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ABSTRACT
The purpose of selective mutation strategies is to reduce the inher-
ent redundancy of full mutation analysis and hence obtain most of
its bene�t for a fraction of the cost. Unfortunately, recent research
has shown that there is no �xed selective mutation strategy that is
e�ective across a broad range of programs. In other words, for any
given mutation operator, the utility (i.e., usefulness) of a mutant
produced by that operator varies greatly across programs. Hence,
selective mutation, as currently de�ned, is a dead end despite the
fact that existing mutation systems are known to produce highly
redundant mutants.

This paper explores a novel path out of this conundrum. Speci�-
cally, it hypothesizes that mutant utility, in terms of equivalency,
triviality, and dominance, can be predicted by incorporating context
information from the program in which the mutant is embedded.
This paper �rst explains the intuition behind this hypothesis with a
motivational example and then tests the hypothesis by evaluating
the predictive power of a series of program-context models and
machine learning classi�ers.

The results show that it is important to consider mutants at
the mutation operator level, and not just at the mutation operator
group level. Further, the results show that context extracted from a
program’s abstract syntax tree can indeed strongly predict mutant
utility. The cross-validation results additionally show that mutant
utility can be predicted within and across programs, with an area
under the ROC curve above 0.8.
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1 INTRODUCTION
Consider an engineer attempting to evaluate her test suite with
mutation analysis. A full-blown mutation analysis system would
produce far more mutants than necessary, or, indeed useful. Until
recently, the advice to such the engineer would have been to choose
a “do fewer” approach in which only a carefully chosen subset
of the mutants were generated. Unfortunately, recent research
has identi�ed surprising fundamental weaknesses in the existing
selective mutation approaches: all of them are very likely to miss
“important” mutants on some programs [42], and none of them is
likely to greatly outperform random selection [23], a strategy that
simply chooses a fraction of the mutants generated. Intriguingly,
this same research has also shown that redundancy in mutants
can be precisely characterized with “dominator sets” and that the
cardinality of dominator sets with respect to the output of a typical
mutation engine is very small. In a related study, Ammann et al. [9]

showed that the dominator sets, termed minimal mutant sets in
that work, averaged just 1.2% of the non-equivalent mutants. That
is, nearly 99% of the non-equivalent mutants in that study were
redundant. In other words, there really is a small set of dominator
mutants that captures the power of the large number of mutants
generated by a classic mutation analysis. The good news is that the
goal of selective approaches to mutation analysis, namely �nding
a small set of mutants that retains the utility of the original set, is
sound. The bad news is that we don’t know how to choose a useful
proxy for a dominator set.1 This paper is a �rst step in addressing
exactly this problem.

Rationale of Our Approach
Why do existing selective mutation approaches fail? In this paper
we conjecture that a root problem, and perhaps the root problem,
is that existing approaches to selective mutation take no account
of program context. For example, existing mutation approaches
treat mutating a relational operator in a for loop test the same
as mutating a relational operator in an if statement. But many
mutations of relational operators in for loop tests are killed by
every test case, and hence useless, and others are equivalent, and
hence worse than useless. As another example, existing mutation
systems treat mutating an arithmetic operator in a context of array
indexes exactly the same as mutating an arithmetic operator in
other contexts. But we know from experience with mutation tools
that the former is less likely to result in a dominator mutant than the
latter. As a third example, we know that the mutation operator that
appends “++” to a variable is more likely to generate an equivalent
mutant if it appears late in a computation, for the simple reason
that there is less likely to be a data �ow from the variable to the
output.

The mutation literature has been addressing the “do fewer” ap-
proach to mutation analysis for decades, and yet the problem has
proved surprising stubborn: recent research has shown that exist-
ing approaches don’t signi�cantly outperform random selection.
Three recent advances suggest that the time is �nally ripe to make
signi�cant progress.

First, Ammann et al. [9] and Kurtz et al. [42] developed the notion
of dominator mutants. While dominator mutants are impractical
for the practicing engineer to calculate, they provide the researcher
with a precise, sound de�nition of mutation adequacy that is free
of the distortions imposed by redundant mutants. Research using
dominator mutation has shown that for an individual program,
there exists a good set of mutation operators, but, unfortunately,

1 Finding dominator sets directly is undecidable, and approximating dominator sets well
with testing requires a very large number of tests. Hence, in a production development
environment, it only make sense to look for a proxy.



that there is no set of mutation operators that works well across
many programs. In other words, to be e�ective, the set of mutation
operators must be customized to the program under test.

Second, empirical work by Just et al. [33] has shown that a
strong coupling exists between mutants and, through the test cases
that detect them, “real” faults. More recently, Allamanis et al.. [5]
showed that additional mutation operators, which are tailored to
a program under test, generate mutants that can further increase
this coupling. The increased real-fault coupling, however, comes at
a cost of signi�cantly more mutants, most of which are redundant.
Hence, if the goal is to generate a small set of mutants that are
highly coupled to likely real faults in a program under test, then
customized program mutation is the way to go.

Third, machine learning approaches have matured into robust
and scalable tools, enabling large-scale studies of complex relation-
ships (e.g., [60]). If we can e�ectively characterize the features
of program context that are relevant to the utility of a speci�c
mutant—and the anecdotal examples mentioned above suggest that
we can—then o�-the-shelf machine learning techniques can be used
to train e�ective classi�ers.

Contributions
The underlying hypothesis of this paper is that the selection of a
set of e�ective mutants must be customized to the program context
in which the mutants are generated. We expect this relationship
between mutant utility and program context to be quite complex,
in general, and hence we do not propose to derive the relationships
theoretically. Rather, the goal of this paper is to show that context
information is indeed useful for predicting mutant utility and that it
is possible to employ machine learning to train an e�ective classi�er.

The speci�c contributions of this paper are:

• A motivational example that provides insight into why
program context is critical for assessing mutant utility.

• A model of mutant utility in terms of equivalency, triviality,
and dominance.

• A model of program context based on neighboring nodes
in the abstract syntax tree.

• An empirical study that shows that program context is a
strong predictor for mutant utility.

• An empirical study that shows the prediction performance
of di�erent features of program context and di�erent ma-
chine learning classi�ers.

2 BACKGROUND ON MUTATION ANALYSIS
Mutation testing [18] is a test criterion that generates a set of
program variants, called mutants, and then challenges the tester to
design tests that detect these mutants. A test that can distinguish
a mutant from the original program is said to detect, or kill, that
mutant. In strong mutation testing, killing a mutant means that
the mutant and the original program generate di�erent outputs. In
weak mutation testing, killing a mutant means that the internal
program state of the mutant di�ers from the internal program state
of the original program at some point during execution.

A mutant is generated by a mutation operator, which is a pro-
gram transformation rule that generates a program variant of a
given program based on the occurrence of a particular syntactic

element. One example of a mutation operator is the replacement of
an instance of the arithmetic operator “+” with “-”. Speci�cally, if a
program contains an expression “a + b”, for arbitrary expressions
“a” and “b”, this mutation operator creates a mutant where “a - b”
replaces this expression. The mutation is the syntactic change that
a mutation operator introduces. This paper considers �rst-order
mutants, which means that each mutant contains exactly one mu-
tation; higher-order mutation, in which a mutant is a product of
multiple applications of mutation operators, is not the focus of this
paper but brie�y discussed in the related work.

A mutation operator is applied everywhere it is possible to do so.
In the example above, if the arithmetic operator “+” occurs multiple
times in a program, the mutation operator will create a separate
mutant for each occurrence. A mutation operator group is a group
of related mutation operators. For example, the AOR mutation
operator group, which includes the mutation operator above, is the
group of all mutation operators that replace an arithmetic operator.

2.1 Equivalent mutants
A mutant may behave exactly as the original program on all in-
puts. Such a mutant is called an equivalent mutant and cannot
be killed. As an example of an equivalent mutant, consider the
following comparison of two integers, which returns the smaller
value of the two integers: return (a < b) ? a : b. Replacing
the relational operator < with <= results in an equivalent mutant
(return (a <= b) ? a : b)—if a and b are equal, returning either
value is correct, and hence both implementations are equivalent.

Given a set of mutants, M , a test setT is mutation-adequate with
respect to M i� for every non-equivalent mutantm in M , there is
some test t in T such that t killsm.

2.2 Trivial mutants
Mutants vary widely in how di�cult it is to �nd a test case that kills
the mutant. A trivial mutant is one that is killed due to an exception
by every test case that covers and executes the mutated code loca-
tion. As an example, consider a for loop with a boundary check for
an array index (for int i=0; i<numbers.length; ++i). If the
index variable i is used to access the array numbers then a mutation
i<=numbers.length alway results in an exception, as the last value
for i is guaranteed to index numbers out of bounds. Hence, this
mutant is trivial, as any test that reaches the loop will terminate
with an exception.

2.3 Dominator Mutants
Mutation operators generate far more mutants than are necessary.
This redundancy was formally captured in the notion of minimal
mutation [9]. Give any set of mutants,M , a dominator set of mutants,
D, is a minimal subset of M such that any test set that is mutation-
adequate for D is also mutation-adequate for M .

Computing a dominator set is an undecidable problem, but it is
possible to approximate it with respect to a test set [41]—the more
comprehensive the test set, the better the approximation. This
approximation isn’t useful for the practicing engineer, who needs
to know the set of dominator mutants a-priori to develop a test set.
However, from a research and evaluation perspective, a dominator
set provides a precise way for identifying redundancy in a set of
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Table 1: Example kill matrix. A check mark indicates that a
test ti kills a mutantmj .

Mutant Test

t1 t2 t3 t4

m1: ROR_FOR_F
m2: ROR_FOR_T
m3: ROR_FOR_EQ
m4: ROR_FOR_NE
m5: ROR_FOR_GT
m6: ROR_FOR_LE
m7: ROR_FOR_GE
m8: ROR_IF_F
m9: ROR_IF_T
m10: ROR_IF_EQ
m11: ROR_IF_NE
m12: ROR_IF_GT
m13: ROR_IF_LE
m14: ROR_IF_GE

mutants, and hence the dynamic approximation approach is an
important research tool for analyzing mutation testing techniques.

Given a �nite set of mutants M and a �nite set of testsT , mutant
mi is said to dynamically subsume mutantmj if some test in T kills
mi and every test inT that killsmi also killsmj . If two mutantsmi
andmj in M are killed by exactly the same tests in T , we say that
mi andmj are indistinguished.

We capture the subsumption relationship among mutants with
the Dynamic Mutant Subsumption Graph or DMSG [41]. Each node
in a DMSG represents a maximal set of indistinguished mutants
and each edge represents the dynamic subsumption relationship
between two sets of mutants. More speci�cally, ifmi dynamically
subsumesmj , then there is an edge from the node containingmi to
the node containingmj . Further, ifmi dynamically subsumesmj
but the converse is not true, we say that the subsumption is strict.
If a test kills any arbitrary mutant in the DMSG, it is guaranteed to
kill all the subsumed mutants [9], i.e., all connected mutants below
it in the graph.

Table 1 shows an example kill matrix that indicates which test
kills which mutants. In this example, the set M consists of 14
mutants and the set T consists of 4 tests. Every test that kills
the last mutant in the table, ROR_IF_GE, also kills ROR_FOR_T,
ROR_FOR_LE, and ROR_IF_GT, hence ROR_IF_GE dynamically
subsumes these mutants. In the case of the �rst two mutants, the dy-
namic subsumption is strict. However, ROR_IF_GE and ROR_IF_GT
are killed by exactly the same tests, so the subsumption is not strict;
these mutants are indistinguished.

We use the subsumption relationships to construct the DMSG
shown in Figure 1. Mutants ROR_FOR_NE and ROR_IF_LE are not
killed by any of the tests inT , so it is shown in its own unconnected
node with a dashed border. These mutants are equivalent with
respect toT but they may be killable by a test that is not an element
of T . The DMSG is based on a �nite test set, so it can only make
claims about test equivalence.

ROR_FOR_F,
ROR_FOR_GT,
ROR_IF_EQ,
ROF_IF_F

ROR_FOR_EQ,
ROR_FOR_GE

ROF_IF_GE,
ROR_IF_GT

ROR_IF_NE,
ROR_IF_T

ROR_FOR_LE,
ROR_FOR_T

ROR_FOR_NE,
ROR_IF_LE

Figure 1: Dynamic mutant subsumption graph (DMSG) for
the kill matrix shown in Table 1.

F

== >
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T
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>=

Figure 2: Static subsumption relationship for the relational
operator < [37].

Dominator mutants are those not strictly subsumed by any other
mutant and are shown in the graph in dominator nodes with double-
borders. Figure 1 has two dominator nodes and any combination of
one mutant from each dominator node forms a dominator mutant
set. Hence, Figure 1 has 4 ∗ 2 = 8 distinct dominator mutant sets;
{ROR_FOR_F, ROR_IF_NE} is an example. Because each dominator
set contains one mutant from each dominator node, all dominator
sets are equally useful and a dominator set can be selected arbitrarily
from all possible sets. Consequently, only two of the 14 mutants
matter—if a test set kills the mutants in a dominator mutant set, it is
guaranteed to kill all non-equivalent mutants, which are redundant.

For completeness, Figure 2 shows the static subsumption relation
for the mutants of the relational operator < analyzed in isolation.
The top row in Figure 2, namely the three mutations where < is
replaced by F(or false), <=, and !=, shows the dominator mutants.
It is important to note that this dominance relation only holds for
weak mutation testing[43], and that it assumes that none of the
dominators is equivalent. In section 3, we’ll revisit the example
in Figure 1, where we will note that one of the mutants that is a
dominator in isolation, namely ROR_FOR_NE, is indeed equivalent
when considered in the context of an example program.

3 MUTANT UTILITY
Informally, equivalent and trivial mutants have low utility, and
mutants high in the mutant subsumption graph have high util-
ity. This section makes the notion of mutant utility precise along
each of three dimensions of equivalency, triviality, and dominance.
We defer an exploration of how these three dimensions might be
combined into an overall notion of mutant utility to section 6.
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Table 2: For each of the seven mutation operators, applied to each of the highlighted program locations in Listing 1, is the
generated mutant a dominator, subsumed, trivial, or equivalent mutant?

Program location Op1 Op2 Op3 Op4 Op5 Op6 Op7
Line 7 equivalent subsumed trivial dominator subsumed trivial dominator
Line 8 dominator subsumed equivalent subsumed subsumed dominator subsumed

3.1 Equivalent mutants
Ideally, a mutation system would not generate any equivalent mu-
tants, but since mutant equivalence (or program equivalence) is
an undecidable problem, this goal can’t be achieved in general. In-
stead, our approach is to rank mutants with respect to an estimate
of how likely they are to be be equivalent. Speci�cally, mutant
utility with respect to equivalence is an estimate of the likelihood
that the mutant can be killed. Utility ranges from zero (certain to
be equivalent) to one (certain to be killable). Program context is
useful if it enables us to re�ne our estimate of equivalence for a
given mutant, and the farther the re�ned estimate is from the base
(in either direction), the more useful the context.

Formally, equivalence utility for a mutant m with respect to a
mutant operator group G is the likelihood that an arbitrary mutant
produced by some Op inG is not equivalent. Similarly, equivalence
utility for a mutant m with respect to a mutant operator Op is
the likelihood that an arbitrary mutant produced by Op is not
equivalent. Finally, equivalence utility for a mutant m with respect
to a mutant operator Op and context c is the likelihood that an
arbitrary mutant produced by Op in context c is not equivalent.

3.2 Trivial mutants
Since mutation analysis is signi�cantly more e�ort on the part
of the practicing engineer than standard coverage criteria such as
branch coverage, mutants that are always killed by branch-adequate
test suites aren’t of practical value. One of our goals is to identify
non-trivial mutants. Again, program context is useful if it enables
us to re�ne our estimate of triviality for a given mutant.

The utility de�nitions for triviality are an exact parallel of the
utility de�nitions for equivalence.

3.3 Dominator strength
Mutants that are not dominators, but are “close” to being dominators
are nonetheless valuable. For the purposes of this paper, we need a
metric that captures this observation. To this end, we propose the
dominator strength metric that satis�es three important properties:
it is monotonically increasing along any path in the DMSG, it is
fairly evenly distributed between 0 and 1, and it is insensitive to
redundant mutants.

We de�ne the dominator strength sD (M ) for any mutant M as
the number of nodes in the graph that are subsumed by M , divided
by the number of nodes in the graph subsumed by M plus the
number of nodes in the graph that subsume M :

sD (M ) =
#nodes M subsumes

#nodes M subsumes + #nodes that subsume M

sD = 1 identi�es a dominator mutant, and sD = 0 identi�es a
mutant that does not strictly subsume any other mutants. As an
example, in Figure 1, sD (ROR_IF_GE) = 1/(1 + 2) = 0.33.

The utility de�nitions for dominance are an exact parallel of the
utility de�nitions for equivalence.

4 PROGRAM CONTEXT
This section �rst informally describes the notion of program context
using a motivational example (Section 4.1) and then details our
proposed approach to modeling program context (Section 4.2).

4.1 Motivational example
Consider the following program listing, in particular the highlighted
expressions that involve a relational operator in lines 7 and 8:

1 /*
2 * Compute the minimum value of a non -null ,

3 * non -empty array of integers.

4 */

5 public int getMin(int[] numbers) {

6 int min = numbers [0];

7 for (int i=1; i < numbers.length; ++i) {

8 if (numbers[i] < min) {

9 min = numbers[i];

10 }

11 }

12 return min;

13 }

Listing 1: A relational operator in two di�erent program
contexts.

The following seven mutation operators are applicable to each of
the highlighted program locations:

Op1: lhs < rhs 7−→ lhs != rhs
Op2: lhs < rhs 7−→ lhs == rhs
Op3: lhs < rhs 7−→ lhs <= rhs
Op4: lhs < rhs 7−→ lhs > rhs
Op5: lhs < rhs 7−→ lhs >= rhs
Op6: lhs < rhs 7−→ true
Op7: lhs < rhs 7−→ false

Note that lhs and rhs are placeholders for any expression that ap-
pears as the left hand side or right hand side of a relational operator.
Note also that the 7−→ symbol denotes the program transformation
that a mutation operator (Opi ) applies and that true and false in-
dicate that the mutated expression always evaluates to true or false,
respectively.

The seven mutation operators are universally applicable to any
relational operator in the program. However, the usefulness of the
mutants they generate depends on the program location, as Table 2
shows.

Table 2 corroborates that any approach that universally selects
and applies a subset of mutation operators—even within a single
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Figure 3: Partial abstract syntax tree for the original version of the getMinmethod (Listing 1) and seven possible mutations for
the highlighted node.

...

MethodDecl
getMin

... ... Block

body

ForStmt ReturnStmt

VarDecl

init

InfixExpr
<

cond

PrefixExpr
++

inc

Block

body

Type
int

type

Ident
i

name

Literal
1

init

Ident
i

lhs

QualIdent
numbers.length

rhs

Ident
numbers

Ident
length

Ident
i IfStmt

InfixExpr
<

cond

...

then

...

else

ArrayAccess

lhs

Ident
min

rhs

Ident
numbers

Ident
i

Ident
min

Mutations
 

Mutation:
'<'  |-->  '!='

Mutation:
'<'  |-->  '=='

Mutation:
'<'  |-->  '<='

Mutation:
'<'  |-->  '> '

Mutation:
'<'  |-->  '>='

Mutation:
'<'  |-->  'true'

Mutation:
'<'  |-->  'false'

program—is doomed to failure. For example, the mutation operator
Op1 generates an equivalent mutant in line 7 but a dominator
mutant in line 8. This means that the inclusion of Op1 is crucial
but at the same time that this operator should never be applied in
a context similar to the one in line 7. This example motivates our
work of capturing the notion of program context more precisely
with the ultimate goal of learning what mutation operator is most
likely to generate an equivalent mutant or a dominator mutant
in what program context. Figure 1 (dynamic subsumption) and
Figure 2 (static subsumption) illustrate exactly this same point: the
subsumption relations change when the mutations are considered
in context.

An immediate follow-up question to this motivational example is
how frequently does it occur in practice. To this end, we conducted
an exploratory study, using the Lang-1 subject from the Defects4J
corpus. The test suite of Lang-1 achieves 98.2% statement coverage
and kills 216 out of 508 ROR mutants that are generated by applying
Op1. Given the strength of the test suite, a large fraction of the
remaining 292 mutants are very likely to be equivalent. Hence,
absent context information, the estimate that an Op1 mutant is
equivalent is 292/508 or 57%.

Incorporating context information and considering only muta-
tions generated by Op1 in the condition of a FOR loop, reduces the

number of mutants from 508 to 165. Of these, 11 mutants are killed
and 154 mutants are equivalent. Therefore, considering just the
enclosing statement changes the estimate that anOp1 mutation in a
FOR loop context is equivalent from 57% to 93%. This enclosing state-
ment context, all by itself, already provides a very strong signal for
the equivalence of mutants generated by Op1. Subsequent manual
analysis revealed that for each of the 11 killed Op1 mutants, there
is additional context information that could be exploited to predict
whether or not that mutant is equivalent. For example, some of
these FOR loops start at a variable index instead of 0 or 1.

4.2 Modeling program context
Rather than prede�ning a very small set of exclusion patterns that
provably generate equivalent or trivial mutants, we generalize this
notion of patterns to program context. We model program context
using the program’s abstract syntax tree (AST). In contrast to the
purely syntactic level, the AST provides a higher level of abstraction
and semantic information. Figure 3 shows the partial AST for the
getMin method from Listing 1. The highlighted node indicates the
node targeted by the ROR mutation operators.

Our ultimate goal is to apply machine learning on labeled ASTs
to train a classi�er that can predict mutant utility, given a mutation
operator and the program’s AST. As a �rst step in this paper, we
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Figure 4: Two AST node sequences for the mutation opera-
tor Op1 applied to the highlighted node in Figure 3. The two
sequences represent the same path in the AST at di�erent
levels of abstraction: the �rst sequence includes only nodes
that represent a top-level statement, whereas the second se-
quence includes all nodes plus edge labels.

MethodDecl ForStmt IfStmt Mutation:
'<'  |-->  '!='

MethodDecl
:body: Block ForStmt

:body: Block IfStmt
:cond:

Mutation:
'<'  |-->  '!='

validate our assumption that program context indeed a�ects mutant
utility, and we explore di�erent dimension of program context to
guide future research on developing more complex models.

Speci�cally, our implementation traverses the AST and com-
putes the sequence of AST nodes, from the target node to the root
node. Note that such a traversal can generate AST node sequences
at di�erent levels of abstraction. Figure 4 gives an example for
the highest level of abstraction, which only considers top-level
statements rather than individual expressions.

Operating on the abstract syntax tree not only allows us to ab-
stract over potentially irrelevant details but also provides semantic
information such as scope and data types of expressions. This
information can enable a classi�er to learn, among other things,
whether a mutation operator should discriminate between 1) inte-
ger and �oating-point expressions, 2) expressions that involve local
vs. global variables, and 3) di�erent identi�er names in identical
program contexts. In summary, modeling program context using
AST nodes provides the following advantages:

• Di�erent levels of abstraction (top-level statements vs. ex-
pressions).

• Possible abstraction over identi�er names.
• Availability of type information.
• Availability of information about visibility and scope.

In addition to the structural program context, modeled as AST
node sequences, the data type context of the target AST node can
a�ect mutant utility. For example, consider again a mutation of the
expression lhs < rhs. Knowing whether the comparison is �oat-
ing point vs. integer leads to di�erent expectations about mutant
behavior: mutating a �oating point comparison is highly unlikely
to lead to an ArrayIndexOutOfBoundsException—neither lhs nor
rhs is likely to be used as an array index. On the other hand, the
same mutation on integers is likely to lead to this exception if lhs
or rhs is used as an array index. Moreover, di�erentiating < from
<= is straight-forward for integers but quite complex for �oating
point numbers. Hence, such a mutation is likely to be equivalent
for �oating point numbers but not for integers.

Similarly, the scope and visibility of a variable matters with
respect to mutant equivalency. Consider mutating the value of
a global variable vs. mutating the value of a local variable. The
persistence of global variables means that mutations to them are
far less likely to be equivalent compared to mutations to local
variables.

5 EVALUATION
The purpose of this empirical evaluation is threefold. First, it aims
to study whether program context a�ects mutant utility. Second, it
aims to study whether the expected mutant utility di�ers between
all mutants of a particular mutation operator groups (e.g., ROR)
and all mutants of a particular mutation operator (e.g., Op1 in the
motivational example). Third, it aims to study what dimension of
program context is a strong predictor for expected mutant utility.

5.1 Subjects
We used the Defects4J benchmark [32] (v1.0.1) for the empirical
evaluation, which provides a set of 357 subjects, each accompa-
nied by a thorough, developer-written test suite. For each subject,
Defects4J provides a buggy and a �xed program version—the di�er-
ence between the two versions is a set of classes that a developer
�xed. We refer to each class in that set as a modi�ed class.

We selected 163 subjects from the Defects4J corpus where the
test suite achieved at least 95% statement coverage on all modi�ed
classes. Given that the number of trivial mutants and the dominator
strength are approximations that rely on an exhaustive test suite,
we selected these subjects because of their thorough test suites.

We employed the Major mutation framework [29] to generate
mutants for the modi�ed classes for these subjects, perform a mu-
tation analysis using the subjects’ test suites, and compute the kill
matrix (i.e., execute all tests against all mutants) for each subject.
Major could not generate the kill matrix for 56 out of 163 subjects
due to a computational timeout of 48 CPU hours.2 An automated
step then �ltered the remaining 107 subjects to remove subjects
containing duplicate classes (and thus removed the possibility of
duplicate mutants) using the following procedure:

(1) When two or more subjects contained the same classes,
we retained only the subject with the highest statement
coverage.

(2) When two or more subjects contained the same classes
and had the same statement coverage, we retained only
the subject with the larger number of test cases.

(3) When two or more subjects contained the same classes, had
the same statement coverage, and had the same number
of test cases, we retained only the subject with the newest
version of the subject source code.

This �ltering process resulted in 803 subjects for which Major gen-
erated 79,002 mutants. Of these, 878 mutants were not covered by
any test and we discarded them from the evaluation. The remaining
78,124 mutants were covered by an average of 63.7 tests per mutant.

Table 3 provides details about the generated mutants across these
80 subjects. In contrast to the other mutation operator groups, LOR,

2The expected runtime to compute the kill matrix for some of the Defects4J subjects is
beyond 100 CPU days[59].
3Chart-24, Closure-5, Closure-8, Closure-9, Closure-12, Closure-13, Closure-14,
Closure-15, Closure-28, Closure-36, Closure-45, Closure-46, Closure-49, Closure-55,
Closure-58, Closure-67, Closure-72, Closure-88, Closure-89, Closure-91, Closure-92,
Closure-98, Closure-102, Closure-108, Closure-111, Closure-121, Closure-124, Closure-
130, Closure-132, Lang-1, Lang-2, Lang-4, Lang-11, Lang-21, Lang-22, Lang-25, Lang-28,
Lang-31, Lang-33, Lang-37, Lang-39, Lang-40, Lang-44, Lang-45, Lang-49, Lang-51,
Lang-53, Lang-54, Lang-55, Lang-58, Lang-59, Lang-62, Math-4, Math-10, Math-15,
Math-22, Math-25, Math-26, Math-28, Math-35, Math-39, Math-40, Math-52, Math-64,
Math-69, Math-79, Math-84, Math-86, Math-89, Math-95, Math-96, Math-100, Math-105,
Time-3, Time-4, Time-5, Time-7, Time-10, Time-21, Time-22
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Table 3: Summary of mutation operator groups and mutants. Dominator strength gives the average dominator strength for
all killed mutants, and covering/killing tests give the average number of tests that cover/kill each mutant. The highlighted
rows indicate discarded mutation operator groups whose number of mutants is too small for this study.

Group Total Killed Dominator Trivial Dominator Covering Killing
mutants mutants mutants mutants stength tests tests

AOR 13456 12217 (90.8%) 4016 (29.8%) 1671 (12.4%) 0.679 43.0 19.9
COR 12161 9960 (81.9%) 4284 (35.2%) 1444 (11.9%) 0.704 71.5 24.3
EVR 3893 3731 (95.8%) 1209 (31.1%) 1081 (27.8%) 0.588 70.2 40.4
LOR 344 294 (85.5%) 115 (33.4%) 6 (1.7%) 0.696 311.2 19.3
LVR 13448 10907 (81.1%) 5087 (37.8%) 2793 (20.8%) 0.707 105.1 15.1
ORU 537 486 (90.5%) 153 (28.5%) 10 (1.9%) 0.659 492.8 22.4
ROR 27510 22768 (82.8%) 10429 (37.9%) 3925 (14.3%) 0.683 36.0 15.0
SOR 186 167 (89.8%) 69 (37.1%) 1 (0.5%) 0.792 548.5 7.5
STD 6589 5652 (85.8%) 2597 (39.4%) 1084 (16.5%) 0.751 56.9 20.2

Overall 78124 66182 (84.7%) 27959 (35.8%) 12015 (15.4%) 0.690 63.7 22.5

ORU, and SOR yielded very few mutants. To avoid spurious results
due to an insu�cient sample size, we discarded the 1,067 mutants
from these three mutation operator groups, leaving 77,057 remain-
ing for analysis. In addition to the breakdown of killed mutants,
dominator mutants, and trivial mutants, Table 3 gives, for each mu-
tation operator group, the average dominator strength and the av-
erage number of tests that cover and kill a mutant of that group.

5.2 Program context
Given the preliminary evidence that mutant utility depends on
program context, our goal is to identify what dimensions of program
context are most likely to predict whether a mutant is trivial, a
dominator, or equivalent. This study investigates the following
three dimensions of program context:

(1) Parent statement context (detailed)—structural context:
The type of the nearest ancestor AST node that corresponds
to a top-level statement, annotated (where applicable) with
the relationship between the mutated node and that parent
statement node. Figure 4 gives an example for such an
annotated relationship, where the mutated node is the
child node of an if statement condition (IfStmt:cond:).

(2) Child node(s) context—structural context:
• Has literal: indicates whether any immediate child

node of the mutated AST node is a literal.
• Has variable: indicates whether any immediate child

node of the mutated AST node is a variable.
• Has operator : indicates whether any immediate child

node of the mutated AST node is an operator.
(3) Node data type (detailed)—data type context:

The detailed data type of the mutated AST node. This
gives, for example, for a relational operator the types of
the operands and the return type (int,int)boolean.

5.3 Mutation operator groups
This study considers the following mutation operator groups:

• AOR: Arithmetic operator replacement
• COR: Conditional operator replacement
• EVR: Expression value replacement

• LVR: Literal value replacement
• ROR: Relational operator replacement
• STD: Statement deletion

In addition to the mutation operator groups, this study considers
the individual mutation operators (e.g., Op1–Op7 in the motiva-
tional example) because it’s very likely that an interaction e�ect
between di�erent dimensions of program context and the individual
mutation operators exists.

5.4 Mutant utility
This study explores the following three dimensions of mutant utility
(recall Section 3):

(1) Equivalency: Measured as the ratio of non-killed mutants.
(2) Triviality: Measured as the ratio of trivial mutants.
(3) Dominance: Measured as the average dominator strength.

5.5 Results
Each of �gures 5, 6, and 7 displays the expected mutant utility at
three levels of granularity. The �rst level is the mutation operator
group level. For example, in each �gure, the �rst row in the �rst
column shows the expected mutant utility when considering all
AOR mutants. The second level is the mutation operator level. For
example, in each �gure, the second row in the �rst column shows
the expected mutant utility when considering all mutants for each
of the AOR mutation operators. The third level puts each mutation
operator into context—that is, it associates each mutation operator
with parent statement context. For example, in each �gure, the
third row in the �rst column shows the expected mutant utility
when considering all mutants for each of the possible mutation
operator/parent statement context combinations.

Since extremely low and extremely high values are of the most
interest, the x-axis for the graph in each column shows data sorted
in non-descending order. Informally, “�at” graphs are “bad”, in that
they don’t convey much predictive power as to mutant utility, but
graphs with “low” and/or ”high” values are “good”, in that these
regions identify mutants that are either highly desirable or should
be avoided.
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Figure 5: Expected mutant utility (equivalency) with and without considering program context.
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Figure 6: Expected mutant utility (triviality) with and without considering program context.
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Figure 7: Expected mutant utility (dominance) with and without considering program context.

8



5.5.1 Equivalency. Figure 5 shows the impact of the program
context on the expected mutant utility considering only the equiv-
alency dimension. Recall that, due to the thoroughness of the
employed test suites, we are using killed mutants as a proxy for
non-equivalent mutants. The top row of the �gure shows that there
isn’t much di�erence between the six mutation operator groups
that we studied. In particular, trying to predict likely equivalent
mutants from mutation operator groups is hopeless. The second
row in the �gure shows that there is some variance between mu-
tation operators. For example, while the expected mutant utility
shows almost no variation for AOR and STD mutation operators,
some COR and ROR mutation operators are much more likely to
generate equivalent mutants than others. Adding parent context
information, as is shown in the last row of the �gure dramatically
increases this variance. In particular, parent context information
allows one to identify some COR, EVR and ROR mutants, namely
the ones at the left hand edge of the graph, that are highly likely
to be equivalent. Conversely, the right edge of each graph shows
mutants in contexts where they are much less likely than other
mutants in their mutation operator group to be equivalent.

Figure 5 shows a strong signal that certain mutation operators
are very likely to be equivalent in certain contexts, and also that
others are very unlikely to be equivalent in other contexts. In terms
of our motivational example, the parent context of a FOR statement
combined with the Op1 ROR mutation operator, which replaces
“less than” with “not equals”, appears near the left hand side of the
third row, �fth column graph, precisely because this combination
is highly likely to generate an equivalent mutant. Hence, a context-
aware mutation system should not generate these mutants, as most
of them are worse than useless.

5.5.2 Triviality. Figure 6 shows the impact of the program con-
text on the expected mutant utility considering only the triviality
dimension. The top row of �gure 6 shows that for all mutation
operator groups, roughly 20% of the generated mutants are trivial.
The top row, however, does not give any guidance as to which of
these mutation operator groups are more likely to generate trivial
mutants than others. Breaking the analysis down by mutation oper-
ator signi�cantly improves matters. For example, the third graph in
the second row shows that some EVR operators are highly unlikely
to generate a trivial mutant, while other EVR operators are highly
likely to do so. Adding parent statement context information, as
shown in the third row improves the predictive power even more.

5.5.3 Dominance. Figure 7 shows the impact of the program
context on the expected mutant utility considering only the dom-
inance dimension. Again, knowing just the mutation operator
group is not enough to make a meaningful prediction of dominator
strength. Adding in the speci�c mutation operator adds some pre-
dictive power, but not nearly as much as also including the parent
statement context, as shown in the last row.

5.5.4 Random selection. To ensure that our results were not
simply an artifact of grouping smaller numbers of mutants together,
we performed a control experiment using random mutant selection.
Our approach was to duplicate our new process as closely as was
practical. For each data point, which represents the expected mu-
tant utility for a set of grouped mutants, we substituted an identical

number of mutants randomly chosen from the entire set of mutants.
We repeated this randomized process 100 times. The error bars in
Figures 5–7 show the results in terms of mean expected mutant
utility and 90% con�dence interval. The random selection results
show very little di�erentiation in score compared to our new pro-
cess. We conclude that the di�erentiation of results is in fact due
to our selection process and not a sampling artifact.

5.5.5 Node data type and child node(s) context. We performed
the same analyses described in the previous subsections, consider-
ing node data type context and child node(s) context. More con-
cretely, we studied each dimension of context in isolation and in
combination with the other two. The results showed that the node
data type and child node(s) context in isolation only marginally
improve over considering individual mutation operators. Further-
more, adding both, node data type and child node(s) context, to the
parent statement context improves over parent statement context
alone, but parent statement context provides the strongest signal.

6 CONTEXT-BASED MUTANT SELECTION
Section 5.5 shows our results for the three dimensions of mutant
utility (equivalency, triviality, dominance) in isolation. These results
suggest that program context is a very strong predictor of mutant
utility, but individually they do not provide enough information to
select mutants that will achieve high dominator scores with few
equivalent and trivial mutants. To do that e�ectively, we must
consider the groups of mutants in multiple dimensions.

The left side of Figure 8 shows groups of mutants based on
unique combinations of mutation operator and parent statement
context. The x-axis indicates dominator strength, while the y-axis
shows the percentage of mutants killed. The size of the data points
shows the relative number of mutants within each group, with a
minimum of 10 mutants.

Groups of mutants with kill ratios below some threshold4 have
too many equivalent mutants, and thus cause too much work for
the tester[42]. At the same time, mutant groups with lower mean
dominator strength tend to contain redundant mutants, which add
no value. Our goal is to select those combinations of mutation
operators and program context that generate mutants in the upper-
right corner of the graph, with few equivalent mutants and high
dominator strength. We conjecture that these mutants will elicit
test sets that achieve high dominator scores while minimizing the
work required from the tester.

The right side of Figure 8 shows groups of mutants selected
at random. These groups contain the same number of mutants
as a corresponding group in left graph, but selected randomly5

rather than by mutation operator and context. This graph shows
considerably less di�erentiation in either dominator strength or
kill ratio.

Figure 9 shows the distribution of the expected mutant utility for
all unique mutation operator and program context combinations.

4While a threshold of 75% is shown here, it is intended to be notional and subject to
further research.
5For clarity, this graph shows a single randomized example rather than the mean of
multiple runs. While the results of individual randomized runs obviously di�er, this
graph is a representative result.
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Figure 8: Distribution of expected mutant utility for context-based selection and random selection. Each circle represents a
group of mutants and the size of each circle indicates the number of mutants in that group.
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Figure 9: Distribution of the expected mutant utility. Each
data point represents the expected utility of a mutant gen-
erated by a particular mutation operator in a particular pro-
gram context.

Each data point represents the expected utility of a mutant gener-
ated by a particular mutation operator in a particular program con-
text. The mutation operator/context combinations close to (1, 1, 1)
generate highly desirable mutants—very high expected dominance
with very low expected equivalency and triviality. In contrast, op-
erator/context combinations close to (0, 1, 0) and (1, 0, 0) generate

highly undesirable mutants—very low expected dominance with
very high equivalency or triviality.

7 PREDICTING MUTANT UTILITY USING
MACHINE LEARNING CLASSIFIERS

To further investigate the usefulness of program context to predict
mutant utility, we evaluated the e�ectiveness of di�erent context
information and machine learning algorithms, using the Scikit-
Learn[60] package.

Machine learning allows a computer program to re�ne its decision-
making abilities based on experience [73]. In supervised learning,
training data or previous experience is used to guide the analysis of
new data [63]. This experience is provided in the form of a training
set, a collection of inputs and their associated output(s). The ma-
chine learning algorithm uses the training set to improve its ability
to predict the appropriate output for any new set of inputs.

Supervised learning algorithms require each element of the train-
ing set to include two components:

(1) A feature vector, an n-dimensional numeric description of
the input features of the training element.

(2) A label, the known output or result associated with the
input vector.

Once trained, the machine learning algorithm can accept new,
previously unseen feature vectors and determine the most likely
label associated with these features.

7.1 Program context features
In order to train a machine learning algorithm on a set of mutants,
we must have some understanding of the features that describe
the program context surrounding the corresponding mutations.
Further, we must be able to encode that information into a feature
vector for input into the machine learning algorithm. Section 4.2
gives an overview of our approach to modeling program context
using information from a program’s abstract syntax tree. For our
machine learning experiments, we explored the following program
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context features (other useful features may be identi�ed as research
progresses):

• Mutation operator group: one of AOR, COR, EVR, LOR, LVR,
ORU, ROR, SOR, or STD6.

• Mutation operator: the speci�c program transformation
that generates a mutant (e.g., lhs < rhs 7−→ lhs != rhs).

• Node data type (basic): the summary data type of the mu-
tated node in the AST (e.g., int, boolean, class).

• Node data type (detailed): the detailed data type of the mu-
tated node in the AST—the data types of the operands and
result (e.g., (int,int)int) for mutated operators or meth-
ods; identical to node data type (basic) for other mutations.

• Node type (basic): the type of the mutated AST node (e.g.,
‘binary operator’, ‘int literal’, ‘method call’).

• AST context (basic): the sequence of AST node types from
the mutated node (inclusive) to the root node of the AST.
Figures 3 and 4 give an example.

• AST context (detailed): similar to AST context (basic), but
nodes with multiple children are annotated with the edge
label that indicates the relationship (e.g., ‘for’ becomes
‘for:init’, ‘for:cond’, ‘for:inc’, or ‘for:body’). Figures 3 and 4
give an example.

• AST statement context (basic): the sequence of AST node
types from the mutated node (inclusive) to the root node
of the AST, abstracted to include only those nodes that
represent a top-level statement.

• AST statement context (detailed): similar to AST statement
context (basic), but nodes with multiple children are anno-
tated with the edge label that indicates the relationship.

• Parent context (basic): the AST node type of the immediate
parent node of the mutated AST node.

• Parent context (detailed): the AST node type of the imme-
diate parent node of the mutated AST node plus the edge
label that describes the relationship between the two nodes
(see AST context detailed).

• Parent statement context (basic): similar to Parent context
(basic), but abstracted to include only those nodes that
represent a top-level statement.

• Parent statement context (detailed): similar to Parent context
(detailed), but abstracted to include only those nodes that
represent a top-level statement.

• Child node type:
– Has literal: indicates whether the mutated AST node

has an immediate child node that is a literal.
– Has variable: indicates whether the mutated AST node

has an immediate child node that is a variable.
– Has operator: indicates whether the mutated AST

node has an immediate child node that is an oper-
ator.

While some context features like ‘has literal’ are simple boolean
values, others such as ‘node data type’ are made up of a set of
distinct strings. We used the Scikit-learn CountVectorizer feature
extraction tool to build a vocabulary of all the strings, then bina-
rized the vocabulary into a sequence of binary values that represent

6Our machine learning experiments included all mutation operator groups.

each entry in the vocabulary. For the ‘AST context’ and ‘AST state-
ment context’ components, we also generated sets of n-grams to
represent subsets of the AST node sequences. After experimen-
tation, we decided on n-grams of lengths one to four.7 In other
words, CountVectorizer built a vocabulary consisting of all individ-
ual nodes in the AST context, plus all sequences of two consecutive
AST nodes, plus all sequences of three consecutive nodes, plus all
sequences of four consecutive nodes.

7.2 Evaluating program contexts
In our �rst machine learning experiment, we selected the decision
tree (DT) machine learning classi�er for its simplicity. To evaluate
the e�ectiveness of di�erent sets of program context, we trained the
decision tree on all mutants in our dataset that were covered by at
least one test, then tested all mutants against the trained classi�er.
The goal of this experiment is not to evaluate the performance
of the classi�er in a realistic setting but rather to determine the
relative utility of di�erent features of program context.

Consistent with our previous experiment, we examined the clas-
si�ers and program context features using three dimensions of
mutant utility (equivalency, triviality, and dominance). For the
dominance dimension, our experiments use the notion of strong
mutants (dominator strength sD >= 0.95). .

We present the results in form of receiver operating characteristic
(ROC) curves, which show the number of true positive results and
false positive results across a range of cut-o� points. Recall that a
classi�er assigns a probability to a feature vector that indicates how
likely this feature vector belongs to a particular class. In case of
binary classi�cation, the cut-o� point is the threshold value used to
assign a binary label to a feature vector (e.g., true if the probability
is above the cut-o� point, false otherwise).

Consider the dashed gray “Random” line in Figure 10. This graph
shows the idealized result of randomly selecting killable mutants.
As mutants are randomly selected, we tend on average to sample
equal proportions of both killed and unkilled mutants, so the curve
increases linearly. The line terminates at (1,1), where all killed and
unkilled mutants have been selected.

One metric for the e�ectiveness of a binary classi�er is the area
under the ROC curve (AUC)[13]. For random selection, AUC = 0.5.
Classi�ers that are more e�ective than random selection will have
curves o�set to the upper-left above the random curve, where true
positive results are found preferentially compared to false positive
results. Thus, the AUC will be higher for more e�ective classi�ers.
The ideal curve would begin at (0,0) and rise vertically to (0,1),
where all true positive results and no false positive results have
been identi�ed, resulting in AUC = 1.0.

Figrue 10 shows the results for the decision tree classi�er predict-
ing mutant equivalence when trained on di�erent program context
features8. Using only the mutation operator group (MutOp Group),
the classi�er performance was only slightly better than random.
Using the speci�c mutation operators (MutOp) signi�cantly im-
proved the ability to predict equivalent mutants. Adding the parent
statement context (MutOp+Parent) and adding the data type of the

7Longer n-gram sequences substantially increased processing time with no appreciable
increase in predictive power.
8While we tested many program context features, we show only a representative set.

11



Table 4: Area under the ROC curve for various program context features, considering the decision tree classi�er and three
dimensions of mutant utility.

Program context Area under the ROC curve

Equivalency Triviality Dominance

Mutation operator & node data type & child node types & AST context (n-grams) 0.911 0.922 0.835
Mutation operator & node data type & child node types & AST context (complete) 0.907 0.919 0.828
Mutation operator & parent statement & node data type & child node types 0.833 0.833 0.683
Mutation operator & parent statement 0.792 0.774 0.633
Mutation operator 0.747 0.730 0.592
Mutation operator group 0.581 0.583 0.524

Random 0.500 0.500 0.500
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Figure 10: ROC curves for various program context features
using the decision tree classi�er to predict equivalent mu-
tants.

mutated node and its child node types (MutOp+Parent+Type+Child)
further improved equivalent mutant prediction. The decision tree
classi�er achieves the best prediction results when trained on the
speci�c mutation operator, node data type, child node types, and
AST context n-grams (MutOp+ASTContext(1-5)+Type+Child). In con-
trast to using n-grams of the AST context, using the entire AST con-
text (MutOp+ASTContext(all)+Type+Child) resulted in slightly lower
predictive power.

Table 4 shows the area under the ROC curve (AUC) measures, In
general, prediction of equivalent and trivial mutants was approxi-
mately equal, while the prediction of strong mutants was somewhat
less e�ective. In all cases, using the program context features mu-
tation operator, AST context n-grams, node data type, and child
node types (MutOp+ASTContext(1-5)+Type+Child) showed the best
prediction results for the desired mutant properties.

7.3 Evaluating machine learning classi�ers
In our second machine learning experiment, we used several dif-
ferent machine learning classi�ers from Scikit-Learn to determine
the most e�ective classi�er for our mutant dataset. In all cases we
continued to use all mutants that were covered by at least one test.
All classi�ers used the best program context features determined in
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Figure 11: ROC curves for various classi�ers predicting
equivalent mutants.

the previous section (MutOp+ASTContext(1-5)+Type+Child) and were
trained and tested against the entire dataset.

Figure 11 shows the ROC curves for six di�erent classi�ers, pre-
dicting equivalent mutants, and Table 5 shows the AUC measures
for all three dimensions of mutant utility. The Gaussian naive
Bayes (GNB) classi�er performed only marginally better than ran-
dom selection, while Bernoulli naive Bayes (BNB), multinomial
naive Bayes (MNB), and stochastic gradient descent (SGD) showed
better predictive results—although well below decision trees. The
multi-layer perceptron neural net (MLP) classi�er showed the great-
est predictive ability. Again, the results are consistent for all three
dimensions of mutation utility.

7.4 Cross validation
While training and testing on the same dataset may be useful for
comparing program context features and machine learning classi-
�ers, it is not a useful approach for assessing the generalizability
and predictive power of a classi�er on previously unseen data.
Therefore, in our third machine learning experiment, we used sev-
eral di�erent cross-validation techniques to assess the practicality
of using machine learning to predict mutant utility in a more re-
alistic setting. All cross-validation experiments in this section use
the most predictive program context features (MutOp+ASTContext(1-
5)+Type+Child) and the best-performing classi�er (MLP).
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Table 5: Area under ROC curve for various classi�ers, con-
sidering three dimensions of mutant utility.

Classi�er Area under the ROC curve

Equivalency Triviality Dominance

Multi-layer perceptron 0.950 0.945 0.898
Decision tree 0.911 0.922 0.835
Multinomial naive Bayes 0.745 0.812 0.704
Bernoulli naive Bayes 0.738 0.809 0.696
Stochastic gradient descent 0.667 0.659 0.681
Gaussian naive Bayes 0.579 0.621 0.571

Random 0.500 0.500 0.500
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Figure 12: ROC curves for MLP classi�er in various cross-
validation settings, predicting equivalent mutants.

We used k-fold and leave-one-out cross validation—each within a
single project (Lang) and between all projects (All). In particular, we
used 5-fold cross validation, which randomly groups mutants into
�ve folds of equal size. For each fold, we trained the MLP classi�er
on four folds and then tested it against the �fth. Furthermore, we
employed a leave-one-project-out cross validation, considering all
projects, and a leave-one-subject-out cross validation, considering
only the project Lang, which contributes 45% of all mutants.

Figure 12 shows the ROC curves for the four di�erent cross val-
idations plus three baselines (training/testing on all data for all
projects and Lang, and random selection). Additionally, Table 6
gives the AUC measures for all three dimensions of mutant utility.
The 5-fold cross validation con�rms that the MLP classsi�er, using
the chosen program context features, is a good predictor of equiva-
lent mutants within a single project (AUC = 0.815) and between
multiple projects (AUC = 0.737).

Consider an engineer who is starting to test a new program.
In this scenario, the engineer would train a classi�er on other
programs and use that classi�er to predict mutant utility for the
new program under test. We simulated this scenario using a leave-
one-project-out cross validation considering all project. Speci�cally,
we trained the MLP classi�er on all the mutants of four projects
and then tested it against the �fth project, repeating to test each
project. Figure 12 gives the results (Leave 1 project out (All)), showing

Table 6: Area under ROC curve in various cross-validation
settings, considering the MLP classi�er and three dimen-
sions of mutant utility.

Cross validation Area under the ROC curve

Equivalency Triviality Dominance

Train/test on all subjects (All) 0.950 0.945 0.898
5-Fold (All) 0.737 0.761 0.596
Leave 1 project out (All) 0.684 0.697 0.523

Train/test on all subjects (Lang) 0.953 0.927 0.882
5-Fold (Lang) 0.815 0.839 0.761
Leave 1 subject out (Lang) 0.839 0.818 0.738

Random 0.500 0.500 0.500

that the predictions generated from training on di�erent programs
have lower accuracy, compared to the 5-fold cross validation. We
conjecture that some programming constructs represented in the
AST context are not equally common across all projects. Further,
the numbers of mutants generated for each project di�er, which
is likely to decrease the accuracy when holding out a project that
contributes a large fraction of the generated mutants. Nevertheless,
with AUC = 0.684, training on other programs does have some
predictive value for equivalent mutants, and is a better way to start
testing than random mutant selection. Interestingly, training on
other programs has approximately equally good predictive power
for identifying equivalent and trivial mutants, but almost no ability
to predict strong mutants.

As an engineer continues to incrementally develop software, the
training material in terms of same-program mutants and associated
tests grows. This means that at some point, the engineer could train
a classi�er on existing mutants from the same project and then
use that classi�er to predict mutant utility for a newly developed
method, class, or component. We simulated this scenario using a
leave-one-subject-out cross validation for the project Lang. Recall
that a subject in this scenario is a unique class in the project Lang.
We trained the MLP classi�er on all the mutants of all but one
subjects and tested it against the hold-out subject, repeating to test
each subject. Again, Figure 12 and Table 6 show the results (Leave 1
subject out (Lang)), suggesting that training a classi�er on di�erent
classes for presumably similar software yields good predictions. In
particular, the predictive power for all three dimensions of mutant
utility is considerably better (AUC between 0.74 and 0.84) when
compared to the leave-one-project-out cross validation.

For comparison, Figure 12 also shows the ROC curves for the
MLP classi�er when trained and tested on all subjects for a single
project (Train/test on all subjects (Lang)) and all subjects for all projects
(Train/test on all subjects (All)). These best-case scenarios, which
show higher predictive power than any of the simulated real-world
scenarios, provide an upper bound and point of reference.

We conclude that program context features, in particular the
mutation operator, AST context n-grams, node data type, and child
node types are a useful feature set for machine learning algorithms
to predict equivalent mutants, trivial mutants, and (within a given
project) mutants with high dominator strength.
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8 RELATEDWORK
Redundant Mutants: The large number of mutants generated by
mutation testing has long been a recognized problem. Mathur [46]
determined that the complexity of mutation testing isO (n2), where
n is the size of the program under test, and introduced the idea of
constrained mutation to reduce that complexity toO (n) by reducing
the number of mutation operators to create fewer mutants. O�utt
et al. [54, 57] took an empirical approach to de�ning an appropriate
set of selective mutation operators, and proposed the E-selective
set of �ve operators9 based on achieving a mutation score of 0.99
or higher over ten small programs. Wong et al. [69, 70] evaluated
combinations of mutation operators for e�ciency and e�ectiveness.

Other researchers have examined whether selective mutation is
more e�ective than random sampling of similar numbers of mu-
tants. Acree [1] and Budd [14] separately concluded that executing
tests that kill a randomly-selected 10% of mutants could provide
results close to executing tests that kill the full set of mutants.
Wong and Mathur [71] demonstrated similar results and found
that adding randomly-selected mutants beyond 10% yielded com-
paratively small improvements. More recently, Zhang et al. [74]
explored selective mutation and random selection using the Pro-
teum mutation tool and the Siemens suite programs and also found
no appreciable di�erence in performance between selective muta-
tion and random selection.

Gopinath et al. [21] expanded this investigation using a much
larger body of open-source code and compared several di�erent
mutation selection strategies with random selection, again �nding
that random selection performs as well as any other strategy. In a
later paper, Gopinath et al. [22] took a di�erent approach to dealing
with the large number of mutants, and showed that determining the
mutation score based on as few as 1,000 randomly-selected mutants
provides an estimate of quality of a test suite in terms of mutation
score.

It seems counterintuitive that targeted approaches to mutant
selection should perform no better than a random approach, yet
Kurtz et al. reassessed the performance of E-Selective mutation
using dominator mutation score [42] and found it indistinguishable
from both statement deletion and random mutant selection.

Barbosa et al. [11] applied a well de�ned set of guidelines to
obtain a su�cient set of mutation operators that would substantially
reduce the computational cost of mutation testing without losing
e�ectiveness. They applied such guidelines in two experiments
with two di�erent sets of C programs. They obtained reduced sets
of mutant operators that would produce e�ective test cases, but
these sets of su�cient operators were substantially diverse between
the experiments, showing that it was not possible to select a single
set of operators that was optimal for both programs. Namin et
al. [48–50] analyzed the Siemens suite programs using variable
reduction techniques to identify three high-performing operator
sets using between seven and 13 operators. Delamaro et al. [17]
de�ned a growth model for mutation operator selection, adding
operators using a greedy algorithm until a mutation score of 1.00
was achieved, and concluded that there is no single way to select the

9The E-selective operators, derived from Mothra [19], are absolute value insertion
(ABS), arithmetic operator replacement (AOR), logical connector replacement (LCR),
relational operator replacement (ROR), and unary operator insertion (UOI).

best set of operators for any particular program, a result consistent
with Kurtz et al. [42].

Taking mutation operator reduction to an extreme, Untch [66]
evaluated the performance of the statement deletion (SDL) operator
on its own and found it to be competitive with the operator sets
found by Namin. Deng et al. [20] applied the SDL operator to 40
classes written in Java using the muJava tool [44] and found that
SDL achieved a mutation score close to that of O�utt’s E-selective
operators while generating approximately 80% fewer mutants. SDL
also generates far fewer equivalent mutants than most mutation
operators. Delamaro et al. [16] evaluated the SDL operator against
programs written in C using Proteum and con�rmed Deng’s �nd-
ings. Like E-selective, SDL sometimes results in very low dominator
scores.

Several projects have addressed the notion that some mutants
are more valuable than others, an idea Kurtz et al. made precise
with subsumption graphs[41]. Yao et al. [72] suggest the notion of
a stubborn mutant, de�ned as one that is not killed by a branch-
adequate test set. While stubborn mutants are similar to dominator
mutants (such as being di�cult to kill), identifying both via dynamic
testing have the same problem—they require an extensive test set
and thus cannot be used to reduce the e�ort of creating a test set.
Namin et al. [47] describe MuRanker, a tool to identify di�cult-to-
kill mutants based on the syntactic distance between the mutant
and the original artifact. They postulate the existence of “super
mutants” that are di�cult to kill and for which a killing test may
also kill a number of other mutants. This is closely related to what
Kurtz et al. have formalized as dominator mutants[9, 41].

Kaminski et al. [36, 37] were the �rst to consider mutation op-
erators at the next level of detail, recognizing that the relational
operator replacement (ROR) mutation operator class (replacing ‘>’
with ‘<’, ‘!=’, etc.). has many redundant sub-operators. They showed
that, for any given relational operator, three mutants will always
weakly subsume the other four mutants, making them redundant.
Lindström and Márki [43] later showed that this subsumption does
not always hold under strong mutation. Just et al. [34] performed a
similar analysis for the conditional operator replacement operators,
and Yao et al. [72] found similar results for the arithmetic oper-
ator replacement mutation operators. Just and Schweiggert [35]
identi�ed seven mutation operators from the COR, UOI, and ROR
mutation operators classes showed that they form a su�cient set
of non-redundant mutants, analyzed a set of real-world programs,
and determined that redundant mutants cause an in�ated mutation
score that fails to accurately re�ect the e�ectiveness of a test suite.

Existing mutation selection strategies are �awed, and, at the
same time, more mutant operators are needed to generate mutants
that couple to real faults. Hence, we need a viable selection strategy
to cope with redundancy, and this paper provides evidence for the
novel idea that context can help predict which mutants will have
high dominator scores.

Equivalent Mutants: Baldwin and Sayward described how
compiler optimization techniques could detect equivalent mutants
[10]. O�utt and Craft investigated this approach in the context of
Mothra [53], and reported an equivalent mutant detection rate of
15%. An extention of this approach to include infeasible constraint
detection enabled O�utt and Pan to improve the detection rate to
45% [55, 56].
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Voas and McGraw suggest a program slicing approach to equiv-
alent mutant detection [67], which Hierons et al. [26] formalized
and Harman et. al extended with a notion of �ne-grained depen-
dence [24]. These works do not report empirical equivalent mutant
detection rates.

Kintis and Malevris [40] used data �ow analysis to detect equiva-
lent mutants; in particular, mutants that change the value of a vari-
able after its last use are always equivalent. Schuler and Zeller [62]
attempted to identify equivalent mutants based on impact in terms
of coverage di�erence, the di�erence in statement coverage between
the original artifact and the mutant. Just et al. took this approach a
step further and identify test-equivalent and equivalent mutants us-
ing state infection and local propagation conditions [30, 31]. While
e�ective, these methods also requires a pre-existing test set.

Jia et al. surveyed mutation testing in general and provided a
detailed review of mutation equivalence detection techniques [28].
Subsequent to this survey, Papadakis et al. proposed trival mutant
detection [58], where program binaries are simply compared via
di�. Surprisingly, this very simple approach yields a detection rate
of 7% to 21%, with a reported potential improvement to 30%.

Harman et al. argued that a Higher-Order Mutant (HOM) ap-
proach might introduce fewer equivalent mutants than normal �rst-
order approaches, and that a co-evolutionary approach to mutant
generation should “almost guarantee that no equivalent mutants
will be created” [2, 25].

Because equivalent mutants directly result in wasted work, lim-
iting equivalent mutants to a very low number is one of the keys
to making mutation analysis practical, and hence a key focus of
this paper. Mutation analysis generates very large numbers of
mutants, so if even a modest fraction of them are equivalent, the
absolute number can be quite high, even after all known techniques
for detecting equivalent mutants are applied. Hence we propose
techniques to identify likely equivalent mutants based on program
context.

Machine Learning for Program Analysis: Tripp et al. [64]
applied machine learning techniques to the problems of false posi-
tives in static analysis. The training data was early feedback from
developers in a given project; later false positives were identi�ed by
the classi�er. The authors used machine learning implementations
in a black-box manner by simply calling an appropriate API, and
evaluated how well each machine learning technique performed.
Our insight here is that treating equivalent mutants as false posi-
tives allows us to adopt this same approach in our e�orts to identify
equivalent mutants. In a closely related work, Hanam et al. [64]
seek to identify for “actionable alerts” in static analysis. The goal
of the machine learning approach here is to discover static-analysis
alert patterns using code patterns built atop slices taken from a
program’s abstract syntax tree. Kanewala et al. characterized pro-
gram features as node and path features of a program’s control �ow
graph (CFG) [38].

Our approach also models program context using a program’s
abstract syntax tree, but we study a richer set of program context
features (considering structural and data type context) and link
them to equivalent, trivial, and dominator mutants, rather than
actionable alerts.

Allamanis et al. piloted an investigation of tailored mutants [5]
in an e�ort to increase the coupling of mutants to real faults in the

Defects4J testbed. The additional mutation operators required to
increase the coupling result in a large increase in total mutants.
To combat this the paper uses a novel �ltering approach to prefer-
entially select mutants that are more likely to increase real-fault
coupling. The �ltering approach is based on “code naturalness”, an
idea originally developed by Hindle et al. [27], who used n-gram
language models to show that source code is predictable and “natu-
ral”. Hindle’s seminal work attracted a number of re�nements to
the language models [6, 45, 52, 65]. Applications of these models
include source code autocompletion, learning coding conventions
and suggesting names [3, 4], predicting program properties [61], ex-
tracting code idioms [7], code migration [39, 51] and code search [8].
Campbell et al. [15] used code naturalness to provide more accurate
syntax error messages from compilers. Bhatia and Singh [12] went
further and used neural networks to provide automated correction
of syntax errors. Wang et al. [68] extracted program features from
abstract syntax trees and used deep belief networks to improve
both within-project and cross-project defect prediction.

This large body of related work suggests that machine learning
and natural language processing methods can be fruitfully applied
to source code text for many purposes. This fact supports the
central hypothesis of this paper, namely that machine learning of
context information can be used to identify likely equivalent, trivial,
and dominator mutants.

9 CONCLUSIONS
Mutation analysis is the “gold standard” for assessing the quality
of test sets, and rightly so: mutation-adequate test sets are much
more highly coupled to fault detection than test sets adequate for
any other coverage criteria. Yet mutation testing is rarely used
by practicing engineers. One of the reasons for this unfortunate
state of a�airs is that current mutation analysis techniques produce
far more mutants than necessary and, even worse, many of these
mutants are equivalent. The result is that engineers waste e�ort
tracking down equivalent mutants and cannot easily assess how
close they are to being “done”.

To reduce both the total number of mutants and the number of
equivalent mutants, the research community has developed vari-
ous selective mutation approaches at the mutation operator group
level. Recent research, however, has shown that the e�ectiveness
of such techniques varies greatly across programs, with extremely
poor e�ectiveness in some cases. The sobering conclusion is that
selective mutation at the operator group level doesn’t signi�cantly
outperform random mutant selection.

This paper promises to forge a new path out of the selective
mutation dead end. The main result of this paper is that program
context can predict mutant utility: some program contexts are more
likely than others to yield mutants that are equivalent, or trivial,
or have high dominator strength. The results of this paper are
actionable in the following three ways.

First, the results strongly suggest that any useful selective muta-
tion approach must be context-sensitive and must be applied at the
mutation operator, rather than the mutation operator group, level.

Second, the results show program context dimensions and fea-
tures within each dimension that can predict mutant utility. These
�ndings can guide future work on developing more complex models
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for program context. While this paper focused on both structural
and data type context, extracted from a program’s abstract syntax
tree, it is plausible that there is additional context information, not
investigate in this study, that contributes a signal to mutant utility.

Third, the results suggest that machine learning classi�ers, most
notably decision trees and neural networks, are suitable for predict-
ing mutant utility based on program context. The cross-validation
results demonstrate high accuracy within and across projects. We
conjecture that more complex models of and interactions between
program context dimensions are likely to further improve the accu-
racy of these classi�ers.

The broader vision of this paper is to customize program muta-
tion to a target program, only generating mutants with high utility
for that program. As a �rst step in realizing this vision, this paper
has explored di�erent dimensions of program context, which are
predictive of mutant utility, and di�erent machine learning tech-
niques to train a classi�er that enables such customization. We hope
that the promising results will spawn research that will ultimately
yield a turn-key, context-sensitive mutation system that engineers
will widely adopt in practice.
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