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Abstract
We present GigaPaxos, a novel system for group-scalable
state machine replication. Group scalability refers to the
ability to easily manage a very large number of different
reconfigurable consensus groups, one for each lightweight
fault-tolerant principal as small as a single record in a
key-value store or an ephemeral service replica created
on the fly each end-user. GigaPaxos drives down the
marginal memory overhead of a Paxos group to ≈350
bytes while keeping the messaging overhead, throughput,
and latency of each group independent of the total number
of groups and comparable to or vastly better than state-
of-the-art consensus systems. Our comparative evalua-
tion against state-of-the-art consensus systems shows that
they can only sustain up to tens or hundreds of consen-
sus groups on commodity machines while GigaPaxos can
easily support millions of Paxos groups; furthermore, it
can support billions or more groups, limited only by the
persistent storage on each machine, with a small latency
penalty that is negligible in geo-distributed settings. We
study the benefits of scalable object-group configurabil-
ity using a number of case studies including myCloud,
a hypothetical suite of cloud applications that creates a
custom, reconfigurable Paxos group for each user’s per-
sonal cloud data , and show that agile group reconfigura-
bility and object-group configurability can significantly
enhance end-to-end user-perceived performance.

1 Introduction
Many cloud services today use geo-replication for main-
taining high availability despite failures, proximity to end-
users, and flexibility of resource provisioning and load
balancing. A fundamental building block for replicating
stateful services with consistency requirements is consen-
sus that is also at the heart of the widely used replicated
state machine (RSM) approach, an approach that relies on
distributed consensus for replicas to agree on the order of
operations before executing them in that order.

Traditionally, consensus-based replication has been
viewed as expensive, so its use has been limited to heavy-
weight applications–such as data stores [27], distributed
file systems [18, 16], lock services [12], etc.–that are
shared by a large number of users. However, the mono-

lithic design of such services is a hurdle standing in the
way of customization, or the flexibility to tailor server
replica groups to individual users based on their access
patterns, availability or performance requirements, etc.;
and agility, or the ability to quickly reconfigure replica
groups in response to changing access or load patterns.

Our position is that the ability to easily create and map
lightweight fault-tolerant principals to a desired set of
replica nodes can potentially transform how we build dis-
tributed systems. We envision applications “sprinkling”
principals as small as a single record in a key-value store,
a counter, a user’s calendar, a shared document, etc. wher-
ever and whenever needed. We refer to this ability as
object-group configurability (§2). An example of an ap-
plication that can leverage this ability is myCloud, which
also forms one of our case studies. myCloud is a per-
sonalized cloud system wherein each user’s cloud data al-
ways appears to be located nearby and moves with them,
a vision also shared by research on cloudlets [35], micro-
datacenters, multi-tenant gateways[36], etc.

Our contribution, GigaPaxos, is a small but concrete
step towards realizing the above vision. A key challenge
that GigaPaxos addresses is group scalability, i.e., the
ability to scale to a very large number (millions or even
billions) of independent consensus groups. Although a
large body of prior work has focused on improving the
performance, cost, or robustness of consensus-based sys-
tems, to our knowledge, group scalability is a dimension
that has not been explored before. Indeed, we find that
state-of-the-art Paxos implementations can barely sustain
tens or hundreds of groups. In comparison, GigaPaxos
can scale to millions of Paxos groups on commodity ma-
chines with little performance or cost penalty.

GigaPaxos achieves group scalability through a novel
design and implementation that carefully separates idle
and active Paxos groups so as to drive down the memory
overhead of an idle Paxos instance to roughly 350 bytes;
uses a novel hot-swap technique to pause idle Paxos in-
stances; amortizes the overhead of failure detection and
logging across groups; enables programmatic policy for
automating group reconfiguration at scale; and uses a
highly event-driven design that does not rely on any per-
instance background tasks that are commonplace in con-
sensus implementations.



Figure 1: Extent of object-group configurability in recent geo-replicated systems.

We have implemented a prototype of GigaPaxos with a
simple API that allows black-box applications to leverage
object-group configurability. Our prototype-driven exper-
iments show that:
(1) GigaPaxos achieves comparable or vastly superior per-
formance compared to state-of-the-art consensus imple-
mentations even for a single group but comfortably scales
to orders of magnitude more groups (§4.1).
(2) GigaPaxos’ Replicable and client API and support
for programmatic reconfiguration policies are easy to use
with a number of third-party applications (§4.3).
(3) Per-object reconfigurability can significantly en-
hance end-to-end client-perceived performance in geo-
distributed mobile cloud services (§4.3).

2 Background and related work
Object-group configurability, or the ability to assign dif-
ferent subsets of machines to manage different objects, as
a key abstraction is motivated by a number of recent large-
scale geo-distributed storage systems [17, 14, 15, 32].
This capability enhances (1) availability, as the failure of
a machine or even an entire group impacts only a sub-
set of objects; (2) flexibility of resource provisioning and
load balancing; and (3) isolation across different objects,
which can translate to performance gains when unrelated
objects are not forcibly combined into a consensus group.

The extent of object-group configurability allowed by a
system design has nontrivial operational implications, as
illustrated in Figures 1(a)–1(c). A baseline example with
little flexibility is consistent hashing with replication, e.g.,
Amazon Dynamo is a key-value system that uses consis-
tent hashing to determine the set of machines that man-
age an object. While this approach is simple and scalable
when machines and object workload patterns exhibit pre-
dictable characteristics, it is cumbersome in environments
with more unpredictability and flux such as peer-to-peer
(P2P) environments. Sharing this motivation, Scatter [17],
a P2P storage system uses consistent, configurable groups
as a defining abstraction. Scatter’s support for “amoebic”
reconfiguration of groups, i.e., the ability to split, merge,
or migrate members of objects across adjacent consensus
groups, enhances a group’s ability to self-organize under
dynamic conditions while maintaining linearizability con-
sistency for operations to a single object.

A system like Google’s Spanner [14] significantly in-
creases object-group configurability over static or amoe-
bic replica groups. Spanner has a fixed number of pre-
defined (or slow-changing) Paxos groups to which it maps
a large number of directory objects (i.e., a bag of key-
value mappings) in a many-to-one manner. Spanner al-
lows administrators to control the “number and types of
replicas, and the geographic placement of those replicas”,
for example, by specifying policies such as [Object A:
North America, replicated 5 ways with 1 witness]; [Ob-
ject B: Europe, replicated 3 ways], etc. However, Spanner
is designed to remap objects across existing Paxos groups,
not reconfigure the Paxos groups themselves. The distinc-
tion is important as the total number of conceivable Paxos
groups is exponential in the total number of machines, so
a practical system is forced to create a manageable1 num-
ber of packaged groups (like North America, Europe, etc.)
and adopt a many-to-one object-group mapping, an ap-
proach that works well in the common case.

Our goal is to take object-group reconfigurability to the
extreme, namely, allow for each arbitrarily small object to
be mapped to an arbitrary consensus group specifically for
that object. We refer to this flexibility as maximal object-
group configurability, wherein object-group configurabil-
ity is defined as the ratio of the total number of objects
to the total number of separate consensus groups in the
system. Thus, the maximal value is 1; for Spanner, it is
typically much lower than 1; for Scatter or Dynamo, it is
roughly equal to the ratio of the number of machines and
the product of the number of keys and the average repli-
cation factor.

Our vision is similar to that of fluid replication [30] pro-
posed by Noble et al. in the late 90s. Our goal of ag-
ile reconfigurability also overlaps with more recent sys-
tems like Tuba [9] but differs significantly in its focus
on group scalability and consensus. We focus on consen-
sus primarily because of the simplicity and power of the
replicated state machine abstraction that can ensure lin-
earizability consistency when needed but also serves as a
useful building block for applications with weaker consis-
tency requirements (§3.1).

This paper requires the reader to be intimately familiar

1“Typical deployments might have up to hundreds or thou-
sands of paxos groups per machine, but not much more.” [6]
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with Paxos[21]. Below is a brief primer, and [22] and
[33] are excellent resources respectively for a simplified
conceptual and implementation-oriented exposition.

2.1 Paxos and RSM primer

Figure 2: Coordinator 1 acquires ballot [13, 1] in phase 1 and
commits client request R in slot 24 and its ballot [13, 1] in phases
2,3. Thick lines carry application data.

Paxos (or Multi-Paxos) is a consensus algorithm that
enables a set of nodes to agree on a growing sequence
of values over time despite node failures and unbounded
network delays. As shown in Fig. 2, Paxos consists of
two phases: the first allows one (or more) node(s) to as-
sume the role of a coordinator, and the second determines
a decision value for each position in the sequence. With
long-lived coordinators, only the second phase is needed
for each new value in the common case. Paxos guarantees
the agreement safety property that two different decision
values for the same slot are never delivered to any (includ-
ing singleton) subset of nodes. Progress, i.e., any values
being agreed upon at all, is ensured only when a majority
of nodes are up and can communicate with each other in
a timely manner.

In the replicated state machine (RSM) approach, the
values are client requests and nodes in a consensus group
supply the sequence of requests to their locally running
replicas of an arbitrary (but identical) deterministic appli-
cation. A common optimization is to batch multiple client
requests within each value, which helps when agreement
throughput as opposed to application execution [38] is the
bottleneck.

3 GigaPaxos design
GigaPaxos is designed to meet the following goals.
(1) Maximal object-group configurability: An applica-
tion should be able to easily request a consensus group for
an fine-grained fault-tolerant object.
(2) Group scalability: The aggregate performance across
consensus groups should be independent of the total num-
ber of consensus groups.
(3) Application agnosticism: The design must provide a
simple API for black-box applications, remaining agnos-
tic to application-specific details.
(4) Automated reconfiguration: Applications should be

able to specify policies to programmatically reconfigure
the membership of the consensus instances.

3.1 Design overview
To address the above goals, GigaPaxos is designed as
a two-tier reconfigurable consensus engine consisting of
two logically distinct types of nodes: app-containers and
reconfigurators. A group of app-containers form a con-
sensus group for a named object that they manage. A
group of reconfigurators form a consensus group that is re-
sponsible for making decisions about when and how to re-
configure the app-container group for a subset of objects,
and to help correctly redirect client requests to the current
group. An app-container encapsulates a third-party appli-
cation that contains the logic needed to process a client
request, modify the corresponding object, and send a re-
ply back to the client.

Applications can specify if only a subset of request
types need replica coordination, allowing them to use
consensus as a building block for different consistency
semantics. For example, enforcing consensus for every
client request to a named object ensures linearizability (as
in [17]) across all operations to that object while enforc-
ing consensus for writes alone (or reads alone) ensures se-
quential consistency for all operations to that object [10].
Relaxing it further to eventual consistency does not need
consensus among replicas, but reconfigurators must still
rely on group-scalable consensus to make reconfiguration
decisions in a fault-tolerant and consistent manner (de-
tailed in §3.7.1).

GigaPaxos achieves its goals using the following key
mechanisms described in the following subsections: (1)
a compact representation of Paxos instances; (2) sep-
arating and amortizing machine-specific overhead from
group-specific overhead; (3) a hot-swap mechanism to re-
lieve memory pressure while maintaining correctness; (4)
a group-scalable persistent logger; and (5) simple client
API and programmatic reconfigurability support.

The following terms are used throughout the paper: a
Paxos instance is the Paxos-related, application-agnostic
state stored at a machine for a single, named object; a
Paxos group is the set of distributed Paxos instances man-
aging a single object, which in conjunction with the appli-
cation logic forms the corresponding RSM.

3.2 Managing compact Paxos instances
GigaPaxos’ core consists of a PaxosManager per ma-
chine that is responsible for machine-specific functions of
which there are four key ones: (1) Paxos instance man-
agement, (2) persistent logging, (2) failure detection, and
(3) messaging and demultiplexing.
PaxosManager maintains a map from the name of

a Paxos group, objectID, to a data structure maintaining
the minimum Paxos instance state necessary for safety,
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i.e., the state blocks marked “Fixed Instance”, “Accep-
tor Idle”, and “Coordinator Idle” respectively in Fig. 3.
The first remains unchanged throughout the lifetime of
this Paxos instance, i.e., until the epoch and group are
reconfigured or the object is deleted. The latter two are
referred to as idle state because this state must be remem-
bered by each Paxos group member even during periods
when the group is not actively processing client requests.

3.2.1 Idle Paxos instance state

Figure 3: Idle Paxos instance state.

An acceptor’s idle state must maintain (1) nextSlot, the
highest slot number below which all proposals have been
executed by the local application replica in agreement or-
der; (2) its current ballot, 〈ballotNum, ballotCoord〉, which
is the highest ballot it has received across all PREPARE mes-
sages from any group member seeking to become coordi-
nator; (3) majorityFrontier, the slot number up to which
a majority of group members have cumulatively executed
application requests, which is needed in order to safely
garbage-collect logged messages corresponding to lower
slots [33]; (4) isStopped, whether or not the paxos group
has been stopped, which is needed to perform reconfigu-
ration safely (§3.7.1).

Figure 4: Active Paxos instance state.

A coordinator, strictly speaking, does not have to per-
sistently maintain any idle state at all as coordinators are
already presumed to be perishable. However, garbage col-
lecting coordinator state during idle periods means that a
new coordinator must be elected (with the first PREPARE

phase) upon the arrival of a client request. In order to
maintain Paxos’ low, essentially optimal, message over-
head per client request during graceful execution, i.e., just

the second ACCEPT/DECISION phase, it is important to sup-
port long-lived coordinators. So, each GigaPaxos coordi-
nator instance must either maintain all of the coordinator
idle state in Fig. 4 or immediately relinquish its role as
coordinator by ceasing to commandeer further proposals
in its ballot.

The coordinator’s idle state must thus maintain: (1)
nextProposalSlot, the lowest slot such that the coordi-
nator has not yet used that or any higher slots to com-
mandeer any proposals; (2) its ballot that in general may
be out of sync with the local acceptor’s perceived bal-
lot; (3) isElected, indicating whether its ballot has been
accepted by a majority of acceptors, at which point it
can garbage-collect its pre-election state (§3.2.2); and
(4) memberFrontiers, the slot numbers up to which, in
its view, acceptors have cumulatively executed applica-
tion requests; the coordinator piggybacks the median slot
number in its ACCEPT and DECISION messages to all accep-
tors who use it to refresh their majorityFrontier.

Compactness. The point of listing the seemingly mun-
dane details above is to emphasize that this state–the vari-
ables in the three shaded boxes in Fig. 3 plus the connect-
ing pointers–is literally all of the state GigaPaxos adds per
idle Paxos instance to whatever state the application itself
maintains. The size of this idle state is ≈350 bytes for
Paxos instances with three members in our implementa-
tion; larger groups cost 8 more bytes (or one integer each
in the two int arrays).

3.2.2 Active Paxos instance state
An active Paxos instance, i.e., one that is currently agree-
ing on the order of client requests for the underlying appli-
cation, typically needs to maintain much more state than
the idle state above. Fig. 4 illustrates the active state that
must be maintained for safety.

An acceptor’s active state consists of (1) a sequence of
accepted proposals in slot number order, possibly with
gaps, that it has previously accepted, and (2) a set of com-
mitted decisions received out-of-order. The former se-
quence starts at majorityFrontier+1 or higher, and the lat-
ter sequence starts strictly higher than nextSlot, the first
slot for which no decision has been received.

A coordinator’s active state additionally consists of (1)
adopted proposals, i.e., lower-ballot proposals received
from acceptors in their replies to this coordinator’s PREPARE
message, wherein the coordinator picks for each slot

the proposal with the highest ballot; (2) one waitFor data
structure (not shown) to track whether a majority of ac-
ceptors have replied successfully to the PREPARE message;
and (3) myProposals, a sequence of proposals being com-
mandeered by the coordinator, i.e., proposals for which
it has or will send out ACCEPT messages, and for each of
which it maintains a waitFor structure to track a majority
of acceptances. The first two are needed only until the
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coordinator gets elected by receiving a majority of suppo
PREPARE replies. If a coordinator receives any client re-
quests during this election, it enqueues them with the first
available (tentative) slot number in myProposals. When a
coordinator receives a PREPARE majority (“view change”
in Fig. 4), it merges all of the adopted proposals into and
with strict priority over myProposals, marks itself as active,
and begins commandeering myProposals. An active coor-
dinator thus only maintains a single queue, myProposals, of
proposals awaiting majority acceptance; when that hap-
pens, they are announced as committed decisions to all
acceptors and are dequeued.

Bulk. The size of an active Paxos instance can be or-
ders of magnitude larger than an idle Paxos instance, e.g.,
a burst of rapid requests to a group can result in thousands
[18] of requests being concurrently processed, each caus-
ing hundreds or thousands of bytes of queued entries at
acceptors as well as coordinators, thereby easily inducing
megabytes of state. This active state needs to be main-
tained at an acceptor until a majority of acceptors have
caught up, i.e., majorityFrontier+1 equals nextSlot, and
at a coordinator until it is no longer commandeering any
proposals, i.e., myProposals is empty.

3.3 Bounded number of active instances
We claim that under realistic conditions, with a very large
number of consensus instances, the number of idle in-
stances will overwhelmingly dominate active ones. This
insight motivates GigaPaxos’ hot-swap mechanism.

Consider a GigaPaxos application distributed across M
machines managing a total of N objects with each object
managed by a separate consensus group. Let T denote
the average response time of a request with state machine
replication, inclusive of both the unreplicated application
execution time and the latency to establish its consensus
order. Suppose the maximum request throughput that can
be steadily sustained by the underlying (unreplicated) ap-
plication on a single machine is C per second. By Little’s
law [25], the average number of outstanding requests be-
ing processed at any single machine is A = C · T . Note
that, if C and T are fixed, A is independent of the size of a
consensus group, the total number of machines M , or the
total number N of objects in the system.

For example, if C is 25,000 requests/sec and the aver-
age response time of a request is as high as T = 500 ms,
then the average number of outstanding requests at a ma-
chine is 12,500. In practice, the throughput of most appli-
cations employing an RSM approach is likely to be much
lower, e.g., for a database application, synchronous ran-
dom write throughput is typically on the order of a hun-
dred/sec with hard drives, and up to several thousands/sec
with typical solid state drives.

The number of active consensus instances at a machine
is at most the total number of outstanding requests being

processed at that machine. Indeed, the worst case work-
load is one that, in a round-robin manner, issues requests
to all other objects (or consensus groups) before returning
to the first. Thus, in a GigaPaxos system with millions
of consensus groups, the vast majority of consensus in-
stances must be idle.

There are two caveats however. First, this analysis im-
plicitly assumes graceful or failure-free execution. Sec-
ond, even if the average size of an idle consensus instance
is small, as is the case in GigaPaxos, the total number
of Paxos groups that can fit in memory on commodity
hardware is limited, e.g., with 16GB memory and 400
bytes per Paxos instance, the number of sustainable idle
instances is 40 million. To address these issues, Giga-
Paxos uses hot swapping, a mechanism that helps Giga-
Paxos scale to billions of groups per machine with com-
modity disk capacities.

3.3.1 Hot swapping Paxos instances

A simple hack to juggle too many Paxos instances on a
machine is for the manager to simply “soft-crash” that
Paxos instance, i.e., to dequeue it from its instances map
allowing for the state get garbage collected. This action
will preserve safety as it will just appear to the rest of
its group like a member failure. However, this simplis-
tic approach has several shortcomings. First, it forces a
roll forward of the Paxos instance from the most recent
checkpoint when a request for a Paxos group arrives at a
manager, stalling the request handling until the recovery
is complete. The alternative of simply not handling the
request is not viable, as that will over time prevent most
Paxos groups from making any progress at all, a much
worse state of affairs than the theoretical lack of guaran-
tee of liveness under asynchrony. Second, the overhead
of doing a checkpoint recovery upon a request arrival as
a common case operation can itself overwhelm memory,
computation, and I/O cycles on a machine severely hurt-
ing overall performance.

GigaPaxos instead employs a far nimbler hot swapping
technique that capitalizes on the two observations above:
(1) most Paxos instances will be idle when the total num-
ber of instances on a machine is very large; and (2) idle
state is extremely compact (Fig. 3 as opposed to 4). To
this end, the manager on each machine maintains a back-
ground process that periodically but infrequently (e.g.,
every few minutes), makes a sweep over all active in-
stances and pauses instances that have been idle for the
threshold interval, i.e., it synchronously dequeues the in-
stance from its map and writes the compact idle state to
a database. Subsequently, upon the arrival of a client re-
quest or a Paxos protocol message for that instance, the
manager’s demultiplexer as usual first consults its instance
map to route the message. If the instance is not found, the
manager must check the database for paused state that,
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if found, must be used to reconstruct the Paxos instance.
Hot swapping shares some similarities with Cheap Paxos
[24] or ZZ [37] for bringing up virtual machines, but those
approaches are comparable to the “crash” option above.

A downside of hot swapping is that it imposes a small
latency penalty (<10ms typically) for the unpause opera-
tion. However, this penalty only impacts the first client re-
quest (or Paxos protocol message) in a burst of activity for
that group. Subsequent requests do not incur any penalty
as the instance will not be re-paused until it has been idle
for the threshold duration. On the flip side, hot swapping
will disproportionately affect unpopular Paxos instances
with longer-than-threshold idle periods between succes-
sive client requests. Still, we believe that the penalty—an
additional database lookup for a small record—is unlikely
to significantly impact most applications as (1) most ap-
plications using consensus are likely to touch the disk for
common operations anyway; and (2) with persistent log-
ging, enabled by default in GigaPaxos, each client request
must encounter at least one synchronous disk write in or-
der for acceptors to log an ACCEPT message before respond-
ing. Finally, in geo-distributed scenarios, the unpause
penalty is unlikely to affect end-to-end latency as that is
dominated by network delays fundamental to Paxos.

3.3.2 Graceful vs. failure-prone operation

With machine failures, the fraction of active instances at
GigaPaxos machines can be higher. The reason is that a
Paxos instance can not fully gabage-collect the log of ac-
cepted proposals at an acceptor as that requires a majority
of replicas in the group to have executed (or at least persis-
tently logged the decision for the corresponding slot num-
ber) the application up to that slot. Nevertheless, during
periods of synchrony when at least a majority of replicas
in all groups are available—exactly when Paxos guaran-
tees liveness—healthy GigaPaxos machines will be un-
affected and will only see a small number (as quantified
above) of active instances. Fate sharing makes the number
of active Paxos instances at failed machines a non-issue.

However, under more severe machine failure patterns
that result in a significant fraction of Paxos instances on a
machine being unable to make progress because of a lack
of a quorum in their respective groups, the number of ac-
tive instances on otherwise healthy machines can grow to
unsustainable levels. There are several reasonable ways
to handle this case: (1) the strawman outlined above that
crashes an instance to pause it; (2) checkpointing imme-
diately at nextSlot and then crashing the instance so as to
reduce the length of the roll forward; (3) pausing and un-
pausing active state (that could be potentially much larger
than the compact idle state). All options incur higher over-
head compared to hot swapping idle instances, but will not
impact client-perceived latency as they are required only
when the corresponding Paxos group is not live anyway.

Our current implementation supports the second option.

3.4 Amortized failure detection and logging
Failure detection is a key component of any consensus im-
plementation. Although failure detection need not be re-
liable (a problem as hard as consensus itself [13]), it is
needs to be responsive in order to ensure prompt replace-
ment of a failed coordinator. Failure detectors are typi-
cally implemented using keep-alives between all or a non-
trivial subset of machine pairs in a consensus group. How-
ever, unlike typical Paxos implementations, group scala-
bility in GigaPaxos makes it impractical to maintain a sep-
arate failure detector per group; for example, 1000 groups
each of size 5 and a keep-alive frequency of 4 secs imply
1000 packets/sec for failure detection; with 100K groups,
failure detection alone becomes a full-time job! Thus,
GigaPaxos pushes failure detection to PaxosManager
maintaining just one failure detector per machine as op-
posed to one per group.

Likewise, the persistent logger resides in the manager
and is common across all Paxos instances on the machine.
This design not only amortizes the overhead of logging
PREPARE/ACCEPT/DECISION messages across all instances, but
also allows log messages from different Paxos instances
to be batched, driving down the overhead of persistent
logging to negligible levels. Without such batching, Gi-
gaPaxos’ request throughput will be limited by the syn-
chronous disk write throughput.

3.5 Log indexing, pruning, and compaction
In a traditional RSM, garbage collecting safety-critical ac-
ceptor logs is easy; they can simply be tail-pruned below
the highest slot, majorityFrontier, up to which a majority
(or even just f + 1 if at most f can fail) have received all
decisions. This just requires tracking file offsets on disk or
maintaining slot-indexed records in a database such that it
is easy to check whether all logs before some offset are be-
low majorityFrontier. Looking up logged messages when
needed is efficient as the number of log messages is at
most the checkpoint interval.

Indexing. In GigaPaxos, this indexing problem is
harder. As shown in Figure 5, a single write-ahead log for
all groups is extremely efficient (e.g., disabling logging
improves capacity by barely 15%), but makes it difficult
to track where what is logged; for example, upon a coordi-
nator change or a catch-up request from a lagging acceptor
for a group X, an acceptor needs to retrieve logged ACCEPTs

or DECISIONs for X in a specific slot range. To this end, Gi-
gaPaxos needs to additionally maintain a log index map
keyed by group names that tracks the [file,offset,
length] and [slot,ballot] information for every
logged message. This is tricky because, by design, the
number of groups can be much larger than that can be
stored in memory, and simply using a traditional database
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Figure 5: GigaPaxos’ group-scalable logger (bottom)
compared to traditional RSM logger (top).

(even with batching) makes the critical path about two or-
ders of magnitude slower.

Pruning. GigaPaxos’s log index is a swappable in-
memory map that is as fast as a hash table lookup for
working sets that fit in memory, but swaps infrequently
used records to a database table indexed by the group
name. The log itself is split across logically times-
tamped files each of a fixed maximum size, and each
log index record in addition to the information above
tracks minLogfile, the log file storing that group’s log
message with the lowest slot number, i.e., the lower of
majorityFrontier (for ACCEPTs) and the most recent check-
pointed slot (for DECISIONs). The garbage collector period-
ically queries the database for the minLogfile frontier, i.e.,
the set of minLogfiles across all groups, and then removes
log files older than the oldest log file in that frontier set
from the file system.

Compaction. Alas, the logger’s garbage collection
woes do not end here. With highly skewed workloads,
for example, one where most requests go to just one (or a
small number) of group(s) but a request occasionally goes
to a “rare” group, it is possible that every log file con-
tains at least one (or a few) log message that prevents the
log file from being safely removed. In pathological cases,
with pruning alone as above, the number of log files can
be as high as N ·I with N groups and a checkpoint interval
of I requests (proof deferred to [3]). So, GigaPaxos needs
to infrequently (1) compact sparse log files, i.e., files with
very few safety-critical entries; (2) merge them with other
sparse log files; and (3) update the log index map entries
in a consistent manner.

With all of the above mechanisms, GigaPaxos’ logger
scales to a very large number of consensus groups while
imposing negligible overhead when the working set fits
in memory. The worst-case disk storage overhead for N
groups is O(INR), where I is the checkpoint interval and
R the average request size. For example, with I=100 and

R=100B, a machine needs over 1TB of storage to safely
participate in N=100M groups. Thus, secondary storage,
not memory, is what limits GigaPaxos’ group scalability.

3.6 Safety and liveness properties
GigaPaxos preserves safety despite arbitrary failure pat-
terns for each Paxos group by maintaining the critical
Paxos invariant as-is, namely, if a coordinator c issues a
proposal for request r for slot n in its ballot (b, c), then
there exists a majority of acceptors such that either none
of them have accepted any proposal for slot n in ballots
lower than (b, c), or r is the request accepted for slot n
in the highest ballot less than (b, c) by any acceptor in
that majority2. GigaPaxos does not provide any ordering,
consistency, or isolation properties for operations across
different RSMs currently (supporting multi-object trans-
actions is part of ongoing work.). Hot swapping preserves
safety as the set of actions performed by a a GigaPaxos
instance is a subset of actions that an acceptor or coordi-
nator could have performed even without hot swapping.

GigaPaxos ensures liveness for each RSM during peri-
ods of synchrony when a majority of acceptors are avail-
able. Hot swapping only has a performance impact when
the number of consensus groups is very large, and a sig-
nificant fraction of GigaPaxos machines across all groups
have failed. Persistent logging at acceptors ensures that,
even if all acceptors crash at some point, the group even-
tually makes progress during subsequent periods of syn-
chrony and majority availability. Without this, manual in-
tervention would be required to safely recover from the
crash of a majority of group members, which is impracti-
cal for a large number of groups.

3.7 Automated reconfiguration
A large number of consensus groups means it is imprac-
tical for an operator to manually reconfigure group mem-
bership, so GigaPaxos provides support for programmable
policies that automate reconfiguration.

3.7.1 Reconfiguration protocol
GigaPaxos’ reconfiguration protocol is similar to Liskov
and Cowling’s Viewstamped Replication Revisited (VRR)
[26], but differs in important ways. First, GigaPaxos
uses an external reconfigurator (similar in spirit to Ver-
tical Paxos[23]) that also integrates the function of group
location, i.e., determining the current group for an object,
a concern outside the scope of VRR (that suggests that
clients could obtain this information from a “web site run
by the administrator”). With a very large number of ap-
plication RSMs and frequent reconfigurations, group lo-
cation requires a systematic, scalable solution. Second,
the reconfigurator for each application RSM itself must

2This invariant is usually stated without referring to the slot number
n [22] as a coordinator can use its ballot to issue any number of different
proposals each with a different slot.
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be replicated in order to prevent the application RSM from
stalling permanently because of a reconfigurator failure.

Replicated GigaPaxos reconfigurators must agree on
when to initiate a reconfiguration for an application RSM
and on the composition of the new group as divergence
can result in reconfigurators permanently losing track of
the group. So each reconfigurator replica group is itself
organized as an RSM whose state is the set of all applica-
tion RSMs mapped to it via consistent hashing (Fig. om-
mitted). Any reconfigurator can propose an RC_INTENT(X)

command to reconfigure an application RSM X it man-
ages and, when committed, the proposing reconfigurator
in the common case single-handedly conducts the STOP

/START/DROP reconfiguration sequence [26] for X. When
done, it proposes and commits RC_COMPLETE(X) in its group.
Persistently logging every state change in its RSM ensures
that, upon the proposing reconfigurator’s failure or upon
recovery, a reconfigurator can detect and complete unfin-
ished reconfigurations of its managed application RSMs.
A formal protocol description and a detailed proof of cor-
rectness of the reconfiguration protocol is nontrivial and
is deferred to the techreport [3].

3.7.2 Extensible reconfiguration policy support
GigaPaxos enables applications to specify flexible poli-
cies that automate reconfiguration. Each reconfigurator
RSM accepts periodic statistics about load or other met-
rics from any application RSM it manages and uses a cus-
tomizable reconfiguration policy to decide whether and
how to reconfigure the reconfiguree RSM. It is trivial also
to let the application RSM simply send a request to its re-
configurator RSM when it deems a reconfiguration as nec-
essary (or self-reconfigure as in VRR [26] and update the
group location service), but allowing reconfigurators to
make this decision allows implementing global reconfig-
uration policies, i.e., policies that take into account statis-
tics across many RSMs to make reconfiguration decisions
for each RSM. Applications using GigaPaxos extend an
abstract class, DemandProfile, to specify sophisticated re-
configuration policies based on failure, demand, or access
patterns, performance, etc.

3.8 Group creation: phantoms and corpses
With a large number of Paxos groups, some groups may
get created when a member machine has failed. Upon
recovery, PaxosManager on the machine will have no
checkpointed or paused state for this instance. It is im-
practical for a recovering machine to contact all other
machines for a list of all recently created Paxos groups,
and for alive group members or reconfigurators to keep
polling the failed member machine after group creation
without introducing more instance-specific state and mes-
saging overhead. For example, with 100 million Paxos
groups, 100 machines, and an average group size of 5,
each machine will have on average 5 million Paxos in-

stances, so any additional instance-specific state and mes-
saging unless ephemeral can significantly increase mem-
ory and bandwidth consumption.

Instead, GigaPaxos machines adopt a lazy approach to
create Paxos groups whose birthing they missed. When a
machine receives a protocol message for a phantom Paxos
instance, i.e., for which it has no state, it assumes that the
group may have gotten created in its absence, and contacts
the sender of the message to enquire about the group’s
membership so as to create the corresponding Paxos in-
stance locally. Care needs to be taken to only create Paxos
instances, identified by the 〈name, epoch〉 two-tuple, for
the same name with strictly increasing epoch numbers for
safety. The reconfiguration protocol ensures this invariant
by preserving the most recent epoch’s final checkpoint,
taken synchronously and immediately after executing cor-
responding STOP request, for a long threshold expiry time.
Even though it would be futile to try to recreate a Paxos
instance right after it was explicitly deleted, say, because
of the receipt of a protocol message from a laggard mem-
ber, it is unnecessary overhead to check the disk upon re-
ceiving phantom protocol messages; instead, the manager
keeps deleted Paxos instance “corpses” in an in-memory
“morgue” map for a fixed timeout, and tries to create a
new Paxos instance if and only if a matching corpse is not
found in the morgue.

3.9 Replicable application and client API
In order to remain agnostic to application-specific details,
GigaPaxos requires an application to implement the fol-
lowing simple Replicable interface in order to be both
replicable and reconfigurable. An application may choose
to use just one of the two features, for example, to create
an unreconfigurable RSM or reconfigure an unreplicated
state machine.

boolean execute(Request request, boolean dontReply);

String checkpoint(String name);

boolean restore(String name, String state);

The flag dontReply is useful during (1) recovery to
inform the application to withhold interaction with the
end-client while rolling forward, and (2) regular execu-
tion to hint that only the “entry” replica need reply back to
the end-client. The interface assumes that an application
Request is serializable to a string and returns the RSM
name via a getServiceName() method. The Giga-
Paxos logger maintains checkpoints up to a configurable
maximum size in its own database (distinct from the ap-
plication’s if any); for large checkpoints, the application
can also use the string state as simply an application-
specific handle, e.g., a file name or URL, a mechanism
also internally used by GigaPaxos’ reconfigurators whose
state can be very large.

The client API is simple consisting of createService(X,
S) (deleteService(X)) to create (delete) a service X with
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initial state S, and sendRequest(R) to send a Request R to
the RSM; querying reconfigurators to locate and select the
closest app-container replica is internally handled. Upon
creation, reconfigurators randomly choose the initial set of
app-containers that later get reconfigured automatically.

3.10 Implementation miscellany
We implemented GigaPaxos with all of the features de-
scribed above largely in Java with 21.3K semi-colons
(72.3K newlines including documentation) of which 9.3K
is for a stoppable Paxos implementation; 7K is for the
reconfiguration protocol, and the rest is for nio, a
non-blocking IO library with support for server-only or
mutual-authentication-based SSL; and protocoltask,
a package to simplify writing event/action protocols in
asynchronous steps without worrying about messaging,
scheduling, etc. The persistent logger uses an embedded
database, Apache derby, by default, and also supports
mysql. All transport is based on TCP; our nio library
maintains and reuses a persistent connection to each ma-
chine, automatically attempts to create a new one if ma-
chine failures or other events cause I/O exceptions, and
buffers a bounded number of messages to each destina-
tion to mask intermittent network failures. The size of an
idle Paxos instance is ≈350B in our implementation be-
cause it is in Java; with a leaner language like C, it can be
reduced further to ≈100B.

4 Evaluation
Our high-level goal is to quantify the costs and benefits
of group scalability in GigaPaxos. To this end, we con-
duct the following experiments: (1) Comparison of Giga-
Paxos against state-of-the-art Paxos-based systems w.r.t.
the number of supported groups and the impact on client-
perceived performance; (2) Microbenchmarks evaluating
the benefit and overhead of mechanisms in GigaPaxos;
and (3) Case studies involving a number of third-party ap-
plications evaluating GigaPaxos’ usability and the bene-
fits of object-group configurability.

4.1 Group scalability comparison
In this section, we study the load vs. response time profile
and the memory overhead for varying numbers of groups
for three state-of-the-art systems that either are or com-
prise a consensus system, namely, ZooKeeper [18], Open-
Replica [8], and Raft [31], compared to GigaPaxos. Un-
less otherwise specified, all experiments were performed
on Amazon EC2 t2.medium (2 vCPUs, 4GB memory, and
8GB SSD disk) servers and sufficiently many c4.4xlarge
clients to saturate the servers in the same region.

4.1.1 Load vs. response time with varying no. groups
In this experiment, clients send requests at increasing rates
to a single active RSM at servers that maintain varying
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Figure 6: Group scalability: Load vs. latency for 1B re-
quests with varying numbers of idle groups.

numbers of mostly idle RSMs. There are 3 servers in all
and each RSM’s consensus group is the set of all 3 servers.
We measure the average response time over at least five
runs each lasting 60s after discarding at least one or more
warmup runs as needed to stabilize the servers. The re-
quest rate is increased until the system can not sustain
that load, i.e., one or more servers either crashes, or the
response time exceeds 1s, or the response rate drops be-
low 99.9%.

Fig. 6 shows the load vs. response time profile of Gi-
gaPaxos, ZooKeeper, OpenReplica, and the Raft authors’
LogCabin [31] implementation for 1B no-op requests.
Among the latter three systems, ZooKeeper scales to the
highest capacity (32K/s) with a single group, but breaks
down at barely hundred groups, while OpenReplica and
Raft have significantly lower capacities with one group
but don’t hit breakdown point until hundreds of groups.
ZooKeeper scales to fewer groups in part because of the
overhead of running separate JVMs with servers listen-
ing on different sets of three ports for each RSM, which,
though cumbersome, we confirmed with its developer fo-
rums [7] as well as via code inspection was the most
reasonable option to maintain separate consensus groups.
Raft’s C++ implementation is leaner, so it scales to more
groups. All three systems show a stark, qualitatively sim-
ilar degradation with increasing groups.

In contrast, GigaPaxos is fast, scaling up to 160K/s ca-
pacity with a negligible performance drop as the number
of groups increases all the way to a million. Given that
only a single group is active in this experiment, GigaPaxos
mainly benefits from amortizing failure detection across
groups, its holistic, single-process design, and its com-
pact representation of idle Paxos instances that we further
study next.
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Figure 7: Group scalability: Load vs. latency for 1KB
requests with varying number of idle groups.

Memory overhead. In order to measure the
memory overhead of simply maintaining consensus
instances (with zero request load), we pick two
sets of server configurations, t1.micro EC2 servers
with 1GB memory, and t1.small with 2GB mem-
ory. We then create as many consensus groups
as the machine could sustain before hitting physical

Marginal memory per instance
GigaPaxos 346.4 Bytes
ZooKeeper 42.7 MB
OpenReplica 10.8 MB
Raft 5.4 MB

Table 1: Memory cost.

memory limits for each
of the four systems. We
compute the marginal
memory overhead of con-
sensus instances as 1GB
divided by the difference
between the number of
groups respectively sus-

tainable with 2GB and 1GB of physical memory.
Table 1 shows the marginal memory overhead of the

four systems for idle consensus instances. GigaPaxos can
create over 3 million Paxos instances per machine result-
ing for a cost of ≈350B per instance (consistent with Fig.
3), which is orders of magnitude smaller than the other
systems. We defer a more detailed breakdown of the con-
stituent costs and the load vs. memory consumption be-
havior of the systems to the techreport [3].

Impact of request size. 1B requests measure the raw
agreement throughput, but are hardly useful for any real
application. We repeat the above experiment with 1KB re-
quests and (because of space limits) show the results only
for GigaPaxos and ZooKeeper in Fig. 7. Both systems are
network bottlenecked3[19], and see a significant drop in
capacity. Both have ≈100-120B of protocol overhead for
each ACCEPT/ACCEPT_REPLY/DECISION message (or their one-
one equivalents in ZooKeeper’s Zab protocol [19]) on the
critical path. So, 1KB vs. 1B requests increase the ACCEPT

message size by ≈8-10×.

4.2 GigaPaxos microbenchmarks
4.2.1 Impact of batching on group scalability
The results above (§4.1) with a single active group may
suggest that GigaPaxos is phenomenally group-scalable
with no apparent costs, but that is hardly the case. Next,

3more precisely, by networking-related actions such as serialization
and the TCP/IP stack, not the bare-metal bits/sec.
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we stress-test GigaPaxos when a large number of groups
are simultaneously active. We use 1KB requests and re-
peat the experiment above with the only difference that
requests are sent in a round-robin manner across groups.

Fig. 8(a) shows that the throughput capacity of the sys-
tem drops as the number of groups increases. The reason
is reduced opportunities for batching requests. Oppor-
tunistic batching, i.e., without explicitly waiting for more
requests to arrive, is well known to significantly improve
the performance of Paxos-like protocols. However, it is
in general not possible to batch requests across different
RSMs as their group membership may be different. With
increasing groups, GigaPaxos’ capacity drops until it hits
≈22K/s, which we have verified is its capacity with 1KB
requests with batching disabled.

Fig. 8(b) shows an experiment similar to that in 8(a)
but with 5-replica groups (instead of 3). Seemingly con-
tradictorily, the first set of bars show the capacity increas-
ing with the number of groups. However, there is a simple
explanation–coordinator load balancing–for this observa-
tion. As the number of groups increases from 1 to the
total number of physical servers 5, the capacity increases
because the coordinators for different 5-replica groups
get randomly assigned to the servers. As the coordina-
tor’s role—receiving every request and sending them as
ACCEPTs to the group—is a key bottleneck, multiple groups
naturally increase capacity. In contrast, the latter set of
bars enable the digest_requests option wherein the entry
replica broadcasts the request to all acceptors and the co-
ordinator issues ACCEPTs only with request digests. Safety
is preserved because an acceptor acknowledges an ACCEPT

only if it has already received the corresponding body.

The benefit of coordinator balancing has been noted be-
fore, e.g., S-Paxos [11] proposes an optimization similar
to GigaPaxos’ request digests (albeit with a more complex
protocol), and others such as Mencius[28], E-Paxos[29]
etc. [20] take different approaches to coordinator load bal-
ancing. In GigaPaxos, such optimizations are needed only
when the number of groups is very small and the request
size is not small (�tens of bytes).
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Figure 9: (a) Group scalability “fine print” with very large
number of groups; (b) Fault scaling.

4.2.2 Hot swapping overhead
Table 9(a) summarizes the “fine print” limiting Giga-
Paxos’ group scalability. The experiments thus far con-
sidered up to a million groups that barely consume half
a gigabyte of memory. However, 10 million instances
is higher than what can be supported on the 4GB RAM
servers. With such a large number of instances and a
round-robin workload, every request encounters a paused
instance, so the average latency is over 12ms compared to
under 3ms for up to a few million instances (both mea-
sured under a round-robin light load of 100/s). Unpaus-
ing an instance currently requires two database lookups,
one each for the paused instance state and the correspond-
ing log index record (§3.5) that are currently paused and
looked up independently; combining them (not yet imple-
mented) will further reduce this penalty. The throughput
takes a much more severe hit at 2.6K/s for 1KB requests
vs. 22K/s for 1M groups (Fig. 8(a)).

4.2.3 Fault scaling
Fig. 9(b) shows the impact of the size of the group on
the capacity with 1KB requests and a single group. As
expected, the capacity decreases as the replication factor
increases because of the increase in message overhead.
With multiple groups (not shown), this trend w.r.t. the
replication factor remains unchanged; for any given repli-
cation factor, the aggregate throughput initially remains
steady as the number of groups increases up to the repli-
cation factor because of coordinator load balancing (Fig.
8(a)), but then decreases with more groups because of re-
duced batching up until it matches the unbatched capacity.

4.2.4 Failure recovery
Can GigaPaxos groups recover quickly from failures? To
study this, we use 5 servers either with one group, as in
Fig. 10(a), or with 5 and 1000 groups respectively as in
Fig. 10(b). In the 1-group case, the 6 numbered marks
respectively correspond to the (1) failure of an acceptor;
(2) recovery of the acceptor; (3) failure of two acceptors;
(4) recovery of the two acceptors; (5) failure of the coor-
dinator; (6) recovery of the coordinator.

We find that the throughput initially decreases but even-
tually increases upon the failure of acceptors and is chug-
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Figure 10: Responsiveness of failure recovery.

ging along most happily after the failure of two acceptors
(mark 3) as the coordinator has to do less messaging. This
increase in throughput with acceptor failures is different
from the finding in the ZooKeeper paper [18] (that in-
spired this experiment) where the throughput roughly de-
creases by the share of requests going to the failed nodes.
Unlike Zab [19] that pins each client to a single server
(to preserve primary order causal consistency), GigaPaxos
clients can send requests to any server. But coordinator
failures do force a downtime commensurate to the failure
detection timeout, which defaults to 6s in our implemen-
tation and is automatically increased with more machines
if the aggregate probe rate at a machine exceeds 10/s.

The experiment in Fig. 10(b) is similar to 10(a) with
the only difference that the labels “acceptor” and “coordi-
nator” are not meaningful here because different groups’
coordinators get randomly mapped on to different servers.
As a result, the aggregate throughput never goes down to
zero as there are always some groups whose coordinators
are alive. The 1000-group case does plunge significantly
upon a machine failure because, in addition to the 0–6s of
downtime for roughly a fifth of the groups, there is also
the added message overhead of electing new coordinators
for those groups. More generally, in a GigaPaxos system
with M machines, a total number N of consensus groups,
and a total number n of active groups, the failure of a
single machine will in expectation temporarily stall N/M
groups and induce n/M elections (as paused groups do
not elect a coordinator until stirred by a client request).

4.3 Application usability case studies
In this section, we present several application case stud-
ies to show (1) that GigaPaxos’ Replicable API (§3.9)
can be implemented easily for third-party applications,
with or without intrinsic support for replication, so as to
make them replicable and reconfigurable; (2) the latency
benefit of object-group configurability.

4.3.1 myCloud: Share document editing and storage
We implemented a Replicable wrapper for etherpad [1], an
open-source, document editor that allows users to collab-
oratively edit documents or “pads” in real-time via a web
browser (similar to the popular, proprietary Google Docs).
etherpad does not intrinsically support replication or fault-
tolerance. Client libraries for its API are available in a
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Figure 11: The placement of etherpad servers significantly
affects user-perceived response times.

variety of languages; we used the Java API [2] to make it
fault-tolerant and reconfigurable via the Replicable wrap-
per. GigaPaxos also has general-purpose support for ap-
plications to easily delegate messaging of replies back to
the client originating the request, which we used here.

In this wide-area experiment, we deploy 7 etherpad

servers respectively at California, Frankfurt, Ireland, Syd-
ney, Seoul, Tokyo, and Virginia. A GigaPaxos client cre-
ates a single pad using the createService(.) client API,
which by default is set to create an RSM group of all 7
replicas. A controller script in our lab then emulates a
“mobile” etherpad client that trots across different cities
as shown in Fig. 11 sending tens of requests from each
city. The DemandProfile policy is designed to reconfigure
the RSM once every 20 requests to either 1 (blue/solid) or
3 (green/dashed) closest app-container locations.

Fig. 11 shows that the carefully-chosen 3-replica RSMs
can significantly reduce end-to-end client-perceived la-
tency, sometimes by over 200ms. The 1-replica RSM
as expected yields the lowest latency but only ensures
durability, not availability amidst failures, and is included
just to show the best-case. Reconfiguration itself roughly
takes as much time as 2-3 Paxos operations, so requests
are occasionally lost when sent to an app-container where
the Paxos instance no longer exists.

4.3.2 Usability and performance overhead

Application #semi-
colons

Etherpad 60
OpenKM [5] 89
MySQL 79
Cassandra 78
Mongo 53
Redis 40

Table 2: LOC for
Replicable wrappers.

Implementing Replicable

for etherpad was rather easy
and involved just 60 lines
of code to GigaPaxos’ ab-
stract, general-purpose “hello
world” client and application
classes in order to support
etherpad’s three basic request
types used in this experi-
ment; supporting its full API
will increase the integration
overhead.

We have also implemented Replicable wrappers for a
number of third-party applications as listed in Table 2 in-
cluding OpenKM [5] (comparable to Google Drive) and

popular key-value stores. Despite the simplicity, some
of the wrappers are powerful, e.g., the mysql wrapper
is schema-agnostic and anyone can reuse it to designate
either each row or each table as an independently re-
configurable RSM. We could do this because Replicable

’s checkpoint and restore methods could naturally avail
of sqldump to checkpoint a single record, table, or
database in a schema-agnostic manner. A more detailed
study showing that GigaPaxos adds only a small penalty
if at all to the single-server capacity of these applications
is deferred to a techreport [3].

With the help of tutorials and starter code, GigaPaxos
has been in used by a small distributed systems class of 10
students (6 undergraduate, 4 masters) to implement a sim-
ple, in-memory map that is gratuitiously durable, fault-
tolerant, per-key reconfigurable, and ultra-fast (Fig. 6(a))
for small keys and values.

4.3.3 Global name service case study
GigaPaxos was inspired by the Auspice system [32], a
global name service (GNS) that forms the “control plane”
of a next-generation Internetwork [34], and also advo-
cates per-object reconfigurability for name records. In
comparison, GigaPaxos (1) is a separate system devel-
oped completely from scratch; (2) designed for general-
purpose distributed objects or services; (3) outperforms
Auspice’s group scalability of 10K-100K groups [32] by
orders of magnitude with over an order of magnitude bet-
ter throughput. We have since worked with the Mobili-
tyFirst team to transition to GigaPaxos as the core of its
GNS, a service that has been running using GigaPaxos for
over a year on EC2 [4] for community use.

5 Conclusions
In this paper, we presented GigaPaxos, a novel system that
enables group-scalable replicated state machines. Per-
haps because of pedagogical challenges or because of
the “costly” mental image replication already invokes,
consensus implementations today inherently embed as-
sumptions appropriate for heavyweight applications. In
contrast, GigaPaxos easily allows any application to cre-
ate an object managed by a consensus group on the fly
and reconfigure the group as needed. We have con-
ducted a number of application case studies to show
that agile reconfiguration and object-group configurability
in GigaPaxos can significantly improve client-perceived
performance. The GigaPaxos code with tutorials, case
study example code, and documentation is available at:
http://anonymizedforpeerreview.com/.
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