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ABSTRACT

COMBINING STATIC AND DYNAMIC ANALYSIS FOR BUG
DETECTION AND PROGRAM UNDERSTANDING

AUGUST 31 2016

KAITUO LI

B.Sc., JILIN UNIVERSITY

M.Sc., ZHEJIANG UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yannis Smaragdakis

This work proposes new combinations of static and dynamic analysis for bug detec-

tion and program understanding. There are 3 related but largely independent directions:

a) In the area of dynamic invariant inference, we improve the consistency of dynamically

discovered invariants by taking into account second-order constraints that encode knowl-

edge about invariants; the second-order constraints are either supplied by the programmer

or vetted by the programmer (among candidate constraints suggested automatically); b) In

the area of testing dataflow (esp. map-reduce) programs, our tool, SEDGE, achieves higher

testing coverage by leveraging existing input data and generalizing them using a symbolic

reasoning engine (a powerful SMT solver); c) In the area of bug detection, we identify and

present the concept of residual investigation: a dynamic analysis that serves as the runtime

agent of a static analysis. Residual investigation identifies with higher certainty whether an

error reported by the static analysis is likely true.

viii
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CHAPTER 1

INTRODUCTION

1.1 My thesis

We can improve the precision and availability of existing program understanding and

bug detection techniques by combining static and dynamic analysis. Specifically, we

combine static and dynamic analysis in 3 different directions: predictive and precise dy-

namic analysis with static analysis in bug detection, second-order constraints (static con-

straints over invariants) in dynamic invariant inference, and dynamic symbolic execution

in dataflow program testing.

1.2 Static and dynamic analysis

Software practitioners have traditionally faced many problems with testing, document-

ing and maintaining software systems. These problems are often the result of poor under-

standing of program properties, lack of reliable methods for validating software results,

over-reliance on specific bug detecting tools, and so on. Various static and dynamic pro-

gram analysis techniques can be used to remedy these problems. Each flavor of analysis

has its own advantages. Dynamic analysis excels in precision and efficiency: it operates

by executing programs with test cases, and subsequently is able to compute 100% accurate

results; static analysis is good at generality: we are able to generalize the static analysis re-

sults to future executions no matter what the user input is or what environment the system

is in [36]. The different advantages of static and dynamic analyses have led researchers to

devise combinations of static and dynamic analyses (e.g., [19, 26, 27, 48, 66, 107, 109]) to

achieve the best of both worlds.
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Dynamic symbolic execution [95] is such an example. Symbolic execution is a static

analysis technique. In a function or method of modern programming languages, a concrete

execution comprises input data received as arguments, an execution following a particular

path, and output data if this method or function returns one or more values. Instead of

using concrete values, symbolic execution represents input and output values by symbolic

names. It then computes the path condition for each path using these symbolic names and

sends them to a constraint solver. Path conditions are logical formulas that the input values

need to satisfy in order to steer the execution into a particular path. Constraint solvers are

able to pick values for those symbolic names such that the logical formulas can be made

true. With symbolic execution, generating test cases for a path amounts to mapping branch

conditions of a path to low-level formulas.

However, symbolic execution cannot reason about native method calls because the

source code or the object code of native methods are not available. Also, the ability of

symbolic execution to generate test cases heavily depends on the power of constraint solver.

Constraint solving is practically always limited in the face of complex constraints such as

certain non-linear constraints and certain constraints that use quantifiers. Dynamic sym-

bolic execution resolves these problems by arranging for the symbolic execution and the

actual execution of a program to proceed in tandem. Calls to native methods or symbolic

names in complex constraints are replaced with concrete values from the actual program

execution.

Dynamic symbolic execution is effective at exposing bugs. It can systematically gen-

erate test cases by exercising diverse paths in the control-flow graph of the system under

test. If bugs are found, users are able to reproduce all of the bugs with the generated test

cases, provided that they are working on a sequential program or a multi-threaded program

whose thread interleavings are deterministic. Due to its effectiveness, dynamic symbolic

execution has received much attention of late. There have been a lot of dynamic symbolic

execution engines in industry and academia, notably DART [48], CUTE [97], jCUTE [96],

2



KLEE [18], Java PathFinder [112], SAGE [49], PEX [107], BitBlaze [103]. The popu-

larity of dynamic symbolic execution is sharply illustrated by the adoption of SAGE into

Microsoft’s Windows 7 development: SAGE found one-third of all bugs during the devel-

opment of Windows 7 [49].

1.3 Overview and contribution

We propose new combinations of static and dynamic analysis for bug detection and

program understanding. More specifically, this dissertation makes the following contribu-

tions:

1. To reduce false or low-value warnings for static tools, we introduce the concept of

residual investigation for program analysis. Residual investigation provides a general

recipe for designing predictive and precise dynamic analyses. A residual investiga-

tion is a dynamic check installed as a result of running a static analysis that reports

a possible program error. The purpose is to observe conditions that indicate whether

the statically predicted program fault is likely to be realizable and relevant. The key

feature of a residual investigation is that it has to be much more precise (i.e., with

fewer false warnings) than the static analysis alone, yet significantly more general

(i.e., reporting more errors) than the dynamic tests in the program’s test suite perti-

nent to the statically reported error.

2. We present a technique to enhance the dynamic invariant detection approach. Our

work identifies and describes the idea of second-order constraints that can help im-

prove the consistency and relevance of dynamically inferred invariants. We call these

constraints second-order because they are constraints over constraints: they relate

classes of invariants (first-order constraints). For instance, even though the invariants

describing the behavior of two functions f1 and f2 may be unknown, we may know
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that any valid input for f1 is also valid for f2, i.e., the precondition of f1 implies that

of f2.

3. Our SEDGE system addresses the problem of completeness in automated test case

generation for dataflow programs: for every dataflow operator, we produce data aim-

ing to cover all cases that arise in the dataflow program (e.g., both passing and failing

a filter). SEDGE relies on transforming the program into symbolic constraints, and

solving the constraints using a symbolic reasoning engine (a powerful SMT solver),

while using input data as concrete aids in the solution process. The approach resem-

bles dynamic symbolic (a.k.a. “concolic”) execution in a conventional programming

language, adapted to the unique features of the dataflow domain. SEDGE is the first

dynamic symbolic execution engine for dataflow programs.
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CHAPTER 2

RESIDUAL INVESTIGATION: PREDICTIVE AND PRECISE BUG
DETECTION

A tension exists between static analysis and testing. Static analysis has the problem of

issuing false positives: namely, it often warns about bugs that are not real bugs. They are

just there because of over-generalizing observations. However, testing does not suffer from

false positives. When it reports an error, it is a true error. Conversely, testing suffers from

false negatives: it misses many errors. Testing can only catch errors that are dynamically

exercised by the test suite, whereas static analysis generalizes the test suite, or, rather,

generalizes the application’s behavior without consulting the test suite. In this way, static

analysis has fewer false negatives. This well-known tradeoff between static analysis and

testing creates the need to have something in the middle: an approach that is more general

than reporting the errors encountered by a test suite while avoiding high rates of false

positives. And what can come in the middle is what we usually call dynamic analysis. But

what we mean by dynamic analysis is often not well-defined: testing can itself be thought

of as a dynamic analysis. We instead consider dynamic analysis as a concept that is more

general than testing: it can detect errors not observed directly during the current execution.

We use the term predictive for such dynamic analyses.

This chapter investigates predictive and precise dynamic analysis. The thrust of this

dynamic analysis is to have very few false positives and fewer negatives than testing. Pre-

dictive and precise dynamic analysis can be combined with static analysis to improve the

precision and recall of bug detection. This combination consists of taking bug reports in-

ferred by a static bug detector, examining false positives of those bug reports (i.e., what

are the common objections to the static bug reports?), designing dynamic tests to disprove
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those objections, and determining whether a static report is likely true by executing the

dynamic tests. Since we employ the dynamic analysis as a subsequent step of the static

analysis, we call the dynamic analysis the “residual” of the static analysis. We call the

dynamic analysis residual investigation for the static analysis. We have confirmed the ef-

ficacy of residual investigation by implementing it inside FindBugs, a static bug detection

tool.

2.1 Introduction and Motivation

False error reports are the bane of automatic bug detection—this experience is perhaps

the most often-reported in the program analysis research literature [3, 82, 93, 114, 120].

Programmers are quickly frustrated and much less likely to trust an automatic tool if they

observe that reported errors are often not real errors, or are largely irrelevant in the given

context. This is in contrast to error detection at early stages of program development, where

guarantees of detecting all errors of a certain class (e.g., type soundness guarantees) are

desirable. Programmers typically welcome conservative sanity checking while the code is

actively being developed, but prefer later warnings (which have a high cost of investigation)

to be issued only when there is high confidence that the error is real, even at the expense of

possibly missing errors.

The need to reduce false or low-value warnings raises difficulties especially for static

tools, which, by nature, overapproximate program behavior. This has led researchers to

devise combinations of static analyses and dynamic observation of faults (e.g., [19, 26, 27,

48, 66, 107, 109]) in order to achieve higher certainty than purely static approaches.

In this chapter, we identify and present a new kind of combination of static and dynamic

analyses that we term residual investigation. A residual investigation is a dynamic analysis

that serves as the run-time agent of a static analysis. Its purpose is to determine with higher

certainty whether the error identified by the static analysis is likely true. In other words, one

can see the dynamic analysis as the “residual” of the static analysis at a subsequent stage:
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that of program execution. The distinguishing feature of a residual investigation, compared

to past static-dynamic combinations, is that the residual investigation does not intend to

report the error only if it actually occurs, but to identify general conditions that reinforce the

statically detected error. That is, a residual investigation is a predictive dynamic analysis,

predicting errors in executions not actually observed. The predictive nature of residual

investigation is a significant advantage in practice: high-covering test inputs are hard to

produce for complex programs.

Consider as an example the “equal objects must have equal hashcodes” analysis (code-

named HE) in the FindBugs static error detector for Java [3,60,62]. The HE analysis emits

a warning whenever a class overrides the method equals(Object) (originally defined

in the Object class, the ancestor of all Java classes) without overriding the hashCode()

method (or vice versa). The idea of the analysis is that the hash code value of an object

should serve as an equality signature, so a class should not give a new meaning to equality

without updating the meaning of hashCode(). An actual fault may occur if, e.g., two

objects with distinct hash code values are equal as far as the equals method is concerned,

and are used in the same hash table. The programmer may validly object to the error warn-

ing, however: objects of this particular class may never be used in hash tables in the current

program. Our residual investigation consists of determining whether (during the execution

of the usual test suite of the program) objects of the suspect class are ever used inside a

hash table data structure, or otherwise have their hashCode method ever invoked. (The

former is a strong indication of an error, the latter a slightly weaker one.) Note that this

will likely not cause a failure of the current test execution: all objects inserted in the hash

table may have distinct hash code values, or object identity in the hash table may not matter

for the end-to-end program correctness. Yet, the fact that objects of a suspect type are used

in a suspicious way is a very strong indication that the program will likely exhibit a fault

for different inputs. In this way the residual investigation is a predictive dynamic analysis:

it is both more general than mere testing and more precise than static analysis.
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We have designed and implemented residual investigations for several of the static anal-

yses/bug patterns in the FindBugs system. The result is a practical static-dynamic analy-

sis prototype tool, RFBI (for Residual FindBugs Investigator). Our implementation uses

standard techniques for dynamic introspection and code interposition, such as bytecode

rewriting and customized AspectJ aspects [68]. The addition of extra analyses is typically

hindered only by engineering (i.e., implementation) overheads. Designing the residual in-

vestigation to complement a specific static pattern requires some thought, but it is typically

quite feasible, by following the residual investigation guidelines outlined earlier: the anal-

ysis should be significantly more general than mere testing while also offering a strong

indication that the statically predicted fault may indeed occur.

We believe that the ability to easily define such analyses is a testament to the value of the

concept of residual investigation. Predictive dynamic analyses are usually hard to invent.

To our knowledge, there are only a small number of predictive dynamic analyses that have

appeared in the research literature. (A standard example of a predictive dynamic analysis

is the Eraser race detection algorithm [94]: its analysis predicts races based on inconsis-

tent locking, even when no races have appeared in the observed execution.) In contrast,

we defined several predictive analyses in a brief period of time, by merely examining the

FindBugs list of bug patterns under the lens of residual investigation.

In summary, the main contributions of this chapter are:

• We introduce residual investigation as a general concept and illustrate its principles.

• We implement residual investigations for several of the most common analyses in

the FindBugs system, such as “cloneable not implemented correctly”, “dropped ex-

ception”, “read return should be checked”, and several more. This yields a concrete

result of our work, in the form of the Residual FindBugs Investigator (RFBI) tool.

• We validate our expectation that the resulting analyses are useful by applying them

to 9 open-source applications (including large systems, such as JBoss, Tomcat, Net-
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Beans, and more) using their native test suites. We find that residual investigation

produces numerous (31) warnings that do not correspond to test suite failures and are

overwhelmingly bugs.

• We discuss the applicability of residual investigation to several other static analyses

in the literature. These include race detection, SQL injection analyses, and other

pattern-based code analyses in FindBugs. We also discuss how the quality of the test

suite affects the applicability of residual investigation.

2.2 Residual Investigation

Residual investigation is a simple concept—it is a vehicle that facilitates communica-

tion rather than a technical construction with a strict definition. We next discuss its features

and present the example analyses we have defined.

2.2.1 Background and General Concept

We consider a dynamic check that is tied to a static analysis to be a residual investigation

if it satisfies the informal conditions outlined in Section 2.1:

• The check has to identify with high confidence that the statically predicted behavior

(typically a fault1) is valid and relevant for actual program executions. A residual

investigation should substantially reduce the number of false (or low-value) error

reports of the static analysis.

1The computing literature is remarkably inconsistent in the use of the terms “error”, “fault”, “failure”, etc.
In plain English “error” and “fault” are dictionary synonyms. Mainstream Software Engineering books offer
contradicting definitions (some treat an “error” as the cause and a “fault” as the observed symptom, most do
the opposite). Standard systems parlance refers indiscriminately to “bus errors” and “segmentation faults”,
both of which are quite similar program failures. In this chapter we try to consistently treat “error” (as well
as “bug” and “defect”) as the cause (in the program text) of unexpected state deviation, and “fault” as the
dynamic occurrence that exhibits the consequences of an error. That is we think of programming errors, and
execution faults. It should also be possible for the reader to treat the two terms as synonyms.

9



• The analysis has to be predictive: it should be generalizing significantly over the

observed execution. A residual investigation should recognize highly suspicious be-

haviors, not just executions with faults. This is a key requirement, since it is easier

to have a test case to expose suspicious behaviors than to have a test case to actually

cause faults.

A bit more systematically, we can define the following predicates over a program p:

• Bp(b), for “p has bug b”, i.e., the program text contains an error, b, of a kind we are

concerned with (e.g., class overrides equals but not hashcode) and there is some

execution ep of p for which this error leads to a fault.

• Sp(b), for “p induces a static error report on bug b”, i.e., the program text contains a

possible error that the static analysis reports.

• Tp(b), for “p causes a test case fault due to bug b”, when executed with p’s test suite.

• Rp(b), for “p triggers the residual investigation (dynamic) check” (associated with

the static report for bug b), when executed with p’s test suite.

Although we typically use the term “residual investigation” for the dynamic analysis,

the error reporting process includes the static analysis. That is, a residual investigation

issues a reinforced warning in case the static analysis predicted an error and the dynamic

analysis confirms it, i.e., in case Sp(b) ∧Rp(b).

We assume that the dynamic testing is sound for the execution it examines.2 Thus, we

have:

∀p, b : Tp(b)⇒ Bp(b)

The requirements for having a valid and useful residual investigation then become:

2 We view all analyses as bug detectors, not as correctness provers. Therefore soundness means that
warning about an error implies it is a true error, and completeness means that having an error implies it will
be reported. For a correctness prover the two notions would be exactly inverse.
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Figure 2.1: The goal of residual investigation (Rp) of a program p is to provide a filter for
the static bug warnings (Sp), such that Rp and Sp combined (i.e., the intersection of Rp and
Sp) better approximates the program’s set of true bugs (Bp) than static analysis alone.

1. The static analysis is unsound (i.e., some warnings are false):

∃p, b : Sp(b) ∧ ¬Bp(b)

(As discussed in Section 2.1, this assumption is true for most static analysis systems,

as they produce false warnings.)

2. The dynamic testing (of a program’s test suite) is incomplete (i.e., bugs are missed

by testing):

∃p, b : Bp(b) ∧ ¬Tp(b)

(Again, the undecidability of non-trivial program properties combined with the

soundness of testing implies testing is incomplete.)

3. The residual investigation should be an appropriate bridge for the gap between the

static analysis and the bug (see also Figure 2.1):

∀p, b : Bp(b) approximately iff Sp(b) ∧Rp(b)

This is the only informal notion in the above. It is practically impossible to have

exact equivalence for realistic programs and error conditions, since Rp(b) examines

a finite number of program executions. Note that (approximate) equivalence means

both that Sp(b) ∧ Rp(b) (likely) implies a bug b exists and that, if there is a bug

b, Sp(b) ∧ Rp(b) will (likely) be true. In practice, we place a much greater weight

11



on the former direction of the implication. That is, we are happy to give up on

completeness (which is largely unattainable anyway) to achieve (near-)soundness of

error warnings.

The question then becomes: how does one identify a good residual investigation? We

have used some standard steps:

• Start with the static analysis and identify under what conditions it is inaccurate (pro-

duces false positives) or irrelevant (produces true but low-value positives).

• Estimate how likely these conditions can be. In other words, is this static analysis

likely to yield error reports that the programmer will object to, seeing them as false

or of low-value?

• If so, is there a concise set of dynamic information (other than a simple fault) that

can invalidate the programmer’s objections? That is, can we determine based on

observable dynamic data if the likely concerns of a programmer to the static warnings

do not apply?

Recognizing such “likely objections of the programmer” has been the key part in our

design. With this approach we proceeded to identify residual investigations for seven static

analyses in the FindBugs system, including some of the analyses that issue the most com-

mon FindBugs warnings.

2.2.2 Catalog of Analyses

We next present the residual investigations defined in our RFBI (Residual FindBugs

Investigator) tool, each tuned to a static analysis in the FindBugs system. We list each

analysis (uniquely described by the corresponding FindBugs identifier) together with the

likely user objections we identified and a description of clues that dynamic analysis can give

us to counter such objections. To simplify the presentation, we detail our implementation

at the same time.
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2.2.2.1 Bad Covariant Definition of Equals (Eq)

The equals(Object) method is defined in the Object class (java.lang.Object)

and can be overridden by any Java class to supply a user-defined version of object value

equality. A common mistake is that programmers write equals methods that accept a

parameter of type other than Object. The typical case is that of a covariant re-definition

of equals, where the parameter is a subtype of Object, as in the example class Pixel:

class Pixel {
int x;
int y;
int intensity;

boolean equals(Pixel p2)
{ return x==p2.x && y==p2.y; }

}

This equals method does not override the equals method in Object but instead

overloads it for arguments of the appropriate, more specific, static type. As a result, un-

expected behavior will occur at runtime, especially when an object of the class type is

entered in a Collections-based data structure (e.g., Set, List). For example, if one of the

instances of Pixel is put into an instance of a class implementing interface Container,

then when the equals method is needed, Object.equals() will get invoked at run-

time, not the version defined in Pixel. One of the common instances of this scenario

involves invoking the Container.contains(Object) method. A common skeleton for

Container.contains(Object) is:

boolean contains(Object newObj) {
for (Object obj : this) {

if (obj.equals(newObj))
return true;

}
return false;

}

Here, contains(Object) will use Object.equals, which does not perform an ap-

propriate comparison: it compares references, not values. Therefore, objects of type Pixel

are not compared in the way that was likely intended.
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Possible programmer objections to static warnings. FindBugs issues an error report for

each occurrence of a covariant definition of equals. Although the covariant definition

of equals is very likely an error, it is also possible that no error will ever arise in the

program. This may be an accidental artifact of the program structure, or even a result of the

programmer’s calculation that for objects of the suspect class the dynamic type will always

be equal to the static type, for every invocation of equals. For instance, the redefined

equals(Pixel) method may be used only inside class Pixel, with arguments that are

always instances of subtypes of Pixel, and the programmer may have chosen the covariant

definition because it is more appropriate and convenient (e.g., obviates the need for casts).

Dynamic clues that reinforce static warnings. Our residual investigation consists of

simply checking whether the ancestral equals method, Object.equals(Object), is

called on an instance of a class that has a covariant definition of equals. The imple-

mentation first enters suspect classes into a blacklist and then instruments all call sites of

Object.equals(Object) to check whether the dynamic type of the receiver object is in

the blacklist.

Implementation. We transform the application bytecode, using the ASM Java bytecode

engineering library. Generally, for all our analyses, we instrument incrementally (i.e., when

classes are loaded), except in applications that perform their own bytecode rewriting which

may conflict with load-time instrumentation. In the latter case, we pre-instrument the entire

code base in advance (build time).

2.2.2.2 Cloneable Not Implemented Correctly (CN)

Java is a language without direct memory access, hence generic object copying is done

only via the convention of supplying a clone()method and implementing the Cloneable

interface. Additionally, the clone() method has to return an object of the right dynamic

type: the dynamic type of the returned object should be the same as the dynamic type of the

receiver of the clonemethod and not the (super)class in which the executed method clone
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happened to be defined. This is supported via a user convention: any definition of clone()

in a class S has to call super.clone() (i.e., the corresponding method in S’s superclass).

The end result is that the (special) clone() method in the java.lang.Object class is

called, which always produces an object of the right dynamic type.

Possible programmer objections to static warnings. FindBugs statically detects violations

of the above convention and reports an error whenever a class implements the Cloneable

interface, but does not directly invoke super.clone() in its clone method (typically

because it merely creates a new object by calling a constructor). Although this condi-

tion may at first appear to be quite accurate, in practice it often results in false error re-

ports because the static analysis is not inter-procedural. The clone method may actu-

ally call super.clone() by means of invoking a different intermediate method that calls

super.clone() and returns the resulting object.

Dynamic clues that reinforce static warnings. A dynamic check that determines whether

a clone method definition is correct consists of calling clone on a subclass of the

suspect class S and checking the return type (e.g., by casting and possibly receiving a

ClassCastException). Our residual investigation introduces a fresh subclass C of S

defined and used (in a minimal test case) via the general pattern:

class C extends S {
public Object clone()
{ return (C) super.clone(); }

}
... ((new C()).clone()) // Exception

If S does not have a no-argument constructor, we statically replicate in C all constructors

with arguments and dynamically propagate the actual values of arguments used for con-

struction of S objects, as observed at runtime.

If the test case results in a ClassCastException then the definition of clone in

class S is indeed violating convention. Conversely, if S implements the clone convention

correctly (i.e., indirectly calls super.clone()) no exception is thrown. This test code is
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executed the first time an object of class S is instantiated. In this way, if class S does not

get used at all in the current test suite, no error is reported.

The above residual investigation provides a very strong indication of a problem that

will appear in an actual execution of the program, without needing to observe the problem

itself. Indeed, the current version of the program may not even have any subclasses of S,

but a serious error is lurking for future extensions.

Implementation. Our implementation of this analysis uses AspectJ to introduce the

extra class and code. In the case of complex constructors, we retrieve those with Java

reflection and use AspectJ’s constructor joinpoints instead of generating customized calls.

A subtle point is that if the superclass, S, is declared final or only has private constructors,

the residual investigation does not apply. This is appropriate, since the absence of any

externally visible constructor suggests this class is not to be subclassed. Similarly, the

generated code needs to be in the same package as the original class S, in order to be able

to access package-protected constructors.

2.2.2.3 Dropped Exception (DE)

Java has checked exceptions: any exception that may be thrown by a method needs

to either be caught or declared to be thrown in the method’s signature, so that the same

obligation is transferred to method callers. To circumvent this static check, programmers

may catch an exception and “drop it on the floor”, i.e., leave empty the catch part in a

try-catch block. FindBugs statically detects dropped exceptions and reports them.

Possible programmer objections to static warnings. Detecting all dropped exceptions

may be a good practice, but is also likely to frustrate the programmer or to be considered a

low-priority error report. After all, the type system has already performed a check for ex-

ceptions and the programmer has explicitly disabled that check by dropping the exception.

The programmer may be legitimately certain that the exception will never be thrown in the
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given setting (a common case—especially for I/O classes—is that of a general method that

may indeed throw an exception being overridden by an implementation that never does).

Dynamic clues that reinforce static warnings. Our residual investigation consists of ex-

amining which methods end up being dynamically invoked in the suspect code block and

watching whether the same methods ever throw the dropped exception when called from

anywhere in the program. For instance, the following code snippet shows a method meth1

whose catch block is empty. In the try block of meth1, first foo1 is executed, then

foo2 (possibly called from foo1), then foo3, and so on:

void meth1() {
try {

foo1();
//Call-graph foo1()->foo2()->...->fooN()

} catch(XException e) { } //empty
}

The residual investigation will report an error if there is any other method, methX,

calling some fooi where fooi throws an XException during that invocation (regardless

of whether that exception is handled or not):

void methX {
try { ...

//Call-graph ...->fooN()->...
} catch(XException e) {

... // handled
}

}

In this case the user should be made aware of the possible threat. If fooi can indeed

throw an exception, it is likely to throw it in any calling context. By locating the offending

instance, we prove to programmers that the exception can occur. Although the warning

may still be invalid, this is a much less likely case than in the purely static analysis.

Implementation. The implementation of this residual investigation uses both the ASM

library for bytecode transformation and AspectJ, for ease of manipulation.

We execute the program’s test suite twice. During the first pass, we instrument the

beginning and end of each empty try-catch block with ASM, then apply an AspectJ
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aspect to find all methods executed in the dynamic scope of the try-catch block (i.e.,

transitively called in the block) that may throw the exception being caught.3 (We also

check that there is no intermediate method that handles the exception, by analyzing the

signatures of parent methods on the call stack.) In the first pass we collect all such methods

and generate custom AspectJ aspects for the second pass. During the second pass, we

then track the execution of all methods we identified in the first pass and identify thrown

exceptions of the right type. For any such exception we issue an RFBI error report.

2.2.2.4 Equals Method Overrides Equals in Superclass and May Not Be Symmetric

(EQ OVERRIDING EQUALS NOT SYMMETRIC)

Part of the conventions of comparing for value equality (via the equals method) in

Java is that the method has to be symmetric: the truth value of o1.equals(o2) has to

be the same as that of o2.equals(o1) for every o1 and o2. FindBugs has a bug pattern

“equals method overrides equals in super class and may not be symmetric”, which emits

a warning if both the overriding equals method in the subclass and the overridden equals

method in the superclass use instanceof in the determination of whether two objects

are equal. The rationale is that it is common for programmers to begin equality checks

with a check of type equality for the argument and the receiver object. If, however, both

the overridden and the overriding equals methods use this format the result will likely be

asymmetric because, in the case of a superclass, S, of a class C, the instanceof S check

will be true for a C object but the instanceof C check will be false for an S object.

Possible programmer objections to static warnings. The above static check is a blunt

instrument. The programmer may be well aware of the convention and might be using

instanceof quite legitimately, instead of merely in the naive pattern that the FindBugs

3To apply the combination of ASM and AspectJ at load time, we had to make two one-line changes to the
source code of AspectJ. The first allows aspects to apply to ASM-transformed code, while the second allows
AspectJ-instrumented code to be re-transformed.
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analysis assumes. For instance, the code of the JBoss system has some such correct equals

methods that happen to use instanceof and are erroneously flagged by FindBugs.

Dynamic clues that reinforce static warnings. Our residual investigation tries to establish

some confidence before it reports the potential error. We checked this pattern dynamically

by calling both equals methods whenever we observe a comparison involving a con-

tentious object and test if the results match (this double-calling is safe as long as there are

no relevant side effects). If the two equals methods ever disagree (i.e., one test is true,

one is false) we emit an error report.

Implementation. We implemented this residual investigation using AspectJ to intercept

calls to the equals method and perform the dual check in addition to the original.

2.2.2.5 Equal Objects Must Have Equal Hashcodes (HE)

As mentioned in Section 2.1, FindBugs reports an error when a class overrides the

equals(Object) method but not the hashCode() method, or vice versa. All Java ob-

jects support these two methods, since they are defined at the root of the Java class hi-

erarchy, class java.lang.Object. Overriding only one of these methods violates the

standard library conventions: an object’s hash code should serve as an identity signature,

hence it needs to be consistent with the notion of object value-equality.

Possible programmer objections to static warnings. This warning can easily be low-

priority or irrelevant in a given context. Developers may think that objects of the suspect

type are never stored in hashed data structures or otherwise have their hash code used for

equality comparisons in the course of application execution. Furthermore, the warning

may be cryptic for programmers who may not see how exactly this invariant affects their

program or what the real problem is.

Dynamic clues that reinforce static warnings. Our Residual FindBugs Investigator in-

stalls dynamic checks for the following cases:
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• Object.hashCode() is called on an object of a class that redefines

equals(Object) and inherits the implementation of hashCode().

• Object.equals(Object) is called on a class that redefines hashCode() and in-

herits the implementation of equals(Object).

Meeting either of these conditions is a strong indication that the inconsistent overriding

is likely to matter in actual program executions. Of course, the error may not trigger a fault

in the current (or any other) execution.

Implementation. Our detector is implemented using the ASM Java bytecode engi-

neering library. First, we create a blacklist containing the classes that only redefine

one of Object.equals(Object) and Object.hashCode() in a coordinated man-

ner. Then we introduce our own implementations of the missing methods in the black-

listed classes. The result is to intercept every call to either Object.equals(Object) or

Object.hashCode() in instances of blacklisted classes.

2.2.2.6 Non-Short-Circuit Boolean Operator (NS)

Programmers may mistakenly use the non-short-circuiting binary operators & or |

where they intend to use the short-circuiting boolean operators && or ||. This could in-

troduce bugs if the first argument suffices to determine the value of the expression and the

second argument contains side-effects (e.g., may throw exceptions for situations like a null-

pointer dereference or division by zero). Therefore, FindBugs issues warnings for uses of

& and | inside the conditions of an if statement.

Possible programmer objections to static warnings. Such warnings can clearly be invalid

or irrelevant, e.g. if the programmer used the operators intentionally or if they do not affect

program behavior. FindBugs can sometimes identify the latter case through static analysis,

but such analysis must be conservative (e.g., FindBugs considers any method call on the

right hand side of an && or || to be side-effecting). Therefore the error reports are often

false.
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Dynamic clues that reinforce static warnings. Using a residual investigation we can check

for actual side-effects on the right-hand side of a non-short-circuiting boolean operator. It

is expensive to perform a full dynamic check for side-effects, therefore we check instead

for several common cases. These include dynamically thrown exceptions (directly or in

transitively called methods, as long as they propagate to the current method), writes to

any field of the current class, writes to local variables of the current method, and calls to

well-known (library) I/O methods. Since the residual investigation can miss some side-

effects, it can also miss actual bugs. Additionally, the residual investigation will often

fail to generalize: there are common patterns for which it will report an error only if the

error actually occurs in the current execution. For instance, in the following example an

exception is thrown only when the left-hand side of the boolean expression should have

short-circuited:

if (ref == null | ref.isEmpty()) ...

Still, the residual investigation generally avoids the too-conservative approach of Find-

Bugs, while reporting dynamic behavior that would normally go unnoticed by plain testing.

Implementation. The implementation of this residual investigation is one of the most

complex (and costly) in the Residual FindBugs Investigator arsenal. We rewrite boolean

conditions with the ASM bytecode rewriting framework to mark a region of code (the

right-hand side of the operator) for an AspectJ aspect to apply, using a “conditional check

pointcut”. The aspect then identifies side-effects that occur in this code region, by instru-

menting field writes, installing an exception handler, and detecting method calls to I/O

methods over files, network streams, the GUI, etc. Additionally, we use ASM to detect

local variable writes (in the current method only) in the right-hand side of a boolean con-

dition.
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2.2.2.7 Read Return Should Be Checked (RR)

The java.io.InputStream class in the Java standard library provides two read

methods that return the number of bytes actually read from the stream object (or an end-

of-file condition). It is common for programmers to ignore this return value. FindBugs

reports an error in this case. At first glance this check looks to be foolproof: the code

should always check the stream status and received number of bytes against the requested

number of bytes. If the return value from read is ignored, we may read uninitialized/stale

elements of the result array or end up at an unexpected position in the input stream.

Possible programmer objections to static warnings. Perhaps surprisingly, this

FindBugs check is the source of many false positives. Although the original

java.io.InputStream class can indeed read fewer bytes than requested, the class is

not final and can be extended. Its subclasses have to maintain the same method signature

(i.e., return a number) when overriding either of the two read methods, yet may guarantee

to always return as many bytes as requested (Notably, the Eclipse system defines such a

subclass and suffers from several spurious FindBugs error reports.)

Dynamic clues that reinforce static warnings. Our residual investigation first examines

whether the read method is called on a subclass of java.io.InputStream that overrides

the read method. If so, we wait until we see a read method on an object of the suspect

subclass return fewer bytes than requested (even for a call that does check the return value).

Only then we report all use sites that do not check the return value of read, as long as

they are reached in the current execution and the receiver object of read has the suspect

dynamic type.

Implementation. The implementation of this analysis involves two computations, per-

formed in the same execution. For the first computation, we instrument all read methods

that override the one in InputStream (using AspectJ) to observe which ones return fewer

bytes than requested. We collapse this information by dynamic object type, resulting in a

list of all types implementing a read method that may return fewer bytes than requested;
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we always include java.io.InputStream in that list. For the second computation, we

instrument all suspected read call sites with ASM, to determine the dynamic type of the

receiver object. These dynamic types are the output of the second computation. At the end

of the test suite execution, we cross-check the output of both passes. We then report any

use of read without a result check on an object with a dynamic type for which we know

that read may return fewer bytes than the maximum requested.

2.2.3 Discussion

The main purpose of a residual investigation is to provide increased soundness for bug

reports: an error report should be likely valid and important. In this sense, a residual inves-

tigation is not in competition with its underlying static analysis, but instead complements

it. In the case of RFBI, the point is not to obscure the output of FindBugs: since the static

analysis is performed anyway, its results are available to the user for inspection. Instead,

RFBI serves as a classifier and reinforcer of FindBugs reports: the RFBI error reports are

classified as higher-certainty than a plain FindBugs report.

This confidence filtering applies both positively and negatively. RFBI may confirm

some FindBugs error reports, fail to confirm many because of a lack of pertinent dynamic

observations, but also fail to confirm some despite numerous pertinent dynamic observa-

tions. To see this, consider an analysis such as “dropped exception” (DE). RFBI will issue

no error report if it never observes an exception thrown by a method dynamically called

from a suspicious try-catch block. Nevertheless, it could be the case that the program’s

test suite never results in exceptions or that there are exceptions yet the suspicious try-

catch block was never exercised, and hence the methods under its dynamic scope are

unknown. In this case, RFBI has failed to confirm an error report due to lack of observa-

tions and not due to the observations not supporting the error. This difference is important

for the interpretation of results. It is an interesting future work question how to report ef-

fectively to the user the two different kinds of negative outcomes (i.e., unexercised code
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vs. exercised code yet failure to confirm the static warning). Our experimental evaluation

describes this distinction via a metric of the number of dynamic opportunities to confirm

an error report that the residual investigation had, as we discuss in Section 2.3.

2.2.4 Implementation Complexity

Residual investigation requires effort in capturing dynamic evidence related to static

bug reports, by using instrumentation infrastructure such as ASM and AspectJ. The degree

of effort varies with the complexity of runtime evidence that we are trying to collect. In

simple cases, residual investigations are easy to develop. For example, for the bug pattern

“Equal Objects Must Have Equal Hashcodes”, we only have to insert a method for each

class in a blacklist as the class is being loaded. But in complex cases that require interaction

of different instrumentation tools or a variety of dynamic information, residual investigation

needs non-trivial development effort. A typical example is the implementation of “Non-

Short-Circuit Boolean Operator”, which needs to make AspectJ communicate with ASM

on the code blocks for which field writes, exception handlers, network or I/O operations,

etc. need to be instrumented.

In total, our tool contains 3292 lines of Java code, including 298 lines for utility classes,

such as logging facilities and Java agents, and 2994 lines for 7 bug patterns altogether. Note

that this does not include AspectJ code generated dynamically. Figure 2.2 quantifies the

implementation complexity via source lines of code4 for each bug pattern. The figure also

lists the set of tools used to develop the residual investigation.

2.3 Evaluation

We evaluate RFBI in two complementary ways. First, we do a targeted evaluation using

two medium-size systems with which we were already familiar, and, hence, can directly

assess the quality of bug reports. Second, we apply RFBI on several well-known large

4The counting is done using SLOCCount—http://www.dwheeler.com/sloccount/
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Bug Pattern Implementation Tool Lines of Code
Bad Covariant Definition of Equals ASM 40
Cloneable Not Implemented Correctly AspectJ 512
Dropped Exception ASM, AspectJ 769
Equals Method May Not Be Symmetric AspectJ 465
Equal Objects Must Have Eq. Hashcode ASM 40
Non-Short-Circuit Boolean Operator ASM, AspectJ 811
Read Return Should Be Checked ASM, AspectJ 357

Figure 2.2: Size of implementation and implementation tools in residual investigations.

open-source systems. For such systems, judging the quality of a bug report is harder and

can only be done via sampling and best-effort estimates.

In order to make the important distinction between “relevant code not exercised” (un-

determined bugs) and “relevant code exercised, yet no confirmation of the bug found” (re-

jected bugs), we use a dynamic potential metric. Generally, for each static error report, we

automatically pick a method whose execution is part of our analysis (chosen according to

the kind of bug reported) and measure how many times this method gets executed by the

test suite. The resultant count gives us an upper bound on the number of reports we can

expect from residual investigation. We found this metric to be invaluable. Generally, when

multiple conditions need to be satisfied for a residual investigation, we choose one of them

arbitrarily. For instance, for the “equal objects must have equal hashcodes” analysis, we

measure the number of times the overridden equals is called on objects of the suspect

class that redefines equals and not hashCode (and vice versa). This is not directly tied to

the opportunities to find the bug (which, as we described earlier, is reported if hashCode

is ever called on such a suspect object) but it is a good indication of how much this part of

the code is exercised.

2.3.1 Targeted Evaluation

The targeted evaluation consists of applying RFBI to programs whose behavior we

know well, so that we can determine whether RFBI’s warnings are correct or incorrect by

examining the systems’ source code. We evaluated RFBI on two medium-sized systems,
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Daikon [37] (Revision a1364b3888e0) and Apache Jackrabbit (Revision 1435197), using

the systems’ standard test suites. Since the size of Apache Jackrabbit is still large for our

purpose of targeted evaluation, we used only the core component of Apache Jackrabbit

(which has 21 components overall).

2.3.1.1 Analysis of reports

FindBugs reports 14 bugs for Daikon and Jackrabbit. The standard system test suites

exercise 8 of these bugs, i.e., there are 8 reports for which the DP metric is non-zero. This

ratio between RFBI and FindBugs reports is high, compared to our later experiments with

other large third-party systems.

Of the 8 RFBI reports, 3 are reinforced and 5 are rejected. By manual inspection, we

found that RFBI correctly confirms 2 of the 3 reports, incorrectly reinforces a false positive,

and correctly rejects 5 reports. (This yields a precision of 66.6% and a recall of 100% over

the 8 exercised FindBugs reports, but clearly the absolute numbers of reports are low for

statistical accuracy.)

• Findbugs reports two “Cloneable Not Implemented Correctly” warnings for Jackrab-

bit. RFBI observes one dynamically exercised instance and correctly confirms the

instance: rather than calling super.clone() in its superclass, clone in the in-

stance directly constructs a new object.

• Findbugs reports four “Dropped Exception” warnings for Daikon and two for

Jackrabbit. RFBI does not observe any dynamically exercised instance for Daikon,

but does observe two for Jackrabbit. Of the two dynamically exercised instances,

RFBI incorrectly confirms one instance, and correctly rejects another one. In the

incorrectly confirmed instance, exception throwing is used as a means for handling

control flow within a large method body. The method in question tries several alter-

natives for an action, in a fixed order. It encodes each alternative as a single block of

code wrapped into its own (empty) exception handler. If an alternative succeeds, the
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block returns from the method to signal overall success. If the alternative fails, the

block raises an exception and thereby continues to the next block. Thus, the dropped

exception here needs no exception handler. The correctly rejected bug report ignores

a statically reported exception that supposedly can be raised while shutting down a

virtual file system. In practice, this exception can only arise if initialization failed.

However, if the virtual file system failed to initialize correctly, some other exceptions

would already have been thrown at creation time, and the related catch blocks would

have handled or reported these exceptions. Thus, it is not necessary to handle or

report the same exception again when the virtual file system is closed.

• FindBugs reports two “Equal Objects Must Have Equal Hashcodes” warnings for

Daikon and three for Jackrabbit. All reported classes override their superclasses’

equals methods without overriding hashCode. Instances of all reports are exer-

cised in test suites. RFBI correctly confirms one report on Daikon and rejects an-

other. To understand the confirmed Daikon case, note that Daikon takes an arbitrary

client program, instruments it, and performs dynamic analysis. In the correctly con-

firmed error report, Daikon takes arbitrary objects from the client program and uses

them as keys to a hash map. Since Daikon knows nothing about the client program a

priori, this behavior is inherently unsafe. The rejected Daikon case involves a class

whose instances are only inserted in an ArrayList structure, which does not employ

hashCode.

RFBI correctly rejects the three Jackrabbit reports. In two of these cases, instances of

the suspicious class are used as values of a hash map, but never as keys (i.e., they are

never hashed). Instead, a uniquely-identifying field of the suspicious class is used as

the key of the HashMap structure. The field type is not involved in the FindBugs error

report, since it correctly defines both hashCode and equals. The third Jackrabbit

report, similar to the rejected Daikon case, involves a class whose instances are only

used in an ArrayList structure.
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• FindBugs reports one “Read Return Should Be Checked” warning for Jackrabbit, but

the relevant code is not exercised dynamically.

In summary, although small, our experiments with Daikon and the Apache Jackrabbit

core package show the potential for residual investigation.

2.3.1.2 Runtime overhead

Because Daikon’s own instrumenter and Jackrabbit’s testing framework are in con-

flict with RFBI’s dynamic instrumenter, we pre-instrumented the code bases at build time.

When we run pre-instrumented code, the overhead is mostly due to logging dynamic clues

that reinforce static warnings. We do not measure the overhead to compute the DP val-

ues because we do not report them by default. The analysis time was measured for one

run each on a 4-core 3.1 GHz Intel i5 with 8 GB of RAM. Running the uninstrumented

code of Daikon takes 41m:19s, whereas running the pre-instrumented code of Daikon takes

43m:38s. Running the uninstrumented code of Jackrabbit takes 7m:32s, whereas running

the pre-instrumented code of Jackrabbit takes 8m:30s. Thus, the runtime slowdown of run-

ning pre-instrumented code for these residual investigations is small. The overhead will,

however, vary based on the kinds of dynamic analyses installed, as we will also see in

Section 2.3.2.4.

2.3.2 Evaluation on Large Systems

We evaluated RFBI on several large open-source systems: JBoss (v.6.0.0.Final), BCEL

(v.5.2), NetBeans (v.6.9), Tomcat (7.0), JRuby (v.1.5.6), Apache Commons Collections

(v.3.2.1), and Groovy (v.1.7.10). The advantage of using third-party systems for evaluation

is that we get a representative view of what to expect quantitatively by the use of residual

investigation. The disadvantage is that these systems are large, so great effort needs to be

expended to confirm or disprove bugs by manual inspection.

It is common in practice to fail to confirm a static error report because of a lack of

relevant dynamic observations. This is hardly a surprise since our dynamic observations
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Bug Pattern FindBugs RFBI Dynamic Potential Test Cases
Bad Covariant Definition of Equals 5 0 0 0
Cloneable Not Implemented Correctly 41 4 5 0
Dropped Exception 128 0 7 0
Equals Method May Not Be Symmetric 8 1 1 0
Equal Objects Must Have Eq. Hashcode 211 25 28 0
Non-Short-Circuit Boolean Operator 18 0 1 0
Read Return Should Be Checked 25 1 1 0
Total 436 31 43 0

Figure 2.3: Summary of results: reports by FindBugs vs. RFBI, the Dynamic Potential
metric of how many of the static error reports had related methods that were exercised
dynamically, and the number of original test cases that reported an error.

are dependent on the examined program’s test suite. For all systems, we used the test suite

supplied by the system’s creators, which in some cases was sparse (as will also be seen in

our test running times).

2.3.2.1 Volume of reports

Figure 2.3 shows the number of static error reports (FindBugs), reports produced by

residual investigation (RFBI), and dynamic potential metric. The difference between Find-

Bugs and RFBI reports is roughly an order of magnitude: a total of 436 potential bugs are

reported by FindBugs for our test subjects and, of these, RFBI produces reports for 31.

Thus, it is certainly the case that residual investigation significantly narrows down the area

of focus compared to static analysis. Similarly, none of the test cases in our subjects’ test

suites failed. Therefore, the 31 reports by RFBI do generalize observations significantly

compared to mere testing. Of course, these numbers alone say nothing about the quality of

the reports—we examine this topic later.

By examining the dynamic potential metric in Figure 2.3, we see that much of the dif-

ference between the numbers of FindBugs and RFBI reports is due simply to the suspicious

conditions not being exercised by the test suite. Most of the static bug reports are on types

or methods that do not register in the dynamic metrics. This can be viewed as an indication

of “arbitrariness”: the dynamic analysis can only cover a small part of the static warnings,

because of the shortcomings of the test suite. A different view, however, is to interpret this
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number as an indication of why static analysis suffers from the “slew of false positives”

perception mentioned in Section 2.1. Programmers are likely to consider static warnings to

be irrelevant if the warnings do not concern code that is even touched by the program’s test

suite.

2.3.2.2 Quality of residual investigation reports (summary)

RFBI narrows the programmer’s focus compared to FindBugs but the question is

whether the quality of the RFBI reports is higher than that of FindBugs reports, and whether

RFBI succeeds as a classifier (i.e., whether it classifies well the dynamically exercised re-

ports into bugs and non-bugs).

Since our test subjects are large, third-party systems, we cannot manually inspect all

(436) FindBugs reports and see which of them are true bugs. Instead, we inspected the

43 reports that are dynamically exercised (per the DP metric) as well as a sample of 10

other FindBugs reports that were never dynamically exercised (and, thus, never classified

by RFBI as either bugs or non-bugs). The latter were chosen completely at random (blind,

uniform random choice among the reports).

If we view RFBI as a classifier of the 43 dynamically exercised FindBugs reports, its

classification quality is high. As seen in Figure 2.3, RFBI classifies 31 of the 43 dynami-

cally exercised reports as bugs (i.e., reinforces them), thus rejecting 12 reports. Figure 2.4

shows which of these RFBI classifications correspond to true bugs vs. non-bugs. The

number for the correct outcome for each row is shown in boldface.

Dynamic reports bug non-bug undetermined
31 reinforced 24 6 1
12 rejected 0 11 1
43 total 24 17 2

Figure 2.4: Quality of RFBI warnings on the 43 dynamically exercised FindBugs reports.
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Bug Pattern #confirmed bugs/dynamic potential(#executed methods)/avg. times executed
JBoss BCEL Net Tomcat JRuby Apache Groovy

Beans CC
Bad Covariant Def. of Equals 0/0/0 0/0/0
Cloneable Not Impl. Correctly 0/0/0 0/1/9 3/3/658 1/1/11
Dropped Exception 0/4/378 0/1/79 0/0/0 0/1/5 0/1/25
Equals Method Not Symmetric 0/0/0 0/0/0 1/1/2.6M
Equal Objs⇒ Eq. Hashcodes 1/2/1 20/20/77k 0/0/0 1/1/5k 2/2/3.5 1/3/14
Non-Short-Circuit Bool. Oper. 0/0/0 0/1/194
Read Ret. Should Be Checked 0/0/0 0/0/0 0/0/0 1/1/571

Figure 2.5: Breakdown of all RFBI warnings as well as the dynamic potential metric for
the warning. “a/b/c” means there were a RFBI warnings of this kind, b dynamic potential
methods executed (zero typically means there was no opportunity for the residual investi-
gation to observe an error of the statically predicted kind), and each of them was observed
to execute c times (on average). Thus, the sum of all as is the number of RFBI reinforced
reports (31) and the sum of all bs is the number of total dynamically exercised FindBugs
reports (43). Empty cells mean that there were no static error reports for this test subject
and analysis—this is in contrast to 0/0/0 cells, which correspond to static warnings that
were never exercised dynamically.

From Figure 2.4, we have that the precision of RFBI is ≥ 77% (or that RFBI produces

< 23% false warnings) and that its recall is ≥ 96%, over the 43 dynamically exercised

FindBugs reports.

For comparison, among the 10 non-exercised FindBugs reports that we sampled at ran-

dom, only one is a true bug. Thus, the precision of FindBugs on this sample was 10%,

which is a false warning rate of 90%. We see, therefore, that RFBI reports are of higher

quality than FindBugs reports and the programmer should prioritize their inspection.

2.3.2.3 Detailed discussion of reports

We next discuss in detail the RFBI results that we inspected manually. This yields

concrete examples of bug reports reinforced and rejected (both correctly and falsely) for

the numbers seen above. Figure 2.5 breaks down the reports dynamically exercised by test

subject and analysis, as well as their dynamic potential. Note that in the rest of this section

we are not concerned with FindBugs reports that are not exercised dynamically.

• RFBI correctly confirms four dynamically exercised instances of “Cloneable Not Im-

plemented Correctly” and rejects one. This is a sharp distinction, and, we believe,
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correct. In three of the four instances (in Apache Commons) clone directly con-

structs a new object, rather than calling the parent clone. One bug in Groovy arises

in an instance where a delegator violates the cloning protocol by returning a clone of

its delegate instead of a clone of itself. The rejected bug report is a clone method

for a singleton object that returned this, which is entirely typesafe.

• RFBI rejects seven “Dropped Exception” reports, of which our manual inspection

found six to have been rejected correctly and one to be unclear. The unclear case

involved the NetBeans test harness ignoring an exception caused by backing store

problems during synchronization; we expect that such an exception is likely to trig-

ger further bugs and hence unit test failures but argue that it might have been appro-

priate to log the exception rather than ignoring it. Of the remaining six cases, four

affected JBoss. In three of these cases the code correctly handles the erroneous case

by exploiting the exceptional control flow in other ways (e.g., when an assignment

throws an exception, the left-hand side retains its previous value, which the code can

test for) or by falling back on alternative functionality (for example, JBoss attempts

to use I/O access to /dev/urandom to generate random numbers, but falls back on

the Java random number generator if that approach fails). The fourth JBoss case

ignores exceptions that may arise while shutting down network connections. We as-

sume that the programmers’ rationale is that they can do no more but trust that the

library code tries as hard as possible to release any resources that it has acquired, and

that afterwards the program should run in as robust a fashion as possible.

In one of the two remaining cases (JRuby), exceptions are dropped in debug code

and can only arise if the JRuby VM has been corrupted or has run out of memory. In

the final case (Groovy), the dropped exception is a ClassLoaderException that could

only arise if the Java standard library were missing or corrupt.
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• We observed one out of eight “Equals Method May Not Be Symmetric” instances

dynamically, in JRuby’s RubyString class. RFBI here indicated that the report

was correct, pointing to an implementation of equals that differs subtly from the

equivalent Ruby equality check for the same class. In practice, the ‘Java’ version of

equality is only used in rare circumstances and unlikely to cause problems, unless the

integration between Java and Ruby were to be changed significantly. We thus found

it unclear whether this bug report was a true positive (as suggested by RFBI) or not.

• RFBI confirms 20 “Equal Objects Must Have Equal Hashcodes” reports for BCEL.

The 20 RFBI reports concern classes that represent branch instructions in the Java

bytecode language. All reported classes define an application-specific value equal-

ity equals method, without ever defining hashCode. Objects for branch instruc-

tions, however, get entered in a HashSet, as part of a seemingly oft-used call:

InstructionHandle.addTargeter. Therefore, we believe that the bug warn-

ing is accurate for these instructions and can result in obscure runtime faults.

RFBI incorrectly confirms two “Equal Objects Must Have Equal Hashcodes” bug re-

ports in JRuby: in both cases, equals is overridden but hashCode is not. In one of

the pertinent classes, the superclass hashCode implementation uses a custom virtual

method table for Ruby to look up a correct subclass-specific hashCode implemen-

tation; such complex indirection is impossible to detect in general. In the other class,

hashCode is only used to generate a mostly-unique identifier for debugging pur-

poses, instead of hashing. This breaks the heuristic assumption that hashCode and

equals collaborate. In Groovy, RFBI incorrectly confirms a bug for exactly the

same reason. Meanwhile, the two bugs we rejected in Groovy again did not see in-

vocations of the missing methods, and we consider our results to be accurate in those

cases. RBFI also incorrectly confirms a bug for JBoss (and rejects one, correctly):

although the equals method is overridden, it does nothing more than delegate to the

superclass method, which also defines an appropriate hashCode.
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• RFBI correctly rejects a “Non-Short Circuit Boolean Operator” bug report in JRuby

involving a method call, as the method in question is only a getter method (and thus

has no side effects that might unexpectedly alter program behavior).

• Only one report of “Read Return Should Be Checked” is exercised in unit tests.

This report involves Groovy’s Json lexer, which in one instance does not check the

number of bytes returned by a read operation. However, the bytes read are written

into an empty character array that is immediately converted to a string, which is

then checked against an expected result: if the number of bytes read was less than

requested, this later check must fail, because the generated string will be too short.

Such complex logic is beyond the scope of RFBI, which erroneously confirms the

static report.

In summary, the few misjudged bug reports arose because the code violated the as-

sumptions behind our concrete residual investigation heuristics (e.g., application-specific

use of hashCode). Incorrect RFBI bug reports typically were due to complex mechanisms

that achieve the desired result in a way that requires higher-level understanding yet proves

to be semantically correct (e.g., leaving out a test for bytes read because it is subsumed by

a string length check). It is unlikely that any automatic technique can eliminate bug reports

that are erroneous because of such factors.

2.3.2.4 Runtime overhead

Figure 2.6 shows the runtime overhead of our residual investigation. We measured the

analysis time of one run on a 4-core 2.4 GHz Intel i5 with 6 GB of RAM. As can be seen,

compared to the baseline (of uninstrumented code) residual investigation slows down the

execution of the test suite typically by a factor of 2-to-3, possibly going up to 6. The

“dropped exception” analysis is the worst offender due to executing the test suite twice and

watching a large number of the executed method calls.
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Bug Pattern Execution time with and without instrumentation [min:s]
JBoss BCEL Net Tomcat JRuby ApacheCC Groovy

Beans
Bad Covariant Def. of Equals 13:07 3:04
Cloneable Not Impl. Correctly 7:17 5:20 5:25 39:15
Dropped Exception 655:01 16:00 16:05 17:08 41:44
Equals Method Not Symmetric 531:42 8:23 11:03
Equal Objs⇒ Eq. Hashcodes 363:48 1:20 13:07 3:03 3:44 7:25
Non-Short-Circuit Bool. Oper. 9:36 11:13
Read Ret. Should Be Checked 16:49 10:19 12:30 42:25
No Instrumentation 178:07 :23 6:42 3:03 3:28 2:05 7:13

Figure 2.6: Running times for all residual investigations. The baseline (bottom line of the
table) is the non-instrumented test suite running time. Empty cells mean that there were no
static error reports for this test subject and analysis.

2.3.2.5 Threats to validity

Our experimental evaluation of the efficacy of residual investigation shows that it yields

higher-precision bug reporting and a reliable classification of bugs. The main threats to

validity include the following threats to external validity.

• Choice of subject applications: We did not select our seven subject applications truly

randomly from the space of all possible Java applications or even from all current

Java applications. I.e., our empirical results may not generalize well to other appli-

cations. However, our applications cover a variety of application areas: we use a

data structure library, two language runtime systems, a bytecode engineering library,

a dynamic axiom detector, a content repository, two web servers, and an IDE. Given

the large size of these subject applications, we suspect that our findings will gener-

alize to a large extent, but this remains to be confirmed as part of a larger empirical

study.

• Choice of FindBugs patterns: We did not select the patterns randomly from the list

of all FindBugs patterns. I.e., residual investigation likely does not generalize to all

FindBugs patterns. Our choice of patterns was influenced by subjective considera-

tions such as how well-known we deemed a pattern to be. Six of our patterns have

been described in an article [61] by the FindBugs authors. That article describes a

total of 18 patterns. For our evaluation we picked patterns for which we suspected
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that FindBugs would produce false warnings on our subject applications. We argue

that this is not a strong threat to validity, since we easily obtained strong results for a

third of the sample presented by the earlier FindBugs article.

If we step back and review all current FindBugs bug patterns, we can easily identify

several of them that are simple enough to allow for a fully precise static detector,

and such a fully precise static detector will not benefit from residual investigation.

However, many other bug patterns are too complex to allow for a precise static de-

tector. For example, Hovemeyer and Pugh tested twelve out of the 18 patterns they

described (including four of ours) for false positives in two applications. They found

that ten of the twelve patterns (including ours) produced false positives with the pat-

tern implementations they had available in 2004. We suspect that the 18 patterns

that they described are at least somewhat representative of all FindBugs patterns. We

selectively mention a few more FindBugs patterns in our discussion of the greater

applicability of residual investigation in Section 2.5.

• Choice of static analysis system: We did not select FindBugs, our static analysis

system, truly randomly. We picked FindBugs because it is arguably the most widely

known and used such tool for Java. We suspect that our findings will generalize to

other static analysis tools and approaches. Section 2.4 and Section 2.5 discuss some

such directions, but only anecdotally.

2.4 Residual Investigation for Race Detection

Residual investigation is a concept of much greater applicability than just our RFBI

tool. The essence is to combine static analyses with predictive dynamic analyses that as-

certain the validity or importance of the warned-about error. We show one example of the

applicability of residual investigation by designing and implementing a residual analysis
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for race detection. Applying the residual analysis, we successfully analyze four real-world

applications and evaluate the practical benefit experimentally.

2.4.1 Problem and Design

Static race detection is an analysis domain of very high recent interest [1,35,71,84,91,

104, 113]. At the same time, static race detection is notoriously fraught with a high false

positive rate. In the most common static report pattern that causes programmer objections,

the “race” is on a variable that is never publicized, i.e., it is only ever accessed by one

thread.5 It is hard to statically establish whether a memory location (object field, class field

or array element) is ever accessed by multiple threads, especially since the number of mem-

ory locations is not statically bounded. A thread-escape analysis is often used but it is by

nature both a whole-program analysis and quite conservative and overapproximate. In this

way, memory locations are often conservatively considered thread-shared when they are

not, thus resulting in false static race reports. Indeed, non-shared locations are more likely

to result in static race reports since the code will access them with no synchronization.

This kind of false positive is a perfect fit for applying residual investigation. Our heuris-

tic here is to check whether a memory location is shared: A memory location is shared in

a given execution iff two different threads access the location and the thread performing

the first access remains active (i.e., not yet joined) at the time of the second access to the

location.

In this light, how we confirm a static race is intuitively clear: given a static warning

for a pair of racing events, we should find a pair of dynamic events on a matching shared

memory location. Here, “matching” merely means that the program locations match up; the

exact choice of pair(s) of dynamic events that we use is left as an implementation choice.

5This was brought to our attention by Stephen Freund, during the conference presentation of our work.
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At the same time, we can reject a static race if the test suite confirms that one of the

events in the race report can occur but offers no evidence that a pair of events matching the

static race report occur dynamically.

Specifically:

• We confirm a statically detected race if we can find a dynamic event pair with a shared

memory location that can act as a dynamic witness to the race.

• We reject any statically detected races that we cannot confirm and for which we have

at least one matching dynamic memory access.

The correctness of a static race that is neither confirmed nor rejected is undetermined.

From our past experience, undetermined races are generally due to a sparse test suite.

Observing dynamically whether a suspicious memory location is indeed thread-shared

is easy. It is also significantly predictive: having the variable be shared is a much more

general condition than actually observing a race. Nevertheless, observing a suspicious

variable being shared in conjunction with the static race report significantly enhances the

suspicion of a program error and warrants a reinforced report to the programmer.

To further explore the applicability of residual investigation in this high-value but di-

verse domain (compared to our main work), we implemented a prototype based on the

above insight, applying it to a state-of-the-art static data race detection tool for Java,

JChord [84].

2.4.2 Implementation

We tailored our implementation to the needs of confirming or rejecting JChord reports.

This task was far from trivial, mainly because of the impedance mismatch in detecting and

reporting concurrent events statically vs. dynamically, as discussed next.

• Our implementation applies only to races in non-JDK classes. A lot of JChord’s

reports are on fields or arrays inside JDK classes instead of fields or arrays inside
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the application classes. For example, if an application class contains a field of type

java.io.ByteArrayInputStream and there are some races that can occur on

the ByteArrayInputStream object’s fields, JChord will report those races on the

JDK class fields (e.g., a race will be reported on a field such as buf or pos inside the

ByteArrayInputStream object). However, it is hard to map this to information

collected from dynamic analyses. Without modifications of the underlying Java Vir-

tual Machine, current dynamic race analysis can only report races on fields or arrays

inside non-JDK classes (e.g., the field of type ByteArrayInputStream itself). The

reason is that dynamic race analysis typically has to instrument each field or array

of each class. Doing so for JDK classes would crash the Java Virtual Machine. To

process JChord’s reports through dynamic thread-local analysis, we limit our focus

to races on shared variables inside non-JDK classes.

• We use dynamic stack traces to match paths of call sites in JChord’s reports. Each

JChord race report contains a field or an array, a pair of accesses represented by a pair

of (call-)paths in the call graphs leading to a race on that field, and a pair of access

types (read or write). Each path begins with the call site of the main method or the

run method of class java.lang.Thread and ends with the call site of the access

(at least one of them is a write) to the field. The internal states that we want to collect

dynamically are quite similar. When a dynamic memory access event happens, if

the memory sharing condition holds, we collect the field or array name representing

the memory location, the most recent and current stack traces of accesses to the

same memory location, and their access types. We use stack traces because static

call sites are most accurately identified by using the full dynamic stack trace of the

access instruction. However, collecting stack traces incurs a heavy runtime overhead.

We minimize this overhead heuristically by collecting stack traces only for the first

N unique accesses to a shared memory location. An access is uniquely determined

given the stack trace and name of the variable on which the access is deemed to occur,
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i.e., if two memory accesses are by the same instruction with different stack traces

or different variable names, they are considered different accesses. Furthermore,

we only collect traces for the first M unique accesses to the same field/array in the

program text. (The same field of different objects can point to different memory

locations, so M > N . Currently M = 300, N = 100.) Once these limits are

reached, any access to the memory location, or to all memory locations pointed by

the same field is subsequently ignored.

The dynamic thread-local analysis is implemented using Roadrunner [40]. Roadrunner

manages the low-level details of adding probe code to the target program’s bytecode at load

time and creates a stream of events for field and array accesses, thread joins, etc. Our probe

code performs thread locality checks, while recording the states of both thread-local heap

memory locations and shared memory locations.

Our residual investigation of JChord is accomplished via a three-phase algorithm: pre-

analysis phase, instrumented execution phase, and cross-checking phase.

In the pre-analysis phase, we identify all fields and arrays that appear in JChord race

reports. Accesses to these fields and arrays will be instrumented at class load time in the

instrumented execution phase.

In the instrumented execution phase, we run the instrumented program once and store

the application’s observations for use in the cross-checking phase. There are two kinds of

observations that we utilize (with duplicates eliminated) during a dynamic memory access:

• shared access observations, which are quintuples 〈f, r′, a′, r, a〉 if stack traces r′ and

r for accesses a′ and a are accessing the same memory location of field/array f (with

or without synchronization) and at least one of a′ and a is a write. The components

of this quintuple correspond directly to a JChord race report. We check whether the

most recent access to the same memory location as a or a′ was by a different thread

(establishing an access to a shared memory location, per our initial definition) and at
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least one of the two accesses is a write. If so, the algorithm records the shared access

observation 〈f, r′, a′, r, a〉.

• single access observations, which are triples 〈f, r, a〉. All access history for all mem-

ory locations is recorded. The components of a single access observation correspond

directly to either endpoint of a JChord race report. We use these triples to reject

JChord races that cannot be confirmed by any shared access observations.

We pre-process the above shared and single access observations, since dynamic stack

traces contain richer information than static call-paths. For instance:

a) There are extra method calls in stack traces by Roadrunner: For example, methods

〈init〉 or 〈clinit〉 appear for instance or class initializers; every time an instrumented

method is called, an extra call to a dynamically generated method (specific to the

method called) is recorded.

b) In dynamic traces, the instrumented method name is getting prefixed with

$rr Original $rr by Roadrunner.

c) There are missing method calls in JChord’s call sites due to its imprecise call-graph

construction. Missing methods are ignored when matching is performed in the cross-

checking phase.

In addition, recall that establishing the shared memory condition requires checking that

the accessing threads are not joined. To do this, in the event of a thread joining, the id of

the joining thread is recorded. Every time a memory location is accessed, the most recent

access is considered to be able to share the memory with the current access only if the

thread id of the most recent access is not one of a joined thread.

Another factor to consider is that operations inside probe code can be involved in con-

currency errors since they may be executed concurrently by the same threads they are mon-

itoring. To avoid concurrency errors in probe code, synchronization is added to the code
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that will affect the reporting of a race, such as checking thread-locality and updating the

most-recent-access information for the memory location.

The instrumented execution phase computes, in the form of the above access observa-

tions, all the dynamic information needed to classify static races. The subsequent cross-

checking phase performs a two-pass matching: a first pass is responsible for confirming

JChord races and a second pass is responsible for rejecting the JChord races that are not

confirmed. When confirming a JChord race, we check pairs of events in the JChord race

against matching shared access observations (which we interpret as dynamic event pairs).

If we do not find a shared access observation as witness to the static report, the JChord race

is not confirmed and we continue to check its events against every single access observa-

tion to see if we can reject it, again following our earlier definitions. If we cannot reject the

JChord race either, its classification is undetermined.

A critical step in either confirming or rejecting a JChord race is to define the logic of

matching static events against dynamic events. We consider a dynamic event and a static

event to match if (a) both refer to the same field or array name, (b) both have the same

access type (read or write), and (c) the call stacks of the statically predicted invocation

are similar to the ones in the dynamic invocation. For our purposes, two call stacks (one

static, one dynamic) are similar iff all stack frames from the static invocation occur in the

dynamic invocation, in order (but possibly separated by other stack frames). For instance,

the call sites of the sequence 〈foo, bar, baz〉 appear in order in the stack frame sequence

〈foo, bar, foobar, baz, fun〉.

2.4.3 Experiments

We evaluate the efficiency of our prototype implementation by applying it to 4 open-

source Java projects coupled with test harnesses: EM3D, JUnit, Lucene, and Weka. These

test subjects were used in prior literature [91] and are heterogeneous: their domains are
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JChord Residual Investigation
project Races Confirmed Rejected
EM3D 11 0 4
JUnit 6 2 3
Lucene 3132 0 49
Weka 721 0 71

Figure 2.7: Summary of our experiments on race detection.

varied and their code sizes range from hundreds to hundreds of thousands lines. Also, as in

prior work [91], we configure JChord so that:

• it reports races between instructions belonging to the same abstract thread.

• it filters out races between the non-main threads and main thread because the bench-

marks only have parallelism in the form of parallel loops [86]. Reports of races

between the main thread and non-main threads are clearly false positives for these

benchmarks.

• it ignores races in constructors.

• it does not use conditional must-not-alias analysis [83], as it is not currently available.

• it excludes a large number of known thread-safe JDK classes from analyses. A class

is thread-safe if any invocation of it cannot be involved in races.

Our experimental results show that residual investigation precisely identifies real races

and rejects false JChord warnings, in reasonable running time. All analyses were run on

a machine with a 4-core Intel Xeon E5530, 2.40GHz processor and 24GB of RAM, using

Oracle JDK version 1.6.45, with the maximum heap size set to 24GB.

Figure 2.7 shows the number of JChord races that our tool can confirm or reject in

each benchmark. To assess how many of these confirmations and rejections are correct, we

manually inspected JChord races for EM3D and JUnit. We did not inspect race warnings
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for Lucene and Weka due to a high number of warnings by JChord and the large size and

non-trivial complexity of both Lucene and Weka.

Out of 11 EM3D races detected by JChord, 4 were rejected by our tool. Further in-

spection revealed that the 4 rejections were justified: EM3D is race-free. JUnit gave rise

to 6 JChord races and 2 of them were confirmed by our tool. Examining the source code

indicated that the 2 confirmed races were real races, both of which were related to unsyn-

chronized accesses to a field used for printing JUnit test result. Again for JUnit, our tool

correctly rejected 3 JChord races: All of these 3 pairs of accesses were well-ordered. For

the remaining 2 benchmarks, Lucene and Weka, our tool classified fewer than 10% of the

JChord race warnings as confirmed or rejected.

Figure 2.8 collects the runtime overhead of our residual investigation tool, in seconds.

“JChord” gives the running time of JChord for the benchmark. “Pre”, “Instrumented”,

and “Checking” report the running time in the pre-analysis phase, instrumented execution

phase, and cross-checking phase of residual investigation, respectively. “Plain” reports the

running time of the benchmark programs without any instrumentation.

The overall runtime overhead required for the three phases of residual investigation is

occasionally significant but always practically feasible (especially considering the human

time benefits that a better race classification affords). In particular, as can be seen in the

“Instrumented” column, applications typically slow down by a factor of 2 to 20 during

the instrumented execution phase, although the memory-intensive Weka results in roughly

300x slowdown. This is hardly surprising. Dynamic race detection tools, such as Eraser

[94] and FastTrack [39], also incur a large slow-down on Weka. Eraser also suffers a

roughly 300x slowdown; FastTrack cannot finish running in 24 hours since it requiresO(n)

time, with n being the total number of threads created, and for Weka n grows to 15021.
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JChord Residual Investigation Plain
project Pre Instrumented Checking
EM3D 51.00 0.01 0.81 0.01 0.11
JUnit 125.67 5.61 6.50 15.50 0.36
Lucene 138.67 18.25 15.08 23.62 6.56
Weka 150.67 37.79 946.29 35.13 3.90

Figure 2.8: Average running time in seconds for residual investigation on race detection.

2.5 Greater Applicability of Residual Investigation in Other Domains

In the following, we discuss several kinds of analyses to which residual investigation is

applicable. We also present our experimental experience from attempting to apply residual

investigation to randomly chosen open-source projects. This experience illustrates vividly

the standard caveat not just of residual investigation but of every dynamic analysis: the

quality of results depends on the test suite.

2.5.1 Applicability to Other Analyses

Static analysis typically attempts to be exhaustive and, thus, suffers the possibility of

false positives. The challenge for applying residual investigation is to identify common fail-

ure scenarios that affect the false positive rates of the analysis yet can be easily ascertained

dynamically, even when no fault is observed.

2.5.1.1 Flow Analyses: SQL Injection

Another kind of static analysis that will often result in false positives is the analysis

that deals with string operations and attempts to discern the structure of programmatically

generated strings. An example of this is SQL injection analysis for SQL queries created

in code written in an imperative language (typically Java, C++, C#). Although powerful

analyses have been proposed (e.g., [51]), it is difficult to make an accurate determination

of the possible contents of generated strings, and this difficulty is compounded with the

obligation to also track how the strings can be used. Residual investigation approaches can

be of help in this domain. For instance, in a course-based evaluation of the industrial static
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code analyzer Fortify6, D’Souza et al. [32] observe false positives in “the report of a SQL

injection at places where [they] did not find any hint of a dynamic SQL query generation.”

This observation directly suggests an easy dynamic test (“does the suspicious string ever get

included in a SQL query?”) that will eliminate the false positives, yet will allow reporting

the error even when the current execution does not exhibit any fault. Thus, our argument

is that if we combine a static SQL injection report with dynamic taint analysis [85] (i.e.,

tracking of which user-influenced strings flow where) we get a much higher-confidence

SQL injection report. Note that in this case the taint analysis by itself is not an indication

of a fault, unlike other security analyses where tainting of a function’s input by user data is

direct evidence of a problem.

Note that the combinations of static and dynamic analyses for SQL injection detection

have already been explored [56, 63]. Huang et al. [63] insert dynamic guards to secure a

variable that is found to be involved in an insecure statement by static verification. Halfond

and Orso [56] use static analysis to build a conservative model of the legitimate queries gen-

erated by the program, yet follow it with a dynamic analysis that checks for conformance

with that model. These approaches, however, do not quite follow the residual investigation

pattern: the static analysis by itself does not detect errors but prepares the ground for a

dynamic analysis that will report faults. Still, the residual investigation approach is largely

applicable to this domain, if not already applied, to an extent.

Saner [4] composes static analysis and testing to find bugs of the input validation pro-

cess for cross-site scripting and SQL injection flaws. Saner statically identifies incorrect

or incomplete code sections of input validation routines and uses testing to confirm that

these code sections are actually ineffective. Instead of using testing, residual investigation

employs predictive dynamic analyses to confirm statically reported bugs. Thus, given the

6http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
index.html
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same test suite, residual investigation is less likely to miss a true vulnerability (but still

nearly precise).

2.5.1.2 Other FindBugs Patterns

FindBugs currently supports several hundred bug patterns, each with its own analysis,

ranging from plain textual matching to more complicated type- and flow-based analyses.

We implement a set of bug patterns in RFBI (mostly from the 18 bug patterns in the orig-

inal FindBugs publication [61]) and examine them in our main evaluation, but, as already

mentioned, residual investigation is applicable to a lot more. Examples include:

• The “Covariant compareTo method defined” bug pattern reports classes that de-

fine method compareTo covariantly (i.e., with an argument type that is not

java.lang.Object but a subtype of it). This and other bug patterns on erroneous

overriding of standard methods can be handled in much the same way as the “Bad

Covariant Definition of Equals” pattern, discussed earlier.

• The “Private method is never called” pattern is a source of false positives because

some private methods are intended to be called only via reflection. In this case, the

method is private for static code, but public for reflective code. For this to happen, the

setAccessible method needs to be called on the Method object corresponding to

the suspicious method. Thus, the presence of a setAccessible call on this method

is a hint to suppress the static error report.

• Reflection and dynamic loading are common in Java enterprise applications and in-

validate several patterns. Yet the uses of reflection are typically simple and only

limited aspects of reflective behavior change dynamically. The “Call to equals com-

paring unrelated class and interface” bug pattern, as well as the “Call to equals

comparing different interface types” pattern both assume a closed view of the inher-

itance hierarchy. Dynamic code can invalidate the patterns by loading a new class
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that is a subtype of both compared types. The error warning is thus reinforced if we

track loaded classes and observe that, indeed, while running the test suite no such

common subtype arises.

2.5.2 Applicability Relative to Test Suites

It is worth considering the preconditions for applicability of residual investigation in

terms of the analyzed program. Clearly, the program being examined should have a means

for being exercised under representative usage. That is, one needs either an off-line system-

level test suite or a human tester that will run the program through actual usage scenarios.

In the absence of the above, residual investigation is not likely to bear fruit.

The state of the practice regarding test suites is rather grim, however. The vast majority

of open source projects maintain no test suite alongside the code, or only integrate a rudi-

mentary unit test suite. For an example, we considered the SF100 benchmark suite [44],

which has recently been the focus of significant attention. SF100 selects at random 100

open-source projects from the SourceForge repository and puts them forward as a statisti-

cally sound sample for empirical SE results. We studied at random 40 of the 100 benchmark

programs. A handful of them were further excluded as they were outdated—e.g., providing

an API for Amazon’s XML Web Service 3.0, which has been long replaced by Amazon

Cloud Computing. (These benchmarks could not run in our environment, although the

intent of the SF100 suite is to include all dependencies in the benchmark package.) We

found that the vast majority of the SF100 projects do not contain a test suite for unattended

system-level testing. This is perhaps expected, since most of the SF100 benchmarks are

small-to-medium size: more than four-fifths of the programs have fewer than 100 classes,

more than one-fifth have fewer than 10.

As a result, RFBI did not produce any useful results for our sampling of SF100 pro-

grams: the dynamic potential (DP) metric for all bugs was zero, reducing RFBI to merely

FindBugs, which often also did not manage to produce good reports. This reinforces the
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dependence of residual investigation on a reasonable test suite. As already seen, this is no

more stringent a requirement than already satisfied by test suites supplied by the creators

of large, mature open-source projects (such as JBoss, BCEL, NetBeans, Tomcat, etc.).

Of course, this does not mean that residual investigation is not useful for the SF100

programs. However, it has to be used in conjunction with the usual testing process that

developers employ for these programs. This is likely to be manual testing under inputs rep-

resentative of actual usage. In principle, RFBI is fully compatible with the notion of manual

testing: instead of collecting dynamic program behavior under automatic test execution, we

could also collect this information during manual program execution. Generally, testing for

residual investigation has a low bar to clear—we do not need to amass many observations,

since just a few runs of a program are enough to reinforce or discount static warnings.

Secondarily, we posit that statistically sound benchmark samples, such as the SF100,

will be of greater value if they also include a biased sampling of applications based on

specific characteristics, such as size or the integration of a complete test suite. Some em-

pirical SE studies (e.g., on automatic test generation, which was the first application of the

SF100 [44]) have no such need, but others (such as our study) do.

2.5.3 Applicability to Refactoring

Refactoring is the process of changing a program’s structure without altering its behav-

ior. Developers have used test suites to manually gauge if behavior remains unchanged [43],

but automatic refactoring tools provide a complementary approach through static analy-

sis [52, 80]. These static analyses, in turn, necessarily come with trade-offs in the same

way that the analyses of static bug-checkers do. Consider a seemingly innocuous refactor-

ing such as “rename.” This refactoring will systematically replace all occurrences of one

particular identifier (e.g., a method name) throughout the program by another. In a lan-

guage like Java, this transformation is not necessarily behavior-preserving, as the relevant
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method might be called through reflection, or via an external client program that is not

visible to the refactoring engine.

Existing refactoring tools might thus plausibly reject any attempt at renaming a large

subset of Java identifiers, i.e., those that could be read or modified via Java reflection. For

example, program metamorphosis [92], a generalization of traditional refactoring, mate-

rializes such concerns as persistent warnings that users can review during the refactoring

process. This is analogous to a static bug report issued by FindBugs in that developers may

now raise objections, such as “this method is private and not supposed to ever be called via

reflection.”

Production refactoring tools anticipate this objection to the point where they concede

defeat to it: we are not aware of any production refactoring engine that will reject a rename

refactoring because it cannot exclude the possibility of behavioral change.

Residual investigation can serve to improve recall of such lenient refactoring systems,

as well as precision of more conservative systems (such as the aforementioned program

metamorphosis system). For example, for any newly renamed method, a refactoring system

can statically determine name captures (e.g., accidental method overriding or overloading).

The system can determine some instances of behavioral change due to reflection, by ana-

lyzing string usage [23]. To detect the remaining cases of reflective method invocation, we

can introduce two dynamic checks: (1) a search for reflective invocations of methods with

the old (pre-renaming) name, regardless of the dynamic type of their target, and (2) any

use of reflection on instances of the refactored class (perhaps including its superclasses). If

either or even both checks trigger, the risk of a behavioral change increases and may now

warrant a more severe warning to the user.

These dynamic checks can then complement the existing static checks in the same vein

as the dynamic analyses we have described for static bug checkers: whenever a static check

cannot conclusively determine that the refactoring is safe or unsafe, it can emit the above

checks as additional safeguards of behavior preservation.
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CHAPTER 3

SECOND-ORDER CONSTRAINTS IN DYNAMIC INVARIANT
INFERENCE

This chapter centers around the enhancement of dynamic invariant inference with static

second-order constraints. We call these constraints second-order because they are con-

straints over constraints: they relate classes of invariants (first-order constraints). Such

second-order constraints are provided directly by programmers or vetted by programmers

among candidates suggested automatically by a tool we developed. By incorporating

second-order static information about invariants, we will improve the quality of derived

invariants in ways that greatly enhance the utility of dynamically discovered invariants in

program analysis, testing, and program understanding.

3.1 Introduction and Motivation

Systematically understanding program properties is a task at the core of many software

engineering activities. Software testing, software documentation, and software mainte-

nance benefit directly from any significant advance in automatically inferring program be-

havior. Dynamic invariant detection is an intriguing behavior inference approach that has

received considerable attention in the recent research literature. Tools such as Daikon [37],

DIDUCE [57], and DySy [29] monitor a large number of program executions and heuristi-

cally infer abstract logical properties of the program, expressed as invariants.

Dynamic invariant inference is fundamentally a search in the space of propositions over

program variables for the tiny subset of propositions that are both true (on all executions)

and relevant (to the programmer, or to some client analysis such as a theorem prover or
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test data generator). Any such search requires a way of generating candidate propositions

and a way of evaluating them. Even limiting consideration to propositions of fixed length,

over a particular vocabulary of operations and relations among variables, the space is enor-

mous, and for a long time it seemed folly to even attempt such a search based on dynamic

program execution. Daikon [37] was the first demonstration that a generate-and-test tactic

could be feasible, generating a moderately large set of candidate propositions from syn-

tactic templates and quickly pruning the vast majority as they were refuted by program

execution.

In this work we enhance the dynamic invariant detection approach by including second-

order constraints. The invariants inferred should be consistent with these constraints. More

specifically, we identify a vocabulary of constraints on inferred invariants. We call these

constraints “second-order” because they are constraints over constraints: they relate classes

of invariants (first-order constraints). Such second-order constraints can be known even

though the invariants are unknown. (To avoid confusion, we try to consistently use the

term “constraints” for second-order constraints, as opposed to the first-order “invariants”,

although the term “second-order invariants” would have been equally applicable.) Our

vocabulary includes concepts such as Subdomain (one method’s precondition implies that

of another); Subrange (one method’s postcondition implies that of another); CanFollow

(one method’s postcondition implies the precondition of another); Concord (two methods

satisfy a common property for the common part of their domains, although some inputs for

one may be invalid for the other); and more.

Such constraints arise fairly naturally. Two methods may be applicable at exactly the

same state of an input. For instance, the top and pop methods of a stack data structure will

have constraints:

Subdomain(top, pop)
Subdomain(pop, top)

This signifies that their preconditions are equivalent. As another example, a method may

be a specialized implementation of another (e.g., a matrix multiplication with a faster al-
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gorithm, applicable to upper triangular matrices only, relative to a general matrix multi-

plier). This induces a Subdomain(triangMatMul(), matMul()) constraint. Simi-

larly, a method may be preparing an object’s state for other operations, as in the common

case of open and read: CanFollow(open(), read()).

The purpose served by second-order constraints is dual:

• First, when the constraints are discovered dynamically, without any human effort ex-

pended, they can serve as a concise and deeper documentation of program behavior—e.g.,

a single second-order constraint can distill the meaning of many Daikon invariants. This

can be seen as an effort to generalize the observations that the Daikon system already

makes via sophisticated post-processing. For instance, state-machine behavior (e.g., calls

to method foo can follow calls to method bar) can be documented in the vocabulary of

second-order constraints.

• Second, when the (second-order) constraints are either supplied by the programmer

or vetted by the programmer (among candidate constraints suggested automatically)

they can help enhance dynamically inferred (first-order) invariants by effectively cross-

checking invariants against others. In this way, the noisy inferences caused by having a

limited number of dynamic observations are reduced: the second-order constraint links

the invariant at a certain program point with a larger set of observed values from different

program points. In exchange for modest specification effort, second-order constraints can

eliminate inconsistencies and produce more relevant and more likely-correct invariants.

In more detail, the main contributions of this chapter are as follows:

• We identify and describe the idea of second-order constraints that help improve the con-

sistency and relevance of dynamically inferred invariants.

• We define a vocabulary of common second-order constraints.
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• We present a generalization of Daikon’s dynamic inference approach to second-order

constraints, by appropriately defining the Daikon “confidence” metric for second-order

properties.

• We discuss how second-order constraints can be implemented, how their enforcement is

affected by properties of the dynamic invariant inference system (we identify monotonic-

ity as a particularly important property). We provide an implementation of the constraints

in our vocabulary in the context of the Daikon system.

• We provide experimental evidence for the value of second-order constraints and their

dynamic inference. We evaluate our approach both in controlled micro-benchmarks and

in realistic evaluations with the Apache Commons Collections and the AspectJ compiler.

A low-cost effort to write constraints (e.g., a few hours spent to produce 26 constraints)

results in significant differences in the dynamically inferred invariants. Furthermore, the

vast majority (99%) of a random sample among our dynamically inferred second-order

constraints are found to be true.

3.2 Invariants and Constraints

We begin with a brief background on dynamic invariant inference, and subsequently

present our vocabulary of second-order constraints. For illustration purposes, our discus-

sion is in the context of Java and the Daikon invariant inference tool. This is the most

mainstream combination of programming language and dynamic invariant inference tool,

but similar observations apply to different contexts and tools.

3.2.1 Daikon and Dynamic Invariant Inference

Daikon [37,90] tracks a program’s variables during execution and generalizes their ob-

served behavior to invariants. Daikon instruments the program, executes it (for example,

on an existing test suite or during production use), and analyzes the produced execution
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traces. At each method entry and exit, Daikon instantiates some three dozen invariant tem-

plates, including unary, binary, and ternary relations over scalars, and relations over arrays

(relations include linear equations, orderings, implication, and disjunction). For each in-

variant template, Daikon tries several combinations of method parameters, method results,

and object state. For example, it might propose that some method m never returns null. It

later discards those invariants that are refuted by an execution trace—for example, it might

process a situation where m returned null and it would therefore discard the above invariant.

Daikon summarizes the behavior observed in the execution traces as invariants and gener-

alizes it by proposing that the invariants hold in all other executions as well. Daikon can

annotate the program’s source code with the inferred invariants as preconditions, postcon-

ditions, and class invariants in the JML [72] specification language for Java.

3.2.2 A Vocabulary of Constraints

To express rich constraints on invariants, we use a vocabulary including constraints

such as Subdomain and Subrange. These constraints are specified explicitly by the user of

the invariant inference system by employing an annotation language. Furthermore, we give

the user an opportunity to express one more useful kind of information regarding inferred

constraints: a set of “care-about” program variables and fields that are allowed in inferred

invariants. Our vocabulary includes the following concepts:

• OnlyCareAboutVariable(〈var〉) and OnlyCareAboutField(〈fld〉): These annotations in-

struct the invariant inference system that the derived invariants of a method should only

contain the listed method formal argument variables or class fields. This prevents the

system from deriving facts irrelevant to the property under examination, which would

also be more likely to be erroneous. Additionally, it allows restricting invariants so that

complex constraints can be expressed. The OnlyCareAbout... constraints are not consis-

tency constraints on invariants, but they are essential background for use together with

the consistency constraints that follow.
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• Subdomain(m1,m2): The precondition of method m1 implies the precondition of method

m2. For instance, the author of a matrix library may specify the constraint:

Subdomain(processDiagonal, processUpperTriangular)

This means that method processDiagonal, which works on diagonal matrices, has a

precondition that implies that of method processUpperTriangular, which works on

upper triangular matrices: the latter method is applicable wherever the former is. (Matrix

libraries often have a large number of related operations, in terms of interface and appli-

cability, but with different implementations for performance reasons [55]. In this section,

we draw several examples from this domain for illustration purposes.)

Preconditions are not only expressible on method parameters but also on member fields

of an object. E.g., one may specify that the preconditions of method append imply those

of method write: If the object is in an appendable state, it can also be written to.

In order to specify useful Subdomain constraints, one may need to limit the inferred in-

variants by employing the OnlyCareAboutVariable and OnlyCareAboutField annotations

presented earlier. (This also holds for many of the later constraints.) For instance, meth-

ods m1 and m2 may be on separate objects. Thus, their invariants would normally include

distinct sets of variables. Yet if we specify their common variables with OnlyCareAbout-

Variable, then the Subdomain constraint can be applicable.1

• Subrange(m1,m2): This constraint is analogous to Subdomain but for postconditions. It

means that the postcondition of method m1 is stronger than (i.e., implies) that of m2.

Again, the condition may apply to parameter or return values—e.g., a method with post-

condition isDiagonal(return) is related with Subrange to one with postcondition

1Our implementation provides some default restrictions on which variables are considered when second-
order constraints are used, so that common cases are covered without explicit OnlyCareAbout... annotations.
Namely, when two methods are linked by a second-order constraint, their invariants are defined over “match-
ing” arguments and fields. Roughly, argument variables match if they are in the same position and the
methods have the same arity, and class fields match if they have the same name and type.
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isUpperTriangular(return). (Where return stands for the return value of the

method.) Yet the condition can also be on object state. For instance, we may have con-

straints such as:

Subrange(listTail,listRange)

This means that the state of the return value and overall object after execution of the

method listTail is also a valid state after listRange: the former method produces a

subset of the possible results and effects of the latter.

• CanFollow(m1,m2): This constraint means that the postcondition of method m1 implies

the precondition of method m2. Execution of method m2 is enabled by execution of m1

in this sense, and it is a natural way to capture temporal sequencing rules, e.g.,:

CanFollow(open,write)

Such specifications are common and are often expressed in the form of state machines.

Note that the above constraint means that “an open can be followed by a write”, not “a

write has to be preceded by an open”. (The latter is inexpressible, since our vocabulary

is only concerned with the relationship between conditions at two program points, but

there is nothing to prohibit other program points from establishing the same conditions.)

• Follows(m1,m2): This constraint means that the precondition of method m2 implies the

postcondition of method m1. Informally, this means that the only states that m2 can start

from are states that m1 may result in. m1 does not guarantee such a state, though: m1’s

postcondition is necessary but not sufficient for preparing to execute m2. In practice, this

constraint prevents the postcondition of m1 from being more specific than necessary. For

instance, we may have:

Follows(add,remove)

This does not signify that add needs to execute before remove (a different method may

be reaching the same states as add). But it means that if we are in a state where the last
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Constraint Pre/Post Dataflow
Subdomain(m1, m2) Prem1 =⇒ Prem2 int(m1) ⊆ int(m2)
Subrange(m1, m2) Postm1 =⇒ Postm2 outt(m1) ⊆ outt(m2)
CanFollow(m1, m2) Postm1 =⇒ Prem2 outt(m1) ⊆ int(m2)
Follows(m1, m2) Prem2 =⇒ Postm1 int(m2) ⊆ outt(m1)
Concord(m1, m2) Prem1 ∧ Prem2 =⇒ (Postm1 =⇒ Postm2 ) Prem1 (t) ∧ Prem2 (t) =⇒ outt(m1) ⊆ outt(m2)

Figure 3.1: Meanings of second-order constraints.

operation cannot have been an add (i.e. the post condition of add is not satisfied, e.g., an

empty structure), then we cannot remove.

• Concord(m1,m2): Concord means that the postcondition of method m1 implies that of

method m2 but only for the values that satisfy the preconditions of both m1 and m2 (or,

put another way, only for the values for which the precondition of m1 implies that of m2).

This is a valuable constraint for methods that specialize other methods. For instance,

there can be a fully general matrix multiply routine, a more efficient one for when the

first argument is an upper triangular matrix, one for when the first argument is a diagonal

matrix, etc. The operations’ invariants are linked with a Concord constraint:

Concord(triangularMultiply, matrixMultiply)

Thus, the postcondition of the specialized operation (triangularMultiply) should

imply that of the more general operation (indeed, in this case the conditions should

be equivalent) for all their common inputs. Nevertheless, the general operation,

matrixMultiply, is applicable in more cases and, thus, has a weaker precon-

dition than the specialized one. For inputs valid for matrixMultiply but not

triangularMultiply, the Concord constraint imposes no restriction.

3.2.3 Meaning and Completeness of Second-Order Constraints

We intend for second-order constraints to be devices for expressing relationships be-

tween program elements at a high level. This means that the precise interpretation of the

constraints will depend on the specifics of the invariant inference system we use and on its
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capabilities. As a guideline, we present the intended meaning of five of our constraints in

Figure 3.1, column Pre/Post. (We omit the ‘OnlyCareAbout’ predicates as they are straight-

forward.) In that column we summarize the meanings of each constraint as logical relations

over the preconditions Prem and postconditions Postm of all involved methods.

We assume in this presentation that all preconditions use the same names for parameters

in the same position, and all postconditions use the same names for their return value. In

other words, Prem1 =⇒ Prem2 means that any constraints that Prem1 places on the first

(second, third, . . . ) parameter of m1, Prem2 also places on the first (second, third, . . . )

parameter of m2.

As we can see, the first four predicates capture all possible ‘straightforward’ implica-

tions between the preconditions and postconditions of two methods. Predicate Concord

meanwhile captures a more complex but practically important second-order constraint.

We will return to this figure later, when we describe our implementation.

3.2.4 Discussion

Second-order constraints can serve as documentation of program behavior in much the

same way that first-order invariants can (i.e., for program understanding purposes). Fur-

thermore, second-order constraints can offer external knowledge that helps steer invariant

inference in the right direction. Certainly one reason to do this is to avoid erroneous in-

variants: second-order constraints serve to cross-check invariants and thus enhance the

dynamic opportunities to invalidate them, even with a limited number of observations. An-

other important use of constraints, however, is in deriving more relevant invariants. Clearly,

a simple use of OnlyCareAbout... can prevent some irrelevant invariants. Greater benefit

can be obtained by more abstract constraints, however. Consider, for example, a constraint

on the constructor of a class C and on one of C’s methods, m. If we have the constraint

Follows(C, m) then we have a hint that the constructor establishes part of the precondition

for m. Without the constraint, we may observe the constructor’s execution and derive for

59



a certain field fld of the class the postcondition “this.fld == 100”. This inference

would certainly be reasonable, if, whenever the constructor is executed, fld is assigned

the value 100. Yet the invariant could be overly specific. Given that we know that the

constructor’s postcondition is implied by m’s precondition, we can observe all the different

circumstances when m is called (not necessarily right after construction). This may yield

the broader precondition “this.fld > 0” for m. Because of the Follows constraint, the

constructor needs to also register all the same values and, hence, changes its postcondition

to “this.fld > 0” instead of the more specific “this.fld == 100”. The generality

can mean that the new postcondition is more meaningful from a program understanding

standpoint. The specific value 100 may be just an artifact of the specific test cases used

(i.e., the postcondition “this.fld == 100” may be erroneously over-specific) but, even

if it is correct, it may be the result of an arbitrary technicality or a detail likely to change

in the next version of the program. Certainly, the Follows constraint steers the invariant in-

ference to the kind of invariant the user wants to see in this case: the condition that (partly)

enables m to run.

It is worth noting that the principle of behavioral subtyping [72] can be viewed as

a combination of constraints from our vocabulary. Informally, behavioral subtyping is the

requirement that an overriding method should be usable everywhere the method it overrides

can be used. This is a common concept, employed also in program analyzers (e.g., ESC/-

Java2 [25]) and design methodologies (e.g., “subcontracting” in Design by Contract [81,

p.576]). When a method C.m overrides another, S.m, the behavioral subtyping constraints

consist of a combination of Subdomain(S.m, C.m) and Concord(C.m, S.m). (Implicitly

there are also OnlyCareAboutVariable and OnlyCareAboutField constraints that restrict

both the preconditions and postconditions to be over parameters of method m and member

variables of the superclass S.) In past work [28] we discussed how consistent behavioral

subtyping can be supported in the context of dynamic invariant inference systems, and

similar ideas have informed the present work.
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3.3 Design and Implementation

We next discuss the crucial design questions regarding a second-order constraints facil-

ity, as well as our own implementation decisions. Before this, however, we introduce the

concept of monotonicity for a dynamic invariant inference system. This concept plays a

central role in our discussion and understanding.

3.3.1 Background: Monotonicity

An important consideration for our later implementation arguments is whether our in-

variant inference system is (mostly) monotonic: If supplied more values to observe, the

conditions it will output will be logically weaker (i.e., broader). Note that monotonicity

applies to the logical predicates and not to the number of invariants. There may be fewer

invariants produced when more values are observed, but these will be implied by the in-

variants produced for any subset of the values.

Most dynamic invariant inference tools are in principle monotonic. Tools like DySy

[29] and Krystal [67] use a combination of dynamic and symbolic execution. The invari-

ants are computed from the boolean conditions that occur inside the program text, when

these are symbolically evaluated. The more executions are observed, the more the invari-

ants of a program point are weakened by the addition of extra symbolic predicates (in a

disjunction). Similarly, tools like Daikon or DIDUCE have invariant templates that are

(multiply) instantiated to produce concrete candidate invariants. The candidate invariants

are conceptually organized in hierarchies from more to less specific. Values observed dur-

ing execution are used to falsify invariants and remove them from the candidate set. The

most specific non-falsified candidate invariant of each hierarchy is a reported invariant. For

instance, if two candidate invariants “x == 0” and “x >= 0” are satisfied by all observed

values of x, then the former will be reported, as it is more specific. This is a monotonic

approach: It means that as candidate invariants are falsified, they are replaced by more

general conditions.
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Nevertheless, invariant detection tools often include non-monotonicities in their infer-

ence logic. For instance, Daikon uses a confidence threshold for invariants: An invariant is

not output even when consistent with all observations, if the number of pertinent observa-

tions is small. Similarly, Daikon treats some boundary values and invariant forms specially.

For instance, if the maximum value for a variable is -2, Daikon will not output an invariant

of the form x <= -2, but if it additionally observes the value 0 for the variable, it will out-

put x <= 0 (an invariant that would have been true even without observing the 0 value, but

would not have been reported). Furthermore, Daikon produces the weakest predicate (true)

when no invariants can be inferred. These features entail non-monotonicity: Observing

more inputs will produce a stricter invariant.

In general, some non-monotonicity is unavoidable in practically useful dynamic invari-

ant inference tools, even if just in corner cases. For instance, if a tool is strictly monotonic,

then it has to infer a precondition and postcondition of false for every method that happens

to not be exercised by the test suite. (This is the only logical condition that is guaranteed

to be weakened—as monotonicity prescribes—when we add an execution that does exer-

cise the method.) Computing invariants of false is a sound approach (accurately captures

observations) but largely useless. Any further use of the produced invariants cannot em-

ploy the method in any way, as it can never establish the preconditions for calling it or

know anything about its results. Effectively, monotonic invariant inference would have to

report that a method is forever unusable if it was not observed to be used in the test run.

This and other similar examples in practically significant cases preclude the use of strictly

monotonic dynamic invariant inference.

3.3.2 Implementation

We implemented second-order constraints in the Daikon system. (Daikon is not only

the mainstream option for dynamic invariant inference, but also convenient for engineering

purposes. The DySy tool [29], on which we have worked in the past, was another inter-
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esting prospect, but requires C#/.NET and a specialized, closed-source, dynamic symbolic

execution infrastructure.) There are two aspects to the implementation. First, we infer

second-order automatically through dynamic observations of program behavior. Second,

we allow treating second-order constraints as “ground truth” and use them to influence

regular invariant inference.

Dynamically inferring second-order constraints: The key construct in most of our

second-order constraint is an implication between pre/post conditions P and Q at two dif-

ferent program points (with each one being either the entry or the exit of a program proce-

dure). Our strategy for proving the second-order constraint P =⇒ Q is to first use Daikon

(Rev. 2eded4baf181) to produce P and Q and then employ the Simplify theorem prover to

check whether P can imply Q. The full implication check may fail, even if the implication

holds in principle. One reason for this is that an inadequate test suite may lead Daikon to

produce a slightly inaccurate P or Q. Furthermore, the theorem prover may be unable to

decide whether an implication is satisfiable or not. Therefore, a more realistic check, since

P and Q are expressed as conjunctions of invariants, is to see if a particularly large number

of invariants in Q are subsumed by invariants of P (i.e., implied by the full conjunction P).

In order to find whether a sufficiently large number of implications between P and the

constituent invariants of Q are true, we define the success rate (SA) of the implication as

SA = N
M

, where N represents the number of invariants in Q that can be implied by P and M

denotes the number of invariants of Q.

The success rate on its own is often not enough for comparing the likelihood of a sec-

ond order constraint being true. In our definition of success rate, all invariants are treated

equally, so in a case with lots of junk invariants in P but not in Q that ratio may get over-

whelmed by the junk. Daikon uses a confidence metric to approximate the probability that

an invariant cannot hold by chance alone. If we sum up the confidence values for all invari-

ant implications between P and each constituent invariant of Q and use the sums in the suc-

cess rate, then the weight of the junk invariants in the ratio will decrease. Thus, we extend

63



the definition of confidence to second-order constraints in order to approximately measure

the probability that a second-order constraint could not hold by chance alone. For regular

invariants, Daikon defines the confidence of an implication relation (Inv1 =⇒ Inv2) to

be the product of the confidence of the guard (Inv1) and the confidence of the consequent

(Inv2). Similarly, the second-order constraint confidence of P =⇒ Q can be defined as

the mean of the confidences of the implication relations between P and each invariant of

Q that is implied (according to Simplify). Representing the confidences of invariants in P

by pc1, pc2, ..., pcZ , and denoting the confidences of invariants of Q that can be implied

by P by qc1, qc2, ..., qcN , we calculate the second-order constraint confidence, MA, as

MA = pc1·pc2·...·pcZ ·(qc1+qc2+...+qcN )
N

.

We filter out second-order constraints whose success rate is below a threshold (by de-

fault 0.75) and rank the unfiltered second-order constraints according to confidence. It is

meaningful for the user to change the success rate threshold, possibly based on the accu-

racy of invariants produced by Daikon for the program at hand. The fewer redundant and

irrelevant invariants a program has, the higher the program’s success rate filter can be.

The time complexity of our algorithm is quadratic over the number of methods. We

consider all combinations of program points inside a class as candidate second-order con-

straints. If there are n methods in a class, there are 2n program points, i.e., 2n(2n− 1) po-

tential second-order constraints. To verify a candidate second-order constraint, we invoke

the Simplify prover on implications between invariants. Removing irrelevant and redun-

dant invariants before applying our tool can help reduce theorem proving time. (Standard

avenues for doing so with Daikon include using more representative test suites and em-

ploying the DynComp tool [54] for more accurate invariants.)

We use a few heuristics to improve the accuracy of derived second-order constraints.

One heuristic is to normalize parameters: a parameter’s name is based on its position

in the parameter list. For example, if we examine the second-order constraint Subdo-

main(foo(int i, int j), bar(int x, int y)) then we do not use the names i and
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j when we compare to bar(int x, int y). Instead, we substitute arg1 for i and x, and

arg2 for j and y. We implement this normalization via regular expression transformation on

the data trace file generated by Chicory (the Java instrumenter inside Daikon). In addition,

if a variable only exists in the consequent-side program point of a second-order constraint,

it often gets in the way of verification for the second-order constraint. We ignore invariants

that contain such variables in the consequent-side program point. Another heuristic is that

invariants over variables that are likely to be meaningless for cross-method comparisons

are ignored. For instance, in the case of Follows(bar, foo) and Subrange(foo, bar), we

ignore invariants over the orig(x) variable (which refers to the value of variable x upon en-

try to a procedure) at the exit of bar; for Subrange(foo, bar) and CanFollow(foo, bar),

we ignore procedure parameters at both the entry and exit point of bar; for Follows(bar,

foo), we ignore the return variable at the exit of bar.

Using second-order constraints for better invariants: We extended Daikon with an an-

notation mechanism for second-order constraints. Users can pass a separate configuration

file with second-order constraints to Daikon. This changes the Daikon processing of the

low-level observations and allows refining the inferred invariants without having to re-run

any test suites.

The main element of our approach is that when the precondition (or postcondition)

of a method m1 is constrained to imply the precondition (resp. postcondition) of another

method m2 (as shown in our earlier Figure 3.1, column Dataflow), we propagate the values

observed at entry (resp. exit) of m1 to m2. This ensures that producing m2’s invariants takes

into account all the behavior observed for m1. Note that m2 need not be executed during

invariant inference—the conditions observed/established for m1 are simply registered as

if m2 had also observed/established them. These observations are suitably adapted to be

over common variables, as dictated by OnlyCareAbout... constraints (including implicit

assumptions, as mentioned in Footnote 1).
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For the first four second-order constraints of Figure 3.1 the implementation of the above

value propagation is straightforward, as it can leverage existing Daikon facilities. Specif-

ically, the implementation extensively hijacks the Daikon dataflow hierarchy mechanism.

This Daikon internal facility propagates primitive invariants between different program

points (a program point is a line of code or the entry or exit from a method). The machin-

ery is therefore quite suitable (with some minor adjustment to suppress filtering in some

cases) for implementing our value propagation.

However, the Concord second-order constraint is more complex: we only want to flow

primitive invariants from outt(m1) to outt(m2) if at execution point t the preconditions of

both m1 and m2 hold. However, at this point in Daikon’s execution we do not yet know

what the preconditions of m1 and m2 should be, since we have not even seen all primitive

invariants yet. We thus evaluate Concord constraints in two passes. The first pass stores

all data from int(m1), int(m2), and outt(m1). At the end of this pass we ask Daikon to

compute the preconditions P to m1 and m2 using Daikon’s usual heuristics (and any other

second-order constraints). In the second pass, we now use these preconditions on the data

from int(m1) and int(m2): P (mi, t) holds iff int(mi) satisfies the precondition to mi at

point t. We thus iterate over t one more time to copy all primitive invariants from outt(m1)

to outt(m2) and update Daikon’s results as needed.

For example, assume that we are examining two methods int m1(int x) and int m2(int

y). We make the following observations about m1:

m1: t int(m1) outt(m1)

t1 arg1 = −3 return = −1

t2 arg1 = 0 return = 0

t3 arg1 = 3 return = 1

t4 arg1 = 6 return = 2

That is, the method is invoked at time t1 with its first (and only) parameter x bound to

−3, and returns −1, etc. From the table above, Daikon might plausibly infer the precondi-

tion Prem1 ≡ true and postcondition Postm1 ≡ return = arg1/3.
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Now assume that we make the following observations about m2:

m1: t int(m2) outt(m2)

t5 arg1 = 0 return = 0

t6 arg1 = 1 return = 0

t7 arg1 = 2 return = 0

Here, Daikon sees no negative inputs and a constant output, so it might infer precondi-

tion Prem2 ≡ arg1 ≥ 0 and postcondition Postm2 ≡ return = 0.

If the user intended m2 to be a specialized version of m1 for nonnegative integers, the

precondition for m2 would be correct but the postcondition would be wrong. The user

can address this by adding the constraint Concord(m1, m2). This constraint will make

our system first compute preconditions and postconditions as above, then compute all the

times t at which Prem1(t) agrees with Prem2(t). Prem1 is always true, so we will only

filter out t1 via Prem2. Consequently, Daikon will get to see all inputs and outputs from

t2, t3 and t4 in addition to the ones it was already considering for method m2. With this

additional data, Daikon can no longer infer Postm2 ≡ return = 0 but might instead

conclude Postm2 ≡ return = arg1/3∧return ≥ 0, which matches the user’s intention.

3.3.3 Discussion

It is evident from the previous section that our two mechanisms (that of dynamically

inferring second-order constraints and that of taking them into account when inferring in-

variants) operate differently. The former follows a static approach for checking invariant

implication: the Simplify system is used as a symbolic prover. However, the mechanism

of enforcing invariant implications (to produce different invariants by taking second-order

constraints into account) eschews symbolic reasoning in favor of propagating more dy-

namic observations. Why do we not just take the conjunction of the produced invariants

and declared second-order constraints, simplify it symbolically, and report it as the new

produced invariants? The reason is that there is noise introduced when generalizing from

observed executions to invariants (e.g., because the invariant patterns are uneven), and this
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carries over to the combined invariants. It is better to generalize (i.e., compute invariants)

from more observations than to generalize from fewer ones and then combine the general-

izations symbolically.

The above insight is evident in the case of non-monotonic invariant inferences, which

are virtually unavoidable, as mentioned in Section 3.3.1. For instance, consider a Subdo-

main(m1,m2) constraint. If P is the precondition of m1 and Q is the precondition of m2,

then we can statically satisfy the constraint by considering the real precondition of m2 to

be P ∨ Q, so that it is always implied by P . If, however, method m1 is never called in

our test suite, Daikon will infer true as its precondition. This will make true also be the

precondition of m2, even though we have actual observations for that method! This re-

sult is counter-intuitive and so common in practice as to significantly reduce the value of

produced invariants.

In contrast, in our chosen approach, a second-order constraint just causes more ob-

servations to register. These observations are then generalized using the same approach

as the base inference process—i.e., just as if the system had really registered these ob-

servations. This is particularly beneficial in cases of non-monotonicity. Consider again

our example of an m1 and m2 with preconditions P and Q, respectively, and a constraint

Subdomain(m1,m2). If m2 observes the exact values that led to the inference of P , then

these values, combined with the ones that led to the inference of Q, may induce higher

confidence for an invariant more specific than either P or Q, which will now be reported

(because of crossing a confidence threshold).

Caveats: Note that our approach (of propagating observations from one program point

to another) does not strictly guarantee that the dynamically inferred invariants satisfy the

second-order constraints. Interestingly, if the inference process is monotonic, correctness is

guaranteed: under monotonic invariant inference, taking into account the union of two sets

of observations should produce a condition that is weaker than either individual condition.

This observation argues for why our approach is expected to be correct: as long as there
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are enough observations, dynamic invariant inference is typically monotonic, as discussed

in Section 3.3.1.

Additionally, any implementation of dynamic invariant inference under second-order

constraints suffers from the possibility of a disconnect between observed executions and

values reflected in an invariant. The source of the problem is that we are allowing an

invariant to be influenced by values not really seen at that program point during execution.

These values will be reflected in a reported invariant but will not be reflected in other

dependent invariants. For instance, using second-order constraints we may infer a more

general precondition, but not the corresponding postcondition. Thus, readers who consider

the two invariants together may misinterpret their meaning even when the invariants are

individually correct.

3.4 Evaluation

There are two questions that our evaluation seeks to answer:

• Do second-order constraints aid the inference of better first-order invariants?

• Can correct second-order constraints be inferred dynamically?

The next two sections address these questions in order.

3.4.1 Impact of Second-Order Constraints

We explored the utility of second-order constraints in three case studies: one of a man-

ageable, small example application with a relatively thorough test suite, and two of large,

unfamiliar programs, with their actual test suites. In all studies, we first took existing

classes and examined their APIs. We then added second-order constraints to manifest im-

plicit relationships between API methods in the same class or in different classes. We ran

a series of experiments to determine the effects that adding these constraints had on the

observed pre- and postconditions reported by Daikon.
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public class StackAr {
public boolean isEmpty();
public boolean isFull();
public void makeEmpty();
public void push(Object);
public void pop();
public Object top();
public Object topAndPop();

}

Figure 3.2: The array-based stack StackAr, shipped with Daikon

In these three case studies, second-order constraints were written by hand and their

correctness was verified by inspection. This is a feasible approach in several settings since

second-order constraints are much sparser/coarse-grained than first-order invariants: one

needs to write few second-order constraints to affect a large number of first-order invariants.

3.4.1.1 StackAr

Our first case study is StackAr, an array-based fixed-size stack implementation that

ships with Daikon and is perhaps the most common Daikon benchmark and demonstration

example. StackAr is interesting because it is the most controlled of our case studies (due

to test suite coverage and small size).

Figure 3.2 lists the class and its methods. Methods isEmpty and isFull are straight-

forward. makeEmpty clears the stack. push(o) pushes element o to the top of the stack.

pop() removes the top stack entry, but does not return a value. Instead, top() peeks at the

top of the stack and returns the most recently pushed value; while topAndPop() returns

the top of the stack before removing it. Operations top and pop raise an exception if the

stack is empty, while topAndPop returns null in that case.

To explore our invariants, we examined this API and determined second-order con-

straints that we considered to be meaningful for this class. The process took the author

negligible time (less than a minute, although there was previous discussion of interesting
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# Classes second-order constraints First-order invariants
pre post δpre δpost

1 ArrayStack CanFollow(push, peek) 1 3 -1
2 ArrayStack Subrange(peek, get) 0 5 -2
3 ListUtils Subdomain(removeAll, retainAll) 12 0 -2
4 ListUtils Subdomain(sum, subtract) 0 0
5 CollectionUtils Subdomain(subtract, disjunction) 8 0 +2
6 CollectionUtils Subdomain(subtract, intersection) 14 0
7 TreeBidiMap Subdomain(containsKey, get) 101 0 +6-7
8 TreeBidiMap Subdomain(nextKey, previousKey) 108 0
9 UnmodifiableSortedBidiMap Subrange(tailMap, subMap) 0 16

10 TreeBidiMap Subdomain(remove, get), 99 0 +2-7Subdomain(get, remove)

11 TreeBidiMap Subdomain(getKey, removeValue), 93 0 +2-7Subdomain(removeValue, getKey)
12 DualTreeBidiMap Subrange(tailMap, subMap) 0 22
13 UnboundedFifoBuffer Follows(add, remove) 11 34 +1-1
14 SetUniqueList Follows(addAll, remove) 3 8 -1
15 AbstractBidiMapDecorator Subrange(getKey, removeValue) 0 10 +3-1

16 ReverseListIterator Subrange(previousIndex, nextIndex), 0 20 +5-1Subrange(nextIndex, previousIndex)
17 CursorableLinkedList CanFollow(addNode, removeNode) 3 6
18 CursorableLinkedList CanFollow(addNode, updateNode) 5 6

19 LinkedMap Subdomain(get, remove), 4 6 +1-1 +1-1Subrange(get, remove)
20 ListOrderedMap Subrange(put, remove) 0 16 -3
21 CompositeMap CanFollow(addComposited, removeComposited) 8 19 +6-3

22 CompositeCollection Concord(addComposited(Collection), 12 28 +2-2addComposited(Collection, Collection))

Figure 3.3: Summary of our experiments on the Apache Commons Collections.

invariants, hence the exact effort cost is unclear). We split these constraints into separate

experiments and explored the effect they had on Daikon’s invariant detection mechanism:

• Experiment 1 (Ex1): Subdomain on topAndPop, top, and pop. The operations top,

pop, and topAndPop all require a nonempty stack, so we instructed the system to treat

all of them as having identical subdomains.

• Experiment 2 (Ex2): Any push sets up the stack for a top, pop, or topAndPop. We

experimented with setting up CanFollow relations between push and the three top/pop

operations.

To ensure the highest-quality invariants, we ran these experiments with the DynComp

tool [54] enabled.

Experiment 1: We instructed the system to treat all of top, pop, and topAndPop as

having the same subdomains, using specifications such as
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Subdomain(StackAr.topAndPop(), StackAr.pop())
Subdomain(StackAr.pop(), StackAr.top())
Subdomain(StackAr.top(), StackAr.topAndPop())

The above specification captures a circular subrange dependence, and hence equality:

it specifies that all three operations should have effectively the same preconditions. There

are other ways to express this equality: we experimented with reversing the circular depen-

dencies and with establishing mutual Subdomain constraints between all three interesting

pairs of the three operations (for a total of six constraints). We found these approaches to

be equivalent.

The experiment results in the elimination of five spurious invariants from pop:

• ‘this has only one value’

• ‘this.theArray has only one value’

• ‘size(this.theArray[]) == 100’

• ‘this.theArray[this.topOfStack] != null’

• ‘this.topOfStack < size(this.theArray[])-1’

Also, “this.topOfStack < size(this.theArray[])-1” is replaced by the

weaker (and correct) “this.topOfStack <= size(this.theArray[])-1”. Our

constraints further helped infer two new correct preconditions: one establishing an inequal-

ity between a stack’s default capacity and the size of this.theArray, and one establish-

ing that the top of the stack does not exceed the size of the internal array. As a result, the

preconditions between the three methods were identical.

Experiment 2: For this experiment we specified that the push operation sets up a stack

for using top and similar operations:

CanFollow(StackAr.push(Object), StackAr.top())
CanFollow(StackAr.push(Object), StackAr.pop())
CanFollow(StackAr.push(Object),

StackAr.topAndPop())
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This specification improved the inferred invariants, removing four incorrect preconditions

(the same as for experiment #1, except for ‘this has only one value’) and adding three

invariants:

• One states that topOfStack cannot exceed the internal array size (as in experiment #1).

• One establishes an inequality between stack default capacity and array size (as in exper-

iment #1).

• One establishes that the topOfStack is nonnegative.

Again the changes affected method ‘pop’, while ‘top’ and ‘topAndPop’ remained

unaffected, as they already had high test coverage.

In summary, the impact of second-order constraints on StackAr, under the standard

test suite was overwhelmingly positive. All of the additional invariants were correct and

most were insightful, while spurious invariants were eliminated.

3.4.1.2 Apache Commons Collections

Our second case study is the Apache Commons Collections library,2 version 3.2.1. This

library contains 356 classes, of which we used a total of 18 explicitly3 for our experiments.

For our experiments, the author (unfamiliar with the library) examined the above classes

and constructed a specification (while consulting the API documentation) with a total of 27

second-order constraints, comprising 22 experiments. We put related second-order con-

straints into the same experiment as in our StackAr case study. This process took ap-

proximately 3.5h. The author spent another 2h double-checking and fixed the invariants

after specification. This amount of effort is in the noise level, compared to the development

effort for a library of this size.

2http://commons.apache.org/collections/

3Some classes may use other classes from the library internally.
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We then examined the utility of our specifications by running Daikon first with and

then without our constraints. Since running the entire test suite with Daikon’s instru-

mentation tool would have consumed harddisk space in excess of 10 GB (compressed),

we instructed Daikon’s instrumentation tool to only report invariants for the methods we

were interested in. We only ran these experiments with DynComp disabled, as using the

DynComp-instrumented JDK caused errors during execution.

We recorded the invariants of all affected methods and analyzed the generated differ-

ences. Figure 3.3 summarizes our results. We first list the affected class or classes, then

the concrete second-order constraints we introduced (slightly compressed for space). Next,

we considered the invariants inferred by Daikon, restricted to invariants of the particu-

lar methods occurring in our constraints. For example, in experiment #1, we considered

methods push and peek in class ArrayStack only. The final four columns summarize

these invariants: first, we give the number of invariants in the absence of any second-order

annotations, separated into pre- and postconditions (pre and post). Finally we give the

differences over any preconditions (δpre) and postconditions we observed (δpost). We use

the notation +x − y to indicate that we added x new invariants and removed y existing

ones.

Qualitatively, the use of second-order constraints on the Apache Commons Collections

was a clear win. All 35 invariants removed were false, to the best of our understanding.

We added 26 invariants, of which our manual inspection found 25 to be true (i.e., expected

to hold for all executions, not just the ones observed) and 1 to be false. The added in-

variants arise due to non-monotonicity. In experiment 16, for example, the augmented

observations in the presence of second-order constraints enable two additional true invari-

ants (i.e., a stronger inference) in the precondition of method nextIndex: this.list

!= null and this.iterator != null. The invariant “orig(value) != null”

was incorrectly added to AbstractBidiMapDecorator.removeValue(Object) in

experiment 15, where parameter value does not have to be non-null. Furthermore,
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we replaced 5 invariants with more general invariants. Consider, for example, experi-

ment 13, with second-order constraint Follows(add,remove). The postcondition of

method UnboundedFifoBuffer.add(Object) originally contained invariants such as

“this.head one of {0, 1, 2}”. Such false invariants are replaced with a more in-

sightful “this.head >= 0”.

3.4.1.3 AspectJ Compiler

# Classes second-order constraints First-order invariants
pre post δpre δpost

1 AjTypeSystem, Subrange(getAjType, getDeclaringType) 0 9 ++2AdviceImpl
2 ProgramElement Subdomain(toSignatureString(boolean), toLabelString(boolean)) 76 0
3 ProgramElement Subdomain(toLabelString(boolean), toSignatureString(boolean)) 76 0
4 ProgramElement Subrange(toLabelString(), toLabelString(boolean)) 0 142
5 ProgramElement Subdomain(getParent, getChildren) 76 0
6 ProgramElement Subrange(genModifiers(), getModifiers(int)) 0 80
7 ProgramElement Subdomain(toLabelString(), toSignatureString()) 81 0 +1-5
8 ProgramElement Subdomain(toSignatureString(), toLabelString()) 81 0
9 ProgramElement Subdomain(getChildren, getParent) 76 0 -1
10 FieldSignatureImpl Subdomain(getDeclaringTypeName, getDeclaringType) 0 0
11 FieldSignatureImpl Subdomain(getDeclaringType, getDeclaringTypeName) 0 0
12 MethodSignatureImpl Subdomain(getField, getFieldType) 0 0
13 MethodSignatureImpl Subdomain(toShortString, toLongString) 0 0
14 MethodSignatureImpl Subdomain(getDeclaringType, getDeclaringTypeName) 0 0
15 SignatureImpl Subdomain(getDeclaringTypeName, getDeclaringType) 66 0
16 SignatureImpl Subdomain(getDeclaringType, getDeclaringTypeName) 66 0 +4-4
17 SignatureImpl Subdomain(toLongString, toShortString) 71 0 +3
18 SignatureImpl Subdomain(toShortString, toLongString) 71 0 +3-1

19 BcelWeaver CanFollow(prepareForWeave, 52 80 +3-4weave(UnwovenClassFile, BcelObjectType))

20 BcelWeaver CanFollow(prepareForWeave, 41 80weave(UnwovenClassFile, BcelObjectType, bool.))
21 BcelWeaver CanFollow(prepareForWeave, weaveAndNotify) 54 80
22 BcelWeaver CanFollow(prepareForWeave, weaveNormalTypeMungers) 53 80
23 BcelWeaver CanFollow(prepareForWeave, weaveParentTypeMungers) 53 80
24 BcelWeaver CanFollow(prepareForWeave, weave(IClassFileProvider)) 52 80
25 BcelWeaver CanFollow(prepareForWeave, weaveParentsFor) 57 80
26 BcelWeaver CanFollow(prepareForWeave, weaveWithoutDump) 51 80

Figure 3.4: Summary of our experiments on the AspectJ Compiler.

Our third case study is the AspectJ compiler. We followed the same approach as for the

Apache Commons Collections, collecting invariants from unit tests and integration tests.

Since AspectJ lacks detailed API documentation, the author (unfamiliar with the library)

directly inspected the source code of AspectJ and derived a total of 27 second-order con-

straints. The combined process of understanding the foreign code base and writing in-
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variants cost the author approximately 10h. Again DynComp’s instrumented JDK caused

problems during execution, so we only tested with DynComp disabled.

We summarize our results in Figure 3.4. We removed 12 invariants. All of the 12

invariants were false. For instance, most “variable has only one value” and “variable

is one of {. . .}” invariants (largely due to limitations in the test suite) were removed

or replaced by more accurate invariants. We also added 1 false invariant in experiment

16 (again, due to non-monotonicity) by assuming a variable is always less than a con-

stant. Meanwhile, we added 12 true invariants and replaced 3 invariants with more gen-

eral ones. For instance, without the second-order constraint Subrange(getAjType,

getDeclaringType) in experiment 1, Daikon reports no invariants for the exit of the

getDeclaringType method. Our Subrange constraint yields two new postconditions,

“return != null” and “return.getClass() == AjTypeImpl.class”, due to ob-

servations on getAjType.

3.4.2 Inferring Second-Order Constraints

We next evaluate the success of our dynamic process of inferring second-order con-

straints. Note that dynamically inferred second-order constraints are useful for many rea-

sons:

• As documentation of program behavior, on their own, i.e., as deeper invariants than typ-

ical Daikon invariants.

• For finding bugs in manually stated second-order constraints.

• For offering the programmer a set of mostly-correct second-order constraints to choose

from.

Although the first benefit is very important, it is hard to quantify experimentally. There-

fore, we focus on the second and third benefits, and specifically on evaluating the correct-

ness of automatically inferred second-order constraints.
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Correctness of Inferred Constraints: We inspected the results of our automatic mech-

anism for inferring second-order constraints (Section 3.3.2) on four randomly selected

classes from ACC and AspectJ (two each). The author manually verified all of the gen-

erated second-order constraints. For this experiment, we considered a second-order con-

straint to be correct whenever it did not disagree with the implementation of the given class.

Figure 3.5 lists our precision results. We note that overall precision exceeds 99%, sug-

gesting that our confidence metric is highly effective at identifying low-quality constraint

candidates.

Our five losses in LstBuildConfigManager were three Follows and two Subrange

constraints involving methods with low-quality invariants. For example, four of the five

constraints involved an addListener method for which Daikon had failed to observe the

method’s effect on the internal object state.

Although these constraints are true, they are not necessarily all interesting. Many of

them just reflect implementation artifacts and would not arise if the methods in question had

interesting invariants to begin with. For instance, for two methods that have a very small

number of invariants in their preconditions, it is easy to find meaningless agreement—e.g.,

on the fact that their argument is never null.

For SingletonMap, we observed more than 800 proposed high-confidence constraints

that claimed that most methods were in some relationship to each other. We found that

SingletonMap is an immutable class, meaning that methods do not influence each other

on subsequent calls—therefore many invariants remained the same across methods, result-

ing in second-order constraints being derived. (These include the two second-order con-

straints we manually wrote for SingletonMap but also many others of much less value.)

This suggests the existence of other useful higher-order constraints beyond the catalog we

have proposed herein; for SingletonMap, a meta-constraint Immutable would be the most

concise way to express the properties that we observed.
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Second-Order Constraints #
Library Class methods# Program Daikon total correct incorrect

points # variants #
ACC AbstractMapBag 25 7 85 2 2 0
ACC SingletonMap 34 54 635 806 806 0
AspectJ Reflection 17 10 192 30 30 0
AspectJ LstBuildConfigManager 18 23 778 112 107 5

Figure 3.5: Results of inferring second-order constraints. In the above, ‘program points’
lists only program points that our inference considers, i.e., :::ENTER and :::EXIT
program points.

In summary, we found that dynamic second-order constraint inference is highly effec-

tive at identifying high-quality sets of second-order constraints, even though we allow some

margin of error over already-erroneous or imprecise axioms.

Inferred vs. Manual Constraints: Our manually derived second-order constraints of

the previous section were never intended as a full or ideal set, but as a set of constraints

that take low effort to produce and have significant effect over first-order invariants. Still,

it is instructive to compare them with automatically inferred constraints. For this purpose,

we ran our inference mechanism on all classes that we had manually written second-order

constraints for.

Indeed, our manual effort to produce constraints for ACC and the AspectJ compiler

originally yielded 64 constraints and not just the 52 shown in Figures 3.3 and 3.4. 12 man-

ually derived second-order invariants were removed exactly because their absence from

the set of automatically inferred constraints caused us to re-inspect them and discover they

were erroneous! This pattern is likely to also occur in practice when dealing with unfa-

miliar code (in fact, 8 of the 12 were in AspectJ, which lacks documentation). Note that

in a scenario in which software authors write their own second-order constraints, such

disagreements between hand-written and inferred second-order constraints would point to

more serious issues; likely to poor test suites or to implementation bugs.

Of the 52 constraints in Figures 3.3 and 3.4 our automatic inference mechanism pro-

duced 37 and missed 15. On closer inspection we found that 6 of those missing hand-
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written second-order constraints are rejected (although true) due to low success rate. This

is caused by “noise” invariants participating in the corresponding preconditions and post-

conditions, due to very few actual observations for the relevant methods. 7 more second-

order constraints are missing due to having no data samples at all for the methods. The last

2 second-order constraints are missing since our current implementation does not support

detecting the Concord constraint or constraints relating methods in two different classes.

Thus, overall the automatic inference facility produces quite high-quality results on

its own, and is found to be a strong complement for manual derivation of second-order

constraints.
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CHAPTER 4

SEDGE: SYMBOLIC EXAMPLE DATA GENERATION FOR
DATAFLOW PROGRAMS

This chapter describes SEDGE: a dynamic symbolic execution engine for dataflow

programs–indeed, the first such engine, to our knowledge. Dynamic symbolic execution

is a systematic test case generation method. It statically collects path constraints while

dynamically executing test cases generated by solving those path constraints using a con-

straint solver. We demonstrate that SEDGE beats the previous state-of-the-art in terms of

test case coverage.

4.1 Introduction

Dataflow programming has emerged as an important data processing paradigm in the

area of big data analytics. Dataflow programming consists of specifying a data processing

program as a directed acyclic graph. Internal nodes of the graph represent operations on

the data, for example, using relational algebra primitives such as filter, project, and join, or

functional programming primitives such as “map” applications of user-defined local func-

tions and “reduce” operations that collect values over sets of data. The edges in the graph

represent data tables or files passed between operators (nodes) in the graph. Many recently

proposed data processing languages and systems, such as Pig Latin [87], DryadLINQ [64],

and Hyracks/ Asterix [7] resemble dataflow programming on datasets of enormous sizes.

A user can develop dataflow programs by either writing the programs directly using the

above languages or compiling queries written in declarative languages such as SQL and

Hive [106].
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When a user writes a dataflow program, he/she will typically employ example data or

test cases to validate it. Validating with large real data is impractical, both for reasons

of efficiency (running on large data sets takes a long time) and for reasons of ease-of-

validation (it is hard to tell whether the result is what was expected). One alternative is to

sample the real data available. The sample data need to thoroughly exercise the program,

covering all key behavior of each dataflow operator. This is very hard to achieve via random

sampling, however. For instance, equi-joining two sample data tables of small size is likely

to produce an empty result, if the values being joined are distributed arbitrarily.

Another alternative is to synthesize representative data. Such data synthesis is com-

plicated by the complexity of dataflow language operators as well as by the presence of

user-defined functions. Current state-of-the-art in example data generation for dataflow

programs [87] is of limited help. Such techniques can generate high-coverage data for

dataflow programs with simple constraints. However, for dataflow programs with complex

constraints, e.g., with numerous filters, arithmetic operations, and user-defined functions,

the generated data are incomplete due to shortcomings in constraint searching and solving

strategies.

In this chapter, we address the problem of efficient example data generation for complex

dataflow programs by bringing symbolic reasoning to bear on the process of sample data

generation. We present the first technique and system for systematically generating repre-

sentative example data using dynamic symbolic execution (DSE) [19, 48, 108] of dataflow

programs. Our concrete setting is the popular Pig Latin language [88]. Our DSE technique

analyzes the program while executing it using sampled data, determines whether the sam-

pled input data are complete (i.e., achieve full coverage), and, if not, attempts to synthesize

input tuples that result in the joint sampled and synthesized data being a complete example

data set for the program.

We have implemented this approach in SEDGE, short for Symbolic Example Data GEn-

eration. SEDGE is a reimplementation of the example generation part in the Apache Pig
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dataflow system, which currently implements the closest comparable past research, by Ol-

ston et al. [87].

Illustration

For a simple demonstration, consider an application scenario in computational astro-

physics. We surveyed 11 queries in the Sloan Digital Sky Survey1 for analyzing star and

galaxy observations, and rewrote them using the Pig Latin language. The most complex

query contains 34 filters and 2 joins. For ease of exposition, we show a simple example

query in Listing 4.1 by combining features from two actual queries and will use it as a

running example in the chapter. (For more details on the real queries, see the evaluation

section.)

A = LOAD ’fileA’ using PigStorage()
AS (name:chararray, value:int);

B = LOAD ’fileB’ using PigStorage()
AS (u:double, class:int);

C = FILTER A BY value < 100 AND value >= 0;
D = FILTER B BY math.POW(u,2.0) > 0.25;
E = JOIN C ON value, D ON class;

Listing 4.1: An example Pig Latin program

The program begins by loading tables A and B from files containing measurements.

Both kinds of measurements need to be filtered. The first filter keeps only measurements

in a certain value range and the second filter removes low u values. The tuples that survive

the filtering get joined.

Imagine that we execute the program for a small number of sampled input tuples from

fileA and fileB. If we want to achieve perfect coverage on random sampling of actual

data alone, we are unlikely to be successful if the sample is small. The data from the two

tables need to pass filters and (even more unlikely) have their value and class fields

coincide. This is a case where targeted test data generation can help.

1http://skyserver.sdss.org/public/en/help/docs/realquery.asp
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Past techniques for example data generation cannot handle this example well. Olston

et al.’s technique [87] will synthesize data by considering operators one-by-one in reverse

order in the Pig Latin program. It will attempt to create data to satisfy the JOIN first,

without concern for the FILTER conditions that the same data have to satisfy. This will

likely fail to satisfy even the first FILTER operator: the range 0-99 will have to be hit

purely by chance. The problem for the Olston technique is that value is not a free variable

once the JOIN constraint is satisfied: it is limited to the values that the system arbitrarily

chose in order to have the JOIN operator produce output.

Even more importantly, the second FILTER operator is hard to process. It contains a

user-defined function, math.POW. Although this function is simple, it will still befuddle an

automatic test data generation system. Furthermore, an essential part of dataflow program-

ming is the ability to use user-defined functions freely, however complex these functions

may be. The large volume of work on automatic data generation in other settings (e.g.,

SQL databases [10]) does not address user-defined functions.

Our approach overcomes such problems by modeling the entire program in a powerful

reasoning engine, handling complex conditions, and dealing with user-defined functions

with the aid of concrete values observed over sample data. We process the program us-

ing a domain with (symbolic) variables, such as value, class, etc. A symbolic variable

“columnname” represents the value of one column of an input table for a set of tuples.

We start with a concrete execution of the program using small samples of real input data.

During such concrete execution we observe, first, which program cases are covered, and,

second, what are the values of user-defined functions for real data. E.g., a tuple (3.3, 32) of

table B will register the value pair (u : 3.3,math.POW(u,2.0) : 10.89) for the user-defined

function. This value will later help when trying to solve symbolic constraints.

After the concrete execution, our approach uses symbolic reasoning to cover program

cases that were not already covered by the concrete execution. The approach performs a

symbolic execution of the program, gathering constraints along each path to the sources.
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We use the Z3 SMT solver [30] to solve the constraints. Concrete values for user-

defined functions are supplied to the solver. That is, the user-defined function is treated

as a black-box and the solver is supplied extra constraints of the form u = 3.3 ⇒

math.POW(u, 2.0) = 10.89. These can aid the solver in producing satisfying assignments.

Essentially, we try to make an educated guess: Whenever we do not know how to generate

example data for a constraint that depends on a user defined function, we can always sim-

plify this constraint by replacing the symbolic representation of the user-defined function

with concrete values.

Contributions

In brief, the contributions of our work are as follows:

• We detail a translation of dataflow operators into symbolic constraints. These constraints

are subsequently solved using an SMT solver.

• We adapt the technique of dynamic symbolic execution to the domain of dataflow lan-

guages. By doing so, we exploit the unique features of this domain, thus enabling high

coverage. Specifically, we exploit the absence of side-effects in order to perform a

multiple-path analysis: observations on the values of a user-defined function on differ-

ent execution paths can help solve constraints involving the user-defined function.

• As a result of the above, we produce an example data generation technique that achieves

higher coverage than past literature, managing to produce data that exercise all operators

of all programs that we examined. We show extensive measurements to confirm our

approach’s advantage. Our technique achieves full coverage in all benchmark programs

with a boost in performance for most benchmarks.
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4.2 Background and Context

We next discuss some pertinent background on dataflow programming as well as on

concepts and mechanisms introduced in closely related past work.

4.2.1 Dataflow Program

A dataflow program is a directed bipartite graph, separating computations (i.e., opera-

tors) in one partition and computational intermediate results (i.e., data tables) in the other

partition. In other words, it is a graph in which data tables flow into operators, and operators

flow into data tables. A data table is a collection of tuples with possible duplicates. A tuple

is typically a sequence of atomic values (integer, long, float, chararray, etc.) or complex

types (tuple, bag, map). An operator usually has some input tables and one output table.

We say that a data table is an input table of an operator in a dataflow program if the data

table flows into the operator. Similarly, we say that a data table is an output table of an op-

erator in a dataflow program if the operator flows into the data table. If operator A’s output

table is one of operator B’s input tables, A is said to be an upstream neighbor of B and B

is said to be a downstream neighbor of A. An operator without any upstream neighbor is

called a leaf operator, and an operator without any downstream neighbor is called a root

operator—the root operator generates the final output.

4.2.2 Pig Latin

Pig Latin is a well-known dataflow programming language and the language front-end

of the Apache Pig infrastructure for analyzing large data sets. The Pig compiler translates

Pig Latin programs into sequences of map-reduce programs for Hadoop. A Pig Latin pro-

gram is a sequence of statements where each statement represents a data transformation.

In a Pig Latin statement, an operator processes a set of input tables and produces an output

table. Following are the core operators of Pig Latin [88].

1. LOAD: Read the contents of input data files.
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2. FILTER: Discard data that do not satisfy a built-in logic predicate or a user-defined

boolean function.

3. COGROUP: Divide one or more sets (more accurately “bags”, but we use the term

“set” informally) of input tuples into different groups according to some specifica-

tion. Each resultant output tuple consists of a group identifier and a nested table

containing a set of input tuples satisfying the specification.

4. GROUP: A special case of COGROUP when only one set of input tuples is involved.

5. TRANSFORM: Apply a transformation function to input tuples. Transformation

functions include projection, built-in arithmetic functions (e.g., incrementing a nu-

meric value), user-defined functions, and aggregation. An aggregation is imple-

mented by first invoking COGROUP or GROUP, and then doing transformation

group by group. For example, Average (·) is an aggregation that averages the val-

ues in each group of input tuples.

6. JOIN: Equijoin tuples from two input tables.

7. UNION: Vertically glue together the contents of two input tables into one output

table.

8. FOREACH: Apply some processing to every tuple of the input data set. FOREACH

is often followed by a GENERATE clause to pick a subset of all available fields.

9. DISTINCT: Remove duplicate tuples from the input data set.

10. SPLIT: Split out the input data set into two or more output data sets. A condition

argument determines the partition that each tuple of the input data goes into.

11. STORE: Write the output data set to a file.
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4.2.3 Equivalence Class Model

Our work tries to maximize branch coverage in Pig Latin programs. An interesting

question is what constitutes full coverage of a Pig Latin operator. In some cases the answer

is clear: the FILTER operator, for instance, is well-covered when its input contains tuples

that satisfy the filter condition and tuples that fail the filter condition. In other cases, the

definition of coverage is not as simple. For instance, do we consider a UNION operator

sufficiently covered if all its output tuples come from a single input table (i.e., if one of its

input tables is empty)? The choice is arbitrary but the more reasonable option seems to be

to require that both inputs of a UNION operator be non-empty. Furthermore, whether an

operator is covered may be more convenient to discern in some cases by observing its input

and in others by observing its output. For instance, a JOIN is well-covered when its output

is non-empty, while a UNION is well-covered when its inputs are both non-empty.

To specify the coverage of operators we inherit the definition of equivalence classes

from Olston et al. [87]—the research work that has formed the basis of the example gen-

eration functionality in Apache Pig. Each Pig Latin operator yields a set of equivalence

classes for either its input or its output tuples. Equivalence classes partition the actual set

of tuples—each tuple can belong to at most one equivalence class per operator. To generate

example data with 100% coverage, the input or output table of each operator (when the

program is evaluated with the example data) must contain at least one tuple belonging to

each of the operator’s equivalence classes.

We summarize the equivalence class definitions for the operators of Pig Latin below.

The definitions are from Olston et al.’s publication [87] and the implementation in Apache

Pig.2

• LOAD/STORE/FOREACH/TRANSFORM: Every input tuple is assigned to the same

class E1. (I.e., the operator is always covered, as long as its input is non-empty.)

2http://pig.apache.org/
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• FILTER: Every input tuple that passes the filter is assigned to a class E1; all others are

assigned to a class E2. (The intention is to show at least one record that passes the filter,

and one that does not pass.)

• GROUP/COGROUP: Every output tuple is assigned to the same class E1. For every

output tuple, the nested table for every group identifier must contain at least two tuples.

(The purpose of E1 is to illustrate a case where multiple input records are combined into

a single output record.)

• JOIN: Every output tuple is assigned to the same class E1. (The intention is to illustrate

a case of two input records being joined.)

• UNION: Every input tuple from one input table is assigned to E1, tuples from the other

input table are assigned to E2. (The aim is to show at least one record from each input

table being placed into the unioned output.)

• DISTINCT: Every input tuple is assigned to the same class E1. For at least one input

tuple to DISTINCT, there must be a duplicate, to show that at least one duplicate record

is removed.

• SPLIT: Every input tuple that passes condition i is assigned to class Ei1; input tuples that

do not pass i are assigned to a class Ei2. The number of equivalence classes of a SPLIT

depends on how many conditions the SPLIT has. If a SPLIT has n conditions, it yields

2n equivalence classes. (The aim is to show, for each split condition, at least one record

that passes the condition, and one that does not pass.)

4.2.4 Quantitative Objectives

We use two metrics to describe the quality of example data and follow earlier terminol-

ogy [87]:

1. Completeness: The average of per-operator completeness values. The completeness

of an operator is the fraction of the equivalence classes of the operator for which at
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least one example tuple exists. An ideal algorithm should find example data for every

equivalence class of every operator in a Pig Latin program.

2. Conciseness: The average of per-operator conciseness values. The conciseness of

an operator is the ratio of the number of operator equivalence classes to the total

number of different example tuples for the operator (with a ceiling of 1). An ideal

algorithm should use as few example tuples as possible to illustrate the semantics of

an operator.

The completeness metric is clearly a metric of coverage, as defined earlier. Specifi-

cally, it corresponds to branch coverage in the program analysis and software engineering

literature. Branch coverage counts the percentage of control-flow branches that get tested.

4.3 SEDGE Design

Our system, SEDGE, uses a three-step algorithm to generate example data in Pig Latin

programs.

(1) Downstream Propagation: execute programs using sampled real data, record values

of user-defined functions—see Section 4.3.2;

(2) Pruning Pass: eliminate redundant data so that each covered equivalence class only

contains a single member;

(3) Upstream Pass: generate constraints and synthesize data for equivalence classes that

the sampled test data do not explore by performing DSE.

The last pass (upstream pass) is the key new element of our approach and is described

next.

4.3.1 Constraint Generation

The essence of our approach is to represent equivalence classes symbolically and to

produce symbolic constraints that describe the data tuples that belong in each equivalence
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class. Solving the constraints (i.e., producing data that satisfy them) yields our test in-

puts. Our constraint generator steps through the dataflow graph to compute all equivalence

classes for each Pig Latin operation, starting at root (i.e., final) operators. We assume that

each root operator is of the form STOREW , without loss of generality (the analysis enters

dummy nodes of this form when they are implicit). Similarly we assume that all variable

names in our program are unique.

Pig Latin code Equivalence class constraints Cardinality constraints
STORE A C(A) ⊇ {P},where ∀t : P (t) #T (P ) ≥ 1
A = FILTER B BY Q C(B) ⊇ {P¬}, where P¬(t) ≡ ¬[Q]b(t).

for all P ∈ C(A) : C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧ [Q]b(t)

#T (P ′
¬) ≥ 1

#T (P ′) ≥ #T (P )

A = UNION B, C for all P ∈ C(A) : C(B) ⊇ {P} and C(C) ⊇ {P}

A = JOIN B BY x, C BY y
for all P ∈ C(A) : ∃Af .C(B) ⊇ {P ′

x} and C(C) ⊇ {P ′
y}

where P ′
x(t) ≡ P (t) ∧ t.x = Af

and P ′
y(t) ≡ P (t) ∧ t.y = Af

#T (P ′
x) ≥ #T (P )

#T (P ′
y) ≥ #T (P )

A = DISTINCT B
for all P ∈ C(A) : ∃At.C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧ t ≈ At

#T (P ′) ≥ 1 + #T (P )

A = GROUP B BY x
for all P ∈ C(A) : ∃Af .C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧ t.x = Af

#T (P ′) ≥ 1 + #T (P )

Figure 4.1: Summary of representative translations from Pig Latin statements into equiva-
lence classes, manifested as constraints. The above constraints are all binding constraints,
except for the terminating P¬ in FILTER, and for P ′ in DISTINCT which is both ter-
minating and binding. In the above, [·]b translates boolean Pig expressions into our term
language, and T (P ) is the set of sample tuples for constraint P . Every rule introduces
fresh symbolic names for equivalence classes, we use fresh variables Af to refer to indi-
vidual values, and At to refer to tuples.

We represent the set of constraints (one for each equivalence class) of a statement

V = . . . as C(V ). We consider two kinds of equivalence classes: terminating equivalence

classes, which represent paths of tuples that end at a given operator (e.g., filtered out), and

binding equivalence classes, which represent paths through which tuples continue down-

stream.

For illustration, consider our running example, reproduced here for ease of reference.

A = LOAD ’fileA’ using PigStorage()
AS (name:chararray, value:int);

B = LOAD ’fileB’ using PigStorage()
AS (u:double, class:int);

C = FILTER A BY value < 100 AND value >= 0;
D = FILTER B BY math.POW(u,2.0) > 0.25;
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E = JOIN C ON value, D ON class;

Here, our root node consumes variable E. Our analysis considers E as if it were flow-

ing upstream from a STORE operation. We invent a symbolic name, P , for the (single)

constraint induced by the STORE. Its constraint is satisfied by all tuples:

C(E) ⊇ {P},where ∀t : P (t)

Note the use of ⊇. A dataflow node could receive constraints from several downstream

neighbors so our constraint inference is using subset reasoning: we know that C(E) in-

cludes at least P , but it could include other constraints as well. (In this example it does

not.)

C(E) is then propagated to the JOIN statement that constructs E. Throughout this

section, given a statement Q and its downstream neighbor with constraints P , P ′ denotes

the refined constraints by conjoining P and the new constraints needed to flow a tuple

upstream out of the downstream neighbor. JOINs require tuples to agree on particular

fields (value and class, here), so we enforce this property by encoding it via P ′ in our

constraints:
for all P ∈ C(E) : ∃ex.

C(C) ⊇ {P ′value}

C(D) ⊇ {P ′class}

where P ′value(t) ≡ P (t) ∧ t.value = ex

and P ′class(t) ≡ P (t) ∧ t.class = ex

(“for all P ∈ C(E) : CS” here means that we iterate over all P in C(E) and generate

constraints CS for each such P .)

Continuing the propagation process, we pass the above constraints on to the FILTER

operators of our example. For instance, consider the statement D = FILTER . . ., which

eliminates all elements for which math.POW(u,2.0) > 0.25 does not hold. This state-

ment first introduces a binding equivalence class for the constraints flowing upstream via
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C(D). The statement also introduces a single terminating equivalence class (P¬) to capture

the case of tuples that do not pass the filter:

C(B) ⊇ {P¬}

where P¬(t) ≡ ¬(math.POW(t.u,2.0) > 0.25)

and for all P ∈ C(D)

C(B) ⊇ {P ′}

where P ′(t) ≡ P (t) ∧ math.POW(t.u,2.0) > 0.25

In our representation, we have preserved the user-defined function math.POW as an

example of a function that the theorem prover cannot handle directly (see Section 4.3.2).

We handle the other FILTER statement similarly and reach the LOAD statement which

completes the analysis. The resulting C sets contain symbolic names for all equivalence

classes and our symbolic constraints can be used to define members of these classes.

Figure 4.1 gives the general form of our reasoning for representative constructs (also

including DISTINCT statements and cardinality constraints, discussed below). For all

operators for which our first two analysis passes observed insufficient coverage, we col-

lect constraints using the above scheme to generate the constraints P that represent each

insufficiently covered equivalence class. For each P we attempt to add elements to its

corresponding set of samples T (P ). We synthesize such tuples t as follows:

1. Pass P to the theorem prover and query for witnesses for the existentially qualified

fields. If there are no witnesses, abort; either the equivalence class is empty/not

satisfiable due to conflicting requirements, or the theorem prover lacks the power to

synthesize a representative tuple.

2. Otherwise, extract the witnesses into tuple t′.

3. For any field f required by the type constraints over t in P , extract t2.f from randomly

chosen t2 from our observed samples. Combine t′ with all the t2.f into t′′.
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4. For any still-missing fields (i.e., if no matching t2 exists), fill the field with randomly

synthesized data, yielding t.

5. If t ∈ T (P ) already, repeat the previous two steps as needed, otherwise insert t into

T (P ).

As the last steps (and Table 4.1) show, there is another dimension in our sample gen-

eration, namely generating the right amount of sample data. Specifically, recall that our

binding equivalence class for

F = GROUP B BY x

requires at least two tuples. To capture this constraint, we permit constraints on the cardi-

nality of our sets of witness tuples, notation #T (P ′) ≥ 2, where predicate P ′ represents

the binding equivalence class in the above. All such constraints are greater-than-or-equal

constraints, and we always pick the minimum cardinality that satisfies all constraints.

Another subtlety of our constraint notation comes from the DISTINCT statement, as

in

G = DISTINCT B

This statement eliminates duplicate tuples. Since set semantics have no notion of dupli-

cates, we extend all of our tuples with a unique identity field that does not occur in the Pig

program. We write t1 ≈ t2 iff the tuples t1 and t2 have the same fields, ignoring the identity

field.

To support aggregation operations in sample synthesis, we further permit reasoning

about our sampled tuples. For example, Pig Latin allows us to write

A = LOAD ...
sum = SUM(A.x)
B = FILTER A BY count == sum

We translate aggregations such as sum = SUM(A.x) into aggregations over our sets of

samples. Whenever we synthesize samples for one of A’s binding equivalence classes, e.g.,
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represented by P , we simply set sum =
∑

t∈T (P ) t.x. The translation is analogous for

other aggregators (AVG, MAX, etc.). Aggregators enforce #T (P ) ≥ 2.

4.3.2 User-defined Function Concretization

In earlier sections, we classified our approach as dynamic symbolic, following other

similar work in different settings [19, 48, 96, 108]. The important aspect of a dynamic

symbolic execution approach to test generation is that dynamic (i.e., concrete) observations

are used to help the symbolic solving process. The foremost aspect where this benefit is

apparent in our setting is when dealing with user-defined functions (UDFs). A user-defined

function is any side-effect-free operator that has a definition external to the language. In

the Pig Latin world, this typically means a Java function used to process values, e.g., in a

FILTER. What a dynamic symbolic execution engine can do is to treat a UDF as a black-

box function. Inside a constraint, a use of a UDF is replaced by a set of function values

from the concrete semantics, under the assumption that some invocations of UDFs (and

return values thereof) have already been observed.

Consider the example Pig Latin program shown in Listing 4.2. Our objective is to gen-

erate complete example data with one tuple passing and one tuple not passing the FILTER.

This program’s key step is the application of the UDF HASH to perform filtering, which

takes an integer as argument and returns its hash value.

A = LOAD ’fileA’ using PigStorage()
AS (x:int, y:int);

B = FILTER A BY x == HASH(y) AND x > 50;

Listing 4.2: Example Pig Latin program calling user-defined function HASH.

A simplified implementation of HASH is shown in Figure 4.2. In this implementation,

HASH extends the EvalFunc class (which is required by Pig Latin to construct Java user-

defined functions3).

3See Pig’s implementation guide for user-defined functions at http://pig.apache.org/docs/
r0.9.2/udf.html
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public class HASH extends EvalFunc<Integer> {
public Integer exec(Tuple input) {
if (input == null || input.size() == 0)

return null;
Integer y = (Integer) input.get(0);
int hash = y*(y+3);
return hash % 60;

} // ..
}

Figure 4.2: The implementation of function HASH.

Assume that we run the program with two input tuples (33, 42) and (47, 19)

that do not pass the FILTER (since 33 and 47 are not the hash values of 42 and

19, respectively). On these two executions, we obtain two evaluations of HASH:

y = 42, HASH(y) = 30 and y = 19, HASH(y) = 58. For our technique to

have 100% completeness, we need to generate example data for A(x,y) such that

x == HASH(y) && x > 50. Using the two evaluations of HASH, we construct

two simplified versions of the constraint: x == 30 && y == 42 && x > 50 and

x == 58 && y == 19 && x > 50. In the simplified constraints the function call

HASH(y) has been concretized to the observed values (30 and 58, respectively). The sec-

ond simplified constraint is satisfiable while the first is not. Using the satisfying assignment,

we derive a new example input (58, 19) for A(x,y).

Thus, our approach records concrete values for UDFs during the downstream pass, con-

cretizes constraints using recorded concrete data, and solves them via automatic constraint

solvers, in the upstream pass. We use uninterpreted functions to encode a concretized

constraint. An uninterpreted function (UF) [16, 17] is a black box with no semantic as-

sumptions other than the obligation that it behave functionally: equal parameters yield

equal function values. To encode UDFs as uninterpreted functions for our constraint solver,

we supply concrete observations as implications, using the if-then-else operator (ite) over

boolean formulas and concrete values.
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Consider the example of Listing 4.2 again, in which we need to find assignments to

(x,y) to satisfy the constraint x == HASH(y) && x > 50. We supply the constraint

solver Z3 with concrete observations on the HASH UDF via the following commands:
(declare-const x Int)
(declare-const y Int)
(define-fun HASH ((x!1 Int)) Int

(ite (= x!1 42) 30
(ite (= x!1 19) 58
0)))

(assert (not (= (HASH y) 0)))
(assert (= (HASH y) x))
(assert (> x 50))

The first two declare-const commands declare two integer variables. The

define-fun command creates a UF that takes a parameter representing an integer and

returns a constant value. x!1 is the argument of the UF. We have observed two invoca-

tions of the function HASH, HASH applied to y == 42 yields 30, and HASH applied to

y == 19 yields 58. To complete the definition of the UF, we need to relate unknown

parameter values with a default return value, which in this case we arbitrarily choose to be

zero. Still, we assert that HASH(y) is not zero to avoid accidental satisfaction. Finally we

provide the constraint x == HASH(y) && x > 50 that we want to solve. Using three

assert commands, the system pushes three formulas into Z3’s internal constraint stack.

We solve the concretized constraints by asking Z3 to produce a satisfying assignment for

variables in the constraints.

Of course, when the observations of the UDF are not sufficient to obtain the desired

coverage, Z3 will deem a concretized constraint to be unsatisfiable or unknown. To in-

crease the chance of finding a satisfying assignment for an abstract constraint, we also try

a second constraint solver, CORAL [15], when Z3 returns unsatisfiable or unknown for

a concretized constraint. The distinction between Z3 and CORAL concerns the kind of

formulas that they can solve: Z3 can derive models and check satisfiability of formulas

in decidable theories, while CORAL can deal with numerical constraints involving unde-

cidable theories. As a consequence of supporting undecidable theories, CORAL can solve
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constraints involving UDFs in the form of common math functions (e.g., power function)

directly without concretization. If neither concretization-and-employing-Z3 nor calling

CORAL can solve a constraint, SEDGE will be unable to obtain perfect coverage.

Note that our approach to solving UDFs reasons about all observed values of the UDF in

parallel. These UDF observations may be produced in different paths through the program,

including executions of different test cases. Still, the observations can be used together

(i.e., we can assume that all of them hold) because of the lack of side-effects in a dataflow

program. In contrast, in dynamic symbolic execution of an imperative program, only values

(of user-defined functions) observed during the current dynamic execution can be leveraged

at a given constraint solving point.

4.4 Implementation

The SEDGE system has required non-trivial implementation effort, in the support of

different data types, the interfacing with the Z3 constraint solver, and the integration of

string generation capabilities.

4.4.1 Symbolic Representation of Values

SEDGE maintains an intermediate level of abstract syntax trees for communication be-

tween Z3 and Pig Latin constraints. Each node of the tree denotes a symbolic variable

occurring in the Pig Latin constraints. The high-level idea is that SEDGE maps an execu-

tion path to a conjunction of arithmetic or string constraints over symbolic variables and

constants. Each symbolic variable has a name and a data type, such as int and long, map-

ping to a field of a table in a Pig Latin script with the same name and data type. SEDGE then

invokes Z3 to find a solution to that constraint system. If the constraint solver finds a solu-

tion, SEDGE maps it back to input tuples (tuples from LOAD). SEDGE supports mapping

all Pig Latin data types into a symbolic variable, with support for overflow and underflow

checked arithmetic.
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1) int: Integers are represented as 32-bit signed bit-vectors, since the Z3 con-

straint solver has better support for bit-vector arithmetic than for integer arithmetic. Arith-

metic calculations over integers are thus simulated with arithmetic calculations over 32-bit-

vectors. The simulation is accurate and takes into account the Java (Apache Pig is written

in Java) representation of values of type int as 32-bit-vectors. Additional constraints are

created to check that the bit-wise computation does not overflow and underflow. Standard

library conversion functions (e.g., java.lang.Long.parseLong(String)) are used to translate

back from 32-bit-vectors into integers.

2) long: Similar to int, long integers are represented by 64-bit signed bit-vectors,

since Z3 has no builtin support for long integers.

3) float/double: Floating point numbers are represented by real numbers in the

form of fractions of long integers. No current constraint solvers have good support for

floating-point arithmetic. Calculations with floating point numbers are thus approximated

by real-valued calculations. A real number in the form of fractions of long integers can

be translated to a floating point number by first representing the fraction using BigFraction

from Apache Common Math Library,4 and invoking BigFraction.floatValue() (or BigFrac-

tion.doubleValue()) to get the fraction as a float (or double, respectively).

4) chararray: A character array is represented by java.lang.String, which is also

the inner representation of a character array in Pig Latin.

5) bytearray: We do not support byte arrays directly. We try to identify the type

that the byte array can convert to at runtime and cast it.

6) boolean: A boolean variable is represented by an integer with 3 values: −1 for

FALSE; 0 for UNDEF; 1 for TRUE.

4http://commons.apache.org/math/
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Arithmetic and string constraints are typically expressed over fields of simple types as

listed above. Therefore, we do not define complex types (tuple, bag, map) for symbolic

variables.

4.4.2 Arithmetic and String Constraint Solving

As mentioned earlier, SEDGE uses Z3 [30] to solve arithmetic constraints. Since Z3

provides a C interface and SEDGE is implemented using Java, to have access to Z3’s C API

from Java, we employ SWIG.5 We wrap Z3’s C API using Java proxy classes and generate

JNI [75] wrapper code automatically. A problem in wrapping C programs for Java is that

values may be returned in function parameters in C, but in Java values are typically returned

in the return value of a function. SEDGE uses typemaps in SWIG, a code generation rule

that is attached to a specific C data type, to overcome the problem. Given the data type

D of a value returned in function parameters, SEDGE constructs a structure S containing

a member variable of type D. It also registers a typemap such that 1) any occurrence of

a function parameter of type D in a function call in Z3 is converted into S, 2) the return

parameter S’s value can be read after returning from the function in Java.

For string constraints, the main new element of our implementation concerns reasoning

about string constraints containing regular expressions. Our approach is based on Xeger6 a

Java library for generating a sample string for a regular expression. Xeger builds a deter-

ministic finite automaton (DFA) for a string constraint in the form of a regular expression,

and follows the edges of the DFA probabilistically, until it arrives at an accepting state of

the DFA. Xeger is suboptimal for two reasons: first, it may keep visiting the same state

until a “stack overflow” error happens; second, it does not support union, concatenated

repetition, intersection, concatenation, or complement of regular expressions. To avoid the

“stack overflow” error, our approach keeps a map from state ID to the number of times a

5http://www.swig.org/

6http://code.google.com/p/xeger/
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state has been entered and reduces the probability of re-entering that state proportionally.

To support operations such as union and intersection, we add an intermediate step between

building the DFA and following DFA edges to return a new deterministic automaton for the

appropriate regular expression. For example, when generating a satisfying assignment that

maps a string to a value so that the constraint matches ’.*apache.*’ and ’.*commons.*’, we

intersect the automata representing the strings.

4.5 Evaluation

In this section, we evaluate the implementation of SEDGE by running a wide spectrum

of actual Pig Latin programs. We measured both the completeness of generated example

tuples and the run-time of example generation for SEDGE and for the current state-of-

the-art: the original Pig example data generator (abbreviated to “Olston’s system” in our

discussion). Compared to Olston’s system, our experiments confirm that SEDGE achieves

higher completeness. In most experiments, SEDGE also incurs a lower running time.

4.5.1 Benchmark Programs

To evaluate our system, we applied it to two benchmark suites:

• We use the entirety of the PigMix benchmark suite, consisting of 20 Pig programs de-

signed to model practical Pig problems.

• We use eleven sample SQL queries (the first ten in the list and an 11-th selected for

being complex) from the Sloan Digital Sky Survey (SDSS) set7 and hand-translated them

directly into Pig code. The complex query contains 34 FILTER operations and 2 JOIN

operations.

The PigMix benchmark provides Pig Latin programs for testing a set of features such

as “data with many fields, but only a few are used” and “merge join”. The SDSS sample

7http://skyserver.sdss.org/public/en/help/docs/realquery.asp
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queries typically search for an astronomical object based on some criteria. For example,

Program 5 of the SDSS set is below:

A = LOAD Galaxy3 using PigStorage()
AS (colc_g : float, colc_r : float,

cx : float, cy : float);
B = FILTER A BY

(-0.642788 * cx + 0.766044 * cy >=0.0)
AND (-0.984808 * cx - 0.173648 * cy <0.0);

Listing 4.3: SDSS program 5

The program finds galaxies in a given area of the sky, using a coordinate cut in the unit

vector cx, cy, cz. As can be seen, these benchmark programs are typically short, with only

a handful of them exhibiting interesting complexity.

For each query set, we used the input data that accompany the relevant queries. PigMix

ships with a tuple synthesizer that generates such data. The SDSS benchmark suite is

designed for the digital sky survey data from the SDSS data release 7. We selected a

random sampling of tuples from the database of this benchmark, in which the total amount

of data is 818 GB, and the total number of rows exceeds 3.4 billion.

4.5.2 Methodology and Setup

Since the importance of tuple synthesis varies not only by benchmark but also by the

size of the tuples supplied to the first analysis pass (in the ideal case, tuple synthesis is

entirely unnecessary), we ran our benchmarks for sample input tuple sizes of 10, 30, 100,

300, and 1000 tuples using our system and Olston’s system. For each sample input tuple

size, we executed each benchmark program 10 times with different randomly sampled input

tuples. All experiments were performed on a four core 2.4 GHz machine with 6 GB of

RAM.

We configured our system to compare directly to Olston’s system, which is imple-

mented as the “illustrate” command in Pig Latin. Unfortunately, the current implementa-

tion of Olston’s system has some limitations not mentioned in the published paper. We

wanted to evaluate against the approach and not against the implementation. To that end,
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we addressed such limitations or tweaked the benchmark programs so that the problems do

not manifest themselves. The first issue is that the downstream pass would discard all sam-

ple input containing null fields. In the upstream pass, if all input tuples happen to contain

null fields and thus all of them are discarded, there would be a NullPointerException. We

sidestep the null field issue by ensuring that at least one sample input does not contain null

fields. In addition, the system can only handle 32 FILTER conditions at most, as it en-

codes pertinent equivalence classes for FILTER conditions as individual bits in a (32-bit)

integer index variable. This problem affects one PigMix benchmark program intended for

scalability testing. The benchmark has a very large set (500+) of FILTER conditions. We

sidestepped the problem by making changes to the PigMix program so that the resulting

program has only 31 FILTER conditions. Also, when reasoning about a JOIN in the up-

stream pass, a NullPointerException is thrown if no data are observed in the input side of a

JOIN (typically because one of its upstream neighbors is a highly selective operator). We

address this issue by skipping the JOIN if its input has no data and then attempt to con-

tinue upstream propagation. Moreover, by mistakenly setting a non-tuple field to a tuple

in a method involved in upstream propagation, a type casting error arises, which impedes

the ability of Olston’s system to reason over the JOIN and FOREACH operations if their

downstream neighbor is a FILTER operator. We disallow assigning the non-tuple field to

a tuple in the problematic method.

4.5.3 Results

We ran each experiment 10 times and averaged the completeness of 10 runs (since the

completeness may theoretically vary due to different random choice of initial samples).

The size of the input data has little effect. The results are almost the same for all sample

input sizes.

Figures 4.3 and Figure 4.4 show the average completeness for each Pig Latin program

in the PigMix and SDSS sets, respectively, for a sample input size of 100 tuples. Every bar
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corresponds to one program (with the exception of program L12 in Figure 4.3, in which

there are three subprograms and example data were generated for three different root oper-

ators corresponding to the three subprograms) for a total of 20 programs.
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Figure 4.3: Completeness of sample data generation for the PigMix benchmarks
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Figure 4.4: Completeness of sample data generation for the SDSS benchmarks

As can be seen, we improve on completeness for 5 out of 20 PigMix benchmark pro-

grams and 7 out of 11 SDSS benchmark programs. Although the benchmark programs are

small and much of their coverage is achieved with random sampling of real inputs, they

demonstrate clearly the benefits of our approach. Practically every program in the two

benchmark sets that has any kind of complexity (either more than one operator in the same

path, or a user-defined function, or complex filter conditions) is not fully covered by Ol-

ston’s approach. For example, Olston’s system cannot generate data that fail the FILTER in

the presence of grouping, projecting, UDF invocation in the following program (program

S1 in Figure 4.3).
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A = LOAD ’$widerow’ using PigStorage()
AS (name: chararray, c0: int, c1: int, ..., c31: int);

B = GROUP A BY name;
C = FOREACH B GENERATE group, SUM(A.c0) as c0, SUM(A.c1) as c1,

..., SUM(A.c31) as c500;
D = FILTER C BY c0 > 100 AND c1 > 100 AND c2 > 100 ... AND c31 >

100;

Listing 4.4: PigMix program S1

In fact, SEDGE achieves perfect coverage (i.e., full completeness) for all benchmark

programs. Compared to Olston’s approach our improved coverage is due to stronger con-

straint solving ability (for programs 4,5,6,7 in Figure 4.4), to UDF handling ability (for

programs 9,10 in Figure 4.4) and also to inter-related constraints and global reasoning (for

programs S1,L5,L12-1,L12-2,L12-3 in Figure 4.3 and programs 3,11 in Figure 4.4).

We also recorded how long it took SEDGE and Olston’s system to finish example gen-

eration. We include the infrastructure bootstrap time on each benchmark program. Both

SEDGE and Olston’s system need to prepare the Hadoop execution environment for new

executions. SEDGE needs to load its constraint solver Z3 and CORAL as well.

As can be seen in Figure 4.5 and Figure 4.6, SEDGE is faster on average than Olston’s

system in 18 out of 20 PigMix benchmark programs and 9 out of 11 SDSS benchmark

programs. For the rest of benchmark programs, SEDGE incurs a little higher running time

than Olston’s system. From these numbers we can infer that, although we have to conduct

path exploration and constraint solving, there are even time savings in most cases due to

avoiding the step of pruning redundant tuples after the upstream pass (because our approach

does not generate redundant data).

4.6 Discussion: Why High-Level DSE

A natural qualitative comparison is between a Dynamic Symbolic Execution (DSE) en-

gine at the level of the Pig Latin language and DSE engines for imperative languages, since

Pig Latin code is eventually compiled into imperative code that uses a map-reduce library.

The expected benefits from our approach are a) simplicity; b) conciseness of the generated
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 Figure 4.5: Running time of sample data generation for the PigMix benchmarks
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Figure 4.6: Running time of sample data generation for the SDSS benchmarks

test cases (i.e., the same coverage with fewer tests); and c) completeness: an imperative

DSE engine may have trouble solving constraints over the logically more complex gener-

ated code, rather than the original Pig Latin code. Furthermore, an imperative DSE engine

cannot take advantage of the lack of side-effects in order to better concretize user-defined

functions, as discussed in Section 4.3.2.

We compared SEDGE with the Pex [108] state-of-the-art DSE engine in a limit study.

Pex accepts C# input, hence we hand-translated Pig Latin programs into C# programs.8

The resulting C# programs are single-threaded without any call to the map-reduce API, in

order to test the applicability of Pex in the ideal case. (The inclusion of the map-reduce

library complicates the control-flow of the imperative program even more and can easily

8Although there are DSE engines for Java—e.g., Dsc [65]—they do not match the industrial-strength
nature of Pex. Dsc, for instance, does not support programs with floating point numbers, which are common
in Pig Latin.
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cause the DSE engine to miss a targeted branch of test execution, leading to low coverage

of generated test cases [117].)

For our translation, we inspected the Java code generated by the Pig compiler and made

a best-effort attempt to replicate it in C#, without map-reduce calls. We translated 13 pro-

grams from our Pig Latin benchmark suites. Since Pex has no knowledge of the original

input (it accepts concrete values only when passed into the test method as parameters with

primitive types) we enable just the 3rd pass (upstream pass) of SEDGE, for a fair compar-

ison (i.e., SEDGE also does not benefit from sampled real data—this also disadvantages

SEDGE as it removes the advantage of better UDF handling).

The results confirm our expectation. The conciseness of the test suite generated by

Pex is low since Pex needs to examine a lot of irrelevant low-level branches or constraints

that are not necessary for equivalence class coverage of the high-level Pig Latin control

flow. For example, for step A in the Pig Latin program in Listing 4.3, Pex generates 30

tuples within 11 tables, of which 3 tuples pass the filter in step B, while SEDGE generates

2 tuples within exactly 1 table, of which 1 tuple passes the filter in step B. The conciseness

of the test suite generated by Pex is 0.05, while the conciseness of the test suite generated

by SEDGE is 0.75. Furthermore, for specific complex constructs we also get much higher

completeness, although quite often Pex also gets perfect coverage. In our experience, for

Pig Latin programs containing FILTER statements after (CO)GROUP or JOIN statements,

the test suites yielded by Pex lack in completeness. For instance, in the SDSS program

with 34 FILTER operations and 2 JOIN operations, the Pex completeness is only 0.09.
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CHAPTER 5

RELATED WORK

There is a lot of interesting work on the three different research directions covered by

this dissertation. This chapter discusses representative work for each area.

5.1 Residual Investigation: Predictive and Precise Bug Detection

Static and dynamic analyses are routinely chained together for checking program cor-

rectness conditions in programming languages, i.e., in compilers and runtime systems.

Compilers check certain properties statically and insert runtime checks for remaining prop-

erties. A classic example is checking that an array read does not access a memory location

outside the bounds of the array. To enforce this property, Java compilers traditionally insert

a dynamic check into the code before each array read. To reduce the runtime overhead,

static analyses such as ABCD [14] have been developed that can guarantee some reads as

being within bounds, so that only the remaining ones have to be checked dynamically. Be-

yond array bounds checking, a similar static dynamic analysis pipeline has been applied to

more complex properties. The Spec# extended compiler framework [6] is a prime example:

it can prove some pre- and post-conditions statically and generates runtime checks for the

remaining ones. Gopinathan and Rajamani [50] use a combination of static and dynamic

analysis for enforcing object protocols. Their approach separates the static checking of

protocol correctness from a dynamic check of program conformance to the protocol.

In residual dynamic typestate analysis, explored by Dwyer and Purandare [33], Bod-

den [11] and Bodden et al. [12], a dynamic typestate analysis that monitors all program

transitions for bugs is reduced to a residual analysis that just monitors those program tran-
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sitions that are left undecided by a previous static analysis. This approach exploits the fact

that a static typestate analysis is typically complete, i.e., it over-approximates the states in

which a program can be. If for a small sub-region of the program the over-approximated

state sets do not contain an error state, all transitions within such a region can be safely

summarized and ignored by the subsequent residual dynamic analysis. At a high level, our

approach adopts this idea, by only monitoring those aspects of the program that the static

analysis has flagged as suspicious. However, our approach is more general in two dimen-

sions, (1) typestate analysis is restricted to verifying finite state machine properties (“do not

pop before push”), while our approach can be applied to more complex properties (“do not

pop more than pushed”) and (2) our dynamic analysis is predictive: it leverages dynamic

results to identify bugs in code both executed and not executed during the analysis.

Beyond typestates, the idea of speeding up a dynamic program analysis by pre-

computing some parts statically has been applied to other analyses, such as information

flow analysis. For example, recent work by Chugh et al. [24] provides a fast dynamic infor-

mation flow analysis of JavaScript programs. JavaScript programs are highly dynamic and

can load additional code elements during execution. These dynamically loaded program

elements can only be checked dynamically. Their staged analysis statically propagates its

results throughout the statically known code areas, up to the borders at which code can

change at runtime. These intermediate results are then packaged into residual checkers that

can be evaluated efficiently at runtime, minimizing the runtime checking overhead.

Our analysis can be seen in a similar light as residual dynamic typestate analysis and

residual information flow analysis. If we take as a hypothetical baseline somebody running

only our residual checkers, then adding the static bug finding analysis as a pre-step would

indeed make the residual dynamic analysis more efficient, as the static analysis focuses

the residual analysis on code that may have bugs. However, our goals are very different.

Our real baseline is an established static analysis technique whose main problem is over-

approximation, which leads to users ignoring true warnings.
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Check’n’Crash [26] and DSD-Crasher [27,99] can be seen as strict versions of residual

analysis. These earlier techniques share our goal of convincing users of the validity of static

bug warnings. However, Check’n’Crash and DSD-Crasher guarantee that a given warning

is true, by generating and executing concrete test cases that satisfy the static warning, until

a static warning can be replicated in a concrete execution or a user-defined limit is reached.

While such proof is very convincing, it also narrows the technique’s scope (i.e., these tools

could only confirm very few warnings). In our current residual investigation, we relax this

strict interpretation and also consider predictive clues that are likely to confirm a static

warning.

We have already mentioned dynamic symbolic execution in Section 1.2 and Chapter 4:

a combination of concrete and symbolic execution. Similar to Check’n’Crash [26] and

DSD-Crasher [27, 99], dynamic symbolic execution is also a strict approach that warns a

user only after it has generated and executed a test case that proves the existence of a bug.

Compared to our analysis, dynamic symbolic execution is heavier-weight, by building and

maintaining during program execution a fully symbolic representation of the program state.

While such detailed symbolic information can be useful for many kinds of program analy-

ses, our current residual investigations do not need such symbolic information, making our

approach more scalable.

Monitoring-oriented programming (MOP) [20] shows how runtime monitoring of cor-

rectness conditions can be implemented more efficiently, even without a prefixed static

analysis. JavaMOP, for example, compiles correctness conditions to Java aspects that add

little runtime overhead. This technique is orthogonal to ours, as some of our dynamic

analyses are implemented manually using AspectJ. Expressing them in terms of JavaMOP

would be a straightforward way to reduce our runtime overhead.

Our analysis can be viewed as a ranking system on static analysis error reports. There

has been significant work in this direction using data mining. Kremenek et al. [70] sort

error reports by their probabilities. A model is used for computing probabilities for each
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error report by leveraging code locality, code versioning, and user feedback. The effec-

tiveness of the model depends on (1) a fair number of reports and (2) strong clustering of

false positives. Kim and Ernst [69] prioritize warning categories by mining change log

history messages. Intuitively, they expect a warning category to be important if warning

instances from the category are removed many times in the revision history of a system.

Their method requires change logs of good quality. For static tools such as FindBugs,

which analyze Java bytecode to generate warnings, they also require compilation of each

revision. Bodden et al. [13] use a machine-learning approach to filter out false positives of

their static analyses for validating a finite state property. They identify cases where impre-

cise static analysis information can appear due to factors such as dynamic class loading and

interprocedural data flow. They then use each case as a feature for decision tree learning.

The key difference between our approach and data-mining-based ones is that our approach

considers the possible objections to static error reports. As a result, we can validate more

complicated error situations that require understanding what a programmer has in mind in

practice when writing their code.

Besides Eraser [94], some other related work on race detection comes under the label

of predictive race analysis. Chen and Rosu [21] predict races by logging only relevant

information in a program trace and then model-checking all feasible trace permutations.

jPredictor [22] present a polynomial algorithm that can search a thread scheduling for a po-

tential race that did not occur in the observed execution. jPredictor is not sound. Smarag-

dakis et al. [102] define the causally-precedes relation (CP) that weakens the traditional

Happens-Before relation. The CP approach can generalize beyond an observed execution

and guarantee soundness and polynomial complexity. These sophisticated predictive ap-

proaches can offer greater precision than residual investigation in terms of race detection,

whereas our residual investigation based race detector can have fewer false negatives, due

to the better coverage of static analysis tools and the conservativeness of our dynamic anal-

ysis.
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The precision of bug detection software can be greatly enhanced with human supervi-

sion at residual steps. After an automated static program verification step, Dillig et al. [31]

rely on humans to help reduce false positives by asking humans simple and relevant ques-

tions. Xie [118] proposes to use humans to guide otherwise intractable problems faced by

test case generators. Combining such techniques in our approach would be interesting. For

instance, residual investigation’s precision is influenced by the native test suite coverage.

With the help of human users, additional test cases can be constructed if required.

5.2 Second-Order Constraints in Dynamic Invariant Inference

There is a wealth of other work on invariant inference. We next selectively focus on

some recent approaches that were not covered in the body of Chapter 3 (typically because

they focus on static invariant inference techniques).

For reverse engineering, Gannod and Cheng [46] proposed to infer detailed specifica-

tions statically by computing the strongest postconditions. Nevertheless, pre/postcondi-

tions obtained from analyzing the implementation are usually too detailed to understand

and too specific to support program evolution. Gannod and Cheng [47] addressed this de-

ficiency by generalizing the inferred specification, for instance by deleting conjuncts, or

adding disjuncts or implications. Their approach requires loop bounds and invariants, both

of which must be added manually.

There has been some recent progress in inferring invariants using abstract interpretation.

Logozzo [76,77] infers loop invariants while inferring class invariants. The limitation of his

approach are the available abstract domains; numerical domains are best studied. Resulting

specifications are expressed in terms of fields of classes.

Flanagan and Leino [41] propose a lightweight verification-based tool, named Houdini,

to infer ESC/Java [42] annotations statically from unannotated Java programs. Based on

pre-set property patterns, Houdini conjectures a large number of possible annotations and

then uses ESC/Java to verify or refute each of them. The ability of this approach is limited
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by the patterns used. In fact, only simple patterns are feasible, otherwise too many candi-

date annotations will be generated, and, consequently, it will take a long time for ESC/Java

to verify complicated properties.

Taghdiri [105] uses a counterexample-guided refinement process to infer over-

approximate specifications for procedures called in the function being verified. In contrast

to our approach, Taghdiri aims to approximate the behaviors for the procedures within the

caller’s context instead of inferring specifications of the procedure.

Henkel and Diwan [58] have built a tool to dynamically discover algebraic specifica-

tions for interfaces of Java classes. Their specifications relate sequences of method invo-

cations. The tool generates many terms as test cases from the class signature. The results

of these tests are generalized to algebraic specifications. They use a second tool to dynam-

ically compare their specifications against implementations by executing both simultane-

ously and comparing their behavior [59].

Much of the work on specification mining is targeted at inferring API protocols dy-

namically. Whaley et al. [115] create a finite state machine into which a transition from

method A to method B is added if the post-condition of method A is not mutually ex-

clusive with the pre-condition of method B. Meghani and Ernst [79] build upon Whaley’s

work by using Daikon to determine the likely pre/post-condition of each method. Other

approaches use data mining techniques. For instance Ammons et al. [2] use a learner to

infer nondeterministic state machines from traces; similarly, Yang and Evans [119] built

Terracotta, a tool to generate regular patterns of method invocations from observed runs of

the program. Li and Zhou [74] apply data mining in the source code to infer programming

rules, i.e., usage of related methods and variables, and then detect potential bugs by locat-

ing the violation of these rules. Gabel and Su [45] dynamically infer and verify method

call ordering constraints, and report the constraints only if they are violated. Beschastnikh

et al. [8] use mined temporal invariants from logs to derive a refined finite state machine.

Although not explicitly our goal, some of our second-order constraints can be thought of
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as a way to express temporal API protocols. For example, we can find the general has∗,

next∗ type specification [45] by checking if CanFollow(has∗(return==true),next∗), or that

the postcondition of has∗ when has∗ returns true implies the precondition of next∗. It is

interesting future work to see how to integrate existing techniques on specification mining

with our approach to derive automata that describe correct behavior.

5.3 SEDGE: Symbolic Example Data Generation for Dataflow Pro-

grams

Dataflow languages such as Pig can be seen as a compromise between declarative lan-

guages, such as SQL, and imperative languages, such as C and Java. That is, Pig combines

the declarative feature of straightforward parallel computation with the imperative feature

of explicit intermediate results. There is little work (discussed in earlier sections) that ad-

dresses test data generation for dataflow languages. Instead, the related work from various

research communities has focused on the extreme ends of this spectrum, i.e., either on SQL

or Java-like programming languages.

Specifically, related work in the software engineering community has focused on tra-

ditional procedural and object-oriented database-centric programs, tested via combinations

of static and dynamic reasoning [100]. The main approaches use static symbolic execu-

tion [78] or dynamic symbolic execution [34, 73, 89]. While our work is inspired by such

earlier dynamic symbolic execution approaches, we adapted this work to dataflow programs

and their execution semantics. At the other end, there is work that automatically generates

database data that satisfy external constraints [101] but there is no coverage or conciseness

goal and no application to dataflow languages. Another work [110] has introduced the idea

of code coverage to SQL queries. For our purposes, we reused the concept of coverage for

Pig Latin as defined by Olston et al. [87].

In the formal methods community, Qex is generating test inputs for SQL queries [111].

Similar to our work, Qex maps a SQL query to SMT and uses the Z3 constraint solver to
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infer data tables. However, Qex differs from our work in that Qex does not have a dynamic

program analysis component and therefore cannot observe how a query processes existing

example data. Earlier work in the software engineering community on dynamic symbolic

execution has shown that dynamic analysis can make such program analysis more efficient

and enable it to reason about user-defined functions, which we leverage in our work.

In the database community, a common methodology for testing a database management

system or a database application is to generate a set of test databases given target query

workloads. Overall our problem differs in that, instead of a whole database, we aim to gen-

erate a small (or minimum if desired) set of tuples that have perfect path coverage of a given

dataflow program. The recent work on reverse query processing [9] takes an application

query and a result set as input, and generates a corresponding input database by exploit-

ing reverse relational algebra. In comparison, our work focuses on dataflow programs for

big data applications, where many operators are non-relational, e.g., map(), reduce(), and

arbitrary user-defined functions, and hence a “reverse algebra” may not exist. The QA-

Gen system [10] further takes into account a set of constraints, usually cardinality and data

distribution in input and operator output tables, and aims to generate a database that satis-

fies these constraints. Analogously to earlier work in the formal methods community, this

work performs a static symbolic analysis and does not obtain additional information from

a dynamic analysis.
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CHAPTER 6

FUTURE WORK AND CONCLUSIONS

This dissertation analyzed techniques for combining static and dynamic analysis in

three independent directions. In this chapter, we discuss a few areas of future research

and summarize the main contributions.

6.1 Future Work

There are some consistent themes and approaches in my past work that I expect to

pursue vigorously in the future. I switch to the first person singular in this section, to

represent that these future work plans are my own speculative ideas and not collaborative

work.

• The core of program analysis. For instance, there is currently no open-source dy-

namic symbolic execution engine that offers full support for Java language semantics.

I am working on a cutting-edge and open-sourced dynamic symbolic execution en-

gine that is usable for most Java programs in practice. A strong open-source Java

dynamic symbolic engine is of direct value for test case generation as described in

Section 1.2.

• Machine learning, data mining, and natural language processing. Computers are

good at identifying linear and non-linear patterns in massive data sets. I am in-

terested in designing a suite of algorithms and techniques that draw insights from

machine learning, data mining, and natural language algorithms to guide the explo-

ration of other challenges. For example, when testers reproduce concurrency bugs in
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distributed systems, they have to figure out a particular ordering of events. Most of

the time, testers have to understand these ordering by themselves. As an example,

testers need to know that FileNotFoundException is usually caused by a file delete

executing before file read. We can apply text mining (e.g. association rule learning)

to log files to automatically find such connections. Given an execution, we use logs

to extract recorded events for each exception or error type. After observing enough

exceptions/errors during executions of different systems, we can get a big table and

apply text mining to predict which events are usually related to an exception/error.

• Constraint solving. Many computer science problems, including software and

hardware verification, type inference, static program analysis, test-case generation,

scheduling, planning, and graph problems, can be transformed into tasks of find-

ing properties for all possible sequences of program behaviors or some particular

sequences. These properties can be expressed in arithmetic constraints, boolean con-

straints, and equality constraints. Later, I can encode the constraints in a solver that

are amenable to automated reasoning. For instance, I am developing tools for ef-

ficiently solving type constraints. Type constraints are logical formulas related to

types. Type constraints have important application areas such as verification and

testing. One important application area of type constraints is the dynamic symbolic

execution of object-oriented programs, which often needs to create objects with cor-

rect types. Due to polymorphic language features, such as subtyping, the dynamic

type of a reference variable is often not equal to its declared static type. The chal-

lenge of type constraint reasoning is that the analysis must be acceptably accurate

not only in the case of a complete type hierarchy but also for an incomplete type

hierarchy while keeping a reasonable performance cost. A complete type hierarchy

means that all required types are available in the search space. An incomplete type

hierarchy means that some types are missing in the search space because the required

classes have not been implemented (e.g., in the test-driven development practice) or
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because the system is “open” (e.g., a library, with unknown clients, or a program that

generates classes and loads them at run time). A streak of related work attempts to

attack this challenge [66, 98]. But a lack of full support for all kinds of type con-

straints and performance considerations may make these work unsuitable for a real

application. I am working on type constraint analyses that are generally applicable. I

am implementing my analyses in Datalog, a database query language that is guaran-

teed to have polynomial complexity, and applying optimization to lower complexity

by caching, computing unrelated relations separately, as well as ordering joins.

• Big data systems. The complexity of big data systems presents not only challenges

unique to this domain (e.g., whether protocols for a system work properly on some

network topology), but also opportunities to revisit traditional questions of single-

server systems (e.g., how a package scales to large problems). On the one hand,

big data systems can benefit from the application of program analysis techniques.

There are many well-understood language features and program analyses that could

be adapted to big data systems. Such adaptions have many applications: performance

monitoring, anomaly detection, and reengineering, to name a few. As an example,

I would like to explore how to generate example data that reveal changes among

program versions of dataflow programs (esp. map-reduce pipelines). The generated

example data can help programmers understand code change, augment an existing

test suite, and verify intended change (e.g., whether the change introduces undesired

effects in the program). On the other hand, big data systems are rather different

from the single-server system for which most of existing languages and tools were

developed. It is an excellent opportunity to upgrade existing languages and tools by

addressing new challenges. For example, at least 50% of data race bugs in a study of

development and deployment issues of six popular and important cloud systems are

distributed data race bugs [53]. But research literature on distributed data race bugs
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are very few. Any extensions of existing techniques for local concurrency bugs to the

distributed context can greatly help developers debug their systems.

6.2 Conclusions

The thrust of this dissertation has been to provide analysis algorithms for program un-

derstanding and bug detection by statically analyzing code and dynamically analyzing the

behavior of running programs. Our analysis algorithms emphasize precision and predic-

tion in bug detection, correctness and relevance in invariant inference, and completeness,

realness, and efficiency in test case generation. More specifically, our main contributions

are as follows:

1. We presented residual investigation: the idea of accompanying a static error analysis

with an appropriately designed dynamic analysis that will report with high confi-

dence whether the static error report is valid. We believe that residual investigation

is, first and foremostly, an interesting concept. Identifying this concept helped us

design dynamic analyses for a variety of static bug patterns and implement them in

a tool, RFBI. We applied RFBI to a variety of test subjects to showcase the potential

of the approach.

2. Second-order constraints can steer dynamic invariant inference to avoid erroneous

invariants and to derive more relevant invariants while reducing noise. We have de-

fined a vocabulary of second-order constraints and described how each of them en-

codes information that is typically known by programmers and useful to a dynamic

invariant detector. We have taken an approach in which the second-order constraints

control the propagation of the observations on which invariant detection is based. We

have also extended the Daikon system so as to infer second-order constraints. Over-

all, we consider second-order constraints to be a particularly promising idea not just
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as a meaningful documentation concept but also for improving the consistency and

quality of dynamically inferred invariants—a major challenge in this area.

3. Generating example input data for dataflow programs has emerged as an important

challenge. We presented SEDGE: an approach and tool for generating example data

of dataflow programs using dynamic symbolic execution, in order to achieve high

coverage. SEDGE builds symbolic constraints over the equivalence classes induced

by dataflow programming language constructs and can reason over constraints on

user-defined functions by exploiting dynamic values as hints. We implemented our

technique for the Pig dataflow system and compared it empirically with the most

closely related prior work. Our evaluation on third-party applications demonstrates

that, with similar computing resources, our technique achieves better coverage of a

given dataflow program.
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ysis to improve the performance of runtime monitoring. In Proc. 21st European

Conference on Object-Oriented Programming (ECOOP) (July 2007), pp. 525–549.

[13] Bodden, Eric, Lam, Patrick, and Hendren, Laurie. Finding programming errors

earlier by evaluating runtime monitors ahead-of-time. In Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(New York, NY, USA, 2008), SIGSOFT ’08/FSE-16, ACM, pp. 36–47.

121



[14] Bodik, Rastislav, Gupta, Rajiv, and Sarkar, Vivek. ABCD: Eliminating array bounds

checks on demand. In Proc. ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI) (June 2000), ACM, pp. 321–333.

[15] Borges, Mateus, d’Amorim, Marcelo, Anand, Saswat, Bushnell, David, and Pasare-

anu, Corina S. Symbolic execution with interval solving and meta-heuristic search.

In Proceedings of the 2012 IEEE Fifth International Conference on Software Test-

ing, Verification and Validation (Washington, DC, USA, 2012), ICST ’12, IEEE

Computer Society, pp. 111–120.

[16] Bryant, Randal E., German, Steven M., and Velev, Miroslav N. Exploiting positive

equality in a logic of equality with uninterpreted functions. In Proc. 11th Interna-

tional Conference on Computer Aided Verification (CAV) (1999), Springer, pp. 470–

482.

[17] Burch, Jerry R., and Dill, David L. Automatic verification of pipelined microproces-

sor control. In Proc. 6th International Conference on Computer Aided Verification

(CAV) (1994), Springer, pp. 68–80.

[18] Cadar, Cristian, Dunbar, Daniel, and Engler, Dawson. Klee: Unassisted and auto-

matic generation of high-coverage tests for complex systems programs. In Proc.

8th USENIX Conference on Operating Systems Design and Implementation (OSDI)

(2008), USENIX, pp. 209–224.

[19] Cadar, Cristian, and Engler, Dawson R. Execution generated test cases: How to

make systems code crash itself. In Proc. 12th International SPIN Workshop on

Model Checking Software (Aug. 2005), Springer, pp. 2–23.

122
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