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Abstract
In 1975, a breakthrough result of L. Valiant showed that parsing context free grammars can
be reduced to Boolean matrix multiplication, resulting in a running time of O(nω) for parsing
where ω ≤ 2.373 is the exponent of fast matrix multiplication, and n is the string length. Re-
cently, Abboud, Backurs and V. Williams (FOCS 2015) demonstrated that this is likely optimal;
moreover, a combinatorial o(n3) algorithm is unlikely to exist for the general parsing problem1.
The language edit distance problem is a significant generalization of the parsing problem, which
computes the minimum edit distance of a given string (using insertions, deletions, and substitu-
tions) to any valid string in the language, and has received significant attention both in theory
and practice since the seminal work of Aho and Peterson in 1972. Clearly, the lower bound for
parsing rules out any algorithm running in o(nω) time that can return a nontrivial multiplicative
approximation of the language edit distance problem. Furthermore, combinatorial algorithms
with cubic running time or algorithms that use fast matrix multiplication are often not desirable
in practice.

To break this nω hardness barrier, in this paper we study additive approximation algorithms
for language edit distance. We provide two explicit combinatorial algorithms to obtain a string
with minimum edit distance with performance dependencies on either the number of non-linear
productions, k∗, or the number of nested non-linear production, k, used in the optimal derivation.
Explicitly, we give an additive O(k∗γ) approximation in time O(|G|(n2 + n3

γ3 )) and an additive
O(kγ) approximation in time O(|G|(n2 + n3

γ2 )), where |G| is the grammar size and n is the string
length. In particular, we obtain tight approximations for an important subclass of context free
grammars known as ultralinear grammars, for which k and k∗ are naturally bounded. Interest-
ingly, we show that the same conditional lower bound for parsing context free grammars holds for
the class of ultralinear grammars as well, clearly marking the boundary where parsing becomes
hard!
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23:2 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

1 Introduction

Introduced by Chomsky in 1956 [11], context-free grammars (CFG) play a fundamental
role in the development of formal language theory [2, 22], compiler optimization [16, 44],
natural language processing [28, 32], with diverse applications in areas such as computational
biology [40], machine learning [34, 20, 42] and databases [24, 14, 35]. Parsing CFG is a
basic computer science question, that given a CFG G over an alphabet Σ, and a string
x ∈ Σ∗, |x| = n, determines if x belongs to the language L(G) generated by G. The canonical
parsing algorithms such as Cocke-Younger-Kasimi (CYK) [2], Earley parser, [12] etc. are
based on a natural dynamic programming, and run in O(n3) time2. In 1975, in a theoretical
breakthrough, Valiant gave a reduction from parsing to Boolean matrix multiplication,
showing that the parsing problem can be solved in O(nω) time [39]. Despite decades of
efforts, these running times have remain completely unchanged.

Nearly three decades after Valiant’s result, Lee came up with an ingenious reduction from
Boolean matrix multiplication to CFG parsing, showing for the first time why known parsing
algorithms may be optimal [26]. A remarkable recent result of Abboud, Backurs and V.
Williams made her claims concrete [1]. Based on a conjecture of the hardness of computing
large cliques in graphs, they ruled out any improvement beyond Valiant’s algorithm; moreover
they showed that there can be no combinatorial algorithm for CFG parsing that runs in truly
subcubic O(n3−ε) time for ε > 0 [1]. However combinatorial algorithms with cubic running
time or algorithms that use fast matrix multiplication are often impractical. Therefore, a
long-line of research in the parsing community has been to discover subclasses of context
free grammars that are sufficiently expressive yet admit efficient parsing time [27, 25, 17].
Unfortunately, there still exist important subclasses of the CFG’s for which neither better
parsing algorithms are known, nor have conditional lower bounds been proven to rule out
the possibility of such algorithms.

Language Edit Distance.

A generalization of CFG parsing, introduced by Aho and Peterson in 1972 [3], is language
edit distance (LED) which can be defined as follows.

I Definition 1 (Language Edit Distance (LED)). Given a formal language L(G) generated by
a grammar G over alphabet Σ, and a string x ∈ Σ∗, compute the minimum number of edits
(insertion, deletion and substitution) needed on x to convert it to a valid string in L(G).

LED is among the most fundamental and best studied problems related to strings and
grammars [3, 31, 35, 36, 8, 1, 33, 6, 21], and generalizes two basic problems in computer
science: parsing and string edit distance computation. Aho and Peterson presented a
dynamic programming algorithm for LED that runs in O(|G|2n3) time [3], which was
improved to O(|G|n3) by Myers in 1985 [31]. Only recently these bounds have been improved
by Bringmann, Grandoni, Saha, and V. Williams to give the first truly subcubic O(n2.8244)
algorithm for LED [8]. When considering approximate answers, a multiplicative (1 + ε)-
approximation for LED has been presented by Saha in [36], that runs in O( nω

poly(ε) ) time.
These subcubic algorithms for LED crucially use fast matrix multiplication, and hence

are not practical. Due to the hardness of parsing [26, 1], LED cannot be approximated

2 Dependency on the grammar size if not specified is either |G| as in most combinatorial algorithms, or
|G|2 as in most algebraic algorithms. In this paper the algorithms will depend on |P |, the number of
productions in the grammar. In general we assume |P | ∈ Θ(|G|).
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with any multiplicative factor in time o(nω). Moreover, there cannot be any combinatorial
multiplicative approximation algorithm that runs in O(n3−ε) time for any ε > 0 [1]. LED
provides a very generic framework for modeling problems with vast applications [24, 20, 42,
29, 34, 32, 15]. A fast exact or approximate algorithm for it is likely to have tangible impact,
yet there seems to be a bottleneck in improving the running time beyond O(nω), or even in
designing a truly subcubic combinatorial approximation algorithm. Can we break this nω
barrier?

One possible approach is to allow for an additive approximation. Since the hardness of
multiplicative approximation arise from the lower bound of parsing, it is possible to break
the nω barrier by designing a purely combinatorial algorithm for LED with an additive
approximation. Such a result will have immense theoretical and practical significance. Due to
the close connection of LED with matrix products, all-pairs shortest paths and other graph
algorithms [36, 8], this may imply new algorithms for many other fundamental problems. In
this paper, we make a significant progress in this direction by providing the first nontrivial
additive approximation for LED that runs in quadratic time. Let G = (Q,Σ, P, S) denote
a context free grammar, where Q is the set of nonterminals, Σ is the alphabet or set of
terminals, P is the set of productions, and S is the starting non-terminal.

I Definition 2. Given G = (Q,Σ, P, S), a production A→ α is said to be linear if there is
at most one non-terminal in α where A ∈ Q and α ∈ (Q ∪ Σ)∗. Otherwise, if α contains two
or more non-terminals, then A→ α is said to be non-linear.

The performance of our algorithms depends on either the total number of non-linear pro-
ductions or the maximum number of nested non-linear productions (depth of the parse tree
after condensing every consecutive sequence of linear productions, see the full version for
more details) in the derivation of string with optimal edit distance, where the latter is
often substantially smaller. Explicitly, we give an additive O(k∗γ) approximation in time
O(|G|(n2 + n3

γ3 )) and an additive O(kγ) approximation in time O(|G|(n2 + n3

γ2 )), where k∗ is
the number of non-linear productions in the derivation of the optimal string, and k is the
maximum number of nested non-linear productions in the derivation of the optimal string
(each minimized over all possible derivations). Our algorithms will be particularly useful for
an important subclass of CFGs, known as the ultralinear grammars, for which these values
are tightly bounded for all derivations [46, 10, 27, 7, 30].

I Definition 3 (ultralinear). A grammar G = (Q,Σ, P, S) is said to be k-ultralinear if there
is a partition Q = Q1 ∪ Q1 ∪ · · · ∪ Qk such that for every X ∈ Qi, the productions of X
consist of linear productions X → αA|Aα|α for A ∈ Qj with j ≤ i and α ∈ Σ, or non-linear
productions of the form X → w, where w ∈ (Q1 ∪Q2 ∪ · · · ∪Qi−1)∗.

The parameter k places a built-in upper bound on the number of nested non-linear productions
allowed in any derivation. Thus for simplicity we will use k both to refer to the parameter of
an ultralinear grammar, as well as the maximum number of nested non-linear productions.
Furthermore, if d is the maximum number of non-terminals on the RHS of a production,
then dk is a built-in upper bound on the total number of non-linear productions in any
derivation. In all our algorithms, without loss of generality, we use a standard normal form
where d = 2 for all non-linear productions. As we will see later, given any CFG G and
any k ≥ 1, we can create a new grammar G′ by making k copies Q1, . . . , Qk of the set of
non-terminals Q of G, and forcing every nonlinear production in Qi to go to non-terminals
in Qi−1. Thus G′ has non-terminal set Q1 ∪Q2 ∪ · · · ∪Qk, and size O(k|G|). In this way
we can restrict any CFG to a k-ultralinear grammar which can produce any string in L(G)

CVIT 2016



23:4 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

requiring no more than k nested non-linear productions. It is precisely this procedure of
creating a k-ultralinear grammar from a CFG G that we use in our proof of hardness for
parsing ultralinear languages (see the full version).

For example, if G is the well-known Dyck Languages [35, 6], the language of well-balanced
parenthesis, L(G′) contains the set of all parentheses strings with at most k levels of nesting.
Note that a string consisting of n open parenthesis followed by n matching closed parenthesis
has zero levels of nesting, whereas the string "((())())" has one level. As an another example,
consider RNA-folding [8, 40, 47] which is a basic problem in computational biology and can
be modeled by grammars. The restricted language L(G′) for RNA-folding denotes the set of
all RNA strings with at most k nested folds. In typical applications, we do not expect the
number of nested non-linear productions used in the derivation of a valid string to be too
large [14, 24, 4].

Figure 1 CFG Hierarchy: Upper bounds
shown first followed by lower bounds for each
class of grammars. Here |P | is the number of
productions in the grammar [39] [1] [41].

Among our other results, we consider exact
algorithms for several other notable sub-classes
of the CFG’s. In particular, we develop ex-
act quadratic time language edit distance al-
gorithms for the linear, metalinear, and super-
linear languages. Moreover, we show matching
lower bound assuming the Strong Exponential
Time Hypothesis [18, 19]. The figure to the right
displays the hierarchical relationship between
these grammars, where all upwards lines de-
note strict containment. Interestingly, till date
there exists no parsing algorithm for the ultralin-
ear grammars that runs in time o(nω), while a
O(n2) algorithm exists for the metalinear gram-
mars. In addition, there is no combinatorial
algorithm that runs in o(n3) time. In this paper,
we derive conditional lower bound exhibiting
why a faster algorithm has so far been elusive
for the ultralinear grammars, clearly demarking the boundary where parsing becomes hard!

1.1 Results & Techniques
Lower Bounds. Our first hardness result is a lower bound for the problem of linear language
edit distance. We show that a truly subquadratic time algorithm for linear language edit
distance would refute the Strong Exponential Time Hypothesis (SETH). This further builds
on a growing family of “SETH-hard” problems – those for which lower bounds can be proven
conditioned on SETH. We prove this result by reducing binary string edit distance, which
has been shown to be SETH-hard [9, 5], to linear language edit distance.

I Theorem (Linear Grammar Hardness of Parsing). There exists no algorithm to compute the
minimum edit distance between a string x, |x| = n, and a linear language L(G) in o(n2−ε)
time for any constant ε > 0, unless SETH is false.

Our second, and primary hardness contribution is a conditional lower bound on the
recognition problem for ulralinear languages. Our result builds closely off of the work
of Abboud, Backurs and V. Williams [1], who demonstrate that finding an o(n3)-time
combinatorial algorithm or any o(nω)-algorithm for context free language recognition would
result in faster algorithms for the k-clique problem and falsify a well-known conjecture in
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graph algorithms. We modify the grammar in their construction to be ultralinear, and then
demonstrate that the same hardness result holds for our grammar. See the full version for
details.

I Theorem (Ultralinear Grammar Hardness of Parsing). There is a ultralinear grammar GU
such that if we can solve the membership problem for a string of length n in time O(|GU |αnc)
for any fixed constant α > 0, then we can solve the 3k-clique problem on a graph with n
nodes in time O(nc(k+3)+3α).

Upper Bounds. We provide the first quadratic time algorithms for linear (Theorem 7),
superlinear (in full version), and metalinear language edit distance (in full version), running
in O(|P |n2), O(|P |n2) and O(|P |2n2) time respectively. This exhibits a large family of
grammars for which edit distance computation can be done faster than for general context
free grammars, as well as for other well known grammars such as the Dyck grammar [1]. Along
with our lower bound for the ultralinear language parsing, this demonstrates a clear division
between those grammars for which edit distance can be efficiently calculated, and those for
which the problem is likely to be fundamentally hard. Our algorithms build progressively
off the construction of a linear language edit distance graph, reducing the problem of edit
distance computation to computing shortest path on a graph with O(|P |n2) edges (Section 2).

Our main contribution is an additive approximation for language edit distance. We first
present a cubic time exact algorithm, and then show a general procedure for modifying
this algorithm, equivalent to forgetting states of the underlying dynamic programming
table, into a family of amnesic dynamic programming algorithms. This produces additive
approximations of the edit distance, and also provides a tool for proving general bounds on
any such algorithm. In particular, we provide two explicit procedures for forgetting dynamic
programming states: uniform and non-uniform grid approximations achieving the following
approximation-running time trade-off. See Section 4, and the full version for missing proofs.

I Theorem 4. If A is a γ-uniform grid approximation, then the edit distance computed by
A satisfies |OPT | ≤ |A| ≤ |OPT |+O(k∗γ) and it runs in O(|P |(n2 + (nγ )3)) time.

I Theorem 5. Let A be any γ-non-uniform grid approximation, then the edit distance
computed by A satisfies |OPT | ≤ |A| ≤ |OPT |+O(kγ)and it runs in O

(
|P |
(
n2 + n3

γ2

))
time.

We believe that our amnesic technique can be applied to wide range of potential dynamic
programming approximate algorithms, and lends itself particularly well to randomization.

2 Linear Grammar Edit Distance in Quadratic Time

We first introduce a graph-based exact algorithm for linear grammar, that is a grammar
G = (Q,Σ, P, S) where every production has one of the following forms: A→ αB, A→ Bα,
A→ αBβ, or A→ α where A,B ∈ Q, and α, β ∈ Σ. Given G and a string x = x1x2 . . . xn ∈
Σ∗, we give an O(|P |n2) algorithm to compute edit distance between x and G in this section.
The algorithm serves as a building block for the rest of the paper.

Note that if we only have productions of the form A→ αB (or A→ Bα but not both)
then the corresponding language is regular, and all regular languages can be generated in
this manner. However, there are linear languages that are not regular. For instance, the
language {0n1n | n ∈ N} can be produced by the linear grammar S → 0S1 | ε, but cannot be
produced by any regular grammar [38]. Therefore, regular languages are a strict subclass
of linear languages. Being a natural extension of the regular languages, the properties and
applications of linear languages are of much interest[13, 37].

CVIT 2016



23:6 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

Algorithm. Given inputs G and x, we construct a weighted digraph T = T (G, x) with a
designated vertex S1,n as the source and t as the sink such that the weight of the shortest
path between them will be the minimum language edit distance of x to G.
Construction. The vertices of T consist of

(
n
2
)
clouds, each corresponding to a unique sub-

string of x. We use the notation (i, j) to represent the cloud, 1 ≤ i ≤ j ≤ n, corresponding to

Figure 2 Clouds corresponding to
Linear Grammar Edit Distance Graph
Construction. Each cloud contains a
vertex for every nonterminal

the substring xixi+1....xj . Each cloud will contain a
vertex for every nonterminal in Q. Label the nonter-
minals Q = {S = A1, A2, . . . , Aq} where |Q| = q, then
we denote the vertex corresponding to Ak in cloud
(i, j) by Ai,jk . We will add a new sink node t, and use
S1,n as the source node s. Thus the vertex set of T
is V (T ) = {Ai,jk | 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ q} ∪ {t}.
The edges of T will correspond to the productions
in G. Each path from a nonterminal Ai,jk in (i, j) to
t corresponds to the production of a legal string w,
that is a string that can be derived starting from Ak
and following the productions of P , and a sequence of
editing procedures to edit w to xixi+1 . . . xj . For any
cloud (i, j), edges will exist between two nonterminals
in (i, j), and from nonterminals in (i, j) to nontermin-
als in (i+ 1, j) and (i, j − 1). Our goal will be to find
the shortest path from S1,n, the starting nonterminal S in cloud (1, n), to the sink t.
Adding the edges. Each edge in T is directed, has a weight in Z+ and a label from
{x1, x2, .., xn, ε} ∪ {ε(α) | α ∈ Σ}, where ε(α) corresponds to the deletion of α. If u, v are
two vertices in T , then we use the notation u `−−−−→

w(u,v)
v to denote the existence of an edge

from u to v with weight w(u, v) and edge label `. For any nonterminal A ∈ Q, define null(A)
to be the length of the shortest string in Σ∗ derivable from A, which can be precomputed
in O(|Q||P | log(|Q|)) time for all A ∈ Q (see full version for details). This is the minimum
cost of deleting a whole string produced by A. Given input x1x2 . . . xn, for all nonterminals
Ak, Ar and every 1 ≤ i ≤ j ≤ n, the construction is as follows:

Legal Productions: For i 6= j, then if Ak → xiAr is a production, add the edge
Ai,jk

xi−→
0
Ai+1,j
r to T . If Ak → Arxj is a production, add the edge Ai,jk

xj−→
0
Ai,j−1
r to T .

Completing Productions: If Ak → xi is a production, add the edge Ai,ik
xi−→
0
t to T . If

Ak → xiAr or Ak → Arxi is a production, add the edge Ai,ik
xi−−−−−→

null(Ar)
t to T .

Insertion: If Ak → xiAk is not a production, add the edge Ai,jk
xi−→
1

Ai+1,j
k to T . If

Ak → Akxj is not a production, add Ai,jk
xj−→
1
Ai,j−1
k . {these are called insertion edges.}

Deletion: For every production Ak → αAr or Ak → Arα, add the edge Ai,jk
ε(α)−−−→

1
Ai,jr .

{these are called deletion edges.}
Replacement: For every production Ak → αAr, if α 6= xi, then add the edge Ai,jk

xi−→
1

Ai+1,j
r to T . For every production Ak → Arα, if α 6= xj , add Ai,jk

xj−→
1

Ai,j−1
r to T . For

any Ak such that Ak → xi is not a production, but Ak → α is a production with α ∈ Σ,
add the edge Ai,ik

xi−→
1
t to T .{these are called substitution or replacement edges.}

I Theorem 6. For every Ak ∈ Q and every 1 ≤ i ≤ j ≤ n, the cost of the shortest path of
from Ai,jk to the sink t ∈ T is d if and only if d is the minimum edit distance between the
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string xi . . . xj and the set of strings which can be derived from Ak.

I Theorem 7. The cost of the shortest path from S1,n to t in the graph T is the minimum
edit distance which can be computed in O(|P |n2) time.

3 Context Free Language Edit Distance

In this section, we develop an exact algorithm which utilizes the graph construction presented
in Section 2 to compute the language edit distance of a string x = x1 . . . xn to any context
free grammar (CFG) G = (Q,Σ, P, S). We use a standard normal form for G, which is
Chomsky normal form except we also allow productions of the form A → Aa|aA, where
A ∈ Q, a ∈ Σ. For us, the important property of this normal form is that every non-linear
production must be of the form A→ BC, with exactly two non-terminals on the right hand
side. Any CFG can be reduced to this normal form (see full version for more details).

Let PL, PNL ⊂ P be the subsets of (legal) linear and non-linear productions respectively.
Then for any nonterminal A ∈ Q, the grammar GL = (Q,Σ, PL, A) is linear, and we denote
the corresponding linear language edit distance graph by T (GL, x) = T , as constructed in
Section 2. Let Li be the set of clouds in T which correspond to substrings of length i (so
Li = {(k, j) ∈ T | j − k + 1 = i}). Then L1, . . . , Ln is a layered partition of T . Let t be the
sink of T . We write T R to denote the graph T where the direction of each edge is reversed.
Let LRi denote the edge reversed subgraph of Li. In other words, LRi is the subgraph of T R
with the same vertex set as Li. Our algorithm will add some additional edges within LRi , and
some additional edges from t to LRi , for all 1 ≤ i ≤ n, resulting in an augmented subgraph
which we denote LRi . We then compute single source shortest path from t to LRi ∪ {t} in
phase i. Our algorithm will maintain the property that, after phase q − p+ 1, if Ap,q is any
nonterminal in cloud (p, q) then the weight of the shortest path from t to Ap,q is precisely
the minimum edit distance between the string xpxp+1 . . . xq and the set of strings that are
legally derivable from A. The algorithm is as follows:

Algorithm: Context Free-Exact

1. Base Case: strings of length 1. For every non-linear production A→ BC, and every
1 ≤ ` ≤ n, add the edges A`,` ←−−−−−

null(B)
C`,` and A`,` ←−−−−−

null(C)
B`,` to LR1 . Note that the

direction of the edges are reversed because we are adding edges to LR1 and not L1. Call
the resulting augmented graph LR1 .

2. Solve single source shortest path from t to every vertex in LR1 ∪{t}. Store the value of the
shortest path from t to every vertex in LR1 , and an encoding of the path itself. For any
1 ≤ p ≤ q ≤ n and Ap,q ∈ Lq−p+1, we write Tp,q(A) to denote the weight of the shortest
path from t to Ap,q. After having computed shortest paths from t to every vertex in the
subgraphs LR1 , . . . , L

R

i−1, we now consider LRi .
3. Induction: strings of length i. For every edge from a vertex Ap,q in Li to a vertex

Bp+1,q or Bp,q−1 in Li−1 with cost γ ∈ {0, 1}, add an edge from t to Ap,q ∈ LRi with
cost Tp+1,q(B) + γ or Tp,q−1(B) + γ, respectively. These are the linear production edges
created in the linear grammar edit distance algorithm.

4. For every non-linear production A → BC and every vertex Ap,q ∈ LRi , add an edge
from t to Ap,q in LRi with cost c where c = minp≤`<q Tp,`(B) + T`+1,q(C). The indices
p ≤ ` < q are called splitting points, as they specify where the string xp, . . . , xq is split by
the production A→ BC. To later recover the derivation, we store the specific ` which
yields the minimum value of the above equation.

CVIT 2016



23:8 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

5. For every non-linear productionA→ BC, add the edgeAp,q ←−−−−−
null(B)

Cp,q andAp,q ←−−−−−
null(C)

Bp,q to LRi .
6. After adding the edges in steps 3-5, we call the resulting graph LRi . Then compute shortest

path from t to every vertex in the subgraph LRi ∪ {t}, and store the values of the shortest
paths, along with an encoding of the paths themselves.

7. Repeat for i = 1, 2, . . . , n. Return the value T1,n(S).

I Theorem 8. For any nonterminal A ∈ Q and 1 ≤ p ≤ q ≤ n, the weight of the shortest
path from Ap,q ∈ Li to t is the minimum edit distance between the substring xp . . . xq and the
set of strings which can be legally produced from A, and the overall time required to compute
the language edit distance is O(|P |n3).

4 Context Free Language Edit Distance Approximation

Now this cubic time algorithm itself is not an improvement on that of Aho and Peterson [3].
However, by strategically modifying the construction of the subgraphs Li by *forgetting* to
compute some of the non-linear edge weights (and taking the minimum over fewer splitting
points for those that we do compute), we can obtain an additive approximation of the
minimum edit distance. We introduce a family of approximation algorithms which do just
this, and prove a strong general bound on their behavior. Our results give bounds for the
performance of our algorithm for any CFG. Additionally, for any k-ultralinear language, our
results also give explicit O(k

√
n) and O(2kn1/3) additive approximations from this family

which run in quadratic time. Note that, as shown in our construction in the proof of hardness
of parsing ultralinear grammars, for any k we can restrict any context free grammar G to a
k-ultralinear grammar G′ such that L(G′) ⊆ L(G) contains all words that can be derived
using fewer than ≤ k nested non-linear productions (see full version for a more formal
definition of k and hardness proofs).

I Definition 9. For any Context Free Language edit distance approximation algorithm A,
we say that A is in the family F if it follows the same procedure as in the exact algorithm
with the following modifications:

1. Subset of non-linear productions. A constructs the non-linear production edges in
step 4 for the vertices in some subset of the total set of clouds {(p, q) | 1 ≤ p ≤ q ≤ n}.

2. Subset of splitting points. For every cloud (p, q) that A computes non-linear produc-
tion edges for, in step 4 of the algorithm when computing the weight c of any edge in
this cloud it takes minimum over only a subset of the possible splitting points p, . . . , q
(where this subset is the same for every non-linear edge weight computed in (p, q)).

By forgetting to construct all non-linear production edges, and by taking a minimum over
fewer values when we do construct non-linear production edges, the time taken by our
algorithm to construct new edges can be substantially reduced. Roughly, the intuition for
how we can still obtain an additive approximation is as follows. If the shortest path to the sink
in the exact algorithm uses a non-linear edge from a vertex Ap,q in cloud (p, q), then naturally
our approximation algorithm would also use such an edge if it existed. However, it is possible
that nonlinear edges were not constructed for cloud (p, q) by the approximation. Still, what
we can do is find the closest cloud (p′, q′), with p ≤ p′ ≤ q′ ≤ q, such that nonlinear edges
were constructed in (p′, q′), and then follow the insertion edges Ap,q → Ap+1,q → · · · → Ap

′,q′ ,
and take the desired non-linear production edge from Ap

′,q′ . The additional incurred cost is
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at most |p− p′|+ |q − q′|, or the distance to the nearest cloud with non-linear edges, and
this cost is incurred at most once for every non-linear production in an optimal derivation.

Figure 3 Non-uniform edges are computed only for a
subset of the clouds (colored black). Only a subset of the
splitting points are considered while computing the weights.

We now give two explicit ex-
amples of how steps 1 and 2 can be
implemented. We later prove expli-
cit bounds on the approximations of
these examples in Theorems 4 and
5. In both examples a sensitivity
parameter, γ, is first chosen. We
use |OPT | to denote the optimum
language edit distance, and |A| to
denote the edit distance computed
by an approximation algorithm A.

I Definition 10. An approxima-
tion algorithm A ∈ F is a γ-
uniform grid approximation if for
i = n, (n − γ), (n − 2γ), . . . , (n −
bnγ cγ) (see Figure 3).

1. A constructs non-linear production edges only for an evenly-spaced 1/γ fraction of the
clouds in Li, and no others, where γ is a specified sensitivity parameter.

2. Furthermore, for every non-linear edge constructed, A considers only an evenly-spaced
1/γ fraction of the possible break points.

Here if i or (n− i+ 1) (the number of substrings of length i) is not evenly divisible by γ, we
evenly space the clouds/breakpoints until no more will fit.

We will later see that the running time of such a γ-uniform grid approximation is
O(|P |(n2 + (nγ )3)), and in particular for any k-ultralinear grammar G it gives an additive
approximation of O(2kγ). Thus by setting γ = n1/3, we get an O(2kn1/3)-approximation in
O(|P |n2) time (Theorem 4).

I Definition 11. For i = 0, 1, . . . , log(n), set Ni = {Lj | n
2i+1 < j ≤ n

2i }. Let N ′i ⊂ Ni

be an evenly-spaced min{ 2i

γ , 1}-fraction of the Lj ’s in Ni (subset of diagonals). Then, an
approximation algorithm A ∈ F is a γ-non-uniform grid approximation if, for every Lj ∈ N ′i ,
A computes non-linear production edges only for a min{ 2i

γ , 1}-evenly-spaced fraction of the
clouds in Lj . Furthermore, for any of these clouds in N ′i for which A does compute non-linear
production edges, A considers only an evenly-spaced min{ 2i

γ , 1} -fraction of all possible break
points (see Figure 3 (right)).

We will see that the running time of a γ-non-uniform grid approximation is O(|P |(n2 + n3

γ2 )),
and in particular for any k-ultralinear grammar, or if k is the maximum number of nested
non-linear productions, it gives an additive approximation of O(kγ). Hence setting γ =

√
n,

we get an additive approximation of O(k
√
n) in quadratic time (Theorem 5).

4.1 Analysis.
The rest of this section will be devoted to proving bounds on the performance of approximation
algorithms in F . We use T OPT to denote the graph which results from adding all the edges
specified in the exact algorithm to T . Recall that T is the graph constructed from the linear

CVIT 2016



23:10 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

productions in G. For A ∈ F , we write T A to denote the graph which results from adding the
edges specified by the approximation algorithm A. Note that since A functions by forgetting
to construct a subset of the non-linear edges created by the exact algorithm, we have that
the edge sets satisfy E(T ) ⊆ E(T A) ⊆ E(T OPT ). We now introduce the primary structure
which will allow us to analyze the execution of our language edit distance algorithms.

Binary Production-Edit Trees.

I Definition 12. A production-edit tree (PET) T for grammar G and input string x is a
binary tree which satisfies the following properties:

1. Each node of T stores a path in the linear grammar edit distance graph T = T (GL, x)
(see Section 2 and 3). The path given by the root of T must start at the source vertex
S1,n of T .

2. For any node v ∈ T, let Ap,q, Br,s be the starting and ending vertices of the corresponding
path. If Br,s is not the sink t of T , then v must have two children, vR, vL, such that there
exists a production B → CD and the starting vertices of the paths in vL and vR are Cr,`
and D`+1,s respectively, where ` is some splitting point r − 1 ≤ ` ≤ s. If ` = r − 1 or
` = s, then one of the children will be in the same cloud (r, s) as the ending cloud of the
path given by v, and the other will be called a nullified node. This corresponds to the
case where one of the null edges created in step 5 of the exact algorithm is taken.

3. If the path in v ∈ T ends at the sink of T , then v must be a leaf in T. If Ap,q is the
starting vertex of the path, this means that the path derives the entire substring xp . . . xq
using only linear productions. Thus a node v is a leaf of T if and only if it either ends
at the sink or is a nullified node. It follows from 2. and 3. that every non-leaf node has
exactly 2 children.

Notation: To represent a node in T that is a path of cost c from Ap,q to either Br,s, or t,
we will use the notation [Ap,q, Br,s, c], or [Ap,q, t, c], respectively. If one of the arguments is
either unknown or irrelevant, we write · as a placeholder. In the case of a nullified node,
corresponding to the nullification of A ∈ Q, we write [A, t, null(A)] to denote the node. Note,
since we are now dealing with two *types* of graphs, to avoid confusion whenever we are
talking about a vertex Ap,q in any of the edit-distance graphs (such as T , T A, T OPT , ect),
we will use the term vertex. When referring to the elements of a PET T we will use the term
node. Also note that all error productions are linear.

We can now represent any sequence of edits produced by a language edit distance
algorithm by such a PET, where the edit distance is given by the sum of the costs stored in
the nodes of the tree. To be precise, if [·, ·, c1], . . . , [·, ·, ck] is the set of all nodes in T, then
the associated total cost ‖T‖ =

∑k
i=1 ci. Let DA be the set of PET’s T compatible with a

fixed approximation algorithm A ∈ F .

I Definition 13 (PET’s compatible with A). For an approximation algorithm A ∈ F , let
DA ⊂ F be the set of PET’s T which satisfy the following constraints:

1. If [Ap,q, Br,s, ·] is a node in T, where A,B ∈ Q, then A must compute non-linear edges
for the cloud (r, s) ∈ T A.

2. If [Cr,`, ·, ·], [D`+1,s, ·, ·] are the left and right children of a node [Ap,q, Br,s, ·] respectively,
then A must consider the splitting point ` ∈ [p, q) when computing the weights of the
non-linear edges in the cloud (r, s) ∈ T A.
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The set DA is then the set of all PET’s which utilize only the non-linear productions and
splitting points which correspond to edges that are actually constructed by the approximation
algorithm A in T A. Upon termination, any A ∈ F will return the value ‖TA‖ where TA ∈ DA
is the tree corresponding to the shortest path from t to S1,n in T A. The following theorem
is not difficult to show.

I Theorem 14. Fix any A ∈ F , and let c be the edit distance returned after running the
approximation algorithm A. Then if T is any PET in DA, we have c ≤ ‖T‖.

Note that since the edges of T A are a subset of the edges of T OPT considered by an
exact algorithm OPT , we also have c ≥ ‖TOPT ‖, where TOPT is the PET given by the exact
algorithm. To prove an upper bound on c, it then suffices to construct a explicit T ∈ DA,
and put a bound on the size of ‖T‖. Thus, in the remainder of our analysis our goal will be
to construct such a T ∈ DA. We now introduce our precision functions.

I Definition 15 (Precision Functions). For any cloud (p, q) ∈ T A, let α(p, q) be any upper
bound on the minimum distance d∗((p, q), (r, s)) = (r − p) + (q − s) such that p ≤ r ≤ s ≤ q
and A computes non-linear edge weights for the cloud (r, s) . Let β(p, q) be an upper bound
on the maximum distance between any two splitting points which are considered by A in
the construction of the non-linear production edges originating in a cloud (r, s) such that
A computes non-linear edge weights for (r, s) and d∗((p, q), (r, s)) ≤ α(p, q). Furthermore,
the precision functions must satisfy α(p, q) ≥ α(p′, q′) and β(p, q) ≥ β(p′, q′) whenever
(q − p) ≥ (q′ − p′).

While the approximation algorithms presented in this paper are deterministic, the
definitions of α(p, q) and β(p, q) allow the remaining theorems to be easily adapted to
algorithms which randomly forget to compute non-linear edges. While our paper considers only
two explicit approximation algorithms, stating our results in this full generality substantially
easies the analysis. Both Theorems 4 and 5 will follow easily once general bounds are proven,
and without the generality two distinct proofs would be necessary.

Constructing a PET T ∈ DA similar to TOPT .

Our goal is now to construct a PET T ∈ DA with bounded cost. We do this by considering
each node v of TOPT and constructing a corresponding node u in T such that the path
stored in u imitates the path in v as closely as possible. A perfect imitation may not be
feasible if the path at v uses a non-linear production edge in a cloud that A does not compute
non-linear edges for. Whenever this happens, we will need to move to the closest cloud which
A does consider before making the same non-linear production that the exact algorithm did.
Afterwards, the ending cloud of our path will deviate from that of the optimal, so we will need
to bound the total deviation that can occur throughout the construction of our tree in terms
of α(p, q) and β(p, q). The following lemma will be used crucially in this regard for the proof
of our construction in Theorem 17. The lemma takes as input a node [Ap,q, Br,s, c] ∈ TOPT
and a cloud (p′, q′) such that xp, . . . , xq is not disjoint from xp′ , . . . , xq′ , and constructs a
path [Ap′,q′ , Br′,s′ , c′] of bounded cost that is compatible with a PET T ∈ DA.

I Lemma 16. Let [Ap,q, Br,s, c] be any non-leaf node in TOPT , and let A ∈ F be an
approximation algorithm with precision functions α(p, q), β(p, q). If p′, q′ satisfy p ≤ q′

and p′ ≤ q, then there is a path from Ap
′,q′ to Br

′,s′ , where r ≤ r′ ≤ s′ ≤ s, of cost
c′ ≤ c+ (|p′ − p|+ |q′ − q|)− (|r′ − r|+ |s′ − s|) + 2α(r, s) such that A computes non-linear
production edges for cloud (r′, s′). Furthermore, for any leaf node [Ap,q, t, c] ∈ TOPT , we can
construct a path from Ap

′,q′ of cost at most c′ ≤ c+ (|p′ − p|+ |q′ − q|) to the sink.
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We will now iteratively apply Lemma 16 to each node v ∈ TOPT from the root down,
transforming it into a new node ψ(v) ∈ T. Here ψ will be a surjective function ψ : V (TOPT )→
V (T). Lemma 16 will guarantee that the cost of ψ(v) is not too much greater than that of v.
If during the construction of T, the substrings corresponding to v and ψ(v) become disjoint,
then we will transform the entire subtree rooted at v into a single node ψ(v) ∈ T, thus the
function may not be injective.

Let v be any node in TOPT , and u its parent node if v is not the root. Let (p, q), (r, s) ∈ T
and (pv, qv), (rv, sv) ∈ T be the starting and ending clouds of u and v respectively. Similarly
let (p′, q′), (r′, s′) and (p′v, q′v), (r′v, s′v) be the starting and ending clouds of ψ(u) and ψ(v)
respectively. Furthermore, let (pX , qX) and (p′X , q′X), where X = L for left child and X = R

for right child, be the starting clouds of the left and right children of u and ψ(u) respectively.
Let cv be the cost of v, and let cv be the cost of v plus the cost of all the descendants of
v. Finally, let c′v be the cost of ψ(v). An abbreviated version of Theorem 17 (see the full
version for extended statement) relates the cost of v with ψ(v) in terms of the starting and
ending clouds by defining ψ inductively from the root of TOPT down. The theorem uses
Lemma 16 repeatedly to construct the nodes of T.

I Theorem 17. For any approximation algorithm A ∈ F with precision functions α, β, there
exists a PET T ∈ DA and a PET mapping ψ : V (TOPT ) → V (T) such that TOPT can be
partitioned into disjoint sets U1

NL ∪ U2
NL ∪ U1

L ∪ U2
L ∪X with the following properties. For

v ∈ TOPT , if v ∈ U1
NL ∪ U2

NL then v satisfies (Non-leaf), and if v ∈ U1
L ∪ U2

L then v satisfies
(Leaf):

c′v ≤ cv +
(
|p′v − pv|+ |q′v − qv|

)
−
(
|r′v − rv|+ |s′v − sv|

)
+ 2α(rv, sv) (Non-leaf)

c′v ≤ cv + |p′v − pv|+ |q′v − qv|+ β(r, s) (Leaf)

Furthermore (|p′L−pL|+ |q′L−qL|)+(|p′R−pR|+ |q′R−qR|) ≤ |r′−r|+ |s′−s|+2β(r, s) (∗)

Let T′OPT ⊂ TOPT be the subgraph of nodes v in the tree for which either v is the only
node mapped to ψ(v) ∈ T, or v is the node closest to the root that is mapped to ψ(v). In
the previous theorem, the set X corresponds to the nodes v for which ψ(v) = ψ(u) such that
u is an ancestor of v in TOPT . So T′OPT = TOPT \X. The final theorem is the result of
summing over the bounds from Theorem 17 for all vj ∈ T′OPT , applying the appropriate
bound depending on the set vj belongs to.

I Theorem 18. For any A ∈ F with precision functions α, β, let TOPT be the PET of
any optimal algorithm. Label the nodes of T′OPT ⊂ TOPT by v1 . . . vK . For 1 ≤ i ≤ K, let
(pi, qi), (ri, si) be the starting and ending clouds of the path vi in T , then

|OPT | ≤ |A| ≤ |OPT |+
∑

vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)
As an illustration of Theorem 18, consider the γ-uniform grid approximation of Theorem 4.

In this case, we have the upper bound α(rj , sj) = β(rj , sj) = 2γ for all vj ∈ TOPT . Since
there are k∗ total vertices in TOPT , we get |OPT | ≤ |A| ≤ |OPT |+ 10γk∗. To analyze the
running time, note that we only compute non-linear production edges for (n/γ)2 clouds, and
in each cloud that we compute non-liner edges for we consider at most n/γ break-points.
Thus the total runtime is O(|P |(nγ )3) to compute non-linear edges, and O(|P |n2) to a shortest
path algorithm on T A, for a total runtime of O(|P |(n2 + (nγ )3)).

Our second illustration of Theorem 18 is the γ-non-uniform grid approximation of
Theorem 5. Here we obtain a O(kγ) additive approximation in time O(|P |(n2 + n3

γ2 )). A
detailed analysis can be found in the full version.
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5 Appendix

5.1 CFG Edit Distance Approximation
Presented below are the proofs of the Lemmas and Theorems required to prove the bounds
on our approximation algorithms stated in Theorems 4 and 5. We first provide additional
intuition for our definition of PET’s

Intuition for PET’s

The intuition is as follows. The normal form we have imposed on our grammar G partitions
the set of productions into 1. linear productions, and 2. non-linear productions with exactly
two nonterminals on the right hand side. Note that error productions are linear, and therefore
fall into case 1.. Thus a derivation gives rise to a natural binary tree structure where each
node represents a sequence of linear productions, and the children of a node are spawned
when a non-linear production A→ BC at the end of this sequence is made. Such a sequence
of linear productions is given uniquely by a path of linear edges created in the exact algorithm,
or equivalently by a path in the linear edit distance graph T , which motivates the first part
of our definition of a PET.

Each node will then be tasked with deriving a substring xp . . . xq of x starting from
a given non-terminal A (the root of the PET is tasked with deriving the entire string x
starting from the starting symbol S). A sequence of linear productions can be made, deriving
xp . . . xp′−1 and xq′+1 . . . xq and arriving at a non-terminal A′, until the first non-linear
production A′ → BC occurs. Then the left and right child nodes are created, which will be
tasked with deriving xp′ . . . x` from B and x`+1 . . . xq′ from C respectively, where p′ ≤ ` < q′

is some splitting point for the substring xp′ . . . , xq′ . This motivates the second part of our
definition of PET’s, which guarantees that the children of a node begin in the correct place
(starting cloud). The final part of our definition ensures that the entire string x is indeed
derived in the tree, whether by legal or error productions. It specifies that every node either
derives the whole substring tasked to it, or makes a non-linear production such that the
children are tasked with deriving what remains of the substring.
I Lemma (16). Let [Ap,q, Br,s, c] be any non-leaf node in TOPT , and let A ∈ F be an
approximation algorithm with precision functions α(p, q), β(p, q). If p′, q′ satisfy p ≤ q′

and p′ ≤ q, then there is a path from Ap
′,q′ to Br

′,s′ , where r ≤ r′ ≤ s′ ≤ s, of cost
c′ ≤ c+ (|p′ − p|+ |q′ − q|)− (|r′ − r|+ |s′ − s|) + 2α(r, s) such that A computes non-linear
production edges for cloud (r′, s′). Furthermore, for any leaf node [Ap,q, t, c] ∈ TOPT , we can
construct a path from Ap

′,q′ of cost at most c′ ≤ c+ (|p′ − p|+ |q′ − q|) to the sink.

Proof. Let e1 . . . e` be the sequences of edges taken by the path corresponding to [Ap,q, Br,s, c] ∈
TOPT . We construct a corresponding sequence of edges e′1 . . . e′` from Ap

′,q′ , where e′j will
correspond to the same production as ej , but with potentially higher cost. We need to
consider several cases based on the overlap between x(p : q) and x(p′ : q′)

(1) If p ≤ p′ and q ≥ q′, then x(p′ : q′) is a substring of x(p : q). For all 1 ≤ j ≤ `,
if ej produces a terminal xν with p ≤ ν < p′ or q′ < ν ≤ q, set e′j to be the deletion edge
corresponding to the same production as ej ; we call these extra deletion edges. Otherwise
set e′j to be the same type of edge (insertion, deletion, replacement, or legal) as ej and
corresponding to the same production as ej . Note that e′j and ej may be in different clouds.
Then at any point 1 ≤ j ≤ `, after taking the edges e′1, . . . , e′j from Ap

′,q′ , we will be at a
vertex labeled with the same nonterminal as after taking e1, . . . , ej starting from Ap,q. So
after taking the edges e′1, . . . , e′l we will arrive at a vertex Br∗,s∗ , where r ≤ r∗ ≤ s∗ ≤ s.
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Figure 4 (1) p ≤ p′ and q ≥ q′: showing the number of extra deletions performed. Illustrated is
an example of the path [Ap,q, Br,s, c] and the corresponding constructed path [Ap′,q′ , Br′,s′ , c′] when
x(r, s) is a substring of x(p′, q′). [Ap,q, Br,s, c] is given by the filled in path, and [Ap′,q′ , Br′,s′ , c′] is
the dotted path. Each circle is a cloud, and by construction whenever the paths meet at a cloud
they will necessarily be at the same vertex within the cloud.

Now the number of extra deletion edges we add is the number of symbols xν with
ν ∈ [p, p′) ∪ (q′, q] such that xν is produced by an edge in e1 . . . e`. Furthermore, every
time we change an edge ej that was not a deletion edge to a deletion edge e′j , the path
of OPT becomes one cloud closer to our path. This is because ej moves OPT one cloud
further, while the deletion edge e′j remains in the same cloud. This means that for every
extra deletion edge, the distance between the ending cloud of our path and the ending cloud
of OPT becomes 1 less than the distance between the starting cloud of our path and the
starting cloud of OPT (see Figure ??). So the number of extra deletion edges is precisely the
distance between the starting clouds minus the distance between the ending clouds, which is
(|p′ − p|+ |q′ − q|)− (|r∗ − r|+ |s∗ − s|). Thus the total cost we pay to reach Br∗,s∗ is at
most c+ (|p′ − p|+ |q′ − q|)− (|r∗ − r|+ |s∗ − s|).

We have (s∗ − r∗) ≤ (s − r), hence there exists a cloud (r′, s′) for which non-linear
production edges have been computed by A such that d((r∗, s∗), (r′, s′)) ≤ α(r, s). Thus
from Br

∗,s∗ we can take insertion edges Br∗,s∗ −→ . . . −→ Br
′,s′ arriving at the desired vertex

at an additional cost of at most α(r, s). So the total cost is at most c+ (|p′ − p|+ |q′ − q|)−
(|r∗ − r|+ |s∗ − s|) + α(r, s). Since d((r∗, s∗), (r′, s′)) = |r∗ − r′|+ |s∗ − s′| ≤ α(r, s), by the
triangle inequality we have (|r∗ − r|+ |s∗ − s|) ≥ (|r′ − r|+ |s′ − s| − α(r, s)).

Note that if the node in question is a leaf [Ap,q, t, c], then we already have Br,s = Br
∗,s∗ = t

is the sink of T , thus (|r∗ − r|+ |s∗ − s|) = 0 and we pay at most c+ (|p′ − p|+ |q′ − q|) to
reach the sink.

Thus the total cost is at most c+ (|p′ − p|+ |q′ − q|)− (|r′ − r|+ |s′ − s|) + 2α(r, s) for
non-leaf nodes and c+ (|p′ − p|+ |q′ − q|) for leaf nodes, the desired result.

(2) If p > p′ and q ≥ q′. Then in this case we need to first follow some insertion edges
before we can apply the argument from case (1). We set l = p− p′ and create an edge e′′j to
be the insertion edge that inserts xp′+j−1 for 1 ≤ j ≤ l. Following the edges, e′′1 , . . . e′′l we
pay a cost of at most p− p′ and arrive at a vertex Ap,q′ . Note that for every insertion edge
we travel across, the cloud our path is in becomes one cloud closer to the starting cloud of
OPT . Now starting from Ap,q

′ , we are back in case (1) where now the distance between the
beginning clouds (p, q′) and (p, q) is |q− q′|. Thus by the argument from the first case we can
reach a vertex Br′,s′ from Ap,q

′ with cost at most c+ |q′−q|− (|r′−r|+ |s′−s|)+2α(r, s) for
non-leaf nodes, and cost at most c+ |q′− q| for leaf nodes. Since we paid at most p−p′ to get
to Ap,q′ from Ap

′,q′ , the total cost is at most c+(|p′−p|+ |q′−q|)−(|r′−r|+ |s′−s|)+2α(r, s)
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for non-leaf nodes, and c+ (|p′ − p|+ |q′ − q|) for leaf nodes as desired.
(3) If p ≤ p′ and q < q′. This case is symmetric to (2), as we simply start by taking

edges that insert xq+1, . . . , xq′ instead of xp′ , . . . , xp−1. Finally, if both p > p′ and q < q′, we
take edges inserting both xq+1, . . . , xq′ and xp′ , . . . , xp−1, paying a cost of (|p′ − p|+ |q′ − q|)
along the way, and then we can return to case (1) starting at Ap,q, from which we pay a
further cost of at most c− (|r′ − r|+ |s′ − s|) + 2α(r, s) to reach Br′,s′ for non-leaf nodes,
and cost at most c to reach the sink for leaf nodes. Thus in all cases the cost is at most
c+ (|p′ − p|+ |q′ − q|)− (|r′ − r|+ |s′ − s|) + 2α(r, s) and c+ (|r′ − r|+ |s′ − s|) for non-leaf
and leaf nodes respectively. Note that in all cases, every time OPT took an edge that derived
a terminal in x(p′ : q′), our path also took an edge which derived the same terminal. Thus
the ending clouds produced in all cases satisfy r ≤ r′ ≤ s′ ≤ s.

J

Now recall that our goal is to construct a PET T ∈ DA that is compatible with the
approximation A, that has cost bounded in terms of TOPT . To do this, we will proceed by
iteratively applying Lemma 16 to each node v ∈ TOPT from the root down, transforming
it into a new node ψ(v) ∈ T. Here ψ will be a surjective function ψ : V (TOPT ) → V (T).
Lemma 16 will guarantee that the cost of ψ(v) is not too much greater than that of v.
However, during the construction of T, the substrings corresponding to v and ψ(v) may
become disjoint. In this special case we will transform the entire subtree rooted at v into
a single node ψ(v) ∈ T, thus the function may not be injective. So to ease the following
analysis, it will be tremendously helpful to precisely define the properties that our function
must have. The following definition is therefore introduced solely for this purpose.

I Definition 19. Let T1,T2 be any two PET’s, and V (T1), V (T2) be the corresponding
node sets. Then a function ψ : V (T1) → V (T2) is a Production-Edit Tree Mapping (PET
Mapping) if it is surjective and if

1. ψ maps the root of T1 to the root of T2.
2. Every non-leaf node of T2 is mapped to by at most one node in T1.
3. If v1 → v2 is an edge in T1, then either ψ(v1)→ ψ(v2) is an edge in T2, or ψ(v1) = ψ(v2).
4. If ψ(v1) = ψ(v2) for any v1, v2 ∈ T1, then either v2 is a descendant of v1, or vice versa.

Furthermore, if u is a descendant of either v1 or v2, then ψ(v1) = ψ(u) = ψ(v2).

Figure 5 A PET Mapping:
(left) TOP T −→ T (right)

Note then that if v1 6= v2 then ψ(v1) = ψ(v2)
can only occur if ψ(v1) = ψ(v2) is a leaf node
in T. For such a transformation ψ, we would
like the starting and ending clouds of the path
given by any node v ∈ TOPT to be as close
as possible to those of ψ(v). If we can place
bounds on this distance for all pairs v, ψ(v),
then we show how to place bounds on the total
cost of all vertices in T. The following theorem,
Theorem 17, does exactly this. For the purpose
of the statement of theorem, we will need to
introduce some important notation.

Notation for mapping & nodes: ψ will be a PET mapping (of our construction) from
V (TOPT ) to T. Let v be any node in TOPT . If v is not the root then let u be the parent
node of v.
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Notation for starting & ending clouds: Let (p, q), (r, s) ∈ T be the starting and ending
clouds of u, and let (pv, qv), (rv, sv) ∈ T be the starting and ending clouds of v. Similarly,
let (p′, q′), (r′, s′) and (p′v, q′v), (r′v, s′v) be the starting and ending clouds of ψ(u) and ψ(v)
respectively. Furthermore, let (pL, qL), (pR, qR) be the starting clouds of the left and right
children of u, respectively, and (p′L, q′L), (p′R, q′R) the starting clouds of the left and right
children of ψ(u) respectively. Similarly, we denote their corresponding ending clouds by
(rL, sL), (rR, sR) and (r′L, s′L), (r′R, s′R).
Notation for costs: Let cv be the cost of the node v, and let c′v be the cost of ψ(v) ∈ T.
Write cL, cR for the costs of the left and right children of u, and similarly write c′L, c′R for
the costs of the children of ψ(u). Finally, if c is the notation for the cost of any given node
u, then let c denote the cost of all nodes in the subtree rooted at u.

Given a node u ∈ TOPT , the proof of the Theorem will have several cases when construct-
ing the children of the node ψ(u) ∈ T. In each case, different bounds will hold, each of which
will be used in the proof of Theorem 20.

I Theorem (17). For any approximation algorithm A ∈ F with precision functions α, β,
there exists a PET T ∈ DA and a PET mapping ψ : V (TOPT )→ V (T) such that TOPT can
be partitioned into disjoint sets U1

NL ∪U2
NL ∪U1

L ∪U2
L ∪X with the following properties. For

v ∈ TOPT , if v ∈ U1
NL ∪ U2

NL then v satisfies (Non-leaf), and if v ∈ U1
L ∪ U2

L then vc satisfies
(Leaf):

c′v ≤ cv +
(
|p′v − pv|+ |q′v − qv|

)
−
(
|r′v − rv|+ |s′v − sv|

)
+ 2α(rv, sv) (Non-leaf)

c′v ≤ cv + |p′v − pv|+ |q′v − qv|+ β(r, s) (Leaf)

Furthermore, if u is the parent of v with u ∈ U1
NL, then we have

(|p′L − pL|+ |q′L − qL|) + (|p′R − pR|+ |q′R − qR|) ≤ |r′ − r|+ |s′ − s|+ 2β(r, s) (*)

Otherwise we have u ∈ U2
NL, and if both children of u are in the set U2

L then one of the
following two inequalities is an upper bound for c′L + c′R:

≤cL + cR + |r′ − r|+ |s′ − s|+ 2β(r, s) (∗∗)
≤cL + cR + |r′ − r|+ |s′ − s|+ 2β(r, s) (∗∗)

Otherwise one of the next two inequalities is an upper bound for c′L + c′R:

≤ cL + cR + |r′ − r|+ |s′ − s|+ 2β(r, s)−
(
|r′R − rR|+ |s′R − sR|

)
+ 2α(rR, sR) (∗ ∗ ∗)

≤ cL + cR + |r′ − r|+ |s′ − s|+ 2β(r, s)−
(
|r′L − rL|+ |s′L − sL|

)
+ 2α(rL, sL) (∗ ∗ ∗)

Proof. We define ψ by explicitly constructing T from the root down. If ρ is the root of TOPT ,
then we first construct the root ψ(ρ) of T via Lemma 16. We proceed inductively: supposing
that v ∈ TOPT is any non-leaf node with children vL, vR for which we have constructed ψ(v)
with the desired properties, we then show how to construct the children ψ(vL), ψ(vR) of
ψ(v) in T. Depending on how we construct ψ(vL) and ψ(vR) we will place v in appropriate
partition (which we will specify). Formally, we will induct on the depth of TOPT .

Our mapping will be ensure that the resulting tree T is a valid PET in DA. Every non-leaf
node of T will be explicitly constructed via Lemma 16, thus it should be noted that Lemma
16 guarantees that each time we use it to construct a path [·, Br′,s′ , c′] from a path [·, Br,s, c],
we will always have r ≤ r′ ≤ s′ ≤ s.
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Building the root:

Suppose the root of TOPT is [S1,n, Br1,s1 , c1] for some B ∈ Q. We begin by mapping the
root [S1,n, Br1,s1 , c1] of TOPT to the root of T. This is a special case, since the root is neither
a left nor a right child, so we only need to satisfy the (Non-leaf) property (if the root is a
leaf, only linear productions are made and our approximation will be optimal). By Lemma
16, we can construct a path S1,n to Br′1,s′1 , of weight at most c1 + 2α(r1, s1) such that A
constructs nonlinear edges in (r′1, s′1). We thus create the root node [S1,n, Br

′
1,s
′
1 , c′1] in T

corresponding to this path with c′1 ≤ c1 + 2α(r1, s1), and map only the root of TOPT to it.
Then the root satisfies (Non-leaf). Now from Br

′
1,s
′
1 we can take the edge corresponding to

the same non-linear production as the edge taken by OPT from Br1,s1 , allowing us to map
a child of [S1,n, Br1,s1 , c1] to a child of [S1,n, Br

′
1,s
′
1 , c′1] such that the paths corresponding to

both children begin at the same nonterminal.

Building the rest of the tree: Induction

Now suppose that we have defined ψ on all nodes in TOPT with depth at most i− 1 in TOPT
by constructing the nodes they map to in T which satisfy the desired properties, and such
that the subgraph of T constructed so far does not yet violate any of the conditions of a
valid PET. For N,M ∈ Q, let v = [Mp,q, Nr,s, c] ∈ TOPT be any node at depth i− 1, and
let ψ

(
[Mp,q, Nr,s, c]

)
= [Mp′,q′ , Nr′,s′ , c′] ∈ T be the node that we have mapped it to. We

show how to construct both right and left children of [Mp′,q′ , Nr′,s′ , c′] that we can map the
right and left children of [Mp,q, Nr,s, c] ∈ TOPT to.

Let ` be the splitting point of v. In other words, suppose the left child of [Mp,q, Nr,s, c] be-
gins in cloud (r, `) and the right child in (`+ 1, s). We need to consider several cases based on
the location of the splitting point ` and whether or not the children of [Mp,q, Nr,s, c] are leafs.

Subcase 1. r′ ≤ ` < s′: If v is a non-leaf and we construct the children of ψ(v) under this
sub-case then we put v in the set U1

NL. If vchild is a child of v, then if vchild is a leaf we
place vchild in U1

L.

Subcase 2. r′ > ` or s′ < `: If v is a non-leaf and we construct the children of ψ(v) under
this sub case then we put v in the set U2

NL. If vchild is a child of v, then if vchild is a leaf we
place vchild in U2

L. If vchild is a nullified node constructed under this case (this will be seen
shortly), then we put vchild in U2

L, and we place all descendants of vchild in TOPT in the setX.

If v is a leaf then we will have already placed it in a set when considering its parent. This
covers all cases, so our inductive argument allows us to construct the entire tree T from the
root down with the desired properties until it is a complete PET, completing the theorem.
The proof of both subcases is given below. J

First recall our earlier notation, let (pL, qL), (rL, sL) be the starting and ending clouds
respectively of the left child of v = [Mp,q, Nr,s, c], and similarly define (pR, qR), (rR, sR) for
the right child of v. Define (p′L, q′L), (r′L, s′L), (p′R, q′R), (r′R, s′R) similarly for the left and right
children of [Mp′,q′ , Nr′,s′ , c′].

Subcase 1 r′ ≤ ` < s′: The substring produced by both the left and right children
of v and ψ(v) overlap. Conditions of Lemma 16 hold.

Constructing the Left Child (non-leaf).
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We first construct the left child of v. So suppose [Ar,`, BrL,sL , cL] is the left child of
[Mp,q, Nr,s, c], coming from a production N → AC, where A,B ∈ Q, and ` is some splitting
point satisfying r ≤ ` ≤ s. First suppose that [Ar,`, BrL,sL , cL] is not a leaf. In this case we
can apply Lemma 16 on [Ar,`, BrL,sL , cL] to construct a non-leaf node v′L. By the induction
hypothesis of Theorem 17 we have r ≤ r′ ≤ s′ ≤ s, so there exists a splitting point `′ that is
computed by A such that |`− `′| ≤ β(r, s). Then we have the identity (L):

|r′ − r| + |`− `′| ≤ |r′ − r|+ β(r, s) (L)

We now apply Lemma 16 on input node [Ar,`, BrL,sL , cL] and starting cloud (r′, `′) to
obtain a path v′L = [Ar′,`′ , Br′L,s′L , c′L], such that

c′L ≤ cL + (|r′ − r|+ |`′ − `|)− (|r′L − rL|+ |s′L − sL|) + 2α(rL, sL)

Notice that this is precisely the (Non-leaf) property since by definition (p′L, q′L) is the starting
cloud of our v′L, which is (r′, l′), and (pL, qL) is the starting cloud of [Ar,`, BrL,sL , cL], which
is (r, `) = (pL, qL). So we set ψ([Ar,`, BrL,sL , cL]) = [Ar′,`′ , Br′L,s′L , c′L], which completes the
construction of the left child.
Constructing the Right Child (non-leaf).

We now construct the right child of the same node [Np′,q′ ,Mr′,s′ , c′] ∈ T as above, using
the same splitting point `′ as was used above. Note that the same splitting point must be
used in both the construction of the right and left children of [Np′,q′ ,Mr′,s′ , c′], otherwise
the resulting tree T would not be a valid PET. So let [C`+1,s, DrR,sR , cR] be the right child
of [Np,q,Mr,s, c] ∈ TOPT . Then applying Lemma 16 on input node [C`+1,s, DrR,sR , cR] and
starting cloud (`′+1, s′) yields a new node v′R = [C`′+1,s′ , Dr′R,s

′
R , c′R] which satisfies the (Non-

leaf) property for the right child. We set ψ([C`+1,si−1 , Dri,si , ci]) = [C`
′+1,s′i−1 , Dr′i,s

′
i , c′i],

which completes the construction of the right child. Now since again we have |(`′+1)−(`+1)| ≤
β(r, s), this gives our second identity (R):

|(`′ + 1)− (`+ 1)|+ |s′ − s| ≤ |s′ − s|+ β(r, s) (R)

Now (L) is a bound on the distance between the starting clouds of the left child of TOPT
and the node it is mapped to by ψ, and (R) is the corresponding bound on the distance
between the starting clouds of the right child and the node that it is mapped to by ψ. Adding
the bounds (L) + (R) produces the desired property (∗). Note that because equations (L)
and (R) depend only on the starting cloud of the children, (L) + (R) holds regardless of
whether or not either child is a leaf node, since that is dictated by the ending cloud of a
node. Thus we have satisfied the desired property (∗).

Constructing a Leaf Child. Finally, we consider the leaf case. If the left child of
[Np,q,Mr,s, c] is a leaf [Ar,`, t, cL], we place [Ar,`, t, cL] in U1

L and then we similarly use
Lemma 16 to construct the leaf v′L = [Ar′,`′ , t, c′L] to map it to, such that the bound
c′L ≤ cL + (|r′ − r|+ |`′ − `|) holds. Note that cL = cL since [Ar,`, t, cL] is a leaf, thus this
bound satisfies the desired (Leaf) property. The same argument applies for when the right
child is a leaf, which completes the proof of the lemma. J

Subcase 2 ` < r′ or ` ≥ s′: The substrings produced by either the left or right
children of v and ψ(v) do not overlap. Conditions of Lemma 16 do not hold.

Recall our earlier notation: for node v = [Mp,q, Nr,s, c] ∈ TOPT with children vL and vR,
the quantity cL is the sum of the costs of all nodes in the subtree rooted at vL, and cR is the
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corresponding quantity for the right child vR. In terms of our edit distance, this means that
the exact algorithm derives the substring x(pL : qL) with cost exactly cL, and derives the
substring x(pR : qR) with cost exactly cR (and x(pL : qR) = x(r : s)).

Proof. First consider the case where ` < r′. The case ` ≥ s′ will be an entirely symmetric
argument. The difficulty in this case is that the substring (r, `) which OPT derives in its
left child is disjoint from the entire substring (r′, s′) which must be derived by the children
of [Np′,q′ ,Mr′,s′ , c′] ∈ T, thus we cannot utilize Lemma 16 to construct the left child. Let
[Ar,`, BrL,sL , cL] be the left child of [Mp,q, Nr,s, c].

First, we fix `′ such that |`′−r′| ≤ β(r, s) and such that the splitting point `′ is considered
by A, which we can always find by the definition of the precision functions. We will set the
left child v′L to be [Ar′,`′ , ·, c′L], which will be a leaf in T because it will produce all of x(r′ : `′).
We will refer to such a node created in this case as a nullified node. Our goal is then only to
bound the cost c′i of deriving the string x(r′ : `′) from A and then nullifying the remaining
nonterminals. Note that all nullification edges are present in the approximate graph T A, thus
nullifcation of a non-terminal is always a legal procedure for any approximation algorithm in
F .

Now since we can derive x(r′ : `′) with at most β(r, s) insertions, we just need to bound
the cost null(A). Recall that null(A) is the length of the shortest word derivable from A

(which we will delete entirely). We know that the right child [Ar,`, ·, cL] in TOPT derives a
string of length (`− r) starting from A with cost at most cL, where cL is the sum of the costs
of all nodes in the subtree rooted at [Ar,`, ·, cL]. In the worst case this cost comes entirely from
deletion edges, and thus null(A) ≤ cL+(`−r). Along with the β(r, s) insertions, we conclude
that the cost of the left child satisfies c′L ≤ cL + (`− r) + β(r, s) ≤ cL + |r′ − r|+ β(r, s) ≤
cL + |r′ − r|+ |`′ − `|+ β(r, s), which satisfies (Leaf) (since (r, `′) is the starting cloud in
question). We set ψ([Ar,`, ·, cL]) = [Ar′,`′ , ·, c′L] and place [Ar,`, ·, cL] in U2

L. We then map
all children (if there are any) in the subtree rooted at [Ar,`, ·, cL] to [Ar′,`′ , ·, c′L]. All these
descendants of [Ar,`, ·, cL] are placed in the set X. Note that this is the only case where we
map multiple nodes to the same place. Here we are essentially thinking of [Ar,`, ·, cL] as a leaf
in TOPT , and bounding the cost of ψ([Ar,`, ·, cL]) by the cost of the entire subtree rooted at
[Ar,`, ·, cL].

We now show how to construct the right child. Let [C`+1,s, DrR,sR , cR] be the right child
of [Np,q,Mr,s, c] in TOPT . We fix the same `′ as before, since the splitting points of the right
and left children must agree. We now have `+ 1 ≤ `′+ 1 ≤ s′ ≤ s, thus we can apply Lemma
16 to [C`+1,s, DrR,sR , cR] and the cloud (`′ + 1, s′) to construct a node [C`′+1,s′ , Dr′R,s

′
R , c′R],

such that satisfies (Non-leaf) (or (Leaf) if the right child of [Np,q,Mr,s, c] is a leaf). Thus
this is the desired right child. If [C`+1,s, DrR,sR , cR] is a leaf we place it in U2

L, and if it is
not we will place it in either U1

NL or U2
NL depending on how we construct its children later
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on (via induction). Using Lemma 16 and recalling the properties of precision functions, we
have two cases: if the right child is a leaf, we have the bound:

c′R ≤ cR + (s− s′) + (`′ + 1− (`+ 1))

≤ cR + (s− s′) + (r′ − `) + β(r, s)

Recalling from earlier that the left child had cost c′L such that c′L ≤ cL + (`− r) + β(r, s),
summing this bound with the bound for c′R given above, we see that the sum of the costs of
both children satisfies one of the first of the desired inequalities (∗∗).

Now if the right child is not a leaf, we have:

c′R ≤ cR + (s− s′) + (`′ + 1− (`+ 1))− (|r′R − rR|+ |s′R − sR|) + 2α(rR, sR)

≤ cR + (s− s′) + (r′ − `) + β(r, s)− (|r′R − rR|+ |s′R − sR|) + 2α(rR, sR)

Summing the above inequality with the same bound on c′L as for the leaf case gives the first
of the desired inequalities (∗ ∗ ∗).

Case ` ≥ s′

This case is entirely symmetric to case where ` < r′. In this case the substring (` + 1, s)
which OPT derives in its right child is again disjoint from the substring (r′, s′) which must
be derived by the children of [Mp′,q′ , Nr′,s′ , c′] ∈ T. Thus following the same procedure as
above, except that we instead nullify the starting non-terminal C of the right child in T and
then apply Lemma 16 to construct the left child, yields the desired properties. Here, the
children will satisfy the second inequality of either (∗∗) or (∗ ∗ ∗), instead of the first as in
the case above where ` < r′. This completes the proof of the last case, which completes the
theorem. J

I Remark. In the above proof where ` < r′, or ` ≥ s′, and we construct a node [Ar
′
i−1,`

′
, ·, c′X ]

where X ∈ {R,L}, we are bounding c′X as the total cost of inserting the entire substring
x(r′ : `′) from A and then nullifying A. Now the cost of nullifying A may involve making
non-linear productions and nullifying the resulting nonterminals, so in actuality [Ar′,`′ , ·, c′X ]
may not be a leaf of a valid PET, it may have nullified children nodes. However, the bound we
place on c′X is an upper bound on the cost of deriving x(r′ : `′) from A in the approximation
graph T A, and thus is a bound on the total cost of all the nodes that could be in the subtree
rooted at [Ar′,`′ , ·, c′X ]. Therefore, the bound on c′X satisfies the (Leaf) property, and so we
can consider [Ar′,`′ , ·, c′X ] to be a leaf of T

Intuitively, the set X of the partition will be a set of nodes that we need not consider.
Precisely, X consists of the set of nodes v for which ψ(v) = ψ(u) such that u is an ancestor
of v in TOPT . In this case, the bounds for v are *taken care of* by considering the bounds
from Theorem 17 for its ancestor u. So let T′OPT ⊂ TOPT be the subgraph of nodes v in
the tree for which either v is the only node mapped to ψ(v), or v is the node closest to the
root that is mapped to ψ(v). Then we have T′OPT = TOPT \X. For the following proof of
Theorem 20, it will be helpful to notice that the tree T′OPT is in fact isomorphic to T as a
graph, meaning ψ|T′

OP T
is an isomorphism.

I Theorem 20. For any A ∈ F with precision functions α, β, let T ∈ DA and ψ be as
constructed in Theorem 17, and label the nodes of T′OPT by v1 . . . vK . For 1 ≤ i ≤ K, let
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(pi, qi), (ri, si) be the starting and ending clouds of the path vi in T , and let (p′i, q′i), (r′i, s′i)
be the starting and ending clouds of ψ(vi). Then

‖T‖ ≤ ‖TOPT ‖+
∑

vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)

Proof. The above bound will be the result of summing over the bounds from Theorem 17 for
all vj ∈ T′OPT . The bound that applies to any given vj is decided by the set of the partition
of T′OPT that vj lies in. A description of each set along with the specific inequality we will
use for it follows below:

U1
NL is the set of non-leaf nodes v ∈ T′OPT where both children of ψ(v) ∈ T are constructed

in Subcase 1 of Theorem 17. Note that the node ψ(v) itself may be created either in either
Subcase 1 or Subcase 2. If ψ(v) is constructed in Subcase 1, we use the bound (Non-leaf),
otherwise we use the bound (∗ ∗ ∗).
U2
NL is the set of non-leaf nodes v ∈ T′OPT where the children of ψ(v) are constructed in

Subcase 2 of Theorem 17. If ψ(v) is constructed in Subcase 1, we use the bound (Non-leaf),
otherwise we use the bound (∗ ∗ ∗).
U1
L is the set of leaves v ∈ T′OPT such that ψ(v) was constructed in Subcase 1. We use

the bound (Leaf) for these nodes.
U2
L is the set of leaves and nullified nodes v such that ψ(v) was constructed in Subcase 2.

We will not consider this set directly because the bounds for these nodes will be included
in the bounds given by the parents of these nodes (either (∗∗) or (∗ ∗ ∗)), which will be in
U2
NL by definition.

This covers all cases, since every time a pair of children is constructed in Subcase 2 at
least one of the children must be a leaf. Now the the vertices of T′OPT = TOPT \X are in
bijection with those of T via ψ, so by considering the inequalities which upper bound the
cost of ψ(v) in terms of the cost of v, taken over all v in T′OPT , we obtain an upper bound
for the total cost of our tree T. For any non-leaf vj ∈ U1

NL ∪ U2
NL, let Rj , Lj be the indices

of its right and left children vRj
, vLj

. For any non-root node vj ∈ T′OPT , let Pj be the index
of its parent vPj . Then summing the inequalities which apply to each vj ∈ T′OPT we obtain:

‖T‖ ≤ ‖TOPT ‖+W1
NL +W2

NL +WL

The rest of the proof will be spent analyzing these new terms. Firstly, W1
NL =∑

vj∈U1
NL

(
|p′Rj
−pRj |+|q′Rj

−qRj |+|p′Lj
−pLj |+|q′Lj

−qLj |−
(
|r′j−rj |+|s′j−sj |

)
+2α(rj , sj))

)

W2
NL =

∑
vj∈U2

NL

((
|r′j − rj |+ |s′j − sj |

)
+ 2β(rj , sj)−

(
|r′j − rj |+ |s′j − sj |

)
+ 2α(rj , sj))

)

WL =
∑
vj∈U1

L

(
β(rPj , sPj )

)
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First sum:

We first examine W1
NL. For each node vj ∈ U1

NL if vj was created in Subcase 1 of Theorem
17 then the bound (Non-leaf) applies. If vj was created in Subcase 2, then one of the two
bounds (∗ ∗ ∗) will hold for the cost of vj (depending on whether vj is a right or left child).
Note that if this is the case then the sibling node of vj must be a leaf (since in Subcase 2 at
least one of the children is always a leaf). Either way the bound (∗) applies to the children
of vj since they were created in Subcase 1. Now in either case we have put the portion(
−
(
|r′j − rj |+ |s′j − sj |

)
+ 2α(rj , sj

)
of the (Non-leaf) or (∗ ∗ ∗) bound for vj next to the

positive portions of the bounds which come from its children (either (Non-leaf) or (Leaf))
|p′Rj

− pRj
|+ |q′Rj

− qRj
|+ |p′Lj

− pLj
|+ |q′Lj

− qLj
|, in the same summand. Observe (∗ ∗ ∗)

is a bound not just on vj but also on its sibling, so we must make sure we do not use the
portion

(
−
(
|r′j − rj |+ |s′j − sj |

)
+ 2α(rj , sj

)
of the bound twice. But this cannot happen,

since the sibling of vj must be a leaf in U2
L (it cannot be in U1

NL or U2
NL), so we will not

sum this same portion of its bound again.
Now the goal of organizing the summands like this is to easily apply Property (∗) of

Theorem 17 (this holds since vj ∈ U1
NL) which gives |p′Rj

− pRj
|+ |q′Rj

− qRj
|+ |p′Lj

− pLj
|+

|q′Lj
− qLj | −

(
|r′j − rj |+ |s′j − sj |

)
≤ 2β(rj , sj). Thus the bound on the cost of the children

of any node vj is split between the summands corresponding to them and the summands
corresponding to vj . If the bound for vj was (Non-leaf), then the rest of the bound for vj
will be put in the sum W1

NL for the parent of vj . If the bound for vj was one of the (∗ ∗ ∗)
bounds, then the rest of the bound will be put in the sum W2

NL for the parent of vj . Note in
the special case of the root we have |p′1 − p1|+ |q′1 − q1| = 0, and so this does not appear in
the sum W1

NL. Then using Property (∗), gives

W1
NL ≤

∑
vj∈UNL

(
2α(rj , sj) + 2β(rj , sj)

)

Second sum:

We now consider W2
NL. For each node vj ∈ U2

NL as in the first sum either the bound
(Non-leaf) or (∗ ∗ ∗) applies to vj , and either the bound (∗∗) or (∗ ∗ ∗) applies to the
children of vj since they were created in Subcase 2. Again, in either case we put the portion(
−
(
|r′j − rj | + |s′j − sj |

)
+ 2α(rj , sj

)
of the bound that applies to vj next to the portion(

|r′j−rj |+ |s′j−sj |
)

+2β(rj , sj) of the bounds either (∗∗) or (∗∗∗) that apply to the children
of vj . Canceling terms in the definition of W2

NL above gives:

W2
NL =

∑
vj∈U2

NL

(
2β(rj , sj) + 2α(rj , sj))

)

Third sum:

WL simply accounts for the fact that for every leaf node v ∈ U1
L, the portion of the sum

(Leaf) that applies to v which is included in the sum for its parent, either in W1
NL or W2

NL,
does not include the β(rPj

, sPj
) term. All other leaf nodes are in U2

L (created in Subcase 2),
and the bounds for these nodes are already accounted for by the bounds for their parents
in W 2

NL. Since the size of U1
L can be on the order of the number of all nodes, we give the

following bound:
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WL =
∑
vj∈U1

L

(
β(rPj

, sPj
)
)
≤

∑
vj∈T′OP T

β(rj , sj)

So all together W1
NL +W2

NL +WL ≤
∑
vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)
, which completes

the proof.
J

I Theorem (18). For any A ∈ F with precision functions α, β, let TOPT be the PET of
any optimal algorithm. Label the nodes of T′OPT ⊂ TOPT by v1 . . . vK . For 1 ≤ i ≤ K, let
(pi, qi), (ri, si) be the starting and ending clouds of the path vi in T . Then

|OPT | ≤ |A| ≤ |OPT |+
∑

vj∈T′OP T

(
2α(rj , sj) + 3β(rj , sj)

)
Proof. The result follows immediately from Theorems 14 and 20. The proof of Theorem 14
can be found in Section 5.2.

J

5.2 Proof of Theorem 14
I Theorem (14). Fix any A ∈ F , and let c be the edit distance returned after running the
approximation algorithm A. Then if T is any PET in DA, we have c ≤ ‖T‖.

Proof. If A returns c, then c is the length of the shortest path from S1,n ∈ Ln to t in
the graph T A. Suppose there exists a T ∈ DA with ‖T‖ < c. Recall that ‖T‖ is the sum
of the costs of all the nodes in T. Thus, it suffices to show that the cost of the root of
T, plus the costs of all nodes rooted in the left and right subtrees of the root of T, must
be at least c. Our proof then proceeds inductively, working up from the leaves of T. Let
[X1, t, ω1], [X2, t, ω1], . . . , [Xk, t, ωk] be the leaves of T. Since each of the [Xi, t, ωi]’s are leaves,
each of these paths must use only the linear edges from the original linear grammar edit
distance graph T – so these edges must also exist in T A. Thus for 1 ≤ i ≤ k, the shortest
path from Xi to t in T A is at most ωi.

Now let [Ap,q? , Br,s? , ω?] be any non-leaf node in T , with left and right children [Ar,`L , ·, ωL]
and [A`+1,s

R , ·, ωR] respectively. Let ωL and ωR be the sum of the costs of all nodes in the
subtree rooted at [Ar,`L , ·, ωL] and [A`+1,s

R , ·, ωR], respectively. Note that because any node is
included in the subtree rooted at itself, we include ωL in the value ωL and ωR is in the value
ωR.

Now suppose that the weight of the shortest path from A`+1,s
R to t and from Ar,`L to t in

T A is at most ωR and ωL respectively. We would like to show that the shortest path from
Ap,q? to t in T A is at most ω? + ωR + ωL.

Now since [Ap,q? , Br,s? , ω?] ends in cloud (r, s), by property 1 of PET’s in DA, it must be
the case that A computes non-linear edges for the cloud (r, s). From Br,s? , a non-linear edge
e, corresponding to the production B? → ALAR, is taken with splitting point `. By property
2 of trees in DA, the splitting point ` must have been considered by A when computing the
cost of this edge. Thus, the cost of the edge e in T A is at most the cost of the shortest path
from AL to t plus the cost of the shortest path from AR to t. By the inductive hypothesis,
the cost of e is then at most ωR + ωL. Since ω? is the cost of a path of consisting only of
linear edges from Ap,q? to Br,s? , this path must also exists in T A. Thus following this path
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from Ap,q? to Br,s? and then taking e results in a path that exists in T A, going from Ap,q? to t,
with cost at most ω? + ωR + ωL, which is the desired result.

Finally, note that since A creates all null edges of the graph created by the exact
algorithm T OPT , the above result holds in the case where one of the left or right children
of [Ap,q? , Br,s? , ω?] is a nullified node, since then the cost of the null edge is just the cost
of nullifying the specified nonterminal, and the inductive hypothesis holds for the other,
non-nullified, child. This completes all cases. Using this argument inductively, it follows that
c must be no greater than the cost of the root of T plus the costs of all nodes rooted in the
left and right subtrees of the root of T, a contradiction, which completes the proof.

J

5.3 Two Explicit Edit Distance Approximation Algorithms
Theorem 18 allows us to place bounds on the additive approximation in terms of the structure
of the optimum derivation tree. For each non-linear production made in such a derivation,
another term is accumulated in the bound given in 18, thus in general the approximation
performs better for derivations which have a high ratio of linear to non-linear productions.
Additionally, we will demonstrate bounds which depended on the depth of the PET, which
we call the maximum number of nested non-linear productions of the derivation. We now
formalize this notion using only the language of CFG’s. Fix a derivation of a string w ∈ L(G),
and fix any two specific appearances of non-terminals A,B within the derivation (note that
a given non-terminal can appear multiple times in one derivation). We say that B follows
from A if in the derivation of w a (possibly empty) sequence of linear productions is first
made starting from A, and then a non-linear production is made which produces B.

I Definition 21. For any derivation of string w ∈ L(G), we define the maximum number of
nested non-linear productions to be the maximum length of a sequence A1, A2, . . . , Ak such
that Ai follows from Ai−1 for i = 2, 3, . . . , k in the derivation of w. Equivalently this is the
depth of a PET for this derivation of w.

For example, if G is the well-known Dyck Languages [35, 6], the language of well-balanced
parenthesis, then this quantity is the number of levels of nesting in w. Note that a string
consisting of n open parenthesis followed by n matching closed parenthesis has zero levels
of nesting, whereas the string "((())())" has one. Intuitively, if we folded all the matching
parenthesis onto each other, we are concerned with the maximum number of nested folds.
As an another example, consider RNA-folding [8, 40, 47] which is a basic problem in
computational biology and can be modeled by grammars. Here the maximum number of
nested non-linear productions is the maximum number of nested folds in w.

Now we fix any input string x ∈ Σ∗ and CFG G. Let w ∈ L(G) be any string with
minimum edit distance to x, and let k be the number of nested non-linear productions in any
derivation of w, and let k∗ be the total number of non-linear productions. Equivalently, k is
the depth of an optimal PET for x, and k∗ is the total number of nodes in this PET. Note if
G is k′-ultralinear in our normal form, we have the natural bounds k ≤ k′ and k∗ ≤ 2k′ . We
now give two specific approximation algorithms based on constructions defined in Section 4.
For any A, we write |A| to denote the edit distance returned by A, and |OPT | for the edit
distance returned by an exact algorithm.
I Theorem (4). If A is a γ-uniform grid approximation, then A produces a value |A| = |TA|
such that

|OPT | ≤ |A| ≤ |OPT |+O(k∗γ)
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in O(|P |(n2 + (nγ )3)) time.

Proof. In this case, we have the upper bound α(p, q) = β(p, q) = 2γ for all 1 ≤ i ≤ k

and 1 ≤ p ≤ q ≤ n. Since there are k∗ vertices in the optimal PET TOPT , it follows from
Theorem 18 that:

|OPT | ≤ |A| ≤ |OPT |+ k∗(10γ)

Runtime.

We only compute non-linear production edges for (n/γ)2 clouds. For each non-linear produc-
tion, we compute corresponding to a substring of size m, at most m/γ ≤ n/γ break-points.
Thus the total runtime is O(|P |(nγ )3) to compute non-linear edges, and O(|P |n2) to run a
single source shortest path algorithm from the sink to all vertices of T A, for a total runtime
of O(|P |(n2 + (nγ )3))

J

I Theorem (5). Let A be any γ-non-uniform grid approximation, then A produces a value
|A| = |TA| such that

|OPT | ≤ |A| ≤ |OPT |+O(kγ)

in O
(
|P |
(
n2 + n3

γ2

))
time.

Proof. Let Vi = {v1, . . . vl} be the set of all vertices at depth i in TOPT , and let wj be the
substring corresponding to the ending cloud (rj , sj) of vj for 1 ≤ j ≤ l. Then w1, w2, . . . wl
are the substrings which our algorithm derives from nonterminals at depth lower than i in
TOPT . If n

2t+1 ≤ |wj | ≤ n
2t , we have (rj , sj) ∈ Nt and can therefore set the upper bound

on the precision functions α(rj , sj) = β(rj , sj) = γ
2t . Since the substrings must be disjoint,

clearly
∑l
j=1 |wj | ≤ n. Set |vj | = 2α(rj , sj) + 3β(rj , sj). Then if (rj , sj) ∈ Nt, we have

|vj | ≤ 5 γ
2t . Then |vj | ≤ (2|wj |)5 γn . We have

∑
vj∈Vi

|vj | ≤
l∑

j=1
10|wj |

γ

n
≤ 10(n)γ

n
= 10γ = O(γ)

Note that this bound is independent of the depth i. Since TOPT has depth k by definition,
Theorem 18 states that the additive error is at most

∑k
i=1
∑
v∈Vi
|v|. As just shown, each

inner sum is at most 10γ, thus the total additive error is 10kγ = O(kγ) as desired.

Runtime.

Let N ′′i ⊂ N ′i ⊂ Ni be the set of clouds which we actually construct non-linear edges for.
There are at most n

2i+1 Lj ’s in Ni, and each has at at most n clouds in it. Then if 2i ≤ γ we
have:

|N ′′i | ≤ n
n

2i+1 (2i

γ
)2 = n22i−1

γ2

Now if 2i > γ, then we consider all clouds in Ni. In other words, if j ≤ n
γ , then we consider

all clouds in Lj . Now |Lj | ≤ n for all j, so we consider at most
∑n/γ
j=1 |Lj | ≤

n2

γ in this
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second section. Thus in T A we create nonlinear edges for a total of

log(γ)∑
i=1
|N ′′i |+

n2

γ
≤

log(γ)∑
i=1

n22i−1

γ2 + n2

γ
≤ 2n

2

γ

clouds. Now since for every substring of length ` ≤ n
2i , we consider at most ` 2i

γ ≤
n
γ

breakpoints the total number of breakpoints considered over all nodes in the first section
(where 2i ≤ γ) is at most n

γ

∑log(γ)
i=1 |N ′′i | = n3

γ2 . For the second section with strings of length
≤ n

γ , the number of breakpoints is at most

|L1|(1) + |L2|(2) + . . . |Ln/γ |
n

γ
= n(1) + (n− 1)2 + · · ·+ (n− n

γ
)n
γ
≤ n

n/γ∑
i=1

i = O(n
3

γ2 )

Thus a total of O(n
3

γ2 ) breakpoints are considered for each production in |P | while constructing
T A. There are O(|P |n2) edges in T A, thus running single source shortest path takes a total
of |P |n2 time, so the total runtime is O

(
|P |
(
n2 + n3

γ2

))
.

J

5.4 Hardness Results
Linear Grammar Edit Distance Hardness

A recent result of Backurs and Indyk [5] has demonstrated that finding a truly subquadratic
algorithm for computing the exact edit distance between two binary strings would imply the
falsity of the Strong Exponential Time Hypothesis (SETH). This result has been shown to
hold even in the case where the input strings are binary [9]. We extend this SETH-hardness
result by demonstrating that a truly subquadratic algorithm for linear language edit distance
to a grammar of constant size would imply a truly subquadratic algorithm for binary string
edit distance. Firstly, recall the definition of a linear grammar:

I Definition 22. A grammar G = (Q,Σ, P, S) is said to be linear if each production is of
the form A→ bB | Bb | aBc | d, where a, b, c, d ∈ Σ and A,B ∈ Q.

We first define the linear grammar G = (Q,Σ, P, S) with nonterminals Q = {S, Sz},
alphabet Σ = {0, 1} ∪ {z}, and productions:

S → 0S0 | 1S1| | Sz

Sz → zSzz | z

Given two binary strings, A ∈ {0, 1}n B ∈ {0, 1}m, let BR be the reverse of B. Then define:

wA,B = Azn+mB
R

Where zn+m = ⊕m+n
i=1 z, and ⊕ is concatenation. Note that our grammar has constant size.

The language it recognizes is precisely L(G) = {CztCR | C ∈ {0, 1}k, k, t ≥ 0}, which is the
set of all binary palindromes separated by any number of z’s in between. The purpose of the
dummy variable z will be to avoid *cheating* in the editing procedure by blurring the line
between which string is A and which is BR in a valid editing procedure.

I Theorem 23. The language edit distance between wA,B and G is equal to the string edit
distance between A and B.
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Proof. Let d(wA,B , G) be the language edit distance, and let d(A,B) be the string edit
distance between A and B. We first show d(wA,B , G) ≤ d(A,B). Let ẽA be an ordered
sequence of insertions, deletions, and substitutions which edit A into B with minimum cost.
Then applying the editing procedure to the substring wA,B(1 : n) transforms wA,B into the
string Bzn+mB

R with equal cost. Since Bzn+mB
R ∈ L(G), we have d(wA,B , G) ≤ d(A,B).

Now let ẽG be an ordered sequence of edits of minimum cost which modify wA,B into
a valid word of L(G). We first argue that the substring zn+m is not modified. Since L(G)
admits a string CztCR for any t, deleting any of the z’s in wA,B would not decrease the
Levenshtein distance between the input string and the language, unless potentially in the
case that all n + m of the z’s were deleted. But clearly DA,B ≤ n + m, thus we need not
consider this case. Similarly, inserting z’s can never be helpful. Replacing one of the z’s with
a 0 or 1, or inserting a 0/1 within the substring zn+m, say at position j, would then force
that all z’s in position either < j or > j be deleted or replaced. We have established that
deleting z’s is never helpful, and the effect of replacing a string of z’s from j to the ending of
A or the start of BR could be equivalently accomplished by inserting the same terminals
between zn+m and A or BR respectively. Thus we can assume that the substring zn+m is
never modified by ẽG.

Then ẽG can be partitioned into the set of edits made to the substring A, and the
edits made to BR. This gives a valid procedure to edit A into C and B into C for some
C ∈ {0, 1}k and k. Since edit distance is a metric on the space of strings, we have d(A,B) =
mink,C∈{0,1}k d(A,C) + d(C,B). But we have just shown that the left hand side is at most
d(wA,B , G), which completes the proof.

J

I Theorem 24 (Hardness of Linear Language Edit Distance). There exists no algorithm to
compute the minimum edit distance between a string x, |x| = n and a linear language L(G)
in o(n2−ε) time for any constant ε > 0, unless SETH is false.

Proof. The theorem follows immediately from 23 and from the results of [9]. J

Ultralinear Language Parsing Hardness

A recent result of Abboud, Backurs and Williams [1] has shown that any algorithm which
can solve the recognition problem for an input string of length n to a context free grammar
G in time O(nF ) can be modified to an algorithm which can solve the 3k-clique problem
on a graph of order n in time O(nFk). A well known conjecture of graph algorithms states
that the smallest such value of F for which 3k-clique can be solved is 3 for combinatorial
algorithms, and ω for any algorithm, where ω is the exponent of fast matrix multiplication. A
refutation of this conjecture would additionally result in faster exact algorithms for Max-Cut
[45, 43], among other consequences.

The proof of hardness in [1] proceeds by enumerating all k-cliques in an input graph,
and then judiciously constructing an input string w over an alphabet Σ which encodes all of
these k-cliques. A grammar G of constant size is then introduced such that G accepts w if
and only if the input graph contains a 3k-clique.

In this section we adapt this approach so that the grammar in question is ultralinear.
We do this by constructing an ultralinear grammar G`U , parameterized by a constant `, such
that L(G`U ) ⊂ L(G) and such that if w is a string constructed from a graph G as specified
by [1], then G has a 3k-clique if and only if w ∈ L(G`U ). Our grammar is essentially G, but
with modifications made in order to bound the total number of non-linear productions which
can be made during any derivation. Our grammar will have size O(`) = O(n3), but since
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|w| ∈ O(k2nk+1) and the blowup in grammar size is independent of k, this is not problematic.
It follows that if the currently known clique algorithms are optimal, the recognition problem
for ultralinear grammars cannot be solved in o(Poly(|G|)nF ) time, where F is as in the
conjecture above. We present our adaptation G`U below.

I Theorem 25 (Hardness of Ultralinear Grammar Parsing). There is a ultralinear grammar
G`U = GU such that if we can solve the membership problem for string of length n in time
O(|GU |αnc), where α > 0 is some fixed constant, then we can solve the 3k-clique problem on
a graph with n nodes in time O(nc(k+3)+3α).

Encoding of the Graph

Let G be a graph on n vertices. For every vertex v ∈ V (G), let v be a unqiue binary
encoding of v of size exactly 2 log(n). Let N(v) be the neighborhood of v. We define
a set of gadgets, which are exactly those introduced in [1], over the same alphabet Σ =
{0, 1, $,#, astart, amid, aend, bstart, bmid, bend, cstart, cmid, cend}. Firstly are the so-called node
and list gadgets:

NG(v) = #v# LG(v) = #
⊕

u∈N(v)

($uR$)#

where uR is the reverse of u. We then enumerate all k-cliques in G, and use Ck to denote
the set of all k-cliques in G. Let t = {v1, . . . , vk} ∈ Ck be any k-clique. Then the so-called
"clique-node" and "clique-list" gadgets are given by

CNG(t) =
⊕
v∈t

(NG(v))k

CLG(t) =
(⊕
v∈t

LG(v)
)k

Along with the additional three gadgets

CGα(t) = astartCNG(t)amidCNG(t)aend

CGβ(t) = bstartCLG(t)bmidCNG(t)bend
CGγ(t) = cstartCLG(t)cmidCLG(t)cend

Finally, the encoding of the G into a string w is given by

w = (
⊕
t∈Ck

CGα(t)))(
⊕
t∈Ck

CGβ(t))(
⊕
t∈Ck

CGγ(t)))

Note that |w| ∈ O(k2nk+1), and the cost of constructing the string w is linear in its
length.

The Ultralinear Grammar

Our grammar G`U = (Q,Σ, P, S) is given by

Q =
( ⋃̀
i=1
{Vi

αγ ,V
i
αβ ,V

i
βγ ,S

i
αγ ,S

i
αβ , Siβγ ,N

i
αγ ,N

i
αβ ,N

i
βγ}
)⋃
{S,S∗αγ ,S

∗
αβ ,S

∗
βγW,W′, }
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where i ranges from i = 1, 2, . . . , `, for some ` which we will later fix. The main productions
are:

S→WastartS1
αγcendW S∗αγ → amidS1

αβbmidS
1
βγcmid

S∗αβ → aendWbstart S∗βγ → bendWcstart

Then for xy ∈ {αβ, αγ, βγ}, and for i = 1, 2, . . . , `− 1, we have the "xy-listing rules":

Sixy → S∗xy Sixy → #Ni+1
xy $Vi+1

xy #
Ni
xy → #Si+1

xy #Vi+1
xy $ Ni

xy → σNi
xyσ

Where σ ∈ {0, 1}. Finally, again for i = 1, 2, . . . , `− 1, we have the "assisting rules":

W→ ε | λW W′ → ε | σW′ Vi
xy → ε | $W′$Vi+1

xy

For all λ ∈ Σ and σ ∈ {0, 1}. Then for i = 1, . . . , `− 1, the partition

Q2` = {S}, Q2`−i = {Siαγ ,N
i
αγ ,V

i
αγ}, Q` = {S∗αγ}

Q`−i = {Siαβ ,S
i
βγ ,N

i
αβ ,N

i
βγ ,V

i
αβ ,V

i
βγ}, Q1 = {S∗αβ ,S

∗
βγ}, Q0 = {W,W’}

satisfies the ultra-linear property. Our grammar is the same as that in [1], except we replace
the set of nonterminals {V,Sαγ ,Sαβ , Sβγ ,Nαγ ,Nαβ ,Nβγ} by ` identical copies, each with
a index in {1, . . . , `}, such that every time one copy of a nonterminal in this set is produced
from another via a non-linear production, the resulting copy has a strictly greater index.
Note that we replace the V of [1] with 3 further copies {Vi

αγ ,V
i
αβ ,V

i
βγ} for each i = 1, . . . , `,

such that Vi
xy can only be produced by Ni−1

xy ,S
i−1
xy , and Vi−1

xy (the nonterminals with the
same subscript), as opposed the V in [1] which could be produced by {Nxy,Sxy, V } for any
xy ∈ {αβ, αγ, βγ}.

Finally, for every copy of such a nonterminal with index `, we prevent this nonterminal
from making any further non-linear productions. Doing this places a strict limit on the
maximum number of times a given non-linear productions may be used, in order to preserve
the ultralinear property. Since we have not added any new productions, but instead modified
each non-linear production of [1] such that it cannot be used more than ` times, we have that
L(G`U ) ⊂ L(G). Thus, the language recognized by our grammar is strictly a subset of the
language recognized by the context free grammar G, which consists of strings which can be
produced with arbitrarily many non-linear productions. Specifically, as `→∞, the language
L(G`U ) becomes precisely L(G). Note that the number of nonterminals and the number of
productions in G`U is linear in the size of G`U , thus we have |G`U | = O(`)

We will show that taking ` = O(n3) will be sufficient in order to recognize any encoding
w of a graph G which contains a 3k-clique, which will prove 25. Our proof is essentially the
same as that of [1], except we count the number of times that non-linear productions must
be used to derive a string w which encodes a 3k-clique.

I Theorem 26. Let w be an encoding of a graph G as given above. Then G`U → w if and
only if G contains a 3k-clique.

Proof. We first recall the listing rules, for xy ∈ {αβ, αγ, βγ} and i = 1, 2, . . . , ` − 1, they
are:
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(1) Sixy → S∗xy (2xy) Sixy → #Ni+1
xy $Vi+1

xy #
(3xy) Ni

xy → #Si+1
xy #Vi+1

xy $ (4) Ni
xy → σNi

xyσ

where σ ∈ {0, 1}, and the last assisting rule

(5)Vi
xy → ε | $W′$Vi+1

xy

The proof in [1] proceeds by following the productions of the G, and demonstrating that
any resulting string must satisfy certain properties. Furthermore, if w is an encoding the a
graph G as specified above, w will have these properties if and only if G has a 3k-clique

We prove our extension of their theorem by showing that any string corresponding to
the encoding of a graph that is accepted by the original grammar G, can be produced using
the listing productions (2xy) and (3xy), and the assisting production (5), at most ` times for
some ` that we will later fix. Since these are the only non-linear productions which can be
used more than once in any derivation, this will demonstrate for such an ` that the CFG G`U
will accept an encoding w of a graph G if and only if G has a 3k-clique.

Our proof follows that of [1], where we consider the sequence of productions which must
be taken in order to derive w. We can only begin by the production S → w1astartSαγcendw2,
where astart appears in CG(tα) for some tα ∈ (Ck) and cstart appears in CG(tγ) for some
tγ ∈ Ck. From here, we must derive Sαγ → CNG(tα)SαγCLG(tγ) before exiting Sαγ via
the production Sαγ → S∗αγ , after which we can no longer return to Sαγ . The only way to
produce the string CNG(tα)SαγCLG(tγ) is via the so-called listing productions (2), (3), (4),
thus we can confine our attention to them.

Note that CNG(tα) consists of k2 ≤ n2 binary encodings of vertices in G, whereas
CLG(tγ) consists of k2n ≤ n3 such encodings. The only way to derive elements on the left
of Siαγ is by using the second listing production (2) and then deriving them via Ni

αγ using
(4). Repeated use of (4) allows for the derivation of exactly one of the binary encodings in
CNG(tα), and its corresponding reverse in CLG(tγ), say the sequence v. Then each time we
use the second production we are able to derive exactly one out of all k2 sequences in CNG.
By repeatedly applying (5), the nonterminal Vi

αγ produced along with Ni
αγ can derive all

the binary sequences on the right side of vR ∈ LG(u) ∈ CLG(tγ), for some u ∈ G, and the
Vi+1
αγ derived from (3), after Ni

αγ completes the derivation of v, can construct all such binary
sequences on the left side. There are at most n such sequences in LG(u), thus we need use
the production (5) at most n times to derive the rest of the terminals in LG(u).

Thus each time we derive one of the LG(u)’s in CLG(tγ), during which we simultaneously
derive one of the NG(v)’s in CNG(tα), we use at most n non-linear productions, thus
increasing the index of any nonterminal by at most n. Note in actuality, since (5) only
involves Vi

αγ , we only increase the index of Vi
αγ by this much; the index of Ni

αγ and Sαγ
increase by at most two, since both of (2) and (3) are used at most once in this process, but
for simplicity we will use n as the upper bound. Since this process must be repeated at most
k2 times, the total increase in the indices of the nonterminals is at most nk2 ≤ n3 in the
derivation of CNG(tα)SαγCLG(tγ)

Now once we have produced the sentential form CNG(tα)SiαγCLG(tγ), the only possibility
is to "exit" via the production Siαγ → S∗αγ for some i. From here, we must apply the production
S∗αγ → amidS1

αβbmidS
1
βγ , and then seek to derive

S1
αβ → CNG(tα)S∗αβCLG(tβ) S1

βγ → CNG(tβ)S∗αβCLG(tγ)
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Again, as just argued, both of these derivations can be completed using at most n3 non-
linear productions, and thus never producing a nonterminal of index greater than n3. Once
this has occurred, the rest of the string w can be derived via the exiting productions
S∗αβ → aendWbstart and S∗βγ → bendWcstart, as W can produce any string in Σ∗. Since no
nonterminal with index greater than n3 is ever produced, by setting ` = 2n3 it follows that
our grammar GU will accept the string w via the previous productions.

Now it is proven explicitly in [1], that if the derivation Sxy → CNG(t)S∗xyCLG(t′) can
occur using the only the xy-listing rules, for any t, t′ ∈ Ck and xy ∈ {αβ, αγ, βγ}, then the
k-cliques t, t′ must form a 2k-clique t ∪ t′. Since the set of all sentential forms, disregarding
index, derivable from our grammar G`U is strictly a subset of its context free counterpart
G, this result immediately holds for G`U as well. Finally, since our derivation involved
occurrences of all three of Sαγ → CNG(tα)SαγCLG(tγ), S1

αβ → CNG(tα)S∗αβCLG(tβ) and
S1
βγ → CNG(tβ)S∗αβCLG(tγ), it follows that tα ∪ tβ ∪ tγ is a 3k-clique.
The validity of the other direction can be demonstrated by following the derivations

described above for any particular triple tα, tβ , tγ ∈ Ck which together form a 3k-clique,
which completes the proof.

J

Proof (Theorem 25). We have shown that for ` = 2n3, our grammar G`U accepts the string
w iff G contains a 3k-clique. The size of our grammar is then |G`U | = O(`) = O(n3). Since
the size of the string w encoding the graph G was O(k2nk+1), which can be constructed in
O(k2nk+1) < O(nk+3) time, it follows that if the membership of w ∈ L(G`U ) can be determined
in time O(|G`U |αnc), then the 3k-clique problem can be solved in time O(nc(k+3)+3α), which
proves the theorem. J

5.5 Metalinear and Superlinear Grammar Edit Distance
In this section we demonstrate a quadratic time algorithm for metalinear and superlinear
grammars.

I Definition 27 (k-metalinear). A grammar G = (Q,Σ, P, S) is said to be k-metalinear if
every production is of the form:

S → A1 . . . At

Ai → αAjβ

Where Ai ∈ Q \ {S}, α, β ∈ Σ∗, and t ≤ k.

Thus, a k-metalinear language can have at most k linear nonterminals on the right hand side
of a production. The metalinear languages (also referred as LIN(k)) strictly contain the
linear languages. Furthermore, it has been shown that Lin(k) is a strict subset if Lin(k + 1)
for every k ≥ 1, giving rise to a infinite hierarchy within the metalinear languages [25].

I Definition 28 (superlinear). G is said to be superlinear if there is a subset QL ⊆ Q such
that every nonterminal A ∈ QL has only linear productions A → αB or A → Bα where
B ∈ QL and α ∈ Σ. If X ∈ Q \ QL, then X can have non-linear productions of the form
X → AB where A ∈ QL and B ∈ Q, or linear productions of the form X → αA | Aα | α for
A ∈ QL, α ∈ Σ∗. Superlinear grammars strictly contain the metalinear grammars.

Note that if we also allow both the nonterminals of the RHS to come from Q (and not
just QL), then we get the entire class of context free grammars. A grammar G is superlinear
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iff every word w ∈ L(G) can be expressed as the concatenation of words generated by linear
grammars. This is a generalization of the metalinear languages, and can be thought of as
the family Lin(∞). Superlinear grammars strictly contain the metalinear grammars, and
are the regular closure of the linear languages. Several other nice properties of them have
been well studied [25].

We now show how any metalinear grammar can be explicitly transformed into an equivalant
superlinear grammar.
Conversion of Metalinear to Superlinear grammar. Let GM be any k-linear grammar,
we construct an equivalant superlinear grammar GS . For every production of the form

S → A1 . . . At, t ≤ k

Add t− 1 new nonterminals A′1, . . . A′t−1, and the following productions

S → A′t−1At

A′i → A′i−1Ai for i = 2, 3, . . . , t− 1

A′1 → A1

The result is a superlinear grammar GS , with at most p|P | new nonterminals, where p is
the maximum number of nonterminals on the left hand side of any production. Under the
assumption that p = O(|P |), the O(|P |n2) time algorithm we present in this section for
superlinear grammars gives an O(|P |2n2) algorithm for metalinear language edit distance.
Algorithm. We now present a quadratic time-complexity algorithm for computing the
minimum edit distance to a superlinear grammar G. Let x = x1 . . . xn be our input string.
The algorithm has two phases.
First Phase. In the first phase, we construct a graph T R, which is precisely the linear
grammar edit distance graph T (QL, x) for the nonterminals in QL, but with the direction of
every edge reversed and the weights kept the same. This, in effect, switches the roles of the
source and sink vertices of T . Computing the single source shortest path starting from t,
by the symmetry of T and T R we obtain the weight of the shortest path from Ai,j to t in
T for every nonterminal A ∈ QL and 1 ≤ i ≤ j ≤ n. By the proof of the correctness of the
linear language edit distance algorithm (Theorem 7), the weight of such a path is equal to
the minimum edit distance of xi . . . xj to a string s which can be legally produced starting
from the state A. Thus computing single source shortest path from t in T R allows us to
construct a matrix Ti,j(A) = c such that c is the minimum cost of deriving xi . . . xj from A.
This, as before, can be done in O(n2|P |) time.
Second Phase. Once we have Ti,j(A) computed for all i, j and A ∈ QL, we begin the second
phase where we construct a new graph TNL with a new sink vertex tNL, NL for non-linear,
consisting of n clouds, each of which has a vertex for each of the non-linear nonterminals
Q\QL. We will denote the ith cloud by (i), and for any non-linear nonterminal Ak ∈ Q\QL,
we denote the vertex corresponding to Ak in (i) by Aik. Cloud (i) will then correspond to
the substring xixi+1 . . . xn, and for any nonterminal Ak ∈ Q \QL, the weight of the shortest
path from Aik to tNL will be equal to the minimum edit distance between xixi+1 . . . xn to
the set of strings legally derivable from Ak. Thus the vertex set of the graph is given by:
V (TNL) = {Aik | Ak ∈ Q \ QL, 1 ≤ i ≤ n} ∪ {tNL}. Let null(A) denote the length of the
shortest string legally derivable from A. We show how this can be computed for any CFG in
O(|Q||P | log(|Q|)) time in Theorem 31. We now describe the construction of the edges of
TNL.
Construction of the edges.
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1. For every non-linear production Ak → BC, and each 1 ≤ i ≤ j < n, create the edge
Aik

BC−−−−−→
Ti,j(B)

Cj+1. B derives the substring xixi+1...xj with a cost of Ti,j(B)

2. For every non-linear production Ak → BC and each 1 ≤ i ≤ n, create the edge Aik
BC−−−−−→

null(B)

Ci. B derives ε with a cost of null(B). Also create the edge Aik
BC−−−−−−−−−−−→

Ti,n(B)+null(C)
tNL. B

derives the substring xixi+1...xn with a cost of Ti,n(B), and C derives ε with a cost of
null(C)

3. For each production Ak → B, and each 1 ≤ i ≤ n, create the edge Aik
B−−−−−→

Ti,n(B)
tNL. B

derives the substring xixi+1...xn with a cost of Ti,n(B)

I Theorem 29. The weight W of the shortest path from S1 to tNL in TNL is equal to the
minimum language edit distance between x and G, and can be computed in O(|P |n2) time.

Proof. The idea behind the proof is similar to that of the linear language edit distance
algorithm. Every legal word w ∈ L(G) can be derived starting from a string of nonterminals
A1A2 . . . Ak (by suitable relabeling of the nonterminals) where Ai ∈ QL for 1 ≤ i ≤ k and
S → A1B1 → A1A2B2 → · · · → A1A2 . . . Ak with Bi ∈ Q \QL.

Let w =
⊕k

i=1 wi be a partition of the word such that wi is the substring derived by Ai.
Then if ew is any sequence of editing procedures (deletions of a terminal in w, insertions of a
terminal into w, or replacement of a terminal in w) which edits w into x given a specified
set of legal production pw which produce w, then we show how ew can be partitioned into
ew1 , ew2 , . . . , ewk

, where ewi
are the edits of ew restricted to the substring wi. This partition

works as follows. Let ε be any single edit. If it is a deletion of a terminal in wi, or the
replacement of a terminal in wi with another terminal, then we put ε in ewi

. If ε is an
insertion of a terminal between two terminals a and b which are both either in wi, the result
of replacement of a terminal in wi, or the result of an insertion edit ε′ in ewi , then we put ε
in ewi

. If the insertion is made on the boundary, say where either a ∈ wi, a was the result of
a replacement of a terminal and wi, or a was an insertion made in ewi , and either b ∈ wi+1,
b was the result of a replacement of a terminal and wi+1, or b was an insertion made in
ewi+1 , then we assign ε to ewi (we could just as easily assign to ewi+1 , as long as the rule is
consistent). In other words, we assign ε to the substring wi of the lowest index of the two
substrings corresponding to the terminals on either side of the insertion ε.

Now fix any such string w and set of edits ew with corresponding partition ew1 , ew2 , . . . , ewk

such that ew edits w into x. Let |ewi
| be the total cost of the edits ewi

, and let xi be the
result of applying ewi to wi, then x =

⊕k
i=1 xi. Now since the process of editing wi into

xi is independent from the process of editing wj into xj for all j 6= i, the minimum edit
distance from xi to the set of strings that are legally derivable from Ai is less than or equal
to the cost of ewi

for all editing procedures ewi
. By the proof of the linear grammar edit

distance algorithm, for any 1 ≤ a ≤ b ≤ n and nonterminal Ai, the value Ta,b(Ai) is equal to
the minimum edit distance between xa . . . xb and the set of strings legally derivable from Ai.
Setting li =

∑i−1
k=1 |xk|, then we have in particular Tli+1,li+1(Ai) ≤ |ewi

|. Furthermore, for
any sequence 1 = `1 ≤ `2 ≤ · · · ≤ `k+1 = n, the path:

S1 A1B1−−−−−−−→
T`1,`2 (A1)

B1
A2B2−−−−−−−−→

T`2+1,`3 (A2)
B2 −→ . . . −→ tNL

exists in TNL with cost
∑k
i=1 T`i,`i+1(Ai). Setting `i = li, it follows that

∑k
i=1 T`i,`i+1(Ai) ≤

|ew| for any editing procedure which transforms a string w derivable from A1 . . . Ak into
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x. In particular, this holds for the editing procedure with minimum cost, from which we
conclude that W is at most the minimum language edit distance from x to G.

The fact thatW can be no less than the minimum edit distance is easily seen, as every path
corresponds to a derivation S → A1B1 → A1A2B2 → · · · → A1A2 . . . Ak, and a partition
x1, x2, . . . , xk such that x =

⊕k
i=1 xi and the cost of the path is the sum of the minimum

costs of editing xi into a string legally derivable from Ai over all 1 ≤ i ≤ k. If W were
less then the optimal, then the shortest path on TNL would give a string of nonterminals
A1 . . . Ak derivable from S such that x can be edited into a string legally derivable from
A1 . . . Ak with cost less than the language edit distance, a contradiction, which completes
the proof.
Running Time. The first phase of the algorithm takes time O(|P |n2), as it entails running
single source shortest path on the linear grammar edit distance graph T . The graph TNL
constructed in the second phase has O(|Q|n) vertices, and O(|PA|n) edges connecting to
any vertex Ai ∈ TNL, where PA ⊂ P is the subset of productions with A on the left hand
side. Thus the total number of edges is O(|P |n2), so running single source shortest path on
a graph takes O(|P |n2) time, therefore the entire algorithm runs in O(|P |n2) time. J

I Theorem 30. The language edit distance to any metalinear grammar can be computed in
O(|P |2n2) time.

Proof. Follows directly from the above theorem and the conversion of any metalinear
grammar to superlinear grammar. J

5.6 Proofs for the Linear Language Edit Distance Algorithm
I Theorem 31. For any CFG G = (Q,Σ, P, S), the set of values {null(A) |A ∈ Q} can be
computed in O(|Q||P | log(|Q|)) time.

Proof. The problem of finding null(A) is solved by the algorithm given in [23]. Specifically,
the problem of finding the shortest string derivable from A is application (B) of [23]. The
algorithm takes as input a context free gramamr G and nonterminal A ∈ Q, and returns
the value null(A) in time |P | log(|Q|) + |P | = O(|P | log(|Q|)). Repeating the process for all
nonterminals in |Q| yields the desired runtime. J

Proof: Theorem 6. Let ρ be a sequence of legal productions which derives a string s from
Ak, interspersed by d edits that edit s into xi . . . xj , where d is the optimal edit distance
over the set of all such strings s derivable from Ak. We first show that the shortest path has
weight d.
Base Case d = 0. If d = 0, then starting from the vertex Ai,jk , we can follow edges for
legal productions and completing legal productions according to ρ of weight 0 to reach t.
(For example, if the first production in ρ is Ak → xiAk1 , then the first edge taken will be
Ai,jk

xi−→
0
Ai+1,j
k1

.)
Base Case d = 1. Let us now consider d = 1. The single error has caused by either
substitution, or insertion, or deletion.

single substitution error. First, consider when a single substitution error has happened
at position l. That is, if we had replaced xl by some a ∈ Σ, the substring s = xixi+1...xl−1axl+1...xj
can be derived from Ak with cost d = 0. Consider the series of legal productions made from
Ak, up until the point where a is produced. At this point, there is some string x` . . . a, or
a . . . x`′ which is left to be derived by some non-terminal At ∈ Q. WLOG, the string x` . . . a
remains to be derived. For all the productions so far, we follow the edges created for legal
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productions, giving us a path from Ai,jk to A`,lt of cost 0. At this point, we can take the
replacement edge A`,lt

xl−→
1
A`,l−1
q , where At → Aqa is a production, or if ` = l then A→ a is

a production, so we take A`,`t
xl−→
1
t. In the second case we are done. In the first we have the

string x` . . . xl−1 left to derive from Aq, which can be done with cost 0 by again following the
legal production edges, corresponding to the productions of ρ, to the sink. The concatenation
of the paths from Ai,jk to A`,lt , of cost 0, then the edge of cost 1 to A`,l−1

q , and then the path
of cost 0 from A`,l−1

q to the sink, gives a full path from Ai,jk to t with a total cost of 1.
single deletion error. Now consider a single deletion error at position l. Hence,

s = xixi+1...xl−1axlxl+1...xj can be derived from Ak with d = 0. Then follow the series of
legal productions of ρ until a is produced. At this point, we must either derive x` . . . xl−1a or
axl . . . x`′ from a non-terminal At. WLOG x` . . . xl−1a remains. Again, follow the legal edges
from Ai,jk to A`,xl−1

t with cost 0. Then take the edge A`,l−1
t

ε(a)−−→
1

A`,l−1
q , where At → Aqa is

a production. Starting from A`,l−1
q , we again follow the remaining legal edges, corresponding

to the remaining productions in ρ which produce the rest of the string, to the sink. The
whole path all together, then, takes us from Ai,jk to the sink with cost 1 as desired. One
final case occurs if a is the last terminal derived in the sequence. Then either xl−1 or xl
was the last terminal derived when we are stopped, WLOG it is xl with the production
Ar → Asxl. Then the last production of ρ must be a production As → a. Then we have
null(As) = 1. Then we can take legal edges from Ai,jk to Al,lr with cost 0. We then take the
edge Al,lr

xl−−−−−→
null(As)

t, giving a full path to the sink with cost 1 as desired.

single insertion error. Now consider a single insertion error at position l. Hence,
s = xixi+1...xl−1xl+1...xj can be derived from Ak with d = 0. Again, consider the sequence
of legal productions made until either xl−1 or xl+1 is derived, whichever happens first. WLOG
xl−1 is derived first by a non-terminal At → xl−1Aq, with xl+1 . . . x` left to be derived from
Aq. Then follow the corresponding legal production edges from Ai,jk to Al,`q , and then take
the insertion edge Al,`q

xl−→
1
Al+1,`
q . From here, follow the edges given by the remaining legal

productions of ρ, which takes us from Al+1,`
q to the sink with cost 0. Then the whole path

has cost 1, as desired.
Induction. Assuming the result is true for errors up to d− 1, the induction step for d edits
is easy. Let s be the legally derivable string. Consider the sequence of legal productions
in the production sequence of s up until either the production of a terminal which will be
deleted, or a terminal which will be substituted, or to the point where a terminal will need
to be inserted. let xixi+1 . . . xr−1 and xs+1 . . . xj be the substrings that were derived by
these legal productions so far at the point when we are stopped. Taking the corresponding
legal production edges gives a path of cost 0 from Ap,qk to Ar,st for some At ∈ Q. Now, in if
the case is substitution, we apply the argument from the base case and arrive at a vertex
Ar+1,s
q or Ar,s−1

q with cost 1, WLOG we are at Ar+1,s
q . Now there are d− 1 remaining edits

in between the string left to be legally derived by Aq and the string xr+1 . . . xs. Thus the
induction hypothesis applies, and we obtain a path of weight d− 1 from Ar+1,s

q to the sink.
Concatenating the paths gives the desired path of length d.

In the case of deletion or substitution, we similarly follow the argument in the base case
for d = 1, and then apply the induction hypothesis on the remaining substring left to be
derived. The only distinct case to note is in the deletion case, if we are stopped at a point
where we have derived all terminals in x except xl, and there remains to be derived the
substring xla1a2 . . . am of s – meaning that all of a1 . . . am must be deleted. In this case, we
make the same argument at the beginning of the deletion base case, taking a path of cost 0
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from Ai,jk to Al,lr . Suppose the next step in the derivation is Ar → xlAs. Then we take the
null edge Al,lr

xl−−−−−→
null(As)

t with cost at most m since a1 . . . am can be derived from As. Note

that the cost must be exactly m, since the edit distance d is assumed to be optimal.
This completes all cases, thus the shortest path has weight at most d. Let d∗ be the

weight of the shortest path. Then reversing the process of reasoning taken above, any such
path from Ai,jk to t of weight d∗ gives rise to a production of s from Ak which can then be
edited into xi . . . xj using exactly d∗ edits. Since d is the optimal edit distance, we have that
d∗ = d is the weight of the shortest path as desired. Furthermore, considering the other
direction, this means that if d∗ is the weight of the shortest path, then the minimum edit
distance must also be d∗, which completes the proof.

J

Proof: Theorem 7. The cost of the shortest path follows immediately from the previous
theorem. Now there are O(n2) vertices in the graph for every nonterminal A ∈ Q. Hence,
there are a total of O(|Q|n2) vertices. Let Pk denote the set of productions involving Ak
on the left hand side. Then, for each Ai,jk , the total out degree of that node is O(|Pk|).
Hence the total number of edges emanating from cloud (i, j) is O(|P |), resulting in a total
of O(|P |n2) edges. Since the maximum edge weight is bounded by 1, utilizing the best
known single-source shortest path algorithm gives a O(E(T ) + V (T )) = O(|P |n2)3 runtime
algorithm to compute the weight of the shortest path from S1,n to t, which is the minimum
edit distance from x to t.

J

5.7 Normal Form for CFG’s
I Definition 32. A context-free grammar G is in normal form if for any nonterminal A ∈ Q,
all productions with A on the left hand side are of the form: (1) A → βB | Bβ | β, or (2)
A→ CD

It is well known that every CFG can be converted into Chompsky Normal Form. Since
this normal form is strictly less restrictive than Chompsky normal form, it follows that every
CFG can be converted into our normal form.

I Lemma 33. Any k-ultralinear grammar can be converted into a k∗-ultralinear language in
the above normal form, where k∗ ≤ k log(p), and p is the maximum number of nonterminals
on the right hand side of any production.

Proof. Consider any production A→ A1A2 . . . Am, where A ∈ Qt and Aj ’s are in partitions
of lower index for 1 ≤ j ≤ m. We add log(p) new partitions between Qt and Qt−1. We then
make new nonterminals A1

1, A
1
2, . . . A

1
dm/2e, and set the only production of each to be A1

i →
A2i−1A2i for i = 1, 2, ..., dm/2e. If m is odd than A1

dm/2e → Am will be the only production
of the last nonterminal. We then repeat the process, creating nonterminals A2

1, . . . A
2
dm/4e

and setting A2
i → A1

2i−1A
1
2i. Finally, we create the production A → A

dlog(m)e
1 A

dlog(m)e
2 .

We place the terminals Aij in the partition that is depth dlog(m)e − 1 + i lower than Qt.
Furthermore, for any production A → B where A ∈ Qt and B ∈ Ql with l < t, we can
add a new non-termianl B′ ∈ Ql such that its only production is B′ → ε. We then change
the production to A → BB′. This does not increase the number of partitions. Doing the

3 We assume |P | ≥ |Q|, that is each nonterminal is involved in at least one production on the left.
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first process for all productions, the resulting grammar has at most k log(p) partitions, and
after both processes at most p|P | new nonterminals, since every production has at most p
nonterminals on the right hand side. J

5.8 Proof of the CFG Exact Algorithm
Intuition + Sketch of the Algorithm:

Our algorithm makes crucial use of our earlier construction of the linear language edit distance
graph T . The essential idea is that, when tasked with deriving some substring xi . . . xj
from a nonterminal A ∈ Q using a sequence of productions in P , and error productions
corresponding to edit edges, there are two possibilities for the first production. Either the first
production is a linear production, creating xi or xj with cost 0 if it is a legal production and
cost 1 if it is an error production, or it is a non-linear production of the form A→ CD. In the
latter case, no terminal is produced and we are now tasked with deriving x(i : j) = xi . . . xj
from CD. The first case is handled by the original construction of the graph T . In the
second case, C must derive some substring x(i : `) and D must derive x(`+ 1 : j), each
of which is a substring of size less than or equal to that of x(i : j) (equal in the case that
either one of C or D must derive all of x(i : j), and the other derives no terminal). Here
i ≤ ` ≤ j − 1 is referred to as the splitting point. To handle this situation, our algorithm
computes shortest path on T in phases, where in each phase we compute shortest path to
all substrings of a certain length, so that when computing the cost of the above non-linear
production, we will have already computed the minimum cost of deriving x(i : `) from C

and x(`+ 1 : j) from D over all i ≤ ` ≤ j − 1.

Proof: Theorem 8. Note in this proof we work with the graphs Li instead of LRi for simplicity.
Since each path in one is just a reversal of the other, this is a trivial modification.

First, for any string x ∈ Σ∗, we write x(p : q) to denote the substring xpxp+1 . . . xq. The
proof is by induction on i. For A`,`∈L1 , consider the optimal editing procedure O from x`
to the set of strings derivable from A. If this optimal edititing procedure does not involve a
non-linear production, then the result follows from Theorem 6. If O does use a non-linear
production, then it must be a production which nullifies a resulting non-terminal (Step. 1).
This then corresponds to using a null edge created by our algorithm. Then necessarily O
makes a series of non-linear productions, each time nullifying exactly one of the two resulting
nonterminals, until we reach a nonterminal A∗ from which we take a linear edge (possibly an
error edge). The minimum cost of doing this is given by the null function, and thus following
the corresponding null edges created in step 1 gives a path from A`,` to A`,`∗ . This cost of
this path is precisely the optimal cost of nullifying all specified nonterminals. From A∗ only
linear productions are made, thus the cost of the shortest path from A`,`∗ to t is precisely the
cost of the remaining productions in O by Theorem 6.

Now assume the result for 1, . . . , i − 1, and fix any Ap,q ∈ Li, noting that necessarily
q − p+ 1 = i, and consider an optimal series of legal and illegal (error) productions which
produce x(p : q) from A (note that every error production is a linear production). There are
three cases, and consider the first production in this series. There are three cases:

If the first production is to derive xp either via an insertion, replacement, or valid
production, then this corresponds to a unique edge Ap,q → Bp+1,q with cost γ ∈ {0, 1},
where γ depends on whether or not this production was an error. Suppose this edge takes
us to Bp+1,q ∈ Li−1. In step 2, we create an edge from t to Ap,q of cost γ + Tp+1,q(B). By
induction, Tp+1,q(B) is the minimum edit distance between x(p+ 1 : q) and the set of strings
which can be legally produced from B. Thus the cost of this edge is indeed the minimum
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edit distance between x(p : q) and the set of strings which can be legally produced from A.
The same argument holds when the terminal in question is xq.

If the first production is a non-linear production A→ BC, and B and C each produce at
least one terminal of x, then it must be the case that there is some optimal splitting point
p ≤ ` < q such that B derives x(p : `) with cost c1 and C derives x(` + 1, q) with cost c2.
Since each of these substrings is strictly smaller than i, they each correspond to a cloud in
{L1, . . . , Li−1}, and since step 3 of the algorithm creates an edge with cost c which is at most
Tp,`(B) + T`+1,q (since c is computed as minimum over all splitting points), by induction we
know c ≤ Tp,`(B) + T`+1,q ≤ c1 + c2. Since both c1 and c2 must necessarily be optimal costs
of deriving x(p, `) from B and x(`+ 1, q) from C respectively, the cost of the edge created in
step 3 is precisely c1 + c2. Thus taking this edge gives a shortest path which is indeed equal
to the minimum edit distance between the substring xp . . . xq and the set of strings which
can be legally produced from A.

Finally, we consider the case that first production is a non-linear production A→ BC, and
one of B or C creates no terminals in x (is nullified). WLOG, B is the nullified nonterminal.
The corresponding edges are constructed in step 4, and takes us to Cp,q with cost null(A).
By theorem 31, we can correctly compute null(B) prior to commencement of the algorithm.

Now any edge taken from Ap,q correspond to a derivation of x(p : q) from A using both
legal and error productions. Since the cost of these edges corresponds to the cost of the
derivation, it must be the case that Ti,j(A) is no less than the minimum edit distance between
x(p : q) and the set of strings which can be legally produced from A, which completes the
proof.

J
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