.

It is obvious that this algorithm requires that A is an invertible, linear operator (i.e.

invertible matrix), which requires two conditions: 1) the Bellman operator T is a

contraction mapping, and 2) a linear value function architecture should be used.

2.1.2.3 Gradient-Motivated Algorithms

The above mentioned stochastic approximation and matrix inversion methods are

widely used, especially TD algorithm and LSTD algorithm, which are considered

the most successful policy evaluation algorithms with linear (O(d)) and quadratic

(O(d2)) computational complexity, respectively. However, these two methods have

some intrinsic drawbacks as follows
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1. Off-policy convergence is not guaranteed. As can be seen from the above anal-

ysis, both the SVI formulation and the matrix inversion formulation requires

that A is invertible. This in turn requires that the Bellman operator is a con-

traction mapping, which only holds for on-policy settings. It is desirable if an

optimization-based algorithm could be designed.

2. Regularization is very difficult to implement. Since these aforementioned algo-

rithms are based on solving the linear inverse problem Aθ = b, the regularization

term is not easy to add (except in the special case of ridge regression, ||θ||22).

3. It’s difficult to obtain theoretical convergence rates for stochastic approxima-

tion and matrix inversion approaches, not to mention finite-sample analyses.

Recently, the online-learning finite sample analysis of LSTD was performed via

treating LSTD as a Markov regression model [Lazaric et al., 2010b]. There is

also an analysis based on the dual form of GTD2 algorithm [Valcarcel Macua et

al., 2015]. However, such analysis only holds for on-policy settings. To the best

of our knowledge, there have not been any convergence rate and finite-sample

analysis results for off-policy policy evaluation algorithms; Also, there is no

finite-sample analysis for policy evaluation algorithms with linear computation

complexity.

[Sutton et al., 2009] proposed the GTD family algorithms, aiming to set up a stochas-

tic optimization framework that has off-policy convergence guarantees. Motivated

by the fact that the TD/LSTD solution converges to the fixed-point equation of

Vθ = ΠTVθ, a new objective function termed the mean-square projected Bellman-

error (MSPBE) is defined as
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Algorithms Essence Restrictions
TD/FPKF/LSPE stochastic variational inequality T should be a contraction mapping

LSTD matrix inversion solution of linear equation Linear VFA, T should be a contraction
GTD/GTD2 optimization T should be differentible with respect to θ

Table 2.1. Mathematical Foundations of Policy Evaluation Algorithms

MSPBE(θ) = ||Vθ − ΠTVθ||2Ξ. (2.25)

Another widely used objective function is called the norm of the expected TD update

(NEU), which does not seem to have an obvious geometric interpretation, however,

the TD solution finds its minimum. The NEU objective function is defined as

NEU(θ) = E[δt(θ)φt]
>E[δt(θ)φt] (2.26)

2.1.2.4 Summary

We summarize the mathematical formulations and restrictions of the above existing

policy evaluation algorithms in Table 2.1.

2.1.3 Biased Sampling Problem

The biased-sampling problem, also termed the double-sampling problem, is a problem

originally discovered for the residual gradient algorithm proposed by Baird [Baird,

1995], and later was found to widely exist for any kind of policy evaluation algorithm

with Bellman-error based objective functions. It requires two independent samples

for the next state given the current state. That is, given the current state st, two

independent samples for the next state are required in order to do unbiased stochastic

gradient descent of the Bellman error based objective function. When the system is
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deterministic or the model of the environment is known, then two independent samples

can be generated from the model, which is not always the case.

Biased sampling is a long-standing problem that has troubled RL researchers for

decades. Biased sampling is often caused by the product of the Bellman errors, or the

product of the Bellman error and the gradient of Bellman error. Due to the stochastic

nature of the MDP, given a state-action pair (st, at), there may be many successive

state s′t, thus these products cannot be consistently estimated via a single sample.

This problem hinders the objective functions to be solved via stochastic gradient

descent (SGD) algorithms. Unfortunately, any Bellman error based objective function

suffers from the biased sampling problem. Consider, for example, the NEU objective

function in Equation (2.26). Taking the gradient with respect to θ, we have

−1

2
∇NEU(θ) = E[(φt − γφ′t)φ>t ]E[δt(θ)φt] (2.27)

If the gradient can be written as a single expectation value, then it is straightforward

to use a stochastic gradient method, however, here we have a product of correlated

expectations, and due to the correlation between (φt−γφ′t)φ>t and δt(θ)φt, the sampled

product is not an unbiased estimate of the gradient. In other words, E[(φt − γφ′t)φ>t ]

and E[δt(θ)φt] can be directly sampled, yet E[(φt−γφ′t)φ>t ]E[δt(θ)φt] cannot be directly

sampled.

A generalization of the reason is stated as follows. Consider any Bellman error based

objective function J(θ), which can be represented as

J(θ) = f(g(θ, s, s′)), (2.28)

17



where g(θ, s, s′) is an expectation function, and f is a mapping on a vector field to a

scalar, such as a norm operator. The generalization form of the gradient ∇J(θ, s, s′)

is computed as

∇θJ(θ) = ∇θf(g(θ, s, s′))∇θg(θ, s, s′). (2.29)

We can see that due to the product of ∇θf(g(θ, s, s′)) and ∇θg(θ, s, s′), biased sam-

pling is unavoidable. In sum, any Bellman error based objective function will cause

biased-sampling problem for direct stochastic gradient method. Based on the above

analysis, it is obvious that the existing objective functions cannot be solved via

stochastic gradient approach due to the biased sampling problem.

There are several attempts to address the biased sampling problem. The first at-

tempt is the RG algorithm [Baird, 1995], which aims to solve the MSBE objective

function, yet due to the aforementioned biased sampling problem, RG does not mini-

mize the MSBE objective function, but instead the Mean-Square TD-error (MSTDE)

objective, as proven in [Maei, 2011]. Recently, attempts have been made to min-

imize the MSPBE/NEU objectives with a two-time-scale technique to address the

biased sampling problem by Sutton et al. [2008, 2009]. However, the two-time-scale

technique made the method not a true stochastic gradient method in the sense that

the expected weights update direction can be different from the direction of the true

negative gradient of the objective function.
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2.2 First-Order Optimization

2.2.1 Proximal Point Methods

In this section, we introduce two optimization techniques, i.e., proximal point method

and operator splitting, which constitute the cornerstone of many modern optimization

algorithms.

2.2.1.1 Stochastic Composite Optimization Formulation

Stochastic optimization explores the use of first-order gradient methods for solving

convex optimization problems. We first give some definitions before moving on to

introduce stochastic composite optimization.

Definition 1. (Lipschitz-continuous Gradient): The gradient of a closed convex func-

tion f(x) is L-Lipschitz continuous if ∃L, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ X.

Definition 2. (Strong Convexity): A convex function is µ−strongly convex if ∃µ,
µ
2
||x− y||2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ,∀x, y ∈ X.

Remark: If f(x) is both L-Lipschitz continuous gradient and µ-strongly convex,

then ∀x, y ∈ X,

µ

2
||x− y||2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
||x− y||2

Definition 3. (Stochastic Subgradient) : The stochastic subgradient for closed convex

function f(x) at x is defined as g(x, ξt) satisfying E[g(x, ξt)] := ∇f(x) ∈ ∂f(x), where
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∂f(x) is the subgradient of f with respect to x. Further, we assume that the variance

is bounded ∃σ > 0 such that

∀x ∈ X,E[||g(x, ξt)−∇f(x)||2∗] ≤ σ2 (2.30)

Here we define the problem of Stochastic Composite Optimization (SCO)[Lan, 2012]:

Definition 4. (Stochastic Composite Optimization): A stochastic composite opti-

mization problem F(L,M, µ, σ) : Ψ(x) on a closed convex set X is defined as

min
x∈X

Ψ(x)
def
= f(x) + h(x), (2.31)

where f(x) is a convex function with L-Lipschitz continuous gradient and h(x) is a

convex Lipschitz continuous function such that

|h(x)− h(y)| ≤M ||x− y||,∀x, y ∈ X, (2.32)

where g(x, ξt) is the stochastic subgradient of Ψ(x) defined above with variance bound

σ. Such Ψ(x) is termed as a F(L,M, µ, σ) problem.

2.2.1.2 Proximal Gradient Method and Mirror Descent

Before we move on to introduce mirror descent, we first give some definitions and

notation.

Definition 5. (Distance-generating Function)[Beck and Teboulle, 2003]: A distance-

generating function ψ(x) is a continuously differentiable µ-strongly convex function.

ψ∗ is the Legendre transform of ψ, which is defined as ψ∗(y) = sup
x∈X

(〈x, y〉 − ψ(x)).
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Definition 6. (Bregman Divergence)[Beck and Teboulle, 2003]: Given distance-generating

function ψ, the Bregman divergence induced by ψ is defined as:

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 (2.33)

The Legendre transform and Bregman divergence have the following properties:

• ∇ψ∗ = (∇ψ)−1

• ∇Dψ(u, v) = ∇ψ(u)−∇ψ(v)

An interesting choice of the link function ψ(·) is the (q − 1)-strongly convex function

ψ(θ) = 1
2
‖θ‖2

q, and ψ∗(θ̃) = 1
2
||θ̃||2p. Here, ‖θ‖q =

(∑
j |θj|q

) 1
q , and p and q are

conjugate numbers such that 1
p
+ 1

q
= 1 [Gentile, 2003]. θ and θ̃ are conjugate variables

in primal space and dual space, respectively .

∇ψ
θ→θ̃

(θ)j =
sign(θj)|θj|q−1

||θ||q−2
q

∇ψ
θ̃→θ

∗(θ̃)j =
sign(θ̃j)|θ̃j|p−1

||θ̃||p−2
p

(2.34)

Also it is worth noting that when p = q = 2, the Legendre transform is the identity

mapping.

We now introduce the concept of proximal mapping, and then describe the mirror

descent framework. The proximal mapping associated with a convex function h(x) is

defined as:

proxh(x) = arg min
u∈X

(h(u) +
1

2
‖u− x‖2) (2.35)
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In the case of h(x) = ρ‖x‖1(ρ > 0), which is particularly important for sparse feature

selection, the proximal operator turns out to be the soft-thresholding operator Sρ(·),

which is an entry-wise shrinkage operator that moves a point towards zero, i.e.,

proxh(x)i = Sρ(x)i = sign(xi) max(|xi − ρ|, 0) (2.36)

where i is the index, and ρ is a threshold. With this background, we now introduce

the proximal gradient method. At each iteration, the optimization sub-problem of

Equation (2.31) can be rewritten as

xt+1 = arg min
u∈X

(
h(u) + 〈∇ft, u〉+

1

2αt
‖u− xt‖2

)
(2.37)

If computing proxh is not expensive, then computation of Equation (2.31) is of the

following formulation, which is called the proximal gradient method

xt+1 = proxαth (xt − αt∇f(xt)) (2.38)

where αt > 0 is stepsize, constant or determined by line search. The mirror descent

[Beck and Teboulle, 2003] algorithm is a generalization of classic gradient descent,

which has led to developments of new more powerful machine learning methods for

classification and regression. Mirror descent can be viewed as an enhanced gradient

method, particularly suited to minimization of convex functions in high-dimensional

spaces. Unlike traditional gradient methods, mirror descent undertakes gradient up-

dates of weights in the dual space, which is linked together with the primal space

using a Legendre transform. Mirror descent can be viewed as a proximal algorithm in
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which the distance-generating function is a Bregman divergence with respect to the

distance-generating function ψ, and thus the optimization problem is

proxh(x) = arg min
u∈X

(h(u) +Dψ(u, x)) (2.39)

The solution to this optimization problem of Equation (2.39) forms the core procedure

of mirror descent as a generalization of Equation (2.37)

xt+1 = arg min
u∈X

(
h(u) + 〈∇ft, u〉+

1

αt
Dψ(u, xt)

)
(2.40)

which is a nonlinear extension of Equation(2.38)

xt+1 = ∇ψ∗ (proxαth (∇ψ(xt)− αt∇f(xt))) (2.41)

Mirror descent has become the cornerstone of many online `1 regularization ap-

proaches such as in [Shalev-Shwartz and Tewari, 2011], Xiao [2010] and Duchi et

al. [2010]. Figure 2.1 illustrates the mirror descent method.

2.2.2 Operator Splitting

In this section, we introduce operator splitting, which is another significant achieve-

ment in modern optimization theory.

2.2.2.1 Proximal Splitting: Coupled Objective Functions

In this section we give a brief overview of proximal splitting algorithms [Combettes

and Pesquet, 2011]. The two key ingredients of proximal splitting are proximal oper-
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Figure 2.1. The mirror descent method. This figure is adapted from Bubeck [2014].

ators and operator splitting. Operator splitting is widely used to reduce the compu-

tational complexity of many optimization problems, resulting in algorithms such as

sequential non-iterative approach (SNIA), Strang splitting, and sequential iterative

approach (SIA). Proximal splitting is a technique that combines proximal operators

and operator splitting, and deals with problems where the proximal operator is diffi-

cult to compute at first, yet is easier to compute after decomposition. The very basic

scenario is Forward-Backward Splitting (FOBOS) [Duchi and Singer, 2009]

min
θ∈X

(Ψ(θ) = f(θ) + h(θ)) , (2.42)

where f(·) is a convex, continuously differentiable function with L-Lipschitz-continuous

bounded gradients, i.e. ∀x, y, ||∇f(x) − ∇f(y)|| ≤ L||x − y||, and h(θ) is a convex

(possibly not smooth) function. FOBOS solves this problem via the following proxi-

mal gradient method

θt+1 = proxαth(θt − αt∇f(θt)) (2.43)

24



2.2.2.2 Operator Splitting: Coupled Constraints

Another widely used operator splitting technique is called alternating direction method

of multipliers (ADMM) [Eckstein and Bertsekas, 1992], which solves convex optimiza-

tion problems with coupled equality constraints such as Ax+By = C. The problem

formulation is as

min
x,y

f(x) + g(y) s.t. Ax+By = C (2.44)

In such formulation, the objective function is separable with respect to different sets

of variables, and the equality constraints is the coupled equality with respect to

these sets of variables. The Augmented Lagrangian Multiplier (ALM) with respect

to Eq. (2.44) is

Lρ(x, y, λ) = f(x) + g(y) + λ>(Ax+By − C) +
ρ

2
||Ax+By − C||2 (2.45)

At each iteration, the ADMM solver deals with one variable at a time as follows,

xt+1 = arg min
x
Lρ(xt, y, λ)

yt+1 = arg min
y
Lρ(x, yt, λ)

λt+1 = λt + ρ(Axt+1 +Byt+1 − C) (2.46)

Such methods enables parallel computation, and thus form the cornerstones of many

existing large-scale optimization algorithms, as summarized in [Boyd et al., 2011].
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2.3 Primal-Dual Splitting: Compound Operator Splitting

In the above section, we introduced two popular splitting methods, i.e., FOBOS

for splitting a sum of objective functions, and ADMM for splitting equality con-

straints. However, FOBOS and ADMM both address splitting the sum of objective

functions/constraints. Sometimes the problem is formulated as min
x∈X

f(g(x)), where

f(·) is a lower semi-continuous (l.s.c) nonlinear convex function, and g is a linear

operator. In the following, we denote f(g(x)) as f ◦ g(x). In some problems, proxf (·)

and proxg(·) are easy to compute, yet proxf◦g(·) is difficult to compute. An intu-

itive idea is to find an operator-splitting technique that is able to split the compound

operator f ◦ g(x). We introduce primal-dual splitting, which serves the purpose of

splitting the compound operator f ◦ g(x).

2.3.1 Primal-Dual Saddle-Point Formulation

Motivated by the introduction in the previous section, we introduce primal-dual split-

ting, which constitutes the major theoretical foundation of the proximal gradient TD

learning framework.

2.3.1.1 Basics of Saddle-Point Problems

In this section, we introduce some basics of convex-concave saddle-point problems,

which is a type of well-studied non-convex problem. A convex-concave saddle-point

problem is formulated as follows. Let x ∈ X, y ∈ Y , where X, Y are both nonempty

bounded closed convex sets, and f(x) : X → R be a convex function. If there exists a

function L(·, ·) such that f(x) can be represented as f(x) := supy∈YL(x, y), then the

optimization problem of minimizing f over X is converted into an equivalent convex-
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concave saddle-point problem min
x∈X

max
y∈Y

L(x, y). There are some basic properties of

saddle-point problems L(x, y) which will be frequently used.

Lemma 1. (Saddle-Point Inequality)[Boyd and Vandenberghe, 2004] For saddle-

point problem L(x, y), we have the following inequality

min
x
L(x, y) ≤ max

y
min
x
L(x, y) ≤ min

x
max
y
L(x, y) ≤ max

y
L(x, y) (2.47)

Definition 7. (Error Function) The error function of the saddle-point problem (5.9)

at each point (θ′, y′) is defined as

Err(θ′, y′) = max
y

L(θ′, y)−min
θ

L(θ, y′). (2.48)

2.3.1.2 Primal-Dual Splitting and Convex Conjugate Functions

In this section, we introduce a compound operator splitting mechanism termed primal-

dual splitting. The problem formulation we tackle is

min
x∈X

(Ψ(x) = F (Ax− b) + h(x)) (2.49)

where X, Y are convex compact sets, Ax− b is a vector-valued affine operator, where

A : X → Y is a matrix, and b ∈ Y is a vector, F : Y → R is a lower-semi-

continuous (l.s.c) nonlinear convex function. The proximal operator with respect to

this problem is proxF (Ax−b). In many cases, although proxF and proxAx−b are easy to

compute, proxF (Ax−b) is often difficult to compute. To address this problem, we use

the primal-dual splitting framework to facilitate operator splitting, i.e., which only

uses proxF , proxAx−b, and avoids computing proxF (Ax−b) directly.
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Before moving on, we first introduce convex conjugate functions. The convex conju-

gate function is defined as follows

Definition 8. The conjugate of a function f is defined as

f ∗(y) = sup
x

(y>x− f(x)) (2.50)

The conjugate function has some nice properties as introduced in [Boyd and Van-

denberghe, 2004]. First, f ∗ is convex and closed even if f is not. Second, from the

definition of f ∗, it is easy to deduce the following

Lemma 2. (Fenchel inequality)

∀x, y, f(x) + f ∗(y) ≥ y>x (2.51)

Next, from the definition of f ∗, it is easy to have the definition of f ∗∗ as

f ∗∗(x) = sup
y

(y>x− f ∗(y)) (2.52)

Next we prove a useful lemma.

Lemma 3. (f ∗∗) We have f ∗∗ ≤ f ; if f is closed and convex, then f ∗∗ = f .

Proof. The proof can be found in Boyd and Vandenberghe [2004].

With these background, we can have
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Lemma 4. if f is closed and convex, then

f(x) = sup
y

(y>x− f ∗(y)) (2.53)

Proof. The proof is explicit by the fact that if f is closed and convex, we have

f(x) = f ∗∗(x) = sup
y

(y>x− f ∗(y)) (2.54)

This completes the proof.

With Lemma 4, the corresponding primal-dual formulation of Equation (2.49) can be

deduced as

min
x∈X

max
y∈Y

(L(x, y) = 〈Ax− b, y〉 − F ∗(y) + h(x)) (2.55)

where F ∗(y) := supx∈X(〈x, y〉 − F (x)) is the convex conjugate of F (·). Particularly,

a special f worth discussing is f(x) = 1
2
||Ax − b||2C−1 , where C is a positive definite

(PD) symmetric matrix. It can be inferred that

f(x) =
1

2
||Ax− b||2C−1 = max

y
〈Ax− b, y〉 − 1

2
||y||2C , (2.56)

which will be frequently used in the rest of the thesis.

2.3.1.3 Dual-norm Formulation

Besides the general framework of the primal-dual formulation, there are several primal-

dual splitting framework with specific f . One example is the dual norm representa-

tion.
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Definition 9. Given a norm || · ||, the dual norm is defined as

||x||∗ = max
y

x>y, s.t. ||y|| ≤ 1 (2.57)

As an example, consider f(x) = ||Ax− b||m which admits a bilinear minimax repre-

sentation

f(x) := ‖Ax− b‖m = max
‖y‖n<1

(〈y, Ax− b〉) (2.58)

where m,n are conjugate numbers such that 1
m

+ 1
n

= 1. Using the approach in

[Nemirovski et al., 2009], Equation (2.58) can be solved as

xt+1 = xt − αt 〈yt, A〉 , yt+1 = Π‖yt‖n≤1(yt + αt(Axt − b)) (2.59)

where Π‖yt‖n≤1 is the projection operator of yt onto the unit-ln ball ‖y‖n ≤ 1,which

is defined as

Π‖y‖n≤1y = min(1, 1/‖y‖n)y, n = 2,
(
Π‖y‖n≤1y

)
i

= min(1,
1

|yi|
)yi, n =∞ (2.60)

and Π‖y‖∞≤1y is an entry-wise operator.

2.3.2 Primal-Dual Algorithm: An Overview

In this section, we introduce saddle-point problem solvers. We introduce the primal-

dual algorithm, extragradient algorithm, and Mirror-Prox algorithm. The saddle-

point problem is formulated as minx∈Xmaxy∈YL(x, y).
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Algorithm 1 Primal-Dual Algorithm Template
INPUT: saddle-point problem min

x
J(x) = min

x
max
y∈Y

L(θ, y) + h(x), stepsize {αt}
OUTPUT: REPEAT

xt+1 = proxxt (−αt∂Lx(xt, yt)), yt+1 = proxyt (αt∂Ly(xt, yt)) (2.62)

UNTIL some stopping criteria is met

2.3.2.1 Primal-Dual Algorithm

The primal-dual algorithm is probably the most intuitive algorithm. For saddle-point

problem minxmaxyL(x, y), at each iteration, we do gradient descent with respect to

x and gradient ascent with respect to y (see Algorithm 1), which is in essence the

classic Arrow-Hurwicz algorithm [Arrow et al., 1972]. At the t-th iteration, xt+1, yt+1

are updated as

xt+1 = proxxt (−αt∂Lx(xt, yt)), yt+1 = proxyt (αt∂Ly(xt, yt)) (2.61)

However, there are more powerful saddle-point algorithms, as we show in the following

sections.

2.3.2.2 Extragradient

The extragradient is first proposed by Korpelevich [1976] as a relaxation of gradient

descent to solve variational inequality (VI) problems [Nagurney, 2013]. Conventional

ordinary gradient descent can be used to solve VI problems only if some strict restric-

tions such as strong monotonicity of the operator or compactness of the feasible set

are satisfied. The extragradient is proposed to solve VIs with relaxation on the afore-

mentioned strict restrictions. The essence of extragradient methods is that instead
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of moving along the steepest gradient descent direction with respect to the initial

point in each iteration, two steps, i.e., an extrapolation step and a gradient descent

step, are taken. In the extrapolation step, a step is made along the steepest gradient

descent direction of the initial point, resulting in an intermediate point which is used

to compute the gradient. Then the gradient descent step is made from the initial

point in the direction of the gradient with respect to the intermediate point. The

extragradient take steps as follows

xt+ 1
2

= ΠX (xt − αt∇f(xt))

xt+1 = ΠX

(
xt − αt∇f(xt+ 1

2
)
) (2.63)

ΠX(x) = argminy∈X‖x − y‖2 is the projection onto the convex set X, and αt is a

stepsize. Convergence of the iterations of Equation (2.63) is guaranteed under the

constraints 0 < αt <
1√
2L
[Nemirovski, 2005], where L is the Lipschitz constant for

∇f(x). Figure 2.2 illustrates the extragradient method.

xk

�F(xk)

�F(yk)
yk

xk+1

K

Figure 2.2. The extragradient method.
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Algorithm 2 Extragradient Algorithm Template
INPUT: saddle-point problem min

x
J(x) = min

x
max
y∈Y

L(θ, y) + h(x)

OUTPUT: REPEAT

xt+ 1
2

= proxxt (−αt∂Lx(xt, yt)), yt+ 1
2

= proxyt (αt∂Ly(xt, yt)) (2.66)

xt+1 = proxxt

(
−αt∂Lx(xt+ 1

2
, yt+ 1

2
)
)
, yt+1 = proxyt

(
αt∂Ly(xt+ 1

2
, yt+ 1

2
)
)

(2.67)

UNTIL some stopping criteria is met

For our saddle-point problem minx∈Xmaxy∈YL(x, y), the update law is as follows

xt+ 1
2

= proxxt (−αt∂Lx(xt, yt)) , yt+ 1
2

= proxyt (αt∂Ly(xt, yt)) (2.64)

xt+1 = proxxt

(
−αt∂Lx(xt+ 1

2
, yt+ 1

2
)
)
, yt+1 = proxyt

(
αt∂Ly(xt+ 1

2
, yt+ 1

2
)
)

(2.65)

The general algorithm template of extragradient algorithm is

In Figure 2.2, the concept of extragradient is illustrated. A simple way to understand

the figure is to imagine the vector field F here is defined as the gradient ∇f(x) of

some function being minimized. In that case, the mapping −F (xt) points as usual in

the direction of the negative gradient. However, the clever feature of extragradient is

that it moves not in the direction of the gradient at xk, but rather in the direction of

the negative gradient at the point yk, which is the projection of the original gradient

step onto the feasible set K.

2.3.2.3 Mirror-Prox Algorithm

Mirror-Prox algorithm, introduced by Nemirovski [2005], is an acceleration of the

vanilla gradient algorithm that is widely used for large-scale problems [Juditsky and

Nemirovski, 2011]. Later, stochastic Mirror-Prox algorithm (SMP) [Juditsky et al.,

33



Algorithm 3 Mirror-Prox Algorithm Template
INPUT: saddle-point problem min

x
J(x) = min

x
max
y∈Y

L(θ, y) + h(x), distance-

generating function ψ
OUTPUT: REPEAT

[ut, vt] = ∇ψ([xt, yt]) (2.68)

ut+ 1
2

= proxut (−αt∂Lx(xt, yt)), vt+ 1
2

= proxvt (αt∂Ly(xt, yt)) (2.69)

ut+1 = proxut

(
−αt∂Lx(xt+ 1

2
, yt+ 1

2
)
)
, vt+1 = proxvt

(
αt∂Ly(xt+ 1

2
, yt+ 1

2
)
)

(2.70)

[xt+1, yt+1] = ∇ψ∗([ut+1, vt+1]) (2.71)

UNTIL some stopping criteria is met

2008] is proposed to solve stochastic saddle-point problems (SSP). We refer the readers

to [Yu et al., 2014] for a brief overview of MP algorithm and [Juditsky and Nemirovski,

2011] for a more details. The general algorithm template of Mirror-Prox algorithm is

The Mirror-Prox method generalizes the extragradient method to non-Euclidean

geometries, analogous to the way mirror descent generalizes the regular gradient

method. The Mirror-Prox algorithm (MP) [Nemirovski, 2005] is a first-order ap-

proach that is able to solve saddle-point problems at a convergence rate of O(1/t).

Figure 2.3 illustrates the Mirror-Prox method.

2.4 Summary

In this section, we introduced the background knowledge of RL and MDP, which are

the mathematical foundations of sequential decision-making. Then we introduced

proximal point method and operator splitting, which lay the mathematical founda-
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Figure 2.3. The Mirror-Prox method. This figure is adapted from Bubeck [2014].

tions of the thesis. We also introduced several important techniques used in stochas-

tic optimization, such as mirror descent and extragradient. All these techniques are

widely used in optimization and comprise the cornerstones of the algorithms proposed

in this thesis.
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CHAPTER 3

SPARSE Q-LEARNING

In this chapter we explore a new framework for (on-policy convergent) TD learn-

ing algorithm based on mirror descent and related algorithms. Mirror descent can

be viewed as an enhanced gradient method, particularly suited to minimization of

convex functions in high-dimensional spaces. Unlike traditional gradient methods,

mirror descent undertakes gradient updates of weights in both the dual space and

primal space, which are linked together using a Legendre transform. Mirror descent

can be viewed as a proximal algorithm where the distance-generating function used

is a Bregman divergence. A new class of proximal-gradient based temporal-difference

(TD) methods are presented based on different Bregman divergences, which are more

powerful than regular TD learning. Examples of Bregman divergences that are stud-

ied include p-norm functions, and Mahalanobis distance based on the covariance of

sample gradients. A new family of sparse mirror-descent RL methods are proposed

[Mahadevan and Liu, 2012], which are able to find the `1-regularized value function

for a fixed policy at significantly less computational cost than previous methods based

on second-order matrix methods.
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3.1 Problem Formulation

The problem formulation in this chapter is based on the Lasso-TD objective defined

as follows, which is used in LARS-TD and LCP-TD. In this section, we extend the

stochastic variational inequality (SVI) formulation proposed in Section 2 to incorpo-

rate sparsity. We then define `1-regularized projection, and then give the definition

of Lasso-TD objective function.

In the SVI formulation, we use sample-based estimation of Ât, b̂t defined in Eq. (2.4)

to estimate the A, b matrix, and the update law is the vanilla TD algorithm,

θt+1 = arg min
x

{〈
x, Âtθt − b̂t

〉
+

1

2αt
||x− θt||22

}
(3.1)

= arg min
x

{
〈x,−φtδt〉+

1

2αt
||x− θt||22

}
(3.2)

So at each iteration, the update law is

θt+1 = θt + αtφtδt (3.3)

which is the update law of the TD algorithm.

Next, if we consider incorporating regularization h(θ) (e.g., h(θ) = ρ||θ||1 for sparsity,

we would have the following SVI formulation

θt+1 = arg min
x

{〈
x, Âtθt − b̂t

〉
+ ρ||x||1 +

1

2αt
||x− θt||22

}
(3.4)

= arg min
x

{
〈x,−φtδt〉+ ρ||x||1 +

1

2αt
||x− θt||22

}
(3.5)
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So at each iteration, the update law is

θt+1 = Sαtρ (θt + αtφtδt) , (3.6)

where the soft-thresholding operator is defined in Eq. (2.36).

Next we review some results from [Ghavamzadeh et al., 2011].

Definition 10. [Ghavamzadeh et al., 2011] (`1-regularized Projection): Πl1 is the

`1-regularized projection defined as:

Πl1y = Φθ, θ = arg min
x
‖y − Φx‖2 + ρ‖x‖1 (3.7)

It has been shown that Πl1 is a non-expansive mapping with respect to weighted l2

norm, as proven in [Ghavamzadeh et al., 2011].

Lemma 5. [Ghavamzadeh et al., 2011]: Πρ is a non-expansive mapping such that

∀x, y ∈ Rd, ||Πρx− Πρy||2 ≤ ||x− y||2 − ||x− y − (Πρx− Πρy)||2 (3.8)

Definition 11. [Ghavamzadeh et al., 2011] (Lasso-TD) Lasso-TD is a fixed-point

equation with respect to `1 regularization with parameter ρ, which is defined as

θ = f(θ) = argminx∈Rd (||TΦθ − Φx||2 + ρ||x||1)

= argminx∈Rd (||Rπ + γP πΦθ − Φx||2 + ρ||x||1)
(3.9)

The solution properties of Lasso-TD is discussed in detail in [Ghavamzadeh et al.,

2011]. Note that the above `1 regularized fixed-point is not a convex optimization
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problem but a fixed-point problem. Several prevailing sparse RL methods use Lasso-

TD as the objective function, such as LARS-TD [Kolter and Ng, 2009] and LCP-TD

[Johns et al., 2010]. The advantage of LARS-TD comes from LARS in that it com-

putes a homotopy path of solutions with different regularization parameters, and thus

offers a rich solution family. The major drawback comes from LARS, too. To main-

tain the LARS criteria in which each active variable has the same correlation with the

residual, variables may be added and dropped several times, which is computationally

expensive. In fact, the computational complexity per iteration is O(ndk2) where k is

the cardinality of the active feature set. When k is comparable to d, the computa-

tional complexity deteriorate to O(nd3). Secondly, LARS-TD requires the A matrix

to be a P -matrix(a square matrix which does not necessarily to be symmetric, but

all the principal minors are positive), which poses extra limitation on applications.

LCP-TD [Johns et al., 2010] formulates LASSO-TD as a Linear Complementarity

Problem (LCP), which can be solved by a variety of available LCP solvers.

3.2 Algorithm Design

3.2.1 TD Learning with Mirror Descent

Algorithm 4 describes the proposed mirror-descent TD(λ) method.1 Unlike regular

TD, the weights are updated using the TD error in the dual space by mapping the

primal weights θ using a gradient of a strongly convex function ψ. Subsequently, the

updated dual weights are converted back into the primal space using the gradient of

the Legendre transform of ψ, namely ∇ψ∗. Algorithm 1 specifies the mirror descent

1All the algorithms described extend to the action-value case where φ(s) is replaced by φ(s, a).
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TD(λ) algorithm in which each weight θi is associated with an eligibility trace e(i).

For λ = 0, this is just the features of the current state φ(st), but for nonzero λ,

this corresponds to a decayed set of features proportional to the recency of state

visitations. Note that the distance-generating function ψt is a function of time.

Algorithm 4 Mirror Descent TD(λ)
Let π be some fixed policy for an MDP M, and s0 be the initial state. Let Φ be some
fixed or automatically generated basis, ψ is a distance-generating function.

1. REPEAT

2. Do action π(st) and observe next state st+1 and reward rt.

3. Update the eligibility trace et ← λγet + φ(st), δt = rt + γφ(st+1)>θt − φ(st)
>θt

4. Update the dual weights θ̃t+1 for a linear function approximator:

θ̃t+1 = ∇ψt(θt) + αtδtet

5. Set θt+1 = ∇ψ∗t (θ̃t+1) where ψ∗ is the Legendre transform of ψ.

6. Set t← t+ 1.

7. UNTIL t = N .

Return Vθ ≈ Φθt as the value function associated with policy π for MDP M .

3.2.2 Sparse Temporal Difference Learning with Mirror Descent

The proposed mirror-descent RL framework enables new first-order algorithms for

learning sparse solutions value function representations that are more scalable than

previous matrix-based sparse RL methods.

Algorithm 5 describes a modification to obtain sparse value functions resulting in a

sparse mirror-descent TD(λ) algorithm. The main difference is that the dual weights

θ are truncated to satisfy the `1 penalty on the weights. Here, ρ is the sparsity pa-
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rameter defined in Equation (3.9). An analogous approach was suggested in [Shalev-

Shwartz and Tewari, 2011] for `1 penalized classification and regression.

Algorithm 5 Sparse Mirror Descent TD(λ)
Let π be some fixed policy for an MDP M , and s0 be the initial state. Let Φ be some
fixed or automatically generated basis, ψ is a distance-generating function.

1. REPEAT

2. Do action π(st) and observe next state st+1 and reward rt.

3. Update the eligibility trace et ← λγet + φ(st),δt = rt + γφ(st+1)>θt − φ(st)
>θt

4. Update the dual weights θ̃t+1 and truncate weights:

θ̃t+1 = Sαtρ(∇ψt(θt) + αtδtet)

(e.g., ψ(θ) = 1
2
‖θ‖2

q is the p-norm link function).

5. θt+1 = ∇ψ∗t (θ̃t+1) (e.g., ψ∗(θ) = 1
2
‖θ‖2

p and p and q are dual norms such that
1
p

+ 1
q

= 1).

6. Set t← t+ 1.

7. UNTIL t = N .

Return Vθ ≈ Φθt as the `1 penalized sparse value function associated with policy π
for MDP M .

3.2.3 Mirror Descent TD with AdaGrad

Another possible mirror-descent TD algorithm uses as the distance-generating func-

tion a Mahalanobis distance derived from the subgradients generated during actual

trials. We base our derivation on the AdaGrad approach proposed in [Duchi et al.,

2011] for classification and regression. Here we introduce some background knowl-

edge. Given a positive definite matrix A, the Mahalanobis norm of a vector x is

defined as ‖x‖A =
√
〈x,Ax〉. Let gt = ∂f(st) be the subgradient of the function be-
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ing minimized at time t, and Gt =
∑

t gtg
>
t be the covariance matrix of outer products

of the subgradients.

The AdaGrad [Duchi et al., 2011] is motivated by the fact that no all features are

equally important, and thus the learning rate should be adjusted entry-wise with

respect to each feature. The AdaGrad is a very clever trick that uses historical infor-

mation to help the entry-wise learning rate automatically adapt to the information

geometry of the learning problem (as revealed through the historical gradients): rather

than the Euclidean distance, it uses the Mahalanobis distance with covariance Gt. t

is computationally more efficient to use the diagonal matrix Ht =
√

diag(Gt) instead

of the full covariance matrix, which can be expensive to estimate. This amounts to

use a time-dependent Bregman divergence in the proximal gradient formulation,

θt+1 = argminx∈X

(
〈x, ∂ft〉+ h(x) +

1

αt
Dψt(x, θt)

)
(3.10)

Here, h serves as a fixed regularization function, such as the `1 penalty, and ψt is

the time-dependent distance-generating function as in mirror descent, and the time-

dependent Bregman divergence is ψt = 1
2
|| · ||2Ht . Thus the proximal gradient formu-

lation is

θt+1 = argminx∈X

(
〈x, ∂ft〉+ h(x) +

1

2αt
||x− θt||2Ht

)
(3.11)

The update law is thus written as
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θt+ 1
2
,i = θt,i +

αtδtet
Ht,ii

(3.12)

θt+1,i = sign(θt+ 1
2
,i)

[
|θt+ 1

2
,i| −

αtρ

Ht,ii

]
+

(3.13)

Motivated by the success and simplicity of AdaGrad, we propose Algorithm 6, which

describes the adaptive subgradient mirror descent TD method.

Algorithm 6 AdaGrad Mirror Descent TD(λ)
Let π be some fixed policy for an MDP M , and s0 be the initial state. Let Φ be some
fixed or automatically generated basis, ψ is a distance-generating function, G0 = 0.

1. REPEAT

2. Do action π(st) and observe next state st+1 and reward rt.

3. Update the eligibility trace et ← λγet + φ(st),δt = rt + γφ(st+1)>θt − φ(st)
>θt.

4. Update feature covariance and Mahalanobis matrix Ht

Gt = Gt−1 + φ(st)φ(st)
>, Ht =

√
diag(Gt)

5. Update the weights θt+1 according to Eq. (3.13).

6. Set t← t+ 1.

7. UNTIL t = N .

Return Vθ ≈ Φθt as the `1 penalized sparse value function associated with policy π
for MDP M .

Remark: As can be seen from the update law, if there is no sparsification step, then

the update law reduces to

θt+1,i = θt,i +
αtδtet
Ht,ii

(3.14)
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3.2.4 Choice of Distance-Generating Function

We now discuss various choices for the distance-generating function in Algorithm 4. It

should be noted that the topic of the choice of distance-generating function equals the

choice of link function and that of the Bregman divergence function. We start from

the simplest case of the vanilla gradient and regular TD learning, then expose the

relation between different distance-generating functions, the corresponding gradient

method, and the corresponding TD-based algorithms.

3.2.4.1 Vanilla Gradient and Regular TD Algorithm

In the simplest case, suppose ψ(θ) = 1
2
‖θ‖2

2, the Euclidean length of θ. In this case,

it is easy to see that mirror descent TD(λ) corresponds to regular TD(λ), since the

gradients ∇ψ and ∇ψ∗ correspond to the identity function.

3.2.4.2 Multiplicative Gradient and p-norm TD Algorithm

A much more interesting choice of ψ is ψ(θ) = 1
2
‖θ‖2

q, and its conjugate Legendre

transform ψ∗(θ̃) = 1
2
‖θ̃‖2

p. Here, ‖θ‖q =
(∑

j |θj|q
) 1
q , and p and q are conjugate

numbers such that 1
p

+ 1
q

= 1. This ψ(θ), ψ∗(θ) leads to the p-norm link function

θ̃ = ∇ψ(θ), θ = ∇ψ∗(θ̃) which are mappings: Rd → Rd [Gentile, 2003]:

θ̃j = (∇ψ(θ))j =
sign(θj)|θj|q−1

‖θ‖q−2
q

, θj = (∇ψ∗(θ̃))j =
sign(θ̃j)|θ̃j|p−1

‖θ̃‖p−2
p

(3.15)

The p-norm function has been extensively studied in the literature on online learning

[Gentile, 2003], and it is well-known that for large p, the corresponding classification

or regression method behaves like a multiplicative method (e.g., the p-norm regression
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method for large p behaves like an exponentiated gradient method (EG) [Kivinen and

Warmuth, 1995; Littlestone, 1988]).

3.2.4.3 Exponentiated Gradient and Exponentiated TD Algorithm

Another distance-generating function is the negative entropy function ψ(θ) =
∑

i θi log θi,

which leads to the entropic mirror descent algorithm [Beck and Teboulle, 2003]. Inter-

estingly, this special case has been previously explored [Precup and Sutton, 1997] as

the exponentiated-gradient TD method, although the connection to mirror descent

and Bregman divergences were not made in this previous study, and EG does not

generate sparse solutions [Shalev-Shwartz and Tewari, 2011]. The link function in

exponentiated gradient is

∇ψ = log, ∇ψ∗= (log)−1 (3.16)

We can see that the sparse mirror descent algorithm can be divided into the following

steps:

• Use the mirror-map xt to the dual space and obtain ∇ψ(xt).

• Do gradient descent in the dual space and obtain ȳt.

• Do sparsification using soft-thresholding function and obtain yt.

• Use the inverse mirror-map to map back to primal space and obtain xt+1.

From the steps, we can see that since the sparsification step is done in the dual space,

thus to preserver sparsity, the link function should be entrywise sparsity preserving.
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MD Formulation DGF Bregman Divergence Link Function
Vanilla Gradient 1

2
|| · ||22 1

2
||x− y||22 I(·)

Multiplicative Gradient 1
2
|| · ||2p 1

2
||x− y||2p Eq. (3.15)

Exponentiated Gradient E[P ] =
∫

(ln dP )dP
∫

(ln dP
dQ
dP )dP Eq. (3.16)

Table 3.1. A Comparison of Different Mirror Descent Formulations

Namely, if the i-th entry yt,i = 0, then to preserver sparsity, then we should have

xt+1,i = ∇ψ(ȳt,i) = 0 as well. The identity link function and the p-norm link function

both satisfies this property; Unfortunately, the exponentiated gradient’s link function

does not satisfy this property. The Mahalanobis distance generating function does

not preserve sparsity, neither.

3.2.4.4 Discussions

Here is a brief summary of different link functions used in mirror descent, as summa-

rized in Table 3.1, respectively.

Based on the summary above, here we present a brief discussion on the comparison

between multiplicative gradient and exponentiated gradient methods. As described

above, The two most widely used link functions in mirror descent are the p-norm link

function [Beck and Teboulle, 2003] and the relative entropy function for exponentiated

gradient (EG) [Kivinen and Warmuth, 1995]. Both of these link functions offer a

multiplicative update rule compared with regular additive gradient methods. The

differences between these two are discussed here. Firstly, the loss function for EG is

the relative entropy whereas that of the p-norm link function is the squared l2-norm

function. Second and more importantly, EG does not produce sparse solutions since it
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must maintain the weights away from zero, or else its potential (the relative entropy)

becomes unbounded at the boundary.

Another advantage of p-norm link functions over EG is that the p-norm link function

offers a flexible interpolation between additive and multiplicative gradient updates.

It has been shown that when the features are dense and the optimal coefficients θ∗ are

sparse, EG converges faster than the regular additive gradient methods [Kivinen and

Warmuth, 1995]. However, according to our experience, a significant drawback of EG

is the overflow of the coefficients due to the exponential operator. To prevent overflow,

the most commonly used technique is rescaling: the weights are re-normalized to sum

to a constant. However, it seems that this approach does not always work. It has

been pointed out [Precup and Sutton, 1997] that in the EG-Sarsa algorithm, rescaling

can fail, and replacing eligible traces instead of regular additive eligible traces is used

to prevent overflow. EG-Sarsa usually poses restrictions on the basis as well. Thanks

to the flexible interpolation capability between multiplicative and additive gradient

updates, the p-norm link function is more robust and applicable to various basis

functions, such as polynomial, radial basis function (RBF), Fourier basis [Konidaris

et al., 2011], proto-value functions (PVFs), etc.

3.3 Theoretical Analysis

The error bound analysis is given in Appendix.
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3.4 Empirical Experiments

3.4.1 Discrete MDPs

Figure 3.1 shows that mirror-descent TD converges more quickly with far smaller

Bellman errors than LARS-TD [Kolter and Ng, 2009] based policy iteration (LARS-

TD is used for policy evaluation) on a discrete “two-room” MDP [Mahadevan and

Maggioni, 2007]. The basis matrix Φ was automatically generated as 50 proto-value

functions by diagonalizing the graph Laplacian of the discrete state space connectiv-

ity graph[Mahadevan and Maggioni, 2007]. The figure also shows that Algorithm 5

(sparse mirror-descent TD) scales more gracefully than LARS-TD. Note LARS-TD

is unstable for γ = 0.9. It should be noted that the computation cost of LARS-TD is

O(ndk2), whereas that for Algorithm 5 is O(nd), where n is the number of samples,

d is the number of basis functions, and k is the number of active basis functions. If k

is linear or sublinear with respect to d, Algorithm 5 has a significant advantage over

LARS-TD.

Figure 3.2 compares the performance of mirror-descent Q-learning with a fixed p-

norm link function vs. a decaying p-norm link function for a 10 × 10 discrete grid

world domain with the goal state in the upper left-hand corner. Initially, p = O(log d)

where d is the number of features, and subsequently p is decayed to a minimum of

p = 2. Varying p-norm interpolates between additive and multiplicative updates.

Different values of p yield an interpolation between the truncated gradient method

[Langford et al., 2009] and SMIDAS [Shalev-Shwartz and Tewari, 2009]. Note that

when the p-norm link function is decayed, convergence is more rapid.
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Figure 3.3 illustrates the performance of Algorithm 6 on the two-room discrete grid

world navigation task.

3.4.2 Continuous MDPs

Figure 3.4 compares the performance of Q-learning vs. mirror-descent Q-learning for

the mountain car task, which converges more quickly to a better solution with much

lower variance. Figure 3.5 shows that mirror-descent Q-learning with learned diffusion

wavelet bases converges quickly on the 4-dimensional Acrobot task. We found in our

experiments that LARS-TD did not converge within 20 episodes (its curve, not shown

in Figure 3.4, would be flat on the vertical axis at 1000 steps).

Finally, we tested the mirror-descent approach on a more complex 8-dimensional

continuous MDP. The triple-link inverted pendulum [Si and Wang, 2001] is a highly

nonlinear time-variant under-actuated system, which is a standard benchmark testbed

in the control community. We base our simulation using the system parameters

described in [Si and Wang, 2001], except that the action space is discretized because

the algorithms described here are restricted to policies with discrete actions. There

are three actions, namely {0, 5Newton,−5Newton}. The state space is 8-dimensional,

consisting of the angles made to the horizontal of the three links in the arm as

well as their angular velocities, the position and velocity of the cart used to balance

the pendulum. The goal is to learn a policy that can balance the system with the

minimum number of episodes. A run is successful if it balances the inverted pendulum

for the specified number of steps within 300 episodes, resulting in a reward of 0.

Otherwise, this run is considered as a failure and yields a negative reward −1. The

first action is chosen randomly to push the pendulum away from the initial state.
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Two experiments were conducted on the triple-link pendulum domain with 20 runs

for each experiment. As Table 3.2 shows, Mirror Descent Q-learning can be used to

learn the policy with fewer episodes and usually with reduced variance compared with

regular Q-learning.

The experiment settings are Experiment 1: Zero initial state and the system receives

a reward 1 if it is able to balance 10,000 steps. Experiment 2: Zero initial state and

the system receives a reward 1 if it is able to balance 100,000 steps. Table 3.2 shows

the comparison result between regular Q-learning and Mirror Descent Q-learning.

# of Episodes\Experiment 1 2
Q-learning 6.1± 5.67 15.4± 11.33

Mirror Descent Q-learning 5.7± 9.70 11.8± 6.86

Table 3.2. Results on Triple-Link Inverted Pendulum Task

3.5 Summary

We proposed a novel framework for RL using mirror-descent online convex optimiza-

tion. Mirror Descent Q-learning demonstrates the following advantage over regular

Q learning: faster convergence rate and reduced variance due to larger stepsizes with

theoretical convergence guarantees [Nemirovski et al., 2009]. Compared with existing

sparse RL algorithms such as LARS-TD, Algorithm 2 has lower sample complexity

and lower computation cost, advantages accrued from the first-order mirror descent

framework combined with proximal mapping [Shalev-Shwartz and Tewari, 2011].
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Figure 3.1. Mirror-descent Q-learning converges significantly faster than LARS-TD
on a “two-room” grid world MDP for γ = 0.9 (top left) and γ = 0.8 (top right).
The y-axis measures the l2 (red curve) and l∞ (blue curve) norm difference between
successive weights during policy iteration. Bottom: running times for LARS-TD (blue
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CHAPTER 4

REGULARIZED OFF-POLICY TD LEARNING

In the previous chapter we proposed a (on-policy convergent) sparse TD algorithm.

Although TD converges when samples are drawn “on-policy” by sampling from the

Markov chain underlying a policy in a Markov decision process (MDP), it can be

shown to be divergent when samples are drawn “off-policy.”

In this chapter, the off-policy TD learning problem is formulated from the stochastic

optimization perspective. A novel objective function is proposed based on the linear

inverse problem formulation of the TD learning with correction [Sutton et al., 2009]

(TDC) algorithm. The optimization problem underlying off-policy TD methods, such

as TDC, is reformulated as a convex-concave saddle-point stochastic approximation

problem, which is both convex and incrementally solvable. A detailed theoretical and

experimental study of the regularized off-policy temporal difference learning (RO-TD)

algorithm is presented [Liu et al., 2012].

4.1 Introduction

4.1.1 Off-Policy Reinforcement Learning

Off-policy learning refers to learning about one way of behaving, called the target

policy, from sample sets that are generated by another policy of choosing actions,
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which is called the behavior policy, or exploratory policy. As pointed out in [Maei,

2011], the target policy is often a deterministic policy that approximates the opti-

mal policy, and the behavior policy is often stochastic, exploring all possible actions

in each state as part of finding the optimal policy. Learning the target policy from

the samples generated by the behavior policy allows a greater variety of exploration

strategies to be used. It also enables learning from training data generated by un-

related controllers, including manual human control, and from previously collected

data. Another reason for interest in off-policy learning is that it enables learning

about multiple target policies (e.g., optimal policies for multiple sub-goals) from a

single exploratory policy generated by a single behavior policy, which triggered an

interesting research area termed as “parallel RL.” Besides, off-policy methods are of

wider applications since they can be used to learn while executing an exploratory

policy, learn from demonstrations, and learn multiple tasks in parallel [Degris et al.,

2012]. Sutton et al. [2009] introduced convergent off-policy TD algorithms, such as

TDC, whose computation time scales linearly with the number of samples and the

number of features. Recently, a linear off-policy actor-critic algorithm based on the

same framework was proposed in Degris et al. [2012].

4.1.2 Convex-concave Saddle-point First-order Algorithms

The key novel contribution of this chapter is a convex-concave saddle-point formula-

tion for regularized off-policy TD learning. A convex-concave saddle-point problem

is formulated as follows. Let x ∈ X, y ∈ Y , where X, Y are both nonempty bounded

closed convex sets, and f(x) : X → R be a convex function. If there exists a function

ϕ(·, ·) such that f(x) can be represented as f(x) := supy∈Y ϕ(x, y), then the pair
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(ϕ, Y ) is referred as the saddle-point representation of f . The optimization problem

of minimizing f over X is converted into an equivalent convex-concave saddle-point

problem SadV al = infx∈Xsupy∈Y ϕ(x, y) of ϕ on X×Y . If f is non-smooth yet convex

and well structured, which is not suitable for many existing optimization approaches

requiring smoothness, its saddle-point representation ϕ is often smooth and convex.

Thus, convex-concave saddle-point problems are, therefore, usually better suited for

first-order methods [Juditsky and Nemirovski, 2011]. A comprehensive overview on

extending convex minimization to convex-concave saddle-point problems with uni-

fied variational inequalities is presented in [Ben-Tal and Nemirovski, 2005]. As an

example, consider f(x) = ||Ax− b||m which admits a bilinear minimax representation

f(x) := ‖Ax− b‖m = max
‖y‖n≤1

y>(Ax− b) (4.1)

where m,n are conjugate numbers. Using the approach in [Nemirovski et al., 2009],

Equation (4.1) can be solved as

xt+1 = xt − αtA>yt, yt+1 = Πn(yt + αt(Axt − b)) (4.2)

where Πn is the projection operator of y onto the unit ln-ball ‖y‖n ≤ 1,which is

defined as

Πn(y) = min(1, 1/‖y‖n)y, n = 2, 3, · · · ,Π∞(yi) = min(1, 1/|yi|)yi (4.3)

and Π∞ is an entrywise operator.
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4.2 Problem Formulation

Many TD algorithms can be reduced to solving a linear equation, i.e., a linear in-

verse problem [Ávila Pires and Szepesvári, 2012]. In this section, we first introduce

the linear inverse problem formulation of the GTD algorithm family, especially the

temporal difference with correction (TDC). Then based on the linear inverse problem

formulation, we introduce two types of objective functions, differing in un-squared

loss function and squared loss function.

4.2.1 Linear Inverse Problem Formulation

Now let’s review the concept of mean-square projected Bellman error (MSPBE), which

is the motivation of the linear inverse problem of TDC algorithm. MSPBE is defined

as
MSPBE(θ)

= ‖Φθ − ΠT (Φθ)‖2
Ξ

= (Φ>Ξ(TΦθ − Φθ))>(Φ>ΞΦ)−1Φ>Ξ(TΦθ − Φθ)

= E[δt(θ)φt]
>E[φtφ

>
t ]−1E[δt(θ)φt]

(4.4)

To avoid computing the inverse matrix (Φ>ΞΦ)−1 and to avoid the double sampling

problem [Sutton and Barto, 1998] in (4.4), an auxiliary variable w is defined

w = E[φtφ
>
t ]−1E[δt(θ)φt] = (Φ>ΞΦ)−1Φ>Ξ(TΦθ − Φθ) (4.5)

Thus we can have the following linear inverse problem

E[δt(θ)φt] = E[φtφ
>
t ]w = (Φ>ΞΦ)w = Φ>Ξ(TΦθ − Φθ) (4.6)
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By taking gradient with respect to θ for optimum condition ∇MSPBE(θ) = 0 and

utilizing Equation (4.5), we have

E[δt(θ)φt] = γE[φ′tφ
>
t ]w (4.7)

Rearranging the two equality of Equation (4.6,4.7), we have the following linear sys-

tem equation

 ηΦ>ΞΦ ηΦ>Ξ(Φ− γΦ′)

γΦ
′>

ΞΦ Φ>Ξ(Φ− γΦ′)


 w

θ

 =

 ηΦ>ΞR

Φ>ΞR

 (4.8)

The stochastic approximation version of the above equation is as follows, where

A = E[At], b = E[bt], x = [w; θ] (4.9)

At =

 ηφtφt
> ηφt(φt − γφ′t)>

γφ′tφt
> φt(φt − γφ′t)>

 , bt =

 ηrtφt

rtφt

 (4.10)

Following Sutton et al. [2009], the TDC algorithm solution follows from the linear

equation Ax = b, where a single iteration gradient update would be

xt+1 = xt − αt(Atxt − bt)

where xt = [wt; θt]. The two time-scale gradient descent learning method TDC [Sutton

et al., 2009] is

θt+1 = θt + αtδtφt − αtγφt′(φ>t wt), wt+1 = wt + βt(δt − φ>t wt)φt (4.11)
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where −αtγφt′(φ>t wt) is the term for correction of gradient descent direction, and

βt = ηαt, η > 1.

• Ξ is a diagonal matrix whose entries ξ(s) are given by a positive prob-
ability distribution over states. Π = Φ(Φ>ΞΦ)−1Φ>Ξ is the weighted
least-squares projection operator.

• A square root of A is a matrix B satisfying B2 = A and B is denoted
as A

1
2 . Note that A

1
2 may not be unique.

• [·, ·] is a row vector, and [·; ·] is a column vector.

• For the t-th sample, φt (the t-th row of Φ), φ′t (the t-th row of Φ′)
are the feature vectors corresponding to st, s′t, respectively. θt is the
coefficient vector for t-th sample in first-order TD learning methods,
and δt = (rt + γφ

′T
t θt) − φ>t θt is the temporal difference error. Also,

xt = [wt; θt], αt is a stepsize, βt = ηαt, η > 0.

• m,n are conjugate numbers if 1
m

+ 1
n

= 1,m ≥ 1, n ≥ 1. ||x||m =

(
∑

j |xj|m)
1
m is the m-norm of vector x.

• ρ is `1 regularization parameter, λ is the eligibility trace factor, n is
the sample size, d is the number of basis functions, k is the number
of active basis functions.

Figure 4.1. Notation and Definitions

4.2.2 Un-squared Loss Formulation

There are some issues regarding the objective function, which arise from the online

convex optimization and RL perspectives, respectively. The first concern is that the

objective function should be convex and stochastically solvable. Note that A,At are

neither PSD nor symmetric, and it is not straightforward to formulate a convex ob-
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jective function based on them. The second concern is that since we do not have

knowledge of A, the objective function should be separable so that it is stochasti-

cally solvable based on At, bt. The other concern regards the sampling condition in

temporal difference learning: double-sampling. As pointed out in [Sutton and Barto,

1998], double-sampling is a necessary condition to obtain an unbiased estimator if

the objective function is the Bellman residual or its derivatives (such as projected

Bellman residual), in which the product of Bellman error or projected Bellman error

metrics are involved. To overcome this sampling condition constraint, the product of

TD errors should be avoided in the computation of gradients. Consequently, based on

the linear equation formulation in (4.9) and the requirement on the objective function

discussed above, we propose a regularized loss function as

L(x) = ‖Ax− b‖m + h(x) (4.12)

Here we also enumerate some intuitive objective functions and give a brief analysis

on the reasons why they are not suitable for regularized off-policy first-order TD

learning. One intuitive idea is to add a sparsity penalty on MSPBE, i.e., L(θ) =

MSPBE(θ)+ρ‖θ‖1. Because of the `1 penalty term, the solution to ∇L = 0 does not

have an analytical form and is thus difficult to compute. The second intuition is to

use the online least squares formulation of the linear equation Ax = b. However,

since A is not symmetric and positive semi-definite (PSD), A
1
2 does not exist and

thus Ax = b cannot be reformulated as minx∈X ||A
1
2x− A− 1

2 b||22. Another possible

idea is to attempt to find an objective function whose gradient is exactly Atxt − bt
and thus the regularized gradient is proxαth(xt)(Atxt − bt). However, since At is not
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symmetric, this gradient does not explicitly correspond to any kind of optimization

problem, not to mention a convex one1.

4.2.3 Squared Loss Formulation

It is also worth noting that there exists another formulation of the loss function

different from Equation (4.12) with the following convex-concave formulation as in

[Nesterov, 2007; Juditsky and Nemirovski, 2011],

min
x

1

2
‖Ax− b‖2

2 + ρ‖x‖1 = max
‖A>y‖∞≤1

(b>y − ρ

2
y>y)

= min
x

max
‖u‖∞≤1,y

(
x>u+ y>(Ax− b)− ρ

2
y>y

)
(4.13)

Here we give the detailed deduction of formulation in Equation (4.13). First, using the

dual norm representation, the standard LASSO problem formulation is reformulated

as

f(x) =
1

2
‖Ax− b‖2

2 + ρ‖x‖1 = max
y,‖A>y‖∞≤1

[
〈b/ρ, y〉 − 1

2
y>y

]
(4.14)

Then2

1Note that the A matrix in GTD2’s linear equation representation is symmetric, yet is not PSD,
so it cannot be formulated as a convex problem.

2Let w = −y, then we have the same formulation as in Nemirovski’s tutorial in COLT2012.

Φ(x,w) = 〈w,Ax− b〉 − 1

2
w>w −

〈
x,A>w

〉

63



〈b, y〉 − 1
2
y>y = 〈b, y〉 − 1

2
y>y +

〈
x,A>y

〉
− 〈y, Ax〉

= 〈y, b− Ax〉 − 1
2
y>y +

〈
x,A>y

〉
which can be solved iteratively without the proximal gradient step as follows, which

serves as a counterpart of Equation (4.17),

xt+1 = xt − αtρ(ut + At
>yt) , yt+1 = yt +

αt
ρ

(Atxt − bt − ρyt)

ut+ 1
2

= ut +
αt
ρ
xt , ut+1 = Π∞(ut+ 1

2
) (4.15)

4.3 Algorithm Design

4.3.1 RO-TD Algorithm Design

In this section, the problem of (4.12) is formulated as a convex-concave saddle-point

problem, and the RO-TD algorithm is proposed. Analogous to (4.1), the regularized

loss function can be formulated as

‖Ax− b‖m + h(x) = max
‖y‖n≤1

y>(Ax− b) + h(x) (4.16)

Similar to (4.2), Equation (4.16) can be solved via an iteration procedure as follows,

where xt = [wt; θt].

xt+ 1
2

= xt − αtA>t yt , yt+ 1
2

= yt + αt(Atxt − bt)

xt+1 = proxαth(xt+ 1
2
) , yt+1 = Πn(yt+ 1

2
) (4.17)
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The averaging step, which plays a crucial role in stochastic optimization convergence,

generates the approximate saddle-points [Juditsky and Nemirovski, 2011; Nedic and

Ozdaglar, 2009]

x̄t =
(∑>

i=0
αi

)−1∑>

i=0
αixi, ȳt =

(∑>

i=0
αi

)−1∑>

i=0
αiyi (4.18)

Due to the computation of At in (4.17) at each iteration, the computation cost appears

to be O(nd2), where n, d are defined in Figure 4.1. However, the computation cost is

actually O(nd) with a linear algebraic trick by computing not At but y>t At, Atxt− bt.

Denoting yt = [y1,t; y2,t], where y1,t; y2,t are column vectors of equal length, we have

y>t At =

[
ηφ>t (y>1,tφt) + γφ>t (y>2,tφ

′
t) (φt − γφ′t)>(ηy>1,t + y>2,t)φt

]
(4.19)

Atxt − bt can be computed according to Equation (4.11) as follows:

Atxt − bt =

[
−η(δt − φ>t wt)φt; γ(φ>t wt)φt

′ − δtφt
]

(4.20)

Both (4.19) and (4.20) are of linear computational complexity. Now we are ready to

present the RO-TD algorithm:

There are some design details of the algorithm to be elaborated. First, the regular-

ization term h(x) can be any kind of convex regularization, such as ridge regression

or sparsity penalty ρ||x||1. In case of h(x) = ρ||x||1, proxαth(·) = Sαtρ(·). In real

applications the sparsification requirement on θ and auxiliary variable w may be dif-

ferent, i.e., h(x) = ρ1‖θ‖1 + ρ2‖w‖1, ρ1 6= ρ2, one can simply replace the uniform soft
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thresholding Sαtρ by two separate soft thresholding operations Sαtρ1 , Sαtρ2 and thus

the third equation in (4.17) is replaced by the following,

xt+ 1
2

=
[
wt+ 1

2
; θt+ 1

2

]
, θt+1 = Sαtρ1(θt+ 1

2
), wt+1 = Sαtρ2(wt+ 1

2
) (4.21)

Another concern is the choice of conjugate numbers (m,n). For ease of computing

Πn, we use (2, 2)(l2 fit), (+∞, 1)(uniform fit) or (1,+∞). m = n = 2 is used in the

experiments below.

Algorithm 7 RO-TD
Let π be some fixed policy of an MDP M , and let the sample set S = {si, ri, si′}Ni=1.
Let Φ be some fixed basis.

1. REPEAT

2. Compute φt, φt′ and TD error δt = (rt + γφ
′T
t θt)− φ>t θt

3. Compute y>
t
At, Atxt − bt in Equation (4.19) and (4.20).

4. Compute xt+1, yt+1 as in Equation (4.17)

5. Set t← t+ 1;

6. UNTIL t = N ;

7. Compute x̄N , ȳN as in Equation (4.18) with t = N .

4.3.2 RO-GQ(λ) Design

GQ(λ)[Maei and Sutton, 2010] is a generalization of the TDC algorithm with eli-

gibility traces and off-policy learning of temporally abstract predictions, where the

gradient update changes from Equation (4.11) to

θt+1 = θt + αt[δtet − γ(1− λ)wt
>etφ̄t+1], wt+1 = wt + βt(δtet − w>t φtφt) (4.22)
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The central element is to extend the MSPBE function to the case where it incor-

porates eligibility traces. The objective function and corresponding linear equation

component At, bt can be written as follows:

L(θ) = ||Φθ − ΠT πλΦθ||2Ξ (4.23)

At =

 ηφtφt
> ηet(φt − γφ̄t+1)

>

γ(1− λ)φ̄t+1e
>
t et(φt − γφ̄t+1)

>

 , bt =

 ηrtet

rtet

 (4.24)

Similar to Equation (4.19) and (4.20), the computation of y>
t
At, Atxt − bt is

y>
t
At =

[
ηφ>t (y>1,tφt) + γ(1− λ)e>t (y>2,tφ̄t+1) (φt − γφ̄t+1)>(ηy>1,t + y>2,t)et

]
Atxt − bt =

[
−η(δtet − φ>t wtφt); γ(1− λ)(e>t wt)φ̄t+1 − δtet

]
(4.25)

where eligibility traces et, and φ̄t, T πλ are defined in [Maei and Sutton, 2010]. Algo-

rithm 8, RO-GQ(λ), extends the RO-TD algorithm to include eligibility traces.

4.4 Theoretical Analysis

The theoretical analysis of RO-TD algorithm can be seen in the Appendix.

4.5 Empirical Results

We now demonstrate the effectiveness of the RO-TD algorithm against other algo-

rithms across a number of benchmark domains. LARS-TD [Kolter and Ng, 2009],
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Algorithm 8 RO-GQ(λ)
Let π and Φ be as defined in Algorithm 4. Starting from s0.

1. REPEAT

2. Compute φt, φ̄t+1 and TD error δt = (rt + γφ̄>t+1θt)− φ>t θt
3. Compute y>

t
At, Atxt − bt in Equation (4.25).

4. Compute xt+1, yt+1 as in Equation (4.17)

5. Choose action at, and get st+1

6. Set t← t+ 1;

7. UNTIL st is an absorbing state;

8. Compute x̄t, ȳt as in Equation (4.18)

which is a popular second-order sparse RL algorithm, is used as the baseline algo-

rithm for feature selection and TDC is used as the off-policy convergent RL baseline

algorithm, respectively.

4.5.1 MSPBE Minimization and Off-Policy Convergence

This experiment aims to show the minimization of MSPBE and off-policy convergence

of the RO-TD algorithm. The 7 state star MDP is a well-known counterexample where

TD diverges monotonically and TDC converges. It consists of 7 states and the reward

with respect to any transition is zero. Because of this, the star MDP is unsuitable

for LSTD-based algorithms, including LARS-TD since Φ>R = 0 always holds. The

random-walk problem is a standard Markov chain with 5 states and two absorbing

states at two ends. Three sets of different bases Φ are used in [Sutton et al., 2009],

which are tabular features, inverted features and dependent features respectively. An
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Figure 4.2. Illustrative examples of the convergence of RO-TD using the Star and
Random-walk MDPs.
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identical experiment setting to Sutton et al. [2009] is used for these two domains. The

regularization term h(x) is set to 0 to make a fair comparison with TD and TDC.

α = 0.01, η = 10 for TD, TDC and RO-TD. The comparison with TD, TDC and

RO-TD is shown in the left sub-figure of Figure 4.2, where TDC and RO-TD have

almost identical MSPBE over iterations. The middle sub-figure shows the value of

y>
t

(Axt − b) and ‖Axt − b‖2, in which ‖Axt − b‖2 is always greater than the value of

y>
t

(Axt−b). Note that for this problem, the Slater condition is satisfied so there is no

duality gap between the two curves. As the result shows, TDC and RO-TD perform

equally well, which illustrates the off-policy convergence of the RO-TD algorithm.

The result of random-walk chain is averaged over 50 runs. The rightmost sub-figure

of Figure 4.2 shows that RO-TD is able to reduce MSPBE over successive iterations

with respect to three different basis functions.

4.5.2 Feature Selection

In this section, we use the mountain car example with a variety of bases to show

the feature selection capability of RO-TD. The Mountain car is an optimal control

problem with a continuous two-dimensional state space. The steep discontinuity in

the value function makes learning difficult for bases with global support. To make a

fair comparison, we use the same basis function setting as in [Kolter and Ng, 2009],

where two-dimensional grids of 2, 4, 8, 16, 32 RBFs are used so that there are totally

1365 basis functions. For LARS-TD, 500 samples are used. For RO-TD and TDC,

3000 samples are used by executing 15 episodes with 200 steps for each episode,

stepsize αt = 0.001, and ρ1 = 0.01, ρ2 = 0.2. We use the result of LARS-TD and l2

LSTD reported in [Kolter and Ng, 2009]. As the result shows in Table 4.1, RO-TD is
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able to perform feature selection successfully, whereas TDC and TD failed. It is worth

noting that comparing the performance of RO-TD and LARS-TD is not the major

focus here, since LARS-TD is not convergent off-policy and RO-TD’s performance

can be further optimized using the mirror-descent approach with the Mirror-Prox

algorithm [Juditsky and Nemirovski, 2011] which incorporates mirror descent with

an extragradient [Korpelevich, 1976], as discussed below.

Algorithm LARS-TD RO-TD l2 LSTD TDC TD
Success(20/20) 100% 100% 0% 0% 0%

Steps 142.25± 9.74 147.40± 13.31 - - -

Table 4.1. Comparison of TD, LARS-TD, RO-TD, l2 LSTD, TDC and TD

Experiment\Method RO-GQ(λ) GQ(λ) LARS-TD
Experiment 1 6.9± 4.82 11.3± 9.58 -
Experiment 2 14.7± 10.70 27.2± 6.52 -

Table 4.2. Comparison of RO-GQ(λ), GQ(λ), and LARS-TD on Triple-Link In-
verted Pendulum Task

4.5.3 High-dimensional Under-actuated Systems

The triple-link inverted pendulum [Si and Wang, 2001] is a highly nonlinear under-

actuated system with 8-dimensional state space and discrete action space. The state

space consists of the angles and angular velocity of each arm as well as the position

and velocity of the car. The discrete action space is {0, 5Newton,−5Newton}. The

goal is to learn a policy that can balance the arms for Nx steps within some minimum

number of learning episodes. The allowed maximum number of episodes is 300. The

pendulum initiates from zero equilibrium state and the first action is randomly chosen
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to push the pendulum away from the initial state. We test the performance of RO-

GQ(λ), GQ(λ) and LARS-TD. Two experiments are conducted with Nx = 10, 000

and 100, 000, respectively. Fourier basis [Konidaris et al., 2011] with order 2 is used,

resulting in 6561 basis functions. Table 4.2 shows the results of this experiment,

where RO-GQ(λ) performs better than other approaches, especially in Experiment 2,

which is a harder task. LARS-TD failed in this domain, which is mainly not due to

LARS-TD itself but the quality of samples collected via random walk.

To sum up, RO-GQ(λ) tends to outperform GQ(λ) in all aspects, and is able to

outperform LARS-TD based policy iteration in high-dimensional domains, as well as

in selected smaller MDPs where LARS-TD diverges (e.g., the star MDP). It is worth

noting that the computation cost of LARS-TD is O(ndk2), where that for RO-TD is

O(nd). If k is linear or sublinear with respect to d, RO-TD has a significant advantage

over LARS-TD. However, compared with LARS-TD, RO-TD requires fine tuning the

parameters of αt, ρ1, ρ2 and is usually not as sample efficient as LARS-TD. We also

find that tuning the sparsity parameter ρ2 generates an interpolation between GQ(λ)

and Q-learning, where a large ρ2 helps eliminate the correction term of TDC update

and make the update direction more similar to the TD update.

4.6 Summary

In this chapter, we presented a novel unified framework for designing regularized off-

policy convergent RL algorithms combining a convex-concave saddle-point problem

formulation for RL with stochastic first-order methods. A detailed experimental

72



analysis reveals that the proposed RO-TD algorithm is both off-policy convergent

and robust to noisy features.

73



CHAPTER 5

FINITE-SAMPLE ANALYSIS OF PROXIMAL GRADIENT
TD ALGORITHMS

In this chapter, we show how gradient TD (GTD) methods can be formally derived

as true stochastic gradient algorithms [Liu et al., 2015], not with respect to their

original objective functions as previously attempted, but rather using derived primal-

dual saddle-point objective functions. We then conduct a saddle-point error analysis

to obtain finite-sample bounds on their performance. Previous analyses of this class

of algorithms use stochastic approximation techniques to prove asymptotic conver-

gence, and no finite-sample analysis had been successfully conducted. Two novel

GTD algorithms are also proposed, namely projected GTD2 and GTD2-MP, which

use proximal “mirror maps” to yield improved convergence guarantees and accelera-

tion, respectively. The results of our theoretical analysis imply that the GTD family

of algorithms are comparable and may indeed be preferred over existing least-squares

TD methods for off-policy learning, due to their linear complexity. We provide ex-

perimental results showing the improved performance of our accelerated gradient TD

methods.
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5.1 Introduction

Obtaining a true stochastic gradient temporal difference method has been a long-

standing goal of RL [Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998] ever

since it was discovered that the original TD method was unstable in many off-policy

scenarios where the target behavior being learned and the exploratory behavior pro-

ducing samples differ. Sutton et al. [2008, 2009] proposed the family of gradient-based

temporal difference (GTD) algorithms which offer several interesting properties. A

key property of this class of GTD algorithms is that they are asymptotically off-

policy convergent, which was shown using stochastic approximation [Borkar, 2008].

This is quite important when we notice that many RL algorithms, especially those

that are based on stochastic approximation, such as TD(λ), do not have convergence

guarantees in the off-policy setting.

Unfortunately, the aforementioned GTD algorithms are not true stochastic gradient

methods with respect to their original objective functions, as pointed out in [Szepesvári,

2010]. The reason is not surprising: the gradient of the objective functions used in-

volve products of terms, which cannot be sampled directly, and was decomposed by

a rather ad-hoc splitting of terms. In this chapter, we take a major step forward

in resolving this problem by showing a principled way of designing true stochastic

gradient TD algorithms by using a primal-dual saddle point objective function, de-

rived from the original objective functions, coupled with the principled use of operator

splitting [Bauschke and Combettes, 2011]. An appealing property of these algorithms

is their first-order computational complexity that allows them to scale more grace-

fully to high-dimensional problems, unlike the widely used least-squares TD (LSTD)

approaches [Bradtke and Barto, 1996] that only perform well with moderate-sized RL
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problems, due to their quadratic (with respect to the dimension of the feature space)

computational cost per iteration.

Finite-sample analysis of an algorithm is used to give a full characterization of the

performance of the algorithm when only a finite number of samples is available (which

is the most common situation in practice). Compared with asymptotic analysis, a

finite-sample analysis of a policy evaluation algorithm has a number of important

advantages: 1) unlike the assumptions made in the asymptotic analysis of a policy

evaluation algorithm, where they assume that algorithm always returns a solution,

in a finite-sample analysis we study the characteristics of the actual empirical perfor-

mance of the algorithm’s solution, including its existence, 2) a finite-sample bound

explicitly reveals how the prediction error of the algorithm is related to the character-

istic parameters of the MDP at hand, such as the discount factor, the dimensionality

of the function space, and the number of samples, 3) once this dependency is clear,

the bound can be used to determine the order of magnitude of the number of samples

needed to achieve a desired accuracy.

Since in real-world applications of RL, we have access to only a finite amount of data,

finite-sample analysis of gradient TD algorithms is essential as it clearly shows the

effect of the number of samples (and the parameters that play a role in the sampling

budget of the algorithm) on their final performance. However, most of the work on

finite-sample analysis in RL has been focused on batch RL (or approximate dynamic

programming) algorithms (e.g., Kakade and Langford 2002; Munos and Szepesvári

2008; Antos et al. 2008; Lazaric et al. 2010a), especially those that are least squares

TD (LSTD)-based (e.g., Lazaric et al. 2010b; Ghavamzadeh et al. 2010, 2011; Lazaric

et al. 2012), and more importantly restricted to the on-policy setting. In this chapter,
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we provide the finite-sample analysis of the GTD family of algorithms, a relatively

novel class of gradient-based TD methods that are guaranteed to converge even in

the off-policy setting, and for which, to the best of our knowledge, no finite-sample

analysis has been reported. This analysis is challenging because 1) the stochastic

approximation methods that have been used to prove the asymptotic convergence

of these algorithms do not address convergence rate analysis; 2) as we explain in

detail in Section 5.2.1, the techniques used for the analysis of the stochastic gradient

methods cannot be applied here; 3) finally, the difficulty of finite-sample analysis in

the off-policy setting. It should also be noted that there exists very little literature on

finite-sample analysis in the off-policy setting, even for the LSTD-based algorithms

that have been extensively studied.

The major contributions of this chapter include

• the first finite-sample analyses of TD algorithms with linear computational com-

plexity, which is also one of the first few finite-sample analyses of off-policy

convergent TD algorithms.

• a novel framework for designing gradient-based TD algorithms with Bellman

Error based objective functions, as well as the design and analysis of several

improved GTD methods that result from our novel approach of formulating

gradient TD methods as true stochastic gradient algorithms with respect to a

saddle-point objective function.

We then use the techniques applied in the analysis of the stochastic gradient methods

to propose a unified finite-sample analysis for the previously proposed as well as our

novel gradient TD algorithms. Finally, given the results of our analysis, we study the
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GTD class of algorithms from several different perspectives, including acceleration

in convergence, learning with biased importance sampling factors, etc. It should be

noted that the developed algorithms are all for the policy evaluation of a fixed policy.

The control learning extension of these algorithm can be conducted in a similar way

as the Greedy-GQ algorithm [Maei and Sutton, 2010].

5.2 Preliminaries

In this section, we introduce some preliminaries of gradient-based TD learning, and

related work along this direction.

5.2.1 Gradient-based TD Algorithms

The class of gradient-based TD (GTD) algorithms was proposed by Sutton et al. [2008,

2009]. These algorithms target two objective functions: the norm of the expected TD

update (NEU) and the mean-square projected Bellman error (MSPBE), defined as

(see e.g., Maei 2011)1

NEU(θ) = ||Φ>Ξ(T v̂ − v̂)||2 , (5.1)

MSPBE(θ) = ||v̂ −ΠT v̂||2Ξ = ||Φ>Ξ(T v̂ − v̂)||2C−1 , (5.2)

where C = E[φiφ
>
i ] = Φ>ΞΦ is the covariance matrix defined in Eq. 2.3 and is assumed

to be non-singular, and Π = Φ(Φ>ΞΦ)−1Φ>Ξ is the orthogonal projection operator

onto the function space F , i.e., for any bounded function g, Πg = arg minf∈F ||g−f ||Ξ.

1It is important to note that T in (5.1) and (5.2) is Tπ, the Bellman operator of the target policy
π.
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From (5.1) and (5.2), it is clear that NEU and MSPBE are squared unweighted and

weighted by C−1, `2-norms of the quantity Φ>Ξ(T v̂ − v̂), respectively, and thus, the

two objective functions can be unified as

J(θ) = ||Φ>Ξ(T v̂ − v̂)||2M−1 = ||E[ρiδi(θ)φi]||2M−1 , (5.3)

with M equals to the identity matrix I for NEU and to the covariance matrix C

for MSPBE. The second equality in (5.3) holds because of the following lemma from

Section 4.2 in [Maei, 2011].

We denote by πb, the behavior policy that generates the data, and by π, the target

policy that we would like to evaluate. They are the same in the on-policy setting

and different in the off-policy setting. For each state-action pair (si, ai), such that

πb(ai|si) > 0, we define the importance-weighting factor ρi = π(ai|si)/πb(ai|si) with

ρmax ≥ 0 being its maximum value over the state-action pairs.

Finally, we define the matrices A, and the vector b as

A := E
[
ρiφi(∆φi)

>], b := E [ρiφiri] (5.4)

where the expectations are with respect to ξ and P πb . We also denote by Ξ, the

diagonal matrix whose elements are ξ(s), and ξmax := maxsξ(s). For each sample i

in the training set D, we can calculate unbiased estimates of A, b, and C as follows:

Âi := ρiφi∆φ
>
i , b̂i := ρiriφi, Ĉi := φiφ

>
i . (5.5)
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Note that compared with the previous definitions of A, b, Âi, b̂i, the definitions of

A, b, Âi, b̂i include the importance-weighting factor ρi.

Lemma 6. (Importance-weighting for off-policy TD) Let D =
{(
si, ai, ri, s

′
i

)}n
i=1
, si ∼

ξ, ai ∼ πb(·|si), s′i ∼ P (·|si, ai) be a training set generated by the behavior policy πb

and T be the Bellman operator of the target policy π. Then, we have

Φ>Ξ(T v̂ − v̂) = E
[
ρiδi(θ)φi

]
= b− Aθ.

Proof. We give a proof sketch here. Refer to Section 4.2 in [Maei, 2011] for a detailed

proof.

Φ>Ξ(T v̂ − v̂)

=
∑
s,a,s′

ξ(s)π(a|s)P (s′|s, a)δ(θ|s, a, s′)φ(s)

=
∑
s,a,s′

ξ(s)
π(a|s)
πb(a|s)

πb(a|s)P (s′|s, a)δ(θ|s, a, s′)φ(s)

=
∑
s,a,s′

ξ(s)ρ(s, a)πb(a|s)P (s′|s, a)δ(θ|s, a, s′)φ(s)

= E[ρtδt(θ)φt]

= b− Aθ

Motivated by minimizing the NEU and MSPBE objective functions using the stochas-

tic gradient methods, the GTD and GTD2 algorithms were proposed with the follow-

ing update rules:
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GTD: yt+1 = yt + αt
(
ρtδt(θt)φt − yt

)
, (5.6)

θt+1 = θt + αtρt∆φt(y
>
t φt),

GTD2: yt+1 = yt + αt
(
ρtδt(θt)− φ>t yt

)
φt, (5.7)

θt+1 = θt + αtρt∆φt(y
>
t φt).

However, it has been shown that the above update rules do not update the value

function parameter θ in the gradient direction of NEU and MSPBE, and thus, NEU

and MSPBE are not the true objective functions of the GTD and GTD2 algo-

rithms [Szepesvári, 2010]. Consider the NEU objective function in (5.1). Taking

its gradient with respect to θ, we obtain

−1

2
∇NEU(θ) = −

(
∇E
[
ρiδi(θ)φ

>
i

])
E
[
ρiδi(θ)φi

]
= −

(
E
[
ρi∇δi(θ)φ>i

])
E
[
ρiδi(θ)φi

]
= E

[
ρi∆φiφ

>
i

]
E
[
ρiδi(θ)φi

]
. (5.8)

If the gradient can be written as a single expectation, then it is straightforward to

use a stochastic gradient method. However, we have a product of two expectations

in (5.8), and unfortunately, due to the correlation between them, the sample product

(with a single sample) won’t be an unbiased estimate of the gradient. To tackle this,

the GTD algorithm uses an auxiliary variable yt to estimate E
[
ρiδi(θ)φi

]
, and thus,

the overall algorithm is no longer a true stochastic gradient method with respect to

NEU. It can be easily shown that the same problem exists for GTD2 with respect to
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the MSPBE objective function. This prevents us from using the standard convergence

analysis techniques of stochastic gradient descent methods to obtain a finite-sample

performance bound for the GTD and GTD2 algorithms.

It should be also noted that in the original publications of GTD/GTD2 algorithms [Sut-

ton et al., 2008, 2009], the authors discussed handling the off-policy scenario using

both importance and rejection sampling. In rejection sampling, which was mainly

used in [Sutton et al., 2008, 2009], a sample (si, ai, ri, s
′
i) is rejected and the parame-

ter θ is not updated if π(ai|si) = 0. This sampling strategy is not efficient since a lot

of samples will be discarded if πb and π are very different.

5.2.2 Related Work

Before we present a finite-sample performance bound for GTD and GTD2, it is helpful

to give a brief overview of the existing literature on finite-sample analysis of the TD

algorithms. The convergence rate of the TD algorithms mainly depends on (d, n, ν),

where d is the size of the approximation space (the dimension of the feature vector),

n is the number of samples, and ν is the smallest eigenvalue of the sample-based

covariance matrix Ĉ = Φ̂>Φ̂, i.e., ν = λmin(Ĉ).

Antos et al. [2008] proved an error bound ofO(d log d
n1/4 ) for LSTD in bounded spaces. Lazaric

et al. [2010b] proposed a LSTD analysis in learner spaces and obtained a tighter bound

of O(
√

d log d
nν

) and later used it to derive a bound for the least-squares policy iteration

(LSPI) algorithm [Lazaric et al., 2012]. Tagorti and Scherrer [2014] recently proposed

the first convergence analysis for LSTD(λ) and derived a bound of Õ(d/ν
√
n). The

analysis is a bit different than the one in [Lazaric et al., 2010b] and the bound is

weaker in terms of d and ν. Another recent result is by Prashanth et al. [2014] that
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uses stochastic approximation to solve LSTD(0), where the resulting algorithm is

exactly TD(0) with random sampling (samples are drawn i.i.d. and not from a trajec-

tory), and report a Markov design bound (the bound is computed only at the states

used by the algorithm) of O(
√

d
nν

) for LSTD(0). All these results are for the on-

policy setting, except the one by Antos et al. [2008] that also holds for the off-policy

formulation. Another result in the off-policy setting is by Ávila Pires and Szepesvári

[2012] that uses a bounding trick and improves the result of Antos et al. [2008] by

a log d factor. Another line of work is by Yu [2012], which provides error bounds

of LSTD algorithms for a wide range of problems including the scenario that ||A||Ξ
is unbounded, which is beyond the scope of the aforementioned literature and this

thesis.

The line of research reported here has much in common with work on proximal RL

[Mahadevan et al., 2014], which explores first-order RL algorithms using mirror maps

[Bubeck, 2014; Juditsky et al., 2008] to construct primal-dual spaces. This work

began originally with a dual space formulation of first-order sparse TD learning [Ma-

hadevan and Liu, 2012]. A saddle point formulation for off-policy TD learning was

initially explored in [Liu et al., 2012], where the objective function is the norm of the

approximation residual of a linear inverse problem [Ávila Pires and Szepesvári, 2012].

A sparse off-policy GTD2 algorithm with regularized dual averaging is introduced

by Qin and Li [2014]. These studies provide different approaches to formulating the

problem 1) as a variational inequality problem [Juditsky et al., 2008; Mahadevan et

al., 2014], 2) as a linear inverse problem [Liu et al., 2012], or 3) as a quadratic ob-

jective function (MSPBE) using two-time-scale solvers [Qin and Li, 2014]. In this

chapter, we explore the true nature of the GTD algorithms as stochastic gradient
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algorithms with respect to the convex-concave saddle-point formulations of NEU and

MSPBE.

5.3 Saddle-point Formulation Of GTD Algorithms

In this section, we show how the GTD and GTD2 algorithms can be formulated as

true stochastic gradient (SG) algorithms by writing their respective objective func-

tions, NEU and MSPBE, in the form of a convex-concave saddle-point. As discussed

earlier, this new formulation of GTD and GTD2 as true SG methods allows us to use

the convergence analysis techniques for SGs in order to derive finite-sample perfor-

mance bounds for these RL algorithms. Moreover, it allows us to use more efficient

algorithms that have been recently developed to solve SG problems, such as stochastic

Mirror-Prox (SMP) [Juditsky et al., 2008], to derive more efficient versions of GTD

and GTD2.

A particular type of convex-concave saddle-point formulation is formally defined as

min
θ

max
y

(
L(θ, y) = 〈b− Aθ, y〉+ F (θ)−K(y)

)
, (5.9)

where F (θ) is a convex function and K(y) is a smooth convex function such that

K(y)−K(x)− 〈∇K(x), y − x〉 ≤ LK
2
||x− y||2. (5.10)

Next we follow Juditsky et al. [2008]; Nemirovski et al. [2009]; Chen et al. [2013] and

define the following error function for the saddle-point problem (5.9).
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Definition 12. The error function of the saddle-point problem (5.9) at each point

(θ′, y′) is defined as

Err(θ′, y′) = max
y

L(θ′, y)−min
θ

L(θ, y′). (5.11)

In this chapter, we consider the saddle-point problem (5.9) with F (θ) = 0 andK(y) =

1
2
||y||2M , i.e.,

min
θ

max
y

(
L(θ, y) = 〈b− Aθ, y〉 − 1

2
||y||2M

)
, (5.12)

where A and b were defined by Eq. 5.4, and M is a positive definite matrix. It is easy

to show that K(y) = 1
2
||y||2M satisfies the condition in Eq. 5.10.

We first show in Proposition 1 that if (θ∗, y∗) is the saddle-point of problem (5.12),

then θ∗ will be the optimum of NEU and MSPBE defined in Eq. 5.3. We then prove

in Proposition 2 that GTD and GTD2 in fact find this saddle-point.

Proposition 1. For any fixed θ, we have 1
2
J(θ) = maxy L(θ, y), where J(θ) is defined

by Eq. 5.3.

Proof. Since L(θ, y) is an unconstrained quadratic program with respect to y, the

optimal y∗(θ) = arg maxy L(θ, y) can be analytically computed as

y∗(θ) = M−1(b− Aθ). (5.13)

The result follows by plugging y∗ into (5.12) and using the definition of J(θ) in Eq. 5.3

and Lemma 6.
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Proposition 2. GTD and GTD2 are true stochastic gradient algorithms with respect

to the objective function L(θ, y) of the saddle-point problem (5.12) with M = I and

M = C = Φ>ΞΦ (the covariance matrix), respectively.

Proof. It is easy to see that the gradient updates of the saddle-point problem (5.12)

(ascending in y and descending in θ) may be written as

yt+1 = yt + αt (b− Aθt −Myt) , (5.14)

θt+1 = θt + αtA
>yt.

We denote M̂ := 1 (respectively M̂ := Ĉ) for GTD (respectively GTD2). We may

obtain the update rules of GTD and GTD2 by replacing A, b, and C in (5.14) with

their unbiased estimates Â, b̂, and Ĉ from Eq. 5.5, which completes the proof.

5.4 Finite-sample Analysis

In this section, we provide a finite-sample analysis for a revised version of the GTD/GTD2

algorithms. We first describe the revised GTD algorithms in Section 5.4.1 and then

dedicate the rest of Section 5.4 to their sample analysis. Note that from now on we

use the M matrix (and its unbiased estimate M̂t) to have a unified analysis for GTD

and GTD2 algorithms. As described earlier, M is replaced by the identity matrix I

in GTD and by the co-variance matrix C (and its unbiased estimate Ĉt) in GTD2.
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5.4.1 The Revised GTD Algorithms

The revised GTD algorithms that we analyze in this chapter (see Algorithm 9) have

three differences with the standard GTD algorithms of Eqs. 5.6 and 5.7 (and Eq. 5.14).

• We guarantee that the parameters θ and y remain bounded by projecting them

onto bounded convex feasible sets Θ and Y defined in Assumption 13. In Algo-

rithm 9, we denote by ΠΘ and ΠY , the projection onto sets Θ and Y , respec-

tively. This is standard in stochastic approximation algorithms and has been

used in off-policy TD(λ) [Yu, 2012] and actor-critic algorithms (e.g., Bhatnagar

et al. 2009).

• After n iterations (n is the number of training samples in D), the algorithms

return the weighted (by the step size) average of the parameters at all the n

iterations (see Eq. 5.16).

• The step-size αt is selected as described in the proof of Proposition 3 in the

supplementary material. Note that this fixed step size of O(1/
√
n) is required

for the high-probability bound in Proposition 3 (see Nemirovski et al. 2009 for

more details).

5.4.2 Assumptions

In this section, we make several assumptions on the MDP and basis functions that

are used in our finite-sample analysis of the revised GTD algorithms. These assump-

tions are quite standard and are similar to those made in the prior work on GTD

algorithms [Sutton et al., 2008, 2009; Maei, 2011] and those made in the analysis of

SG algorithms [Nemirovski et al., 2009].
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Algorithm 9 Revised GTD Algorithms
1: for t = 1, . . . , n do
2: Update parameters

yt+1 = ΠY

(
yt + αt(b̂t − Âtθt − M̂tyt)

)
θt+1 = ΠΘ

(
θt + αtÂ

>
t yt

)
(5.15)

3: end for
4: OUTPUT

θ̄n :=

∑n
t=1 αtθt∑n
t=1 αt

, ȳn :=

∑n
t=1 αtyt∑n
t=1 αt

(5.16)

Assumption 13. (Feasibility Sets) We define the bounded closed convex sets Θ ⊂

Rd and Y ⊂ Rd as the feasible sets in Algorithm 9. We further assume that the saddle-

point (θ∗, y∗) of the optimization problem (5.12) belongs to Θ × Y . We also define

Dθ :=
[

maxθ∈Θ ||θ||22−minθ∈Θ ||θ||22
]1/2, Dy :=

[
maxy∈Y ||y||22−miny∈Y ||y||22

]1/2, and
R = max

{
maxθ∈Θ ||θ||2,maxy∈Y ||y||2

}
.

Assumption 14. (Non-singularity) We assume that the covariance matrix C =

E[φiφ
>
i ] and matrix A = E

[
ρiφi(∆φi)

>] are non-singular.

Assumption 15. (Boundedness) We assume the features (φi, φ
′
i) have uniformly

bounded second moments. This together with the boundedness of features (by L) and

importance weights (by ρmax) guarantees that the matrices A and C, and vector b are

uniformly bounded.

This assumption guarantees that for any (θ, y) ∈ Θ × Y , the unbiased estimators of

b− Aθ −My and A>y, i.e.,

88



E[b̂t − Âtθ − M̂ty] = b− Aθ −My,

E[Â>t y] = A>y, (5.17)

all have bounded variance, i.e.,

E
[
||b̂t − Âtθ − M̂ty − (b− Aθ −My)||2

]
≤ σ2

1,

E
[
||Â>t y − A>y||2

]
≤ σ2

2, (5.18)

where σ1 and σ2 are non-negative constants. We further define

σ2 = σ2
1 + σ2

2. (5.19)

Assumption 15 also gives us the following “light-tail” assumption. There exist con-

stants M∗,θ and M∗,y such that

E[exp{||b̂t − Âtθ − M̂ty||2
M2
∗,θ

}] ≤ exp{1},

E[exp{||Â
>
t y||2
M2
∗,y

}] ≤ exp{1}. (5.20)

This “light-tail” assumption is equivalent to the assumption in Eq. 3.16 in [Nemirovski

et al., 2009] and is necessary for the high-probability bound of Proposition 3. We show

how to compute M∗,θ,M∗,y in the Appendix.

89



5.4.3 Finite-Sample Performance Bounds

The finite-sample performance bounds that we derive for the GTD algorithms in this

section are for the case that the training set D has been generated as discussed in

Section 5.2. We further discriminate between the on-policy (π = πb) and off-policy

(π 6= πb) scenarios. The sampling scheme used to generate D, in which the first

state of each tuple, si, is an i.i.d. sample from a distribution ξ, also considered in the

original GTD and GTD2 papers is for the analysis of these algorithms, and not used

in the experiments [Sutton et al., 2008, 2009]. Another scenario that can motivate

this sampling scheme is when we are given a set of high-dimensional data generated

either in an on-policy or off-policy manner, and d is so large that the value function

of the target policy cannot be computed using a least-squares method (that involves

matrix inversion), and iterative techniques similar to GTD/GTD2 are required.

We first derive a high-probability bound on the error function of the saddle-point

problem (5.12) at the GTD solution (θ̄n, ȳn). Before stating this result in Proposi-

tion 3, we report the following lemma that is used in its proof.

Lemma 7. The induced `2-norm of matrix A and the `2-norm of vector b are bounded

by

||A||2 ≤ (1 + γ)ρmaxL
2d, ||b||2 ≤ ρmaxLRmax. (5.21)

Proof. See the supplementary material in the Appendix.

Proposition 3. Let (θ̄n, ȳn) be the output of the GTD algorithm after n iterations

(see Eq. 5.16). Then, with probability at least 1− δ, we have
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Err(θ̄n, ȳn) ≤
√

5

n
(8 + 2 log

2

δ
)R2 (5.22)

×
(
ρmaxL

(
2(1 + γ)Ld+

Rmax

R

)
+ τ +

σ

R

)
,

where Err(θ̄n, ȳn) is the error function of the saddle-point problem (5.12) defined by

Eq. 5.11, R is defined in Assumption 13, σ is from Eq. 5.19, and τ = σmax(M) is

the largest singular value of M , which means τ = 1 for GTD and τ = σmax(C) for

GTD2.

Proof. See the supplementary material.

Theorem 1. Let θ̄n be the output of the GTD algorithm after n iterations (see

Eq. 5.16). Then, with probability at least 1− δ, we have

1

2
||Aθ̄n − b||2Ξ ≤ τξmax Err(θ̄n, ȳn). (5.23)

Proof. From Proposition 1, for any θ, we have

max
y

L(θ, y) =
1

2
||Aθ − b||2M−1 .

Given Assumption 14, the system of linear equations Aθ = b has a solution θ∗, i.e.,

the (off-policy) fixed-point θ∗ exists, and thus, we may write

min
θ

max
y

L(θ, y) = min
θ

1

2
||Aθ − b||2M−1 (5.24)

=
1

2
||Aθ∗ − b||2M−1 = 0. (5.25)
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In this case, we also have2

min
θ

L(θ, y) ≤ max
y

min
θ

L(θ, y) ≤ min
θ

max
y

L(θ, y)

=
1

2
||Aθ∗ − b||2M−1 = 0. (5.26)

From Eq. 5.26, for any (θ, y) ∈ Θ× Y including (θ̄n, ȳn), we may write

Err(θ̄n, ȳn) = max
y

L(θ̄n, y)−min
θ

L(θ, ȳn) (5.27)

≥ max
y

L(θ̄n, y) =
1

2
||Aθ̄n − b||2M−1 .

Since ||Aθ̄n − b||2Ξ ≤ τξmax ||Aθ̄n − b||2M−1 , where τ is the largest singular value of M ,

we have
1

2
||Aθ̄n − b||2Ξ ≤

τξmax

2
||Aθ̄n − b||2M−1 ≤ τξmax Err(θ̄n, ȳn). (5.28)

The proof follows by combining Eqs. 5.28 and Proposition 3. It completes the proof.

With the results of Proposition 3 and Theorem 1, we are now ready to derive finite-

sample bounds on the performance of GTD/GTD2 in both on-policy and off-policy

settings.

5.4.3.1 On-Policy Performance Bound

In this section, we consider the on-policy setting in which the behavior and target

policies are equal, i.e., πb = π, and the sampling distribution ξ is the stationary

2We may write the second inequality as an equality for our saddle-point problem defined by
Eq. 5.12.
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distribution of the target policy π (and the behavior policy πb). We use Lemma 8 to

derive our on-policy bound. The proof of this lemma can be found in [Geist et al.,

2012].

Lemma 8. For any parameter vector θ and corresponding v̂ = Φθ, the following

equality holds

V − v̂ = (I − γΠP )−1
[
(V −ΠV ) + ΦC−1(b−Aθ)

]
. (5.29)

Using Lemma 8, we derive the following performance bound for GTD/GTD2 in the

on-policy setting.

Proposition 4. Let V be the value of the target policy and v̄n = Φθ̄n, where θ̄n

defined by (5.16), be the value function returned by on-policy GTD/GTD2. Then,

with probability at least 1− δ, we have

||V − v̄n||Ξ ≤
1

1− γ

(
||V −ΠV ||Ξ +

L

ν

√
2dτξmaxErr(θ̄n, ȳn)

)
(5.30)

where Err(θ̄n, ȳn) is upper-bounded by Eq. 5.22 in Proposition 3, with ρmax = 1 (on-

policy setting).

Proof. See the supplementary material.

Remark: It is important to note that Proposition 4 shows that the error in the perfor-

mance of the GTD/GTD2 algorithm in the on-policy setting is of O
(
L2d
√
τξmax log 1

δ

n1/4ν

)
.

Also note that the term τ
ν
in the GTD2 bound is the conditioning number of the co-

variance matrix C.
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5.4.3.2 Off-Policy Performance Bound

In this section, we consider the off-policy setting in which the behavior and target

policies are different, i.e., πb 6= π, and the sampling distribution ξ is the stationary

distribution of the behavior policy πb. We assume that off-policy fixed-point solution

exists, i.e., there exists a θ∗ satisfying Aθ∗ = b. Note that this is a direct consequence

of Assumption 14 in which we assumed that the matrix A in the off-policy setting

is non-singular. We use Lemma 9 to derive our off-policy bound. The proof of this

lemma can be found in [Kolter, 2011]. Note that κ(D̄) in his proof is equal to √ρmax

in this thesis.

Lemma 9. If Ξ satisfies the following linear matrix inequality

 Φ>ΞΦ Φ>ΞPΦ

Φ>P>ΞΦ Φ>ΞΦ

 � 0 (5.31)

and let θ∗ be the solution to Aθ∗ = b, then

||V − Φθ∗||Ξ ≤
1 + γ

√
ρmax

1− γ ||V − ΠV ||Ξ. (5.32)

Note that the condition on Ξ in Eq. 5.31 guarantees that the behavior and target

policies are not too far away from each other. Using Lemma 9, we derive the following

performance bound for GTD/GTD2 in the off-policy setting.

Proposition 5. Let V be the value of the target policy and v̄n = Φθ̄n, where θ̄n is

defined by (5.16), be the value function returned by off-policy GTD/GTD2. Also let
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the sampling distribution Ξ satisfy the condition in Eq. 5.31. Then, with probability

at least 1− δ, we have

||V − v̄n||Ξ ≤
1 + γ

√
ρmax

1− γ ||V − ΠV ||Ξ (5.33)

+

√
2τCτξmax

σmin(A>M−1A)
Err(θ̄n, ȳn),

where τC = σmax(C).

Proof. See the supplementary material.

5.4.4 Accelerated Algorithm

As discussed at the beginning of Section 5.3, this saddle-point formulation not only

gives us the opportunity to use the techniques for the analysis of SG methods to derive

finite-sample performance bounds for the GTD algorithms, as we show in Section 5.4,

but it also allows us to use the powerful algorithms that have been recently developed

to solve the SG problems and derive more efficient versions of GTD and GTD2.

Stochastic Mirror-Prox (SMP) [Juditsky et al., 2008] is an “almost dimension-free”

non-Euclidean extragradien method that deals with both smooth and non-smooth

stochastic optimization problems (see Juditsky and Nemirovski 2011 and Bubeck

2014 for more details). Using SMP, we propose a new version of GTD/GTD2, called

GTD-MP/GTD2-MP, with the following update formula:3

3For simplicity, we only describe Mirror-Prox GTD methods where the mirror map is identity,
which can also be viewed as extragradient (EG) GTD methods. Mahadevan et al. [2014] gives a
more detailed discussion of a broad range of mirror maps in RL.
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Algorithm 10 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

δt = rt − θ>t ∆φt

ymt = yt + αt(ρtδt − φ>t yt)φt
θmt = θt + αtρt∆φt(φ

>
t yt)

δmt = rt − (θmt )>∆φt

yt+1 = yt + αt(ρtδ
m
t − φ>t ymt )φt

θt+1 = θt + αtρt∆φt(φ
>
t y

m
t )

3: end for
4: OUTPUT

θ̄n :=

∑n
t=1 αtθt∑n
t=1 αt

, ȳn :=

∑n
t=1 αtyt∑n
t=1 αt

(5.36)

ymt = yt + αt(b̂t − Âtθt − M̂tyt), θmt = θt + αtÂ
T
t yt, (5.34)

yt+1 = yt + αt(b̂t − Âtθmt − M̂ty
m
t ), θt+1 = θt + αtÂ

T
t y

m
t . (5.35)

After T iterations, these algorithms return θ̄T :=
∑>
t=1 αtθt∑>
t=1 αt

and ȳT :=
∑T
t=1 αtyt∑T
t=1 αt

. The

details of the algorithm is shown in Algorithm 10, and the experimental comparison

study between GTD2 and GTD2-MP is reported in Section 5.7.
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5.5 Further Analysis

5.5.1 Acceleration Analysis

In this section, we discuss the convergence rate of the accelerated algorithms using

off-the-shelf accelerated solvers for saddle-point problems. For simplicity, we discuss

the error bound of 1
2
||Aθ− b||2M−1 , and the corresponding error bound of 1

2
||Aθ− b||2Ξ

and ‖V − v̄n||Ξ can be likewise derived. As can be seen from the above analysis, the

convergence rate of the GTD algorithms family is

(GTD/GTD2) : O

(
τ + ||A||2 + σ√

n

)
(5.37)

In this section, we raise an interesting question: what is the “optimal" GTD algo-

rithm? To answer this question, we review the convex-concave formulation of GTD2.

According to convex programming complexity theory [Juditsky et al., 2008], the un-

improvable convergence rate of the stochastic saddle-point problem (5.12) is

(Optimal) : O

(
τ

n2
+
||A||2
n

+
σ√
n

)
(5.38)

There are many readily available stochastic saddle-point solvers, such as the stochastic

Mirror-Prox (SMP) [Juditsky et al., 2008] algorithm, which leads to our proposed

GTD2-MP algorithm. SMP is able to accelerate the convergence rate of our gradient

TD method to:

(GTD2−MP) : O

(
τ + ||A||2

n
+

σ√
n

)
. (5.39)

The stochastic accelerated primal-dual (SAPD) method [Chen et al., 2013] can the-

oretically accelerate our GTD to the optimal convergence rate. (5.38). Due to space
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limitations, we are unable to present a more complete description, and refer interested

readers to Juditsky et al. [2008]; Chen et al. [2013] for more details.

5.5.2 Learning With Biased ρt

The importance weight factor ρt is lower bounded by 0, but yet may have an arbi-

trarily large upper bound. In real applications, the importance weight factor ρt may

not be estimated exactly, i.e., the estimation ρ̂t is a biased estimation of the true

ρt. The stochastic gradient we obtained is not the unbiased gradient of L(θ, y) any-

more. This falls into a broad category of learning with inexact stochastic gradient, or

termed stochastic gradient methods with an inexact oracle [Devolder, 2011]. Given

the inexact stochastic gradient, the convergence rate and performance bound become

much worse than the results with exact stochastic gradient. Based on the analysis by

Juditsky et al. [2008], we have the error bound for inexact estimation of ρt.

Proposition 6. Let θ̄n be defined as above. Assume at the t-th iteration, ρ̂t is the

estimation of the importance weight factor ρt with bounded bias such that E[ρ̂t−ρt] ≤

ε. The convergence rates of GTD/GTD2 algorithms with iterative averaging are as

follows,

||Aθ̄n − b||2M−1 ≤ O

(
τ + ||A||2 + σ√

n

)
+O(ε) (5.40)

This implies that the inexact estimation of ρt may cause disastrous estimation error,

which implies that an exact estimation of ρt is very important.
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5.5.3 Finite-sample Analysis Of Online Learning

Another more challenging scenario is the online learning scenario, where the samples

are interactively generated by the environment, or by an interactive agent. The

difficulty lies in that the sample distribution does not follow i.i.d sampling condition

anymore, but follows an underlying Markov chain M. If the Markov chain M’s

mixing time is small enough, i.e., the sample distribution reduces to the stationary

distribution of πb very fast, our analysis still applies. However, it is usually the case

that the underlying Markov chain’s mixing time τmix is not small enough. The analysis

result can be obtained by extending the result of recent work [Duchi et al., 2012] from

strongly convex loss functions to saddle-point problems, which is non-trivial and is

thus left for future work.

5.5.4 Discussion Of TDC Algorithm

Now we discuss the limitation of our analysis with regard to the temporal difference

with correction (TDC) algorithm [Sutton et al., 2009]. Interestingly, the TDC algo-

rithm seems not to have an explicit saddle-point representation, since it incorporates

the information of the optimal y∗t (θt) into the update of θt, a quasi-stationary condi-

tion which is commonly used in two-time-scale stochastic approximation approaches.

An intuitive answer to the advantage of TDC over GTD2 is that the TDC update of

θt can be considered as incorporating the prior knowledge into the update rule: for a

stationary θt, if the optimal y∗t (θt) has a closed-form solution or is easy to compute,

then incorporating this y∗t (θt) into the update law tends to accelerate the algorithm’s

convergence performance. For the GTD2 update, note that there is a sum of two

terms where yt appears, which are ρt(φt − γφ′t)(y
>
t φt) = ρtφt(y

>
t φt) − γρtφ

′
t(y
>
t φt).
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Replacing yt in the first term with y∗t (θt) = E[φtφ
>
t

]−1E[ρtδt(θt)φt], we have the TDC

update rule. Note that in contrast to GTD/GTD2, TDC is a two-time scale al-

gorithm; Also, note that TDC does not minimize any objective functions and the

convergence of TDC requires more restrictions than GTD2 as shown by Sutton et al.

[2009].

5.6 Control Learning Extension

In this section, we discuss the control learning extension of the proximal gradient

family algorithms. We first present a lemma bridging the connection between the

forward-view and backward-view perspectives. Then based on the GQ [Maei and

Sutton, 2010] algorithm, we propose the control learning extension of the GTD2-MP

algorithm, which is termed the GQ-MP algorithm.

5.6.1 Extension to Eligibility Trace

The T operator looks one-step ahead, but it would be beneficial to look multiple

steps ahead [Sutton and Barto, 1998], which gives rise to the multiple-step Bellman

operator T λ, otherwise known as the λ-weighted Bellman operator [Sutton and Barto,

1998], which is an arithmetic mean of the power series of T , i.e.,

T λ = (1− λ)
∑∞

i=0
λiT i+1, λ ∈ (0, 1) (5.41)

Correspondingly, the multiple-step TD error, also termed the λ-TD error δλ with

respect to θ is defined as
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E[δλ(θ)] = T λv̂ − v̂ = T λΦθ − Φθ (5.42)

The objective function as in Eqt (5.3) is changed accordingly as follows by replacing

T with T λ ,

J(θ) = ||Φ>Ξ(T λv̂ − v̂)||2M−1 = ||E[ρiφiδ
λ
i (θ)]||2M−1 (5.43)

This is called the forward view since it calls for looking multiple steps ahead, which is

difficult to implement in practice. The backward view using eligibility traces is easy

to implement. The eligibility trace is defined in a recursive way as

e0 =0 (5.44)

et =ρtγλet−1 + φt

We introduce Theorem 2 to bridge the gap between the backward and forward view.

Theorem 2. Maei [2011]; Geist and Scherrer [2014] There is an equivalence between

forward view and backward view such that

E[φiδ
λ
i (θ)] = E[eiδi(θ)] (5.45)

The details of the forward view and the backward view can be seen in [Sutton and

Barto, 1998], Theorem 11 in [Maei, 2011], and Proposition 6 in [Geist and Scherrer,

2014]. A natural extension to Eqt (5.45) is by multiplying the importance ratio factor

on both sides of the equality as follows,

E[ρiφiδ
λ
i (θ)] = E[ρieiδi(θ)] (5.46)
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Algorithm 11 Greedy-GQ
Initialize et = 0, starting from s0.
1: repeat
2: Take at according to πb, and arrive at st+1

3: Compute a∗t = arg maxaθ
>φ(st, a). If at = a∗t , then ρt = 1

πb(at|st)
; otherwise

ρt = 0.
4: Compute θt+1, yt+1 according to GQ-MP-LEARN Algorithm.
5: Choose action at, and get st+1, rt+1

6: Set t← t+ 1;
7: until st is an absorbing state;
8: Compute θ̄t, ȳt

5.6.2 Greedy-GQ Algorithm

With the help of Theorem 2, we can convert the objective formulation in (5.43) to

J(θ) = ||E[ρieiδi(θ)]||2M−1 (5.47)

The corresponding primal-dual formulation is

J(θ) = max
y

(
〈E[ρieiδi(θ)], y〉 −

1

2
||y||2M

)
(5.48)

And thus the new algorithm can be derived as

θt+1 =θt + αtρt∆φt(e
>
t yt)

yt+1 =yt + αt (ρtδtet −Mtyt) (5.49)

Correspondingly, Greedy-GQ(λ) with importance sampling can be derived. Here

we present the Greedy-GQ(λ) algorithm. Here is the GQ-MP-LEARN algorithm,

which is the core step of Greedy-GQ algorithm.
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Algorithm 12 GQ-MP-LEARN

et = γλρtet−1 + φt

δt = rt + θ>t ∆φt

ymt = yt + αt
(
ρtetδt − (φ>t yt)φt

)
θmt = θt + αtρt∆φt(e

>
t yt)

δmt = rt + θm>t ∆φt

yt+1 = yt + αt
(
ρtetδ

m
t − (φ>t y

m
t )φt

)
θmt = θt + αtρt∆φt(e

>
t y

m
t )

5.7 Empirical Evaluation

In this section, we compare the previous GTD2 method with our proposed GTD2-

MP method using various domains with regard to their value function approximation

performance. It should be mentioned that since the major focus of this chapter is on

policy evaluation, the comparative study focuses on value function approximation and

thus comparisons on control learning performance are not reported in this chapter.

5.7.1 Baird Domain

The Baird example [Baird, 1995] is a well-known example to test the performance

of off-policy convergent algorithms. Constant stepsizes α = 0.005 for GTD2 and

α = 0.004 for GTD2-MP are chosen via comparison studies as in [Dann et al., 2014].

Figure 5.1 shows the MSPBE curve of GTD2, GTD2-MP of 8000 steps averaged over

200 runs. We can see that GTD2-MP gives a significant improvement over the GTD2

algorithm in which both the MSPBE and variance are substantially reduced.
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Figure 5.1. Off-Policy Convergence Comparison

5.7.2 50-State Chain Domain

The 50 state chain [Lagoudakis and Parr, 2003a] is a standard MDP domain. There

are 50 discrete states {si}50
i=1 and two actions moving the agent left si → smax(i−1,1)

and right si → smin(i+1,50). The actions succeed with probability 0.9; failed actions

move the agent in the opposite direction. The discount factor is γ = 0.9. The agent

receives a reward of +1 when in states s10 and s41. All other states have a reward of

0. In this experiment, we compare the performance of the value approximation with

respect to different stepsizes α = 0.0001, 0.001, 0.01, 0.1, 0.2, · · · , 0.9 using the BEBF

basis [Parr et al., 2007]. Figure 5.2 shows the value function approximation result

where the cyan curve is the true value function, the red dashed curve is the GTD

result, and the black curve is the GTD2-MP result. From the figure, one can see

that GTD2-MP is much more robust with respect to stepsize choice than the GTD2

algorithm.
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Figure 5.2. Chain Domain

5.7.3 Energy Management Domain

In this experiment we compare the performance of the algorithms on an energy man-

agement domain. The decision maker must decide how much energy to purchase or

sell subject to stochastic prices. This problem is relevant in the context of utilities as

well as in settings such as hybrid vehicles. The prices are generated from a Markov

chain process. The amount of available storage is limited and degrades with use. The

degradation process is based on the physical properties of lithium-ion batteries and

discourages fully charging or discharging the battery. The energy arbitrage problem is

closely related to the broad class of inventory management problems, with the storage

level corresponding to the inventory. However, there are no known results describing

the structure of optimal threshold policies in energy storage.

Note that since this is an off-policy evaluation problem, the formulated Aθ = b does

not have a solution, and thus the optimal MSPBE(θ∗) (respectively MSBE(θ∗) ) do

not reduce to 0. The result is averaged over 200 runs, and α = 0.001 for both GTD2
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Figure 5.3. Energy Management Example

and GTD2-MP is chosen via comparison studies for each algorithm. As can be seen

from FIgure 5.3, GTD2-MP performs much better than GTD2 in the transient state.

Then after reaching the steady state, as can be seen from Table 5.1, we can see that

GTD2-MP reaches better steady state solution than the GTD algorithm. Based on

the above empirical results and many other experiments we have conducted in other

domains, we can conclude that GTD2-MP usually performs much better than the

“vanilla” GTD2 algorithm.
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Algorithm MSPBE MSBE
TD 46.743 80.050
GTD 164.378 231.569
GTD2 77.139 111.19

GTD-MP 30.170 44.627
GTD2-MP 27.891 41.028

Table 5.1. Steady State Performance Comparison of Battery Management Domain

Algorithm MSPBE MSBE
TD 0.0423 0.0547

GTD2 0.0244 0.0300
GTD2-MP 0.0238 0.0297

Table 5.2. Steady State Performance Comparison of Bicycle Domain

5.7.4 Bicycle Balancing and Riding Task

The bicycle balancing and riding domain [Randløv and Alstrøm, 1998] is a compli-

cated domain. The goal is to learn to balance and ride a bicycle to a target position

from the starting location.

To make a fair comparison, the parameter settings are identical to the parameter

settings in [Lagoudakis and Parr, 2003b]. The samples are generated via random

walk, after which, we compare the value function approximation results of TD, GTD2

and GTD2-MP algorithm. From the

From Figure 5.4, we can see that both the GTD2 and GTD2-MP algorithms reach a

much better learning curve than the TD algorithm with significantly reduced variance.

Besides, the GTD2 and GTD2-MP algorithms reach better steady-state solutions than

the TD algorithm, as shown in Table 5.2.
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Figure 5.4. Energy Management Example
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5.7.5 Comparison with Other First-Order Policy Evaluation Algorithms

Here we give an experimental comparison between the gradient-based TD algorithms

and the TD algorithm. Based on the experimental results shown above, we make the

following empirical conclusions:

• Of all the gradient-based algorithms, GTD2-MP is the clear win-
ner.

• For small and medium scale problems, TD is an ideal choice
as it converges faster at the initial stage. On the other hand,
GTD2-MP often reach better a steady state solution given more
number of iterations.

• For large scale problems, GTD2-MP is the clear winner over the
TD method with both reduced variance and better final solution,
as shown in the bicycle and energy management domain.

• There exist some domains where T operator is not differentiable,
and thus only TD-based algorithms can be applied, such as the
optimal stopping problem in [Choi and Van Roy, 2006].

Figure 5.5. Summary of Comparisons between TD and GTD algorithm family

5.8 Summary

In this chapter, we showed how gradient TD methods can be shown to be true stochas-

tic gradient methods with respect to a saddle-point primal-dual objective function,

which paved the way for the finite-sample analysis of off-policy convergent gradient-

based TD algorithms such as GTD and GTD2. We presented both error bound

and performance bound, which shows that the value function approximation bound
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of the GTD algorithms family is O
(

d
n1/4

)
. Furthermore, we proposed two revised

algorithms, namely the projected GTD2 algorithm and the accelerated GTD2-MP

algorithm. There are many interesting directions for future research. Our framework

can be easily used to design regularized sparse gradient off-policy TD methods. One

interesting direction is to investigate the convergence rate and performance bound for

the TDC algorithm, which lacks a saddle-point formulation. The other is to explore

tighter value function approximation bounds for off-policy learning.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In the thesis, we presented a new family of stochastic gradient-based TD algorithms.

This is the first time that a principled and systematic framework is proposed where

convergence rate, finite-sample guarantee, regularization, and acceleration are pro-

vided. Our algorithms can be viewed as stochastic primal-dual gradient methods with

respect to a wide range of projected Bellman error based objective functions, such as

the mean-square projected Bellman error (MSPBE). Along this line of research, we

studied several important aspects, including acceleration using mirror descent, regu-

larization using proximal gradient method, and convergence rate analysis and sample

complexity analysis.

Besides building a stochastic gradient TD learning framework and sample complexity

analysis, the major contributions of the thesis also include providing the control

learning extensions. Eligibility traces are essential to TD learning because they bridge

the temporal gaps in cause and effect when the experience is limited. Thus, we also

studied incorporating the eligibility traces into the proximal gradient TD learning

framework.

It should also be noted that although this thesis focuses on designing and analyzing

proximal gradient TD methods in the context of policy evaluation, all these ideas
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and tools such as compound operator splitting, mirror descent, and extragradient can

also be extended to various kinds of approximate dynamic programming methods, and

other many problems in game theory. A more general way to evaluate the contribution

of the thesis is that it provides an integrated way to problems that goes beyond

convex optimization to monotone inclusion, such as variational inequality problems.

It can also be envisioned as a principled way to deal with problems with Markov

Decision Processes (MDPs), where the stringent biased sampling requirement can be

circumvented based on a reformulation of the problem structure.

6.1 Future Work

There are several promising future research directions with our proposed proximal

gradient TD learning framework. The first promising direction is to explore other

compound operator splitting techniques other than primal-dual splitting. As we have

shown in previous chapters, new algorithms can be designed if there exist methods

that can split the operator so that the product of expectations can be avoided, and

this operator splitting formulation does not have to be the primal-dual formulation.

We have explored two primal-dual formulations, one is based on the convex conjugate

function, and the other is based on dual norm representation. It would be interesting

to see if there are any other compound operator splitting techniques that will lead to

a family of new algorithms along with possibly faster convergence rate.

The second interesting direction is to explore the stochastic optimization RL frame-

work in deep RL, such as deep Q-network (DQN) [Mnih et al., 2015]. Representation

learning is a major challenge faced by machine learning and artificial intelligence. In
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RL problems, the goal of representation learning is to automatically construct the

representation of state that can be updated from the agent’s sequence of interactions

with the environment, including the observations of the state of the environment and

actions the agent takes.

Predictive state representations (PSRs) provide a promising approach to represen-

tation learning in partially observable RL problems. The basic assumption of PSR

theory is that an agent that can effectively predict the future will be able to act effec-

tively within its environment, for example, to maximize expected sum of long-term

rewards. In the PSR framework, every state variable is not directly accessible but is

indirectly observable, and the observation of the state represents a specific prediction

about future observations as well. The agent updates its predictions after each in-

teraction with its environment. It has been shown that by carefully choosing a small

number of predictions, it is possible to provide a sufficient statistics for predicting

all the future experience; in other words, the predictions can maintain all the useful

information from the agent’s previous interactions [Singh et al., 2004].

Temporal-difference networks (TD networks) are a type of PSR that may ask com-

pound predictions, not just about future observations, but about future state vari-

ables (i.e. predictions of predictions). This enables TD networks to operate at a more

abstract level than traditional PSRs. TD network is a promising direction for rep-

resentation learning that combines the two fundamental ideas from both predictive

representations and recurrent neural networks. However, current temporal-difference

networks suffer from a major drawback: the learning algorithm may diverge, even in

simple environments, thus make it intractable to use in real applications. To over-

come this drawback and motivated by the convergence guarantee of GTD family of
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algorithms, Silver [2012] proposed the gradient temporal difference networks, which

has asymptotic convergence guarantees using stochastic approximation approach. An

interesting and promising direction is to apply the primal-dual saddle-point frame-

work to GTD networks, which will enable a broad variety of new algorithms, and will

also span a full spectrum between recurrent neural networks, the PSR framework,

and stochastic optimization using primal-dual formulation and mirror descent.

Another interesting future direction is to explore proximal gradient TD algorithms

with transfer RL. Given multiple different but related tasks, knowledge transfer is de-

sirable and will help faster learning, less sample complexity, and better generalization

ability. There are various types of transfer learning at different levels, such as instance

level transfer, feature level transfer, and parameter level transfer. As we know, from

transfer learning perspective, off-policy learning is instance level transfer learning.

It would be interesting to see if other transfer RL problems can be formulated as

saddle-point problems and if there is similar finite-sample analysis as well.

The fourth interesting future direction is to explore stochastic optimization frame-

work in risk-sensitive RL, where the cost of mistakes is very high. Research along this

direction can be roughly categorized into two categories, either by setting up cost-

sensitive objective function, such as the Conditional value-at-risk (CVaR) approach

[Chow and Ghavamzadeh, 2014], or by using high-probability based on concentra-

tion inequalities [Thomas et al., 2015], or by using robust optimization [Petrik and

Subramanian, 2014].

Recently, Chow et al. [2015] points out the connections between robust optimization

and CVaR approach. It would be challenging and promising to integrate stochastic
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optimization and robust optimization [Ben-Tal and Nemirovski, 2002; Ben-Tal et al.,

2009] into RL to deal with stochasticity and deterministic uncertainties.

Another interesting direction is to design new objective functions for TD learning.

Since Bellman error is an expectation function (of the TD error), both MSPBE and

NEU are (weighted) norm of expectations of the TD error. This is where the biased

sampling problem comes from. It would be desirable if a new set of objectives can be

designed, in which the biased sampling problem can be avoided.

Last but not the least, as mentioned in Chapter 5, the current finite-sample analysis

is based on the i.i.d sample condition. This i.i.d sample condition is a common condi-

tion in off-line learning, which is quite common in similar off-line learning algorithm

analysis. However, proximal gradient TD algorithms can also be applied to online

learning scenario, which calls for online saddle-point analysis. In real applications,

it is often more intriguing that the agent learns via real-time interaction with the

environment. As mentioned earlier, this analysis can be carried out by a non-trivial

extension of the result of recent work [Duchi et al., 2012], which is left for future work.
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APPENDIX

A.1 CONVERGENCE ANALYSIS OF SPARSE Q ALGO-

RITHM

Definition 2 [Ghavamzadeh et al., 2011]: Πl1 is the `1-regularized projection defined

as: Πl1y = Φα such that α = arg minw‖y − Φw‖2 + β‖w‖1, which is a non-expansive

mapping with respect to weighted l2 norm induced by the on-policy sample distribu-

tion setting, as proven in [Ghavamzadeh et al., 2011]. Let the approximation error

f(y, β) = ‖y − Πl1y‖2.

Definition 3 (Empirical `1-regularized projection): Π̂l1 is the empirical `1-regularized

projection with a specific `1 regularization solver, and satisfies the non-expansive

mapping property. It can be shown using a direct derivation that Π̂l1ΠT is a γ-

contraction mapping. Any unbiased `1 solver which generates intermediate sparse

solution before convergence, e.g., SMIDAS solver after t-th iteration, comprises an

empirical `1-regularized projection.

Theorem 1 The approximation error ||V −V̂ || of Algorithm 2 is bounded by (ignoring

dependence on π for simplicity):

||V − V̂ || ≤ 1
1−γ×(

‖V − ΠV ‖+ f(ΠV, β) + (M − 1)P (0) + ‖w∗‖2
1
M
αtn

) (A.1)
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Figure A.1. Error Bound and Decomposition

where V̂ is the approximated value function after n-th iteration, i.e., V̂ = Φwn,

M = 2
2−4αt(p−1)e

, αt is the stepsize, P (0) = 1
n

n∑
i=1

‖ΠV (si)‖2
2, si is the state of i-th

sample, e = d
p
2 , d is the number of features, and finally, w∗ is `1-regularized projection

of ΠV such that Φw∗ = Πl1ΠV .
Proof: In the on-policy setting, the solution given by Algorithm 2 is the fixed point
of V̂ = Π̂l1ΠT V̂ and the error decomposition is illustrated in Figure A.1. The error
can be bounded by the triangle inequality

||V − V̂ || = ||V −ΠTV ||+ ||ΠTV − Π̂l1ΠTV ||+ ||Π̂l1ΠTV − V̂ || (A.2)

Since Π̂l1ΠT is a γ-contraction mapping, and V̂ = Π̂l1ΠT V̂ , we have

||Π̂l1ΠTV − V̂ || = ||Π̂l1ΠTV − Π̂l1ΠT V̂ || ≤ γ||V − V̂ || (A.3)

So we have

(1− γ)||V − V̂ || ≤ ||V − ΠTV ||+ ||ΠTV − Π̂l1ΠTV ||
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‖V − ΠTV ‖ depends on the expressiveness of the basis Φ, where if V lies in span(Φ),

this error term is zero. ||ΠTV −Πl1Π̂TV || is further bounded by the triangle inequality

||ΠTV − Π̂l1ΠTV || ≤

||ΠTV − Πl1ΠTV ||+ ||Πl1ΠTV − Π̂l1ΠTV ||

where ‖ΠTV − Πl1ΠTV ‖ is controlled by the sparsity parameter β, i.e., f(ΠTV, β) =

||ΠTV − Πl1ΠTV ||, where ε = ||Π̂l1ΠTV − Πl1ΠTV || is the approximation error de-

pending on the quality of the `1 solver employed. In Algorithm 2, the `1 solver is

related to the SMIDAS `1 regularized mirror-descent method for regression and clas-

sification [Shalev-Shwartz and Tewari, 2011]. Note that for a squared loss function

L(〈w, xi〉 , yi) = || 〈w, xi〉−yi||22, we have |L′|2 ≤ 4L. Employing the result of Theorem

3 in [Shalev-Shwartz and Tewari, 2011], after the n-th iteration, the `1 approximation

error is bounded by

ε ≤ (M − 1)P (0) + ||w∗||21
M

αtn
,M =

2

2− 4αt(p− 1)e

By rearranging the terms and applying V = TV , Equation (A.1) can be deduced.

A.2 PROOF OF LEMMA 7

Proof. From the boundedness of the features (by L) and the rewards (by Rmax), we

have
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||A||2 = ||E[ρtφt∆φ
>
t ]||2

≤ maxs||ρ(s)φ(s)(∆φ(s))>||2

≤ ρmaxmaxs||φ(s)||2maxs||φ(s)− γφ′(s)||2

≤ ρmaxmaxs||φ(s)||2maxs (||φ(s)||2 + γ||φ′(s)||2)

≤ (1 + γ)ρmaxL
2d.

The second inequality is obtained by the consistent inequality of matrix norm, the

third inequality comes from the triangular norm inequality, and the fourth inequality

comes from the vector norm inequality ||φ(s)||2 ≤ ||φ(s)||∞
√
d ≤ L

√
d. The bound

on ||b||2 can be derived in a similar way as follows.

||b||2 = ||E[ρtφtrt]||2

≤ max
s
||ρ(s)φ(s)r(s)||2

≤ ρmaxmaxs||φ(s)||2maxs||r(s)||2

≤ ρmaxLRmax.

It completes the proof.

A.3 PROOF OF PROPOSITION 3

Proof. The proof of Proposition 3 mainly relies on Proposition 3.2 in [Nemirovski et

al., 2009]. We just need to map our convex-concave stochastic saddle-point problem

in Eq. 5.12, i.e.,

min
θ∈Θ

max
y∈Y

(
L(θ, y) = 〈b− Aθ, y〉 − 1

2
||y||2M

)
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to the one in Section 3 of Nemirovski et al. [2009] and show that it satisfies all the

conditions necessary for their Proposition 3.2. Assumption 13 guarantees that our

feasible sets Θ and Y satisfy the conditions in [Nemirovski et al., 2009], as they are

non-empty bounded closed convex subsets of Rd. We also see that our objective

function L(θ, y) is convex in θ ∈ Θ and concave in y ∈ Y , and also Lipschitz con-

tinuous on Θ × Y . It is known that in the above setting, our saddle-point problem

in Eq. 5.12 is solvable, i.e., the corresponding primal and dual optimization prob-

lems: minθ∈Θ

[
maxy∈Y L(θ, y)

]
and maxy∈Y

[
minθ∈Θ L(θ, y)

]
are solvable with equal

optimal values, denoted L∗, and pairs (θ∗, y∗) of optimal solutions to the respective

problems from the set of saddle points of L(θ, y) on Θ× Y .

For our problem, the stochastic sub-gradient vector G is defined as

G(θ, y) =

[
Gθ(θ, y)
−Gy(θ, y)

]
=

[
−Â>t y

−(b̂t − Âtθ − M̂ty)

]
.

This guarantees that the deterministic sub-gradient vector

g(θ, y) =

[
gθ(θ, y)
−gy(θ, y)

]
=

[
E
[
Gθ(θ, y)

]
−E
[
Gy(θ, y)

] ]

is well-defined, i.e., gθ(θ, y) ∈ ∂θL(θ, y) and gy(θ, y) ∈ ∂yL(θ, y).

We also consider the Euclidean stochastic approximation (E-SA) setting in [Ne-

mirovski et al., 2009] in which the distance generating functions ωθ : Θ → R and

ωy : Y → R are simply defined as

ωθ =
1

2
||θ||22, ωy =

1

2
||y||22,
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modulus 1 with respect to ||·||2, and thus, Θo = Θ and Y o = Y (see pp. 1581 and 1582 in Ne-

mirovski et al. 2009). This allows us to equip the set Z = Θ × Y with the distance

generating function

ω(z) =
ωθ(θ)

2D2
θ

+
ωy(y)

2D2
y

,

where Dθ and Dy defined in Assumption 13.

Now that we consider the Euclidean case and set the norms to `2-norm, we can

compute upper-bounds on the expectation of the dual norm of the stochastic sub-

gradients

E
[
||Gθ(θ, y)||2∗,θ

]
≤M2

∗,θ, E
[
||Gy(θ, y)||2∗,y

]
≤M2

∗,y,

where || · ||∗,θ and || · ||∗,y are the dual norms in Θ and Y , respectively. Since we are

in the Euclidean setting and use the `2-norm, the dual norms are also `2-norm, and

thus, to compute M∗,θ, we need to upper-bound E [||Gθ(θ, y)||22] and E [||Gy(θ, y)||22].

To bound these two quantities, we use the following equality that holds for any random

variable x:

E[||x||22] = E[||x− µx||22] + ||µx||22,

where µx = E[x]. Here how we bound E [||Gθ(θ, y)||22],

E
[
||Gθ(θ, y)||22

]
= E[||Â>t y||22]

= E[||Â>t y −A>y||22] + ||A>y||22
≤ σ2

2 + (||A||2||y||2)2

≤ σ2
2 + ||A||22R2,

where the first inequality is from the definition of σ3 in Eq. 5.18 and the consistent

inequality of the matrix norm, and the second inequality comes from the boundedness

of the feasible sets in Assumption 13. Similarly we bound E [||Gy(θ, y)||22] as follows:
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E[||Gy(θ, y)||22] = E[||b̂t − Âtθ − M̂ty||22]

= ||b−Aθ +My||22
+ E[||b̂t − Âtθ − M̂ty − (b−Aθ −My)||22]

≤ (||b||2 + ||A||2||θ||2 + τ ||y||2)2 + σ2
1

≤
(
||b||2 + (||A||2 + τ)R

)2
+ σ2

1,

where these inequalities come from the definition of σ1 in Eq. 5.18 and the bound-

edness of the feasible sets in Assumption 13. This means that in our case we can

compute M2
∗,θ,M

2
∗,y as

M2
∗,θ = σ2

2 + ||A||22R2,

M2
∗,y =

(
||b||2 + (||A||2 + τ)R

)2
+ σ2

1,

and as a result

M2
∗ = 2D2

θM
2
∗,θ + 2D2

yM
2
∗,y = 2R2(M2

∗,θ +M2
∗,y)

= R2
(
σ2 + ||A||22R2 +

(
||b||2 + (||A||2 + τ)R

)2
)

≤
(
R2 (2||A||2 + τ) +R(σ + ||b||2)

)2
,

where the inequality comes from the fact that ∀a, b, c ≥ 0, a2 + b2 + c2 ≤ (a+ b+ c)2.

Thus, we may write M∗ as

M∗ = R2 (2||A||2 + τ) +R(σ + ||b||2). (A.4)

Now we have all the pieces ready to apply Proposition 3.2 in [Nemirovski et al., 2009]

and obtain a high-probability bound on Err(θ̄n, ȳn), where θ̄n and ȳn (see Eq. 5.16)
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are the outputs of the revised GTD algorithm in Algorithm 9. From Proposition

3.2 in [Nemirovski et al., 2009], if we set the step-size in Algorithm 9 (our revised

GTD algorithm) to αt = 2c
M∗
√

5n
, where c > 0 is a positive constant, M∗ is defined by

Eq. A.4, and n is the number of training samples in D, with probability of at least

1− δ, we have

Err(θ̄n, ȳn) ≤
√

5

n
(8 + 2 log

2

δ
)R2

(
2||A||2 + τ +

||b||2 + σ

R

)
. (A.5)

Note that we obtain Eq. A.5 by setting c = 1 and the “light-tail” assumption in

Eq. 5.20 guarantees that we satisfy the condition in Eq. 3.16 in [Nemirovski et al.,

2009], which is necessary for the high-probability bound in their Proposition 3.2 to

hold. The proof is complete by replacing ||A||2 and ||b||2 from Lemma 7.

A.4 PROOF OF PROPOSITION 4

Proof. From Lemma 8, we have

V − v̄n = (I − γΠP )−1×[
(V − ΠV ) + ΦC−1(b− Aθ̄n)

]
.

Applying `2-norm with respect to the distribution ξ to both sides of this equation,

we obtain

||V − v̄n||Ξ ≤||(I − γΠP )−1||Ξ× (A.6)(
||V − ΠV ||Ξ + ||ΦC−1(b− Aθ̄n)||Ξ

)
.
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Since P is the kernel matrix of the target policy π and Π is the orthogonal projection

with respect to ξ, the stationary distribution of π, we may write

||(I − γΠP )−1||Ξ ≤
1

1− γ .

Moreover, we may upper-bound the term ||ΦC−1(b − Aθ̄n)||Ξ in (A.6) using the fol-

lowing inequalities:

||ΦC−1(b− Aθ̄n)||Ξ

≤ ||ΦC−1(b− Aθ̄n)||2
√
ξmax

≤ ||Φ||2||C−1||2||(b− Aθ̄n)||M−1

√
τξmax

≤ (L
√
d)(

1

ν
)
√

2Err(θ̄n, ȳn)
√
τξmax

=
L

ν

√
2dτξmaxErr(θ̄n, ȳn),

where the third inequality is the result of upper-bounding ||(b−Aθ̄n)||−1
M using Eq. 5.28

and the fact that ν = 1/||C−1||22 = 1/λmax(C−1) = λmin(C) (ν is the smallest eigen-

value of the covariance matrix C).

A.5 PROOF OF PROPOSITION 5

Proof. Using the triangle inequality, we may write

||V − v̄n|||Ξ ≤ ||v̄n − Φθ∗||Ξ + ||V − Φθ∗||Ξ. (A.7)
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The second term on the right-hand side of Eq. A.7 can be upper-bounded by Lemma 9.

Now we upper-bound the first term as follows:

||v̄n − Φθ∗||2Ξ

= ||Φθ̄n − Φθ∗||2Ξ

= ||θ̄n − θ∗||2C

≤ ||θ̄n − θ∗||2A>M−1A||(A>M−1A)−1||2||C||2

= ||A(θ̄n − θ∗)||2M−1||(A>M−1A)−1||2||C||2

= ||Aθ̄n − b||2M−1

τC
σmin(A>M−1A)

,

where τC = σmax(C) is the largest singular value of C, and σmin(A>M−1A) is the

smallest singular value of A>M−1A. Using the result of Theorem 1, with probability

at least 1− δ, we have

1

2
||Aθ̄n − b||2M−1 ≤ τξmaxErr(θ̄n, ȳn). (A.8)

Thus,

||v̄n − Φθ∗||2Ξ ≤
2τCτξmax

σmin(A>M−1A)
Err(θ̄n, ȳn) (A.9)

From Eqs. A.7, 5.32, and A.9, the result of Eq. 5.33 can be derived, which completes

the proof.
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A.6 THE BATTERY DOMAIN

The problem represents an energy arbitrage model with multiple finite known price

levels and a stochastic evolution given a limited storage capacity. In particular, the

storage is assumed to be an electrical battery that degrades when energy is stored

or retrieved. Energy prices are governed by a Markov process with states Θ. There

are two energy prices in each time step: pi : Θ → R is the purchase (or input) price

and po : Θ→ R is the sell (or output) price. Energy prices θ vary between 0 and 10

and their evolution is governed by a martingale with a normal distribution around

the mean.

We use s to denote the available battery capacity with s0 denoting the initial capacity.

The current state of charge is denotes as x or y and must satisfy that 0 ≤ xt ≤ st

at any time step t. The action is the amount of energy to charge or discharge, which

is denoted by u. Positive u indicates that energy is purchased to charge the battery;

negative u indicates the sale of energy.

The battery storage degrades with use. The degradation is a function of the battery

capacity when charged or discharged. We use a general model of battery degradation

with a specific focus on Li-ion batteries. The degradation function d(x, u) ∈ R repre-

sent the battery capacity loss after starting at the state of charge x ≥ 0 and charging

(discharging if negative) by u with −x ≤ u ≤ s0. This function indicates the loss of

capacity, such that:

st+1 = st − d(xt, ut)

The state set in the Markov decision problem is composed of (x, s, θ) where x is the

state of charge, s is the battery capacity, and θ ∈ Θ is the state of the price process.
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The available actions in a state (x, s, θ) are u such that −x ≤ u ≤ s − x. The

transition is from (xt, st, θt) to (xt+1, st+1, θt+1) given action ut is:

xt+1 = xt + ut

st+1 = st − d(xt, ut)

The probability of this transition is given by P [θt+1|θt]. The reward for this transition

is:

r((xt, st, θt), ut) =


−ut · pi − cd · d(xt, ut) if ut ≥ 0

−ut · po − cd · d(xt, ut) if ut < 0

.

That is, the reward captures the monetary value of the transaction minus a penalty

for degradation of the battery. Here, cd represents the cost of a unit of lost battery

capacity.

The Bellman optimality equations for this problem are:

qT (x, s, θ) = 0

vt(x, s, θt) = min
{
piθt [u]+ + poθt [u]−+

+ cd d(x, u)+

+ qt(x+ u, s− d(x, u), θt) :

: u ∈ [−x, s− x]
}

qt(x, s, θt) = λ · E[vt+1(x, s, θt+1)]

(A.10)

where [u]+ = max{u, 0} and [u]− = min{u, 0} and the expectation is taken over

P (θt+1|θt).
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The value function is approximated using piece-wise linear features of three types

φ1,φ2,φ3 defined as a function of the MDP state as follows:

φ1
w,q(x, s, θ) =


[x− w]+ if θ = q

0 otherwise

φ2
w,q(x, s, θ) =


[s− w]+ if θ = q

0 otherwise

φ3
w,q(x, s, θ) =


[s+ x− w]+ if θ = q

0 otherwise

Here, w ∈ {0, 0.1, . . . , 0.9, 1} and q ∈ Θ.

These features can be conveniently used to approximate a piecewise linear function.

A.7 NOTATION

All vectors are assumed to be column vectors, unless specified otherwise.

1: Vector of all ones of the size appropriate in the context.

0: Vector of all zeros of the size appropriate in the context.

θ: Primal weight

θ̃: Dual weight in dual space of mirror descent

k: Number of active features, i.e., the cardinality of active feature set

γ: Discount factor in [0, 1].
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π: A policy in the given MDP.

φ(s): Features of state s. Represents a vector.

φi: Feature i as a vector for all states.

Φ: Approximation basis, represented as matrix.

ρ: Regularization parameter for regularization h(x).

µ: Strong convexity parameter.

I: Identity matrix of the size appropriate in the context.

T : Bellman operator.

P : Transition kernel for an MDP.

P π: A matrix that represents the probability of transiting from the state defined by

the row to the state defined by the column, such that P π(i, j) = P (si, π(si), sj).

Rπ: Vector of the rewards for action a, such that Rπ(i, j) = R(si, π(si)).

Q: State-action value function, also known as Q-function.

Sρ(·): Entrywise soft-thresholding operator, where Sρ(x)i = sign(xi) max(xi − ρ, 0) =

sign(xi)[xi − ρ, 0]+
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