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ABSTRACT

STYLE-DRIVEN SHAPE ANALYSIS AND SYNTHESIS

MAY 2017

ZHAOLIANG LUN

B.Sc., FUDAN UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Evangelos Kalogerakis

In this dissertation I will investigate algorithms that analyze stylistic properties of 3D

shapes and automatically synthesize shapes given style specifications. I will start by intro-

ducing a structure-transcending method for style similarity evaluation between 3D shapes.

Inspired by observations about style similarity in art history literature, we propose an al-

gorithmically computed style similarity measure which identifies style related elements on

the analyzed models and collates element-level geometric similarity measurements into an

object-level style measure consistent with human perception. To achieve this consistency

we employ crowdsourcing to learn the relative perceptual importance of a range of ele-

mentary shape distances and other parameters used in our measurement from participant
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answers to cross-structure style similarity queries. I will then describe an algorithm that

utilizes this learned style similarity measure to synthesize 3D models of man-made shapes.

The algorithm combines user-specified style, described via an exemplar shape, and func-

tionality, encoded by a functionally different target shape. We transfer the exemplar style

to the target via a sequence of compatible element-level operations where the compatibility

is a learned metric that estimates the impact of each operation on the edited shape. We

use this metric to cast style transfer as a tabu search, which incrementally updates the tar-

get shape using compatible operations, progressively increasing its style similarity to the

exemplar while strictly maintaining its functionality at each step. Finally I will propose a

method for reconstructing 3D shapes following style aspects of given 2D drawings. Our

method takes line drawings as input and converts them into surface depth and normal maps

from several output viewpoints via a deep convolutional neural network with multi-view

encoder-decoder architecture. The multi-view maps are then consolidated into a dense co-

herent 3D point cloud by solving an optimization problem that fuses depth and normal

information across all output viewpoints. The output point cloud is then converted into a

polygon mesh representation, which is further fine-tuned to match the input sketch more

precisely.

viii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Learning Shape Style Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Learning Shape Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Learning Shape Reconstruction from Stylized Drawings . . . . . . . . . . . . 6

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Shape Style Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Style analysis for same class models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Structure-transcending shape style analysis . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Learning style in other domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Shape Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Part Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Part-based shape synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Style transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Sketch-based Shape Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 3D geometric inference from line drawings . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.3.2 Learning-based methods for shape synthesis . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Sketch-based 3D shape retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. LEARNING PERCEPTUAL SHAPE STYLE SIMILARITY . . . . . . . . . . . . . . . . 18

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Measuring Style Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Geometric Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Extracting Matching Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Combined Style Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Study of Style Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Algorithm Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. FUNCTIONALITY PRESERVING SHAPE STYLE TRANSFER . . . . . . . . . . . 42

4.1 Style Transfer Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Pre-Processing and Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Element Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Curve Based Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Automatic Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. SHAPE RECONSTRUCTION FROM SKETCHES VIA MULTI-VIEW
CONVOLUTIONAL NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Generating training sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Point Cloud and Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Multi-view depth and normal map fusion . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.2 Energy minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



5.4.3 Mesh reconstruction and fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.4 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6. DISCUSSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

APPENDICES

A. APPENDIX: LEARNING PERCEPTUAL SHAPE STYLE
SIMILARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B. APPENDIX: FUNCTIONALITY PRESERVING SHAPE STYLE
TRANSFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C. APPENDIX: SHAPE RECONSTRUCTION FROM SKETCHES . . . . . . . . . . . 104

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xi



LIST OF TABLES

Table Page

3.1 Study statistics per category. Left to right: category, number of models,
number of queries, number and percent of queries with plurality “Both
B and C” response, number and percent of queries with plurality
“Neither B nor C” response, number and percent of queries with
plurality discriminative response, number and percent of queries with
a majority discriminative response (majority formed by more than
50% participants). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 More study statistics per category. Left to right: category, participant
persistence across all participants and across reliable participants only,
participant consistency across all participants and across reliable
participants only, consistency for queries with a majority response,
consistency for queries considering only discriminative responses ((i)
B or (ii) C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Prediction accuracy, Left to right: category, our prediction accuracy,
prediction accuracy with alternate formulations. Rows one to seven
show results where training and validation were done per category,
bottom row shows results where both were done on the entire
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Style similarity study results: per-query plurality responses (left) and raw
vote percentages (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Functionality study results: per-query plurality responses (left) and raw
vote percentages (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Element compatibility study results: per-query plurality responses (left)
and raw vote percentages (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Training dataset statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Comparisons of our method with baselines based on our evaluation
measures (the lower the numbers, the better) . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



5.3 Comparisons with variants of our method based on our evaluation
measures (the lower the numbers, the better). . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Perceptual user study results comparing our method with baseline
methods: per-query plurality responses (left) and raw vote percentages
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Pilot study statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



LIST OF FIGURES

Figure Page

1.1 Style similarity transcends structure: in the top row, the bed A is
pronouncedly more similar, style-wise, to dresser B than C; in the
bottom row, building A and C are stylistically more similar (insets
highlight some stylistically similar elements). . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Transferring a style from a table to a TV stand (a) without (b) and with (c)
functionality constraints in place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 (left) Changing the style of objects in a scene influences the sense of time
and place. (right) Style similarity transcends structure: in the top row,
the bed A is pronouncedly more similar, style-wise, to dresser B than
C; in the bottom row, buildings A and C are stylistically more similar
(insets highlight some stylistically similar elements). . . . . . . . . . . . . . . . . . 18

3.2 To evaluate style similarity, we identify potentially matching elements;
and use those in a distance function that accounts for element
similarity, element saliency and prevalence. The parameters of both
steps are learned from crowdsourced perceptual similarity data. . . . . . . . . . 19

3.3 Literature highlights three element-level style similarity criteria: intrinsic
element geometry or shape, relative proportions or scale, and
dominant curve or line shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Extracting matching elements: (a) patch-segmentations (two levels
visualized); (b) example matches; (c) transformation space (2D MDS
projection) with clustering results; (d) extracted elements. . . . . . . . . . . . . . . 23

3.5 (left) Study query layout. (right) response distribution for this query. . . . . . . . . 32

3.6 (left) Examples of the 89% of queries where our method agrees with study
majority response( shared answer in green), numbers show
percentages of participants who selected each answer (not listed
answers received zero votes). (right) Some representative failure cases
(majority response blue, ours red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiv



3.7 (left) Similarity weights, features from left to right are: surface distance,
curvature difference, shape distribution D2 difference, scale
difference, shape diameter difference, curve distance, light field
descriptor difference, (right) saliency weights, features from left to
right are: curvature metrics, location metrics, ambient occlusion, and
three levels of shape distinctness from [103]. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Embedding the column dataset in a 2D space based on learned pairwise
distances yields distinct Gaussian-like clusters that correspond to
known architectural orders visualized by colored boxes. . . . . . . . . . . . . . . . 39

4.1 Our algorithm transfers the geometric style of three exemplars, cabinet,
loveseat, and sugar pot (left, highlighted with arrows), to the rest of the
objects in the scene, while preserving the target functionality (right).
Please zoom-in to see more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Framework overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Tabu search pseudo-code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Hierarchical segmentation and extracted curves. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Element alignment: (a) exemplar and target; (b) seed model and
substituted-in element with identified slots and their covers; (c)
alignment using non-uniform scaling across the board; (d) style and
structure aware alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Curve based deformation without (center) and with (right) swept surface
edits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Among all possible tables on the right we selected the highlighted one as
most compatible target for the exemplar chair. . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Typical style transfer results. For each group we show the exemplar first
then, multiple synthesized outputs in the same style with targets shown
as insets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Our method takes line drawings as input and converts them into
multi-view surface depth and normals maps from several output
viewpoints via an encoder-multi-view-decoder architecture. The maps
are fused into a coherent 3D point cloud, which is then converted into
a surface mesh. Finally, the mesh can be fine-tuned to match the input
drawings more precisely through geometric deformations. . . . . . . . . . . . . . 70

xv



5.2 (a) The user can provide a front view sketch as input; (b) our network
trained on a single input sketch generates an intermediate shape; (c)
the user can further draw a sketch from the side view using the
rendered shape as a guide; (d) & (e) our network trained on inputs
from both views yields an updated 3D shape. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Without optimization the noisy point cloud will lead to misaligned regions
in the reconstructed shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Comparisons of shape reconstructions from sketches for our method and
baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Query layout shown to participants of our user study. . . . . . . . . . . . . . . . . . . . . . 92

5.6 Gallery of results. Blue shapes represent reconstructions produced by our
method from the input sketches. Orange shapes are the nearest shapes
in the training datasets retrieved via sketch-based retrieval. . . . . . . . . . . . . 93

xvi



CHAPTER 1

INTRODUCTION

style n. a distinctive appearance, typically determined by the principles accord-

ing to which something is designed.

— Oxford English Dictionary

1.1 Motivation

Style is an important property in object design and scene arrangement. Putting style coor-

dination into consideration, e.g. setting up a Baroque style bed alongside with a Baroque

style nightstand in a bedroom, can greatly increase the aesthetics of the environment, as

well as improving the believability in a virtual environment. However, the definition of

style is intentionally vague in terms of shape criteria in graphics literature, placing a chal-

lenge in codifying the concept of style in shape design.

In spite of the abstract nature of shape style, humans have an innate perception of shape

style similarity. On one hand, humans can easily recognize style discrepancies within an

arrangement of objects, e.g. identifying a stylistically incompatible cup among a tea set.

On the other hand, human perception of style similarity transcends structure and function:

we can meaningfully discuss style similarity between a cup and a coffee pot, a bed and

a dresser, or a church and a castle. This inspires us the possibility of a machine learning

approach to understand perceptual shape style similarity. Specifically, we would like to

learn a metric to measure style similarity between structurally different models and detect

1



models which share a similar style despite large functional differences. With the increasing

amount of stylized 3D models available in online shape repositories, a robust style simi-

larity measure can greatly facilitate the navigation through those shape databases. While

previous work focused on evaluating style similarity between objects with similar overall

structure, in this dissertation we introduce the first structure-transcending method for style

similarity evaluation between 3D shapes.

A robust measure evaluating style similarity between structurally and functionally different

models enables shape retrieval tasks in terms of shape style within a broad shape category.

A more general use case scenario of shape style similarity is to populate virtual 3D scenes

with stylistic coherent sets of objects. Unfortunately, while large databases of 3D man-

made objects already exist, sets of functionally diverse shapes in a particular style are

often not available. Manually creating shapes satisfying specific functional and stylistic

requirements is time consuming and expertise intensive. Instead, we need an automatic

method to synthesize shapes in different functionalities with style specifications. In this

dissertation, we also describe a shape synthesis algorithm that transfers the style of an

exemplar shape to structurally and functionally different target objects while maintaining

target functionality. Our framework is inspired by the typical workflow for designing style

coordinated environment: since all shapes in the environment share a coherent style, artists

tend to first design one shape satisfying the style requirements and then use it as a reference

to design other shapes in different functionalities. Following the idea of this workflow, our

framework only requires users to locate or create a single exemplar shape as input, then our

framework will automatically apply an algorithmic, cross-functional, exemplar-to-target

style transfer to synthesize shapes in diverse functionalities while having a coherent style.

This framework can significantly simplify and speed up the modeling of style coordinated

virtual environments.
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The style transfer approach can populate the virtual environment or object collections with

stylistically coherent models. Nonetheless, all shapes being populated are constrained to

an existing style; the artists still need to design the style for the exemplar shape in the first

place. Furthermore, if there is a new requirement for style, the artists also need to mod-

ify the shapes with the new specifications. All these scenarios require a method to realize

the style requirement rather than transferring the style. Going deeper in the design cycle,

artists often prototype their style design with line drawings on common structure templates,

and then translate these conceptual line drawings into shape designs. This motivates us to

use line drawings as an intuitive medium to express style specification. The benefits of

using line drawings as abstract representations of form and style of a shape are twofold: on

one hand, line drawings convey important characteristics of the underlying shape such as

its figure-ground boundaries, surface curvature, and occlusions [63, 118, 80]; on the other

hand, sketching requires much less expertise comparing to the low-level 3D geometric op-

erations required in modern 3D modeling software. The main challenge lies in converting

2D sketches into plausible 3D models. The fact that artists tend to prototype with line

drawings in canonical views makes this problem more attainable since most style-related

salient details are often preserved in canonical views. Moreover, the huge amount of 3D

shapes available online enables a data-driven approach to infer the shape structure from

unseen view projections. In this dissertation we also propose a learning approach utilizing

the neural network architecture and post-processing optimization to infer a 3D shape that

is consistent with input sketches from one or more views of an object.

1.2 Contributions

This dissertation proposes two novel research directions. The first research direction in-

volves algorithmic understanding of geometric shape style and extending this understand-

ing to applications that require evaluation of style similarity between shapes, and transfer
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of geometric style across objects. The second research direction aims to algorithmically

extract style specifications from a more abstract domain, i.e. line drawings, and translate it

into shape geometry.

In the context of these two novel research directions, I proposed three new methods with

the following contributions:

• a new algorithm for evaluating stylistic similarity, which is well aligned with the

human perception of style, is motivated by art history literature, and is learned from

and validated against crowdsourced data

• a new algorithm for transferring style between models of man-made objects with

different structure and functionality

• a deep learning architecture for reconstructing 3D shapes from 2D sketches

I will now present an overview of these new methods and the structure of this dissertation.

1.2.1 Learning Shape Style Similarity

In Chapter 3 we introduce the first structure-transcending style similarity measure and val-

idate it to be well aligned with human perception of stylistic similarity. Our work is moti-

vated by observations about human perception of style in art history and appraisal literature.

Art history experts often classify objects as belonging to a particular geographic or tem-

poral style by looking at salient geometric elements on the objects with recurring visual

motifs [86, 9]. For instance, classical Byzantine churches are likely to have rounded domes

and arches, while Gothic structures are dominated by steep gables and flying buttresses

(Figure 1.1).

Our style similarity metric is therefore designed around the presence of pairs of similarly

shaped, or matching, salient geometric elements on the evaluated models. Since style has

no unified quantifiable, objective, definition, we resorted to crowdsourcing and followed a
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A B C

A B C

Figure 1.1. Style similarity transcends structure: in the top row, the bed A is pronouncedly
more similar, style-wise, to dresser B than C; in the bottom row, building A and C are
stylistically more similar (insets highlight some stylistically similar elements).

machine learning approach to quantify those geometric criteria inspired by art history liter-

ature and learn all the parameters in our measure. In collecting crowdsourced data, instead

of asking participants for an absolute style similarity score which may lead to uncalibrated

responses, we gathered participants responses on queries about relative style similarity

comparisons, which are validated to be largely consistent in the evaluation.

1.2.2 Learning Shape Style Transfer

In Chapter 4 we describe the first algorithm for synthesizing shapes by transferring style

between man-made objects with different structure and functionality. The underlying chal-

lenge in style transfer task is to implicitly separate style from function: while the output

should stylistically look similar to the exemplar, it should also fully retain the function-

ality of the target. Inspired by the observations from understanding shape style similarity

in Chapter 3, stylistically more similar shapes tend to have more geometrically similar el-

ements and fewer unshared decorative features. Therefore, we search for a sequence of

element-level operations (e.g. substitution, addition, removal and deformation) to grad-

ually bring the target shape stylistically more similar towards the exemplar shape. It is

impractical to exhaustively search for all possible combinations of element-level opera-
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Figure 1.2. Transferring a style from a table to a TV stand (a) without (b) and with (c)
functionality constraints in place.

tions that can improve the style similarity. Moreover, not all element-level operations lead

to functionally compatible results (Figure 1.2). To this end, we introduce a new functional

compatibility metric, which is also the main contribution of this work, to supervise the

search over compatible element-level operations maintaining the original functionality of

the output model. Our compatibility metric is inspired by design literature [85] and re-

cent research [78] suggesting that gross form and arrangement of elements within a shape

are strongly correlated to its functionality. Therefore we design our compatibility measure

by leveraging the overall shape and context properties between elements. We employ a

learning based approach to derive robust metric parameters using automatically generated

training datasets following the observation that sets of coordinated same style shapes in

online shape databases can provide insights on element compatibility.

1.2.3 Learning Shape Reconstruction from Stylized Drawings

In Chapter 5 we propose a new method for reconstructing 3D shapes from 2D sketches in

the form of line drawings. Our approach appears to be the first that considers a learned,

view-based representation for generating 3D shapes from sketches. The advantages of our

approach are threefold. First, our learning model is based on a Convolutional Network

trained to map sketches to 3D shape information, which is a powerful tool in modeling

geometry and viewpoint transformation. Second, the view-based representation allows us
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to process 3D shape information such as depth and normals at a higher resolution than a

voxel-based representation. Third, we carefully design the full optimization pipeline so

that those multi-view shape information can be fused in a consistent manner which is a

crucial step for getting plausible shape reconstruction results. We train our architecture on

automatically generated, synthetic sketches of 3D shapes without requiring supervision in

the form of human line drawings. Once trained, our method can generalize to reconstruct

3D shapes from human line drawings that can be approximate, noisy and not perfectly

consistent across different viewing angles.
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CHAPTER 2

RELATED WORK

In this chapter we discuss the most relevant prior works. In Section 2.1 we review literature

on style analysis of shapes. In Section 2.2 we discuss prior methods on shape style transfer.

In Section 2.3 we discuss related work on modeling 3D shapes from sketch drawings.

2.1 Shape Style Analysis

The most relevant literary source for understanding human perception of 3D object style

can be found in art history and appraisal literature. These texts discuss at length the ge-

ometric features of architectural structures, furniture and other artifacts associated with

particular historic or geographic styles, e.g. [86, 9, 73], and frequently refer to characteris-

tic “elements of design” or “motifs” to describe a particular style. For example, [9] states

“starting from recognizing motifs you will soon recognize styles”, “The purpose of this

brief guide is to provide photographic illustrations of ... architectural details, elements,

and forms to enable the user to ... recognize styles and elements”. The book proceeds to

describe a range of architectural styles based on the choice of architectural elements they

employ, e.g. mansards, towers, or porches, as well as the characteristic shape of different

building parts such as roofs or windows. Nutting [86] similarly catalogs European and

American furniture styles based on the shape of different furniture elements such as feet,

trims, or posts.

The style definitions employed in this literature are descriptive rather than constructive,

motivating our search for a constructive style similarity measure. Our work on shape style
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similarity measure builds upon previous methods for shape style analysis, as well as meth-

ods for learning style measures in other types of data, discussed below.

2.1.1 Style analysis for same class models

A range of methods provide strategies for evaluating fine-grained similarity between shapes

with similar structure [126, 56, 61, 46, 116, 132]. These methods rely on the shared struc-

ture to first extract either a dense correspondence, e.g. [61, 46] or a segmentation of the two

models into corresponding, compatible, parts (a co-segmentation), e.g. [126, 56]. They then

use these correspondences to evaluate fine-grained similarity measuring either point-wise

or part-wise geometric differences with respect to pre-defined distance metrics whose rela-

tive weights are either hard-coded or learned from database distribution. For instance, Xu et

al. [126] co-segment models into roughly corresponding parts and define the style distance

between shapes based on differences in scales and orientations of part bounding boxes.

Kalogerakis et al. [56] define object and part styles using dominant modes of a learned

probability distribution across a database of models on a range of geometric descriptors.

Kim et al. [61] and Huang et al. [46] classify shapes within the same class, e.g. chairs,

as belonging to different fine-grained categories, e.g. office or rocking chairs. Kim et al.

perform the categorization by first producing a set of probabilistic part-based templates and

grouping the shapes based on the template they fit best. Huang et al. group the shapes based

on partial and local similarity measured using a combination of spin images, distance, and

deformation fields, with the importance of each term learned from database distribution.

Yumer et al. [132] use co-analysis of shapes within the same class to learn geometric and

spatial constraints among the different parts of an object, and use this information for style

transfer and other applications.
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2.1.2 Structure-transcending shape style analysis

So far, little has been done when it comes to analyzing style across different structures. Li

et al. [74] highlight the difficulty in evaluating or defining structure-transcending styles for

3D objects. Thus, rather than considering style of 3D shapes, they focus on identifying

styles on closed 2D curves. They segment the curves at curvature extrema, and evaluate

style similarity between curves by comparing segment shapes and curvature histograms.

Their conclusions highlight the need to perform a perception study to establish a style

definition consistent with human intuition.

More recent works aim to address the much more challenging question of analyzing style

of structurally different 3D objects. Liu et al. [78] propose a metric for stylistic com-

patibility between furniture learned from collections of 3D scenes. They observe that the

functionality of objects is strongly correlated to the gross shape and arrangement of their

major parts, while style is strongly linked to the fine geometric details of these parts. Lim

et al. [75] propose a deep metric learning approach for style classification across differ-

ent structures and functionalities. Instead of utilizing hand-crafted geometric descriptors,

they represent shapes as rendered images in multiple views and train the neural network

to identify high-level features for discriminating styles. However they treat the shape as

a whole which potentially misses finer-detail features within sub-elements of the shapes.

Instead, our work is driven by observations in art history literature [86, 73] that point to the

presence of similarly shaped, salient, geometric elements across analyzed shapes as a key

indicator of stylistic similarity.

2.1.3 Learning style in other domains

There is a significant effort to analyze style in other types of data, such as images, video and

audio. Tenenbaum and Freeman [112] discuss ways to separate content and style factors in

speech, typography, and face images. Significant effort has been made in learning style pa-
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rameters from exemplar images and video and transferring them to other instances [38, 11].

Researchers have addressed style analysis, recognition and retrieval in 2D images [121, 49],

music [4], and film [7]. Doersch et al [23] recognize the visual motifs, or style elements,

that distinguish photos taken in different cities.

We differ from these works in the domain of application as well as in the use of crowd-

sourced data to both facilitate and validate our style similarity measure. Our work is closer

to that of Garces et al. [32], who employ crowdsourcing to learn a similarity measure for

clip art styles. However, we target 3D shapes which require a very different style definition

and a distinct measurement approach.

2.2 Shape Style Transfer

Besides the insights from previous methods on shape style analysis, our work on shape

style transfer is also built upon previous work in part correspondence, part-based shape

synthesis, and style transfer.

2.2.1 Part Correspondence

Numerous existing methods compute correspondences between compatible parts of ob-

jects within the same class or co-segment such objects into such corresponding parts, see

[117, 125] for recent surveys. Recent methods leverage structural similarities between

shapes to extract functional part correspondences. Zheng et al. [136] match specific types

of shape substructures (called SFARR) that have the form of part triplets: two symmetric

parts and a third part connecting the two. Such special substructures do not exist in many

man-made shape categories (e.g., lamps, cutlery) and span only a small subset of compati-

ble parts on others. Liu et al. [77] extract common substructures on shapes through manual

annotation of corresponding parts. Our method instead uses more general structural rela-
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tionships to measure functional compatibility between elements and does not require any

user interaction.

Laga et al. [67] use graph kernels to evaluate functional part correspondences between

shapes withing the same class. Our work adopts some ideas from this work, and in par-

ticular the use of graph kernels to measure element compatibility. As shown by our com-

parisons to [67], applying graph kernels successfully to evaluate element compatibility on

structurally different shapes requires different geometric feature sets, different encoding

of graph edge relationships, and different parameter estimation. In particular, instead of

hand-tuning graph kernels, we employ a learning approach to automatically adapt weights

of appropriate feature descriptors and graph walk parameters impacting cross-functional

compatibility.

A number of recent works compute functional correspondences between points, parts, or

fuzzy regions on different shapes by analyzing their potential interactions with either other

objects in the scene [43, 42], or with posed human avatars [52, 60, 96, 140, 97]. The de-

tected interactions relate parts with similar gross functionality across objects within the

same broad shape class and with sufficient input can be extended to handle patch corre-

spondences with similar interaction types across shapes with different functionality [42].

However, such correspondences can only be estimated for patches with specific types of

object interactions and require large amounts of external context data. Consequently it is

likely unrealistic to extend these methods beyond detecting gross functional part corre-

spondences. Our work uses readily available coordinated object scenes as the only training

input, and computes fine-level element compatibility, necessary for synthesis of detailed

functional geometric shapes in a given style. We demonstrate that compatibility can be

successfully evaluated without explicit functionality detection.
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2.2.2 Part-based shape synthesis

Interactive methods for part-based shape synthesis rely on users to specify and edit parts to

assemble a shape, either directly [29, 66] or indirectly through semantic handles, attributes

and suggestion mechanisms [14, 133], and to explicitly control output style and function.

Shape grammars are used to generate new models, either by repeating structural patterns

specified manually by the user, or through automatic inference of such patterns from a set of

examples [10, 107]. The shape structure and functionality are determined by the grammar,

which operates within a particular shape class, or sub-class.

Multiple methods generate new shapes by combining parts from objects within the same

functional class [56, 44, 127, 48], employing part correspondences generated via co-segmentation

and labeling methods designed to operate on shapes with common functionality and coarse

structure. After assembling models using co-segmented same class-shapes as input, Huang

et al. [48] subsequently deform them to best fit input images. [132] facilitates structure

preserving shape deformation by providing users with deformation handles trained on co-

segmented shapes within a class. All these methods rely on co-segmentation or corre-

spondences between parts of objects within a single class. Our framework is designed

for transferring element style between shapes in vastly different classes, requiring a cross-

functional element compatibility measure and does not require any prior co-segmentation

or part labeling.

2.2.3 Style transfer

Researchers have explored style transfer for 2D curves, e.g. [39, 74] and images [38]. While

insights from these frameworks are useful for understanding the conceptual notion of style

transfer, as explained by [126, 79], algorithms developed for the 2D setting cannot be

readily extended to 3D space.
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There had been no attempts to address generic style transfer for 3D shapes. However two

recent methods address special cases of this problem [126, 79]. Given a pre-defined coarse

segmentation of the exemplar and target shapes into corresponding parts, Xu et al. [126]

use these correspondences to anisotropically scale target parts to fit the proportions of the

matching parts on the exemplar. The method has limited applicability, as it assumes a

meaningful part level correspondence between the exemplar and target, and cannot handle

style properties beyond scale.

Following [38, 39], Ma et al. [79] require a triplet of inputs: an exemplar, a source, and a

target, where the source and target are expected to share the same style but have different

functionality, while the source and exemplar are expected to have the same functionality

and structure. They assemble the output by combining exemplar and target surface patches

guided by a combination of a dense exemplar to source mapping and a piece-wise similarity

transformation between the source and target. Their method makes a number of strong

assumptions, that rarely hold even when a source model which fits the generic criteria

above is available. For the transfer to be successful, they implicitly assume that decorative

elements on the exemplar and source are co-located, and assume most target surfaces to

have meaningful source counterparts, related via simple similarity transformations (target

surfaces with no source counterparts are left untouched by the transfer). Our style transfer

framework has none of these limitations: it does not require a source or a compatible

segmentation, and can handle a far wider range of inputs than either of the methods above.

2.3 Sketch-based Shape Modeling

There has been lots of researches focus on sketch-based shape modeling (see [88] and [22]

for a survey on the sketch-based modeling methods and systems). Below we discuss some

of the related work addressing the problem of shape modeling using sketches as input.
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2.3.1 3D geometric inference from line drawings

Compared to using natural images, estimating 3D shape from line drawings is consider-

ably more challenging due to the lack of shading or texture information. Early works [118,

80, 76, 134] formulate the process of inferring a 3D shape based on reasoning about lo-

cal geometric properties, such as convexity, parallelism, orthogonality and discontinuity,

implied by lines and their intersections (“junctions”), to find a globally consistent shape.

These approaches produce reasonable geometry when applied to specific families of poly-

hedral objects, but are less effective for organic shapes with smoothly varying surfaces. For

smooth shapes, hand-designed rules are usually devised to extrude or elevate a 3D surface

from contours [50, 88]. More recent methods enable the creation of freeform surfaces by

exploiting geometric constraints present in specific types of line drawings, such as polyhe-

dral scaffolds, cross-section lines and curvature flow lines [99, 124, 90]. All these methods

derive geometric constraints from specific types of lines, require very accurate input draw-

ings, and can only reconstruct what is drawn.

On the other hand, various studies [64, 19] showed that humans can consistently inter-

pret 3D shapes from sparse and approximate line drawings (up to a bas-relief transforma-

tion [6]). Although the exact mechanism of 3D shape perception in humans is not well

understood, this indicates that pure geometric-based methods may not be able to mimic the

human ability of shape understanding from sketches.

2.3.2 Learning-based methods for shape synthesis

In contrast to pure geometric methods, learning-based approaches argue that shape inter-

pretation is fundamentally a learning problem, otherwise it is highly under-constrained. A

large number of learning-based methods have focused on estimating 3D shapes from single,

natural images that include color and texture. Early work was based on analyzing shading

and texture cues within image regions [40, 98], while more recent work has employed Con-
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vNets for predicting surface depth and normals from real images [25, 120]. Driven by the

success of encoder-decoder architectures [69, 135, 54, 115, 51] that can effectively map in-

puts from one domain to another, newer methods use such architectures with convolutions

in three dimensions to generate 3D shapes in a voxelized representation [122, 17, 129]. A

different line of work has employed ConvNets to model geometric transformations of an

object to predict novel viewpoints [24, 109, 130, 138]. The approach of Tatarchenko et

al. [110] is most related to ours. Their approach takes as input a single natural image and a

viewpoint and uses a ConvNet to predict the color and depth from the provided viewpoint.

They show compelling 3D reconstructions for chairs and cars from a single color image by

projecting the depth maps from multiple views into a 3D space. Our approach is inspired by

this work, but differs in a number of ways. Our method operates on line drawings, a more

challenging type of input due to the lack of shading or color information. It predicts both

normals and depth across multiple viewpoints, which are then integrated into a high-quality

surface mesh representation through a joint optimization procedure. It also adapts a U-net

architecture [51] along with multi-view decoder branches and a structured loss function to

resolve ambiguities in the input line drawing.

2.3.3 Sketch-based 3D shape retrieval

Sketch-based retrieval methods typically transform features of the input sketch and 3D

shapes into a common space where comparisons can be made. Early work was based on

hand-engineered descriptors [30, 92, 41, 70, 26, 128, 123, 100, 37], while more recently,

ConvNets have been proposed to learn powerful representations for sketch-based retrieval

[105, 119]. Unfortunately, these methods only allow retrieval of existing 3D shapes or

parts. They provide no means to synthesize novel shapes or parts from scratch. A few

recent approaches employ category-specific, predefined parametric models to guide shape

reconstruction through ConvNets [84, 45]. These methods are only able to recover specific

shape parameters or rules from input sketches. If a drawing depicts a shape that cannot
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be described by the parameters of these models, then the reconstruction fails. In contrast,

our method learns a representation capable of predicting shapes from sketches without any

predefined parametric model. We expect 3D shape priors to automatically emerge in our

deep network.
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CHAPTER 3

LEARNING PERCEPTUAL SHAPE STYLE SIMILARITY

A B C

A B C

Figure 3.1. (left) Changing the style of objects in a scene influences the sense of time
and place. (right) Style similarity transcends structure: in the top row, the bed A is pro-
nouncedly more similar, style-wise, to dresser B than C; in the bottom row, buildings A
and C are stylistically more similar (insets highlight some stylistically similar elements).

The human perception of stylistic similarity transcends structure and function. An algo-

rithmically computed style similarity measure that mimics human perception can benefit

a range of computer graphics applications. Previous work in style analysis focused on

shapes within the same class, and leveraged structural similarity between these shapes to

facilitate analysis. In contrast, we introduce a structure-transcending style similarity mea-

sure and validate it to be well aligned with human perception of stylistic similarity. Our

measure is inspired by observations about style similarity in art history literature, which

point to the presence of similarly shaped, salient, geometric elements as one of the key

indicators of stylistic similarity. We translate these observations into an algorithmic mea-

sure by first quantifying the geometric properties that make humans perceive geometric

The work described in this chapter has been published as a full paper in ACM SIGGRAPH 2015. Please
also see the accompanying video: https://youtu.be/PWqZwpHQtnE
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Figure 3.2. To evaluate style similarity, we identify potentially matching elements; and
use those in a distance function that accounts for element similarity, element saliency and
prevalence. The parameters of both steps are learned from crowdsourced perceptual simi-
larity data.

elements as similarly shaped and salient in the context of style, then employing this quan-

tification to detect pairs of matching style related elements on the analyzed models, and

finally collating the element-level geometric similarity measurements into an object-level

style measure consistent with human perception. To achieve this consistency we employ

crowdsourcing to quantify the different components of our measure; we learn the relative

perceptual importance of a range of elementary shape distances and other parameters used

in our measurement from 50K responses to cross-structure style similarity queries pro-

vided by over 2500 participants. We train and validate our method on this dataset, showing

it to successfully predict relative style similarity with near 90% accuracy based on 10-fold

cross-validation.

3.1 Overview

Our goal is to obtain a structure-transcending style similarity measure for man-made 3D

shapes (Figure 3.2).

While the notion of style extends beyond shape, we consider a purely geometry based

measure; for most modeling applications properties such as texture can be easily changed
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once a shape is available. Moreover shape databases frequently contain only geometric

information, making a measure which contains other properties less useful. Our framework

for computing a style similarity measure consists of the key components outlined below.

Element Similarity. We first develop a method to measure element-level similarity in the

context of style evaluation. Our measure is inspired by observations in art history literature

about the types of geometric criteria that play a role in style identification (Section 3.2).

Matching Elements. We use this measurement method within a matching algorithm that

detects similar geometric elements on the evaluated objects. We first search for paired

regions on the processed models that satisfy the approximate mapping requirement. We

then group neighboring region pairs together based on geometric similarity, both within

each pair of regions, and between adjacent regions (Section 3.2.2).

Combined Style Measure. We seek a measure that reflects both the degree of similarity

between the detected matching elements as well as the percentage of the surface area on

both models covered with similar elements.Our overall style similarity measure balances

these two terms.

Learning. In each of the steps above we face multiple parameter choices, such as “how to

weigh different elementary distances when evaluating element similarity?”, “how to decide

when elements are similar enough for matching purposes?”, or “how to evaluate saliency in

the context of style measurement?” As we aim to obtain parameter values that lead to a style

measure consistent with human perception, we elect to learn these parameters by studying

human responses to style similarity queries and algorithmically tuning the parameters to

best mimic these responses. Our training step is based on participant responses to relative

style similarity queries, which we describe next, and is designed to maximize the agreement

between our measure and participant responses.
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Study of Style Perception. Our study was designed to achieve two goals. We wanted

to examine our hypothesis that human perception of style similarity between differently

structured objects is consistent. We also aimed to use the study results to facilitate parame-

ter learning for our style measurement algorithm. Our study was designed around relative

comparisons, with users asked to evaluate if an object A is more stylistically similar to

object B or C.

The selection of queries, detailed in Section 3.3, was motivated by the two goals above.

We pre-processed the raw participant input for training and algorithm validation, removing

queries with non-discriminative majority responses and answers from participants deemed

unreliable (see Section 3.3).

3.2 Measuring Style Similarity

Representation Man-made shapes in online databases are typically represented as par-

tially connected meshes (polygon soups). To evaluate style similarity we densely resample

these models, representing them as point clouds with normals (normal direction is set to

point outward using point visibility). We assume the models to be upright oriented. Most

models in online repositories, and essentially all the inputs we downloaded, satisfy this

assumption. Incorrect orientation can corrected using the method of Fu et al. [28].

3.2.1 Geometric Similarity

Art-history literature [86, 9] and appraisal tutorials, e.g. [20], point to three separate geo-

metric criteria that are useful when identifying a particular style and which are applicable

across different structures: shape, proportions, and lines (Figure 3.3). This literature re-

peatedly stresses that objects with similar style are expected to have intrinsically similar,

even if differently scaled, geometric elements - see the highlighted church domes in Figure

3.3, left or the skirts of the bed and dresser in Figure 3.1. It also indicated that relative and
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Shape Proportions Lines

Figure 3.3. Literature highlights three element-level style similarity criteria: intrinsic ele-
ment geometry or shape, relative proportions or scale, and dominant curve or line shape.

internal proportions of the elements play an important stylistic role - e.g. narrow vs square

windows, sturdy or thin furniture legs, and so on (Figure 3.3, center). Finally, it emphasizes

the importance of representative or noticeable surface curves in conveying style on the ob-

ject’s surface (Figure 3.3, right). Styles are often characterized by the use of straight versus

curved, or clean versus ornate lines. While for some style comparisons all three criteria

may come into play, it is the interaction or the relative weight of each criterion we seek to

learn from training data.

We measure geometric similarity using elementary distances that relate to these criteria.

When comparing intrinsic element geometry we employ both direct comparisons - measur-

ing point-wise positional and normal distances computed after aligning the elements using

an affine transformation, and indirect comparisons, measuring curvature distribution. We

compare element proportions using their bounding box scales and shape diameter functions

[102]. To explicitly account for line similarity we detect and compare feature curves and

representative silhouettes. All distances are normalized to the interval [0, 1]. We detail the

exact distance metrics in Appendix A.1.

We represent the distance between two elements {p, p′} as a weighted combination of the

elementary distances, using learned distance weights wi,
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(a)

(b)

(c)

(d)

Figure 3.4. Extracting matching elements: (a) patch-segmentations (two levels visual-
ized); (b) example matches; (c) transformation space (2D MDS projection) with clustering
results; (d) extracted elements.

D(p, p′) =
F∑
i=1

widi(p, p
′). (3.1)

3.2.2 Extracting Matching Elements

Given a pair of input models, we need to detect elements of one model that match, or are ge-

ometrically similar, to elements on the other and vice versa. These matching elements may

not share the same exact geometry, but are expected to share similar geometric features, as

measured by the geometric similarity measure above. Detecting matching elements is chal-

lenging since we do not a priori know the size, location, or number of such elements. We

make the problem tractable by observing that geometric elements are typically self-similar
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and can be approximately mapped to each other using an affine transformation. Following

these observations, we first locate near-convex patches on the two models that approxi-

mately map to one another, we then locate dominant mapping transformations, and finally

groups patches into elements by merging together adjacent patches that undergo a similar

dominant mapping transformation. Our grouping aims to discard matched, yet dissimilar,

patches and identify coherent geometric elements that share common geometric character-

istics and which frequently stand apart from the surrounding surface. We now describe

these steps in detail.

Patch Sampling. As a starting point for the matching process we sample each input

model using a dense set of approximately convex patches, computed using the method

of [3] (Figure 3.4, a). Operating on patches, instead of individual points, significantly

reduces the time complexity of our element computation. Patches also provide a more reli-

able starting point for matching since we can immediately evaluate match quality using our

geometric distance measure, assisting further analysis. We generate patches at a number of

scales which enables us to detect similarly shaped, but differently scaled, elements.

Transformation Clustering. For each patch computed in the previous step, we com-

pute a transformation that approximately maps it to every patch on the other shapevia an

outlier-robust iterative closest point alignment algorithm [8]. To detect groups of adja-

cent patches that undergo similar transformations, we use a Hough transform based voting

strategy [5, 81]. To imbue the transformation votes with geometric meaning, we represent

each transformation as a point in a nine-dimensional space which consists of translation,

rotation, and non-uniform scaling or reflection computed via Singular Value Decomposi-

tion. Each point is assigned a confidence weight based on the shape distance between the

transformed patch p and its image p′:

ω =
A(p) + A(p′)

2
exp

(
−D(p, p′)/s

)
, (3.2)
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where A(p) and A(p′) measure the percentage area of p and p′ relative to their shape. The

parameter s controls the confidence weight falloff as the distance increases, and is automat-

ically estimated by using a grid search and selecting the value that maximizes the objective

function (Equation 4.13) during model training (Section 3.2.3). To find the dominant trans-

formations in the 9-dimensional voting space we perform mean-shift clustering.

Each local maximum of density yields a cluster of voting transformations, and each cluster

centroid corresponds to a dominant transformation that approximately maps a number of

patches of one shape to the other. The transformation computation and subsequent cluster-

ing, visualized in Figure 3.4, are performed twice, from the first shape to the second and

vice versa.

Element Extraction. We use the dominant transformations T found in the previous step,

to compute matching elements, where each element is defined as a group of contiguous

patches and the matching element is defined by the image of these patches under T . We

formulate this task as a labeling problem to make similar inside/outside decisions for simi-

lar, contiguous patches. The labeling assigns each patch p a binary label cp which is set to

1 if the patch is added to the group and 0 otherwise. We compute the labels by minimizing

the following objective function over all the patch label assignments c per shape:

E(c; T ) =
∑
p

E1(cp; T ) +
∑
p,q

1

|N (p)|+ |N (q)|
E2(cp, cq; T ) (3.3)

where p, q are adjacent patches, N (p), N (q) are the sets of all patches adjacent to p and q

respectively. The unary term in this function assesses the distance between p and its image

Tp under the transformation T , and the pairwise term assesses how likely a pair of adjacent

patches p, q is to belong to the same element. Specifically, the unary term expresses the

negative logarithm of the following probability for an individual patch p:

P (cp = 1; T ) = exp(−D(p, Tp)/s) (3.4)
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thus:

E1(cp = 1; T ) = D(p, Tp)/s (3.5)

E1(cp = 0; T ) = − ln
[
1− exp(−D(p, Tp)/s)

]
(3.6)

where Tp denotes all patches on the other shape that are closest to the patch p when it is

transformed under the transformation T . We use the same learned parameter s as in the

clustering step.

The pairwise term expresses the negative logarithm of the probability for pairs of neigh-

boring patches to have different binary labels based on the geometric distance between

them:

E2(cp, cq) = −[cp 6= cq] ln
[
1− exp

(
−D(p, q)/s

)]
(3.7)

To compute the distances between the patches, we apply a translation to align their cen-

troids. A small distance indicates that the two patches are likely to belong to the same

geometric element, and that the cost for assigning different labels to them should be high.

In this case the pairwise term will encourage them to be either grouped into the element

associated with Tp , or have both removed from the group depending on their unary terms.

We compute the labeling using the standard min-cut framework [36] for each shape. Each

computation yields a group of patches on one shape that approximately map to patches on

the other shape under the transformation T and are internally similar. We perform labeling

separately for the two transformation directions (from the first shape to the second and vice

versa).

3.2.3 Combined Style Similarity Measure

Element-level Similarity Given a setM containing all the pairs of matching elements

detected on the two input shapes, element-level similarity is computed as:
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Delement =
∑

{p,p′}∈M

C(p, p′)D(p, p′) (3.8)

where D(p, p′) is the distance between a pair of matching elements {p, p′} on the two

models, and C(p, p′) is the saliency of this pair of elements. As pointed out earlier, style

elements are expected to be visually distinct, or salient, motivating the use of saliency to

weigh the impact of individual element distances on the overall style similarity between

shapes. We define saliency using a weighted combination of elementary saliency metrics

suggested by recent literature [16, 72, 103] (see Appendix A.1). The saliency of a pair of

elements is defined as the average of their individual saliences C(p, p′) = .5[C(p)+C(p′)],

and element saliency is expressed as a weighted sum of the saliences of its sample points.

Specifically for the element p (and similarly for its matching element p′):

C(p) =
(∑

s∈p

σ
( G∑

j=1

vjxj,s + v0

)
/M(s)

)
/C(S) (3.9)

where σ(x) = 1/(1 + exp(−x)) represents the sigmoid, or logistic, function, xj,s are the

elementary saliency metrics measured at the sample point s, vj is a learned weight per

metric, and v0 is a learned bias weight shifting the sigmoid along the input axis. The

sigmoid transformation non-linearly combines the elementary saliency metrics and scales

the resulting point saliencies within the [0, 1] range. Our experiments (Section 3.4) show

that using this formulation to combine elementary saliency metrics is more predictive than

using a simple linear combination. We normalize the element saliency by the saliency

integral across the entire input model S and the number M(s) of matching elements the

sample point s belongs to:

C(S) =
∑
r∈S

σ
( G∑

j=1

vjxj,r + v0

)
(3.10)

Prevalence To estimate the prevalence of the matching elements we consider the per-

centage of the area not covered by these elements on both models. For identical input
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shapes, this percentage will be zero, and will increase to one if no matching elements are

found. As with element similarity, we take saliency into account. If the uncovered area

contains salient features, it would indicate a poorer stylistic match between shapes than

if it is nondescript. We penalize unmatched areas z and z′ on the two objects using the

saliency integral across these areas, normalized by the saliency integral across the relevant

shape

Dprevalence = 0.5[C(z) + C(z′)] · t (3.11)

where t is a learned penalty parameter.

Combined Distance Function The distance between two shapes is defined as the sum of

the two terms above:

D = Delements +Dprevalence (3.12)

We note that the distance between the two models is by definition symmetric. The impact

of each term depends on the learned individual weights on the elementary distance and

saliency metrics.

Parameter Learning

The input to our parameter learning step is a set of user responses to relative similarity

queries based on triplets of shapes {A,B,C}. For each query we have answers from mul-

tiple participants whether the pair of objects {B,A} is more stylistically similar than the

pair {C,A} or vice versa. The output is a set of learned parameters (total 99 parameters)

for the distance function and the matching algorithm, which can then be used to compute

style distances on other pairs of objects. We note that our problem setting is different from

regression or classification, since our training data does not have the form of absolute, con-

tinuous or discrete, measurements of style. Instead, we use a probabilistic framework suited

to handle relative comparisons for training. Since not all study participants are equally reli-
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able in their answers, our training procedure weights each participant according to number

of times they disagreed with the majority answer in each relative comparison.

Learning Distance Parameters Our model expresses the probability a participant rates

{B,A} as more similar than {C,A}, or more compactly BA . CA as :

P (BA . CA) = σ
(
D(C,A)−D(B,A)

)
(3.13)

and similarly:

P (CA . BA) = σ
(
D(B,A)−D(C,A)

)
= 1− P (BA . CA) (3.14)

where σ(x) is a sigmoid function that converts the shape distance differences into probabil-

ities. This logistic-based probabilistic model follows [12], where it was used for learning

model rankings in the context of information retrieval.

To promote sparsity of the weights, our model contains a L1-norm regularization term

which can be seen as expressing a prior probability for the weights of elementary distances

and saliency features to be small:

P (w,v, t) = exp
(
− λ1||w||1 − λ2||v||1 − λ3|t|)

)
(3.15)

where w = {wi}i=1...F , v = {vj}j=1...G. The regularization parameters λ1, λ2, λ3 control

the degree of sparsification of the model and are automatically estimated through 10−fold

cross-validation on the training set. Given M training triplets, we learn the parameter

values that maximize:

L(w,v, t) = lnP (w,v, t)+
M∑

m=1

b[m] · lnP (BA[m].CA[m])+c[m] · lnP (CA[m].BA[m])
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where b[m] and c[m] represents our confidence that BA[m] . CA[m] and CA[m] . BA[m]

respectively based on the user responses to the query m. The confidence per query is mea-

sured as follows. Each user is assigned a reliability weight that is equal to the percentage

of times their answers agreed with the majority answer in the queries they were asked. The

confidence b[m] (and similarly c[m]) for a query m is measured as the sum of reliability

weights for users that answeredBA[m].CA[m] (or CA[m].BA[m]) normalized by the total

sum of reliability weights of the users who answered the query. We use bound constraints

to enforce the parameters t and w to be positive.

We use Matlab’s implementation of Sequential Quadratic Programming (SQP) for the op-

timization task of our objective function. To initialize the optimization, the weights are set

to small random values. Finally, we note that all elementary distances are normalized to

[0, 1] during training by dividing them by their 90th percentile value computed across all

training pairs and then truncating all higher values to 1. The percentile is used instead of

the maximum to discard any outlier values in the training data.

Learning Matching Parameters To learn the parameters of the overall distance func-

tion, we require the output of the matching step. However, our matching step requires an

element-level distance measure to evaluate the shape differences between pairs of patches,

creating a self-referential dependency between the two steps. To learn both sets of param-

eters we use an iterative procedure. We start with a naive distance measure generated by

computing the average closest point-to-point patch distance after ICP and use this measure

to detect an initial set of matching elements. We then update the parameters of the dis-

tance function by training our model with the procedure above. We repeat both steps, each

time using the just learned, more reliable, distance function in transformation clustering

and min-cut labeling for element matching, resulting in better matches. In practice three

iterations were sufficient for the method to converge to the results reported in Section 3.4.
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3.3 Study of Style Perception

Category # # Total # (%) Q. # (%) Q. # (%) (i) & (ii) # (%) Q.
Shapes Queries (iii) plurality (iv) plurality plurality majority

building 238 1000 0 (0.0%) 149 (14.9%) 798 (79.8%) 731 (73.1%)
furniture 278 1250 0 (0.0%) 134 (10.7%) 1088 (87.0%) 1065 (85.2%)

lamp 186 1250 1 (0.1%) 103 (8.2%) 1121 (89.7%) 1100 (88.0%)
column 74 800 0 (0.0%) 25 (3.1%) 760 (95.0%) 743 (92.9%)

coffee set 76 270 0 (0.0%) 32 (11.9%) 233 (86.3%) 224 (83.0%)
cutlery 74 200 3 (1.5%) 10 (5.0%) 184 (92.0%) 183 (91.5%)

dish 91 200 3 (1.5%) 18 (9.0%) 170 (85.0%) 162 (81.0%)
Total 1017 4970 7 (0.1%) 471 (9.5%) 4354 (87.6%) 4208 (84.7%)

Table 3.1. Study statistics per category. Left to right: category, number of models, number
of queries, number and percent of queries with plurality “Both B and C” response, number
and percent of queries with plurality “Neither B nor C” response, number and percent
of queries with plurality discriminative response, number and percent of queries with a
majority discriminative response (majority formed by more than 50% participants).

Category % persistence % consistency % consistency % consistency
all/reliable all/reliable majority (i) vs (ii)

building 73.8% / 76.7% 76.8% / 79.0% 86.6% 91.3%
furniture 89.5% / 90.8% 86.0% / 87.2% 91.2% 97.4%

lamp 92.5% / 93.4% 89.8% / 90.6% 94.4% 97.8%
column 86.4% / 88.8% 87.3% / 88.9% 91.7% 96.8%

coffee set 82.3% / 84.2% 83.5% / 85.0% 90.3% 94.5%
cutlery 88.1% / 89.8% 89.4% / 91.4% 93.7% 97.7%

dish 83.7% / 86.1% 78.7% / 81.6% 88.1% 92.6%
Total 85.7% / 87.7% 85.0% / 86.5% 91.3% 95.8%

Table 3.2. More study statistics per category. Left to right: category, participant persis-
tence across all participants and across reliable participants only, participant consistency
across all participants and across reliable participants only, consistency for queries with a
majority response, consistency for queries considering only discriminative responses ((i) B
or (ii) C).

Our study tests the hypothesis that human observers are persistent and consistent in eval-

uating relative style similarity across structurally different objects, and provides data for

training our algorithmic style similarity measure. We gathered our study data using online

questionnaires released through the Amazon Mechanical Turk (MTurk) service.
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(i)   B - 60%

(ii)  C - 0%

(iii) Both - 0%

(iv) Neither - 40%

A

B C

Figure 3.5. (left) Study query layout. (right) response distribution for this query.

Study Format. The queries used in our questionnaires were based on triplets of models,

laid out as visualized in Figure 3.5, left. Subjects were asked the question “Which of the

two shapes on the bottom (B or C) is more similar, style-wise, to the shape on the top (A)?”

and were required to select one of the following answers: “(i) B, (ii) C, (iii) can’t tell - Both

B and C, (iv) can’t tell - Neither B nor C”.

The models used for the study were organized into seven structurally diverse categories:

buildings, furniture, lamps, coffee sets, architectural columns (pillars), cutlery and dishes.

To focus on structure-transcending style similarity, for categories with clear fine-grained

structural sub-categories (furniture, lamps, coffee-sets and cutlery) B and C were selected

to have similar structure, different from that of A (e.g two dressers and a bed, Figure 3.1).

In categories with no clear structural sub-classes, the triplets were assembled based solely

on similarity bias.

Since our primary goal was to train our style similarity measure, we assembled most of

the queries with the goal of obtaining discriminative responses, where participants clearly

rank the degree of similarity between shapes, by introducing subjective bias. Specifically,

we generated 120 out of 4970 queries at random to validate the observation above. For the

rest of the study queries, roughly half of them were constructed such that A and one of B
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or C were selected from a single database scene, or arrangement, (e.g. tableware set), and

the remaining object was drawn from a different arrangement. The remaining half queries

were constructed such that one pair was classified by the authors as being in the same

geographic or temporal style, while the third shape was subjectively classified as belonging

to a different style.

Questionnaire and Participant Information. Each questionnaire released via the Me-

chanical Turk contained 25 unique queries. Each question was repeated twice, with B and

C flipped, to measure participant persistence. To collect a diverse set of answers per query

and avoid any individual bias, we allowed each participant to complete only one question-

naire per category. Participants were rewarded $0.50 for each questionnaire completion.

Query Response Processing. Any large-scale study faces the risk of attracting unreli-

able respondents. We detected and discarded outlier responses from participants who gave

two different answers to more than 6 out of the 25 unique queries in the questionnaire,

or took less than 3 minutes to complete it. For all other participants, we ignore answers

which are provided differently from the same participant. For learning purpose we only

used queries with a majority discriminative ((i) B or (ii) C) response. Table 3.1 lists the

number and percentage of discarded and remaining queries as well as those of queries with

discriminative responses. For algorithm training and validation we detected and discarded

outlier responses using a two stage filter. Participants who gave two different answers to

more than 6 out of the 25 unique queries in the questionnaire, or took less than 3 minutes

to complete it, were classified as unreliable and all their answers were discarded. For all

other participants, we ignored non-persistent answers, where a participant answered the

same question differently. To form a statistically significant majority we gathered answers

to each query by 10 different, reliable users. For learning purposes we only used queries

with a majority discriminative ((i) B or (ii) C) response. While the answer “(iii) Both B
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and C” could potentially be used in a learning procedure, the percentage of queries with

such plurality answers is negligible (0.1%) and does not justify the extra effort required

to incorporate them into the training algorithm. The number and percentage of discarded

and remaining queries are listed in Table 3.1 columns four through six. The number and

percentage of queries with discriminative majority responses used for learning are listed in

Table 3.1 column seven.

Hypothesis Validation. We hypothesize that participants’ consistency and persistence

in this study can be considered as a measure of human performance for comparing the

style similarity of shapes. Consistency is measured as the percentage of times that MTurk

participants’ answers agree with the plurality answer per query, i.e., the percentage, or

size, of the plurality. Table 3.2 lists those values. The fact that on average 8.5 out of 10

users agree on the response for a query confirms that human observers are consistent in

evaluating relative style.

Representative Sample. An interesting question to ask is how the consistency of MTurk

participants compares to a curated participant set, and how their perception of style com-

pares to that of experts. To answer these questions, prior to conducting our large-scale

study, we performed a pilot study which included a mix of participants: 55 unique partic-

ipants found through the MTurk service, 32 casual participants located based on personal

contacts, and 5 Arts Ph.D students. The last group can be considered as experts for our task.

This study had 250 queries. Across the casual user group the average plurality size was

93.5% based on all answers and 99.3% excluding the non-discriminative answers. Within

the expert user group, the pluralities were very similar - 95.3% and 99.5% correspondingly.

For MTurk participants in this smaller study, the pluralities were 88.6% and 98.5% corre-

spondingly, slightly smaller and similar to the ones in our large study. We conclude that

the overall consistency across the different user groups is similar, and the consistency rate
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we observe among MTurk participants serves as a plausible estimate of such consistency

in the general population. When comparing the majority responses across all three groups

taking only discriminative responses into account, the percentage of times that casual users

or MTurk participants disagree with the plurality answer provided by experts were negligi-

ble, 0.6%, and 1.2% respectively. In other words when participants were able to provide a

ranking these rankings were essentially identical. This observation indicates that our learn-

ing method, which relies only in discriminative majority answers of MTurk participants, is

likely to be consistent with expert perception of style. We observed a larger difference in

the percentage of time one group of participants chose the non-discriminative ‘Neither B

nor C’ (iv) response while the other one chose a discriminative one. Overall, MTurk par-

ticipants agree with expert plurality 83% of the time, while casual participants agree with

expert plurality 87% of the time. Such discrepancy is to be expected, as experts may look

for different style cues beyond those noticeable by laymen. Since the difference remains

small and is limited to non-descriptive answers, we believe that the MTurk participant re-

sponses can be relied on to derive an accurate picture of human perception of relative style

similarity and to train a robust style similarity measure.

3.4 Algorithm Validation

We validate our style similarity measure by performing ten-fold cross-validation on queries

with a majority discriminative response among the study participants. Queries tested during

validation excluded all pairs of models present in the training queries. The percentages of

queries on which our algorithm agrees with the majority response are reported in Table 3.3,

second column. Across all categories our method agrees with the majority response 89.1%

of the time. This number is comparable to the agreement level between the individual

reliable participants for these queries (91.3%). Table 3.3, rows one through seven, report

the predictive accuracy for the scenario where the algorithm was trained and validated
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Figure 3.6. (left) Examples of the 89% of queries where our method agrees with study
majority response( shared answer in green), numbers show percentages of participants who
selected each answer (not listed answers received zero votes). (right) Some representative
failure cases (majority response blue, ours red).

Category all terms no prevalence term linear saliency no saliency term LFD
building 81.4% 77.4% 79.3% 79.9% 70.7%
furniture 91.4% 87.9% 90.8% 90.6% 74.6%

lamp 95.0% 86.1% 94.5% 94.7% 61.6%
column 90.2% 87.2% 87.8% 87.9% 55.5%

coffee set 90.6% 87.1% 89.3% 86.2% 62.1%
cutlery 85.8% 72.7% 82.5% 81.4% 61.2%

dish 89.5% 86.4% 87.0% 87.0% 88.9%
average 89.1% 83.5% 87.3% 86.8% 66.6%
mixed 86.6% 82.1% 86.3% 85.9% 67.8%

Table 3.3. Prediction accuracy, Left to right: category, our prediction accuracy, prediction
accuracy with alternate formulations. Rows one to seven show results where training and
validation were done per category, bottom row shows results where both were done on the
entire database.

separately against each model category. Performing these two tasks on all the categories

at once, the average accuracy slightly drops to 86.6% since, as one would expect, the

importance of different measure components may vary across different object categories.

Algorithmic Choices. We evaluated a number of alternative approaches for style mea-

surement, summarized in Table 3.3, columns three to five. We evaluated the impact of drop-

ping the prevalence term, using linear vs sigmoid saliency models, and ignoring saliency

altogether. As expected each change led to drop in prediction accuracy, with the omission of
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Figure 3.7. (left) Similarity weights, features from left to right are: surface distance, cur-
vature difference, shape distribution D2 difference, scale difference, shape diameter dif-
ference, curve distance, light field descriptor difference, (right) saliency weights, features
from left to right are: curvature metrics, location metrics, ambient occlusion, and three
levels of shape distinctness from [103].

prevalence leading to the largest drop. While one could expect an even larger drop without

the prevalence term, such a drop is prevented by our use of approximate element matching:

we purposefully classify elements as approximately matching even if the distance between

them is significant. This choice assists style similarity evaluation when the input shapes

do not share identical style elements. In the last column of Table 3.3, we provide com-

parisons against using the popular LightField shape descriptor alone (LFD) as a distance

measure between shapes [15]. Our learning method has significantly higher average pre-

diction accuracy compared to using LFD for style similarity. As explained in Section 3.2.3,

our algorithm employs an iterative scheme that alternates between matching elements us-

ing our distance function and then updating its parameters. After the initial iteration, the

prediction accuracy of our algorithm averaged over our seven datasets is 87.9%. At the

second iteration, the accuracy increases to 89.0%, and at the third iteration the accuracy

converges to 89.1% as reported in Table 3.3.

Elementary Distances. Figure 3.7(left) shows the relative importance of each elemen-

tary distance as reflected by its learned weight in the element similarity term (normalized

by the sum of all elementary distance weights), averaged over all our seven categories. We
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observe that the distances between feature curves are contributing the most to our style

measure. Figure 3.7(right) similarly shows the relative importance of each saliency feature

as reflected by the absolute scale of its learned weight in the saliency model (normalized by

the sum of all absolute saliency weights). We note that the relative importance for saliency

features is less direct since we employ a non-linear sigmoid-based model for measuring

saliency. Curvature- and location-based features appeared to have higher contribution.

Complexity and Runtimes. Our distance computation has two main time-consuming

steps: computation of per sample point geometric features used for elementary distances

and saliency metrics, and element matching. Feature computation takes 40 seconds on av-

erage for a pair of shapes. Element matching consists of patch sampling, transformation

clustering and element extraction steps which take 115, 85 and 35 seconds respectively for

a shape pair on average. In total, evaluating the distance function takes about 4.5 minutes.

We note that several parts of our algorithm could be implemented much more efficiently

e.g., patch segmentation is implemented on a single thread. Regarding computational com-

plexity, the distance function evaluation has quadratic complexity in the number of patches

in shapes and linear in the number of point samples. We note that the number of patches is

relatively low, ranging from 20 to 80 at most.

Optimizing the objective function for learning the parameters of our distance function re-

quires 30 seconds per 100 training queries. The complexity of the parameter learning stage

is linear in the number of triplets. Learning requires evaluating distance functions for all

shapes pairs in the training queries. For our largest dataset, the learning stage requires

about 50 hours. We note that the learning stage is an offline procedure; once the measure

is learned, applying it for a shape pair requires only a few minutes, as discussed above.

All running times are reported on an Intel E5-2697 v2 processor. Our data and source

code is available on our project page: https://people.cs.umass.edu/˜zlun/papers/

StyleSimilarity.
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Figure 3.8. Embedding the column dataset in a 2D space based on learned pairwise dis-
tances yields distinct Gaussian-like clusters that correspond to known architectural orders
visualized by colored boxes.

3.5 Applications

We describe three novel applications of our learned style similarity measure.

Organizing shape collections. We first constructed a graph where nodes are the shapes

belonging to the triplets described in Section 3.3 and the edges represent triplet relation-

shaip with edge lengths equal to their computed pairwise distance. Then we embed the

graph in 2D using the Isomap technique [111]. Figure 3.8 shows the resulting embedding

for columns. Interestingly, the discovered groups are largely correlated to architectural

orders commonly used by art historians to describe column styles.

Style-based shape tagging. Given a set of shapes with style labels provided by an expert,

we can train a classifier that infers, or propagates, labels to the rest of the shapes in a collec-

tion. To reliably perform classification, we embed shapes in a high-dimensional space using

Isomap technique and concatenate the embedding coordinates per shape as the feature vec-

tor, which is provided as input to the classifier for training and evaluation. While training
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the classifiers, we performed hold-out validation on the training sets to choose the dimen-

sionalityD of the embedding for each collection.We stop once the hold-out validation error

increases more than 10% with respect to the best previous value of D, or when D = 20.

On average, using single nearest neighbor classifier through ten-fold cross-validation, the

labeling accuracy in the test sets was 95.6% for columns, 86.6% for buildings, and 94.1%

for coffee sets.

Style-based suggestions for scene modeling. Finally, our learned measure can be used

to help designers during interactive scene composition by providing stylistic suggestions of

shapes. The input to this application is a collection of shapes and a scene being modeled.

The application compiles an ordered list of shapes from a collection according to their style

distance to the shapes in the scene, or selected shapes of interest (query shapes) specified

by the designer. but evaluated across the entire shape, sidestepping explicit element de-

tection. In this manner, the shape that is most structurally and geometrically similar to

the query shape is found first. To generate the ordered list, we use the geodesic distances

from that shape to all other shapes in the database through a precomputed graph, which is

constructed using the process described for organizing shape collections. We demonstrate

the application of stylistic suggestions for furniture in the accompanying video. Instead of

computing the distance of the query shape to all collection shapes which is computationally

expensive, we perform a nearest neighbor search in the space of features we use for element

matching. Then we generate the ordered list using the geodesic distances from that nearest

neighbor shape to all other shapes in the database through a precomputed graph, which is

constructed using the process described for organizing shape collections.

3.6 Discussion

We have described the first algorithm for computing a structure-transcending style similar-

ity measure between objects. As demonstrated, our measure is well aligned with human
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perception of style, owing to our novel use of parameter learning from crowdsourced style

similarity queries. Since understanding style is fundamentally important for analysis of

man-made objects, our method directly benefits a range of applications such as the ones

described in the paper.
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CHAPTER 4

FUNCTIONALITY PRESERVING SHAPE STYLE TRANSFER

Figure 4.1. Our algorithm transfers the geometric style of three exemplars, cabinet,
loveseat, and sugar pot (left, highlighted with arrows), to the rest of the objects in the
scene, while preserving the target functionality (right). Please zoom-in to see more details.

When geometric models with a desired combination of style and functionality are not avail-

able, they currently need to be created manually. We facilitate algorithmic synthesis of 3D

models of man-made shapes which combines user-specified style, described via an exem-

plar shape, and functionality, encoded by a functionally different target shape. Our method

automatically transfers the style of the exemplar to the target, creating the desired combi-

nation. The main challenge in performing cross-functional style transfer is to implicitly

separate an object’s style from its function: while stylistically the output shapes should

be as close as possible to the exemplar, their original functionality and structure, as en-

coded by the target, should be strictly preserved. Recent literature point to the presence

of similarly shaped, salient geometric elements as a main indicator of stylistic similarity

The work described in this chapter has been published as a full paper in ACM SIGGRAPH ASIA 2016.
Please also see the accompanying video: https://youtu.be/R-1jhH4sbRk
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Figure 4.2. Framework overview.

between 3D shapes. We therefore transfer the exemplar style to the target via a sequence

of element-level operations. We allow only compatible operations, ones that do not affect

the target functionality. To this end, we introduce a cross-structural element compatibil-

ity metric that estimates the impact of each operation on the edited shape. Our metric is

based on the global context and coarse geometry of evaluated elements, and is trained on

databases of 3D objects. We use this metric to cast style transfer as a tabu search, which in-

crementally updates the target shape using compatible operations, progressively increasing

its style similarity to the exemplar while strictly maintaining its functionality at each step.

We evaluate our framework across a range of man-made objects including furniture, light

fixtures, and tableware, and perform a number of user studies confirming that it produces

convincing outputs combining the desired style and function.

4.1 Style Transfer Framework

Our framework takes an exemplar shape and a target shape in a different functional class as

input. Given the exemplar and target shapes, we search for modifications to the target shape

which bring it stylistically closer to the exemplar. It begins by hierarchically segmenting

both the exemplar and the target into potential geometric elements (Section 4.2) and then
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employs a set of element-level target modifications that reduce the style distance between

the output and the exemplar (Figure 4.2). To measure this distance we use the style measure

discussed in Chapter 3.We perform only compatible operations, ones that do not violate the

target functionality. We evaluate compatibility as discussed in Section 4.3.

Operations. The simplest and most common operation we employ to reduce style dis-

tance between an exemplar and a current shape is substituting elements on the current

shape with (appropriately scaled) exemplar elements. By definition any such substitution

reduces the style distance between shapes; however, it is rarely possible to replace every

single portion of the target shape with exemplar elements without violating functionality.

We therefore use three additional operations that can improve style similarity once sub-

stitution is no longer possible: curve-based element deformation, element addition, and

element removal. The element deformation operation embeds the exemplar curve into the

candidate shape by replacing its target counterpart and adapting the surrounding surface,

see Section 4.5. For element addition and removal operations, We only perform those oper-

ations on elements deemed decorative, i.e. having only marginal impact on functionality as

measured by our per-object compatibility function. To ensure that our operations preserve

target shape symmetries, we detect all replicated elements and curve handles on the target

shape, and apply each operation to an entire symmetry group instead of to a single element.

Tabu Search. Our optimization procedure is designed to select modifications providing

maximal style adaptation while preserving target functionality, which follows the concept

of tabu search [34]. A detailed pseudocode of our method is provided in Figure 4.3.

Throughout the optimization, we maintain a list of seed shapes which is initialized with

the given target shape. At each iteration, we remove a seed shape from the list and attempt

to bring it closer, style-wise, to the exemplar using one of the four supported element op-

erations. To explore the most promising solutions first, we always select the seed shape
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input : Exemplar shape E in class c′, Target shape T in class c
output: An output list O of new shapes

1: Initialize search list L = {T}
2: repeat
3: Choose shape S = argmin

T ′∈L
Dstyle(E, T

′)

4: Remove shape S from search list L

// Search for element substitutions
5: for each element (or symmetric group of elements) GS in S do
6: Find elements GE in shape E with Dfunc(GE , GS) < εc,c′
7: for each retrieved element GE do
8: if replacing GS with GE drops Dstyle(E,S) then
9: Construct new shape S′ by aligning GE

10: if Dfunc(S
′, T ) < εc,c and alignment is successful then

11: insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

12: end
13: end
14: end
15: end

// Search for curve-based deformation
16: for each curve (or symmetric group of curves) CS in S do
17: Find curve CE in shape E with Dcurve(CE , CS) < εcurvec,c′

18: for each retrieved curve CE do
19: Construct new shape S′ by deforming S to align with CE

20: if the constructed new shape S′ drops Dstyle(E,S) then
21: if Dfunc(S

′, T ) < εc,c then
22: insert shape S′ in search list L and output list O

(unless a copy of S′ already exists in the output list)
23: end
24: end
25: end
26: end

// Search for element additions
27: for each non-used element (or group) GE in E do
28: if adding GE to S drops style distance then
29: Construct new shape S′ by aligning GE with S
30: if Dfunc(S

′, T ) < εc,c and alignment is successful then
31: insert shape S′ in search list L and output list O

(unless a copy of S′ already exists in the output list)
32: end
33: end
34: end

// Search for element removals
35: for each non-substituted/added element (or group) GS in S do
36: if removing GS from S drops style distance then
37: Construct new shape S′ by removing GS

38: if Dfunc(S
′, T ) < εc,c then

39: insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

40: end
41: end
42: end
43: until search list L is empty

Figure 4.3. Tabu search pseudo-code.
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currently closest to the exemplar in terms of style. If the attempt to improve it through

allowable operations succeeds, then the improved shape is inserted into the seed list. If

the attempt yields a shape which has been generated before, or if all evaluated operations

violate the functionality preservation constraints, then we discard and forbid the output.

We use the compatibility measure and the threshold learned from training data discussed in

Section 4.3 to examine if an operation is compatible, and only proceed if the compatibility

is higher than the threshold. We also avoid operations predicted to reduce the style distance

by less than a minimum threshold. In this manner, the tabu search only searches the space

of valid target shape modifications (a much smaller subset of the set of all possible mod-

ifications), and avoids performing operations on functionally implausible shapes. Once a

seed shape can no longer be improved it is considered to be a terminal solution, or in other

words it corresponds to a local minimum. In this case, we store it in an output list and

proceed to examine the next best seed shape in our search list, terminating when this list is

empty.

To reduce search space and avoid redundant operations we first perform tabu search using

only element substitutions, then once compatible style-distance-reducing substitutions are

exhausted we repeat the search using curve-based deformation, and finally use the same

process for adding and then for removing decorative elements.

Improvement Step. Given a seed shape, we aim to perform a compatible editing op-

eration that will maximally reduce the style distance from the seed to the exemplar. We

thus cycle through all possible operations of the currently examined type and select the

one that reduces style distance the most. We can only compute the exact impact of each

operation after it is performed, since most operations change the geometry of both the el-

ements involved and their surroundings. However, for both substitution and deformation

we can reasonably predict beforehand if the operation is incompatible, or if it does little

to reduce style distance. We rely on such predictions to avoid unnecessary computations.
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To examine if an operation is a priori incompatible, we use the compatibility measure and

the threshold learned from training data discussed in Section 4.3, and only proceed with

full computation if the predicted compatibility is higher than the threshold. We also avoid

operations predicted to reduce the style distance by less than a minimum threshold. Style

distances are normalized to the [0, 1] interval and we use 1% as a threshold. Once the oper-

ation is performed we reassess both compatibility and style distance, rejecting operations

that after the fact violate compatibility or do not sufficiently reduce style distance. We add

the compatible result with the smallest distance to the exemplar to the list of seeds.

Substitution. Give a pair of compatible elements in the exemplar and seed shape, we

seek to replace the seed shape element, including any of its symmetric counterparts, with

the corresponding element on the exemplar shape. This step requires alignment or coverage

of slots [56], i.e. areas on the elements which are in contact with the rest of the shape

(Figure 4.5). The alignment step, Section 4.4, balances two potentially contradictory goals:

it seeks to preserve output functionality and to minimally change the style, and specifically

the proportions, of both the substituted-in and pre-existing output elements (Figure 4.5).

Curve-Based Deformation. Our curve based deformation step only considers seed el-

ements originating from the target, and evaluates the compatibility of each possible de-

formation using a variant of the compatibility measure designed for curves (Section 4.3).

The deformation embeds the exemplar curve into the candidate shape replacing its target

counterpart and adapting the surrounding surface, see Section 4.5.

Element Additions and removals. Addition and removal are performed after substi-

tution and deformation, the two operations expected to be most effective at minimizing

exemplar-output style distance. We only perform addition of exemplar elements and re-

moval of target elements, deemed decorative, i.e. having only marginal impact on func-

tionality as measured by our per-object compatibility function. To add a new element to a
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model one needs to know the attachment point or slot to place it at. We thus only consider

adding elements that on the exemplar are immediately adjacent to an element previously

substituted-in or added to the seed. To add the element we first place it next to this prior

neighbor using the slots they shared on the exemplar.

Element removals. Finally, we perform removal of target elements that are decorative as

also measured by our compatibility function. We only remove elements if the slots they

share with the rest of the model are closed surfaces, i.e. if no gaping holes are left after

removal. Typically only a tiny fraction of elements fits these constraints.

Termination. Once a seed shape can no longer be improved it is considered to be a

terminal solution, or in other words it corresponds to a local minimum. In this case, we

store it in an output list and proceed to examine the next best seed shape in our search list,

terminating when this list is empty. The tabu search typically computes and evaluates a few

dozen solutions.

Output. If the user seeks a single output, then at the end of the process we return the

shape in the output list closest to the exemplar in terms of style distance. To provide mul-

tiple results with different emphasis on target functionality preservation versus exemplar

style adaptation, we add to the output list all the seed models produced during the tabu

search, as well as models generated with more lax compatibility thresholds.

4.2 Pre-Processing and Segmentation

Our style transfer framework requires that models are first hierarchically segmented into

meaningful geometric elements. We assume that the input shapes are represented as par-

tially connected meshes (polygon soups), are consistently scaled and oriented (have the
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same upright orientation, and face the same front direction when that direction is well de-

fined). Consistent orientations can be found manually or by using the automatic method

by Huang et al. [46]. Consistent scalings are computed through bounding box-based align-

ment.

Figure 4.4. Hierarchical segmentation and extracted curves.

Segmentation. We follow previous works that use convexity as a criterion for shape seg-

mentation into meaningful parts or elements. At the finest hierarchy scale, we generate

geometric elements by using the approximate convex decomposition technique by [3]. We

generate elements at a number of scales by repeating the segmentation with different con-

vexity thresholds (0.3, 0.5 and 0.7). Since when designing 3D models of man-made objects

artists often leave functionally meaningful parts as separate components we also add such

separate connected components as potential elements. We introduce additional larger el-

ements by merging neighboring elements when they jointly approximate a portion of a

primitive (box, sphere, or cylinder). The primitive-based element grouping is based on

[131]. The result of this step is a collection of a few dozen elements at a range of scales

(Figure 4.4, left). We also detect symmetry groups of elememts by approximately matching

them through ICP.

For each shape we build a graph representing its structure, which is consequently used for

compatibility evaluation (Section 4.3). The nodes of the graph are the different elements

(typically 10-50 elements per shape). The graph has three types of edges: we connect

nodes by an adjacency edge if their corresponding elements are adjacent; we create a sym-
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metry edge connecting nodes whose corresponding pairs of elements are related under a

reflective, translational or rotational symmetry; and we create containment edges between

nodes corresponding to pairs of elements where one element directly contains the other in

the hierarchical segmentation.

Curve Handles. Our element deformation operation uses matching curve handles on tar-

get and exemplar elements. We extract two types of curve handles (Figure 4.4, right):

view-independent ridges and valleys [87], and occluding contours. To compute the lat-

ter we use 12 views uniformly distributed about the upright axis at elevation angles of 0,

30, and 60 degrees above the horizontal plane. We extract the feature curves as described

in [58], and hierarchically segment them along element boundaries.

4.3 Compatibility

To effectively transfer style we need to evaluate the impact of each editing operation on the

functionality of the edited shape. We answer this question by using a set of compatibility

measures that predict the impact of each operations and also assess the a posteriori impact

of any operation on the output functionality. We formulate substitution and deformation

compatibility by considering the contextual similarity between the substituted elements

or deformation handles, and formulate shape-level similarity by analyzing compatibility

between pairs of elements on them.

4.3.1 Formulation

Previous research, e.g. [78] as well as insights from design literature [85] point to the con-

text and gross shape of geometric elements as important features in determining an object’s

functionality. While we do not aim to detect functionality, we speculate that elements with

similar context and shape features are more likely to be compatible, i.e. replacing one with
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the other is less likely to negatively affect the functionality of the resulting shape. Our

metric is designed to reflect these similarities and differences.

We encode each element’s functional and contextual properties using the element relation

graph contracted as described in Section 4.2. We then use a graph kernel-based similar-

ity evaluation framework, inspired by [67] to combine those into a single compatibility

metric. In contrast to Laga et al. we design our graph kernels to measure cross-class func-

tional compatibility by choosing a different set of feature descriptors and then learning

their individual importance and kernel parameters from training data. Our procedure of-

fered dramatic improvements in performance compared to using the formulation of [67]

as-is (Section 4.7).

Per-Element Descriptors. We encode each element’s gross geometry and context within

the overall shape using the following set of descriptors: the element’s relative position with

respect to its containing shape, encoded by the location of its markers such as its center of

mass, lowest and highest points with respect to global object’s markers (center of mass and

its projections on supporting planes); its relative dimensions with respect to the object’s

dimensions; its mass distribution; and the relative orientation of the element’s major axis

with respect to the object’s coordinate axes. The full set of the detailed 13 descriptors is

provided in Appendix B.1.

Pairwise Descriptors. For each pair of elements connected by an edge in our graph we

compute two sets of relative pairwise descriptors, using the same measurement as for indi-

vidual elements, but computed for each element with respect to its graph neighbor rather

than with respect to the containing object.

We assemble these descriptors into an element compatibility measure and learn their re-

spective weights as discussed in Section 4.3.2. Intuitively, the learned weights indicate
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which geometric descriptors are more relevant for evaluating functional compatibility be-

tween elements on functionally different shapes.

Element Compatibility. We evaluate compatibility between pairs of elements on two

shapes by comparing the graph walks initiated at their corresponding nodes in the respec-

tive graphs. Given an element p in a shape S, an nth order (length) walk W (n)
S (p) is defined

as a finite sequence of n + 1 vertices and n edges forming a continuous path in the graph.

Given another element q in another shape E, the nth order similarityK(n)(p, q), defined for

the nth order walks starting at p and q, is given by the recursive formula:

K(n)(p, q) = Knode(p, q) ·
∑

p′∈N (p)
q′∈N (q)

Kedge(epp′ , eqq′) ·K(n−1)(p′, q′) (4.1)

where Knode(p, q) is a kernel function comparing node descriptors for elements p and q;

N (p) and N (q) represent the set of neighboring elements for p and q respectively; and

Kedge(epp′ , eqq′) is a kernel function comparing edge (i.e. pairwise) descriptors that repre-

sent relationships between elements. For n = 0 (0th order walk), the kernel function only

evaluates Knode(p, q).

We define the node and edge kernels as a weighted combination of Radial Basis Function

(RBF) kernels with learned parameters which are evaluated respectively as follows:

Knode(p, q) =
∑
k

wk · exp

{
− D2

k(p, q)

2σ2
k

}
(4.2)

Kedge(epp′ , eqq′) = δ(epp′ , eqq′)
∑
l

wl · exp

{
− D2

l (epp′ , eqq′)

2σ2
l

}
(4.3)

where Dk(p, q), Dl(epp′ , eqq′) are distances between the descriptors of nodes and edges

respectively, δ(epp′ , eqq′) is a binary function that returns 1 when the edges epp′ , eqq′ are of

the same type (symmetry, containment, or adjacency) and 0 otherwise.
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Compatibility between elements p and q is then defined as a weighted combination of nth

order similarities between them across a range of walk lengths n:

Kfunc(p, q) =
∑
n

wnK
(n)(p, q) (4.4)

where wn is a learned weight for each different walk length. For computational efficiency,

in our implementation we use walks up to length 5, as in our experiments the learned

weights assigned to longer walks were negligible. The above similarity function is a kernel

function itself, and can therefore be normalized to ensure consistent similarity values for

graphs of different size [68]:

K̂func(p, q) =
Kfunc(p, q)√

Kfunc(p, p) ·Kfunc(q, q)
(4.5)

Given positive weights {wk}, {wl}, {wn}, our kernel is guaranteed to be positive definite,

thus distances between elements can be derived from the above kernel as follows [101]:

Dfunc(p, q) =
√
K(p, p)− 2K(p, q) +K(q, q) (4.6)

where K(p, p), K(q, q) represent the self-similarities of elements in the graphs used for

normalization.

To evaluate compatibility between pairs of symmetric group of elements GE, GS , we find

the best pairwise element match. If the best match is compatible for substitution or de-

formation, this indicates that at least one pair of elements are interchangeable. The rest

of the elements within their respective symmetric group can be substituted or deformed

under symmetry constraints. Thus, we use the compatibility of the best element match for

measuring group compatibility Dfunc(GE, GS):

Dfunc(GE, GS) = min
p∈GE ,q∈GS

Dfunc(p, q). (4.7)
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Shape Compatibility. We employ the shape compatibility measure after each editing

operation, to evaluate whether the resulting new shape S ′ is functionally compatible with

the original target one T . We define compatibility as the maximal compatibility distance

between corresponding elements on the two shapes, seeking the worst-case influence on

shape compatibility:

Dfunc(S
′, T ) = max

p∈T,p′∈S′
Dfunc(p, p

′) (4.8)

where p is an element on the original target shape, and p′ is its corresponding substituted

or original element on the generated shape. Note that while added or removed parts are not

explicitly accounted for by this metric, their presence or absence will be reflected in the

graph kernels of their neighboring elements.

Curve Compatibility. To evaluate curve compatibility for curve-based deformation, we

take into account the compatibility of the elements they belong to, and the similarity be-

tween the shape, relative location and size of the curves within the overall shape. The list

of curve descriptors is provided in Appendix B.1.

For a pair of view-independent curves e, f belonging to elements p, q respectively, their

compatibility is expressed as follows:

Kcurve(e, f) = Kfunc(p, q) +
∑
m

wm · exp

{
− D2

m(e, f)

2σ2
m

}
(4.9)

and Dm(e, f) represent distances between curve descriptors and {wm}, {σm} are learned

parameters. We note that the curves are segmented according to our hierarchical element

segmentation such that the curve segments can be associated with the corresponding ele-

ment compatibilities.
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For a pair of view-dependent curves e, f , we additionally take into account the distance

between the views they are generated from:

Kviewcurve(e, f) = Kcurve(e, f) + wv exp

{
− ||v(e)− v(f)||2

2σ2
v

}
(4.10)

where v(e) and v(f) represent given 3D viewpoint location for these two curves, and

wv, σv are learned parameters.

Curve compatibility is defined by converting kernel similarity to distance (as in Equa-

tion 4.6). Our deformation only pairs same-type curves; that is, we do not match view-

dependent curves on one shape with view-independent curves on the other.

4.3.2 Parameter Learning

We algorithmically learn the parameters of our element and curve compatibility measures

with the same learning procedure. For element compatibility these include the kernel

weights {wk}k=1...K , {wl}l=1...L, {wn}n=1...N and RBF variances {σk}k=1...K , {σl}l=1...L

(58 parameters in total). For curve compatibility these include the weights {wm}m=1...M ,

{σm}m=1...M and wv, σv (8 parameters in total). We use the same learning procedure for

both. We note that these parameters can vary across object classes - compatibility criteria

for chairs and sofas may differ from those for beds and cabinets. We consequently learn

these parameters separately for each pair of shape classes. In our experiments we used

coarse class classification with up to five classes per broad shape category (e.g. tables,

chairs, sofas, cabinets, and beds for furniture).

Clearly, learning requires training data. One possibility to create a training dataset is to

manually specify pairs of compatible or incompatible elements or curves across shapes.

However, creating such a dataset requires human labor and supervision. Instead, we devel-

oped an automatic procedure to create training data. Specifically, we observe that online

repositories such as Google Warehouse already contain a significant number of coordinated
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sets of objects in the same style. Since these shapes are designed to have the same style,

many of the objects in these scenes contain elements which are identical up to an affine

transformation. By construction these elements are compatible, since they can be clearly

substituted (subject to appropriate scaling) without affecting shape functionality. Conse-

quently, detected pairs of such compatible elements across different models yield valuable

training data for learning compatibility parameters. We clearly detect only a subset of

compatible pairs since compatible elements may have different geometry even on same set

shapes. However, our compatibility function is based on coarse-scale element properties

and context and does not consider fine-level element geometry. Thus, restricting our train-

ing data to elements identical up to affine transformation, does not, in our experience, bias

our learning setup. On the assumption that most random element substitutions would lead

to structurally or functionally invalid results, we complement our compatible pairs with

less compatible ones using random pair assignment.

Given a dataset of scenes downloaded from Google Warehouse, we first segment each

model, extracting elements and curves (Section 4.2); we then use an ICP based alignment to

compute all pairs of elements approximately identical up to an affine transformation. Given

these training pairs, the goal of parameter learning is to compute the set of parameters with

which our compatibility function will, on average, deem these pairs p, q more compatible

than element pairs which contain one of the elements in our compatible pair and a randomly

selected one - p, r or q, r. We use a probabilistic framework that is well suited to handle

such relative comparisons for training and is known to be robust to outliers [12, 108]. We

express the probability that a pair {p, q} is more compatible than {p, r} (or more compactly

pq . pr) as:

P (pq . pr) = σ
(
Dfunc(p, r)−Dfunc(p, q)

)
(4.11)

where σ(x) is a sigmoid function that converts the functionality differences into proba-

bilities. We also include an L1 norm as regularization term that minimizes the weights

assigned to the different descriptors. The L1-norm regularization, proposed by Tibshirani
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[113], promotes sparsity by allowing some weights to dominate while pushing others to-

ward zero. In addition, when the number of training pairs is small relative to the number of

parameters, the regularization encourages more zero weights, leading to a simpler model

with better predictive performance. Our regularizer is formulated as follows:

P (w) = exp
(
− λ||w||1)

)
(4.12)

where the weight vector w includes all kernel weights. The regularization parameter λ

controls the degree of regularization and is automatically estimated through 10-fold cross-

validation on the training set.

Given T training triplets p, q, r, we learn the parameter values that maximize the following

likelihood:

L(w,σ) =
T∑
t=1

lnP (pq[t] . pr[t]) (4.13)

where vector σ includes all variances, pq[t] . pr[t] refers to the automatically generated

training triplet t. For element correspondences, we train the weights and variances by

maximizing the above likelihood function on the element training data for input shapes per

each pair of classes. Then for curve correspondences, we train the weights and variances by

again maximizing the same likelihood function, but this time using curve training data for

input shapes per each pair of classes. We use bound constraints to enforce all parameters

to be positive. To maximize our regularized likelihood function, we use the L-BFGS-

B method [139]. We note that analytic gradients of our kernel functions with respect to

weights can be derived following a recursive formulation explained in Appendix B.2. In

our datasets, the number of our training inputs based on the ICP-aligned pairs varied from

25 to 300 depending on the pair of classes (most were above 100). To encourage more zero

weights for a simpler model with better predictive performance, we also include anL1 norm

as regularization term that minimizes the weights assigned to the different descriptors.
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Figure 4.5. Element alignment: (a) exemplar and target; (b) seed model and substituted-
in element with identified slots and their covers; (c) alignment using non-uniform scaling
across the board; (d) style and structure aware alignment.

Automatic Threshold Selection. We use the detected element and curve correspon-

dences to algorithmically select the compatibility threshold ε used in our tabu search. For

each pair of classes c, c′, we set the threshold εc,c′ for element correspondence to the max-

imum distance between corresponding elements in the training data. We similarly use the

maximum distance between corresponding curves in our training data as the threshold for

curve compatibility. We note that we can safely use these maximum distances as thresholds

since any outlier matches are pruned by the ICP matching step.

4.4 Element Alignment

Part and element adjacencies within an object obviously impact its functionality. In par-

ticular the locations of contact areas, or slots, connecting each element to the rest of the

model are likely to reflect on this element’s role within the larger whole. To preserve target

functionality when adding or substituting elements into an edited seed shape we aim to,

whenever possible, preserve all previously existing slots on both the incorporated element

and the seed model, i.e. to keep previously covered, or in contact areas, similarly covered.

We detect all slots on the seed shape and exemplar element, using the algorithm developed

by [56] for part-based model synthesis. The identified slots include shared boundary loops,
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in-contact surfaces, and part-intersections. To preserve functionality, we treat object con-

tacts with the ground plane as additional slots. By construction, within a model each slot

has an opposite matching, or cover, slot. To assemble the new model, we need to compute

such covers for slots at the interface between the seed shape and the new element, and then

transform the elements to bring all pairs of matching slots into contact (Figure 4.5).

Aligning, or bringing slots into contact, often requires changes to element geometry, e.g. in-

corporating an armchair back into a sofa requires stretching it. Yet, unconstrained changes

to element shape, can decrease the output functionality and negatively affect style similar-

ity with the exemplar. Thus in performing alignment we seek to achieve the balance of

changing element geometry enough to provide coverage but with minimal style and func-

tion degradation. While the method of Kraevoy et al. [65] seeks to preserve geometric

features when non-uniformly resizing models, adapting it to our setting and applying it

on a per element basis using coverage constraints is too computationally expensive. In-

stead, we facilitate an effective yet efficient alignment computation using the following

framework. We first restrict the set of allowable per-element transformations to translation,

rotation, and axial scaling. By preventing non-axial shear, and penalizing deviations from

pure translation we seek to weakly preserve element proportions and orientation. How-

ever, applying a penalty approach to all elements uniformly is insufficient. Even small

non-uniform scaling can lead to visible artifacts by breaking element symmetry (Figure 4.5

c); and even small rotations of anisotropic elements can affect their look and functionality.

We therefore disallow symmetry violating scaling and rotations that change the direction

of the major axis on anisotropic elements. To detect both scenarios we use the element’s

oriented bounding box (OBB) . When an element has two or more OBB axes with roughly

similar length we constrain our transformations to maintain their length ratio (we use 20%

deviation as conservative threshold). We only allow rotations for elements that are either

isometric or that have two near identical axis lengths, in the later case rotation is allowed

only within the plane span by these axes, using the same threshold as above to detect sim-
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ilar axis lengths. We also note that from a style perspective changes in thickness of thin

elements are particularly undesirable, and disallow such changes (an element is considered

thin if one of its axes is shorter than 10% of the sum of all axis lengths).

As in many alignment settings we face a chicken-and-egg problem, we need correspon-

dences to perform the desired transformations, but correspondences computed when two

objects are far apart are not reliable. We consequently use an iterative-closest-point (ICP)

strategy, iterating alignment and correspondence steps. We first approximately align the

new element to the seed shape. For substitution we transform the incoming element to

align its OBB with that of the outgoing one. During addition, the added-in element by

construction has at least one adjacent exemplar element that had been incorporated into the

seed. We therefore similarly transform the added-in element to align the slots it shares with

those elements. We then locate and pair seed and element slots nearest to one another. For

any unpaired slot we treat the closest points on the opposite model as the matching covers.

At each subsequent alignment step, to minimize changes in element proportions and ori-

entations we first solve for closest slot alignment using only translations. If this step is

unsuccessful, we use the set of permissible scaling constraints per element to perform a

restricted scale plus translation closest-point alignment of all participating elements. For

each element we restrict the scalings to the permissible ones, while seeking to distribute

the amount of scaling evenly between all elements. If and when this step fails we repeat the

closest-point alignment allowing restricted element rotations and scales. For all symmetric

groups of incorporated or seed elements, we constrain the transformations to preserve these

symmetries. We iterate between correspondence computation and alignment till distances

no longer improve or full coverage is achieved.
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Figure 4.6. Curve based deformation without (center) and with (right) swept surface edits.

4.5 Curve Based Deformation

The input to our curve based deformation is a handle curve on the currently processed

seed shape and a corresponding exemplar curve. Our deformation step modifies the seed

by replacing the handle with the exemplar curve while smoothly deforming the seed sur-

face so as to conform to the new curve geometry while preserving local surface details

(Figure 4.6). While multiple surface deformation methods exist, we found that the ARAP

framework [104] works well in our setup, as it supports curve deformation handles and

preserves local geometric features under significant handle deformations. To facilitate de-

formation, we first align the endpoints of the exemplar curve with those of the handle

curve through translation and uniform scaling and use arc-length parameterization to de-

fine curve-to-curve correspondences. We then deform the seed model by moving handle

vertices to corresponding locations on the transformed exemplar curve. Using, the original,

surface-based ARAP formulation as-is for large curve deformations can cause surface self-

intersections. We therefore implemented ARAP on a volumetric graph, following the graph

construction described in [137] shown to prevent self-intersections in the case of Laplacian

deformations. In our experiments, this modification allows for the intersection-free large

deformations necessary to modify curve style.

We seek to impact not only the features but also the contours of the output shape, and note

that man-made objects are frequently dominated by swept surfaces. We implement the

61



Figure 4.7. Among all possible tables on the right we selected the highlighted one as most
compatible target for the exemplar chair.

desired contour changes by editing the sweep profiles on these surfaces (Figure 4.6, right).

For each handle contour curve we examine whether its underlying surface is well defined by

sweeping the contour handle along a path curve, and maintain these swept surfaces during

deformation. For simplicity we only implemented this mechanism for the most common

sweep cases, revolution and extrusion, where this structure is easiest to detect and preserve.

Specifically, for each pair of similarly shaped and oriented handle curves on an element, we

interpolate the curves and compare the distance from the resulting surface to the element.

If the generated surface is close to the mesh surface, then we infer that it is a swept surface.

To detect extrusions we use linear interpolation, and to detect surfaces of revolution we

interpolate handle normals and positions.

4.6 Automatic Target Selection

Our output is dependent on the choice of a particular target shape (Figure 4.7). Typically

the more similar the exemplar and the target are structurally, the more compatible their

elements are, and the more complete, or compelling, the style transfer. Thus when users

specify a database of shapes within a particular class as a target for style transfer, we use

structural compatibility as a criterion for selecting the target shape to operate on within the

database.
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Intuitively one shape is more compatible with a given exemplar than another when a larger

share of its elements are more compatible with exemplar elements. Given the exemplar

shapeE and a shapeD within a target class, we compute their compatibility by first locating

for each shape element the most compatible exemplar element, and then summing up the

degrees of compatibility between them using the normalized kernel of Equation 4.5:

K̂(D,E) =
∑

p∈D,q∈E,q=s(p)

K̂func(p, q)

where p is an element on the database shape, and q is its most compatible element on the

exemplar shape. A simple brute-force approach for selecting the most compatible shape is

to evaluate these similarities across all database shapes and select the best one.

However, for large shape collections, this brute force approach is too slow. We speed

up the process by leveraging the observation that in practice shape databases frequently

contain clusters of structurally similar shapes. We first find such clusters, then select a

representative shape per cluster, and finally perform the above computation only for those

representative shapes, selecting one of them as the target. We perform clustering using

affinity propagation [27] with the following similarity metric between two database shapes

D1, D2:

K̂(D1, D2) =
1

|P |
∑

p∈D1,q∈D2,q=s(p)

K̂func(p, q)+

1

|Q|
∑

q∈D2,p∈D1,p=s(q)

K̂func(p, q)

where |P | is the number of elements in shape D1, |Q| is the number of elements in shape

D2, s(p) returns the most similar element in D2 to element p, s(q) returns the most similar

element in D1 to element q. The affinity propagation method automatically infers both the

number of clusters and their representative shapes.
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4.7 Validation

Figure 4.8. Typical style transfer results. For each group we show the exemplar first then,
multiple synthesized outputs in the same style with targets shown as insets.

We evaluate our method by synthesizing over a hundred new shapes using style transfer,

see Figures 4.1 and 4.8 for representative examples.We tested our method on four broad

categories of everyday objects: furniture, lamps, cutlery, and coffee and tea sets. Our

choice of categories was motivated both by availability and by diversity of functions and

styles within each category. We use as inputs models from publicly available databases, 3D

warehouse and TurboSquid. Throughout the paper we demonstrate a diverse range of style

transfer results which convincingly combine exemplar styles with target functions.

Perceptual Validation. We validate the key properties of our method via three user stud-

ies: one designed to evaluate the degree of style similarity between the outputs and the ex-

emplars, one designed to evaluate the functionality of the output models, and one designed

to specifically evaluate our compatibility metric against the most similar prior work [67].

We summarize those below.
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plurality raw votes
T O both neither draw T O both neither

top (T) vs target (O) 100.0% 0.0% 0.0% 0.0% 0.0% 93.2% 0.4% 0.5% 6.0%
top (T) vs third (O) 78.9% 1.4% 9.9% 5.6% 4.2% 68.6% 5.5% 15.1%10.8%

top (T) vs original (O) 38.8% 26.9%19.4% 1.5% 13.4% 39.1%32.5%21.2% 7.2%

Table 4.1. Style similarity study results: per-query plurality responses (left) and raw vote
percentages (right).

Style similarity. Style similarity is an inherently relative notion, thus asking if two shapes

have the same style is often inconclusive. We consequently use relative comparison to

assess our results. We asked participants to compare style similarity between an exemplar

model and our output generated from it, against style similarity between the exemplar and a

range of alternatives, aiming to ascertain the degree of success our method has at believably

transferring style. We used questionnaires based on triplets of models, laid out with one

shape image on the top and two on the bottom. The shape on the top (A) is an exemplar

shape and one of the two shapes on the bottom (B or C, assigned randomly) is the top result

synthesized by our method using this exemplar and a target in a different functional class

(top). The second shape on the bottom is in the same functional class as the output and

is randomly selected among the following alternatives: a shape from a style-coordinated

pre-existing scene which included the exemplar A (original) - these shapes can be viewed

as plausible ground truth for style transfer; a shape synthesized by our method using the

same exemplar, but ranked as third in terms of its stylistic similarity to the exemplar (third)

- this shape is useful to evaluate the meaningfulness of our ranking; and the target shape

used for style transfer (target) which serves as a random baseline, expected to be arbitrarily

different style-wise from the exemplar. Subjects were asked the question “Which of the

two shapes on the bottom (B or C) is more similar, style-wise, to the shape on the top (A)?”

and were asked to select one of the following answers: “(i) B, (ii) C, (iii) can’t tell - both B

and C, (iv) can’t tell - neither B nor C”.
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plurality raw votes
yes no draw yes no

target 96.0% 1.6% 2.4% 89.8% 10.2%
top 92.1% 3.2% 4.8% 86.7% 13.3%

third 90.1% 7.0% 2.8% 86.3% 13.7%
lax compatibility 69.8% 23.0% 7.1% 68.4% 31.6%

Laga et al. 65.3% 29.8% 5.0% 65.2% 34.8%
exemplar 12.2% 86.1% 1.7% 17.0% 83.0%

Table 4.2. Functionality study results: per-query plurality responses (left) and raw vote
percentages (right).

We assembled a total of 264 queries, up to three per each of our generated outputs com-

paring each output to all available alternatives. We gathered answers to each query from

10 different, reliable users.Vote distribution by query and raw vote percentages for each

answer are listed in Table 4.1. Participants perceived our synthesized shapes as at least as

similar style-wise to the exemplars as the ground truth models. Furthermore the top-ranked

shapes were perceived as more style-wise similar to the exemplar compared to the third-

ranked ones, and drastically more similar when compared to the baseline target shapes.

These results strongly validate our claim of consistently successful style transfer across

shapes with different functionality.

Functionality. Functionality is a largely boolean property, thus to evaluate how well our

outputs preserve target functionality we show participants one model at a time and ask “Is

this a functional X?” where X is the name of the specific, narrow, target class used for

synthesis, e.g. coffee table, loveseat, side table, etc. Users were asked to choose either

“yes” or “no”. To provide a baseline to compare against, in addition to showing partic-

ipants our top and third ranked results, we also included equal numbers of models from

the following groups: original target models - intuitively one would expect a near 100%

positive response on these models, with the actual positive response rate providing a good

upper bound to compare against; top-ranking results synthesized using our framework but

with either our compatibility metric but with a 10-times more lax compatibility threshold,
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plurality raw votes
ours 93.3% 91.8%

Laga et al. 5.0% 8.2%
draw 1.7%

Table 4.3. Element compatibility study results: per-query plurality responses (left) and raw
vote percentages (right).

or with the original threshold but with the similarity metric of Laga et al. [67] (based on

the graph encoding, edge relationships and kernel parameters described in their paper) -

intuitively we expect these two sets of results to produce less positive responses than ours;

and last exemplar models - these serve as the lower bound, as they do not share target

functionality.

We assembled a total of 611 queries and gathered answers to each query from 10 differ-

ent, reliable users. The responses are reported in Table 4.2. The results demonstrate that

our synthesized shapes are deemed to fulfill their function at nearly the same rate as the

ground-truth target models. If we relax our learned threshold for element compatibility, the

functional plausibility of shapes drops significantly. Similarly, over a third of the shapes

synthesized using Laga et al.’s metric are found to violate functionality considerations. The

results validate the second goal of our method - the ability to reliably preserve target func-

tionality during transfer. The comparisons to alternative methods also confirm that our

compatibility metric and the automatic threshold setting we employ (Section 4.3) are key

to this success.

Element compatibility metric. We directly evaluate our metric’s effectiveness by com-

paring the correspondences it computes against those produced using the metric of [67].

To compare the methods we randomly selected pairs of an exemplar and a target across our

inputs, and then selected a random element on the exemplar. We ran both methods to find

its corresponding, or most compatible element on the target.
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Our user study focused on the queries where both methods disagree with the correspon-

dences. We used questionnaires based on triplets of models, laid out with one shape image

on top and two on the bottom. The shape on the top (A) is an exemplar shape with the

selected element highlighted, one of the two shapes on the bottom (B or C, assigned ran-

domly) is the compatible target element selected by our method and the second shape is the

element selected by the method of Laga et al. Subjects were asked “Which of the two high-

lighted parts on the bottom (B or C) is MORE similar functionality wise to the highlighted

part on the top (A)?”, and were asked to select either B or C. The user study had the same

format and filters as the first study.

Study participants selected our result 93% of the time, and only on 5% queries did a plural-

ity of respondents prefer the correspondences computed by Laga et. al (1.7% were a draw).

Most of the outliers were on queries which compared elements on lamps with different

attachment mechanisms (floor vs ceiling vs wall) . These results confirm that our metric

is significantly better aligned with human perception of functional part compatibility. At

the same time additional features may be useful to consider to address attachment diversity

when processing hanging shapes.

Implementation and Runtimes. Our method is implemented in C++. Our method takes

on average 6 min to synthesize a new model, with roughly 2 min out of this time spent pre-

processing the models. The rest of the time is spent in the tabu search. Tabu search runtime

depends on the complexity and number of operations, and ranges from 2 min for typical

models to up to 10 min for the slowest ones. Learning the parameters of our compatibility

measure requires about one hour for each pair of shape classes. This learning step is an

offline process: once the compatibility measure is learned, evaluating the compatibility

between all pairs of elements on two shapes takes only a few seconds. All running times

are reported on an Intel E5-2697 v2 processor. Our source code is available on our project

page: https://people.cs.umass.edu/˜zlun/papers/StyleTransfer.

68

https://people.cs.umass.edu/~zlun/papers/StyleTransfer


4.8 Discussion

We have described the first algorithm for synthesizing shapes by transferring style between

man-made objects with different structure and functionality. As demonstrated by our re-

sults, given a single exemplar model, our method is able to successfully generate functional,

plausible, similar-style models in a wide range of shape classes. Key to our success is a

novel, learned metric designed to assess element compatibility across shapes with different

structure and function.
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CHAPTER 5

SHAPE RECONSTRUCTION FROM SKETCHES VIA
MULTI-VIEW CONVOLUTIONAL NETWORKS

128

128

128

128

128

64

64

64

64

64

64

32

32

32

32

32

32

16

16

16

16

16

8

8

8

8

8

8
4

4
4

4
4

4
2

216
128

64

128
256

512
512

512

64

128

256

512

512
512

512

input sketches

side view

encoder multi-view decoder
multi-view depth &

normal maps

output view 1
front view

output view 12

optimized 3D
point cloud

surface
reconstruction

surface
�ne-tuning

Figure 5.1. Our method takes line drawings as input and converts them into multi-view
surface depth and normals maps from several output viewpoints via an encoder-multi-view-
decoder architecture. The maps are fused into a coherent 3D point cloud, which is then
converted into a surface mesh. Finally, the mesh can be fine-tuned to match the input
drawings more precisely through geometric deformations.

In this chapter we propose a method for reconstructing 3D shapes from 2D sketches in the

form of line drawings. Our method takes as input a single sketch, or multiple sketches

depicting an underlying (unknown) 3D shape from different viewing angles, and outputs

a dense point cloud representing a 3D reconstruction of the input sketch(es). The output

point cloud is then converted into a polygon mesh representation, which is further fine-

tuned to match the input sketch more precisely. At the heart of our method lies a deep,

encoder-decoder network. The encoder converts the sketch into a compact representation

The work described in this chapter has been submitted as a full paper in 3DV 2017.
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which encodes shape information based on the input sketch(es). Then the decoder converts

this representation into depth and normal maps that capture the underlying surface from

several, densely sampled, output viewpoints. The multi-view maps are then consolidated

into a coherent 3D point cloud by solving an optimization problem that fuses depth and

normal information across all output viewpoints. Compared to other approaches, such as

volumetric-based networks, our multi-view architecture offers several advantages, includ-

ing more faithful reconstruction, higher output surface resolution, better preservation of

surface detail and shape structure. We validated our results quantitatively through standard

error measures, and qualitatively through a perceptual user study.

5.1 Overview

Given a single, or multiple, hand-drawn sketches in the form of line drawings, our method

aims to reconstruct a 3D shape. Line drawings are made by humans to convey shape

information [21, 19]. They typically contain external contours (silhouettes) and internal

contours to underlie salient shape features. We designed a deep network to automatically

translate line drawings into 2D images representing surface depth and normals across sev-

eral output viewpoints (Figure 5.1). The depth and normal predictions are then fused into a

3D point cloud, which is in turn converted into a polygon mesh. Although surface normals

could be inferred by depth alone, we found that best reconstructions are achieved when

both depth and normal predictions are made by the network and coherently fused into the

point cloud.

Our network is trained to reconstruct multi-view depth and normal maps from either a

single sketch depicting the shape from a particular input view (e.g., front, side, or top),

or from multiple sketches depicting the shape from different views (e.g., front and side).

A single sketch may not be sufficient to reconstruct the shape accurately, e.g., the front

side of a car does not explicitly convey information about its back. Thus one would need
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(a) (b) (d) (e)(c)

Figure 5.2. (a) The user can provide a front view sketch as input; (b) our network trained
on a single input sketch generates an intermediate shape; (c) the user can further draw a
sketch from the side view using the rendered shape as a guide; (d) & (e) our network trained
on inputs from both views yields an updated 3D shape.

to entirely rely on the network to reconstruct the complete 3D shape based on that single

sketch and the learned shape information during training. Yet, since there is a large, or even

infinite number of shape reconstructions (e.g., different car backs) from a single sketch , we

also allow the user to provide multiple sketches depicting the shape from difference views

as input at once, or provide them progressively while being guided by the intermediate

shape reconstructions. In the latter case, illustrated in Figure 5.2, the user draws from one

view, then our network, which is trained to reconstruct from that view, yields a 3D shape.

The user can then draw a second sketch from another view, on top of the generated shape

rendered semi-transparently from that view, similar to ShadowDraw [71]. Thus, given the

previous and new line drawing as input, our network, trained to reconstruct from both

views, yields an updated 3D shape. The process can continue until the user is satisfied with

the result, at which point he/she may edit the mesh directly.

In what follows, we discuss our network architecture (Section 5.2), and its training (Section

5.3). Then, we discuss our optimization technique to fuse the muilti-view depth and normal

maps into a single, coherent 3D point cloud, and finally the conversion to a polygon mesh

(Section 5.4).
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5.2 Network Architecture

Our ConvNet takes as input line drawings from particular views of an object and outputs

depth and normal maps in several, uniformly sampled output viewpoints (Figure 5.1). Our

implementation uses 12 output viewpoints located at the equidistant vertices of a regular

icosahedron. A camera is placed at each icosahedron vertex looking towards the center of

the object and oriented towards the upright axis. All our training shapes are normalized

such that they fit inside the icosahedron and are consistently oriented.

Input. The input to our network are 256 × 256 intensity images representing the line

drawings. When C input sketches are available, they are concatenated as channels resulting

in 256×256×C dimensional input. For each input view configuration, we train a different

network i.e., given a sketch representing the front of the object, we use the network trained

to reconstruct the 3D shape from the front, or given two sketches representing the front

and the top of the object, we use the network trained to reconstruct from the front and top

(in this case, the two sketches are concatenated in this order). At first, this might seem

restraining, yet we note that in traditional CAD systems, it is common for users to use

canonical views [93], and better reconstruction results are achieved when the network is

trained to reconstruct from specific rather than arbitrary views.

Encoder. The encoder network consists of a series of convolutional layers, all using ker-

nel size of 4 and stride of 2. The filter size and number per layer is shown in Figure 5.1.

All layers use batch normalization and leaky ReLUs (slope = 0.2) as activation functions.

The output of the encoder is a 2×2×512 representation, which encodes shape information

based on the input sketch(es). We note that this representation can be used for sketch-based

shape retrieval.
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Decoder. The decoder consists of 12 branches, each containing a series of nearest-neighbor

upsampling and convolutional layers. The branches have the same layer structure but do

not share parameters. Each branch takes as input the encoder’s representation and outputs

a 256×256×5 image for a corresponding output viewpoint. The 5-channel image includes

a depth map (1 channel), a normal map (3 channels) and a foreground probability map for

that viewpoint. All pixels that have probability more than 50% as foreground serve as a bi-

nary mask that indicates the projected surface area under that viewpoint. The output depth

and normal maps are masked using this binary foreground map.

Following the U-net architecture [94], the input to each convolutional layer is formed by

the concatenation of the previous layer output in the decoder, and a corresponding layer

output in the encoder (see Figure 5.1). The upsampling layers of the decoder upsample

their input with a factor of 2, while the convolutional layers use kernel size of 4 and stride

of 1. Each convolutional layer is followed by batch normalization and leaky ReLU (slope

= 0.2) as activation function. The first 3 layers in each decoder branch use dropout for

regularization. The number and size of filters per layer in the decoder are shown in Figure

5.1. The output layer uses the tanh activation function since depths and normals lie in

range [−1, 1]. Finally, the normal maps pass through a `2 normalization layer that ensures

they are unit length.

5.3 Training

Given a training set of 3D shapes, the goal of our training procedure is to jointly learn the

parameters of the encoder and the decoder such that our network can reliably map sketches

to foreground, depth, and normal maps for our output multi-view configuration. To this

end, we need to acquire training sketches according to our input view setting. One option

would be to ask human subjects to provide us with line drawings depicting each training

shape. However, gathering human line drawings is labor-intensive and time-consuming.
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In contrast, we generated synthetic line drawings that approximate human line drawings

based on well-known principles. Below we discuss the procedure we followed for sketch

generation, then we discuss the objective used for learning the network parameters.

5.3.1 Generating training sketches

Non-photorealistic rendering algorithms can be used to create synthetic line drawings of

3D shapes. First, contours, or silhouettes, can be estimated by finding and connecting the

set of points on the surface whose normal vector is perpendicular to the viewing direction

[21]. Second, suggestive contours are extensions of contours that can be used to draw in-

ternal feature curves in shapes. These are found from zero-crossings of the radial curvature

(surface curvature along viewing directions) [21]. Other types of internal feature curves

include ridges and valleys, which are formed by the minima or maxima of the surface

principal curvature values [87], or view-dependent curvature (in this case, they are called

“apparent” ridges) [55]. Another type of line drawings involves edge-preserving filtering

[33] applied on rendered images of shapes under a simple shading scheme (e.g., Phong

shading) [91]. All these feature curve definitions do not necessarily coincide each other

[18]. We use a combination of these techniques to create several variants of line drawings

per input shape. This also serves as a form of data augmentation. Specifically, for each

shape and input views, we create 4 synthetic sketches by using: (i) silhouettes alone, (ii)

silhouettes and suggestive contours, (iii) silhouettes, suggestive contours, ridges, valleys

and apparent ridges, (iv) and edge-preserving filtering in rendered images of shapes. All

training sketches and corresponding ground-truth depth and normal maps are rendered un-

der orthographic projection (quite common for man-made objects) according to our output

viewpoints. Rendering under perspective projection could also be an option, however, since

depth has a relatively short range for our rendered objects, the differences in the resulting

images would be small. It is also common for users, such as architects, to use orthographic
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projection in their drawings, especially for man-made objects, to preserve the relative size

of parts.

5.3.2 Loss function

Given training sketches of shapes along with the corresponding foreground, depth and nor-

mal maps for our output viewpoints, we attempt to estimate the network parameters to

minimize a loss function. Our loss function consists of four terms penalizing (a) differ-

ences between the training depth maps and predicted depth maps, (b) angle differences

between the training normal maps and predicted normal maps, (c) disagreement between

ground-truth and predicted foreground mask, (d) large-scale structural differences between

the predicted maps and the training maps. Specifically, given T training sketches along

with ground-truth foreground, depth and normal maps for our V output viewpoints, our loss

function is a combination of the following terms described in the following paragraphs:

L =
T∑
t=1

(λ1Ldepth(t) + λ2Lnormal(t) + λ3Lmask(t) + λ4Ladv(t)) (5.1)

where λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λ4 = 0.01 are weights tuned in a hold-out validation

set.

Per-pixel depth and normal loss. The first two terms consider per-pixel differences in

the predicted depths and normals with respect to ground-truth. Specifically, we use `1

distance for depths and angle cosine differences for normal directions. The depth and

normal differences are computed only for pixels marked as foreground in the ground-truth:

Ldepth(t) =
∑
p,v

(
|dp,v(St)− d̂p,v,t|

)
f̂p,v,t (5.2)

Lnormal(t) =
∑
p,v

(1− np,v(St) · n̂p,v,t) f̂p,v,t (5.3)
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where St is a training sketch, d̂p,v,t and n̂p,v,t are ground-truth depth and normal for the pixel

p in viewpoint v. Each pixel has a ground-truth binary label f̂p,v,t, which is 1 for foreground,

and 0 otherwise. The depth and normal predictions for the sketch St are denoted as dp,v(St)

and np,v(St) respectively. We note that all training depths are normalized within the range

[−1, 1] while predicted depths are also clamped in this range. Thus both terms above have

comparable scale (i.e., both range between [0, 2] per pixel). We also note that we tried `2

distance for penalizing depth differences but this tended to produce less sharp maps.

Mask loss. Penalizing disagreement between predicted and ground-truth foreground la-

beling can be performed via the cross-entropy function commonly used in classification:

Lmask(t) = −
∑
p,v

(f̂p,v,t log fp,v(St) + (1− f̂p,v,t) log(1− fp,v(St)) (5.4)

where fp,v(St) is the probability for the pixel p in viewpoint v to be foreground, as predicted

by the decoder.

Adversarial loss. We add an adversarial loss [35] to penalize structural differences in

the output maps with respect to ground-truth. These have been shown as effective priors

for various image-to-image transformation tasks [51]. The adversarial loss term takes as

input a 5-channel image Iv(St) that concatenates the depth channel, the 3 normal chan-

nels, and foreground map channel produced by the decoder per viewpoint, and outputs the

probability for these maps to be “real”:

Ladv(t) = −
∑
v

logP (“real”|Iv(St)) (5.5)

The probability is estimated using an “adversarial” network trained to discriminate ground-

truth (“real”) maps Îv,t from generated (“fake”) maps Iv(St). Both networks are trained al-

ternatively using the technique of [35]. The adversarial network architecture is the same as
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the encoder except the last layer that maps the output to probabilities via a fully-connected

layer followed by a sigmoid activation.

5.4 Point Cloud and Mesh Generation

Given multi-view depth and normal maps produced by our network at test time, our next

goal is to consolidate them into a single, coherent 3D point cloud. The depth and normal

predictions produced by the network are not guaranteed to be perfect or even consistent

i.e., the derivatives of the predicted depth might not entirely agree with the predicted nor-

mals, or the predicted depths for common surface regions across different viewpoints might

not yield exactly the same 3D points. Below we discuss an optimization approach to fuse

all multi-view depth and normal map predictions into a coherent 3D point cloud, then we

discuss mesh generation and post-processing to match the input sketches more precisely.

Our optimization approach shares similarities with bundle adjustment and multi-view re-

construction [114, 31]. In our case, our output viewpoints are fixed and we use the normal

maps in our energy minimization to promote consistency between depth derivatives and

surface normals.

5.4.1 Multi-view depth and normal map fusion

The first step of the fusion process is to map all foreground pixels to 3D points. Each

pixel is considered foreground if its predicted probability in the foreground map is above

50%. Given the depth dp,v of a foreground pixel p with image-space coordinates {px, py}

in the output map of a viewpoint v, a 3D point qp,v can be generated according to the

known extrinsic camera parameters (coordinate frame rotation Rv and translation ev in

object space). Under the assumed orthographic projection, the point position is computed

as:
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qp,v = Rv [κpx κpy dp,v ]T + ev (5.6)

where κ is a known scaling factor, representing the distance between two adjacent pixel

centers when their centers are mapped to object space. Each point is also equipped with a

normal np,v based on the predicted normal map. The result of this first step is a generated

point set per view. In a second step, we run ICP [95] to rigidly align all-pairs of point sets.

with optimizationwithout optimization

Figure 5.3. Without optimization the noisy point cloud will lead to misaligned regions in
the reconstructed shape.

A naive reconstruction method would be to simply concatenate all aligned point sets from

all output views into a single point cloud. However, such approach often results in a noisy

point cloud with misaligned regions due to inconsistencies in the predicted depth maps.

The effect of these inconsistencies tend to be amplified during mesh generation, since a

smooth surface cannot pass through all the misaligned regions (Figure 5.3).

Our optimization procedure aims to deal with these inconsistencies. Specifically, we treat

the depths of all pixels as variables we want to optimize for. The pixel depths are esti-

mated such that (a) they are close to the approximate predicted depths produced by the net-

work, (b) their first-order derivatives yield surface tangent vectors that are as-orthogonal-

as-possible to the predicted normals, (c) they are consistent with depths of corresponding

3D points seen by different viewpoints. These three requirements can be expressed in a

single energy over all pixel depths D = {dp,v}, with terms imposing the above three con-

ditions:
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E(D) = Enet(D) + Eorth(D) + Econs(D) (5.7)

We explain each term in detail in the following paragraphs, then discuss how the energy is

minimized.

Network prediction term. This energy term penalizes deviation from the approximate

depths d̃p,v(St) produced from the network at each pixel p and viewpoint v:

Enet(D) = w1

∑
p,v

(dp,v − d̃p,v(St))
2 (5.8)

where w1 weights this term (set to 1.0 through hold-out validation). We use `2 norm here

so that the energy minimization yields a linear system that can be solved efficiently.

Orthogonality term. The termEorth(D) penalizes deviation from orthogonality between

surface tangents, approximated by first-order depth derivatives, and predicted surface nor-

mals. Given a 3D point qp,v generated for the pixel p and viewpoint v, we estimate two

surface tangent directions based on the first-order depth derivatives [83], as follows:

t(x)
p,v =

[
κ 0

∂dp,v
∂x

]T
, t(y)

p,v =

[
0 κ

∂dp,v
∂y

]T
(5.9)

The first-order derivatives of the depth can be approximated with a horizontal and vertical

gradient filter which is convolved with depths in the 3 × 3 neighborhood around p. The

energy term is expressed as:
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Eorth(D) = w2

∑
p,v

[(t(x)
p,v · ñp,v(St))

2 + (t(y)
p,v · ñp,v(St))

2] (5.10)

where ñp,v(St) is the approximate normal vector produced from the network andw2 weights

this term (set to 1.0 through holdout validation). Since the derivatives are unreliable near

the shape silhouette, we omit silhouette points for each view from this term.

View consistency term. Given a 3D point qp,v generated from pixel p at viewpoint v,

we can calculate its depth with respect to the image plane of another viewpoint v′ as well

as the pixel that it is projected onto as: p′ = Πv′(qp,v), where Πv′ denotes orthographic

projection based on the parameters of viewpoint v′. When the 3D point is not occluded

and falls within the image formed at viewpoint v′, the calculated depth dv′(qp,v) of that

point should be in agreement with the depth dp′,v′ stored in the corresponding pixel p′ of

the viewpoint v′. Similarly, the normal of that point nv′(qp,v) relative to the viewpoint

v′ should be as-orthogonal-as-possible to the surface tangent vector, approximated by the

derivative of the depth stored in the corresponding pixel p′. The view consistency term

penalizes: (a) squared differences between the depth at each pixel and the calculated depth

of all 3D points projected onto that pixel, (b) deviation from orthogonality between the

surface tangent vector at each pixel and the normal of all 3D points projected onto that

pixel. The term is expressed as follows:

Econs(D) = w3

∑
p,v,p′,v′:

p′=Πv′ (qp,v)

(dp′,v′−dv′(qp,v))
2+w4

∑
p,v,p′,v′:

p′=Πv′ (qp,v)

(t
(x)
p′,v′·nv′(qp,v))

2+(t
(y)
p′,v′·nv′(qp,v))

2

(5.11)

where w3 and w4 are weights both set to 0.3.

We note that if a 3D point is projected onto a pixel that is masked as background (thus, its

depth is invalid), then we exclude that pixel from the above summation. If the 3D point is
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projected onto background pixels in the majority of views, then this means that the point

is likely an outlier and we remove it from the point cloud. As a result, there are few (p, p′)

pixel pairs in the above equation: each foreground pixel often has 3-4 corresponding pixels

in other views.

5.4.2 Energy minimization

The above energy is quadratic in the unknown pixel depths, thus we can minimize it by

solving a linear system. We note that due to the orthogonality term, which involves a

linear combination (filtering) of depths within a pixel neighborhood, the depth of each pixel

cannot be solved independently of the rest of the pixels. The solution can be computed

through a sparse linear system - we provide its solution in Appendix C.1.

When we estimate the pixel depths, the corresponding 3D point positions, generated by

these pixels, are updated. Given new 3D point positions, the consistency term also needs

updating since the points might now be projected onto different pixels. This gives rise to

an iterative minimization scheme, where at each step we estimate pixel depths by solving

the linear system, then update the 3D point positions. We observed that the depth estimates

become increasingly consistent across different views at each iteration, and practically we

observe convergence after 3-5 iterations. The resulting point cloud yields a much smoother

reconstructed surface, as shown in Figure 5.3.

5.4.3 Mesh reconstruction and fine-tuning.

We apply the Screened Poisson Surface Reconstruction algorithm [59] to convert the re-

sulting point cloud and normals to a surface mesh. After mesh generation, our method

can optionally further “fine-tune” it so that it matches the input contours more precisely.

Specifically, for each input line drawing, we first extract its external contours and discretize

them into a dense set of 2D points. Then for each input view, we render the mesh under the
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same orthographic projection, and find nearest corresponding mesh points to each contour

point under this projection. Then we smoothly deform the 3D mesh, such that the pro-

jected mesh points move towards the contour points under the constraint that the surface

Laplacians [82], capturing any underlying surface details, are preserved. We also deform

the mesh so that it better matches the internal contours of the sketch. To do this, we find

nearest corresponding mesh points to each internal contour point and scale their Laplacian

according to the scheme suggested in [82]. Mesh deformation is executed by solving a

single sparse linear system involving all constraints from all internal and external contours

across all input views. Figure 5.1 shows a reconstructed mesh before and after fine-tuning.

5.4.4 Implementation.

The network is implemented in Tensorflow [1]. Training takes about 2 days for 10K train-

ing meshes (40K training sketches) on a TitanX GPU. We use the Adam solver [62] (hy-

perparameters β1 and β2 are set to 0.9 and 0.999 respectively). At test time, processing

input sketches through the network takes 1.5 sec on a TitanX GPU, fusing the depth and

normal maps takes 3 sec, mesh reconstruction and fine-tuning takes about 4 sec (fusion

and mesh reconstruction are implemented on the CPU - running times are reported here for

a dual Xeon E5-2699v3). In total, it takes our method less than 10 seconds to present a

reconstructed mesh to the user. Our data and source code is available on our project page:

https://people.cs.umass.edu/˜zlun/papers/SketchModeling.

5.5 Evaluation

We now discuss the experimental evaluation and analysis of our method.

Datasets. To train our network, we gathered three collections of 3D shapes along with

their synthetic sketches. Each of the collections included shapes belonging to the same
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broad category. The categories were 3D computer characters, airplanes, and chairs. To

create the 3D computer character collection, we downloaded freely available 3D models

of characters from an online repository (“The Models Resource” [2]). The collection con-

tained humanoid, alien, and other fictional 3D models of characters. The airplanes and

chairs originated from the 3D ShapeNet [13]. We used these particular categories from

ShapeNet because the shapes in these categories have large geometric and structural varia-

tion. Table 5.1 reports the number of training shapes and views used to generate the training

sketches.

#training shapes view A view B
Character 10000 front side
Airplane 3667 top side

Chair 9573 front side

Table 5.1. Training dataset statistics.

Test dataset. To evaluate our method and compare it with alternatives, we created a test

dataset of synthetic and human line drawings for each of the above categories. Each line

drawing was created according to a reference test shape. The goal of the evaluation was

to examine how well the reconstructed 3D shapes from these test line drawings matched

the reference test shapes. To execute a proper evaluation, the reference test shapes should

be sufficiently different from all training shapes. Otherwise, by overfitting a network to

the training dataset or by simply using a nearest neighbor sketch-based retrieval approach,

one could perfectly reproduce the reference shapes. To create the test dataset of reference

shapes, one option would be to randomly split the above collections into a training and test

part. However, a problem with this strategy is that several test shapes would be extremely

similar to one or more training shapes because of duplicate 3D models that often exist in

these collections (i.e., models that are identical up to an affine transformation, having tiny

part differences, or only different mesh resolution). To create our test dataset, we found 120

shapes (40 per category) in our collections that we ensured to be sufficiently different from
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the shapes used for training by performing two checks. First, for each shape, we aligned

it to each other shape in the collection through the best matching affine transformation

and compute their Chamfer distance. The Chamfer distance is computed by measuring the

distance of each of the points on one shape to the nearest surface point on the other shape,

then the average of these distances is used (we sampled 10K points uniformly per shape).

We verified that the Chamfer distance between each test shape and its nearest training shape

is well above a threshold. Second, we rendered synthetic sketches for each shape based on

the input views per category and extracted the representation from our encoder for these

sketches. We then retrieved the nearest other shape based on Euclidean distance over the

sketch representations. We verified that the distance is well above a threshold. We also

visually confirmed that test and training shapes were different and the selected thresholds

were appropriate.

For our 120 test shapes, we produced synthetic sketches for 90 of them (30 per category),

and gathered human line drawings for the remaining 30 shapes (10 per category). Synthetic

sketches were produced from the test shapes using the line rendering techniques described

in Section 5.3 based on the input views A and B per category (Table 5.1). The human

sketches were produced by asking two artists to provide us with hand-drawn line drawings

of reference test shapes. The test shapes were presented to the artists on a computer display

and were rendered using Phong shading. Their views were selected to approximately match

the input views A and B per category. We asked the artists to create on paper line drawings

depicting the presented shapes based on the selected views. We then scanned their line

drawings, cropped and scaled them so that the scanned drawn area matches the drawing

area of training sketches on average. We note that in contrast to synthetic sketches, human

line drawings might not be consistent across different views.

Evaluation measures. Given the above test sketches as input, the goal of our evalua-

tion is to measure how well the 3D shapes reconstructed by various methods, including
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ours, matched the reference test shapes used to produce these sketches. Our method and

the alternatives, listed in the following paragraphs, were trained and tested separately on

each shape category using the same splits. We used five evaluation measures to compare

the reconstructed shapes to the reference ones: Chamfer point-based distance, Hausdorff

point-based distance, surface normal distance, depth map error, volumetric Jaccard dis-

tance. The Chamfer distance is computed by measuring the distance of each of the points

on the reconstructed shape to the nearest surface point on the reference shape, then comput-

ing the average of these distances; the Hausdorff distance computes the maximum instead

of the average of these distances. The surface normal distance is computed by measuring

the angle between the surface normal at each point on the reconstructed shape and the sur-

face normal at the nearest surface point on the reference shape, then computing the average

of the angles. The depth map error is computed by measuring the absolute differences

between pixel depths in each of the output depth maps produced by our network and the

corresponding depth maps of the reference shape, then computing the average depth dif-

ferences. To compute the volumetric Jaccard distance, we voxelized the reconstructed and

reference shapes in a 128×128×128 binary grid and measured the number of voxels com-

monly filled in both shapes (intersection of their volume) divided by the number of filled

voxels for the two shapes (union of their volumes). This is the Intersection over Union

(IoU ). We use 1− IoU to get the volumetric Jaccard distance.

Comparisons with baselines. We tested the reconstructions produced by our method

(called “ShapeMVD”) versus the following methods: (a) a network based on the same

encoder as ours but using a volumetric decoder baseline instead of our multi-view decoder,

(b) a network based on the same encoder as ours but with the Tatarchenko et al.’s view-

based decoder [110] instead of our multi-view decoder, (c) the convolutional 3D LSTM

architecture (R2N2) provided by Choy et al.’s implementation [17], and (d) nearest sketch-

based shape retrieval.
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For the volumetric decoder baseline (a), we used a 128 × 128 × 128 output binary grid

(the maximum we could fit in 12GB GPU memory). To make sure that the comparison

is fair, we set the number of parameters in the volumetric decoder such that it is compa-

rable to the number of parameters in our decoder. The volumetric decoder consisted of

five transpose 3D convolutions of stride 2 and kernel size 4 × 4 × 4. The number of fil-

ters starts with 512 and is divided by 2 at each layer. Leaky ReLU functions and batch

normalization were used after each layer. We note that we did not use skip-connections

(U-net architecture) in the volumetric decoder because the size of the feature representa-

tions produced in the sketch image-based encoder is incompatible with the ones produced

in the decoder. For Tatarchenko et al.’s method, the viewpoint is encoded into a contin-

uous 64 × 1 representation passed as input to the view-based decoder described in [110]

without separate branches. To ensure a fair comparison, we increased the number of fil-

ters per up-convolutional layer by a factor of 3 so that the number of parameters in their

and our decoder is comparable. We also train it with the same loss function as ours. We

additionally implemented a variant of Tatarchenko et al.’s decoder by adding U-net con-

nections between the encoder and their decoder. We report the evaluation measures on

this additional variation. For the nearest-neighbor baseline, we extract the representation

of the input test sketches based on our encoder. This is used as a query representation to

retrieve the training shape whose sketches have the nearest encoder representation based

on Euclidean distance. All methods had access to the same training dataset per category

and were evaluated on the same test sketches (two input sketches per test shape).

Table 5.2 reports the evaluation measures for all competing methods based on both syn-

thetic and human line drawings. We include evaluation separately for organic shapes (3D

character collection) and man-made shapes (measures are averaged over airplanes and

chairs). Our method produces much more accurate reconstructions than the competing

methods in all cases. With respect to Tatarchenko et al.’s method, we find that its en-

hancement with U-net connections improves its performance, but still performs worse than
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Man-made objects (synthetic) Character models (synthetic)
Shape nearest Tatarchenko[110]+volumetric R2N2 Shape nearest Tatarchenko[110]+volumetric R2N2
MVD retrieval et al.[110] U-net decoder [17] MVD retrieval et al.[110] U-net decoder [17]

Hausdorff distance 0.092 0.165 0.142 0.121 0.113 0.144 0.089 0.200 0.119 0.092 0.152 0.148
Chamfer distance 0.015 0.025 0.022 0.017 0.021 0.026 0.015 0.036 0.025 0.016 0.026 0.032
normal distance 30.66 42.57 35.58 32.32 49.40 48.78 30.61 44.93 34.98 31.00 53.84 53.13
depth map error 0.026 0.049 0.039 0.030 0.038 0.045 0.018 0.040 0.030 0.019 0.031 0.036

volumetric distance 0.344 0.501 0.442 0.374 0.432 0.512 0.313 0.541 0.428 0.329 0.437 0.493
Man-made objects (human drawing) Character models (human drawing)

Shape nearest Tatarchenko[110]+volumetric R2N2 Shape nearest Tatarchenko[110]+volumetric R2N2
MVD retrieval et al.[110] U-net decoder [17] MVD retrieval et al.[110] U-net decoder [17]

Hausdorff distance 0.116 0.176 0.153 0.153 0.130 0.149 0.117 0.188 0.139 0.136 0.178 0.168
Chamfer distance 0.017 0.031 0.024 0.025 0.022 0.028 0.021 0.036 0.025 0.024 0.032 0.036
normal distance 27.04 40.96 32.40 30.45 48.32 48.12 33.44 43.81 36.11 34.74 54.91 54.29
depth map error 0.021 0.042 0.033 0.032 0.032 0.042 0.026 0.040 0.031 0.027 0.037 0.040

volumetric distance 0.311 0.544 0.405 0.403 0.405 0.500 0.298 0.458 0.342 0.307 0.420 0.436

Table 5.2. Comparisons of our method with baselines based on our evaluation measures
(the lower the numbers, the better)

our method, especially for man-made objects. This implies that U-net is a significant en-

hancement. We finally observe that the R2N2 does not perform better than our volumetric

decoder baseline.

Figure 5.4 shows representative input test sketches, and output meshes for competing meth-

ods. In general, the nearest neighbor results look plausible because retrieval returns

human-modeled training shapes with fine details (e.g., facial features). Such details are

not captured by any of the methods, including ours. On the other hand, as shown in the

figure, and confirmed by numerical evaluation, compared to nearest neighbor retrieval and

other methods, ours produces shapes that better match the input sketch. The main rea-

son is that our method better preserves the shape structure, topology and coarse geometry

depicted in the input sketch.

We note that mesh fine-tuning was not used here for any methods. The reason was to eval-

uate the methods by factoring out the post-processing effects of fine-tuning. Fine-tuning is

optional and does not significantly affect the errors. It is used only to add details (“stylize”)

the produced meshes based on the input contours when these are precisely drawn, and if

users desire so. “Fine-tuning” can be applied not only to the reconstructed meshes of our
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Figure 5.4. Comparisons of shape reconstructions from sketches for our method and base-
lines.

method but also to the resulting meshes of the other competing methods. Thus, we also

experimented when fine-tuning is applied to the results of all methods. We found that the

effect on evaluation measures tends not to be significant and our method has still much

smaller errors than the others also in this case. The reason is that the mesh deformation

applied during fine-tuning works well only if the produced shape matches the drawn shape

in terms of structure and topology (e.g., layout and number of parts). While this is mostly

true for our method, it is often not the case for shapes produced by volumetric decoders

and nearest retrieval. For example, given the line drawing of a chair with a vertical middle
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bar on its back (Figure 5.4, top), the chair returned by nearest retrieval has a horizontal

bar instead. Fine-tuning cannot add or remove parts, but instead deforms irrelevant surface

points on the retrieved chair back towards the silhouette points of the vertical bar, yielding

a largely implausible shape. Due to such mismatches, fine-tuning the retrieved shapes can

slightly amplify errors with respect to ground-truth shapes. For example, for human line

drawings, Hausdorff distance is further increased by 10% for nearest retrieval when fine-

tuning is applied to the retrieved shapes. In contrast, for our method after fine-tuning, the

error drops by a tiny amount (< 1%) i.e., deformation adds small details, like the alien’s

eyes of Figure 5.1, without causing implausible deformations.

Comparisons with variants of our method. We also evaluated the reconstructions pro-

duced by our full method against degraded variants of it. Table 5.3 reports the results.

Specifically, we tested the following variants: (a) we do not use the optimization procedure

of Section 5.4 (‘no fusion’ column), (b) we set the output of our network to depth alone

(‘no normal’ column). Since Poisson reconstruction requires both points and normals as

input, we produce normals by least-squares plane fitting for each generated 3D point, (c)

we skip the adversarial loss term during training (‘no GAN’ column). For all these vari-

ants, the network uses two input sketches based on views A and B of Table 5.1. We also

tested the reconstructions produced by our method when it uses a single sketch as input

(view A, ‘single input’ column in Table 5.3) versus two sketches as input (views A and

B). We note that mesh fine-tuning was not used for any of these variants. Based on the re-

sulting numbers, our full method tends to produce lower errors than its degraded variants,

especially for man-made objects that often have more structural and geometric variability

than character models. We also observe that using two sketches significantly improves the

reconstructed shapes. This is not surprising since two input sketches contain more shape

information than one.
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Man-made objects Character models
full no no no single full no no no single

method fusion normal GAN input method fusion normal GAN input
Hausdorff distance 0.092 0.102 0.108 0.107 0.134 0.089 0.090 0.088 0.098 0.113
Chamfer distance 0.015 0.015 0.017 0.016 0.020 0.015 0.015 0.016 0.016 0.021
normal distance 30.66 30.78 31.22 30.89 34.49 30.61 30.84 30.85 30.72 34.15
depth map error 0.026 0.027 0.029 0.028 0.035 0.018 0.019 0.020 0.019 0.026

volumetric distance 0.344 0.356 0.354 0.347 0.428 0.313 0.318 0.323 0.320 0.396

Table 5.3. Comparisons with variants of our method based on our evaluation measures (the
lower the numbers, the better).

Perceptual user study. In addition to the above numerical evaluation measures, we also

performed a perceptual user study to compare our method with the volumetric decoder,

view-based decoder based on Tatarchenko et al. [110] and the nearest neighbor sketch-

based retrieval. The user study was executed through the Amazon Mechanical Turk (MTurk)

service. Each questionnaire included 30 queries. Each query showed: (a) a pair of synthetic

or human line drawings depicting a test shape from two different views, (b) a rendered im-

age of the 3D surface mesh reconstructed using our method given these two input line

drawings, (c) another rendered image of the 3D surface mesh reconstructed using one of

the alternative methods. The images were laid out as shown in Figure 5.5. Queries were

shown at a random order, while each page was repeated twice (i.e., 15 unique queries), with

the two rendered mesh images randomly flipped, to detect unreliable users giving inconsis-

tent answers. Each query included the following question: “Which of the two 3D models

on the bottom (A or B) is MORE similar to the object depicted by the line drawings on the

top? ”. Participants were asked to pick one of the following answers: “(i) A, (ii) B, (iii)

can’t tell - Both A and B look equally similar to the line drawings, (iv) can’t tell - Neither

A nor B looks similar to the line drawings”. To avoid any individual bias, we allowed each

participant to complete only one questionnaire per category. Participants were rewarded

$1 for each questionnaire completion. Each query was answered by 5 different, reliable

MTurk participants. We filtered out unrealiable MTurk participants who gave two incon-

sistent answers to more than 7 out of the 15 unique queries in the questionnaire, or took
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A B

(i)   A - 100%

(ii)  B - 0%

(iii) Both - 0%

(iv) Neither - 0%

Figure 5.5. Query layout shown to participants of our user study.

plurality raw votes
A B both neither draw A B both neither

ours (A) vs Tatarchenko et al. (B) 99.2% 0.8% 0.0% 0.0% 0.0% 94.7% 2.5% 1.5% 1.3%
ours (A) vs volumetric decoder (B) 96.7% 1.7% 0.0% 0.0% 1.7% 92.8% 2.0% 3.0% 2.2%

ours (A) vs nearest retrieval (B) 87.5% 12.5% 0.0% 0.0% 0.0% 81.2% 14.7% 1.0% 3.2%

Table 5.4. Perceptual user study results comparing our method with baseline methods:
per-query plurality responses (left) and raw vote percentages (right).

less than 2 minutes to complete it. Participants agreed with each other 89.0% of the times,

indicating a high degree of consistency across participants.

In total, we gathered 1800 consistent responses from reliable users: 600 responses com-

paring the reconstructions of our method with the ones from the volumetric decoder, 600

responses comparing our method with sketch-based retrieval, and 600 responses compar-

ing our method with the alternative view-based decoder based on [110]. The 600 query re-

sponses were gathered for all 120 human and synthetic test sketches in all our 3 categories

(as explained above, each test sketch pair and resulting reconstructions was examined by 5

different, reliable MTurk participants).

Table 5.4 reports the results of the user study. We report the percentage of plurality re-

sponses per-query (plurality is formed by the 5 reliable users per query). Our method was

found to produce shapes that look much more similar to the depicted shapes in the line

drawings.
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Figure 5.6. Gallery of results. Blue shapes represent reconstructions produced by our
method from the input sketches. Orange shapes are the nearest shapes in the training
datasets retrieved via sketch-based retrieval.

More results. Figure 5.6 shows reconstructed shapes produced by our method for various

input synthetic and human sketches. Fine-tuning was used for the meshes of this figure.

5.6 Conclusion

We presented an approach for 3D shape reconstruction from sketches. Our method em-

ploys a ConvNet to predict depth and normals from a set of viewpoints, and the resulting

information is consolidated into a 3D point cloud via energy minimization. We evaluated

our method and variants on two qualitatively different categories (characters and man-made

objects). Our results indicate that view-based reconstruction of a 3D shape is significantly

more accurate than voxel-based reconstruction. We also showed that our method can gen-

eralize to human-drawn sketches. We believe that there is significant room for improving

our method in the future. For example, it would be interesting to explore the possibility of
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incorporating the fusion process in the network, and modifying its architecture such that

reconstruction is done from arbitrary viewpoints. Our reconstructed shapes often lack fine

details that users would prefer to see in production-quality 3D models. We believe that

these shapes can serve as starting “proxies” for artists to improve upon through modeling

interfaces. From this aspect, it would be useful to integrate interactive modeling techniques

into our method.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

In this dissertation we have discussed algorithms to analyze stylistic properties in 3D shapes

and algorithms to automatically synthesize shapes given style specifications in the form of

another shape in a particular style or human line drawing inputs.

We have introduced the first method for evaluating stylistic similarity between structurally

and functionally different objects. We quantified style similarity criteria into geometric

properties following observations from art history literature. We utilized crowdsourced

data to relate geometric features to actual human perception of style and employed rela-

tive comparison to learn our style similarity measure. We experimentally showed that our

learned style similarity measure is well aligned with human perception of style.

We have also described a new algorithm for transferring style between structurally and

functionally different man-made objects. We introduced a new compatibility measure for

preserving functionality without explicitly identifying functional parts. We validated our

style transfer framework via extensive user studies and showed that our method is able to

generate functionally plausible and stylistically similar models in a wide range of shape

classes.

We have also presented a system for reconstructing 3D shapes from 2D line drawings.

We proposed the first approach to use a learned, view-based representation for generat-

ing shapes from sketches. We trained the framework using mass amount of synthetic data

without the supervision from human line drawings data. We validated our algorithm quan-

titatively using standard evaluation metrics between our results and those from baseline
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methods and variants of our method. We also validated our outputs qualitatively via a per-

ceptual user study and showed that our method can generate plausible 3D shapes from 2D

sketch inputs.

6.1 Future Work

There are many exciting directions for future work. While we put significant effort into

exploring geometric features and elementary distances relevant for visual motif and con-

sequently style analysis, it remains an open question if the features discussed in Chapter

3 are sufficient to compare the style of shapes. In particular, for large structures, such as

buildings, the overall arrangement of parts and elements is likely to play some role in style

parsing. Instead of designing features and distances from scratch, it could be interesting

to explore if these can be learned directly from raw shape data. Deep learning architec-

tures could be used for this purpose, as well as for learning more advanced models of style

similarity [75]. Our work focuses on similarity within broad object categories, such as be-

tween pieces of furniture, or buildings, where stylistic commonalities are most obvious; it

may be interesting to consider cross-category style evaluation between objects, e.g. evalu-

ating style similarity between buildings and furniture. The first step for such a task would

be to evaluate how consistent humans are at this task. In [78] they introduced a method

to evaluate style compatibility for furniture based on co-segmented shapes. We speculate

that combining feature-based joint segmentation [47] or template fitting methods [61] with

our alignment-based element matching technique could further improve our style similarity

measure for some classes.

Our style transfer algorithm requires as input an exemplar 3D model that represents the de-

sired style to be transferred to other objects. It would be interesting to explore other input

modalities that describe style. Our work on reconstructing 3D shapes from 2D sketches

provide an idea to encode style in line drawings. There are also other possible representa-
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tions for style specification such as natural language input. Furthermore, our style transfer

algorithm leverages the structure of a target shape, either specified manually or retrieved

automatically, to synthesize new shapes. Instead of relying on a pre-existing target shape

structure, it would be interesting to employ generative models that are capable of gener-

ating plausible shape structure and accurate surface geometry automatically. Such models

could also avoid the need of slot-based part alignment that may fail when slots largely dif-

fer in number, size and orientation. Another interesting direction would be to combine our

structure-based functional compatibility metric with functionality models [60, 42] that con-

sider part interactions with agents and other objects in a scene to improve correspondences

especially for parts where such interactions are meaningful.

Our framework for reconstructing 3D shapes from 2D sketches has an optimization step to

fuse shape information from network outputs. This step requires a significant amount of

parameter tunings (point cloud filtering thresholds, surface reconstruction algorithm param-

eters, curve-based deformation parameters, etc.). It would be better to incorporate this step

into the network and learn all parameters in a unified optimization framework. Currently

following our workflow, the framework should have pre-trained networks for all possible

permutation of canonical input views, which is cumbersome in a usable application. A

more advanced model such as a recurrent module which is invariant with the order of user

input views may bypass the need for specifying the input views and can be trained as one

single network. Furthermore, it would be even better not to put any assumptions on the

input views. Recent work on view estimation [106] may give an insight on eliminating the

assumption that the input view is known to the network.
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APPENDIX A

APPENDIX: LEARNING PERCEPTUAL SHAPE STYLE
SIMILARITY

A.1 Shape and part features

In this section we describe the features used in the style similarity measure formulation in

Section 3.2.

Elementary distance. We describe here the elementary distances we used for measuring

geometric similarity between elements (Section 3.2.1). In total, we used 77 elementary

distances. To compute them, first we uniformly sample the surfaces of the shapes with

20K points, so that the distances are invariant to mesh artifacts. Then we compute the

elements’ surface distance, by aligning them with ICP and including the average closest

point-to-point distance and average distance between their normals as our 2 first elemen-

tary distances. Then we compute the curvature tensors for each point on the element surface

and extract 13 feature values (min/max curvature by value, min/max curvature by magni-

tude, mean curvature, Gaussian curvature, the absolute value of the aforementioned six

features, as well as the mean magnitude of the two principal curvatures). We compute

histograms of those 13 curvature features with 16, 32, 64, 128 bins for each element. We

also compute histograms of the elements’ shape diameter [102] with 16, 32, 64, 128 bins,

and the D2 shape distribution histograms [89] with 16, 32, 64, 128 bins. On each of those

curvature, shape diameter and D2 histograms, we measure the Earth Mover’s Distances

(4 × 15 elementary distances). We then extract the following feature curves on the ele-

ments: boundaries, ridges and valleys lines. Using the same element alignment we got
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from ICP, we compute the average closest curve point-to-point and normal distances for

each of the three types of feature curves separately and for the whole set of curves (4 × 2

elementary distances). We extract the silhouette of the aligned shapes under different view-

points [15], compute their Zernike moments, Fourier coefficients, eccentricity, circularity

and estimate their euclidean distance for each of them (4 elementary distances). Finally,

we use the axis-aligned bounding box scales of the aligned shape features and we measure

their absolute differences along three axes (3 elementary distances). Finally, all distances

are scaled to have unit variance across all training shape pairs.

Features for elementary saliency. We describe here the geometric features that were

used for measuring element saliency (Section 3.2.3, see Equation 3.9) and the prevalence

of matching elements (see Equation 3.11). In total, we gathered 20 geometric features in

our element saliency measure. All geometric features are computed on the sample points

of the elements’ surface. First we used the height of the sample point and its horizontal

distance to shape center. The metrics of height and horizontal distance are relative to the

bounding box size of the shape (2 saliency features). We also compute the geodesic dis-

tance from each point to all other points and use the average geodesic distance as feature

(1 saliency feature). We also compute the ambient occlusion for each point by shooting

rays towards the hemisphere along its normal direction and counting the percentage of rays

which do not intersect with the shape (1 saliency feature). Similarly to the curvature-related

elementary distances, we include the absolute values of min/max curvature by value, the

absolute values of min/max curvature by magnitude, the absolute value of the mean cur-

vature and Gaussian curvature, as well as the mean magnitude of two principal curvatures

(7 saliency features). Following the distinctness idea in [103], we compute histograms of

various features and use the dissimilarity of the histograms between neighboring points

as saliency features. Besides the original Simplified Point Feature Histogram whose bins

count relative angular directions of the normals, we also compute spin images [53] and 3D
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furniture (100 triplets) MTurk Expert Casual
number of users 20 5 32
% consistency 88.2% 98.2% 94.9%

% consistency (i) vs (ii) 98.9% 99.5% 98.9%
building (100 triplets) MTurk Expert Casual

number of users 20 5 32
% consistency 87.0% 92.1% 92.9%

% consistency (i) vs (ii) 97.5% 99.2% 99.4%
cutlery (50 triplets) MTurk Expert Casual

number of users 15 5 32
% consistency 92.7% 95.7% 92.0%

% consistency (i) vs (ii) 99.6% 100.0% 100.0%

Table A.1. Pilot study statistics.

shape contexts histograms based on [57]. To measure distinctness among different range of

contextual shape information, we use 3 levels of neighbor ranges (3× 3 saliency features).

Note that all of the saliency features above are calculated on points and the saliency of an

element or a region is a sum of the point saliency which implicitly accounts for the area of

the element or the region. Finally, all saliency features are shifted and scaled to have zero

mean and unit variance across all training shapes.

A.2 Extra Study Statistics

Table A.1 summarizes the results of the pilot study per participant category.
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APPENDIX B

APPENDIX: FUNCTIONALITY PRESERVING SHAPE STYLE
TRANSFER

B.1 Descriptors

In this section we describe the descriptors used in the element compatibility formulation in

Section 4.3.

Per-Element descriptors. In total, we have 13 element descriptors yielding 13 distance

measures. The first set of descriptors capture the relative location of the markers on an

element, including its centroid, its centroid projected on the ground plane, then its high-

est point, lowest point, and its centroid projected onto the upright axis (i.e., representing

height from the ground plane). When comparing nodes in our graph, element locations

are expressed with respect to the object’s coordinate system. When comparing edges in our

graph, element locations are expressed with respect to the local corresponding system of its

neighboring element in the graph (the local coordinate system is formed by the neighbor-

ing element’s corresponding marker locations and object’s axes). Each of the five relative

locations yields a Euclidean distance when comparing two elements. The next three de-

scriptors store the proportions of the element’s axis-aligned bounding box, relative to the

object’s bounding box proportions when comparing nodes, and relative to the neighboring

element’s bounding box proportions when comparing edges. These proportions (one per

each axis) yield three more distances. The next three descriptors are similar to the previ-

ous three, but instead of the bounding box proportions, we use the variance of the element

point positions along the object’s axes. The next descriptor stores the major orientation
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of the element estimated via PCA. When comparing nodes, we measure the angle differ-

ence between the major orientations of the two corresponding elements. When comparing

edges, we measure the relative angle difference between the major orientations of the two

corresponding elements with respect to their neighboring elements major axes. The last de-

scriptor is a histogram that approximately captures the distribution of point samples in an

element. We build a 4×4×4 grid and compute a histogram by counting how many sample

points on the element surface are inside each bin. When comparing nodes, we compute the

euclidean distance between the histograms for the corresponding elements. When compar-

ing edges, we compute a histogram for each edge measuring the absolute difference of bin

values between the corresponding histograms of neighboring elements, then measure the

euclidean distance between the resulting histograms.

Curve descriptors. In total, we get 3 distance measures between curve descriptors. The

first one represents distance between centroids of the two curves and the second one rep-

resents differences between their arc lengths. The last one represents the average point-to-

point distance after aligning the two input curves via ICP.

B.2 Gradient for learning

Learning the compatibility metric requires computing the analytic gradient of our objec-

tive function (Equation 4.13) with respect to our parameters. The loss function evaluates

the compatibility metric, which is defined through the recursive formula of Equation 4.1.

Interestingly, it turns out that the gradient also follows a similar recursive definition, which

makes it possible to compute it efficiently. For clarity, we provide here the formulas that

evaluate the partial derivatives of our objective function with respect to the node kernel pa-

rameters {wk}k=1...K and RBF variances {σk}k=1...K . The partial derivatives for the rest of

the parameters follow a similar recursive computation. We begin by computing the gradient

of the loss function with respect to the node kernel parameters:
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∂L(w,σ)

∂wk

= −λ · sign(wk) +
T∑
t=1

∂ lnP (pq[t] . pr[t])

∂wk

(B.1)

The gradient of the log likelihood per training example t can be expressed as:

∂ lnP (pq[t] . pr[t])

∂wk

=
(

1−σ
(
Dfunc(p, r)−Dfunc(p, q)

))
·
(∂Dfunc(p, r)

∂wk

−∂Dfunc(p, q)

∂wk

)
(B.2)

The partial derivatives of the distance function Dfunc(p, r), and similarly for Dfunc(p, q),

are in turn computed as:

∂Dfunc(p, q)

∂wk

=

(∂K(n)(p,p)
∂wk

− 2∂K(n)(p,q)
∂wk

+ ∂K(n)(q,q)
∂wk

)
2Dfunc(p, q)

(B.3)

The above formula requires computing partial derivatives of our graph-based compatibility

function. The derivatives also follow a recursive definition :

∂K(n)(p, q)

∂wk

=
∂Knode(p, q)

∂wk

·
∑

p′∈N (p)
q′∈N (q)

Kedge(epp′ , eqq′) ·K(n−1)(p′, q′)

+Knode(p, q) ·
∑

p′∈N (p)
q′∈N (q)

Kedge(epp′ , eqq′) ·
∂K(n−1)(p′, q′)

∂wk

(B.4)

To evaluate the above formula, the partial derivatives of the node similarity functions with

respect to the kernel node parameters are required. These are computed as follows:

∂Knode(p, q)

∂wk

= exp

{
− D2

k(p, q)

2σ2
k

}
(B.5)

Computing the partial derivatives of our objective function with respect to the RBF vari-

ances follow the same procedure as above with only two differences: the sign term in

Equation B.1 is omitted (no L1-norm regularization is used for variances since sparsity is
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not required for them) while the partial derivatives of the kernel node functions are instead

expressed as follows:

∂Knode(p, q)

∂σk
=
wkD

2
k(p, q)

σ3
k

exp

{
− D2

k(p, q)

2σ2
k

}
(B.6)
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APPENDIX C

APPENDIX: SHAPE RECONSTRUCTION FROM SKETCHES

C.1 Solution to the linear system for point cloud optimization

To minimize the energy E(D) formulated in Section 5.4, we set its derivatives with respect

to the unknown pixel depths D to zero, which in turn leads to a sparse linear system in

the form of Ax = b. Here the unknown vector x consists of all pixel depths dp,v we wish

to solve for. The system is solved using the conjugate gradient method in least-squares

sense. The following Equation C.1 shows the linear system along with the sparse matrix

A and the constant vector b. In the following paragraphs, we explain how to derive the

system based on the linear constraints originating from each of the energy terms explained

in Section 5.4.1.



w1I

...(
w2 · ñ(z)

p,v(St)
)
L(x)

...(
w2 · ñ(z)

p,v(St)
)
L(y)

...

w1I

...(
w2 · n(z)

v′ (qp,v)
)
L(x)

...(
w2 · n(z)

v′ (qp,v)
)
L(y)

...



[D] =



w1 · d̃p,v(St)

...

−w2 · κ · ñ(x)
p,v(St)

...

−w2 · κ · ñ(y)
p,v(St)

...

w1 · dv′(qp,v)

...

−w2 · κ · n(x)
v′ (qp,v)

...

−w2 · κ · n(y)
v′ (qp,v)

...



(C.1)
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Network prediction term. It is easy to see that this term leads to constraints dp,v =

d̃p,v(St) weighted by the parameter w1. Therefore we can fill the matrix A with w1’s and

the vector b with w1 · d̃p,v(St), as shown in Equation C.1 above.

Orthogonality term. Considering the two orthogonality terms separately, we have two

linear constraints weighted by the parameter w2:

ñ(z)
p,v(St) ·

∂dp,v
∂x

= −κ · ñ(x)
p,v(St), ñ(z)

p,v(St) ·
∂dp,v
∂y

= −κ · ñ(y)
p,v(St) (C.2)

Here the superscripts (x), (y) and (z) of the normal np,v indicate its x, y, or z component

respectively. The first-order derivatives of the depth are approximated with a gradient filter

[83], which is convolved with depths in the 3× 3 neighborhood per pixel:

∂D

∂x
≈ L(x)D = D ∗ 1

12

-1 0 1

-4 0 4

-1 0 1

,
∂D

∂y
≈ L(y)D = D ∗ 1

12

1 4 1

0 0 0

-1 -4 -1

(C.3)

where L(x) and L(y) are matrices which implement the above convolution. Therefore for

each pixel we can fill the corresponding columns in the sparse matrix A and entries in b,

as shown in the linear system of Equation C.1 above.

View consistency term. The view consistency terms yield similar linear constraints as

above. The only difference is that the use the projected depths dv′(qp,v) and transformed

normals nv′(qp,v) (instead of the depths d̃p,v(St) and normals ñp,v(St) produced from the

network).

By combining all linear constraints, weighted by their corresponding weights, we form the

overconstrained, sparse linear system of Equation C.1.
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