
BROWSIX: Bringing Unix to the Browser

Bobby Powers, John Vilk, Emery D. Berger
University of Massachusetts, Amherst

Abstract

While standard operating systems like Unix make it rela-
tively simple to build complex applications, web browsers
lack the features that make this possible. In this paper,
we present BROWSIX, a JavaScript-only framework that
brings the essence of Unix to the browser. BROWSIX
makes core Unix features available to web applications
(including pipes, processes, signals, sockets, and a shared
file system) and extends JavaScript runtimes for C, C++,
Go, and Node.js programs so they can run in a Unix-like
environment within the browser. BROWSIX also provides
a POSIX-like shell that makes it easy to compose applica-
tions together for parallel data processing via pipes. We
illustrate BROWSIX’s capabilities by converting a client-
server application to run entirely in the browser and devel-
oping a serverless LATEX editor that executes PDFLaTeX
and BibTeX in the browser. Creating these applications re-
quired less than 50 lines of glue code, demonstrating how
easily BROWSIX can be used to build sophisticated web
applications from existing parts without modification.

1 Introduction

Web browsers make it straightforward to build user in-
terfaces, but they can be difficult to use as a platform to
build sophisticated applications. Code must generally be
written from scratch or heavily modified; compiling exist-
ing code or libraries to JavaScript is not enough because
these applications depend on standard OS APIs, which
browsers do not support. Many web applications are thus
divided between a browser front-end and a server backend.
On the server, applications run on a traditional operating
system where they can take advantage of familiar OS ab-
stractions and run a wide variety of off-the-shelf libraries
and applications.

As an example, the website MemeGenerator.net lets
users create memes consisting of images with (hopefully)
humorous overlaid text, and performs all image process-
ing server-side. To create a meme, users select a base
image and can see a live preview of the resulting image as

they type. Each keystroke launches an HTTP request to
a server, which runs an image editing program that reads
in the base image from the file system and produces a
modified image with the desired text. Once complete, the
server sends the image in an HTTP response.

Moving meme generation into the browser would re-
duce MemeGenerator’s server costs and reduce latency
when the network is overloaded or unreliable, but doing
so presents a significant engineering challenge. Browsers
lack traditional POSIX sockets, so the client and server
code would need to be rewritten to communicate through
other means. Browsers also lack processes, so if the server
spawns a subprocess to produce memes in parallel, it must
be overhauled to use shared-nothing WebWorkers, requir-
ing both sides to be rewritten to use asynchronous mes-
sage passing for communication. Finally, browsers lack
a file system, so the image editing program would need
to use other means for IO. Each of these modifications
would be nontrivial, and would involve far more engineer-
ing effort than simply writing a webserver that spawns
ImageMagick processes to handle image generation.

To overcome these limitations, we introduce BROWSIX,
a framework that brings Unix abstractions to the browser.
BROWSIX is written entirely in JavaScript and requires no
plugins, letting it run in modern web browsers including
Google Chrome, Firefox, and Microsoft Edge. BROWSIX
exposes a wide array of operating system services that
applications expect, letting it run unmodified Unix appli-
cations (compiled to JavaScript) directly in the browser.
BROWSIX does not attempt to achieve full coverage of
all of POSIX (nor does any standard OS [2]), but instead
aims to provide enough coverage to enable porting a wide
range of existing applications to the browser:

• Processes: BROWSIX implements the POSIX pro-
cess API (including fork and wait4) on top of
WebWorkers, letting applications run in parallel and
spawn subprocesses.

• Signals: BROWSIX implements a subset of the
POSIX signals API, including kill and signal han-
dlers, letting processes communicate with each other
in an asynchronous manner.

1



• Shared Filesystem: BROWSIX implements a shared
filesystem within the browser, letting processes share
state through the FS.

• Pipes: BROWSIX exposes the standard pipe API in-
cluding pipe2, making it simple for developers to
compose processes into pipelines.

• Sockets: Finally, BROWSIX supports TCP socket-
based servers and clients, making it possible to run
server applications like databases and HTTP servers
together with their clients in the browser.

With BROWSIX in hand, we can now directly bring
a MemeGenerator-like meme server into the browser
with no code modifications (Figure 1). As before, the UI
and server communicate via HTTP requests, except now
BROWSIX routes the requests to the server process run-
ning in the browser. The server uses BROWSIX’s shared
file system to read in source images, as in a traditional
Unix environment. The result is an in-browser application
composed of existing parts, with virtually no engineering
effort required.

We demonstrate the utility of BROWSIX with two case
studies. Using BROWSIX, we extend the meme genera-
tor described above to dynamically choose between the
cloud-based server or the in-browser server, depending
on the client’s perceived performance and battery life.
We use BROWSIX to build a serverless LATEX editor on
top of PDFLaTeX and BibTeX, demonstrating how easily
BROWSIX can be used to build sophisticated applications
from existing parts without modifying any code.

Contributions
The contributions of this paper are the following:

• We show how to emulate key Unix abstractions and
services in the browser on top of existing web APIs
and the challenges of the browser environment it
must overcome to do so. We implement these in
BROWSIX, a JavaScript-only framework that runs on
all modern browsers (§3). BROWSIX includes a shell
and terminal to make its features easily accessible to
developers (§4).

• We extend the JavaScript runtimes of Emscripten
(a JavaScript backend for C/C++ compilation), Go-
pherJS (a Go to JavaScript compiler), and Node.js
with BROWSIX support, letting unmodified C, C++,
Go, and Node.js programs execute and interoperate
with one another within the browser as BROWSIX
processes (§5).

Figure 1: A meme generator built using BROWSIX. All
server-side functionality was moved into the browser with-
out modifying any code.

• We demonstrate BROWSIX’s utility by building a
client-server web application and a LATEX editor out
of off-the-shelf components without modification.
We characterize BROWSIX’s performance with case
studies and with microbenchmarks (§6).

• Based on our experience writing BROWSIX, we dis-
cuss current browser limitations and propose solu-
tions (§7).

2 BROWSIX Overview

To give an overview of BROWSIX’s features, we walk
through the process of using BROWSIX to turn a web
application into a serverless application without the need
for any modifications to the server or client. Note that
serverless applications are so called because they lack a
backing application server; the application’s static assets
(such as HTML, JavaScript and image files) are still served
over HTTP from some web server.

Meme Generator: Our running example is the meme
generator described in Section 1. Figure 1 displays a

2



screenshot of the meme generator running as a web ap-
plication. To generate a meme, the user selects a base
image and writes text, and the application issues an HTTP
request to the server. The server produces a new image
with the text overlaid and embedded into the image. Users
can then download the image and share it on social media.
Figure 2a presents the application’s architecture, which is
deliberately similar to the longest running meme gener-
ator service on the internet, MemeGenerator.net, which
also generates its memes server-side; we wrote our own
meme generator because MemeGenerator’s source code
is not publicly available.

The client is an HTML5 web application, and the
server is written in Go. The server reads base images
and font files from the filesystem, and uses an off-the-
shelf third-party Go library for image manipulation to
produce memes [5]. The server also uses Go’s built-in
http module to run its web server.

2.1 Converting to BROWSIX

Converting web applications to use BROWSIX generally
consists of the same three step process: (1) compile the
code to JavaScript, (2) stage any files required by the appli-
cation for placement in the in-browser filesystem, and (3)
add setup code to the core HTML file to initiate BROWSIX
and launch the server. Figure 2b shows a diagram of the
meme generator application running with BROWSIX.

Compiling to JavaScript: To run the server in
BROWSIX, we compile the server to a single JavaScript
file using GopherJS, a Go to JavaScript compiler [9]. To
produce JavaScript code, instead of invoking go build,
the developer simply invokes gopherjs build. Go-
pherJS contains a runtime library with JavaScript versions
of some of the native methods required by Go’s standard
library. To connect these to BROWSIX, we extended the
GopherJS runtime system with native methods for sockets,
processes, and the file system that use BROWSIX (Sec-
tion 5 describes these changes in detail, which we also
applied to Emscripten). As a result, the server runs in
BROWSIX without any code modifications, as all of the
Go libraries it uses have the native method support that
they require to function.

Staging the Filesystem: The meme service requires
a set of images and font files to function properly.
BROWSIX’s file system extends Doppio’s file system
known as BrowserFS; this in-browser file system supports
files stored in cloud storage, browser-local storage, tradi-
tional HTTP servers, and more [10]. As we have a small,

fixed number of static files, we use the HTTP-backed file
system, which requires a file index to support directory
listings. We generate this file index using a command
line tool that ships with BrowserFS, and then place all
of the files on the HTTP server that will serve static web
application assets.

BROWSIX Setup Code: The only change needed to
the web application is to modify the HTML to load and
initialize the BROWSIX JavaScript library. To load the li-
brary, we add a script tag referring to browsix.js;
to initialize it, we add another script tag with inline
JavaScript that calls BROWSIX’s Boot function with pa-
rameters describing the filesystem, along with a callback
to invoke when the kernel is ready. In the callback, we
instruct the kernel to run the meme-service.js pro-
gram in a new BROWSIX process, which will launch a
WebWorker to run the server in parallel with the rest of
the application.

2.2 Execution with BROWSIX

To illustrate how both sides of the application use
BROWSIX (client and server), we walk through a simple
meme request. Figure 2b displays some of the interactions
we describe below.

When the user presses the button to generate a meme,
the web application issues an HTTP request to the
server using the browser’s XMLHttpRequest interface.
BROWSIX’s initialization routine installs a modified ver-
sion of XmlHttpRequest that proxies HTTP requests
through BROWSIX; this is possible because web browsers
expose these interfaces as mutable global variables. This
XMLHttpRequest interposition is a convenience facil-
ity that makes it easy for existing client apps to work with
a BROWSIX-hosted server app.

If a server is running in BROWSIX on the target port,
BROWSIX proxies the request to the server running in
the browser. This process happens transparently to the
application, which believes it is communicating with a
server over the network.

HTTP is implemented over TCP, so the meme server
expects HTTP requests to arrive over a TCP connection.
BROWSIX translates the HTTP request into the tradi-
tional series of BSD TCP socket operations: socket,
connect, writes, reads, and close. Each operation
results in the completion of a system call from the per-
spective of the meme server, which sends a message to
the WebWorker running the server. These system call re-
sponses are processed by a BROWSIX-specific syscall
module in the GopherJS runtime library, which translates

3



(a) Meme generator running without BROWSIX

(b) Meme generator running with BROWSIX.

Figure 2: System diagram of the meme generator application with and without BROWSIX, demonstrating how the client
and server interact with one another. With BROWSIX, the server runs in the browser without code modifications.

these messages into the form expected by the standard
Go libraries. GopherJS manages necessary stack ripping
and restoration [1], while the standard Go libraries han-
dle parsing the request and triggering the meme server’s
request handler function.

To produce the meme, the server needs to read in the de-
sired image and font files from the file system. For each,
it issues calls to read directory contents and open files
using Go’s standard library, which call into the platform-
specific syscall module. In Go, this module provides
a uniform interface to OS and architecture-dependent
functionality – we provide a BROWSIX-specific imple-
mentation that sends system calls to our shared BROWSIX
kernel over WebWorker messages. Some system calls,
such as getdents64 for reading directory entries, pass
structured data between the kernel and processes. All mar-
shaling and unmarshaling of data from byte arrays to the
JavaScript objects used by the kernel and BrowserFS hap-
pens kernel-side. In the case of open(2), the BROWSIX
kernel responds with an integer file descriptor. The ap-
plication uses this file descriptor in subsequent read
system calls, which trigger additional messages that relay
the contents of the file from the kernel to process.

Once the server has the files it needs, it uses a third-

party Go library for graphics manipulation and TrueType
text blitting to produce the meme. Then, it sends the re-
sulting image over the BROWSIX TCP socket in an HTTP
response. Finally, BROWSIX’s HTTP request proxy parses
the response, and translates it into XMLHttpRequest
events that the application expects.

This overview demonstrates how straightforward
BROWSIX makes it to port existing components – de-
signed to work in a Unix environment – and execute them
seamlessly inside a web browser. The next section pro-
vides details of how BROWSIX provides these Unix-like
abstractions in the browser environment.

3 The BROWSIX Framework
The core of BROWSIX is a kernel that controls access to
shared Unix services. Unix services, including the shared
file system, pipes, sockets, and task structures, live in-
side the kernel, which runs in the main browser thread.
Processes run separately and in parallel inside WebWork-
ers, and access BROWSIX kernel services through the
standard system call interface. BROWSIX and all of its
runtime services are implemented in JavaScript and Type-
Script, a typed variant of JavaScript that compiles to pure

4



Class System calls
Process Management fork, spawn, pipe2,

wait4, exit

Process Metadata chdir, getcwd, getpid

Sockets socket, bind, getsockname,
listen, accept, connect

Directory IO readdir, getdents,
rmdir, mkdir

File IO open, close, unlink,
llseek, pread, pwrite

File Metadata access, fstat, lstat,
stat, readlink, utimes

Figure 3: A representative list of the system calls imple-
mented by the BROWSIX kernel. fork requires additional
support from the language runtime, and is currently only
supported for C and C++ programs.

JavaScript. Figure 8 provides a breakdown of each of
BROWSIX’s components.

3.1 Kernel

The kernel lives in the main JavaScript context alongside
the web application, and acts as the intermediary between
processes and loosely coupled Unix services. Processes
issue system calls (or downcalls) into the kernel to ac-
cess shared resources, and the kernel relays these requests
to the appropriate service. When the service responds
to the system call, it relays the response to the process.
The kernel is also responsible for relaying signals to pro-
cesses, which we describe further in Section 3.2. Figure 3
presents a partial list of the key system calls that the kernel
currently supports.

In a departure from modern Unix systems, BROWSIX
does not support multiple users. A traditional kernel
would, for example, use user identities to check permis-
sions on certain system calls or for access to files. Instead,
BROWSIX leverages and relies on the browser’s built-in
sandbox and security features, such as the same origin
policy. In other words, a BROWSIX application enjoys the
same level of protection and security as any other web
application.

3.2 Processes

BROWSIX uses WebWorkers as the foundation for emu-
lating Unix processes. However, WebWorkers differ sub-
stantially from processes, and BROWSIX must provide a

significant amount of functionality to bridge this gap.
In Unix, processes execute in isolated virtual address

spaces, run in parallel with one another when the system
has multiple CPU cores, and can interact with system re-
sources and other processes via system calls. However,
the web browser does not expose a process API to web
applications. Instead, web applications can spawn a Web-
Worker that runs a JavaScript file in parallel with the ap-
plication.

A WebWorker has access to only a subset of browser
interfaces, which notably excludes the Document Object
Model (DOM), runs in a separate execution context, and
can only communicate with the main browser context
via asynchronous message passing. WebWorkers are not
aware of one another, cannot share memory with one an-
other, and can only exchange messages with the main
browser context that created them (see Section 3.6 for a
discussion). Most browsers do not support spawning sub-
workers from workers, called nested workers, and have
not added support for them since they were first proposed
in 2009. Thus, if a WebWorker needs to perform a task in
parallel, it must delegate the request to the main browser
thread, and proxy all messages to that worker through the
main browser thread. Perhaps unsurprisingly, the limita-
tions and complexity of WebWorkers have hindered their
adoption in web applications.

By contrast, BROWSIX implements Unix processes on
top of Web Workers, giving developers a familiar and full-
featured abstraction for parallel processing in the browser.
Each BROWSIX process has an associated task structure
that lives in the kernel that contains its process ID, parent’s
process ID, Web Worker object, current working directory,
and map of open file descriptors. Processes have access to
the system calls in Figure 3, and invoke them by sending
a message with the system call name and arguments to the
kernel. As a result, processes can share state via the file
system, send signals to one another, spawn sub-processes
to perform tasks in parallel, and connect processes to-
gether using pipes. Below, we describe how BROWSIX
maps familiar POSIX interfaces onto Web Workers.

spawn: BROWSIX supports spawn (posix spawn
in POSIX), which constructs a new process from a speci-
fied executable on the file system. spawn is the primary
process creation primitive used in modern programming
environments such as Go and Node.js, as fork is unsuit-
able for general use in a multithreaded process. spawn
lets a process specify an executable to run, the arguments
to pass to that executable, the new process’s working direc-
tory, and the resources that the subprocess should inherit
(such as file descriptors). In BROWSIX, an executable is a

5



JavaScript file in its file system. When an process invokes
spawn, BROWSIX creates a new task structure with the
specified resources and working directory, and creates a
new Web Worker that runs the target JavaScript file.

There are two technical challenges to to implementing
spawn. First, the WebWorker constructor takes a URL to
a JavaScript file as its first argument. Files in BROWSIX’s
file system may not correspond to files on a web server.
For example, they might be dynamically produced by
other BROWSIX processes. To get around this restriction,
BROWSIX generates a JavaScript Blob object that contains
the data in the file, obtains a dynamically-created URL for
the blob from the browser’s window object, and passes
that URL as a parameter to the Web Worker construc-
tor. All modern web browsers now support constructing
Workers from blob URLs.

The second challenge is that there is no way to pass
data to a Worker on startup apart from sending a message.
As processes access state like the arguments vector and en-
vironment map synchronously, we require that BROWSIX-
enabled runtimes delay execution of a process’s main()
function until after the worker has received an “init” signal
containing the process’s arguments and environment.

fork: The fork call creates a new process that is a
copy of the current address space and thread. Web Work-
ers do not expose a cloning API, and JavaScript lacks
the needed reflection primitives required to serialize a
context’s entire state into a snapshot. Thus, BROWSIX
only supports fork when a process is able to completely
enumerate and serialize its own state. Section 5 describes
how we extend Emscripten to provide fork support for
C/C++ programs compiled to JavaScript.

wait4: The wait4 system call is a potentially block-
ing system call that blocks until a child can be reaped.
It returns immediately if a child has already died, or the
WNOHANG option is specified. Waiting requires that the
kernel not immediately free task structures, and required
us to implement the zombie task state for children that
have not yet been waited on. The C library used by Em-
scripten, musl, uses the wait4 system call to implement
the C library functions wait, wait3, and waitpid.

exit: BROWSIX-enhanced runtimes are required to
explicitly issue an exit syscall when they are done ex-
ecuting, as a parent has no other way of being notified
that a Worker has finished. This is due to the event-based
nature of JavaScript environments – even if there are no
pending events in the Worker’s queue, the main JavaScript

context could, from the perspective of the browser, send
the Worker a message at any time.

getpid, getppid, getcwd, chdir: These four
system calls operate on the data in current process’s task
structure, which lives in the BROWSIX kernel. getpid
returns the process’s ID, getppid returns the parent pro-
cess’s ID, getcwd returns the process’s working direc-
tory, and chdir changes the process’s working directory.

3.3 Pipes
BROWSIX pipes are implemented as in-memory buffers
with read-side wait queues. If there is no data to be read
when a process issues a read system call, the callback
encapsulating the system call response is enqueued and
will not be invoked until data is written to the pipe. For
simplicity of implementation, writes to pipes do not cur-
rently block, which is a departure from POSIX semantics.
We enforce blocking in order to prevent resource exhaus-
tion in the kernel because it limits the writer’s ability to
execute. Otherwise, because of the asynchronous nature
of message passing system calls, the kernel would not be
able to limit resource consumption caused by messages
from a malicious or wayward process.

3.4 Sockets
BROWSIX implements a subset of the BSD/POSIX socket
API, with support for SOCK STREAM (TCP) sockets for
communicating between BROWSIX processes. These
sockets enable servers that bind, listen and then
accept new connections on a socket, along with clients
that connect to a socket server. Sockets are sequenced,
reliable, bi-directional streams. BROWSIX uses a pair of
pipes, one per direction, to implement sockets.

3.5 Shared File System
BROWSIX extends BrowserFS’s file system, part of
Doppio [10]. BrowserFS includes support for multi-
ple mounted filesystems in a single hierarchical direc-
tory structure. BrowserFS provides multiple file system
backend implementations, such as in-memory, zip file,
XMLHttpRequest, Dropbox, and an overlay filesystem.
BrowserFS provides a unified, encapsulated interface to
all of these backends, so the rest of the kernel does not
need to know which filesystem is in use.

BROWSIX system calls that operate on paths, like open
and stat, are implemented as method calls on the ker-
nel’s BrowserFS instance. When a system call takes a file

6



descriptor as an argument, the kernel looks up the descrip-
tor in the tasks’s file hashmap, and invokes the appropriate
methods on that file object. The file descriptor table is
inherited by child processes, and each object (whether it is
a file, directory, pipe or socket) is managed with reference
counting.

3.6 Browser-Imposed Limitations

The browser environment currently imposes certain lim-
itations that prevent BROWSIX from implementing a
broader range of Unix functionality; in particular, they
do not provide a facility for shared memory. The devel-
opment editions of certain browsers do provide support
for SharedArrayBuffers, which enable shared ac-
cess to a segment of memory, along with atomic and syn-
chronization primitives [7]. However, this support is not
yet widespread; as of this writing, it is only supported
by development editions of Firefox and Chrome and the
specification is currently in draft status. Until this feature
is implemented by standard browsers, it is not practical to
provide support for shared memory across processes or to
provide multi-threading that takes advantage of multiple
cores.

4 The BROWSIX Shell

To make it easy for developers to interact with BROWSIX,
we implement an in-browser Unix shell modeled on sh.
Like other standard shells, the BROWSIX shell allows
combining arbitrary processes into pipelines, as well as
backgrounding processes.

BROWSIX also includes a terminal and a variety of
utilities written in JavaScript for Node.js. The terminal, as
shown in Figure 4, features line buffering – when the user
hits enter, the current line is sent to a shell command, sh,
running in a regular BROWSIX process, which parses the
command, creates pipes, launches processes, and waits
for processes to complete.

The shell includes the following commands: cat,
cp, curl, echo, exec, grep, head, ls, mkdir,
rm, rmdir, sh, sha1sum, sort, stat, tail, tee,
touch, wc, and xargs. These were initially developed
and tested on Linux and MacOS X desktop systems under
Node.js 4.2.1, and run equivalently and without modifica-
tion in BROWSIX.

Figure 4: A browser-based terminal that provides a de-
velopment environment on top of BROWSIX, giving easy
access to the BROWSIX shell (§4).

kernel.system(
’pdflatex example.tex’,
function(pid, code) {

if (code === 0) {
console.log(’success’);

} else {
console.log(’failed’);

}
}, logStdout, logStderr);

Figure 5: Creating a BROWSIX process from JavaScript.

5 Runtime Support
Applications access BROWSIX system calls indirectly
through their runtime systems. This section describes the
runtime support we have built for the browser environ-
ment, GopherJS, Emscripten, and Node.js so they can use
BROWSIX without code modifications.

5.1 Browser Environment Extensions
Web applications run alongside the BROWSIX kernel in
the main browser context, and have access to BROWSIX
features through several global APIs. BROWSIX exposes
new APIs for process creation, file access, and socket noti-
fications, and extends the existing XMLHttpRequest inter-
face to transparently proxy HTTP requests to BROWSIX
processes.

File access acts as expected, and allows the client to
manipulate the filesystem, invoke a utility or pipeline of
utilities, and read state from the filesystem after programs
have finished executing. Figure 5 shows how client ap-
plications invoke BROWSIX processes and react when
processes exit through an API similar to C’s system.

Socket notifications let applications register a callback
to be invoked when a process has started listening on a

7



particular port. These notifications let web applications
launch a server as a process and appropriately delay com-
municating with the server until it is listening for mes-
sages. Web applications do not need to resort to polling
or ad hoc waiting.

BROWSIX patches the global XMLHttpRequest API to
transparently proxy HTTP 1.1 requests to BROWSIX pro-
cesses as if they were remote servers. This API handles
connecting a BROWSIX socket to the server, serializing
the HTTP request to a byte array, sending the byte array to
the BROWSIX process, processing the (potentially chun-
ked) HTTP response, and generating the expected web
events. When no process is listening on the destination
port, BROWSIX forwards the request to the remote server
as normal.

5.2 Common Services

BROWSIX provides a small syscall layer as a
JavaScript module that runs in a Web Worker. This layer
provides a concrete, typed API over the browser’s mes-
sage passing primitives. Language runtimes use this mod-
ule from their standard libraries to communicate with the
shared kernel. Methods provided by the syscall layer
take the same arguments as Linux syscalls of the same
name, along with an additional argument: a callback func-
tion. This callback is executed when the syscall mod-
ule receives a message response from the kernel. Unlike
a traditional single-threaded process, a BROWSIX process
can have multiple outstanding system calls, which enables
runtimes like GopherJS to implement user-space threads
on top of a single Web Worker execution context.

Signals are sent over the same message passing inter-
face as system calls. The common syscall module
provides a way to register signal handlers for the standard
Unix signals, such as SIGCHLD.

5.3 Runtime-specific Integration

For many programming languages, existing language run-
times targeted for the browser must bridge the impedance
mismatch between synchronous APIs and threads, present
on Unix-like systems, and the asynchronous, single-
threaded world of the browser. Systems like Doppio,
clojurejs, and GopherJS all employ different approaches.
Rather than attempting to unify thread handling across
implementations, BROWSIX only requires that implemen-
tations expose a way to save and restore a thread of exe-
cution (the stack and program counter (PC)).

function sys_getdents64(cb, trap, fd, dirp, len) {
var done = function (err, buf) {

if (!err)
dirp.set(buf);

cb([err ? -1 : buf.byteLength, 0, err ? err :
0]);

};
syscall_1.syscall.getdents(fd, len, done);

}

Figure 6: Implementing the getdents64 syscall in Go-
pherJS.

Go: Go is a systems language developed at Google de-
signed for readability, concurrency, and efficiency. To run
Go programs under BROWSIX, we extended the existing
GopherJS compiler and runtime to support issuing and
waiting for system calls under BROWSIX. GopherJS al-
ready provides full support for Go language features like
goroutines (lightweight threads), channels (communica-
tion primitives), and delayed functions.

We extended the GopherJS runtime with support for
BROWSIX through modifications to the runtime. The main
integration points are a BROWSIX-specific implementa-
tion of the syscall.RawSyscall function (which
handles syscalls in Go), along with overrides of several
Go runtime functions.

We wrote a replacement for RawSyscall in Go. It
allocates a Go channel object, and this function invokes
the BROWSIX JavaScript syscall library, passing the sys-
tem call number, arguments, and a callback to invoke.
RawSyscall then performs a blocking read on the Go
channel, which suspends the current thread of execution
until the callback is invoked. When the system call re-
sponse is received from the BROWSIX kernel, GopherJS’s
existing runtime takes care of re-winding the stack and
continuing execution. The syscall library indexes into a
system call table by syscall number, and invokes a func-
tion specific to that system call to marshalling data to and
from the BROWSIX kernel. Adding support for any new
system call is a matter of writing a small handler function
and registering it in the system call table; an example is
shown in Figure 6

BROWSIX replaces a number of run-
time functions, but the most important are
syscall.forkAndExecInChild and
net.Listen. The former is overridden to directly
invoke BROWSIX’s spawn system call, and the latter to
provide access to BROWSIX socket services. Additional
integration points include an explicit call to the exit
syscall when the main function exits, and waiting until
the process’s arguments and environment have been
received before starting main() (see §3.2).

8



__syscall220: function(which, varargs) {
return EmterpreterAsync.handle(function(resume) {

var fd = SYSCALLS.get(), dirp = SYSCALLS.get(),
count = SYSCALLS.get();

var done = function(err, buf) {
if (!err)

HEAPU8.subarray(dirp, dirp+buf.byteLength).
set(buf);

resume(function() {
return err ? err : buf.byteLength;

});
};
SYSCALLS.browsix.syscall.getdents(fd, count,

done);
});

},

Figure 7: Implementing the BROWSIX getdents64
syscall in Emscripten.

C and C++: We also extend Emscripten, Mozilla Re-
search’s LLVM-based C and C++ compiler that targets
JavaScript, with support for BROWSIX. This work re-
quires use of Emscripten’s interpreter mode (named the
“Emterpreter”) to saving and restore the C stack. While
BROWSIX support requires functions that may be on the
stack under a system call to be interpreted (so that the
stack can be replayed when the system call completes),
Emscripten can selectively compile other parts of an appli-
cation, such as computational kernels that do not issue sys-
tem calls down to asm.js, which will be JIT-compiled
and run as native JavaScript by the browser.

As with GopherJS, Emscripten provides a clear integra-
tion point at the level of system calls. Emscripten provides
implementations for a number of system calls, but is re-
stricted to performing in-memory operations that do not
block. We replace all Emscripten syscall implementations
with ones that call into the BROWSIX kernel, such as in
Figure 7. In the case of getdents and stat, padding
was added to C structure definitions to match the layout
expected by the BROWSIX kernel.

When a process calls fork, the runtime sends a copy
of the global memory array, which includes the C stack
and heap, along with the current program counter (PC) to
the kernel. After the kernel launches a new Web Worker,
it transfers this copy of global memory and PC to to the
new Worker as part of the initialization message. When
the BROWSIX-augmented Emscripten runtime receives
the initialization message, if a memory array and PC are
present the runtime swaps them in, and invokes the Emter-
preter to continue from where fork was invoked.

Node.js: Node.js (a.k.a. “Node”) is a platform for build-
ing servers and command line tools with JavaScript, im-
plemented in C, C++ and JavaScript, on top of the v8

Component Lines of Code (LoC)
Kernel (§3) 2,058
BrowserFS modifications 40
Shared syscall module (§5.2) 421
Emscripten integration* (§5.3) 1,115
(C/C++ support)
GopherJS integration* (§5.3) 724
(Go support)
Node.js integration (§5.3) 1,957
TOTAL 6,315

Figure 8: BROWSIX components. * indicates these com-
ponents are written in JavaScript, while the rest of the
components are written in TypeScript.

JavaScript engine. Node.js APIs are JavaScript modules
that can be loaded into the current browser context by in-
voking the require built-in function. These high-level
APIs are implemented in platform-agnostic JavaScript,
and call into lower-level C++ bindings, which in turn in-
voke operating system interfaces like filesystem IO, TCP
sockets, and child process management. Node.js embraces
the asynchronous, callback-oriented nature of JavaScript –
most Node APIs that invoke system calls take a callback
parameter that is invoked when results are ready.

To run servers and utilities written for Node.js un-
der BROWSIX, we provide a browser-node exe-
cutable that packages Node’s high-level APIs with pure-
JavaScript replacements for Node’s C++ bindings that
invoke BROWSIX system calls as a single file that runs in
a BROWSIX process. BROWSIX also replaces several other
native modules, like the module for parsing and generating
HTTP responses and requests, with pure JavaScript im-
plementations. Node executables can be invoked directly,
such as node server.js, or will be invoked indirectly
by the kernel if node is specified as the interpreter in the
shebang line of a text file marked as executable.

6 Evaluation

This evaluation answers the following questions:

1. Does bringing Unix abstractions into the browser
enable compelling use cases?

2. Is the performance impact of running programs un-
der BROWSIX acceptable?

9



6.1 Case Studies

We evaluate the applicability and advantages of bringing
Unix abstractions into the browser with two case stud-
ies. First, using the meme generator from the overview
(§2), we modify the web application to perform local
BROWSIX-based or remote requests to a service running
in the cloud based on current network and device charac-
teristics. We then build programs from texlive-2015 for
BROWSIX, and use it in a statically-hosted LATEXeditor.

6.1.1 Dynamically Switching Between Cloud and In-
Browser Execution

Starting with our in-browser meme server from the
overview (§2), we modify the client-side of the application
to dynamically route requests to either the in-BROWSIX
server or a remote server running in the cloud. The policy
that determines whether to route locally or remotely is an
arbitrary JavaScript function. In our implementation, it
takes into account network connectivity and browser ver-
sion. If a network request fails due to connectivity issues,
or if the browser identifies itself as a desktop browser (a
proxy for being a powerful platform relative to mobile de-
vices), the application switches to using the in-BROWSIX
server instead of the remote server.

This modified MemeGenerator app works even if in-
ternet connectivity is disabled after the page has loaded,
letting the application work in disconnected contexts. The
code required to implement this policy and dynamic be-
havior amounted to less than 30 lines of JavaScript.

6.1.2 An In-Browser LATEX Editor

We next demonstrate how BROWSIX lets us construct a
web application that provides a serverless LATEX editing
environment with minimal effort. We use a BROWSIX-
enhanced Emscripten toolchain to implement an in-
browser LATEX editor. We start by compiling pdflatex and
bibtex from texlive-2015 to BROWSIX programs. Next,
we populate a directory with a number of LATEX data files,
including fonts, class, style, and the pdftex.map font
mapping, and produce an index.json directory index
for BrowserFS. For the client, we built a simple split-pane
user interface, with two text-boxes on the left-hand side,
one for the LATEX file and one for the bibliography, and
a “build” button along with a preview of the PDF on the
right-hand side, as seen in Figure 9.

When the user clicks the “build” button, the JavaScript
application code writes the current contents of the text
fields to the BROWSIX file system. It then executes four
commands in series, pdflatex main; bibtex

Figure 9: An LATEX editor built using BROWSIX.
pdflatex and bibtex are run under BROWSIX, and
the resulting PDF displayed with Chrome’s built-in PDF
viewer. This application runs entirely in the browser.

main; pdflatex main; pdflatex main,
which results in either the creation of a PDF file or an
error. If creating the PDF was successful, the editor
reads the contents off the filesystem, creates a Blob
object corresponding to the contents, and updates the
preview to point to the newly generated PDF. The user
has the option of downloading the generated PDF at
any time. The application’s logic, including starting and
interacting with BROWSIX and handling user interaction
were implemented in 79 lines of JavaScript in under an
hour.

Summary: BROWSIX makes it trivial to execute native
applications within the browser, enabling the rapid devel-
opment of sophisticated web applications that can easily
migrate server code into the browser, and that harness the
functionality of large bodies of existing code bases.

6.2 Performance

We evaluate the performance overhead of BROWSIX on
our case studies. All experiments were performed on a
Thinkpad X1 Carbon with an Intel i7-5600U CPU and 8
GB of RAM, running Linux 4.5.3.

BROWSIX Terminal and Utilities: We test the per-
formance of the BROWSIX terminal versus native and

10



Command Native Node.js BROWSIX
sha1sum 0.002s 0.067s 0.189s
ls 0.001s 0.044s 0.108s

Figure 10: Execution time of utilities under BROWSIX,
compared to the same utilities run under Node.js, and
the native GNU/Linux utilities. sha1sum is run on
usr/bin/node, and ls is run on /usr/bin. Run-
ning in JavaScript (with Node.js and BROWSIX) imposes
most overhead; running in the BROWSIX environment
adds roughly another 3× overhead.

Node.js performance to tease apart the source of over-
heads. Figure 10 presents the results of running the same
JavaScript utility is run both under BROWSIX, and on
Linux under Node.js, and compared to the execution time
of the corresponding utility written in C. Most of the
overhead is due to JavaScript (the basis of Node.js and
BROWSIX); running in the BROWSIX environment im-
poses roughly a 3× overhead. Nonetheless, this perfor-
mance (completion in under 200 milliseconds) is low
enough that it should be generally acceptable to users.

Meme Generator: We compare the performance of
meme generation when run in-browser to running as a
native Go application on Linux (run in a local server). The
in-BROWSIX takes approximately two seconds to gener-
ate a meme when running in the browser, versus 200 ms
when running server-side. This inefficiency is primarily
due to missing 64-bit integer primitives when numerical
code is compiled to JavaScript with GopherJS; we expect
future browsers to support native access to 64-bit integers,
which we believe will lead the two versions to deliver
roughly the same performance.

LATEX Editor: While the LATEX editor represents a so-
phisticated application, its performance overhead is cur-
rently excessive. For example, for the one page exam-
ple shown in Figure 9, the the pdflatex; bibtex;
pdflatex; pdflatex; sequence takes 400 millisec-
onds under Linux (as native executables), and 82 seconds
under BROWSIX. We note that we have spent no time
optimizing this application, which is currently entirely
interpreted by the Emterpreter. By identifying and re-
compiling core CPU-bound functions that do not invoke
system calls to asm.js (a compiler flag to Emscripten),
it is likely that the gap between native and in-browser
performance could be closed considerably. We leave this
as future work.

Summary: BROWSIX’s performance is primarily lim-
ited by the performance of underlying browser primitives
(notably, the lack of native 64-bit longs). While some ap-
plications perform substantially slower, it can provide a
usable level of performance for certain applications.

7 Discussion
The process of implementing BROWSIX has highlighted
opportunities for improvement in the implementation and
specification of Web Workers. We outline a number of
optimizations and natural extensions that are generally
useful, and would extend BROWSIX’s reach.

Worker Priority Control: The parent of a Web Worker
has no way to lower the priority of a created worker. As
workers are implemented on top of OS threads, this con-
cept maps cleanly onto OS-level priorities/niceness. Pro-
viding this facility would let web applications prevent a
low-priority CPU-intensive worker from interfering with
the main browser thread.

postMessage() Backpressure: Traditional operat-
ing systems attempt to prevent individual processes from
affecting system stability in a number of ways. One of
these is providing backpressure, wherein the process at-
tempting to write to a pipe or socket is suspended (the
system call blocks) until the other end of the pipe reads the
data, or it can fit into a fixed size buffer. This approach pre-
vents unbounded resource allocation in the kernel. In the
browser, the postMessage() function can be called
from a process an unbounded number of times and will
eventually cause the browser to run out of allocatable
memory.

Message Passing Performance: Message passing is
three orders of magnitude slower than traditional system
calls in the two browsers we evaluate, Chrome and Fire-
fox. A more efficient message passing implementation
would improve the performance of BROWSIX’s system
calls and other inter-process communication.

8 Related Work
In-Browser Execution Environments: BROWSIX sig-
nificantly extends past efforts to bring traditional APIs and
general-purpose languages to the browser; Table 1 pro-
vides a comparison. Doppio’s focus is providing single-
process POSIX abstractions [10]. BROWSIX builds on and

11



Fi
le

sy
ste

m

So
ck

et
cli

en
ts

So
ck

et
se

rv
er

s

Pr
oc

es
se

s

Pi
pe

s

Si
gn

al
s

ENVIRONMENTS BROWSIX 3 3 3 3 3 3

DOPPIO [10] † †
WebAssembly

LANGUAGE RUNTIMES Emscripten (C/C++) † † †
GopherJS (Go)
BROWSIX + Emscripten 3 3 3 3 3 3

BROWSIX + GopherJS 3 3 3 3 3 3

Table 1: Feature comparison of JavaScript execution environments and language runtimes for programs compiled to
JavaScript. † indicates that the feature is only accessible by a single running process. BROWSIX provides multi-process
support for all of its features.

extends its filesystem component, BrowserFS, to support
multiple processes. Emscripten compiles LLVM bytecode
to JavaScript, enabling the compilation of C and C++ to
JavaScript [11]; as Section 5 describes, BROWSIX aug-
ments its runtime system so that unmodified C and C++
programs compiled with Emscripten can take full advan-
tage of its facilities. BROWSIX provides similar runtime
support for Go programs through GopherJS [9].

Kernel Design and OS Interfaces: BROWSIX most
closely resembles the structure of Barrelfish, a many-core,
heterogenous OS [3]. Like Barrelfish, BROWSIX imple-
ments inter-domain system calls as asynchronous mes-
sages on top of channel primitives and requires user-level
thread scheduling. In addition, BROWSIX mirrors the per-
core, shared-nothing structure of a multikernel because
its processes do not use inter-domain communication for
tasks such as memory allocation and timers.

Migration from Server to Browser: One of our case
studies migrates a meme generation server into the
browser, and uses a policy to decide if meme requests
should be handled locally or in the cloud. In keeping with
industry best-practices, this server is state-free to avoid
the complications that arise with state management [8],
but there are cases where a stateful server is required.
BROWSIX could take advantage of existing research on lo-
cal/remote state management. Tango introduced flip-flop
relocation, where an Android application runs locally as
well as on the cloud, with the leader dynamically switch-
ing between the two instances [6]. In addition, BROWSIX
could adopt a more sophisticated migration policy; sys-
tems like CloneCloud employ static analysis and dynamic
profiling to decide how to partition computation between

local and remote systems [4].

9 Conclusion

This paper introduces BROWSIX, a framework that brings
the essence of Unix to the browser. BROWSIX makes
processes, pipes, sockets, a shared file system, and a shell
available to web applications on top of existing browser
APIs. In addition, BROWSIX provides runtime support
for a variety of languages and systems that can compile
to or are written in JavaScript, including C, C++, Go,
and Node.js. BROWSIX makes it almost trivial to build
complex web applications from components written in
a variety of languages without modifying any code, and
promises to significantly reduce the effort required to
build highly sophisticated web applications. BROWSIX
is open source, and is freely available at github.com/
plasma-umass/browsix.

References

[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and
J. R. Douceur. Cooperative task management with-
out manual stack management. In USENIX Annual
Technical Conference, General Track, pages 289–
302, 2002.

[2] V. Atlidakis, J. Andrus, R. Geambasu, D. Mitropou-
los, and J. Nieh. POSIX abstractions in modern op-
erating systems: The old, the new, and the missing.
In Proceedings of the ACM European Conference
on Computer Systems (EuroSys), Apr. 2016.

12

github.com/plasma-umass/browsix
github.com/plasma-umass/browsix


[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architec-
ture for scalable multicore systems. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 29–44. ACM, 2009.

[4] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: elastic execution between mobile de-
vice and cloud. In Proceedings of the ACM Euro-
pean Conference on Computer Systems (EuroSys),
pages 301–314, Apr. 2011.

[5] M. Fogleman. fogleman/gg: Go Graphics - 2D ren-
dering in Go with a simple API, 2016. https:
//github.com/fogleman/gg.

[6] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn,
S. Mahlke, and Z. M. Mao. Accelerating mobile
applications through flip-flop replication. In Pro-
ceedings of the 13th Annual International Confer-
ence on Mobile Systems, Applications, and Services
(MobiSys), pages 137–150. ACM, 2015.

[7] L. T. Hansen and J. Fairbank. EC-
MAScript Shared Memory and Atomics, 2016.
https://tc39.github.io/ecmascript_
sharedmem/shmem.html.

[8] T. Mauro. Adopting Microservices at
Netflix: Lessons for Architectural Design,
2015. https://www.nginx.com/
blog/microservices-at-netflix-
architectural-best-practices/.

[9] R. Musiol. gopherjs/gopherjs: A compiler from Go
to JavaScript for running Go code in a browser,
2016. https://github.com/gopherjs/
gopherjs.

[10] J. Vilk and E. D. Berger. DOPPIO: Breaking the
browser language barrier. In Proceedings of the
2014 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2014),
pages 508–518. ACM, 2014.

[11] A. Zakai. Emscripten: an LLVM-to-JavaScript com-
piler. In OOPSLA Companion, pages 301–312,
2011.

13

https://github.com/fogleman/gg
https://github.com/fogleman/gg
https://tc39.github.io/ecmascript_sharedmem/shmem.html
https://tc39.github.io/ecmascript_sharedmem/shmem.html
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://github.com/gopherjs/gopherjs
https://github.com/gopherjs/gopherjs

	Introduction
	Browsix Overview
	Converting to Browsix
	Execution with Browsix

	The Browsix Framework
	Kernel
	Processes
	Pipes
	Sockets
	Shared File System
	Browser-Imposed Limitations

	The Browsix Shell
	Runtime Support
	Browser Environment Extensions
	Common Services
	Runtime-specific Integration

	Evaluation
	Case Studies
	Dynamically Switching Between Cloud and In-Browser Execution
	An In-Browser LaTeX Editor

	Performance

	Discussion
	Related Work
	Conclusion

