
DESIGN, ANALYSIS AND OPTIMIZATION
OF

CACHE SYSTEMS

A Dissertation Presented

by

MOSTAFA DEHGHAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2017

College of Information and Computer Sciences

c© Copyright by Mostafa Dehghan 2017

All Rights Reserved

iii

DESIGN, ANALYSIS AND OPTIMIZATION
OF

CACHE SYSTEMS

A Dissertation Presented

by

MOSTAFA DEHGHAN

Approved as to style and content by:

Don Towsley, Chair

Jim Kurose, Member

Ramesh Sitaraman, Member

Christopher Hollot, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

To Mom.

ACKNOWLEDGMENTS

First and foremost, I am truly grateful to have had Professor Donald Towsley as my

PhD adviser. He has been an exceptional support and a great source of inspiration.

I have learned so many things from him. Each single meeting with Don was worth a

semester-long course. I cannot thank him enough.

I would also like to express my deepest gratitude to Professor Dennis Goeckel

who advised me for two years before joining the Computer Science department. He

is an amazing adviser and a great teacher. I was lucky enough to have the pleasure of

working with Professor Jim Kurose before he joined the National Science Foundation.

His great personality cannot be put into words. It has been an honor to know him. I

would also like to thank my other committee members Professor Ramesh Sitaraman

and Professor Kris Hollot. Their comments certainly improved this thesis.

I want to thank my peers and friends in the Computer Science department for

making my time at UMass memorable. Misha, Jennie, Anand, Cheng, Bo, Yeon-

Sup, James, Fabricio, Bruce, Kun, Keen and Pinar, thanks for being such awesome

friends! I am grateful to have known the younger generation of Iranian students in

the Computer Science department who called me Dad! So many great memories

were created by Hamed, Milad, Shahrzad, Hadi, Pegah, and Fatemeh.

Last, but not the least, I want to thank Leeanne Leclerc for making sure I was

in sync with program requirements.

ABSTRACT

DESIGN, ANALYSIS AND OPTIMIZATION
OF

CACHE SYSTEMS

FEBRUARY 2017

MOSTAFA DEHGHAN

B.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

M.Sc., UNIVERSITY OF CALGARY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

The increase in data traffic over the past years is predicted to continue more

aggressively in the years to come. However, traditional methods such as increasing

the amount of spectrum or deploying more base stations are no longer sufficient to

cope with the traffic growth. Caching is hence recognized as one of the most ef-

fective means to improve the performance of Internet services by bringing content

closer to the end-users. Although the benefits of in-network content caching has

been demonstrated in various contexts, they introduce new challenges in terms of

x

modeling and analyzing network performance. Building on analytical results for

Time-To-Live caches and the flexibility they provide in modeling caches, this the-

sis investigates various aspects in which caching affects network design and perfor-

mance. The complexity of making optimal routing and content placement decisions

is studied first. Showing the infeasibility of implementing the optimal strategy, low-

complexity techniques are developed to achieve near-optimal performance in terms

of the delay observed by end-users. The problem of differentiated cache services is

studied next with the question “how can Content Distribution Networks implement

caching policies to provide differentiated services to different content providers?”. A

utility-maximization framework is formulated to design caching policies with fair-

ness considerations and implications on market economy for cache service providers

and content publishers. An online algorithm is also developed with the purpose of

implementing the utility-based cache policies with no a priori information on the

number of contents and file popularities. This thesis also analyzes caches in con-

junction with data structures, e.g. Pending Interest Table, proposed in the future

Internet architecture designs such as Named Data Networking. The analysis pro-

vides the means to understand system performance under different circumstances,

and develop techniques to achieve optimal performance.

xi

TABLE OF CONTENTS

Page

ABSTRACT . x

LIST OF FIGURES . xvii

CHAPTER

1. INTRODUCTION . 1

1.1 Contributions . 2

1.1.1 Complexity Analysis of Caching and Routing 2
1.1.2 Utility-Driven Caching . 3
1.1.3 Cache Sharing and Partitioning . 4
1.1.4 PIT Modeling and Timeout Optimization . 4

1.2 Thesis Outline . 5

2. ON THE COMPLEXITY OF OPTIMAL ROUTING AND
CONTENT CACHING IN HETEROGENEOUS
NETWORKS . 7

2.1 Introduction . 7
2.2 Network Model . 9
2.3 Problem Formulation . 11
2.4 Congestion-Insensitive Uncached Path . 14

2.4.1 Hardness of General Case . 14
2.4.2 Special Case: One File per User . 16

xii

2.4.3 Special Case: Network with Two Caches . 18
2.4.4 Complexity Discussion . 20

2.5 Congestion-Sensitive Uncached Path . 22

2.5.1 Hardness of General Case . 23
2.5.2 Hardness of Single-Cache Case . 23

2.6 Approximation Algorithm . 25
2.7 Performance Evaluation . 31

2.7.1 p-LRU . 32
2.7.2 Network Setup . 34
2.7.3 Numerical Evaluation . 35

2.7.3.1 GreedyWG vs. Optimal . 35
2.7.3.2 GreedyWG vs. Greedy . 36

2.7.4 Trace-driven Simulation . 37

2.8 Related Work . 39
2.9 Conclusion . 42

3. A UTILITY OPTIMIZATION APPROACH TO NETWORK
CACHE DESIGN . 43

3.1 Introduction . 43
3.2 Model . 44
3.3 Cache Utility Maximization . 45

3.3.1 Hard Constraint Formulation . 45
3.3.2 Soft Constraint Formulation . 48
3.3.3 Buffer Constraint Violations . 49

3.4 Utility Functions and Fairness . 50

3.4.1 β = 0 . 51
3.4.2 β = 1 . 52
3.4.3 β = 2 . 52
3.4.4 β → ∞ . 53

xiii

3.5 Reverse Engineering . 53

3.5.1 FIFO . 55
3.5.2 LRU. 56

3.6 Online Algorithms . 57

3.6.1 Dual Solution . 57
3.6.2 Primal Solution . 60
3.6.3 Primal-Dual Solution . 61
3.6.4 Estimation of λi . 63

3.7 Simulations . 64

3.7.1 Cache Size Violations . 64
3.7.2 Elastic Cache Size . 65
3.7.3 Online Algorithms . 67
3.7.4 Non-reset vs. Reset TTL . 72
3.7.5 Trace-driven Simulation . 73

3.8 Related Work . 74
3.9 Discussion . 76

3.9.1 Unequal File Sizes . 76
3.9.2 Decomposition . 77
3.9.3 Cost and Utility Functions . 78
3.9.4 Online Algorithms . 79
3.9.5 Non-reset vs. Reset TTL . 79

3.10 Conclusion . 80

4. SHARING CACHE RESOURCES AMONG CONTENT
PROVIDERS: A UTILITY-BASED APPROACH 81

4.1 Introduction . 81
4.2 Model and Problem Setting . 83
4.3 Cache Resource Allocation among Content Providers 88

4.3.1 Content Providers with Distinct Objects . 88
4.3.2 Content Providers with Common Objects . 91

xiv

4.3.3 Implications . 96

4.4 Online Algorithms . 97

4.4.1 Content Providers with Distinct Contents 98

4.4.1.1 Algorithm Implementation . 100

4.4.2 Content Providers with Common Content 100

4.4.2.1 Algorithm Implementation . 102

4.5 Evaluation . 102

4.5.1 Cache Partitioning . 104
4.5.2 Online Algorithms . 108

4.6 Discussion . 110
4.7 Related Work . 112
4.8 Conclusion . 113

5. MODELING AND OPTIMIZATION OF PENDING
INTEREST TABLE TIMEOUT .115

5.1 Introdcution . 115
5.2 Model Description . 116

5.2.1 Renewal Arrivals . 117
5.2.2 Cache Characteristic Time . 118
5.2.3 Metrics of Interest . 119

5.3 LRU with Poisson Arrivals . 119

5.3.1 Poisson Arrivals and Exponentially Distributed Delays 122

5.4 Constrained PIT Size . 125

5.4.1 Online Algorithm . 127

5.5 Memory-Bandwidth Tradeoff . 129

xv

5.5.1 Online Algorithm . 131

5.6 Performance Evaluation . 133

5.6.1 Model Evaluation . 133
5.6.2 Constrained PIT Size . 135
5.6.3 Memory-Bandwidth Tradeoff . 135

5.7 Related Work . 139
5.8 Conclusion . 139

6. CONCLUSION . 141

Appendices 143

BIBLIOGRAPHY . 168

xvi

LIST OF FIGURES

Figure Page

2.1 Hybrid network with in-network caching . 10

2.2 Modeling content placement as a maximum weighted matching
problem. Each user is interested in only one file and each file is
requested by only one user. Problem can be solved by matching
users to cache spaces. 18

2.3 A network with three users (solid circles) and three caches (squares).
Each user is in the communication range of two of the caches. 20

2.4 (a) A network of three users (circles) connected to three caches
(squares) forming a cycle. Users are equally interested in two
files, red and green. (b) Optimal content placement according to
binary placement decisions, i.e. xjm ∈ {0, 1}. (c) Optimal content
placement assuming fractions of files can be stored in caches, i.e.
0 ≤ xjm ≤ 1. (d) Optimal content placement with the possibility
of content coding. A copy of the two files is stored in two of the
caches, and the third cache keeps a coded copy, e.g. XOR of the
two files. 21

2.5 Examples of network topologies conforming to conjecture criteria. 22

2.6 A network with (a) one cache, and (b) five caches. 35

2.7 Evaluation of GreedyWG against Optimal and p-LRU. 36

xvii

2.8 Evaluation of the two greedy approximations over different values of
the cache budget split equally between five caches. Aggregate
user request rate is λ = 5, and service rate of the back-end server
equals 2.5. 37

2.9 Evaluation of the greedy algorithms for different values of the service
rate at the back-end server. Aggregate user request rate is λ = 5,
and the service rate varies from 2 to 10. Cache budget is set to
125. 38

2.10 Evaluation of the Greedy and p-LRU for the single-cache (S) and
multi-cache (M) network setups for different values of the
available cache budget. The service rate is set to be 0.8 times the
aggregate traffic rate. 39

2.11 Evaluation of the Greedy and p-LRU algorithms for different values
of the service rate to aggregate traffic ratio for the single-cache
(S) and multi-cache (M) network setups. 40

3.1 Utility functions associated with LRU and FIFO caching policies. 57

3.2 (a) Probability of cache size violation and (b) percentage of extra
buffer space decrease as system scales as B =

√
N and

ε = 1
5√N

. 65

3.3 Adjusting the cache size to maximize utility-cost trade off for an
LRU cache. Four different cost function are evaluated. 66

3.4 Optimal cache size as a function of (a) request arrival rate, and
(b) fairness parameter β from β-fair utility functions. 66

3.5 Hit probabilities from implementing the online dual algorithm using
utility functions for LRU, FIFO, proportionally fair and max-min
fair policies using estimated λi. 67

3.6 Proportionally fair policy implemented using the dual algorithm
with exact knowledge of λis. 69

xviii

3.7 Proportionally fair policy implemented using the primal-dual
algorithm with δm(ti, α) = λi and δh(ti, α) = α− λi, with
approximate λi values. 70

3.8 Convergence and stability of dual algorithm for the utility function
representing LRU policy. 71

3.9 Cache size distribution and CCDF from dual algorithm with the
utility function representing LRU policy. 72

3.10 Divergence from optimal at algorithm iterations for (a)
proportionally fair, and (b) max-min fair policies implemented by
dual and primal-dual algorithms assuming exact knowledge of
request rates. 73

3.11 Divergence from optimal at algorithm iterations for (a)
proportionally fair, and (b) max-min fair policies implemented by
dual and primal-dual algorithms with estimated request rates. 74

3.12 Divergence from optimal at algorithm iterations for (a)
proportionally fair, and (b) max-min fair policies implemented by
priml-dual algorithm as non-reset and reset TTL caches. 75

3.13 Relative error in hit counts from replacement-based implementation
of LRU and the implementation based on the dual algorithm. 76

4.1 Network Model. 82

4.2 Partitioning cache into three slices. One partition for the set of
common files, S0, and two other partitions, one for the remaining
files from each content provider, Sk. 92

4.3 Efficacy of cache partitioning when content providers serve distinct
files. 104

xix

4.4 Efficacy of cache partitioning when some content is served by both
content providers. Request rates for the common contents from
the two content providers are set to be (a) similar, and (b)
dissimilar. 105

4.5 Effect of the parameters on hit rates and partition sizes when
content providers serve distinct files. 106

4.6 Effect of the parameters on hit rates and partition sizes when some
content is served by both content providers. 107

4.7 α-fair resource allocation for content providers serving distinct
content. Uk(hk) = h1−α

k /(1− α). 108

4.8 α-fair resource allocation when some content is served by both
content providers. Uk(hk) = h1−α

k /(1− α). 109

4.9 Convergence of the online algorithm when content providers serve
distinct files. U1(h1) = log h1. 110

4.10 Convergence of the online algorithm when some content is served by
both content providers. U1(h1) = log h1. 111

5.1 An entry is created in PIT for the file at time t = 0. Content enters
the cache at time t = D, and PIT entry is deleted. (a) The
content will be evicted from cache at time tE = D + T0 if
ΓD > T0. (b) The TTL will be reset if ΓD ≤ T0, and the content
will continue to stay in the cache as long as Yn ≤ Tn. Here,
tE = τN+MD

+ TN denotes the time that the content is evicted
from cache. 119

5.2 Per file probability of (a) cache hit, hk, (b) PIT aggregation, ak, and
(c) request forwarding, fk. The curve with label ‘Model(τ∞)’
shows the probability values when τ =∞, i.e. ignoring the effect
of PIT timeout. 133

5.3 (a) Approximating PIT size distribution with a Gaussian. (b)
Average PIT size increases with PIT timeout. 134

xx

5.4 Convergence of PIT timeout and PIT size to their optimal values
with update rule (5.9) with request dropping probability set to
(a) δ = 10−3, and (b) δ = 10−6. 136

5.5 Convergence of PIT timeout to optimal value using update
rule (5.10). 137

5.6 Convergence of PIT timeout τ and cache characteristic time T to the
optimal values, producing the optimal PIT and cache sizes.
Optimal parameter values obtained by solving (5.11) are shown
through red lines. 138

1 An example of the constraints matrix A for a network with two
caches, two users and three files . 144

2 Cache hits and misses for requests for a given file with non-reset and
reset TTL caches. 153

xxi

CHAPTER 1

INTRODUCTION

The Internet has become a global information depository and content distribution

platform, where various types of information or content are stored in the “cloud”,

hosted by a large array of content providers, and delivered or “streamed” on demand.

The (nearly) “anytime, anywhere access” of online information or content – especially

multimedia content – has precipitated rapid growth in Internet data traffic in recent

years, both in wired and wireless (cellular) networks. The increase in data traffic

over past years is predicted to continue more aggressively, with global Internet traffic

in 2019 estimated to reach 64 times its volume in 2005 [1]. A primary contributor to

this rapid growth in data traffic comes from online video streaming services such as

Netflix, Hulu, YouTube and Amazon Video, just to name a few. It was reported [61]

that Netflix alone consumed nearly a third of the peak downstream traffic in North

America in 2012, and it is predicted [1] that nearly 90% of all data traffic will come

from video content distributors in the near future.

Massive data traffic generated by large-scale online information access – espe-

cially, “over-the-top” video delivery – imposes enormous burden on the Internet and

poses many challenging issues. Traditional methods such as increasing the amount

of spectrum or deploying more base stations are not sufficient to cope with this

1

predicted traffic increase [2, 31]. Caching is recognized, in current and future In-

ternet architecture proposals, as one of the most effective means to improve the

performance of web applications. By bringing content closer to users, caches greatly

reduce network bandwidth usage, server load, and perceived service delays [8].

1.1 Contributions

This thesis considers the problem of network caching by first studying the com-

plexity of caching and routing in heterogeneous cache-enabled networks. Second,

a utility-driven caching framework is introduced as a general framework for cache

policies enabling Content Distribution Networks (CDNs) to provide differentiated

services for different content. Third, the problem of cache management is consid-

ered for multiple content providers studying the question whether a cache should be

shared among multiple content providers for their content or should the cache be

partitioned. Finally, Pending Interest Table (PIT) is studied as an important data

structure in future Internet architecture designs. The contributions of this thesis can

be summarized as follows:

1.1.1 Complexity Analysis of Caching and Routing

We study the joint problem of caching and routing, considering inter-related

routing and caching decisions, with the goal of minimizing average content access

delay over all user requests. We consider a scenario in which users request content

that is permanently stored at a back-end server, and that can be accessed in one

of two ways − either directly from the back-end server over an uncached path, or

2

via one of the caches located within the network. We consider two variants of the

problem. In the first case, referred to as the congestion-insensitive case, we assume

delays are independent of traffic loads on all paths. In the second case, referred to

as the congestion-sensitive case, we assume delays to the back-end server depends

on the traffic load. Our goal is twofold. First, we seek an understanding of the

computational complexity of the joint caching and routing problem: Can the general

problem be solved optimally in polynomial time? If not, are there problem instances

that are tractable and what aspects make the general problem intractable? Second,

we seek efficient approximate solutions to the joint caching and routing problem that

perform well in practice.

1.1.2 Utility-Driven Caching

Traditional cache management policies such as Least Recently Used (LRU) treat

different contents in a strongly coupled manner that makes it difficult for (cache)

service providers to implement differentiated services, and for content publishers

to account for the valuation of their content delivered through content distribution

networks. We propose a utility-driven caching framework, where each content has an

associated utility and content is stored and managed in a cache so as to maximize the

aggregate utility for all content. Utilities can be chosen to trade off user satisfaction

and cost of storing the content in the cache. We draw on analytical results for time-to-

live (TTL) caches [26], to design caches with ties to utilities for individual (or classes

of) contents. Utility functions also have implicit notions of fairness that dictate

the time each content stays in cache. Our framework allows us to develop online

algorithms for cache management, for which we prove achieve optimal performance.

3

Our framework has implications for distributed pricing and control mechanisms and

hence is well-suited for designing cache market economic models.

1.1.3 Cache Sharing and Partitioning

Content providers (CPs) play a key role in procuring and delivering content in

future Information Centric Networks (ICNs). Given that it is part of the ICN data

plane substrate, storage or cache must therefore be multiplexed or shared among

multiple CPs, say, multiple (competing) video streaming service providers. This

poses a fundamental research question that is pertinent to all ICN designs: how to

share or allocate the cache resource within a single network forwarding element and

across various network forwarding elements among multiple content providers so as to

maximize the cache resource utilization or provide best utilities to content providers?

We show that if all CPs offer distinct content objects, partitioning the cache into

slices of appropriate sizes, one slice per CP, yields the best cache allocation strategy

as it maximizes overall cache utility. We argue that partitioning and sharing some

partitions achieves the optimal performance for most instances. Going beyond cache

utilization efficiency, we further consider a scenario where the utility of each CP is

expressed as a monotonically increasing, concave function of the aggregate hit rate

of the content objects in its offering, and develop online algorithms for solving the

multi-CP cache allocation problem that achieve the optimal performance.

1.1.4 PIT Modeling and Timeout Optimization

One of the core components of the Named Data Networking (NDN) architecture

is the Pending Interest Table (PIT), which performs collapsed forwarding by keeping

4

track of currently unsatisfied Interest packets. We analyze a cache with a Pending

Interest Table, to compute the cache hit probability, response time perceived by the

users, and the size of the Pending Interest Table. Unlike previous research that

assumes a file is instantaneously downloaded to the cache in case of a cache miss, we

assume a non-zero download delay modeled as a random variable.

As the rate of incoming Interest packets increases, the number of PIT entries can

significantly increase, demanding a large memory space and degrading PIT perfor-

mance. To prevent PIT size bloat and ensure efficient I/O operations at line speed,

PIT entries are purged after a timeout period. An efficient design of the PIT is

therefore an important factor in performance of NDN at wire speed, and an accurate

assessment of the PIT size is key to achieving this. This has motivated us to study

the problem of optimizing the PIT timeout.

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 investigates the

problem of optimal request routing and content caching in a heterogeneous network

supporting in-network content caching with the goal of minimizing average content

access delay. Chapter 3 proposes a utility-driven caching framework, where each

content has an associated utility and content is stored and managed in a cache so as

to maximize the aggregate utility for all content. Chapter 4 considers the problem

of allocating cache resources among multiple content providers, where the cache

can be partitioned into slices and each partition can be dedicated to a particular

content provider, or shared among a number of them. Chapter 5 analyzes the cache

5

hit probability, Interest aggregation probability and PIT size as functions of PIT

timeout, and develops online algorithms for PIT management. Finally, Chapter 6

concludes the thesis.

6

CHAPTER 2

ON THE COMPLEXITY OF OPTIMAL ROUTING AND
CONTENT CACHING IN HETEROGENEOUS

NETWORKS

2.1 Introduction

In-network content caching has received considerable attention in recent years as

a means to address the explosive growth in data access seen in today’s networks.

Its main premise is to store content at the network’s edge – close to the end users

– to reduce user content access delay and network bandwidth usage. The benefits

of in-network content caching have been demonstrated in the context of CDNs [34,

54, 64] as well as hybrid networks comprised of cellular and MANETs or femto-cell

networks [3, 57,63].

In this chapter, we study a joint problem of caching and routing, considering

the inter-related routing and caching decisions, with the goal of minimizing average

content access delay over all user requests. We consider a scenario in which users

request content that is permanently stored at a back-end server, and that can be

accessed in one of two ways − either directly from the back-end server over an

uncached path, or via one of the caches located within the network. These caches can

be located either at the network edge as in the case of a CDN, or can be in-network

7

caches in the case of a hybrid wireless network. In the latter setting, MANET-

like routing might be used to route content requests to in-network caches, while a

separate (and potentially costly, congested, and/or slower speed) cellular link might

be used to directly access the back-end server. If a request is routed to an in-network

cache that holds the content, the request is served immediately. Otherwise, the cache

must download the content from the back-end server before serving it to the user,

incurring an additional delay. Additionally, the cache must decide whether or not to

store the downloaded content.

Our goal in this chapter is twofold. First, we seek an understanding of the

computational complexity of the joint caching and routing problem: Can the general

problem be solved optimally in polynomial time? If not, are there problem instances

that are tractable and what aspects make the general problem intractable? Second,

we seek efficient approximate solutions to the joint caching and routing problem that

perform well in practice.

Our contributions can be summarized as follows:

• We provide a unified optimization formulation for the joint caching and rout-

ing problem for the congestion-insensitive and congestion-sensitive models and

prove that the problem is NP-complete in both cases.

• For the congestion-insensitive uncached path model, we show that the optimal

solution can be found in polynomial time if each content is requested by only

one user, or when the number of caches in the network is at most two. Moreover,

we identify the root cause of the problem complexity in general cases − cycles

with an odd number of users and caches in the bipartite graph representing

8

connections between users and caches. For the congestion-sensitive uncached

path model, however, we show that the problem remains NP-complete even if

there is only one cache in the network and each content is requested by only

one user.

• We develop a greedy caching and routing algorithm that achieves an average

delay within a (1 − 1/e) factor of the optimal solution and a second greedy

algorithm of lower complexity.

• We evaluate the performance of the proposed greedy algorithms together with

the optimal solution (via brute-force search) and a baseline solution based on

LRU through numerical evaluations and trace-driven simulations. Numerical

results show that the greedy algorithms perform close to optimal when com-

puting the optimal solution is feasible. Results from trace-driven simulations

show that the greedy algorithms yield significant performance improvement

over solutions based on traditional LRU caching policy.

2.2 Network Model

Consider a network with N users generating requests for a set of K unique unit

size files, F = {f1, f2, . . . , fK}. Throughout this chapter, we will use the terms con-

tent and file interchangeably. We assume that these files reside permanently at the

back-end server. As shown in Figure 2.1, there are M caches in the network that

can serve user requests.

9

Figure 2.1: Hybrid network with in-network caching

All files are available at the back-end server and users are directly connected to

this server via a cellular infrastructure. We refer to the cellular path between the

user and the back-end server as the uncached path. Each user can also access a

subset of the M in-network caches where the content might be cached. We refer to

a connection between a user and a cache as a cached path.

Let Cm denote the storage capacity of the m-th cache measured by the maximum

number of files it can store. If user i requests file j and it is present in the cache, then

the request is served immediately. We refer to this event as a cache hit. However,

if content j is not present in the cache, the cache then forwards the request to the

back-end server, downloads file j from the back-end server and forwards it to the

user. We refer to this event as a cache miss, since it becomes necessary to download

content from the back-end server in order to satisfy the request. Note that in case

of a cache miss, the cache may or may not store the downloaded content.

10

User i generates requests at rate λi for the files in F according to a Poisson

process. The aggregate request rate of all users is λ. We assume the independent

reference model (IRM) and denote by qij the probability that a request generated by

user i is for file j (referred to as the file popularity). The popularity of the same file

can vary from one user to another.

Let aim denote the existence of a connection between user i and cache m, with

aim = 1 if user i is connected to cache m, and aim = 0, otherwise. We consider two

models for the delay over the paths to the back-end server. The first is a congestion-

insensitive delay model where delays are independent of traffic loads on links to the

back-end server. In this case, the average delay experienced for a request by user i

sent over the uncached path is dbi . Also, for the user-cache connections, we denote

the average delays incurred by user i in the event of a cache hit or miss at cache

m by dhim and dmim, respectively. We assume that dhim < dbi < dmim if aim = 1. The

second model is a congestion-sensitive delay model where delays experienced over

the paths to the back-end server depend on the traffic load. In this case, we assume

that the requests sent over the uncached paths, and the requests missed from caches

experience constant initial delays dbi and dmim as well as load-dependent (queueing)

delays captured by convex functions db(·) and dc(·), respectively.

2.3 Problem Formulation

In this work, we consider a joint caching and routing problem with the goal

of minimizing average content access delay over all user requests for all files. The

solution to this problem requires addressing two closely-related questions 1) How

11

should contents be managed in the cache - which files should be kept in the caches,

and what cache replacement strategy should be used? and 2) How should users route

their requests between the cached and uncached paths?

For our routing policy, we introduce a decision variable pijm that denotes the

fraction of user i requests for content j sent to cache m. User i sends the remaining

1−
∑

m pijm fraction of her requests for content j to the back-end server through the

uncached path.

It is shown in [44] that static caching minimizes expected delay for a single cache

when user demands and routing are fixed. With static caching, a set of files is stored

in the cache, and the cache content does not change in the event of a cache hit or

miss. The argument in [44] was extended in [18] and [19] to a network of caches

to show that static caching achieves minimum expected delay under a fixed routing

policy. Hence, we introduce binary variables xjm ∈ {0, 1} to denote the content

placement in caches, where xjm = 1 indicates file j is stored in cache m and xjm = 0

indicates otherwise.

We denote by D(x,p) the expected delay obtained by a content placement strat-

egy x = [xjm], and a routing strategy p = [pijm]. We also use D∅ to denote the

expected delay when no content is cached, where D∅ is assumed to be finite. The

caching gain can then be defined as G(x,p) , D∅ −D(x,p). The goal of joint

caching and routing is to maximize G(x,p) which can equivalently be obtained by

solving the following Mixed-Integer Program (MIP):

12

minimize D(x,p) =
1

λ

[∑
i

∑
j

λiqij

(∑
m

pijmxjmd
h
im

+ (1−
∑
m

pijm)dbi +
∑
m

(1− xjm)pijmd
m
im

)

+ λb(p)db

(
λb(p)

)
+ λc(x,p)dc

(
λc(x,p)

)]
,

such that
∑
m

pijm ≤ 1 ∀i, j (2.1)

∑
j

xjm ≤ Cm ∀m

xjm ∈ {0, 1} ∀j,m

0 ≤ pijm ≤ aim ∀i, j,m.

In the formulation above,

λb(p) ,
∑
i

∑
j

λiqij(1−
∑
m

pijm),

and

λc(x,p) ,
∑
i

∑
j

λiqij
∑
m

(1− xjm)pijm,

denote the request load over the uncached paths, and the load of requests missed

from caches, respectively.

In the next two sections, we express the delay function D(x,p) for the cases of

i) congestion-insensitive and ii) congestion-sensitive uncached path delay models,

and discuss why the joint caching and routing problem is NP-complete.

13

2.4 Congestion-Insensitive Uncached Path

First, we consider the case where delays on the uncached path, dbi , do not depend

on the traffic load on the back-end server. Hence, throughout this section we assume

that db(·) = dc(·) = 0.

Without loss of generality, we assume that dhim < dbi < dmim whenever user i is

connected to cache m, i.e. aim = 1. The routing variables pijm for user i are easily

determined when the above assumption does not hold. Note that if dbi ≥ dmim, user i

will never use the uncached path. Also, if dbi ≤ dhim, user i will never use cache m.

It is easy to see that with the congestion-insensitive model, given a content place-

ment, the average minimum delay is obtained by routing requests for the cached

content to caches, and routing the remaining requests to the uncached path. Note

that under this routing policy no cache misses occur.

Note that D(x,p) is a linear function of the routing variables. Also note the

additional constraint pijm ≤ xjm · aim, which is due to the fact that only requests for

cached content are routed to caches. Since dhim < dbi < dmim, users have no incentive to

split the traffic for any content between the cached and uncached paths, and hence

there will be an optimal solution such that no routing variable has a fractional value,

i.e. pijm ∈ {0, 1}.

2.4.1 Hardness of General Case

The above formulation of the joint caching and routing problem is a generalization

of the Helper Decision Problem (HDP), stated below, proved to be NP-complete

in [31].

14

Problem 1. (Helper Decision Problem) Let’s denote the connectivity graph in Fig-

ure 2.1 by bipartite graph G = (U ,H, E) where U and H denote the set of users and

caches, respectively, and E denotes the set of edges between elements of U and H.

We ask the following question: given the graph G and a library of files F and a real

number Q > 0, does there exist any way of placing elements of F in the nodes of H,

such that the total delay observed by the users is greater than or equal to Q?

Our formulation is more general as we consider non-homogeneous delays for the

cached and uncached paths. Therefore, we have the following result.

Theorem 1. The optimal joint caching and routing problem with congestion-

insensitive uncached paths is NP-complete.

Proof. HDP reduces to the optimization problem in (2.1) by setting db(·) = dc(·) = 0,

dbi = 1, dhim = 0, and Cm = C, where C is the cache size at all caches in HDP. Hence,

joint caching and routing problem is NP-hard. Moreover, for any given routing and

caching, average delay can be computed in polynomial time. Therefore, the joint

caching and routing problem in case of congestion-insensitive uncached paths is NP-

complete.

Although the problem is NP-complete in general, we will show that the joint

caching and routing problem can be solved in polynomial time for several special

cases. We will also identify what makes the problem “hard” in general. We first

consider a restrictive setting where each user is interested in only one file and each

file is requested by only one user. Next, we consider a network with two caches (but

each user may be interested in an arbitrary number of files). We present polynomial

15

time solutions for both cases. Finally, we present an example that demonstrates

what we conjecture to be the source of the complexity of this problem.

2.4.2 Special Case: One File per User

Consider the network illustrated in Figure 2.1, but assume each user is interested

in only one file, i.e. qii = 1, and qij = 0 for i 6= j. In this case, the optimal solution

to the joint caching and routing problem can be found in polynomial time based on

a solution to the maximum weighted matching problem. A similar reduction of a

caching problem to the maximum weighted matching problem was also previously

presented in [71].

Note that in this case, the number of files equals the number of users, i.e. N = K.

To avoid triviality, we assume that the number of users is larger than the capacity

of each cache in the network, i.e. Cm < N,∀m.

Theorem 2. The solution to the joint caching and routing problem with congestion-

insensitive uncached paths in the case that each user is interested in one file can be

computed in polynomial time.

Proof. The assumption that each user is interested in only one file allows us to rewrite

the objective function in (2.1) as

D(x,p) =
1

λ

(N∑
i=1

λid
b
i −
∑
i

∑
m

λipiim(dbi − dhim)
)
.

Since
∑N

i=1 λid
b
i is a constant independent of the decision variables, minimizing the

above objective function is equivalent to maximizing
∑

i

∑
m λipiim(dbi − dhim). Note

16

that λi(d
b
i − dhim) can be interpreted as the gain obtained by having file i in cache m.

This problem can then be naturally seen as matching files to caches with the goal of

maximizing the sum of individual gains. In what follows, we map this problem to

the maximum weighted matching problem.

For each cache of size Cm, we introduce Cm nodes {v1
m, v

2
m, . . . , v

Cm
m } representing

unit size micro-caches that form cache m. Let V = {v1
1, v

2
1, . . . , v

C1
1 , . . . , v1

M , . . . , v
CM
M }

denote the set of all such nodes, and let U = {u1, u2, . . . , uN} denote the set of all

files. We define the bipartite graph G(U, V,E) with λi(d
b
i − dhim) as the weight of the

edges connecting node ui to nodes vsm,∀s ∈ {1, 2, . . . , Cm}. Figure 2.2 demonstrates

a bipartite graph with user/file nodes u and the micro-cache nodes v with the edge

weights shown for some of the edges. Note that the bipartite graph consists of

|U |+ |V | = N +
∑

mCm vertices and |E| = O(N
∑

mCm) edges.

The optimal solution to the joint content placement and routing problem cor-

responds to the maximum weighted matching for graph G. Edges selected in the

maximum matching determine what content should be placed in which cache. Users

then route to caches for cached content, and to the uncached path for the remaining

files.

The maximum weighted matching problem for bipartite graphs can be solved in

O(|V |2|E|) using the Hungarian algorithm [78]. In our context, the complexity is

O(M3N4). Note that
∑

mCm = O(MN) as we assume Cm < N, ∀m. Therefore, we

can solve the joint caching and routing problem in polynomial time when users are

interested in one file only.

17

Figure 2.2: Modeling content placement as a maximum weighted matching problem. Each user is
interested in only one file and each file is requested by only one user. Problem can be solved by
matching users to cache spaces.

2.4.3 Special Case: Network with Two Caches

Next, we show that the optimal solution for the joint caching and routing problem

can be found in polynomial time when there are only two caches in the network.

Specifically, we prove that the solution to the integer program (2.1) can be found in

polynomial time when there are two caches in the network.

By relaxing the integer constraints on content placement variables, xjm, and

allowing them to take real values, i.e. 0 ≤ xjm ≤ 1, we obtain a linear problem (LP)

that is generally referred to as the “relaxed” problem. Since the objective function

in (2.1) is convex, the solution to the relaxed problem can be found in polynomial

time for all instances of the problem. Note that the set of constraints in the relaxed

version of (2.1), namely, i)
∑

m pijm ≤ 1, ii)
∑

j xjm ≤ Cm, iii) −xjm ≤ 0, xjm ≤ 1,

and iv) −pijm ≤ 0, pijm − xjm · aim ≤ 0 can be written in the linear form Az ≤ b

18

where the entries of A and b are all integers, and z consists of the xjm and pijm

entries. We show that solving the relaxed program for a network with two caches

produces integral solutions.

Before delving into the proof we introduce some definitions and results from [32]:

Definition 1. A square integer matrix is called unimodular if it has determinant

+1 or −1.

Definition 2. An m×n integral matrix A is totally unimodular if the determinant

of every square submatrix is 0, 1, or −1.

Proposition 1. If for a linear program {max cTz : Az ≤ b}, A is totally unimodular

and b is integral, then all vertex solutions of the linear program are integral.

From Proposition 1, then, it suffices to show that the matrix A is totally uni-

modular for a network with two caches to prove that the optimization problem can

be solved in polynomial time. To prove that the matrix A is totally unimodular we

use the following result from [62]:

Proposition 2. A matrix is totally unimodular if and only if for every subset R of

rows, there is an assignment s : R → ±1 of signs to rows so that the signed sum∑
r∈R s(r)r (which is a row vector of the same width as the matrix) has all its entries

in {0,±1}.

Theorem 3. For a network with two caches, the LP relaxation of (2.1) with

db(·) = dc(·) = 0 produces an integral solution in polynomial time.

Proof. In Appendix A, we give a constructive proof showing that for any subset R

of rows of A we can find an assignment s that satisfies Proposition 2.

19

Figure 2.3: A network with three users (solid circles) and three caches (squares). Each user is in
the communication range of two of the caches.

2.4.4 Complexity Discussion

Consider a network with three users and three caches as depicted in Figure 2.3.

With each user connected to two of the caches, the user-cache connections can be

seen to form a cycle as demonstrated in Figure 2.4a. Assume all paths from users to

caches have equal hit and miss delays. Also, assume that each cache has the capacity

of storing one file, and that all three users are interested in two files, noted here as

green and red.

For the above network, the optimal content placement is to replicate one of the

files in two of the caches, and have one copy of the other file in the third cache, as

shown in Figure 2.4b. The solution to the relaxed optimization problem however

20

(a) (b) (c) (d)

Figure 2.4: (a) A network of three users (circles) connected to three caches (squares) forming a cycle.
Users are equally interested in two files, red and green. (b) Optimal content placement according to
binary placement decisions, i.e. xjm ∈ {0, 1}. (c) Optimal content placement assuming fractions of
files can be stored in caches, i.e. 0 ≤ xjm ≤ 1. (d) Optimal content placement with the possibility
of content coding. A copy of the two files is stored in two of the caches, and the third cache keeps
a coded copy, e.g. XOR of the two files.

stores half of each file in each cache, i.e. x1m = x2m = 0.5, which achieves strictly

smaller average delay. This solution is illustrated in Figure 2.4c1.

The above discussion shows how the solution to the MILP optimization problem

differs from its relaxed counterpart for the network shown in Figure 2.3. Such mis-

match between the two solutions is also observed for larger networks that contain

odd number of users and odd number of caches connected in a way that form a cycle.

We conjecture that these cycles are the source of complexity in the problem of joint

caching and routing, and for networks that do not have any such cycles the solu-

1Note that we do not consider the solution of the relaxed problem as a legitimate content
placement. Although it looks like all users can access the two files via the caches in Figure 2.4c,
when splitting the files in halves, two of the caches will store the same half copy of a file, and the
user connected to those caches will only get half of that file from the caches and still needs to use
the uncached path for the other half. However, we acknowledge that with the possibility of coding,
content placement can be done in such a way that users can get both files from caches, as is shown
in Figure 2.4d. We are not considering coded content placement in this work.

21

Figure 2.5: Examples of network topologies conforming to conjecture criteria.

tion to the optimization problem (2.1) matches that of the relaxed problem. More

specifically we have:

Conjecture 1. The optimal solution to the problem of joint caching and routing can

be found in polynomial time if there are no cycles of length 4k + 2 for any k ≥ 1 in

the bipartite graph corresponding to the user-cache connections.

We have performed numerical simulations with thousands of randomly generated

sample problems similar to the ones shown in Figure 2.5, with networks of four and

five caches and up to 100 users in the network. We have then solved the LP version

of MILP (2.1) to compute the optimal caching and routing. For all these sample

problems, we have observed that the optimal solutions are integral. Although not a

proof, these results support our conjecture.

2.5 Congestion-Sensitive Uncached Path

Next, we consider the case where delays for requests over the uncached paths and

requests missed from caches depend on the load placed by such requests. Namely, we

22

compute the average delay over the uncached paths and the paths from the caches to

the back-end server using convex functions db(·) and dc(·), respectively. The reason

we treat requests over the uncached path and missed requests from caches separately

is that these paths could use different infrastructures to reach the back-end server.

For example, requests from mobile users over the uncached path could use the LTE

infrastructure, while missed requests from caches deployed on WiFi access points

could use a wireline broadband connection.

2.5.1 Hardness of General Case

Note that we can consider the congestion-insensitive delay model as a special

case of the congestion-sensitive model where db(·) = dc(·) = 0. Thus, this problem

is NP-complete in general. In the remainder of this section, however, we will prove

that the problem of joint caching and routing in the case of a congestion-sensitive

delay model remains NP-complete even if there is only one cache in the network and

each content is of interest to no more than one user.

2.5.2 Hardness of Single-Cache Case

Here, we consider a special case of the problem where delays for requests sent over

the uncached paths are modeled as an M/M/1 queue, i.e. db(λb) = 1/(µb−λb), where

µb denotes the service rate. Also, requests generated by cache misses are assumed to

observe a constant delay dci , i.e. dc(λc) = 0. Modifying the delay function D(x,p)

in (2.1) for the case of one cache, i.e. M = 1, and assuming each user is interested

in only one file, i.e. qii = 1,∀i, and qij = 0 for i 6= j, we can rewrite the optimization

problem as

23

minimize
1

λ

[
N∑
i=1

λixipid
h
i +

N∑
i=1

λi(1− xi)pidci

+
N∑
i=1

λi(1− pi)dbi +

∑N
i=1 λi(1− pi)

µb −
∑N

i=1 λi(1− pi)

]

such that
N∑
i=1

xi ≤ C (2.2)

0 ≤ pi ≤ ai

xi ∈ {0, 1},

where pi = pii1 denotes the fraction of user i requests routed to the cache. Also, ai

denotes whether user i is connected to the cache.

To show that the above optimization problem is NP-complete, we consider the

corresponding decision problem, Congestion Sensitive Delay Decision Problem (CS-

DDP).

Problem 2. (Congestion Sensitive Delay Decision Problem) Let Λ = [λ1, λ2, . . . , λN]

denote user request rates, and let dh = [dhi], dc = [dci] and db = [dbi] denote the hit

delay, miss delay and initial access delay of the uncached path, respectively. Also, let

µ be the service rate of the back-end server, and C be the cache capacity.

We ask the following question: given the parameters (µb,Λ,d
h,dc,db, C) and a real

number d, is there any assignment of x = [xi] and p = [pi] such that D(x,p) ≤ d.

It is clear that for any given content placement x and routing policy p the an-

swer to CSDDP can be verified in polynomial time, and hence CSDDP is in class

NP. To prove that CSDDP is NP-hard, we use the fact that the Equal Cardinality

Partition (ECP) problem define below is NP-hard.

24

Problem 3. (Equal Cardinality Partition) Given a set A of n numbers, can A be

partitioned into two disjoint subsets A1 and A2 such that A = A1 ∪ A2, the sum of

the numbers in A1 equals the sum of the numbers in A2 and that |A1| = |A2|?

Lemma 1. ECP is NP-hard.

Proof. See Appendix B.

By reducing ECP to CSDDP, we have the following result:

Theorem 4. CSDDP is NP-complete.

Proof. See Appendix C for a detailed proof.

Although this problem is NP-complete even in a very restrictive case with one

cache and each user requesting one file, in the next section we show that a greedy

algorithm can find approximate solutions with guaranteed performance.

Note that problem formulation (2.1) assumes a single queue shared by all caches to

the back-end server. An alternative choice is to have distinct communication channels

from each cache to the back-end server. In that case, λcdc(λc) in (2.1) should be

replaced with a sum of M delay terms, where M is the number of caches. The model

with distinct queues also results in an NP-complete problem, since problem (2.1) is

NP-complete when there is only one cache in the network.

2.6 Approximation Algorithm

In this section, we show that the problem of joint caching and routing (for both

congestion-insensitive and congestion-sensitive delay models) can be formulated as

25

the maximization of a monotone submodular function subject to matroid constraints.

This enables us to devise algorithms with provable approximation guarantees.

We first review the definition and properties of matroids [53], and monotone [5]

and submodular [62] functions, and then show our problem can be formulated as the

maximization of a monotone submodular function subject to matroid constraints.

Definition 3. A matroid M is a pair M = (S, I), where S is a finite set and I ⊆ 2S

is a family of subsets of S with the following properties:

1. Ø ∈ I,

2. I is downward closed, i.e. if Y ∈ I and X ⊆ Y , then X ∈ I,

3. If X, Y ∈ I, and |X| < |Y |, then ∃y ∈ Y \X such that X ∪ {y} ∈ I.

Definition 4. Let S be a finite set. A set function f : 2S → R is submodular if for

every X, Y ⊆ S with X ⊆ Y and every x ∈ S\Y we have

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y).

Definition 5. A set function f is monotone increasing if X ⊆ Y implies that

f(X) ≤ f(Y).

Let Xm denote the set of files stored in cache m, and define

X = X1 tX2 t . . . tXM to be the set of files stored in the M caches, where t

denotes disjoint union. X is the set equivalent of the binary content placement x

defined in (2.1). Note that |Xm| ≤ Cm

26

Let Sm = {s1m, s2m, . . . , sKm} denote the set of all possible files that could be

placed in cache m where sjm denotes the storage of file j in cache m. The set

element sjm corresponds to the binary variable xjm defined in the optimization prob-

lem (2.1) such that xjm = 1 if and only if the element sjm ∈ X. Define the super set

S = S1 ∪ S2 ∪ . . . ∪ SM as the set of all possible content placements in the M caches.

We have the following lemma.

Lemma 2. The constraints in (2.1) form a matroid on S.

Proof. For a given content placement x, the optimal routing policy can be computed

in polynomial time since Dx(p) = D(p; x) is a convex function. With that in mind,

we can write average delay as a function of the content placement X ⊆ S. Thus, the

constraints on the capacities of the caches can be expressed as X ⊆ I where

I = {X ⊆ S : |X ∩ Sm| ≤ Cm,∀m = 1, . . . ,M}.

Note that (S, I) defines a matroid.

Let dij(x) denote the minimum average delay for user i accessing file j through

a cached path, given content placement x, excluding queueing delay for fetching

content from the back-end server in the case of a cache miss. We have

dij(x) = min
m

dijm,

27

where dijm denotes the average delay of accessing content j from cache m, excluding

the queueing delay, defined as (xjm indicates that file j is in cache m)

dijm = dhimxjm + dmim(1− xjm).

Similarly, we define

yij = max
m

aimxjm,

denoting whether user i can access content j from a neighboring cache.

Given the content placement in the caches, let pij ,
∑

m pijm denote the fraction

of the traffic for which user i uses the cached paths to access content j. Also, let

λc(p) =
∑
i,j

λiqij(1− yij)pij,

and

λb(p) =
∑
i,j

λiqi,j(1− pij),

denote the aggregate request rate for missed requests, and requests sent over the

uncached paths, respectively. We rewrite the delay functions for the congestion-

insensitive and the congestion-sensitive models as

D(p; x) =
1

λ

(∑
i,j

λiqijpijdij(x) +
∑
i,j

λiqij(1− pij)dbi

)
,

and

D(p; x) =
1

λ

[∑
i,j

λiqij

(
pijdij(x) + (1− pij)dbi

)
+ λb(p)db

(
λb(p)

)
+ λc(p)dc

(
λc(p)

)]
,

28

respectively. The optimal routing policy for a given content placement x, then, is

one that minimizes D(p; x), and can be found by solving the following optimization

problem:

minimize D(p; x)

such that 0 ≤ pij ≤ 1 ∀i, j.

Note that D(p; x) is convex and the above optimization problem can be solved in

polynomial time.

Let xX be the equivalent binary representation of the content placement set X.

It is clear that adding items to the set X can only decrease the value of D(p; xX).

Moreover, one might expect that adding an item to a set containing a smaller number

of files might decrease the delay by a larger amount compared to adding the item to

a set containing a larger number of files. We formally prove this statement through

the following lemma for both congestion-insensitive and congestion-sensitive delay

models bearing in mind that DØ denotes the expected delay with no files cached:

Lemma 3. Let P denote all routing policies. For X ⊆ S, the function

G(X) = DØ −minp∈P D(p; xX) is a monotone increasing and submodular function.

Proof. See Appendix D for a detailed proof.

A direct consequence of Lemma 3 is that the objective of the joint caching and

routing problem is to maximize a monotone submodular function. Therefore,

Theorem 5. The approximate solution obtained by the greedy algorithm in Algo-

rithm 1 is within a (1− 1/e) factor of the optimal solution G(X∗).

29

Proof. It was shown in [9] that the greedy algorithm for maximizing a monotone

submodular set function with matriod constraints yields a (1− 1/e)-approximation.

Algorithm 1 starts with empty caches and at each step greedily adds a file to the

cache that maximizes function G. This process continues until all caches are filled

to capacity. Optimal routing is then determined based on the content placement.

Algorithm 1 GreedyWG: A greedy approximation with performance guarantees.

1: S ← {sjm : 1 ≤ j ≤ K, 1 ≤ m ≤M}
2: Xm ← Ø, ∀m
3: X ← Ø
4: for c← 1 to

∑
mCm do

5: sj∗m∗ ← arg maxsjm∈S G(X ∪ {sjm})
6: Xm∗ ← Xm∗ ∪ {sj∗m∗}
7: X ← X ∪ {sj∗m∗}
8: if |Xm∗| = Cm∗ then
9: S ← S\sjm∗ ,∀j

10: else
11: S ← S\sj∗m∗
12: Content placement is done according to X.
13: Determine the routing as p∗ ← arg minpD(p; xX).

Although the greedy algorithm in Algorithm 1 is guaranteed to find solu-

tions within a (1 − 1/e) factor of the optimal solution, its complexity is high,

O(M2N2K2 log (NK)). We devise a second, computationally more efficient, greedy

algorithm in Algorithm 2 with time complexity O(M3NK). We do not have accuracy

guarantees for Algorithm 2, but in the next section, we will show that it performs

very well in practice.

30

Algorithm 2 is based on the following ideas. It starts with all caches empty and

initializes cache access delays for users as the miss delays to their closest caches.

Then at each step a file is greedily selected to be placed in a cache that maximizes

the change in the user access delays,
∑

i λiqij(dij −min{dij, dhim}). This process

continues until the caches are filled. Finally, similar to Algorithm 1, a routing policy

that minimizes D(p; x) is determined.

Algorithm 2 Greedy: A greedy approximation without known performance guar-
antees.

1: Xm ← Ø, ∀m
2: X ← Ø
3: dij ← minm{dmim},∀i, j
4: for c← 1 to

∑
mCm do

5: Gjm ← [0]K×M
6: for m← 1 to M do
7: if |Xm| < Cm then
8: for j ← 1 to K do
9: Gjm ←

∑
i λiqij(dij −min{dij, dhim})

10: [j∗,m∗]← arg maxj,mGjm

11: Xm∗ ← Xm∗ ∪ {sj∗m∗}
12: X ← X ∪ {sj∗m∗}
13: dij∗ ← min{dij∗ , dhim∗},∀i
14: Content placement is done according to X.
15: Determine the routing as p∗ ← arg minpD(p; xX)

2.7 Performance Evaluation

In this section, we evaluate the performance of the approximate algorithms

through discrete-event simulations. Our goal here is to evaluate 1) how well the

solutions for the greedy algorithms compare to the optimal solutions (when com-

31

puting the optimal solution is feasible), and 2) how well solutions from the greedy

algorithms compare to those produced by a baseline.

Here, we consider a congestion-sensitive model where the requests over the un-

cached paths experience a queuing delay modeled as an M/M/1 queue2, while re-

quests generated by cache misses experience a constant delay. For our baseline, we

compare the approximate algorithms to the following algorithm we refer to as p-LRU.

2.7.1 p-LRU

The cache replacement policy at all caches is Least Recently Used (LRU). For

the routing policy, we assume that users not connected to any caches forward all

their requests to the back-end servers. The remaining users forwards each request

to a cache with probability p and with probability 1− p forward the request to the

uncached path. If user i decides to use a cached path, she chooses uniformly at

random one of the ni caches she is connected to. The value of p is the same for all

users that have access to a cache, and is chosen to minimize the average delay.

First, assuming users equally split their traffic across the caches that they can

access, the aggregate popularity for individual files is computed at each cache. Let

rmj denote the normalized aggregate popularity of file j at cache m. We have

rmj =
1

Λ

∑
i∈Im

λiqij/ni,

2Note that our analysis is valid for a G/G/1 queue, and the M/M/1 queue is only assumed for
evaluation purposes since there is no closed form formula for a G/G/1 queue.

32

where Im denotes the set of users connected to cache m, and Λ is the normalizing

constant across all files. Note that rmj is independent of the parameter p. With the

aggregate popularities at hand, hit probabilities are computed at each cache using

the characteristic time approximation [12]. Let P(xjm = 1) denote the probability

that file j resides in cache m. From [12] we have

P(xjm = 1) = 1− exp (−rmj Tm),

where Tm is the characteristic time of cache m is the unique solution to the equation

Cm =
∑
j

1− exp (−rmj Tm).

Given the cache hit probabilities, the average delay in accessing content j from caches

for user i equals

dcij =
1

ni

∑
m∈Mi

[
P(xjm = 1)dhim + (1− P(xjm = 1))dmim

]
,

whereMi denotes the set of caches that user i is connected to. Note that |Mi| = ni.

Let I denote the set of users that are connected to at least one cache, and let λI

denote the aggregate request rate of these users. The average delay to access content

from caches equals

Dc =
1

λI

∑
i∈I

∑
j

λiqijd
c
ij.

33

Remember that some users may not be connected to any caches. Considering the

traffic from all users, we can write the overall average delay as

DLRU =
1

λ

[
pλIDc + (1− p)

∑
i∈I

λid
b
i +
∑
i 6∈I

λid
b
i +

µ

µ− (1− p)
∑

i∈I λi −
∑

i 6∈I λi
− 1

]
.

By differentiating DLRU with respect to p, the optimal value of p is found to be

p∗ = max{0,min{1,

(√
µ
∑

i∈I λi

λIDc −
∑

i∈I λid
b
i

− µ+ λ

)
/λI}}.

2.7.2 Network Setup

We consider a network with users uniformly distributed in a 2-D square. We

consider two architectures. First, we assume there is only one large cache at the

center of the network as in Figure 2.6a. Second, we consider a network with five

small caches with equal storage capacities as in Figure 2.6b. Figure 2.6 also shows

the communication range of the caches in each case. In the single-cache network, the

cache has a larger communication range and five times the capacity of each of the

caches in the multi-cache network.

Users that are not in communication range of any caches can only use the un-

cached path to the back-end server. The hit delay for each user is linearly propor-

tional to the distance from the cache and has the maximum value3 of 12.5 time units

and 5.5 time units for the single and multi-cache systems, respectively. For a cache

3Here, delay aggregates all request propagation and download delays as well as the processing
and queuing delays. We use normalized delay values instead of using any specific time unit.

34

miss, an additional delay of 25 time units is added to the hit delay. The initial access

delay of the uncached path is set to five time units for each user, and the service

rate is proportional to the aggregate request rate, where the scaling factor will be

specified later.

(a) (b)

Figure 2.6: A network with (a) one cache, and (b) five caches.

2.7.3 Numerical Evaluation

2.7.3.1 GreedyWG vs. Optimal

First, we compare the solution of GreedyWG the approximate algorithm in Al-

gorithm 1 to the optimal solution. Due to the exponential complexity of finding the

optimal solution, we are only able to compute the optimal solution for small prob-

lem instances. Here, we consider a network with five users and a single cache. User

request rates are arbitrarily set to satisfy
∑

i λi = 5. We assume users are interested

in 15 files, and that the aggregate user request popularities follow a Zipf distribution

with skewness parameter 0.6. The service rate of the back-end server is µ = 1.

Figure 2.7 shows the average delay and the 95% confidence interval over 100 runs

of each algorithm. It is clear that GreedyWG is very close to optimal. In fact, we

35

observe that GreedyWG differs from the optimal solution less than 20% of the time,

and the relative difference is never more than 1%.

1 5 10 15 20
0

5

10

15

20

25

Cache budget

A
v
er

ag
e

d
el

ay

p−LRU

GreedyWG

Optimal

Figure 2.7: Evaluation of GreedyWG against Optimal and p-LRU.

2.7.3.2 GreedyWG vs. Greedy

Next, we compare the solutions of GreedyWG against those of Greedy, the ap-

proximation algorithm, Algorithm 2, with lower computational complexity but no

performance guarantees. We consider a network with five caches and 100 users uni-

formly distributed in a 10× 10 field.

Figure 2.8 shows the average delay and the 95% confidence interval for different

values of available cache budget. Greedy (red curve) is barely distinguishable from

GreedyWG (black curve), meaning that Greedy performs very close to GreedyWG.

We also evaluate these algorithms over different values of the service rate at the

back-end server. Figure 2.9 shows the average delay for µ between 2 to 7, with the

aggregate traffic rate set to λ = 5. Similar to Figure 2.8, Greedy performs very close

to GreedyWG, and is always within 1% of GreedyWG.

36

5 10 25 50 100 250
4

6

8

10

12

14

16

18

20

Cache budget

A
v
er

ag
e

d
el

ay

p−LRU

Greedy

GreedyWG

Figure 2.8: Evaluation of the two greedy approximations over different values of the cache budget
split equally between five caches. Aggregate user request rate is λ = 5, and service rate of the
back-end server equals 2.5.

2.7.4 Trace-driven Simulation

Here, we present trace-driven evaluation results where we use traces for web

accesses collected from a gateway router at IBM research lab [82]. The trace consists

of approximately 9 million requests generated for more around 3.3 million distinct

files over a period of five hours. We only consider Greedy, the greedy algorithm

presented in Algorithm 2, since it performs nearly as well as Algorithm 1, and has

lower complexity.

The access delay to each cache equals one-tenth of the distance from the cache

in case of a cache hit. For a cache miss, an additional delay of 25ms is added to the

hit delay. The initial access delay of the uncached path is set to 5ms for each user,

and the service rate is proportional to the aggregate request rate, where the scaling

factor will be specified later.

To evaluate the Greedy algorithm using the trace data, we first divide the trace

into smaller segments of approximately 120,000 requests. Each segment includes

37

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4

6

8

10

12

14

16

Ratio of serivce rate to traffic load (µ/λ)

A
v

er
ag

e
d
el

ay

p−LRU

Greedy

GreedyWG

Figure 2.9: Evaluation of the greedy algorithms for different values of the service rate at the back-
end server. Aggregate user request rate is λ = 5, and the service rate varies from 2 to 10. Cache
budget is set to 125.

requests for approximately 40,000 distinct files, generated by approximately 2500

users. To simulate requests from the ith segment, we first compute the file popular-

ities using the (i− 1)st segment, and compute the optimal value of p for the p-LRU

algorithm.

Figure 2.10 compares the average delays for different cache budgets for the p-LRU

and the Greedy algorithms for the single-cache (S) and multi-cache (M) networks.

Reductions in average delay of up to 50% are observed for both single-cache and

multi-cache networks when using Greedy over p-LRU. While p-LRU yields similar

performance in both single-cache and multi-cache architectures, Greedy shows the

advantage of one architecture over the other depending on the cache budget. When

the cache budget is small, it is better to have a single cache with larger cache size

and coverage so that more users can access popular files from the cache; when the

38

10
0

10
1

10
2

10
3

10
4

10
5

5

6

7

8

9

10

11

12

13

Cache budget

A
v
er

ag
e

d
el

ay

p−LRU (S)

p−LRU (M)

Greedy (S)

Greedy (M)

Figure 2.10: Evaluation of the Greedy and p-LRU for the single-cache (S) and multi-cache (M)
network setups for different values of the available cache budget. The service rate is set to be 0.8
times the aggregate traffic rate.

cache budget is large, it is better to have multiple caches, each with smaller size and

coverage, so that users can access files from nearby caches with smaller hit delays.

We also evaluate the algorithms for different values of the service rate of the

uncached path assuming the cache budget is fixed at 10, 000. Figure 2.11 shows the

average delay when the ratio of service rate to the total request rate changes from 0.6

to 1.2. Similar to Figure 2.10, the Greedy algorithm significantly reduces the average

content access delay. Again, the cache architecture makes little difference for p-LRU

but significant affect to the performance of the Greedy algorithm. Moreover, the

difference decreases as the service rate on the uncached path increases, as more

traffic is offloaded to the uncached path.

2.8 Related Work

Benefits of content caching have been theoretically analyzed [3,30,60,65,66]. [3,30]

demonstrate that the asymptotic throughput capacity of a network is significantly

39

0.6 0.7 0.8 0.9 1 1.1 1.2
4

6

8

10

12

14

16

Ratio of serivce rate to traffic load (µ/λ)

A
v

er
ag

e
d
el

ay

p−LRU (S)

p−LRU (M)

Greedy (S)

Greedy (M)

Figure 2.11: Evaluation of the Greedy and p-LRU algorithms for different values of the service rate
to aggregate traffic ratio for the single-cache (S) and multi-cache (M) network setups.

increased by adding caching capabilities to the nodes. In this chapter, we have

considered the joint routing and cache-content management problems. Numerous

past research efforts have considered these problems separately. The problem of

content placement in caches, has received significant attention in the Internet, in

hybrid networks such as those considered in this chapter, and in sensor networks [4,

8, 57, 63, 72]. Baev et al. [4] prove that the problem of content placement with the

objective of minimizing the access delay is NP-complete, and present approximate

algorithms. More recently, Giovanidis et al. [29] introduced multi-LRU, a family of

decentralized caching policies, that extends the classical LRU policy to cases where

objects can be retrieved from more than one cache. The separate problem of efficient

routing in cache networks has also been explored in the literature [11, 58]. Cache-

aware routing schemes that calculate paths with minimum transportation costs based

on given caching policy and request demand have been proposed in [65].

40

The joint caching and routing problem, with the objective of minimizing content

access delay, has recently been studied in [57, 63], where the authors consider a

hybrid network consisting of multiple femtocell caches and a cellular infrastructure.

Both papers assume that users greedily choose the minimum delay path to access

content, i.e. requests for cached content are routed to caches (where content is know

to reside), whereas remaining requests are routed to the (uncached) cellular network.

They assume that the delays are constant and independent of the request rate.

Our work differs from much of the previous research discussed above by consid-

ering a joint caching and routing problem, where we determine the optimal routes

users should take for accessing content as well as the optimal caching policy. Our

research differs from [57,63] in that we consider heterogeneous delays between users

and caches, consider a congestion-insensitive delay model for the uncached path

as well as a congestion-sensitive model, investigate the problem’s time complex-

ity, and propose bounded approximate solutions for both congestion-insensitive and

congestion-sensitive scenarios. We also determine scenarios for which the optimal

solution can be found in polynomial time for the congestion-insensitive delay model,

and ascertain the root cause of the complexity of the general problem.

Algorithms for joint caching and routing schemes were previously proposed in [37]

and [15] based on the primal-dual method. These algorithms are based on the La-

grangian relaxation method and rely on iterative algorithms to reach a solution with

certain optimality criteria. As such, there is no efficiency guarantee on the results

nor the running time of these algorithms. In contrast, our proposed approximation

41

algorithms require fixed running time, and are guaranteed to be withing a factor

1− 1/e of the optimal solution.

2.9 Conclusion

In this chapter, we considered the problem of joint content placement and routing

in heterogeneous networks that support in-network caching but also provide a sepa-

rate (uncached) path to a back-end content server; we considered cases in which paths

to the back-end server were modeled as congestion-insensitive, constant-delay paths,

and congestion-sensitive paths modeled by a convex delay rate function. We pro-

vided fundamental complexity results showing that the problem of joint caching and

routing is NP-complete in both cases, developed a greedy algorithm with guaranteed

performance of (1−1/e) of the optimal solution as well as a lower complexity heuristic

that was empirically found to provide average delay performance that was within 1%

of optimal (for small instances of the problem) and that significantly reduce the av-

erage content access delay over the case of optimized traditional LRU caching. Our

investigation of special-case scenarios − the congestion-insensitive multiple-cache

single-file-of-interest case (where we demonstrated an optimal polynomial time solu-

tion) and the congestion-sensitive single-cache single-file-of-interest case (which we

demonstrated remained NP-complete) − helped illuminate what makes the problem

“hard” in general. Our future work is aimed at developing distributed algorithms

for content placement and routing, and on developing solutions for the case of time-

varying content popularity.

42

CHAPTER 3

A UTILITY OPTIMIZATION APPROACH TO
NETWORK CACHE DESIGN

3.1 Introduction

In a caching system, admission and eviction policies determine which contents

are added and removed from a cache when a miss occurs. Usually, these policies

are devised so as to mitigate staleness and increase hit probability. Nonetheless, the

utility of having a high hit probability can vary across contents. This occurs, for

instance, when service level agreements must be met, or if certain contents are more

difficult to obtain than others. Traditional cache management policies such as LRU

treat different contents in a strongly coupled manner that makes it difficult for (cache)

service providers to implement differentiated services, and for content publishers to

account for the valuation of their content delivered through content distribution

networks. In this chapter, we propose a utility-driven caching framework, where

each content has an associated utility and content is stored and managed in a cache

so as to maximize the aggregate utility for all content. Utilities can be chosen to

trade off user satisfaction and cost of storing the content in the cache. We draw on

analytical results for time-to-live (TTL) caches [26], to design caches with ties to

utilities for individual (or classes of) contents. Utility functions also have implicit

43

notions of fairness that dictate the time each content stays in cache. Our framework

can be used to develop online algorithms for cache management. Our framework has

implications for distributed pricing and control mechanisms and hence is well-suited

for designing cache market economic models.

Our main contribution in this chapter is the formulation of the utility-based

optimization framework for maximizing aggregate content publisher utility subject to

buffer capacity constraints at the service provider. We also develop online algorithms

for managing cache content, and perform simulations to show their efficiency using

different utility functions with different notions of fairness.

3.2 Model

Consider a cache of size B that serves a set of N files. We assume that requests

for file i are described by a Poisson process with rate λi. Furthermore, file i has size

si. Let hi denote the hit probability for content i. Associated with each content,

i = 1, . . . , N , is a utility function Ui : [0, 1] → R that represents the “satisfaction”

perceived by observing hit probability hi. Ui(·) is assumed to be increasing, continu-

ously differentiable, and strictly concave. We further assume that U ′i(0) =∞. This

ensures that hi > 0,∀i. Note that a function with these properties is invertible. We

will treat utility functions that do not satisfy these constraints as special cases.

Our analysis in this chapter is based on Time-To-Live (TTL) caches explained in

Appendix E. The hit probability of file i for these two classes of non-reset and reset

TTL caches can be expressed as

44

hi = 1− 1

1 + λiti
, (3.1)

and

hi = 1− e−λiti , (3.2)

respectively, where requests for file i arrive at the cache according to a Poisson process

with rate λi.

3.3 Cache Utility Maximization

In this section, we formulate cache management as a utility maximization prob-

lem. We introduce two formulations, one where the buffer size introduces a hard

constraint and a second where it introduces a soft constraint.

3.3.1 Hard Constraint Formulation

We are interested in designing a cache management policy that optimizes the

sum of utilities over all files, more precisely,

maximize
hi

N∑
i=1

Ui(hi) (3.3)

such that
N∑
i=1

sihi = B

0 ≤ hi ≤ 1, i = 1, 2, . . . , N.

Note that the feasible solution set is convex and since the objective function is strictly

concave and continuous, a unique maximizer, called the optimal solution, exists. Also

45

note that the buffer constraint is based on the expected number of files not exceeding

the buffer size and not the total number of files. Towards the end of this section,

we show that the buffer space can be managed in a way such that the probability

of violating the buffer size constraint vanishes as the number of files and cache size

grow large.

In the above formulation, utilities are defined as functions of file hit probabil-

ity, i.e. Ui(hi). In Section 4.6, we argue that utilities can alternatively be defined as

functions of byte hit probabilities, i.e. Ui(sihi).

The above formulation does not enforce any special technique for managing the

cache content to achieve the desired his, and any strategy that can easily adjust

the hit probabilities can be employed. We use the TTL cache as our building block

because it provides the means through setting timers to control the hit probabilities

of different files in order to maximize the sum of utilities.

Using timer based caching techniques for controlling the hit probabilities with

0 < ti <∞ ensures that 0 < hi < 1, and hence, disregarding the possibility of hi = 0

or hi = 1, we can write the Lagrangian function as

L(h, α) =
N∑
i=1

Ui(hi)− α

[
N∑
i=1

sihi −B

]
=

N∑
i=1

[
Ui(hi)− αsihi

]
+ αB,

where α is the Lagrange multiplier.

In order to achieve the maximum in L(h, α), the hit probabilities should satisfy

∂L
∂hi

= U ′i(hi)− αsi = 0. (3.4)

46

Let U ′i(·) denote the derivative of the the utility function Ui(·), and define U ′i
−1(·)

as its inverse function. From (3.4) we get

U ′i(hi) = αsi,

or equivalently

hi = U ′i
−1

(αsi). (3.5)

Applying the cache storage constraint we obtain

∑
i

sihi =
∑
i

siU
′
i
−1

(αsi) = B, (3.6)

and α can be computed by solving the fixed-point equation given above.

As mentioned before, we can implement utility maximizing caches using TTL

based policies. Using the expression for the hit probabilities of non-reset and reset

TTL caches given in Appendix E, we can compute the timer parameters ti, once α

is determined from (3.6). For non-reset TTL caches we obtain

ti = − 1

λi

(
1− 1

1− U ′i
−1(αsi)

)
, (3.7)

and for reset TTL caches we get

ti = − 1

λi
log
(

1− U ′i
−1

(αsi)
)
. (3.8)

47

3.3.2 Soft Constraint Formulation

The formulation in (3.3) assumes a hard constraint on cache capacity. In some

circumstances it may be appropriate for the (cache) service provider to increase the

available cache storage at some cost to the file provider for the additional resources1.

In this case the cache capacity constraint can be replaced with a penalty function C(·)

denoting the cost for the extra cache storage. Here, C(·) is assumed to be a con-

vex and increasing function. We can now write the utility and cost driven caching

formulation as

maximize
N∑
i=1

Ui(hi)− C(
N∑
i=1

sihi −B) (3.9)

such that 0 ≤ hi ≤ 1, i = 1, 2, . . . , N.

Note the optimality condition for the above optimization problem states that

U ′i(hi) = siC
′(

N∑
i=1

sihi −B).

Therefore, for the hit probabilities we obtain

hi = U ′i
−1
(
siC

′(
N∑
i=1

sihi −B)
)
.

1One straightforward way of thinking about this is to turn the cache memory disks on and off
based on the demand.

48

Multiplying the two sides of the above equation by si and summing over all i,

we can compute the optimal value for the cache storage, B∗ =
∑

i sihi, using the

fixed-point equation

B∗ =
N∑
i=1

siU
′
i
−1
(
siC

′(B∗ −B)
)
. (3.10)

3.3.3 Buffer Constraint Violations

Before we leave this section, we address an issue that arises in both formulations,

namely how to deal with the fact that there may be more contents with unexpired

timers than can be stored in the buffer. This occurs in the formulation of (3.3)

because the constraint is on the average buffer occupancy and in (3.9) because there

is no constraint. Let us focus on the formulation in (3.3) first. Our approach is to

provide a buffer of size B(1 + ε) with ε > 0, where a portion B is used to solve

the optimization problem and the additional portion εB to handle buffer violations.

We will see that as the number of contents, N , increases, we can get by growing B

in a sublinear manner, and allow ε to shrink to zero, while ensuring that content

will not be evicted from the cache before their timers expire with high probability.

Let Xi denote whether content i is in the cache or not; P (Xi = 1) = hi. Now, let

E
[∑N

i=1 siXi

]
=
∑N

i=1 sihi = B. We write B(N) as a function of N , and assume that

B(N) = ω(1).

Theorem 6. Assume that si ≤ smax,∀i. For any ε > 0,

P
(N∑
i=1

siXi ≥ B(N)(1 + ε)
)
≤ e−

ε2B(N)
(2+ε)smax .

The proof follows from the application of a Chernoff bound.

49

Theorem 6 states that we can size the buffer as B(1 + ε) while using a portion B

as the constraint in the optimization. The remaining portion, εB, is used to protect

against buffer constraint violations. It suffices for our purpose that ε2B(N)
smax

= ω(1).

This allows us to select B(N) = o(N) while at the same time selecting ε = o(1).

As an example, consider Zipf’s law with λi = λ/iz, λ > 0, 0 < z < 1, i = 1, . . . , N

under the assumption that max {ti} = t for some t < ∞. In this case, we can grow

the buffer as B(N) = O(N1−z) while ε can shrink as ε = 1/N (1−z)/3. Analogous

expressions can be derived for z ≥ 1.

Similar choices can be made for the soft constraint formulation.

3.4 Utility Functions and Fairness

Using different utility functions in the optimization formulation (3.3) yields dif-

ferent timer values for the files. In this sense, each utility function defines a notion

of fairness in allocating storage resources to different files. In this section, we study

a number of utility functions that have important fairness properties associated with

them.

Here, we consider the family of β-fair (also known as isoelastic) utility functions

given by

Ui(hi) =


wi

h1−βi

1−β β ≥ 0, β 6= 1;

wi log hi β = 1,

where the coefficient wi ≥ 0 denotes the weight for file i. This family of utility func-

tions unifies different notions of fairness in resource allocation [67]. In the remainder

50

of this section, we investigate some of the choices for β that lead to interesting special

cases.

3.4.1 β = 0

With β = 0, we get Ui(hi) = wihi, and maximizing the sum of the utilities

corresponds to

max
hi

∑
i

wihi.

The above utility function defined does not satisfy the requirements for a utility

function mentioned in Section 3.2, as it is not strictly concave. However, it is easy

to see that the sum of the utilities is maximized when

hi = 1, i = 1, . . . ,m− 1,

hm = (B −
m−1∑
i=1

si)/sm,

and

hi = 0, i = m+ 1, . . . , N,

where

m = arg min
n
{

n∑
i=1

si > B}

and files are sorted such that w1/s1 ≥ . . . ≥ wN/sN .

Note that the policy obtained by implementing this utility function with wi = λi

maximizes the overall throughput.

51

3.4.2 β = 1

Letting β = 1, we get Ui(hi) = wi log hi, and hence maximizing the sum of the

utilities corresponds to

max
hi

∑
i

wi log hi.

It is easy to see that U ′i
−1(αsi) =

wi
αsi

, and hence using (3.6) we obtain

∑
i

siU
′
i
−1

(αsi) =
∑
i

wi/α = B,

which yields

α =
∑
i

wi/B.

The hit probability of file i then equals

hi = U ′i
−1

(αsi) =
wi

si
∑

j wj
B.

This utility function implements a proportionally fair policy [40]. With wi = λi,

the hit probability of file i is proportional to λi/si.

3.4.3 β = 2

With β = 2, we get Ui(hi) = −wi/hi, and maximizing the total utility corresponds

to

max
hi

∑
i

−wi/hi.

In this case, we get U ′i
−1(αsi) =

√
wi/
√
αsi, therefore

∑
i

siU
′
i
−1

(αsi) =
∑
i

√
wisi/

√
α = B,

52

and hence

α =
(∑

i

√
wisi

)2

/B2.

The hit probability of file i then equals

hi = U ′i
−1

(αsi) =

√
wi

si
√
α

=

√
wi

si
∑

j

√
wj
B.

The utility function defined above is known to yield minimum potential delay

fairness. It was shown in [40] that the TCP congestion control protocol implements

such a utility function.

3.4.4 β → ∞

Since Ui(·)’s are defined to be concave functions, as β →∞ the solution of the op-

timization problems (3.3) and (3.9) converges to the max-min fair allocation (see [48]

for proof). Therefore, we obtain

hi = min {1, B/
∑
j

sj}, ∀i.

A brief summary of the utility functions discussed here is given in Table 3.1.

3.5 Reverse Engineering

In this section, we study the widely used replacement-based caching policies,

FIFO and LRU, and show that their hit/miss behaviors can be duplicated in our

framework through an appropriate choice of utility functions.

53

Table 3.1: The family of β-fair utility functions.

β max
∑

i Ui(hi) hi implication

0 max
∑
wihi hi = 1, i < m, hm = (B −

∑m−1
i=1 si)/sm, hi = 0, i > m maximizing overall throughput

1 max
∑
wi log hi hi = wiB/(si

∑
j wj) proportional fairness

2 max−
∑
wi/hi hi =

√
wiB/(si

∑
j

√
wj) minimize potential delay

∞ max minhi hi = min {1, B/
∑

j sj} max-min fairness

It was shown in [25] that, with a proper choice of timer values, a TTL cache

can approximately generate the same statistical properties, i.e. same hit/miss

probabilities, as FIFO and LRU caching policies. In implementing these caches,

non-reset and reset TTL caches are used for FIFO and LRU, respectively, with

ti = T, i = 1, . . . , N where T denotes the characteristic time [12] of these caches. For

FIFO and LRU caches with Poisson arrivals the hit probabilities can be expressed as

hi = 1− 1/(1 + λiT) and hi = 1− e−λiT , and T is computed such that
∑

i sihi = B.

For example for the LRU policy T is the unique solution to the fixed-point equation

N∑
i=1

si
(
1− e−λiT

)
= B.

In our framework, we see from (3.5) that the file hit probabilities depend on

the Lagrange multiplier α corresponding to the cache size constraint in (3.3). This

suggests a connection between T and α. Further note that the hit probabilities are

increasing functions of T . On the other hand, since utility functions are concave and

increasing, hi = U ′i
−1(αsi) is a decreasing function of α. Hence, we can denote T as

a decreasing function of α, i.e. T = f(α).

54

Different choices of function f(·) would result in different utility functions

for FIFO and LRU policies. However, if we impose the functional dependence

Ui(hi) = λiU0(hi), then the equation hi = U ′i
−1(αsi) yields

hi = U ′0
−1

(αsi/λi).

From the expressions for the hit probabilities of the FIFO and LRU policies, we

obtain T = 1/α. In the remainder of the section, we use this to derive utility

functions for the FIFO and LRU policies.

3.5.1 FIFO

The hit probability of file i with request rate λi in a FIFO cache with characteristic

time T is

hi = 1− 1

1 + λiT
.

Substituting this into (3.5) and letting T = 1/α yields

U ′i
−1

(αsi) = 1− 1

1 + λi/α
= 1− 1

1 + λisi/(αsi)
.

Computing the inverse of U ′i
−1(·) yields

U ′i(x) = λisi

(1

x
− 1
)
,

and integration of the two sides of the above equation yields the utility function for

the FIFO cache

Ui(hi) = λisi

(
log hi − hi

)
.

55

3.5.2 LRU

Taking hi = 1− e−λiT for the LRU policy and letting T = 1/α yields

U ′i
−1

(αsi) = 1− e−λi/α = 1− e−λisi/(αsi),

which yields

U ′i(x) =
−λisi

ln (1− x)
.

Integration of the two sides of the above equation yields the utility function for the

LRU caching policy

Ui(hi) = λisili(1− hi),

where li(·) is the logarithmic integral function

li(x) =

∫ x

0

dt

ln t
.

It is easy to verify, using the approach explained in Section 3.3, that the utility

functions computed above indeed yield the correct expressions for the hit probabil-

ities of the FIFO and LRU caches. We believe these utility functions are unique if

restricted to be multiplicative in2 λi.

Figure 3.1 depicts the utility functions for the hit probability of a file with si = 1

and λi = 1 for LRU and FIFO caches.

2We note that utility functions, defined in this context, are subject to affine transformations,
i.e. aU + b yields the same hit probabilities as U for any constant a > 0 and b.

56

0 0.2 0.4 0.6 0.8 1
Hit probability

-5

-4

-3

-2

-1

0

U
til

ity

LRU
FIFO

Figure 3.1: Utility functions associated with LRU and FIFO caching policies.

3.6 Online Algorithms

In Section 3.3, we formulated utility-driven caching as a convex optimization

problem either with a fixed or an elastic cache size. However, it is not feasible to solve

the optimization problem offline and then implement the optimal strategy. Moreover,

the system parameters can change over time. Therefore, we need algorithms that

can be used to implement the optimal strategy and adapt to changes in the system

by collecting limited information. In this section, we develop such algorithms.

3.6.1 Dual Solution

The utility-driven caching formulated in (3.3) is a convex optimization problem,

and hence the duality gap is zero, i.e., solving the dual problem finds the optimal

solution. The Lagrange dual of problem (3.3) is obtained by incorporating the con-

straints into the maximization by means of Lagrange multipliers

minimize
α,ν,η

D(α,ν,η) = max
hi

{
N∑
i=1

Ui(hi)− α

[
N∑
i=1

sihi −B

]
−

N∑
i=1

νi(hi − 1) +
N∑
i=1

ηihi

}

57

such that α ≥ 0, ν,η ≥ 0.

Using timer based caching techniques for controlling the hit probabilities with

0 < ti <∞ ensures that 0 < hi < 1, and hence we have νi = 0 and ηi = 0.

Here, we consider an algorithm based on the dual solution to the utility maxi-

mization problem (3.3). Note that with νi = 0 and ηi = 0, we can write the Lagrange

dual of the utility maximization problem as

D(α) = max
hi

{
N∑
i=1

Ui(hi)− α

[
N∑
i=1

sihi −B

]}
,

and the dual problem can be written as

min
α≥0

D(α).

A natural decentralized approach to consider for minimizing D(α) is to gradually

move the decision variables towards the optimal point using the gradient descent

algorithm. The gradient can be easily computed as

∂D(α)

∂α
= −

(∑
i

sihi −B
)
,

and since we are doing a gradient descent, α should be updated according to the

negative of the gradient as

α← max
{

0, α + γ
(∑

i

sihi −B
)}
,

58

where γ > 0 controls the step size at each iteration. Note that the KKT conditions

require that α ≥ 0.

Based on the discussion in Section 3.3, to satisfy the optimality condition we

must have

U ′i(hi) = αsi,

or equivalently

hi = U ′i
−1

(αsi).

The hit probabilities are then controlled based on the timer parameters ti which can

be set according to (3.7) and (3.8) for non-reset and reset TTL caches.

Considering the hit probabilities as indicators of files residing in the cache, the

expression
∑

i sihi can be interpreted as the number of items currently in the cache,

denoted here as Bc. We can thus summarize the control algorithm for a reset TTL

algorithm as

ti = − 1

λi
log
(

1− U ′i
−1

(αsi)
)
,

α← max {0, α + γ(Bc −B)}. (3.11)

We obtain an algorithm for a non-reset TTL cache by using the correct expression

for ti in (3.7).

Let α∗ denote the optimal value for α. We show in Appendix F that D(α)−D(α∗)

is a Lyapunov function and the above algorithm converges to the optimal solution.

59

3.6.2 Primal Solution

We now consider an algorithm based on the optimization problem in (3.9) known

as the primal formulation.

Let W (h) denote the objective function in (3.9) defined as

W (h) =
N∑
i=1

Ui(hi)− C(
N∑
i=1

sihi −B).

A natural approach to obtain the maximum value for W (h) is to use the gradient

ascent algorithm. The basic idea behind the gradient ascent algorithm is to move

the variables hi in the direction of the gradient

∂W (h)

∂hi
= U ′i(hi)− siC ′(

N∑
i=1

sihi −B).

Since the hit probabilities are controlled by the TTL timers, we move hi towards the

optimal point by updating ti. Let ḣi denote the derivative of the hit probability hi

with respect to time. Similarly, define ṫi as the derivative of the timer parameter ti

with respect to time. We have

ḣi =
∂hi
∂ti

ṫi.

From the expressions for hi, it is easy to confirm that ∂hi/∂ti > 0 for non-reset and

reset TTL caches. Therefore, moving ti in the direction of the gradient, also moves

hi in that direction.

60

By gradient ascent, the timer parameters should be updated according to

ti ← max
{

0, ti + ki

[
U ′i(hi)− siC ′(Bc −B)

]}
,

where ki > 0 is the step-size parameter, and
∑N

i=1 sihi has been replaced with Bc

based on the same argument as in the dual solution.

Let h∗ denote the optimal solution to (3.9). We show in Appendix G that

W (h∗)−W (h) is a Lyapunov function, and the above algorithm converges to the

optimal solution.

3.6.3 Primal-Dual Solution

Here, we consider a third algorithm that combines elements of the previous two

algorithms. Consider the control algorithm

ti ← max {0, ti + ki[U
′
i(hi)− αsi]},

α← max {0, α + γ(Bc −B)}.

Using Lyapunov techniques we show in Appendix H that the above algorithm con-

verges to the optimal solution.

Now, rather than updating the timer parameters according to the above rule

explicitly based on the utility function, we can have update rules based on a cache

hit or miss. Consider the following differential equation

ṫi = δm(ti, α)(1− hi)λi − δh(ti, α)hiλi, (3.12)

61

where δm(ti, α) and −δh(ti, α) denote the change in ti upon a cache miss or hit for

file i, respectively. More specifically, the timer for file i is increased by δm(ti, α) upon

a cache miss, and decreased by δh(ti, α) on a cache hit.

The equilibrium for (3.12) happens when ṫi = 0, which solving for hi yields

hi =
δm(ti, α)

δm(ti, α) + δh(ti, α)
. (3.13)

Comparing the above expression with hi = U ′i
−1(αsi) suggests that setting

δm(ti, α) = U ′i
−1

(αsi) and δh(ti, α) = 1− U ′i
−1

(αsi),

can achieve desired hit probabilities and caching policies.

Note that depending on the utility function, multiplying δm(ti, α) and δh(ti, α)

by a positive entity might yield simpler expressions. For example, to implement

proportional fairness, we use

δm(ti, α) = λi, and δh(ti, α) = αsi − λi. (3.14)

Note that here we have multiplied the original expressions for δm(ti, α) and δh(ti, α)

by αsi.

In the case of max-min fairness, we want to equalize the hit probabilities at

hi = B/
∑

j sj. This can be done by letting ti evolve such that it increases when hi

is below a value shared across all files, and decreases when it is above that value.

Such a dynamic can be implemented by increasing the timer ti by one unit upon each

62

cache miss for file i, and decreasing it by α − 1 upon each request for file i leading

to a cache hit, i.e.

δm(ti, α) = 1, and δh(ti, α) = α− 1.

It is clear from (3.13) that at equilibrium, all files have the same hit probability

hi = 1/α irrespective of the object sizes si. Moreover, α will converge to
∑

j sj/B to

maintain cache occupancy at B, yielding hi = B/
∑

j sj.

Note that with the above choices for δm(ti, α) and δh(ti, α) functions, max-min

fairness can be implemented without requiring knowledge of request arrival rates λi.

3.6.4 Estimation of λi

Computing the timer parameter ti in the algorithms discussed in this section

requires knowing the request arrival rates for most of the policies. Estimation tech-

niques can be used to approximate the request rates in case such knowledge is not

available at the (cache) service provider.

Let ri denote the remaining TTL time for file i. Note that ri can be computed

based on ti and a time-stamp for the last time file i was requested. Let Xi denote the

random variable corresponding to the inter-arrival times for the requests for file i, and

X̄i be its mean. We can approximate the mean inter-arrival time as ˆ̄Xi = ti−ri. Note

that ˆ̄Xi defined in this way is a one-sample unbiased estimator of X̄i. Therefore, ˆ̄Xi

is an unbiased estimator of 1/λi. In the simulation section, we will use this estimator

when computing the timer parameters for evaluating our algorithms.

63

3.7 Simulations

In this section, we perform experiments to understand the implications of the

framework developed in Section 3.3, and evaluate the efficiency of the online algo-

rithms developed in Section 3.6. Throughout this section, we assume that files are

unit sized, i.e. si = 1,∀i.

3.7.1 Cache Size Violations

In our utility-driven formulation in (3.3), the constraint is on the average cache

occupancy, and hence it is possible to have more than B items in the cache. In

Section 3.3.3, we discussed allocating a buffer space to prevent cache size violations.

A buffer of size εB is added to the cache of size B, and a forced content eviction

occurs only if number of items in the cache exceeds (1 + ε)B.

Here, we simulate an LRU cache implemented as a TTL cache. Recall from

Section 3.3.3 that the probability of buffer constraint violation vanishes when

B(N) = o(N) and ε2B(N) = ω(1). Note that here smax = 1. To serve a set of

N contents, we set the average cache size to B =
√
N , and allocate the extra buffer

by setting ε = 1
5√N

. Figure 3.2(a) shows how the probability of forced content eviction

decreases as the system parameters scale up. Figure 3.2(b) shows that the percentage

of the extra buffer space allocated to prevent forced evictions decreases as cache size

and number of files increase. Note that these results are in harmony with Theorem 6

from Section 3.3.3.

64

104 105 106 107

Number of files

10-3

10-2

10-1
Fo

rc
ed

 e
vi

ct
io

n
pr

ob
ab

ili
ty

(a)

104 105 106 107

Number of files

10-2

10-1

100

C
ac

he
 b

uf
fe

r
pe

rc
en

ta
ge

(b)

Figure 3.2: (a) Probability of cache size violation and (b) percentage of extra buffer space decrease
as system scales as B =

√
N and ε = 1

5√
N

.

3.7.2 Elastic Cache Size

In Section 3.3.2, we formulated the utility-driven caching problem with no strict

constraint on cache size. In this case, cache size can grow arbitrarily large incurring

a cost of storage. Optimal cache size is then computed by (3.10) to obtain maximum

utility minus cost.

Here, we use the utility function computed in Section 3.5 for LRU to determine

the optimal cache size. Figure 3.3 shows the optimal cache size as a function of the

aggregate load on a cache implementing LRU policy, where the penalty function can

be linear, quadratic, cubic or exponential:

C(x) =



0.01 x

0.01 x2

0.01 x3

0.01 ex

.

65

Aggregate request rate
100 101 102 103 104

M
em

or
y

us
ag

e

100

200

500

1000

linear
quadratic
cubic
exponential

Figure 3.3: Adjusting the cache size to maximize utility-cost trade off for an LRU cache. Four
different cost function are evaluated.

10-1 100 101 102 103 104

Request rate λ

100

102

104

O
pt

im
al

 c
ac

he
 s

iz
e

B
*

Prop. fair
LRU
LFU
FIFO

(a)

10-3 10-2 10-1 100 101 102

β

100

102

104
O

pt
im

al
 c

ac
he

 s
iz

e
B

*

λ=20
λ=10
λ=1
λ=0.1

(b)

Figure 3.4: Optimal cache size as a function of (a) request arrival rate, and (b) fairness parameter
β from β-fair utility functions.

Initially the cache size is set to B = 100, where requests are generated for

N = 1000 files with popularities following a Zipf distribution with parameter 0.8.

We continue with the linear cost function, and compare the optimal cache size

under four caching policies: proportionally fair, LRU, LFU, and FIFO. The number

66

File index

10
0

10
2

10
4

H
it

 p
ro

b
a
b

il
it

y

10
-2

10
-1

10
0

LRU

File index

10
0

10
2

10
4

H
it

 p
ro

b
a
b

il
it

y
10

-2

10
-1

10
0

FIFO

10
0

10
2

10
4

File index

10
-2

10
-1

10
0

H
it

 p
ro

b
a
b

il
it

y

Proportionally Fair

File index

10
0

10
2

10
4

H
it

 p
ro

b
a
b

il
it

y

10
-2

10
-1

10
0

Max-Min Fair

Figure 3.5: Hit probabilities from implementing the online dual algorithm using utility functions
for LRU, FIFO, proportionally fair and max-min fair policies using estimated λi.

of files is assumed to be N = 104. Figure 3.4(a) shows how optimal cache size changes

with arrival request rate for the mentioned policies. We can see that optimal cache

size is an increasing function of the request rate. This is expected since as request

rate increases, a larger utility is obtained from the cache.

In order to see how the choice of a caching policy affects optimal cache size, we

take the β-fair utility functions and compute optimal cache size as a function of β.

Figure 3.4(b) shows the results under four request arrival rates. We observe that

optimal cache size increases as β increases.

3.7.3 Online Algorithms

Per our discussion in Section 3.5, non-reset and reset TTL caches can be used with

ti = T, i = 1, . . . , N to implement caches with the same statistical properties as FIFO

and LRU caches. However, previous approaches require precomputing the cache

characteristic time T . By using the online dual algorithm developed in Section 3.6.1

we are able to implement these policies with no a priori information of T . We do

so by implementing non-reset and reset TTL caches, with the timer parameters for

67

all files set as ti = 1/α, where α denotes the dual variable and is updated according

to (3.11).

For the proportionally fair policy, timer parameters are set to

ti =
−1

λi
log (1− λi

α
),

and for the max-min fair policy we set the timers as

ti =
−1

λi
log (1− 1

α
).

We implement the proportionally fair and max-min fair policies as reset TTL caches.

In the experiments to follow, we consider a cache with the expected number of files

in the cache set to B = 1000. Requests arrive for N = 104 files according to a Poisson

process with aggregate rate
∑

i λi = 1. File popularities follow a Zipf distribution

with parameter z = 0.8, i.e. λi ∝ 1/iz. In computing the timer parameters we use

estimated values for the file request rates as explained in Section 3.6.4.

Figure 3.5 compares the hit probabilities achieved by our online dual algorithm

with those computed numerically for the four policies explained above. It is clear

that the online algorithms yield the exact hit probabilities for the FIFO, LRU and

max-min fair policies. For the proportionally fair policy however, the simulated hit

probabilities do not exactly match numerically computed values. This is due to

an error in estimating λi, i = 1, . . . , N . Note that we use a simple estimator here

that produces an estimate that is unbiased for 1/λi. However, the reciprocal of the

estimate is not an unbiased estimate of λi. It is clear from the above equations that

68

File index

10
0

10
2

10
4

H
it

 p
ro

b
a
b

il
it

y

10
-2

10
-1

10
0

Figure 3.6: Proportionally fair policy implemented using the dual algorithm with exact knowledge
of λis.

computing timer parameters for the max-min fair policy only require estimates of

1/λi and hence the results are good. Proportionally fair policy on the other hand

requires estimating λi as well, hence using a biased estimate of λi introduces some

error.

To confirm the above reasoning, we also simulate the proportionally fair policy

assuming perfect knowledge of the request rates. Figure 3.6 shows that in this case

simulation results exactly match the numerical values.

We can also use the primal-dual algorithm to implement the proportionally fair

policy. Here, we implement this policy using the update rules in (3.14), and estimated

values for the request rates. Figure 3.7 shows that, unlike the dual approach, the

simulation results match the numerical values. This example demonstrates how one

algorithm may be more desirable than others in implementing a specific policy.

69

File index

10
0

10
2

10
4

H
it

 p
ro

b
a
b

il
it

y

10
-2

10
-1

10
0

Figure 3.7: Proportionally fair policy implemented using the primal-dual algorithm with
δm(ti, α) = λi and δh(ti, α) = α− λi, with approximate λi values.

The algorithms explained in Section 3.6 are proven to be globally and asymp-

totically stable, and converge to the optimal solution. Figure 3.8(a) shows the con-

vergence of the dual variable for the LRU policy. The red line in this figure shows

1/T = 6.8× 10−4 where T is the characteristic time of the LRU cache computed ac-

cording to the discussion in Section 3.5. Also, Figure 3.8(b) shows how the number

of contents in the cache is centered around the capacity B. The probability density

and complementary cumulative distribution function (CCDF) for the number of files

in cache are shown in Figure 3.9. The probability of violating the capacity B by

more than 10% is less than 2.5 × 10−4. For larger systems, i.e. for large B and N ,

the probability of violating the target cache capacity becomes infinitesimally small;

see the discussion in Section 3.3.3. This is what we also observe in our simulations.

Similar behavior in the convergence of the dual variable and cache size is observed

in implementing the other policies as well.

70

Time (# of requests)
×10

5

0 0.5 1 1.5 2

D
u

a
l

v
a

ri
a

b
le

×10
-3

0

1

2

3

4

5

(a)

Time (# of requests)
×10

5

0 0.5 1 1.5 2

C
a

ch
e

si
ze

0

500

1000

1500

(b)

Figure 3.8: Convergence and stability of dual algorithm for the utility function representing LRU
policy.

To see how the algorithms compare in terms of converging to optimal solution,

we compute the differences in hit probabilities between the optimal solution com-

puted offline, hi, and the hit probability resulted from the algorithm, ĥi, at different

iterations of the algorithm. To compute the distance between the two probabil-

ity distributions, we use the Kullback–Leibler (KL) divergence measure defined as

follows

DKL =
N∑
i=1

hi log
hi

ĥi
.

Figure 3.10 shows divergence from optimal over time for proportionally fair and

max-min fair policies implemented by dual and primal-dual algorithms assuming ex-

act knowledge of request rates. The two algorithms are observed to perform similarly

for both policies.

We then compare the algorithms when request arrival rates are not known but

are estimated. Figure 3.11 shows divergence over time. In this case, the primal-dual

71

Cache size

800 900 1000 1100 1200

P
ro

b
a

b
il

it
y

 d
en

si
ty

0

0.005

0.01

0.015

Cache size

800 900 1000 1100 1200

C
C

D
F

10
-10

10
-5

10
0

Figure 3.9: Cache size distribution and CCDF from dual algorithm with the utility function repre-
senting LRU policy.

algorithm performs much better than dual in implementing the proportionally fair

policy. The two algorithms show a similar performance for max-min fair policy.

3.7.4 Non-reset vs. Reset TTL

The online algorithms described in Section 3.6 can be implemented as non-reset

or reset TTL caches. Here, we perform experiments to understand how the choice of

TTL type affects the performance of these algorithms. We take the proportionally

fair and max-min fair policies and implement them as reset and non-reset TTL caches

using the primal-dual algorithm. Using the KL-divergence measure, we compute the

differences in hit probabilities between the optimal solution computed offline, hi,

and the hit probability resulted from the algorithm, ĥi, at different iterations of the

algorithm. Figure 3.12 shows how divergence decreases over time for both non-reset

and reset TTL implementations. We observe that the two implementations converge

to the optimal solution at almost the same rate.

72

106 107 108

Time (# of requests)

0

20

40

60

80

100
D

iv
er

ge
nc

e
Proportionally Fair

Primal-Dual
Dual

(a)

106 107 108

Time (# of requests)

0

20

40

60

80

100

D
iv

er
ge

nc
e

Max-Min Fair

Dual
Primal-Dual

(b)

Figure 3.10: Divergence from optimal at algorithm iterations for (a) proportionally fair, and (b)
max-min fair policies implemented by dual and primal-dual algorithms assuming exact knowledge
of request rates.

3.7.5 Trace-driven Simulation

Earlier in this section, we showed that the LRU policy can be implemented as a

TTL cache using the dual algorithm. To show that the dual algorithm can be used

in realistic settings, we use requests from a trace for web accesses collected from a

gateway router at IBM research lab [82]. We use the trace to compute cache hits for

the replacement-based implementation of LRU, hR, and the implementation based

on the dual algorithm, hD. We count the number of hits from each implementation

over windows of W = 3000 requests and compute the relative error as

relative error =
hc − hD
W

.

73

106 107 108

Time (# of requests)

0

20

40

60

80

100
D

iv
er

ge
nc

e
Proportionally Fair

Dual
Primal-Dual

(a)

106 107 108

Time (# of requests)

0

20

40

60

80

100

D
iv

er
ge

nc
e

Max-Min Fair

Dual
Primal-Dual

(b)

Figure 3.11: Divergence from optimal at algorithm iterations for (a) proportionally fair, and (b)
max-min fair policies implemented by dual and primal-dual algorithms with estimated request rates.

Figure 3.13 shows the relative error over time. It is clear that the relative error is

small meaning that the LRU implementation based on the dual algorithm performs

close to its replacement-based implementation.

3.8 Related Work

Utility functions have been widely used in the modeling and control of computer

networks, from stability analysis of queues to the study of fairness and service differ-

entiation in network resource allocation; see [51,67] and references therein. Kelly [39]

was the first to formulate the problem of rate allocation as one of achieving maxi-

mum aggregate utility for users, and describe how network-wide optimal rate allo-

cation can be achieved by having individual users control their transmission rates.

The work of Kelly et al. [40] presents the first mathematical model and analysis of

74

106 107 108

Time (# of requests)

0

20

40

60

80

100
D

iv
er

ge
nc

e
Proportionally Fair

Non-reset TTL
Reset TTL

(a)

106 107 108

Time (# of requests)

0

20

40

60

80

100

D
iv

er
ge

nc
e

Max-Min Fair

Non-reset TTL
Reset TTL

(b)

Figure 3.12: Divergence from optimal at algorithm iterations for (a) proportionally fair, and (b)
max-min fair policies implemented by priml-dual algorithm as non-reset and reset TTL caches.

the behavior of congestion control algorithms for general topology networks. Since

then, there has been extensive research in generalizing and applying Kelly’s Network

Utility Maximization framework to model and analyze various network protocols

and architectures. This framework has been used to study problems such as net-

work routing [73], throughput maximization [20], dynamic power allocation [52] and

scheduling in energy harvesting networks [35], among many others.

The issue of service differentiation in the context of web cache management has

also been extensively studied (e.g. see [23] and references therein). The majority

of the work on this topic, however, uses cache partitioning as the means to provide

service differentiation [42,59,69]. Ma and Towsley [46] have recently proposed using

utility functions for the purpose of designing contracts that allow service providers to

monetize caching. We build upon our previous work [17] which introduced a utility-

75

0 1 2 3

Time (# of requests) ×106

-0.05

0

0.05

0.1

0.15

0.2

R
el

at
iv

e
er

ro
r

Figure 3.13: Relative error in hit counts from replacement-based implementation of LRU and the
implementation based on the dual algorithm.

driven approach to managing cached content based on the utility associated with

each content.

3.9 Discussion

In this section, we explore the implications of utility-driven caching on monetizing

the caching service and discuss some future research directions.

3.9.1 Unequal File Sizes

The utility maximization framework in Section 3.3 assumes that utilities are

defined as functions of file hit probability hi. However, it is possible to define utilities

as functions of byte hit probabilities, Ui(sihi). In this case, the following formulations

can be used to implement a utility-driven caching policy:

76

maximize
hi

N∑
i=1

Ui(sihi)

such that
N∑
i=1

sihi = B

0 ≤ hi ≤ 1, i = 1, 2, . . . , N,

Implications of the above formulation and its difference with (3.3) requires further

investigation.

3.9.2 Decomposition

The formulation of the problem in Section 3.3 assumes that the utility functions

Ui(·) are known to the system. In reality content providers might decide not to share

their utility functions with the service provider. To handle this case, we decompose

the optimization problem (3.3) into two simpler problems.

Suppose that cache storage is offered as a service and the service provider charges

content providers at a constant rate r for storage space. Hence, a content provider

needs to pay an amount of wi = rhi to receive hit probability hi for file i. The utility

maximization problem for the content provider of file i can then be written as

maximize Ui(wi/r)− wi (3.15)

such that wi ≥ 0

Now, assuming that the service provider knows the vector w, for a proportionally

fair resource allocation, the hit probabilities should be set according to

77

maximize
N∑
i=1

wi log hi (3.16)

such that
N∑
i=1

sihi = B

It was shown in [39] that there always exist vectors w and h, such that w

solves (3.15) and h solves (3.16); further, the vector h is the unique solution to (3.3).

3.9.3 Cost and Utility Functions

In Section 3.3.2, we defined a penalty function denoting the cost of using addi-

tional storage space. One might also define cost functions based on network band-

width consumed in retrieving uncached content. This is especially interesting when

modeling in-network caches with network links that are likely to be congested.

Optimization problem (3.3) uses utility functions defined as functions of the hit

probabilities. It is reasonable to define utility as a function of the hit rate. How

this affects the problem, e.g. the notion of fairness, is a question that requires fur-

ther investigation. One argument in support of utilities as functions of hit rates is

that a service provider might prefer pricing based on request rate rather than cache

occupancy. Moreover, in designing hierarchical caches a service provider’s objective

could be to minimize the internal bandwidth cost. This can be achieved by defining

the utility functions as Ui = −Ci(mi) where Ci(mi) denotes the cost associated with

miss rate mi for file i.

78

3.9.4 Online Algorithms

In Section 3.6, we developed three online algorithms that can be used to im-

plement utility-driven caching. Although these algorithms are proven to be stable

and converge to the optimal solution, they have distinct features that can make one

algorithm more effective in implementing a policy. For example, implementing the

max-min fair policy based on the dual solution requires knowing/estimating the file

request rates, while it is easily implemented using the modified primal-dual solution

without such knowledge. Moreover, the convergence rate of these algorithms may

differ for different policies. The choice of non-reset or reset TTL caches also has

implications on the design and performance of these algorithms. These are subjects

that require further study.

3.9.5 Non-reset vs. Reset TTL

A utility-maximizing caching policy can be implemented as a reset or non-reset

TTL cache. The choice of the TTL type might affect ease of implementation, sen-

sitivity to arrival rate estimation or convergence time of algorithms. For example,

while a TTL reset is a better choice for implementing LRU, a non-reset TTL is a

better choice for implementing FIFO. Figure 3.12 in Section 3.7 shows that the same

accuracy can be obtained by implementing proportionally fair and max-min fair poli-

cies as reset or non-reset TTL caches. The right choice of TTL type can simplify

algorithm implementation as is the case for LRU and FIFO policies.

79

3.10 Conclusion

In this chapter, we proposed the concept of utility-driven caching, and formulated

it as an optimization problem with rigid and elastic cache storage size constraints.

Utility-driven caching provides a general framework for defining caching policies with

considerations of fairness among various groups of files, and implications on market

economy for (cache) service providers and content publishers. This framework has

the capability to model existing caching policies such as FIFO and LRU, as utility-

driven caching policies.

We developed three decentralized algorithms that implement utility-driven

caching policies in an online fashion and that can adapt to changes in file request

rates over time. We prove that these algorithms are globally stable and converge

to the optimal solution. Through simulations we illustrated the efficiency of these

algorithms and the flexibility of our approach.

80

CHAPTER 4

SHARING CACHE RESOURCES AMONG CONTENT
PROVIDERS: A UTILITY-BASED APPROACH

4.1 Introduction

While there has been a flurry of recent research on the design of caching mecha-

nisms for Information Centric Networks (ICNs) [8, 10, 47], relatively little attention

has been paid to the problem of storage or cache resource allocation among multiple

content providers. In this chapter, we consider content providers (CPs) as key play-

ers in procuring and delivering content in future ICNs. Given that it is part of the

ICN data plane substrate, storage or cache must therefore be multiplexed or shared

among multiple CPs, say, multiple (competing) video streaming service providers.

This poses a fundamental research question that is pertinent to all ICN designs: how

to share or allocate the cache resource within a single network forwarding element

and across various network forwarding elements among multiple content providers

so as to maximize the cache resource utilization or provide best utilities to content

providers?

In this chapter, we develop a general utility maximization framework to address

the aforementioned fundamental problem. We study the multi-CP cache allocation

problem in a single network cache element. Our results illustrate the importance of

81

Figure 4.1: Network Model.

considering the cache allocation problem among multiple CPs in an ICN and has

implications on ICN architectural design: from the perspective of cache resource

efficiency or utility maximization of CPs, cache partitioning (among CPs) should be

a basic principle for cache resource allocation in ICNs.

The main contribution of this chapter is the formulation of a utility–based opti-

mization framework for maximizing content provider utilities subject to cache capac-

ity constraints at the service provider. We formulate the problem for two scenarios:

1) where content providers serve distinct sets of contents, 2) where some content is

served by multiple content providers. We also develop online algorithms for manag-

ing cache partitions, and prove the convergence of these algorithms to the optimal

solution using Lyapunov functions.

82

4.2 Model and Problem Setting

Consider a network as shown in Figure 4.1, where users access content, e.g. videos,

from K content providers (CPs). CP k (k = 1, . . . , K) serves a set Sk of nk unit

size files where nk = |Sk|; we will usually label these files i = 1, . . . , nk. All CPs

share a content cache, supplied by a third-party network provider, referred to as a

service provider hereafter. Content providers have business relations with the service

provider and pay for cache resources. There are two possible scenarios: i) the content

objects offered by the CPs are all distinct; and ii) some common objects are provided

by different CPs. Due to disparate user bases, the access patterns of these content

objects may vary across the CPs.

We assume that requests are described by a Poisson process with request rate for

file i of CP k being λk,i = λkpk,i, i ∈ Sk, k = 1, . . . , K, where λk denotes the aggregate

request rate for contents from CP k, and pk,i is the probability that a request to CP k

is for content i. Associated with each CP is a utility Uk(x) that is an increasing and

concave function of parameter x. We focus on the problem where service provider

wishes to maximize the sum of the utilities over all content providers,
∑

k Uk(hk),

through a proper allocation of cache space to the CPs. Here, hk is the hit rate of CP

k over all its files. In the simple case where Uk(hk) = hk, the objective becomes that

of maximizing the overall cache hit rate, which provides a measure of overall cache

utilization.

Cache Partitioning: When the cache is shared among the CPs, content objects

offered by all CPs compete for the storage space based on their access patterns. To

restrict cache contention to smaller sets of content, the service provider can form

83

content groups from files served by a CP or multiple CPs, and partition the cache

into slices and dedicate a partition to each content group. Let P denote the number

of content groups/cache partitions. Also, let Vp and Cp, p = 1, . . . , P denote the

content groups and partition sizes, respectively. Note that P = 1 implies that the

cache is shared as a whole, while P > 1 means it is partitioned.

The first question to ask is: what is the optimal number of partitions and how

should files be grouped? To determine the number of slices and that what files should

be requested from which partition, the service provider proceeds as follows. Files are

first grouped into disjoint sets according to which content providers serve them. The

service provider then decides how many partitions to create, and whether to dedicate

a separate partition for each set of files, or have multiple sets of files share a partition.

In the next section, we explain what changes if the cache manager made partitioning

decisions on a per file basis rather than sets of files.

Assuming the answer to the first question, the second question is: how should the

partitions be sized? Let C = (C1, C2, . . . , CP) denote the vector of partition sizes.

For each content provider k, hit rate is a function of the partition sizes hk(C). For

a cache of size C, we formulate this question as the following optimization problem:

maximize
K∑
k=1

Uk

(
hk(C)

)
such that

P∑
p=1

Cp ≤ C

Cp = 0, 1, 2, . . . ; p = 1, 2, . . . , P.

84

Note that the above formulation is an integer programming problem that is typ-

ically hard to solve. However, in practice caches are large and therefore we assume

Cp can take any real value, as the rounding error will be negligible.

Cache Characteristic Time: Assume a cache of size C serving n contents with

popularity distribution pi, i = 1, . . . , n . Under the independent reference model

(requests are i.i.d.), Fagin [21] introduced the notion of a window size T that satisfies

C =
n∑
i=1

(1− (1− pi)T).

The miss probability associated with a window of size T is defined as

m(T) =
n∑
i=1

pi(1− pi)T .

Fagin introduced a cumulative probability distribution, F , that is continuously dif-

ferentiable in (0, 1) with F (0) = 0 and F (1) = 1. The right-derivative of F at

0, denoted by F ′(0), may be infinite. This will allow us to account for Zipf-like

distributions. Define

p
(n)
i = F (i/n)− F ((i− 1)/n), i = 1, . . . , n

the probability that page i is requested. Hereafter, we will refer to F as the popularity

distribution. If C/n = β then T/n→ τ0 where (see [21])

β =

∫ 1

0

(1− e−F ′(x)τ0)dx (4.1)

85

and m(T)→ µ where

µ =

∫ 1

0

F ′(x)e−F
′(x)τ0dx. (4.2)

Moreover, µ is the limiting miss probability under LRU when n→∞.

Suppose requests arrive according to a Poisson process with rate λ. Express β as

β =

∫ 1

0

P (X(x) < τ0/λ)dx

where X(x) is an exponential random variable with intensity λF ′(x). X(x) is the

inter-arrival time of two requests for content of type x. If this time is less than τ0/λ,

then the request is served from the cache, otherwise it is not. In practice, as n is

finite, this is approximated by

C = βn =
n∑
i=1

(1− e−λp
(n)
i Tc) (4.3)

where Tc is the Characteristic Time (CT) for the finite content cache [12]. The

aggregate miss probability is approximated by

m(Tc) = 1−
n∑
i=1

p
(n)
i

(
1− e−λp

(n)
i Tc

)
. (4.4)

Fagin’s results suffice to show that as n → ∞, the r.h.s. of (4.4) converges to the

LRU miss probability.

In the context of K providers, let nk = bkn, n, bk ∈ N, k = 1, . . . , K. Denote

Bk :=
∑k

j=1 bj with B0 = 0 by convention. It helps also to denote BK by B. Let

86

F1, F2, . . . , FK be continuous uniformly differentiable CDFs in (0, 1). F ′k(0) may be

infinite for k = 1, . . . K. If each provider has a cache that can store a fraction βk of

its contents, then the earlier described CT approximation, (4.3), (4.4), applies with

p
(n)
k,i = Fk

(i

bkn

)
− Fk

(i− 1

bkn

)
, i = 1, . . . , bkn. (4.5)

We denote the asymptotic miss probabilities for the K caches, each using LRU, by

µ
(p)
k =

∫ 1

0

F ′k(x)e−F
′
k(x)τkdx, k = 1, . . . , K (4.6)

where τk is the solution of (4.1) with β replaced by βk.

Assume that the providers share a cache of size C. Define β(s) =
∑K

k=1 βk. We

introduce µ(s) and τ0 through the following two equations,

µ(s) =
K∑
k=1

ak

∫ 1

0

F ′k(x)e−akF
′
k(x)τ0B/bkdx, (4.7)

β(s) = 1−
K∑
k=1

bk
B

∫ 1

0

e−akF
′
k(x)τ0B/bkdx (4.8)

where ak := λk/λ, k = 1, . . . , K.

Theorem 7. Assume that we have K providers with popularity distri-

butions F1, . . . , FK as defined above, with numbers of contents given by

bkn, bk ∈ N, n = 1, 2, . . . and request rates λk, k = 1, . . . , K. Construct the sequence

of popularity probabilities {p(n)
k,i }, n = 1, . . . defined in (4.5) and cache sizes C(n) such

that C(n)/n = β. Then, the aggregate miss probability under LRU converges to µ(s)

given in (4.7), where τ0 is the unique solution of (4.8).

87

Proof. See Appendix J.

Remark. This extends Fagin’s results to include any asymptotic popularity

CDF F that is continuously differentiable in (0, 1) except at a countable number

of points.

4.3 Cache Resource Allocation among Content Providers

In this section, we formulate cache management as a utility maximization prob-

lem. We introduce two formulations, one for the case where content providers serve

distinct contents, and another one for the case where some contents are served by

multiple providers.

4.3.1 Content Providers with Distinct Objects

Consider the case of K providers with nk = bkn contents each where bk, n ∈ N and

k = 1, . . . , K. Also, let B =
∑K

k=1 bk Assume that requests to CP k is characterized

by a Poisson process with rate λk.

We ask the question whether the cache should be shared or partitioned between

CPs under the LRU policy. It is easy to construct cases where sharing the cache

is beneficial. However these arise when the cache size and the number of contents

per CP are small. Evidence suggests that partitioning provides a larger aggregate

utility than sharing as cache size and number of contents grow. In fact, the following

theorem shows that asymptotically, under the assumptions of Theorem 1, in the

limit as n → ∞, the sum of utilities under LRU when the cache is partitioned, is

at least as large as it is under LRU when the CPs share the cache. To do this, we

88

formulate the following optimization problem: namely to partition the cache among

the providers so as to maximize the sum of utilities:

max
βk

U (p) :=
K∑
k=1

Uk(λk(1− µk(βk))) (4.9)

s.t. β =
K∑
k=1

bk
B
βk,

βk ≥ 0, k = 1, 2, . . . , K.

Observe that λk(1 − µk(βk)) in (4.9) is the hit rate of documents of CP k, where

µk(βk) is given by (4.6).

Here, µk is the asymptotic miss probability for content served by CP k, β is the

cache size constraint expressed in terms of the fraction of the aggregate content that

can be cached, bk/B is the fraction of content belonging to provider k, and βk is the

fraction of CP k content that is permitted in CP k’s partition. The direct dependence

of βk on µk is difficult to capture. Hence, we use (4.1) and (4.2), to transform the

above problem into:

max
τk

U (p) :=
K∑
k=1

Uk

(
λk
(
1−

∫ 1

0

e−F
′(x)τkdx

))
(4.10)

s.t. β = 1−
K∑
k=1

bk
B

∫ 1

0

e−F
′
k(x)τkdx,

τk ≥ 0, k = 1, 2, . . . , K.

Theorem 8. Assume K providers with popularity distributions constructed from

distributions F1, . . . , FK using (4.5) with number of contents bkn and request rates

89

λk, k = 1, . . . , K sharing a cache of size C(n) such that C(n)/n = β. Then, as n→∞

the sum of utilities under partitioning is at least as large as that under sharing.

Proof. The sum of utilites for the shared case is

U (s) =
K∑
k=1

Uk

(
λk
(
1−

∫ 1

0

e−F
′(x)τ0dx

))
where τ0 is the unique solution to

β = 1−
K∑
k=1

bk
B

∫ 1

0

e−F
′
k(x)τ0dx.

When we set τk = akBτ0/bk in U (p) then U (p) = U (s), proving the theorem.

Based on the above theorem, we focus solely on partitioned caches and use the

CT approximation to formulate the utility–maximizing resource allocation problem

for content providers with distinct files as follows:

maximize
K∑
k=1

Uk

(
hk(Ck)

)
(4.11)

such that
K∑
k=1

Ck ≤ C,

Ck ≥ 0, k = 1, 2, . . . , K.

In our formulation, we assume that each partition employs LRU for managing

the cache content. Therefore, we can compute the hit rate for content provider k as

hk(Ck) = λk

nk∑
i=1

pk,i
(
1− e−λkpk,iTk(Ck)

)
, (4.12)

90

where Tk(Ck) denotes the characteristic time of the partition with size Ck dedicated

to content provider k. Tk(Ck) is the unique solution to the equation

Ck =

nk∑
i=1

(1− e−λkpk,iTk). (4.13)

The following theorem establishes that resource allocation problem (4.11) has a

unique optimal solution:

Theorem 9. Given strictly concave utility functions, the resource allocation prob-

lem (4.11) has a unique optimal solution.

Proof. In Appendix I, we show that hk(Ck) in (4.12) is an increasing concave function

of Ck. Since Uk is assumed to be an increasing and strictly concave function of the

cache hit rate hk, it follows that Uk is an increasing and strictly concave function

of Ck. The objective function in (4.11) is a linear combination of strictly concave

functions, and hence is concave. Since the feasible solution set is convex, a unique

maximizer called the optimal solution exists.

Last, it is straightforward to show that partitioning is at least as good as sharing,

for finite size systems using the CT approximation.

4.3.2 Content Providers with Common Objects

Here, we first assume there are only two content providers in the network and

then consider the general case. There are three sets of content, S0 of size n0 served

by both providers, and S1 and S2, sizes n1 and n2 served separately by each of the

providers. Requests are made to S0 at rate λ0,k from provider k and to Sk at rate λk.

91

Figure 4.2: Partitioning cache into three slices. One partition for the set of common files, S0, and
two other partitions, one for the remaining files from each content provider, Sk.

Given a request is made to S0 from provider k, it is for content i with probability

p0,k,i. Similarly, if the request is for content in Sk, k = 1, 2, it is for content i with

probability pk,i.

We have two conceivable cases for the files in S0: 1) each content provider needs

to maintain its own copy of the content, e.g. due to security reasons, or 2) one copy

can be kept in cache to serve requests to either of the content providers. The first case

can be treated as if there is no common content between the two content providers,

and hence can be cast as problem (4.11). For the second case, we consider three

strategies for managing the cache:

• Strategy 1 (S1): sharing the whole cache as one large partition,

• Strategy 2 (S2): partitioning into two dedicated slices, one for each CP,

• Strategy 3 (S3): partitioning into three slices, one shared partition for the

set of common contents, and two other partitions for the remaining files of each

CP, as shown in Figure 4.2.

The following theorem states that S3 performs at least as well as S1 in an asymptotic

sense.

Theorem 10. Assume that we have two providers with a set of shared files S0,

and sets of non-shared files, S1, S2 with numbers of files nk = bkn, bk, n ∈ N, and

92

k = 0, 1, 2. Assume that requests to these sets occur with rates λ0,k and λk and

content popularities are described by asymptotic popularity distributions F0,k, and Fk.

Construct the sequence of popularity probabilities {p(n)
k,i }, n = 1, . . . similar to (4.5)

and cache sizes C(n) such that C(n)/n = β. Then, the asymptotic aggregate LRU

miss probability is at least as small under S3 as under S1.

The proof is similar to the proof of Theorem 8.

Neither S2 nor S3 outperforms the other for all problem instances, even asymp-

totically. However, we present a class of workloads for which asymptotically S3

outperforms S2 and then follow it with an example where S2 outperforms S3.

Consider the following workload where the asymptotic popularity distributions

of requests to the two providers for the shared content are identical, F0,1 = F0,2.

Theorem 11. Assume that we have two providers with a set of shared files S0 and

sets of non-shared files, S1, S2 with numbers of files nk = bkn, bk ∈ N, n = 1, . . . ,

and k = 1, 2, 3. Assume that requests are described by Poisson processes with rates

λ0,k and λk, k = 1, 2, and content popularities are described by asymptotic popularity

distributions F0,1 = F0,2, and F1, F2. Construct the sequence of popularity probabil-

ities {p(n)
k,i }, n = 1, . . . similar to (4.5) and cache sizes C(n) such that C(n)/n = β.

Then the asymptotic aggregate hit probability under LRU is at least as large under

S3 as under S2.

The proof is found in Appendix K

Below is an example where S2 outperforms S3. The asymptotic popularity dis-

tributions for the shared content are given by

93

F0,1(x) =


2x/11 0 < x ≤ 1/2

(20x− 9)/11 1/2 < x < 1

and

F0,2(x) =


300x/151 0 < x ≤ 1/2

(2x+ 149)/151 1/2 < x < 1

with request rates λ0,1 = 1.1 and λ0,2 = 15.1. The asymptotic popularities of the

non-shared contents are F1(x) = F2(x) = x with request rates λ1 = 20 and λ2 = 30.

Last, there are equal numbers of content in each of these sets, n0 = n1 = n2. If we

set β = 2/3, then the aggregate hit probability under S3 with optimal partitioning

is 0.804, which is slightly lower than the aggregate hit probability, 0.816, under S2

with optimal partitioning.

The above examples show that the workloads of the content providers can affect

which strategy is optimal. However, we argue that partitioning into three slices

should provide the best performance in most practical situations, where content

providers have similar popularity patterns for the contents they commonly serve.

This is unlike the second example where the two content providers have disparate

rates for the common contents they serve. In Section 5.6, we will show that even

if two content providers have dissimilar request rates for their common contents,

partitioning into three slices does better.

Based on the above argument for the performance of partitioning into three slices

in the case of two content providers, for K content providers with common files, one

should create a partition for each set of files that are served by a number of content

94

Algorithm 3 Partitioning a Cache serving K content providers with possibility of
common files among some content providers.

1: S ← S1 ∪ S2 ∪ . . . ∪ SK .
2: P ← Ø.
3: for f ∈ S do
4: Mf ← {k : Content provider k serves files f}.
5: if Exists (V,M) ∈ P such that M = Mf then
6: V ← V ∪ {f}.
7: else
8: P ← P ∪ {({f},Mf)}.

providers. A procedure for creating the optimal set of partitions P with the files

routed to each partition is given in Algorithm 3. Algorithm 3 runs in O(|S|2) where

S denotes the set of all files served by all content providers. Note that the number

of partitions can grow exponentially with the number of content providers.

Once the set of partitions P and the set of files corresponding to each partition

is determined, the optimal partition sizes can be computed through the following

optimization problem:

maximize
∑
k

Uk(hk) (4.14)

such that

|P|∑
p=1

Cp ≤ C

Cp ≥ 0, p = 1, 2, . . . , |P|,

where hit rate for CP k is computed as

hk =

|P|∑
p=1

λk
∑
i∈Vp

pk,i
(
1− e−λipk,iTp(Cp)

)

95

where Vp denotes the set of files requested from partition p, and λi ,
∑

k λk,i denotes

the aggregate request rate for content i through all content providers, and Tp denotes

the characteristic time of partition p.

Theorem 12. Given strictly concave utility functions, resource allocation prob-

lem (4.14) has a unique optimal solution.

Proof. In Appendix L, we show that the optimization problem (4.14) has a concave

objective function. Since the feasible solution set is convex, a unique maximizer

exists.

4.3.3 Implications

Cache Partitioning: Number of Slices, Management Complexity and

Static Caching. In our utility maximization formulations (4.11) and (4.14) and

their solution, the cache is only partitioned and allocated per CP for a set of dis-

tinct content objects owned by the CP; a cache slice is allocated and shared among

several CPs only for a set of common content objects belonging to these CPs. This

is justified by cache management complexity considerations, as further partitioning

of a slice allocated to a CP to be exclusively utilized by the same CP simply in-

curs additional management complexity. In addition, we show in Appendix M that

partitioning a cache slice into smaller slices and probabilistically routing requests to

content objects of a CP is sub-optimal.

As an alternative to CP-oriented cache allocation and partitioning approach, one

could adopt a per-object cache allocation and partitioning approach (regardless of

the CP or CPs which own the objects). Under such an approach, it is not hard

96

to show that the optimal per-object cache allocation strategy that maximizes the

overall cache hit rate is equivalent to the static caching policy [44]: the cache is only

allocated to the C most popular objects among all content providers. Alternatively,

such a solution can also be obtained using the same CP-oriented, utility maximization

cache allocation framework where only the most popular content from each provider

is cached.

Utility Functions and Fairness. Different utility functions in problems (4.11)

and (4.14) yield different partition sizes for content providers. In this sense, each

utility function defines a notion of fairness in allocating storage resources to different

content providers. The family of α-fair utility functions expressed as

U(x) =


x1−α−1

1−α α ≥ 0, α 6= 1;

log x α = 1,

unifies different notions of fairness in resource allocation [67]. Some choices of α

lead to especially interesting utility functions. Table 4.1 gives a brief summary of

these functions. We will use these utilities in Section 5.6 to understand the effect of

particular choices for utility functions, and in evaluating our proposed algorithms.

4.4 Online Algorithms

In the previous section, we formulated cache partitioning as a convex optimization

problem. However, it is not feasible to solve the optimization problem offline and

then implement the optimal strategy. Moreover, system parameters can change over

97

Table 4.1: α-fair utility functions

α Uk(hk) implication
0 hk hit rate
1 log hk proportional fairness
2 −1/hk potential delay

∞ limα→∞
h1−αk −1

1−α max-min fairness

time. Therefore, we need algorithms that can implement the optimal strategy and

adapt to changes in the system by collecting limited information. In this section, we

develop such algorithms.

4.4.1 Content Providers with Distinct Contents

The formulation in (4.11) assumes a hard constraint on the cache capacity. In

some circumstances it may be appropriate for the cache manager to increase the avail-

able storage at some cost to provide additional resources for the content providers.

One way of doing this is to turn cache storage disks on and off based on demand [70].

In this case, the cache capacity constraint can be replaced with a penalty func-

tion P (·) denoting the cost for the extra cache storage. Here, P (·) is assumed to

be convex and increasing. We can now write the utility and cost driven caching

formulation as

maximize
∑
k

Uk(hk(Ck))− P (
∑
k

Ck − C)

such that Ck ≥ 0, k = 1, . . . , K. (4.15)

Let W (C) denote the objective function in (4.15) defined as

98

W (C) =
∑
k

Uk(hk(Ck))− P (
∑
k

Ck − C).

A natural approach to obtaining the maximum value for W (C) is to use a gradient

ascent algorithm. The basic idea behind a gradient ascent algorithm is to move the

variables Ck in the direction of the gradient,

∂W

∂Ck
=
∂Uk
∂Ck

− P ′(
∑
k

Ck − C),

= U ′k(hk)
∂hk
∂Ck

− P ′(
∑
k

Ck − C).

Note that since hk is an increasing function of Ck, moving Ck in the direction of the

gradient also moves hk in that direction.

By gradient ascent, partition sizes should be updated according to

Ck ← max
{

0, Ck + γk

[
U ′k(hk)

∂hk
∂Ck

− P ′(
∑
k

Ck − C)
]}
,

where γk is a step-size parameter.

Theorem 13. The above gradient ascent algorithm converges to the optimal solution.

Proof. Let C∗ denote the optimal solution to (4). We show in Appendix N that

W (C∗) −W (C) is a Lyapunov function, and the above algorithm converges to the

optimal solution.

99

4.4.1.1 Algorithm Implementation

In implementing the gradient ascent algorithm, we restrict ourselves to the case

where the total cache size is C. Defining η , P ′(0), we can re-write the gradient

ascent algorithm as

Ck ← max
{

0, Ck + γk

[
U ′k(hk)

∂hk
∂Ck

− η
]}
.

In order to update Ck then, the cache manager needs to estimate ∂Uk
∂Ck

= U ′k(hk)
∂hk
∂Ck

by gathering hit rate information for each content provider. Instead of computing

U ′k(hk) and ∂hk/∂Ck separately, however, we suggest using

∂Uk
∂Ck

≈ ∆Uk
∆Ck

=
Uk(h

t
k)− Uk(ht−1

k)

Ct
k − C

t−1
k

,

where the superscripts t and t− 1 denote the iteration steps. We then use ∆Uk
∆Ck

as an

estimate of U ′k(hk)
∂hk
∂Ck

to determine the value of Ck at the next iteration.

Moreover, since we impose the constraint that
∑

k Ck = C, we let η take the

mean of the ∆Uk
∆Ck

values. The algorithm reaches a stable point once the ∆Uk
∆Ck

s are

equal or very close to each other. Algorithm 6 shows the rules for updating the

partition sizes.

4.4.2 Content Providers with Common Content

We now focus on the case where some contents can be served by multiple content

providers. Algorithm 3 computes the optimal number of partitions for this case. Let

100

Algorithm 4 Online algorithm for updating the partition sizes.

1: Start with an initial partitioning C0 ← (C1 ∪ C2 ∪ . . . ∪ CK).
2: Estimate hit rates for each partition by counting the number of hit requests

h0 ← (h1, . . . , hK).
3: Make arbitrary changes to the partition sizes ∆0, such that

∑
k ∆0

k = 0,
C1 ← C0 + ∆0.

4: Estimate the hit rates h1 for the new partition sizes.
5: t← 1.
6: δtk ←

(
Uk(h

t
k)− Uk(ht−1

k)
)
/
(
Ct
k − Ct−1

k

)
.

7: ηt ←
(∑

k δ
t
k

)
/K.

8: if maxk {δtk − ηt} > ε then
9: ∆t

k = γ(δtk − ηt).
10: Ct+1 ← Ct + ∆t.
11: Estimate hit rates ht+1.
12: t← t+ 1.
13: goto 6.

P and C = (C1, . . . , C|P|) denote the set of partitions and the vector of partition

sizes, respectively. The hit rate for content provider k can be written as

hk(C) =

|P|∑
p=1

∑
i∈Vp

λik(1− e−λiTp),

where Vp denotes the set of files requested from partition p, and λi denotes the

aggregate request rate at partition p for file i.

Similar to (4.15), we consider a penalty function for violating the cache size

constraint and rewrite the optimization problem in (4.14) as

maximize
∑
k

Uk(hk(C))− P (
∑
p

Cp − C)

such that Cp ≥ 0, p = 1, . . . , |P|. (4.16)

101

Let W (C) denote the objective function in the above problem. Taking the derivative

of W with respect to Cp yields

∂W

∂Cp
=
∑
k

U ′k(hk)
∂hk
∂Cp
− P ′(

∑
p

Cp − C).

Following a similar argument as in the previous section, we can show that a

gradient ascent algorithm converges to the optimal solution.

4.4.2.1 Algorithm Implementation

The implementation of the gradient ascent algorithm in this case is similar to

the one in Section 4.4.1.1. However, we need to keep track of hit rates for content

provider k from all partitions that store its files. This can be done by counting the

number of hit requests for each content provider and each partition through a K×|P|

matrix, as shown in Algorithm 5. Also, we propose estimating ∂W/∂Cp as

∂W

∂Cp
≈
∑
k

U ′k(hk)
∆hkp
∆Cp

,

where ∆hkp denotes the change in aggregate hit rate for content provider k from

partition p resulted from changing the size of partition p by ∆Cp.

4.5 Evaluation

In this section, we perform numerical simulations, first to understand the efficacy

of cache partitioning on the utility observed by content providers, and second to

evaluate the performance of our proposed online algorithms.

102

Algorithm 5 Online algorithm for updating the partition sizes.

1: Compute the number of partitions P using Algorithm 3.
2: Start with an initial partitioning C0 ← (C1 ∪ C2 ∪ . . . ∪ CP).

3: Estimate hit rates for each provider/partition pair H0 ←

 h11 . . . h1P
...

. . .
...

hK1 . . . hKP

.

4: Make arbitrary changes to the partition sizes ∆0, such that
∑

p ∆0
p = 0,

C1 ← C0 + ∆0.
5: Estimate the hit rates H1 for the new partition sizes.
6: t← 1.
7: δtp ←

∑
k U
′
k(h

t−1
k)(htkp − ht−1

kp)/(Ct
p − Ct−1

p).

8: ηt ←
(∑

p δ
t
p

)
/P .

9: if maxp {δtp − ηt} > ε then
10: ∆t

p = γ(δtp − ηt).
11: Ct+1 ← Ct + ∆t.
12: Estimate hit rates Ht+1.
13: t← t+ 1.
14: goto 6.

For our base case, we consider a cache with capacity C = 104. Each partition

uses LRU as the cache management policy. We consider two content providers that

serve n1 = 104 and n2 = 2×104 contents. Content popularities for the two providers

follow Zipf distributions, i.e. pi ∝ 1/iz, with parameters z1 = 0.6 and z2 = 0.8,

respectively. Requests for the files from the two content providers arrive as Poisson

processes with aggregate rates λ1 = 15 and λ2 = 10. The utilities of the two content

providers are U1(h1) = w1 log h1 and U2(h2) = h2. Unless otherwise specified, we

let w1 = 1 so that the two content providers are equally important to the service

provider.

103

0 5000 10000 15000

Cache size

2

4

6

8

10

12

U
til

ity
Partitioning
Sharing

Figure 4.3: Efficacy of cache partitioning when content providers serve distinct files.

We consider two scenarios here. In the first scenario, the two content providers

serve completely separate files. In the second scenario, files S0 = {1, 4, 7, . . . , 104}, are

served by both providers. For each scenario the appropriate optimization formulation

is chosen.

4.5.1 Cache Partitioning

To understand the efficacy of cache partitioning, we first look at solutions of

optimization problems (4.11) and (4.14). Here, we measure the gain in total utility

through partitioning the cache by computing the utility obtained by sharing the

cache between the content providers and the utility obtained by partitioning the

cache. Figure 4.3 shows the utility gain when content providers serve distinct files.

In this example, the aggregate utility increases by 10% from partitioning the cache.

Figure 4.4 shows the utilities for the case when files in S0 = {1, 4, 7, . . . , 104} are

served by both content providers. Two cases are considered here: a) request rates

for the common content are similar for two content providers. This is done by letting

104

0 5000 10000 15000

Cache size

2

4

6

8

10

12
U

til
ity

3 Partitions
2 Partitions
Sharing

(a)

0 5000 10000 15000

Cache size

2

4

6

8

10

12

U
til

ity

3 Partitions
2 Partitions
Sharing

(b)

Figure 4.4: Efficacy of cache partitioning when some content is served by both content providers.
Request rates for the common contents from the two content providers are set to be (a) similar,
and (b) dissimilar.

pk,1 > pk,2 > . . . > pk,n0 for both providers. b) Requests rates from the two content

providers for the common files are set to be dissimilar. This is done by setting the file

popularities for the second CP as p2,1 < p2,2 < . . . < p2,n0 . In both cases partitioning

the cache into three slices shows the best performance.

We next look at the effect of various parameters on cache partitioning, when

CPs serve distinct contents and when they serve some common content with similar

popularities. We fix the parameters of the second content provider, and study the

effect of changing weight parameter w1 and aggregate request rate λ1 of the first

content provider. We also change the Zipfian file popularity distribution parameter

z1. To study the effect of the utility function, we take it to be the α–fair utility

function and vary α for the first content provider, α1.

105

2 4 6 8 10
0

5

10

15

20

w
1

H
it

ra
te

5 10 15 20
0

5

10

15

20

λ
1

H
it

ra
te

0.6 0.8 1 1.2

z
1

0

5

10

15

20

H
it

ra
te

0 2 4 6 8 10

α
1

0

5

10

15

20

H
it

ra
te

2 4 6 8 10
0

2000

4000

6000

8000

10000

w
1

Pa
rt

iti
on

 s
iz

e

5 10 15 20
0

2000

4000

6000

8000

10000

λ
1

Pa
rt

iti
on

 s
iz

e

0.6 0.8 1 1.2

z
1

0

2000

4000

6000

8000

10000

Pa
rt

iti
on

 s
iz

e

0 5 10

α
1

0

2000

4000

6000

8000

10000

Pa
rt

iti
on

 s
iz

e

Figure 4.5: Effect of the parameters on hit rates and partition sizes when content providers serve
distinct files.

Figure 4.5 shows how hit rates and partition sizes of the two content providers

vary as functions of w1, λ1, z1 and α1. As expected, by increasing the weight w1,

content provider one gets a larger share of the cache, and hence a higher hit rate.

Increasing λ1 has no effect on the partition sizes. This is because the first con-

tent provider uses the log utility function, and it is easy to see that the derivative

U ′1(h1)∂h1/∂Cp does not depend on the aggregate rate. In our example, changing

the aggregate request rate for the second content provider with U2(h2) = h2 results

in different partition sizes. As the popularity distribution for contents from the first

content provider becomes more skewed, i.e. as z1 increases, the set of popular files

decreases in size. Consequently, the dedicated partition size for content provider

one decreases as z1 increases. Increasing α1 changes the notion of fairness between

106

2 4 6 8 10
0

5

10

15

20

w
1

H
it

ra
te

5 10 15 20
0

5

10

15

20

λ
1

H
it

ra
te

0.6 0.8 1 1.2

z
1

0

5

10

15

20

H
it

ra
te

0 2 4 6 8 10

α
1

0

5

10

15

20

H
it

ra
te

2 4 6 8 10
0

2000

4000

6000

8000

w
1

Pa
rt

iti
on

 s
iz

e

5 10 15 20
0

2000

4000

6000

8000

λ
1

Pa
rt

iti
on

 s
iz

e

0.6 0.8 1 1.2

z
1

0

2000

4000

6000

8000

Pa
rt

iti
on

 s
iz

e

0 5 10

α
1

0

2000

4000

6000

8000

Pa
rt

iti
on

 s
iz

e

Figure 4.6: Effect of the parameters on hit rates and partition sizes when some content is served
by both content providers.

the two content providers in favor of the second content provider, and the size of

the partition allocated to the first content provider and its hit rate decreases as α1

increases.

Figure 4.6 repeats the same experiment for the case when some common content

is served by both content providers. The cache is partitioned into three slices in this

case, one of them storing common content. Very similar behavior as in Figure 4.5 is

observed here.

To understand the fairness notion of the α-fair utility functions, we next use the

same utility function for both of the content providers, and vary the value of α to

see how the hit rates and partition sizes change. Figure 4.7 shows the effect of α

on hit rates and partition sizes for the case when content providers serve distinct

107

0 2 4 6 8 10

α

0

5

10

15

20
H

it
ra

te

0 5 10

α

0

2000

4000

6000

8000

10000

Pa
rt

iti
on

 s
iz

e

Figure 4.7: α-fair resource allocation for content providers serving distinct content.
Uk(hk) = h1−αk /(1− α).

files. As α increases, partition sizes change so that hit rates become closer to each

other. This is expected since the α-fair utility function realizes the max-min notion

of fairness as α→∞.

Figure 4.8 shows the changes in resource allocation based on the α-fair notion of

fairness when common content is served by the content providers.

4.5.2 Online Algorithms

Here, we evaluate the online algorithms presented in Section 4.4 through numer-

ical simulations. Requests are generated according to the parameters presented in

the beginning of the section, and the service provider adjusts partition sizes based

on the number of hits between iterations. The service provider is assumed to know

the utility functions of the content providers. The utility function of the first content

provider is fixed to be U1(h1) = log h1. We consider three utility functions for the

second content provider, namely U2(h2) = h2, U2(h2) = log h2 and U2(h2) = −1/h2.

108

0 2 4 6 8 10

α

0

5

10

15

20
H

it
ra

te

0 5 10

α

1000

2000

3000

4000

5000

6000

Pa
rt

iti
on

 s
iz

e

Figure 4.8: α-fair resource allocation when some content is served by both content providers.
Uk(hk) = h1−αk /(1− α).

We first consider the case where content providers serve distinct files. We initially

partition the cache into two equal size slices C1 = C2 = 5000 and use Algorithm 6

to obtain the optimal partition sizes. Figure 4.9 shows how the partition sizes for

the two content providers change at each iteration of the algorithm and that they

converge to the optimal values computed from (4.11), marked with dashed lines.

Next, we consider the case where some content is served by both content

providers. We first partition the cache into three slices of sizes C1 = C2 = 4000

and C3 = 2000, where slice 3 serves the common content, and use Algorithm 5 to

obtain the optimal partitioning. Figure 4.10 shows the changes in the three parti-

tions as the algorithm converges to a stable point. For each partition the optimal

size computed by (4.14) is shown by dashed lines.

109

20 40 60
2000

3000

4000

5000

6000

7000

8000

Iteration

Pa
rt

iti
on

 s
iz

e

CP 1
CP 2

(a) U2(h2) = h2.

10 20 30 40 50 60
3000

4000

5000

6000

7000

Iteration
Pa

rt
iti

on
 s

iz
e

CP 1
CP 2

(b) U2(h2) = log h2.

10 20 30 40 50 60
3000

4000

5000

6000

7000

Iteration

Pa
rt

iti
on

 s
iz

e

CP 1
CP 2

(c) U2(h2) = −1/h2.

Figure 4.9: Convergence of the online algorithm when content providers serve distinct files.
U1(h1) = log h1.

4.6 Discussion

In this section, we explore the implications of utility-driven cache partitioning

on monetizing caching service and present some future research directions. We end

with a brief discussion of the related work.

Decomposition. The formulation of the problem in Section 4.3 assumes that the

utility functions Uk(·) are known to the system. In reality the content providers may

not want to reveal their utility functions to the service provider. To handle this case,

we decompose optimization problem (4.11) into two simpler problems.

Suppose that cache storage is offered as a service and the service provider charges

content providers at a constant rate r for storage space. Hence, a content provider

needs to pay an amount of wk = rhk to obtain hit rate hk. The utility maximization

problem for content provider k can be written as

maximize Uk(
wk
r

)− wk (4.17)

110

20 40 60 80
0

2000

4000

6000

8000

Iteration

Pa
rt

iti
on

 s
iz

e

CP 1 CP 2 Shared

(a) U2(h2) = h2.

10 20 30 40 50 60
0

2000

4000

6000

8000

Iteration
Pa

rt
iti

on
 s

iz
e

CP 1 CP 2 Shared

(b) U2(h2) = log h2.

20 40 60 80
0

2000

4000

6000

8000

Iteration

Pa
rt

iti
on

 s
iz

e

CP 1 CP 2 Shared

(c) U2(h2) = −1/h2.

Figure 4.10: Convergence of the online algorithm when some content is served by both content
providers. U1(h1) = log h1.

such that wk ≥ 0

Now, assuming that the service provider knows the vector w, for a proportionally

fair resource allocation, the hit rates should be set according to

maximize
K∑
k=1

wk log (hk) (4.18)

such that
∑
p

Cp = C.

It was shown in [39] that there always exist vectors w and h, such that w

solves (4.17) and h solves (4.18); furthermore, the vector h is the unique optimal

solution.

Cost and Utility Functions. In Section 4.4, we defined a penalty function denoting

the cost of using additional storage space. One might also define cost functions based

111

on the consumed network bandwidth. This is especially interesting in modeling in-

network caches with network links that are likely to be congested.

Optimization problems (4.11) and (4.14) use utility functions defined as functions

of the hit rate. It is reasonable to define utility as a function of the hit probability.

Whether this significantly changes the problem, e.g. in the notion of fairness, is a

question that requires further investigation. One argument in support of utilities as

functions of hit rates is that a service provider might prefer pricing based on request

rate rather than the cache occupancy. Moreover, in designing hierarchical caches a

service provider’s objective could be to minimize the internal bandwidth cost. This

can be achieved by defining the utility functions as Uk = −Pk(mk) where Pk(mk)

denotes the cost associated with miss rate mk for content provider k.

4.7 Related Work

Internet cache management issues have been extensively studied in the context

of web caching (e.g., see [12, 23] and references therein). In this context, biased re-

placement policies for different kinds of content classes [41] and differentiated caching

services via cache partitioning [43, 45] haven been proposed and studied. None of

these studies explicitly deal with the cache allocation problem among multiple con-

tent providers. The emergence of content-oriented networking has renewed research

interests in cache management issues for content delivery, especially in the design of

cache replacement policies for the content-oriented architecture [8, 10, 47, 83]. The

cache allocation problem among content providers has attracted relatively little at-

tention. Perhaps most closely related to our work is the study in [33] where a

112

game-theoretic cache allocation approach is developed. This approach requires the

content providers to report the true demands from their content access. In con-

trast, we develop a general utility maximization framework for studying the cache

allocation problem. Since its first proposal by Kelly et al. [39], the network utility

maximization framework has been applied to a variety of networking problems from

stability analysis of queues [20] to the study of fairness in network resource alloca-

tion [51]. A utility maximization framework for caching policies was developed in [17]

to provide differentiated services to content. This framework was adopted by [13]

to study the cache resource allocation problem in an informal and heuristic manner.

We make precise statements to support the observations in [13]. In this respect,

our contribution lies in establishing the key properties of CP utilities as a function

of cache sizes and in postulating cache partitioning as a basic principle for cache

sharing among content providers. Furthermore, we develop decentralized algorithms

to implement utility-driven cache partitioning, and prove that they converge to the

optimal solution.

4.8 Conclusion

We proposed utility-based partitioning of a cache among content providers, and

formulated it as an optimization problem with constraints on the service providers

cache storage size. Utility-driven cache partitioning provides a general framework for

managing a cache with considerations of fairness among different content providers,

and has implications on market economy for service providers and content distrib-

utors. We considered two scenarios where 1) content providers served disjoint sets

113

of files, or 2) some content was served by multiple content providers. We developed

decentralized algorithms for each scenario to implement utility-driven cache parti-

tioning in an online fashion. These algorithms adapt to changes in request rates

of content providers by dynamically adjusting the partition sizes. We theoretically

proved that these algorithms are globally stable and converge to the optimal solution,

and through numerical evaluations illustrated their efficiency.

114

CHAPTER 5

MODELING AND OPTIMIZATION OF PENDING
INTEREST TABLE TIMEOUT

5.1 Introdcution

Pending Interest Table (PIT) is one of the core components of the Named Data

Networking (NDN) architecture. It performs Interest aggregation by keeping track

of currently unsatisfied Interest packets. PITs provide advantages such as enabling

communicating without the knowledge of source and destination, reducing bandwidth

usage, and better security, to name a few. To prevent PIT size bloat and ensure

efficient I/O operations at line speed, PIT entries are purged after a timeout period.

A timeout also provides protection against flooding attacks [79].

An efficient design of the PIT is therefore an important factor in the performance

of NDN at wire speed, and an accurate assessment of the PIT size is key to achieving

this. Despite many experimental and numerical evaluations [15,75,77,81], not much

attention has been paid to analytic modeling of Pending Interest Tables. In this

chapter, we analyze an LRU cache with a Pending Interest Table, to compute the

cache hit probability, Interest aggregation probability, and the size of the Pending

Interest Table as functions of the PIT timeout. Exploiting our analysis, we then

study the problem of optimizing the PIT timeout.

115

In this chapter, we analyze an LRU cache with a Pending Interest Table. Our

analysis is generic and can be easily modified to model other policies such as FIFO

and Random. We also formulate an optimization problem for computing the optimal

PIT timeout.

5.2 Model Description

In this section, we introduce our model for a cache with requests arriving for a

set of K unique files of unit size. Throughout this chapter, we will use the terms

content and file interchangeably. We assume that each file resides permanently at a

content custodian that the cache can access.

Once a request arrives for a file that is in the cache, the request is served instantly.

However, if the content is not found in the cache, the request is forwarded to the

content custodian. We consider the case where downloading content k from the

custodian incurs a non-zero delay denoted by random variable Dk. With a misuse of

notation, we will use Dk(·) to denote the CDF of Dk. We allow for different download

delay distributions for different files.

It is assumed that the cache employs a Pending Interest Table (PIT) to aggregate

similar requests arriving while the content is being downloaded to the cache. With

the arrival of the first request to a file that is not in cache, an entry is created in the

PIT. All successive requests for the same content during time Dk are aggregated at

the PIT and not forwarded to the custodian. A PIT entry is deleted after a timeout

period τ , or once the content is downloaded into the cache.

116

Requests for file k arrive according to a renewal process with inter-arrival distribu-

tion Fk(·), and the cache employs the Least Recently Used (LRU) policy for content

evictions. We rely on the characteristic time approximation to model the LRU policy

as a Time-To-Live (TTL) cache in which content eviction occurs upon the expiration

of a timer. By relying on the TTL notion, our analysis can be simply adapted to

policies other than LRU, as TTL caches admit a general approach to their analysis

and are known to provide accurate tools for modeling replacement-based caches such

as LRU, FIFO, etc.

5.2.1 Renewal Arrivals

Let Xi be the time interval between the (i − 1)st and the i-th requests for a

given file. Inter-request times are assumed to be i.i.d and have distribution function

F (x) = P(Xi ≤ x). Let λ = 1/E[Xi] denote the arrival rate for the given file. With-

out loss of generality, we assume that a request for a file that is not in the cache

occurs at t = 0, i.e. X0 = 0. Let Mt denote the number of requests for the given

file in the interval (0, t]. Mt is called the renewal (counting) process. Note that the

request at t = 0 is excluded, i.e. M0 = 0. Also, let

τn = X1 +X2 + . . .+Xn, n ≥ 1 (τ0 = 0),

denote the time until the arrival of the nth request. We have

P(τn ≤ t) = P(X1 +X2 + . . .+Xn ≤ t) = F (n)(t),

117

where F (n)(t) denotes the n-fold convolution of the distribution function F (x) with

itself.

The expected number of renewals in time interval (0, t] is the renewal function

m(t) = E[Mt], and can be expressed as

m(t) =
∞∑
n=1

F (n)(t), t ≥ 0.

Poisson Arrivals

A Poisson process is a renewal process with parameter λ whose inter-arrival times

have the exponential distribution F (x) = 1−e−λx. For a Poisson process, the renewal

function simplifies to m(t) = λt. We will use Poisson arrivals in studying the LRU

cache in order to obtain closed form expressions for our metrics of interest.

5.2.2 Cache Characteristic Time

Our analysis in this chapter is based on the notion of cache characteristic time

explained in Appendix E. According to this notion, for an LRU cache of size C, the

probability that a request for file k results in a hit can be approximated by

hk = 1− e−λkT ,

where λk is the request rate for file k, and T is a constant denoting the characteristic

time of the cache and is computed as the unique solution to the equation

K∑
k=1

(1− e−λkT) = C,

118

0 τ

Γτ

Z

(a) d ≥ τ

0 d

Γd T

Z

(b) d < τ

Figure 5.1: An entry is created in PIT for the file at time t = 0. Content enters the cache at time
t = D, and PIT entry is deleted. (a) The content will be evicted from cache at time tE = D+T0 if
ΓD > T0. (b) The TTL will be reset if ΓD ≤ T0, and the content will continue to stay in the cache
as long as Yn ≤ Tn. Here, tE = τN+MD

+ TN denotes the time that the content is evicted from
cache.

where C is the capacity of the LRU cache.

5.2.3 Metrics of Interest

In our analysis, we are mainly interested in computing the cache hit probability

and request aggregation probability at PIT. We compute the cache hit probability

for each file as well as the probability that an entry exists in the PIT for a file, and

capture the distribution of the PIT size as a function of the timeout value τ . We also

compute the rate at which requests for different files are forwarded to the content

custodian.

5.3 LRU with Poisson Arrivals

In this section, we model an LRU cache of capacity C with requests arriving to the

cache according to renewal processes. Figure 5.1 illustrates the cache dynamics with

requests arriving for a given content. With renewal processes, inter-request times are

i.i.d and follow distribution Fk. In Figure 5.1, Γt denotes the period between time

119

t and the arrival of the next request, and is known as the excess life of the renewal

process at time t.

With the arrival of the first missed request an entry is created for the file in the

PIT. The PIT timeout value is assumed to be τ . After the PIT entry is created,

consecutive requests for the file are aggregated until either the content is downloaded

to the cache at time d, i.e. when d < τ , or the PIT entry expires, i.e. when τ ≤ d.

Content is stored at the cache only if d < τ .

We model the LRU policy as a TTL cache, and hence when a content enters the

cache, its TTL is set to T . If the next request for the file arrives after the TTL

expires, i.e. Γd > T , the content will be evicted from cache at time t = d + T .

However, if a request arrives before the TTL expires, the TTL will be reset to T .

The file will remain in the cache as long as successive requests arrive no later than

the TTL expires.

The process explained above can be considered as a renewal cycle of length Z

that begins with a request for a content that is neither in cache nor PIT, and ends

with the next request for which the content cannot be found in cache or PIT. These

requests are marked red in Figure 5.1, and are the requests that are forwarded to

content custodian. Requests that arrive while there is an entry for the content in the

PIT are aggregated. Once the content is cached, arriving requests generate cache

hits. Note that the cycles explained above are statistically the same, and without

loss of generality, we consider a cycle starting at t = 0.

Let Ak denote the number of aggregated requests in a cycle. With renewal pro-

cesses, the expected number of arrivals within a period ∆t equals mk(∆t). Therefore,

120

we have

E[Ak | Dk = d] = mk(min (d, τ)) = mk(τ)1{d≥τ} +mk(d)1{d<τ}.

The expected number of aggregated requests then is

E[Ak] =

∫ ∞
0

AkdDk(d) = mk(τ)
(

1−Dk(τ)
)

+

∫ τ

0

mk(d)dDk(d). (5.1)

From Figure 5.1 we see that that if d ≥ τ , the cycle Z ends at t = τ + Γτ . Also,

if Γd > T , the cycle Z ends with no cache hits. With Γd ≤ T we observe the first

cache hit. Therefore, assuming d < τ , the first cache hit occurs with probability

P(Γd ≤ T). Recall that Γt is known as the excess life of a renewal process at time t,

for which the distribution function is expressed as (see Eq. (6.1) of Chapter 5 in [38])

P(Γt ≤ γ) = Fk(t+ γ)−
∫ t

0

(
1− Fk(t+ γ − x)

)
dmk(x).

The second hit occurs if the next request inter-arrival time is no more than T .

Assuming that exactly Nk requests result in cache hit, we must have Nk − 1 inter-

arrival times that are smaller than or equal to T , followed by an inter-arrival time

that is greater than T . Therefore, given that d < τ , the number of cache hits is

characterized by a geometric distribution. We have

P(Nk = n | d < τ) =


PΓ n = 0,

(1− PΓ)(1− PT)n−1PT n ≥ 1,

121

where

PΓ = 1− P(Γd ≤ T),

is the probability of no cache hits, and

PT = 1− Fk(T),

denotes the probability that the request inter-arrival time is larger than T . This

yields

E[Nk | d < τ] = (1− PΓ)/PT .

The expected number of cache hits per cycle then is

E[Nk] =

∫ τ
0
P(Γd ≤ T)dDk(d)

1− Fk(T)
. (5.2)

5.3.1 Poisson Arrivals and Exponentially Distributed Delays

With a Poisson process, the renewal function for file k is mk(t) = λkt; using (5.1)

allows us to write the expected number of aggregated requests in a cycle as

E[Ak] = λkτ(1−Dk(τ)) + λk

∫ τ

0

ddDk(d).

Assuming exponentially distributed download delays, we obtain

E[Ak] = λkτe
−τ/E[Dk] + λkE[Dk]

(
1− (1 +

τ

E[Dk]
)e−τ/E[Dk]

)
=
(

1− e−τ/E[Dk]
)
λkE[Dk].

122

With Poisson arrivals, request inter-arrival times have the exponential distri-

bution Fk(t) = 1− eλkt. Moreover, due to the memoryless property of exponential

distribution, Γt also follows an exponential distribution with rate λk, i.e.,

P(Γt ≤ γ) = 1− e−λkγ.

Based on (5.2), the expected number of cache hits per cycle, hence, equals

E[Nk] = Dk(τ)
(
eλkT − 1

)
.

Assuming that the download delays follow the exponential distribution, we obtain

E[Nk] =
(

1− e−τ/E[Dk]
)(
eλkT − 1

)
.

Cache Hit Probability: We can now write the cache hit probability for content

k as the expected number of hit requests divided by the expected total number of

requests,

hk =
E[Nk]

1 + E[Ak] + E[Nk]
=

(1− e−τ/E[Dk])(eλkT − 1)

1 + (1− e−τ/E[Dk])(λkE[Dk] + eλkT − 1)
. (5.3)

Note that assuming download delay is zero, i.e. E[Dk] = 0, we obtain

hk = 1− e−λkT which is the expression given by Che et al. [12] for the hit proba-

bility of an LRU cache with Poisson arrivals. Also, as τ →∞ we get

hk =
eλkT − 1

λkE[Dk] + eλkT
,

123

which is the expression obtained in [16] for cache hit probability under the assumption

that PIT entries do not timeout.

Note that the value of the characteristic time T is obtained by solving the fixed-

point equation
K∑
k=1

hk = C.

PIT Aggregation Probability: We can write the probability of request aggre-

gation in PIT for file k as

ak =
E[Ak]

1 + E[Ak] + E[Nk]
=

λkE[Dk](1− e−τ/E[Dk])

1 + (1− e−τ/E[Dk])(λkE[Dk] + eλkT − 1)
. (5.4)

Note that ak also denotes the probability of having an entry in the PIT for content k.

To compute statistics regarding the PIT size we proceed as follows. We define

Bernoulli random variables Ak,∀k to indicate whether file k resides in PIT, i.e.

P(Ak = 1) = 1− P(Ak = 0) = ak. We then define S =
∑

kAk to denote the number

of entries in the PIT, i.e. the PIT size. The random variable S follows a Poisson

Binomial distribution with mean µS =
∑

k ak, and variance σ2
S =

∑
k ak(1− ak).

It is well known that a Poisson Binomial distribution can be approximated by a

Gaussian distribution [50]. Therefore, we approximate the PIT size distribution with

a Gaussian distribution with mean µS , and variance σ2
S . In Section 5.6, we show that

a Gaussian distribution accurately approximates the PIT size distribution.

Request Forwarding Probability: In each cycle that was defined earlier in

the section, one request is forwarded to the custodian. Therefore, the probability

that a request gets forwarded to the custodian is

124

fk =
1

1 + E[Ak] + E[Nk]
=

1

1 + (1− e−τ/E[Dk])(λkE[Dk] + eλkT − 1)
. (5.5)

The average rate at which requests get forwarded to the custodian then can be

obtained by

f =
∑
k

λkfk.

In the following two sections, we exploit the results developed here to i) optimize

the PIT timeout τ when PIT size is fixed a priori, and ii) formulate the memory-

bandwidth tradeoff as a convex optimization problem.

5.4 Constrained PIT Size

In this section, we focus on the problem of setting τ so that the probability of

overflowing a PIT of size Θ is less than or equal to δ. This corresponds to the

following PIT timeout optimization problem:

maximize τ (5.6)

such that P(S(τ) ≥ Θ) ≤ δ,

where S(τ) is a random variable denoting the PIT size as a function of the timeout

value τ . As discussed in the previous section, the PIT size can be approximately

modeled as a Gaussian distribution. Our approach is to set the timeout value such

that the expected PIT size µ(τ) equals (1−ε)Θ where ε > 0 is chosen in a way that the

probability of PIT size being larger that Θ is no more than δ, i.e. P(S(τ) ≥ Θ) ≤ δ.

125

With the assumption of a Gaussian distribution with mean µ(τ) = (1− ε)Θ and

variance σ2, we have

P(S(τ) ≥ Θ) = 1/2 − 1/2 erf

(
Θ− (1− ε)Θ

σ
√

2

)
= 1/2 − 1/2 erf

(εΘ

σ
√

2

)
,

where erf(·) denotes the error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

In order to guarantee P(S(τ) ≥ Θ) ≤ δ, we should have

ε ≥ σ
√

2

Θ
erf−1(1− 2δ). (5.7)

With ε satisfying the above inequality, the timeout value can be computed ac-

cording to the equation

µ(τ) =
∑
k

ak(τ),

where ak(τ) denote request aggregation probability for file k, and can be computed

based on the expression for ak in (5.4). Therefore, we can re-write the optimization

problem (5.6) as follows

maximize τ (5.8)

such that µ(τ) ≤ (1− ε)Θ.

Note that ε and σ2 are also functions of the PIT timeout.

126

The constraint in the above optimization problem does not define a convex region.

However, we observe that PIT size µ(τ) is an increasing function of τ , and rely on

our intuition that the smallest τ violating the constraint µ(τ) < (1− ε)Θ must be

the optimal solution. Therefore, we assume that problem (5.8) has a unique solution

that can be found through a linear search.

5.4.1 Online Algorithm

Assuming the optimization problem (5.8) can be solved to find the optimal so-

lution, due to the system dynamics, e.g. changes in request arrival rate, it is still

not practical to select a timeout value that guarantees performance requirements.

Therefore, we need algorithms to adapt τ to changes in the system.

Here, we rely on our intuition to assume that µ(τ)− (1− ε)Θ is an increasing

function of τ , and hence the solution of optimization problem (5.8) is the root of the

equation µ(τ)− (1− ε)Θ = 0. Therefore, we can use Newton’s method to find the

optimal value of τ . Newton’s method defines an iterative algorithm starting with

an initial guess and updating the parameter at every step. Here, we use a modified

Newton’s method so that we do not have to compute a derivative. Since we assume

µ(τ)− (1− ε)Θ is an increasing function of τ , i.e. its derivative with respect to τ is

non-negative, τ should be updated as

τt+1 ← τt − γ
(
µ(τt)− (1− εt)Θ

)

Here, γ > 0 controls the step size at each iteration.

127

In order to compute εt at each iteration using (5.7), we need to compute the

variance of the PIT size. To do so, we propose keeping records of the last n PIT

size observations Si, i = 1, . . . , n. An unbiased estimate of the variance can then be

obtained by

σ̃2
t =

1

n− 1

n∑
i=1

(Si − S̄t)2,

where S̄t = 1
n

∑
Si denotes the sample mean at time t. We can further use the

sample mean S̄t as an estimate of µ(τt). Hence, we can use the following iterative

algorithm for updating the timeout at each step

τt+1 ← τt − γ
(
S̄t − (1− εt)Θ

)
. (5.9)

We show in Section 5.6 that the above algorithm is effective in finding the optimal

timeout. However, it requires a lot of book-keeping for estimating the mean and

variance of the PIT size. Therefore, we propose an update rule for τ that does not

require such an estimation. With an incoming message, let 1{S≥Θ} denote whether

the current PIT size is larger than the threshold Θ. Now, let λ denote the overall

request rate, and consider the following differential equation

τ̇ = γδ(1− 1{S≥Θ})λ− γ(1− δ)1{S≥Θ}λ. (5.10)

Note that τ increases when the current PIT size is smaller than the threshold Θ and

decreases otherwise. Taking the expectation of both sides of the above differential

equation, and noting that E
[
1{S≥θ}

]
= P(S ≥ Θ), we obtain

128

E[τ̇] = γδ(1− P(S ≥ Θ))λ− γ(1− δ)P(S ≥ Θ)λ.

At steady state, E[τ̇] = 0, and we obtain P(S ≥ Θ) = δ. In Section 5.6, we show

that this simple algorithm is indeed effective in finding the optimal solution for PIT

timeout.

5.5 Memory-Bandwidth Tradeoff

A major benefit of caching to ISPs is that it reduces inter-domain traffic and

hence reduces bandwidth costs. However, there is a cost associated with the memory

consumed by caches. In an ICN, request aggregation by PIT reduces outgoing traffic

even further while incurring additional costs for PIT management. In this section,

we formulate the memory-bandwidth tradeoff as an optimization problem with the

objective of minimizing the aggregate bandwidth usage cost and cache and PIT

storage costs.

Here, we implement an LRU cache as a Time-To-Live (TTL) cache based on

the characteristic time approximation discussed in Section 5.2. By doing so, cache

size can be controlled by the characteristic time T . As T increases, cache size grows

larger, producing more cache hits and hence reducing the traffic forwarded upstream.

Similarly, PIT size can be controlled using the timeout value τ . PIT size grows as τ

is increased, which results in more request aggregation, and less request forwarding.

Although cache size is mainly a function of the characteristic time T , it is clear

from (5.3) that it is also affected by PIT timeout value τ . Similarly, PIT size is

affected by the value of characteristic time T . In the remainder, we will use C(τ, T)

129

and S(τ, T) to denote the expected cache and PIT sizes, respectively. Also, we define

bandwidth consumption in terms of the expected request forwarding rate, i.e.

B(τ, T) =
∑
k

λkfk(τ, T),

where fk(τ, T) is the request forwarding probability for file k with the expression

given in (5.5).

We quantify the cost of bandwidth by Lb(B) where B is the request forwarding

rate. Similarly, we quantify cache and PIT storage costs by convex functions Lc(C)

and Ls(S) where C and S denote the size of cache and PIT, respectively. Therefore,

we solve for the trade-off between memory and bandwidth costs through the following

optimization problem:

minimize Lb

(
B(τ, T)

)
+ Lc

(
C(τ, T)

)
+ Ls

(
S(τ, T)

)
(5.11)

such that τ, T ≥ 0.

Remark 1: Problem (5.11) is not a convex optimization problem, and finding the

optimal solution is hard in general. It is easy to see that two important variants of

the problem with i) fixed cache size, and ii) fixed PIT size are also non-convex.

Remark 2: For a triplet (B∗, C∗, S∗) that minimizes the total cost in (5.11), in

general there are multiple (τ, T) pairs that achieve the same objective. Our many

numerical experiments also suggest that finding a (τ, T) pair that is a local minima

results in considerable cost savings, and is comparable in performance to a global

minimum that is computed via brute-force. Based on this observation, we develop

130

Algorithm 6 Online algorithm for minimizing total cost.

1: Start with an initial guess x0 ← (τ0, T0).
2: Use x0 and measure system cost W (x0).
3: for t = 1, 2, . . . do
4: Select a unit vector u uniformly at random.
5: Let yt ← xt + δu.
6: Use yt and measure system cost W (yt).

7: Estimate gradient as g(xt) = W (yt)−W (xt)
δ

u.
8: xt+1 ← xt − γtg(xt).

an algorithm described in the remainder of the section to find a local minimizer

to (5.11).

5.5.1 Online Algorithm

Although optimization problem (5.11) can not be solved in polynomial time to

find the optimal timeout and characteristic time values, a local minimum can be

computed. For a system operating with some values set for parameters (τ, T), finding

a local minimum around (τ, T) can considerably reduce system costs. In this section,

we develop an algorithm to achieve this.

Let W (τ, T) denote the objective function in (5.11). A natural decentralized

approach in finding a local minimum for W (·) is to use gradient descent. The basic

idea behind gradient descent is to move the variables τ and T in the opposite direction

of the gradient

∇W = (
∂W

∂τ
,
∂W

∂T
).

By gradient descent, the parameters should be updated according to

τ ← max

{
0, τ − γ ∂W

∂τ

}
,

131

and

T ← max

{
0, T − γ ∂W

∂T

}
,

where γ > 0 is the step-size parameter.

In order to implement gradient descent based on the above update rules, one

needs to compute the partial derivatives ∂W/∂τ and ∂W/∂T . The expressions for

these partial derivatives are unwieldy and cumbersome to derive. Instead, we propose

an iterative algorithm that uses an estimated gradient at each iteration. We use

∂W

∂τ
≈ ∆W

∆τ
and

∂W

∂T
≈ ∆W

∆T
,

where ∆W denotes the changes in cost value, while ∆τ and ∆T denote the changes

in PIT timeout and cache characteristic time. Our proposed algorithm is based on

the randomized gradient descent algorithm described in [56], and is summarized in

Algorithm 6. The basic idea is to select a point uniformly at random around the

current position and move there if cost is reduced. Note that for an n-dimensional

problem, here n = 2, this method is only O(n) slower than the standard gradient

method in converging to a local optima [68]. In the next section, we will show that

Algorithm 6 is effective in practice.

Remark: Algorithm 6 is most suitable when there is an estimate for optimal

values of τ and T for example from an approximate solution to (5.11). Starting with

a (τ, T) pair that is close to the optimal solution, one can find the optimal solution

through Algorithm 6.

132

100 102 104 106

File index

0

0.2

0.4

0.6

0.8

1

H
it

pr
ob

ab
ili

ty

Simulation
Model(τ

∞

)

Model

(a)

100 102 104 106

File index

0

0.05

0.1

0.15

0.2

A
gg

re
ga

tio
n

pr
ob

ab
ili

ty

Simulation
Model(τ

∞

)

Model

(b)

100 102 104 106

File index

0

0.2

0.4

0.6

0.8

1

Fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y

Simulation
Model(τ

∞

)

Model

(c)

Figure 5.2: Per file probability of (a) cache hit, hk, (b) PIT aggregation, ak, and (c) request
forwarding, fk. The curve with label ‘Model(τ∞)’ shows the probability values when τ = ∞, i.e.
ignoring the effect of PIT timeout.

5.6 Performance Evaluation

In this section, we first evaluate the accuracy of the model developed in Sec-

tion 5.3, and then evaluate the performance of the online algorithms described in

Sections 5.4.1 and 5.5.1.

In the following evaluations, we simulate an LRU cache of size C = 10, 000, where

requests arrive for K = 106 files. File popularities follow a Zipf distribution with

parameter α = 0.8, i.e. λk ∝ 1/kα. Requests for files arrive according to Poisson

processes, and the aggregate request rate is assumed to be λ = 105 requests per

second. We also assume that file download delays follow an exponential distribution

with mean 100ms for all files. Also, PIT timeout is set to τ = 100ms.

5.6.1 Model Evaluation

Figures 5.2(a)-(c) show the cache hit probability hk, PIT aggregation probability

ak, and request forwarding probability fk for individual files. It is clear that our

133

4200 4400 4600 4800 5000 5200

PIT size

0

2

4

6

Pr
ob

ab
ili

ty
 d

en
si

ty
×10-3

Simulation
Model

(a)

0 100 200 300 400 500

PIT timer value (ms)

0

2000

4000

6000

8000

A
ve

ra
ge

 P
IT

 s
iz

e

Simulation
Model

(b)

Figure 5.3: (a) Approximating PIT size distribution with a Gaussian. (b) Average PIT size increases
with PIT timeout.

model accurately estimates these probabilities and agrees with simulation results.

The green curves in Figures 5.2(a)-(c) correspond to the model in [16] which ignores

the effect of PIT timeout in the analysis. The effect of PIT timeout is especially

clear on request aggregation and forwarding probabilities.

In Section 5.3, we advocated using the Gaussian distribution to approximate the

size of the Pending Interest Table. Figure 5.3(a) shows the PIT size distribution com-

puted from simulations, as well as a Gaussian distributions with moments computed

based on the discussion in Section 5.3. It is clear that the Gaussian distribution

accurately represents the distribution of the PIT size. Also, Figure 5.3(b) shows

the effect of timeout value τ on the average PIT size. It is clear that our model

accurately captures the average PIT size.

134

5.6.2 Constrained PIT Size

In this section, we assume that PIT is constrained to have no more than Θ = 2500

entries, and that incoming Interests will be dropped if the PIT contains 2500 entries.

Here, we evaluate the performance of the algorithm described in Section 5.4.1

Figures 5.4(a) and (b) show the changes in PIT timeout value based on the

update rule (5.9) when Interest drop probability is bounded by δ ∈ {10−3, 10−6}.

Figures 5.4(c) and (d) show how the PIT size changes over time. The red lines in

Figures 5.4(a)-(d) denote the optimal values for τ and µ(τ) obtained by solving (5.8).

Note how a smaller δ results in smaller PIT timeout and size.

We also use the update rule (5.10) to find the optimal timeout value for the above

setting. Figure 5.5 shows the convergence of the PIT timeout to the optimal values.

The convergence of PIT timeout is not smooth compared to Figures 5.4(a) and (b),

but updates in this case require no estimation of PIT size mean and variance.

5.6.3 Memory-Bandwidth Tradeoff

Here, we use Algorithm 6 to find a solution for PIT timeout value and cache

characteristic time so as to reduce the total system cost. For the bandwidth cost we

take the following cost function

Lb(B) = βeη(B−R),

with β, η and R as costs parameters. This cost function was proposed in [49] based

on the motivation that the price charged by a server is low when the server is un-

derloaded, i.e. B < R, and increases exponentially when the server operates in the

135

0 500 1000 1500 2000 2500

Time (# of iterations)

70

75

80

85

90

PI
T

 ti
m

eo
ut

, τ
 (

m
s)

δ = 10
-3

(a)

0 500 1000 1500 2000 2500

Time (# of iterations)

70

75

80

85

90

PI
T

 ti
m

eo
ut

, τ
 (

m
s)

δ = 10
-6

(b)

0 500 1000 1500 2000 2500

Time (# of iterations)

2000

2100

2200

2300

2400

2500

PI
T

 s
iz

e

δ = 10
-3

(c)

0 500 1000 1500 2000 2500

Time (# of iterations)

2000

2100

2200

2300

2400

2500

PI
T

 s
iz

e

δ = 10
-6

(d)

Figure 5.4: Convergence of PIT timeout and PIT size to their optimal values with update rule (5.9)
with request dropping probability set to (a) δ = 10−3, and (b) δ = 10−6.

136

0 2 4 6 8 10

Time (# of iterations) ×104

70

75

80

85

90

PI
T

 ti
m

eo
ut

, τ
 (

m
s)

δ = 10
-3

Figure 5.5: Convergence of PIT timeout to optimal value using update rule (5.10).

overloaded regime, i.e. B > R. Here, we take β = η = 0.01 and R = 2 × 104. For

cache and PIT storage costs we also usage

Lc(C) = e0.005(C−2000) and Ls(S) = e0.005(S−1000),

respectively.

Using brute-force to solve the optimization problem (5.11) with the above cost

functions, we obtain the optimal solution to be at τ ∗ = 90ms and T ∗ = 200ms, pro-

ducing a cache of size C∗ = 3567 and a PIT with S∗ = 1478 entries. Figure 5.6 shows

the convergence of the PIT timeout and cache characteristic time to their optimal

values producing the optimal cache and PIT sizes. We observe that Algorithm 6

finds the global optimum in this example. In fact, we observe that, in most of our

experiments, our approach either finds the optimal solution or gets very close it.

137

100 101 102

Time (# of reqs)

60

80

100

120

140

PI
T

 ti
m

eo
ut

, τ
 (

m
s)

100 101 102

Time (# of iterations)

100

120

140

160

180

200

220

C
ha

ra
ct

er
is

tic
 ti

m
e,

 T
 (

m
s)

100 101 102

Time (# of iterations)

1400

1600

1800

2000

2200

PI
T

 s
iz

e

100 101 102

Time (# of iterations)

1500

2000

2500

3000

3500

4000

C
ac

he
 s

iz
e

Figure 5.6: Convergence of PIT timeout τ and cache characteristic time T to the optimal values,
producing the optimal PIT and cache sizes. Optimal parameter values obtained by solving (5.11)
are shown through red lines.

138

5.7 Related Work

Prompted by the PIT size explosion, researchers have made a great effort in design

and implementation of fast and scalable Pending Interest Tables, and reducing the

required table size [15, 55, 75, 77, 81]. Dai et al. [15] were among the first to study

PIT feasibility and proposed a tree-like structure for PIT to ensure fast look-up

and update operations. You et al. [80] rely on Bloom Filters in order to reduce

the memory space for implementing PITs. Authors in [74] propose a semi-stateless

forwarding scheme in which requests are tracked every d hops instead of tracking each

request at every on-path router. Virgilio et al. [76] provide a performance evaluation

of the existing PIT architectures in terms of resilience to overload conditions. Their

results reveal differentiated weaknesses in each architecture, emphasizing the need for

better PIT management strategies. Their hint for a better mechanism is to manage

a dynamic PIT timeout that adapts to the changes in network load. This is the

approach we took in this chapter.

5.8 Conclusion

In this chapter, we first consider the problem of modeling an LRU cache with

a Pending Interest Table. It is assumed that in case of a cache miss, it would

take some time to download the content to the cache, where the download delay is

modeled as a random variable. While the content is being downloaded to the cache,

requests arriving for the content are aggregated at the Pending Interest Table, and

not forwarded to the content custodian in order to reduce the load on the server. To

prevent the PIT size from growing excessively large, PIT entries are removed after a

139

certain timeout period. We derive expressions for the cache hit probability, Interest

aggregation probability, and the size of the Pending Interest Table as functions of

the PIT timeout. Drawing on our analytical model, we then consider the problem

of PIT timeout optimization with a strict constraint on the PIT size. Finally, we

formulate the memory-bandwidth tradeoff as an optimization problem where the

objective is to minimize the total cost of bandwidth usage and storage cost of cache

and PIT. We develop online algorithms for the two optimization problems. We

perform numerical simulations that demonstrated the accuracy of our approach in

modeling LRU caches with Pending Interest Tables, and showed the efficacy of our

online algorithms in finding the optimal timeout value and reducing system costs.

140

CHAPTER 6

CONCLUSION

This thesis is an effort in modeling and analyzing cache-enabled networks. Multi-

ple aspects are considered and analytically studied with the purpose of understanding

network performance and developing techniques to optimize them.

The problem of developing optimal joint routing and caching policies in a network

supporting in-network caching with the goal of minimizing expected content-access

delay is studied first. The problem is proven to be NP-complete, and low-complexity

approximation algorithms are designed and shown to achieve near optimal perfor-

mance.

Utility-driven caching is studied next where utilities are associated with each

content expressed as functions of the corresponding content hit probability. Utility-

driven caching provides a general framework for defining caching policies with con-

siderations of fairness among various groups of files, and implications on market

economy for cache service providers and content publishers. This framework has the

capability to model existing caching policies such as FIFO and LRU, as utility-driven

caching policies.

The problem of cache resource allocation among content providers is con-

sider next, and a utility-optimizing framework is developed to determine a shar-

ing/partitioning strategy to maximize the utility of content providers.

141

Finally, the performance of caching policies in accordance with the data struc-

tures proposed in future Internet architecture designs is considered. An analytical

framework is provided that provides insights into the system behavior and enables

developing algorithms for optimizing the performance.

142

APPENDICES

A Complexity of Network with Two Caches

Proof. Consider the highlighted elements of the matrix in Figure 1, and let r1 denote

the first row of the matrix. Also, let r2 and r3 denote the first two rows below the

second horizontal line. It is easy to see that if these three rows are selected to be

in R, any assignment satisfying Proposition 2 should have −s(r1) = s(r2) = s(r3).

Otherwise, the signed sum of the rows will have entries other than {0,±1}. This

observation can be easily extended to see that rows below the second horizontal line

can be considered in groups of two such that if the two rows are selected to be in R

they will be assigned the same sign.

We sign the rows in R starting from the rows below the second horizontal line.

Considering the groups of two rows, we make assignments such that the elements to

the left of the vertical line of the signed sum of the rows are in {0,−1} only. To

see why this is possible, note that the non-zero elements of the matrix to the left

of the vertical line can be seen as small blocks of 2 × 2 matrices. It is easy to see

that the signed sum of any subset of these blocks can be made to have elements

only in {0,−1}, with rows in the same group getting the same assignment. The

rows between the two horizontal lines are always signed +1. The sign of the rows

above the first horizontal line follows the assignment of the lines below the second

horizontal line based on the previous discussion.

143

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1

𝒓𝟏

𝒓𝟐

𝒓𝟑

𝒙𝟏𝟏 𝒙𝟏𝟐 𝒑𝟏𝟏𝟏 𝒑𝟏𝟏𝟐

Figure 1: An example of the constraints matrix A for a network with two caches, two users and
three files

144

With the above procedure, the sum of the signed vectors will have entries in

{0,±1} for any set of rows R, and from Proposition 2 it follows that the matrix A

is totally unimodular, and hence the solution for the optimization problem in (2.1)

for a network with two caches can be found in polynomial time.

B Equal Cardinality Partitioning is NP-hard

Proof. A proof of NP-hardness of a more general form of ECP is given in [14]. Here,

we give a simpler proof by a reduction from the Partition problem.

Problem 4. (Partition) Given a set A of n positive integers, can A be partitioned

into two disjoint subsets A1 and A2 such that A = A1 ∪ A2 and the sum of the

numbers in A1 equals the sum of the numbers in A2?

For each instance of Partition with input A = {a1, . . . , an} create an instance

A′ = {a1, . . . , an, 0, . . . , 0} by adding n zeros to A. It is easy to see that A′ can be

partitioned into two subsets with equal cardinality if and only if A can be partitioned.

Therefore, Partition ≤P ECP, and ECP is NP-hard.

C Congestion Sensitive Delay Decision Problem is NP-

complete

Proof. It is easy to see that given some x,p the expected delay D(x,p) can be com-

puted in polynomial time, and hence CSDDP is in NP. To show it is NP-hard, we

reduce the problem of Equal Cardinality Partition (ECP) to our problem. For an in-

145

stance of the ECP(A) problem we create the instance CSDDP(S,A, [4
S

], [+∞], [4
ai

], n
2
)

where S =
∑

ai∈A ai.

Now, the set A can be partitioned into subsets A1 and A2 with |A1| = |A2| if and

only if CSDDP achieves delay (2n+ 3)/S.

To see more clearly why the reduction works, first note that with the delay values

being set to dhi = 4/S and dbi = 4/ai, since dhi < dbi if a file exists in the cache all the

requests for that file will be directed to the cache. Also, since dci = +∞, if a file is

not in the cache all the requests for that file will be requested from the back-end

server. Therefore, we have pi = xi,∀i. Now, with the service rate set to µ = S, we

can re-write the optimization problem in (2.2) as follows

minimize
1

S

[
4

S

n∑
i=1

aixi + 4
n∑
i=1

(1− xi) +
S∑n

i=1 aixi
− 1

]

such that
n∑
i=1

xi ≤
n

2

xi ∈ {0, 1}

Now, looking at the objective function in the above problem, we can see that

Z1 = 4
n∑
i=1

(1− xi) ≥ 2n

since we should have
∑n

i=1 xi ≤ n/2. Moreover, Z1 = 2n if
∑n

i=1 xi = n/2 meaning

that exactly half of the files are in the cache. We also have that

Z2 =
4

S

n∑
i=1

aixi +
S∑n

i=1 aixi
≥ 4,

146

and Z2 = 4 only if
∑n

i=1 aixi = S/2.

Hence, Z1 + Z2 − 1 = 2n+ 3 if and only if
∑n

i=1 aixi = S/2 and
∑n

i=1 xi = n/2.

Therefore, if CSDDP(S,A, [4
S

], [+∞], [4
ai

], n
2
) achieves minimum delay (2n+ 3)/S

then A can be partitioned into equal cardinality subsets.

It is easy to see that if A can be partitioned into two subsets of equal cardinality,

then CSDDP(S,A, [4
S

], [+∞], [4
ai

], n
2
) has minimum delay of (2n+ 3)/S.

D Gain Function from Caching and Routing is Monotone

Increasing and Submodular

Here, we will first prove the lemma for the more general case of convex delay rate

function, and as an example consider G/G/1 queues. Given a cache configuration

X, let

(dhX)ij = inf
{
dhim : Xjm = 1

}
,

(dcX)ij = inf {dcim : Xjm = 0} ,

denote the minimum cache hit and miss delays for user i accessing file j, with the

convention inf ∅ = +∞. We assume that dhim ≤ dcim and hence 0 ≤ dhX ≤ dcX ≤ +∞.

Define (R)ij = λiqij, and let (λhX)ij, (λcX)ij, (λbX)ij denote the rate of requests for

file j sent by user i that are routed through caches containing file j, routed through

caches without file j, and directly routed to the back-end server, respectively. We

suppress the subscript X when no confusion arises.

147

The average delay can be written as

D(λh,λc,λb) = λh · dh + λc · dc + f(λc) + g(λb),

where1 λc = λc · 1 and λb = λb · 1, and f(·) and g(·) denote the total expected delay

cost rate for the G/G/1 queues representing the paths from caches to the back-

end server, and direct paths from users to back-end servers, respectively. The total

expected delay cost rate function for G/G/1 queues is proved to be convex in [28].

Now we have the following optimization problem,

minimize D(λh,λc,λb)

subject to λh,λc,λb ≥ 0,

λh + λc + λb = R.

(1)

Since Slater’s condition holds, the optimal delay D? can be found by solving the dual

optimization problem. For notational simplicity, we first assume that dh and dc are

finite. This assumption can be easily removed by setting to zero the components

of λh and λc corresponding to the infinite components of dh and dc, which simply

reduces the number of decision variables.

The Lagrangian for (1)

L(λh,λc,λb,ν, ξh, ξc, ξb) = D + ν · (R− λh − λc − λb)− ξh · λh − ξc · λc − ξb · λb

1The dot product is defined by a · b =
∑
ij aijbij .

148

= ν · R− ηc · λh − ηu · λc − ηs · λb + f(λc) + g(λb),

where ηh = ν + ξh − dh, ηc = ν + ξc − dc and ηb = ν + ξb. The dual function is

D̂(ν, ξh, ξc, ξb) = inf
λh,λc,λh

L(λh,λc,λb,ν, ξh, ξc, ξb)

= inf
λh

(ν · R− ηh · λh) + inf
λc

[f(λc)− ηc · λc] + inf
λb

[g(λb)− ηb · λb].

For D̂ > −∞, we need ηh = 0, ηc ≥ 0, ηb ≥ 0. When this condition is met,

D̂(ν, ξh, ξc, ξb) = ν · R− f ∗(max(ηc))− g∗(max(ηb)),

where f ∗ and g∗ are the conjugates of f and g respectively, defined by

f ∗(y) = sup
x

[xy − f(x)], g∗(y) = sup
x

[xy − g(x)].

Thus the dual problem becomes

maximize ν · R− f ∗(max(ηc))− g∗(max(ηb))

subject to ηc,ηb ≥ 0,

dh − ν ≥ 0,

ηc + dc − ν ≥ 0,

ηb − ν ≥ 0.

149

or

maximize D̃(s, u) = m(s, u) · R− f ∗(u)− g∗(s)

subject to s, u ≥ 0,

(2)

where m(s, u) = dh ∧ (s1) ∧ (dc + u1) with ∧ denoting component-wise minimum.

Now we make explicit the dependence on cache configuration. Given the cache

configuration X, let s?X and u?X be an optimal solution of the dual problem (2) and

D?
X the optimal delay.

Let X, Y be two cache configurations. We want to show

D?
X +D?

Y ≤ D?
X∪Y +D?

X∩Y . (3)

Assume that X \ Y 6= ∅ and Y \X 6= ∅; otherwise, (3) holds trivially. Without loss

of generality, assume u?X ≤ u?Y . Then

D?
X +D?

Y −D?
X∪Y −D?

X∩Y =D̃X(s?X , u
?
X) + D̃Y (s?Y , u

?
Y)

− D̃X∪Y (s?X∪Y , u
?
X∪Y)− D̃X∩Y (s?X∩Y , u

?
X∩Y)

≤ D̃X(s?X , u
?
X) + D̃Y (s?Y , u

?
Y)

− D̃X∪Y (s?X ∧ s?Y , u?X)− D̃X∩Y (s?X ∨ s?Y , u?Y)

= R · [mX(s?X , u
?
X) + mY (s?Y , u

?
Y)

−mX∪Y (s?X ∧ s?Y , u?X)−mX∩Y (s?X ∨ s?Y , u?Y)]

= R · [∆1 −∆2],

150

where

∆1 = mX(s?X , u
?
X)−mX∪Y (s?X ∧ s?Y , u?X),

∆2 = mX∩Y (s?X ∨ s?Y , u?Y)−mY (s?Y , u
?
Y).

Define h(x, y, z) = x ∧ y − x ∧ z, which is nonnegative and increasing in x for

y ≥ z. Now consider two cases,

1. s?X ≥ s?Y .

∆1 = dhX ∧ (dcX̄ + u?X1) ∧ (s?X1)− dhX∪Y ∧ (dc
X∪Y + u?X1) ∧ (s?Y 1)

= h
(
dhX ∧ (dc

X∪Y + u?X1), (dcY \X + u?X1) ∧ (s?X1),dhY \X ∧ (s?Y 1)
)

≤ h
(
dhX ∧ (dc

X∪Y + u?Y 1), (dcY \X + u?Y 1) ∧ (s?X1),dhY \X ∧ (s?Y 1)
)
,

and

∆2 = dhX∩Y ∧ (dc
X∩Y + u?Y 1) ∧ (s?X1)− dhY ∧ (dcȲ + u?Y 1) ∧ (s?Y 1)

= h
(
dhX∩Y ∧ (dcȲ + u?Y 1), (dcY \X + u?Y 1) ∧ (s?X1),dhY \X ∧ (s?Y 1)

)
.

Since

dhX∩Y ∧ (dcȲ + u?Y 1)− dhX ∧ (dc
X∪Y + u?Y 1) = h

(
dhX∩Y ∧ (dc

X∪Y + u?Y 1),dcX\Y + u?Y 1,dhX\Y

)
≥ 0,

it follows that ∆1 ≤∆2.

151

2. s?X ≤ s?Y .

∆1 = dhX ∧ (dcX̄ + u?X1) ∧ (s?X1)− dhX∪Y ∧ (dc
X∪Y + u?X1) ∧ (s?X1),

= h
(
dhX ∧ (dc

X∪Y + u?X1) ∧ (s?X1),dcY \X + u?Y 1,dhY \X

)
≤ h

(
dhX ∧ (dc

X∪Y + u?Y 1) ∧ (s?Y 1),dcY \X + u?Y 1,dhY \X

)
,

and

∆2 = dhX∩Y ∧ (dc
X∩Y + u?Y 1) ∧ (s?Y 1)− dhY ∧ (dcȲ + u?Y 1) ∧ (s?Y 1)

= h
(
dhX∩Y ∧ (dcȲ + u?Y 1) ∧ (s?Y 1),dcY \X + u?Y 1,dhY \X

)
.

Since

dhX ∧ (dc
X∪Y + u?Y 1) ∧ (s?Y 1) ≤ dhX∩Y ∧ (dcȲ + u?Y 1) ∧ (s?Y 1),

it follows that ∆1 ≤∆2.

In both cases, (3) holds and hence D? is supermodular, and DØ−D? is submodular.

E Time-To-Live Caches and Characteristic Time

Figure 2 shows cache dynamics with requests for a file with (a) a non-reset, and

(b) a reset TTL cache assuming the timer for file i equals ti. We model the dynamics

of a single file only, as we are considering a TTL cache with no capacity constraints.

The value of ti for each policy will be determined based on the cache capacity.

152

0 ti

ti

(a) A non-reset TTL cache with timer ti.

0

ti

(b) A reset TTL cache with timer ti.

Figure 2: Cache hits and misses for requests for a given file with non-reset and reset TTL caches.

Looking at Figure 2, we can see that the cache occupancy process for a file can

be divided into cycles that are separated by cache misses. Note that these cycles are

statically the same. Assuming the random variable Ni denotes the number of cache

hits for file i in a cycle, the hit probability can be expressed as

hi =
E[Ni]

1 + E[Ni]
.

• Non-reset TTL: For a non-reset TTL cache, Ni denotes the number of re-

quests within time ti, and hence for Poisson arrivals with rate λi, we obtain

E[Nnon-reset
i] = λiti,

and hence

hnon-reset
i =

λiti
1 + λiti

.

153

• Reset TTL: With a reset TTL cache, a file continues to stay in the cache as

long as the consecutive request inter-arrival times are not larger than ti. Hence,

N reset
i defines a geometric distribution with “success” probability pi = e−λiti for

Poisson arrivals. Therefore, we obtain

E[N reset
i] =

1− pi
pi

= eλiti − 1,

and

hreset
i = 1− e−λiti .

Cache Characteristic Time

Che et al. [12] introduced the notion of cache characteristic time and used it to

approximate the hit probability of an LRU cache with Poisson arrivals. According

to Che et al. [12] the hit probability of a file with request rate λi in an LRU cache

can be approximated by

hi = 1− e−λiT ,

where T is a constant referred to as the cache characteristic time. The characteristic

time approximation was later theoretically justified and extended to other caching

policies such as FIFO and RANDOM [27].

Cache characteristic time maps replacement-based caching policies to TTL-based

caching policies. The characteristic time for a cache denotes the time since a file

is placed at the head of the cache until it gets evicted. The assumption in the

approximation is to assume the characteristic time to be a single constant for all

files.

154

An LRU cache is modeled as a reset TTL cache since with every request for a file

it is moved to head of the cache. A FIFO cache, however, is modeled as a non-reset

TTL cache. Figure 2 shows cache dynamics with requests for a file with (a) a FIFO

cache modeled as a non-reset TTL cache, and (b) an LRU cache modeled as a reset

TTL cache assuming characteristic time is T . We model the dynamics of a single file

only, as we are considering a TTL cache with no capacity constraints. The value of

T for each policy will be determined based on the cache capacity.

Looking at Figure 2, we can see that the cache occupancy process for a file can

be divided into cycles that are separated by cache misses. Note that these cycles are

statically the same. Assuming the random variable Ni denotes the number of cache

hits for file i in a cycle, the hit probability can be expressed as

hi =
E[Ni]

1 + E[Ni]
.

• FIFO: With the FIFO policy, Ni denotes the number of requests withing time

T , and hence for Poisson arrivals with rate λi, we obtain

E[NFIFO
i] = λiT,

and hence

hFIFO
i =

λiT

1 + λiT
.

• LRU: With the LRU policy, a file continues to stay in the cache as long

as the consecutive requests inter-arrival times are no larger than T . Hence,

155

NLRU
i defines a geometric distribution with “success” probability pi = e−λiT

for Poisson arrivals. Therefore, we obtain

E[NLRU
i] =

1− pi
pi

= eλiT − 1,

and

hLRU
i = 1− e−λiT .

For the two policies, the value of the timer T is determined according to the cache

capacity constraint ∑
i

hi = C.

F Stability of Dual Algorithm

We first note that D(α) is the dual of a convex function and has a unique mini-

mizer α∗. The function V (α) = D(α)−D(α∗), hence, is a non-negative function and

equals zero only at α = α∗. Differentiating V (α) with respect to time we get

V̇ (α) =
∂V

∂α
α̇ = −γ

(∑
i

sihi −B
)2

< 0.

Therefore, V (·) is a Lyapunov function2, and the system state will converge to

optimum starting from any initial condition.

2A description of Lyapunov functions and their applications can be found in [67].

156

G Stability of Primal Algorithm

We first note that since W (h) is a strictly concave function, it has a unique max-

imizer h∗. Moreover V (h) = W (h∗)−W (h) is a non-negative function and equals

zero only at h = h∗. Differentiating V (·) with respect to time we obtain

V̇ (h) =
∑
i

∂V

∂hi
ḣi = −

∑
i

(
U ′i(hi)− C ′(

∑
i

sihi −B)

)
ḣi.

For ḣi we have

ḣi =
∂hi
∂ti

ṫi.

For non-reset and reset TTL caches we have

∂hi
∂ti

=
λi

(1 + λiti)2
and

∂hi
∂ti

= λie
−λiti ,

respectively, and hence ∂hi/∂ti > 0.

From the controller for ti we have

ti = ki

(
U ′i(hi)− C ′(

∑
i

sihi −B)

)
.

Hence, we get

V̇ (h) = −
∑
i

ki
∂hi
∂ti

(
U ′i(hi)− C ′(

∑
i

sihi −B)

)2

< 0.

Therefore, V (·) is a Lyapunov function, and the system state will converge to h∗

starting from any initial condition.

157

H Stability of Primal-Dual Algorithm

As discussed in Section 3.3, the Lagrangian function for the optimization prob-

lem (4.11) is expressed as

L(h, α) =
∑
i

Ui(hi)− α(
∑
i

sihi −B).

Note that L(h, α) is concave in h and convex in α, and hence first order condition

for optimality of h∗ and α∗ implies (see [22])

L(h∗, α) ≤ L(h, α) +
∑
i

∂L
∂hi

(h∗i − hi),

L(h, α∗) ≥ L(h, α) +
∂L
∂α

(α∗ − α).

Assume that the hit probability of a file can be expressed by f(·) as a function

of the corresponding timer value ti, i.e. hi = f(ti). The temporal derivative of the

hit probability can therefore be expressed as

ḣi = f ′(ti)ṫi,

or equivalently

ḣi = f ′(f−1(hi))ṫi,

where f−1(·) denotes the inverse of function f(·). For notation brevity we define

g(hi) = f ′(f−1(hi)). Note that as discussed in Appendix G, f(·) is an increasing

function, and hence g(hi) ≥ 0.

158

In the remaining, we show that V (h, α) defined below is a Lyapunov function for

the primal-dual algorithm:

V (h, α) =
∑
i

∫ hi

h∗i

x− h∗i
kig(x)

dx+
1

2γ
(α− α∗)2.

Differentiating the above function with respect to time we obtain

V̇ (h, α) =
∑
i

hi − h∗i
kig(hi)

ḣi +
α− α∗

γ
α̇.

Based on the controllers defined for ti and α we have

ḣi = g(hi)ṫi = kig(hi)
∂L
∂hi

,

and

α̇ = −γ ∂L
∂α

.

Replacing for ḣi and α̇ in V̇ (h, α), we obtain

V̇ (h, α) =
∑
i

(hi − h∗i)
∂L
∂hi
− (α− α∗)∂L

∂α

≤ L(h, α)− L(h∗, α) + L(h, α∗)− L(h, α)

=
(
L(h∗, α∗)− L(h∗, α)

)
+
(
L(h, α∗)− L(h∗, α∗)

)
≤ 0,

159

where the last inequality follows from

L(h, α∗) ≤ L(h∗, α∗) ≤ L(h∗, α),

for any h and α.

Moreover, V (h, α) is non-negative and equals zero only at (h∗, α∗). Therefore,

V (h, α) is a Lyapunov function, and the system state will converge to optimum

starting from any initial condition.

I Hit rate is a concave and increasing function of cache size.

Lemma 4. The hit rate hk is a concave and strictly increasing function of Ck.

Proof. Differentiating (4.12) and (4.13) w.r.t. Ck gives

dhk(Ck)

dCk
= λ2

k

nk∑
i=1

p2
k,ie
−λkpk,iTk(Ck)dTk(Ck)

dCk

1 = λk

nk∑
i=1

pk,ie
−λkpk,iTk(Ck)dTk(Ck)

dCk
.

The latter equation implies that dTk(Ck)/dCk > 0, which in turn implies from the

former that dhk(Ck)/dCk > 0. This proves that hk(Ck) is strictly increasing in Ck.

Differentiating now the above equations w.r.t. Ck yields

1

λ2
k

d2hk(Ck)

dC2
k

=

nk∑
i=1

p2
k,ie
−λkpk,iTk(Ck)gk,i

160

0 =

nk∑
i=1

pk,ie
−λkpk,iTk(Ck)gk,i (4)

with gk,i := d2Tk(Ck)/dC
2
k−λkpk,i(dTk(Ck)/dCk)2. Assume without loss of generality

that 0 ≤ pk,1 ≤ · · · ≤ pk,nk ≤ 1. (4) implies that there exists 1 ≤ l ≤ nk such that

gk,i ≥ 0 for i = 1, . . . , l and gk,i ≤ 0 for i = l + 1, . . . , nk. Hence,

1

λ2
k

d2hk(Ck)

dC2
k

≤
l∑

i=1

pk,ie
−λkpk,iTk(Ck)gk,i +

nk∑
i=l+1

p2
k,ie
−λkpk,iTk(Ck)gk,i

=

nk∑
i=l

pk,ie
−λkpk,iTk(Ck)gk,i(1− pk,i) ≤ 0.

This proves that hk(Ck) is concave in Ck.

J LRU Asymptotic Miss Rate

Proof. We first construct a CDF F from the CP specific CDFs, {Fk}. When the

providers share a single cache, documents are labelled 1, . . . , Bn, so that documents

Bk−1+1, . . . , Bk are the bk documents with service provider k. Denote Ak :=
∑k

j=1 aj

with A0 = 0 in what follows. Define

F (x) =
K∑
j=1

(
Ak−1 + akFk

(B
bk
x− Bk−1

bk

))
× 1

{
Bk−1

B
≤ x ≤ Bk

B

}
. (5)

Let

p
(n)
i := F

(
i

Bn

)
− F

(
i− 1

Bn

)
, i = 1, . . . , nBK

161

It is easy to see that

p
(n)
Bk−1+i = ak p

(n)
k,i , i = 1, . . . , bk; k = 1, . . . , K.

Note that F may not be differentiable at x ∈ {B1/B,B2/B, . . . BK−1/B} and,

hence, we cannot apply the result of [21, Theorem 1] directly to our problem.

Let

β(s)(n, τ0) = 1− 1

Bn

Bn∑
i=1

(
1− p(n)

i

)nτ0
be the fraction of documents in the cache. Here, nτ0 corresponds to the window size

in [21].

We have

β(s)(n, τ0) = 1− 1

Bn

K∑
k=1

bkn∑
i=1

(
1− p(n)

Bk−1+i

)nτ0
= 1− 1

Bn

K∑
k=1

bkn∑
i=1

(
1− akp(n)

k,i

)nτ0 . (6)

We are interested in β(s) = limn→∞ β
(s)(n, τ0).

By applying the result in [21, Theorem 1], we find that

lim
n→∞

1

Bn

bkn∑
i=1

(
1− akp(n)

k,i

)nτ0 =
bk
B

∫ 1

0

e−τ0akBF
′
k(x)/bkdx (7)

for k = 1, . . . , K, so that

β(s) = 1−
K∑
k=1

bk
B

∫ 1

0

e−akF
′
k(x)τ0B/bkdx.

162

Equation (4.7) is derived in the same way.

Last, it follows from Theorems 2 and 4 in [21] that µ(s) is the limiting aggregate

miss probability under LRU as n→∞.

K Strategy 3 outperforms strategy 2 when content providers

have the same popularity distribution.

Proof. The optimization problems under strategies 2 and 3 are

min
τ1,τ2

2∑
k=1

(a0,kµ
(s2)
0,k (τk) + akµ

(s2)
k (τk))

s.t.
2∑

k=1

(β
(s2)
0,k (τk) + β

(s2)
k (τk)) ≤ β,

β
(s2)
0.k , β

(s2)
k ≥ 0, k = 1, 2.

and

min
τk

3∑
k=1

akµ
(s3)
k (τk)

s.t.
3∑

k=1

β
(s3)
k (τk)β, (8)

β
(s3)
k ≥ 0, k = 1, 2, 3.

where λ0 = λ0,1 + λ0.2, a0,k = λ0,k/
∑3

k=1 λk, and ak = λk/
∑3

k=1 λk,

µ
(s2)
0,k (τ) =

∫ 1

0

F ′0(x)e
−
a0,k(b0+bk)

(a0,k+ak)b0
F ′0(x)τ

dx

163

µ
(s2)
k (τ) =

∫ 1

0

F ′k(x)e
−
a0,k(b0+bk)

(a0,k+ak)bk
F ′k(x)τ

dx

β
(s2)
0,k (τ) =

b0

2b0 + b1 + b2

(
1−

∫ 1

0

e
−
a0,k(b0+bk)

(a0,k+ak)b0
F ′0(x)τ

dx
)

β
(s2)
k (τ) =

bk
2b0 + b1 + b2

(
1−

∫ 1

0

e
− ak(b0+bk)

(a0,k+ak)bk
F ′0(x)τ

dx
)

and

µ
(s3)
k (τ) =

∫ 1

0

F ′k(x)e−F
′
k(x)τdx

β
(s3)
k (τ) =

bk
b0 + b1 + b2

(
1−

∫ 1

0

e−F
′
k(x)τdx

)

We make two observations:

• µ(s2)
0,k (τ) = µ

(s3)
0 (

a0,k(2b0+b1+b2)

(a0,k+ak)b0
)τ , k = 1, 2,

• µ(s3)
0 (τ) is a decreasing function of τ .

Let µ(s2)∗ denote the minimum miss probability under strategy 2, which is achieved

with τ ∗1 and τ ∗2 . Let µ(s3)(τ1, τ2, τ3) denote the miss probability under strategy 3

where τk, k = 1, 2, 3 satisfy (8). Set τk =
a0,k(2b0+b1+b2)

(a0,k+ak)b0
τ ∗k , k = 1, 2 for strategy 3 and

allocate provider k a cache of size β
(s2)
k under strategy 3 for its non-shared content.

The aggregate miss probability for non-shared content is then the same under the

two strategies and given by µ
(s2)
1 (τ ∗1) + µ

(s2)
2 (τ ∗2).

Under strategy 2, the amount of shared content stored in the cache is β− =

β
(s2)∗
0,1 + β

(s2)∗
0,2 . We allocate a cache of that size to the shared content under strategy

164

3 and wlog assume that τ ∗1 ≥ τ ∗2 Themiss probability over all shared content under

strategy 2 is

2∑
k=1

a0,k

a0,1 + a0.2

µ
(s2)
0,k (τ ∗k) ≥ µ

(s2)
0,k (τ ∗1)

= µ
(s3)
0 (τ1)

Note that strategy 3 requires only a cache of size β
(s2)
0,k < β− to achieve a smaller

miss probability for the shared content than strategy 2 can realize. Adding additional

storage to the shared partition can only decrease the hit probability further, thus

proving the theorem.

L Cache Partitioning Problem Has a Unique Optimal Solu-

tion.

Proof. Let P and C = (C1, . . . , CP) denote the number of partitions and the vector

of partition sizes, respectively. The hit rate for content provider k in this case can

be written as

hk(C) =
P∑
p=1

∑
i∈Vp

λik(1− e−λiTp),

where Vp denotes the set of files requested from partition p, and λi =
∑

k λik denotes

the aggregate request rate for file i.

We can re-write the expression for hk as the sum of the hit rates from each

partition, since distinct files are requested from different partitions. We have

hk(C) =
P∑
p=1

hkp(Cp),

165

where hkp(Cp) denotes the hit rate for files requested from partition p from content

provider k. Since hkp is assumed to be a concave increasing function of Cp, hk is sum

of concave functions and hence is also concave.

M Partitioning and Probabilistic Routing is Sub-optimal.

Lemma 5. Partitioning a cache, and probabilistically routing content requests to

different partitions is sub-optimal.

Proof. Assume we partition the cache into two slices of size C1 and C2, and route

requests to partition one with probability p, and with probability 1 − p route to

partition two. Let hP denote the hit rate obtained by partitioning the cache. From

concavity of h(C) we have

hP = ph(C1) + (1− p)h(C2)

≤ ph(C) + (1− p)h(C) = h(C).

N Gradient Ascent Algorithm for Cache Partitioning Con-

verges to Optimal Solution.

Proof. We first note that since W (C) is a strictly concave function, it has a unique

maximizer C∗. Moreover V (C) = W (C∗) −W (C) is a non-negative function and

equals zero only at C = C∗. Differentiating V (·) with respect to time we obtain

166

V̇ (C) =
∑
k

∂V

∂hk
ḣk = −

∑
k

(
U ′k(hk)− P ′(

∑
k

Ck − C)
∂Ck
∂hk

)
ḣk.

For ḣk we have

ḣk =
∂hk
∂Ck

Ċk.

From the controller for Ck we have

Ċk = γk

(
U ′k(hk)

∂hk
∂Ck

− P ′(
∑
k

Ck − C)

)
.

Since ∂hk
∂Ck
≥ 0, we get

V̇ (C) = −
∑
k

γk
∂hk
∂Ck

(
U ′k(hk)− P ′(

∑
k

Ck − C)
∂Ck
∂hk

)2

≤ 0.

Therefore, V (·) is a Lyapunov function, and the system state will converge to C∗

starting from any initial condition. A description of Lyapunov functions and their

applications can be found in [67].

167

BIBLIOGRAPHY

[1] Cisco visual networking index: Forecast and methodology, 2014-2019. White
paper, May 2015.

[2] Andrews, J.G., Claussen, H., Dohler, M., Rangan, S., and Reed, M.C. Femto-
cells: Past, present, and future. IEEE Journal on Selected Areas in Communi-
cations 30, 3 (April 2012), 497–508.

[3] Azimdoost, B., Westphal, C., and Sadjadpour, H.R. On the throughput capacity
of information-centric networks. In International Teletraffic Congress (ITC)
(September 2013), pp. 1–9.

[4] Baev, Ivan, Rajaraman, Rajmohan, and Swamy, Chaitanya. Approximation
algorithms for data placement problems. SIAM Journal on Computing 38, 4
(2008), 1411–1429.

[5] Bartle, Robert G. The elements of real analysis (2nd ed.). Wiley New York,
1976.

[6] Berger, Daniel S, Gland, Philipp, Singla, Sahil, and Ciucu, Florin. Exact anal-
ysis of ttl cache networks. Performance Evaluation 79 (2014), 2–23.

[7] Bianchi, Giuseppe, Detti, Andrea, Caponi, Alberto, and Blefari Melazzi, Nicola.
Check before storing: What is the performance price of content integrity verifi-
cation in lru caching? SIGCOMM Computer Communication Review 43 (July
2013), 59–67.

[8] Borst, S., Gupta, V., and Walid, A. Distributed caching algorithms for content
distribution networks. In INFOCOM (March 2010), pp. 1–9.

[9] Calinescu, Gruia, Chekuri, Chandra, Pál, Martin, and Vondrák, Jan. Maxi-
mizing a submodular set function subject to a matroid constraint (extended
abstract). In IPCO (2007), pp. 182–196.

168

[10] Carofiglio, G., Gehlen, V., and Perino, D. Experimental evaluation of memory
management in content-centric networking. In ICC (June 2011), pp. 1–6.

[11] Chai, W.K, He, D, Psaras, I, and Pavlou, G. Cache less for more in information-
centric networks. In IFIP Networking (2012).

[12] Che, H, Wang, Z, and Tung, Y. Analysis and design of hierarchical web caching
systems. In INFOCOM (2001).

[13] Chu, Weibo, Dehghan, Mostafa, Towsley, Don, and Zhang, Zhi-Li. On allocating
cache resources to content providers. In ACM ICN (2016), pp. 154–159.

[14] Cieliebak, Mark, Stephan Eidenbenz Aris Pagourtzis, and Schlude, Konrad. On
the complexity of variations of equal sum subsets. Nordic Journal of Computing
14, 3 (2008), 151–172.

[15] Dai, Huichen, Liu, Bin, Chen, Yan, and Wang, Yi. On pending interest table
in named data networking. In ANCS (2012), pp. 211–222.

[16] Dehghan, Mostafa, Jiang, Bo, Dabirmoghaddam, Ali, and Towsley, Don. On
the analysis of caches with pending interest tables. In ICN (2015), pp. 69–78.

[17] Dehghan, Mostafa, Massoulie, Laurent, Towsley, Don, Menasche, Daniel, and
Tay, Y. C. A utility optimization approach to network cache design. In INFO-
COM (2016).

[18] Dehghan, Mostafa, Seetharam, Anand, He, Ting, Salonidis, Theodoros, Kurose,
Jim, and Towsley, Don. Optimal caching and routing in hybrid networks. In
IEEE MILCOM 2014 (October 2014), pp. 1072–1078.

[19] Dehghan, Mostafa, Seetharam, Anand, Jiang, Bo, He, Ting, Salonidis,
Theodoros, Kurose, Jim, Towsley, Don, and Sitaraman, Ramesh. On the com-
plexity of optimal routing and content caching in heterogeneous networks. In
INFOCOM (2015).

[20] Eryilmaz, Atilla, and Srikant, R. Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. IEEE/ACM Trans-
action on Networking 15, 6 (December 2007), 1333–1344.

[21] Fagin, Ronald. Asymptotic miss ratios over independent references. Journal of
Computer and System Sciences 14, 2 (1977), 222–250.

169

[22] Feijer, Diego, and Paganini, Fernando. Stability of primal–dual gradient dy-
namics and applications to network optimization. Automatica 46, 12 (2010),
1974–1981.

[23] Feldman, Michal, and Chuang, John. Service differentiation in web caching and
content distribution. In IASTED Int. Conf. on Communications and Computer
Networks (2002).

[24] Ferragut, Andrés, Rodriguez, Ismael, and Paganini, Fernando. Optimizing ttl
caches under heavy-tailed demands. In ACM SIGMETRICS (2016), pp. 101–
112.

[25] Fofack, N. C., Dehghan, M., Towsley, D., Badov, M., and Goeckel, D. L. On
the performance of general cache networks. In ValueTools (December 2014).

[26] Fofack, Nicaise Choungmo, Nain, Philippe, Neglia, Giovanni, and Towsley, Don.
Performance evaluation of hierarchical ttl-based cache networks. Computer Net-
works 65 (2014), 212–231.

[27] Fricker, Christine, Robert, Philippe, and Roberts, James. A versatile and accu-
rate approximation for lru cache performance. In ITC (2012).

[28] Fridgeirsdottir, Kristin, and Chiu, Sam. A note on convexity of the expected
delay cost in single-server queues. Operations research 53, 3 (2005), 568–570.

[29] Giovanidis, Anastasios, and Avranas, Apostolos. Spatial multi-lru caching for
wireless networks with coverage overlaps. In SIGMETRICS (2016), ACM,
pp. 403–405.

[30] Gitzenis, S., Paschos, G.S., and Tassiulas, L. Asymptotic laws for joint content
replication and delivery in wireless networks. IEEE Transactions on Information
Theory 59, 5 (May 2013), 2760–2776.

[31] Golrezaei, N, Shanmugam, K, Dimakis, A, Molisch, A, and Caire, G. Femto-
caching: Wireless video content delivery through distributed caching helpers.
In INFOCOM (2012).

[32] Hoffman, Alan J, and Kruskal, Joseph B. Integral boundary points of convex
polyhedra. In 50 Years of Integer Programming 1958-2008. Springer, 2010,
pp. 49–76.

170

[33] Hoteit, S., El Chamie, M., Saucez, D., and S., Secci. On fair network cache
allocation to content providers. INRIA Technical Report (2015).

[34] Huang, Cheng, Wang, Angela, Li, Jin, and Ross, Keith W. Understanding
hybrid cdn-p2p: Why limelight needs its own red swoosh. In NOSSDAV (May
2008), pp. 75–80.

[35] Huang, L., and Neely, M. J. Utility optimal scheduling in energy-harvesting
networks. IEEE/ACM Transactions on Networking 21, 4 (Aug 2013), 1117–
1130.

[36] Jaeyeon, J., Berger, A. W., and Balakrishnan, H. Modeling ttl-based internet
caches. In INFOCOM (March 2003), pp. 417–426.

[37] Jiang, Wenjie, Ioannidis, Stratis, Massoulié, Laurent, and Picconi, Fabio. Or-
chestrating massively distributed cdns. In CoNEXT (2012), pp. 133–144.

[38] Karlin, and Samuel. A first course in stochastic processes, 2 ed. Academic press,
1975.

[39] Kelly, Frank. Charging and rate control for elastic traffic. European Transactions
on Telecommunications 8 (1997), 33–37.

[40] Kelly, Frank P, Maulloo, Aman K, and Tan, David KH. Rate control for commu-
nication networks: shadow prices, proportional fairness and stability. Journal
of the Operational Research society (1998), 237–252.

[41] Kelly, Terence, Chan, Yee Man, Jamin, Sugih, and MacKie-Mason, Jeffrey K.
Biased replacement policies for web caches: Differential quality-of-service and
aggregate user value. In Web Caching Workshop (1999).

[42] Kim, Seongbeom, Chandra, Dhruba, and Solihin, Yan. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In IEEE PACT (2004),
pp. 111–122.

[43] Ko, Bong-Jun, Lee, Kang-Won, Amiri, K., and Calo, S. Scalable service differ-
entiation in a shared storage cache. In ICDCS (May 2003), pp. 184–193.

[44] Liu, Z, Nain, P Niclausse, N, and Towsley, D. Static caching of web servers. In
Multimedia Computing and Networking Conference (1998).

171

[45] Lu, Ying, Abdelzaher, T.F., and Saxena, Avneesh. Design, implementation, and
evaluation of differentiated caching services. IEEE Transactions on Parallel and
Distributed Systems 15, 5 (May 2004), 440–452.

[46] Ma, Richard TB, and Towsley, Don. Cashing in on caching: On-demand contract
design with linear pricing. In CoNext (December 2015).

[47] Martina, V., Garetto, M., and Leonardi, E. A unified approach to the perfor-
mance analysis of caching systems. In INFOCOM (April 2014), pp. 2040–2048.

[48] Mo, Jeonghoon, and Walrand, Jean. Fair end-to-end window-based congestion
control. IEEE/ACM Transactions on Networking 8, 5 (2000), 556–567.

[49] Naveen, K.P., Massoulie, Laurent, Baccelli, Emmanuel, Carneiro Viana, Aline,
and Towsley, Don. On the interaction between content caching and request
assignment in cellular cache networks. In Workshop on All Things Cellular:
Operations, Applications and Challenges (2015), pp. 37–42.

[50] Neammanee, Kritsana. A refinement of normal approximation to poisson bino-
mial. International Journal of Mathematics and Mathematical Sciences 2005, 5
(2005), 717–728.

[51] Neely, Michael J. Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. Morgan and Claypool Publishers, 2010.

[52] Neely, M.J., Modiano, E., and Rohrs, C.E. Dynamic power allocation and rout-
ing for time varying wireless networks. In INFOCOM (March 2003), pp. 745–
755.

[53] Nemhauser, George L, and Wolsey, Laurence A. Integer and combinatorial
optimization, vol. 18. Wiley New York, 1988.

[54] Nygren, E, Sitaraman, R, and Sun, J. The akamai network: a platform for high-
performance internet application. ACM SIGOPS Operating Systems Review 44,
3 (2010).

[55] Perino, Diego, and Varvello, Matteo. A reality check for content centric net-
working. In SIGCOMM Workshop on Information-centric Networking (2011),
pp. 44–49.

[56] Polyak, Boris T. Introduction to optimization. 1987.

172

[57] Poularakis, Konstantinos, Iosifidis, George, and Tassiulas, Leandros. Approx-
imation caching and routing algorithms for massive mobile data delivery. In
Globecom (2013).

[58] Psaras, I, Chai, W.K, and Pavlou, G. Coordinating in-network caching in
content-centric networks: Model and analysis. In In ACM SIGCOMM Work-
shop on Information-Centric Networking (2012).

[59] Qureshi, Moinuddin K, and Patt, Yale N. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In IEEE/ACM International Symposium on Microarchitecture (2006), pp. 423–
432.

[60] Rosensweig, E, Kurose, J, and Towsley, D. Approximate models for general
cache networks. In IEEE INFOCOM (2010).

[61] Sandvine. Global Internet Phenomena Report - 2H2014.

[62] Schrijver, Alexander. Combinatorial optimization: polyhedra and efficiency,
vol. 24. Springer, 2003.

[63] Shanmugam, K., Golrezaei, N., Dimakis, A.G., Molisch, A.F., and Caire, G.
Femtocaching: Wireless content delivery through distributed caching helpers.
IEEE Transactions on Information Theory 59, 12 (December 2013), 8402–8413.

[64] Sharma, Abhigyan, Venkataramani, Arun, and Sitaraman, Ramesh K. Dis-
tributing content simplifies isp traffic engineering. In SIGMETRICS (June
2013), pp. 229–242.

[65] Sourlas, Vasilis, Flegkas, Paris, and Tassiulas, Leandros. Cache-aware routing
in information-centric networks. In IFIP/IEEE International Symposium on
Integrated Network Management (2013).

[66] Sourlas, Vasilis, Gkatzikis, Lazaros, Flegkas, Paris, and Tassiulas, Leandros.
Distributed cache management in information-centric networks. IEEE Transac-
tions on Network and Service Management 10, 3 (2013).

[67] Srikant, Rayadurgam, and Ying, Lei. Communication Networks: An Optimiza-
tion, Control, and Stochastic Networks Perspective. Cambridge University Press,
2013.

173

[68] Stich, Sebastian U, Muller, CL, and Gartner, B. Optimization of convex func-
tions with random pursuit. SIAM Journal on Optimization 23, 2 (2013), 1284–
1309.

[69] Suh, G Edward, Rudolph, Larry, and Devadas, Srinivas. Dynamic partitioning
of shared cache memory. The Journal of Supercomputing 28, 1 (2004), 7–26.

[70] Sundarrajan, A., Kasbekar, M., and Sitaraman, R. Energy-efficient disk caching
for content delivery. In ACM e-Energy (2016).

[71] Taghizadeh, Mahmoud, Micinski, Kristopher, Ofria, Charles, Torng, Eric, and
Biswas, Santosh. Distributed cooperative caching in social wireless networks.
IEEE Transactions on Mobile Computing 12, 6 (2013), 1037–1053.

[72] Tang, Bin, and Gupta, Himanshu. Cache placement in sensor networks under
an update cost constraint. Journal of Discrete Algorithms 5, 3 (2007), 422–435.

[73] Tassiulas, L., and Ephremides, Anthony. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in multihop
radio networks. IEEE Transactions on Automatic Control 37, 12 (Dec 1992),
1936–1948.

[74] Tsilopoulos, C., Xylomenos, G., and Thomas, Y. Reducing forwarding state in
content-centric networks with semi-stateless forwarding. In INFOCOM, 2014
Proceedings IEEE (April 2014), pp. 2067–2075.

[75] Varvello, M., Perino, D., and Linguaglossa, L. On the design and implemen-
tation of a wire-speed pending interest table. In INFOCOM workshops (April
2013), pp. 369–374.

[76] Virgilio, Matteo, Marchetto, Guido, and Sisto, Riccardo. Pit overload analysis
in content centric networks. In SIGCOMM Workshop on Information-centric
Networking (2013), pp. 67–72.

[77] Wang, Yi, He, Keqiang, Dai, Huichen, Meng, Wei, Jiang, Junchen, Liu, Bin,
and Chen, Yan. Scalable name lookup in ndn using effective name component
encoding. In ICDCS (2012), pp. 688–697.

[78] West, Douglas Brent. Introduction to graph theory (2nd ed.). Chapter 3, Prentice
Hall, 2001.

174

[79] Xie, Mengjun, Widjaja, I., and Wang, Haining. Enhancing cache robustness for
content-centric networking. In INFOCOM (March 2012), pp. 2426–2434.

[80] You, Wei, Mathieu, B., Truong, P., Peltier, J., and Simon, G. Dipit: A dis-
tributed bloom-filter based pit table for ccn nodes. In ICCCN (July 2012),
pp. 1–7.

[81] Yuan, Haowei, and Crowley, P. Scalable pending interest table design: From
principles to practice. In INFOCOM (April 2014), pp. 2049–2057.

[82] Zerfos, P., Srivatsa, M., Yu, H., Dennerline, D., Franke, H., and Agrawal, D.
Platform and applications for massive-scale streaming network analytics. IBM
Journal for Research and Development: Special Edition on Massive Scale Ana-
lytics 57 (May 2013), 1–11.

[83] Zhang, Guoqiang, Li, Yang, and Lin, Tao. Caching in information centric net-
working: A survey. Computer Networks 57, 16 (2013), 3128–3141.

175

