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ABSTRACT

ELASTIC RESOURCE MANAGEMENT
IN DISTRIBUTED CLOUDS

SEPTEMBER 2016

TIAN GUO

B.S., NANJING UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

The ubiquitous nature of computing devices and their increasing reliance on remote

resources have driven and shaped public cloud platforms into unprecedented large-scale,

distributed data centers. Concurrently, a plethora of cloud-based applications are expe-

riencing multi-dimensional workload dynamics—workload volumes that vary along both

time and space axes and with higher frequency.

The interplay of diverse workload characteristics and distributed clouds raises several

key challenges for efficiently and dynamically managing server resources. First, current

cloud platforms impose certain restrictions that might hinder some resource management

tasks. Second, an application-agnostic approach might not entail appropriate performance

goals, therefore, requires numerous specific methods. Third, provisioning resources outside

LAN boundary might incur huge delay which would impact the desired agility.
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In this dissertation, I investigate the above challenges and present the design of auto-

mated systems that manage resources for various applications in distributed clouds. The

intermediate goal of these automated systems is to fully exploit potential benefits such as

reduced network latency offered by increasingly distributed server resources. The ulti-

mate goal is to improve end-to-end user response time with novel resource management

approaches, within a certain cost budget.

Centered around these two goals, I first investigate how to optimize the location and

performance of virtual machines in distributed clouds. I use virtual desktops, mostly serv-

ing a single user, as an example use case for developing a black-box approach that ranks

virtual machines based on their dynamic latency requirements. Those with high latency

sensitivities have a higher priority of being placed or migrated to a cloud location clos-

est to their users. Next, I relax the assumption of well-provisioned virtual machines and

look at how to provision enough resources for applications that exhibit both temporal and

spatial workload fluctuations. I propose an application-agnostic queueing model that cap-

tures the resource utilization and server response time. Building upon this model, I present

a geo-elastic provisioning approach—referred as geo-elasticity—for replicable multi-tier

applications that can spin up an appropriate amount of server resources in any cloud loca-

tions. Last, I explore the benefits of providing geo-elasticity for database clouds, a popular

platform for hosting application backends. Performing geo-elastic provisioning for back-

end database servers entails several challenges that are specific to database workload, and

therefore requires tailored solutions. In addition, cloud platforms offer resources at various

prices for different locations. Towards this end, I propose a cost-aware geo-elasticity that

combines a regression-based workload model and a queueing network capacity model for

database clouds.

In summary, hosting a diverse set of applications in an increasingly distributed cloud

makes it interesting and necessary to develop new, efficient and dynamic resource manage-

ment approaches.

viii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Automated Latency-aware Server Placement . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Dynamic Application Provisioning in Distributed Clouds . . . . . . . . . . . 5
1.2.3 Geo-elastic Dynamic Provisioning for Database Servers . . . . . . . . . . . . 6

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Virtualized Cloud platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Internet-Scale Geo-replicated Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Dynamic Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. LATENCY-AWARE VIRTUAL MACHINE PLACEMENT . . . . . . . . . . . . . . . . . 14

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 VMShadow Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Black-box VM Latency Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Black-box Fingerprinting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



3.5 VMShadow Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 VMShadow ILP Placement Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 VMShadow Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Transparent VM and Connection Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Live Migration Over WAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 Connection Migration Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2.1 Handling NAT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 VMShadow Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8.1 Accuracy of Black-box VM Fingerprinting . . . . . . . . . . . . . . . . . . . . . . 47
3.8.2 Comparing Greedy Shadow Algorithm to ILP . . . . . . . . . . . . . . . . . . . . 49
3.8.3 Live Migration and Virtual Desktop Performance . . . . . . . . . . . . . . . . . 52
3.8.4 Connection Migration Proxy Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8.5 VMShadow Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10 VMShadow Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. PROVIDING GEO-ELASTICITY FOR MULTI-TIER
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Background and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 GeoScale System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Providing Geo-Elasticity Using GeoScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Workload Monitoring, Profiling and Forecasting . . . . . . . . . . . . . . . . . . 67
4.3.2 Proactive Geo-Elastic Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Reactive Geo-Elastic Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Agile Provisioning Using Precopying . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 GeoScale Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Exploiting Workload Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Capacity Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.3 Comparison with a CDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.4 Geo-elastic Proactive Provisioning Benefits . . . . . . . . . . . . . . . . . . . . . . 83

x



4.5.5 Geo-elastic Reactive Provisioning Performance . . . . . . . . . . . . . . . . . . . 88
4.5.6 Pre-copying Optimization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 GeoScale Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5. PROVIDING GEO-ELASTICITY FOR DATABASE CLOUDS . . . . . . . . . . . . . 94

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Background and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Distributed Database Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.3 Geo-elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.5 Overview of our approach—DBScale . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Geo-dynamic Database workload: where and how much? . . . . . . . . . . . . . . . . 103

5.3.1 Regression-based Workload Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Provisioning Based on SLA-bounded Database Capacity . . . . . . . . . . . . . . . . 107

5.4.1 Queueing-based Capacity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.2 Obtaining Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Network SLA constrained Workload Assignment . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.1 Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Putting It Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.7 DBScale Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7.1 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.7.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8.2 Geo-elastic Models and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8.2.1 Regression Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8.2.2 Queueing Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8.2.3 Geo-distributed Workload Mapping Decisions. . . . . . . . . . 124

5.8.3 Benefits of Database Geo-elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xi



5.8.3.1 Performance Improvement with Geo-elasticity . . . . . . . . . . 128
5.8.3.2 Policy-based Performance Improvement . . . . . . . . . . . . . . . 129

5.8.4 Comparing DBScale to a Caching Approach . . . . . . . . . . . . . . . . . . . . 131

5.8.4.1 In-Memory Cache v.s. DBScale . . . . . . . . . . . . . . . . . . . . . . 132
5.8.4.2 Impact of Cache Hit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8.5 Consistency Maintenance Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8.5.1 Batched Updates Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.8.5.2 Online Master-slave Maintenance. . . . . . . . . . . . . . . . . . . . . 134

5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.10 DBScale Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

APPENDICES

A. SLA-CONSTRAINED SERVER CAPACITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B. GEO-ELASTIC PROVISIONING WITH QUADRATIC

PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xii



LIST OF TABLES

Table Page

3.1 Statistics of VNC frame response time for latency-insensitive
applications. For both online text editing and web browsing, users see
acceptable latencies [125]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Characterization of Desktop VMs’ network activities. Virtual desktops
running different applications exhibit different network characteristics,
i.e., remote protocol traffic and Internet traffic. . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Comparison of transcontinental WAN migration of desktop VMs.
Desktop VMs are migrated from Amazon EC2’s Oregon data center to
Virginia data center using VMShadow that is optimized with
delta-based and CBR techniques. We observe a slightly more memory
and disk data transfer for desktop VM that runs more applications.
The migration pause time is due to the last iteration of memory
transferring and TCP connection migration. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Per-packet proxy overhead. We analyze the data copying and header
rewriting of all packets that need to go through migration proxy. . . . . . . . . 54

4.1 Amazon’s Distributed EC2 Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Different percentiles of the client-perceived latency for the CDN and
GeoScale approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



LIST OF FIGURES

Figure Page

3.1 Illustration of a distributed desktop cloud. Users can access their
desktop VMs hosted in the regional cloud sites or global cloud sites
through remote desktop protocol such as virtual network
computing(VNC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 A hypothetical distributed cloud. Circles denote global cloud location
while squares denote regional sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 VMShadow Architecture. The central cloud manager performs
latency-sensitivity fingerprinting for each desktop VM and employs a
greedy algorithm that migrates highly latency-sensitive VMs to closer
cloud sites at least cost. For each hypervisor, we implement a live
migration technique that achieves WAN-specific optimizations. For
each desktop VM, we use proxy to transparently migrate TCP
connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 CDF comparisons of VNC frame response times for latency-sensitive
applications. Users have a better experience with watching videos
when the VNC server is closer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 VMShadow migration phase using Xen-Blanket. Upon WAN live
migration, a Xen-Blanket (nested hypervisor) VM is spawned first to
receive disk and memory state from source WAN live migrator. It is
then followed by a live memory and disk transfer before briefly
pausing the VM. The VM is successfully migrated to the new
Xen-Blanket and ready to use after executing connection migration
protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Illustration of proxy IP bridging. Inside each VM, the proxy bridges an
internal logical NIC with the external one, masking the potential IP
address changes from the higher-level applications. . . . . . . . . . . . . . . . . . . . 39

xiv



3.7 Dynamic rule-based packet headers’ rewriting sequences. We use
four-tuple, i.e. the source IP, source port, destination IP and
destination port, to represent a packet. Packets are matched based on
the iptable rules of the proxy (Default rule is in rule while new rules
are in red). This ensures that high-level applications only see fixed
internal IP without breaking the TCP connections. . . . . . . . . . . . . . . . . . . . 41

3.8 Illustration of cloud sites setup in our experiments. Three cloud sides
used for our experiments: a private cloud side in Massachusetts, and
EC2 sites in Virginia and Oregon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Comparison of latency sensitive scores for different desktop VMs.
Online streaming applications have higher scores compared to the
other types of applications for both mobile clients. For both clients, all
but one latency score match our hypothesis. But this “out-of-order”
ranking can be remedied using threshold scores as discussed in
Section 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Execution time comparisons between ILP and greedy algorithms. In
general, greedy algorithm takes significant less time compared to ILP
algorithm. For both algorithms, as the number of VMs to be assigned
or the number of candidate cloud locations to be picked increase, the
running time increases accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Comparison of latency reduction percentage between ILP and greedy
algorithms. When the number of VMs to be assigned increase, the
reduction is bounded by the collections of data center locations. As the
number of data center locations increases, ILP is able to utilize the
data center locations to find optimal solutions for each VMs. . . . . . . . . . . . 50

3.12 Comparison of WAN live migration’s impact on desktop VMs running
various applications. After migration, latency-sensitive desktop VM
that runs online streaming achieves higher VNC frame update
frequency due to lower RTT, directly improving user experience. On
the other hand, latency-insensitive desktop VM that runs text editing
application does not see a obvious improvement after migration. . . . . . . . . 52

3.13 Proxy processing overhead of TPC packet. Proxy overhead comprises
of copying network data between kernel and user-space and
manipulating packets, i.e. iptable rule matching and header rewriting.
The left bar group demonstrates the dominating copying overhead that
is relatively constant to the number of active TCP connections. . . . . . . . . . 54

xv



3.14 Illustration of a series of migrations to improve the performance of
Desktop VMs. We consider a simplified scenario with two cloud
locations, one is closer and the other is further to our thin clients in
Massachusetts. VMShadow automatically identifies and prioritizes
latency-sensitive desktop VMs, i.e. VDs that run local video and
online streaming applications, and migrates them to the US-East cloud
location. To accommodate latency-sensitive VMs in a
resource-constrained cloud location, VMShadow reclaims the resource
by migrating non latency-sensitive VDs to further cloud. . . . . . . . . . . . . . . . 56

3.15 Performance case study of migrating different latency-sensitive VMs.
Decisions are made to migrate VM1 and VM2 to US-East, to be closer
to user. When US-East is resource-constrained, low-ranked VM3’s
resources are reclaimed by migrating it back to US-West to free up
resources for latency-sensitive VM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Geo-dynamics seen by the Gowalla social media application’s check-ins
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 GeoScale architecture. GeoScale is comprised of three key components,
1) workload monitoring, profiling, and forecasting engine, 2)
model-driven proactive and reactive geo-elastic provisioning
algorithms, and 3) geo-elastic cloud provisioning and copying
engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Clients from different regions observe minimal mean round-trip time at
different cloud locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Gowalla workload’s temporal time of day effects. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Comparisons of GeoScale’s capacity Modeling with empirical
measurement. We observe cloud location-based and
interference-based capacity variations even for the same type of server
instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 A comparison of GeoScale’s geo-elasticity to a CDN-based approach.
GeoScale outperforms the CDN-based approach for both default and
graphic-rich browsing workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Illustration of proactive provisioning set up and result. . . . . . . . . . . . . . . . . . . . . 83

4.8 ECDF Comparison of client-perceived response time to single-site and
multi-site elasticity. By employing geo-elastic proactive provisioning,
GeoScale yields the best response times, with 95% of the requests
finishing in less than 1060ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xvi



4.9 GeoScale improves the latency seen by more than half the clients over
Single-site Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 GeoScale’s greedy workload clustering has comparable performance to
the more expensive ILP approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11 ECDF comparison of network latency. GeoScale can adapt its behaviors
under different workload scenarios. As client workload becomes
increasingly geo-distributed, the gap of network latency between ASE
and GeoScale shrinks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.12 Illustration of reactive provisioning set up and result. . . . . . . . . . . . . . . . . . . . . . 88

4.13 Comparison of local and global reactive provisioning. Global reactive
provisioning leads to lower CPU utilization and better client response
time compared to local reactive one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.14 Benefits of pre-copy optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Illustration of using DBScale to manage a multi-tier application. In
this example, the multi-tier application serves different amount of
client workloads from different regions. The multi-tier application has
its front-end web servers deployed in distributed IaaS clouds and its
back-end database servers deployed in distributed DBaaS clouds. . . . . . . . 95

5.2 Key components of DBScale. For simplicity, we only demonstrate the
design and architecture of DBScale’s central controller and omit
light-weight daemons that report back workload and performance data
from within DBaaS clouds. Here, arrows with solid head represent
control decisions made by DBScale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Typical workflow of DBScale. We generalize DBScale’s actions into four
categories: training, predicting, aggregating and provisioning. In this
chapter, we take model-driven approaches using both regression and
queueing models to estimate database workload and database server
capacity. For choosing the best cloud locations, we use insights gained
from linear programming formulation and a threshold-based greedy
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Model-driven geo-elastic approaches. We model the relationship
between front-end requests and database queries using
regression-based models, and leverage these models to predict
temporal and spatial database workload. For estimating a single
database server’s capacity at a specific, we model the server as a
two-node open queueing network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xvii



5.5 We use Amazon’s distributed clouds as a case study, and analyze price
differences exhibiting in different cloud locations for storage, data
transferring and servers. For example, one can save up to 24% in
renting 4xlarge server by choosing a cheaper data center. . . . . . . . . . . . . . 117

5.6 Comparison of regression-based model predicted rates with empirical
measurements. Predicted and actual query rates over time for the
browsing and ordering workload mixes. The shaded areas represent
the 95th percentile confidence interval. For both workload types, the
prediction accuracy is higher for a larger prediction window. . . . . . . . . . . 122

5.7 Efficacy of the queueing model. For each database server size, we
compare the empirically measured response times with queueing
model predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 Client workload impact on workload mapping algorithms. As the
number of client locations increases, cost-first greedy algorithm can
achieve as low as 52.6 ms for 95th percentile network latency while
save up to 10.6% in operation cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Network SLA impact on workload mapping algorithms. Because
cost-first algorithm adjusts workload mapping decision by using
Network SLA as a constraint, we observe the 95th percentile network
latency increases accordingly. The cost differences between two
algorithms are stable around 7.8% after network SLA is set to be
larger than 125 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.10 Illustration of elasticity mechanisms and provisioning policies. We
conduct an end-to-end experiment with different phases to
demonstrate a policy-driven geo-elasticity is the most effective
provisioning approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.11 Performance benefits for Geo-elasticity provisioning. Geo-elasticity
provides lower mean response times due to lower client-server
network latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.12 Performance benefits of tightly coupled provisioning and pre-copying.
A tightly coupled policy improves the 95th percentile of response time
from 810 ms to 250 ms when compared to the loosely coupled policy.
Pre-copying further improves 95th percentile of response time to 210
ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xviii



5.13 Experimental setup for comparing DBScale to a caching approach.
The front-end tier is replicated and configured with an 1 GB
in-memory cache in the caching approach. We use the same web and
database server types for all the experiments. . . . . . . . . . . . . . . . . . . . . . . . 130

5.14 CDF comparison of end-user response time of four different
scenarios. A caching approach with 100% hit rate has comparable
performance to DBScale while a 0% hit rate causes performance to be
similar to local single-site elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.15 CDF comparison of end-user response time with increasing hit rate.
As the hit rate increases from 10% to 50%, the 95th percentile
response time improves by 72.18%, from 4780 ms to 1330 ms. . . . . . . . . 131

5.16 Experimental setup for updating databases in different locations.
Updates are first copied to all the cloud locations or the master
database’s location. Then we either take the databases offline for
batched update or configure a master-slave topology for online
synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.17 Batched updates Overheads. The maintenance downtime (ranging from
a few minutes to hours) due to batched updates is impacted by the
amount of the data that need to be updated, and the server capacity, i.e.
server size and the cloud location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.18 Impacts of online master-slave on update time and response time
distribution. As the workload of end-users increase, we observe a
corresponding increase in the update latency. Also, response time CDF
of both master and slaves behaves similarly to the no-writes baseline
scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xix



CHAPTER 1

INTRODUCTION

Cloud platforms, from the outset, provide numerous benefits to hosted applications such

as pay-as-you-go cost models and flexible, on-demand resource allocation. The virtue of

on-demand server resource provisioning is magnified with the uptake and usage of virtu-

alization techniques. Therefore, virtualized clouds have revolutionized traditional provi-

sioning approaches by providing the ability to adjust server allocation in minutes instead

of weeks or months.

Such benefits have nurtured cloud adoption, enabling applications with dynamic re-

source requirement to offload their computation as well as management tasks to cloud

providers. As a result, cloud computing has become a popular paradigm for hosting a

plethora of applications, ranging from e-commerce, news, social media and data analytics.

Many of these applications are serving global users and as a result observe both temporal

and spatial workload dynamics. Temporal variations are due to reasons such as time-of-day

effect and spatial dynamics are caused by uncorrelated workload variations among different

geographic regions.

To better handle applications with a geographically distributed workload, cloud plat-

forms have become more distributed over the past few years. Distributed clouds offer a

flexible choice of data center locations across the globe. However, running applications

on distributed clouds can be a complex task. For example, application developers have to

decide which cloud locations to place application replicas and how many servers to provi-

sion in order to fulfill performance goal. Therefore, in my thesis, I investigate automatic

approaches to efficiently and dynamically manage server resources for various applications
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in distributed clouds. There are three key challenges associated with this research question

and these challenges lie at the heart of my thesis research.

First, current cloud computing imposes restrictions on how resource management can

be done. Although distributed cloud platforms provide multiple locations at application

developers’ disposal, most resource management abstractions exposed were designed to

work within a single data center. In other words, there are no ready-to-use mechanisms

that can assist cloud applications to take advantage of distributed clouds. Moreover, be-

cause cloud providers operate in isolation with different programming abstractions, it is

challenging for cloud customers to pool cloud resources from multiple providers even if

they offer complementary services.

Second, there is no silver bullet for managing resources for all cloud applications due to

their distinct workload demand and service requirement. For example, applications might

need to serve a mix of CPU-intensive, I/O-intensive, or network-intensive workloads and

those mixes can vary over time. Further depending on current workload characteristics, we

might need to adjust the magnitude or location of allocated resources accordingly. When

making those adjustments, cloud platforms need to take into account both application per-

formance requirements and cloud resource availability. In addition, cloud resource provi-

sioning also has to circumvent the black-box restrictions—that is cloud providers do not

have visibility to what applications are running inside rented VMs.

Third, it is necessary to dynamically manage resources for cloud-based applications.

This is because applications experience workload variations that can be caused by numer-

ous reasons such as time-of-day effects, regional events, user mobility or a steady workload

shift from one location to another. As a result, these workload variations exhibit not only

temporal but also spatial dynamics that can be either transient or long-lasting. Moreover,

cloud applications usually do not provision server resources based on their peak workload

to take advantage of cloud cost benefits.
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1.1 Thesis Statement

The central theme of my thesis is to study novel resource management techniques that

tackle the above challenges. Although most aforementioned challenges are inherently clas-

sical resource management problems, they are exacerbated by the need to operate within

massively distributed clouds and the requirement to manage Internet-scale applications that

are replicated in multiple cloud locations.

Specifically, I first look at how to automatically place latency-sensitive virtualized ap-

plications in heterogeneous distributed clouds. In addition, I also study how to seamlessly

adjust server placement when application latency requirement changes using VM migra-

tion. I use virtual desktops—virtualized desktop PCs that host desktop applications and

data—as example applications because they exhibit dynamic latency requirements.

Next, I study how to provision resources in distributed clouds to handle applications

that observe both temporal and spatial workload variations for a given Service Level Agree-

ments (SLAs), such as a 95th percentile response time. I argue the need of providing geo-

elasticity for replicable applications and examine the performance benefits. Geo-elasticity,

the ability to provision server resources in any cloud locations dynamically, is achieved by

combining queueing-based capacity models and provisioning algorithms that are designed

for distributed clouds.

Last but not least, I investigate challenges of performing dynamic provision for database

clouds that have emerged as a popular paradigm for hosting applications’ backend tier. I

focus on differentiating characteristics of database servers such as obliviousness to client

workload distribution and a large amount of data state. Again, I am concerned about mak-

ing provisioning decisions based on response time SLAs.

Thesis Statement: Tailored resource management techniques for distributed clouds can

significantly improve cloud applications’ performance while fully exploit the cost benefits.
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1.2 Thesis Contributions

In this thesis, I propose novel techniques that combine analytical models and virtualization-

based system mechanisms to tackle resource management problems that are compounded

by distributed modern clouds and dynamic requirement of cloud applications. I build mid-

dleware systems that are tailored to needs of three different types of applications. These

management systems can be integrated with public clouds and improve end-to-end re-

sponse time when comparing to traditional elasticity approaches.

The central thesis of my dissertation is about achieving better performance and cost

trade-off through novel resource management techniques in distributed clouds for mod-

ern cloud-based applications. To this end I design and implement three key systems that

embody new algorithms and mechanisms for managing resources for different application

classes:

• VMShadow which focuses on transparently and dynamically managing the loca-

tion and performance of latency-sensitive VMs by using cost-aware placement al-

gorithms, nested hypervisors, and WAN live VM migration technique [67, 68].

• GeoScale which dynamically provisions server resources for replicable applications

in distributed clouds to satisfy SLA, using queueing-based capacity models and re-

source provisioning algorithms for distributed clouds [73].

• DBScale which allocates database servers in distributed database clouds to satisfy

network and response time SLA, leveraging regression-based workload prediction,

SLA-aware workload assignment, and queueing-based capacity models [71].

1.2.1 Automated Latency-aware Server Placement

Distributed clouds are well-suited to host latency-sensitive applications because they

can host applications at locations close to users. Today, the choice of where to host one’s

application is made manually—a tedious and error-prone task. Manual placement does
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not work well because latency requirements vary for different applications and are also

impacted by their clients’ mobility.

Therefore I develop a system called VMShadow that automatically determines the best

location for applications and transparently and seamlessly adjust these mappings over time

based on changing application needs. Because cloud providers do not have visibility into

applications running inside VM, VMShadow resorts to a black-box VM fingerprinting al-

gorithm to determine VMs’ latency-sensitivity and then uses a cost-benefit aware algorithm

that chooses benefit-proportional VMs to a closer location at the lowest cost. Further,

VMShadow implements VM migrations that are optimized for WAN and can transparently

migrate VMs across different cloud providers, leveraging nested virtualization technique.

I evaluate VMShadow’s efficacy using virtual desktops— desktop PC that runs inside

VM and allows users to access their desktop applications and data files via a remote desk-

top protocol (and via thin clients—as an example application. Virtual desktops are ideal

candidates for latency optimization due to their dynamic latency requirements. For exam-

ple, users might switch between latency-sensitive applications (e.g. multi-player games)

and latency-insensitive applications, e.g., mail or text editor. Or users might access virtual

desktops with thin clients from a different location when traveling.

1.2.2 Dynamic Application Provisioning in Distributed Clouds

Today’s cloud applications that serve a geographically diverse client base are observing

both temporal and spatial workload variations. Temporal variations occur when workload

volume fluctuates from time to time, due to effects such as time-of-day or flash crowd

spikes. Spatial variations appear when workload volume differs across geographic regions,

caused by reasons such as regional event spikes.

To handle applications’ dynamic workload in order to meet a certain level of perfor-

mance guarantee, cloud providers usually resort to two common approaches. The first

approach involves using traditional elasticity techniques to vary server numbers at man-
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ually chosen distributed cloud sites. Application servers are allocated merely based on

local workload volume, without regarding to replicas at other cloud locations. The second

technique involves deploying the application at a single cloud location and using a global

content distribution network (CDN) to serve user requests from different regions. How-

ever, this first technique has drawbacks when handling spatial variations. For instance,

system administrators have to select a new cloud site manually if application sees a surge

of requests from a new geographic location. The CDN-based method is not well suited

for provisioning applications that serve dynamically-generated (non-cacheable) content or

involve a significant amount of request processing.

To address the drawbacks of both techniques, I propose a new provisioning technique

called geo-elasticity to dynamically provision server resources at any geographic location

whenever needed. I implement geo-elasticity in a system called GeoScale that can ef-

fectively provision server resources in distributed clouds dynamically to handle workload

variations caused by geographically distributed clients. GeoScale monitors client-facing

applications’ global workload distribution and distributes application workload into the

closest cloud location. Then, GeoScale employs an empirical-driven queueing model to

proactively provision required application server capacity at each cloud site. GeoScale also

can react to sudden workload changes or predicted errors by quickly provisioning server

resources within a data center.

1.2.3 Geo-elastic Dynamic Provisioning for Database Servers

The task of maintaining and managing backend databases is time-consuming and even

challenging as cloud applications become larger scale and more geo distributed. There-

fore, more applications are starting to host their backend tiers using Database-as-a-Service

(DBaaS) clouds. DBaaS clouds provide basic autoscaling and elasticity properties to han-

dle some level of workload variations. However, such system lacks support for handling
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applications with geographic user workload, and the temporal and spatial variations asso-

ciated with it.

Providing geo-elasticity for DBaaS clouds exhibits several key challenges compared to

our previous application-agnostic approach. For example, database servers do not directly

observe client workload distributions that are obscured by front-end tiers. In addition,

because front-end tier is dependent on database servers, we need to coordinate provisioning

decisions between both tiers for better end-to-end response time.

To tackle these new challenges, I present DBScale, a system that specifically designed

to dynamically provision database servers to fulfill both network and server response SLA.

DBScale predicts database spatial workload variations using regression and provisions for

both CPU and I/O resources using an open feedback queuing network. DBScale supports

multiple consistency policies and mechanisms, such as batch update and master-slave con-

figuration, to suit different application needs. DBScale also consider performance and cost

trade-offs when provisioning in distributed clouds with different pricing models.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides background

and related work on virtualized cloud platforms, cloud-based applications, and dynamic

resource provisioning techniques. Chapter 3 presents the problem of virtual machine place-

ment in distributed clouds, and introduces VMShadow for automatically optimizing the lo-

cation and performance of latency-sensitive VMs in distributed clouds. Chapter 4 describes

the importance of handling both temporal and spatial workload dynamics of applications

with geo-distributed client workload, and proposes GeoScale that implements geo-aware

provisioning approaches. This is followed in Chapter 5 with a discussion of challenges

and importance of implementing geo-aware provisioning in Database clouds, and intro-

duces DBScale that employs a regression-based model and a queueing-network model to
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perform database resource provisioning in the distributed clouds. Finally, Chapter 6 sum-

marizes thesis contributions and concludes with some future directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, I introduce the necessary background on cloud platform development,

cloud-based applications and existing approaches for dynamic resource provisioning. The

interplay of increasingly complex cloud offerings and more resource demanding large-scale

applications require rethinking how to efficiently manage resources, either to meet certain

performance expectations or to reduce operation costs.

2.1 Virtualized Cloud platforms

Modern data centers can contain networked servers in the scale of tens of thousands.

Managing such large scale data centers is no trivial tasks and much research has focused on

designing data centers to be more reliable, secure, and energy efficient [74, 131, 135, 162].

As a result, today’s data centers have become a popular venue for hosting enterprise ITs

and internet applications.

Cloud computing, a popular paradigm for hosting various applications, offers comput-

ing as a utility and allows customers to rent data center resources [16, 31, 163]. Public

commercial clouds benefit from the economy of scale and can offer resources to their cus-

tomers at a reasonably cheap price. Depending on the level of abstractions exposed, cloud

platforms can be categorized into Infrastructure-as-a-service (IaaS) [11], Platform-as-a-

service (PaaS) [63], and Software-as-a-Service (SaaS) [13, 64, 144]. In addition, cloud

platforms also provide a pay-as-you-go pricing model that allow customers to pay only for

their usages. In another word, customers do not need to worry about up-front capital in-

vestment and can request cloud resources whenever they need. To support a large number
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of customers and create an illusion of unlimited resources, cloud providers have resorted to

virtualization techniques [19,91] to achieve statistical multiplexing [113]. Virtualization, in

essence, is a layer of abstraction that hides the underlying hardware and software resources

and can provide a certain level of resource isolation.

Over the past decade, cloud platforms have matured greatly in terms of service of-

ferings and have become increasingly distributed. Distributed clouds offer customers a

flexible choice of locations to host their applications and have the promise of delivering

low network latency. The increasing number of service offerings and the geographic ex-

pansions make cloud platforms very attractive [84, 105, 154], but at the same time more

complicated to use [9, 43, 100, 124, 149, 150, 158]. For example, different cloud platforms

might require slightly different machine image formats or expose different APIs. This lim-

its customers’ choice of which cloud providers to choose from or might require non-trivial

works to use resources from different cloud providers [44, 69]. In addition, mostly out of

security concerns and the multi-tenancy models, cloud providers do not provide their cus-

tomers privileged accesses, which include hypervisor accesses. This limits and restricts the

types of resource management a customer can perform. For example, this means customers

can not perform VM migration [28,39], which is a commonly used technique to consolidate

live systems transparently from end users.

This thesis proposes new resource management techniques that are driven by application-

specific models to guide the usages of virtualization techniques and cloud exposed APIs [67,

68]. Our proposed techniques allow customers to pool together resources from distributed

clouds and seamlessly perform dynamic resource management tasks to fulfill performance

requirements.
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2.2 Internet-Scale Geo-replicated Applications

Today’s cloud platforms are home to a plethora of different types of applications, all

having unique characteristics. Depending on their latency requirements, cloud-based ap-

plications can be categorized into either interactive or batch.

Interactive applications usually refer to the type of applications that interact with a

human who has a certain response time requirement. For example, thin client computa-

tion [18, 146] where client relies on remote server resources for web browsing through

protocols such as Remote Desktop Protocol (RDP), and e-commerce [12, 54] websites

are examples of traditional interactive applications. Over the past decades, we observe

a more diverse type of interactive applications that come with the ubiquitous of mobile

devices [147, 169] and smart embedded devices, such as smart Internet of Things (IoT)

sensors [93, 106]. The widespread adoption of computing devices has created workloads

that are more geographically distributed and dynamic for interactive applications.

Batch applications are often referred to best-effort workload and have relaxed latency

requirement. Aside from traditional batch applications, e.g. analyzing cluster performance

or understanding online users behaviors [96,159], we are seeing a slightly different flavor of

batch applications that are associated with large-scale sensor deployments. These sensors,

either from mobile devices or IoT devices, collect a large amount of data from physical

surroundings when environment changes in some way [82, 138]. Therefore, modern batch

applications are also experiencing a shift of workload characteristics—from a static and

centralized workload to a dynamic and distributed one.

In all, today’s cloud platforms have enabled applications with unprecedented scale and

distributed user bases [56]. These emerging Internet-scale applications are increasingly

serving geographic users [38, 121] and therefore experience both temporal and spatial

workload dynamics [73]. In this thesis, I study how to manage resources for three types

of virtualized cloud applications with new workload dynamics to meet a certain level of

performance [71, 73].
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2.3 Dynamic Resource Provisioning

Dynamic resource provisioning—the ability to adjust resource allocation based on work-

load variation— is essential for today’s cloud-based applications and a key benefit provided

by modern clouds. Dynamic provisioning [25,151], also known as elasticity, helps applica-

tions with varying workload meet their Service Level Agreements (SLAs) without the need

for over-provisioning. For example, an SLA could be specified in terms of a high percentile

(95th) response time [162].

To enforce an SLA, one first needs to detect any violation [53, 116] and then devise

new provisioning plans [151, 172]. Prior efforts have studied different approaches to ef-

ficiently identify SLA violations empirically [10, 107] or proposed predictive models to

estimate any violations [57, 142]. In addition, an extensive body of work has looked

at developing performance models for different applications [61, 75, 119], especially for

web applications [22, 85]. Those performance models are intended to capture the rela-

tionship between server resources and corresponding response time, given certain client

workload mix. Researchers have proposed various approaches, such as queueing-based

models [32, 119, 162], classical feedback control theory [50, 101], or data-driven machine

learning models [86, 110] as means to build such models that are in turn used as a basis of

provisioning.

Virtualization techniques such as OS virtualization [103] and para virtualization [19,

91], have made provisioning much easier by providing resource isolation mechanisms [74,

81] and support for migration [20, 28, 29, 39, 49]. However, most prior work on dynamic

resource provisioning [32,119,162] has only looked at virtualized resources within a single

data center. This is in part because cloud platforms used to offer fewer locations and the

absence of techniques such as efficient VM migration across WAN [21, 165, 167].

Given the increasingly distributed nature of clouds and emerging complexity of applica-

tion demands, in this thesis, I look at new ways to perform dynamic resource provisioning.

Specifically, I use model-driven approaches to building middleware systems that can be
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integrated to current cloud platforms. These systems implement end-to-end provisioning

tasks in distributed clouds and also consider the trade-off between performance and cost.

13



CHAPTER 3

LATENCY-AWARE VIRTUAL MACHINE PLACEMENT

Distributed clouds that offer choice of data center locations enable efficient hosting

of latency-sensitive applications. However, decisions of which location to house applica-

tion and when to adjust placement are left entirely to application developers. In addition,

those applications exhibit dynamic workload characteristics that make manual decisions

less ideal and more error-prone. In this chapter, we present a system called VMShadow

that automatically optimizes the location and performance of latency-sensitive VMs in dis-

tributed clouds. VMShadow combines algorithms and virtualization techniques for un-

derstanding VM’s latency requirements and enabling efficient WAN migration on public

clouds. We evaluate the efficacy of VMShadow using virtual desktops—a virtualized ap-

plication that exhibits dynamic latency requirement.

3.1 Motivation

Hosting online applications on cloud platforms has become a popular paradigm. Ap-

plications ranging from multi-tier web applications, gaming and individual desktops are

being hosted out of virtualized resources running in commercial cloud platforms or in a

private cloud run by enterprises. The wide range of supported applications have diverse

needs in terms of computation, network bandwidth and latency. To accommodate this and

to provide geographic diversity, cloud platforms have become more distributed in recent

years. Many cloud providers now offer a choice of several locations for hosting a cloud ap-

plication. For instance, Amazon’s EC2 cloud provides a choice of eleven global locations

across four continents. Similarly, enterprise-owned private clouds are distributed across a
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Figure 3.1: Illustration of a distributed desktop cloud. Users can access their desk-
top VMs hosted in the regional cloud sites or global cloud sites through remote desktop
protocol such as virtual network computing(VNC).

few large data centers as well as many smaller branch office sites. Such distributed clouds

enable application providers to choose the geographic region(s) best suited to the needs of

the particular application.

A concurrent trend is the growing popularity of virtual desktops (VDs) where the desk-

top PC of a user is encapsulated into a virtual machine (VM) and this VM is hosted on

a remote server or the cloud; users then access their desktop applications and their data

files via a remote desktop protocol such as VNC (and via thin clients). This trend—known

as virtual desktop infrastructure (VDI)—is being adopted by the industry due to numerous

benefits. First of all, virtualizing desktops and hosting them on remote servers simplifies the

IT manager’s tasks, such as applying security patches, performing data backups. Secondly,

it also enables better resource management and reduces costs, since multiple desktop VMs

can be hosted on a high-end server, which may still be more cost-effective than running

each desktop on a separate PC. At the same time, in addition to their use for business pur-

poses in enterprise settings, desktop VMs hosted in the cloud are beginning to be offered

for consumer use. Notably, commercial services such as Onlive Desktop even offer a “free

Windows PC in the cloud” that can be accessed from tablets.

The confluence of these trends—the emergence of both distributed clouds and popular-

ity of virtual desktops—creates both opportunities and challenges. Today a virtual desktop

provider needs to manually choose the best data center location for each end-user’s vir-

tual desktop. In the simplest case, each VD can be hosted at a cloud data center location
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that is nearest to its user (owner). However such manual placement becomes increasingly

challenging for several reasons. To start with, while this may be straightforward in cloud

platforms that offer a choice of a few locations (e.g., with Amazon, one would host all

VDs for US east coast users at the east coast data center), it becomes progressively more

challenging as the number of locations continues to grow in highly distributed clouds that

already offer a large number of locations. Additionally, different data center locations may

have varying hosting capacities. Regional locations may have comparatively smaller capac-

ities than the “global” locations; this implies that naı̈vely placing all VDs from a location at

their nearest regional site may not be practical due to resource constraints. More interest-

ingly, not all VDs are sensitive to network latency. Therefore, users may not see significant

performance improvement when their VDs are placed at the closet location. Specifically

VDs that run latency-sensitive applications such as multi-player games or video playbacks

will see disproportionately greater benefit from nearby placement compared to those that

run simple desktop applications such as e-mail or a text editor. Further, VDs will see dy-

namic workloads—users may choose to run different applications at different times and this

workload mix may change over time. In addition, users may themselves move locations,

particularly those that access their VDs via mobile devices, or go from work to home. This

set of challenges implies that a static and manual placement of VDs at the nearest cloud lo-

cation may not always be enough or even feasible. We argue that the cloud platform should

incorporate intelligence to automatically determine the best location for hosting each ap-

plication, and transparently and seamlessly adjust such mappings over time with changing

application needs.

Towards this end, we present VMShadow, a system that transparently and dynamically

manages the location and performance of virtual desktops in distributed clouds. Our system

automates the process of placing, monitoring and migrating cloud-based virtual desktops

across the available cloud sites based on the location of users and latency-sensitivity of

the applications. VMShadow performs black-box virtual desktop fingerprinting to assign
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different latency-sensitive scores based on the packet-level statistics collected from hyper-

visor. It then employs either an ILP algorithm or a cost-aware greedy algorithm, depending

on the problem scale, to pick new locations for latency-sensitive VMs that balance the cost-

benefit tradeoffs. Both algorithms are able to make placement decisions while considering

the existing virtual desktop locations. VMShadow executes the new VM placement plan

using live migration across the WAN, optimized by techniques such as delta encoding and

content-based redundancy elimination [167]. More specifically, to migrate a VM to a new

location across the WAN, VMShadow first live migrates the disk and memory state of a

VM using the optimized WAN live migration. In the scenario where the public IP address

of the virtual desktop changes, VMShadow seeks to maintain existing TCP connections

between the clients and server VMs by using connection proxies. The connection proxies

communicate the changes of IP address and port number and rewrite the network packet

headers to ensure that the migration is transparent to applications. As a result, VMShadow

allows a client to stay connected irrespective of whether the server or even the client moves,

whether or not the client or server is behind a NAT, and whether network entities such as

routers and NAT devices are cooperating.

Although VMShadow is designed to be a general platform, in this chapter we employ

it primarily to optimize the performance of desktop clouds, as illustrated in Figure 3.1.

Desktop clouds offer an interesting use-case for VMShadow since desktops run a diverse

set of applications, not all of which are latency-sensitive. We implement a prototype of

VMShadow in a nested hypervisor, i.e., Xen-Blanket [165], and experimentally evaluate

its efficacy on a mix of latency-sensitive multimedia and latency-insensitive VDs running

on a Xen-based private cloud and Amazon’s EC2 public cloud. Our results show that

VMShadow’s black-box fingerprinting algorithm is able to discriminate between latency-

sensitive and insensitive virtual desktops and judiciously moves only those VDs that see the

most benefit from migration, such as the ones with video activity. For example, VDs with

video playback activity see up to 90% improvement in refresh rates due to VMShadow’s
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Figure 3.2: A hypothetical distributed cloud. Circles denote global cloud location while
squares denote regional sites.

automatic location optimizations. We demonstrate the live migration of VDs across Ama-

zon EC2 data centers with trans-coastal VM migrations of Ubuntu desktops with 1.4GB

disk and 1GB RAM take 4 minutes. We show that our connection migration proxy—based

on dynamic rewriting of packet headers— imposes an overhead of 13µs per packet. Our

results show the benefits and feasibility of VMShadow for optimizing the performance of

multimedia VDs, and more generally, of a diverse mix of virtual machine workloads.

3.2 Background

An infrastructure-as-a-service (IaaS) cloud allows application providers to rent servers

and storage and to run any virtualized application on these resources. We assume that our

IaaS cloud is highly distributed and offers a choice of many different geographic locations

(“cloud sites”) for hosting each application. For example, in Amazon’s EC2, an application

provider may choose to host their application at any of their global locations such as Vir-

ginia and Singapore. We assume that future cloud platforms will be even more distributed

and offer a much larger choice of locations (e.g., one in each major city or country). A

distributed cloud is likely to comprise heterogeneous data centers —some locations or sites
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will be very large (“global”) data centers, while many other regional sites will comprise

smaller data centers as depicted in Figure 3.2. Such a heterogeneous distributed cloud

maps well to how public clouds are likely to evolve—comprising of a few large global

sites that offer economies of scale, while smaller regional sites offer greater choice in plac-

ing latency-sensitive applications. The model also maps well to distributed private clouds

run by enterprises for their own internal needs—typical enterprise IT infrastructure con-

sists of a few large backend data centers (to extract economies of scale by consolidating

IT applications) and several smaller data centers at branch office locations (which host

latency-sensitive applications locally).

We focus our attention on a single application class, namely cloud-based desktops (also

referred to as desktop clouds that host a large number of VDs in data centers) that run on

virtual machines (VMs) in the cloud data center. Each desktop VM represents a “desktop

computer” for a particular user. Users connect to their desktop from a thin client using

remote desktop protocols such as VNC or Windows RDP. We treat the VMs as black boxes

and assume that we do not have direct visibility into the applications running on the desk-

tops; however since all network traffic to and from the VM must traverse the hypervisor or

its driver domain, we assume that it is possible to analyze this network traffic and make in-

ferences about ongoing activities on each desktop VM. Note that this black-box assumption

is necessary for public clouds where the VDs belong to third party users.

To provide the best possible performance to each desktop VM, the cloud platform

should ideally host each VM at a site that is nearest to its user. Thus a naı̈ve placement

strategy is to determine the physical location of each user (e.g., New York, USA) and place

that user’s VM at the geographically nearest cloud site. However, since nearby regional

cloud cites may have a limited server capacity, it may not always be possible to accommo-

date all VDs at the regional site and some subset of these desktops may need to be moved

or placed at alternate regional sites or at a backend global site. Judiciously determining
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which VDs see the greatest benefit from nearby placement is important when making these

decisions.

Fortunately, not all desktop VMs are equal in terms of being latency-sensitive. As

we show in Section 3.4, the performance of certain desktop applications is significantly

impacted by the geographic distance between VD and its user. While for other applications,

the location is not a major factor for good performance. In particular, network games

require high interactivity or low latencies; video playback or graphics-rich applications

require high refresh rates or high bandwidth while using remote desktop protocol. Such

applications see the greatest benefits from nearby placement since this yields low round-

trip time between the user and her VM or ensures higher bandwidth or less congested links.

Thus identifying the subset of desktops that will benefit from closer placement to users is

important for good end-user experience. Further since users can run arbitrary applications

on their desktops, we assume that VM behavior can change over time (in terms of its

application mix) and so can the locations of users (for instance, if a user moves to a different

office location). The cloud platform should also be able to adjust to these dynamics.

3.3 VMShadow Design Goals

Our goal is to design VMShadow, a system that optimizes the performance of cloud-

based VDs via judicious placement across different sites in a distributed cloud. VMShadow

seeks to dynamically map latency-agnostic VMs to larger back-end sites for economies of

scale and latency-sensitive ones to local (or nearby regional) sites for a better user experi-

ence. To do so, our system must fingerprint individual VMs’ traffic in order to infer their

degree of latency-sensitivity while respect the black-box assumption. Our system must

then periodically determine which group of VMs need to be moved to new sites based

on recent changes in their behaviors and then transparently migrate the disk and memory

state of these desktops to new locations without any interruption. Typically VDs running

latency-sensitive applications, such as games or multimedia applications (video playback),
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Figure 3.3: VMShadow Architecture. The central cloud manager performs latency-
sensitivity fingerprinting for each desktop VM and employs a greedy algorithm that mi-
grates highly latency-sensitive VMs to closer cloud sites at least cost. For each hypervisor,
we implement a live migration technique that achieves WAN-specific optimizations. For
each desktop VM, we use proxy to transparently migrate TCP connection.

are the best candidates for such migration. Finally, our system should transparently address

networking issues such as IP address changes when a VM is moved to a different data cen-

ter location, even if the client or desktop is behind a network address translation (NAT)

device.

VMShadow architecture. Figure 3.3 depicts the high-level architecture of VMShadow.

Our system achieves the above goals by implementing four components: (i) a black-box

VM fingerprinting technique that infers the latency-sensitivity of VMs by analyzing packet-

level network traffic, (ii) an ILP and an efficient greedy algorithms that judiciously move

highly latency-sensitive VMs to their ideal locations by considering latency, migration cost

as well as latency reduction. (iii) an efficient WAN-based live migration of a VM’s disk and

memory state using WAN-specific optimizations, and (iv) a connection migration proxy

that ensures seamless connectivity of currently active TCP connections—despite IP address

changes—in WAN live migration. We describe the design of each of these components in

Sections 3.4 – 3.6 and the implementation of VMShadow in Section 3.7.
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LAN (Second) US-WEST (Second)
Avg Max Min Std Avg Max Min Std

Text Editor 0.191 0.447 0.094 0.0705 0.288 0.605 0.149 0.121
Web Browser 0.059 0.269 0.009 0.050 0.174 0.472 0.099 0.071

Table 3.1: Statistics of VNC frame response time for latency-insensitive applications.
For both online text editing and web browsing, users see acceptable latencies [125].

3.4 Black-box VM Latency Fingerprinting

VMShadow uses a black-box fingerprinting algorithm to determine each virtual desk-

top’s latency-sensitivity score. This approach is based on the premise that certain appli-

cations perform well, or see significant performance improvements, when located close to

their users. We first describe our observations of distinct network characteristics of latency-

sensitive and insensitive applications running inside virtual desktop.

Latency-sensitive applications. Consider desktop users that play games; clearly the

closer the VD is to the user, the smaller the network round-trip-time (RTT) between the

desktop and the user’s thin client. This leads to better user-perceived performance for

such latency-sensitive gaming. Similarly, consider users that watch video on their virtual

desktops—either for entertainment purposes from sites such as YouTube or Netflix, or

for online education via Massive Online Open Courses(MOOCs) or corporate training.

Although video playback is not latency-sensitive per se, it has a high refresh rate (when

playing 24 frames/s video, for example) and also causes the remote desktop protocol to

consume significant bandwidth. As the RTT between the thin client display and the remote

VD increases, the performance of video playback suffers (see Figure 3.4). Many VNC

players, for instance, perform pull-based screen refresh and each refresh request is sent

only after the previous one completes. Hence the RTT will determine the upper bound on

the request rate. Thus if the RTT is 100ms (not unusual for trans-continental distances in the

US), such a player is limited to no more than 10 refresh requests per second, which causes

problems when video playback requires 20 or 30 frames/second. In this case, locating the
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VD closer to the end-user yields a lower RTT and potentially higher refresh rates and better

performance. This is depicted in Figure 3.4 which shows a CDF of the VNC refresh rate of a

client in Massachusetts when the desktop VM is on a LAN, or at US-East and US-West sites

of Amazon EC2. More specifically, in Figure 3.4a, when watching YouTube, we observe

about 82% of the frame requests of LAN local streaming are served in less than 41.7 ms—

the update frequency for 24 FPS video. However, in Figure 3.4b, when a user is watching

video on the virtual desktop hosted at US-West about 70% VNC frames are updated after

more than 125 ms, with the potential loss of video frames. Thus, proper placement of

desktops with video applications significantly impacts user-perceived performance; similar

observations hold for other application classes such as network games or graphics-rich

applications.

Latency-insensitive applications. In contrast to the above, applications such as simple

web browsing and word processing as shown in Table 3.1 are insensitive to latency. Al-

though these are interactive applications, user-perceived performance is not impacted by

larger RTT since they are within the human tolerance for interactivity (as may be seen by

growing popularity of cloud-based office applications such as Google docs and Office 360).

Based on our observations of different latency requirements of VD applications, we

conclude that different VDs will have different degrees of latency-sensitivity depending

on the collection of applications they run. Next, we will describe VMShadow’s black-box

latency fingerprinting algorithm that recognizes this diversity.

3.4.1 Black-box Fingerprinting Algorithm

The goal of our black-box fingerprinting algorithm is to assign a latency sensitive score

S to a virtual desktop based on its network characteristics without explicitly looking inside

each VM. For a particular virtual desktop, the end user (via a thin client) can run arbitrary

applications simultaneously. This indicates virtual desktops will exhibit dynamic latency

requirements and these requirements will be reflected in the network traffic. For a total of

23



0 50 100 150 200 250 300

VNC Frame Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l 

C
D

F

Baseline Video Refresh Rate

LAN YouTube

US-East YouTube

US-West YouTube

(a) Watching online video.

0 50 100 150 200 250 300 350 400

VNC Frame Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l 

C
D

F

Baseline Video Refresh Rate

LAN Video

US-East Video

US-West Video

(b) Watching local video.

Figure 3.4: CDF comparisons of VNC frame response times for latency-sensitive ap-
plications. Users have a better experience with watching videos when the VNC server is
closer.

N virtual desktops, we are mainly interested in finding the relative latency scores for each

one. We use the normalized network traffic throughput h∗, the normalized remote desktop

protocol throughput e∗, and the latency-sensitive percentage of normal internet traffic f ∗

to infer the latency score. The rationale behind our choice of these three indicators is as

follows. First, a “chatty” virtual desktop is more likely to be sensitive to placement. Sec-

ond, a virtual desktop that interacts with thin client frequently is more likely to benefit from

closer placement. Third, based on our observations, a virtual desktop that runs graphic-rich

applications, e.g. videos, is more likely to benefit from placement optimization.

To calculate these values for ith desktop VM, we collect packet-level traffic traces for a

time window of size Ti. The traces are collected by observing the incoming and outgoing

traffic of a VM from the driver domain of the hypervisor (e.g. Xen’s dom0). We denote the

total network traffic observed for ith VM as Hi and obtain the throughput hi and normalized

throughput h∗i in Equation (3.1) and Equation (3.2).
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hi =
Hi

Ti
(3.1)

h∗i =
hi

ĥ
(3.2)

ĥ = max〈h1,h2, . . .hN〉

Next, we identify the total amount of remote desktop traffic Ei using the default ports,

e.g., port 5901 (server port for the VNC protocol ) or port 3389 (server port for the Windows

RDP protocol). Similarly, we can calculate the protocol throughput ei and normalized

throughput e∗i in Equation (3.3) and Equation (3.4).

ei =
Ei

Ti
(3.3)

e∗i =
ei

ê
(3.4)

ê = max〈e1,e2, . . .eN〉

Last, to calculate the latency-sensitive percentage of internet traffic for ith virtual desk-

top f ∗i , we first use our list of latency-sensitive server ports and addresses to identify the

amount of latency-sensitive traffic Fi and then obtain f ∗i as in Equation (3.5).

f ∗i =
Fi

(Hi−Ei)
(3.5)

To obtain the list of latency-sensitive server ports and addresses, we assume that the

administrator provides this initial information based on prior experience. Notably, “you-

tube.com” or other online video streaming sites would be included in the initial list. VMShadow

then evolves this list by adding or removing information from the list using classification

results. Currently,VMShadow uses K-nearest-neighbors (KNN) classifier to label each new

TCP connection as latency-sensitive or not. When building up KNN model, we represent
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each TCP connection as a d-dimension feature vector1 g∈Rd and classify the new connec-

tions as latency sensitive or not based on majority vote of its K nearest neighbors. Here, we

choose K to be 3. To collect training data, we manually run various selected applications

(for which we know their latency-sensitivity) inside virtual desktops and collect the feature

vector for each connection. If a new connection is labeled latency-sensitive, VMShadow

will then add the corresponding server port and address to the maintained list. Otherwise,

the information will be removed from the maintained list if exists. Finally, we calculate the

desktop VM’s latency scores S in Equation (3.6).

S = wh ∗h∗+we ∗ e∗+w f ∗ f ∗ (3.6)

where W = 〈wh,we,w f 〉 represents the weights we assign to each normalized term. Cur-

rently, we use W = 〈1
3 ,

1
3 ,

1
3〉.

Thus, VMShadow keeps track of each virtual desktop’s latency score for a time-window

of length M, denoted as 〈S(t −M),S(t −M + 1), · · ·S(t)〉 and uses the moving average

1
M

M
∑
j=0

Si(t − j) to represent the rank of ith VD. VDs with consistently high rank become

candidates for latency optimization—in cases where they are not already in the best possi-

ble data center location—as described next.

3.5 VMShadow Algorithm

In this section, we explain VMShadow’s algorithm that enables virtual desktop de-

ployments to “shadow”, i.e., follow their users through intelligent placement. Given a

distributed cloud with K locations, placements of N active desktop VMs and their latency-

sensitive ranks 〈S1,S2 . . .SN〉, our shadowing algorithm periodically employs the following

steps.

1Example features include throughput, connection duration or inter-packet latency.

26



Step 1. Identify potential candidates to move. VMShadow determines which VMs are

good candidates for migration to a different location—either relocated to a closer cloud

location or evicted from a regional site with limited resource. We define a high threshold

Sup and a corresponding low threshold Slo to identify VMs for either relocation or eviction.

Note that we can obtain Sup and Slo by setting up two benchmark virtual desktops, one that

runs latency-sensitive applications and the other that runs latency-insensitive applications,

and measure their network traffic. In particular, for ith VM with a latency score of Si, if

Si > Sup, it becomes a candidate for relocation; if Si < Slo, it is a candidate for eviction.

As an example, a desktop VM with consistent video or gaming activities will become a

candidate for optimization and those that have not seen such activities for long periods will

become candidates for eviction.

Step 2. Determine new locations for each candidate. For each VM that is flagged as

a candidate for relocation, VMShadow next identifies potential new cloud locations for

that VM. To do so, it first determines the location of the user for that desktop VM (by

performing IP geo-location of the VNC thin client’s IP address [89]). It then identifies

the k closest cloud sites by geographic distance and then computes the network distance

(latency) of the user to each of these k sites. These sites are then rank-ordered by their

network distance as potential locations to move the VM. Candidate VMs that are already

resident at the “best” cloud site are removed from further consideration.

Step 3. Analyze VMs’ cost-benefit for placement decision. For each candidate VM for

relocation, VMShadow performs a cost-benefit analysis of the possible move. The cost of

a move to a new location is the overhead of copying the memory and disk state of the VM

from one location to another over the WAN. The benefit of such a move is the potential im-

provement in user-perceived performance (e.g., latency reduction). In general, the benefit

of a move is magnified if the VM has a relatively small disk and memory footprint(cost) and

a high latency-sensitive rank. Since regional/local cloud sites may have smaller capacities,

VMShadow must perform the cost-benefit analysis to identify VMs that yield the greatest
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benefit at the least cost. Also VMShadow could evict low-ranked VMs to free up resources

when necessary. We formulate the above problem as an Integer Linear Program (ILP) op-

timization in Section 3.5.1. Since an ILP can have an exponential running cost, we also

devise an efficient greedy heuristic that incorporates cost-benefit trade-off in Section 3.5.2.

Step 4. Trigger VMShadow Migrations. The final step involves triggering migrations of

the disk and memory state of VMs to their newly chosen locations. Our approach is built

upon prior work CloudNet [167] that provides an end-to-end and optimized solution for

live migrating virtual machines in the context of Wide Area Network. Our work extends

CloudNet in two ways. First, we re-implement all optimizations inside a nested hypervisor,

i.e. Xen-Blanket [165]. This is an important extension because it provides us the flexibility

to live migrate virtual machines between two nested hypervisors, eliminating the needs

for hypervisor privilege and cloud provider lock-in. In another words, VMShadow can

seamlessly migrate virtual machines between different cloud platforms with geographically

diverse data center locations. Second, we propose an alternative method to ensure TCP

connections staying active after VM migrations. Unlike CloudNet [167], our method does

not require specialized hardware support. Our VM and connection migration techniques

are detailed in Section 3.6.

3.5.1 VMShadow ILP Placement Algorithm

In this section, we describe our ILP algorithm that places above-threshold VMs—

virtual desktops that have latency-scores larger than Sup—in better cloud locations by con-

sidering the migration cost and latency reduction. Assume we have access to K data center

locations, and a total of J server hosts. Our goal is to pick the ideal data center for all I

VDs within the resource constraints of the hosts. Essentially, we can translate the problem

into selecting hosts with different network latencies to run the VDs.

Let 〈U j,M j,D j,N j〉 denote the available resource vector of Host j representing CPU

cores, memory, disk and network bandwidth respectively. Note such resource vectors not
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only account for currently available server resources, but also include resources that are

occupied by below-threshold VMs. These insensitive VMs are ones with scores lower than

Slo and are candidates for eviction. Representing available server resources in the above

way enables us to prioritize the need of high latency-sensitive VMs in resource-constrained

regional sites by moving insensitive VMs to a larger/global site. Similarly, let 〈ci,mi,di,ni〉

denotes the resource vector of V Mi.

Let Ai j be the binary indicator such that:

Ai j =





1 if ith VM is on jth host

0 otherwise

Our goal is then to find an appropriate assignment to each Ai j that minimizes the sum

of normalized latency, migration cost and maximizes latency reduction while satisfying the

constraints. Intuitively, the new VD placement should incur low migration cost and have

large latency reduction. Similarly, we use Ā to represent the current placement of VMs

among J hosts. More specifically, let us denote the current placement of ith VM as pi, i.e.,

it is running in Hostpi , we then have Āipi = 1 (and all other element in vector Āi as 0) for

ith VM. We formulate the ILP problem as following:
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min ∑
i, j

Ai jLi j

Li
+∑

i, j
1{Ai j = Āipi, j 6= pi}(

Ci

C
− Bi j

B
) (3.7)

subject to:

I

∑
i=1

Ai jui ≤U j, ∀ j = 1 . . .J (3.8)

I

∑
i=1

Ai jmi ≤M j, ∀ j = 1 . . .J (3.9)

I

∑
i=1

Ai jdi ≤ D j, ∀ j = 1 . . .J (3.10)

I

∑
i=1

Ai jni ≤ N j, ∀ j = 1 . . .J (3.11)

L

∑
j=1

Ai j = 1, ∀i = 1 . . . I (3.12)

Ai j ∈ {0,1}, ∀i = 1 . . . I, j = 1 . . .J

(3.13)

Where Li is the maximum latency of placing the ith VM among all J hosts, i.e., Li =

max〈Li1, . . .Li j〉. Specifically, Li j denotes the expected network latency between a thin

client that connects to ith VDs and jth host. Ci and Bi j denote the cost and benefit of

migrating the ith VM from its current host to a new one. We consider the cost of migrating

the ith VM to be the amount of data to be moved and the benefit of migrating to host

j be the latency reduction. Further, we use C and B to denote the maximum cost and

benefit of migrating all I VMs. That is, C = max〈C1,C2 . . .CI〉 and B = max{Bi j|∀i =

1 . . . I,∀ j = 1 . . .J}. Our objective function (3.7) not only considers the normalized latency

associated with new placement decision, but also uses indicator function 1 to capture the

relation between new placement decision and current virtual desktops to hosts mapping.

We normalize each term to balance the impacts of metric on determining the placement

decision. Constraints (3.8) to (3.11) ensure the placement decision of VMs satisfy the

physical resource constraints of the hosts while constraints (3.12) to (3.13) together ensure
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each VM will only be placed in one host at every time point. Our ILP can require long time

to compute placement decisions for large problem sizes. In the next section, we propose

three different greedy heuristics that efficiently compute with new placement decisions.

3.5.2 VMShadow Greedy Heuristics

Rank-ordered greedy. In this approach, we consider all desktop VMs whose latency-

sensitive ranks exceed a threshold Sup and consider them for relocation in rank order. Thus

the highest ranked desktop VM is considered first for optimization. If the closest regional

cloud site to this VM has insufficient resources, the greedy heuristic attempts to free up

resources by evicting VMs that have been flagged for reclamation. If no VMs can be

reclaimed or freed-up resources are insufficient to house the candidate VM, the greedy

approach then considers the next closest cloud site as a possible home for the VM. This

process continues until a new location is chosen (or it decides that the present location is

still the best choice). The greedy heuristic then considers the next highest ranked desktop

VM and so on. While rank-ordered greedy always moves the most needy (latency-sensitive)

VM first, it is agnostic about the benefits of these potential moves—it will move a highly

ranked VM from one data center location to another even if the VM is relatively well-placed

and the move yields a small, insignificant performance improvement.

Cost-oblivious greedy. An alternate greedy approach is to consider candidates in the order

of relative benefit rather than rank. This approach considers all VMs that are ranked above

a threshold Sup and orders them by the relative benefit B of a move. We define the benefit

metric as the weighted sum of the absolute decrease in latency and the percentage decrease.

If l1 and l2 denote the latency from the current and the new (closest) data center to the end-

user, respectively, then benefit B is computed as:

B = w1 · (l1− l2)+w2 ·
(l1− l2)∗100

l1
(3.14)
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where w1 and w2 are weights, l1− l2 denotes the absolute latency decrease seen by the

VM due to a move and the second term is the percentage latency decrease. We do not

consider the percentage decrease alone, since that may result in moving VMs with very

small existing latencies. For example, one VM may see a decrease from 100ms to 60ms,

yielding a 40% reduction, while another may see a decrease from 2ms to 1ms, yielding

a 50% reduction. Although the latter VM sees a greater percentage reduction, its actual

performance improvement as perceived by the user will be small. Consequently the benefit

metric considers both the percentage reduction and the absolute decrease. The weights

w1 and w2 control the contribution of each part—we currently use w1 = 0.6 and w2 =

0.4 to favor the absolute latency decrease since it has more direct impact on improving

performance.

Once candidate VMs are ordered by their benefit, the cost-oblivious greedy heuristic

considers the VM with the highest benefit first and considers moving it using a process

similar to rank-ordered greedy approach. The one difference is that if the VM cannot be

relocated to the best location, this approach recomputes the benefit metric to the next best

site and re-inserts the VM into the list of VMs in benefit order, and picks the VM with most

benefit. Ties are broken by rank (if two candidates have the same benefit metric, the greedy

considers the higher ranked VM first).

Cost-aware greedy. Cost-oblivious greedy only considers the benefit of potential moves but

ignores the cost of such migrations. Since the disk and memory state of VMs will need to

be migrated over a WAN, and this may involve copying large amounts (maybe gigabytes)

of data, the costs can be substantial. Consequently, the final variant of greedy, known as

cost-aware greedy heuristic, also considers the cost of moving a VM as:

C = (Sdisk +Smem) ·
1

1− r
(3.15)
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where Sdisk and Smem denote the sizes of the disk and memory state of the virtual machine

and parameter r captures the dirtying rate of the VM relative to the network bandwidth.2

The dirty rate r could be either estimated by the network traffic to VD or monitored from

hypervisor as the disk I/O write rates.

The cost-aware greedy approach then orders all candidate VMs using B
C (i.e., the benefit

weighted by the cost). A candidate with a higher B
C offers a higher performance improve-

ment benefit at a potentially lower migration cost. The VM with the highest B
C is considered

first for possible movement to the closest cloud site. Like before, if this site has insuffi-

cient server resources, then VMs marked for reclamation are considered for eviction from

this site to make room for the incoming VM. Note, Equation (3.15) implicitly consider the

potential cost of reclamation as one has to at least free up C amount of disk and memory

spaces by evicting VMs. If no such reclamation candidates are available, the VM is consid-

ered for movement to the next closest site. The benefit metric to this next site is recomputed

and so is the B
C metric and the VM is reinserted in the list of candidate VM as per its new B

C

metric. The greedy heuristic then moves on to the next VM in this ordered list and repeats.

Ties are broken using the VMs’ rank.

Our VMShadow prototype employs this cost-aware greedy heuristic. It is straightfor-

ward to make the cost-aware greedy implementation to behave like the cost-oblivious or

the rank-ordered greedy variants by setting the cost (for cost-oblivious) and benefit (for

rank-ordered greedy) computation procedures to return unit values.

Avoiding Oscillations: To avoid frequent moves or oscillatory behavior, we add “hys-

teresis” to the greedy algorithm — once a candidate VM has been moved to a new location,

it is not considered for further optimization for a certain hysteresis duration T . Similarly,

2Live migration of a VM takes place in rounds, where the whole disk and memory state is migrated in
the first round. Since the VM is executing in this period, it dirties a fraction of the disk and memory, and in
the next round, we must move (Sdisk +Smem) · r, where r is the dirtied fraction. The next round will need an
additional (Sdisk +Smem) ·r2. Thus we obtain an expression: (Sdisk +Smem) ·(1+r+r2+ . . .). This expression
can be further refined by using different disk and memory dirtying rates for the VM.
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any VM which drops in its latency-sensitivity rank is not evicted from a local site unless

it exhibits consistently low rank for a hysteresis duration T ′. Moreover, the cost-benefit

metrics avoid moving VMs that see small performance improvements or those that have a

very high data copying cost during migration.

3.6 Transparent VM and Connection Migration

While VMShadow attempts to optimize the performance of latency-sensitive VMs by

moving them closer to their users, it is critical that such moves be transparent. The desk-

top VM should not incur downtime when being moved from one cloud site to another or

encounter disruptions due to a change of the VM’s network address. VMShadow uses two

key mechanisms to achieve this transparency: live migration of desktop virtual machines

over the WAN, and transparent migration of existing network connection to the VM’s new

network (IP) address. We describe both mechanisms in this section.

3.6.1 Live Migration Over WAN

When VMShadow decides to move a VD from one cloud site to another, it triggers live

migration of the VM over the WAN. While most virtualization platforms support live VM

migration within a data center’s LAN [39], there is limited support, if any, for a migration

over the wide area. Hence, we build on the WAN-based VM migration approach that we

proposed previously [167], but with suitable modifications for VMShadow’s needs.

The WAN-based VM migration that we use in VMShadow requires changes to the

hypervisor to support efficient WAN migration. It is possible to implement these modifi-

cations of the hypervisor in private clouds where an enterprise has control over the hyper-

visor. Similar modifications are also possible in public clouds where the cloud provider

itself offers a desktop cloud service to users. However, the desktop cloud service may also

be implemented by a third-party that leases servers and storage from a public IaaS cloud
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provider (e.g., if Onlive’s Desktop service were implemented on top of Amazon’s EC2). In

such scenarios, the third party should not expect modifications to the hypervisor.

To support such scenarios also, we employ a nested hypervisor to implement VMShadow’s

migration techniques. A nested hypervisor runs a hypervisor h′ inside a normal virtual ma-

chine that itself runs on a typical hypervisor h; actual user VMs run on top of hypervisor

h′. Since the nested hypervisor is fully controlled by the desktop cloud provider (without

requiring control of the underlying hypervisor), it enables hypervisor-level optimizations.

Note that using a nested hypervisor trades flexibility for performance due to the additional

overhead of running a second hypervisor; however, Xen-Blanket [165], which we use in

our prototype has shown that this overhead is minimal. As a result, VMShadow can run

over unmodified public cloud instances, such as Amazon EC2, and live migrate desktop

VMs from one data center to another. In addition, VMShadow’s WAN migration needs to

transfer both the disk and memory state of the desktop virtual machine (unlike LAN-based

live migration which only moves the memory state since disks are assumed to be shared).

VMShadow uses a four step migration algorithm, summarized in Fig. 3.5.

Step 1: VMShadow uses Linux’s DRBD module to create an empty disk replica at the

target data center location. It then begins to asynchronously transfer the disk state of the

VM from the source data center to the target data center using DRBD’s asynchronous

replication mode. The rate of data transfer can be controlled, if needed, using Linux’ traffic

control (tc) mechanisms to avoid any performance degradation for the user during this

phase. The application and VM continue to execute during this period and any writes to

data that has already been sent must be re-sent.

Step 2: Once of the disk state has been copied to the target data center, VMShadow

switches the two disk replicas to DRBD’s synchronous replication mode. From this point,

both disk replicas remain in lock step—any disk writes are broadcast to both and must fin-

ish at both replicas before the write returns from the disk driver. Note that disk writes will
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incur a performance degradation at this point since synchronous replication to a remote

WAN site increases disk write latency.

Step 3: Concurrent with Step 2, VMShadow also begins transferring the memory state

of the VM from the source location to the target location. Like LAN-based live migra-

tion approaches, VMShadow uses a pre-copy approach which transfers memory pages in

rounds [39]. The first round sequentially transfers each memory page from the source to

the destination. As with the disk, VMShadow can control the rate of data transfer to mit-

igate any performance impact on front-end user tasks. Since the application is running, it

continues to modify pages during this phase. Hence, each subsequent round transfers the

only pages that have been modified since the previous round. Once the number of pages

to transfer falls below a threshold, the VM is paused for a brief period and the remaining

pages are transferred, after which the VM resumes execution at the destination.

Since substantial amounts of disk and memory data need to be transferred over the

WANs, VMShadow borrows two optimizations from our prior work [167] to speed up such

transfers. First, block and page deltas [46] are used to transfer only the portion of the disk

block or memory page that was modified since it was previously sent. Second, caches are

employed at both ends to implement content based redundancy(CBR) [8, 167]—duplicate

blocks or pages that have been sent once need not be resent; instead a pointer to the cached

data is sent and the data is picked up from the receiver cache. Both optimizations have been

shown to reduce the amount of data sent over the WAN by 50% [167].

Step 4: Once the desktop VM moves to a new data center, it typically acquires a new IP

address using DHCP. Changing the IP address of the network interface will cause all exist-

ing network connections to break and disrupt user activity. To eliminate such disruptions,

VMShadow employs a connection migration protocol to “migrate” all current TCP connec-

tions transparently to the new IP address without any disruptions (TCP connections see a

short pause during this transfer phase but resume normal activity once the migration com-

pletes). The connection migration is triggered after desktop VM is successfully migrated
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Figure 3.5: VMShadow migration phase using Xen-Blanket. Upon WAN live migration,
a Xen-Blanket (nested hypervisor) VM is spawned first to receive disk and memory state
from source WAN live migrator. It is then followed by a live memory and disk transfer
before briefly pausing the VM. The VM is successfully migrated to the new Xen-Blanket
and ready to use after executing connection migration protocol.

and then paused. Immediately afterwards, VMShadow updates the new mapping rules at

proxies. Once the rules are updated, the migrated VM will be resumed with the new pub-

lic IP address, and all subsequent packets will be rewritten. In summary, the actual traffic

switching occurs after the connection migration protocol is successful. Once both the VM

and connection migration phases complete, the desktop VM begins executing normally at

the new cloud location. We describe VMShadow’s connection migration protocol next.

3.6.2 Connection Migration Protocol

Different cloud locations are typically assigned different blocks of IP addresses for

efficient routing. As a result, when a VM moves from one cloud location to another, it

is typically assigned an IP address from the new location’s IP block and will not retain its

original IP address. This will cause TCP connections to be dropped and result in disruptions

to end users’ sessions. To prevent such disruptions, VMShadow employs a connection

migration protocol that “migrates” these connections to the new IP address.

The issue of mobility, and having to change the IP address as a result, is a well known

problem. There have been several proposals including HIP [2], LISP [4], ILNP [3] and

Serval [126] that try to address this problem by separating the host identifier from the

network address. With these approaches, the application connects at the TCP layer using
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the host identifier, while the packets are routed using the network address. When the user

(i.e., host) moves, the network address changes, but the host identifier stays the same. As

a result, TCP connections are not disrupted. Unfortunately, all these approaches require

modifications to the application to take advantage of seamless mobility.

Instead, here we take a more pragmatic approach so that VMShadow works seamlessly

with existing applications as they are. VMShadow makes use of a local proxy to implement

a network connection migration protocol. VMShadow assumes that both end-points for

every active connection on the migrated VM run this proxy (thus, both the thin client and

the desktop VM need to run the proxy, as do other servers elsewhere with active TCP

connections to the desktop VM). However, in the cases where we don’t have control over

servers, for example YouTube streaming servers, we can set up in-network proxy servers

that are closer to VDs. We envision the virtual desktop cloud providers will be in charge of

maintaining these proxy servers. In summary, as long as the proxy is in the data path for

the TCP connection between end points, it can masks any address changes by dynamically

re-writing the IP headers of the packets.

To ensure transparency, the desktop VM uses two logical network interfaces: an inter-

nal interface with a fixed, private IP address and an external interface with the “real”, but

potentially changing, IP address. All socket connections are bound to the internal interface

as the local source address; as a result, active socket connections never directly see the

changes to the external IP address. The proxy acts as a bridge between the internal and ex-

ternal network interfaces for all packets as shown in Fig. 3.6. Internally generated packets

have a destination address that is the external IP address of the remote end host.

The proxy employs dynamic rewriting of packet headers (analogous to what is done

in NAT devices) to bridge the two interfaces. For all outgoing packets, the default rewrit-

ing rule replaces the source IP of the internal interface with that of the external interface:

(IPint ,∗)→ (IPext ,∗). Thus when the external IP address changes after a WAN migration,

the rewrite rule causes any subsequent packet to have the new external IP address rather
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Figure 3.6: Illustration of proxy IP bridging. Inside each VM, the proxy bridges an
internal logical NIC with the external one, masking the potential IP address changes from
the higher-level applications.

than the old one. Incoming packets headers are rewritten with the reverse rule, where the

current external IP address is replaced with the fixed internal IP.

After an IP address change of a desktop VM, other end-points with connections to the

desktop VM will begin seeing packets arriving from the new external IP address. How-

ever connections on these machines expect packets from the old external IP address of the

desktop VM. To ensure transparent operation, the local proxies in other end-points intercept

packets with the desktop VM and apply new rewrite rules beside the default one. For exam-

ple, with new rewrite rules, incoming packets arriving from the desktop VM are rewritten

as (IPnew,∗)→ (IPold,∗) while outgoing packets to the desktop VM see rewrites to the des-

tination IP address as (∗, IPold)→ (∗, IPnew). These two rules ensures that outgoing packets

go to the new address of the desktop VM (and thus are not lost), while incoming packets

from the new IP address are rewritten with the old address before delivery to applications

(that are still given the illusion of communicating with the old IP address). We illustrate

various scenarios in Fig. 3.7.

To achieve this transparent migration, the proxies at both end points use control mes-

sages to signal each other about the change in IP address. This is done by having the

desktop VM send a cryptographically signed message to the corresponding proxy inform-

ing it of the IP address change. The cryptographic signing avoids malicious third-parties

from sending bogus IP address change messages and causing a denial of service. A typical
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IP address change control message will include the old IP address and request subsequent

packets to be sent to the new address.

Note that the connection migration protocol is symmetric—it assumes an fixed internal

interface and an external interface on all machines. Thus, the protocol can also handle

IP address changes of the thin client or other machines that the desktop VM commu-

nicates with. Further, the extra rewrite rules are generated on a per-socket basis rather

than a per-machine basis to support dynamic connection setup. In particular, connec-

tions established before the IP address change requires rewriting based on both default

and extra rules to maintain connectivity. Connections opened after the address change

talk to the new address and only need default packet rewriting. However, for incoming

packets, we use the port information of the connections to distinguish between ones that

need a re-write (connections opened prior to the change) versus those that do not (those

opened after the change). A general rewrite rule of an outgoing packet is of the form:

(IPint ,srcPort, IPold,dstPort)→ (IPext ,srcPort, IPnew,dstPort).

3.6.2.1 Handling NAT Devices

Our discussion thus far assumes that all end points have publicly-routable IP addresses.

However in many scenarios, one or both end-points may be behind NAT devices. We first

consider the scenario where the thin client is behind a NAT (e.g., in a home) while the

desktop VM resides in a public cloud and has a public IP address. In this case, when the

desktop VM is moved from one location to another, it will no longer be able to communi-

cate with the thin client since the NAT will drop all packets from the new IP address of the

desktop. In fact, the desktop VM will not even be able to notify the proxy on the thin client

of its new IP address (since a “strict NAT” device drops all packets from any IP address it

has not encountered thus far). To address this issue, we resort to NAT hole punching [59],

a method that opens ports on the NAT to enable the desktop VM to communicate with the

thin client.
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(b) One entity’s public IP changes.

P( Int IP, SP, Old IP, DP ) 

( NAT IP, SP, New IP, DP ) 

( Pub IP, NP, New IP, DP ) ( Pub IP, OP, Priv IP, DP ) WANP

NAT

(Pub IP, NP, New IP, DP)

Int IP  --> NAT IP
Iptable rules 

Old IP  --> New IP

Pub IP  --> Priv IP
Iptable rules 

NP --> OP
New IP --> Priv IP

(c) A behind-NAT end point tries to communicate to an entity with new public IP address.

Figure 3.7: Dynamic rule-based packet headers’ rewriting sequences. We use four-
tuple, i.e. the source IP, source port, destination IP and destination port, to represent a
packet. Packets are matched based on the iptable rules of the proxy (Default rule is in rule
while new rules are in red). This ensures that high-level applications only see fixed internal
IP without breaking the TCP connections.

VMShadow’s NAT hole punching is part of the connection migration process. It works

by notifying the client proxy of the IP address change from the old IP address of the desktop

VM. In some scenarios, the desktop VM may be able to determine its new IP address

at the destination before it migrates. This may be possible in enterprise private clouds

where an IP address is pre-allocated to the VM, or even in public clouds where one can

request allocation of an elastic IP address independent of VM instances. In such cases, the

proxy on the desktop VM notifies the proxy on the thin client of its future IP address and

requests hole punching for this new IP address. In scenarios where the IP address cannot be

determined a priori, we assume that the newly migrated VM will notify the driver domain

of the nested hypervisor at the old location of its new address. The driver domain can

use the old IP address to notify the proxy at the thin client of the IP address change and

consequently request hole punching.
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Once the new IP address has been communicated to the client proxy, it proceeds to

punch holes for each active socket port with the desktop VM. This is achieved by sending

a specially marked packet from each active source port to each active destination port but

with the new IP address as the destination IP of these specially marked packets. These

packets causes the NAT device to open up these ports for accepting packets from the new

IP address of the desktop VM. NAT devices typically rewrite the source port number with a

specially allocated port number and create a forwarding rule; packets arriving on this NAT

port are forwarded to the source port at the thin client device. Thus, a regular outgoing

packet from the client to the desktop VM will see the following rewrites: the source proxy

peforms the first rewrite (IPint , srcPort, IPold , dstPort)→ (IPNAT , srcPort, IPnew, dstPort).

The NAT device then further rewrites this packet as (IPNATExt , natPort , IPnew, destPort).

When the first specially marked packet of this form is received at the desktop VM, it

creates a mapping of the old natPort of the source to the new natPort. Then port numbers

of any outgoing packets are rewritten by replacing the old natPort with the new natPort

created by the hole punching. Note that the specially marked hole punching packet is

only processed by the proxy and then dropped and never delivered to the application. In

our implementation, we simply assign a TCP sequence number of 1 and have an iptables

rule for dropping potential RST packet. This extension enables the connection migration

protocol to work even when one of the end-points is behind a NAT device. The protocol can

be similarly extended with hole punching packets in both directions when both end-points

are behind NAT devices. Note in this scenario, the entity that moved from one NAT to

another will need to find out the IP address of the new NAT device first before proceeding

hole punching. We omit the details here due to space constraints.

3.7 VMShadow Implementation

We have implemented a prototype of VMShadow using Linux 3.1.2 and modified Xen-

Blanket 4.1.1 [165]. Our prototype is written in C and Python and consists of several
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interacting components as shown in Figure 3.3. In the following, we describe design trade-

offs, functionalities and implementation details of each component.

Fingerprinting Engine. Our fingerprinting engine includes a distributed traffic collector

in each host and a central fingerprinting engine running inside the cloud manager. Its main

tasks include collecting network-level traffic information from each host and calculating

the latency-sensitive score for each virtual desktop. We implement the traffic collector

component in Xen-Blanket’s driver domain (dom0). It uses python interfaces to the Linux

net f ilter library, more specifically libnet f ilter queue to copy packets queued by the kernel

packet filter into user-space for analysis; it periodically samples the traffic and sends the

statistics to the fingerprinting engine running inside the cloud manager. The hypervisor-

based fingerprinting system has negligible overhead, and does not interfere with a virtual

desktops’ normal performance. Specifically, the overhead can be broken down into copy-

ing packets, generating and sending statistics to the fingerprinting engine. The dominant

overhead comes from copying every network packet, but can be dramatically reduced by

mapping kernel buffers to user space. This allows sharing buffers between kernel and user

space applications, and essentially achieves zero-copy overhead. The caveat is the kernel

needs to support zero-copy optimizations. For each active virtual desktop, the cloud man-

ager then analyzes the normalized network traffic, normalized protocol traffic and percent-

age of normal internet traffics (as described in Section 3.4) based on the collected network

traffics and the maintained list of latency-sensitive ports and server addresses. A relative

latency-sensitive scores is assigned to each virtual desktop at the end of fingerprinting pro-

cess.

WAN Live Migrator. Our WAN live migrator takes any running virtual desktop and mi-

grates it to a different host as fast as possible without disrupting its functionalities. We

implement the migrator on top of the nested hypervisor, i.e., the Xen related code in Xen-

Blanket, by modifying live migration code in Xen. More specifically (refer to Figure 3.5

for a pictorial detail), we include DRBD-based disk state migration to concurrently trans-
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fer virtual machine disks asynchronously. For transferring memory, we employing multiple

optimizations, i.e., zero page, memory page deltas and content-based redundancy elimina-

tion [167] to optimize the transferring over WAN. To mitigate the live migration impact’s

on the client traffic, we also implement the rate control mechanisms to control the rate of

state transfer over WAN links.

Connection Proxy. Our connection proxy implements our connection migration protocol

discussed in Section 3.6.2 as a python process. We design and implement the proxy in a

way that make it easy and flexible to run on any end point such as a VD and thin client.

The proxy listens on a well-known port, to receive (and send) cryptographically signed

messages for announcing IP address changes. It uses the libnetfilter queue library to

intercept outgoing and incoming packets and rewrites the corresponding TCP headers as

specified by the current rewrite rules in iptable. Packets are reinserted into the queue

once the headers have been rewritten. We use the python scapy library to generate the

appropriate packets for NAT hole punching. Our choice of implementing the proxy in

user-space is based on the trade-off of the implementation ease and overhead compared

to a kernel implementation. In production use where efficiency has higher priority, one

should implement the protocol in the kernel space to reduce the data copy overhead as

well as iptable rules matching. We evaluate the overhead of our user-space proxy in

Section 3.8.4.

Cloud Manager. We use a centralized-architecture in implementing the cloud manager

that runs periodically. It has interfaces to both fingerprinting engines and WAN live mi-

grators that run distributed on each host. After each time period, our cloud manager feeds

the latency-sensitive scores calculated by fingerprinting engine to the algorithm engine,

to figure out the new virtual desktop placement. Our algorithm engine implements both

the ILP and cost-aware greedy algorithm. The migration manager then compares the new

placement plan with the current placement to figure out a migration table that has three

columns, i.e., the source host, the destination host and the target virtual desktop. Each row
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Figure 3.8: Illustration of cloud sites setup in our experiments. Three cloud sides used
for our experiments: a private cloud side in Massachusetts, and EC2 sites in Virginia and
Oregon.

in the table represents a migration that needs to be actuated to improve the user-perceived

performance. Our migration manager executes the specified migrations by contacting the

WAN live migrator as well as the connection proxy on each source host. To avoid unneces-

sary performance degradation, our cloud manager employs two intuitive methods that both

aims at reducing the percentage of live migration bandwidth usage. The first one is to limit

the number of concurrent live migrations between the same hosts and the second one is to

control the total bandwidth usage of live migration.

3.8 Experimental Evaluation

In this section, we first describe our experimental setups and then present our experi-

mental results. In designing our experiments, we are interested in answering the following

key questions.

1. How accurate is our black-box fingerprinting algorithm in distinguishing latency-

sensitive desktop VMs from the rest?

2. What is our proposed cost-aware greedy algorithm compared to ILP in optimizing

the location of desktop VMs?
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3. What are the potential overhead of using live migration to move desktop VMs from

one cloud location to another and the performance benefits to desktop VMs’ users?

4. How efficient is our connection migration proxy in seamlessly transferring the TCP

connections?

5. Last, how does our prototype VMShadow work in resolving complex scenarios by

detecting latency-sensitive desktop VMs and improving their performances within

resource constrains ?

Experimental Setup: The testbed for our evaluation consists of hybrid clouds with a

private cloud in Massachusetts and Amazon EC2 public clouds across different locations

as shown in Fig 3.8. The private cloud consists of 2.4GHz quad-core Dell servers running

Centos 6.2 and GNU/Linux kernel 2.6.32. On Amazon EC2, we use extra-large instances

(m3.xlarge), each with 4 VCPUs, at two sites: US-West in Oregon and US-East in Virginia.

All machines run modified Xen-Blanket 4.1.1 and Linux 3.1.2 as Dom0.

Our desktop cloud consists of Ubuntu 12.04 LTS desktops that are installed with vnc4server

as the VNC server. Each desktop VM will have only one desktop session and accept con-

nections from one thin client. We modify an open-source version of VNC viewer [160] and

use it to allow laptop-based thin client machines to connect to VNC servers. For mobile

phone, i.e. iPhone, thin client, we use VNC viewer acquired from App Store and manually

perform user activities. Users that connect to the Ubuntu desktop will be able to run a vari-

ety of desktop applications, including OpenOffice for editing documents, Google Docs for

online editing, Chrome browser 3 for web-browsing and watching various online stream-

ing, i.e. Youtube, Hulu and Netflix, Thunderbird email client and Movie Player for local

video playback. Each desktop VM is assigned 1GB memory, 1 VCPU and has a 8 GB disk

of which 1.32GB is used and runs inside Xen-Blanket dom0.

3We choose Chrome browser due to the fact that Netflix is not supported in the default Firefox browser.
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Uplink traffic Downlink traffic
Youtube Local Video Browsing Text Edit Youtube Local Video Browsing Text Edit

Non-VNC Traffic (%) 37.7 0 0.67 0 53.7 0 0.62 0
Non-VNC Bandwidth (KB/s) 1.85 0 0.0083 0 63.6 0 0.0059 0
Total Bandwidth (KB/s) 74.6 54.5 17.94 17.14 65.8 1.54 0.454 0.86

Table 3.2: Characterization of Desktop VMs’ network activities. Virtual desktops run-
ning different applications exhibit different network characteristics, i.e., remote protocol
traffic and Internet traffic.
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Figure 3.9: Comparison of latency sensitive scores for different desktop VMs. Online
streaming applications have higher scores compared to the other types of applications for
both mobile clients. For both clients, all but one latency score match our hypothesis. But
this “out-of-order” ranking can be remedied using threshold scores as discussed in Sec-
tion 5.5.

3.8.1 Accuracy of Black-box VM Fingerprinting

Black-box VM fingerprinting provides us latency-sensitive scores for each desktop

VMs without peeking inside the user actives. In this experiment, we first show that VDs

with different latency-sensitive requirement exhibit vastly different network-level charac-

teristics and then we demonstrate that our approach is able to assign correct relative latency-

sensitivity scores to different VMs running various applications. We use Wireshark running

on Dom0 of Xen-Blanket to collect packet-level traces for each VMs during the experiment

periods.

Characterizing Network Activities of Desktop VMs. We use VNC viewer from our

laptop-based thin client to perform four distinct types of user actives, i.e., watching Youtube

video, browsing graphic-rich websites, text editing using OpenOffices and watching video

locally on the desktop VM. In each case, we sample the traffic generated by the VM in
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a 3-minutes measurement window after a warmup period and then repeat the process five

times. We compute the average statistics across all five-runs and use them to characterize

the network activities of each VMs.

Table 3.2 summarizes the different network activities of desktop VMs for these four

activities. As expected, YouTube viewing consumes higher network bandwidth both from

YouTube servers and for the remote desktop protocol display; video playback from a local

file does not consume network bandwidth, but the data transfer for VNC is still high due

to the video playback. Web browsing and text editing consume very little bandwidth. Note

in our fingerprinting algorithm, both YouTube and graphic-rich browsing will be labeled as

latency-sensitive traffic based on the server ports and addresses.

Assigning Latency-sensitive Scores to Desktop VMs. Based on the above observa-

tions, we next evaluate our fingerprinting algorithm that favors and assign relative high

scores to VMs based on their latency sensitivities. We use two models of iPhones, i.e.,

iPhone 6 and iPhone 6+, as our mobile thin clients and collect necessary network-level

data using the same setup as in previous experiment. Our measurement data, together with

our list of latency sensitive ports and server addresses, are provided as input to our finger-

printing algorithm in Section 3.4 to calculate the scores.

Figure 3.9 compares the different latency scores assigned for desktop VMs that are

running various applications. In general, our fingerprinting algorithm is able to assign

“correct” relative scores to VMs running different applications. Specifically, both online

streaming applications, disregarding the service providers, and local video playback are as-

signed with high latency scores. However, the score of watching local video using iPhone 6

is much lower than its counterparts. Recall that the relative latency score is calculated based

on normalized throughput, protocol throughput and latency-sensitive throughput. Because

local video does not generate internet traffic, it has a lower relative score compared to on-

line streaming. In addition, with adaptive bitrate streaming, the amount of data transferred

depends on screen size. This means an iPhone 6 with a smaller screen will have lower
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(a) The number of cloud locations is set to 40.
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(b) The number of VMs is set to 2000.

Figure 3.10: Execution time comparisons between ILP and greedy algorithms. In gen-
eral, greedy algorithm takes significant less time compared to ILP algorithm. For both
algorithms, as the number of VMs to be assigned or the number of candidate cloud loca-
tions to be picked increase, the running time increases accordingly.

relative score than an iPhone 6+. Since it heavily relies on the application bandwidths

demand in calculating the scores, the results will be biased for thin clients with different

screen size. To further improve the accuracy of latency scores, we could apply the algo-

rithm based on the screen size of thin clients. Graphic-rich browsing, such as “imgur.com”,

is considered more latency-sensitive compared to online editing using Google docs. Last,

local editing, with a score of 0.001, is regarded to be not sensitive to latency at all and is

potential candidate for resource reclamation.

Result: Desktop VMs that run different applications exhibit different level of network

activities. Based on this observation, our fingerprinting algorithm is able to correctly favor

and distinguish latency-sensitive desktop VMs, i.e. the ones that run online streaming or

local video playback, from non-sensitive desktop VMs, i.e, local text editing.

3.8.2 Comparing Greedy Shadow Algorithm to ILP

In this experiment, we study the performance differences between our cost-aware greedy

algorithm and integer linear program (ILP) algorithm that is able to provide optimal results

but with longer execution time. Both algorithms are implemented in VMShadow’s Cloud
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(a) The number of cloud locations is set to 40.
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(b) The number of VMs is set to 2000.

Figure 3.11: Comparison of latency reduction percentage between ILP and greedy
algorithms. When the number of VMs to be assigned increase, the reduction is bounded
by the collections of data center locations. As the number of data center locations increases,
ILP is able to utilize the data center locations to find optimal solutions for each VMs.

Manager. Specifically, we implemented the ILP algorithm using Python’s Convex opti-

mization package CVXOPT that aims to minimize the latency reductions. We compare the

greedy algorithm with the ILP approach in terms of scalability, i.e., execution time, and

effectiveness, i.e., latency decrease percentage of desktop VMs.

To stress test both algorithms, we create synthetic scenarios with increasing numbers

of desktop VMs and cloud locations and measure the execution time and effectiveness of

both algorithms. In one case, we fix the number of desktop VMs to 2000 and vary the

number of available cloud locations from 2 to 12. In another case, we fix the number of

cloud locations to 40 and vary the number of desktop VMs in the cloud from 100 to 800.

For each scenario, we run both version of algorithms ten times by assigning uniformly

generated latency-sensitive scores to each VM and uniformly pick a set of data centers

from a pool of forty locations. We average the results across all runs to represent the

performance and effectiveness for each scenario.

Figure 3.10 compares the execution time of these two algorithms in these two cases

separately. As expected, the execution time of the ILP approach increases significantly
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Word+YouTube Word
Mem (GB) 0.56 0.54
Disk (GB) 1.36 1.34
Total Time(s) 265 249
Pause Time(s) 2.48 2.8

Table 3.3: Comparison of transcontinental WAN migration of desktop VMs. Desktop
VMs are migrated from Amazon EC2’s Oregon data center to Virginia data center using
VMShadow that is optimized with delta-based and CBR techniques. We observe a slightly
more memory and disk data transfer for desktop VM that runs more applications. The
migration pause time is due to the last iteration of memory transferring and TCP connection
migration.

with both increasing location choices(as in Figure 3.10b) and increasing VMs(as in Fig-

ure 3.10a); the execution time of the greedy approach, in comparison, remains flat for both

scenarios. Figure 3.11 evaluates the effectiveness of the two algorithms in reducing the la-

tency of desktop VMs via migrations. Latency reduction achieved by our greedy approach

is within 51-56% of the “optimal” ILP approach when our greedy algorithm has access to

all forty data center locations. In the case of assigning all 2000 VMs to cloud locations,

the effectiveness of our greedy approach is impacted either by the limited amount of cloud

locations, (in the case of only 2 cloud locations), or the complexity growths. In general,

the ILP approach is a better choice for smaller settings (where it remains tractable), while

greedy is the only feasible choice for larger settings. Note also that our experiments stress

test the algorithms by presenting a very large number of migration candidates in each run.

In practice, the number of candidate VMs for migration is likely to be a small fraction

of the total desktop VMs at any given time; consequently the greedy approach will better

match the choices made by the ILP in these cases.

Results: VMShadow’s greedy algorithm is able to achieve around 51-56% effectiveness

with marginal execution time compared to “optimal” ILP approach, even presented with a

large number of migration candidates and potential cloud locations.
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(a) Latency-sensitive desktop VM.

Live Migration Phase

(b) Latency-insensitive desktop VM.

Figure 3.12: Comparison of WAN live migration’s impact on desktop VMs running
various applications. After migration, latency-sensitive desktop VM that runs online
streaming achieves higher VNC frame update frequency due to lower RTT, directly im-
proving user experience. On the other hand, latency-insensitive desktop VM that runs text
editing application does not see a obvious improvement after migration.

3.8.3 Live Migration and Virtual Desktop Performance

VMShadow’s WAN live migrator actuates the migration decisions generated by the

greedy shadow algorithm on hybrid cloud platforms by leveraging nested virtualization. In

this experiments, we study the overheads of our WAN-based live migration approach, in

terms of migration costs, as well as the user perceived performance benefits. We use the

two Amazon sites in Oregon (US-West) and Virginia (US-East) for this experiment. The

thin client is located in the Massachusetts private cloud. We run two desktop VMs in US-

West. The first desktop represents a user running a text editing application and watching a

YouTube video, while the second desktop represents a user only performing word editing.

We perform live migration of each VM from Oregon data center to Virginia one, which is

a site closer to the Massachusetts-based thin client, with the help of VMShadow’s WAN

migration component. For each live migration, we measure the total amount of data trans-

ferred and the time taken for the live migration as well as the time intervals between every

VNC frame request and update.

As shown in Table 3.3, the delta-based and CBR optimizations used by VMShadow

allow WAN migrations to be efficient; VMShadow can migrate a desktop VM with 1 GB

memory coast-to-coast in about 250 to 265 seconds, depending on the workload. It is useful
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to note that the pause time (i.e., the time when a user may perceive any unresponsiveness)

for the applications as a result of the migration is relatively small, between 2.5 and 2.8

seconds. Total migration time is determined by how much memory to transfer and how

fast memory is dirtied. Therefore, it takes longer to migrate the virtual desktop that runs

YouTube than Word editing. But for the pause time, it is determined by the amount of

dirty memory to transfer in the last iteration. When watching YouTube video, data is being

streamed and prefetched before the last iteration. Thus, the downtime of the YouTube

virtual desktop is sightly smaller.

Figure 3.12 shows the response time before and after the migration for both desktop

VMs. We define the response time to be the time interval between sending a refresh request

and receiving a response. Therefore, the lower the response time, the higher the refresh rate.

Note also that the VNC player only sends a refresh request after receiving a response to its

previous request. Thus the response time for such players is upper bounded by the network

round-trip time. As shown in the Figure 3.12a, initially the refresh rate is low since word

editing does not require frequent refresh. The refresh rate increases when the user begins

watching YouTube, but the refresh rate is bounded by approximately 100ms RTT between

Oregon and Massachusetts, which limits VNC to no more than 10 refreshes per second

(which is not adequate for a 24 FPS video clip). Once the VM has migrated from US-West

to US-East, the RTT from the thin client to the desktop VM drops significantly (and below

the dotted line indicating the minimum refresh rate for good video playback), allowing

VNC to refresh the screen at an adequate rate. Figure 3.12b depicts the performance of the

Word editing desktop before and after the live migration. As shown, word editing involves

key - and mouse-clicks and do not require frequent refreshes due to the relatively slow

user activities. Thus, the refresh rate is once every few hundred milliseconds; further a

100ms delay between a key-press and a refresh is still tolerable by users for interactive

word editing. Even after the migration completes, the lower RTT does not yield a direct
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Total Time Copy Time Rewrite Time
Average (ms) 3.375 3.36 0.0133
Std. Dev. 0.022 0.034 0.0042

Table 3.4: Per-packet proxy overhead. We analyze the data copying and header rewriting
of all packets that need to go through migration proxy.
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Figure 3.13: Proxy processing overhead of TPC packet. Proxy overhead comprises of
copying network data between kernel and user-space and manipulating packets, i.e. ipt-
able rule matching and header rewriting. The left bar group demonstrates the dominating
copying overhead that is relatively constant to the number of active TCP connections.

benefit since the slow refresh rate, which is adequate to capture screen activities, is the

dominant contribution to the response time.

Results: Migrating a desktop VM trans-continentally takes about 4 minutes depending

on the workload while incurring 2.5 to 2.8 secs pausing time. Further, not all desktop

applications see benefits from migrating to a closer cloud site, demonstrating our premise

that not all desktop applications are latency-sensitive.

3.8.4 Connection Migration Proxy Overhead

Our connection migration proxy handles TCP connection migration in the case of pub-

lic IP address change caused by WAN live migration. In this experiment, we evaluate the

overhead of running our proxy at each desktop VM, specifically the overheads of process-

ing each packet and rewriting their headers. To conduct this micro-benchmark, we have

the desktop VM connect to a server machine and establish an increasing number of TCP
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socket connections. The desktop VM then sends or receives 10,000 packets over each

socket connection and record the overheads incurred by the proxy as we increase the num-

ber of concurrent socket connections from 8 to 64. For each measurement data, We repeat

this experiment for 10 times to gather all the measurement data for results in Table 3.4 and

Fig 3.13.

The proxy overhead includes (i) data copying overhead incurred by libnetfilter Queue in

copying packets from kernel-space to user-space and copying back to re-insert packets, (ii)

matching a packet to rewrite rules, and (iii) rewriting packet headers. Table 3.4 depicts the

per-packet overhead incurred by the proxy across all runs. As shown in the table, our user-

space proxy adds a 3.37ms processing latency to each outgoing and incoming packet, and

13.2 µs packet header rewriting-related latency. This means that 98.5% of the additional

latency is due to the overhead of copying packets between kernel and user space; the table

shows a mean 3.36ms overhead of data copying. This overhead can be eliminated by mov-

ing the proxy implementation into kernel space. Figure 3.13 depicts the total processing

time and copying overheads as the number of connections varies from 8 to 64. As expected,

the per-packet copying overhead is independent of the number of connections. So is the

overhead of rewriting headers for a given packet. As the number of connections grows, the

number of rewrite rules grow in proportion, so the overhead of matching a packet to a rule

grows slightly, as shown by the slight increase in the total processing overhead; this total

overhead grows from 3.485ms to 3.976ms. Note that our implementation uses a naı̈ve lin-

ear rule matching algorithm and this overhead can be reduced substantially by using more

efficient techniques such as those used in routers to match ACLs.

Result: The dominant overhead of our proxy is due to data copying between kernel and

user-space, with relatively efficient per-packet header rewrites and rule matching.
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Figure 3.14: Illustration of a series of migrations to improve the performance of Desk-
top VMs. We consider a simplified scenario with two cloud locations, one is closer and the
other is further to our thin clients in Massachusetts. VMShadow automatically identifies
and prioritizes latency-sensitive desktop VMs, i.e. VDs that run local video and online
streaming applications, and migrates them to the US-East cloud location. To accommodate
latency-sensitive VMs in a resource-constrained cloud location, VMShadow reclaims the
resource by migrating non latency-sensitive VDs to further cloud.

3.8.5 VMShadow Case Study

Last, we evaluate and show the work progress of VMShadow in fingerprinting and

assigning latency-sensitive scores, and using WAN live migrations in resolving complex

scenarios for improving the VDs’ performance. The series of migration are depicted in

Figure 3.14.

In this experiment, we consider three different types of applications, i.e., local video,

text editing and online streaming running inside four identical VMs. For experimental pur-

pose, we constrain US-East and US-West sites to both have a capacity of hosting 4 VMs

each. Initially only the word editing VM is located at US-East, while the other three are

located in US-West. At time T1, V M1 and V M2 with local video and online streaming are

ranked high as latency-sensitive and VMShadow triggers their migrations to closer Virginia

cloud site. At time T2, two new desktop VMs, i.e. V M5 and V M6, running video applica-

tions are requested and started in Oregon data center. Both of these VMs are also flagged

as latency-sensitive and V M5 is assigned higher latency-sensitive score. To accommodate

both of these two VMs in the Virginia data center (currently only has capacity for one more

VM), VMShadow first migrates higher rank V M5 while at the same time reclaims resource
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Figure 3.15: Performance case study of migrating different latency-sensitive VMs. De-
cisions are made to migrate VM1 and VM2 to US-East, to be closer to user. When US-East
is resource-constrained, low-ranked VM3’s resources are reclaimed by migrating it back to
US-West to free up resources for latency-sensitive VM2.

by moving lower ranked V M4 running text editing from Virginia to Oregon. At time T3 after

V M4 has been successfully migrated, VM-Shadow then continues the process of migrating

V M6. At time T4, we repeat the event of requesting a new virtual desktop for the user to

watch a video streamed from YouTube. This leads to another swap between the newly re-

quested online streaming V M7 in US-West and the slightly lower ranked V M1 in US-East.

Eventually at time T5, we end up having all the highly ranked desktop VMs running close

to their end-users on the east coast, with lower ranked VMs running in US-West.

Figure 3.15 depicts the VNC response time for the three desktop VMs running different

applications, before, during and after their migrations in the above scenario. As shown, the

first two VMs have latency-sensitive video activities, and the VNC performance improves

significantly after a migration to the US east coast (from 300ms to 41.7ms). The third VM
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has document editing activity, which does not suffer noticeably despite a reclamation and

a migration to west coast, which is further away to its user.

Results: In this case study, we demonstrate VMShadow’s ability to discriminate be-

tween latency-sensitive and latency-insensitive desktop VMs and to trigger appropriate

WAN migrations to improve VNC response time in an artificially constrained cloud en-

vironments.

3.9 Related Work

The problem of placing VMs in data centers has been extensively studied. However,

much of the focus has been, and continues to be, on placing VMs within a given data center.

Approaches include devising heuristic algorithms [17, 65] or formulating placement as a

multi-resource bin packing problem [40]. Others [133] have even proposed placement and

migration approaches that minimize data transfer time within a data center.

Placement of VMs in a distributed cloud is complicated by additional constraints such

as the inter-data center communication cost [30, 137, 155, 156, 171]. For example, Steiner

et al. [156] demonstrate the challenges of distributing VMs in a distributed cloud using

virtual desktop as an example application. There have been a few recent efforts aimed at

addressing placement in the distributed cloud [9, 69, 70]. These approaches aim to opti-

mize placement using approximation algorithms that minimize costs and latency [9], or

through greedy algorithms that minimize costs and migration time [69, 70]. In this work,

we dynamically place desktop VMs according to their latency-sensitivities. We seek to bal-

ance the performance benefit with the migration cost by taking multiple dimensions into

account, including the virtual desktop user behavior, traffic profiles, data center locations

and resource availabilities.

It has become a common practice to pair thin clients, devices with limited computa-

tion resources, with remote servers to accomplish compute-intensive tasks [45, 140]. The

network distances between these remote servers and thin-clients directly impact user per-

58



ceived performance and is a crucial metric in determining VM placement, especially for

latency-sensitive applications. There has been prior work that evaluated the efficiency of

thin-client computing over the WAN and showed that network latency is a dominant factor

affecting performance [33,99]. More recently, Hiltunen [79] et al. proposed per-user mod-

els that capture the usage profiles of users to determine placement of the front-ends and

back-ends in a desktop cloud.

The ability to manipulate the VM locations agilely, either by cloning [97, 98] or mi-

grating, is the primitive that allows us to adapt to changing latency-sensitivity of VMs.

Virtualization platforms provide mechanisms and implementations to achieve LAN live

migration with minimal disruption [39, 122]. Multiple efforts [29, 83, 87] have also sought

to improve efficiency by either minimizing the amount of data transferred [87] or optimiz-

ing the number of times data was iteratively transferred [29].

Disruption-free WAN live migration [28,80,165,167] is challenging due to lower wide

area bandwidths, larger latencies, and changing IP addresses. Moreover different cloud

locations can run different virtualization platforms. Xen-Blanket [165] provides a thin

layer on top of Xen to homogenize diverse cloud infrastructures. CloudNet [167] pro-

posed multiple optimization techniques to dramatically reduce the live migration downtime

over the WAN. It also tried to solve the problem of changing IP addresses by advocating

“network virtualization” that involved network routers. Others [76] have suggested using

Mobile IPv6 to reroute packets to the new destination. There have also been several pro-

posals [2–4,126] that attempt to address the general problem of seamless handover of TCP

connections across IP address changes. In general all these approaches require changes;

either to the applications, the network, or both. In our work, we implement a prototype

of VMShadow in Xen by reusing some ideas from CloudNet [167] and Xen-Blanket [165]

and use a light-weight connection migration proxy that rewrites packet headers to cope

with IP address changes and also to penetrate NATs.
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3.10 VMShadow Summary

In this chapter, we presented VMShadow, a system that automatically optimizes the

location and performance of VM-based desktops, with dynamic changing needs, running

different types of applications. VMShadow performs black-box fingerprinting of a desk-

top VM’s network traffic to infer latency-sensitivity and employs a greedy heuristic based

algorithm to move highly latency-sensitive desktop VMs to cloud sites that are closer to

their end-users. We empirically showed that desktop VMs with multimedia applications

are likely to see the greatest benefits from such location-based optimizations in the dis-

tributed cloud infrastructure. VMShadow employs WAN-based live migration and a new

network connection migration protocol to ensure that the desktop VM migration and subse-

quent changes to the VM’s network address are transparent to end-users. We implemented

a prototype of VMShadow in a nested hypervisor and demonstrated its effectiveness for

optimizing the performance of VM-based desktops in our Massachusetts-based private

cloud and Amazon’s EC2 cloud. Our experiments showed the benefits of our approach

for latency-sensitive desktops VMs, e.g. those that are running multimedia applications.
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CHAPTER 4

PROVIDING GEO-ELASTICITY FOR MULTI-TIER
APPLICATIONS

Cloud-based Internet applications are serving geographically distributed clients. As a

result, cloud platforms, when provisioning resources, not only need to handle temporal

workload variations but also spatial dynamics to satisfy a certain level of performance. In

this chapter, we present GeoScale that combines model-driven proactive provisioning with

agile reactive provisioning to handle long- and short-term spatial and temporal workload

variations. GeoScale runs on top of public distributed clouds and provides a new property

called geo-elasticity that can provision application server capacity at any cloud location

based on the observed workload dynamics.

4.1 Motivation

Today’s cloud platforms provide numerous benefits to hosted applications such as a

pay-as-you- go cost model and flexible, on-demand allocation of resources. Since many

Internet applications see a dynamically varying workload, a key benefit of a cloud plat-

form is its ability to autonomously and dynamically provision server resources to match a

time-varying workload—a property that we refer to as elasticity. Cloud platforms such as

Amazon support elasticity in the form of “auto-scaling” [10] where an application provider

can choose thresholds on any system metric to automatically scale server capacity during

workload spikes.

Modern cloud platforms are becoming increasingly distributed and offer a choice of

multiple geographic sites and data centers to application providers to host their applications.
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A distributed cloud that offers a choice of multiple locations to host cloud applications

provides two key benefits. First, an application provider can choose a location closest to

its user base to optimize user-perceived performance. Second, for those applications that

have its users spread across multiple geographic regions, such a distributed cloud offers the

possibility of hosting application replicas at multiple cloud sites so that users in a region

can be serviced from the closest application replica.

An Internet application that services a geographically diverse user base will experience

a dynamically varying workload, and the workload will include both temporal and spatial

variations. Temporal variations include fluctuations over multiple time-scales such as time-

of-day effects, seasonal time-of-year effects as well as sudden load spikes due to flash

crowds. Spatial variations in the workload occur since the application may be more popular

in one region (e.g., country) than another, the user growth may differ from one region to

another, and regional events (e.g., local festivals or local news stories) may cause spikes

in one region without impacting the workload in other regions. These spatial effects are

depicted in Figure 4.1, which shows the client distribution of Gowalla, a popular social

application, and illustrates the global client base of such applications [38]. Figure 4.1a

shows that the application is more popular in certain regions such as North America and

Europe and less popular in regions such as Asia. Figure 4.1b shows the month-to-month

growth of users seen by the application. It shows that growth from users in Asia is higher

than users growth in other regions. The figure also shows that the rate of growth fluctuates

from month to month; for example, there is a spike in users from Europe in October, while

there are some months where the number of users from some region sees a negative growth

(i.e., a decline) while other regions see positive growth. While techniques for handling

temporal variations in user traffic have been studied [153], provisioning techniques for

handling both temporal and spatial fluctuations in the workload are needed for applications

with a geographically diverse user base.
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In this chapter, we argue that a distributed cloud platform should support geo-elasticity

to efficiently meet provisioning needs of Internet application with geo-dynamic workloads.

Geo-elasticity enables the cloud platform to autonomously vary the cloud locations host-

ing application replicas as well as vary the number of application servers at each location

to handle both temporal and spatial variations in the workloads. Much of the prior work

on dynamic provisioning focuses on local elasticity mechanisms within a single data cen-

ter [102,152,153], which is sub-optimal for geo-dynamic workloads since it does not allow

the set of cloud locations that host the application to vary dynamically. We design a sys-

tem called GeoScale to addresses these challenges. In doing so, we make the following

four contributions: First, we present a geographic profiling and forecasting technique that

monitors the workload of a cloud application, geographically clusters the workload into

the cloud locations, and employs time- series forecasting to predict the future workload

across regions. Second, we present a new geo-elasticity technique that can handle dynam-

ics in both the volume and geographic distribution of application workloads. At the core

of our approach is a queuing-theoretic model that is seeded with empirical measurements

to determine the server capacity needed at each cloud location. Third, we design proac-

tive and reactive algorithms for geo-elasticity that incorporate our workload forecasting

and capacity modeling techniques. Broadly our proactive approach provisions capacity at

longer time scales while our reactive approach is able to handle capacity allocations for

unpredictable or unexpected workload changes. Finally, we present a prototype implemen-

tation of GeoScale and conduct a detailed experimental evaluation of our system by using

Amazon EC2 distributed cloud to run representative applications and PlanetLab nodes to

inject a geographically diverse workload. Our experimental results show 13% to 40%

improvement in the 95th percentile response time when compared to traditional elasticity

techniques. With pre-copying optimizations, GeoScale achieves fast provisioning of new

server capacity in tens of seconds.
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Data Centers

(a) Heat map of Gowalla’s geographically distributed web traffic com-
prising of 6.5 million user check-ins from Feb. 2009 to Oct. 2010.
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(b) Temporal and spatial variations exhibited by Gowalla check-ins
dataset from Oct. 2009 to Oct. 2010.

Figure 4.1: Geo-dynamics seen by the Gowalla social media application’s check-ins data.

4.2 Background and Problem Statement

In this section, we first present background on distributed clouds and the application

model assumed in our work, followed by a description of the geo-elasticity problem ad-

dressed in the paper.

Distributed Clouds. Our work assumes a distributed cloud platform that comprises data

centers from different locations. The cloud platform considered is an Infrastructure-as-a-

Service (IaaS) public cloud that provides virtualized compute and storage resources, in the

form of virtual machines (VMs), to its customers. We assume that the cloud exposes ap-

plication programming interfaces (APIs) to customers to request, start, stop, and terminate

servers at a specific location; customers do not have direct access to the underlying hypervi-

sor on a physical server and must manage their VMs through the cloud’s APIs. We assume
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the cloud platform has the capability to monitor and analyze the incoming workload of an

application to determine both the geographic distribution and the temporal variations in the

workload.

Application Model. Our work targets multi-tier web-based applications that service a

distributed diverse client base. The application employs a front-end tier that implements

the application logic and a back-end tier that stores application data, often in a database.

We assume the application—either with both tiers deployed inside a single VM or separate

VMs—is designed to be replicable. That is, we can spawn multiple VMs, each housing

a replica of the application (or one of its tiers). We further assume the task of maintain-

ing consistency among back-end replicas is handled by application using any method that

suits its need. For example, application can draw upon techniques [94, 130, 139] used by

master-slave databases, multi-master databases, or database middleware systems that offer

a spectrum of tradeoffs between costs and performance.

(Geo-)Elasticity. In this work, we consider cloud-based elasticity mechanisms that au-

tonomously provision the server resources on behalf of application. We look at both model-

based and reactive provisioning techniques that enable horizontal scaling by dynamically

replicating the applications VMs. For reactive provisioning, application providers are as-

sumed to specify thresholds on performance metrics such as request rate, response time or

server utilization. The cloud platform then monitors any threshold violations to allocate or

deallocate server capacities within each data center. We refer to this traditional form of elas-

ticity as local elasticity. However, local elasticity is suboptimal for applications that have

geographically-diverse user base since it fails to consider spatial workload variations. We

propose geo-elasticity, a mechanism that dynamically provisions server resources at any

geographic location when needed by taking both temporal and spatial workload variations

into consideration. Geo-elasticity enables better user-perceived performance by allowing

resources to be provisioned closer to clients, rather than being constrained by the current

set of cloud sites that host an application. The goal of our work is to design and imple-
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Figure 4.2: GeoScale architecture. GeoScale is comprised of three key components, 1)
workload monitoring, profiling, and forecasting engine, 2) model-driven proactive and re-
active geo-elastic provisioning algorithms, and 3) geo-elastic cloud provisioning and copy-
ing engine.

ment such a geo-elasticity technique into a distributed infrastructure cloud platform; while

we currently implement our approach as a cloud middleware, our techniques are easily

integrated into the cloud platform fabric. We also compare our approach with a manual

approach of choosing cloud sites and a CDN-based approach.

Formally, the geo-elasticity problem can be stated as: given an application servicing

clients C = {c1,c2 . . .cn}, we wish to provision a set of servers S = {s1,s2 . . .sp} among

a set of cloud locations L = {l1, l2 . . . lk} such that an application-specified SLA metric is

satisfied and the average client end-to-end response time is minimized.

4.2.1 GeoScale System Architecture

We design GeoScale, as depicted in Figure 4.2, to provide geo-elasticity in distributed

clouds. GeoScale is implemented as a middleware layer that uses cloud APIs to program-

matically provision servers on the behalf of cloud applications to handle workload dynam-

ics. The workload monitoring, profiling and forecasting engine is responsible for monitor-

ing the incoming request, creating a geographic profile of the workload using clustering

techniques, and then employing time-series forecasting techniques to predict the future

workload based on the recent history. GeoScale supports two provisioning algorithms:
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the proactive provisioning algorithm handles long-term provisioning based on future fore-

casts, while the reactive provisioning algorithm reacts to short-term workload dynamics,

unexpected workload spikes and even forecast errors, all of which may need additional ca-

pacity, beyond that provisioned by the proactive method. The algorithms are model-driven

and use queueing models of the application behavior to provision sufficient capacity to

meet the application-specified SLA. Finally both the copying and provisioning engines use

cloud APIs to perform on-demand data copying or lazy pre-copying, to deploy servers at

chosen cloud sites or make adjustments to the number of servers.

We describe the design and implementation of three key components of GeoScale in

Section 4.3 and Section 4.4, followed by a detailed experimental evaluation in Section 4.5.

4.3 Providing Geo-Elasticity Using GeoScale

4.3.1 Workload Monitoring, Profiling and Forecasting

Workload Monitoring. We assume that GeoScale has access to a log of the application’s

incoming requests at each data center location that houses a replica of the application. The

incoming request stream at each site can be logged either at a load balancing switch that

distributes incoming requests to front-end replicas, or can be constructed by periodically

aggregating request logs directly from each front-end replica (e.g., apache web server logs).

We assume that request logs contain information such as a time-stamp, client IP address,

requested URL, service time and response time seen by that request.

Geographic Workload Clustering. Given a request trace from each site, GeoScale first

translates each client IP address to the client’s geographic location using IP geolocation.1

The client locations are then mapped to pre-configured geographic bins that are specified

by application provider. Each bin represents a certain geographic region and could be con-

figured at different granularity based on the level at which the workload needs to be moni-

1GeoScale uses Maxmind [111] GeoIP location service.
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tored. For instance, a bin may represent an entire city such as Los Angeles, or a state such

as Massachusetts, or larger regions such as countries or even continents. GeoScale uses

the specified bins to track the workload from the corresponding geographic regions. Next,

GeoScale calculates the geographic distances d, as a proxy for network distance [123], be-

tween each bin—represented by a weighted center of all requests within the bin—and data

center pair by using the Heversine formula [1]:

a = sin2(
∆φ

2
)+ cosφ1 · cosφ2 · sin2(

∆ϕ

2
)

d = 2R · arcsin(min(1,
√

a))
(4.1)

where φi and ϕi represent the latitude and longitude of location i and R is the mean radius

of earth. This yields a sorted list of data centers, in ascending order of distance, for each

geographic bin.

Iterative greedy clustering then proceeds by assigning each geographic bin( and its

traffic volume) to the closest cloud data center. Once all bins have been mapped to a data

center, the clustering algorithm sums the application traffic assigned to each data center. If

a data center does not receive sufficient traffic (less than a threshold τ) to justify deploying

an application replica, it is removed from the sorted list of the corresponding bins. The

mappings between geographic bin and data center are updated with the new sorted lists.

This greedy iterative clustering process continues until each bin has a mapping to the closest

possible data center such that all data center locations have at least a threshold τ amount of

traffic mapped onto them.

We also formulate the problem of determining a mapping Xi j between a geographic bin

i and a cloud location j as an Integer Linear Program(ILP) as following:

68



Minimize
M
∑

i=1

K
∑
j=1

wiXi jDi j

Subject to
M

∑
i=1

Xi jTi ≥ τ ∀ j = 1 . . .K (4.2)

K

∑
j=1

Xi j = 1 ∀i = 1 . . .M (4.3)

Xi j ∈ {0,1} ∀i = 1 . . .M, j = 1 . . .K (4.4)

where Xi j is a binary variable that is set to 1 if ith bin is served by jth cloud location and

set to 0 otherwise. Di j denotes the distance between ith bin and jth cloud location, and

Ti represents ith bin’s traffic volume. Constraint (4.2) ensures the chosen cloud location

receive a threshold τ amount of traffic; Constraints (4.3) and (4.4) together ensure that each

bin is mapped and to one cloud site only. The objective function minimizes the weighted

latency among all regions by assigning weights wi that are proportional to Ti.

Workload Forecasting. The final step is to employ workload forecasting to determine

the future (peak) workload that will be seen by each cloud site based on the above map-

ping. Any workload prediction or forecasting technique can be used for this purpose [78].

GeoScale uses a simple approach that aggregates the workload traces from each bin that is

mapped onto a cloud location to determine an aggregate workload trace for that location.

The trace yields a time series of previous request rates and the time series can be modeled

as an ARIMA time series to forecast the future load; the peak of the future predictions is

chosen as the maximum load that will be seen by that cloud location for the application.

An alternate approach is to combine the request traces from all bins mapped to the cloud

location to generate an aggregate request trace and compute a workload distribution from

this aggregated trace. The workload distribution is a probability distribution of request rates

and the likelihood of seeing that request volume. A high percentile (e.g., the 95th or the

99th percentile) of this distribution can be chosen as the peak workload likely to be seen by
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this data center based on past observations. In either case, we obtain a prediction λ
p
j of the

peak workload that will be seen by jth cloud location and the provisioning algorithm must

then provision sufficient capacity to handle this workload and meet the application’s SLA.

4.3.2 Proactive Geo-Elastic Provisioning

GeoScale supports two types of geo-elastic provisioning, i.e., proactive and reactive,

to handle workload dynamics at different time scales. In this section, we first describe

proactive provisioning that operates at longer time scales of hours or days and provisions

server capacity to handle long-term workload trends observed at these time scales. We

discuss reactive provisioning next in Section 4.3.3.

Varying Cloud Locations. Proactive provisioning uses the workload predictions from

the previous section to drive the provisioning algorithm. Note that the previous step maps

workloads from each geographic region or bin to the closest possible cloud location. In a

scenario where an application rises in popularity in a new geographic region, the newly ob-

served workload may get mapped to a new cloud location, causing proactive provisioning

to start up one or more servers at this new location. Similarly a diminishing workload from

a region may cause servers at a current location to be shut down, with the residual traffic

from that region redirected to another existing close cloud location. Thus, proactive provi-

sioning provides geo-elasticity by using observed changes in the spatial distribution of the

workload to vary the number of cloud locations that house replicas of the application. This

is in addition to handling changes in the temporal distribution in load at existing locations,

which is handled by scaling the number of servers at those sites up or down.

Deriving Server Capacity. GeoScale employs a model-driven approach for its proactive

provisioning algorithm. To determine the server capacity (i.e., number of servers) required

at each location, let λ
p
j denote the peak workload that will be seen by this location j as per

the workload forecasting engine. We employ a G/G/1 queueing model of an individual

server to determine the maximum request rate λ c
j that can be serviced by a single cloud
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server without violating the application’s SLA. We use Kingman’s theorem [90] for G/G/1

queue under heavy traffic that states waiting time W is an exponential distribution with

mean E[W ] =
σ2

a+σ2
b

2( 1
λ
−x̄)

; where σ2
a and σ2

b denote the variance in the requests inter-arrival

time and service time, and λ and x̄ represent the request arrival rate and mean service time

seen by this queueing system. Suppose SLA y is defined as the 95th percentile of server

response time, we derive the upper bound on the maximum rate λ c
j under heavy traffic

as shown in Equation (4.5). A sketch of the derivation is provided in Appendix A and

additional details can be found in [72].

λ
c
j <

[
x̄ j +

3(σ ja
2 +σ jb

2)

2
(
y− x̄ j

)
]−1

(4.5)

Obtaining Server Statistics. GeoScale uses empirical measurements from the workload

monitoring component to estimate the variance of inter-arrival times and service times of

requests σ ja
2 and σ jb

2. The request service times x̄ j at location j can be computed from

server logs or measured by profiling the application on the server; if location j is a new

location with no previous history, the observed service time from an existing nearby cloud

location can be used as the initial estimate. The SLA y is specified by the application

provider as the upper bound of response time that should not be violated, in our case 95th

percentile of server response time. Since all terms of Equation (4.5) are either known or

empirically measured, we successfully obtain the maximum request rate λ c
j that can be

handled by a single server.

Calculating Server Numbers. We calculate the number of servers S j required at location

j to handle a peak request rate of λ
p
j in Equation (4.6). If S j is greater than the current

number of servers Ŝ j provisioned at location j, then the provisioning algorithm needs to

scale up capacity by allocating (S j − Ŝ j) additional servers. If S j < Ŝ j, then capacity is

scaled down by deallocating (Ŝ j − S j) servers. If Ŝ j = 0, this is a newly chosen cloud

location for the application, and S j new servers need to be started up at this location j. At

the end of proactive provisioning, Ŝ j is set to S j,
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S j =

⌈
λ

p
j

λ c
j

⌉
. (4.6)

4.3.3 Reactive Geo-Elastic Provisioning

GeoScale employs reactive provisioning to make agile changes to the long-term capac-

ity provisioned by the proactive algorithm—to handle any unexpected workload surges or

to correct for errors in the predictions used by the proactive algorithm. GeoScale supports

two forms of reactive provisioning: local and global. Local reactive provisioning is the

simpler of the two and is used to make local adjustments to the capacity at a local cloud

site—independently of application replicas at other locations. Local reactive provisioning

is useful when there are changes in the volume of workload arriving at a cloud location but

the overall geographic distribution of the workload remains (mostly) unchanged. Local re-

active provisioning is triggered when response time SLAs are violated at one or more local

cloud servers. GeoScale then estimates the new workload λ n
j arriving at the current loca-

tion j and determines the new server capacity needed to handle this workload as Sn
j = d

λ n
j

λ c
j
e

and provisions an extra (Sn
j − Ŝ j) servers for the application.

GeoScale also supports a more sophisticated global reactive provisioning approach that

takes a holistic view of all the cloud locations upon being triggered, rather than just mak-

ing capacity changes at a single local site. Global reactive provisioning is useful when the

application experiences a sudden change in its geographic workload distribution (possibly

in addition to changes in request volumes). GeoScale’s global reactive provisioning al-

gorithm requests the newly observed workload from the workload monitoring engine and

obtains the current request rates emanating from each geographic region (or bin). It then

checks for deviations in the workload observed in each geographic regions and the pre-

viously predicted peak workload for that region—to determine which region caused the

SLA violations to occur. The algorithm then provisions new server capacity for the extra

workload at a cloud site that is closest to each such region. Observe that this may cause
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the reactive approach to spawn new replicas at new cloud locations that did not previously

host the application (yielding reactive geo-elasticity). Since reactive provisioning must be

agile (to handle SLA violations that are already occurring), the ability to quickly provision

new capacity at a new cloud location depends on whether the VM images (and data) for

the applications are already pre-copied to that region. If images or data are not available,

it may be faster to provision capacity at another nearby location that already houses an

application replica, rather than at the optimal cloud site (since application images and data

are already present at that site, new servers can be quickly provisioned). As noted below,

GeoScale pre-copies application VM images and data in the background to new locations

to reduce the replica startup times for proactive and reactive provisioning—which allows

for global reactive provisioning to be more effective in such scenarios.

4.3.4 Agile Provisioning Using Precopying

The goal of GeoScale’s provisioning engine is to actually scale server capacity up or

down as dictated by the proactive or reactive algorithms. To do so, the provisioning engine

assumes that the virtual machine disk image and copies of all network storage volumes

holding application data are available to it. To add a new server to an application, the

provisioning engine first uses the cloud APIs to start a new server from the VM image.

Once the server starts up, any additional network storage volumes may be attached to the

server (by first making a snapshot and a copy of the additional storage volume). The newly

started server is then added to the pool of application replicas at that site—for instance, by

adding it to the pool of servers that are served by a front-end load balancing switch.

The latency involved in provisioning a new server for the application depends on whether

the VM image and disk data are already available at desired cloud site. If so, provisioning

times depend on the time needed by the cloud platform to spin up a new server, followed

by a small configuration overhead. If not, the VM image and application data must first be

copied over from another cloud site where it is available—in this case, provisioning latency
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is dominated by cross-data center data copying overheads, which can be substantial if the

application disk state comprises tens or hundreds of gigabytes of data. To reduce such la-

tencies, GeoScale employs a lazy pre-copy optimization where it takes periodic snapshots

of application’s VM disks and lazily copies them in the background to new sites that are

likely to house this application’s replicas in the future. The choice of future sites require

manual input from the application provider or involve making intelligent guesses based on

which geographic regions are seeing steady workload increases. The pre-copying process

involves two steps: (i) GeoScale takes an application-agnostic snapshot of its disk volume

and periodically takes incremental snapshots of subsequent changes and lazily transfers

these snapshots to each potential future cloud site in the background; (ii) block-level deltas

are used, in place of sending entire blocks, when disk blocks see small changes to their

data. In either case, if data has already been pre-copied to a location, the VM disk state

can be quickly reconstructed by transferring any incremental changes since the most recent

pre-copying and a new server is started using this reconstructed disk image. If pre-copied

data is not available, GeoScale initiates a full transfer of the VM disk image and any other

application data volumes to the new site and starts up the new server once the data has been

copied to the new site. The latter method is acceptable for proactive provisioning since it

allocates capacity over long time-scales, but may not be desirable for agile reactive pro-

visioning that needs to quickly scale up capacity. As noted earlier, in this case, GeoScale

may choose to start up new servers in the other nearby location where VM disk images are

already available, rather than copying data.

4.3.5 Discussion

Unlike traditional provisioning that uses a static set of cloud location, GeoScale might

introduce performance overhead from DNS lookups. Here, we discuss when such overhead

can happen and the impact on client response time.
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Whenever GeoScale makes provisioning plans that involve changing the set of active

data centers, i.e., data centers that host application servers, it also decreases the time-to-live

(TTL) value of DNS records on an authoritative name server. A shorter TTL value causes

downstream DNS servers and caches to expire records faster. Therefore, DNS lookups can

take longer, e.g., taking 1 second instead of 100 ms [7], because downstream caches might

have expired. When cached DNS requests expire, lookup requests have to travel all the

way to an authoritative name server. Note that, this type of DNS lookups will only happen

once every TTL seconds, and once DNS records are cached on intermediary transit path,

subsequent lookups within TTL seconds can still benefit from caching. In addition, each

client will only need to perform at most d T T L
Tsession

e DNS lookups where Tsession is the duration

of each HTTP session. Because sessions can have many requests, overhead associated with

DNS therefore can be amortized across all requests.

Once a domain name is resolved to a public IP address of newly provisioned servers,

client requests can then be routed and serviced at the closest cloud location, avoiding unnec-

essary network latency. Overall, the performance overhead caused by slower DNS lookups

is minimal and is offset by hundreds of milliseconds network reductions for every client

request.

4.4 GeoScale Implementation

We have implemented a prototype of GeoScale on Amazon’s EC2 cloud. GeoScale is

written in Python and Java, and is implemented as a middleware that uses EC2 APIs to

provide geo-elasticity to applications across Amazon’s global network of cloud data cen-

ters. GeoScale runs daemons on each of the application’s servers to collect system statistics

by using standard Linux utilities, e.g. sar. The application-level information is collected

from application logs. We modified the Apache Tomcat server to log request service times,

in addition to standard information such as response times and client information. If the

application uses a load balancing software component, request logs can be gathered from
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Name Location Latitude Longitude Time Zone built(yrs)

us-east-1 Virginia 38.13 -78.45 UTC-05:00 2006
eu-west-1 Ireland 53.00 -8.00 UTC+00:00 2007
us-west-1 California 41.48 -120.53 UTC-08:00 2009
ap-southeast-1 Singapore 1.37 103.80 UTC+08:00 2010
us-west-2 Oregon 46.15 -123.88 UTC-08:00 2011
ap-northeast-1 Japan 35.41 139.42 UTC+09:00 2011
sa-east-1 Brazil -23.34 -46.38 UTC-03:00 2011
ap-southeast-2 Australia -33.86 51.20 UTC+10:00 2012

Table 4.1: Amazon’s Distributed EC2 Cloud

this component, rather than from application logs at each server replica. All monitored

data is sent to a central GeoScale server for archiving and further analysis. GeoScale uses

the GeoIP-location service to map clients’ IP addresses to their geographic locations and

stores historical workload, system utilization and application-level information in SQLite

database residing in the central node. GeoScale employs off-the-shelf ARIMA time-series

model from Python’s StatsModels to predict the future workload for the application and

uses our geographic workload clustering to generate temporal and spatial workload distri-

bution for the application. Periodically, GeoScale analyzes the predicted application work-

load distribution, and upon identifying either temporal or spatial changes, it uses proactive

provisioning algorithm to determine a new set of cloud locations and the queueing model to

estimate the number of servers needed for each location. Both the provisioning and copy-

ing engines are then invoked to spawn new servers or terminate existing ones using boto,

an Amazon web service APIs. In the case of reactive provisioning, GeoScale makes trade-

off between provisioning time and achievable network latency by spawning up application

replicas only on existing set of cloud locations. Last, our copying engine uses EC2 snap-

shot techniques to create and transfer full and incremental application-agnostic snapshots

within and across data centers.
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4.5 Experimental Evaluation

We have conducted a detailed experimental evaluation of GeoScale on Amazon’s EC2

cloud. Our evaluation focuses on (i) benefits of exploiting workload dynamics, (ii) the

efficacy of our capacity model, (iii) a comparison of GeoScale to current approaches such

as using a CDN or manual choice of multiple cloud locations, (iv) efficacy of proactive and

reactive provisioning, and (v) benefits of GeoScale’s pre-copying optimizations. Next we

describe our experimental setup and then our results.

Experimental Setup. Our experiments use Amazon EC2 as our distributed cloud. As

shown in Table 4.1, Amazon offers a choice of multiple cloud locations across several con-

tinents for hosting applications; our experiments exploit this flexibility and allow GeoScale

to provision servers for applications at any location. To inject a geographically diverse

workload to the cloud-based application, we employ 101 PlanetLab nodes that are dis-

tributed across South and North America, Europe, Asia and Australia. PlanetLab nodes

are chosen primarily based on their availability at the time of experiments and their prox-

imity to data centers in Table 4.1. We run client workload generators on these nodes and

use a home-grown custom DNS service that resolves the server IP addresses, requested

by these client machines, to the nearest cloud site that hosts an application replica.2 In

addition to using geographic distance between clients and cloud servers, calculated using

IP-geolocation and Haversine formula, we also collect ground-truth network distance of

each PlanetLab node from the various EC2 data centers using empirical round-trip times

(RTT) measurements. We use fabric [55] to automate the running of our experiments.

Application Workloads. We use a java implementation of TPC-W3 as a representative

multi-tier web application for our experiments. The TPC-W benchmark emulates an online

bookstore and employs a two-tier architecture, a web server tier based on Apache Tomcat

2Any latency-based routing DNS service, such as Amazon Route 53, could be plugged-in for domain
name resolution.

3http://jmob.ow2.org/tpcw.html
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Figure 4.4: Gowalla workload’s temporal time of day effects.

and a database tier based on MySQL. The system provides a client workload generator

that we run on PlanetLab nodes to generate and inject a mix of browsing and shopping

requests. We assume that the TPC-W application uses an eventual consistency model across

replicas where updates to the product catalog of the TPC-W web-store are made in batches

and propagated using eventual consistency. In addition to using the TPC-W benchmark,

we also employ user traces (i.e., check-in request logs) from Gowalla, a location-based

social networking application [38]. The dataset comprises 6.5 million requests over a 20-

month period starting February 2009 and each request includes time-stamp and the GPS

coordinates (latitude and longitude) of user check-ins.
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(b) Performance interference causes the server capacity to vary at dif-
ferent times of the day.

Figure 4.5: Comparisons of GeoScale’s capacity Modeling with empirical measure-
ment. We observe cloud location-based and interference-based capacity variations even
for the same type of server instance.

4.5.1 Exploiting Workload Dynamics

In Figure 4.1, we showed that application workload exhibits spatial and temporal vari-

ations, and here we demonstrate the benefits of considering both spatial and temporal fluc-

tuations when provisioning capacity.

We first group the PlanetLab clients into three regions and calculate the mean RTT

seen by clients in each regions to the various Amazon EC2 data centers. Figure 4.3 shows

that network latency increases with increasing geographic distance across all three regions,

which validates our assumption that geographic distance can be used as a rough proxy

for network distance. Moreover, different client regions see smallest network latency at

different data center locations, e.g. eastern US has the best latency when serviced from

Virginia (VA) data center while Europe enjoys the best latency from the Ireland (IRL) data

center. In fact, the latency benefits for placing replicas closest to clients could be as high
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as 70% compared to the second best choice. This demonstrates that it is more beneficial to

provision replicas at cloud locations that are close to the users, rather than centralizing all

replicas at a single cloud location, which yields worse performance to distant clients.

Next we simulate the Gowalla workload by geographically binning its clients to the

closet available cloud locations. Figure 4.4 depicts the temporal variations seen by the

Gowalla workload at two simulated servers at Amazon’s California and Oregon cloud lo-

cations. The servers observe time of day effects where the workload peaks during the day

and ebbs at night—in line with the expected temporal variations in the load. These visible

time of day effects indicate that we can dynamically scale up and down the server capacity

during the day and night. Together these results indicate that exploiting both spatial and

temporal workload effects can yield significant benefits.

4.5.2 Capacity Model Analysis

To evaluate our queueing-based model, we empirically measure the capacity of Ama-

zon’s small server instances running in different cloud locations at different times of day

and compare our measurement to the model’s predictions. For each run, we host the TPC-

W multi-tier application on a small server instance in one of the cloud locations during

a particular hour and ran the clients on a nearby PlanetLab node.4 We warm-up the ap-

plication for five minutes and then steadily increase the workload until GeoScale detects

SLA violations (i.e. 95th percentile response time is greater than 1 second). We record

the corresponding request rate as the server capacity. At the same time, we collect the ap-

plication service time and request inter-arrival rate statistics and use the queueing model

described in Section 4.3.2 to estimate the server capacity. We ran this experiment with

different cloud locations and hour of day combinations and repeated the runs for 5 times

for each combination.

4The mean round-trip time between client and server is 53.63 ms.
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Figure 4.5a compares the server capacity predicted by GeoScale with the empirically

measured ones for each cloud location. The measured server capacity varies across cloud

locations, with up to a 12% difference in capacity across locations for the same type of

server. Since the data centers were built in different years (see Table 4.1), we attribute these

difference to variations in the underlying server hardware deployed at different locations.

Figure 4.5a also emphasizes the need for a separate location-specific model to fully capture

the hardware idiosyncrasies across location for the same type of server.

Figure 4.5b depicts the variations in the maximum server capacity of a small server

instance at different times of the day. As shown, the measured server capacity varies

over time and we see up to 11.6% difference in the empirically observed peak capacity

over time—with the highest observed capacity at midnight and minimum capacity around

noon. We attribute these differences to interference from other co-located VMs on each

physical server. Again GeoScale’s models make conservative predictions with accuracies

ranging from 75.19% to 97.91%. The larger 95th confidence interval around noon is as-

sociated with the significant performance interference from other co-located VMs. This

results indicate that, in the absence of strict performance isolation between unrelated VMs

on a cloud server, the parameters for our queueing-based capacity model must be chosen

conservatively—for instance, by carefully choosing parameters when there is high interfer-

ence. Doing so ensures that application SLAs will not be violated even in the worst case

scenario of cross-VM interference.

4.5.3 Comparison with a CDN

This section and then next compares our geo-elasticity approach with two current ap-

proaches: use of a CDN to service a distributed user base and use of manually chosen cloud

locations to do so. We begin with a comparison to a CDN-based approach.

In the CDN case, we assume that the TPC-W application is deployed at Amazon’s Cal-

ifornia data center and that all static content such as images are replicated in CDN servers
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Figure 4.6: A comparison of GeoScale’s geo-elasticity to a CDN-based approach.
GeoScale outperforms the CDN-based approach for both default and graphic-rich browsing
workload.

that are deployed in all regions. The client, which runs on PlanetLab node in Pennsyl-

vania, makes initial requests to the TPC-W California servers to obtain the dynamically

generated HTML page and then loads all embedded images within the HTML page from

nearest CDN server (see Figure 4.6a). In case of GeoScale, the TPC-W application is it-

self replicated across cloud locations as shown in Figure 4.6b and the client loads both

dynamically-generated page and all of its embedded static content from the closest server

(which happens to be the Virginia server for the PlanetLab client).

Figure 4.6c depicts the CDF of the response times seen by the client to load a page

and all of its content for the TPC-W browsing workload mix. Table 4.2 depicts various

percentiles of the response times for the two approaches. As shown, GeoScale outperforms

the CDN approach, with a 40.43% reduction in the 95th percentile of the response time

from 410.3 ms to 244.4 ms. Since TPC-W performs more request processing to create

dynamic content and has relatively less static content, GeoScale is able to outperform the

82



Experiment Type 25% (ms) 50% (ms) 75%(ms) 95% (ms)
CDN (default TPC-W) 150.0 198.0 275.3 410.3
GeoScale (default TPC-W) 70.0 98.0 130.0 244.4
CDN (graphic-rich TPC-W) 254.0 304.0 389.0 521.0
GeoScale (graphic-rich TPC-W) 142.8 186.5 228.0 343.2

Table 4.2: Different percentiles of the client-perceived latency for the CDN and GeoScale
approaches.
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Figure 4.7: Illustration of proactive provisioning set up and result.

CDN approach. We then increase the size of static images served by the TPC-W applica-

tion and repeat this experiment. As shown in Figure 4.6c and Table 4.2, graphic-intensive

requests increase the response times, but the gap between GeoScale and the CDN approach

decreases for more graphic-rich version of TPC-W—the benefit in the 95th percentile of

response time drops from 40.43% to 34.13%. Thus, the more graphic-intensive the ap-

plication and less dynamic content it serves, the smaller the difference between these two

methods. We also note that the two approaches are not mutually exclusive, since GeoScale

can replicate the application across cloud locations and offload its static content to a CDN,

allowing for the hybrid approach to take advantage of the larger number of locations sup-

ported by a global CDN.

4.5.4 Geo-elastic Proactive Provisioning Benefits

Provisioning Techniques. To demonstrate the benefits of GeoScale’s proactive provi-

sioning approach, we compare it with two variants of local elasticity where the choice of
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Figure 4.9: GeoScale improves the latency seen by more than half the clients over Single-
site Elasticity.

cloud locations is made manually: (i) single-site elasticity (SSE) and (ii) multi-site elas-

ticity (MSE). SSE is a centralized approach that hosts all replicates of the application at

a single cloud location, while MSE houses the application replicas at a pre-determined

static set of locations. In contrast, GeoScale has the flexibility to vary the locations that

host the application as well as the number of servers at each location. We assume all three

provisioning approaches employ the queuing model described in Section 4.3.2 to handle

temporal workload fluctuations.

Our experiment involves running TPC-W clients on PlanetLab nodes at three locations:

Pennsylvania and California in the USA and Germany in Europe. The workload generated

by these client sites is depicted in Figure 4.7a. Initially only the Pennsylvania clients send
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Figure 4.10: GeoScale’s greedy workload clustering has comparable performance to the
more expensive ILP approach.

requests to the application; at t=10 minute, the California clients start sending requests,

followed by requests from the Germany clients at t=20 minute. All three proactive ap-

proaches are able to scale up server capacity in response to the workload increase. The

main difference is where the servers are provisioned. The SSE technique centralizes all

replicas at Amazon’s Virginia (US-East) cloud location and scales server capacity from

one server to three servers at this site to handle the workload increase. The MSE approach

is configured with replicas at Amazon’s Virginia and California (US-East and US-West)

data centers and it provisions one server in California and two servers in Virginia to han-

dle the incoming workload. GeoScale’s proactive elasticity technique allocates one server

in Amazon’s Virginia data center to handle the Pennsylvania clients, followed by another

server in Amazon’s California location to handle California traffic, and a third server in

Amazon’s Ireland data center to handle the traffic from Germany as shown in Figure 4.7b.

Figure 4.8 shows the CDF of the client response times across all clients for the three

provisioning approaches. SSE has the highest response times since it uses a single cloud

location to serve global traffic, causing distant clients to see worse response times. MSE

approach uses a couple of fixed locations to host the application and is able to direct clients

to the closer of the two fixed locations, yielding better response times than SSE. GeoScale

yields the best response times since it is able to provision servers that are closest to the
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Figure 4.11: ECDF comparison of network latency. GeoScale can adapt its behaviors under
different workload scenarios. As client workload becomes increasingly geo-distributed, the
gap of network latency between ASE and GeoScale shrinks.

clients. The 95th percentile response time provided by GeoScale is around 1060 ms, a

31.17% improvement over SSE and a 13.11% improvement when compared to MSE.

Aside from the above experiment, we also use the network latency data collected be-

tween PlanetLab nodes and servers from distributed clouds to simulate the behaviors of

three provisioning techniques. We create three workload scenarios that represent work-

load characteristics of growing geo-distributed applications at different stages. Specifically,

each scenario differs in the level of spatial distribution, from fully centralized to evenly dis-

tributed among all regions. For example, in the first scenario (centralized workload), client

workloads are mostly centralized around one region with light volumes from all the other

regions. We control the aggregate amount of client workloads to each popular cloud lo-

cation to be slightly more than threshold τ , and for this simulation we fix this threshold

to be the capacity of a single server. In Figure 4.11, we plot the network latency distri-

bution and provisioning cost achieved by three different techniques. In the first scenario

(Figure 4.11a), e.g., applications that have regional popularity, GeoScale (equivalent to
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SSE) yields network latencies with a 95th percentile that is two times of the one of All-

site Elasticity (ASE), where replicas are managed autonomously within all available data

center locations. This is because GeoScale also takes provisioning costs into account, and

avoids placing servers in cloud locations that will have less than the threshold τ traffic. In

this particular scenario, GeoScale yields a 71% saving on server costs when compared to

ASE (Figure 4.11d). In the last workload scenario (Figure 4.11c), e.g. applications that

are popular among all geographic regions, GeoScale (equivalent to ASE) decreases 95th

percentile network latency from 204 ms to 72 ms, a 65% improvement. However GeoScale

will provision five more servers than SSE because GeoScale chooses to provision in six

different cloud locations. Note, these additional five servers are only lightly loaded and

have the ability to scale to larger workload volume at each cloud location. In summary,

GeoScale can adaptively provision servers in cloud locations to make trade-offs between

performance, e.g. network latency or response time, and provisioning cost, under different

workload scenarios. Such trade-offs are achieved by varying the value of threshold τ .

Cloud Location Flexibility. To further demonstrate the benefits of flexibly using all

accessible cloud locations to host application replicas for geographically distributed users,

we compare average network latencies seen by clients between SSE and GeoScale. In

Figure 4.9, we plot average network latencies of all 101 PlanetLab clients to the closest

Amazon data center in ascending order as chosen by GeoScale. We also plot the network

latency of each client to the Amazon’s Virginia data center as in SSE approach. As shown,

when provisioning capacity using SSE in Amazon’s Virginia data center, clients experience

up to 333.47 ms network latency. GeoScale is able to utilize all the available data centers

and to choose the closest location for each client, yielding up to 224.43 ms reduction in

network latency for clients.

Workload Clustering. We compare the mean network latency achieved by GeoScale’s

greedy workload clustering algorithm to that of the ILP algorithm. Both algorithms use a

same list of predefined geographic bins as well as the network latency between each Plan-

87



0 10 20 30

Time (min)

0

20

40

60

80

N
u

m
. 
o
f 

C
li

e
n

ts

PA

Predicted GER

Actual GER

(a) Client workload.

Reactive

VA VA VA

IRL IRL

(b) Global reactive.

Figure 4.12: Illustration of reactive provisioning set up and result.

etLab client and Amazon data center, to produce mapping between each bin and best cloud

location. We repeat each experiment ten times for different number of available cloud lo-

cations. Figure 4.10 depicts the mean network latency among all clients with increasing

number of cloud locations. As shown in the figure, the greedy approach exhibits perfor-

mance that is close to the more expensive ILP approach, indicating that greedy workload

clustering algorithm will yield good results in practice.

4.5.5 Geo-elastic Reactive Provisioning Performance

Next, we evaluate GeoScale’s reactive provisioning and compare CPU utilizations and

average response times differences between global and local reactive provisioning. At the

beginning of the experiment, GeoScale only provisions a single server in Virginia data cen-

ter based on the workload prediction of client traffic from Pennsylvania and Germany, as

shown in Figure 4.12a. Since the predicted traffic from Germany is too low to justify de-

ploying a server in Europe, no server is provisioned in Ireland data center. On the other

hand, the actual workload from Germany shows a steady, unexpected increase and even-

tually saturates the only server in Virginia. GeoScale detects the SLA violation at t=15

minute and therefore triggers the reactive provisioning. Local reactive approach reacts to

SLA violations by provisioning an additional server in the same data center while global
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Figure 4.13: Comparison of local and global reactive provisioning. Global reactive
provisioning leads to lower CPU utilization and better client response time compared to
local reactive one.

reactive approach obtains workload data from the workload monitoring engine, and upon

seeing the workload increase from Germany, provisions a second server in the Ireland data

center that is closest to Germany, as shown in Figure 4.12b.

As shown in Figure 4.13a, the workload increase causes the server utilization to rise and

SLA violations to increase steadily, until it reaches a point (orange circle) where reactive

provisioning is invoked. It takes longer for server utilization to drop when using global

reactive provisioning since Germany clients progressively switch to the new server due

to DNS propagation delay of around 5 minutes. Similarly, in Figure 4.13b, the response

time SLA violation also subsides faster when using local reactive provisioning at t=16

minutes. But global reactive provisioning achieves lower mean response time since it is

able to provision the server closer to where the workload increase is seen.
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(a) By pre-copying a VM image that includes a 100GB database, GeoScale re-
duces the provisioning delay from 198.8 minutes to 355.6 seconds (for 1 GB
delta), 181.4 seconds (for 0.5 GB delta), or 42.5 seconds (for 0.1 GB delta).
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Figure 4.14: Benefits of pre-copy optimizations.

4.5.6 Pre-copying Optimization Analysis

GeoScale employs three optimizations for fast geo-elastic provisioning (i) pre-copying

large VM image (ii) dynamically choosing data center pairs for pre-copying based on avail-

able bandwidth (iii) using Amazon EC2 storage volumes for transferring incremental data.

In our final experiment, we justify our choice of optimizations based on the huge reduction

in provisioning time. We use TPC-W applications configured with different database sizes,

i.e. 10GB, 50GB and 100GB. We measure the operation time of GeoScale equipped with

three optimizations and compare the results with those of the alternatives.

Pre-copying Large VM Image. In order for GeoScale to provision an application replica

at a new cloud location, it must have access to VM disk image as well as any additional data

volumes, such as database, at that location. For applications with large amounts of data,

this can result in a long delay in finishing geo-elastic provisioning in the absence of the
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data. Our first optimization aims at pre-copying VM with large amount of data to cloud lo-

cations that are likely to host future replicas. Precopying a VM image to a new location in-

volves two main steps: (a) create a snapshot, e.g. using Amazon’s ec2-create-snapshot,

and (b) copy snapshot from one cloud location to the new location, e.g., using Amazon’s

ec2-copy-snapshot or rsync utility.

Figure 4.14a plots the preparation time to provision an application replica at a new

location, i.e., Ireland data center, with and without GeoScale’s pre-copying optimization.

Without pre-copying data into Ireland, the process takes around 200 minutes to finish as

shown in the leftmost bar group. By pre-copying the VM data periodically, only the incre-

mental changes since the most recent pre-copying operation need to be transferred, there-

fore could significantly reduce the preparing time for provisioning. The zoomed-in figure

in Figure 4.14a depicts three scenarios where a delta of 1GB, 0.5GB and 100MB need to

be transferred prior to starting up the VM; the observed latency ranges from 355.6 seconds

to 42.5 seconds, allowing the replica to be provisioned in minutes, rather than hours.

Dynamic Source Site Selection. While Amazon’s data centers have well-provisioned

network links between them, we observe significant differences in the amount of bandwidth

available (and hence the latency to pre-copy a certain amount of data) between different

pairs of Amazon data centers. Figure 4.14b compares the time to pre-copy application-

agnostic snapshots of various sizes from Amazon’s Virginia data center to its Ireland or

California locations using ec2-copy-snapshot. It only takes 3510 seconds to copy a

100GB disk image to Ireland, while it takes 7629 seconds to copy the same disk image to

the California location. This observation justifies the need to dynamically choosing pre-

copy source site based on available bandwidth to further optimize the provisioning time.

Using EBS Volumes. Amazon provides two different ways to store application data, i.e.

EBS storage volumes and S3 storage service. We explore the operation time differences

in pre-copying data using ec2-copy-snapshot operation through EBS and S3 cp operation

from Amazon’s Virginia data center to its Ireland location. Figure 4.14c shows the overhead
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of these two different methods to prepare VM data for provisioning .The result shows that

the use of EBS to copy incremental data is, on average, 70.53% faster than using S3 for all

three data sizes. This is not surprising, since EBS volumes are more expensive, and also

offer better performance. Finally, this supports our optimization of using EBS volume to

precopy VM data.

4.6 Related Work

Virtualization and Application Elasticity. Early work in elasticity focused on using

virtualization platforms to support elasticity by dynamically adjusting the resources allo-

cated to virtual machines. VM-based elasticity mechanisms include “scale up” [92] tech-

niques using VM live migration [39] or “scale out” [97] techniques by spawning repli-

cas locally or in the public cloud [109]. Our work focuses on a scale-out scenario and

enhances prior work to handle cross-data center elasticity, where VMs can be spawned

in multiple data centers. Application-level elasticity has been studied extensively in the

context of databases; proposed techniques include the use of live database migration tech-

niques [49, 51] for relational database and stop and migrate techniques [42] for key-value

stores. Performance-aware replication of data in geo-distributed cloud stores has also been

studied in this context [127]. Other related efforts target specific scenarios for elasticity that

include transparent load balancing [102, 141] by moving per-flow state in the middle-box

or rebalancing data among cloud storage systems.

Model-driven Approaches. Past work on model-driven techniques have focused on clus-

tering techniques such as k-means [62, 153] or independent component analysis [148] to

characterize dynamic workload or workload spikes [24], which is then used for providing

elasticity. GeoScale uses geographic clustering of the workload into geographic regions,

which is then mapped to the closest possible cloud location to achieve geo-elasticity. Other

model-driven approaches [60, 108, 129] have relied on queueing theory with specific opti-

mizations, such as using multi-model [108] or Kalman filtering [60] to provision virtual-
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ized resources in the same data center. GeoScale leverages this past work on model-driven

approaches and employs per-site and per-server queueing theoretic models to capture dif-

ferences in server capacities across cloud locations.

Reducing Latency. Intelligent service placement has been studied in the networking

context to reduce user latency. Most of those approaches place services closer to the end-

users to reduce network latency [41, 127, 145]. Our focus is on dynamic capacity provi-

sioning to handle spatial workload dynamics, rather than an intelligent one-time placement

of services. Other complementary approaches to reduce web latency include protocol level

approaches [58], and application-layer optimizations [157].

4.7 GeoScale Summary

In this chapter, we presented GeoScale, a system that provides geo-elasticity to repli-

cable multi-tier web application in a distributed cloud platform. GeoScale achieves geo-

elasticity by tracking an application’s spatial and temporal workload dynamics, employing

a combination of queueing model-driven proactive provisioning and agile reactive provi-

sioning, along with pre-copying optimizations to provision server capacity at closet possi-

ble cloud locations to distributed user base. Our experimental evaluation of the GeoScale

prototype on Amazon EC2 yielded up to a 40% reduction in the 95th percentile response

times and up to a 58% reduction in SLA violations for representative web applications,

when compared to traditional local elasticity mechanisms.
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CHAPTER 5

PROVIDING GEO-ELASTICITY FOR DATABASE CLOUDS

In addition to exhibiting temporal and spatial workload variations, more applications

are hosting their backend tiers separately for benefits such as ease of management. To pro-

vision for such applications, traditional elasticity approaches that only consider temporal

workload dynamics and assume well-provisioned backends are insufficient. Instead, In this

chapter, we propose a new type of provisioning—geo-elasticity, by utilizing distributed

clouds with different locations. Centered on this idea, we build a system, called DBScale,

that tracks geographic variations in the workload to dynamically provision database repli-

cas at different cloud locations across the globe. Our geo-elastic provisioning approach

comprises a regression-based model that infers database query workload from a spatially

distributed front-end workload, a two-node open queueing network model that estimates

the capacity of databases serving both CPU and I/O-intensive query workloads, and greedy

algorithms for selecting the best cloud locations based on latency and cost.

5.1 Motivation

Cloud platforms are increasingly popular for hosting web-based applications and ser-

vices. Studies have shown that more than 4% of Alexa top million websites [77] are now

hosted on cloud platforms and these contribute to more than 1% of the Internet traffic.

Cloud platforms come in many flavors. Today’s Infrastructure-as-a-service (IaaS) clouds

support flexible allocation of server and storage resources to their customers using virtual

machines (VMs). Recently Database-as-a-service (DBaaS) clouds have become popular as

a method for hosting databases for cloud applications. In a DBaaS cloud, a customer leases
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Figure 5.1: Illustration of using DBScale to manage a multi-tier application. In this
example, the multi-tier application serves different amount of client workloads from differ-
ent regions. The multi-tier application has its front-end web servers deployed in distributed
IaaS clouds and its back-end database servers deployed in distributed DBaaS clouds.

a database from the cloud provider for storing and retrieving their data and offloads the

tasks of managing and provisioning (“right-sizing”) the database to DBaaS cloud provider.

Since the application provider no longer needs to deal with the complexity of scaling their

database to dynamic application workloads, DBaaS clouds simplify the task of building

cloud applications. In such a scenario, a multi-tier web application is built by hosting

the front-end tiers on servers leased from an IaaS cloud, while the back-end database tier

of the application is hosted on a DBaaS cloud. A key benefit of IaaS and DBaaS cloud

platforms is their ability to provide elasticity, where the cloud platform dynamically and

autonomously scales the capacity allocated to the application or database tiers based on

observed workload dynamics.

A concurrent trend is that today’s cloud platforms are becoming increasingly distributed

by supporting data centers in different geographic regions and continents. For instance,

Amazon’s EC2 and Microsoft’s Azure offer a choice of eleven and seventeen global loca-

tions respectively to their customers today. Distributed clouds are especially well suited

for deploying cloud applications that service a geographically diverse workload. For such

applications, network latency between end users and server replicas still plays an important

95



role in affecting overall performance [66, 154]. Therefore, a distributed cloud with a large

set of locations provides the flexibility to deploy application replicas so that users can be

serviced from the nearest cloud replica for the best performance. Studies [170] have shown

that such geo-distributed application see geo-dynamic workloads, where the workload sees

both spatial and temporal fluctuations. Thus, in addition to well-known temporal fluctu-

ations such as time-of-day effects or seasonal fluctuations [15, 23], the application sees

spatial fluctuations where workload volume in one geographic region (e.g., North Amer-

ica) fluctuates independently of the workload volume seen from other regions (e.g., Asia or

Europe).

However, existing elasticity mechanisms, in the form of autoscaling within a physical

cloud location boundary, are not well suited for handling spatial fluctuations seen in today’s

geo-distributed applications. The limitations are mainly two-fold. First, local elasticity

mechanisms, when provisioning resources, are constrained to a single cloud location or a

static subset of all available cloud locations. Second, current approaches are oblivious to the

spatial workload dynamics associated with the geo-distributed applications. For instance,

if an application that is deployed in two locations, say North America and Europe, sees a

spatial increase in workload volume in Asia, current elasticity mechanisms will attempt to

increase the provisioned capacity in the existing locations, whereas the proper response is

to deploy new replicas in Asian cloud locations.

Instead, a different elasticity approach is needed that can handle both the temporal

and spatial variations seen in today’s geo-distributed applications’ workload—we refer to

such an approach as geo-elasticity. A geo-elasticity mechanism handles temporal changes

by varying the provisioned capacity locally and handles spatial changes by provisioning

replicas across regions and at new locations. Our paper specifically targets Database-as-a-

service (DBaaS) clouds and focuses on designing a geo-elasticity mechanism for DBaaS

clouds. Figure 5.1 presents a high level illustration of how DBScale interacts with a multi-

tier application that is deployed using both IaaS and DBaaS.
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We identify four key challenges in designing geo-elasticity for DBaaS clouds. First,

because application database tiers only see workload traffic from front-end tiers but do not

handle end client traffic directly, inferring geographic workload distributions and associ-

ated spatial fluctuations for database servers is more challenging than for front-end tiers.

Second, prior work on dynamic provisioning [162] for multi-tier applications usually make

simplified assumptions about CPUs being bottleneck resources. Those approaches may

not be well-suited for database tiers because database can either be compute-intensive or

I/O-intensive, or a mix of the two, depending on database query computational and I/O

demands. Third, when a DBaaS cloud provisions database replicas, the task of maintaining

consistency across replicas needs to be handled. Database consistency is a complicated

task, especially in the presence of WAN replicas [5, 14]. In addition, consistency require-

ments are application-specific and therefore need to be handled differently for different

applications. Finally, because end-to-end client performance depends on both front-end

and back-end provisioning configurations, it is therefore very important to coordinate be-

tween IaaS and DBaaS to agree upon geo-elastic provisioning decisions and policies such

as synchronizing provisioning completion time or using precopying.

Contributions. In this chapter, we tackle all four challenges with a middleware sys-

tem DBScale. DBScale provides an end-to-end solution to providing geo-elasticity for

Database-as-a-service cloud, from inferring dynamic database workloads of geo-distributed

applications to provisioning database replicas in the “best” cloud locations. In designing

and implementing DBScale, we make the following contributions:

First, we propose a regression-based technique that uses the observed geographic dis-

tribution of the workload seen by the front-end tier to infer the resulting geographic distri-

bution of the queries seen by the database tier. This regression model is used as the basis

to predict future spatial workload for geo-elastic provisioning.

Second, we present a technique that models each database replica as a two-node open

queueing network with feedback, with the CPU modeled as a M/G/1/PS queue and the
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disk modeled as a M/G/1/FCFS queue. In doing so, our model can effectively identify

the resource bottlenecks that hinder the server response time and provide the basis for

provisioning enough amount of servers without violating T R
SLA, response time SLA.

Third, we analyze the performance and cost trade-offs of database workload assignment

and propose two greedy algorithms that prioritize different objectives within the constraints

of network latency SLA, T N
SLA. We also formulate an assignment problem using quadratic

programming that minimizes operation cost (Appendix B).

Fourth, we implement a prototype of DBScale on Amazon EC2’s distributed clouds

and conduct detailed evaluations. Specifically, we run our experiments by injecting geo-

distributed workloads from PlanetLab servers to a multi-tier application that are managed

by DBScale in Amazon’s distributed clouds. We compare the effectiveness of DBScale, in

handling dynamic workload, to two other elasticity approaches—a local elasticity approach

and a distributed caching approach. Our results show a 55% and a 36% improvement in

mean response time when compared to local elasticity and the caching-based approach.

In addition, we also evaluate our models and algorithms performance by comparing to

benchmark measurements and through empirical data-driven simulations.

5.2 Background and Problem Statement

In this section, we first provide a background on distributed database clouds and then

describe the application model assumed in our work and the specific problem of geo-

elasticity in DBaaS clouds addressed in this work.

5.2.1 Distributed Database Clouds

Our work assumes a Database-as-a-service (DBaaS) cloud that allows application providers,

also referred to as tenants, to lease one or more databases from the cloud platform. The

DBaaS cloud provides SLAs on performance (e.g., response times) seen by the application

and handles the task of configuring and provisioning sufficient capacity for each tenant.
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Figure 5.2: Key components of DBScale. For simplicity, we only demonstrate the design
and architecture of DBScale’s central controller and omit light-weight daemons that report
back workload and performance data from within DBaaS clouds. Here, arrows with solid
head represent control decisions made by DBScale.

Just as Infrastructure-as-a-service (IaaS) clouds support server instances of different sizes

(e.g., small, medium or large servers), a database cloud also supports different types of

database tenants. Small tenants, who have smaller storage and workload requirements, are

hosted using a shared model where multiple small tenants share the resources of a single

physical server. Large tenants, on the other hand, are hosted using a dedicated model, where

each tenant is allocated all the resources of a physical server to support larger database or

more-intensive workloads.

The DBaaS cloud itself can be implemented on top of a IaaS cloud where database

tenants are housed in virtual machines (“server instances”) of the IaaS cloud. While we

assume such a virtualized environment for ease of prototyping, our approach could be easily

generalized to non-virtualized setting. We assume that the DBaaS cloud is distributed and

offers a choice of multiple locations to each application provider. Thus, an application may

choose a particular cloud location that is best suited to its needs or a set of locations where

application replicas are placed.
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5.2.2 Application Model

Our work focuses on multi-tier web applications that consist of a front-end web tier and

a backend database tier. We assume that the front tiers (HTTP and application tiers) are

hosted on servers of a IaaS cloud, while the backend tier runs on a database in a DBaaS

cloud. For simplicity, we assume applications use a single cloud provider that provides

IaaS and DBaaS services. This assumption allows the front-tiers and the backend tier repli-

cas to be hosted in the same data center of that cloud provider at each location where the

application has a presence. We assume that the multi-tier application has users that are

spread across multiple geographic locations and hence the application services a geograph-

ically diverse workload. Further, in addition to temporal variations such as time-of-day

effects, such a geographically diverse workload is assumed to exhibit spatial variations,

where the workload volume from different regions may vary independently (e.g., due to

regional events or regional differences in the popularity of the application).

We assume the database tier (and the multi-tier application itself) is geo-distributed,

with replicas in different regions, to handle the geographically diverse workload. Since

the database tier is replicated, both within a particular cloud location and across locations,

maintaining consistency of backend replicas is an important issue. We assume that con-

sistency policies and mechanisms implemented by backend tier (and the DBaaS cloud) are

dependent on the application’s needs. In case of predominantly read-intensive database

query workloads, such as those seen by databases hosting product catalogs of e-commerce

store, a relaxed consistency technique may suffice, where the product catalogs replicas are

updated periodically in batched mode. In other scenarios, where stricter consistency is de-

sired, database replicas may need to be organized in a master-slave WAN configuration or

a multi-master configuration1; these approaches will incur higher overheads, especially in

WAN settings.

1Percona and EnterpriseDB both provide multi-master replication.
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5.2.3 Geo-elasticity

Consider a distributed DBaaS cloud that hosts the database tier of geo-distributed multi-

tier application as described above. The cloud platform is assumed to implement elasticity

mechanisms where the number of database replicas of the tenant application is scaled up

or down in response to workload dynamics. However, given the geographically diverse

workload, simply scaling the number of replicas at a given location is insufficient; the dis-

tributed DBaaS cloud needs to consider where workloads increase or decrease and decide

how many replicas are needed at each cloud location. Such elastic provisioning of capacity

within and across cloud locations to handle both temporal and spatial workload fluctuations

is referred to as geo-elasticity.

Our work focuses on providing geo-elasticity in a DBaaS cloud while we do not assume

any knowledge of provisioning mechanisms used by IaaS clouds that hosts front-end tiers.

However, we assume a cooperative IaaS cloud that is able to incorporate provisioning de-

cisions from a DBaaS cloud. Coordinating provisioning decisions between front-end and

back-end tiers can be beneficial for good end-to-end user performance. Further, we also as-

sume DBaaS customers specify their desired server types and our algorithm only considers

provisioning additional servers of the same type.

5.2.4 Problem Statement

Given a DBaaS cloud that has access to n data center locations Lk, and a cloud tenant

that serves client workload from m geographic regions Lc, we want to figure out the cor-

responding database workload dynamics, λ= [λ1,λ2, . . .λm], for each provisioning period.

Here, λ is a global database workload vector and each element λi represents peak query

rates from ith client location.

After obtaining λ, we want to assign those workload to cloud locations that satisfy our

objective whether it is performance or cost, given network latency service level agreement,

T N
SLA. Commonly, we will have more client geographic regions than data center locations—
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that is m > n. Therefore, the above assigning process aggregates client workload into n

cloud locations and yields workload ω = [ω1,ω2, . . .ωn], where ω j represents workload

that needs to be provisioned for jth cloud.

Then we want to determineD= [d1,d2, . . .dn], number of database replicas to provision

for each cloud location, based on server response time service level agreement T R
SLA. Let

d′j denotes the number of database replicas already existing in cloud j, where d′j ≤ 0. By

comparing d j with d′j for each cloud location j, we will decide to provision (or deactivated)

| d j−d′j | replicas.

5.2.5 Overview of our approach—DBScale

Figure 5.2 shows the high level design of DBScale that interacts with both IaaS clouds

and DBaaS clouds. For completeness, we also depict a global DNS that should be no-

tified whenever client-facing servers’ IP addresses change. DBScale is responsible for

dynamically provisioning databases in DBaaS clouds to handle temporal and spatial work-

load variations. Specifically, DBScale illustrated here is a central controller that monitor-

ing/analyzing global workload, deciding how to assign client workload to cloud locations,

coordinating these decisions with IaaS provisioning engine, and provisioning/configuring

database servers. More implementation details can be found in Section 5.7.

In Figure 5.3, we also provide a typical DBScale workflow to proactively provision

database servers based on collected workload and performance data. For each provisioning

period, DBScale performs the following four actions: training, predicting, aggregating,

and provisioning in sequence to generate provisioning decisions for each DBaaS clouds

customer. For the rest of design-related sections, we explain in detail based on the above

workload about monitoring and predicting geo-dynamics database workload in Section 5.3;

handling CPU-intensive and I/O-intensive database workloads with queueing-based ca-

pacity model in Section 5.4; figuring out where to provision database servers based on

latency-first and cost-first greedy algorithms in Section 5.5 (and a Quadratic Programming
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Figure 5.3: Typical workflow of DBScale. We generalize DBScale’s actions into four
categories: training, predicting, aggregating and provisioning. In this chapter, we take
model-driven approaches using both regression and queueing models to estimate database
workload and database server capacity. For choosing the best cloud locations, we use
insights gained from linear programming formulation and a threshold-based greedy algo-
rithm.

formulation in Appendix B); and providing a step-by-step procedure to provide geo-elastic

database clouds in Section 5.6.

5.3 Geo-dynamic Database workload: where and how much?

In this section, we look at how to obtain database workload dynamicsλ= [λ1,λ2, . . .λm]

for each provisioning period. To do so, we need to be able to group queries to any one

location j defined in Lc based on network proximity. However, queries are not directly as-

sociated with their originating clients—we do not know from which client location queries

are generated. This is because client requests are first routed to web servers who then is-

sue queries on behalf of clients. Therefore, the relationship between each query and its

originating location is obscured by web servers.

One way to overcome this challenge is to define client regions Lc to be the same as

IaaS cloud locations. Assuming IaaS has access to m′ locations and clients are routed to

the closest location among m′ locations. By aggregating and analyzing database query
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Figure 5.4: Model-driven geo-elastic approaches. We model the relationship between
front-end requests and database queries using regression-based models, and leverage these
models to predict temporal and spatial database workload. For estimating a single database
server’s capacity at a specific, we model the server as a two-node open queueing network.

logs from all active database servers, we can assign queries to IaaS cloud locations based

on web server IP addresses. This way, even if we don’t know the relationship between

individual query and its originating client, we obtain a coarse grained λ by using IaaS

cloud locations as proxies—that is, database workload obtained using this approach is only

reflecting spatial variations, if any, of front-end tier.

However, the effectiveness of the above approach depends largely on existing IaaS

locations and whether IaaS employs geo-elastic provisioning. Currently, the number of

IaaS cloud locations m′ is in the low tens and therefore they might not be representative

for a global workload distribution. If IaaS clouds only provision using a subset of m′

locations, it will further reduce the usability of the above approach. That is, we will not

be able to distinguish queries from Europe or US East if IaaS only provisions web servers

in US East data center. In addition, this approach lacks the flexibility to produce λ for

arbitrary client locations Lc, either in city, state or country levels. Such flexibility can lead

to fine granularity client workload information that can result in better workload assignment

decision as described in Section 5.5.

Given the limitations of above approach, we propose an effective regression-based ap-

proach that can produce database workload distribution λ with configurable precisions,

using logs collected from both IaaS and DBaaS clouds.
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5.3.1 Regression-based Workload Prediction

In this section, we show how to obtain database query rate λ using a regression model

that captures the relationship between λi and web request rate γi, with the help of ∑
n
j=1 λ j.

In Figure 5.4a, we show the interactions between variables that can be obtained directly

using available logs (in green) and unknown variable (in red). Next, we first explain how

to obtain γ and aggregate query rate ∑
n
j=1 λ j, and then introduce the regression model.

To obtain γ, we first aggregate front-end request logs from all cloud locations; the

request logs are assumed to include at least a time stamp and the end client’s IP address.

We then use an IP Geolocation technique2 to determine the originating client location of

each request. Given client locations Lc, all requests are then mapped to one and only one

location in Lc that is closest. We count the number of requests that are mapped to each

client location in Lc. For each client location i, we group requests by their time stamps, and

calculate the request intensity for specified time unit. At the end of this process, we will

obtain γ = [γ1,γ2, . . .γm] that represents the peak web workload from each client location i.

Similarly, we can process all database logs and obtain database query rates from each IaaS

clouds and subsequently the total query rates ∑
n
j=1 λ j.

For a specific application, the number of database queries triggered by front-end re-

quests might vary depending on the types of requests. For example, a request to search for

the best selling products will have different database patterns than a request to finish plac-

ing order. Even so, it is still safe to assume that each front-end request will trigger one or

more database queries—we model this relationship with λ = αγ +β where α captures the

linear relationship and β is an error term. Further, to capture the potential regional effect

caused by different client workload pattern, we use linear models with different param-

eters (αi,βi) to model the relationship between front-end requests and the corresponding

database queries from each client location.

2IP Geolocation is a technique that infers user’s geographic location from IP address. We use MaxMind
GeoIP2 [111] for this task.
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λi = αiγi +βi, i = 1,2 . . .N (5.1)

Note we can’t obtain query rate λi by processing logs without knowing how clients are

mapped to IaaS cloud locations. Therefore, we can’t solve (5.1) directly. However, relying

on the fact that requests generated by all client locations are eventually contributing to the

amount of database queries, we have

n

∑
j=1

λ j =
m

∑
i=1

(αiγi +βi)

= α1γ1 +α2γ2 + . . .+αmγm +
m

∑
i=1

βi

= α1γ1 +α2γ2 + . . .+αmγm +β .

Here ∑
n
j=1 λ j is the total database queries aggregated from all database replicas in Lk.

For each provisioning period of length E, we prepare a data set
{
(∑n

j λ j)e,(γ1)e,(γ2)e, . . .(γm)e
}E

e=1

following above procedures. To find a model (α1,α2, . . .αm,β ) that best explains these E

data points, we use Least Squares Regression3 to minimize the sum of squared residuals

min
α1,α2,...αm,β

E

∑
e=1

ε
2
t , (5.2)

where εt = α1γ1 +α2γ2 + . . .+αmγm +β −∑
n
j λ j.

By solving Equation (5.2), we are only rewarded with a collective value β . To obtain

{β1,β2, . . .βm}, we use a weighted function (5.3) that distributes β to βi based on corre-

3Other regression techniques could be applied here as well, such as robust linear model with Huber loss
function or TukeyBiweight.
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sponding workload portion—the more requests from a client location i, the more weight

we assign to βi.

βi = β

γi

∑
m
i=1 γi

(5.3)

Combining (5.2) and (5.3), we obtain m linear regression models (αi,βi) for each client

location i and can use them to estimate the number of queries λi based on (5.1). To be more

specific, to predict the number of queries λi from location i at time E + 1, we first take

a series of M data points [(γi)E−M,(γi)E−M+1, . . .(γi)E ] and use ARIMA models [26], or

any other standard time series prediction techniques, to predict (γi)E+1. Then by substitut-

ing predicted front-end requests (γi)E+1 into ith client location’s regression model, we get

(λi)E+1 = αi(γi)E+1 +βi. We repeat the above steps for all m client locations and eventu-

ally obtain (λ)E+1 = [(λ1)E+1,(λ2)E+1, . . . ,(λm)E+1], the database query distribution for

time E +1.

5.4 Provisioning Based on SLA-bounded Database Capacity

To provision enough database servers to handle query workload, we need to have a

way to estimate how many queries each database server can handle without violating ser-

vice level agreement (SLA). One approach is to gradually increasing realistic query work-

load intensity until server response time is violated. The maximum number of queries the

database server can sustain is then be used as server capacity. However, this approach might

be less desirable because it requires offline profiling and more importantly, it heavily relies

on having perfect knowledge of database workload.

Therefore, we resort to queueing theory to estimate capacity online. In addition, in most

scenarios, SLAs are specified as a high percentile of response time distribution. Queuing

theory also helps us reason about the tail behavior of the query service time distribution.
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Specifically, by using queueing models, we can analyze the response time distribution and

obtain tail behavior, and compare it with the pre-specified SLA to obtain server capacity.

5.4.1 Queueing-based Capacity Estimation

Most prior work [118, 162, 164] on using queueing-based models to perform dynamic

resource provisioning only focus on estimating capacity for front-end tiers and assume

CPU to be the bottleneck resource. Such approaches might not be ideal for database tiers

because databases may need to serve queries that are either CPU-intensive or I/O-intensive,

or a mix of both. To account for both resource impacts’ towards query service time, we

present a database-specific queueing-based model that keeps track of both CPU and I/O

utilizations. Note, we assume front-end servers will send queries directly to individual

database servers—these database servers do not share a centralized queue and therefore are

modeled individually.

Specifically, we model the database replica (on a dedicated host) as a two-node open

queueing network with feedback, where the CPU is modeled as a M/G/1 processor sharing

(M/G/1/PS) queue and the I/O device as a M/G/1 first come first serve (M/G/1/FCFS) queue

as in Figure 5.4b. Here, we model the arrival of external queries as a Poisson process with

average rate of λ . Immediately following this, queries arrival at CPU and I/O also satisfy

poisson distribution with λcpu and λio.





λcpu =
λ

1− pio
(5.4a)

λio =
pio

1− pio
λ (5.4b)

Here, a query arriving at a database server will first be added to the CPU queue. When

the query departs from CPU, it will either leave the database server with probability 1− pio

or continue its processing by joining I/O queue with probability pio—that is, pio is the query
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visit ratio to I/O. In a high level, a query might alternate between CPU and I/O multiple

times before a response is generated.

By modeling queries going through both the CPU and I/O, this two-node queueing

network is able to factor in both CPU and I/O’s contributions in affecting query response

time. Let us denote query response time using T , the mean response time E[T ] of database

queries is then the sum of time spent in CPU and I/O, i.e., E[T ] = E[Tcpu]+E[Tio]. We use

a recent result from a queueing literature [27] that provides approximation for both E[Tcpu]

and E[Tio].





E[Tcpu] =
s̄cpu

(1− pio)(1−ρcpu)

E[Tio] =
pio

1− pio

[ s̄io

1−ρio
+

p(s̄(2)io −2s̄2
io)

2(1−ρio)
λ
]
,

(5.5)

where s̄cpu and s̄io denote average service time of CPU and I/O; ρcpu and ρio denote average

utilizations of CPU and I/O; s̄(2)io is the second moment of the service time distribution of

I/O.

Now, given a pre-specified SLA between DBaaS and database customers in the form

of 95th percentile response time T R
SLA, we need to satisfy the constraint αT (95) < T R

SLA.

Here αT (95) denotes the 95th percentile of response time T . If we assume T satisfies an

exponential distribution,

P
(

T ≤ αT (95)
)
= 1− e−

1
E[T ]αT (95)

, (5.6)

based on the definition of cumulative distribution function. Therefore, we have e−
1

E[T ]αT (95)
=

0.05 and by taking ln of both sides,
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αT (95) = ln20E[X ]≈ 3E[X ] (5.7)

Given the relationship4 (5.7) and the SLA constraint, we then have E[Tcpu]+E[Tio] <

T R
SLA

3
. By substituting (5.5) into the previous inequality, we obtain an upper bound on the

maximum query rate λ c that can be handled by a single database server at a specific cloud

location violating the SLA T R
SLA:

λ
c ≤

2T R
SLA

3
(1− p)(1−ρio)−2s̄cpu

1−ρio

1−ρcpu
−2ps̄cpu

p2(s̄(2)io −2s̄2
io)

. (5.8)

5.4.2 Obtaining Model Parameters

Here, we explain how to obtain all model parameters for estimating E[T ] either by di-

rect measurements or reasonable approximations. First, we need to empirically measure

the CPU utilization, I/O utilization (using Linux tools such as sysstat) as well as per-query

log that includes query timestamps and query execution time(by turning on MySQL slow

logging and setting the long query time to 0 to record every query executed). We can

directly estimate ρcpu from CPU utilization logs at a predefined time granularity, database

query arrival rate λ by processing the per-query log and s̄io and λio from the I/O utiliza-

tion log. Based on (5.4b), we can estimate pio by substituting λ and λio. Since we do

not have easy access to s̄cpu and ρcpu, we approximate these two parameters using the Lit-

tle’s Law [104]. Specifically, s̄cpu = ρcpu
1

λcpu
and ρio = λios̄io where we obtain λcpu using

(5.4a). Note that these are overestimations due to extra logging overhead and resource

4For a general distribution, we can use Markov Inequality to obtain αT (95)≤ 20E[T ] and follow the same
steps to obtain a bound on αc.
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interference—that is, we make conservative estimates of λ c. Finally, to estimate database

server capacity for a new datacenter location, we use the average of measured statistics

across all available data centers as an initial approximation.

5.5 Network SLA constrained Workload Assignment

In this section, we look at where to provision server resources for client workload λ=

{λ1,λ2, . . .λm} to satisfy T N
SLA, 95th percentile network latency. Without loss of generality,

we normalize λ with server capacity λ c from (5.8) and obtain a new normalized workload

vector

λN = {λ N
1 ,λ N

2 , . . .λ N
m }, λ

N
i =

λi

λ c. (5.9)

Effectively, dλ N
i e represents the number of servers needed for client location i. Let us

define χi j as the fraction of client workload λi that is assigned to and provisioned in cloud

location j. Here χi j ∈ [0,1]. An eligible assignment matrix χm×n is one that satisfies T N
SLA.

Given the assignment matrix χ , we can express the normalized database workload for cloud

location j

ω j = χ1 jλ
N
1 +χ2 jλ

N
2 · · ·+χm jλ

N
m

=
m

∑
i=1

χi jλ
N
i . (5.10)

Here, the number of servers that need to provision for cloud location j is then dω je. We

define a cost and performance metrics as following and use them as guidelines to evaluate

the effectiveness of eligible assignments χ.

Cost Analysis. We consider three different cost aspects in calculating the operational

expenditure (OPEX) of serving λworkload for the next provisioning period (V hours). Our
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cost analysis is based on current commercial cloud pricing models, specifically, we use

Amazon’s model as a concrete example. The first cost is hourly cost cs for renting server

resources. Therefore, the total rental cost is Cs = csdωeV , proportional to the number of

servers and renting time.

The second cost we consider is data storage cost. The storage need at each server is

defined as a continuous random variable D. We denote the database size at the beginning

of each provisioning period as dDB and the probability of inserting a new data entry as pins.

The size of new data entry is denoted with a continuous random variable U and we assume

knowledge of E[U ]. Therefore, the expected storage need of a server at vth hour is E(D |

V = v) = dDB+λ c pinsE[U ]v. Let us define cd as the hourly cost for storing unit amount of

data. Thus, the total storage cost across all servers is Cd = ∑
V
v=1E(D |V = v)dωecd .

The last cost we consider is the cost for transferring data needed for provisioing. We

define a continuous random variable R to express the size of outbound Internet traffics for

each server. The expected data transfer for vth hour in one provisioning period is E(R |

V = v) = λ cE[U ]v. Let us define ct as the hourly cost for transferring unit amount of data,

we can then express the total transfer cost as Ct = ∑
V
v=1E(R | V = v)dωect . In all, by

combining all three cost components, we have the formula to calculate cost to serve ω j

workload at cloud location j

C(ω j) =Cs
j +Cd

j +Ct
j. (5.11)

Performance Analysis. We are interested in analyzing the achieved network latency

between client and database servers. To do so, we record latency values between com-

municating client and server and obtain the true network latency distribution. This type

of application-level measurements provide good estimates for all individual latency pairs.

However it is excessive for our use cases and it might not always be feasible. Instead, we

approximate the true distribution with T N = {(Ai j,ni j) | ∀i∈ Lc,∀ j ∈ Lk}where ni j denotes
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the number of occurrences of latency Ai j between client location i and cloud location j. In

essence, T N is a multiset and each element Ai j has multiplicity ni j. T N is a reasonable

approximation for targeted network latency because client location i represents a cluster of

clients from nearby geographic locations.

5.5.1 Greedy Algorithms

Next we describe two greedy algorithms that focus on minimizing either network la-

tency or provisioning cost. Each algorithm produces a workload assignment matrix χ that

is associated with a provisioning cost C and network latency distribution T N .

Latency-first Greedy. We first sort all client locations Lc based on their workload inten-

sity in descending order. For each client location j, we first find the set of eligible cloud

locations Si = { j | Ai j ∈ [0,T N
SLA]}. That is, a cloud location j is said to be eligible for client

location i if Ai j, the network distance between these two locations is smaller than T N
SLA.

Note that, Si 6= /0,∀i based on our assumption of T N
SLA.

We then assign workload λi from client location i to the closest cloud location

Olat
i = argmin

j∈Si

Ai j,

if there are enough resources. Otherwise, we move to the next closest cloud location in Si

until we successfully acquire an eligible cloud location. We repeat the above process for all

client locations Lc and eventually reach a valid assignment χ lat . For simplicity, we assume

the total resources from all eligible cloud locations are sufficient to satisfy the demand of

workload λ. Based on χ lat , we can express the aggregate workload for each cloud location

and the associated cost and network latencies in (5.12) – (5.13).
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ω
lat
j =

m

∑
i

λ
N
i 1{Olat

i = j}, ∀ j ∈ Lk (5.12)

Clat =
n

∑
j=1

C(ω lat
j ) (5.13)

T N
lat = {(AiOlat

i
,λi) | ∀i ∈ Lc}. (5.14)

Cost-first Greedy. Observe that we might get a cheaper assignment than latency-first

algorithm by considering the cost differences between different cloud locations, as shown

in Figure 5.5. Based on this observation, we propose the cost-first greedy algorithm that

assigns client workload to the cheapest eligible cloud.

Instead of choosing the closest available cloud location, we choose the cheapest location

Ocos
i = argmin

j∈Si

C(λ j). This yields a different assignment matrix χcos that is associated with

ω
cos
j =

m

∑
i

λ
N
i 1{Ocos

i = j}, ∀ j ∈ Lk (5.15)

Ccos =
n

∑
j=1

C(ωcos
j ) (5.16)

T N
cos = {(AiOcos

i
,λi) | ∀i ∈ Lc}. (5.17)

Discussions. Note neither greedy approaches, when choosing the cloud location for

client workload, consider the existing client assignment. Thus, we might end up provision

n− 1 extra servers than we should have for workload λ. This is because in the best case

scenario, we only need to provision a total of d∑m
i=1 λ N

i e—that is, client workload is aggre-

gated perfectly. While in the worse case scenario, we end up provision one extra server for

every cloud location to handle ω j−bω jc fractional of workload.

To further reduce the cost overhead, we include a quadratic programming (QP) formu-

lation in Appendix B. But in practice, QP formulation might not be desirable due to limited

benefits and time complexity. Specifically, the potential cost saving is bounded by the cost
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of renting n−1 servers. In current pricing models, QP formulations do not have effect on

reducing either storage or bandwidth costs. When the number of cloud locations is reason-

ably small compared to provisioned servers, the saving of QP is negligible. As the number

of cloud locations grows, the time complexity of solving this QP increases significantly.

This makes it impractical as an online provisioning solution.

5.6 Putting It Together

DBScale combines regression-based workload prediction, queueing-baed capacity esti-

mation and greedy workload assignment algorithms to implement geo-elasticity for DBaaS,

as summarized below. DBScale periodically involves the following four steps, e.g. every

day, or when SLA s are violated.

Step 1: Where to provision? DBScale obtains database workload distribution λ from

all m client locations using regression-based prediction model described in Section 5.3.1.

Then, DBScale uses one of the algorithms from Section 5.5 based on customer’s specifi-

cation to generate workload assignment matrix χm×n—each entry χi j specifies how much

workload from client location i is to be assigned to cloud location j. Last, DBScale figures

out workload to be provisioned for cloud locations, ω̂=λ1×mχm×n. Those cloud locations

with non-zero ω̂ j are chosen for provisioning for the next period.

Step 2: How many resources to provision for each location? DBScale first parameter-

izes queueing-based capacity model, as described in Section 5.4, and then computes the

maximum query rate λ c that a single replica can handle without violating SLA T R
SLA. Given

the amount of query workload ω̂ j a cloud location j is assigned for next provisioning pe-

riod, DBScale then calculates the number of replicas d j = d ω̂ j
λ c e. If the number of replicas di

differs from the value d′i computed in the previous time interval (i.e. current provisioning),

|di−d′i | more replicas need to be provisioned or deactivated at this location. If d′i = 0, this

indicates that location i has been newly chosen to provision database replicas.
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Step 3: Coordinating with front-end tier. DBScale coordinates with front-end tier in

order to enforce good end-to-end client performance through and especially after provi-

sioning process. First, DBScale learns about the current configuration of front-end tier and

any upcoming provisioning activities and uses such information to refine its provisioning

policy. For example, if front-end tier decides to place a web replica at a new cloud loca-

tion, DBScale needs to evaluate this decision in combination with its plan to make sure no

SLAs are violated. Next, DBScale informs front-end tier about its provisioning plan and

configuration such as whether snapshots are pre-copied. During provisioning, DBScale

periodically updates front-end tier about its progress so as to synchronize provisioning

completion time.

Step 4: How to provision database replicas? DBScale starts provisioning database

replicas by first making a hot backup from an existing up-to-date replica using Xtra-

Backup [132], a hot backup tool for MySQL database. If a full backup was created and

archived in the destination clouds already, DBScale will only request for an incremental

backups that contains updated data. The hot backup tool produces a consistent point-

in-time snapshot of the database without interrupting normal database processing at that

replica. DBScale then transfers the snapshot to a DBaaS cloud server that will host the new

replica. In the case where a new cloud location is chosen, the snapshot is transferred over

WAN to this site. After transferring, DBScale uses the hot backup tool’s crash recovery

feature to load the snapshot into the database. DBScale supports two different modes to

bring database replicas up-to-date, an offline approach and an online approach. If any up-

dates are made to the database replica in the meantime, DBScale uses an offline approach

that acquires a read-lock on current replicas, fetches write queries and applies them to the

newly provisioned replica(s). An alternate online approach is to make the new replica a

slave and have it receive updates from an existing master (while this approach is suitable

for master-salve configurations within a data center, doing so will incur higher overheads

for master-slave configuration that run over WAN).
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EBS Storage Type(GB-month) Max($) Min($) Std. Dev. ($)
General purpose SSD 0.19 0.10 0.03

Provisioned IOPS SSD 0.24 0.13 0.03
Throughput optimized HDD 0.09 0.05 0.01

Cold HDD 0.05 0.03 0.01
Snapshot (to S3) 0.13 0.10 0.01

EC2 Data Transfer (GB) Max($) Min($) Std. Dev. ($)
Outbound Internet Traffics 0.25 0.09 0.05

(a) Storage and data transfer Costs.
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(b) Server costs.

Figure 5.5: We use Amazon’s distributed clouds as a case study, and analyze price dif-
ferences exhibiting in different cloud locations for storage, data transferring and servers.
For example, one can save up to 24% in renting 4xlarge server by choosing a cheaper data
center.

5.7 DBScale Implementation

5.7.1 Implementation Overview

We have designed and implemented DBScale as a middleware for managing geo-elasticity

in DBaaS cloud. Our DBaaS cloud is built on top of Amazon EC2’s distributed clouds that

have tens of cloud locations across the globe. To construct our DBaaS cloud, we first lease

servers from distributed IaaS cloud and then run database replicas on those IaaS servers.

Our prototype is based on the transactional MySQL database platform—that is, database

tenants are provided as MySQL databases through the DBaaS cloud.

DBScale is implemented in Python and consists of two logical components. The high

level architecture of DBScale is shown in Figure 5.2. For simplicity, we only include the

architecture of the central controller and omit showing daemons that run on each server

inside DBaaS cloud. The central controller, by default, runs inside Amazon’s US-east data

center in Virginia. DBScale can also be configured to run its central controller in a new

cloud location if it yields smaller communication overhead to all daemons.

Light-weight daemons that run inside all database servers are collecting required data,

e.g. workload and resource utilizations, and sending these statistics periodically to the cen-

tral controller. Specifically, resource usage statistics at the database servers hosting the ten-
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ant replicas are measured using sar and iostat utilities, which yield the database server’s

CPU and I/O utilization. Note, the frequency of communicating with the central controller

depends on whether a reactive threshold is triggered. If so, daemons on these overloaded

database servers will immediately notify the central controller. Otherwise, frequencies for

each server are chosen uniformly from [ψ,10ψ] where ψ denotes the default provisioning

frequency. If frequency is set at 10ψ , daemons will contact the controller ten times within

a provisioning window. This simple approach is used to avoid processing bottleneck in a

single controller by effectively spreading processing workload into different time slots.

5.7.2 Implementation Details

Next, we describe implementation details for individual function modules of DBScale’s

central controller. These modules can be roughly divided into four interconnected pieces

based on their functionalities. The interaction details between different modules can be

found in Section 5.2.5.

First, workload monitor and performance monitor modules are responsible for gath-

ering workload statistics and resource utilization from both IaaS and DBaaS clouds. We

assume application developers who host databases in our DBaaS cloud expose APIs for

DBScale to query the workload statistics of the front-end servers hosted in IaaS cloud. Us-

ing these APIs, we assume DBScale at least have access to aggregated requests per second

for each cloud location. In an ideal scenario, workload monitor can gather web server logs

directly from front-end replicas at each location and aggregates them, as discussed in Sec-

tion 5.3, to analyze geographic distributions of client workload. DBScale can benefit from

such fine granularity data and therefore make more informed provisioning and coordinating

decisions.

Moreover, to collect data from DBaaS cloud, both monitor modules listen on a well-

known port and collect data sent from daemons described above. Database workload in-

formation can be extracted from database query logs. Each query entry at least contains a
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query arrival time stamp, a requester’s IP address, and a query execution time. Performance

data can also be extracted from CPU and I/O logs, currently represented as averages over

a 5-seconds interval. All the workload and performance statistics are written to a SQLite

database sequentially as they are processed. We use ROWID for primary key, and create ad-

ditional three indexed columns, i.e. data center location, server identification number and

timestamp to represent each data point’s attributes.

Next, workload forecaster and resource provisioner modules read data from SQLite

database to construct a regression model and an ARIMA-based time-series model using

Python’s StatsModels library, and to parameterize queueing models. These models are

maintained and updated automatically based on data from a predefined historical time win-

dow. Currently, we set the historical time window for ARIMA model as one day and for

the other two models as entire data history. Such choices are only based on our limited

experiences with benchmark experiments. It would be ideal to select window sizes for

each model based on prediction accuracies. In addition, we also implement our two greedy

algorithms in the provisioner that select cloud locations either based on network latencies

to clients or server resource costs. Users can specify either latency or cost as a priority for

assigning client workload. In all, DBScale combines these models and greedy algorithms

to make geo-elastic provisioning plans periodically.

Then, provisioning engine takes a provisioning plan that specifies the number of differ-

ent servers required for each cloud site, and makes adjustment through Amazon EC2’s APIs

based on existing server resources. After each database server is up and running, we then

use database hot backup tools to extract archived snapshots and load them into new repli-

cas. Until now, provisioning engine has successfully prepared new database replicas, but

these new database replicas might have obsolete data compared to the up-to-date database

servers. The amount of such obsolete data depends on how many write requests have been

committed since the snapshot is taken. Before handing them over to consistency engine,

our provisioning module needs to contact one of up-to-date servers to fetch the committed
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transaction log, and replay these transactions on new replicas. Afterwards, our consistency

module chooses one of the two currently supported modes, i.e. an offline batch mode and

an online master-slave mode, depending on application’s specific needs to synchronize new

database servers. For example, when used for holding data such as product catalogs that

see largely read queries, a simple batched update approach may suffice. Specifically, in the

batch mode, we update all database replicas in a batch during the scheduled maintenance

window. In the master-slave configuration, replicas are configured as either master or slave

and write queries are only sent to the master who then relay to all the slaves. Our consis-

tency engine picks databases inside a cloud site that has relatively low propagation delays

to all other cloud sites, e.g., a geographical central location, and configure them as master

databases.

Last, geo-elastic coordinator acts as a bridge between IaaS and DBaaS, and notify both

entities about any topology changes due to provisioning. The goal of our coordinator is to

allow DBScale to make informed provisioning decisions, in conjunction with front-ends.

As we show through a case scenario in Section 5.8.3.2, uncoordinated provisioning between

IaaS and DBaaS might lead to undesired penalty spikes. To avoid scenarios such as running

web and database servers in two cloud sites that are faraway, we incorporate a policy that

always enforces provisioning database servers to “follow” the front-ends. And ideally, with

cooperation from IaaS cloud, we can also synchronize the finish time of provisioning both

tiers by delaying web server provisioning.

In summary, with the central controller taking care of different aspects of geo-elastic

provisioning and distributed daemons collecting required data, DBScale thus proactively

provisions database servers in accordance to the temporal and spatial client workload as

well as front-ends’ topology changes in the context of distributed clouds.
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5.8 Experimental Evaluation

We use end-to-end experiments and empirical-driven simulations to quantify DBScale’s

performance. First, we evaluate the efficacy of our models and algorithms. Then we

demonstrate performance improvement using geo-elasticity and compare DBScale to a

caching-based approach. Last, we measure consistency overhead of provisioning database

servers using DBScale.

5.8.1 Experimental Setup

Distributed Clouds: We use Amazon EC2’s distributed cloud that spans more than ten

global data center locations as the infrastructure support. We use EC2 to emulate IaaS

clouds and create a DBaaS cloud by running MySQL database engines on rented IaaS

servers. We use elastic block stores (EBS) for hosting virtual machine images and database

data. Further, we use Amazon’s current pricing models (Figure 5.5 lists an exemplary

summary) as a basis for our simulations.

Application appliance. We use TPC-W [161], a transactional web benchmark, as our

multi-tier application. This java version of TPC-W consists of a front-end that runs on

Apache Tomcat and a backend database that runs on MySQL. We create separate appli-

ances, virtual machine images, for its two tiers; unless specified otherwise, each database

is configured with 10GB data. Both tiers of TPC-W are assumed to be replicable both

within and across EC2 cloud locations. All the front-end VMs were running inside IaaS

cloud and the back-end ones are running in DBaaS cloud. DBScale manages the replicas

of each database tenant in DBaaS cloud and coordinates with an IaaS cloud manager.

Distributed Clients: We run the emulated clients on PlanetLab nodes that are glob-

ally distributed. We choose around one hundred PlanetLab locations from North America,

Europe, and Asia that were accessible at the time the experiments were performed. In our

experiments, we use three workload mixes that represent different compositions of read and
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(b) Browsing: 60 secs.
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(c) Ordering: 30 secs.
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(d) Ordering: 60 secs.

Figure 5.6: Comparison of regression-based model predicted rates with empirical
measurements. Predicted and actual query rates over time for the browsing and order-
ing workload mixes. The shaded areas represent the 95th percentile confidence interval.
For both workload types, the prediction accuracy is higher for a larger prediction window.
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Figure 5.7: Efficacy of the queueing model. For each database server size, we compare
the empirically measured response times with queueing model predictions.

write requests, i.e., default browsing and ordering workload from TPC-W, and a modified

read-only browsing workload.

For each experiment run, we have TPC-W clients running on PlanetLab’s nodes from

different locations to send HTTP requests to the emulated online bookstore; requests are

routed to the closest front-end replicas using a custom DNS-based load redirection. We

warm up each replica for five minutes before starting to collect data.

5.8.2 Geo-elastic Models and Algorithms

In this section, we evaluate all the models and algorithms used by DBScale as a basis

to provide geo-elasticity.
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5.8.2.1 Regression Model Prediction

This experiment evaluates the effectiveness of the regression model proposed in Sec-

tion 5.3.1 to predict database workload for distributed clients. We set up front-end web

and back-end database servers in three cloud locations, i.e., California, Virginia and Ire-

land. For each cloud location, we then run TPC-W clients in a PlanetLab node that has a

small network distance in terms of round trip time. Clients only send their requests to the

pre-configured web and database pairs during the entire experiment that lasts for one hour.

We control the number of concurrent clients from the same geographic location, therefore

workload intensity, by assigning different starting time and transaction time to each client.

We repeat the process five times and use the data from first four runs to train the re-

gression model and obtain model parameter (α,β ) for each client location. We then use

the front-end requests from the fifth run as regression model input and calculate the pre-

dicted database query rates and reconstruct ground truth of database queries for each client

location.

We plot the Predicted and Actual results for Pennsylvania clients with different work-

load mixes and prediction intervals in Figure 5.6. We observe that our regression model can

make very reasonable predictions for both browsing (read-intensive) and ordering (read-

write mix) workload with a mean error of 7.35%. Specifically, as we increase the prediction

interval from 30 seconds to 60 seconds, our regression model makes better and smoother

decisions.

5.8.2.2 Queueing Model Prediction

Next, we evaluate the queueing model from Section 5.4.1 to estimate database server

response times (which in turns yields server capacity). We configure both front-end and

back-end servers in Virginia data center and start a number of independent clients based

on different server sizes. The independence between clients make sure query arrival to

database server satisfies poisson process. And we carefully control the number of clients
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(a) 95th percentile network latency.
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(b) Operation cost.

Figure 5.8: Client workload impact on workload mapping algorithms. As the number
of client locations increases, cost-first greedy algorithm can achieve as low as 52.6 ms for
95th percentile network latency while save up to 10.6% in operation cost.

because we don’t want to saturate the servers doing the test. For simplicity, we use a total

of 100 clients for all server types that are under evaluation.

We collect both query logs and resource utilization logs from database servers for each

experiment run that lasts half an hour. We then calculate the database server response

time using Equation (5.5) and also obtain actual response time measurement by processing

all the logs. We repeat the same process five times for each server type and calculate the

average DBScale estimation, the mean measurement value, and the 95th confidence interval

across across all five runs.

We plot these comparisons for different server sizes in Figure 5.7. We see that em-

pirically measured response times lie within the 95% confidence intervals of the model

predictions, indicating a good prediction. Only in case of 2xlarge EC2 servers, where the

empirical value is outside the 95% CI, we see a prediction error of 19%. In all cases, the

model predictions are overestimates of the response times, indicating that the computed

capacity will be conservative from a provisioning perspective.

5.8.2.3 Geo-distributed Workload Mapping Decisions.

Last, we evaluate our two greedy algorithms’ performance in tail network latency and

daily operation cost by comparing them with a baseline algorithm. The baseline algorithm
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(a) 95th percentile network latency.
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Figure 5.9: Network SLA impact on workload mapping algorithms. Because cost-first
algorithm adjusts workload mapping decision by using Network SLA as a constraint, we
observe the 95th percentile network latency increases accordingly. The cost differences
between two algorithms are stable around 7.8% after network SLA is set to be larger than
125 ms.

simply selects the cheapest cloud location and maps all client workload to that single lo-

cation. Therefore, this baseline yields the lowest operation cost and a high tail network

latency—but it does not provide any guarantee in satisfying T N
SLA.

Our simulation is based on the current Amazon’s distributed clouds that consist of

twelve global cloud locations [11]. We collect empirical network latency traces by mea-

suring the network distances between all PlanetLab nodes and Amazon clouds. This yields

a latency matrix of size (100,12). We choose one particular server 4x large server with

optimized I/O and determine its capacity empirically. We use the above mentioned data as

a basis for constructing simulation input.

Specifically, for each simulation run, we configure the corresponding T N
SLA and the num-

ber of client locations (as a proxy for client workload). We construct the set of client lo-

cations by uniformly selecting from PlanetLab nodes with replacement. We then generate

a normalized workload (compared to λ c) associated with each client location by drawing

a value from a uniform distribution with range [0,1]. We vary simulation configurations

and repeat each configuration for ten times and collect the network latency distribution and

operation cost as defined in Section 5.5.
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In Figure 5.8, we study how our two greedy algorithms behave with an increasing client

workload and a fixed T N
SLA of 200 ms. Both greedy algorithms produce up to 172 ms reduc-

tion in 95th percentile network latency. Latency-first greedy algorithm achieves optimal tail

latency up to 80 ms smaller than those of cost-first greedy algorithm. In addition, cost-first

greedy algorithm achieves almost identical operation costs as with the baseline algorithm

and an up to 10.6% saving when compared to latency-first greedy algorithm. This is mainly

because cost-first algorithm can try to utilize eligible cloud location that is cheapest.

In Figure 5.9, we compare the performance of all three algorithms under different net-

work SLA specification for assigning workload of one thousand client locations. We ob-

serve cost-first greedy algorithm behaves similarly to latency-first algorithm with a smaller

T N
SLA value, as shown in Figure 5.9a. This is because the number of eligible cloud locations

for each client location is determined by T N
SLA—and when T N

SLA is small enough, cost-first

algorithm will pick the same cloud location as latency-first algorithm. Therefore, the tail

latency performance of two greedy algorithms diverge with more relaxed network SLA

values.

In summary, we show that cost-first greedy algorithm leads to higher cost savings when

both client workload and network SLA increase while is able to keep 95th percentile net-

work latency within T N
SLA specification. Because cost savings come from the ability to ag-

gregate client workload and having access to more eligible cheaper clouds, we can expect

higher savings in a more distributed cloud environment.

Conclusion: We empirically evaluate our regression-based workload prediction model,

our queueing-based capacity model and our workload mapping greedy algorithms using

current distributed clouds and geographically-distributed clients. We show that our work-

load prediction only incurs a mean error of 7.35% and our queueing model produces rea-

sonable overestimation when compared to empirical measurement. Further, our simula-

tions demonstrate that our greedy algorithms can effectively make trade-offs between tail

network latency and operation costs when compared to the baseline algorithm.
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Figure 5.10: Illustration of elasticity mechanisms and provisioning policies. We con-
duct an end-to-end experiment with different phases to demonstrate a policy-driven geo-
elasticity is the most effective provisioning approach.
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Figure 5.11: Performance benefits for Geo-elasticity provisioning. Geo-elasticity pro-
vides lower mean response times due to lower client-server network latencies.

5.8.3 Benefits of Database Geo-elasticity

In this section, we design a case study that demonstrates the potential performance im-

provement with geo-elastic provisioning. In addition, we compare the client performance

of running geo-elasticity with four different policies. Figure 5.10 depicts our setup that

involves two client locations, Pennsylvania and Germany, and two data center locations,

Virginia and Ireland. Dark boxes represent web servers and light boxes represent database

servers. For example, in the leftmost column, we have both clients from Pennsylvania and

Germany make requests to a web server running inside Virginia’s data center, who then

fetches data from database running in the same data center. The top time axis shows the
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Figure 5.12: Performance benefits of tightly coupled provisioning and pre-copying. A
tightly coupled policy improves the 95th percentile of response time from 810 ms to 250 ms
when compared to the loosely coupled policy. Pre-copying further improves 95th percentile
of response time to 210 ms.

progress of different provisioning events with both local elasticity and geo-elasticity. The

entire provisioning activity is broken down into three different phases, i.e., starting provi-

sioning, finishing provisioning web server, and finishing provisioning database server.

5.8.3.1 Performance Improvement with Geo-elasticity

We first compare the end-to-end performance improvement brought by provisioning in

a geo-elastic way when compared to local elasticity. Figure 5.11a shows the average client

requests for the entire experiment duration. We deliberately specify a very low server

response time SLA—that is, at the end of the first provisioning epoch, our provisioning

algorithms will scale up existing server resources. Note that, a choice of low SLA also

eliminates potential performance deterioration caused by an overloaded server, making it

easy to reason about the performance improvement.

To handle such a workload, local elasticity provisions additional servers locally, within

the same Virginia data center location; while geo elasticity can provision capacity at any

suitable cloud location, i.e. Ireland cloud. The corresponding provisioning results are

shown in Phase 3 of Figure 5.10. We record per request end-to-end response time for

clients from both locations.
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Table 5.11b shows that geo-elasticity reduces average response time from 169 ms to 76

ms, an 55.03% improvement, when compared to local elasticity. The reason underlying the

improvement is clients from Germany can now be fully served in the nearby Ireland cloud,

instead of in the further Virginia data center. Therefore, all client requests from Germany

are at least seeing an 70 ms network round trip time reduction, from 100.3 ms to 29.7 ms.

5.8.3.2 Policy-based Performance Improvement

Next, we scrutinize the end-to-end response time variations experienced by Germany

clients when performing geo-elasticity with loosely-coupled policy. Figure 5.12a shows

the response time spikes that Germany clients experience when provisioning activity is

not synchronized between IaaS and DBaaS clouds—loosely-coupled provisioning. During

phase two, all client requests from Germany are first sent to the newly provisioned web

server in Virginia who then makes query requests to the database server in Ireland. As a

result, requests that need to visit back-end servers multiple times to fetch desired data will

experience 2x to 6x increase.

To reduce performance impact when provisioning for dependent resources, for exam-

ple front-end and backend servers, we can either reduce provisioning duration external to

clients or synchronize provisioning activities among resources. In the context of this case

study, we can dramatically shorten database provisioning time from tens of minutes to a

couple of minutes by pre-copying required data in advance; and we can enforce front-end

servers to be configured to database servers within the same data center—data centers with

acceptable network latency.

We plot client response time CDF obtained using four different policy combinations

in Figure 5.12. Tightly-coupled provisioning, with or without pre-copying, outperform

loosely-coupled provisioning with an up to 74% improvement for 95th percentile. When

pre-copying the database snapshot to the destination Ireland cloud in advance, we only need

to copy a delta of 100 MB data during actual database provisioning. As a result, we drasti-
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Figure 5.13: Experimental setup for comparing DBScale to a caching approach. The
front-end tier is replicated and configured with an 1 GB in-memory cache in the caching
approach. We use the same web and database server types for all the experiments.
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Figure 5.14: CDF comparison of end-user response time of four different scenarios. A
caching approach with 100% hit rate has comparable performance to DBScale while a 0%
hit rate causes performance to be similar to local single-site elasticity.

cally reduce duration of phase two and in turns cut down the number of requests that need to

make transcontinental requests from Europe to USA. With pre-copying enabled, loosely-

coupled provisioning yields up to 31% improvement for 95th percentile when compared

without pre-copying.

Conclusion: Geo-elasticity provisioning effectively reduces the mean end-to-end re-

sponse time, thus improving performance for all clients. Tight-coupled and pre-copy poli-

cies are effective in reducing response time spikes during provisioning.
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Figure 5.15: CDF comparison of end-user response time with increasing hit rate. As
the hit rate increases from 10% to 50%, the 95th percentile response time improves by
72.18%, from 4780 ms to 1330 ms.

5.8.4 Comparing DBScale to a Caching Approach

In this section, we compare DBScale’s performance to that of a caching-based ap-

proach. In our caching approach, the database server runs in a single centralized location

while web servers are replicated in various geographic locations and use Memcached [112],

or any other in-memory cache, to store recent query results.

We modified TPC-W so that read requests for data are sent to in-memory cache, who

will then query remote database servers during cache miss. We use a small database of 512

MB and allocate 1 GB RAM for the in-memory cache. We warm up the in-memory cache

using a modified read-only browsing workload mix. By warming up cache using known

workload mix, we are able to control the desired cache hit rates. For example, if we set the

cache hit rate to be 10%, each request will trigger a cache miss with a probability of 0.1 and

be served directly from cache with 0.9 chance. The setup for this case study is illustrated in

Figure 5.13. We run the default browsing workload mix (95% reads and 5% writes) from

Pennsylvania clients for different setup, and collect client end-to-end response time for all

requests.
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5.8.4.1 In-Memory Cache v.s. DBScale

We plot CDFs of end-user response time for four different scenarios, i.e., DBScale,

two extreme caching scenarios and single-site local elasticity, in Figure 5.14. An All hit

cache represents the best case scenario where all data requests can be satisfied from the

local cache, while an No hit cache corresponds to the worse case scenario in which data

are fetched from remote database across WAN. We show that DBScale has comparable

performance with a perfect cache because in both cases, front-end servers are able to fetch

data locally, either from a local cache or a local database. In addition, we also demonstrate

that both Single-site and a complete cold cache perform poorly because all requests for

data have to go to the further centralized database, either directly or from within the cache.

Besides significant improvement of 95th percentile from 4.9 seconds to 140 ms, DBScale

also reduces the mean response time, especially for write requests as shown in Figure 5.14b

(log-scale y axis). In summary, DBScale behaves akin to the scenario where all requests

are served from local cache, while single-site local elasticity is similar to a complete cache

miss.

5.8.4.2 Impact of Cache Hit Rate

Next, we study performance impact with an increasing hit rate from 10% to 50%. In

Figure 5.15a, we plot the CDF of client response time and show that 95th percentile de-

creases from 478 ms to 133 ms when more requests are served from local cache. This is

because the percentage of requests that avoid WAN latencies decreases as the hit rate in-

creases from 10% to 50%. In addition, as shown in Figure 5.15b, the benefits of caching

only accumulate for predominantly read-intensive workloads. Requests that trigger update

queries still need to visit the remote database server and therefore experience large network

latency, resulting in poor average response time.

Conclusion: we demonstrate that a caching-based approach might provide comparable

performance to DBScale, with high hit rate and a low fraction of write workload. How-
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Figure 5.16: Experimental setup for updating databases in different locations. Updates
are first copied to all the cloud locations or the master database’s location. Then we either
take the databases offline for batched update or configure a master-slave topology for online
synchronization.

ever, in practice, the actual hit rate depends on a number of factors, such as the skew in

query popularity distribution, cache size and replacement algorithms. DBScale does not

depend on these factors and could yield good performance always (at the cost of needing

consistency maintenance among replicas).

5.8.5 Consistency Maintenance Overheads

In our final set of experiments, we evaluate the overheads of maintaining consistency of

database replicas that spread across transcontinental cloud locations. We compare two com-

mon approaches, i.e. batched and online updates using MySQL master-slave configuration,

for achieving database consistency. The experiment setup is illustrated in Figure 5.16 for

both batch and online scenarios. And we use TPC-W web application benchmark that is

loaded with 13.43GB database.

5.8.5.1 Batched Updates Overhead

We measure the overhead of applying a varying amount of updates in batch mode dur-

ing offline maintenance windows; the three database replicas are each hosted separately in

Virginia, California and Ireland data centers, as shown in Figure 5.16a. We measure the

latency to apply updates at all replicas and restart all servers. Figure 5.17a shows the mean

downtime for applying varying amount of updates across five runs along with the 95% con-
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Figure 5.17: Batched updates Overheads. The maintenance downtime (ranging from a
few minutes to hours) due to batched updates is impacted by the amount of the data that
need to be updated, and the server capacity, i.e. server size and the cloud location.

fidence intervals. The figure shows that it takes 12.52 minutes to update 1% of database

data on a small server and as much as 60 minutes to update 10% of the database on a

medium server. In general, the downtime is cut in half as we move from a small server to

medium or large servers. We observe the capacity differences and slightly different down-

times even for servers of same types in different cloud locations as shown in Figure 5.17d.

These results show that, barring under-sized small severs, batched updates can be a feasible

option during maintenance windows, which themselves last for a few hours.

5.8.5.2 Online Master-slave Maintenance.

Finally, we study the overheads of using master-slave topology for executing database

updates by measuring (i) the impact on maintenance time and (ii) the impact on foreground

requests and client response time. As shown in Figure 5.16b, we configure the database

in Virginia as the master database and the other two as Slave 1 and Slave 2 in California

and Ireland respectively. Read queries are sent to the databases in the vicinity while write

queries are sent to master database. We record the time to update 1% of database data as

well as the end-users response time using this topology; all the database servers run on

medium-sized servers.
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Figure 5.18: Impacts of online master-slave on update time and response time distri-
bution. As the workload of end-users increase, we observe a corresponding increase in the
update latency. Also, response time CDF of both master and slaves behaves similarly to the
no-writes baseline scenario.

Figure 5.18a shows that it takes 6.35 minutes to update 1% data and as the front-end

workload increase, the online update time increase too. Our observation suggests that in

order to reduce the length of update time, i.e. the impact duration on end-users, we could

adjust the database server size based on end-users’ workload during the online mainte-

nance phase. To demonstrate the online maintenance activities’ impacts on the end-users’

response time, in Figure 5.18b, we compare the client response time distribution of master

and slaves compared to baseline no writes scenario for different levels of workload inten-

sity. We observe no obvious impact on client response time distribution of master-slave

updates approaches at different workload intensity, making it a feasible solution as well.

Specifically, in Figure 5.18c, we show that the 95th percentile response time increases from

400 ms to 560 ms for master and to 595 ms for slaves for a 50 clients workload at each

location.

Conclusion: we measure performance overhead of two consistency models provided in

DBScale in varying scenarios. These measurements can serve as a guideline for config-

uring consistency for different application needs. We show the batch update time varies

according to the amount of new data and server capacity. In master-slave mode, we show
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overhead increases with the client workload, with an up to 40% increase at 95th percentile

response time at master.

5.9 Related Work

Distributed cloud platforms have became a popular paradigm for hosting web appli-

cations. Their pay-as-you-go pricing model and flexible resource allocation make them

well-suited for hosting applications with dynamic workloads [15, 23]. When physical

resources are shared among multiple VMs, it becomes challenging to accurately model

the resource usages for each VM [36, 95, 166] mainly due to interference of co-located

VMs [37,88,120,174]. The problem becomes more noticeable for applications with bursty

workload characteristics [115]. To overcome this hurdle, recent efforts have attempted to

mitigate the impact of interference either by combining the VMs workloads [114] or by

employing a novel performance prediction model that is capable of dealing with bursty

workloads or even flash crowds [34]. In our work, we combine our empirically measured

distributed front-end workload and a regression-based model to predict the spatial and tem-

poral variations in the backend database workload.

Queueing-based models have been used extensively to model cloud-based applica-

tions [118, 162, 164], but most have focused on front-end servers . To parameterize those

proposed models, it often requires to perform empirical measurements on real system with

predefined workload. However, due to potential costs of intrusive measurements and the

volatility of workload mix, an alternative regression model [173] was proposed to approxi-

mate the CPU demand with different transaction mixes so as to effectively model complex

live systems with very few parameters. In our work, we focus on dynamic provisioning in

distributed database cloud and model the database server as a two-node queueing network

with feedback to track both CPU and I/O utilization.

As more database management tasks [48, 136] are offloaded to the cloud, researchers

have begun to focus on adaptive and dynamic provisioning of database servers based on
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SLA [35, 117, 128, 143, 168]. These efforts on database provisioning include using models

and tools to predict resource utilization and performance for OLTP databases [47, 117],

cloning techniques to spawn database replicas [35, 124], live migration techniques to hor-

izontally scale up database server [52], middleware approach to coordinate cloud-hosted

applications and databases without violating SLA [143] and utilizing distributed cloud plat-

forms for performance-aware data replication [6, 105, 128, 134]. Our focus here is on geo-

elasticity, which is less well studied, and we propose the DBScale framework to handle

geo-elasticity for cloud hosted databases.

5.10 DBScale Summary

We proposed a new dynamic provisioning algorithm, called geo-elasticity, for DBaaS

clouds to handle both temporal and spatial workload dynamics. Our work is motived by the

emergence of distributed clouds, the popularity of geographically distributed applications,

and the paradigm for applications to host their backend tiers in DBaaS clouds. To achieve

geo-elasticity, we presented a regression-based prediction model that infers geographical

workload distribution for database tier, and a two-node open queueing network model that

estimates database capacity. Further, we proposed the geo-elastic algorithm that combines

both models and two greedy workload assignment algorithms for provisioning database

servers in distributed clouds.

We implemented a prototype called DBScale as a middleware based on Amazon dis-

tributed clouds and conducted comprehensive evaluations to quantify DBScale’s perfor-

mance. Specifically, we performed both end-to-end experiments as well as benchmark ex-

periments to demonstrate the efficacy of our models, algorithms and DBScale as a whole.

Our results showed up to a 66% improvement in response time when compared to local

elasticity approaches.
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CHAPTER 6

CONCLUSION

6.1 Thesis Summary

This thesis looked at new challenges associated with resource management for different

cloud-based applications in distributed clouds. I have proposed a set of techniques that

dynamically provision cloud resources to meet performance expectations while keeping a

reasonable cost budget. Our approaches include both new model-driven techniques that

dissect application behaviors, server capacities and their relationships, and system-oriented

mechanisms that enable new resource management abstractions through both high-level

and low-level engineering. Our contributions are demonstrated through three key systems

that make performance and cost trade-offs automatically and dynamically.

First, I proposed an intelligent system to optimize placement and performance of ap-

plications in distributed clouds. I implemented a prototype on top of a nested hypervisor

to bypass limited management capabilities exposed by native cloud hypervisors. Our pro-

totype, equipped with a black-box fingerprinting technique, can effectively discriminate

between latency-sensitive and insensitive desktop VMs and judiciously move only those

that will benefit the most from the migration. Our evaluation demonstrates an up to 90%

improvement of VNC’s refresh rate for desktop VMs with video activity after migration.

Next, I developed a new provisioning technique called geo-elasticity to dynamically

provision server resources at any geographic location whenever needed. Geo-elasticity is

essential for taking full advantage of server resources that are distributed in today’s cloud

platform and is beneficial for improving end-to-end client response time of geographically

distributed applications. This proposed work treats VMs as black-box and leverages a
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queueing-based model for estimating virtualized server’s capacity without prior knowledge

of applications running within. Our evaluation, using Amazon’s distributed clouds, shows

up to 40% improvement in the 95th percentile response time when compared to traditional

elasticity techniques.

Last, I extended the geo-elasticity provisioning technique to database clouds. In this

work, I relaxed the previous black-box assumption and presented an application-specific

performance model by leveraging our prior knowledge of CPU and I/O intensive database

workload. We introduced a regression-based workload prediction algorithm to handle

workload obscuration caused by front end servers. Our evaluation shows an up to 55%

improvement in mean response time when compared to local elasticity. In addition, we

proposed greedy algorithms that help reducing provisioning costs by up to 10.6% for rea-

sonable workload intensity.

In summary, this thesis has explored how to efficiently manage resources in distributed

clouds for better performance and lower cost. We proposed new approaches to dynami-

cally provision resources for different cloud-based applications. These approaches were

implemented into three key systems that leverage existing models and advancement in vir-

tualization techniques. With the help of our approaches, we can perform dynamic pro-

visioning more efficiently for applications with geographically distributed clients within

heterogeneous distributed cloud platforms.

6.2 Future Work

In VMShadow, we focus on using migration techniques that are made possible by para

virtualization and nested virtualization to improve end-to-end user performance. Those

VM-machine based approaches are ideal in the context of providing performance isolation

but inevitably impose management overhead that is proportional to VM size. This over-

head, in part, comes from the need to transfer data that is not essential for reconstructing

application states. It will be interesting to explore different system-level techniques such
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as cloning execution or OS-level virtualization technique as light-weight alternatives for

managing resources in distributed clouds.

I proposed to provide the ability to provision server resources in any cloud locations—

geo-elasticity—for both IaaS and DBaaS distributed clouds. However, the overhead to

perform geo-elasticity is inherently high because data has to be transferred across WAN.

In other words, the benefits of geo-elasticity are highly dependent on meticulous planning.

This planning could be about provisioning frequency or how to manage snapshot data. Fu-

ture work is required to come up with provisioning policies that are tailored to provisioning

in a distributed settings. In addition, it will be useful to extend benefits of geo-elasticity to

the reactive provisioning scenario where separate provisioning entities can react to work-

load changes agilely.

Distributed clouds have become a popular platform for monitoring, aggregating and

processing a large amount of data. Data processing applications have different perfor-

mance goal compared to previously targeted interactive applications. These “big data”

applications are less sensitive to network latency and might not benefit at all from mov-

ing data to a cloud location that is closest to human operators. Future work is needed to

explore the fundamental differences between data processing and interactive applications,

and to search for novel approaches to managing resources for data processing applications.
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APPENDIX A

SLA-CONSTRAINED SERVER CAPACITY

We model a single cloud server as a G/G/1 queue and use T , W and X to denote the

response time, waiting time and service time distributions respectively. The application-

level SLA y is defined as a strict upper bound of a high percentile response time. For

the ease of illustration, we choose 95th percentile response time. That is, if the SLA y = 2

seconds, the 95th percentile of response time T , denoted as αT (95), has to satisfy αT (95)<

2. Our goal is to derive the amount of requests λ a server could process without violating

the SLA. More specifically, we are interested in finding the upper bound of λ when the

server is undergoing heavy traffic, that is server utilization ρ is approaching 1 with ρ = x̄λ

based on Little’s Law .

To do so, we first use Kingman’s theorem for G/G/1 queue under heavy traffic to repre-

sent αT (95). Kingman’s theorem states that the waiting time W is an exponential distribu-

tion with mean E[W ] as shown in Equation A.1 and A.2.

E[W ] =
σ2

a +σ2
b

2( 1
λ
− x̄)

(A.1)

FW (w) = P(W ≤ w)

= 1− exp−
1

E[W ]
w (A.2)

where σ2
a and σ2

b represent the variances in requests’ inter-arrival times and service

times; and x̄ denotes the mean service time. By definition, we have:
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P(T ≤ αT (95)) = 0.95 (A.3)

T =W +X (A.4)

Note that all x from service time distribution X has to satisfy Equation A.4, we then

have T ≈W + x̄. Combining Equation A.2 to A.4, we have an equation of αT (95) in terms

of E[W ] and x̄ in Equation A.5.

1− exp−
1

E[W ]
(αT (95)−x̄)

= 0.95 (A.5)

Applying ln operation to both side, we can express αT (95) with all known parameters

as shown in Equation A.6.

αT (95) =
3λ (σ2

a +σ2
b )+2(1−ρ)x̄

2(1−ρ)
(A.6)

To satisfy SLA y, we just need to have αT (95)< y. By substituting Equation A.6 to the

SLA constrain, we obtain the upper bound of request rate λ as:

λ <

[
x̄+

3(σa
2 +σb

2)

2(y− x̄)

]−1

(A.7)
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APPENDIX B

GEO-ELASTIC PROVISIONING WITH QUADRATIC
PROGRAMMING

Both χ lat and χcos, obtained through our greedy algorithms in Section 5.5.1, are binary

matrices. That is, χi j is binary—either all or none of workload from client location i is

assigned to cloud location j. In this section, we formulate the workload assignment prob-

lem using quadratic programming that allows us to assign client workload from the same

location i to multiple cloud locations. This provides us flexibility to split and pool client

workload and potentially reduce the total number of servers needed.

In a high level, this quadratic formulation reduces cost by finding cheapest cloud lo-

cations and aggregating client workload into as fewer servers as possible. In other words,

for a subset client workload scenarios, our cost-first greedy algorithm will produce the

assignments with the same costs.

min
n

∑
j=1
dω jeC j(ω j) (B.1)

subject to:

0≤ χi j ≤ 1, ∀i ∈ Lc,∀ j ∈ Lk (B.2)
n

∑
j=1

χi j = 1, ∀i ∈ Lc (B.3)

α95(T N
c )≤ T N

SLA (B.4)

ω j ≤ R j, ∀ j ∈ Lk (B.5)
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Recall that C j(ω j) (5.11) is a function of ω j (5.10) and represents the total cost to serve

ω j workload at cloud location j. The objective function (B.1) tries to minimize the total

cost for all workload ω, where dω je is the number of servers needed at cloud location j.

Constraints (B.2) and (B.3) makes sure that all client workload is assigned, and constraint

(B.4) and (B.5) ensure that network SLA and available resource is not violated.

By solving the above QP formulation, we obtain the assignment matrix χQP
m×n. Com-

bining with λ N (5.9), we get

ωQP = λNχQP. (B.6)

The total cost associated is then CQP = ∑
n
j=1dωQP

j eC j(ω
QP
j ). Last, we use T N

QP =

{(Ai j,dχi jλie) | ∀i∈ Lc,∀ j∈ Lk} to approximate the true network latency distribution. Note

T N
QP includes at most mn more data samples compared to actual measurement. But given

a reasonable workload λ, the extra samples will not affect statistics we are interested, i.e.

mean and 95th percentile.
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