msocket: System Support for Mobile, Multipath, and
Middlebox-Agnostic Applications
(Extended technical report)

Aditya Yadav

Arun Venkataramani

Emmanuel Cecchet

Abhigyan Sharma
College of Information and Computer Sciences
University of Massachusetts Amherst

Abstract

Despite the explosive growth of mobile devices and ap-
plications in recent years, today’s Internet provides lit-
tle intrinsic support for seamless mobility. Prior solu-
tions to addressing this problem either handle only a
subset of endpoint mobility scenarios or require non-
trivial changes to legacy infrastructure. In this paper,
we present the design and implementation of msocket,
a system that allows communicating endpoints to move
across network locations arbitrarily while maintaining
disruption-tolerant connectivity without any change to
legacy operating systems or network infrastructure.
msocket supports pre-lookup, connect-time, individual,
and simultaneous mobility of one or both endpoints across
a multithomed set of network addresses, and enables
seamless mobile-to-mobile communication despite the
presence of address translating middleboxes. We have
implemented msocket as a user-level socket library and
our evaluation shows that: (1) msocket recovers from
mobility of one or both endpoint(s) in roughly two round-
trips; (2) msocket’s multipath scheduler greatly enhances
user-perceived performance or power consumption in
multihomed settings; and (3) msocket imposes little ad-
ditional overhead over traditional sockets.

1. INTRODUCTION

Mobile devices and applications have experienced a
phenomenal growth in recent years with more smart-
phones today than tethered hosts and the total Internet
traffic originated from mobile devices poised to surpass
that between tethered hosts [14, 1]. While the Internet’s
TCP/IP stack has flexed remarkably to accommodate
this transformation, it continues to provide poor intrin-
sic support for seamless endpoint mobility, multihomed
multipath, and mobile-to-mobile communication. Con-
sequently, mobile application developers relying on the
universal TCP/IP socket API are forced to resort to
redundant and fragile application-layer workarounds to
these issues.

The frustrating lack of intrinsic support for mobility
in the Internet can be appreciated even by lay users

today. For example, users of popular mobile apps for
voice-over-IP (e.g., Skype, Viber, or Vonage) who might
expect seamless call mobility as they transition from a
home WiFi network to a cellular network on the road
are disappointed to find otherwise. A user downloading
a large file from a web server and getting late for work
(or home) has to make the difficult call of terminating
and restarting the transfer. The frustration extends
beyond lay users to developers. Today, there is a steeper
learning curve for a networking professional trained in
tethered-host-centric, client-server programming before
they can start developing mobile-to-mobile apps partly
because there is no easy way to initiate communication
to a mobile behind an address-translating or firewalling
middle box (as developers have to either conform to
notification service APIs [3] provided by mobile OSes or
set up their own cloud-based infrastructure for greater
flexibility); and partly because they have to learn to
manage session state in HT'TP-based applications (like
Netflix or YouTube) in order to give users the semblance
of seamless mobility across networks.

Our goal is to simplify the development of mobile
applications by providing an abstraction of truly loca-
tion independent communication [20, 13]. To enable
location-independence, we focus on three concrete sub-
goals, namely, to provide system support for (1) seam-
less mobility, i.e., allowing endpoints to freely move
across network addresses while relieving the applica-
tion developer from keeping track of them, (2) multi-
homed multipath communication, i.e., the ability to use
multiple network interfaces such as cellular, WiFi, and
others that are increasingly commonplace in parallel,
and (3) mobile-to-mobile (M2M) communication, i.e.,
enabling two mobiles both behind address-translating
or firewalling middleboxes to communicate with each
other without having to set up application-specific for-
warding infrastructure in the cloud. Most of these goals
have been studied in isolation, however existing piece-
meal solutions may not be universally available at end-
systems (e.g., multipath approaches available for a spe-
cific OS [19, 8, 17]), or be necessarily compatible with

each other or with widely deployed middleboxes (e.g.,
[17, 8], or the empirical observation that AT&T doesn’t
support MPTCP on port 80), or may rely on additional
infrastructure that is not yet widely deployed (e.g., Mo-
bileIP [18]).

Our contribution is the design, implementation, and
evaluation of msocket, a user-level socket library that
provides system support for location-independence as
defined above. The user-level implementation means
that developers of new mobile apps can use it across
diverse mobile operating systems. The user-level socket
API is also very similar to the familiar BSD socket API
and requires minimal changes of legacy applications in
order to be ported to use msocket. To achieve these
goals, we contribute a novel synthesis of ideas from a
large body of prior work on transport-layer, host-based,
and application-specific approaches into a single user-
level system (as detailed in §2); unlike prior solutions,
msocket is immediately usable for developing mobile
applications with no change to legacy OS or network
infrastructure.

We have implemented a prototype of msocket along
with an accompanying distributed proxy service in or-
der to enable mobile-to-mobile communication, relying
on a publicly available, scalable, geo-distributed global
name service, Auspice[21]. Our extensive evaluation
and case studies show:

(1) Seamless mobility: msocket can recover from the
mobility of one or both endpoints; the client- and server-
initiated recovery complete in 2 and 2.5 RTTs respec-
tively.

(2) Multihomed multipath: msocket’s multipath sched-
uler improves the single-best path’s performance by up
to 1.5x in WiFi+cellular settings similar to in-kernel
MPTCP’s uncoupled mode despite having no access to
internal TCP state.

(3) Mobile-to-mobile: Our case studies using an An-
droid phone show that msocket enables applications
to employ seamlessly mobile or “roaming” servers in
a manner agnostic to address-translating middleboxes.

More broadly, we hope that msocket has a pedagogi-
cal value that may further spur longer-term innovation.
A student being introduced to network programming
in a first course on networking will be immediately able
to field their general-purpose network programs as-is in
new and interesting mobile-to-mobile settings by using
msocket instead of traditional sockets. Whether or to
what extent this ability fosters innovation, only time
will tell; msocket is but a first step towards that goal.

The rest of this paper is organized as follows. §3 de-
scribes the detailed design and implementation of msocket.
85 presents a comprehensive evaluation of msocket’s
performance, cost, and functionality using case study
scenarios, and §6 concludes. We begin with a delin-
eation of msocket’s goals and design from a large body

of closely related work.
2. BACKGROUND AND RELATED WORK

2.1 Related work

msocket draws upon a large body of prior work on
enabling intrinsic support for seamless mobility. To
our knowledge, msocket is the first immediately usable
system to support all four types of endpoint mobility;
msocket is also the first to offer an application-agnostic
solution for bidirectional communication initiation de-
spite the presence of address-translating middleboxes.
Below, we explain how msocket’s underlying techniques
compare to closely related prior work.

Architectural alternatives. FExisting approaches
to handle mobility, i.e., an endpoint identifier changing
network location(s), can be broadly classified into three
categories: (1) indirection, (2) global name resolution,
(3) name-based routing. Indirection approaches, e.g.,
MobileIP [18], LISP[11], i3[23], ROAM[24], GSM[4], route
to a fixed network address, the home address, and a
home agent router tunnels all data packets to the mo-
bile’s current location. Indirection schemes enable seam-
less mobility of one or both endpoints at any time and
are oblivious to non-mobile endpoints. However, as
a consequence, they have to indirectly route all data
through the home agent exacerbating path inflation; di-
rect routing extensions can address the triangle routing
problem but mobility of an endpoint is no longer obliv-
ious to the other endpoint. Global-name-resolution-
based approaches, e.g., HIP[17], LNA[9], MobilityFirst[5],
XTA[16] rely on a logically centralized global name ser-
vice (e.g., DNS or Auspice[21]) that resolves an end-
point identifier to its network location(s). This ap-
proach requires a lookup to the name service at connec-
tion initiation time and in order to handle simultaneous
(but not individual) mid-session mobility, and does not
suffer from data path inflation. Pure name-based rout-
ing approaches, e.g., ROFL[10], TRIAD[15], NDNI6],
eschew network locators and route directly on flat or
structured names, which in theory allows any mobility
to be completely seamless to endpoints, but in practice
can induce outage times commensurate to convergence
delays for network routing unless they additionally rely
on indirection or global name resolution.

As an important goal of our work is immediate de-
ployability, we restrict our discussion in the rest of this
section to related approaches that are interoperable with
today’s TCP/IP Internet and, in particular, do not re-
quire significant changes to network routers or middle-
boxes.

Types of mobility events. Figure 1 shows how
a global name service can enable quick recovery from
four types of mobility events, a classification recently
proposed by Sharma et al [21]. These four types of mo-

connect(.) | Client- Server- | Simultaneoug Multipath M2M | Infrastructure changes
mobility mobility mobility | mobility policies
msocket yes per- yes yes yes yes app
flowpath
ECCP no per- yes no no no app, kernel, middlebox
flowpath
MPTCP no per- no no yes no app, kernel
flowpath
TCP-Migrate | no per-interface no no no no app, kernel
HIP no per-interface yes yes yes no app, kernel
MobilelP yes per-interface yes yes no no app, kernel, router

Table 1: Comparison of approaches for connection mobility, multipath, and middlebox-agnostic (M2M) communi-

cation.
A, TP Global name service = |p
1
g 1) Pre-lookup
[mobility
— B. IP, B, 1P,
\.Q/ P2 2) Connect
P, —— mobility
N B3, IP;
3] / s 3
§ = ([connect(B, IPy)__|
glel |y X
2NE) 1S
SIE
g]
= I
&
e — |
[———————onnect(B, IP;
[e—————or (C'onnection Established —_—

3) Individual
mobility

{ ft=——o——""o" Connection re-synchronized Py
A, IPg

4) Simultaneous
mobility
B.IP; — |B.IPs

connect(B, IP5 | ———————

—Connection re-synchronized =~ ——pt

Figure 1: Four types'of endpoint mobility events.

3

la—1P;

bility could be a common case scenario when two mo-
bile phones, as a server and a client, are communicating
and switching between cellular and WiFi or switching
WiFi APs. Today’s DNS-based Internet is designed to
support only pre-connect mobility at coarse timescales.
Table 1 shows whether and how several prior proposals
handle the remaining mobility events, as we also explain
in detail below.

Connect-time mobility: A connect (server_name)
request issued by a client can fail because the server end-
point may have changed its network address after the
client queried the name resolution service but before a
three-way handshake completed. Addressing this sce-
nario requires (1) a highly scalable global name service
that can quickly register and return the fresh location
of the server, and (2) a tight coupling between the con-
nect request and the name service. msocket recovers
from connect-time mobility by re-querying the Auspice
global name service [21] and retransmitting connection
requests. In contrast, the traditional socket API and
most host-based approaches relying on DNS do not sup-
port rapid recovery from connect-time mobility and in-
cur an outage time commensurate to DNS’s long update
propagation delays.

Individual mobility. Transport-layer approaches
such as ECCP[8], MPTCP[19], TCP-Migrate[22] use
different approaches to handle individual endpoint mo-

bility, i.e., when one (but not both) endpoint moves at
a time, the most well-studied mobility case. All of these
recover from individual mobility in a bilateral manner
(without re-querying the name service). TCP-Migrate
and its precursor TCP-R[12] were early efforts that pio-
neered the case for handling individual connection mo-
bility in a bilateral manner, but they implicitly assumed
a single-path TCP connection equating a connection
endpoint to a singly-homed host. HIP, a host-based
approach, supports multiple paths but equates a path
with an interface. In contrast, msocket, like ECCP and
MPTCP, enables a flexible, many-to-one mapping be-
tween flowpaths and network interfaces.

Server mobility, a special case of individual mobility,
is harder to handle than client mobility as it requires
either (a) the client to time out and re-query the global
name service, or (b) the server to proactively notify the
client at its old address, thereby implicitly requiring a
listening “server” at the client.

Simultaneous mobility. Several prior transport
approaches, e.g., TCP-Migrate, MPTCP, consider si-
multaneous mobility, when an endpoint loses its current
address during the time the other endpoint is changing
its address, to be a rare case, suggesting that they could
fall back on a DNS-like external infrastructure to han-
dle this case. However, simultaneous mobility may not
be that uncommon in disconnection-tolerant mobile ap-
plication scenarios, e.g., when a mobile user switches off
her smartphone while on the road and resumes watching
a movie using WiFi at home, by which time the virtual
machine hosting the Flash server may have been mi-
grated for load balancing purposes. HIP explicitly des-
ignates rendezvous points in the architecture to handle
this case, wherein the host identifiers can be used to se-
curely resynchronize the connection. ECCP alludes to
the possibility of handling this case using a lightweight,
network-layer router cache in either endpoint’s subnet
that briefly re-routes data packets (similar in spirit to
Mobile IP that seamlessly handles simultaneous mobil-
ity using home agents), however their approach works
only if at least one path, the “control channel”, between
the endpoints remains unbroken.

Multipath data transfer. MPTCP supports mul-

tipath scheduling but as it is a kernel based approach
and changes the TCP headers, it is not supported by all
the middleboxes, as acknowledged in [19]. msocket uses
the legacy TCP connections and implements multipath
scheduling in the application layer. All the multipath
connection establishment and data packet headers are
sent as data payload in TCP, so a msocket’s multipath
connection is never dropped by middleboxes. Our eval-
uations show that msocket achieves performance close
to MPTCP, even after being implemented in the appli-
cation layer.

Middlebox-agnostic M2M communication. None
of the transport- or host-centered approaches above are
designed to enable mobile-to-mobile communication when
both mobiles are behind address-translating or unidirec-
tionally firewalling middleboxes. msocket’s approach
relies on an external proxy service that is similar in
spirit to application-specific approaches (e.g., Skype)
but differs in that it provides an application-agnostic
socket APT usable by any application.

Infrastructure changes. All host-centered approaches

to enable mobile and /or multihomed multipath commu-
nication require some modification to legacy applica-
tions in order for them to fruitfully leverage non-default
policies to decide when to migrate an existing flowpath
or how to stripe data across multiple interfaces. In this
respect, msocket is comparable as its API is very simi-
lar to the BSD socket API with support for reasonable
default policies for migration and multipath, and new
calls are required only to leverage non-default policies.
msocket’s strength is that it does not require any change
to diverse OS kernels, middleboxes, or routers.

Name service. Our envisioned approach to handle
endpoint mobility implicitly assumes a massively scal-
able global name service (Figure 1) that can rapidly
register updates and return fresh responses to lookups.
DNS with its heavy reliance on long-lived TTLs, and de-
signed in an era when mobility was hardly the norm, is
not well suited to this kind of usage. Therefore, msocket
relies on Auspice [21], an open scalable, geo-distributed
global name service that also shares our high-level goal
of recovering from arbitrary endpoint mobility in an ag-
ile manner. However, the Auspice work focuses only on
the design of a distributed name service and leaves as
an open issue the design of an endpoint stack to achieve
location-independence—a gap that we fill with msocket
in this paper.

3. msocket DESIGN AND IMPLEMENTION

In this section, we describe the design of msocket that
consists of the following three functional components:
(1) seamless connection mobility, (2) multihomed mul-
tipath scheduling, and (3) middlebox-agnostic mobile-
to-mobile communication. Clean support for the first
greatly simplifies the design of the latter two compo-

nents as well, so we begin by describing how msocket
enables connection mobility.

3.1 Overview of seamless mobility

At a high-level, msocket enables a location-independent
communication abstraction that allows endpoints to con-
nect to and communicate with fixed names without
worrying about their changing network locations (or
IP addresses). Thus, msocket allows a client to in-
voke a method connect (server_name) (like most high-
level network programming languages do today) and
additionally rest assured that, even though the IP ad-
dress(es) of both endpoints may change arbitrarily, reli-
able byte-stream communication will resume gracefully
during periods when at least one network path exists
between the two endpoints.

An msocket is bound to a two-tuple [client_name,
server-name| that remains unchanged throughout its
lifetime until it is explicitly closed by one of the end-
points. Underneath, msocket maintains zero or more
active flowpaths, wherein each flowpath is bound to a
pair of [IP, port] tuples respectively belonging to each
endpoint. As msocket is a user-level socket library, each
flowpath is naturally well served by an underlying tra-
ditional TCP/IP connection that is bound to a pair of
IP addresses (and ports) that are unchangeable by de-
sign. However, connection mobility poses a challenge,
especially when exactly one flowpath exists between the
two endpoints and one of the endpoints ungracefully
(or unexpectedly) changes its address, as that requires
msocket to migrate from the old, unusable flowpath to
a new one while maintaining a reliable byte-stream ab-
straction from the application’s perspective.

Ensuring correctness of the reliable transfer requires
resynchronizing sequence numbers over the new flow-
path so that an endpoint can ascertain the exact num-
ber of bytes correctly received by the other endpoint
over the old flowpath. However, sequence numbers in
the underlying connection are by design not visible from
the user level, i.e., an application (or for that matter
the kernel) can not determine exactly how many of the
outstanding bytes have been received by the other end-
point at any point in time; moreover, an application has
no way to explicitly specify the initial sequence number
of the byte-stream over the new flowpath’s underlying
connection.

msocket addresses this problem by maintaining sepa-
rate sequence numbers and buffers in a user-level struc-
ture that enwraps the underlying sockets. Thus, as
shown in the Figure 2, an msocket comprises of: (1)
flowpath socket(s) that refer to one or more underlying
sockets for exchanging data; (2) output and input buffers
that are user-level buffers maintained by msocket re-
spectively for retransmission at the sender and to han-
dle reordering at the receiver; (3) connectionless control

msocket client msocket server

output buffer

input buffer

. listening socket

flowpath socket

output buffer

input buffer

|:| connectionless control
socket

User-space I:I‘_ ______ —)D User-space
O‘ flowpath 1 ;\O
« Ll

Of flowpath 2 O
< >
B Kernel-space Kernel-space {

Figure 2: Overview of msocket components.

socket, a single underlying connectionless socket used
primarily as a connectionless server at an msocket client
in order to handle server mobility. We explain msocket’s
connection management in detail next.

3.2 msocket phases

An msocket connection consists of four phases: (1)
establishment, (2) data transfer, (3) migration, and (4)
closure.

3.2.1 Connection Establishment

Figure 3 shows msocket’s connection establishment
phase between the client and the server. Connection
establishment is similar to the addition of an individual
flowpath as connection establishment is essentially the
addition of the very first flowpath.

This phase begins with the client establishing an un-
derlying connection to the server and using that to mu-
tually agree upon (1) a connection identifier (connID),
(2) a flowpath identifier (pathID), and (3) connection-
less control socket addresses at the client and server
(CCSA and SCSA respectively). connID is a number
that uniquely identifies the connection at both the client
and the server (but not necessarily in a globally unique
manner like a TCP four-tuple) and is chosen as fol-
lows. A pathID of 0 (the first flowpath) in the client’s
control message indicates to the server to generate and
append its portion into the connID and send it back in
its control message to the client. CCSA and SCSA are
also exchanged in the process, but are not used until
server migration is warranted (§3.2.3). At this point,
the msocket connection has been established and sub-
sequent flowpaths may be added as shown in Figure 3
(the steps below “Flow addition”) with the same control
messages but with different pathIDs.

3.2.2 Data transfer

After connection establishment, msocket enters the
data transfer phase wherein it can use one or more
flowpaths to transfer data. Each data message is an
application-level message that can be sent over any flow-
path belonging to the msocket connection. Each data

message header contains at least a sequence number and
cumulative acknowledgment number similar to TCP,
and the length of the payload.

Each msocket endpoint maintains an output buffer
that is a retransmission queue storing a suffix of the
msocket byte stream starting from the oldest unacknowl-
edged sequence number. An endpoint retains data in
the output buffer until it receives a message with an
acknowledgment number exceeding the corresponding
byte range. As the acknowledgments are needed only to
enable an endpoint to garbage-collect its output buffer
space, and not for reliability or performance reasons, it
suffices to send them infrequently. In order to handle
out-of-order delivery, a particularly common case with
multiple flowpaths, each endpoint also maintains an in-
put buffer that returns data in byte stream order upon
application reads.

3.2.3 Flow migration

Each msocket flowpath can be independently migrated
at the client or the server side, and an msocket can be
migrated by migrating each of its constituent flowpaths.
Below, we describe how to migrate one flowpath.

Figure 4 shows the steps involved when a client mi-
grates a flowpath. The client first closes the underlying
socket connection on the existing flowpath and opens
a new one to the server. The server accepts this con-
nection and awaits the control message from the client.
At this point, the server does not know if the flowpath
being established is opening a new msocket connection,
adding a flowpath to an existing one, or migrating a
pre-existing flowpath. The client’s control message con-
tains both the connID and the pathID that enable the
server to distinguish between these cases. If the server
successfully verifies that the connID and pathID corre-
spond to an existing msocket connection and flowpath
respectively, then it responds with its control message.
The control message contains the msocket acknowledg-
ment sequence number (S-ackNum and C-ackNum) that
prompts the server (client) to resend any data from its
output buffer beyond the acknowledgment number that
had been sent over that flowpath just before migration.

Figure 5 shows the steps involved when a server wishes
to migrate a flowpath. The procedure is identical to
client migration except that it is triggered by a RECON-
NECT_REQ message that is reliably transmitted from the
server using the connectionless control sockets. The RE-
CONNECT_REQ message is a request from the server ask-
ing the client to reconnect to it at its new address. To
enable reliable transmission of control messages over an
underlying connectionless, unreliable socket, the server
transmits RECONNECT_REQ messages using a simple stop-
and-wait protocol with retransmissions triggered by a
fixed timeout.

In the case of simultaneous mobility, both endpoints

CLIENT SERVER] ICLIENT

connect(.) reconnect(.)

5
Accept connection
Wait for control message

ADD_FLOW | C-conniD |
pathiD(=0) | CCSA

Wait for control message

SERVER|

Accept connection CLIENT SERVEH

Send reconnect request with new address

ConnID = C-connID + S-connID

MIGRATE_FLOW | connID

1
ADD_FLOW_REPLY -
(/-Lonnlo I_pathID_(=O)IS|CSA|’/ | athiD | CCSA | CackNum — <7 7 serverSockAddr | SC3A | 1

RECONNECT| conniD | = = 7]

Create connlD state

Flow addition
connect(.)

De-multiplex to msocket using conniDf = == o
Re-bind new socket to connlD:pathID 1

Accept connection

> MIGRATE_FLOW_REPLY
Wait for control message (/ | conniD | pathID I S-ackNum

" |

Next steps are similar to client-side migration

ADD_FLOW |

Resend output buffer data
connlD | pathID'

beyond S-ackNum

ADD_FLOW_REPLY
| connID | pathID'

Bl

[
Figure 3
ment

tion

change their network addresses before either endpoint
has had the chance to successfully migrate an existing
flowpath or msocket connection using the bilateral pro-
tocol above. In this case, the endpoints must rely on a
third party service in order to resynchronize connection
information. The necessity of a third party is best ap-
preciated in the case when each msocket endpoint has
exactly one network interface address. In this case, an
endpoint can use neither an alternate flowpath nor the
connectionless control socket as they were all bound to
the (only) network address that is no longer usable. To
handle this case, the client (or server) eventually de-
tects the connection failure and queries a global name
service to obtain the server’s (client’s) updated listen-
ing address (connectionless control socket address) as
the server (client) would have registered that new ad-
dress with the global name service. At this point, the
migration procedure is similar to either a client or server
migration. The global name service that msocket relies
upon is Auspice [21], a geo-distributed key-value store
that is designed to store a number of addresses and
other attributes for arbitrary endpoint identifiers.

The client (or server) may obtain a stale value from
the global name service and the connection may fail,
in which case the client (or server) periodically tries
to establish the connection, which we call as periodic
retry interval (p). The upper bound on simultaneous
mobility completion time is given by p+q +w+2RTT,
where q and w are the client querying time and the
server update time to the global name service and RTT
denotes the round-trip time between the server and the
client. The intuition behind the proof is as follows.
The client has already come up and periodically (with
period p) queries for the server’s address. We give the
bound on the connection time from the time when the
server comes up. On coming up, the server updates

Resend output buffer data

beyond C-ackNum

‘>< Figure 5: Server-side flow migra-

tion. Dashed lines show mes-

Connection establish- Figure 4: Client-side flow migra- sages sent over connectionless con-

trol sockets.

its address with the global name service, which takes
w time. If the client queries in between the update
then it gets the wrong address and timeouts again. Our
implicit assumption here is that the timeout is greater
than w. Then, the client queries again after p and is sure
to find the right answer and it takes 2RTT to establish
the connection with the server, roughly 1 RTT for the
connect and another for the control messages. So, the
upper bound here would be p+ ¢+ w+ 2RTT.

3.2.4 Connection closure

msocket enters the connection closing phase when the
application invokes close(). msocket’s closing phase re-
quires the agreement of both the endpoints for reasons
different from TCP; if one side A is oblivious to closing
by the other side B, then A will presume an underlying
mobility event by default and invoke mobility handling
procedures that will block until either B comes back up
or until A times out eventually. To this end, msocket’s
connection closing state machine is similar in spirit to
that of TCP using (user-level) FIN and ACK messages
sent and acknowledged by both sides. However, TCP’s
state machine is not designed to handle mobility dur-
ing connection closure, which can be a common case
in msocket. To handle mobility events correctly dur-
ing connection closure, an msocket endpoint writes the
outgoing FIN and ACK control messages into its output
buffer and re-transmits them after handling each mobil-
ity event that occurs during connection closure. Indeed,
if an endpoint moves during connection closure, it is
possible that both sides go through the connection mi-
gration sequence only to exchange the remaining FIN or
ACK control messages. When both sides have received
the ACK for their FIN messages, they independently
close the msocket and free all the state.

3.2.5 State machine description

\

CLOSED i

passivef%pen Tclose
X

LISTEN

active_open
connect

TRANSPORT_|
CONNECT

connect_event

connected

rcv ADD_FLOW
$nd ADD_FLOW_RI
connect_event
accept

Establishment

rcv ADD_FLOW_REP

add_flowpath

I

—on
£ rev FIN
3 snd ACK timeout £
(@]
o . client_migrate_event ||
server_migrate_event -------------=-2 4y rcy RECONNECT ||
c (dp_snd RECONNECT | READY | .
O —T & e
® I(FIN sent) MIGRATE
g’ connect_event x connected L_CONNECT
D snd MIGRATE_FLOW
— accept MIGRATE

CTRL_SENT

rcv MIGRATE_FLOW
snd MIGRATE_FLOW_REPLY

rcv MIGRATE_FLOW_REPLY
X

‘FIN sent
X

Figure 6: msocket state machine: Dotted READY and
CTRL_WAIT blocks are the same as the corresponding
solid ones.

Figure 6 summarizes the entire msocket connection
management state machine consisting of three parts—
establishment, migration, and closure—as explained above.
Next, we briefly describe the state transitions for each
part.

In the connection establishment phase, a server opens,
denoted by passive_open, a msocket and listens for con-
nections. A client opens, denoted by active_open, a
msocket and connects to the server. Upon the con-
nect completion, the server goes to the CTRL_-WAIT
state, and the client sends the ADD_FLOW control
message and goes to the CTRL_SENT state. The server
on receiving the client’s control message sends back
the ADD_FLOW _REPLY control message. Both the
server and the client, on receiving the reply, move to
the READY state, and the connection is now estab-
lished and ready for data reads and writes.

Migration events server_migrate_event,
client_migrate_event, udp_rcv RECONNECT and time-
out can occur in any of the states. On the occurrence
of these events there is an implicit transition from any
state back to the READY state, not shown due to the
space constraints, where the corresponding event is han-
dled. On the server migration, occurrence of
server_migrate_event, the server sends RECONNECT
message over the connectionless control socket and waits,
in RECONNECT_SENT state, for the clients to recon-
nect to it. The clients on receiving the RECONNECT
message over the connectionless control or upon client
migration, occurrence of client_migrate_event, or upon
keep alive timeout connect to the server and upon the

connect completion send the MIGRATE_FLOW con-
trol message. The server on receiving a client’s control
message sends back MIGRATE_FLOW_REPLY mes-
sage and both the server and the client, on receiving
the control message, begin resending the data lost in
the migration in the RESEND_DATA state. After re-
sending all the data if the msocket resends a FIN mes-
sage from the OutputBuffer, FIN sent event, then that
means a migration had happened during some earlier
connection closure and the msocket transitions now to
the FIN_.WAIT1 state to restart the connection closure.
Otherwise, the msocket moves to the READY state and
the connection is again ready to be used by the appli-
cation.

The connection closure state transitions are similar
in spirit to the TCP state machine, as TCP handles
all the permutations of FIN and ACKs. But, msocket
handles the migration events in any of the connection
closing states. As mentioned above, migration events in
any of the connection closing states causes a transition
to the READY state and after handling the migration
a FIN is resent and the connection closure is restarted.

3.2.6 Multipath scheduling policy

The goal of msocket’s default policy for scheduling
data over multiple flowpaths is to achieve a throughput
close to the sum of the fair throughputs that would be
achieved independently along each flowpath in isolation
by the underlying connection. Thus, for an implementa-
tion based on underlying TCP sockets, msocket seeks to
achieve an aggregate throughput that is the sum of the
TCP-fair throughputs along each flowpath (variously
referred to in the multipath congestion control litera-
ture as independent / uncoordinated / uncoupled TCP).
The justification for this goal is that msocket targets
the common case of multihomed multipath (e.g., cel-
lular + WiFi) and “coordinated” fairness across such
different vertical networks (with incomparable pricing)
is not meaningful.

The above goal of utilizing the sum of the fair through-
puts along all the flowpaths is achieved by the schedul-
ing policy as follows. We first observe that, for sending
any data, the optimal policy is to stripe data across the
flowpaths proportional to their fair throughputs so that
all of the flowpaths drain out completely at the same
instant. The problem is that the fair throughputs are
not known a priori and must be estimated online. To
this end, at the start of an msocket connection when
there is no prior information available about the qual-
ity of the different flowpaths, the scheduler sends small
chunks, i.e., fixed-length data messages, on flowpaths
proportional to their round-trip times (that is known
through the connection establishment phase). Once the
scheduler starts getting feedback on the number of bytes
received by the other side along each flowpath, it uses

User related Transport related msocket related Migration related OutputBuffer Timer re-
related lated
rev msocket. message: FIN sent:
. connected: signals signals receive of) signals the timeout:
active_open: user loti ADD_FLOW, server-migrate_event : sendine of FIN | sienals
event | (client) opening a | COMRCCt COMPIEHON] s iy b W REPLY, signals the network | $°71"8 e o
msocket. of the transport FIN, ACK, mobility at the server rom uneout

passive_open: user
(server) opening a
msocket and
listening for
connections.

add_flowpath: user

socket
connect_event:
signals the receive
of transport socket
connect.

MIGRATE_FLOW,
MIGRATE_FLOW_REPLY

udp_rcv RECONNECT:
signals the receive

of RECONNECT over
connectionless control(udp)

client_migrate_event:
signals the network
mobility at the client

OutputBuffer,
after migration
/(FIN sent):
signals not of
FIN sent

keep alives,

adding a flowpath

close: user closing
the connection

connect: action to
do a transport
socket connect

action | x

accept: action to event

accept a transport
socket

snd msocket message:

action to send msocket
messages as described X bq X
in rcv msocket message

udp_snd msocket message:
action to send

the RECONNECT over
connectionless control(udp)

Table 2: Events and actions of the state machine

them to stripe larger windows of chunks proportional
to the estimated fair throughput. Next we describe the
flow control in the multipath scheduling.

The multipath scheduler knows the input buffer size
of the receiver, denoted by b, exchanged in the connec-
tion setup and in the subsequent data packet headers.
The input buffer stores the out-of-order data received
from flowpaths at the receiver. While sending chunks
over different flowpaths, as described above, the sched-
uler maintains the last sequence number sent, denoted
by s, and the last sequence number acknowledged, de-
noted by a. The scheduler sends chunks over flowpaths
such that s —a < b, this guarantees the flow control be-
tween the sender and the receiver across the flowpaths
and it prevents any deadlock case when the input buffer
is full and cannot store an in-order data from flowpaths
and cannot pass any data to the application because it
doesn’t have in-order data, also reported in [19]. One
thing to note here is that if the size of the output buffer
is less than the size of the input buffer than the above
condition is always satisfied, as the sender sends data
from the output buffer. Next we describe the retrans-
mission of chunks to take into account the variability in
flowpaths.

The scheduler retransmits chunks from slower paths
to faster paths in two cases, 1) All the chunks of the data
are scheduled once on flowpaths and now the scheduler
is waiting for the chunks to be acknowledged by the
receiver. 2) All chunks are not yet scheduled but sched-
uler cannot send any new chunks because s — a = b.
msocket keeps track of which data message was writ-

ten to which flowpath in its output buffer and uses
that information for retransmission in both the cases.
In the first case, the scheduler retransmits the unac-
knowledged data messages from slower flowpaths to the
faster ones until all the chunks are acknowledged. In the
second case, the scheduler retransmits unacknowledged
data messages from slower flowpaths to the faster ones
until s —a < b and it can transmit a new chunk. One
thing to note here is that, when duplicate chunks are
received at the receiver only one copy is stored in the
input buffer and there is never a deadlock and the input
buffer always has space to read the in-order data from
the flowpaths. Typically, when flowpath quality does
not fluctuate adversarially, this retransmission scheme
will retransmit lagging data messages at most once.

The difference between msocket and MPTCP multi-
path scheduling policy is as follows. MPTCP sched-
uler at the kernel layer has access to packet losses, con-
gestion window and TCP timeouts. On packet losses
or fluctuation on a flowpath, MPTCP can resend data
from slower to faster flowpaths and adjust the conges-
tion window of slower flowpaths. While in msocket, the
data once sent to a slow flowpath will be eventually be
sent to the receiver by the underlying TCP even if it
requires multiple retransmissions on the same flowpath
due to losses. So, we design the msocket scheduler so
that it does retransmissions from slow flowpaths only
when there are no new chunks to send.

3.2.7 Middlebox-agnostic communication

The goal of msocket’s middlebox-agnostic commu-

CLIENT JPROXY . . SERVER
Server registration

connect(.

<
ccept connection
Wait for CTRL_PROXY

CTRL_PROXY | [~
serverlD
Client connecting to Bind serverlD to [IP,port]
cso%rr1veec|£(.) | CTRL_PROXY
N _ACK —)

Accept connectiof,
Wait for control message]

ADD_FLOW | serverlD
C-connID | pathiD |

™ ADD_FLOW
| C-conniD| pathID | f=p!
proxyPathID

connect (.)

<

ADD_FLOW_REPLY |
€ | connID | pathiD |
proxyPathID

== proxyPathID de-
multiplexes client socket

ADD_FLOW_REPLY

connlD | pathID
Client connection to serve
via proxy completes

Figure 7: msocket connection establishment with proxy.

nication is to enable any endpoint to easily initiate
communication to non-globally-addressable mobile end-
points residing behind address-translators or firewalls
that by default prevent initiation of communication from
the outside. msocket supports a proxy service that
equips any endpoint that can initiate communication
to also listen for communication initiation requests. In
principle, this proxy-based technique to circumvent mid-
dleboxes is well known and is widely used by applica-
tions, e.g., Skype, but our contribution is to channel this
technique into a general-purpose, application-agnostic
socket, API that also supports mid-connection mobility
and multihoming.

3.2.8 Connection and flowpath establishment

An msocket server (Figure 7) needs to obtain and
register one or more proxy servers through the global
name service, Auspice, and these proxies tunnel all data
exchanged between the client and server. The msocket
client is oblivious to the presence of a proxy and as al-
ways obtains from the name service a set of addresses
corresponding to the globally unique service name, so
a multiply-proxied server looks identical to a multiply-
homed server. At startup time, an msocket server re-
quests the msocket proxy management system for one
or more proxy servers with support for policies for spec-
ifying the requirements of the proxy, details about the
proxy management system are in §3.3. In order to
listen for incoming connections through a proxy, the
server opens and maintains a single control channel to
each proxy. Upon a client request to initiate a new
msocket connection or add a flowpath, the proxy assigns

CLIENT IPROXY SERVER

reconnect(.)

a
Accept connectiol
Wait for control message

=] MIGRATE_FLOW |
serverlD | conniD | =3
pathID | C-ackNum
Client sends control
message to proxy.

serverlD to demux
server's control channel

MIGRATE_FLOW |
connlID | pathiD |
C-ackNum | proxyPathID‘)
Server opens new

connection to proxy]
connect(.)|

Vi

4-| conniD | patﬁID |

"MIGRATE FLOW REPLY H
= = Use proxyPathlD to
€= | conniD | pathlD | demultiplex to

ﬂ% client socket
en R

output bu uffer data
beyond S-ackNum beyond C-ackNum

P ——

Figure 8: msocket client-side flow migration with proxy.

a temporary proxyPathID to the client half of the flow-

path and notifies the server through the control chan-

nel prompting it to open a corresponding connection-

specific flowpath. The proxy then splices the two halves

of the flowpath using the proxyPathID, and subsequently
just relays the bytes on the two halves.

3.2.9 Connection migration with proxy

Upon a mobility event, a proxied msocket connection
migrates both halves of the flowpath (Figure 8). The
client-to-proxy portion is similar to the client-to-server
portion shown in Figure 3. The server as before opens
a corresponding new flowpath to the proxy that then
splices the two halves. Note that we do not strictly
need to tear down and re-establish the server-to-proxy
flowpath, however we chose to do so to keep the proxy
simple and in order to keep the presence of a proxy
oblivious to the client (that would expect the corre-
sponding control message exchanges exactly as in the
proxyless case).

msocket supports two approaches to migrate a prox-
ied msocket server based on (1) the connectionless con-
trol socket as in the proxyless case in order to notify
the client if the client is globally addressable, or (2) an
alternate approach relying only upon the name service.
In the latter approach, the server as usual acquires and
registers new proxy servers through the name service
and opens control channels to the newly acquired prox-
ies. An in-band failure detection mechanism based on
periodic keepalive messages and timeouts enables the
client to infer that the server has migrated. Upon a
keepalive timeout, the client queries the name service

and re-establishes the necessary flowpaths as in client-
initiated migration.

3.2.10 Distributed proxy management

msocket’s default proxy service is based on dproxy,
a distributed proxy management subsystem for secure
group management, a proximity- and load-aware proxy
location service, and a watchdog service to monitor
the health of proxies, all relying on Auspice as a log-
ically centralized persistent data store, §3.3.1 gives an
overview of the Auspice.

Note that the keepalive-based approach above can
also be used in the proxyless case, obviating the connec-
tionless control socket to proactively notify the client.
However, the downside is that keepalives either increase
overhead or make the connection less responsive to mi-
gration, e.g., if a server infrequently sends data over
a long-lived connection and wishes to push data to the
client right after a migration. Furthermore, the keepalive-
based approach has to rely on a third party, the global
name service, even when the server alone moves, an
event that can be handled bilaterally when the client
is globally addressable. In the case of non-globally-
addressable clients, at least infrequent keepalives are
anyway needed even to keep the client-to-proxy “con-
nection” entry alive at the middlebox.

In-band proxy failure detection.

Keepalives also enable the server to detect and re-
cover from proxy failures. The end-to-end keepalives
described above are periodically sent from the server to
the client through the proxy as zero-payload data mes-
sages, which allows the client to detect the failure of
either a proxy or the server (without the need to dis-
ambiguate between the two cases). Additionally, each
proxy sends keepalives along each control channel to
a server reconfirming that it is listening for new client
connections. Upon a keepalive timeout on the control
channel, the server closes the control channel and can
either acquire new proxies or choose to carry on with
its other remaining proxies if any; the decision of when
or what type of proxies to acquire is driven primarily
by performance concerns.

3.3 Distributed proxy management

Next, we present dproxy, a distributed proxy manager
that enables msocket servers to acquire proxies under-
neath the covers oblivious to msocket developers.

3.3.1 Auspice global name service overview

msocket and dproxy rely on a pre-existing global name
service, Auspice, that we briefly overview here. Aus-
pice[21] is a global name service for MobilityFirst [5], a
next-generation Internet architecture with mobility and
security as central design goals. MobilityFirst uses glob-

10

ally unique identifiers (GUIDs) to identify endpoints in
a flexible, location-independent, and verifiable manner.
A GUID can identify a network interface, a service, a
group of GUIDs, e.g., all interfaces on a device or all
devices of a user, content, etc. A GUID is self-certifying
in nature, i.e., any entity can authenticate an endpoint
bilaterally without requiring third-party certification; a
common way to achieve this property is to define the
GUID as a compact hash of a public key [17, 7, 5, 16].

Auspice performs name resolution, i.e., it translates a
GUID or its human-readable alias to its network address
or a number of other attributes. At its core, Auspice is a
massively geo-distributed key-value store where GUIDs
act as primary keys. A name owner, i.e., any entity pos-
sessing the private key corresponding to the GUID, can
insert arbitrary attribute-value pairs—essentially any-
thing that can be represented as a JSON object—as the
“value” corresponding to the GUID. For example, X —
[{SockAddr: [[IP1, porti], [IP2, port2]]},

{Geoloc: [{loc: [lat, longl}, {ReadWhitelist:
[Y, Z1}1}, {color: "blue"}] refers to a record for
a GUID X that represents a service that is multiply
homed and at the two socket addresses (or [IP, port]
tuples), is geolocated at [lat,long] and this geolocation
can be read by GUIDs Y and Z, and X has the color
blue as decided by the whimsical owner of X. Each
individual attribute has an access control policy (black-
list or whitelist) for reads and writes with defaults being
read-by-all and write-by-owner.

msocket service names.

An msocket server can be bound to a GUID or its
human-readable alias, e.g., “www.amazon.com” or “john
smith’s phone” but all lookups and updates to Auspice
are done using GUIDs. Thus, in order to be able to
write an msocket server, developers need to acquire a
GUID first (using the Auspice portal [2]). An msocket
client does not need a GUID provided the server’s listen-
ing socket address is globally readable. msocket with-
out dproxy can also be used as-is with DNS instead of
Auspice for individual connection migration and multi-
path as these are accomplished in a bilateral end-to-end
manner without relying upon a global name service.

3.3.2 dproxy secure group management

dproxy consists of three key management components,
administrator, watchdog service, and location service,
in addition to the the proxies themselves that form the
“data plane” as described in previous sections.

An administrator creates a proxy group using a group
GUID, that maintains a membership set of its con-
stituent GUIDs. Individual proxies have their own GUIDs
and the corresponding private keys are not shared by
anyone. The administrator is the only entity that can
add or remove proxy GUIDs to the proxy group. If

an individual proxy becomes compromised or otherwise
unusable, the administrator can evict the proxy from
the group. The administrator also starts the location
service and watchdog service as described in turn next.

3.3.3 dproxy location service

The location service is used by msocket servers in or-
der to acquire proxies according to their desired perfor-
mance metrics. Each location service instance has its
own GUID and several instances of the location service
may be run independently for fault tolerance. When
an msocket server starts up, it looks up and randomly
picks the GUID of a location service instance from the
LOCATION_ACTIVE field of the proxy group, reads the
socket address of the location service, connects to the
location service instance at that socket address, and re-
quests proxies based on its desired requirements.

The server can specify a number of desired require-
ments or performance metrics of interest such as (1) ge-
olocation, (2) load, (3) available bandwidth, (4) server-
specified whitelist or blacklist of proxies, (5) number of
candidate proxies. Individual proxies monitor and pe-
riodically write resource metrics such as load and avail-
able bandwidth to the name service records keyed by
their respective GUIDs. The location service performs
top-k queries over these metrics across proxies in order
to select and return a set of candidate proxies matching
the msocket server’s requirements .

3.3.4 dproxy watchdog service

The watchdog service is designed to monitor the health
of members of a group GUID, and is used to moni-
tor the proxy group, location service, and indeed the
watchdog service itself. Like proxy and location service
instances, each watchdog service instance has a GUID
and operates independently of other instance. In con-
trast to in-band failure detection (§3.2.7), the watchdog
service operates on coarser timescales and its goal is to
ensure that failed or otherwise unresponsive proxies are
no longer recommended to new msocket servers.

The watchdog service works by periodically query-
ing the name service for each proxy group member’s
LAST_ALIVE_TIME field, a field that each proxy periodi-
cally refreshes to the current time indicating it was alive
at that time. The watchdog service maintains three mu-
tually exclusive lists, ACTIVE, SUSPICIOUS, and FAILED,
that respectively contain the list of proxies considered
healthy, suspected to be problematic , and failed or shut
down. A proxy is moved from ACTIVE to SUSPICIOUS
or from SUSPICIOUS to FAILED if its LAST_ALIVE_TIME is
older than the corresponding predefined timeout thresh-
olds. Only ACTIVE proxies are available for recommend-
ing to new msocket server requests while FAILED proxies
are evicted from the proxy group by the administrator.

4. msocket IMPLEMENTATION

11

We have implemented the msocket prototype in Java
with around 6K lines of code (number of semicolons) for
the msocket data path and around 3K lines of code for
dproxy. msocket and dproxy rely upon Auspice, a pre-
existing service that has been running on Amazon EC2
for over a year. We chose Java because it is platform
independent and is easily usable on Android.

The APT exposed by MSocket (MServerSocket) is sim-
ilar to java.net.Socket (java.net.ServerSocket) and sup-
ports all of the latter’s methods. Typically, porting
a legacy Java application to use msocket with the de-
fault mobility and multihoming policies just means in-
cluding the msocket package and replacing a few class-
names in java.net.* with msocket counterparts. To keep
the msocket API similar to the BSD API and yet pro-
vide useful default mobility and multihoming policies in
common-case scenarios, we have implemented a mobility
manager module that automatically creates or migrates
flowpaths. Example policies include (1) prefer cellular
(or WiFi) when available; and (2) simultaneously use
both WiFi and cellular (that needs a modified kernel
on Android) when available. msocket is designed to re-
sume a connection after a mobility event even when an
endpoint becomes unreachable for a long period of time,
so endpoints must retain connection state for long du-
rations. This period is set by default to a day, which en-
tails a commensurately high memory overhead at highly
loaded servers.

Our design has largely focused on a TCP-based un-
derlying socket, however it is straightforward to extend
msocket to any underlying reliable transport protocol,
and even simpler to support a UDP-based unreliable,
connection-oriented version of msocket. For the latter,
connection control messages must be transmitted using
a reliable transport protocol atop UDP with sequence
numbers that are separate from those used for data mes-
sages so as to correctly handle reordering corner cases
like those described in [8].

msocket and dproxy use http://icanhazip.com to
reveal the public IP address of a NATed msocket server

and http://freegeoIP.net/csv/ [IP] for IP-to-geo queries

in order to recommend proxies to msocket servers or to
clients querying for multiply-proxied msocket servers.

Figure 9 shows the message header formats in msocket.
The control message is sent during establishing a con-
nection, adding a flowpath or migrating a flowpath, and
different fields of the control message are already de-
scribed in §3.2

Data message header enwraps each data chunk and
by setting the message type field, it can act as data
acknowledgement, FIN and ACK messages of the con-
nection closure. Sequence Number(4bytes) carries the
sequence number of the data carried in the payload. Ac-
knowledgment Number(4 bytes) carries sequence num-

Bit 0 Bit 15 Bit 16 Bit 31
connlD(0-3 bytes)
connlD(4-7 bytes)

pathiD gg:\tnectlonlesscontroller

Message
type

Connectionless controller IP

Acknowlegement number

proxyProxyID Bytes

20 serverlD
Bytes|

Control Message Header

Bit 0 Bit 15 Bit 16 Bit 31
Sequence number

Acknowlegement number 16

Message
type

Message length Bytes

Received bytes on flowpath 1
Data
Data Message Header

Figure 9: msocket message headers. Top: Control mes-
sage header, Bottom: Data message header

ber till which the host has read the data. Message
Type(1 bytes) indicates whether this is a data message,
data ack message, keep alives or FIN. Message length(3
bytes) carries the information of length of the payload
attached. Received Bytes on Flowpath(4 bytes) carries
the information of bytes receive on this flowpath, this
information is used in the multipath scheduling policy.

In our design, both ends needs to be modified to en-
able msocket communication. In future, we plan to ex-
tend our implementation so that the mobile end can
use msocket and communicate with the other end un-
modified. We plan to leverage dproxy to enable this
functionality. The proxies can act as translators and
a mobile client or server uses proxies to communicate
with the unmodified other end and the mobile end gets
all the benefit of seamless mobility, multipath and mid-
dlebox agnostic communication.

S. EVALUATION

In this section, we seek to evaluate: (1) msocket’s per-
formance in handling mid-connection mobility of one or
both endpoints; and (2) Performance of the multipath
scheduling policy and its throughput-energy trade-off
on mobile phones. (3) Performance of mid-connection
client mobility in multipath scenario. (4) Performance
of different proxy selection policies in middlebox-agnostic
communication settings. Furthermore, we demonstrate
the full functionality of msocket using the following
case study scenarios: (5) A user running an msocket
server on a phone and roaming in a downtown area; (6)
Using msocket’s middlebox-agnostic communication in-
stead of Bluetooth for proximate communication.

5.1 Mid-connection mobility of one or both end
points

5.1.1 Client-side mobility

In the client side mobility, the client end of the ongo-
ing established connection undergoes mobility by chang-
ing its network and thereby changing the ip address.
msocket handles the client side mobility by migrating
the flowpaths to the newly connected network.

In client-side mobility, the client end of an established
connection changes its network address, which msocket
handles by migrating the corresponding flowpath(s) to
the new address. We evaluate the latency to migrate
a flowpath from the old to the new network address
with an experimental setup wherein the client runs on
a laptop and the server on a PlanetLab node. The RTT
between the client and the server is varied by choosing
different PlanetLab nodes to run the server while keep-
ing the client fixed. The client starts a file download
from the server using one WiFi access point, and mid-
way during the download, we switch the WiFi access
point (AP) on the client node, thereby changing its IP
address. We measure the latency incurred by msocket
to recover from the mobility event and for the file down-
load to resume. The latency is measured after the client
successfully switches to the other AP, so it does not in-
clude the AP switching latency.

Figure 10 shows the client mobility recovery time for
different RT'T values between the server and the client.
The recovery time increases linearly with the RTT and
is roughly twice the RTT. This is consistent with the
client-initiated flowpath migration protocol described
in 3.2.3 as the reconnect(.) and control message ex-
change takes 2RTTs.

5.1.2 Server-side mobility

In server-side mobility, the listening server changes
its address, and all the already established connections
at the server along with the listening server must there-
fore be migrated to the new address. In this experi-
ment we evaluate msocket’s recovery from server-side
mobility, including the overhead of moving all the ex-
tant connections. The setup is as follows. The server
runs on a desktop machine and the clients run at 5
PlanetLab machines that are at 107, 109, 104, 80 and
120 ms RTT from the server. The clients connect to
the server and start downloading a file during which
the server moves by changing its listening port number.
In the experiment, we evaluate the server mobility com-
pletion time for different numbers of extant connections
at the server. Each established connection has just one
flowpath.

Figure 11 shows the CDF of the number of established
connections that have re-connected to the server after
the mobility event. The server mobility recovery time is

— 2 1 — 2 . . .
8 50 09 £ T 8 000 msocket D
17} o 1800
e /II f upper bound
E 200 f £g 08 E
T 58 © VS| S 1600 |
R
£ 150 58 o7 ,l I/ E 1400 | 5
< I gs o6y 2 1200 |
5 53 os il / S 1000 | sl
2 100 55 oa {fif 7 e
S ZE < [_—
2 50t g?, 03 /’Ir/ 20 active connections —— £ 600 [E‘/EE(
5 8% oz o secomen 5 w0l
S ol o1 Bade cmecers o S w0l
0 20 40 60 80 100 120 o 200 400 600 800 10001200 14001600

RTT between the server and the clientfmsec]

Figure 10: Client mobility recovery
time as a function of client-server
RTT.

Figure 11:

bility event.

around 300 ms for 20, 40, 60 active connections, which
is 2.5*RTT and around 330 ms for 80 and 100 active
connections. For 80 and 100 active connections, the
delay is somewhat higher because the processing delay
becomes a bottleneck at the server beyond that point.

5.1.3 Mobility of both the end points

In this case, both endpoints move without the other
side knowing the new address. The experimental setup
is as follows. The server runs on a PlanetLab machine
and the client runs on a desktop machine, connected by
WiFi. The RTT between the server and the client is
116 ms. The client query time (g) and the server up-
date time (w), as described in §3.2.3, are 100 ms and 32
ms respectively. The client connects to the server and
downloads a 10 MB file. Midway during the download,
first the server goes down (or disconnects from the net-
work) at t= 5 sec from the start of the download, then
the client goes down at t= 10 sec, then the client comes
back up (connects to a different WiFi AP) at t=20 sec
and tries to connect to the server, and then the server
comes back up at its new listening address at t=30 sec.

Figure 12 shows the mobility handling time, which is
the time to reconnect after both the sides have come
back up, for different periodic retry intervals (p). The
experiment is consistent with the expected bound (p +
g+ w+ 2RTT) on simultaneous mobility recovery time
as described in §3.2.3.

5.2 Multipath scheduling policy

In this section, we (1) compare the performance of
msocket multipath policy, as described in §3.2.6, with
other schemes; and (2) analyze the throughput-energy
trade-off of multiplath scheduling on mobile phones,
and show that for large file transfers, both the download
time and the energy consumed can be simultaneously
reduced.

5.2.1 Multipath scheduler performance

We compare msocket’s multipath scheduling policy
(83.2.6) with state-of-the-art MPTCP [19] and an Ideal

300
Time[ms]

CDF of the number of Figure 12:
clients reconnected after a server mo-

13

350 400 450

Periodic retry interval[msec]

Simultaneous mobility
recovery time for different periodic
retry values.

multipath scheduling scheme that sends bytes over all
flowpaths and the receiver simply measures the time at
which it cumulatively receives the required number of
bytes, i.e., it is not affected by re-ordering or quality
fluctuations across the flowpaths.

The experimental setup is as follows. The server runs
on an Amazon EC2 machine in Oregon. The server
is MPTCP-capable and uses the cubic congestion con-
troller. The client runs on an MPTCP-capable desktop
machine. For Ideal and msocket, MPTCP scheduling
is turned off. The client has two interfaces, one WiFi
and other Verizon 4G LTE, so each scheme opens and
schedules data over two flowpaths. The RTT between
the server and the client on WiFi is 80ms and on the
cellular network is 145 ms. In the experiment, the client
opens a connection to the server, sends a request for the
corresponding file size to the server, and then downloads
it from the server. The times measured do not include
the connect time to the server, and only include the
request time and the file download time. The client
downloads the file multiple times, as different runs of
the experiment, on the same already open connection.

Figure 13 shows the results of the experiment. The
high error bars are due to the variation of the conges-
tion window; initial runs got lower congestion window
than the later runs, as runs were done back-to-back on
the same connection. The results show that Ideal per-
forms the best as expected. msocket’s scheduling policy
performs as good as MPTCP, which is encouraging, and
even somewhat surprising, as MPTCP is implemented
in-kernel with access to detailed information in the TCP
control block, timeout, losses, etc. while msocket is
implemented in user-space with no access to any TCP
state.

5.2.2 Multipath power consumption

On mobile phones, keeping both cellular and the WiF'i
active at the same time increases the power consump-
tion, compared to using either one of them individually.
But with multipath scheduling, the throughput also in-
creases. In this experiment, we study this throughput-

_ 2500 [msocket] 'S 40000 f
§ MPTCP j 2 35000 t
E 7 T 30000 |
£ £ 25000 |
k= el
= 8 20000
8 S 15000 f
S S 10000 |
3 2 5000 |
[

%8 TP B 70205y T %,
T USSP B %
File sizes

Figure 13: Performance of msocket,
MPTCP, and Ideal for different file

sizes

and Both.

energy trade-off on a mobile phone.

The experiment setup is as follows. The server is
a PlanetLab node and the client is a Samsung Galaxy
Nexus 19250 Android device that is tweaked to use both
the WiFi and the AT&T cellular network simultane-
ously. The RTT between the client and the server over
WiFi is 116 ms, and 246 ms over cellular. We eval-
uate three schemes that respectively send data using
(1) only WiFi, (2) only Cellular, (3) both interfaces,
using multipath scheduling. For measuring the power,
we powered the phone using an external power supply,
which gave us an accurate trace of the energy consumed
during the experiment. The energy consumption is in
wAh (micro-Ampere-hour).

Figures 14 and 15 show the time taken to download
the files and the respective energy consumed. The ex-
periment demonstrates that as the file size increases,
the download time decreases by using both the inter-
faces compared to using any one of them. As the file
size increases, the energy consumed using both the in-
terfaces remains same or lower than using one of them
individually. The reason behind the observation is that
the file download time decreases by using both the inter-
faces, so the overall energy consumption decreases. Our
aim here is to just show that it is possible to simultane-
ous improve both throughput performance and power
consumption through a suitable multipath scheduling
policy; the detailed analysis of the throughput-power
tradeoff is beyond the scope of this paper, and is de-
ferred to future work.

5.3

In this section, we compare the handling of client mo-
bility in msocket and MPTCP. Two cases are compared
(1) There is one flowpath that migrates from one net-
work to the another. (2) There are two flowpaths, and
one of the flowpath undergoes migration. In the case 1,
the old network goes down and the flowpath has to be
migrated to the newly connected network, while in case
2, there are two flowpaths and the other flowpath that
has not migrated can be used for the data transfer. The
performance is compared quantitatively in terms of file

Client mobility in multipath scenario

6}
T

File sizes

Figure 14: File download time vs. file
size using WiFi only, Cellular only file size, using WiFi only, Cellular

14

. % %, s
RN NC

5000 ¢
4000
3000
2000
1000

Consumed energy[uAh]

S, 7 9 & V/
%% e % O,

File sizes

Figure 15: Energy consumption vs.

only and Both.

download time, when the migration happens in between
the file transfer, according to the above two cases.

In the migration of one flowpath, migration of a flow-
path from WiFi to Cellular and from Cellular to WiFi,
both the cases are considered. The experiment setup is
as follows. The server and the client are MPTCP v0.88
enabled, with the path manager module installed. For
msocket measurements, MPTCP is disabled on the ma-
chines. The cellular network used is Verizon 4G-LTE
and the local WiFi was used as the WiFi network. The
RTT between the server and the client on the cellular
network is around 59.329 ms and on the WiFi network
is around 0.967 ms. The client connects to the server,
using msocket or MP-TCP, and starts downloading a
file. The client performs the client side mobility from
WiFi to cellular or cellular to WiFi after it downloads
one third of the file size.

Figure 16, shows the file download times for different
files sizes when the client switches from WiFi to cellular
after downloading one-third of the file. The experimen-
tal results show that msocket and MPTCP handle client
mobility, from WiFi to Cellular, in similar fashion. Fig-
ure 17, shows the file download times for different files
sizes when the client switches from cellular to WiFi af-
ter downloading one-third of the file. In this case too,
MPTCP and msocket perform similarly.

In the case of two flowpaths, we study the case when
one flowpath migrates from WiFi to cellular and from
cellular to WiFi. The experiment setup is same as de-
scribed for the single flowpath case, with the following
changes. The client connects to the server and opens
two flowpaths, one on WiFi and another one on cellu-
lar. After one-third of the file download, it switches off
either WiFi or cellular, for the purpose of migration.

Figure 18 and Figure 19 show the file download per-
formance, when one of the flowpaths migrates from cel-
lular to WiFi and WiFi to cellular. Both the msocket
and MPTCP handle the this case similarly and use the
other flowpath to send the data.

5.4 Middlebox-agnostic communication

Next, we evaluate different proxy selection policies

N
o
-
N

MPTCP

MPTCP
msocket =

-

[6)]
—_
o

[

File download time[sec]
=
File download time[sec]

o N A OO

512KB 1MB
File sizes

4MB 8MB

Figure 16: File download times for
MP-TCP and msocket, when the
client migrates from WiFi to cellular

network network

MPTCP
msocket mmmE

File download time[sec]
o == N W » 01O N 0

512KB 1MB 4MB 8MB
File sizes

Figure 19: File download times for MP-TCP and
msocket with 2 flows, one on cellular and other on WiFi.
WiFi goes down after 1/3rd of the file download

supported by msocket’s middlebox-agnostic communi-
cation module. The “best” proxy selection scheme de-
pends on the metric an application wishes to optimize.
In this experiment, we focus on download time and ac-
cordingly study three intuitive schemes, (1) Random
that returns a random proxy; (2) Geo-location that re-
turns the nearest proxy by geo-location;
(3) Geo-location+Load that sorts proxies by geographic
proximity but rules out proxies loaded above a utiliza-
tion threshold. The experiment setup is as follows. The
client and the server run on co-located machines behind
a middlebox(NAT). 10 proxies run on PlanetLab nodes
that are located between 3 ms to 83 ms RTT from the
server and client. The client connects to the server via
a proxy and downloads a 1 MB file.

Figure 20, shows the download times for the three
different proxy selection schemes. In the experiment

setup, the Geolocation+Load proxy selection scheme chooses

a proxy that has a 7 ms RTT to the server, which al-
though not the nearest, but is the best satisfying both
the proximity and load criteria. The results show that
Geolocation+Load performs better than either one of
Random or Geolocation.

512KB 1MB
File sizes

Figure 17: File download times for
MP-TCP and msocket,
client migrates from cellular to WiFi

15

MPTCP s
msocket == |

msocket mmmm

File download time[sec]
o = N W s~ OO N

512KB 1MB 4MB 8MB
File sizes

4MB 8MB

Figure 18: File download times for
MP-TCP and msocket with 2 flow-
paths, one on cellular and other on
WiFi. Cellular network goes down af-
ter 1/3rd of the file download

when the

5.5 Case studies

We use the full-featured msocket implementation to
perform two case studies. The first involves a user run-
ning a mobile server on the phone roaming in a down-
town area connecting to different WiFi or cellular APs
as available. The client connects to this middlebox-
agnostic server and downloads a file. The throughput
measured at the client and the connectivity of the server
to different networks is shown in Figure 21. During the
case study, sometimes the mobile phone connected to
the free WiFi networks that only supported HTTP con-
nections and sometimes just connecting to WiFi APs,
in interference prone downtown, took long time. These
are the reasons for some gaps in the connectivity. The
code to run this mobile agnostic server is exactly same
as writing a server program for a fixed, globally address-
able host, which is due to the seamless connection mo-
bility and middlebox-agnostic communication abstrac-
tion provided by the msocket to applications.

The second case study quantitatively compares prox-
imate communication that is commonly achieved by
Bluetooth today against msocket’s middlebox-agnostic
communication relying on IP-based communication. The
case study involves transferring a 12 MB mp3 song from
one phone to the another, using Bluetooth and msocket
over WiFi. In WiFi network, both the phones are be-
hind a middlebox (NAT) and use msocket’s middle-
box agnostic communication to accomplish the transfer.
The transfer over WiFi finishes sooner than Bluetooth,
even when the RTT from one phone to the another via
proxy is 232 ms. The case study demonstrates a simple
use-case and effectiveness of the mobile-agnostic com-
munication, which we envision might even lead to saving
the number of wireless antennas and thereby power and
space on the mobile devices.

6. CONCLUSION

In this paper, we presented msocket, a user-level socket

1000

[Downtown Starbucks Downtown Town room
WIFL o WiEl B ViE S Gl U e E

Celular

reer | Bluetooth
r ! msocket -
Proxy

Throughput (KB/sec)

Server

Downtown RIT 116 msec Sy 1T 116 msec

4

i Vi

400 * Bluetooth
msocket
transfer complete

Bluetooth
transfer complete

£ 4 | 300
7 200
| 1 L (VAWAV.VARVAVAWNAVAWAWAW.IY
R 3 0 L t t . t L

10 20 30 40 50 60 70

5000 G0y
7 4500 | 20
8 4000 | 3 =
£ 3500 | é 200 | Cellular
£ 3000t =
T 2500 | g 0
© c = -
9 o + For—%
g 2000 2 ¢ '3 100 | .
g 1500 § 3 2 N
o 1000 § 2 8
= 500} T S 88 i o
o4 H 0 500
-

Proxy selection policies

Figure 20: File download times for
different proxy selection policies.

library and system for developing applications with seam-
less individual or simultaneous endpoint mobility across
network addresses, multihomed multipath communica-
tion, and mobile-to-mobile communication despite the
presence of address-translating middleboxes. Our de-
sign borrows liberally from an enormous body of prior
work on connection migration, multipath transport, and
application-specific techniques for middlebox penetra-
tion, but contributes a novel synthesis of these tech-
niques into a holistic, simple, and immediately usable
system that requires no changes to legacy OS or network
infrastructure. Our extensive prototype-driven evalua-
tion shows that msocket significantly improves the per-
formance, power consumption, or ease of development
of mobile applications while imposing minimal overhead
despite its user-level implementation. msocket with a
test-drive toolkit can be downloaded at
http://mobilityfirst.cs.umass.edu.

Acknowledgments: We thank David Westbrook for
his contributions to earlier stages of this work. This
work was funded in part by National Science Founda-
tion grants CNS-1342526, CNS-1345300, CNS-0845855,
and AGS-1331572.

7. REFERENCES

[1] Cisco visual networking index: Global mobile data traffic
forecast update, 2012-2017.

[2] GNS Portal. http://gns.name/.

[3] Google Cloud Messaging for Android.

[4] GSM Technical Specifications. GSM UMTS 3GPP
Numbering Cross Reference. ETSI. December 2009.

[5] MobilityFirst Future Internet Architecture Project.
http://mobilityfirst.cs.umass.edu/.

[6] Named Data Networking. http://www.named-data.net/.

[7] ANDERSEN, D. G., BALAKRISHNAN, H., FEAMSTER, N.,

KopPoONEN, T.; MOON, D., AND SHENKER, S. Accountable

internet protocol (aip). SIGCOMM.

ARYE, M., NORDSTROM, E., KIEFER, R., REXFORD, J., AND

FREEDMAN, M. J. A Formally-Verified Migration Protocol

For Mobile, Multi-Homed Hosts. In ICNP (2012).

BALAKRISHNAN, H., LAKSHMINARAYANAN, K., RATNASAMY,

S., SHENKER, S., STOICA, 1., AND WALFISH, M. A Layered

Naming Architecture for the internet. In ACM SIGCOMM

(2004).

CAESAR, M., CONDIE, T., KANNAN, J.,

LAKSHMINARAYANAN, K., AND SToicA, I. ROFL: Routing

(8]

[9]

(10]

1000

Time (sec)

Figure 21: Case study 1: A mobile
server roaming in an urban area.

11]
(12]

(13]

14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

16

— ’ ety Time (sec)

Figure 22: Case study 2: Throughput
timeline: Bluetooth vs. msocket over
WiFi.

on Flat Labels. In ACM SIGCOMM. (2006).

FAriNAcct, D., FULLER, V. F., MEYER, D., AND LEwIS, D.
The locator/id separation protocol (lisp). IETF RFC 6830.
FunaTto, D., Yasupa, K., AND TokupA, H. TCP-R: TCP
mobility support for continuous operation. In ICNP (1997).
GAO, Z., VENKATARAMANI, A., AND KUROSE, J. F. Towards
a Quantitative Comparison of Location-Independent
Network Architectures. In ACM SIGCOMM (2014).
GARTNER. Sales of Android Phones to Approach One
Billion in 2014.
http://www.gartner.com/newsroom/id/2665715.

GRITTER, M., AND CHERITON, D. R. An Architecture for
Content Routing Support in the Internet. In USENIX
USITS (2001).

HAN, D., ANAND, A., DOGAR, F., L1, B., Lim, H.,
MACHADO, M., MUKUNDAN, A., WU, W., AKELLA, A.,
ANDERSEN, D. G., BYERS, J. W., SESHAN, S., AND
STEENKISTE, P. XIA: Efficient Support for Evolvable
Internetworking. In USENIX NSDI (2012).

JOKELA, P., NIKANDER, P., MELEN, J., YLITALO, J., AND
WALL, J. Host Identity Protocol, extended abstract. In
Wireless World Research Forum (2004).

PERKINS, C. E. Mobile IP. IEEE Comm. Magazine (May
1997).

Raiciu, C., PaascH, C., BARRE, S., FOrRD, A., HONDA, M.,
DUCHENE, F., BONAVENTURE, O., AND HANDLEY, M. How
hard can it be? designing and implementing a deployable
multipath tcp. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 12) (2012).

SALTZER, J. On the Naming and Binding of Network
Destinations, 1993.

SHARMA, A., TiE, X., UrPAL, H., VENKATARAMANI, A.,
WESTBROOK, D., AND YADAV, A. A Global Name Service
for a Highly Mobile Internet. In ACM SIGCOMM (2014).
SNOEREN, A. C.; AND BALAKRISHNAN, H. An End-to-End
Approach to Host Mobility. In ACM MobiCom (2000).
STOICA, 1., ADKINS, D., ZHUANG, S., SHENKER, S., AND
SURANA, S. Internet Indirection Infrastructure. In ACM
SIGCOMM (2002).

ZHUANG, S., Lar, K., Stoica, 1., KaTz, R., AND SHENKER,
S. Host Mobility Using an Internet Indirection
Infrastructure. Wireless Networks 11, 6 (Nov. 2005),
741-756.

