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1 Introduction

In many real world applications, users might not know the queries to send to a database in order to retrieve
data in the user-interested areas. Users can apply a trial and error method to discover the queries. However,
as the data set is usually quite large, the discovery of queries will take a long time and the whole process
is labor-intensive. We want to build a discovery-oriented, interactive data exploration system, that guides
users to their interested data areas through interactive sample labeling process. In each iteration, the system
will strategically select some sample points to present to users for feedback, as relevant or irrelevant, and
finally converge to a query that is able to retrieve all the data in the user-interested area.

In this synthesis project, we mainly focus on the initial sampling problem. Initially, we don’t have any
input(data labels) from users regarding the area of interest and our goal is to use as few samples as pos-
sible to find at least one sample within the user-interest area. As we don’t have any clue about the user
interest before the first iteration, the most naive sampling method we can use is random sampling. We
designed equi-width and equi-depth stratified sampling methods, and also applied them to the progressive
sampling framework. In this project, we apply techniques from two areas, statistics and database systems.
We theoretically analyzed the probability lower bound, that within k samples we can get at least one sample
within the user-interest area, for random sampling, equi-width, equi-depth stratified sampling, and progres-
sive sampling. We then compare the probability lower bound for these sampling methods. We implement
the equi-width and equi-depth stratified sampling algorithms inside the PostgreSQL database, and test their
performance(CPU time and I/O time) when we (1)change the number of tuples in the table, (2)use column
tables with different number of columns, (3)change the number of dimensions in the sampling space. We
also run simulations over synthetic data set to demonstrate our theoretical results for these sampling methods.

Assume we have a dataset with d dimensions, we define our data space as the minimum bounding box of
our dataset inside the d-dimensional space. Figure 1 plot an example in a 2-dimensional space. The green
rectangle, which is the minimum bounding box for our dataset(blue points), is our data space. We only draw
a few data points in Figure 1 as an illustration, our real dataset is much larger. We only consider inside
our data space, as there are no data points outside the data space. In d-dimensional space, the minimum
bounding box, or our data space, is also d-dimensional. The orange areas are an example of the user interest
areas. There may be multiple disjoint areas(in Figure 1, there are two areas) for the user interest areas. Each
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area may have irregular shape, as plotted in Figure 1. We want to draw samples from the data space, and
increase the probability that at least one sample is within the user interest area, so that in the first iteration,
we can get at least one positive feedback from the user. Otherwise, all samples selected will be labeled as
negative, and the system cannot utilize the information to learn the user interest areas.

Figure 1: data space

We give the details of our sampling methods in the following section. In the analysis below, we assume the
size of our data space(for example, the size of the area within the green rectangle in Figure 1) is At, where
t means ’total’, and the total number of data points within the data space is Nt. The size of the user interest
area is Ai, where i means ’interest’, and the number of data points within the user interest area is Ni.

2 Initial sampling methods

We present four methods below for our initial sampling task, which are random sampling, equi-width strat-
ified sampling, equi-depth stratified sampling, and progressive sampling.

2.1 random sampling

For random sampling, suppose we know the total number of data points Nt, then we can generate k distinct
random integers within [1, Nt] according to the algorithm 1 below. Assume we have a column with row id
from 1 to Nt for each tuple and we have an index for this column, then we can select the k tuples with row
id corresponds to the k distinct random integers.
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Algorithm 1 Random Sampling

1: procedure SELECT_RANDOM(k)
2: for i = 1 to k do
3: int r;
4: do
5: r ← rand(1, Nt)
6: while r is in samples[1...i− 1]
7: samples[i]← r

return samples[1...k]

2.2 equi-width stratified sampling

In equi-width stratified sampling algorithm 2, we divide each dimension into equal-width bucket, so we
will have multiple grids in the data space. Then we select one random sample from each grid. Suppose
our data space is d dimensional. The minimum bounding box for our dataset in the d-dimensional space is
S = [L1, H1]∗[L2, H2]∗...∗[Ld, Hd]. And the length of the range in each dimension isR1 = H1−L1, R2 =
H2−L2, ..., Rd = Hd−Ld. If we divide each dimension into c equal-width bucket, then we will get k = cd

grids.

Algorithm 2 Equi-width Sampling

1: procedure SELECT_EQUIWIDTH(k)
2: c← d

√
k

3: int i← 1
4: for j1 = 1 to c do
5: for j2 = 1 to c do
6: ...
7: for jd = 1 to c do
8: samples[i]← one random sample from data points within grid [L1+(j1−1)∗ R1

c , L1+

j1 ∗ R1
c ] ∗ [L2 + (j2 − 1) ∗ R2

c , L2 + j2 ∗ R2
c ] ∗ ... ∗ [Ld + (jd − 1) ∗ Rd

c , Ld + jd ∗ Rd
c ]

9: i← i+ 1

return samples[1...k]

We give an example for equi-width stratified sampling when d = 2 in Figure 2. We divide each dimension
into equal width bucket(4 bucket in the example), so that we get k d-dimensional grids(k = 16 grids in the
example), and then we select one random sample from each grid.

2.3 equi-depth stratified sampling

In equi-depth stratified sampling algorithm 3, we divide the data space in a way that each grid in the data
space has the same number of data points. Suppose our data space is d-dimensional. The d features are
F1, F2, ..., Fd. The minimum bounding box for our dataset in the d-dimensional space is S = [L1, H1] ∗
[L2, H2] ∗ ... ∗ [Ld, Hd]. In the first round, we sort all the data according to F1 in ascending order, then we
divide the range [L1, H1] for F1 into c buckets, so that the number of points within each bucket is almost
the same(the different is at most 1). The boundary of each bucket can be determined by the average of two
data points from each side and closest to the boundary. In the second round, we sort the data points in each
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Figure 2: equi-width stratified sampling

bucket according to feature F2, and divide each bucket into c sub-buckets, so the number of points within
each sub-bucket is almost the same. We do this for d dimensions, and we know that after this process, each
grid will have nearly the same number of data points.

Algorithm 3 Equi-depth Sampling

1: procedure SELECT_EQUIDEPTH(k)
2: c← d

√
k

3: Bucket_Set← {S}
4: for i = 1 to d do
5: New_Bucket_Set← {}
6: for each bucket b in Bucket_Set do
7: sort data points in b according to feature Fi
8: divide b into c sub-buckets b1, b2, ..., bc according to Fi, so that |b1| = |b2| = ... = |bc|
9: New_Bucket_Set.append(b1, b2, ..., bc)

10: Bucket_Set← New_Bucket_Set
11: j ← 1
12: for each bucket b in Bucket_Set do
13: samples[j]← one random sample from b
14: j ← j + 1

return samples[1...k]

We illustrate the algorithm of equi-depth stratified sampling through an example in Figure 3. In the example,
we divide the data space into 16 grids, and each grid has nearly the same number of data points. Then we
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Figure 3: equi-depth stratified sampling

draw one random sample from each grid.

2.4 progressive sampling

Progressive sampling algorithm 4 is to perform equi-width or equi-depth stratified sampling level-by-level.
In the first level, we divide each dimension into 2 buckets, so we have 2d grids, and we select a random
sample from each grid. When we go to the second level, we divide each dimension into 22 buckets, so
we have 22d grids. Then we select one random sample from each of these smaller grids. We continue this
sampling process until we get one sample from the user interest area.

Algorithm 4 Progressive Sampling

1: procedure PROGRESSIVE_SAMPLING

2: sample_set = {}
3: level← 1
4: while no point in sample_set is within user interest area do
5: k ← 2level∗d

6: samples← SELECT_EQUIWIDTH(k) or SELECT_EQUIDEPTH(k)
7: sample_set.append(samples)
8: level← level + 1

return sample_set
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2.5 discussion about the high dimensional problems

The equi-width, equi-depth stratified sampling and progressive sampling will generate a large number of
grids(exponential to d), especially in high-dimensional space. Like in the SDSS astronomy data set we use,
there are hundreds of dimensions for each data point. However, we don’t need to divide the data space for
each data dimension. For each data exploration task, the user may only be interested in a small subset of
the dimensions, and only these dimensions are relevant to our sampling algorithm. The parameter d in the
above algorithm will be the number of relevant attributes for the user. For example, if the data set has 200
dimensions, but in some data exploration task, the user is only interested in 5 of the attributes, then d = 5.
We only need to divide the 5 dimensional space into grids, and draw samples from the grids there. This
dramatically reduces the number of grids for our sampling algorithms.

3 Theoretical Analysis

We want to analyze the lower bound of the probability that within k samples selected, at least one sample is
within the user interested area. Suppose our data space is d dimensional. The size of the minimum bounding
box for our dataset in the d-dimensional space isAt, and the total number of data points withinAt isNt. We
assume the total size of the user interest space is Ai, and the number of data points within Ai is Ni. When
we refer to user interest space or user interest area below, we assume they are one or multiple d-dimensional
space.

3.1 Random sampling lower bound

We select k distinct random samples according to algorithm 1. We are interested in the probability prandom
that using random sampling, at least one of the k samples is within the interest area. The success probability
in each trial is equal to Ni

Nt
, so we know that the probability prandom will be:

prandom = 1− (1− Ni

Nt
)k (1)

If we assume that the ratio of the number of data points in the user interest area compared with the total
number of data points in the data space is α,

Ni

Nt
= α (2)

Then according to formula (1) and (2), we can get the lower bound for prandom with respect to α and k:

prandom = 1− (1− Ni

Nt
)k = 1− (1− α)k (3)

3.2 Equi-width and equi-depth stratified sampling lower bound

For equi-width and equi-depth stratified sampling, we assume that the user interest area overlaps with grids
G1, G2, ..., Gs, the area for each of these grids are At1, At2, ..., Ats, the number of data points within each
of these grids are Nt1, Nt2, ..., Nts. The interest area overlap with these grids are Ai1, Ai2, ..., Ais and the
number of points within each of these overlap areas are Ni1, Ni2, ..., Nis. Then the probability pstratified
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that using equi-width or equi-depth sampling, at least one sample from the k samples selected is within the
interest area, is as below:

pstratified = 1− (1− Ni1

Nt1
) ∗ (1− Ni2

Nt2
) ∗ ... ∗ (1− Nis

Nts
) (4)

If any of the s grids is fully covered by the user interest area, which means that there exists some j,
Nij = Ntj and 1 ≤ j ≤ s, then we know that 1 − Nij

Ntj
= 0, and pstratified = 1. Otherwise, there is

no grid that is fully covered by the user interest area, then we have 0 < Nij < Ntj for any 1 ≤ j ≤ s. In
this case, we have 0 < 1 − Nij

Ntj
< 1 for any 1 ≤ j ≤ s. As the probability for the first case is trivial, we

only consider the case when there is no grid fully covered by the user interest area in the analysis below.

We want to derive the lower bound of pstratified. First, we can use Jensen’s inequality.

Jensen’s inequality

Let x1, x2, ..., xn ∈ R, a1, a2, ..., an ≥ 0, and satisfy a1 + a2 + ...+ an = 1. If F (x) is a convex function
with one variable x, according to Jensen’s inequality, we have

F (a1x1 + a2x2 + ...+ anxn) ≤ a1F (x1) + a2F (x2) + ...+ anF (xn) (5)

If F (x) is a concave function with one variable x, according to Jensen’s inequality, we have

F (a1x1 + a2x2 + ...+ anxn) ≥ a1F (x1) + a2F (x2) + ...+ anF (xn) (6)

If we let F (x) be a log function, F (x) = log(x), then F (x) is a concave function. If we let a1 = a2 = ... =
an = 1

n , we will have

log(
1

n
x1 +

1

n
x2 + ...+

1

n
xn) ≥

1

n
log(x1) +

1

n
log(x2) + ...+

1

n
log(xn) (7)

log(
x1 + x2 + ...+ xn

n
) ≥ log((x1 ∗ x2 ∗ ... ∗ xn)

1
n ) (8)

As log function is an increasing function, we have

x1 + x2 + ...+ xn
n

≥ (x1 ∗ x2 ∗ ... ∗ xn)
1
n (9)

x1 ∗ x2 ∗ ... ∗ xn ≤ (
x1 + x2 + ...+ xn

n
)n (10)

If we let xj = 1 − Nij

Ntj
in the equation (10) above, where 1 ≤ j ≤ s, we know that 0 < xj < 1, which is

valid for log function. According to equation (10), we have

(1− Ni1

Nt1
) ∗ (1− Ni2

Nt2
) ∗ ... ∗ (1− Nis

Nts
) ≤ (

(1− Ni1
Nt1

) + (1− Ni2
Nt2

) + ...+ (1− Nis
Nts

)

s
)s (11)

We can simplify the right-hand side of the inequality (11) as below:

(
s− (Ni1

Nt1
+ Ni2

Nt2
+ ...+ Nis

Nts
)

s
)s = (1−

Ni1
Nt1

+ Ni2
Nt2

+ ...+ Nis
Nts

s
)s (12)
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Therefore, we have

(1− Ni1

Nt1
) ∗ (1− Ni2

Nt2
) ∗ ... ∗ (1− Nis

Nts
) ≤ (1−

Ni1
Nt1

+ Ni2
Nt2

+ ...+ Nis
Nts

s
)s (13)

pstratified = 1− (1− Ni1

Nt1
) ∗ (1− Ni2

Nt2
) ∗ ... ∗ (1− Nis

Nts
) ≥ 1− (1−

Ni1
Nt1

+ Ni2
Nt2

+ ...+ Nis
Nts

s
)s (14)

Formula (14) is general for both equi-depth and equi-width stratified sampling, and we can further make use
of the properties of equi-depth and equi-width sampling methods to simplify it and get the lower bound for
pdepth and pwidth.

Equi-depth stratified sampling lower bound

We want to derive the lower bound for the probability pdepth that we can get at least one sample within the
user interest area from the k samples selected using equi-depth stratified sampling method. When we use
equi-depth stratified sampling method, we can assume that each grid has the same number of data points, so

Nt1 = Nt2 = ... = Nts =
1

k
Nt (15)

Then using equation (15), we can simplify the right-hand side of inequality (14) as below:

1− (1−
Ni1
Nt1

+ Ni2
Nt2

+ ...+ Nis
Nts

s
)s = 1− (1−

Ni1+Ni2+...+Nis
1
k
Nt

s
)s = 1− (1− k

s
∗ Ni

Nt
)s (16)

As we assume the data ratio Ni
Nt

is α in formula (2), we can get

1− (1− k

s
∗ Ni

Nt
)s = 1− (1− k

s
∗ α)s (17)

Combining formula (14), (16) and (17), we will have

pdepth = 1− (1− Ni1

Nt1
) ∗ (1− Ni2

Nt2
) ∗ ... ∗ (1− Nis

Nts
) ≥ 1 − (1 −

k

s
∗ α)s (18)

If we define f(x) as equation (19), then from formula (18) above, we know that the lower bound for equi-
depth stratified sampling will be f(s) as in formula (20).

f(x) = 1− (1− kα

x
)x (19)

pdepth ≥ 1− (1− k

s
∗ α)s = f(s) (20)
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Analysis of the lower bound f(s)

We want to analyze the relationship between the lower bound f(s) and the value f(k). We can show that
only when s = k, f(s) = f(k), otherwise, when s < k, f(x) is a decreasing function in the range [s, k], so
f(s) > f(k). In sum, we have formula (21), and the equality is true only when s = k.

f(s) ≥ f(k) = 1− (1− α)k (21)

In order to prove that f(x) is a decreasing function in the range [s, k] when s < k, we only need to prove
that g(x) is an increasing function in the range [s, k].

g(x) = (1− kα

x
)x (22)

First, we can prove that kα ≤ s.

We know that the number of points within each interest overlap area is smaller than or equal to the total
number of points within that grid, so we have

Ni1 ≤ Nt1, Ni2 ≤ Nt2, ..., Nis ≤ Nts (23)

And as a result,
Ni1 +Ni2 + ...+Nis ≤ Nt1 +Nt2 + ...+Nts (24)

As we are using equi-depth stratified sampling, we can combine the formula (15) and (24), and get

Ni1 +Ni2 + ...+Nis ≤
s

k
Nt (25)

And the sum of the left-hand side terms in formula (25) is Ni, which should be greater than 0, so we have

0 < Ni ≤
s

k
Nt (26)

If we divide both sides by Nt, we can get

0 <
Ni

Nt
≤ s

k
(27)

As we have the data ratio Ni
Nt

is α as in formula (2), together with equation (27), we can get

α =
Ni

Nt
≤ s

k
(28)

Multiplying the left-hand side and right-hand side of formula (28) by k, we can get

kα ≤ s (29)

Because kα ≤ s from formula (29), when we analyze g(x) in the range [s, k], we know that kαx ≤ 1, and
the term inside the parenthesis is non-negative, so g(x) is well-defined and has real value in the range [s, k].

Next, we can show that g(x) is continuous in the range [s, k]. As displayed below, g(x) is right-continuous
when x = s, left-continuous when x = k, and continuous when x ∈ (s, k). Therefore, g(x) is continuous
in the range [s, k].

lim
x→s+

g(x) = g(s) = (1− kα

s
)s (30)
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lim
x→k−

g(x) = g(k) = (1− kα

k
)k (31)

lim
x→t

g(x) = g(t) = (1− kα

t
)t, t ∈ (s, k) (32)

Third, we can show that g′(x) > 0 for x > s.

For simplicity, we can let kα = b, and write g(x) in formula (22) as

g(x) = (1− b

x
)x (33)

Then we can get the derivative of g(x) as

g′(x) = (1− b

x
)x(log(1− b

x
) +

b

x− b
) (34)

We know that s ≥ kα = b, so when x > s, we can get x > b > 0. Therefore, the first term (1 − b
x)
x in

equation (34) is positive, so we only need to consider the second term. We can denote the second term as
m(x) as below, and we can show that m(x) > 0 when x > b.

m(x) = log(1− b

x
) +

b

x− b
(35)

The derivative of m(x) is

m′(x) =
b
x2

1− b
x

− b

(x− b)2
=

b

x2 − bx
− b

(x− b)2
=

−b2

x(x− b)2
(36)

As x > b > 0, we can see that m′(x) < 0, so m(x) is a decreasing function in (b,+∞). We can also see
that the limit value for m(x) when x→ +∞ is:

lim
x→+∞

m(x) = lim
x→+∞

(log(1− b

x
) +

b

x− b
) = 0 (37)

Combining formula (36) and (37), we know that m(x) is a decreasing function in (b,+∞), and the limit
value is 0, so we know that m(x) > 0 in (b,+∞). Therefore, the second term in formula (34) is also
positive. As both the first term and the second term are positive, we can get

g′(x) > 0,when x > s (38)

Now, we can apply Lagrange mean value theorem. As g(x) is continuous on the closed interval [s, k], and
g(x) is differentiable on the open interval (s, k), there exists some c in the open interval (s, k), such that

g′(c) =
g(k)− g(s)
k − s

(39)

As c ∈ (s, k), we know from (38) that g′(c) > 0. So according to equation (39), when s < k, we have
g(s) < g(k). Equivalently, f(s) > f(k) when s < k. As we know that when s = k, f(s) = f(k), we can
get the formula (40), and the equality is true only when s = k.

f(s) ≥ f(k) (40)

Now we finish the proof for the lower bound in formula (21).
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More analysis for the lower bound of equi-depth sampling

Interestingly, we notice that f(k) is equivalent to the lower bound of random sampling. The lower bound
for equi-depth stratified sampling(f(s) as in the formula (20)) will be equal to f(k) only when s == k.
However, in most real applications, the value of s (the number of grids that overlap with the user interest
area) will be significantly smaller than k (the total number of grids in the data space), we have s < k, so the
lower bound f(s) will be greater than f(k).

We use an example to show the difference between f(s) and f(k). Suppose k = 25, α = 0.01, then k ∗α =
0.25, and s ∈ [1, 25]. We have f(k) = 1−(1−α)k = 0.2222 and f(s) = 1−(1− k

s ∗α)
s = 1−(1− 0.25

s )s

as noted in formula (20). We plot the value of f(s) against the value of s in Figure 4 below. We can see that
f(s) is a decreasing function, and the y value is above f(k) = 0.2222. But when the value of s increases,
the y value becomes closer and closer to 0.2222. We can also see that when s = 1, the y value is 0.25, and
f(1)
f(k) =

0.25
0.2222 = 1.125.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

0.25

0.5

0.75

1

1.25

Figure 4: lower bound comparison 1

Then we assign different values for the parameters, k = 100 and α = 0.00691, so k ∗ α = 0.691. We
have f(k) = 1 − (1 − α)k = 0.5. We plot the value of f(s) = 1 − (1 − 0.691

s )s against the value of s
in Figure 5 below. Again, we can see that f(s) is a decreasing function against s, but the y value is above
f(k). When s = 1, the y value is 0.691, and f(1)

f(k) = 0.691
0.5 = 1.382. When s = 2, the y value is 0.572, and

f(2)
f(k) =

0.572
0.5 = 1.144.
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0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

0.25

0.5

0.75

1

1.25

Figure 5: lower bound comparison 2

From the two examples above, we can see that when we change the value of k and α, the ratio f(s)
f(k) also

changes. We want to see the influence of k and α on the ratio f(s)
f(k) . There are three variables: s, the number

of grids that overlap with the user interest areas, k, the total number of grids we divide the data space into,
and α, the ratio of the number of points within the user interest area compared with the total number of
points in the data space.

We generate the heatmap plot for f(s)
f(k) when the value of s is equal to 1, 2, 3, 4, 20. In each of these plots,

we change the values of k and α. There are some relationships that the values of s, k and α must hold. (1)
s ≤ k. It is obvious that the number of grids that overlap with the user interest area cannot exceed the total
number of grids. When s = 1, 2, 3, 4, we assign the value range for k to be [4, 400]. When s = 20, the value
range for k we assign is [20, 400]. (2) k ∗ α ≤ s. We have proved this relationship in formula (29). The
intuitive explanation is that in equi-depth stratified sampling, each grid has the same number of data points.
Even if the user interest area covers all the data points in the s grids, the data ratio α cannot exceed s

k , so
kα ≤ s. This relationship explains why there are values only in part of the plot in Figure 6a, 7a, 8a, 9a, 10a,
other points in these plots don’t satisfy the relationship, thus are invalid.

We can see from Figure 6a, 7a, 8a, 9a, 10a that when the value of s increases, the size of the valid area in the
plot increases, but the maximum value for the ratio f(s)

f(k) decreases. The maximum value for f(1)
f(k) can reach

1.6, but the maximum value for f(20)
f(k) is very close to 1.0. We can see from Figure 6b, 7b, 8b, 9b, 10b that

the value of kα determines the value of f(s)
f(k) . When s = 1, the maximum value for f(s)

f(k) occurs when kα is

1. When s > 1, the maximum value for f(s)
f(k) occurs when kα is about 1.5.

We can draw the conclusion from the analysis that it is the value of k ∗ α that influences the value of f(s)
f(k) .

The smaller the value of s, the larger the maximum value for f(s)
f(k) .
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(a) f(1)/f(k) over a, k (b) f(1)/f(k) over ka, k

Figure 6: f(1)/f(k)

(a) f(2)/f(k) over a, k (b) f(2)/f(k) over ka, k

Figure 7: f(2)/f(k)
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(a) f(3)/f(k) over a, k (b) f(3)/f(k) over ka, k

Figure 8: f(3)/f(k)

(a) f(4)/f(k) over a, k (b) f(4)/f(k) over ka, k

Figure 9: f(4)/f(k)
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(a) f(20)/f(k) over a, k (b) f(20)/f(k) over ka, k

Figure 10: f(20)/f(k)

Some explanation of what it means that f(s) is a decreasing function

When we say f(s) is a decreasing function with s, we assume the value of k and α is given, and we only
change the value of s. As α = Ni

Nt
and the data set size Nt is given, it is the same as we assume Ni, the

number of data points within the user interest area, is fixed.

f(s) = 1− (1− k

s
α)s = 1− (1− k

s

Ni

Nt
)s (41)

This means that when we change s, we assume the data set size Nt, the number of grids k, and the number
of points within the user interest area Ni, all stay constant. We give an example in Figure 11 below. In both
Figure 11a and Figure 11b, k = 4, Nt = 100, and for both area 1 and area 2, Ni = 5. While for user interest
area 1, s = 1, for user interest area 2, s = 2. And we can get f(1) = 1 − (1 − 4

1 ∗
5

100)
1 = 0.2 for area 1,

and f(2) = 1− (1− 4
2 ∗

5
100)

2 = 0.19 for area 2. Therefore, f(1) > f(2).

(a) area 1 (b) area 2

Figure 11: Ni is fixed
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However, if the assumption doesn’t hold, for example, if Ni, the number of points within the user interest
area, increases when we increase the value of s, then f(s) may increase as a result. We give an example in
Figure 12 below. For user interest area 3 in Figure 12a, Ni = 4 and s = 1. After we expand the user interest
area to be area 4 in Figure 12b, Ni becomes 6 and s = 2. In this scenario, f(1) = 1− (1− 4

1 ∗
4

100)
1 = 0.16,

while f(2) = 1− (1− 4
2 ∗

6
100)

2 = 0.2256. Therefore, f(1) < f(2).

(a) area 3 (b) area 4

Figure 12: Ni is not fixed

As a conclusion, f(s) is a decreasing function for s when k, Nt and Ni are fixed. If Ni can increase when
we increase s, the probability lower bound f(s) is not necessarily a decreasing function.

Equi-width stratified sampling lower bound

When we use equi-width stratified sampling method, we can assume that the data distribution is known, so
we know the density ρ(t) for any point t in the data space. Then we can write the number of data points Nij

and Ntj as in formula (42) below, where j = 1, 2, ..., s.

Nij =

∫
Aij

ρ(t)dA,Ntj =

∫
Atj

ρ(t)dA (42)

We can write the data ratio as

Nij

Ntj
=

∫
Aij

ρ(t)dA∫
Atj

ρ(t)dA
=
Aij

∫
Aij

ρ(t)dA

Aij

Atj

∫
Atj

ρ(t)dA

Atj

=
Aij
Atj
∗

∫
Aij

ρ(t)dA

Aij∫
Atj

ρ(t)dA

Atj

(43)

If we define γj as in formula (44) below, for 1 ≤ j ≤ s.

γj =

∫
Aij

ρ(t)dA

Aij∫
Atj

ρ(t)dA

Atj

(44)

Then according to (43), we have
Nij

Ntj
=
Aij
Atj

γj (45)
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As j = 1, 2, ..., s, we can write the formula (43) with γ1, γ2, ..., γs, and get

Ni1

Nt1
=
Ai1
At1

γ1,
Ni2

Nt2
=
Ai2
At2

γ2, ...,
Nis

Nts
=
Ais
Ats

γs (46)

If we let γ′ = min(γ1, γ2, ..., γs), then we have

Ni1

Nt1
+
Ni2

Nt2
+ ...+

Nis

Nts
=

Ai1
At1

γ1 +
Ai2
At2

γ2 + ...+
Ais
Ats

γs

≥ Ai1
At1

γ′ +
Ai2
At2

γ′ + ...+
Ais
Ats

γ′

= (
Ai1
At1

+
Ai2
At2

+ ...+
Ais
Ats

)γ′

(47)

When the number of total grids k increases, each grid will become smaller, and the difference between the
user interest area and the union of the s overlap grids will get smaller as well. When k goes to infinity,
we can think that the difference goes to zero, and each of the s overlap grids is totally covered by the user
interest area. So in this asymptotic case, we can get formula (48) below, and have γj = 1 for 1 ≤ j ≤ s.
Therefore, in the asymptotic case, γ′ = min(γ1, γ2, ..., γs) = 1.

lim
k→∞

γj = lim
k→∞

∫
Aij

ρ(t)dA

Aij∫
Atj

ρ(t)dA

Atj

=

∫
Atj

ρ(t)dA

Atj∫
Atj

ρ(t)dA

Atj

= 1 (48)

When we are not in the asymptotic case, and k does not go to∞, we can assume that inside the grids that
overlap with the user interest area, the user interest area in each of these grids is relatively denser com-

pared with the average density of the same grid, more precisely, if we assume
∫
Aij

ρ(t)dA

Aij
≥

∫
Atj

ρ(t)dA

Atj
for

1 ≤ j ≤ s, then we can get γj ≥ 1 for 1 ≤ j ≤ s. Notice that j is between 1 and s, not between 1 and
k. For those grids that don’t overlap with the user interest areas, we don’t care about them, even if they are
very dense. As γ′ = min(γ1, γ2, ..., γs), so we can get γ′ ≥ 1.

Considering both the asymptotic scenario and non-asymptotic scenario, we have formula (49) below.

γ′ ≥ 1 (49)

Combining formula (47) and formula (49), we can get

Ni1

Nt1
+
Ni2

Nt2
+ ...+

Nis

Nts
≥ Ai1
At1

+
Ai2
At2

+ ...+
Ais
Ats

(50)

As we use equi-width stratified sampling, we can assume the area in each grid is the same.

At1 = At2 = ... = Ats =
1

k
At (51)

So we can simplify the right-hand side of the inequality (14) as below:

1− (1−
Ni1
Nt1

+ Ni2
Nt2

+ ...+ Nis
Nts

s
)s ≥ 1− (1−

Ai1
At1

+ Ai2
At2

+ ...+ Ais
Ats

s
)s

= 1− (1−
Ai1+Ai2+...+Ais

1
k
At

s
)s

= 1− (1− k

s
∗ Ai
At

)s

(52)
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If we assume the area ratio, which is the size of the user interest areas compared with the size of the total
area, is β,

Ai
At

= β (53)

then combining formula (52) and formula (53), we have

pwidth ≥ 1− (1−
Ni1
Nt1

+ Ni2
Nt2

+ ...+ Nis
Nts

s
)s ≥ 1 − (1 −

k

s
β)s (54)

If we define h(x) as formula (55) below, then from formula (54) above, we know that the probability lower
bound for equi-width stratified sampling will be h(s) as in formula (56) below.

h(x) = 1− (1− k

x
β)x (55)

pwidth ≥ 1− (1− k

s
β)s = h(s) (56)

Analysis of the lower bound h(s)

Similar to the proof for equi-depth stratified sampling, we can analyze the relationship between the lower
bound h(s) and the value h(k). We can show that only when s = k, h(s) = h(k), otherwise, when s < k,
h(x) is a decreasing function in the range [s, k], so h(s) > h(k). In sum, we have the formula (57), and the
equality is true only when s = k. The proof is similar to that in equi-depth sampling, so we will skip the
proof here.

h(s) ≥ h(k) = 1− (1− β)k (57)

We can also compare h(s) and h(k) using the similar method in Figure 4, 5, 6, 7, 8, 9, 10. We will skip
them here, too.

Comparing the probability lower bound for equi-width and equi-depth sampling

As in formula (18) and (54), the probability lower bound for equi-depth and equi-width stratified sampling
is f(s) = 1 − (1 − k

sα)
s and h(s) = 1 − (1 − k

sβ)
s respectively. We have compared f(s) and h(s) with

f(k) and h(k). Now we want to compare f(s) and h(s).

There are two differences between f(s) and h(s). First, the difference between α and β. α is equal to
the data ratio Ni

Nt
, while β is equal to the area ratio Ai

At
, so the relationship between α and β relies on the

relationship between Ni
Nt

and Ai
At

. Second, the difference of the s value. When we divide the data space
into the same number (k) of grids using equi-width or equi-depth sampling, the value s(the number of grids
that overlap with the user interest area) for equi-width and equi-depth stratified sampling may be different.
Both of the two differences depend on the data distribution and the number of grids (k) we divide the data
space into, so we use some common data distribution and k value to compare the probability lower bound
for equi-depth and equi-width sampling, f(s) and h(s).

(1) uniform distribution
If our data set is uniformly distributed, then the data ratio Ni

Nt
will be equal to the area ratio Ai

At
, so we have

α = β. Moreover, in uniformly distributed dataset, if we divide the data space into k grids, then the grids
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in equi-depth sampling will be the same as the grids in equi-width sampling, because each grid will have
the same number of points as well as the same area size. Therefore, the s values in equi-depth sampling
and equi-width samping are the same. According to the analysis above, the probability lower bounds in
equi-depth sampling and equi-width sampling are the same, f(s) == h(s).

(2) Gaussian distribution
To compare equi-depth and equi-width sampling methods for Gaussian distributed dataset, we generate a
synthetic dataset following 2-d Gaussian distribution. The dataset contains 100 data points, so Nt = 100.
The data space is: x1 ∈ [21, 45] and x2 ∈ [31, 55], so the size of the total data space area is At = 24 ∗ 24 =
576. We generate two user interest areas: the first one(we call it ’area 1’ below) locates at the relatively
dense area(x1 ∈ [28, 32] and x2 ∈ [44, 48]), while the second one(we call it ’area 2’ below) locates at the
relatively sparse area(x1 ∈ [28, 32] and x2 ∈ [35, 39]). When applying equi-depth and equi-width sampling
methods, we divide the data space into k = 16 grids.

For area 1, the size of the area is Ai = 4 ∗ 4 = 16, and the number of points within the area is Ni = 8,
therefore, α = Ni

Nt
= 8

100 = 0.08 and β = Ai
At

= 16
576 = 0.0278. Because α > β, the data ratio is greater

than the area ratio for area 1, we can define area 1 as a relatively dense area. We apply both equi-depth
stratified sampling(in Figure 13), and equi-width stratified sampling(in Figure 14) for area 1. From Figure
13, we can see that area 1 overlaps with s = 3 grids in equi-depth sampling, and from Figure 14, we can
see that area 1 overlaps with only s = 1 grid in equi-width sampling. Therefore, for area 1, we can get the
probability lower bound for equi-depth sampling f(s) = 1− (1− k

sα)
s = 1− (1− 16

3 ∗ 0.08)
3 = 0.8115,

and the lower bound for equi-width sampling h(s) = 1 − (1 − k
sβ)

s = 1 − (1 − 16
1 ∗ 0.0278)

1 = 0.4448.
For area 1, f(s) > h(s).

Figure 13: Equi-depth sampling for user interest area 1 under Gaussian distribution
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Figure 14: Equi-width sampling for user interest area 1 under Gaussian distribution

For area 2, the size of the area is Ai = 4∗4 = 16, and the number of points within the area is Ni = 1, there-
fore, α = Ni

Nt
= 1

100 = 0.01 and β = Ai
At

= 16
576 = 0.0278. Because α < β, the data ratio is smaller than the

area ratio for area 2, we can define area 2 as a relatively sparse area. The equi-depth stratified sampling and
equi-width stratified sampling results for area 2 are shown in Figure 15 and Figure 16 respectively. From
Figure 15, we can see that area 2 overlaps with s = 1 grid in equi-depth sampling, and from Figure 16, we
can see that area 2 overlaps with s = 2 grids in equi-width sampling. Therefore, for area 2, we can get the
probability lower bound for equi-depth sampling f(s) = 1− (1− k

sα)
s = 1− (1− 16

1 ∗ 0.01)
1 = 0.16, and

the lower bound for equi-width sampling h(s) = 1 − (1 − k
sβ)

s = 1 − (1 − 16
2 ∗ 0.0278)

2 = 0.3953. For
area 2, f(s) < h(s).

In conclusion, for non-uniformly distributed(like Gaussian distributed) dataset, the relationship between
f(s) and h(s) is not stable, which one is better depends on the density of the user interest area. If the user
interest area is in some relatively dense area, where the data ratio α = Ni

Nt
is greater than the area ratio

β = Ai
At

, then equi-depth stratified sampling will be preferred, even if the exact location of the user interest
area is not known. Otherwise, if the user interest area locates at some relatively sparse area, where the data
ratio α = Ni

Nt
is smaller than the area ratio β = Ai

At
, then equi-width stratified sampling might be a better

choice, even if the exact location of the user interest area is not known.
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Figure 15: Equi-depth sampling for user interest area 2 under Gaussian distribution

Figure 16: Equi-width sampling for user interest area 2 under Gaussian distribution
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3.3 Progressive sampling lower bound

For progressive sampling, we use equi-depth or equi-width sampling method progressively, level by level.
In level 1, we use equi-depth or equi-width stratified sampling method, dividing each dimension into 2 equi-
depth or equi-width buckets, and select one random sample from each of the k1 = 2d grids. If no sample
is in the user interest area, we perform level 2 equi-depth or equi-width stratified sampling, dividing each
dimension into 22 buckets, and select one random sample from each of the k2 = 22d grids. In level i equi-
depth or equi-width stratified sampling, we divide each dimension into 2i buckets, and select one random
sample from each of the ki = 2i∗d grids. And so on. We stop when we get at least one sample within the
user interest area.

Probability

If we let the probability that at level i, we get at least one positive sample with ki = 2i∗d samples to be p(ki),
then the probability that we can get at least one positive sample within m levels in the progressive sampling
process is:

pm = 1− (1− p(k1))(1− p(k2))...(1− p(km)) (58)

As we know the lower bound of p(k1), p(k2), ..., p(km), which are single level equi-depth or equi-width
sampling probability lower bound, we can get the lower bound for the probability pm assuming we stop at
level m.

Probability lower bound for progressive equi-depth sampling

For progressive equi-depth sampling, according to formula (20), the probability lower bounds for p(k1),
p(k2), ..., p(km) are in formula (59).

p(k1) ≥ 1− (1− k1
s1
α)s1

p(k2) ≥ 1− (1− k2
s2
α)s2

...

p(km) ≥ 1− (1− km
sm

α)sm

(59)

Then we can derive the lower bound for pm as in formula (60).

pm = 1− (1− p(k1))(1− p(k2))...(1− p(km))

≥ 1− (1− k1
s1
α)s1(1− k2

s2
α)s2 ...(1− km

sm
α)sm

(60)

22



According to the derivation result from Jensen’s Inequality in formula (10), we can get

p′ = (1− k1
s1
α)s1(1− k2

s2
α)s2 ...(1− km

sm
α)sm

≤ (
s1(1− k1

s1
α) + s2(1− k2

s2
α) + ...+ sm(1− km

sm
α)

s1 + s2 + ...+ sm
)
∑m

i=1 si

= (

∑m
i=1 si − (

∑m
i=1 ki)α∑m

i=1 si
)
∑m

i=1 si

= (1−
∑m

i=1 ki∑m
i=1 si

α)
∑m

i=1 si

(61)

Combining formula (60) and (61), we can get

pm ≥ 1− p′ ≥ 1− (1−
∑m

i=1 ki∑m
i=1 si

α)
∑m

i=1 si (62)

Comparing with single level equi-depth sampling

The probability lower bound for progressive equi-depth sampling is in the right-hand side of formula (62).
We want to compare it with the lower bound for single level equi-depth sampling. To make the comparison
fair, we draw the same number of samples from either progressive equi-depth sampling or single level equi-
depth sampling. In single level equi-depth sampling method, we divide the data space into k grids, and
select one random sample from each grid, where k is

k =
m∑
i=1

ki (63)

When we divide the data space into k grids(k value is in formula (63)) according to single level equi-depth
sampling algorithm, we assume that the number of grids that overlap with the user interest area is s′. Then
according to formula (20), we know that the probability lower bound for the single level equi-depth sampling
is in the right-hand side of formula (64).

pdepth ≥ 1− (1− k

s′
α)s

′
= 1− (1−

∑m
i=1 ki
s′

α)s
′

(64)

We define L1 as the probability lower bound of progressive equi-depth sampling(the right-hand side of
formula (62)) and define L2 as the probability lower bound of single level equi-depth sampling(the right-
hand side of formula (64)), we need to compare L1 and L2.

L1 = 1− (1−
∑m

i=1 ki∑m
i=1 si

α)
∑m

i=1 si (65)

L2 = 1− (1−
∑m

i=1 ki
s′

α)s
′

(66)

The relationship between L1 and L2 depends on the relationship between
∑m

i=1 si and s′. As we know
from formula (19) that f(x) = 1− (1−

∑m
i=1 ki
x α)x is a decreasing function, if

∑m
i=1 si < s′, L1 > L2, if∑m

i=1 si > s′, L1 < L2, and if
∑m

i=1 si = s′, L1 = L2.
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To understand the relationship between
∑m

i=1 si and s′, we make use of the Gaussian distributed dataset
we generated in the previous section. For progressive equi-depth sampling, we divide the data space into 4
grids(2 buckets in each dimension) in level 1, and we divide the data space into 16 grids(4 buckets in each
dimension) in level 2. As a comparison, in single level equi-depth sampling, we divide the data space into 20
grids(5 buckets in dimension x1 and 4 buckets in dimension x2). We generate two user interest areas, area 1
and area 2. The location for area 1 is [25, 29] ∗ [46, 50], and the location for area 2 is [35.5, 40] ∗ [41.5, 49].

Figure 17 shows the progressive equi-depth sampling in level 1 for user interest area 1, and s1 = 1. Figure
18 shows the progressive equi-depth sampling in level 2 for user interest area 1, and s2 = 2. Figure 19
shows the single level equi-depth sampling for user interest area 1, and s′ = 2. Therefore, for user interest
area 1, we have s1 + s2 > s′, and L1 < L2.

Similarly, for user interest area 2, we can see that s1 = 2 from Figure 20, s2 = 8 from Figure 21, and
s′ = 12 from Figure 22. Therefore, for user interest area 2, we have s1 + s2 < s′, and L1 > L2.

From the result for user interest area 1 and area 2, we can see that the relationship between the probability
lower bound of progressive equi-depth sampling and single level equi-depth sampling is not stable. As
the data distribution influences how the grids are divided in equi-depth sampling, the performance of the
two algorithms is related to the density of the user interest area. If the user interest area is in some sparse
area(like area 1), the grids for single level equi-depth is not quite different from the grids in the highest
level(level 2 in the example) in progressive sampling in the sparse area, so s′ is almost the same as sm, and
smaller than

∑m
i=1 si. In this case, single level equi-depth sampling may have a greater probability lower

bound than progressive equi-depth sampling. On the other hand, if the use interest area is in some dense
area(like area 2), the additional grids will make s′ greater than sm, and even greater than

∑m
i=1 si. In this

scenario, progressive equi-depth sampling may have a larger probability lower bound than the single level
equi-depth sampling for user interest area in some dense region.
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Figure 17: Progressive equi-depth sampling in level 1 for user interest area 1

Figure 18: Progressive equi-depth sampling in level 2 for user interest area 1
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Figure 19: Single level equi-depth sampling for user interest area 1

Figure 20: Progressive equi-depth sampling in level 1 for user interest area 2
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Figure 21: Progressive equi-depth sampling in level 2 for user interest area 2

Figure 22: Single level equi-depth sampling for user interest area 2
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Probability lower bound for progressive equi-width sampling

For progressive equi-width sampling, according to formula (56), the probability lower bounds for p(k1),
p(k2), ..., p(km) are in formula (67).

p(k1) ≥ 1− (1− k1
s1
β)s1

p(k2) ≥ 1− (1− k2
s2
β)s2

...

p(km) ≥ 1− (1− km
sm

β)sm

(67)

According to (58) and (67), we can get the lower bound for pm as in formula (68).

pm = 1− (1− p(k1))(1− p(k2))...(1− p(km))

≥ 1− (1− k1
s1
β)s1(1− k2

s2
β)s2 ...(1− km

sm
β)sm

(68)

According to the derivation result from Jensen’s Inequality in formula (10), we can get

p′′ = (1− k1
s1
β)s1(1− k2

s2
β)s2 ...(1− km

sm
β)sm

≤ (
s1(1− k1

s1
β) + s2(1− k2

s2
β) + ...+ sm(1− km

sm
β)

s1 + s2 + ...+ sm
)
∑m

i=1 si

= (

∑m
i=1 si − (

∑m
i=1 ki)β∑m

i=1 si
)
∑m

i=1 si

= (1−
∑m

i=1 ki∑m
i=1 si

β)
∑m

i=1 si

(69)

Combining formula (68) and (69), we can get

pm ≥ 1− p′′ ≥ 1− (1−
∑m

i=1 ki∑m
i=1 si

β)
∑m

i=1 si (70)

Comparing with single level equi-width sampling

Similar to the analysis in the comparison between progressive equi-depth sampling and single level equi-
depth sampling, we want to compare the lower bound for progressive equi-width sampling in formula (70)
with the lower bound for single level equi-width sampling. To make the comparison fair, we draw the same
number of samples from single level equi-width sampling. In single level equi-width sampling, we divide
the data space into k grids, and select one random sample from each grid, where k is

k =
m∑
i=1

ki (71)

We also assume that the number of grids that overlap with the user interest area in the single level equi-
width sampling method is s′′. Then according to formula (56), we can get the probability lower bound for
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the single level equi-width sampling:

pwidth ≥ 1− (1− k

s′′
β)s

′′
= 1− (1−

∑m
i=1 ki
s′′

β)s
′′

(72)

We define L3 as the probability lower bound of progressive equi-width sampling (the right-hand side of
formula (70)), and define L4 as the probability lower bound of single level equi-width sampling ( the right-
hand side of formula (72)), we need to compare L3 and L4.

L3 = 1− (1−
∑m

i=1 ki∑m
i=1 si

β)
∑m

i=1 si (73)

L4 = 1− (1−
∑m

i=1 ki
s′′

β)s
′′

(74)

The relationship between L3 and L4 depends on the relationship between
∑m

i=1 si and s′′. As we know
from formula (55) that h(x) = 1− (1−

∑m
i=1 ki
x β)x is a decreasing function, if

∑m
i=1 si < s′′, L3 > L4, if∑m

i=1 si > s′′, L3 < L4, and if
∑m

i=1 si = s′′, L3 = L4.

To understand the relationship between
∑m

i=1 si and s′′, we make use of the same Gaussian distributed
dataset as in previous section. For progressive equi-width sampling, we divide the data space into 4 grids(2
buckets in each dimension) in level 1, and we divide the data space into 16 grids(4 buckets in each dimen-
sion) in level 2. As a comparison, in single level equi-width sampling, we divide the data space into 20
grids(5 buckets in dimension x1 and 4 buckets in dimension x2). We also generate two user interest areas,
area 3 and area 4. The location for area 3 is [24, 28]∗ [47, 51], and the location for area 4 is [28, 32]∗ [35, 39].
The size of area 3 and area 4 are the same, and there is only one data point in both area 3 and area 4, so the
data density for area 3 and area 4 are also the same.

Figure 23 shows the progressive equi-width sampling in level 1 for user interest area 3, and s1 = 1. Figure
24 shows the progressive equi-width sampling in level 2 for user interest area 3, and s2 = 4. Figure 25
shows the single level equi-width sampling for user interest area 3, and s′′ = 4. Therefore, for user interest
area 3, we have s1 + s2 > s′′, and L3 < L4.

Similarly, for user interest area 4, we can see that s1 = 1 from Figure 26, s2 = 2 from Figure 27, and s′′ = 4
from Figure 28. Therefore, for user interest area 2, we have s1 + s2 < s′′, and L3 > L4.

From the result for user interest area 3 and area 4, we can see that the relationship between the probability
lower bound of progressive equi-width sampling and single level equi-width sampling is not stable. As
the data distribution does not influence the way grids are divided in equi-width sampling, whether the user
interest area is in sparse area or dense area does not really matter in the relationship between the lower bound
for progressive equi-width sampling and the lower bound for single level equi-width sampling. What really
matters is the relative location of the user interest area in the data space. For user interest areas in some
locations, where

∑m
i=1 si < s′′, progressive equi-width sampling has higher probability lower bound, while

for some other locations, where
∑m

i=1 si > s′′, single level equi-width sampling has higher probability lower
bound. In conclusion, we cannot say which one, progressive equi-width sampling or single level equi-width
sampling, is better, and the result depends on the location of the user interest area.
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Figure 23: Progressive equi-width sampling in level 1 for user interest area 3

Figure 24: Progressive equi-width sampling in level 2 for user interest area 3
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Figure 25: Single level equi-width sampling for user interest area 3

Figure 26: Progressive equi-width sampling in level 1 for user interest area 4
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Figure 27: Progressive equi-width sampling in level 2 for user interest area 4

Figure 28: Single level equi-width sampling for user interest area 4
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4 Experiment Evaluation

We carry out 3 experiments. First, we implement equi-width, equi-depth stratified sampling algorithm with
SQL, evaluate their performance, and analyze the impact of three key factors to their performance. Second,
we run simulations to test how good each sampling method is for finding the true samples inside the user
interest area. The sampling methods we compare include random sampling, equi-depth stratified sampling
and equi-width stratified sampling. Third, we run simulations to compare progressive equi-depth and equi-
width stratified sampling with single level equi-depth and equi-width stratified sampling. The SQL query
code for equi-depth and equi-width stratified sampling are in the Appendices.

System Information

For the first experiment, we test the performance of equi-depth and equi-width stratified sampling in a server
machine. The server has two CPUs, each of which is Intel(R) Xeon(R) 3.00GHz, 64bits. The memory is
8GB. The operating system is CentOS release 6.4, Linux version 2.6.32 − 358.23.2.el6.x86_64. The
database we use is PostgreSQL 9.3.1.

For the second and third experiment, we run the simulation experiments to compare different sampling
methods in a MacBook Pro. The CPU is IntelCorei5(2.4GHz). The memory is 8GB. The operating
system is OS X EI Capitan. The simulation language is Python, and database we use is PostgreSQL.

Dataset

For the first experiment, we use the SDSS dataset [1] to test the performance of equi-depth and equi-width
stratified sampling. We download data from the PhotoObj table of SkyServer DR8. The PhotoObj table
contains 509 columns, which are all the attributes of each photometric(image) object. All the 509 columns
include numeric values. The size of our base table is 78GB.

For the second and third simulation experiments, we generate two synthetic datasets by ourselves. One is a
2 dimensional uniform distributed dataset and the other is a 2 dimensional Gaussian mixture dataset. Each
of the two datasets includes 20000 tuples. The Gaussian mixture dataset contains 4 mixtures.

PostgreSQL buffer tuning

In the first experiment, when testing the performance of equi-depth and equi-width stratified sampling in
our database, we set the buffer size of the database(’work_mem’ in PostgreSQL) large enough(for example
2GB), so that the sorting step in the query execution can be done completely in memory.

4.1 Stratified sampling performance

In the first experiment, we evaluate the performance of equi-width, equi-depth stratified sampling with
respect to three key factors, which are the total number of tuples, the number of columns in the dataset and
the number of dimensions we select to run sampling. We change the number of tuples by using different
sampling databases, change the number of columns by using column tables, and change the number of
dimensions by using different sampling space. We divide each dimension into 5 buckets. In the first two
set of experiments, we perform sampling in 2 dimensional space, so we will get 25 buckets. We randomly
select one sample from each bucket. We run each experiment 5 times, and report the average running time.
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4.1.1 Vary the number of tuples

We change the number of tuples in the dataset by using sampling databases with different sampling ratios.
The size of our base table is 78GB. We create three sampling databases by random sampling tuples from
the base table with three different sampling ratios, 10%, 20%, 30%, and record the size of the three result
tables inside PostgreSQL. We run both equi-width and equi-depth stratified sampling in the 2 dimensional
space(rowc and colc) over the three sampling databases, and record their running time using commands in
PostgreSQL("explain analyze" tools). The dataset size, CPU time, I/O time and total time for equi-width
sampling is in Table 1, and the result for equi-depth sampling is in Table 2. We also plot their running time
in Figure 29.

Dataset Size(MB) CPU Time(s) I/O Time(s) Total Time(s)
10% sampledb 7887 3.1428 113.5372 116.68
20% sampledb 15781 6.3434 227.7976 234.141
30% sampledb 23671 9.8084 349.7686 359.577

Table 1: Equi-width stratified sampling over sampling db

Dataset Size(MB) CPU Time(s) I/O Time(s) Total Time(s)
10% sampledb 7887 3.4994 114.589 118.0884
20% sampledb 15781 7.0886 225.355 232.4436
30% sampledb 23671 11.0612 355.5646 366.6258

Table 2: Equi-depth stratified sampling over sampling db

The number of tuples and table size of the three sampling database increases linearly. We can see from figure
29 below that both the CPU time and I/O time increases linearly with the size of the sampling database. This
is true for both equi-width and equi-depth stratified sampling. We can also see that in this experiment, I/O
time is much larger than CPU time. The database spends most of the time reading the table. The CPU
time for equi-depth sampling is slightly larger than the CPU time for equi-width sampling because of the
additional sorting steps to determine the group for each data point, but as the I/O time is dominant, the
difference is not significant.
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(a) Equi-width Sampling (b) Equi-depth Sampling

Figure 29: Vary the number of tuples

4.1.2 Vary the number of table columns

In this experiment, we change the number of columns in the dataset by creating 5 column tables, which
have 8 columns, 16 columns, 32 columns, 64 columns, 128 columns respectively. These columns have
containment relationship, 8columns ∈ 16columns ∈ ... ∈ 128columns. As these columns don’t have
the same data type or length, when we double the number of columns, the size of the column table is not
necessarily doubled as shown in the Table 3 and Table 4. We run both equi-width and equi-depth stratified
sampling over these column tables. The CPU time, I/O time and total running time for equi-width sampling
are in Table 3, and the results for equi-depth sampling are in Table 4. We also plot the running time in Figure
30.

Dataset Size(MB) CPU Time(s) I/O Time(s) Total Time(s)
8 column 664 3.8498 7.1454 10.9952
16 column 1164 4.2046 14.251 18.4556
32 column 1651 4.8008 17.1732 21.974
64 column 2841 5.5914 18.0558 23.6472
128 column 5072 5.9502 34.7928 40.743

Table 3: Equi-width stratified sampling over column tables

Dataset Size(MB) CPU Time(s) I/O Time(s) Total Time(s)
8 column 664 4.8538 7.707 12.5608
16 column 1164 5.2324 14.496 19.7284
32 column 1651 5.8264 17.3508 23.1772
64 column 2841 6.5918 17.601 24.1928
128 column 5072 7.1568 34.0114 41.1682

Table 4: Equi-depth stratified sampling over column tables
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We can see that in both equi-width and equi-depth sampling, when we use smaller column tables, the I/O
time decreases, because the time to read column table is reduced. The CPU time also decreases, but the
amount decreased is much smaller compared with the I/O time decrease. Comparing equi-width and equi-
depth sampling, we can see that equi-depth sampling uses slightly more CPU time than equi-width sampling,
because equi-depth sampling will perform one more sorting in each dimension than equi-width sampling to
determine the group for each data point. The I/O time for equi-width and equi-depth sampling is similar.

(a) Equi-width Sampling (b) Equi-depth Sampling

Figure 30: Vary the number of columns

4.1.3 Vary the number of sampling dimensions

In this experiment, we use the 10% sampling database with the full columns. We change the number of
dimensions we select for sampling when running equi-width or equi-depth stratified sampling. We select
20 attributes from the SDSS dataset, which are u, g, r, i, z, err_u, err_g, err_r, err_i, err_z, psfMag_u,
psfMag_g, psfMag_r, psfMag_i, psfMag_z, psfMagErr_u, psfMagErr_g, psfMagErr_r, psfMagErr_i, psf-
MagErr_z. For each experiment, we select the first 5, 10, 15, 20 dimensions to perform equi-width or
equi-depth stratified sampling and compare their performance. The CPU time, I/O time and total running
time for equi-width sampling are in Table 5, and the results for equi-depth sampling are in Table 6. We also
plot the running time in Figure 31.

#dimensions CPU Time(s) I/O Time(s) Total Time(s)
5 22.059 90.0035 112.0625
10 26.591 86.4745 113.0655
15 26.4115 87.77 114.1815
20 27.961 89.5045 117.4655

Table 5: Equi-width stratified sampling with different dimensions
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#dimensions CPU Time(s) I/O Time(s) Total Time(s)
5 28.202 90.491 118.693
10 38.7815 92.9915 131.773
15 50.848 95.31 146.158
20 65.5395 92.893 158.4325

Table 6: Equi-depth stratified sampling with different dimensions

We can see that in equi-width sampling, when we increase the number of sampling dimensions, the I/O
time stays almost the same, because we read the same table each time. The CPU time slightly increases,
but the increase is not significant compared with the total running time. For equi-depth sampling, when we
increase the number of sampling dimensions, the I/O time stays almost the same, too. However, the CPU
time increases significantly, because we need more sorting when we increase the number of dimensions.
Comparing equi-width and equi-depth sampling, their I/O time cost is almost the same, but equi-depth
spends more CPU time than equi-width, and as the number of dimensions increase, the difference becomes
more significant.

(a) Equi-width Sampling (b) Equi-depth Sampling

Figure 31: Vary the number of sampling dimensions

4.2 Compare random sampling, equi-depth and equi-width sampling

We compare random sampling, equi-depth and equi-width stratified sampling by how good they are for find-
ing the true samples inside the user interest area. We use both 2 dimensional uniformly distributed dataset
and 2 dimensional Gaussian mixture dataset we generated by ourselves in our simulations. We select differ-
ent user interest areas in different scenarios. We change the maximum number of samples permitted in each
scenario. We run the simulation 1000 times for each scenario, and record the number of times T that the
sampling method can get at least one user interested sample within the maximum number of samples, and
then calculate the success probability as T

1000 , and use it as our metric.
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(a) area: α = 1
10 (b) area: α = 1

100 (c) area: α = 1
1000

Figure 32: uniform dataset

(a) area: α = 1
10 , dense (b) area: α = 1

10 , sparse (c) area: α = 1
100 , dense

(d) area: α = 1
100 , sparse (e) area: α = 1

1000 , dense (f) area: α = 1
1000 , sparse

Figure 33: mixture dataset

The simulation result for the uniformly distributed dataset is in Figure 32. We select three different user
interest areas, where the data ratio α is 1

10 , 1
100 and 1

1000 respectively, and their results are in Figure 32a, 32b
and 32c respectively.

We can see that for uniformly distributed dataset, equi-depth stratified sampling and equi-width stratified
sampling have similar success probability, which are slightly better than that of random sampling.

The simulation result for the Gaussian mixture dataset is in Figure 33. We select six different user interest
areas, as displayed from Figure 33a to Figure 33f. These user interest areas have different data ratios, where
α is equal to 1

10 , 1
100 or 1

1000 . For each data ratio α, we select a dense user interest area and a sparse user
interest area. For dense area, the data ratio α is greater than the area ratio β, which also means that the
average density in the user interest area is greater than the average density of the whole data space. While
for sparse area, the data ratio α is smaller than the area ratio β, which also means that the average density in
the user interest area is smaller than the average density of the whole data space.

We can see that for Gaussian mixture dataset, the success probability for equi-depth stratified sampling is
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slightly better than that of random sampling. For dense user interest area, in most cases, equi-depth stratified
sampling has higher success probability than equi-width stratified sampling, and equi-width stratified sam-
pling is even worse than random sampling. For sparse user interest area, in most cases, equi-width stratified
sampling is better than equi-depth stratified sampling and random sampling.

4.3 Compare progressive sampling and single-level stratified sampling

We also compare progressive equi-depth and equi-width sampling with single level equi-depth and equi-
width sampling by how good they are for finding the true samples inside the user interest area. We use the
same 2 dimensional Gaussian mixture dataset as in section 4.2. We select different user interest areas in
different scenarios. We change the maximum number of samples permitted in each scenario. We run the
simulation for each scenario by 1000 times, and record the number of times T that the sampling method
can get at least one user interested sample within the maximum number of samples, and then calculate the
success probability as T

1000 , and use it as our metric.

(a) area: α = 1
10 , dense (b) area: α = 1

10 , sparse (c) area: α = 1
100 , dense

(d) area: α = 1
100 , sparse (e) area: α = 1

1000 , dense (f) area: α = 1
1000 , sparse

Figure 34: progressive sampling VS single-level sampling

The simulation result is in Figure 34. The six different user interest areas from Figure 34a to Figure 34f are
the same six user interest areas as in Figure 33. Their data ratio α is equal to 1

10 , 1
100 or 1

1000 respectively.
For each data ratio α, we have a dense user interest area and a sparse user interest area.

Comparing progressive equi-depth sampling with single-level equi-depth sampling, we can see that for
dense region, progressive equi-depth sampling is slightly better than single-level equi-depth sampling, while
for sparse region, single-level equi-depth sampling is slightly better than progressive equi-depth sampling.
However, the difference between the two sampling methods is not significant.

Comparing progressive equi-width sampling with single-level equi-width sampling, which one is better
doesn’t depend on the density of the user interest area, but depends on the location of the user interest area.
For some locations, progressive equi-width sampling has higher success probability, while for some other
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locations, single-level equi-width sampling has higher success probability.

5 Related Work

Olken studied how to obtain samples from query results without first performing the query [23]. In his
problem, the query to perform is known. However, in our problem, we don’t know the target query, which
makes the two problems different. There are also many previous works on the problem of approximate query
processing(APQ) [24] [25] [26] [27]. However, they try to apply sampling methods to generate approximate
early results(i.e. aggregation) for known queries, and their purpose is for fast approximate query processing,
which is different from our problem. [2] applies sampling method to generate approximate visualization.
SearchLight [3] studies the exploration problem, but they use constraint programming solvers, which is
different from our sampling methods. [4] focus on specifically object-centric exploration queries and their
visualization, but our exploration problem is more generic. RINSE [5] studies exploration of data series
data, which are different from our scenarios. Smart Drill-Down [6] build an efficient drill-down operation,
providing summary of groups of tuples, however, the summary of tuples are different from our problems. [7]
applies stratified sampling method to aggregation queries, which is different from our problem. DICE [8]
is an exploration system for data cubes. [9] focus on the accuracy of sampling-based aggregation query
estimation. [10] studies the problem of counting and sampling triangles in a massive graph, whose edges
arrive as a stream. Our problem doesn’t have the graph structure. [11] studies spatial data set, and want to
find regions that include relevant points of interest based on relevant keywords. VSOutlier [12] is a system
supporting efficient outlier detection in big data streams. SPIRE [13] is for efficient interactive rule-mining.
[14] applies stratified sampling for online social network, and the implementation is based on MapReduce
framework, which are different from our approaches. [15] designs an adaptive indexing approach for
fast data series exploration, which are different from our problem. The semantic window paper [16] also
studies the data exploration problem, but they perform exploration based on windows, on the other hand, we
perform exploration based on individual samples. We study the same interactive data exploration problem
as the Explore-by-example paper [17], but we extend the initial sampling algorithm, and compare different
sampling methods in the initial sampling phase. [18] mainly studies Gibbs sampling, a Bayesian statistical
method, and implements a high-throughput Gibbs sampling method for factor graphs that are larger than
main memory, which are different from the problem we study. [19] tries to explore collaborative ratings
based on aggregate queries, which are different from our problem. [20] studies structure-aware sampling
methods to get summary for range-sum queries, which is essentially aggregation queries. [21] addresses
mining the search engine’s corpus using sampling, which are different from our problems. [22] studies
efficient algorithms to compute approximate quantiles in large-scale sensor networks, which are different
from our problems.

6 Conclusion

In this project, we designed and implemented several sampling algorithms, equi-depth stratified sampling,
equi-width stratified sampling and progressive stratified sampling. We derive the probability lower bound
for these sampling method, and compare their lower bound with each other in different scenarios. We also
run several sets of experiments to demonstrate our theoretical analysis, and get consistent results.
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Appendices
A SQL query for equi-depth stratified sampling

s e l e c t id , x1 , x2
from (

s e l e c t id , x1 , x2 , grp_1 , grp_2 ,
row_number ( ) ove r ( p a r t i t i o n by grp_1 , grp_2 order by random ( ) ) as rn
from (

s e l e c t id , x1 , x2 , grp_1 ,
n t i l e ( 2 ) ove r ( p a r t i t i o n by grp_1 order by x2 ) as grp_2
from ( s e l e c t id , x1 , x2 ,

n t i l e ( 2 ) ove r ( order by x1 ) as grp_1
from d a t a _ t a b l e
where x1 >= 200 and x1 < 300

and x2 >= 110 and x2 < 200
) as sub1

) as sub2
) as sub3
where rn <= 1 ;

B SQL query for equi-width stratified sampling

s e l e c t id , x1 , x2
from (

s e l e c t id , x1 , x2 , grp_1 , grp_2 ,
row_number ( ) ove r (

p a r t i t i o n by grp_1 , grp_2
order by random ( )
) as rn

from (
s e l e c t id , x1 , x2 ,

w i d t h _ b u c k e t ( x1 , 200 , 300 , 2 ) as grp_1 ,
w i d t h _ b u c k e t ( x2 , 110 , 200 , 2 ) as grp_2

from d a t a _ t a b l e
where x1 >= 200 and x1 < 300

and x2 >= 110 and x2 < 200
) as sub1

) as sub2
where rn <= 1 ;
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