
Scalable, Privacy-Preserving Contextual Communication

ABSTRACT
In this paper, we present a new communication abstrac-
tion referred to as "contextual communication" that gen-
eralizes name- or address-based communication to com-
munication based on arbitrary attributes. Compared to
prior approaches, our primary contribution is the design,
implementation, and evaluation of CNS, a system that
achieves provably scalability of Θ(

√
n), and our hard-

ness results help shed light on why prior approaches to
this seemingly well studied problem achieved subopti-
mal scalability. Furthermore, the accompanying CNS
federation architecture and our proposed privacy pro-
tocol allow users to rest assured that the CNS service
provider itself can not infer sensitive user information.
We have designed and implemented the proposed ap-
proach in a system, and our experimental evaluation with
microbenchmarks as well as a case study based on a real
hazardous weather warning application shows that the
CNS can dramatically enhance the scalability of con-
textual communication compared to the state-of-the-art.

1. INTRODUCTION
Many modern applications, especially mobile apps,

can benefit from a contextual communication, an
abstraction that generalizes name- or address-based
communication to more general attributes. For ex-
ample, peer-to-peer taxi or ride sharing apps (e.g.,
Uber) issue a search for taxis matching passenger
criteria; local-business apps (e.g., Yelp) issue a search
for establishments matching user preferences; hy-
perlocal notification apps for public safety [9, 17]
or hazardous weather [7, 15] issue alerts to devices
matching a geofence or other attribute descriptors.

Our position is that contextual communication
as a primitive as universal as TCP/IP sockets can
significantly simplify the development and mainte-
nance costs of mobile applications. Today, every
app developer has to redundantly set up and main-
tain a cloud database to collect attribute informa-
tion reported by mobile devices, use them to resolve
contextual queries, and employ narrow smartphone

notification service APIs to dispatch notifications.
Our vision of contextual communication is a uni-
versal primitive like bind(lat, long, radius) to
bind a socket-like structure to a context, i.e., an
attribute constraints descriptor, so that any mes-
sages written to it are automatically sent to end-
client principals matching the context. Contextual
communication as a universal infrastructure service
can simplify application development as developers
don’t have to worry about managing group mem-
bership or even be aware of the destination princi-
pals actually contacted; they only specify their in-
tent and the rest is as easy as what students learn
in a first course on networking today.

The above vision is attractive but challenging to
realize, and perhaps the most compelling evidence
of both is the fact that we are by far not the first
to pursue this vision (refer to §2.1 for a long lineage
of related work), yet Internet applications today
still work with the same host-to-host communica-
tion primitive from over four decades back [16] and
widely criticized by networking researchers as an
abstraction misaligned with application needs (e.g.,
location-identity conflation for mobility [34, 31, 22];
lack of information-centrism [25, 21, 6]; etc.).

Our work draws inspiration from more recent work
in this lineage on MobilityFirst [36], a so-called “fu-
ture Internet architecture” [20], which advocates a
global name service (GNS) as an indispensable part
of a mobility-friendly, secure network architecture.
Sharma et al. [35] hinted that a scalable solution
for high mobility in a name- or address-space can
form the foundation for handling mobility in any
general attribute space, and presented a proof-of-
concept demonstration (§4.3.3 [35]), but left out
the details of making it work at scale as a general-
purpose communication abstraction. Our work is
a step towards addressing the hard scalability and
privacy challenges head-on.

Our primary contribution is the design and im-
plementation of the contextual notification service

(CNS), which at its core is simply a database ser-
vice but with two novel traits. First, it enables mul-
tidimensional attribute-range queries in a provably
and massively scalable manner. Our analytical con-
tributions therein, to our knowledge, are the first to
formally describe the scalability problem, show that
linear scaling (the ideal case) is impossible (§3.2),
shed light on why prior approaches in this seemingly
old problem domain are either unscalable or sub-
optimal, and present a region mapping (§3.3) algo-
rithm that is asymptotically provably optimal. Our
formal scalability results (§3) and proofs (§6) are
rigorous, yet simple to understand.

Second, our proposed GNS-CNS separation en-
ables an important property, namely, privacy from
the service providers themselves. Without such an
assurance of privacy, our position is that the vi-
sion of contextual communication would be a non-
starter. Our protocols for updates, searches, and
lookups anonymize attribute information in a man-
ner that, despite collusion, the CNS or the GNS
can only know of the existence of attribute-value
pairs but not be able to correlate them to user iden-
tities in the absence of external information or side-
channels.

We have implemented a prototype of the CNS
that is interoperable with the open-source Mobili-
tyFirst GNS system. Our prototype-driven experi-
ments on Emulab clusters show that the CNS sig-
nificantly outperforms state-of-the-art search sys-
tems in the search and update capacity achieved
as a function of the cluster size, and that privacy-
preservation imposes only a modest performance
overhead on the overall capacity and request laten-
cies. Finally, we conduct a semi-realistic applica-
tion case study motivated by a hazardous weather
alerting app, anon[15], currently being beta-tested
with the help of over 40 emergency personnel in
and around the anon metroplex using high-fidelity
weather data from next-generation X-band radars
[14] spread over a ≈12,500 sq. mi area (compared to
≈150 previous-generation “nexrad” NWS radars
that provide blanket coverage for the U.S. and are
used by practically all hazardous weather applica-
tions today). Our results suggest that the CNS
can dramatically increase the search query volume
compared to existing systems such as the GNS or
HyperDex [19].

2. BACKGROUND AND RELATED WORK
The vision of contextual communication is not

new. To our knowledge, our two main intellec-
tual contributions—provable scalability (or hard-
ness) and privacy from the service provider—haven’t

been addressed before. However, we do build upon
a large body of prior work with closely related goals.

2.1 Contextual communication lineage
The broad vision of contextual communication

(variously referred to as attribute-based addressing
or communication, intentional naming, etc.) has
long been around. Lampson alludes to it as “de-
scriptive names” [29] but admits it is unclear how
to specify or implement such a name service. In-
tentional Naming System (INS) is similar to con-
textual communication in its ability to specify in-
tent as opposed to endpoint addresses but differs in
many respects in that INS (1) routes multicast data
through integrated resolver nodes (intentional mul-
ticast), but our proposed design only provides the
control plane offloading data transfer to the under-
lying network; (2) does not support range queries,
which makes the problem much harder; (3) is de-
signed for intradomain deployment; and (4) to quote,
“most importantly, needs to incorporate security mech-
anisms in the naming architecture before a more
wide-scale deployment”. In comparison, our vision
of contextual communication, specifically the con-
trol/data factoring and the security mechanisms,
are inspired by more recent work on the Mobili-
tyFirst [36] Internet architecture.

Pub-sub systems broadly overlap with our goal of
matching attributes to events, as do other pub-sub-
like “information-centric” network architectures like
PURSUIT [21], TRIAD [25], or NDN [37] that match
interests to data over a hierarchical name space.
These designs inherently prize a data-pull abstrac-
tion (via stateful interests or subscriptions) and fo-
cus on scalable data flow in contrast to our focus
on a more traditional IP- or SMS-like push abstrac-
tion and a scalable control plane. Our position is
that a push abstraction is intrinsically better suited
for a number of agile notification scenarios such as
emergency alerts, an application space of particu-
lar interest to us; furthermore, it is unclear how
to take off-the-shelf pub-sub-like systems and adapt
them to a scalable and privacy-preserving instantia-
tion of “Uber”, or public safety [9, 17] or hazardous
weather apps [7, 15], etc. without being stymied by
the very challenges we address in this paper.

2.2 Scalable multidimensional search
An ideal system would be linearly scalable, i.e.,

adding more resources results in a proportional in-
crease in the overall load it can accommodate with-
out significantly degrading request latencies.

To appreciate why scaling contextual communica-
tion is challenging, consider a traditional database

2

storing geolocation attributes of end-users. A no-
tifier seeking to notify users in a geofence would
perform a select for all keys whose [lat, long]

attributes lie in some range, which is efficiently ac-
complished using B-tree indexes in a centralized
(single-machine) setup. In a massively geo-distributed
setup such as that envisioned for a GNS, careful
placement of name records identified by their pri-
mary key or globally unique identifier (guid) can en-
sure low-latency lookups and linearly scaling lookups
and updates. However, achieving scalable key-based
lookup/update performance as well as scalable value-
based search is fundamentally hard.

At the heart of this challenge is that textbook
techniques for scalable load balancing to map records
to machines (such as consistent hashing based on
randomization or planned placement strategies [35])
are fundamentally at odds with search efficiency, a
goal that requires mapping records predictably to
machines based on the values of their attributes,
and whose computational and storage complexity
exacerbates with the number of searchable attributes.
A further challenge is to adapt this mapping to the
possibly non-uniform nature of the distribution of
the values of the attributes over their ranges and
the distribution of the attribute ranges in search
queries. The MobilityFirst GNS [24] currently adopts
a rather simplistic “QueryAll”[1] approach that dis-
patches every contextual search query to all ma-
chines and aggregates their results, and periodically
refreshes each active query until its expiration. This
simplistic approach preserves lookup/update scal-
ability but quickly hits a ceiling with respect to
search scalability as increasing the number of ma-
chines linearly increases the work per search!

Systems such as Mercury [11] seek to combine the
load balance benefits of randomization with multi-
dimensional range queries using a DHT-based ap-
proach that provably bounds the routing hop-count
to be logarithmic in the number of machines. Dis-
tributed B-tree approaches [10] seek to spread out
B-tree nodes over the set of available machines in a
balanced manner while maintaining the logarithmic
complexity of updates and searches with respect to
the total number of records and machines. Never-
theless, our strong hardness result (§3.2) rules out
the existence of any distributed B-tree, DHT, or
other approach that can achieve better than

√
(n)

scalability with respect to the number of machines
n. It is easy to reconcile the two observations if
one views a distributed B-tree (or a comparable ap-
proach) as an efficient routing mechanism; our hard-
ness result rules out the existence of scalable place-
ment strategies even assuming zero-cost routing.

HyperDex [19], a system that does focus on place-
ment with single-hop routing, is closely related to
and forms a baseline for our scalable mapping prob-
lem (§3.1.1). Indeed, our early efforts sought to use
HyperDex or a comparable system as an off-the-
shelf solution for the scalable search part of the
problem. However, our attempts to aggressively
stress-test its subspace partitioning algorithm made
us realize that it is technically unscalable (as for-
mally (§3.2) and experimentally §5) shown. Fur-
thermore, we found that subspace partitioning as
well as some implicit design assumptions in Hyper-
Dex are strictly unnecessary, which led us to a sim-
pler, provably scalable region mapping algorithm.

2.3 Privacy-preserving searches
Database privacy systems like CryptDB [33] at-

tempt to push the envelope of what is practical for
a privacy-preserving near-general-purpose database
system. Homomorphic encryption techniques [23]
can work directly on encrypted data but incur a
high overhead; others like order-preserving encryp-
tion [32, 12, 13] are more tractable but fundamen-
tally leak more information than public- or symmetric-
key encryption. In comparison, contextual search
addresses a narrower problem but promises a theo-
retically tight privacy guarantee at a modest cost.
Furthermore, order-preserving encryption transfor-
mations can still be overlaid on top of our design.

3. CONTEXTUAL COMMUNICATION:
DESIGN AND IMPLEMENATION

The CNS has the following high-level design goals.
Although each of these design goals is simple to
state, it is nontrivial to achieve the combination,
or even just the first and third goals.

1. Scalability: Increasing resource provisioning
should gracefully increase the system capacity.

2. Availability: The CNS must be available de-
spite the failure of a small number of machines.

3. Privacy: The CNS provider should provide
lookup, update, and search over user attributes
but itself remain oblivious to the data.

4. Federation: The design must permit feder-
ated deployment in a competitive market.

Our proposed high-level architecture assumes a
pre-existing geo-distributed, federated global name
service (GNS) (e.g., [35]). In order to achieve the
above goals, we propose a design that (1) logically
separates the contextual notification system (CNS)

3

Figure 1: High-level GNS-CNS separation: The
GNS enables rapid lookups and updates while the
CNS enables scalable indexing for efficient search.

from the geo-distributed GNS, a separation also
critical for privacy-preserving contextual queries (§4),
and (2) relies on a novel demand-adaptive region
mapping strategy. Although our design presupposes
a GNS, it is largely agnostic to its implementation
or the feasibility and merits of a GNS-driven in-
ternetwork architecture (as argued by [36]), and is
equally applicable for more specific application sce-
narios such as a “privacy-preserving Uber” service.
We begin with a formal introduction to the region
mapping problem, which is central to scalability.

3.1 Model and background
Let A denote a universal set of m attributes,

and {Ai}1≤i≤m be an arbitrary but fixed order-
ing thereof, wherein each attribute Ai can take a
value from a corresponding ordered range set R(Ai),
and let H(A) denote the corresponding global value
space, i.e., the set of all vectors [v1, . . . , vm] such
that vi ∈ R(Ai). LetD denote a key-value datastore
or a collection of key-value records wherein each key
is a globally unique identifier (or guid) and its value
is an m-dimensional vector of attribute-value pairs
[(A1, v1), . . . , (Am, vm)] where vi ∈ R(Ai), 1 ≤ i ≤
m. We use the notation X.A to mean the value of
attribute A of guid X.

Our goal is to efficiently handle searches and up-
dates over D. A search query is represented as a
vector of attribute-range pairs [(a1, r1), . . . , (ak, rk)]
for some subset of attributes {ai}ki=1 ∈ A and ri =
[lowi, highi] is an interval in R(ai), 1 ≤ i ≤ k,
which must return all guids X in the data store
D such that (low1 ≤ X.a1 ≤ high1) ∧ · · · (lowk ≤
X.ak ≤ highk). (Disjunctive queries are discussed
in §4.4.) An update is a vector of attribute-value
pairs [(a1, v1), . . . , (ak, vk)] for {ai}ki=1 ∈ A that
assigns X.ai ← vi for every 1 ≤ i ≤ k.

3.1.1 Value-space and subspace partitioning
Value-space partitioning assigns subsets of the global

value space H(A) to the global set of n machines
in a deterministic manner so as to improve search
and update performance. A simplistic approach is

to split each attribute’s value range into n mutually
exclusive and exhaustive (mee) partitions that are
bijectively assigned to the n machines in any deter-
ministic manner. A strawman approach is to store
each record in D on up to m different machines that
are each responsible for the partitions in which the
values of each of the m attributes lie; a search query
need only contact the machines responsible for the
range specified for any one attribute in the query,
however an update may have to contact up to m
machines. It is possible to do much better than
this strawman, as we explain next.

The scalable region mapping problem is as fol-
lows. Let Pi denote a set that partitions the value
range R(Ai) of each attribute Ai into MEE inter-
vals. A region is an element of the set regions(A) =
{P1 × . . . × Pm} that partitions the global value
space H(A) into MEE subspaces. Let map(r) :
regions(A)→ 2N be an arbitrary function that maps
each region to a subset of all available machines.

3.1.2 Subspace partitioning (prior work)
A recent system, HyperDex, addresses the prob-

lem via subspace partitioning that (1) first parti-
tions the universal set of attributes A = ∪kj=0Sj
into k < n mee subsets; (2) partitions the set of n
machines also into the same number k of mee sub-
sets; (3) surjectively maps the subspaces on to the
subsets of machines; and (4) partitions value space
(as above) within each subspace H(Sj), 1 ≤ j ≤ k
and its corresponding set of machines. This two-
level mapping strategy can be viewed as a special
case of a slightly relaxed region mapping problem
that does not require regions to be mutually exclu-
sive and exhaustive as in the formulation above.

a4	
a5	

a6	

S1 = {a1, a2, a3}
S2 = {a4, a5, a6}
S3 = {a7, a8, a9}
S4 = {a10, a11, a12} N5	 N6	

H (S2) =
i=1

i=8

∪Bi N7	
N8	

Mapper1(H(S1)) = {N1, N2, N3, N4}
Mapper1(H(S2)) = {N5, N6, N7, N8}
Mapper1(H(S3)) = {N9, N10, N11, N12}
Mapper1(H(S4)) = {N13, N14, N15, N16}

Mapper2(B1) = N5 , Mapper2(B2) = N5
Mapper2(B3) = N6 , Mapper2(B4) = N6
Mapper2(B5) = N7 , Mapper2(B6) = N7

Mapper2(B7) = N8 , Mapper2(B8) = N8

B1	

B2	
B3	

B4	

B5	 B7	

B8	

Hyperspace H(S2)

Figure 2: Subspace hashing to one-one map multi-
dimensional regions on to server partitions.

Figure 2 exemplifies subspace partitioning with a

4

value space of 12 attributes partitioned over a dat-
acenter consisting of 16 machines by subdividing
the value space into 4 subspaces each consisting of
3 attributes and mapping each subspace to 4 ma-
chines. Each attribute is divided into p = 2 parti-
tions for a total of p3 = 8 regions per subspace that
are spread across the 4 machines assigned to that
subspace (with 2 regions assigned to each machine).
The figure shows a single subspace S2 for simplicity
with 8 regions B1–B8 on machines N1–N4.

A natural question is if subspace partitioning as
above is sufficient to be linearly scalable or even
scalable at all. Is subspace partitioning necessary
for scalability? Is it necessary that “in general, a m
dimensional hyperspace will need O(2m) servers”
(§3 [19]) or for that matter a number of servers ex-
ponential in m or m/K for some constant K? Our
answers to all of these questions are in the negative.

3.2 Hardness of scalable region mapping
In order to explain the necessary and sufficient

conditions for scalable search, for ease of exposi-
tion, we first assume that a single update or search
operation (e.g., an indexed select) on a single ma-
chine takes a constant amount of computation; re-
laxing the assumption so that search complexity is
logarithmic (as with B-trees) in the total number
of records stored on the machine does not affect ei-
ther of the formal claims below (proved in the Ap-
pendix). We further assume that all value ranges
are a finite subset of reals between an arbitrary (but
finite) minimum and maximum value.

Lemma 3.1. For any fixed partitioning (but no
replication) of records across machines, there exists
an a priori known workload for which the system is
unscalable, i.e., the aggregate capacity (requests/s)
does not increase as the number of machines.

We encourage the reader to glance at the proof in
the Appendix as it is easy and captures the essential
insight that the strong hardness result below gen-
eralizes to subsume strategies involving arbitrary
combinations of partitioning and replication.

Theorem 3.2. For any given fraction ρ of search
queries, there exist workloads containing searches
and updates for which no subspace partitioning and
replication scheme–even with complete knowledge of
the workload–can achieve better than Ω(

√
(n)) scal-

ability unless ρ is 0 or 1.

The hardness result is especially damning because
the proof does not rely on pathological workloads;
indeed, even complete a priori knowledge of a sim-
ple, uniformly distributed workload (as well as a

broad class of non-uniform workloads) can not achieve
linear scaling–the best case–unless the workload con-
tains no searches or contains no updates (ρ is 0 or
1, in which case even linear scaling is trivial).

3.3 Practical region mapping strategy
The nonexistence of a linear scalable strategy is

disappointing, but can we achieve the asymptoti-
cally optimal

√
n-scaling with a practical algorithm?

The proof of the hardness result above naturally
suggests the crux of a subspace mapping strategy
that does achieve Θ(

√
n) scaling. However achiev-

ing this scaling provably requires some workload as-
sumptions and performing well in practice requires
further heuristics. We first present a sufficient con-
dition to ensure Θ(

√
n)-scaling (or simply maximal

scaling) for a region mapping algorithm.

Theorem 3.3. A mapping map(r) : regions(A)→
2N is maximally scalable if |regions(A)| =

√
n and

these regions are mapped bijectively to a set of
√
n

MEE subsets of the n machines, and updates and
searches are uniformly distributed across all regions.

The condition in the above theorem is simple to
state and sufficient but not necessary. Furthermore,
it is not necessary for the partitions of an attribute
to be uniform-sized. Implementing it well in prac-
tice requires a method to partition the global value
space into well balanced regions, i.e., regions that
roughly incur similar update and query loads, by
learning some information about workload patterns.

Figure 3: Maximal scalability for a single attribute.

It is easy to prove in the single-attribute case
that the above condition is sufficient to ensure max-
imal scalability. Consider a partitioning of the at-
tribute’s value range into

√
n MEE partitions each

of which is assigned to
√
n machines and replicated√

n-fold (refer Fig. 3). Each update touches at
most 2

√
n machines, the two (if different) machines

to which the old and new partition are mapped. A
search query need never touch more than

√
n ma-

chines as there exists a subset of
√
n machines that

covers the entire value space. The proof is concep-
tually similar for the multidimensional case.

It is important to note that the basic heuris-
tic in subspace partitioning [19] of partitioning the

5

hyperspace along attributes into subspaces is not
inherently flawed and is even intuitive compared
to defining arbitrary regions in a multidimensional
setting. However, a key design element missing
in subspace partitioning is replication as exempli-
fied above. Subspace partitioning maps regions bi-
jectively (one-one) to machines and subspaces bi-
jectively to MEE subsets of machines. However,
in general, either subspaces must be replicated on
more than one subset of machines or regions within
a subspace must be replicated on more than one ma-
chine assigned to that subspace for provably max-
imal scaling. Our mapper implementation defaults
to the former choice.

3.3.1 Replicated record storage
With or without subspace partitioning, search is

more efficient if each machine to which a region
is mapped stores the entire record, i.e., the guid
primary key and all attributes and values includ-
ing those not belonging to the region (or subspace
with subspace partitioning). A traditional central-
ized index, say based on B-trees, strictly needs to
only store compact primary keys at tree nodes so
as to return them as part of the result set. How-
ever, in a distributed scenario, storing only primary
keys necessitates multiple rounds of searches if the
search query’s attributes span multiple regions; on
the other hand, storing entire records allows ma-
chines mapped to a single region, say the region
with the greatest overlap with the value ranges spec-
ified in the search query, to return local result sets to
the “entry server” that aggregates and sends them
to the querying end-client. Our findings and design
in this respect are consistent with those of [19].

3.3.2 Update triggers
Update triggers efficiently notify stateful queries

of changes to the context membership as guids wan-
der in or out of context. To this end, the CNS
maintains a logical map of active queries, i.e., state-
ful queries that have been opened but not yet closed
by their queriers. Any update inducing a change to
the result set of an active query auto-triggers a no-
tification to the querier containing the list of guid
joins and leaves. This event-driven design obviates
more wasteful rate-limited polling approaches that
appear to be currently used by GNS clients [3].

The CNS does not maintain trigger state—the
set of active search queries and corresponding queriers—
as a centralized map but instead seamlessly inte-
grates it with the distributed region-mapping ap-
proach. The trigger for each active query is stored
on the same region-mapped machines where the search

query is processed to compute the result set. On
each such machine, the trigger is stored in a sepa-
rate database table than the table that stores the
guid primary key and its attribute values. Thus,
the expected number of machines touched upon an
update are at most the number of machines touched
for a search or an update without triggers.

4. PRIVACY FROM PROVIDER
Our goal is to enable contextual communication

while protecting the privacy of sensitive user infor-
mation even from the service providers. To this
end, we present a design that efficiently implements
searches and updates while ensuring that no entity
other than those explicitly identified in the access
control list (ACL) of an attribute of a guid can infer
the value of the attribute.

4.1 GNS background
The GNS enables an ACL-protected key-value

store or a collection of recordsX → [(A1, v1,acl1), . . . ,
(Am, vm,aclm)] each of which maps a guid X to
its m-dimensional vector of attribute-value-ACL 3-
tuples, wherein each acli, 1 ≤ i ≤ m is an ACL or a
set of guids authorized by X to read the value vi of
X.Ai. The GNS [35] allows X—the owner of the in-
formation contained in its record—to associate an
arbitrary read-ACL and a write-ACL for each at-
tribute, each of which may be specified as either a
whitelist or a blacklist. For ease of exposition, we
assume here that every ACL is a read-whitelist and
the write-ACL for any attribute X.A is a whitelist
that is the singleton set {X}.

The GNS resolves simple attribute-value lookup
queries in an ACL-bound manner by requiring a
querier guid Z to authenticate itself by signing the
(nonced) query with Z− and verifying the signature
using Z+ after checking that Z belongs to the ACL
of the queried attribute.

4.2 Privacy-preserving GNS–CNS design
Our threat model is that of an honest-but-curious

adversary wherein the service provider follows the
protocol correctly but may peek at all protocol data
and metadata that it handles. We require honesty
only for availability—a service provider not follow-
ing the protocol can simply render the service un-
available (and probably cease to be an attractive
service provider in practice). This threat model is
similar in spirit to that used by oblivious cloud stor-
age systems [2, 5, 4] or ISPs carrying sensitive end-
user information over SSL without being able to
infer the content of the payload.

Our approach enables privacy from the provider

6

by physically separating the indexing subsystem,
CNS, from the GNS. The GNS stores records with
the guids in clear but values of ACL-protected at-
tributes in encrypted form, while the CNS stores
the values in clear but the guids in pseudonymized
form. An end-client issues updates in two sepa-
rate steps, one involving the GNS and the other
the CNS, but issues searches only to the CNS.

4.2.1 Identical read privilege pseudonymization
An identically read privileged (IRP) set of a guid

X is a set of guids that all have the same read priv-
ileges with respect to X’s attributes, i.e., for any
two guids Y and Z in the IRP set, Y ∈ acl(X,Ai)
iff Z ∈ acl(X,Ai) for all 1 ≤ i ≤ m. A maximal
IRP set I of X is an IRP set such that for any

Y ∈
m⋃
i=1

acl(X,Ai), either Y ∈ I or I ∪ {Y } is not

an IRP set. The maximal IRP partitioning of X is
the set of maximal IRP sets of X that form a MEE

partition of
m⋃
i=1

acl(X,Ai).

Figure 4: Basis acls for maximal IRP partitioning.

Figure 4 illustrates a maximal IRP partitioning of
a guidX’s ACLs. Pedagogically, it helps to think of
maximal IRP sets as the smallest set of (the largest)
“basis” ACLs from which all ACLs of a guid can be
generated. For example, if X restricts each of its at-
tributes to be readable by the union of one or more
mutually exclusive “circles” [28] such as “family”,
“friends”, “colleagues”, “acquaintances”, etc., then
these circles form a maximal IRP partitioning. The

singleton set partitioning of
m⋃
i=1

acl(X,Ai) of course

trivially forms an IRP partitioning, but it is impor-
tant to have a small number of basis ACLs in order
to reduce the overhead of maintaining pseudonyms,
as explained next.

The CNS associates a unique pseudonym with
each maximal IRP subset of a guid X’s ACLs. The
CNS stores the value of each of X’s attributes in a
replicated manner, once for each pseudonym, thereby
commensurately increasing its storage overhead, which
is why it is important to create the smallest num-
ber of basis ACLs via maximal IRP partitioning.
Pseudonyms associated with basis ACLs allow the
CNS to answer conjunctive queries while maintain-
ing attribute privacy.

4.3 GNS-CNS update, search, and lookup
CNS updates. We focus on single-attribute up-

dates for simplicity of exposition. In order to up-
date X.a, an end-client (X or any entity possessing
the corresponding private key X−) issues the fol-
lowing message

[update, (a, v),psnyms(X, a), crnyms(X, a)]
where psnyms(X, a) = {psnym(X,Y)}Y ∈acl(X,a) is
the set of pseudonyms corresponding respectively to
the basis ACLs of acl(X, a), and crnyms(X, a) =
{[X]Y +}Y ∈acl(X,a) is the set of cryptonyms gener-
ated by encrypting X with the public keys of each
of the members of acl(X, a).

CNS search. An end-client with guid Z issues
a search as a set of attribute-range pairs (§3.1) sim-
ply in clear as [search, [(a1, r1), . . . , (ak, rk)]] ex-
pecting to get back a set of cryptonyms generated
by encrypting each member of the result set with
Z+, which Z can decrypt with its private key Z−.

The CNS implements the search by storing records
using a maximally scalable region mapping (§3.3)
but with the difference that it uses pseudonyms re-
ceived in the update messages instead of the guid
as the primary key.

GNS update and lookup. In order to update
X.a, an end-client issues the message [update, X,
(a, σ(v)), {[σ]Y +}Y ∈acl(X,a)] signed with X−, where
the value v is encrypted with symmetric key σ, and
the last argument is a certificate that only needs to
be updated if the ACL changes. Upon a subsequent
lookup for X.a by Y , the GNS returns [σ(v), [σ]Y +]
that Y can decrypt using Y −. Note that the GNS
stores and serves the value v only as ciphertext.

4.3.1 Computing the maximal IRP partitioning
Computing a small IRP partitioning is important

to keep the number of pseudonyms low. Fortu-
nately, a simple greedy algorithm can compute the
mirpp given a set of attribute-ACL pairs (A1,acl1),
. . . , (Am,aclm). The algorithm starts with a single-
ton set partitioning of the union of ACLs

⋃m
i=1 acli;

then greedily merges as many guids as possible
with the first guid to create the first maximal IRP
set; and recursively does the same with remain-
ing singleton sets. The worst-case complexity of
this algorithm is O(|

⋃m
i=1 acli|2); a tighter bound

is O(κ|
⋃m
i=1 acli|) where κ is the size of the mirpp.

4.3.2 Privacy property
Formalizing the privacy property offered by any

system claiming to be privacy-preserving is gener-
ally not easy. What we have is an easy-to-understand
(albeit weak) statement of the privacy property main-
tained by our CNS design with singleton IRP par-

7

titioning: In the absence of timing or side-channel
attacks, a CNS can not infer the value v of an
attribute X.a with better accuracy—defined as the
probability of inferring the value with any given er-
ror ε for real-valued attributes—than an adversary
with access to all clear-text attribute-value two-tuples
but no information at all about primary key guids.
Note that this property holds despite collusion be-
tween the CNS and GNS and, as stated, is resis-
tant to publicly available out-of-band information
as such information is presumed available also to
the adversary. Furthermore, the adversary has ac-
cess only to two-tuples but no direct means to in-
fer that two two-tuples belong to the same guid.
With maximal IRP partitioning, the privacy prop-
erty is weakened accordingly to an adversary that
also knows that attribute-value two-tuples corre-
sponding to the same pseudonym are correlated.

4.4 Design implications and limitations
The CNS design comes with several caveats, some

specific to our goals and others (like timing or side-
channel attacks) that are well known to be notori-
ously hard to eliminate in general.

The ACL-protected nature of attributes means
that, in general, different queriers will get differ-
ent results for the same query. For example, a geo-
query might return a guid X matching the query to
querier Y present in X’s geolocation’s ACL but not
to Z not present in that ACL. Although this behav-
ior is implied by our problem definition, it presents
a usability challenge especially in emergency notifi-
cation scenarios—an important motivating focus of
our work. A privacy-paranoid user may choose to
not make their geolocation readable by any entity
(including emergency management personnel), but
that means that they will not get critical notifica-
tions in potentially life-threatening scenarios.

Incomplete views like above above can also be in-
duced by our envisioned federated design. Unlike
the federated GNS design, each CNS provider is
a global service provider responsible for contract-
ing with all or most GNS providers. Incomplete
coverage on part of a CNS provider may result in
incomplete views.

Our threat model allows for collusion between the
GNS and CNS, yet the design relies on a physcial
(not just logical) separation between the two, which
might seem counterintuitive at first glance. The
separation is needed to make timing attacks harder,
otherwise a combined GNS-CNS system can infer
the correspondence between a pseudonym and its
guid as the GNS-update and CNS-update mes-
sages are likely to be temporally correlated. Any

approach (e.g., based on delay noising) to thwart
timing attacks would be equally effective irrespec-
tive of whether the GNS and CNS are physically
or just logically separate.

The CNS design can not protect against infor-
mation leakage because of external channels. For
example, if a geo-query for a 1 sq. km grid re-
turns three cryptonymized guids, and the CNS
provider knows out-of-band that there is just one
household with three members living in that grid,
it can connect the pseudonym or cryptonym to the
corresponding guid with 1/3 probability (as is al-
lowed by Property). Data noising techniques [27,
26] can alleviate this inference risk but commensu-
rately degrade result accuracy. (Note that differ-
ential privacy techniques [18], which offer formally
tight privacy properties irrespective of external in-
formation sources, are not directly applicable here
as their threat model trusts the database provider.)

Implementation.
We have implemented a prototype of the CNS

with all of the CNS features described above in
29.7K newlines and 9.9K semi-colons of Java in ad-
dition to simple Python scripts for the mapper to
compute the region mapping and bootstrap config-
uration in a workload-aware manner. The region
mapper defaults to subspace replication with no
replication within each subspace (refer §3.3), the
setting used in all of our experiments. We addition-
ally made small changes as needed to a fork of the
open-source GNS [24] in order for a CNS client to
inject updates to the GNS-CNS system.

5. EVALUATION
The goals of our evaluation are three-fold: (1)

to compare CNS’ scalability to state-of-the-art sys-
tems; (2) to quantify the latency and capacity im-
pact of privacy mechanisms; and (3) to use realistic
mobility and weather data to evaluate CNS’ scala-
bility with respect to the number of apps.

5.1 Experimental setup
Testbeds: We use an Emulab d710 cluster for

all experiments. Each node in the cluster has 8 64-
bit Intel Quad Core Xeon E5530 CPUs, 12 GB of
memory and 16 GB of disk space. We configured all
nodes in a LAN of 1000 Mbps and no delay emula-
tion, and use mysql as the database on each node.

Workload: Our microbenchmark typically use
a synthetic workload of 10K guids, m = 20 at-
tributes per guid, and the value of each attribute is
uniformly distributed between 1.0 and 1500.0; our
qualitative findings are insensitive to the absolute

8

range size. The search and update workloads are as
follows. Search queries are a conjunction of predi-
cates of 4 (out of 20) randomly chosen attributes.
Each predicate has an interval whose lower limit is
chosen randomly and the interval length is half the
range size and upper limit is wrapped around the
range if necessary. Update queries pick a guid, an
attribute, and a value, all uniformly randomly.

Unless otherwise specified, the experiments use a
single client. As our goal is to measure server ca-
pacity, we do not send the full result set of guids
to the client so as to ensure that it does not be-
come the bottleneck. We measure CNS capacity
by running each experiment for 100 s, waiting up
to an additional 100 s to get replies, and measur-
ing the response rate. Dedicated Emulab machines
show little variation in capacity measurements, so
we perform just 5 runs for each and plot averages.

5.1.1 Replication of subspaces
This experiment seeks to compare the scalability

of three systems, CNS, HyperDex, and GNS, and
confirm that replication of subspaces does signifi-
cantly increase capacity as predicted by our model.

The workload for this experiment differs from §5.1
only in that we use m = 3 attributes in this ex-
periment, and search queries have 2 predicate at-
tributes. The search query fraction ρ is 0.8. In
CNS and HyperDex there is a single subspace of
3 attributes but CNS replicates that one subspace√
n times and assigns

√
n nodes to each while Hy-

perDex does not perform replication and assigns all
nodes to the single subspace.

The results show that all the schemes give similar
capacity for 1 and 4 nodes, but for 16 and 25 nodes
CNS performs better than HyperDex and GNS.
The reason is that a search in CNS goes to respec-
tively to 1, 2, 3, 4 or 5 machines when the total
number of machines is 1, 4, 9, 16 or 25. In Hyper-
Dex, a search goes to 1, 4, 7, 13 or 17 machine with
1, 4, 9, 16 and 25 total machines respectively. In
GNS, a search goes to all nodes. The size of the
result set for all schemes is an average of 2500.

5.1.2 No subspace replication
Next, we evaluate the scalability of CNS with-

out replication for the default 20-attribute work-
load. The CNS uses its optimal region mapper
that automatically determines the subspace repli-
cation factor and the number of subspaces K. In
this experiment, the CNS happens to choose to not
replicate subspaces, determines an optimal K = 2
for 1 and 2 nodes, and optimal K = 4 for 4, 8, 16,
24 and 32 nodes. For ρ = 0.0, the optimal value

of K is 2 and for ρ = 1.0 the optimal value of K
is 10, but as the CNS doesn’t know the workload
ρ a priori in this experiment, it picks K assuming
the default value of ρ = 0.5. As the CNS indexing
metadata is exponential in m/K, or the number of
attributes per subspace, we limit it to 10.

Fig. 6 shows the context service capacity against
the number of nodes for different values of the search
query ratio ρ. Figure 6 shows that the capacity of
the context service in different cases scale with the
number of nodes. Knowing the demand workload,
specifically the search query ratio ρ, can make a
nontrivial difference in system capacity.

5.2 Trigger capacity scalability with nodes
In this experiment, we evaluate the performance

benefit of triggers (§3.3.2) that notify queriers of
stateful queries of changes to the result set against
varying values of the query lifetime.

The workload is as in 5.1.2 with ρ = 0.1. When-
ever a search query is issued, the CNS creates a
trigger for it that last 30, 60, or 120 seconds (query-
Expiry time in the figures) and notifies the querier
of any updates performed to the queried attribute
range during this period. For trigger durations of
30s and 60s, we run the experiments for 200s, and
for a trigger duration of 120s, we run the experi-
ments for 400s so that the CNS warms up with the
triggers and reaches a steady state.

Fig. 7 shows that as the duration of the trig-
gers increases the capacity of the context service de-
creases as more triggers are active simultaneously,
so notifications get triggered. For 32 nodes, trig-
ger durations of 30s, 60s, and 120s respectively give
5.5x, 8.0x, and 9.8x lower capacity compared to if
we had the same workload but didn’t have any of
the overhead of maintaining the triggers.

Fig. 8 shows the average number of search queries
that are notified by a trigger because of an up-
date. ”Added groups” displays the average number
of triggered search queries that a guid was added to
during an update, and likewise ”Removed groups”
shows the average number of triggered search queries
that a guid was removed from during an update.
These are consistent with our expectation (as per
Little’s Law [30]) that the number of active queries
increases linearly with the refresh interval, which
implies the same linear increase (all else being equal)
for the number of affected queries.

5.3 Privacy capacity scalability with nodes
The goal of this experiment is to measure the

overhead of privacy mechanisms. The workload for
this experiment matches § 5.1.2 except we also cre-

9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25

C
a

p
a

c
it
y
 (

re
q

u
e

s
t/

s
)

Number of machines

CNS
HyperDex (CNS w/o replication)

GNS (QueryAll)

Figure 5: Capacity with 3 attributes, ρ = 0.8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35

C
a

p
a

c
it
y
 (

re
q

u
e

s
t/

s
)

Number of machines

rhow=0.0
rhow=0.1
rhow=0.5
rhow=0.9
rhow=1.0

Figure 6: Capacity vs. #nodes for varying ρ

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35

C
a

p
a

c
it
y
 (

re
q

u
e

s
t/

s
)

Number of machines

queryExpiry=30 s
queryExpiry=60 s

queryExpiry=120 s

Figure 7: Capacity vs. #nodes with triggers

 0

 20

 40

 60

 80

 100

 120

 140

1 4 8 16 32

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
q

u
e

ri
e

s
 a

ff
e

c
te

d

Number of machines

Removed groups, 30 s
Added groups, 30 s

Removed groups, 60 s
Added groups, 60 s

Removed groups, 120 s
Added groups, 120 s

Figure 8: Affected search queries per update

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35

C
a

p
a

c
it
y
 (

re
q

u
e

s
t/

s
)

Number of machines

rhow=0.0, 1 circle/ACL
rhow=0.0, 2 circles/ACL
rhow=0.0, 3 circles/ACL
rhow=1.0, 2 circles/ACL
rhow=0.5, 2 circles/ACL

 rhow=1.0, no privacy
 50K Guids

Figure 9: Privacy capacity variation with number
of nodes.

ate ACLs for each attribute of each guid. To cre-
ate these ACLs for one GUID we randomly select
10 guids and partition them into 5 pairs of guids
called circles. We then uniformly choose circles to

assign to the ACL for each attribute in the one se-
lected GUID. This is repeated until each attribute
in each GUID in the system has its own ACL.

We then create pseudonyms for each guid as de-
scribed in § 4. In the experiment, CNS creates 5
pseudonyms per guid. We evaluate the CNS capac-
ity with privacy so we don’t bottleneck our client by
performing decryptions to map cryptonyms to their
guids in a search reply. We first run experiments
where we issue only update operations (ρ = 0) with
1, 2, or 3 circles of guids assigned to each ACL. We
then assigned 2 circles of guids to each ACL and
issued only search operations (ρ = 1), or an equal
mix of operations (ρ = 0.5).

With one circle of guids assigned to each ACL we
find that the update capacity is close and slightly
smaller than the update capacity of CNS without
privacy features as shown in Figure 6. This is what
we expect as an update of a single attribute in a
GUID only causes the update of 1 pseudonym. But
a single pseudonym can be deleted from a node and

10

inserted on a new node and inserting a pseudonym
requires inserting the cryptonym in addition to at-
tribute value pairs, which causes slightly lower ca-
pacity in this case. Similarly, with 2 circles of GUIDs
per ACL or 3 circles per ACL the capacity is roughly
1
2 or 1

3 the 1 pair case since each update affects the
respective number of pseudonyms for that guid.

The search capacity with privacy is lower than
the default case without privacy shown in Figure
6 since for each GUID it must also store all of the
pseudonyms associated with that guid. For exam-
ple, if each guid has 5 pseudonyms then the system
with privacy would need to store 50k pseudonyms
rather than just the 10k GUIDs stored in a system
without privacy. For each search the context ser-
vice using privacy must read from the mapping of
pseudonyms-to-guids stored in the database along
with the pseudonyms themselves. In this exper-
iment there are two circles of guids per ACL so
each pseudonym has two cryptonyms. Since in this
experiment there are 5 pseudonyms per guid, the
capacity for 10,000 guids with privacy is similar to
the capacity for 50,000 guids without privacy.

5.4 Application case studies

5.4.1 Weather case study setup
In this experiment, our goal is to show using

a semi-realistic workload of weather and mobility
traces that the context service is more scalable and
thereby can support more context-based applica-
tions compared to the naive QueryAll scheme.

We simulate a weather notification application,
which is a type of location context-based app, to
perform the case study. A screenshot of a hazardous
weather notification app is shown in Fig. 10. The
weather notification application issues queries based
on the weather data to notify users. In the case
study, we compute the maximum number of such
applications that the different schemes can support.
Next we describe the real world weather and mobil-
ity data. Then we describe the experiment setup to
evaluate the context service and the basic query all
scheme of GNS.

We use National Weather Service (NWS) weather
data[8] generated by Buffalo, NY radar from 28 Jan
2014 00:00:00 GMT to 30 Jan 2014 00:00:00 GMT.
The rectangular area that we consider is given by
two diagonally opposite points [41.8, -80.0] and [45.1,
-74.5], where the elements of the tuple are latitude
and longitude respectively. The total area is around
59342 Km2. We pick the following area because
the weather events generated by the radar were lo-
cated in this area. We get 56 such weather events

in our specified duration. Each weather event con-
sists of the following; the issue and expiry time in
GMT, the weather phenomenon type, the event sig-
nificance and affected areas in the form of geoJSON
polygons. For our case study we use the issue time,
expiry time and geoJSON polygons to issue search
queries. In our weather data, on average a weather
event is active for 18.28 hours. We use the mobil-
ity data of 43 unique users from the same duration
as of the weather data in the Buffalo area. From
the mobility data we have trajectories of 43 users
over the specified duration. A trajectory of a user
is a time series of the user’s location, in terms of
latitude and longitude, over the duration. Next we
describe how we use these traces to generate search
and update workload for the case study.

For the search workload we use geoJSON poly-
gons in the weather data to create search queries.
We find the bounding rectangle for the arbitrary
polygon described by a weather event’s geoJSON
and issue search queries using the corresponding
bounding rectangle. We have 56 weather events and
we assume that a single weather notification appli-
cation will issue search queries for these events. Ap-
plications other than weather notification will also
issue similar geoJSON based search queries, so we
measure the maximum number of applications that
different schemes support in our case study. Each
application issues search queries based on all the 56
events. Our mobility log data has only 43 distinct
trajectories, but for the udpate workload we require
more than 43 users. We use the user trajectories
from the mobility data, which we call log trajec-
tories, to generate new trajectories, which we call
synthetic trajectories, for additional users. For cre-
ating a synthetic trajectory for a user, we randomly
pick a log trajectory and transform all its points us-
ing the following transformation. We transform the
first point of a log trajectory to a random point in
the case study area and then we calculate the dis-
tance and the azimuth angle from the log trajectory
point to the transformed point. We use geodesy li-
brary to transform all other points in the log trajec-
tory by the same distance and azimuth angle. The
earth surface is curved so the geodesy library uses
distance and azimuth angle to accurately transform
points. We pick only those synthetic trajectories
who have all the points within the case study area.
By using the above procedure we create trajecto-
ries for all the users in our experiments. Generating
synthetic trajectories using the described procedure
preserves the mobility pattern and update rates of
users in the mobility data. Next we describe how
we run the workload in our case study experiment.

11

Figure 10: anon hazardous weather app screenshots

 100

 1000

 10000

 100000

5 m
in

10 m
in

1 hour

10 hours

24 hours

C
S w

ith
Triggers

N
u

m
b

e
r

o
f

a
p

p
lic

a
ti
o

n
s

Periodic query issue interval

QueryAll
CS

Figure 11: Weather case study with 100K GUIDs

In our experiment, we contract time from 2 days,
which we call the real time, in the traces to 15 min-
utes, which we call the experiment time. Precisely,
1 s of the experiment time is 192 s of the real time.
We create synthetic trajectories for 100K users. We
create different number of applications, which is-
sue search queries based on the weather data, based
on the experiment setting. The experiment runs a
clock and issues those updates and searches whose
timestamps are equal or less than the correspond-
ing real world time for the current experiment time.
A search query is active from its issue time to its
expiry time in the log. When a search query is ac-
tive it is also periodically refreshed based on the
periodic query issue interval setting of an experi-
ment. We vary the number of applications, where
each application issues and periodically refreshes
search queries, and measure the maximum number
of applications supported by different schemes for
different periodic query issue intervals. In the ex-
periment, there are N=25 nodes and the context
service is initialized with 2 attributes, latitude and
longitude, and there is just 1 distinct subspace and√
N replicas of that subspace. We use 5 clients to

issue update and search requests. We run each ex-
periment for 15 minutes and wait for another 200 s
after 15 minutes for replies before timing out.

Fig. 11 shows the maximum number of applica-
tions for QueryAll and CNS without triggers and
CNS with triggers. In CNS without triggers a
search query from an application goes to 1 node and
an update goes to 5 nodes. While in the QueryAll
scheme a search query goes to all the 25 nodes and
an update goes to 1 node. CNS without triggers
scheme gives 2.5-3 times more applications than the
QueryAll scheme across different periodic query is-
sue intervals. CNS with triggers gives more applica-

tions that CNS without triggers and QueryAll be-
cause the search queries do not need to be repeated
at periodic query issue intervals when the CNS no-
tifies through triggers.

6. CONCLUSIONS
We began with an ambitious goal, namely, en-

abling contextual communication as a general-purpose
communication primitive similar in spirit to TCP/IP
sockets. What we have actually accomplished is but
a first step towards that goal. Our primary contri-
bution is the design, implementation, and evalua-
tion of the CNS that achieves provably scalability of
Θ(
√
n), and our hardness results help shed light on

why prior approaches to this seemingly well studied
problem achieved suboptimal scalability. Further-
more, the accompanying GNS-CNS federation ar-
chitecture and our proposed privacy protocol allow
users to rest assured that the CNS or GNS service
provider can not infer sensitive user information,
similar in spirit to how ISPs today can not infer
sensitive user bits carried over SSL. Our case study
based on a semi-realistic hazardous weather warn-
ing workload and smartphone app suggests that the
CNS can scale to a large number of apps, poten-
tially eliminating redundant development effort and
leveraging economies of scale.

12

7. REFERENCES
[1]
[2] Amazon web services, https://aws.amazon.com/.
[3] Gns github repository,

https://github.com/mobilityfirst/gns.
[4] Google cloud platform, https://cloud.google.com/.
[5] Microsoft azure, https://azure.microsoft.com/.
[6] Named Data Networking.

http://www.named-data.net/.
[7] NOAA Weather Alerts: Severe Push Notifications and

Warnings.
[8] Nws weather data source,

https://mesonet.agron.iastate.edu/vtec/search.php.
[9] ping4alerts app, http://www.ping4.com/.

[10] Aguilera, M. K., Golab, W., and Shah, M. A. A
practical scalable distributed b-tree. Proc. VLDB
Endow. 1, 1 (Aug. 2008), 598–609.

[11] Bharambe, A. R., Agrawal, M., and Seshan, S.
Mercury: Supporting scalable multi-attribute range
queries. In Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications (New York,
NY, USA, 2004), SIGCOMM ’04, ACM, pp. 353–366.

[12] Boldyreva, A., Chenette, N., Lee, Y., and Oneill,
A. Order-preserving symmetric encryption. In
Advances in Cryptology-EUROCRYPT 2009. Springer,
2009, pp. 224–241.

[13] Boldyreva, A., Chenette, N., and ONeill, A.
Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In Advances
in Cryptology–CRYPTO 2011. Springer, 2011,
pp. 578–595.

[14] CASA. http://www.casa.umass.edu/main/research/
urbantestbed/.

[15] CASA Alerts. https://itunes.apple.com/us/app/
casa-alerts/id1094271600.

[16] Cerf, V. G., and Icahn, R. E. A protocol for packet
network intercommunication. SIGCOMM Comput.
Commun. Rev. 35, 2 (Apr. 2005), 71–82.

[17] Codered mobile alert app: onnecting the world with
real-time, location specific alerts to save lives.
http://ecnetwork.com/codered-mobile-alert-app/.

[18] Dwork, C. Differential privacy: A survey of results. In
International Conference on Theory and Applications
of Models of Computation (2008), Springer, pp. 1–19.

[19] Escriva, R., Wong, B., and Sirer, E. G. Hyperdex:
A distributed, searchable key-value store. In
Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communication (New York,
NY, USA, 2012), SIGCOMM ’12, ACM, pp. 25–36.

[20] NSF Future Internet Architecture Project.
http://www.nets-fia.net/.

[21] Fotiou, N., Nikander, P., Trossen, D., and
Polyzos, G. C. Developing Information Networking
Further: From PSIRP to PURSUIT. In Broadband
Communications, Networks, and Systems (2012),
Springer, pp. 1–13.

[22] Gao, Z., Venkataramani, A., Kurose, J. F., and
Heimlicher, S. Towards a quantitative comparison of
location-independent network architectures. In
Proceedings of the 2014 ACM Conference on
SIGCOMM (New York, NY, USA, 2014), SIGCOMM
’14, ACM, pp. 259–270.

[23] Gentry, C. A Fully Homomorphic Encryption
Scheme. PhD thesis, Stanford, CA, USA, 2009.
AAI3382729.

[24] MobilityFirst/GNS project on github.
https://github.com/MobilityFirst/GNS.

[25] Gritter, M., and Cheriton, D. R. An Architecture
for Content Routing Support in the Internet. In

USENIX USITS (2001).
[26] Hore, B., Mehrotra, S., Canim, M., and

Kantarcioglu, M. Secure multidimensional range
queries over outsourced data. The VLDB JournalThe
International Journal on Very Large Data Bases 21, 3
(2012), 333–358.

[27] Hore, B., Mehrotra, S., and Tsudik, G. A
privacy-preserving index for range queries. In
Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30 (2004), VLDB
Endowment, pp. 720–731.

[28] Kairam, S., Brzozowski, M. J., Huffaker, D., and
Chi, E. H. Talking in circles: Selective sharing in
google+. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 12) (New
York, NY, 2012), pp. 1065–1074.

[29] Lampson, B. W. Designing a global name service. In
Proceedings of the Fifth Annual ACM Symposium on
Principles of Distributed Computing (New York, NY,
USA, 1986), PODC ’86, ACM, pp. 1–10.

[30] Leon-Garcia, A. Probability, Statistics, and Random
Processes for Electrical Engineering, 4th edition ed.
Prentice Hall, 1 2015.

[31] Nikander, P., Gurtov, A., and Henderson, T. Host
identity protocol (hip): Connectivity, mobility,
multi-homing, security, and privacy over ipv4 and ipv6
networks. Communications Surveys Tutorials, IEEE
12, 2 (2010), 186–204.

[32] Popa, R. A., Li, F. H., and Zeldovich, N. An
ideal-security protocol for order-preserving encoding.
In Security and Privacy (SP), 2013 IEEE Symposium
on (2013), IEEE, pp. 463–477.

[33] Popa, R. A., Redfield, C. M. S., Zeldovich, N.,
and Balakrishnan, H. Cryptdb: Protecting
confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2011), SOSP ’11, ACM, pp. 85–100.

[34] Saltzer, J. On the Naming and Binding of Network
Destinations, 1993.

[35] Sharma, A., Tie, X., Uppal, H., Venkataramani,
A., Westbrook, D., and Yadav, A. A Global Name
Service for a Highly Mobile Internet. In ACM
SIGCOMM (2014).

[36] Venkataramani, A., Kurose, J., Raychaudhuri, D.,
Nagaraja, K., Mao, M., and Banerjee, S.
MobilityFirst: A Mobility-Centric and Trustworthy
Internet Architecture. ACM SIGCOMM Computer
Comm. Review (CCR) (2014).

[37] Zhang, L., Estrin, D., Burke, J., Jacobson, V.,
Thornton, J. D., Smetters, D. K., Zhang, B.,
Tsudik, G., Massey, D., Papadopoulos, C., et al.
Named Data Networking (NDN) Project. Relatório
Técnico NDN-0001, Xerox Palo Alto Research
Center-PARC (2010).

Appendix
7.1 Proof of Lemma 3.1

Proof. The proof of this claim only needs a work-
load with a single attribute. Consider a fixed value
space partitioning (defined in §3.1.1) that splits the
value range of real length R into smaller, contiguous
partitions of uniform size R/n assigned respectively
to the n machines. Let ρ denote the (fixed) fraction
of search queries. Partitioning without replication
implies that each update of the attribute’s value

13

touches at most two machines, one corresponding
to the partition of the old value and another to the
new partition (if different). Consider a search work-
load querying for a random sub-range of a constant
length C. It is straightforward to verify that the ex-
pected number of machines as well as the complex-
ity of a search query is 1 + C/(R/n) = 1 + Cn/R.
The expected amount of work per query is at least
ρ(1 + Cn/R) + (1 − ρ), where the two outer ad-
ditive terms correspond respectively to search and
update complexity). This work per query increases
as O(n), so even if the load across queries were per-
fectly balanced across all n machines, the system
capacity does not scale.

Any non-uniform partitioning strategy can do no
better asymptotically. Consider a non-uniform par-
titioning of the value space into ranges of size C1, . . . ,
Cn. It is straightforward to show that the expected
number of machines involved in a search query is at
least 1+Cn/R, where C is the length of the longest
range, completing the proof as above.

7.2 Proof of Theorem 3.2

Proof. We consider two cases: one where the
partitioned and replicated placement is fixed, and
the other where it can be changed dynamically.

Case 1 (fixed placement): Consider a work-
load consisting of just a single attribute with up-
dates uniformly distributed over the global value
range of length R and searches for a uniformly ran-
dom interval of fixed length C. Consider any fixed
value space partitioning and replication strategy that
maps mutually exclusive and exhaustive intervals
r1, . . . , rp on to the set of n machines in a possibly
one-to-many manner (because of replication). Note
that we can make the mutual exclusion assump-
tion without loss of generality to encompass any
partitioning and replication strategy including even
strategies that map every point in the global value
range (containing uncountably many real points) to
one of the 2n subsets of the set of all n machines.
However, for ease of formal exposition, we assume
that p is finite.

Let map(ri) denote the subset of n machines to
which the range ri is mapped. The expected update

cost per query is at least (1− ρ)
p∑
i=1

|ri|
R |map(ri)| as

the probability of the query being an update is 1−ρ
and the probability that the updated value lies in
ri is ri/R; note that the lower bound here is not
tight as it is ignoring the work required to delete
the record being updated from machines in map(rj)
where rj is the range wherein the old value lies, but
the lower bound suffices for this proof.

Definition Let rmax denote the longest interval
[a, b) in R such that there exists a machine s such
that each point in [a, b) is contained in some ri, 1 ≤
i ≤ p that is mapped to s, i.e., s ∈ map(ri).

The expected search cost per query is at least ρ(d C
rmaxe)

as each search query over an interval of length C
must, by the definition above, induce a search op-
eration on at least one additional machine for every
MEE sub-interval of length rmax. Thus, the ex-
pected work per query is

≥ (1− ρ)

p∑
i=1

|ri|
R
|map(ri)|+ ρ(d C

|rmax|
e) (1)

≥ (1− ρ)
|rmax|
R

+
ρC

|rmax|
(2)

Let q denote the overall query rate, i.e., the search
and update rates are respectively ρq and (1 − ρ)q.
We claim that there exists at least one machine that
incurs an update load of at least q(1−ρ)

p . This is

because |rmax| ≥ max {|r1|, . . . , |rp|} ≥ R/p, and
by definition of rmax, there exists a machine s such
that an update to any value in rmax induces an
update operation on s.

We can place an asymptotic upper bound on |rmax|
as follows. There exists at least one machine s that
incurs an update load of q(1 − ρ) |rmax|

R . In order
to achieve a scalability of c(n), i.e., for the sus-
tainable query load q to increase as c(n), the load

c(n)(1−ρ) |rmax|
R on s must be O(1) as it is bounded

by its (fixed) capacity, so

rmax = O(
1

c(n)
) (3)

We can also place an asymptotic lower bound on
rmax as follows. The expected amount of work done
by a search query is at least ρC

rmax (by the reasoning
for and just above equation 1). In order to achieve
a scalability of c(n), this work must increase slower
than the total amount Θ(n) of resources available,
i.e.,

c(n)ρC

rmax
= O(n) (4)

implying that

rmax = Ω(
c(n)

n
) (5)

The only growth function satisfying both equa-
tions 3 and 5 and asymptotically minimizing equa-
tion 2 is

rmax = Θ(
1√
(n)

) (6)

14

and for rmax = Θ(
√

(n), the expected work per
(search or update) query grows as Ω(

√
n), so c(n) =

O(
√
n).

Case 2 (dynamically changing placement):
We prove that any dynamic strategy for subspace
partitioning and replication can not outperform the
best static strategy with respect to scalability. Let
t0, t1, . . . demarcate epoch boundaries such that in
any epoch [ti, ti+1), the subspace placement—i.e.,
the mapping of subspaces to subsets of machines,
the partitioning of each attribute’s value range, and
the map(.) function to map regions to machines
within a subspace—remains fixed. Within each epoch,
one can use the reasoning as in the static case above
to argue that the expected work per query grows as
Ω(

√
(n)). Changing the placement at epoch bound-

aries only increases the expected work per query
when amortized across epochs.

15

