
Scalable Fine-Grained Reconfigurable Replica Coordination

Arun Venkataramni, Zhaoyu Gao, Tianbo Gu, Karthik Anantharamu
University of Massachusetts Amherst

Abstract
Many large distributed systems today use sophisti-

cated combinations of replication and partitioning of data
and compute, but traditional distributed system designs
steer developers towards a monolithic design, wherein
the distributed principal–a slice of the state or the state
machine–is heavyweight and replication and partitioning
decisions are infrequently reconfigured if at all.

We present GigaPaxos, a novel system for scal-
able, fine-grained, reconfigurable replica coordina-
tion. A key capability in GigaPaxos is maximal
object-group configurability, i.e., the ability to easily
manage and quickly reconfigure a very large number of
replica groups, one for each lightweight fault-tolerant
principal as small as a single record in a key-value store
or an ephemeral service replica created on the fly for
each user. GigaPaxos achieves this goal by driving down
the marginal memory overhead of a replicated state ma-
chine to a few hundred bytes while keeping the messag-
ing overhead, throughput, and latency of each group in-
dependent of the total number of groups and compara-
ble to or vastly better than state-of-the-art consensus sys-
tems. We study the benefits of object-group configura-
bility using several case studies including myCloud, a
hypothetical application that creates a custom, reconfig-
urable replica group for each user’s personal cloud data,
and show that agile reconfigurability can significantly en-
hance user-perceived performance.

1 Introduction
Many large-scale distributed systems use a combination
of replication and partitioning of data and computation
for balancing several different objectives such as fault-
tolerance, performance, scalability, resource cost, or ease
of management. These competing objectives are of-
ten conflicting, e.g., increasing the degree of replication
across failure-independent machines improves availabil-
ity but increases the overhead by a proportional or worse
factor. Thus, a common approach is to partition the over-

all system, i.e., the state and the associated computation,
into smaller distributed principals spread across different
subsets of machines, thereby improving performance by
increasing concurrency; fault isolation across partitions
placed on fault-independent sets of machines; overall ca-
pacity by not restricting it to a single machine’s capac-
ity; and manageability via the flexibility to independently
provision resources across partitions.

Figure 1: Replication and partitioning combinations.

Figure 1 shows increasingly finer-grained replication
and partitioning schemes. Compared to the full replica-
tion baseline (e.g., replicated state machine based sys-
tems [27, 16, 11]), sharding or partitioning principals
across non-overlapping machines significantly improves
overall capacity provided the system’s consistency se-
mantics allow operations on different shards to pro-
ceed in parallel. Figure 1(d) shows the most general
combination of replication and partitioning wherein dif-
ferent partitions may not necessarily be replicated on
non-overlapping machines, a popular approach today
[15, 17, 13, 32]. This option further improves perfor-
mance by increasing concurrency when different replica
groups isolate principals into independent consistency
groups. Indeed, simply increasing the logical number of
partitions even with full replication can improve overall
system capacity, as shown in Figure 1(c).

Our position is that these traditional distributed system
designs are monolithic, i.e., they stop well short of the
finest achievable grain of object-group configurability,
informally the flexibility to assign different subsets of



machines to manage fine-grained distributed principals
and quickly reconfigure this assignment (formalized in
§4.3). The extent of object-group configurability permit-
ted by a design, as argued in §4.3, has non-trivial op-
erational implications. For example, imagine a user of
myCloud–a hypothetical personal cloud application that
also forms one of our prototype-driven end-to-end case
studies (§4.3.1)–who expects her personal cloud data like
documents, calendar, mail, media metadata, etc. to be
readily available right at or close to the (virtualized) ac-
cess points across which she zips by in her hyper-mobile
always-connected life; or imagine her editing a cloud-
based shared document collaboratively with a colocated
co-worker. In such use cases of “edge clouds” (also var-
iously referred to as cloudlets, multi-tenant gateways,
micro-clouds, etc.), caching of static content alone is
insufficient because of consistency required of mutable
data; instead, they need system support for agile object-
group configurability, in line with the vision of “fluid
replication” from the 90s.

Our contribution, GigaPaxos, is a small but concrete
step towards realizing the fluid replication vision. We
envision applications “sprinkling” principals as small as
a single record in a key-value store, a counter, a user’s
calendar, a shared document, etc. wherever and when-
ever needed without sacrificing consistency. A key chal-
lenge that GigaPaxos addresses is group scalability, i.e.,
the ability to scale to a very large number (millions or
more) of independent consensus groups. Although a
large body of prior work has focused on improving the
performance, cost, or robustness of consensus-based sys-
tems, group scalability is a dimension that appears to
have not been explored before. Indeed, we find that state-
of-the-art Paxos or other consensus implementations can
barely sustain tens or hundreds of groups, whereas Giga-
Paxos can scale to millions of Paxos groups on commod-
ity machines with little performance or cost penalty.

GigaPaxos achieves group scalability through a novel
design and implementation that carefully separates idle
and active Paxos groups so as to drive down the mem-
ory overhead of an idle Paxos instance to a few hun-
dred bytes; uses a novel hot-swap technique to pause idle
Paxos instances; amortizes the overhead of failure detec-
tion and logging across groups; enables programmatic
policy for automating group reconfiguration at scale; and
uses a highly event-driven design that does not rely on
any per-instance background tasks that are commonplace
in consensus implementations (refer §3.1).

We have implemented a prototype of GigaPaxos with
a simple API that allows any “black-box” application,
even those not originally designed with fault-tolerance
or replication in mind, to leverage object-group config-
urability. Our prototype-driven experiments show that:
(1) GigaPaxos achieves comparable or vastly superior

performance compared to state-of-the-art consensus im-
plementations even for a single group but comfortably
scales to orders of magnitude more groups (§4.1).
(2) GigaPaxos’ Replicable API and support for program-
matic reconfiguration policies are easy to use with a
number of third-party applications (§4.3).
(3) Per-object reconfigurability can significantly enhance
end-to-end client-perceived performance for massively
geo-distributed edge cloud services (§4.3).

2 Case for object-group configurability
A founding position of our work is that
object-group configurability, informally the flexi-
bility to assign different subsets of machines to manage
different groups of replicated principals (objects or
services) is a valuable abstraction in large-scale dis-
tributed systems. We inspect many recent and classical
distributed systems in order to make qualitative and
quantitative arguments to support this position.

Consistency vs. concurrency: Any system manag-
ing distributed state must reckon with consistency re-
quirements. Any consistency semantics, including weak
or eventual consistency, necessitates imposing some re-
striction on the ordering of or isolation across opera-
tions accessing that state, i.e., ensuring consistency fun-
damentally reduces the concurrency permitted by the
system and consequently the throughput capacity of the
system. (Note that this claim is true even of undis-
tributed systems, e.g., a single-machine database with
atomicity, consistency, isolation, and durability (ACID)
requirements, but is even more so in distributed systems.)
Object-group configurability improves performance by
allowing operations across independent sets of objects to
proceed concurrently.

Availability vs. overhead: High availability entails
larger replica groups (with proportional or worse over-
head) until the marginal benefit of increasing the repli-
cation factor is outweighed by its overhead, at which
point it is more effective to partition the data across
non-overlapping groups of machines. Partitioning data
across non-overlapping replica groups is a special case
of object-group configurability.

Scalability vs. manageability: Any scalable dis-
tributed system design must choose between two con-
flicting goals: on one extreme are randomization-based
approaches (leftmost in in Figure 2) that are simple and
scale elegantly with no single point of failure or conges-
tion; on the other extreme are increasingly planned ap-
proaches that are easier to manage offering superior fault
isolation and the flexibility to provision resources or tai-
lor usage to individual user preferences.

To concretize the high-level exposition above, let’s
study these tradeoffs in the context of several modern
large-scale distributed systems as shown in Figures 2(a)–

2



Figure 2: Extent of object-group configurabilityin recent geo-replicated systems.

2(c) that show that the extent of object-group configura-
bility allowed by a system’s design has nontrivial oper-
ational implications, as illustrated in Figures 2(a)–2(c).
A baseline example with little flexibility is consistent
hashing with replication, e.g., Amazon Dynamo is a key-
value system that uses consistent hashing to determine
the replica group of machines that manage an object.
While this approach is simple and scales well when ma-
chines and object workload patterns exhibit predictable
characteristics, it is cumbersome in environments with
more unpredictability and flux such as peer-to-peer (P2P)
environments. Sharing this motivation, Scatter [17], a
P2P storage system uses consistent, configurable groups
as a defining abstraction. Scatter’s support for “amoebic”
reconfiguration of groups, i.e., the ability to split, merge,
or migrate members of objects across adjacent consensus
groups, enhances a group’s ability to self-organize un-
der dynamic conditions while maintaining linearizability
consistency for operations to a single object.

A system like Google’s Spanner [13] significantly in-
creases object-group configurability over static or amoe-
bic replica groups. Spanner has a fixed number of pre-
defined (or slow-changing) Paxos groups to which it
maps a large number of directory objects (i.e., a bag of
key-value mappings) in a many-to-one manner. Spanner
allows administrators to control the “number and types
of replicas, and the geographic placement of those repli-
cas”, for example, by specifying policies such as [Object
A: North America, replicated 5 ways with 1 witness];
[Object B: Europe, replicated 3 ways], etc. However,
Spanner is designed to remap objects across existing
Paxos groups, not reconfigure the Paxos groups them-
selves. The distinction is important as the total number
of conceivable consensus groups is exponential in the to-
tal number of machines, so a practical system is forced to
create a manageable1 number of packaged groups (like
N. America, Europe, etc.) and adopt a many-to-one
principal-to-group mapping, an approach that works well
in the common case.

Our goal is to take object-group configurability to the
extreme, namely, allow for each arbitrarily small object
to be mapped to an arbitrary consensus group specifically

1“Typical deployments might have up to hundreds or thou-
sands of paxos groups per machine, but not much more.” [5]

for that object. We refer to this flexibility as maximal
object-group configurability, wherein object-group con-
figurability is defined as the ratio of the total number of
objects to the total number of separate consensus groups
in the system. Thus, the maximal value is 1; for Spanner,
it is typically much lower than 1; for Scatter or Dynamo,
it is roughly equal to the ratio of the number of machines
and the product of the number of keys and the average
replication factor.

Our vision is similar to that of fluid replication [30]
proposed by Noble et al. in the late 90s or more recently
referred to as “dispersable computing” [14]. Our goal
of agile reconfigurability also overlaps with more recent
systems like Tuba [8] but differs significantly in its focus
on group scalability and the powerful RSM abstraction.

This paper requires the reader to be familiar with
Paxos[21]. The techreport[3] has a brief primer, and [22]
and [33] are good resources respectively for a simplified
conceptual and implementation-oriented exposition.

3 GigaPaxos design
GigaPaxos is designed to meet the following goals.
(1) Agile object-group configurability: An application
should be able to easily request or change a consensus
group for a fine-grained fault-tolerant object.
(2) Group scalability: The aggregate performance (ca-
pacity and latency) across consensus groups should be
independent of the total number of consensus groups.
(3) Application agnosticism: The design must provide
a simple API for black-box applications, remaining ag-
nostic to application-specific details.
(4) Automated reconfiguration: Applications should be
able to specify policies to programmatically reconfigure
the membership of the consensus instances.
(5) Control plane scalability: There must be no single
point of congestion or failure including the control plane
managing dispersion of distributed principals.

3.1 Design overview
To address the above goals, GigaPaxos is designed as
a two-tier reconfigurable consensus engine consisting of
two logically distinct types of nodes: app-containers and
reconfigurators. A group of app-containers form a con-
sensus group for a named object that they manage. A

3



group of reconfigurators form a consensus group that is
responsible for making decisions about when and how to
reconfigure the app-container group for a subset of ob-
jects, and to help correctly redirect client requests to the
current group. An app-container encapsulates a third-
party application that contains the logic needed to pro-
cess a client request, modify the corresponding object
state, and send a reply back to the client.

Figure 3: GigaPaxos group-scalable architecture com-
bining randomization and planned placement benefits.

Figure 3 shows reconfigurators on the left organized as
a consistent hash ring with a fixed number of clockwise
contiguous nodes on the ring forming a consensus group
to manage all principals mapping to the first node. Un-
like traditional consistent hashing based schemes how-
ever, reconfigurators only maintain directory information
about app-container nodes managing each principal. For
example, the figure shows principal X being managed by
reconfigurators 12, 3, and 7 and the corresponding appli-
cation replica group being maintained on app-containers
3, 4, 6, 7. Lookup requests to reconfigurators are ex-
pected to be infrequent as clients opportunistically cache
this information until it becomes stale.

Applications can specify if only a subset of request
types need replica coordination, allowing them to use
consensus as a building block for different consistency
semantics. For example, enforcing consensus for every
client request to a named object ensures linearizability
(as in [17]) across all operations to that object while en-
forcing consensus for writes alone (or reads alone) en-
sures sequential consistency for all operations to that ob-
ject [9]. Relaxing it further to eventual consistency does
not need consensus among replicas, but reconfigurators
must still rely on consensus to make reconfiguration de-
cisions in a fault-tolerant and consistent manner (§3.6.1).

GigaPaxos as described has no single point of failure
or congestion (design goal #5). Reconfigurators form
the control plane and consistent hashing with replica-
tion ensures availability and load balance. Reconfigura-
tors are homogeneous as they perform quick predictable
control plane tasks. The separation of reconfigurators
and app-containers combines the best of randomization

and planned placement. Reconfigurators periodically re-
ceive demand reports from app-containers and, based on
a configurable principal-specific policy, reconfigure app-
container replica group managing the principal.

We describe how GigaPaxos achieves its remaining
goals using the following key mechanisms described
in the following subsections: (1) a compact represen-
tation of Paxos instances; (2) separating and amortiz-
ing machine-specific overhead from group-specific over-
head; (3) a hot-swap mechanism to relieve memory pres-
sure while maintaining correctness; (4) a group-scalable
persistent logger; and (5) simple client API and program-
matic reconfigurability support.

The following terms are used throughout the paper: a
Paxos instance is the Paxos-related, application-agnostic
state stored at a machine for a single, named object;
a Paxos group is the set of distributed Paxos instances
managing a single object, which in conjunction with the
application logic forms the corresponding RSM.

3.2 Managing compact Paxos instances
GigaPaxos’ core consists of a PaxosManager per ma-
chine that is responsible for machine-specific functions
of which there are four key ones: (1) Paxos instance man-
agement, (2) persistent logging, (2) failure detection, and
(3) messaging and demultiplexing.
PaxosManager maintains a map from the name of

a Paxos group, objectID, to a data structure maintaining
the minimum Paxos instance state necessary for safety,
i.e., the state blocks marked “Fixed Instance”, “Accep-
tor Idle”, and “Coordinator Idle” respectively in Fig. 4.
The first remains unchanged throughout the lifetime of
this Paxos instance, i.e., until the epoch and group are
reconfigured or the object is deleted. The latter two are
referred to as idle state because this state must be remem-
bered by each Paxos group member even during periods
when the group is not actively processing client requests.

3.2.1 Idle Paxos instance state

Figure 4: Idle Paxos instance state.

An acceptor’s idle state must maintain (1) nextSlot, the
highest slot number below which all proposals have been
executed by the local application replica in agreement or-
der; (2) its current ballot, 〈ballotNum, ballotCoord〉, which is
the highest ballot it has received across all PREPARE mes-
sages from any group member seeking to become coordi-
nator; (3) majorityFrontier, the slot number up to which a

4



majority of group members have cumulatively executed
application requests, which is needed in order to safely
garbage-collect logged messages corresponding to lower
slots [33]; (4) isStopped, whether or not the paxos group
has been stopped, which is needed to perform reconfigu-
ration safely (§3.6.1).

Figure 5: Active Paxos instance state.

A coordinator, strictly speaking, does not have to per-
sistently maintain any idle state at all as coordinators are
already presumed to be perishable. However, garbage
collecting coordinator state during idle periods means
that a new coordinator must be elected (with the first
PREPARE phase) upon the arrival of a client request. In
order to maintain Paxos’ low, essentially optimal, mes-
sage overhead per client request during graceful execu-
tion, i.e., just the second ACCEPT/DECISION phase, it is im-
portant to support long-lived coordinators. So, each Gi-
gaPaxos coordinator instance must either maintain all of
the coordinator idle state in Fig. 5 or immediately relin-
quish its role as coordinator by ceasing to commandeer
further proposals in its ballot.

The coordinator’s idle state must thus maintain: (1)
nextProposalSlot, the lowest slot such that the coordina-
tor has not yet used that or any higher slots to comman-
deer any proposals; (2) its ballot that in general may
be out of sync with the local acceptor’s perceived bal-
lot; (3) isElected, indicating whether its ballot has been
accepted by a majority of acceptors, at which point it
can garbage-collect its pre-election state (§3.2.2); and
(4) memberFrontiers, the slot numbers up to which, in its
view, acceptors have cumulatively executed application
requests; the coordinator piggybacks the median slot
number in its ACCEPT and DECISION messages to all accep-
tors who use it to refresh their majorityFrontier.

Compactness. The point of listing the seemingly
mundane details above is to emphasize that this state–
the variables in the three shaded boxes in Fig. 4 plus
the connecting pointers–is literally all of the state Giga-
Paxos adds per idle Paxos instance to whatever state the
application itself maintains. The size of this idle state is
≈350 bytes for Paxos instances with three members in
our implementation; larger groups cost 8 more bytes (or
one integer each in the two int arrays).

3.2.2 Active Paxos instance state
An active Paxos instance, i.e., one that is currently agree-
ing on the order of client requests for the underlying ap-
plication, typically needs to maintain much more state
than the idle state above. Fig. 5 illustrates the active
state that must be maintained for safety.

An acceptor’s active state consists of (1) a sequence of
accepted proposals in slot number order, possibly with
gaps, that it has previously accepted, and (2) a set of
committed decisions received out-of-order. The former
sequence starts at majorityFrontier+1 or higher, and the
latter sequence starts strictly higher than nextSlot, the first
slot for which no decision has been received.

A coordinator’s active state additionally consists of
(1) adopted proposals, i.e., lower-ballot proposals re-
ceived from acceptors in their replies to this coordina-
tor’s PREPARE message, wherein the coordinator picks for
each slot the proposal with the highest ballot; (2) one
waitFor data structure (not shown) to track whether a ma-
jority of acceptors have replied successfully to the PREPARE

message; and (3) myProposals, a sequence of proposals be-
ing commandeered by the coordinator, i.e., proposals for
which it has or will send out ACCEPT messages, and for
each of which it maintains a waitFor structure to track a
majority of acceptances. The first two are needed only
until the coordinator gets elected by receiving a major-
ity of suppo PREPARE replies. If a coordinator receives any
client requests during this election, it enqueues them with
the first available (tentative) slot number in myProposals.
When a coordinator receives a PREPARE majority (“view
change” in Fig. 5), it merges all of the adopted propos-
als into and with strict priority over myProposals, marks it-
self as active, and begins commandeering myProposals. An
active coordinator thus only maintains a single queue,
myProposals, of proposals awaiting majority acceptance;
when that happens, they are announced as committed de-
cisions to all acceptors and are dequeued.

Bulk. The size of an active Paxos instance can be
orders of magnitude larger than an idle Paxos instance,
e.g., a burst of rapid requests to a group can result in
thousands [18] of requests being concurrently processed,
each causing hundreds or thousands of bytes of queued
entries at acceptors as well as coordinators, thereby eas-
ily inducing megabytes of state. This active state needs to
be maintained at an acceptor until a majority of acceptors
have caught up, i.e., majorityFrontier+1 equals nextSlot,
and at a coordinator until it is no longer commandeering
any proposals, i.e., myProposals is empty.

3.3 Bounded number of active instances
We claim that under realistic conditions, with a very large
number of consensus instances, the number of idle in-
stances will overwhelmingly dominate active ones. This
insight motivates GigaPaxos’ hot-swap mechanism.

5



Consider a GigaPaxos application distributed across M
machines managing a total of N objects with each object
managed by a separate consensus group. Let T denote
the average response time of a request with state machine
replication, inclusive of both the unreplicated application
execution time and the latency to establish its consensus
order. Suppose the maximum request throughput that can
be steadily sustained by the underlying (unreplicated) ap-
plication on a single machine is C per second. By Little’s
law [25], the average number of outstanding requests be-
ing processed at any single machine is A = C ·T . Note
that, if C and T are fixed, A is independent of the size of
a consensus group, the total number of machines M, or
the total number N of objects in the system.

For example, if C is 25,000 requests/sec and the av-
erage response time of a request is as high as T = 500
ms, then the average number of outstanding requests at
a machine is 12,500. In practice, the throughput of most
applications employing an RSM approach is likely to be
much lower, e.g., for a database application, synchronous
random write throughput is typically on the order of a
hundred/sec with hard drives, and up to several thousand-
s/sec with typical solid state drives.

The number of active consensus instances at a ma-
chine is at most the total number of outstanding requests
being processed at that machine. Indeed, the worst case
workload is one that, in a round-robin manner, issues re-
quests to all other objects (or consensus groups) before
returning to the first. Thus, in a GigaPaxos system with
millions of consensus groups, the vast majority of con-
sensus instances must be idle.

There are two caveats however: (1) this analysis im-
plicitly assumes graceful or failure-free execution; (2)
even if the average size of an idle consensus instance is
small the total number of Paxos groups that can fit in
memory on commodity hardware is limited, e.g., with
16GB memory and 400 bytes per Paxos instance, the
number of sustainable idle instances is 40 million. To
address these issues, GigaPaxos uses hot swapping, a
mechanism that helps GigaPaxos scale to billions of
groups per machine with commodity disk capacities.

3.3.1 Hot swapping Paxos instances
A simple hack to juggle too many Paxos instances on a
machine is for the manager to simply “soft-crash” that
Paxos instance, i.e., to dequeue it from its instances map
allowing for the state get garbage collected. This action
will preserve safety as it will just appear to the rest of
its group like a member failure. However, this simplis-
tic approach has several shortcomings. First, it forces a
roll forward of the Paxos instance from the most recent
checkpoint when a request for a Paxos group arrives at a
manager, stalling the request handling until the recovery
is complete. The alternative of simply not handling the

request is not viable, as that will over time prevent most
Paxos groups from making any progress at all, a much
worse state of affairs than the theoretical lack of guaran-
tee of liveness under asynchrony. Second, the overhead
of doing a checkpoint recovery upon a request arrival as
a common case operation can itself overwhelm memory,
computation, and I/O cycles on a machine severely hurt-
ing overall performance.

GigaPaxos instead employs a far nimbler hot
swapping technique that capitalizes on the two observa-
tions above: (1) most Paxos instances will be idle when
the total number of instances on a machine is very large;
and (2) idle state is extremely compact (Fig. 4 as op-
posed to 5). To this end, the manager on each machine
maintains a background process that periodically but in-
frequently (e.g., every few minutes), makes a sweep over
all active instances and pauses instances that have been
idle for the threshold interval, i.e., it synchronously de-
queues the instance from its map and writes the com-
pact idle state to a database. Subsequently, upon the
arrival of a client request or a Paxos protocol message
for that instance, the manager’s demultiplexer as usual
first consults its instance map to route the message. If
the instance is not found, the manager must check the
database for paused state that, if found, must be used
to reconstruct the Paxos instance. Hot swapping shares
some similarities with Cheap Paxos [24] or ZZ [34] for
bringing up virtual machines, but those approaches are
comparable to the “crash” option above.

A downside of hot swapping is that it imposes a small
latency penalty (<10ms typically) for the unpause oper-
ation. However, this penalty only impacts the first client
request (or Paxos protocol message) in a burst of ac-
tivity for that group. Subsequent requests do not incur
any penalty as the instance will not be re-paused until
it has been idle for the threshold duration. On the flip
side, hot swapping will disproportionately affect unpop-
ular Paxos instances with longer-than-threshold idle pe-
riods between successive client requests. Still, we be-
lieve that the penalty—an additional database lookup for
a small record—is unlikely to significantly impact most
applications as (1) most applications using consensus are
likely to touch the disk for common operations anyway;
and (2) with persistent logging, enabled by default in
GigaPaxos, each client request must encounter at least
one synchronous disk write in order for acceptors to log
an ACCEPT message before responding. Finally, in geo-
distributed scenarios, the unpause penalty is unlikely to
affect end-to-end latency as that is dominated by network
delays fundamental to Paxos.

3.3.2 Graceful vs. failure-prone operation

With machine failures, the fraction of active instances
at GigaPaxos machines can be higher. The reason is

6



that a Paxos instance can not fully gabage-collect the log
of accepted proposals at an acceptor as that requires a
majority of replicas in the group to have executed (or
persistently logged the corresponding decision) the ap-
plication up to that slot. Nevertheless, during periods
of synchrony when at least a majority of replicas in all
groups are available—exactly when Paxos guarantees
liveness—healthy machines will be unaffected and only
see a small number (as quantified above) of active in-
stances. Fate sharing makes the number of active Paxos
instances at failed machines a non-issue.

However, under more severe machine failure patterns
that result in a significant fraction of Paxos instances on
a machine being unable to make progress because of a
lack of a quorum in their respective groups, the number
of active instances on otherwise healthy machines can
grow to unsustainable levels. There are several reason-
able ways to handle this case: (1) the strawman outlined
above that crashes an instance to pause it; (2) checkpoint-
ing immediately at nextSlot and then crashing the instance
so as to reduce the length of the roll forward; (3) paus-
ing and unpausing active state (that could be potentially
much larger than the compact idle state). All options in-
cur higher overhead compared to hot swapping idle in-
stances, but will not impact client-perceived latency as
they are required only when the corresponding Paxos
group is not live anyway. Our current implementation
supports the second option.

3.4 Amortized fault detection and logging
Failure detection is a key component of any consensus
implementation. Although failure detection need not be
reliable (a problem as hard as consensus itself [12]), it
needs to be responsive in order to ensure prompt replace-
ment of a failed coordinator. Failure detectors are typ-
ically implemented using keep-alives between all or a
nontrivial subset of machine pairs in a consensus group.
However, unlike typical Paxos implementations, group
scalability in GigaPaxos makes it impractical to main-
tain a separate failure detector per group; for example,
1000 groups each of size 5 and a keep-alive frequency
of 4 secs imply 1000 packets/sec for failure detection;
with 100K groups, failure detection alone becomes a
full-time job! Thus, GigaPaxos pushes failure detection
to PaxosManager maintaining just one failure detector
per machine as opposed to one per group.

Likewise, the persistent logger resides in the man-
ager and is common across all Paxos instances on the
machine. This design not only amortizes the overhead
of logging PREPARE/ACCEPT/DECISION messages across all in-
stances, but also allows log messages from different
Paxos instances to be batched, driving down the overhead
of persistent logging to negligible levels. Without such
batching, GigaPaxos’ request throughput will be limited

by the synchronous disk write throughput.

3.5 Log indexing, pruning, compaction
In a traditional RSM, garbage collecting safety-critical
acceptor logs is easy; they can simply be tail-pruned be-
low the highest slot, majorityFrontier, up to which a major-
ity (or even just f +1 if at most f can fail) have received
all decisions. This just requires tracking file offsets on
disk or maintaining slot-indexed records in a database
such that it is easy to check whether all logs before some
offset are below majorityFrontier. Looking up logged mes-
sages when needed is efficient as the number of log mes-
sages is at most the checkpoint interval.

Figure 6: GigaPaxos’ group-scalable logger (bottom)
compared to traditional RSM logger (top).

Indexing. In GigaPaxos, this indexing problem is
harder. As shown in Figure 7, a single write-ahead log
for all groups is extremely efficient (e.g., disabling log-
ging improves capacity by barely 15%), but makes it dif-
ficult to track where what is logged; for example, upon
a coordinator change or a catch-up request from a lag-
ging acceptor for a group X, an acceptor needs to retrieve
logged ACCEPTs or DECISIONs for X in a specific slot range.
To this end, GigaPaxos needs to additionally maintain a
log index map keyed by group names that tracks the [

file,offset,length] and [slot,ballot] informa-
tion for every logged message. This is tricky because,
by design, the number of groups can be much larger than
that can be stored in memory, and simply using a tradi-
tional database (even with batching) makes the critical
path about two orders of magnitude slower.

Pruning. GigaPaxos’s log index is a swappable in-
memory map that is as fast as a hash table lookup for
working sets that fit in memory, but swaps infrequently
used records to a database table indexed by the group
name. The log itself is split across logically times-
tamped files each of a fixed maximum size, and each
log index record in addition to the information above
tracks minLogfile, the log file storing that group’s log

7



message with the lowest slot number, i.e., the lower of
majorityFrontier (for ACCEPTs) and the most recent check-
pointed slot (for DECISIONs). The garbage collector period-
ically queries the database for the minLogfile frontier, i.e.,
the set of minLogfiles across all groups, and then removes
log files older than the oldest log file in that frontier set
from the file system.

Compaction. Alas, the logger’s garbage collection
woes do not end here. With highly skewed workloads,
for example, one where most requests go to just one (or
a small number) of group(s) but a request occasionally
goes to a “rare” group, it is possible that every log file
contains at least one (or a few) log message that prevents
the log file from being safely removed. In pathological
cases, with pruning alone as above, the number of log
files can be as high as N · I with N groups and a check-
point interval of I requests (proof deferred to [3]). So,
GigaPaxos needs to infrequently (1) compact sparse log
files, i.e., files with very few safety-critical entries; (2)
merge them with other sparse log files; and (3) update
the log index map entries in a consistent manner.

With all of the above mechanisms, GigaPaxos’ logger
scales to a very large number of consensus groups while
imposing negligible overhead when the working set fits
in memory. Indeed, secondary storage, not memory, is
what limits GigaPaxos’ group scalability. The worst-case
disk storage overhead for N groups is O(INR), where I
is the checkpoint interval and R the average request size,
e.g., with I=100 and R=100B, a machine needs over 1TB
of storage to safely participate in N=100M groups.

3.6 Automated reconfiguration
A large number of consensus groups means it is im-
practical for an operator to manually reconfigure group
membership, so GigaPaxos provides support for pro-
grammable policies that automate reconfiguration. For
example, a principal could specify a simple policy
to reconfigure upon, say, 10 requests from near an
app-container location where it is not already repli-
cated. Much more sophisticated policies including those
optimizing global placement across all principals are
straightforward to implement. We first describe the re-
configuration protocol below.

3.6.1 Reconfiguration protocol
GigaPaxos’ reconfiguration protocol is similar to Liskov
and Cowling’s Viewstamped Replication Revisited
(VRR) [26], but differs in important ways. First, Giga-
Paxos uses an external reconfigurator (similar in spirit
to Vertical Paxos[23]) that also integrates the function of
group location, i.e., determining the current group for an
object, a concern outside the scope of VRR (that suggests
that clients could obtain this information from a “web
site run by the administrator”). With a very large num-
ber of application RSMs and frequent reconfigurations,

group location requires a systematic, scalable solution.
Second, the reconfigurator for each application RSM it-
self must be replicated in order to prevent the application
RSM from stalling permanently because of a reconfigu-
rator failure.

Figure 7: GigaPaxos’ scalable reconfiguration protocol
reconfiguring principal X from epoch e to epoch e+1.

Replicated GigaPaxos reconfigurators must agree on
when to initiate a reconfiguration for an application RSM
and on the composition of the new group as divergence
can result in reconfigurators permanently losing track of
the group. So each reconfigurator replica group is it-
self organized as an RSM whose state is the set of all
application RSMs mapped to it via consistent hashing.
In keeping with its completely event-driven design, pro-
grammatic reconfiguration in GigaPaxos is initiated by a
client request (step 0) that happens to result in a demand
report (step 1) from one or more app-containers to some
reconfigurator(s). Upon receiving a demand report, any
reconfigurator can propose an RC_INTENT(X) (step 2) com-
mand to reconfigure an application RSM X it manages
and, when committed, the proposing reconfigurator in
the common case single-handedly conducts the STOP/START
/DROP reconfiguration sequence [26] for X (steps 3–7).
When done, it proposes and commits RC_COMPLETE(X) (step
8) in its group. Persistently logging every state change
in its RSM ensures that, upon the proposing reconfigura-
tor’s failure or upon recovery, a reconfigurator can detect
and complete unfinished reconfigurations of its managed
application RSMs. A formal protocol description of the
above reconfiguration protocol is deferred to a techreport
[3], which also describes how reconfigurators or app-
containers themselves are added or removed.

3.6.2 Extensible reconfiguration policy support
GigaPaxos enables applications to specify flexible poli-
cies that automate reconfiguration. Each reconfigurator
RSM accepts periodic statistics about load or other met-
rics from any application RSM it manages and uses a
customizable reconfiguration policy to decide whether
and how to reconfigure the reconfiguree RSM. It is trivial
also to let the application RSM simply send a request to
its reconfigurator RSM when it deems a reconfiguration
as necessary (or self-reconfigure as in VRR [26] and up-
date the group location service), but allowing reconfigu-

8



rators to make this decision allows implementing global
reconfiguration policies, i.e., policies that take into ac-
count statistics across many RSMs to make reconfigura-
tion decisions for each RSM. Applications using Giga-
Paxos extend an abstract class, DemandProfile, to specify
sophisticated reconfiguration policies based on failure,
demand, or access patterns, performance, etc.

3.7 Replicable API and implementation
We implemented GigaPaxos with all of the features de-
scribed above largely in Java with 23.9K semi-colons
(83.6K newlines including documentation) of which
9.4K is for a stoppable Paxos implementation; 9.2K is
for the reconfiguration protocol. The persistent logger
uses an embedded database, Apache derby, by default,
and also supports mysql. All transport is based on TCP;
our nio library maintains and reuses a persistent connec-
tion to each machine, automatically attempts to create a
new one if machine failures or other events cause I/O ex-
ceptions, and buffers a bounded number of messages to
each destination to mask intermittent network failures.
The size of an idle Paxos instance is ≈350B in our Java
implementation; a leaner language like C can reduce it
further to ≈100B.

In order to remain agnostic to application-specific de-
tails, GigaPaxos requires an application to implement the
following simple Replicable interface in order to be both
replicable and reconfigurable, and an application may
choose to use just one of the two features, for example,
to create an unreconfigurable RSM or reconfigure an un-
replicated state machine:

boolean execute(Request request, boolean dontReply);

String checkpoint(String name);

boolean restore(String name, String state);

4 Evaluation
Our high-level goal is to quantify the costs and benefits of
group scalability in GigaPaxos. We conduct the follow-
ing experiments: (1) Comparison of GigaPaxos against
state-of-the-art Paxos-based systems w.r.t. the number
of supported groups and the impact on client-perceived
performance; (2) Microbenchmarks evaluating the ben-
efit and overhead of mechanisms in GigaPaxos; and (3)
Case studies involving a number of third-party applica-
tions evaluating GigaPaxos’ usability and the benefits.

4.1 Group scalability comparison
We study the load vs. latency profile and the memory
overhead for varying numbers of groups for three state-
of-the-art systems that either are or comprise a consen-
sus system, namely, ZooKeeper [18], OpenReplica [7],
and Raft [31], compared to GigaPaxos. Unless otherwise
specified, all experiments were performed on Amazon
EC2 t2.medium (2 vCPUs, 4GB memory, and 8GB SSD

Load (/sec) with 1B requests

1 10 100 1K 10K 160K

R
es

p
o

n
se

 t
im

e 
(m

s)

0

200

400

600

800

1000
1 GigaPaxos Group

100 GigaPaxos Groups

10K GigaPaxos Groups

1M GigaPaxos Groups

160K/s

(a) GigaPaxos

Load (/sec) with 1B requests

1 10 100 1000 32K

R
es

p
o

n
se

 t
im

e 
(m

s)

0

100

200

300

400

500
1 Zookeeper Group

90 Zookeeper Groups

100 Zookeeper Groups

110 Zookeeper Groups

10K

(b) ZooKeeper

Load (/sec) with 1B requests

1 10 100 1.8K

R
es

p
o
n

se
 t

im
e 

(m
s)

0

50

100

150

200
1 OpenReplica Group

200 OpenReplica Groups

250 OpenReplica Groups

260 OpenReplica Groups

(c) OpenReplica

Load (/sec) with 1B requests
1 10 100 1K 5K

R
es

p
o

n
se

 t
im

e 
(m

s)

0

10

20

30

40

50
1 Raft Group

1000 Raft Groups

1200 Raft Groups

1210 Raft Groups

(d) Raft

Figure 8: Group scalability: Load vs. latency for 1B
requests with varying numbers of idle groups.

disk) servers and sufficiently many c4.4xlarge clients to
saturate the servers in the same region.

4.1.1 Load vs. latency with varying no. groups
In this experiment, clients send requests at increasing
rates to a single active RSM at servers that maintain vary-
ing numbers of mostly idle RSMs. There are 3 servers
in all and each RSM’s consensus group is the set of
all 3 servers. We measure the average response time
over at least five runs each lasting 60s after discarding
at least one or more warmup runs as needed to stabilize
the servers. The request rate is increased until the system
can not sustain that load, i.e., one or more servers either
crashes, or the response time exceeds 1s, or the response
rate drops below 99.9%.

Fig. 8 shows the load vs. response time profile of Gi-
gaPaxos, ZooKeeper, OpenReplica, and the Raft authors’
LogCabin [31] implementation for 1B no-op requests.
Among the latter three systems, ZooKeeper scales to the
highest capacity (32K/s) with a single group, but breaks
down at barely hundred groups, while OpenReplica and
Raft have significantly lower capacities with one group
but don’t hit breakdown point until hundreds of groups.
ZooKeeper scales to fewer groups in part because of the
overhead of running separate JVMs with servers listen-
ing on different sets of three ports for each RSM, which,
though cumbersome, we confirmed with its developer fo-
rums [6] as well as via code inspection was the most rea-
sonable option to maintain separate consensus groups.
Raft’s C++ implementation is leaner, so it scales to more
groups. All three systems show a stark, qualitatively sim-
ilar degradation with increasing groups.

In contrast, GigaPaxos is fast, scaling up to 160K/s ca-
pacity with a negligible performance drop as the number
of groups increases all the way to a million. Given that

9



Load (/sec) with 1KB requests

1 10 100 1K 32K

R
es

p
o

n
se

 t
im

e 
(m

s)

0

200

400

600

800

1000
1 GigaPaxos Group

100 GigaPaxos Groups

10K GigaPaxos Groups

1M GigaPaxos Groups

32K/s

10K

(a) GigaPaxos

Load (/sec) with 1KB requests
1 10 100 1000 21K

R
es

p
o

n
se

 t
im

e 
(m

s)

0

100

200

300

400

500
1 Zookeeper Group

50 Zookeeper Groups

70 Zookeeper Groups

90 Zookeeper Groups

(b) Zookeeper

Figure 9: Group scalability: Load vs. latency for 1KB
requests with varying number of idle groups.

Number of 3-replica GigaPaxos groups
1 10 100 1K 10K100K 1M

C
a

p
a

c
it

y
(/

s
e

c
)

×10
4

0

1

2

3

3.5

(a) Reduced batching

1 2 3 4 5
0

1

2

3

4
x 10

4

Number of 5−replica GigaPaxos groups

C
a

p
a

c
it

y
(/

s
e

c
)

 

 

DIGEST=FALSE

DIGEST=TRUE

(b) Coordinator balancing

Figure 10: (a) Reduced opportunistic batching hurts; (b)
Coordinator load balancing helps.

only a single group is active in this experiment, Giga-
Paxos mainly benefits from amortizing failure detection
across groups, its holistic, single-process design, and its
compact representation of idle Paxos instances.

Impact of request size. 1B requests measure the raw
agreement throughput, but are hardly useful for any real
application. We repeat the above experiment with 1KB
requests and (because of space limits) show the results
only for GigaPaxos and ZooKeeper in Fig. 9. Both sys-
tems are network bottlenecked [19], and see a signifi-
cant drop in capacity. Both have ≈100-120B of protocol
overhead for each ACCEPT/ACCEPT_REPLY/DECISION message (or
their one-one equivalents in ZooKeeper’s Zab protocol
[19]) on the critical path. So, 1KB vs. 1B requests in-
crease the ACCEPT message size by ≈8-10×.

4.2 GigaPaxos microbenchmarks
4.2.1 Impact of batching on group scalability
The results above (§4.1) with a single active group may
suggest that GigaPaxos is phenomenally group-scalable
with no apparent costs, but that is hardly the case. Next,
we stress-test GigaPaxos when a large number of groups
are simultaneously active. We use 1KB requests and re-
peat the experiment above with the only difference that
requests are sent in a round-robin manner across groups.

Fig. 10(a) shows that the throughput capacity of the
system drops as the number of groups increases. The rea-
son is reduced opportunities for batching requests. Op-
portunistic batching, i.e., without explicitly waiting for
more requests to arrive, is well known to significantly
improve the performance of Paxos-like protocols. How-

(a) Hot-swapping overhead

Size of a single replica group
3 5 7 9 11

C
a
p

a
c
it

y
(/

s
e
c
)

×10
4

0

1

2

3

3.5

(b) #replicas vs. capacity

Figure 11: (a) Group scalability “fine print” with very
large number of groups; (b) Fault scaling.

ever, it is in general not possible to batch requests across
different RSMs as their group membership may be differ-
ent. With increasing groups, GigaPaxos’ capacity drops
until it hits ≈22K/s, which we have verified is its capac-
ity with 1KB requests with batching disabled.

Fig. 10(b) shows an experiment similar to that in 10(a)
but with 5-replica groups (instead of 3). Seemingly con-
tradictorily, the first set of bars show the capacity increas-
ing with the number of groups. However, there is a sim-
ple explanation–coordinator load balancing–for this ob-
servation. As the number of groups increases from 1 to
the total number of physical servers 5, the capacity in-
creases because the coordinators for different 5-replica
groups get randomly assigned to the servers. As the coor-
dinator’s role—receiving every request and sending them
as ACCEPTs to the group—is a key bottleneck, multiple
groups naturally increase capacity. In contrast, the latter
set of bars enable the digest_requests option wherein the
entry replica broadcasts the request to all acceptors and
the coordinator issues ACCEPTs only with request digests.
Safety is preserved since an acceptor acknowledges an
ACCEPT only if it has received the corresponding body.

The benefit of coordinator balancing has been noted
before, e.g., S-Paxos [10] proposes an optimization sim-
ilar to GigaPaxos’ request digests (albeit with a more
complex protocol), and others such as Mencius[28], E-
Paxos[29] etc. [20] take different approaches to coordi-
nator load balancing. In GigaPaxos, such optimizations
are needed only when the number of groups is very small
and the request size is not small (�tens of bytes).

4.2.2 Hot swapping overhead
Table 11(a) summarizes the “fine print” limiting Gi-
gaPaxos’ group scalability. The experiments thus far
considered up to a million groups that barely consume
half a gigabyte of memory. However, 10 million in-
stances is higher than what can be supported on the 4GB
RAM servers. With such a large number of instances
and a round-robin workload, every request encounters
a paused instance, so the average latency is over 12ms
compared to under 3ms for up to a few million instances
(both measured under a round-robin light load of 100/s).
Unpausing an instance currently requires two database

10



Timeline(s)

0 50 100 150 200 250 300

A
v

er
ag

e 
re

sp
o

n
se

 t
im

e(
m

s)

0

200

400

600

R
om

a

A
nn

 A
rb

or

B
ue

no
s A

ire
s

Zur
ic

h

Eug
en

e

H
on

g 
K

on
g

Stu
ttg

ar
t

group size=1
group size=2
no reconfiguration

Figure 12: The placement of etherpad servers significantly
affects user-perceived response times.

lookups, one each for the paused instance state and the
corresponding log index record (§3.5) that are currently
paused and looked up independently; combining them
(not yet implemented) will further reduce this penalty.
The throughput takes a much more severe hit at 2.6K/s
for 1KB requests vs. 22K/s for 1M groups (Fig. 10(a)).

4.3 Application usability case studies
In this section, we present several application case stud-
ies to show (1) that GigaPaxos’ Replicable API (§3.7)
can be implemented easily for third-party applications,
with or without intrinsic support for replication, so as to
make them replicable and reconfigurable; (2) the latency
benefit of object-group configurability.

4.3.1 myCloud: Share document editing and storage
We implemented a Replicable wrapper for etherpad [1], an
open-source, document editor that allows users to col-
laboratively edit documents or “pads” in real-time via a
web browser (similar to the popular, proprietary Google
Docs). etherpad does not intrinsically support replication
or fault-tolerance. Client libraries for its API are avail-
able in a variety of languages; we used the Java API
[2] to make it fault-tolerant and reconfigurable via the
Replicable wrapper. We also used GigaPaxos’ general-
purpose support for applications to easily delegate mes-
saging of replies back to the originating client.

In this wide-area experiment, we deploy 7 etherpad

servers respectively at California, Frankfurt, Ireland,
Sydney, Seoul, Tokyo, and Virginia. A GigaPaxos client
creates a single pad using the createService(.) client API,
which by default is set to create an RSM group of all 7
replicas. A controller script in our lab then emulates a
“mobile” etherpad client that trots across different cities
as shown in Fig. 12 sending tens of requests from each
city. The DemandProfile policy is designed to reconfigure
the RSM once every 20 requests to either 1 (blue/solid)
or 3 (green/dashed) closest app-container locations.

Fig. 12 shows that the carefully-chosen 3-replica
RSMs can significantly reduce end-to-end client-
perceived latency, sometimes by over 200ms. The 1-
replica RSM as expected yields the lowest latency but

only ensures durability, not availability amidst failures,
and is included just to show the best-case. Reconfigura-
tion itself roughly takes as much time as 2-3 Paxos oper-
ations, so requests are occasionally lost when sent to an
app-container where the Paxos instance no longer exists.

4.3.2 Usability and performance overhead

Implementing Replicable for etherpad was rather easy and
involved just 60 lines of code to GigaPaxos’ abstract,
general-purpose “hello world” client and application
classes to support etherpad’s three basic request types
used in this experiment; supporting its full API will in-
crease the integration work.

Application #semi-
colons

Etherpad 60
OpenKM [4] 89
MySQL 79
Cassandra 78
Mongo 53
Redis 40

Table 1: LOC for
Replicable wrappers.

We have implemented
Replicable wrappers for a
number of third-party ap-
plications as listed in Ta-
ble 1 including OpenKM
[4] (comparable to Google
Drive) and popular key-
value stores. Despite
the simplicity, some of
the wrappers are powerful,
e.g., the mysql wrapper is
schema-agnostic and any-

one can reuse it to designate either each row or each ta-
ble as an independently reconfigurable RSM. We could
do this because Replicable’s checkpoint and restore meth-
ods can naturally avail of sqldump to checkpoint a single
record, table, or database in a schema-agnostic manner.

With the help of tutorials and starter code, GigaPaxos
has been used by a distributed systems classes consist-
ing of undergraduate as well as masters students to im-
plement a simple, in-memory map that is gratuitously
durable, fault-tolerant, per-key reconfigurable, and ultra-
fast (Fig. 8(a)) for small keys and values.

5 Conclusions

Perhaps because of pedagogical challenges or because
of the “costly” mental image replication already in-
vokes, consensus implementations today inherently em-
bed assumptions appropriate for monolithic applica-
tions. We presented GigaPaxos, a novel system that
enables group-scalable replicated state machines, eas-
ily allowing any application to create an object man-
aged by a consensus group on the fly and recon-
figure it as needed. We have conducted a num-
ber of application case studies to show that agile re-
configuration and object-group configurability in Giga-
Paxos can significantly improve client-perceived per-
formance. The GigaPaxos code with tutorials, case
study example code, and documentation is available at:
https://github.com/MobilityFirst/gigapaxos

11



References
[1] EtherPad: A Collaborative Real-Time Open-Source Edi-

tor. http://etherpad.org/.

[2] etherpad-lite: HTTP API client libraries. https:

//github.com/ether/etherpad-lite/wiki/

HTTP-API-client-libraries.

[3] GigaPaxos: System Support for Group Scalabil-
ity in Nano-Grained Reconfigurable Replicated State
Machines (Extended Version), UMass CICS Techni-
cal Report, 2017. https://www.dropbox.com/s/

5q8ydueaswqlfuf/GigaPaxosTR.pdf?dl=0.

[4] OpenKM: Electronic Documents and Records Manage-
ment System. https://openkm.com/.

[5] Personal communication with members of the Google
Spanner team.

[6] Zookeeper mailing list. https://zookeeper.apache.
org/lists.html.

[7] D. Altinbuken and E. G. Sirer. Commod-
ifying replicated state machines with open-
replica. http://openreplica.org/static/

altinbukenOpenReplica.pdf.

[8] M. S. Ardekani and D. B. Terry. A self-configurable geo-
replicated cloud storage system. In 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 367–381, Broomfield,
CO, Oct. 2014. USENIX Association.

[9] H. Attiya and J. Welch. Distributed Computing. John
Wiley and Sons, Inc. https://hagit.net.technion.
ac.il/publications/dc/.

[10] M. Biely, Z. Milosevic, N. Santos, and A. Schiper. S-
paxos: Offloading the leader for high throughput state
machine replication. In Reliable Distributed Systems
(SRDS), 2012 IEEE 31st Symposium on, pages 111–120.
IEEE, 2012.

[11] M. Burrows. The Chubby Lock Service for Loosely-
coupled Distributed Systems. In Proceedings of the
7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 335–350, Berkeley,
CA, USA, 2006. USENIX Association.

[12] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for reliable distributed systems. Journal of the ACM
(JACM), 43(2):225–267, 1996.

[13] J. C. e. a. Corbett. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, Berkeley,
CA, USA, 2012. USENIX Association.

[14] DARPA Dispersed Computing. https://www.darpa.

mil/program/dispersed-computing.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating

Systems Principles, SOSP ’07, pages 205–220, New
York, NY, USA, 2007.

[16] J. R. Douceur and J. Howell. Distributed directory
service in the Farsite file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 321–334. USENIX Association,
2006.

[17] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable Consistency in Scatter. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 15–28,
New York, NY, USA, 2011. ACM.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, USENIX-
ATC’10, pages 11–11, Berkeley, CA, USA, 2010.
USENIX Association.

[19] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems. In
Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks, DSN
’11, pages 245–256, Washington, DC, USA, 2011. IEEE
Computer Society.

[20] M. Kapritsos and F. P. Junqueira. Scalable agreement:
Toward ordering as a service. In Proceedings of the
Sixth International Conference on Hot Topics in System
Dependability, HotDep’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association.

[21] L. Lamport. The Part-Time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[22] L. Lamport. Paxos made simple.
ACM SIGACT News (Distributed Computing Column),
32(4):51–58, 2001.

[23] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos
and primary-backup replication. In Proceedings of
the 28th ACM Symposium on Principles of Distributed
Computing, PODC ’09, pages 312–313, New York, NY,
USA, 2009. ACM.

[24] L. Lamport and M. Massa. Cheap Paxos. In Dependable
Systems and Networks, 2004 International Conference
on, pages 307–314. IEEE, 2004.

[25] A. Leon-Garcia. Probability, Statistics, and Random
Processes for Electrical Engineering. Prentice Hall, 4th
edition edition, 1 2015.

[26] B. Liskov and J. Cowling. Viewstamped replication revis-
ited. Technical Report MIT-CSAIL-TR-2012-021, MIT,
July 2012.

[27] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp File System.
In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, SOSP ’91, pages 226–238,
New York, NY, USA, 1991. ACM.

[28] Y. Mao, F. P. Junqueira, and K. Marzullo. Men-
cius: Building Efficient Replicated State Machines for

12



WANs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’08, pages 369–384, Berkeley, CA, USA, 2008.
USENIX Association.

[29] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 358–372,
New York, NY, USA, 2013. ACM.

[30] B. Noble, B. Fleis, and M. Kim. A case for fluid replica-
tion. 1999.

[31] D. Ongaro and J. Ousterhout. In search of an understand-
able consensus algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, pages 305–320, Berkeley,
CA, USA, 2014. USENIX Association.

[32] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. West-
brook, and A. Yadav. A global name service for a highly
mobile internetwork. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages 247–
258, New York, NY, USA, 2014. ACM.

[33] R. Van Renesse and D. Altinbuken. Paxos made moder-
ately complex. ACM Comput. Surv., 47(3):42:1–42:36,
Feb. 2015.

[34] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and
E. Cecchet. ZZ and the art of practical BFT execu-
tion. In Proceedings of the sixth conference on Computer
systems, pages 123–138. ACM, 2011.

13


