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Abstract
The stochastic shortest path problem (SSP) is a
highly expressive model for probabilistic planning.
The computational hardness of SSPs has sparked
interest in determinization-based planners that can
quickly solve large problems. However, existing
methods employ a simplistic approach to deter-
minization. In particular, they ignore the possi-
bility of tailoring the determinization to the spe-
cific characteristics of the target domain. In this
work we examine this question, by showing that
learning a good determinization for a planning do-
main can be done efficiently and can improve per-
formance. Moreover, we show how to directly in-
corporate probabilistic reasoning into the planning
problem when a good determinization is not suffi-
cient by itself. Based on these insights, we intro-
duce a planner, FF-LAO*, that outperforms state-
of-the-art probabilistic planners on several well-
known competition benchmarks.

1 Introduction
One of the most popular models for probabilistic planning
is the Stochastic Shortest Path SSP) [Bertsekas and Tsitsik-
lis, 1991]. A solution to an SSP is a sequence of actions that,
starting from a given initial state, minimizes the expected cost
of reaching a state from a given set of goal states. The un-
certainty associated with the outcome of each action induces
probabilistic transitions between states. This model has been
used for a wide variety of applications, such as route planning
in the presence of traffic delays [Lim et al., 2013], quantify-
ing the value of battery energy storage systems [Tan et al.,
2015], modeling wildfire propagation [Hajian et al., 2016],
and semi-autonomous driving [Wray et al., 2016].

Despite its popularity, a major obstacle to the wide applica-
bility of SSPs is the prohibitive computational cost of finding
an optimal solution. This is due to the fact that optimal poli-
cies can, in the worst case, cover a number of states linear in
the size of the state space, which in turn can be exponential
in the number of variables describing the problem.

Given the difficulty of solving SSPs optimally, there has
been much interest in developing methods that sacrifice opti-
mality for the sake of computational efficiency. Among these

methods, one of the most successful approaches has been the
use of determinization complemented by replanning. These
methods became popular thanks to the unexpected success of
FF-Replan [Yoon et al., 2007] in the International Probabilis-
tic Planning Competition (IPPC) [Bryce and Buffet, 2008].
FF-Replan works by transforming the original problem into
a deterministic one (e.g., by only considering most probable
outcomes), and using the FF classical planner [Hoffmann and
Nebel, 2001] to solve the resulting problems. This process is
then repeated during execution whenever a state not covered
by the current deterministic plan is observed.

Although FF-Replan is significantly faster than any opti-
mal probabilistic planner, it performs poorly in many problem
domains due to the fact that it ignores the uncertainty. This
has led to the development of more robust determinization-
based algorithms, that incorporate some form of probabilistic
reasoning.

RFF [Teichteil-Königsbuch et al., 2010]—the winner of
IPPC’08—works by incrementally aggregating partial plans
until the result covers a high probability envelop of states;
each partial plan is computed using determinization and the
FF planner. FF-Hindsight [Yoon et al., 2008] works by sam-
pling a set of deterministic “futures” of the original problem,
solves each using FF, and combines their cost to estimate the
costs in the original problem. HMDPP [Keyder and Geffner,
2008] introduces a self-loop determinization trick that nudges
the deterministic planner into generating plans with low prob-
ability of deviation. SSiPP-FF [Trevizan and Veloso, 2014]
works by creating short-sighted problems that consider only
states up to a certain horizon from the current state. These
smaller problems are solved optimally, and when a tip state is
found during execution, the FF-Replan method is used.

Although these planners are capable of quickly solving
large problems, they all employ a rather crude approach to de-
terminization, by generally relying on either the most-likely-
outcome (MLO) determinization, or the all-outcomes (AO)
one. Using MLO can make planners ignore important sec-
tions of the state space (e.g., outcomes leading to dead-ends),
resulting in poor policies. Using AO has other problems such
as potentially wasting computation on irrelevant/unlikely sec-
tions of the state space, or treating all paths to the goal as
equally important.

Recent work has shown that the choice of determinization
can sometimes have a significant impact in the quality of a



determinization-based planning approach [Pineda and Zilber-
stein, 2014]. In fact, even in some domains deemed “proba-
bilistically interesting” [Little and Thiebaux, 2007] planning
with a good determinization can actually result in optimal
plans for the original SSP (e.g., the triangle tireworld do-
main). However, not much work has been done on generating
methods for choosing a determinization that works well for a
particular domain.

In this work, we address these issues with two main contri-
butions. First, we present a new planner, FF-LAO*, that com-
bines the LAO* optimal SSP solver [Hansen and Zilberstein,
2001] with the FF classical planner. FF-LAO* can leverage
fast deterministic planning to estimate state values, but still
partially reason about the complete probabilistic model if so-
desired; it does this by relying on the reduced models frame-
work introduced by Pineda and Zilberstein [2014].

Our second contribution is showing that it is possible to
learn a good determinization on small instances of a planning
domain, such that, when applied to larger instances, signifi-
cant gains in efficiency and performance can be realized. This
is the first work that selects a determinization based on the an-
ticipated performance in the original probabilistic domain.

The rest of the paper is structured as follows: Section 2
gives background on SSPs and reduced models, Section 3 de-
scribes the FF-LAO* algorithm, Section 4 explains how to
choose a good determinization for a particular planning do-
main, Section 5 presents experimental results, and Section 6
summarizes the conclusions and ideas for future work.

2 Background
A Stochastic Shortest Path (SSP) problem [Bertsekas and
Tsitsiklis, 1991] is defined by a tuple 〈S,A, T,C, s0, G〉,
where S is a finite set of states, A is a finite set of ac-
tions, T (s′|s, a) ∈ [0, 1] represents the probability of reach-
ing state s′ when action a is taken in state s, C(s, a) ∈ [0,∞)
is the cost of applying action a in state s, s0 is an initial
state and G is a set of goal states satisfying ∀sg ∈ G, a ∈
A, T (sg|sg, a) = 1 ∧ C(sg, a) = 0. Moreover, we as-
sume costs satisfy ∀s ∈ S \G,C(s, a) > 0. Interestingly,
SSPs are a variant of Markov Decision Process (MDPs) [Put-
erman, 1994] that has been shown to be more general than
finite-horizon and infinite-horizon discounted MDPs [Bert-
sekas and Tsitsiklis, 1995].

A solution to an SSP is a policy, a mapping π : S → A, in-
dicating that action π(s) should be taken at state s. A policy
π induces a value function V π : S → R that represents the
expected cumulative cost of reaching sg ∈ G by following
policy π from state s. An optimal policy π∗ is one that min-
imizes this expected cumulative cost; similarly, we use the
notation V ∗ to refer to the optimal value function.

For an SSP to be well-defined, a policy must exist such that
the goal is reachable from any state with probability 1. Un-
der this assumption, an SSP is guaranteed to have an optimal
solution, and the optimal value function is unique. This opti-
mal value function can then be found as the fixed point of the
Bellman update operator (Eq. 1).

V (s) = min
a∈A

{
C(s, a) +

∑
s′∈S

T (s′|s, a)V (s′)
}

(1)

There is a variety of languages to compactly describe SSPs,
of which PPDDL [Younes and Littman, 2004] has been most
widely used within the AI community. As it turns out, it has
been shown that finding whether a plan exists in a compactly
described problem is EXPTIME-complete [Littman, 1997].
As mentioned earlier, this challenging complexity has led to
the development of many approximate methods for solving
SSPs. Particularly relevant to our work are determinization-
based approaches, and, more generally, the reduced models
framework.

2.1 Reduced Models

Given an SSP, the reduced models framework creates a sim-
plified model characterized by two parameters: the number
of outcomes per action that are fully accounted for (referred
to as primary outcomes), and the maximum number of oc-
currences of the remaining outcomes that are planned for in
advance (referred to as exceptions). This type of reduction
generalizes single-outcome determinization, and introduces
a spectrum of reductions with varying levels of probabilistic
complexity.

The model assumes a factored representation of SSPs in
which actions are probabilistic operators of the form:

a = 〈preconditions, cost, [p1 : e1, ..., pm : em]〉,

where each effect ei, for i ∈ {1, ...,m}, is associated with
a probability pi of occurring when a is executed, and there
exists a successor function, τ , that maps effects to successor
states, so that s′ = τ(s, ei) and T (s′|s, a) = pi.

Using this formalism, a reduced model of an SSP
〈S,A, T,C, s0, G〉 is defined as follows:

• The set of states is defined as S′ = S × {0, 1, .., k},
where k is a positive integer;

• The set of actions is the original set, A;

• The transition function is defined by Eq. (2);

• The cost function is defined as C ′((s, j), a) = C(s, a),
for all (s, j) ∈ S′ ∧ a ∈ A;

• The initial state is (s0, 0);

• The set of goals is defined as G′ = {(s, j) ∈ S′|s ∈ G}.

The transition function defined below, while seemingly
complicated, describes a simple process. The value j in state
(s, j) keeps counts of how many exceptions have occurred up
to that point in execution. For states where the count is less
than the exception bound, k, the transition function operates
as the original, except that the counter is increased by one
for successors labeled as exceptions. On the other hand, for
states with count j = k, the transition completely ignores ex-
ceptions, and only considers transitions to primary outcomes,
redistributing the ignored probabilities so that they form a
proper distribution (e.g., by normalizing). The notation Pa
used below refers to the set of primary effects.



T ′((s′, j′)|(s, j), a) =
pi if j < k ∧ j′ = j ∧ ei ∈ Pa
pi if j < k ∧ j′ = j + 1 ∧ ei /∈ Pa
p′i if j = j′ = k ∧ ei ∈ Pa
0 if j = j′ = k ∧ ei /∈ Pa

(2)

where s′ = τ(s, ei) and the set {p′1, ..., p′m} is any set of real
numbers that satisfy

∀i : ei ∈ Pa p′i > 0 and
∑

i:ei∈Pa

p′i = 1 (3)

Note that the reduced models framework encapsulates
single-outcome determinization, which is simply a reduction
where the set of primary outcomes has size 1 and the value
of k = 0. In this work we are indeed concerned with reduc-
tions having a single primary outcome, but will include the
possibility of using k > 0. We refer to these models asMk

1-
reductions.

3 FF-LAO*
Reducing an SSP can significantly accelerate planning times
by pruning large sections of the state space. However, there
are many domains in which solving a reduced model opti-
mally is still prohibitively expensive. In fact, for complex
domains like the ones used in IPPC [Bryce and Buffet, 2008],
using determinization and k = 0 already results in problems
too large to be solved optimally in a practical manner.

To address this issue, we present a planner that combines
the flexibility of the reduced models framework with the effi-
ciency of a classical planner. We call this planner FF-LAO*,
as it is an extension of the LAO* algorithm [Hansen and Zil-
berstein, 2001] that leverages the FF classical planner [Hoff-
mann and Nebel, 2001] to accelerate computation.

FF-LAO* (Algorithms 1-4) receives as input an
Mk

1-reduction, S′=〈S′, A, T ′, C ′, (s0, 0), G′〉; i.e., one
that becomes deterministic after the exception bound is
reached (equivalently, one where ∀a ∈ A, |Pa| = 1). The
remaining inputs are the exception bound, k, and the error
tolerance, ε. We use S to denote the original SSP from which
S′ is derived.

FF-LAO* works almost exactly as LAO*, except that FF
is used to compute values and actions for states that have
reached the exception bound (i.e., states of the form (s, k)).
This occurs in lines 4 and 8 of Algorithm 1, where the state
expansion and test convergence procedures are replaced with
versions that use FF (Algorithms 2 and 3, respectively).

Readers familiar with LAO* may notice differences with
respect to the usual expansion and convergence test proce-
dures. In particular, note the inclusion of if statements in
line 7 (both procedures), where the successors of the ex-
panded state are only added to the stack if j < k. The reason
is that states (s, k) will be solved by calling FF, so there is no
need to expand their successors.

It is possible, of course, to remove these if statements and
let FF-LAO* continue the search; in that case, FF will be used

as an inadmissible heuristic. However, this does not improve
the theoretical properties of the algorithm (neither version is
optimal), and results in higher computation times, so we pre-
fer the version shown in the pseudocode.

The actual call to FF is done in Algorithm 4
(FF-BELLMAN-UPDATE). This procedure performs a Bell-
man update (Eq. 1) for any state (s, j) with j < k, and stores
the updated cost estimate and best action in global variables
V [(s, j)] and π[(s, j)], respectively (lines 6-7). For simplicity
of presentation, we use the following action-value function:

Q((s, j), a) ≡ C′((s, j), a)+
∑

(s′,j′)

T ′((s′, j′)|(s, j), a)V [(s′, j′)]

and assume, as is common for heuristic search algorithms,
that the values V [(s′, j′)] are initialized using an admissible
heuristic for S′.

For states (s, k), the FF-BELLMAN-UPDATE procedure
creates a PDDL file1, denoted as D, representing the deter-
ministic problem induced by M when j = k, with initial
state s (CREATE-PDDL in line 3). The procedure then calls
FF with input D (line 4) and memoizes costs and actions for
all the states visited in the plan computed by FF (lines 5-7).
More concretely, for each state si visited by this plan, we set
V [(si, k)] to be the cost, according to C ′, of the plan com-
puted by FF for that state (line 6), and set π[(si, k)] to be the
corresponding action (line 7). Additionally, note that the es-
timates V [(s, k)] are not admissible, even with respect to the
inputMk

1-reduction, since FF is not an optimal planner for
deterministic problems. Finally, in the case that FF returns
failure, we set V [(s, k)] =∞ and π[(s, k)] = NOP.

FF-BELLMAN-UPDATE also returns the residual, defined
as the absolute difference between the previous cost estimate,
and the estimate after applying the Bellman equation. This
residual is used by FF-TEST-CONVERGENCE to check the
stopping criterion of the algorithm.

Handling plan deviations during execution While
FF-LAO* solves Mk

1-reductions, the ultimate goal is to
solve the SSP from which the reduction is derived from. As
mentioned before, we use S to denote this SSP. It is easy to
see that a complete policy for S′ is not necessarily complete
for S. Therefore, during execution we need to be able to
handle deviations from the plan returned by FF-LAO*.

We use a replanning approach to address this issue,
FF-LAO*-REPLAN, illustrated in Algorithm 5. The idea is
simple: during execution, check if the current state has an
action already computed with j = 0. If that’s the case, this
action is executed (line 7). Otherwise, FF-LAO* is called
to solve the reduced model with initial state (s, 0) (lines 5-6).
FF-LAO*-REPLAN receives the choice of determinization as
input (∆), and creates anMk

1-reduction accordingly (line 1).
Note that there are other choices for the replanning crite-

rion. For example, checking if there is any j ∈ [0; k] such that
(s, j) ∈ π. Another alternative is to keep track of exceptions

1In practice, we create the PDDL file representingM before call-
ing FF-LAO* and store its name in memory. CREATE-PDDL is
shown for simplicity of presentation.



Algorithm 1: FF-LAO*
input: S′=〈S′, A, T ′, C′, (s0, 0), G′〉, k, ε

1 while true do
// Node expansion step

2 while true do
3 visited← ∅
4 cnt← FF-EXPAND

(
S′, (s, j), k, visited

)
5 if cnt = 0 then

// No tip nodes were expanded, so current policy
is closed

break
// Convergence test step

6 while true do
7 visited← ∅
8 error←

FF-TEST-CONVERGENCE
(
S′, (s, j), k, visited

)
9 if error < ε then

return // solution found
10 if error =∞ then

break // change in partial policy, go back to
expansion step

Algorithm 2: FF-EXPAND

input: S′=〈S′, A, T ′, C′, (s0, 0), G′〉, (s, j), k, visited
1 if (s, j) ∈ visited then

return 0
2 visited← visited ∪ {(s, j)}
3 cnt = 0
4 if π[(s, j)] = ∅ then

// Expand this state for the first time
5 FF-BELLMAN-UPDATE

(
S′, (s, j), k

)
6 return 1

7 else if j < k then
8 forall (s′, j′) s.t. T ′((s′, j′)|(s, j), π[(s, j)]) > 0 do
9 cnt += FF-EXPAND

(
S′, (s, j), k, visited

)
10 FF-BELLMAN-UPDATE

(
S′, (s, j), k

)
11 return cnt

during execution, and set the value of j accordingly; in this
case, j should be set to 0 after re-planning. Other alternatives
are possible. We choose the one used by FF-LAO*-REPLAN
because it is, in principle, the more robust choice, given that
we use the maximum “look-ahead” every time2. However,
if computational efficiency is a concern, other alternatives
might be better. We leave a more in depth analysis of these
choices for future work.

Theoretical considerations We now show conditions un-
der which FF-LAO* is guaranteed to succeed. The following
definition will be useful: a proper policy rooted at s is one
that reaches a goal state with probability 1 from every state it
can reach from s.

2Note that this is not guaranteed to be better than using j > 0,
since pathological scenarios can be created where increasing k leads
to worse plans.

Algorithm 3: FF-TEST-CONVERGENCE

input: S′=〈S′, A, T ′, C′, (s0, 0), G′〉, (s, j), k, visited
1 if s ∈ visited then

return 0
2 visited← visited ∪ {(s, j)}
3 error = 0
4 a← π[(s, j)]
5 if a = ∅ then

the test reached a state that hasn’t been expanded yet
6 return∞
7 else if j < k then
8 forall (s′, j′) s.t. T ′((s′, j′)|(s, j), π[(s, j)]) > 0 do
9 error = max

(
error,

FF-TEST-CONVERGENCE
(
S′, (s, j), k, visited

))
10 error=max

(
error, FF-BELLMAN-UPDATE

(
S′, (s, j), k

))
11 if π(s, j) 6= a then
12 return∞ // the policy changed

13 return error

Algorithm 4: FF-BELLMAN-UPDATE

input: S′=〈S′, A, T ′, C′, (s0, 0), G′〉, (s, j), k
output: error

1 V ′ ← V [(s, j)]
2 if j = k then
3 D ← CREATE-PDDL(S′, s)
4 {s1, a1, s2, a2, ..., sL, aL} ← CALL-FF(D)
5 for 1 ≤ L do
6 V [(si, k)]←

∑
i≤x≤L C

′((sx, k), ai)

7 π[(si, k)]← ai

8 else
9 V [(s, j)]← minaQ((s, j), a)

10 π[(s, j)]← arg minaQ((s, j), a)

11 return |V [(s, j)]− V ′|

Proposition 1. Given an admissible heuristic for the reduced
model S′, if S′ has at least one proper policy rooted at
(s0, 0), then FF-LAO* is guaranteed to find one in finite time.

Proof. Whenever FF-LAO* expands a state (s, k) and calls
FF on this state, if the call succeeds, the states si, for i ∈
[1, ..., L], that are part of the plan computed by FF essen-
tially become terminal states of the problem, with costs set
as in line 6. Since FF is a sub-optimal planner for deter-
ministic problems, we have that

∑
i≤x≤L C

′((sx, k), ai) ≥
V [(si, k)], and thus the values of all other states (s, j), with
j < k, are guaranteed to be admissible with respect to the
new updated value of the added terminal states. Therefore,
after every successful call to FF, the resulting set of values
and terminal states form a well-defined SSP, which LAO* is
able to solve.

Moreover, in the case that a call to FF fails for some state
ŝ, this state will be assigned an infinite cost, and thus the
improved version of LAO* will avoid ŝ as long there is
some other path to the goal. Because FF is complete, any
state belonging to a proper policy will be assigned a positive



Algorithm 5: FF-LAO*-REPLAN

input: S=〈S,A, T, C, (s0, 0), G〉,∆, k, ε
1 S′ ← CREATE-REDUCTION(S,∆)
2 s← s0
3 while s /∈ G do
4 if (s, 0) /∈ π then
5 REPLACE-INITIAL-STATE(S′, (s, 0))

6 FF-LAO*(S′, k, ε)
7 s← EXECUTE-ACTION(s, π[(s, 0)])

cost, so ŝ couldn’t have been part of a proper policy for M .
Thus, under the conditions of the theorem, every call to FF
transforms the problem becomes into an MDP with avoid-
able dead-ends [Kolobov et al., 2012], which LAO* is able to
solve3.

Unfortunately, as is the case for virtually all replanning al-
gorithms, not much can be guaranteed about the quality of
plans found by FF-LAO*-REPLAN for S. However, as we
show in our experiments, by carefully choosing the input de-
terminization, ∆ and the bound k, FF-LAO*-REPLAN can
find successful policies extremely quickly, even in domains
well-known for their computational hardness and the pres-
ence of dead-end states.

4 Choosing a Good Determinization
Many stochastic domains have an inherent structure that
make some of their determinizations significantly more effec-
tive than others. Consider, for instance, the triangle-tireworld
domain [Little and Thiebaux, 2007]. The agent has to reach
one of the vertices in a planar graph of triangular shape, but
after every move there is the possibility of getting a flat tire
(see Figure 1). If this happens, it must get a spare tire before
being able to move again. However, spares are only available
in certain locations, and there is only a single path from the
start to the goal such that all locations in the path have spares.
This domain has two possible determinizations, depending
on whether a flat tire happens after moving or not. As it turns
out, it is possible to get the optimal policy for this problem by
planning as if a flat tire will always occur. The interesting part
is that this is true for all instances of this problem, regardless
of size.

Triangle-tireworld is a great example of a domain where all
domain instances share a probabilistic structure that can be
captured by determinization. In practical terms, this means
that it is possible to learn a determinization on the smaller
problems, and then use it for solving larger ones.

We adopt this approach for choosing the input determiniza-
tion to FF-LAO*-REPLAN, ∆. We assume a set of problems
of varying sizes are available and that it is easy to identify the
smaller ones. This is the case for the IPPC benchmarks that
we consider in our experiments, as they are typically ordered

3While this is not true for the original version of LAO*, this
is true of the so-called improved version of LAO* that we use in
this work, which performs Bellman backups of states in depth-first
fashion, in post order traversal.

Figure 1: Two instances of the TRIANGLE-TIREWORLD
domain. Locations with spare tires are marked in black.

Algorithm 6: LEARNING-DET
input: D, Sl, k
output: ∆

1 {∆1, ...,∆M} ← Create all possible determinizations of D
2 forall i ∈ {1, ...,M} do
3 Pi,Ci ← Estimate probability of successs and expected

cost of executing FF-LAO*-REPLAN(Sl,∆i, k)
4 P ∗ ← maxi Pi

5 ∆← ∆mini Ci s.t. Pi=P∗

by problem size/difficulty. However, in general, some analy-
sis of the problem might be required, for example, by count-
ing the number of possible grounded atoms that the problem
description induces. Another possibility is to generate small
problems automatically from the domain description. This
has the advantage that it doesn’t require additional problems
for learning the determinization to use (besides the actual
problem to solve). Although this is certainly an interesting
possibility, it requires some finesse and it is outside the scope
of this work.

Algorithm 6 illustrates LEARNING-DET, a brute-force ap-
proach to learn a determinization ∆ for domain D; Sl repre-
sents the problem used for learning. This procedure does a
comprehensive search over the space of all determinizations.
For each, we estimate the probability of success (Pi) and the
expected execution cost (Ci) of running FF-LAO*-REPLAN
on Sl; the costs are estimated using Monte-Carlo simulations.
Finally, we pick the determinization with the lowest expected
cost, among the ones with the highest probability of success.

There are some subtleties involved in this process. Note
that FF-LAO* is only guaranteed to terminate if the input re-
duction has a proper policy from its initial state. This will
most likely not be the case for many of the determinizations
explored by LEARNING-DET; in fact, under some deter-
minizations the goals might be completely unreachable from
any state.

We address this issue using a well-known technique for
planning with problems involving dead-ends. In particular,
we use a cap M on state costs, including the costs assigned
when FF fails, and modify the Bellman backup operator used



by FF-LAO* as

V (s) = min
{
M,min

a∈A

{
C(s, a) +

∑
s′∈S

T (s′|s, a)V (s′)
}}

which guarantees the convergence of heuristic search algo-
rithms [Kolobov et al., 2012]. While this introduces a new pa-
rameter impacting the planner’s decisions, and hides the true
impact of dead-end states. Note that LEARNING-DET still
attempts to maximize the multi-objective evaluation criterion
typically used when unavoidable dead-ends exist [Kolobov et
al., 2012; Steinmetz et al., 2016].

5 Experiments
Domains and methodology
We evaluated FF-LAO* and LEARNING-DET on a set of
problems taken from IPPC’08 [Bryce and Buffet, 2008].
Specifically, we used the first 10 problem instances of the
following four domains: TRIANGLE-TIREWORLD,
BLOCKSWORLD, EX-BLOCKSWORLD, and
ZENOTRAVEL. Unfortunately, the rest of the IPPC’08
domains are not supported by our PPDDL parser [Bonet
and Geffner, 2005]. Additionally, we modified the
EX-BLOCKSWORLD domain to avoid the possibility
of blocks to be put on top of themselves [Trevizan and
Veloso, 2014].

The evaluation methodology was similar to the one used
in past planning competitions: we give each planner 20 min-
utes to solve 50 rounds of each problem (i.e., reach a goal
state starting from the initial state). Then we measure its per-
formance in terms of the number of rounds that the planner
was able to solve during that time. All experiments were
conducted on an Intel Core i7-6820HQ machine running at
2.70GHz with a 4GB memory cutoff.

We evaluated the planners using the MDPSIM [Younes et
al., 2005] client/server program for simulating SSPs, by hav-
ing planners repeatedly perform the following three steps: 1)
connect to the MDPSIM server to receive a state, 2) com-
pute an action for the received state and send the action to the
MDPSIM server, and 3) wait for the server to simulate the
result of applying this action and send a new state. A simula-
tion ends when a goal state is reached, when an invalid action
is sent by the client, or after 2500 actions have been sent by
the planner.

We compared the performance of FF-LAO* with our own
implementations of FF-REPLAN and RFF, as well as the orig-
inal author’s implementation of SSIPP [Trevizan and Veloso,
2014]. We evaluated two variants of FF-REPLAN, one using
MLO (FFs) and another one using AO (FFa). For RFF we
used MLO and the Random Goals variant, in which before
every call to FF, a random subset (size 100) of the previously
solved states are added as goal states. Additionally, we used
a probability threshold ρ = 0.2. The choice of these parame-
ters was informed by analysis in the original work [Teichteil-
Königsbuch et al., 2010]. For SSIPP we used t = 3 and
the hadd heuristic, parameters also informed by the original
work [Trevizan and Veloso, 2014].

For FF-LAO*, we learned a good determinization to use
by applying LEARNING-DET on the first problem of each

domain (p01), with k = 0. This choice of k was moti-
vated both by time considerations, and by the rationale that
k = 0 should better reflect the impact of each determiniza-
tion (since FF-LAO* becomes a fully determinization-based
planner). We used a dead-end cap D = 500 throughout our
experiments. We initialized values with the non-admissible
FF heuristic [Bonet and Geffner, 2005].

We ran LEARNING-DET offline, prior to the MDPSIM
evaluation. Note, however, that the time taken by the brute
force search plus the time used to solve problem p01 with
the chosen determinization was, in all cases, well below
the 20 minutes limit (approx. 2 minutes in the worst case).
The remaining parameter for FF-LAO* is the value of k.
We report the best performing configuration in the range
k ∈ [0, 3], which was k = 0 for most domains, with the
exception of EX-BLOCKSWORLD, which required k = 3.
Note that FF-LAO* with k = 0 is essentially equivalent to
FF-REPLAN, so any advantage obtained over FFs and FFa is
completely derived from the choice of determinization.

Results and Discussion
Figure 2 shows the number of successful rounds obtained by
each planner in the benchmarks. In general, FF-LAO* either
tied for the best, or outperformed the baselines. All planners
had a 100% success rate in BLOCKSWORLD, so there is not
much room for comparison.

In the TRIANGLE-TIREWORLD domain, FF-LAO* and
FFs had 100% success rate, while RFF ran out of time in
the last 3 problems. On the other hand, the performance of
SSIPP and FFa deteriorated quickly as the problem instance
increased. It is worth pointing out that the performances
of FFs and RFF in this domain are quite sensitive to tie-
breaking—there are only two outcomes to choose from, each
occurring with 0.5 probability. As the results of FFa suggest,
a different choice would have resulted in a much worse suc-
cess rate. On the other hand, the use of LEARNING-DET gets
around this issue by automatically choosing the best deter-
minization to use, a process that took seconds. While we do
note that the best goals parameterization of RFF gets around
this issue, its computational cost is much harder, so it’s not
obvious that it would actually improve performance in this
case [Teichteil-Königsbuch et al., 2010].

In the EX-BLOCKSWORLD domain FF-LAO* (with k =
3) and SSIPP significantly outperform the other two planners,
solving 252 and 250 rounds, respectively, against 187 for both
FFs and RFF, and 200 for FFa. Interestingly, in this domain
the determinization found by LEARNING-DET is not suffi-
cient to obtain good performance; in fact, only 3 problems
had a non-zero success rate with k = 0. This highlights the
utility of doing probabilistic reasoning with FF-LAO*. Al-
though not shown here for space considerations, the perfor-
mance with k = 1 (214 successful rounds) was already better
than all the baselines, except for SSIPP.

In ZENOTRAVEL, FF-LAO* and FFa were remarkably
better than the other two planners: they achieved 100%
success rate in all domain instances, while the other base-
lines failed almost all of the rounds. In the case of the
determinization-based planners, this is due to the goal becom-
ing unreachable under MLO, so the choice of determinization
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Figure 2: Number of solved rounds by 5 different planners in IPPC’08 benchmarks.

has a significant impact on performance.

6 Conclusion
In this work we presented a novel perspective on the use of
determinization for probabilistic planning, by showing that
a careful choice of determinization can outperform state-
of-the-art planners. We also introduced a new planner,
FF-LAO*, that, given a choice of determinization, leverages
the power of classical planning algorithms for computational
efficiency, but can also reason probabilistically if desired.

We proposed a strategy for selecting a determinization that
takes advantage of the inherent structure of a given stochastic
domain. We show that the choice of determinization can gen-
eralize across problems of varying size, in particular, in terms
of its impact on planning performance (probability of success
and expected cost).

We compared our approach to state-of-the-art planners for
goal-oriented probabilistic problems, using a set of bench-
marks taken from the International Probabilistic Planning
Competition. Our results strongly support the claim that the
choice of determinization can lead to very substantial gains
in performance, and position FF-LAO*—using our deter-
minization learning approach—as a competitive planner for
large stochastic domains.

In future work, we plan to explore ways to vary the choice
of determinization according to state-space features, and to
develop automated methods for generating problems useful
for learning a good determinization of a given domain.
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