
GRAPH CONSTRUCTION FOR MANIFOLD DISCOVERY

A Dissertation Presented

by

CJ CAREY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2017

College of Information and Computer Sciences

c© Copyright by CJ Carey 2017

All Rights Reserved

GRAPH CONSTRUCTION FOR MANIFOLD DISCOVERY

A Dissertation Presented

by

CJ CAREY

Approved as to style and content by:

Sridhar Mahadevan, Chair

Don Towsley, Member

Ben Marlin, Member

M. Darby Dyar, Member

James Allan, Chair
College of Information and Computer Sciences

DEDICATION

To Angela:

my motivator,

my sanity checker,

my unfailing supporter,

my best friend,

my wife.

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor, Sridhar Mahadevan. Sridhar has always

encouraged me to follow the problems I find interesting, and his mentorship has been essen-

tial to my growth as a researcher. I’d also like to thank my thesis committee members, Don

Towsley, Ben Marlin, and Darby Dyar. In particular I want to thank Darby for introducing

me to spectroscopy, geology, and planetary science, and for her constant encouragement

and support.

Thank you to the faculty and staff of the College of Information and Computer Sci-

ences, who provided a welcoming and productive environment for my graduate studies.

Special thanks are due to Susan Overstreet and Leeanne Leclerc, without whose support

and patience I would be lost.

Thanks also to the current and former members of the Autonomous Learning Lab, an

excellent group of graduate students that I’m proud to have as colleagues and friends.

Finally, I want to thank my family for their unfailing encouragement and support: my

wife Angela, who makes every challenge achievable; my sister Lisa, who has always in-

spired me to live up to her example; and my parents Clif and Kelli, whose nurture and love

have permeated my life in more ways than I can acknowledge in words.

v

ABSTRACT

GRAPH CONSTRUCTION FOR MANIFOLD DISCOVERY

MAY 2017

CJ CAREY

B.Sc., WASHINGTON UNIVERSITY IN ST. LOUIS

M.Sc., WASHINGTON UNIVERSITY IN ST. LOUIS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

Manifold learning is a class of machine learning methods that exploits the observation

that high-dimensional data tend to lie on a smooth lower-dimensional manifold.

Manifold discovery is the essential first component of manifold learning methods, in

which the manifold structure is inferred from available data. This task is typically posed

as a graph construction problem: selecting a set of vertices and edges that most closely

approximates the true underlying manifold. The quality of this learned graph is critical

to the overall accuracy of the manifold learning method. Thus, it is essential to develop

accurate, efficient, and reliable algorithms for constructing manifold approximation graphs.

To aid in this investigation of graph construction methods, we propose new methods

for evaluating graph quality. These quality measures act as a proxy for ground-truth mani-

fold approximation error and are applicable even when prior information about the dataset

is limited. We then develop an incremental update scheme for some quality measures,

demonstrating their usefulness for efficient parameter tuning.

vi

We then propose two novel methods for graph construction, the Manifold Spanning

Graph and the Mutual Neighbors Graph algorithms. Each method leverages assumptions

about the structure of both the input data and the subsequent manifold learning task. The

algorithms are experimentally validated against state of the art graph construction tech-

niques on a multi-disciplinary set of application domains, including image classification,

directional audio prediction, and spectroscopic analysis.

The final contribution of the thesis is a method for aligning sequential datasets while

still respecting each set’s internal manifold structure. The use of high quality manifold

approximation graphs enables accurate alignments with few ground-truth correspondences.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Background . 1
1.2 Challenges . 2
1.3 The Manifold Learning Process . 3
1.4 Contributions . 4

2. RELATED WORK . 8

2.1 Manifold Learning . 8

2.1.1 Overview . 8
2.1.2 Dimensionality Reduction . 9
2.1.3 Semisupervised learning . 11
2.1.4 Value Function Approximation for Reinforcement learning 12
2.1.5 Transfer learning . 12
2.1.6 Metric learning . 13

2.2 Manifold Discovery via Graph Construction . 14

2.2.1 Graphs and Their Properties . 14
2.2.2 Manifold Approximation Without Explicit Graphs 16
2.2.3 Unsupervised (Classical) Graph Construction . 17

2.2.3.1 Neighborhood graphs . 17

viii

2.2.4 Semisupervised Graph Construction . 18
2.2.5 Multiple Manifold Discovery . 19

3. GRAPH QUALITY METRICS FOR APPROXIMATING MANIFOLDS
. 21

3.1 Overview . 21
3.2 Ground Truth Comparison . 22
3.3 Manifold Learning Task Evaluation . 23
3.4 Task-Independent Graph Quality . 24

3.4.1 Graph-theoretic Properties . 24
3.4.2 Efficient Computation of Betweenness Centrality 25

3.5 Differential Graph Quality . 26
3.6 Incremental Graph Construction . 27

3.6.1 The εk Graph . 28
3.6.2 Incremental Geodesics Update . 28

3.6.2.1 Theoretical Analysis . 29

3.6.3 Betweenness Centrality Update . 31

3.6.3.1 Theoretical Analysis . 32

3.6.4 Combined Incremental Update . 32

3.6.4.1 Theoretical Analysis . 33

3.7 Experimental Results . 34

3.7.1 Ground Truth Evaluation: Swiss Roll . 34
3.7.2 Ground Truth Evaluation: Isomap Faces . 35
3.7.3 Task-Based Evaluation: Image Classification . 37
3.7.4 Task-Based Evaluation: Binaural Localization . 38

3.8 Discussion . 39

4. MANIFOLD SPANNING GRAPHS . 41

4.1 Motivation . 41
4.2 Hyperparameter Sensitivity . 41
4.3 The Algorithm . 42

4.3.1 Connectivity Forest and Subspace Construction 44
4.3.2 Component Joining . 46

ix

4.3.3 Edge Addition Post-processing . 47

4.4 Theoretical Analysis . 48
4.5 Experimental Results . 50

4.5.1 Parametric Swiss Roll . 50
4.5.2 MNIST digit clustering . 53

4.6 Discussion . 53

5. MUTUAL NEIGHBORS GRAPH CONSTRUCTION . 57

5.1 Background . 57

5.1.1 Short Circuit Pruning with Mutual Neighbors . 58

5.2 Mutual Neighbors Graph Construction . 58

5.2.1 Candidate Edge Ranking . 59
5.2.2 Candidate Edge Generation . 60
5.2.3 Algorithm Analysis . 61
5.2.4 Demonstration . 62

5.3 Experimental Results . 64

5.3.1 Swiss Roll . 64
5.3.2 MNIST Digit Classification . 64
5.3.3 Semi-Supervised Learning Benchmarks . 65

5.4 Discussion . 66

6. MANIFOLD WARPING . 68

6.1 Background . 68

6.1.1 Manifold Alignment . 68
6.1.2 Dynamic Time Warping . 71
6.1.3 Canonical Time Warping . 73

6.2 Manifold Warping . 75

6.2.1 One-step algorithm . 75
6.2.2 Two-step algorithm . 78

6.3 Experimental Results . 80

6.3.1 Synthetic data sets . 80

x

6.3.2 COIL-100 data set . 82
6.3.3 Kitchen data set . 86

6.4 Discussion . 87

7. CONCLUSIONS AND FUTURE WORK . 88

7.1 Summary . 88
7.2 Caveats . 89
7.3 Future Work . 90

7.3.1 Directed Graph Construction . 90
7.3.2 Nonlinear Metrics . 90
7.3.3 Active Manifold Discovery . 91

BIBLIOGRAPHY . 92

xi

LIST OF TABLES

Table Page

4.1 Confusion matrices from the MNIST digit classification task. True digit
labels are on the rows, with predicted labels along the columns. For
each true label, the predicted label with the largest count is bold. The
classifier using the MSG-generated graph achieved the best overall
accuracy. 55

5.1 Average classification accuracy on semi-supervised learning benchmark
datasets. The best performing method for each dataset is highlighted
in bold. 67

6.1 Alignment error across algorithms and data sets. 83

xii

LIST OF FIGURES

Figure Page

1.1 Conceptual illustration of a manifold. The global geometry (blue surface)
may be arbitrarily nonlinear in the observed coordinate space, but the
local vicinity of any point on the manifold (black grids) is
approximately linear. The dimensionality of these locally linear
subspaces is called the intrinsic dimension of the manifold. 2

1.2 Illustration of the “swiss roll” manifold. Points are generated by sampling
uniformly at random from the (r, θ) manifold space, shown at left.
Projecting those points to (x, y, z) coordinates as (θ sin θ, θ cos θ, r)
produces the observed data, shown at right. In both plots, points are
colored by their θ value. A direct line between points in observed
space risks crossing between loops of the spiral, whereas Euclidean
distances in the manifold space are guaranteed to follow the structure
of the roll. 3

1.3 The manifold learning process. Step 1 discovers manifold M using
observed data X . Step 2 uses M along with auxiliary information Z
(i.e., class labels, regression targets) to perform a learning task. Step 3
learns a mapping from new samples X ′ (drawn from the same
distribution as X) to the manifold. 4

1.4 The manifold learning process applied to the task of labeling instances of
the “two moons” dataset. Many options are available for each step of
the process; for clarity of illustration, we have selected simple
methods that visualize well. 5

1.5 Failure of the manifold learning process due to poor manifold discovery.
Using the same methodology as Figure 1.4, but replacing the 4-nearest
neighbor graph with 6 nearest neighbors, we observe the sensitivity of
the following steps in the manifold learning pipeline to the learned
graph. 6

xiii

2.1 Illustration of geodesic distance. Euclidean distance in the observed
coordinate space underestimates the true geodesic distance between
points sampled from a manifold, representing the length of the shortest
path connecting the points that does not leave the manifold. The goal
of a geodesic manifold embedding algorithm is to project the manifold
to a space in which Euclidean and geodesic distances are equivalent.
. 11

3.1 Task-specific graph quality evaluation procedure. The same dataset (X) is
used to produce different manifold approximation graphs, using
varying hyperparameters and/or algorithms. Each graph is used as
input to a manifold learning task with all other inputs and parameters
fixed, from which comparable scores can be obtained. These measures
of graph quality are limited in scope, however, as they remain tied to
the specific task and manifold learning algorithm chosen. 23

3.2 Graph quality measures over varying ε for a Swiss Roll. The solid blue
lines show quality values changing with increasing ε, and the dashed
red lines show the one-step change in quality between subsequent
parameter settings. 35

3.3 Results of the synthetic Swiss roll experiment. 36

3.4 Graph quality measures varying k on Isomap Faces. Lines as described in
Figure 3.2. 37

3.5 COIL-20 results over varying ε. At left, the change in the betweenness
quality measure (red dashes) spikes after ε = 0.7, corresponding to the
highest average classification accuracy (right). 38

3.6 CAMIL regression results over varying ε. At left, the change in the both
quality measures (red dashes) spike after ε = 0.59, corresponding to
the smallest regression error (right). 39

4.1 Sensitivity of k-nearest (left) and ε-close (right) algorithms. The dashed
vertical lines represent the first hyperparameter value producing one
connected component. 43

4.2 Component joining. Dashed lines indicate the Pi subspace of each
component. Dotted lines show two possible edges that satisfy
Equation 4.4. Only the A-B edge will be added because the A-C edge
does not satisfy Equation 4.5. 46

xiv

4.3 Limitations of only connecting adjacent components. Components A and
C should connect along the dotted edge, but no edges will be added
between them after they merge via the addition of the dashed A-B and
B-C edges. 48

4.4 Side view of Swiss Roll graphs and their resulting Isomap embeddings.
For the algorithms that require hyperparameter tuning, the parameters
k, ε, and b were set by choosing the smallest value that produced a
single connected component. Sub-figures (a) and (c) show the
disproportionate effect that short-circuit edges have on the learned
embedding. We chose not to add edges after reaching one connected
component to provide a common comparison point for each algorithm,
and to underscore the problem of avoiding short-circuit edges even in
the most conservative setting. As a result, the graphs producing
sub-figures (b) and (d) are too sparse to produce rectangular Isomap
embeddings. The Manifold Spanning Graph algorithm addresses this
sparsity problem in Section 4.3.3. 51

4.5 Summarized performance over 200 random swiss rolls, each with 500
points. The MSG algorithm produces graphs with almost zero
incorrect edges, forming a single connected component with a modest
number of total edges. The ε-close algorithm produces few bad edges,
but tends to overconnect the graph. The k-nearest and b-matching
algorithms produce a reasonable number of total edges, but many of
these are incorrect. The high variance of these error rates also
indicates sensitivity to noise. 52

4.6 MNIST neighbor graphs, each represented as a 10, 000× 10, 000 binary
adjacency matrix, sorted by digit label. Correct edges lie in the
block-diagonal region, which corresponds to edges between images of
the same digit. Incorrect edges are counted to compute each graph’s
edge error ratio. 54

5.1 Iterations of the Mutual Neighbors Graph algorithm, demonstrated on the
synthetic Mona Lisa image manifold. The top row depicts St on
ground truth grid coordinates, with red lines indicating A, the edges
added by MNG during that iteration. The bottom row shows a
2-dimensional Isomap embedding of St, colored by the ground truth y
coordinate. 63

5.2 Cost distributions for candidate edges at each iteration, from the
application of MNG illustrated in Figure 5.1. Edges in A are colored
blue, while candidate edges above the γt threshold are colored red.
Gaussian noise along the x-axis was added to spread out overlapping
points. 63

xv

5.3 Results of randomized Swiss roll experiments. Blue bars (left axis) show
the error between the graph’s 2d Isomap embedding and ground truth
coordinates. Orange bars (right axis) show mean squared error of
regression. Each method’s results use the best-performing
hyperparameter, and lower error indicates better performance. Black
vertical lines show one standard deviation above and below the
mean. 65

5.4 MNIST classification results. Box plots show the distribution of accuracy
scores for each method’s graph when applied to 50 random instances
of a label propagation task, with fliers indicating outlier scores and
notches showing the 95% confidence interval for the median. Higher
accuracy indicates better performance. 66

6.1 A valid time-series alignment . 72

6.2 Sinusoidal curves before and after applying Canonical Time Warping. 73

6.3 Sinusoidal curves on a plane and on a Swiss roll. Aligning these curves
requires a nonlinear transformation. 74

6.4 Two-dimensional embeddings of the nonlinearly warped sin(x2) curves
illustrated in Figure 6.3. 81

6.5 The resulting warping path of each algorithm’s alignment and the ground
truth warping path for the warped sin(x2) curves in Figure 6.3. 82

6.6 Samples from pairs of COIL-100 image series . 83

6.7 Two-dimensional embedding of the dog and cat toy image series
(Figure 6.6). 84

6.8 Warping paths for the dog and cat toy image series (Figure 6.6). 84

6.9 Two-dimensional embedding of the rotating cup image series
(Figure 6.6). 85

6.10 Warping paths for the rotating cup image series (Figure 6.6). 85

6.11 Two-dimensional embeddings of the measurement series of IMU and
MOCAP sensors during the CMU kitchen task. 86

6.12 Warping paths for each algorithm’s alignment of the sensor data from the
CMU kitchen task. 87

xvi

CHAPTER 1

INTRODUCTION

1.1 Background

As machine learning practitioners make use of increasingly large and complex data

sets, better data representations are necessary to improve task performance while reducing

computational burden. Manifold learning techniques, which aim to uncover the underly-

ing geometry of a dataset, have proven to be especially useful in combating the “curse

of dimensionality” [62]. For example, manifold methods have been used to make high-

dimensional problems like face recognition [40] and robot control [72] more tractable.

Manifold learning is often used for visualizing complex datasets [63], and has been applied

to transfer learning tasks as well [94].

All of these methods operate under the manifold hypothesis, which assumes that input

data lie on a lower-dimensional manifold [14, 68]. In this context, a manifold is a topo-

logical space that is smooth [55], compact, and locally Euclidean [76]. These properties

allow any manifold to be viewed as a set of overlapping charts, each of which is a linear

subspace [11]. The collective dimensionality of these charts is the intrinsic dimension of

the manifold [85], which is typically much smaller than the dimensionality of the observed

data. Figure 1.1 illustrates the concept of a manifold.

Figure 1.2 shows a simple example of points sampled from a two-dimensional mani-

fold, embedded in a three-dimensional space. The higher-dimensional space is also known

as observation space, in contrast to the underlying manifold space that structures the data.

Performing traditional machine learning methods in manifold coordinates rather than the

observed space reduces computational cost and improves model generalizability.

1

Figure 1.1: Conceptual illustration of a manifold. The global geometry (blue surface) may
be arbitrarily nonlinear in the observed coordinate space, but the local vicinity of any point
on the manifold (black grids) is approximately linear. The dimensionality of these locally
linear subspaces is called the intrinsic dimension of the manifold.

1.2 Challenges

In many real-life applications, the underlying manifold structure of a given dataset is

unknown. In these cases we must first apply manifold discovery to learn the structure of one

or more manifolds that best explain the observed data. Manifolds are continuous objects

that are often difficult to define analytically, so in practice it is common to manipulate

a discrete representation in the form of a graph [66]. Vertices of the graph are sampled

from the input data, and edges are chosen by connecting vertices for which the straight line

between them does not leave the manifold. In this representation, each chart is defined by

a vertex and the vertices with which it shares edges.

The manifold discovery problem can thus be reduced to the problem of graph construc-

tion: given a set of vertices, add edges such that the resulting graph best approximates the

2

(a) Manifold coordinate space. (b) Observed coordinate space.

Figure 1.2: Illustration of the “swiss roll” manifold. Points are generated by sampling uni-
formly at random from the (r, θ) manifold space, shown at left. Projecting those points to
(x, y, z) coordinates as (θ sin θ, θ cos θ, r) produces the observed data, shown at right. In
both plots, points are colored by their θ value. A direct line between points in observed
space risks crossing between loops of the spiral, whereas Euclidean distances in the mani-
fold space are guaranteed to follow the structure of the roll.

true structure of the manifold. This task is made tractable by exploiting the smoothness,

compactness, and local linearity properties of manifolds.

1.3 The Manifold Learning Process

Historically, the label “manifold learning” has been applied to methods that operate on

known manifolds as well as to manifold discovery algorithms. In this thesis, we define the

manifold learning process as follows:

1. Given a data set X , discover the underlying manifold M .

2. Using M and optional auxiliary information Z, perform the desired learning task.

3. Optionally, define a mapping for new data X ′ onto M to generalize the model to new

instances.

These steps, illustrated in Figure 1.3, provide a framework for understanding both the ex-

isting work in manifold learning and the novel contributions of this thesis.

3

Figure 1.3: The manifold learning process. Step 1 discovers manifold M using observed
data X . Step 2 uses M along with auxiliary information Z (i.e., class labels, regression
targets) to perform a learning task. Step 3 learns a mapping from new samples X ′ (drawn
from the same distribution as X) to the manifold.

Figure 1.4 provides an example of how the manifold learning process is applied on a

simple classification task. In this case, two manifolds with a single intrinsic dimension

each are discovered, then used to provide labels for each element of the dataset.

Figure 1.5 shows the same example with a different graph approximating the manifolds.

This example demonstrates that the first step (manifold discovery) is critical to the success

of the process as a whole, because errors in the graph estimating the manifold can propagate

to errors in the second step’s learning task.

1.4 Contributions

The first contribution of this thesis is a study of the properties of graphs that act as

indicators for high quality manifold representation (Chapter 3). These quality measures

allow evaluation of graphs without ground-truth information about the manifold, and do

not rely on results from step two of the manifold learning process. We show that these

measures are both useful and efficient, developing an incremental update algorithm for use

in parameter tuning.

4

(a) The “two moons” dataset in observed coordi-
nates, with one labeled example per moon (in or-
ange and blue) and 198 unlabeled examples (in
gray). The task is to color each gray point either or-
ange or blue, and thus separate the two halves of the
dataset. Using notation from the manifold learning
process, X is the set of coordinates for all points, Z
is the label information, andM is the learned graph.

(b) Step 1: Manifold discovery via graph construc-
tion. Each point is connected to its four nearest
neighbors ranked by Euclidean distance, creating a
graph with two disjoint components.

(c) Step 2: Manifold learning using M , the graph
constructed in step 1, and Z, the two known labels.
Using a label propagation algorithm, each labeled
point assigns its color to all of its unlabeled neigh-
boring points. This process is repeated until every
point is labeled, correctly separating the two moons.

(d) Step 3: Generalizing to new data. When a new
point is added to the dataset (in gray), it takes its
label from the labels of its four nearest neighbors
in the original dataset. This point will be colored
blue, as all of its neighbors (dotted lines) are blue.

Figure 1.4: The manifold learning process applied to the task of labeling instances of the
“two moons” dataset. Many options are available for each step of the process; for clarity
of illustration, we have selected simple methods that visualize well.

5

(a) Step 1 again, with too many nearest neighbor
connections. Instead of discovering two discon-
nected manifolds, the learned graph joins the moons
together.

(b) Step 2 using the poor manifold approximation.
The label information from the top moon leaks into
the bottom moon using the erroneous connecting
edge.

Figure 1.5: Failure of the manifold learning process due to poor manifold discovery. Using
the same methodology as Figure 1.4, but replacing the 4-nearest neighbor graph with 6
nearest neighbors, we observe the sensitivity of the following steps in the manifold learning
pipeline to the learned graph.

The second contribution is a novel method for graph construction, the Manifold Span-

ning Graph (Chapter 4). This algorithm avoids the difficult hyperparameter tuning process

by iteratively joining local subgraphs in a principled way.

The third contribution of this thesis is the Mutual Neighbors Graph algorithm (Chap-

ter 5), which frames graph construction in a semi-supervised setting. Given a sparsely-

connected graph that lies on the manifold, this algorithm adds edges to produce a useful

manifold approximation without deviating from the underlying structure.

These two algorithms are experimentally validated against state of the art graph con-

struction techniques on a multi-disciplinary set of application domains, including image

classification, directional audio prediction, and spectroscopic analysis.

The final contribution of the thesis is Manifold Warping (Chapter 6), a method for

aligning sequential datasets while respecting each set’s internal manifold structure. The

use of high quality manifold approximation graphs enables accurate alignments with few

6

ground-truth correspondences, improving alignment accuracy compared to extant methods

without manifold considerations.

Thesis Statement
Graph construction algorithms that respect structural properties of mani-

folds can significantly improve the performance of manifold learning applica-
tions.

7

CHAPTER 2

RELATED WORK

In this chapter, we review existing manifold learning and discovery methods using the

notation from the manifold learning process defined in the introduction. In Section 2.1,

we discuss methods for machine learning on manifolds. In Section 2.2, we discuss graph

construction algorithms for several categories of manifold discovery problems.

2.1 Manifold Learning

2.1.1 Overview

Classical machine learning methods tend to scale poorly when the number of dimen-

sions of input data increases; a phenonemon known as the “curse of dimensionality” [62].

In addition to increased time and memory requirements, many classical methods struggle to

accurately capture the complexity of high-dimensional datasets with nonlinear dynamics.

Manifold learning is a class of methods that make use of the observation that these

complex datasets often have well-behaved internal structure: a lower-dimensional, locally

Euclidean manifold. Given a representation of this internal structure, manifold learning

methods are able to efficiently and effectively operate on high-dimensional datasets. These

methods are used in step two of the manifold learning process outlined in Section 1.3:

Using M and optional auxiliary information Z, perform the desired learn-
ing task.

This section reviews five groups of existing manifold learning methods, organized by

the kind of learning task they perform. In each case, we assume that the manifold M is

given (typically in the form of a graph), along with various forms of additional information

Z.

8

2.1.2 Dimensionality Reduction

Dimensionality reduction is the task of finding a mapping for each point in a given

dataset to a new, lower dimensional space. For an input dataset X ∈ Rn×do , with n points

in do dimensions, the mapping produces new coordinates Y ∈ Rn×de , where the new di-

mensionality de < do. The key constraint on this transformation is one of structure preser-

vation; Y must preserve one or more key characteristics of X , allowing Y to be used in

place of X for further analysis.

Early work in this area drew on statistical measures of information content to find lin-

ear embeddings that preserve “useful” properties of the input data. These methods include

Principal Component Analysis (PCA) [42] and multidimensional scaling (MDS) [52]. PCA

was designed to preserve the variance of the original data, solving for a linear transforma-

tion of X to an orthogonal basis Y in which basis vectors are ordered by the amount of

variability they explain. Formally, PCA is Y = XW where W a column matrix of the

eigenvectors of X>X corresponding to the de largest eigenvalues.

In the early 2000s, new manifold learning techniques produced state of the art results on

dimensionality reduction tasks, helping to popularize the study of manifold-based methods

[85, 75, 4]. These manifold embedding algorithms constrain Y to preserve various prop-

erties of the manifold M , enabling nonlinear transformations of the original data X . This

is typically formulated as an unsupervised learning task, so no auxiliary data are required

(e.g., Z = ∅).

Algorithms for manifold embedding can be clustered into one of three families:

• Geodesic family: The geodesic distance between two points on a manifold M is the

length of the shortest path between them that does not leave the manifold’s surface.

This concept is illustrated in Figure 2.1. Geodesic embedding methods estimate

pairwise geodesic distances between all points inX , then construct Y to minimize the

disparity between the geodesic distances and pairwise Euclidean distances between

rows of Y . This constraint ensures that the global connectivity structure of M is

9

preserved, trading off some amount of distortion in local regions. Methods in this

family include Self-Organizing Maps [49], Curvilinear Component Analysis [21],

and Isomap [85].

• Laplacian family: The Laplace-Beltrami operator is defined as the divergence of the

gradient of a function, and is useful in measuring the deformation induced by map-

ping the manifold to a coordinate space [4]. Manifolds are often approximated using

a graph representation, necessitating the use of the graph Laplacian (L), a discrete

approximation of the Laplace-Beltrami operator. Laplacian embedding methods

minimize the squared gradient of the coordinate mapping function, which is equiv-

alent to solving for the de eigenvectors of L corresponding to the smallest nonzero

eigenvalues. Methods in this family include Laplacian Eigenmaps [4] and Diffusion

Maps [16].

• Locally Linear family: The local linearity property of manifolds implies that any

individual point in X can be reconstructed as a linear combination of its neighboring

points, as given by M . Each point can then be represented in terms of its neighbors

using a matrix of linear reconstruction weights, W . It is then possible to solve for Y

by minimizing the reconstruction error ‖Y −WY ‖F . Methods in this family include

Locally Linear Embedding [75], Local Tangent Space Alignment [109], Hessian Lo-

cally Linear Embedding [26], Sparse Manifold Clustering and Embedding [28], and

Low Rank Embedding [59].

The loss functions in these methods are commonly formulated as generalized eigende-

composition problems, which require O (|X|3) time in the general case. This is typically

the dominating factor in the algorithm’s running time, though extensions have been pro-

posed to reduce this computational burden [81, 61].

10

Figure 2.1: Illustration of geodesic distance. Euclidean distance in the observed coordinate
space underestimates the true geodesic distance between points sampled from a manifold,
representing the length of the shortest path connecting the points that does not leave the
manifold. The goal of a geodesic manifold embedding algorithm is to project the manifold
to a space in which Euclidean and geodesic distances are equivalent.

2.1.3 Semisupervised learning

Where supervised learning tasks have label information for each instance in X , and un-

supervised tasks have no labels at all, semisupervised learning refers to learning tasks with

partial label information. These tasks are often formulated as classification or clustering

problems, using a set of labeled instances Lknown to extrapolate labels for the unknown

instances, Lunknown. Rather than ignoring the rows of X without label information, us-

ing the unlabeled instances allows semisupervised learning algorithms to more accurately

generalize and avoid overfitting.

In the context of the manifold learning process, Z = Lknown and M is used to con-

strain the extrapolation of labels, forming a family of manifold regularization methods [5].

These methods include label propagation techniques, in which labeled instances influence

the labels of their unlabeled neighbors in manifold space [113, 110]. More sophisticated al-

11

gorithms, such as Linear Neighborhood Propagation [95] and Laplacian Assignment [13],

are also built on the same core idea.

2.1.4 Value Function Approximation for Reinforcement learning

Reinforcement learning (RL) is a technique for solving Markov decision processes, in

which an agent observes its environment, performs actions, and receives reward signals

[83]. A key subproblem of reinforcement learning is the task of learning a good approx-

imation of the value function, which maps states and actions to a real-valued estimate of

expected future rewards.

The joint state-action space is typically continuous, which has led RL practitioners to

use approximations consisting of a fixed set of nonlinear basis functions, such as radial

or Fourier bases [50]. As the dimensionality of the state-action space increases, however,

the domain of the value function increases and the curse of dimensionality makes value

function estimation more difficult.

Similar to dimensionality reduction efforts, the manifold underlying the state-action

space can be used to find a low-dimensional representation in which value function esti-

mation is more tractable. Unlike the previously described settings, however, the full set of

instances X is not available at the outset in reinforcement learning. Instead, X is generated

by the agent performing actions in the state space directed by a sequential decision process.

This setting can provide additional clues for discovering M , using Z to record information

about observed reward signals and state-action pairs. Examples of manifold learning meth-

ods applied to this RL setting include Proto-Value Functions [64] and its directed variants

[45].

2.1.5 Transfer learning

Transfer learning is the collective term for tasks in which information from one domain

is used to bootstrap learning in another domain. This cross-domain learning strategy is

attractive because it can speed up the learning process for new problems dramatically, while

12

providing additional structure to underspecified problems [73]. For example, the self-taught

learning framework uses a large unsupervised dataset to learn structure, then performs a

specific learning task using a smaller labeled dataset [74].

One task in this category that has benefited substantially from manifold-based ap-

proaches is dataset alignment, a semisupervised learning problem in which correspon-

dences are learned between multiple related data sets. Manifold alignment is a class of

techniques that solves this alignment problem when the input data sets share a common

underlying structure by finding a shared latent space in which the disparate input datasets

can be compared directly.

Wang’s original Manifold Alignment [94] was introduced as a semi-supervised, nonlin-

ear extension of Canonical Correlation Analysis (CCA) [1], that aims to preserve both local

geometry and inter-dataset correspondences. Many methods for manifold-based transfer

learning derive from this framework, including Semisupervised Manifold Alignment [39],

Manifold Alignment Preserving Global Geometry [93], Manifold Warping [91], and Low

Rank Alignment [9].

2.1.6 Metric learning

The final category of machine learning tasks we consider is metric learning, which

considers the problem of defining a function that compares pairs of instances in a semanti-

cally relevant way [104]. Specifically, we learn the function d (xi, xj) ≥ 0 where x ∈ X ,

such that the distance d is smaller when two instances are more similar for some problem-

specific understanding of similarity.

Much of the work on metric learning has followed the framework of generalized Ma-

halanobis distance, which defines a specific distance

dA (xi, xj) =

√
(xi − xj)>A (xi − xj)

13

parameterized by a square matrix A. When A = I , this reduces to Euclidean (L2) distance.

Traditional Mahalanobis distance usesA = cov(X)−1, and several methods have been pro-

posed for finding an optimal A given semi-supervised label information, including Large

Margin Nearest Neighbors [99] and Information Theoretic Metric Learning [17].

Manifold learning can be viewed as a kind of metric learning because M can be used

to estimate geodesic distances along the manifold. Standard distance metrics accurately

capture local effects due to the local linearity property, but consistently underestimate the

true distance between points sampled from different regions of the manifold. Unlike gener-

alized Mahalanobis distances, manifold distance metrics are generally nonlinear functions.

The dimensionality reduction methods reviewed above may be viewed as manifold-based

metric learning methods, but an explicit coordinate embedding is not required to learn a

metric.

2.2 Manifold Discovery via Graph Construction

Recall step one of the manifold learning process:

Given a data set X , discover the underlying manifold M .

This step contains two challenges: inferring a manifold that best explains the observed

data, and representing that manifold in a useful way for the subsequent steps of the process.

Manifolds are continuous objects and the observed data are finite, so these learned represen-

tations are often discretized, approximating a smooth manifold with the local, piecewise-

linear edges of a graph.

This section introduces graph basics, then discusses representations for M with a focus

on manifold approximation graphs. Then we review existing methods for learning these

graphs, a problem known as graph construction.

2.2.1 Graphs and Their Properties

A graph is a tuple containing a vertex set and an edge set,

14

G = (V,E) ,

where each edge eij ∈ E connects vertices vi ∈ V to vj ∈ V [7].

A graph is undirected when the existence of any edge eij implies an identical edge in

the reverse direction, eji. Undirected graphs can thus be treated as a special case of directed

graphs.

A graph is weighted when every edge also has an associated real-valued, nonzero,

scalar weight, wij . Edge weights are commonly used to encode the relative importance

of connections between vertices. If a graph is unweighted, edge weights are implied as

wij = 1∀eij ∈ E.

The unweighted degree of a vertex is defined

d (i) =
∑
j 6=i∈V

[eij ∈ E]

and represents the number of outgoing edges from the vertex. The weighted degree of a

vertex is similarly defined,

dw (i) =
∑
j 6=i∈V

wij,

and for unweighted graphs the two are equivalent.

A graph geodesic is the shortest path between two vertices along edges inE. The length

of this path is the geodesic distance, defined as the sum of the weights of the edges making

up the path. An unweighted graph geodesic is equivalent to the weighted case where all

edges have unit weight, and thus unweighted geodesic distance is the number of edges

comprising an unweighted shortest path.

In practical applications of manifold learning, it is often useful to represent graphs using

an adjacency matrix:

Wij =

 wij if eij ∈ E

0 otherwise

15

This representation has the benefit of encoding edge connectivity and weighting simulta-

neously.

2.2.2 Manifold Approximation Without Explicit Graphs

Most of the methods presented in Section 2.1 operate on graphs in adjacency matrix

representation. These graphs are assumed to be sparse such that |E| ∝ |V |, resulting in a

sparse adjacency matrix W with few nonzero entries.

Other methods use a dense pairwise similarity matrix in place of W , rather than finding

an explicit set of edges. This can be viewed as the adjacency matrix of a complete graph,

with |E| ∝ |V |2. These implicit-graph methods include Low Rank Embeddings [59], t-

SNE [89], Affinity Propagation [32], and Spectral Clustering [80]. In these cases, the task

of graph construction may be viewed as a complete graph weighting problem, and many of

the graph construction methods presented below can be applied with minimal modification.

Some older manifold approximation methods have used non-graph representations [49,

8], but these often fail to represent complex manifold structures accurately due to their

restrictive global models [86].

Several algorithms have attempted to side-step the graph construction problem by ex-

plicitly representing the manifold as a combination of piecewise linear components, solving

for a set of subspaces that lie tangent to the manifold surface. This family of methods in-

cludes charting [11] and several local PCA algorithms [47, 88, 41]. This concept has also

proven useful in the Local Tangent Space Alignment embedding algorithm [108], which,

given an existing graph representation, computes linear subspaces from local neighbor-

hoods to recover embeddings with less distortion. These approaches only provide coarse

manifold approximations, however, and require specialized algorithms for the varied appli-

cations that graph-based representations enable naturally, such as out-of-sample extension

and cross-manifold alignment.

16

2.2.3 Unsupervised (Classical) Graph Construction

Traditional approaches to graph construction have treated the problem as an unsuper-

vised learning task, relying on varied assumptions about the input data and the manifold(s)

they lie on. These assumptions enable enhanced performance at the cost of flexibility, and

are a useful way to categorize families of existing methods.

The simplest assumption is that neighbors in original space are neighbors on the mani-

fold. This is central to the “neighborhood graph” family of methods, which is described in

more detail in Section 2.2.3.1. The Perturbed/Disjoint Minimum Spanning Tree algorithms

assume that the minimum spanning tree of the input data lies on the manifold [105]. Other

methods assume that edges in the original space should lie on locally-linear subspaces, in-

cluding Nonlocal Manifold Tangent Learning [6]. Finally, some methods assume that the

manifold is sampled non-uniformly, including Multi-Class Manifold Learning [100] and

Robust Locally Linear Embedding [38].

Several unsupervised graph construction algorithms rely on the local linearity assump-

tion, which implies that each vertex can be reconstructed as a linear combination of its

neighbors. Minimizing the difference between reconstructed and actual vertex coordinates

allows graph construction to be formulated as sparse optimization problem [102, 27, 58].

2.2.3.1 Neighborhood graphs

The most commonly used family of graph construction methods is based on a neigh-

borhood criterion, N . The neighborhood graph adjacency matrix is defined by

Wij =

 δ (vi, vj) if vj ∈ N (vi)

0 otherwise
(2.1)

given a distance metric δ.

The k-nearest neighbors algorithm is a popular instance of this type of graph construc-

tion, where N (vi) is the set of k vertices with smallest distance from a given vertex vi.

17

While computationally efficient and simple, this algorithm does not necessarily create a

symmetric graph, because some of vi’s nearest neighbors are not guaranteed to include

vi among their own nearest neighbors. Symmetry is often assumed in graph-based learn-

ing algorithms, so a k-nearest adjacency matrix W is commonly symmetrized to form an

undirected graph. The choice of symmetrization has been the subject of some study and

has been shown to be an important factor for graph quality [19], but typical formulations

include averaging,

Wsym =
W +W>

2
(2.2)

and max-symmetrization,

Wsym = max
(
W,W>) . (2.3)

Restricting the degree of every vertex to be exactly k also limits this approach, though

several extensions have been proposed to allow neighborhood sizes to vary among vertices

[103, 107, 67]. Even finer-tuned control is provided by b-matching, which uses belief

propagation to find a neighbor graph that matches a given degree distribution [43].

The other classical neighbor-based graph construction method is the ε-close algorithm:

N (vi) = {vj ∈ V | δ (vi, vj) ≤ ε}

While this algorithm always constructs a symmetric graph, it also tends to produce too

many edges, especially when the input data are poorly scaled or not uniformly distributed,

because the maximum degree of vertices in the constructed graph has no upper bound.

2.2.4 Semisupervised Graph Construction

In many applications, some edges of the desired graph are already known and the

remaining task is to find additional edges that complete the graph. These given edges

may come from structural properties of input data (i.e., trajectories, lattices, and trees),

expert-provided labels, or constraints specific to the subsequent learning task. This semi-

18

supervised setting casts the edge assignment problem as a binary classification task in the

unweighted case and a regression task in the weighted case.

Partial supervision is often derived from domain-specific constraints. For example,

reinforcement learning and other sequential learning problems naturally generate data in

the form of trajectories with explicit edges between time-adjacent states [45].

Side information can also be exploited by restricting the learning task to which the

learned graph will be applied. For example, methods have been proposed to blend graph

construction with dimensionality reduction by building a graph and computing its embed-

ding simultaneously [103, 106]. These task-specific graph construction algorithms offer

improved graph quality at the cost of limited generality.

2.2.5 Multiple Manifold Discovery

In the preceding sections of this chapter, we have assumed that only one underlying

manifold exists that can explain the observed data concisely. In many practical applica-

tions, however, it can more accurate to assume that the data are generated by a mixture

of manifolds. In this regime, each point is assigned to exactly one manifold, though the

manifolds may overlap or intersect.

Multiple-manifold learning algorithms can be applied to a broader selection of settings,

but the increased flexibility results in a more difficult manifold discovery process. As a

result, some methods avoid explicitly building representations of the manifolds, instead

relying on low-rank optimization methods to disambiguate manifold intersections [59, 9].

As with traditional single-manifold discovery, methods for multiple manifold discovery

can be grouped by the assumptions they rely on, in decreasing order of required informa-

tion:

• The intrinsic dimension of each manifold is known: k-Manifolds [82].

• The maximum intrinsic dimension is known: Local and Structural Consistency [97],

mumCluster [96], and Spectral Multi-Manifold Clustering [98].

19

• Only the number of manifolds is known: k-Planes [10], Spectral Clustering [80, 71].

These methods label each input point according the manifold it lies on, but do not nec-

essarily build representations for each manifold. This reduces the multi-manifold discovery

problem to a set of traditional manifold discovery tasks, for which single-manifold graph

construction methods may be applied to each manifold independently.

20

CHAPTER 3

GRAPH QUALITY METRICS FOR APPROXIMATING
MANIFOLDS

3.1 Overview

In the manifold learning process outlined in Section 1.3, the goal is to produce the

best performance on the chosen manifold learning task. This requires careful selection of

algorithms and parameters for both manifold learning and manifold discovery.

Previous work has found that the methods used for manifold discovery are in many

cases more critical than the manifold learning tasks used in the next step. In his 2005 PhD

thesis on graph-based semi-supervised learning methods, Zhu found that starting with a

good graph is often more important than the choice of learning algorithm [114]. Similarly,

researchers have found that dimensionality reduction results are sensitive to the quality of

the graph representation used [3, 103].

Therefore, when evaluating graph construction algorithms for manifold discovery tasks,

we require some measure of how well a given graph approximates the true underlying

manifold structure. This graph quality score can be used to set optimal hyperparameters

for a graph construction algorithm, or to distinguish between competing algorithms.

Graph quality evaluations can be derived in several ways. This chapter explores three

approaches:

1. Comparing against known ground truth manifold structure (Section 3.2).

2. Evaluating the performance of a fixed manifold learning application (Section 3.3).

3. Examining graph-theoretic indicators of adherence to assumptions about the mani-

fold structure (Section 3.4).

21

The first contribution of this chapter is to introduce two task-independent measures

of graph quality, based on the rate of change of graph statistics as edges are added (Sec-

tion 3.5). The second contribution is a new method for incremental graph construction that

updates edges, geodesics, and associated quality measures on-line (Section 3.6). When

used in combination, these two contributions can accelerate and simplify the parameter

tuning process for the graph construction component of the manifold learning process.

3.2 Ground Truth Comparison

When the ground truth manifold is known prior to the manifold learning process, direct

methods are available for computing graph quality. These provide a convenient test bed for

analyzing graph construction methods, though their applications are limited to synthetic

datasets with explicitly defined structure. If the known manifold has special structure,

customized measures of graph quality are simple to create. In the general case, however,

we require a generic ground truth quality measure.

We propose a novel ground truth graph quality measure based on graph geodesics,

which measures the agreement between the known pairwise distances on the manifold and

pairwise distances of an embedding of the graph in a low-dimensional space:

‖Demb −DGT‖F (3.1)

where Demb is the normalized pairwise distance matrix computed in the embedded space,

DGT is the normalized pairwise distance matrix of the ground truth manifold coordinates,

and ‖·‖F is the Frobenius norm. We compute the embedding using the Isomap algorithm

[85] with an embedding dimension equal to the dimension of the ground truth coordinates.

This approach prioritizes the preservation of geodesic distances, measuring how well

the graph represents the true manifold in a global sense. Perturbations in local neighbor-

hoods will produce small differences, but edges that fail to follow the manifold will induce

22

Figure 3.1: Task-specific graph quality evaluation procedure. The same dataset (X) is used
to produce different manifold approximation graphs, using varying hyperparameters and/or
algorithms. Each graph is used as input to a manifold learning task with all other inputs
and parameters fixed, from which comparable scores can be obtained. These measures of
graph quality are limited in scope, however, as they remain tied to the specific task and
manifold learning algorithm chosen.

large changes to many geodesic paths and result in a large difference. Therefore, when

this quality measure is minimized, we are confident that the graph edges represent the true

manifold accurately.

3.3 Manifold Learning Task Evaluation

In real-world applications of manifold discovery methods, ground truth information

about the underlying manifold is not available. In these settings, graph quality can be

inferred by isolating the graph’s contribution to the performance of a subsequent manifold

learning task. The parameters of the manifold learning method are fixed, which allows

different manifold approximation graphs to be compared directly. Figure 3.1 illustrates this

process visually.

This technique is both straightforward and popular, with usage in embedding [3, 79],

clustering [65], and semi-supervised learning [60, 19] contexts.

23

3.4 Task-Independent Graph Quality

The main weakness of task-specific graph quality measures is their indirectness. The

quality of a graph is only inferred using task performance as a proxy, which introduces

additional noise and significant computational cost to the evaluation process.

To address this issue, we propose novel task-independent measures of graph quality,

based on graph-theoretic properties with strong correlations to the desired properties of

manifolds.

3.4.1 Graph-theoretic Properties

Graph theory is a well-established field that has produced a variety of ways to formally

characterize graphs, as introduced in Section 2.2.1. Several graph-theoretic properties are

useful in measuring how well a graph adheres to basic tenets of manifold structure, includ-

ing sparsity, connectivity, eccentricity, and centrality.

The sparsity of a graph is the ratio of actual edges to possible edges,

|E|
|V |2

. (3.2)

This can also be expressed in terms of a graph’s average unweighted degree, and relates

to the true manifold’s intrinsic dimension: as more edges connect vertices to each other, a

higher-dimensional space is required to preserve local linearity [48].

A connected component is a set of vertices with at least one path between all pairs in

the set [84]. All geodesics distances are finite within a connected component, and infinite

between disconnected components. As manifolds are continuous spaces, it follows that a

single manifold should be approximated by a single connected component.

The eccentricity of a vertex, e(v), is the maximum length among all geodesics between

v and any other vertex in the graph. The diameter of a graph is defined as

max
v∈V

e(v), (3.3)

24

representing the longest geodesic between v and all other vertices. These summaries of a

graph’s geodesic distances are useful because they are directly analogous to distances in

manifold space.

Betweenness centrality is a measure of how frequently a given vertex appears among

all graph geodesics [31], defined as

CB(v) =
∑

v∈V \{s,t}

σst(v)

σst
, (3.4)

where σst is the number of geodesics between vertices s and t, and σst(v) is the number

of those s − t shortest paths that include the vertex v [12]. Similar to how the diameter

summarizes graph eccentricity, it is often useful to consider the maximum betweenness

centrality,

max
v∈V

CB(v). (3.5)

Given vertices sampled uniformly from a smooth manifold, their betweenness centrality

should also follow a uniform distribution, indicating that all vertices are equally likely to

appear across all geodesics.

Each of the measures introduced above can provide insights about the degree to which

a graph might correspond to underlying manifold structure, and most graph construction

algorithms target at least one of these properties. For example, the k-nearest neighbors al-

gorithm exerts direct control over the resulting graph’s sparsity, but provides no guarantees

about its other properties.

3.4.2 Efficient Computation of Betweenness Centrality

Brandes’ 2001 algorithm [12] calculates betweenness centrality inO (|V ||E|+ |V |2 log|V |)

time and O (|V |+ |E|) space. Instead of using an all-pairs shortest-path algorithm, the fol-

lowing combinatorial shortest-path calculation is used,

σsv =
∑
u∈Psv

σsu, (3.6)

25

where P is a predecessor matrix where Psv is the vertex preceding v on the shortest path

from s to v. Dijkstra’s algorithm [24] is used to count shortest paths. Vertex dependencies

are accumulated recursively using the following relation:

δs•(v) =
∑

w:v∈Psw

σsv
σsw
· (1 = δs•(w)) . (3.7)

Accumulating δs• by traversing the points in order of non-increasing distance from s re-

quires O (|V ||E|) time, so betweenness centrality becomes

CB(v) =
∑

v∈V \{s}

δs•(v). (3.8)

In the common case of weighted neighborhood graphs with unique pairwise distances,

every pair of vertices is connected by a unique shortest path. This simplifies the between-

ness centrality in Equation 3.8 to

CB(v) =
∑

v∈V \{s,t}

σst(v), (3.9)

where σst(v) acts as an indicator function.

3.5 Differential Graph Quality

Each of the graph-theoretic properties described in Section 3.4 provides insight into the

structure of a graph as it relates to manifold approximation, but none are directly usable as

graph quality measures. To adapt them to this purpose, it is necessary to observe the rate

of change of these properties as edges are added to a graph.

This novel approach derives from the simple observation that constructing manifold-

approximation graphs can be viewed as an optimal stopping problem: Edges connecting

the most similar instances are very likely to lie along the manifold, so by adding edges

26

incrementally in the order of increasing length, it is only necessary to determine when to

stop. The ideal stopping point is that where any additional edges would cause a “short

circuit” by leaving the manifold to join disparate regions of manifold space, causing a

disproportionate update to the graph’s geodesics.

The diameter and maximum betweenness centrality are good indicators of this stopping

point because they summarize a graph’s geodesics between all vertices. The graph diam-

eter will decrease slowly as new edges are added, until a short circuit edge causes a large,

sudden drop. A short circuit edge will similarly cause a large increase in maximum be-

tweenness centrality, because the new edge becomes critical to a disproportionate number

of shortest paths.

Using this new concept of differential graph quality, manifold learning practitioners can

more confidently select hyperparameters for graph construction by observing the effect of

added edges without needing to evaluate on a specific learning task. This method assumes

initialization with a connected subgraph of the desired manifold-approximation graph, an

easily satisfiable precondition.

3.6 Incremental Graph Construction

The second contribution of this chapter is an algorithm for efficient incremental neigh-

bor graph construction and geodesic path computation. Both of the task-independent mea-

sures of graph quality discussed in Section 3.5 are derived from graph geodesics, which are

typically computed using an all-pairs shortest path algorithm. These algorithms are com-

putationally expensive, with O (|V |3) cost in the general case for weighted graphs [29].

This cost can be mitigated in the incremental setting, however, using efficient update rules

for added edges.

An incremental graph construction algorithm is defined by its ability to produce a new

graph from an existing state without re-computing from scratch. Given a graph generated

27

with hyperparameters θ, denoted G(θ), and new hyperparameters θ′ sufficiently close to θ,

these algorithms construct a new graph G(θ′) in an efficient manner.

3.6.1 The εk Graph

Recall the k-nearest and ε-close neighbor graph construction methods introduced in

Section 2.2.3.1. In addition to their simple implementation and easily understood hyperpa-

rameters, these algorithms are also easily adapted to incremental formulations.

The bulk of the computation of traditional neighbor graph construction is expended to

create an all-pairs distance matrix and sort its rows, a step that does not depend on the

value of either k or ε. Once this preliminary step is complete, constructing graphs with

different hyperparameters is computationally cheap. Thus, it is quite feasible to treat these

algorithms as parametrized graph generating functions, for which different hyperparameter

settings can be evaluated efficiently.

In this chapter, we use a variant of the ε-close graph construction algorithm that we

refer to as the εk graph: rather than accepting all edges with length less than ε, only the

smallest k such edges per vertex are added. Formally, this graph’s set of edges is the

intersection of the edge sets of a k-nearest neighbor graph and an ε-close neighbor graph.

This algorithm mitigates the common issue where ε-close graphs become over-dense by

enforcing a hard limit on the degree of each vertex, while still affording the flexibility of

the real-valued ε parameter. This allows the εk graph to handle the common problem of

non-uniform sampling from the manifold.

The ε-close algorithm always produces an undirected graph, but the addition of the

k constraint introduces some asymmetry. To simplify our analysis, we symmetrize the

resulting adjacency matrix using Equation 2.3.

3.6.2 Incremental Geodesics Update

The problem of incrementally updating graph geodesics has been well-studied in the

graph theory community, typically for the development of dynamic graphs that allow up-

28

date, removal, and re-weighting operations [23, 22]. In this general context, geodesic path

computation time is reduced to O
(
|V |2 log3|V |

)
for each added edge. Other efforts have

focused solely on edge addition, but only in the case of integer-weighted acyclic graphs

[2]. For our application, however, a simpler update is possible with improved performance

compared to the fully-dynamic update.

This new incremental update appears in Algorithm 1. Given a new edge (s, t) with

weight w, the algorithm updates every path that can become shorter using this new edge.

Algorithm 1 Incremental Geodesics Update (INCRUPDATE)
Input: Adjacency matrix, W

Geodesic distance matrix, D
Predecessor matrix, P
A new weighted edge, (s, t, w)

for 1 ≤ i ≤ |V | do
for 1 ≤ j ≤ |V | do
d← Dis + w +Dtj

if d < Dij then
Dij, Dji ← d
Pij ← s if t = j else Ptj
Pji ← t if i = s else Psi

end if
end for

end for
Wst ← w

3.6.2.1 Theoretical Analysis

Algorithm 1 runs in O (|V |2) time and requires constant memory to process each new

edge, as D and P are updated in-place. In contrast, a full re-computation of the geodesics

would incur a O (|V |3) cost.

In the incremental setting, it is typical that |Ek| � |V |, where |Ek| is the number of

edges added in update k. In cases where |Ek| ≥ |V |, however, the full geodesic recalcula-

tion may be used for efficiency.

29

The correctness of this update is derived from the Bellman criterion, stated as Lemma

1 in Brandes [12], adapted for edges: if an edge (s, t) with weight w lies on a shortest path

i→ j, then

Dij = Dis + w +Dtj (3.10)

Lemma 3.6.1. The incremental update (Algorithm 1) preserves the invariant that Dij is

the length of the shortest path between vertices i and j.

Proof. Assume that Dij contains the length of the shortest path between i and j not includ-

ing the new edge est.

Given this new edge est with length w, there is a new shortest path between i and j

including est if the length of either path i-s-t-j or i-t-s-j is shorter than the current shortest

i-j path length. That is, it must satisfy either

Dis + w +Dtj < Dij (3.11)

or

Dit + w +Dsj < Dji. (3.12)

The incremental update considers each undirected i− j path twice, checking both con-

ditions 3.11 and 3.12. If a new shortest path is found using est in either consideration, both

entries Dij and Dji are updated in-place.

As the algorithm runs, some entries ofD will necessarily be larger than their true short-

est path distance before they are updated, which can cause one of the above conditions to

fail when considering an improved path i− j:

1. One or both ofDis andDtj in condition 3.11 is also improved by est and has not been

updated yet. Thus, the improved path is i-t-s-j so Dit and Dsj in condition 3.12 have

not improved.

30

2. One or both ofDit andDsj in condition 3.12 is also improved by est and has not been

updated yet. Thus, the improved path is i-s-t-j so Dis and Dtj in condition 3.12 have

not improved.

Therefore, at least one of conditions 3.11 and 3.12 must always be true for an improved

i− j path, regardless of the order in which the entries of D are updated.

Lemma 3.6.2. The incremental update (Algorithm 1) correctly updates Pij to be the pre-

decessor vertex to j in the shortest path from i to j.

Proof. Assume P is correctly constructed to contain the predecessor vertex to j in the

shortest path from i to j at position Pij . The algorithm will update P only if a shorter path

is found by introducing a new undirected edge est with weight w.

Let d be the path length from i to j going through est, d = Dis + w +Dtj

Consider the following cases:

• If d ≥ Dij , the new path is not shorter and no update is performed.

• If t = j, est directly connects s to j, so Pij ← s.

• If i = s, est directly connects i to t, so Pji ← t.

• If t 6= j, the shortest path from i to j is given by the shortest path from i to s, then

edge est, then the shortest path from t to j, hence Pij ← Ptj .

• If i 6= s, the shortest path from j to i is given by the shortest path from j to t, then

est, then the shortest path from s to i, hence Pji ← Psi.

3.6.3 Betweenness Centrality Update

The incremental geodesics update provides the required information for computing the

graph diameter using Equation 3.3, but an additional step is required to compute between-

ness centrality (Equation 3.5).

31

This process is described by Algorithm 2, which computes a simplified betweenness

centrality metric given by Equation 3.9.

Algorithm 2 Simplified Betweenness Centrality (SIMPLEBC)

Input: Graph geodesics, (D,P)
Output: Betweenness centrality vector, B

Bi ← 0 for 1 ≤ i ≤ |V |
for 1 ≤ s ≤ |V | do
ci ← 0 for 1 ≤ i ≤ |V |
T ← V \ {s}, in desc. Ds order
for t ∈ T do
v ← Pst
if v 6= s then
cv ← cv + ct + 1
Bt ← Bt + ct

end if
end for

end for

3.6.3.1 Theoretical Analysis

Computing the incremental update for betweenness centrality using Algorithm 2 re-

quires O (|V |2 log|V |) time using O (|V |) memory.

For each vertex s in the graph, we consider all other vertices t in order of decreasing

geodesic distance, Dst. This ordering requires a sort, incurring a cost of O (|V | log|V |) per

vertex. We increment an intermediate counter, c, for each vertex along the s → t path,

updating the betweenness Bt after considering all paths ending at t.

The algorithm is closely derived from Brandes’ general form described in Section 3.4.2,

but avoids costly geodesic re-computation while exploiting the lack of multiple equal-

length shortest paths.

3.6.4 Combined Incremental Update

Algorithm 3 defines the combined procedure for incremental neighbor graph construc-

tion and quality measurement. The algorithm begins with traditional neighbor graph con-

32

struction (NEIGHBORGRAPH) and geodesic computation (ALLPAIRSSHORTESTPATH) steps,

given an input X , a distance metric δ, and initial graph construction parameters θ0.

Then, for each incremental update with new parameters θt, the graph construction al-

gorithm provides a set of new edges (NEWEDGES), using an incremental formulation as

introduced in Section 3.6. These new edges are used to update geodesics with Algorithm 1,

after which betweenness centrality is recomputed using Algorithm 2. The algorithm then

emits the updated graph as well as the maximum diameter and maximum betweenness

centrality quality measures.

These quality measures are used to aid the practitioner in choosing good graph con-

struction hyperparameters, but do not permit a fully automated hyperparameter selection

algorithm as presented. Future work to produce a robust stopping criterion based on these

measures will require an intelligent combination of quality signals.

Algorithm 3 Incremental Geodesics
Input: Input data, X

Distance metric, δ
Incremental neighbor graph algorithm with a hyperparameter schedule, [θ0 . . . θn]

Aij ← δ (Xi, Xj) for 1 ≤ i, j ≤ |X|
W ← NEIGHBORGRAPH (A, θ0)
D,P ← ALLPAIRSSHORTESTPATH (W)
for θt ∈ [θ1 . . . θn] do

for e ∈ NEWEDGES (A, θt−1, θt) do
W,D,P ← INCRUPDATE (W,D,P, e)

end for
BC ← SIMPLEBC (D,P)
Emit graph W
Emit quality measures max(D), max (BC)

end for

3.6.4.1 Theoretical Analysis

The total running time for Algorithm 3 depends on the average number of added edges

per update, m, as well as the number of total updates performed, n. The cost of computing

new edges to add is typically dominated by the cost of the incremental geodesic update, so

33

we ignore it here. If m ≤ log|V |, the runtime cost is dictated by betweenness computa-

tion as O(n|V |2 log|V |). Otherwise, the cost is dominated by edge updates and becomes

O(n|V |3). Thus, this procedure is most advantageous when evaluating a graph at many

intermediate stages of construction, with few added edges relative to the size of the graph.

3.7 Experimental Results

To demonstrate the effectiveness of the proposed incremental geodesic algorithm and

its associated quality measures, we apply it to both real and synthetic data.

Synthetic datasets provide access to both manifold and original coordinates, which al-

lows for a direct evaluation against the ground truth error metric described in Equation 3.1.

3.7.1 Ground Truth Evaluation: Swiss Roll

The first synthetic dataset is a Swiss roll, using original coordinates S and ground truth

coordinates M :
S = [φ sinφ;φ cosφ;w]

M = [φ;w]

φ = Uniform (0.5π, 3.75π)

w = Uniform (0, 1)

Figure 3.2 shows the relationship between the ground truth quality and the proposed

quality measures on εk neighbor graphs constructed from a 500-point Swiss roll with

k = 14 and increasing ε. A short-circuit edge introduced after ε = 0.305 causes a large

increase in ground truth error, clearly visible in the form of large spikes in the finite differ-

ences of the two proposed graph quality measures. Figure 3.3a illustrates this short-circuit

edge, which leaves the surface of the manifold to connect points on opposing ends of the

roll. Figure 3.3b demonstrates the benefit of using the proposed incremental graph update

versus the traditional method of recomputing geodesics after each new set of edges is added

for the Swiss roll experiment. As expected, computing from scratch has high fixed costs

34

(a) Ground truth graph quality using
the formulation in Equation 3.1.

(b) Task-independent graph quality measures.

Figure 3.2: Graph quality measures over varying ε for a Swiss Roll. The solid blue lines
show quality values changing with increasing ε, and the dashed red lines show the one-step
change in quality between subsequent parameter settings.

per update, because no information from previous iterations is used. In contrast, the incre-

mental approach scales with the number of added edges per update, resulting in significant

time savings over the series of updates.

3.7.2 Ground Truth Evaluation: Isomap Faces

The second synthetic experiment involves more realistic data while maintaining access

to ground truth information, using the Isomap Faces dataset [85]. The dataset contains 698

synthetically generated face images, for which the underlying three-dimensional manifold

coordinates are known exactly: lighting angle, vertical face angle, and horizontal face an-

gle. The 64 × 64 gray-scale images are preprocessed by flattening into 4096-dimensional

vectors, then compared using the Euclidean distance metric. In this experiment, the k-

nearest neighbors algorithm was used to generate edges for each incremental update.

Figure 3.4 indicates a large drop in manifold approximation fidelity between k = 8

and k = 9. The original space is difficult to visualize due to its high dimensionality, but

both the ground truth error and proposed graph quality measures indicate that the new edges

35

(a) Swiss roll neighbor graphs before (left) and after (right) the change in quality detected in Fig-
ure 3.2.

(b) Elapsed time for initialization and incremental updates during the Swiss roll experiment, shown
for incremental updates (blue) vs full re-computation (red). Bars show the number of edges added per
update (right axis).

Figure 3.3: Results of the synthetic Swiss roll experiment.

36

(a) Ground truth graph quality
using the formulation in Equa-
tion 3.1.

(b) Task-independent graph quality measures.

Figure 3.4: Graph quality measures varying k on Isomap Faces. Lines as described in
Figure 3.2.

introduced at k = 9 are responsible for change. Furthermore, our result mirrors the findings

of Samko [78], while avoiding costly embedding calculations at every incremental update.

This second synthetic experiment demonstrates the utility of the proposed quality mea-

sures, as they allow the manifold learning practitioner to confidently choose a good setting

for k without graph visualization or evaluation of a specific learning task.

Thus far, our experiments have been limited to synthetic datasets in which ground

truth manifold coordinates are available. To demonstrate the effectiveness of our proposed

method on more general problems, we apply it to two graph-based semi-supervised learn-

ing tasks using non-synthetic datasets.

3.7.3 Task-Based Evaluation: Image Classification

For the classification task, we apply the Local and Global Consistency (LGC) algo-

rithm [111] to an image dataset. This first test used all 1440 images in 20 object classes

from the COIL-20 dataset [70], representing each 128× 128 gray-scale image as a 16384-

dimensional vector and computing distances with the Euclidean distance metric. Graphs

were generated incrementally using the εk algorithm with k = 20 and varying ε. For each

generated graph, the LGC algorithm was run 10 times with a randomly-selected 50% of the

37

Figure 3.5: COIL-20 results over varying ε. At left, the change in the betweenness quality
measure (red dashes) spikes after ε = 0.7, corresponding to the highest average classifica-
tion accuracy (right).

true class labels obscured each time, and its accuracy was computed as the average of each

run’s adjusted Rand Index [44].

The graph diameter quality measure was not used in this experiment, because the di-

ameter of a graph with more than one connected component is infinite. For multi-class

classification problems like this one, it is often desirable to produce graphs with many

connected components, rendering the diameter quality measure uninformative.

The results in Figure 3.5 show that the betweenness graph quality measure can identify

the optimal setting for ε, with a large spike in its finite difference corresponding to the point

at which accuracy begins to degrade in the classification task.

3.7.4 Task-Based Evaluation: Binaural Localization

For the regression task, we used 3, 600 binaural recordings from the CAMIL dataset

[20] recorded on a rotating platform with 360 degrees of motion. Our task is to predict the

angle of the microphone with respect to a fixed audio source emitting white noise, given the

full set of binaural audio samples and a subset of the true angles. Each one-second binaural

38

Figure 3.6: CAMIL regression results over varying ε. At left, the change in the both quality
measures (red dashes) spike after ε = 0.59, corresponding to the smallest regression error
(right).

recording consists of two audio channels, which we preprocessed separately by converting

to a standard spectrogram representation. We then concatenated each pair of spectrograms

together to form 55212-dimensional vectors. The associated pan angles were preprocessed

by converting each angle, θ, to a linearized two-dimensional representation, (sin θ, cos θ).

Graphs were generated incrementally with the εk algorithm with k = 20 and varying ε,

using cosine distance to compare pairs of preprocessed vectors.

Each generated graph was evaluated by computing its diameter and maximum between-

ness centrality, as well as with a simple semi-supervised learning task. In this task, un-

known pan angles were predicted using linear regression on the graph’s three-dimensional

Isomap embedding.

The results in Figure 3.6 indicate that both betweenness and diameter quality measures

are effective in locating the optimal setting for ε. Both measures show distinct spikes at the

same value of ε, which corresponds to the graph that minimizes the error of the regression

task.

3.8 Discussion

This chapter introduced the concept of differential graph quality, a task-independent

method for analyzing the accuracy with which a graph conforms to the underlying mani-

39

fold. While task-specific graph quality measures are directly related to the end goal of the

manifold learning process, they are often expensive to compute and are rarely used for au-

tomatic parameter tuning. The new task-independent measures of graph quality are weakly

coupled to the task of interest, yet still sufficient for tuning the free parameters of graph

construction algorithms.

The second contribution of this chapter is a new method for efficient incremental neigh-

bor graph construction and geodesic path computation. This algorithm mitigates the hyper-

parameter tuning problem by providing a low-cost mechanism for examining the proposed

graph quality measures during the process of graph construction. The incremental up-

date approach allows a manifold learning practitioner to make informed decisions about

useful hyperparameter settings, offering concise information about how the graph’s global

geodesics change as edges are added without requiring expensive visualization or embed-

ding steps.

In tandem, these contributions expedite the process of hyperparameter tuning, saving

valuable time and producing graphs that result in desirable outcomes when used for mani-

fold learning applications.

40

CHAPTER 4

MANIFOLD SPANNING GRAPHS

4.1 Motivation

Much of the manifold learning literature assumes that a simple k-nearest or ε-close

neighbors graph will accurately model the topology of the underlying manifold of interest,

and little attention is given to the process by which a manifold-approximation graph is built.

In practice, these classical methods require expert tuning to produce reasonable results,

and the efficacy of learning on the graph is strongly tied to the parameters of the graph

construction algorithm used.

In this chapter, Section 4.2 demonstrates the hyperparameter sensitivity of traditional

graph construction methods. Then, Section 4.3 introduces a new algorithm for unsuper-

vised graph construction that reduces this parameter tuning burden.

4.2 Hyperparameter Sensitivity

To demonstrate the parameter sensitivity of classical graph construction methods, we

consider the simple “swiss roll” dataset, as shown in Figure 1.2. Three-dimensional points

on the roll are randomly distributed along the z-axis, while the x and y coordinates are

parameterized by r, the distance from the origin, and θ, the angle created with the x-axis:

x = r sin θ (4.1)

y = r cos θ

z = Uniform (0, 1) .

41

Under this parameterization, the optimal two-dimensional embedding is the θ–z plane.

This information about the true underlying manifold means that we can apply a specialized

ground truth graph quality measure, as introduced in Section 3.2. The swiss roll’s nonlin-

earity is limited to the manifold coordinate θ, so we use a simple method that marks an

edge as incorrect if it connects vertices p and q where |θp − θq| > ε. For the following

demonstration we used the threshold ε = 0.1. This enables an interpretable measure of

overall graph quality, the edge error ratio, defined as the ratio of incorrect edges to total

edges in the graph.

We calculated the edge error ratio for many graphs produced by the k-nearest and ε-

close neighbor algorithms, sampling from a set of reasonable hyperparameters for each.

The results in Figure 4.1 show that, for the swiss roll dataset we considered, there is no

value of k which produces a graph with both a low error ratio and a single connected

component. This replicates previous results demonstrating that simple k-nearest neighbor

algorithms are sensitive to noise [3]. Some values of ε avoid introducing incorrect edges

while forming one connected component, but these parameters also tend to produce many

more edges than desired, over-connecting the graph and losing the benefits of sparsity.

The ε-close neighbors algorithm also exhibits instability by producing a sudden increase in

error ratio after a certain ideal threshold is exceeded. This threshold value of ε is typically

unknown to practicioners, and thus the algorithm requires expert understanding to tune

effectively.

4.3 The Algorithm

The Manifold Spanning Graph is produced using a novel, bottom-up algorithm. The

method is based on the parameter-free forest-joining framework introduced by Kruskal’s

minimum spanning tree algorithm [51], augmented with structural information captured

by locally linear subspace fitting methods [41, 47, 88]. This combined approach constructs

42

Figure 4.1: Sensitivity of k-nearest (left) and ε-close (right) algorithms. The dashed vertical
lines represent the first hyperparameter value producing one connected component.

43

graphs that respect both inter-vertex distances and edge-to-manifold angles, without requir-

ing the use of expert-tuned hyperparameters.

Inputs are X , an N ×D matrix of D-dimensional points, d, an estimate of the intrinsic

dimension of the underlying manifold, and m, the desired number of connected compo-

nents in the final graph.

The high-level procedure can be divided into three steps:

1. (Section 4.3.1) DivideX into many small connected components of size at least d+1,

then compute a d-dimensional linear subspace for each component via PCA.

2. (Section 4.3.2) Add edges between components that minimize both Euclidean dis-

tance and the largest angle created by the new edge and the two subspaces it joins.

Continue adding edges until m connected components remain.

3. (Section 4.3.3) Provide additional structure to the graph with new edges, using the

learned subspaces from step 1 as well as distance and angle thresholds learned in step

2.

The following sections examine each stage in detail, and Algorithm 4 describes the entire

procedure.

4.3.1 Connectivity Forest and Subspace Construction

For a manifold with intrinsic dimension d, a locally linear patch can be accurately

described with at least d + 1 points, assuming general position [101]. Therefore, the first

task is to partition the input data into a connectivity forest, defined as connected groups of

at least d + 1 points comprising many small, locally linear neighborhoods. This does not

imply that each vertex in the graph will have degree d, because each neighborhood need

not form a complete graph.

Instead, we begin by connecting each point with its nearest neighbor in input space.

This relies on the assumption that the edge formed between a point and its first nearest

44

neighbor in input space does not leave the underlying manifold. In practice this is a fairly

weak assumption, given reasonably densely sampled input data. This assumption is also

required for k-nearest neighbor graph construction, as well as ε-close neighbors in the case

where m = 1.

Once the first-nearest neighbors are connected, we can compute the set of connected

components C(0) [84]. For any components Ci ∈ C(0) where |Ci| < d+1, additional edges

are added by merging Ci with Cj , where

Cj = argmin
j 6=i

min
p∈Ci,q∈Cj

‖p− q‖2 . (4.2)

Again, we assume that pairs of edges close in input space are also close in the manifold’s

geodesic space.

When all components in C(0) satisfy the cardinality condition in Equation 4.2, we com-

pute the set of linear subspaces:

P =
{

PCAd (Ci) | Ci ∈ C(0)
}

(4.3)

Each Pi is represented by the first d principal components [46] of the vertices inCi. The

procedure at this stage is reminiscent of a Local PCA algorithm [47], albeit with a different

selection criterion for the sets of points Ci. The primary difference, however, is that the

subspaces P are not the final representation of the manifold, but only an intermediate set

of constraints on edge connections. In this way, P may be viewed as an implicit set of

charts [11, 57], with the inter-chart connections yet undefined. This use of principal angles

between local subspaces has also been applied as part of the SAFFRON algorithm [34],

which constructs a graph targeting a given intrinsic dimension while attempting to avoid

the common failure case of “short circuit” edges.

45

Figure 4.2: Component joining. Dashed lines indicate the Pi subspace of each component.
Dotted lines show two possible edges that satisfy Equation 4.4. Only the A-B edge will be
added because the A-C edge does not satisfy Equation 4.5.

4.3.2 Component Joining

Given a desired number of connected components m, we continue to add edges until∣∣C(t)
∣∣ = m. For this task, we consider only edges between “adjacent” connected com-

ponents, that is, (Ci, Cj) pairs satisfying Equation 4.2. In addition to this requirement, a

candidate edge (p ∈ Ci, q ∈ Cj) must satisfy:

‖ē‖2 ≤ εdist (4.4)

max (d (Pi, ē) , d (Pj, ē)) ≤ εangle (4.5)

where ē ≡ p − q. In Equation 4.5, d (·, ·) is the projection F-norm [37], measuring the

angles between the edge vector and each adjoining subspace. Figure 4.2 illustrates this

process.

46

With appropriate threshold values of εdist and εangle, only edges that lie on the manifold

will be added. Rather than assigning these thresholds as hyperparameters of the algorithm,

we use an incremental step-up scheme:

1. Initialize εdist and εangle to zero.

2. Set εdist to the minimum inter-component distance, then set εangle to the minimum

angle produced by the corresponding edge.

3. Add any edges that now meet the criteria in constraints 4.4 and 4.5.

4. Recalculate strongly connected components C(t+1), and unless
∣∣C(t+1)

∣∣ = m, return

to step 2.

If desired, an additional constraint on the final degree of each vertex may be imposed to

avoid edge overcrowding.

As edges are added and the cardinality of the remaining components in C(t) increases,

each Ci is likely to lose its linearity property. For this reason, we refrain from recomputing

PCA subspaces as in Equation 4.3, but instead maintain a mapping for elements from each

C(t) to their original components in C(0), and thus P .

4.3.3 Edge Addition Post-processing

One limitation of the proposed algorithm is that only edges between “adjacent” con-

nected components are added, which may result in a lack of edges that convey important

structural information, even after the desired number of connected components is reached.

Figure 4.3 illustrates this issue.

To mitigate these effects, we can run one iteration of post-processing, applying the same

εdist and εangle constraints to filter candidate edges, with one additional constraint:

|ShortestPath (p, q)| ≥ h (4.6)

47

Figure 4.3: Limitations of only connecting adjacent components. Components A and C
should connect along the dotted edge, but no edges will be added between them after they
merge via the addition of the dashed A-B and B-C edges.

where ShortestPath (p, q) is the number of edges that a potential (p, q) edge would short-

circuit. Thus, the parameter h acts as a lower bound on geodesic distance. This helps

to ensure that only those edges that will add significant topological structure to the graph

are added, because edges with low geodesic distance are already well-approximated by the

existing graph. Setting h ≡ d + 1 is a reasonable default, so this extra parameter requires

no expert tuning.

4.4 Theoretical Analysis

If no estimate for d is available a priori, the algorithm can infer a reasonable d from

the explained variance of each PCA subspace, using Isomap’s “elbow” heuristic on a local

48

Algorithm 4 The Manifold Spanning Graph Algorithm (MSG)

Input: Data matrix, X ∈ RN×D

Estimated intrinsic dimension, d
Number of desired components, m

Output: A graph with m connected components.

εdist ← 0
εangle ← 0
C(0) ← ConnectedComponents (1-NN(X))
Merge elements of C(0) using Equation 4.2 until |Ci| ≥ d+ 1∀Ci ∈ C(0).
Compute subspaces using Equation 4.3.
while |C(t)| ≤ m do
εdist ← minp∈Ci,q∈Cj

‖p− q‖2
εangle ← smallest principal angle made by the shortest p− q edge.
Add candidate edges satisfying Equations 4.2, 4.4, and 4.5.
Re-compute connected components to form C(t+1).

end while
Add final edges satisfying Equations 4.4, 4.5, and 4.6.

scale. Alternatively, the intrinsic dimension of the underlying manifold can be estimated

using any of several existing techniques [48, 56]. Thus, the d parameter can be considered

optional.

The only other parameter is the number of desired connected components,m. This, too,

is an optional setting, because m only determines the algorithm’s stopping condition. In

cases where no good value of m is known a priori, a sequence of graphs may be produced

by setting m ≡ 1 and outputting the partial graph at each iteration.

Because the Manifold Spanning Graph algorithm is iterative, it is necessary to ensure

that the convergence condition |C(t+1)| = m is met for some value of t. This convergence

property is proved by examining the four possible cases:

1. At least one edge satisfies both constraints 4.4 and 4.5. All candidate edges connect

disjoint connected components, so when the edge is added it merges at least two

components and decreases
∣∣C(t+1)

∣∣ by at least one.

49

2. No edge satisfies constraint 4.4, but at least one edge satisfies constraint 4.5. εdist is

increased to the length of the minimum-angle edge satisfying constraint 4.5, and the

first condition now applies.

3. No edge satisfies constraint 4.5, but at least one edge satisfies constraint 4.4. εangle is

increased to the angle of the minimum-length edge satisfying constraint 4.4, and the

first condition now applies.

4. No edge satisfies either constraint 4.4 or 4.5. εdist is increased to the minimum length

of all candidate edges, εangle is increased to the chosen edge’s angle, and the first

condition now applies.

Thus, we prove that as limt→∞|C(t)| → 1, the MSG algorithm converges in all cases where

m ≤ |C(0)|.

4.5 Experimental Results

4.5.1 Parametric Swiss Roll

By contrast, the Manifold Spanning Graph algorithm presented in this chapter produces

a connected graph with minimal incorrect edges, without requiring any hyperparameter

tuning. Figure 4.4 illustrates the effect of incorrect edges on an Isomap embedding of the

swiss roll data.

To evaluate the average performance of each algorithm, the number of incorrect edges

and total edges were calculated over 200 randomly-generated swiss rolls following Equa-

tion 4.1. Hyperparameters k, ε, and b were optimized to produce one connected compo-

nent for the first swiss roll, then the same parameters were used for all future examples.

No hyperparameter tuning is required for the Manifold Spanning Graph algorithm. Fig-

ure 4.5 demonstrates that the MSG algorithm consistently produces near-zero incorrect

edges, while still generating a reasonable number of total edges.

50

(a) k-nearest (b) ε-close

(c) b-matching (d) Manifold Spanning Graph

Figure 4.4: Side view of Swiss Roll graphs and their resulting Isomap embeddings. For
the algorithms that require hyperparameter tuning, the parameters k, ε, and b were set
by choosing the smallest value that produced a single connected component. Sub-figures
(a) and (c) show the disproportionate effect that short-circuit edges have on the learned
embedding. We chose not to add edges after reaching one connected component to provide
a common comparison point for each algorithm, and to underscore the problem of avoiding
short-circuit edges even in the most conservative setting. As a result, the graphs producing
sub-figures (b) and (d) are too sparse to produce rectangular Isomap embeddings. The
Manifold Spanning Graph algorithm addresses this sparsity problem in Section 4.3.3.

51

(a) Incorrect edges (b) Total edges

Figure 4.5: Summarized performance over 200 random swiss rolls, each with 500 points.
The MSG algorithm produces graphs with almost zero incorrect edges, forming a single
connected component with a modest number of total edges. The ε-close algorithm pro-
duces few bad edges, but tends to overconnect the graph. The k-nearest and b-matching
algorithms produce a reasonable number of total edges, but many of these are incorrect.
The high variance of these error rates also indicates sensitivity to noise.

52

4.5.2 MNIST digit clustering

Real world data often make evaluating graph quality difficult, as the optimal low-

dimensional embedding is typically unknown. However, the MNIST dataset test set of

10, 000 handwritten digits [53] allows for a simple “edge error” metric: the ratio of between-

class to within-class edges. Each 28 × 28 gray-scale image is represented as a 784-

dimensional pixel vector. This test demonstrates the Manifold Spanning Graph algorithm’s

ability to scale up to high-dimensional data, as well as exercising the ability to specify m,

the number of desired connected components.

Figure 4.6 demonstrates the applicability of the MSG algorithm on high-dimensional

data sets, again revealing a lower error rate without hyperparameter tuning. The k and b

values were tuned by choosing the first k and b such that the number of connected com-

ponents in the resulting graph was ≤ 10, the number of classes in the corpus. The same

hyperparameter tuning with the ε-close algorithm found no value of ε producing ≤ 10

connected components with an edge error ratio under 50%, so we omit further results here.

As a final evaluation of the created graphs from Figure 4.6, a simple digit classification

task was performed. Labeled exampled were generated by selecting 30 images at random

from the 10, 000-image corpus without replacement, discarding selections that did not con-

tain at least one example image for each digit. For each of the k-nearest, b-matching, and

Manifold Spanning graphs, a simple label propagation algorithm [113] was used to classify

the remaining 9970 images. The results in Table 4.1 show that the MSG algorithm produces

high-quality graphs without parameter tuning.

4.6 Discussion

This chapter presented a novel algorithm for graph construction based on a bottom-up

approach in the style of Kruskal’s minimum spanning tree algorithm. The proposed method

demonstrates improved accuracy over traditional graph construction algorithms without re-

quiring any expert-tuned hyperparameters. The learned graphs approximate the true mani-

53

(a) k-nearest: 3256/45426 ≈ 7.2% bad edges
(k = 3)

(b) b-matching: 1989/30000 ≈ 6.6% bad edges
(b = 3)

(c) MSG: 1118/23042 ≈ 4.9% bad edges (m =
10, d = 2)

Figure 4.6: MNIST neighbor graphs, each represented as a 10, 000 × 10, 000 binary adja-
cency matrix, sorted by digit label. Correct edges lie in the block-diagonal region, which
corresponds to edges between images of the same digit. Incorrect edges are counted to
compute each graph’s edge error ratio.

54

0 1 2 3 4 5 6 7 8 9
0 913 0 1 0 0 47 16 2 1 0
1 0 367 20 1 0 3 0 737 7 0
2 25 1 936 5 3 1 3 49 9 0
3 7 5 35 324 2 552 9 17 41 18
4 0 9 1 0 936 1 6 18 1 10
5 19 14 37 0 9 707 6 3 95 2
6 21 2 1 0 4 96 830 3 1 0
7 0 7 7 0 4 0 0 999 1 10
8 12 5 12 4 28 135 5 22 748 3
9 5 12 5 1 477 8 5 145 5 346

(a) k-nearest: 7106/10000 correct

0 1 2 3 4 5 6 7 8 9
0 811 0 23 0 11 12 48 31 8 36
1 9 591 12 3 86 0 0 309 118 7
2 35 0 740 23 31 0 8 115 63 17
3 154 3 40 334 3 252 17 22 48 137
4 7 0 7 0 823 0 23 94 1 27
5 54 0 12 57 22 535 19 15 145 33
6 72 1 8 6 0 123 719 12 14 3
7 6 0 29 25 52 1 1 900 12 2
8 15 1 33 22 11 63 0 26 770 33
9 6 1 5 6 398 4 3 370 13 203

(b) b-matching: 6426/10000 correct

0 1 2 3 4 5 6 7 8 9
0 968 0 0 0 0 3 6 2 1 0
1 0 737 3 23 0 0 3 369 0 0
2 39 177 709 5 2 4 7 83 6 0
3 11 5 8 752 6 31 0 14 134 49
4 5 18 2 0 622 2 3 5 1 324
5 10 5 0 44 20 744 39 12 14 4
6 23 7 0 0 1 0 923 2 2 0
7 6 25 3 2 39 8 0 935 0 10
8 77 14 4 64 19 50 3 27 703 13
9 6 1 3 10 622 3 1 33 15 315

(c) MSG: 7408/10000 correct

Table 4.1: Confusion matrices from the MNIST digit classification task. True digit labels
are on the rows, with predicted labels along the columns. For each true label, the predicted
label with the largest count is bold. The classifier using the MSG-generated graph achieved
the best overall accuracy.

55

fold structure of the data, relying only on the smoothness and local linearity properties of

Riemannian manifolds.

56

CHAPTER 5

MUTUAL NEIGHBORS GRAPH CONSTRUCTION

This chapter presents a novel graph construction algorithm that incrementally grows

a high-quality manifold approximation graph, considering mutual neighbor connectivity

and local edge sparsity in addition to a pairwise similarity metric. This method leverages

common properties of manifold structures to decrease hyperparameter sensitivity, while

outperforming existing graph construction algorithms on a variety of datasets and manifold

learning tasks.

5.1 Background

In this chapter, we only consider cases in which the data lie on a single manifold.

Therefore, we require the manifold approximation graph to have exactly one connected

component, which guarantees the existence of some geodesic path between any two ver-

tices.

A minimum spanning tree (MST) of a set of points X ∈ RN×p with a given pairwise

distance metric, d, is an undirected, acyclic graph with one connected component that

satisfies

argmin
E

∑
eij∈E

d (Xi, Xj)

[51].

The MST is typically insufficient for manifold learning applications, however, because

its sparse edge set fails to represent true manifold geodesic distances. Instead, the MST

is better viewed as a “backbone” subgraph of the desired manifold approximation graph

that requires extra densification to accurately represent the true manifold structure. To this

57

end, ensemble methods based on combinations of MSTs have been proposed, including the

disjoint MST and perturbed MST graphs [105].

5.1.1 Short Circuit Pruning with Mutual Neighbors

In contrast to the problem of densifying a sparse graph backbone, graph construction

can also be approached by pruning short-circuit edges from an overly dense initial graph

[54, 35].

The Isograph algorithm is an instance of this approach that removes edges from the

initial graph if they connect vertices that do not share a mutual neighbor [36]. If some

vertex k satisfies eik ∈ E and ekj ∈ E, then k is a mutual neighbor of edge eij . This

algorithm relies on the assertion that a candidate edge with a mutual neighbor is likely to

lie close to the true manifold surface.

Variants of this concept have been proposed to enable a fast k-nearest neighbor graph

construction algorithm [25], prioritizing edges with mutual neighbors in a partial neighbor

graph to minimize expensive pairwise similarity measure computations.

5.2 Mutual Neighbors Graph Construction

This chapter introduces a novel graph construction algorithm which iteratively adds

edges to a sparse initial backbone graph, favoring edges with existing mutual neighbor

connections. This Mutual Neighbors Graph algorithm (MNG) addresses the problem in

which we are given some subgraph (S) of an unknown, ideal manifold approximation graph

(G). In this setting, our graph construction task consists of finding and adding the edges

from G that are missing in S.

This task can be accomplished with an incremental greedy algorithm. For each iteration

t and subgraph St, starting with the given backbone graph S0, rank candidate edges by their

likelihood to be found in G. Then select the most likely edge(s) to add to St, producing the

58

next iteration’s subgraph, St+1. Continue this process until no more viable candidate edges

remain.

While any appropriate graph could be used for S0, we suggest the use of a minimum

spanning tree or a small-d disjoint MST. These graphs are guaranteed to have a single

connected component, with minimal-weight edges that are unlikely to form short circuit

connections across the manifold.

5.2.1 Candidate Edge Ranking

As we do not have access to G directly, some measure of edge fitness is required to

rank candidate edges. This fitness measure should output a score for a given edge, eij ,

based on information derived from the current subgraph, St. We derive this score from two

properties:

1. Unweighted geodesic distance. As described in the previous section, an edge with at

least one mutual neighbor in a subgraph ofG is likely to also exist inG. Generalizing

this property, the unweighted geodesic distance in St between a candidate edge’s

endpoint vertices is inversely proportional to the fitness of the edge.

2. Average degree. For an edge eij , the average unweighted degree is the arithmetic

mean of the unweighted degrees of both endpoint vertices:

d̄ij =
d (i) + d (j)

2

A high average degree indicates that the neighborhoods joined by eij are already

densely connected, limiting the potential influence of the new edge on graph geodesics.

Penalizing average degree also counteracts the tendency of geodesic distances to de-

crease as St becomes more densely connected.

59

Combining these elements with existing edge weights yields a cost function:

cost
(
eij|St

)
=


wijhij d̄ij if eij /∈ St

∞ otherwise
,

where hij is the unweighted geodesic distance from vertices i to j along edges in St. To

prevent any one factor from dominating the others, w is scaled to make the largest finite

entry equal to one, while h and d̄ are scaled to the range [1, 2]. This converts the unweighted

geodesic distance and average degree components of the cost function into interchangeable

factors for penalizing edges, without requiring hyperparameters for balance.

5.2.2 Candidate Edge Generation

Applying the cost function to all edges in the complete graph produces a dense cost

matrix, Ct, which can be viewed as analogous to a pairwise distance matrix. This suggests

the use of iterative variants of classical graph construction techniques to generate candidate

edges.

One approach derives from the ε-close neighbor graph method, in which edges are

added if their weight is below some threshold, ε. In the incremental formulation, we select

the edge corresponding to the smallest entry in Ct, add it to the current subgraph St to

produce St+1, then compute a new cost matrix Ct+1 and repeat until the stopping condition

is met. This approach is simple but requires the computation of a new cost matrix for each

added edge, which limits its practicality for larger problems.

A more efficient approach is based on the 1-nearest neighbor method, in which the

smallest edge for each vertex is chosen. Rather than adding one edge at a time, we add

all minimum cost edges for each vertex before computing Ct+1. This formulation adds

O (|V |) edges per iteration, which significantly reduces the number of iterations and thus

time spent updating costs. Adding edges for each vertex also promotes a more balanced

degree distribution in the constructed graph.

60

Both proposed candidate generation methods require a stopping condition, preventing

over-densification and losing the desired manifold structure. We introduce a cost threshold,

γt, which serves to exclude candidate edges with greater costs. This threshold is initialized

as γ0 =∞ and monotonically decreases each iteration according to the rule

γt+1 = min
(
γt, confidence

(
A, Ct

))
,

where A is the set of edges added in iteration t and confidence is some statistic of the costs

of these edges. A reasonable confidence measure should exclude edges with disproportion-

ately high cost, preventing the addition of extra edges in regions of the graph that already

have the correct structure.

In our experiments, we used the 99th percentile of new edge costs with the 1-nearest

neighbor candidate generation method. Monotonically decreasing γt ensures that, eventu-

ally, all candidate edges will have costs above the threshold, so no new edges will be added

and the iteration can terminate.

5.2.3 Algorithm Analysis

The full Mutual Neighbors Graph algorithm is given in Algorithm 5.

Starting from an initial graph with |V | = n vertices, each iteration of MNG requires

the computation of an n× n cost matrix. Selecting and pruning candidates requires O (n2)

time, and produces at most n added edges per iteration. The dominating cost of MNG,

therefore, is the cost matrix calculation.

The average degree matrix d̄ is trivially computed withO (n2) time and memory, but the

unweighted geodesic distance matrix h is more complicated, because it requires the com-

putation of shortest path length between all pairs of vertices. Floyd gave a generic O (n3)

algorithm [29], but later efforts have exploited the undirected and unweighted properties

to yield theoretically (if not practically) faster algorithms [87]. In the MNG algorithm, the

61

number of edges in St is no greater than tn, which makes the practical h computation time

O (tn2 + n2 log n) [30].

Algorithm 5 Mutual Neighbors Graph Construction
Input: Distance matrix, D

Backbone graph, S0

Output: Final manifold approximation graph, Sn

γ0 ←∞
for t← [0, 1, . . .] do

for all eij ∈ D do
Ct
ij ← cost (eij|St)

end for
A ← ∅
for i← [1, . . . , |V |] do
k ← argminj C

t
ij

if Ct
ik < γt then
A ← A∪ {eik}

end if
end for
if |A| = 0 then

return St

end if
St+1 ← St ∪ A
γt+1 ← min (γt, confidence (A, Ct))

end for

5.2.4 Demonstration

To illustrate the state of the proposed algorithm during each iteration, we apply MNG

to a synthetic image dataset with a known manifold structure. The dataset consists of 625

grayscale images of Gaussian noise, each overlaid with a smaller image of the Mona Lisa

at a fixed coordinate [33]. By construction, the true manifold structure is a square grid in

two dimensions, representing the pixel offsets of the Mona Lisa sub-image.

Figure 5.1 shows the evolution of St, plotted on both ground-truth and Isomap co-

ordinates. The series of Isomap embeddings (colored by the ground truth y-coordinate)

demonstrates the effect of the graph’s increasing density, gradually joining the discon-

62

Figure 5.1: Iterations of the Mutual Neighbors Graph algorithm, demonstrated on the syn-
thetic Mona Lisa image manifold. The top row depicts St on ground truth grid coordinates,
with red lines indicatingA, the edges added by MNG during that iteration. The bottom row
shows a 2-dimensional Isomap embedding of St, colored by the ground truth y coordinate.

Figure 5.2: Cost distributions for candidate edges at each iteration, from the application of
MNG illustrated in Figure 5.1. Edges in A are colored blue, while candidate edges above
the γt threshold are colored red. Gaussian noise along the x-axis was added to spread out
overlapping points.

nected segments of the initial minimum spanning tree and eventually converging on the

true grid structure.

Figure 5.2 visualizes the distribution of candidate edge costs at each iteration of the

algorithm. Candidates with cost greater than γt are red, while the final A set is blue. The

choice of confidence function controls the progression of γ, and thus the rate of conver-

gence of the algorithm and the total number of edges added.

63

5.3 Experimental Results

In this section, we investigate the performance of the proposed Mutual Neighbors Graph

algorithm on a variety of datasets. Due to the unsupervised nature of the manifold approxi-

mation task, we evaluate the constructed graphs indirectly, using the performance of a fixed

manifold learning algorithm as a proxy, using the formulation described in Section 3.3.

When all other factors are held constant, the graph that produces the best end result can be

considered a better approximation of the true manifold structure.

5.3.1 Swiss Roll

Figure 5.3 shows results from a randomized Swiss roll experiment. Using ten ran-

domized swiss rolls generated from the distribution [r sin θ; r cos θ; Uniform (−1, 1)] with

given parameter vectors r and θ, we compute two evaluations of graph quality based on a

two-dimensional Isomap embedding. The first compares pairwise distances in the ground

truth r-θ space with pairwise distances in the embedded space. The second evaluation

computes mean squared error of a linear regression model predicting θ given the embedded

coordinates.

Both tasks require that the graph captures the underlying two-dimensional structure of

the Swiss roll manifold, though each penalizes distortion in the graph differently. Among

all graph construction methods tested, for both tasks, the graphs produced by MNG are

consistent in having the smallest error.

5.3.2 MNIST Digit Classification

To demonstrate the effectiveness of MNG on a non-synthetic dataset with a more dif-

ficult learning task, we consider the problem of classifying handwritten digit images from

the MNIST database [53].

Using all 10,000 images from the MNIST test set, we generated 50 semi-supervised

learning problems by partitioning the data into 10% labeled and 90% unlabeled instances.

Labeled examples were chosen at random, though partitions without any labels per digit

64

Figure 5.3: Results of randomized Swiss roll experiments. Blue bars (left axis) show the
error between the graph’s 2d Isomap embedding and ground truth coordinates. Orange bars
(right axis) show mean squared error of regression. Each method’s results use the best-
performing hyperparameter, and lower error indicates better performance. Black vertical
lines show one standard deviation above and below the mean.

class were rejected. Classification accuracy was computed by running the Local and Global

Consistency label propagation algorithm on each of the label partitions [111].

As shown in Figure 5.4, the Mutual Neighbors Graph significantly improves classifica-

tion accuracy over existing graph construction algorithms, with each algorithm using the

optimal hyperparameter setting. Due to the large number of points in the dataset and lim-

ited computational resources, the SAFFRON and MSG algorithms were not evaluated in

this or the following experiments.

5.3.3 Semi-Supervised Learning Benchmarks

We next evaluate on a standard set of benchmark datasets for semi-supervised learning

tasks [15], which offers a larger variety of graph construction evaluation settings. These

benchmarks include visual, textual, synthetic, and observed data from different sources

with varying adherence to the manifold assumption. The dimensionality of the data also

varies, ranging from 117 features for set 4 (BCI) to 11960 features for set 9 (Text).

We used seven of these datasets to evaluate MNG more thoroughly. We excluded set

3 (COIL2) because it is a binary version of set 6 (COIL), and set 8 (SecStr), which would

65

Figure 5.4: MNIST classification results. Box plots show the distribution of accuracy
scores for each method’s graph when applied to 50 random instances of a label propagation
task, with fliers indicating outlier scores and notches showing the 95% confidence interval
for the median. Higher accuracy indicates better performance.

require a prohibitive amount of memory to represent as a pairwise distance matrix. The

remaining datasets contain 1500 points each, except set 4 (BCI) with 400 points.

Each dataset provides twelve random partitions of labeled and unlabeled points, with

100 labeled examples per split. Classification was performed with the same LGC label

propagation classifier used in the MNIST experiment. We used seven splits per dataset

to identify optimal hyperparameters for each evaluated graph construction method, and

Table 5.1 reports accuracy on the remaining five splits using the selected hyperparameters.

The MNG algorithm produces graphs that achieve the best performance in five of seven

benchmarks, with comparable performance on the other two. The most difficult dataset for

the MNG algorithm was set 6 (COIL), for which the ground truth structure is a collection of

disjoint, ring-shaped manifolds. This means that graphs derived from minimum spanning

trees (which are, by construction, connected graphs) are at a particular disadvantage.

5.4 Discussion

This chapter presented a novel graph construction method that makes use of the sim-

ple observation that vertices with mutual neighbors in a sparse subgraph are likely to be

connected in the full manifold approximation graph. With this in mind, we developed an

66

MNG b-Matching dMST k-nearest
g241c 64.41 63.60 63.19 64.08
g241n 69.20 67.89 66.80 68.33
Digit1 96.03 95.79 95.92 95.84
USPS 95.27 94.64 94.87 94.59
COIL 81.09 83.96 79.43 82.20
BCI 65.65 65.20 65.40 65.90
Text 75.16 73.32 72.47 72.99

Table 5.1: Average classification accuracy on semi-supervised learning benchmark
datasets. The best performing method for each dataset is highlighted in bold.

incremental graph construction algorithm around the idea of scoring candidate edges given

an existing subgraph.

The Mutual Neighbors Graph algorithm is based on three concepts that promote desir-

able properties of a manifold approximation graphs:

• starting from a connected subgraph derived from the minimum spanning tree,

• promoting edges with mutual neighbors, and

• penalizing edges in densely connected regions of the graph.

The proposed method is simple to implement, analyze, and use, and consistently out-

performs both classical and state of the art graph construction methods on a variety of

domains.

67

CHAPTER 6

MANIFOLD WARPING: MANIFOLD ALIGNMENT OVER TIME

The advent of large, often high-dimensional, digital data sets has made automated

knowledge extraction a critical research focus in machine learning. It is common to find

real-world sequential data sets that encode the same information with disparate surface fea-

ture representations, such as sensor network data, activity and object recognition corpora,

and audio/video streams. In these cases, an automated technique for discovering correla-

tions between datasets will allow easy transfer of knowledge from one domain to another,

avoiding costly or infeasible re-learning.

In this chapter, which is based on joint work with Hoa Vu, we present a framework that

combines manifold alignment [39, 94] and dynamic time warping (DTW) [77] for aligning

two such sequential data sets.

6.1 Background

6.1.1 Manifold Alignment

In manifold alignment [94], we are given two data sets X ∈ RnX×dX and Y ∈ RnY ×dY

where Rm×n denotes a m by n real matrix. In X and Y , each row is an instance. W (X) ∈

RnX×nX and W (Y) ∈ RnY ×nY are matrices that provide pairwise similarities between the

instances in X and Y , respectively. These matrices are usually constructed as weighted

adjacency matrices of neighbor graphs, optionally applying a heat kernel function to edge

68

weights. We also have a warping matrix W (X,Y) ∈ RnX×nY that specifies the correspon-

dences between instances in X and Y. Typically,

W
(X,Y)
ij =

 1 if Xi corresponds to Yj

0 otherwise
. (6.1)

Suppose we have a mapping that maps X, Y to F (X) ∈ RnX×d, F (Y) ∈ RnY ×d in a

latent space with dimension d ≤ min(dx, dy). In the underlying matrix representation, any

row i of X is mapped to row i of F (X), and a similar relation holds for Y and F (Y).

We form the following loss function for the mapping as follows. The first term indi-

cates that corresponding points across data sets should remain close to each other in the

embedding. The last two terms specify that, within an input set, points close in the original

space should remain close in the embedding. The factor µ controls how much we want to

preserve inter-set correspondences versus local geometry.

L1

(
F (X), F (Y)

)
= µ

∑
i∈X,j∈Y

‖F (X)
i − F (Y)

j ‖2W
(X,Y)
ij

+(1− µ)
∑
i,j∈X

‖F (X)
i − F (X)

j ‖2W
(X)
ij

+(1− µ)
∑
i,j∈Y

‖F (Y)
i − F (Y)

j ‖2W
(Y)
ij (6.2)

The notation i ∈ X refers to the range 1 ≤ i ≤ nX . We can combine W (X), W (Y), and

W (X,Y) into a joint similarity matrix W , defined

W =

 (1− µ)W (X) µW (X,Y)

µW (Y,X) (1− µ)W (Y)

 . (6.3)

Then, we combine F (X), F (Y) into F where F =

 F (X)

F (Y)

. Let Fi,k denote the element

(i, k) of F and F·,k denote the kth column of F . Then the loss function can be rewritten as

69

L1(F) =
∑
i,j

‖Fi − Fj‖2Wij

=
∑
k

∑
i,j

‖Fik − Fjk‖2Wij

= 2
∑
k

F>·,kLF·,k = 2tr
(
F>LF

)
, (6.4)

where L is the graph Laplacian of F . Let D be a diagonal matrix in which each diagonal

element is the degree of the corresponding vertex. The optimization problem becomes:

argmin
F

(L1) = argmin
F

(
tr
(
F>LF

))
(6.5)

This matches the optimization problem of Laplacian Eigenmaps [4], except that in this

case the similarity matrix is a joint matrix produced from two similarity matrices. As with

Laplacian Eigenmaps, we add a constraint F>DF = I to remove an arbitrary scaling factor

and avoid a collapse to a subspace with dimension less than d. For example, this constraint

prevents the trivial mapping to a single point. The solution F = [f1, f2, . . . , fd] is given by

the d smallest nonzero eigenvectors of the generalized eigenvalue problem: Lfi = λDfi

for i = 1, . . . , d.

We can also restrict the mapping to be linear by instead solving the optimization prob-

lem

argmin
φ

(
tr
(
φ>V >LφV

))
subject to φ>V >DφV = I, (6.6)

where V is the joint data set

V =

 X 0

0 Y

 ,

φ is the joint projection

φ =

 φ(X)

φ(Y)

 ,

70

L is the graph Laplacian, and D is the degree matrix. The resultant linear embedding is

then Xφ(X) and Y φ(Y), instead of F (X) and F (Y). The solution for φ = [φ1, φ2, . . . , φd] is

the d nonzero smallest eigenvectors of the generalized eigenvalue problem

V >LV φi = λV >DV φi

for i = 0, . . . , d.

6.1.2 Dynamic Time Warping

We are given two sequential data sets

X = [x>1 , . . . , x
>
n]> ∈ Rn×d

Y = [y>1 , . . . , y
>
m]> ∈ Rm×d

in the same space with a distance function X × Y → R. Let P = {p1, . . . , ps} represent

an alignment between X and Y , where each pk = (i, j) is a pair of indices such that xi

corresponds with yj . Because the alignment is restricted to sequentially-ordered data, we

impose the additional constraints:

p1 = (1, 1) (6.7)

ps = (n,m) (6.8)

pk+1 − pk = (1, 0) or (0, 1) or (1, 1) (6.9)

That is, an alignment must match the first and last instances and cannot skip any in-

termediate instance. This also yields the property that no two sub-alignments cross each

71

Figure 6.1: A valid time-series alignment

other. Figure 6.1 is an example of a valid alignment. We can also represent the alignment

in unweighed adjacency matrix form, where

Wij =

 1 if (i, j) ∈ P

0 otherwise
. (6.10)

To ensure that W represents an alignment that satisfies the constraints in Equations 6.7,

6.8, and 6.9, W must be in the following form: W1,1 = 1, Wn,m = 1, none of the columns

or rows of W is a 0 vector, and there must not be any zeros between any two ones in a row

or column of W . We call a W that satifies these conditions a DTW matrix. An optimal

alignment is the one that minimizes the loss function with respect to the DTW matrix W :

L2(W) =
∑
i,j

dist (xi, yj)Wij (6.11)

A naïve search over the space of all valid alignments would take exponential time;

however, dynamic programming can produce an optimal alignment in O(nm).

Dynamic time warping has been used effectively for time-series alignment, but it re-

quires an inter-set distance function, which usually implies that both input data sets must

have the same dimensionality. DTW may also fail under arbitrary affine transformations of

one or both inputs.

72

Figure 6.2: Sinusoidal curves before and after applying Canonical Time Warping.

6.1.3 Canonical Time Warping

Canonical Time Warping (CTW) [112] aims to solve these two deficiencies of DTW by

alternating between Canonical Correlation Analysis (CCA) and DTW until convergence,

as illustrated in Figure 6.2.

In the case where inputs are of different dimensions, CTW first projects both data sets

into a shared space using Principal Components Analysis (PCA) [46]. The algorithm does

not always converge to a global optimum, but CTW still improves the performance of the

alignment when compared to applying DTW directly.

However, CTW fails when the two related data sets require nonlinear transformations

to uncover the shared manifold space. We illustrate such a case in Figure 6.3, in which two

sequential data sets are two sin2(x) curves; one lying on a plane and the other on a Swiss

roll. In this case, the CCA projection that CTW relies on will fail to unroll the second

curve, making a good DTW alignment impossible.

73

Figure 6.3: Sinusoidal curves on a plane and on a Swiss roll. Aligning these curves requires
a nonlinear transformation.

74

6.2 Manifold Warping

6.2.1 One-step algorithm

We now present a novel framework for aligning two sequentially-ordered data sets that

share a common manifold representation. In our approach, we use the warping matrix pro-

duced by DTW as a heuristic correspondence matrix for manifold alignment. The proposed

algorithm uses the method of alternating projections [90], picking new correspondences

with DTW and reprojecting both inputs using manifold alignment until the loss function

converges. This presents an improvement over canonical time warping (CTW) in cases

where nonlinear transformations are required to recover the underlying manifold structure

of one or both input data sets.

We introduce the following loss function for manifold warping:

L3

(
F (X), F (Y),W (X,Y)

)
=

µ
∑

i∈X,j∈Y

‖F (X)
i − F (Y)

j ‖2W
(X,Y)
i,j

+(1− µ)
∑
i,j∈X

‖F (X)
i − F (X)

j ‖2W
(X)
i,j

+(1− µ)
∑
i,j∈Y

‖F (Y)
i − F (Y)

j ‖2W
(Y)
i,j

(6.12)

The optimization problem becomes:

argmin
F (X),F (Y),W (X,Y)

(L3)

subject to F>DF = I

where F =

 F (X)

F (Y)


Unlike manifold alignment, the correspondence matrix W (X,Y) is now an argument to the

optimization problem. The intuition behind this loss function resembles that of manifold

alignment: the last two error terms ensure that the embedding preserves the local geometry

75

of the inputs while the first term promotes a high quality DTW alignment between two

sequential data sets. Again, these goals are controlled by the parameter µ. The procedure

for minimizing L3 is given in Algorithm 6.

Algorithm 6 One-Step Manifold Warping
Input: Two time-series data sets, X, Y

Latent space dimension, d
Preserving correspondence vs local geometry factor, µ

Output: Embeddings in the latent space, F (X), F (Y)

DTW matrix providing the alignment of X and Y, W (X,Y)

W (X) ← NeighborGraph(X)
W (Y) ← NeighborGraph(Y)

Set W (X,Y)
1,1 = W

(X,Y)
nX ,nY = 1, and 0 everywhere else

t← 0
while not converged do

W =

[
(1− µ)W (X),t µW (X,Y),t

µ(W (X,Y),t)> (1− µ)W (Y),t

]
F (X),t+1, F (Y),t+1 ← MA(F (X),t, F (Y),t,W t, d, µ)
W (X,Y),t+1 ← DTW(F (X),t+1, F (Y),t+1)
t← t+ 1

end while
F (X) ← F (X),t

F (Y) ← F (Y),t

W (X,Y) ← W t

In Algorithm 6, MA(X, Y,W, d, µ) is a function that returns the embedding of X, Y

in a d dimensional space using manifold alignment with the joint similarity matrix W and

parameter µ, as described in the manifold alignment section. The function DTW(X, Y)

returns a DTW matrix after aligning two sequences X, Y using dynamic time warping.

The NeighborGraph(X) function returns the adjacency matrix of a manifold approximation

graph, such as a k-nearest or ε-close neighbor graph.

Theorem 1. Let L3,t be the loss function L3 evaluated at F (X),t, F (Y),t,W (X,Y),t of Algo-

rithm 6. The sequence L3,t converges to a critical point as t→∞. Therefore, Algorithm 6

will terminate.

76

Proof. In every iteration t, two steps are performed: manifold alignment to solve for new

projections F (X),t+1, F (Y),t+1, and DTW to change the correspondences to W (X,Y),t+1.

In the first step, with fixedW (X,Y),t, Algorithm 6 solves for new projectionsF (X),t+1, F (Y),t+1

using manifold alignment. Recall that L3 with a fixedW (X,Y) is equivalent to the loss func-

tionL1, which we showed is minimized by manifold alignment’s mappings in Section 6.1.1.

Hence, when the correspondence matrix is fixed,

L3(F
(X),t+1, F (Y),t+1,W (X,Y),t) ≤ L3(F

(X),t, F (Y),t,W (X,Y),t). (6.13)

In the second step, the projections are fixed as F (X),t+1, F (Y),t+1. Algorithm 6 changes

the correspondence matrix from W (X,Y),t to W (X,Y),t+1, which does not affect the last two

terms in L3. If we replace dist(F (X)
i , F

(Y)
j) by µ‖F (X),t+1

i −F (Y),t+1
j ‖2 in the loss function

L2 of DTW, we recover the first term in L3 of manifold warping. Because W (X,Y),t+1 is

produced by DTW, it will minimize the first term of L3. Therefore, we have

µ
∑

i∈X,j∈Y

‖F (X),t+1
i − F (Y),t+1

j ‖2W (X,Y),t+1
i,j

≤ µ
∑

i∈X,j∈Y

‖F (X),t+1
i − F (Y),t+1

j ‖2W (X,Y),t
i,j .

(6.14)

Changing the correspondence matrix does not affect the last two terms of L3, so

L3(F
(X),t+1, F (Y),t+1,W (X,Y),t+1)

≤ L3(F
(X),t+1, F (Y),t+1,W (X,Y),t)

≤ L3(F
(X),t, F (Y),t,W (X,Y),t) from inequality 6.13

⇔ L3,t+1 ≤ L3,t.

(6.15)

Therefore, L3,t is a strictly non-increasing sequence. We also have L3,t ≥ 0, so it is con-

vergent. Therefore, Algorithm 6 will eventually terminate.

77

6.2.2 Two-step algorithm

We now propose an algorithm that exploits the observation that when the local geome-

tries of the two data sets are roughly the same, their similarity matrices will also be very

similar [92]. Thus, if we first apply a nonlinear projection to each input set independently,

the embeddings are likely to be linearly alignable using either manifold warping or CTW.

Algorithm 7 Two-Step Manifold Warping
Input: Two time-series data sets, X, Y

Latent space dimension, d
Preserving correspondence vs local geometry factor, µ

Output: Embeddings in the latent space, F (X), F (Y)

DTW matrix providing the alignment of X and Y, W (X,Y)

W (X) ← NeighborGraph(X)
W (Y) ← NeighborGraph(Y)
t← 0
F (X),t ← DimReduction

(
F (X),W (X), d

)
F (Y),t ← DimReduction

(
F (Y),W (Y), d

)
while not converged do

W =

[
(1− µ)W (X),t µW (X,Y),t

µ(W (X,Y),t)> (1− µ)W (Y),t

]
φ(Y),t+1, φ(X),t+1 ← LMA

(
F (X),t, F (Y),t,W (X,Y),t, d, µ

)
F (X),t+1 ← F (X),tφ(X),t+1

F (Y),t+1 ← F (Y),tφ(Y),t+1

W (X,Y),t+1 ← DTW
(
F (X),t+1, F (Y),t+1

)
t← t+ 1

end while
F (X) ← F (X),t

F (Y) ← F (Y),t

W (X,Y) ← W (X,Y),t

In Algorithm 7, DimReduction(X,W, d) is a dimensionality reduction function that

maps X with similarity matrix W to a lower dimensional space d. We use Laplacian

Eigenmaps to be consistent with manifold alignment, though other methods such as LLE

or Isomap could be applied.

LMA(X, Y,W, d, µ) is a function that performs linear manifold alignment described

above on X and Y with a joint similarity matrix W and target dimension d, which re-

78

turns the projection matrices φ(X) and φ(Y). We can think of DimReduction(X,W, d) as a

preprocessing step, then reformulate the loss function as

L4(φ
(X), φ(Y),W (X,Y))

= ((1− µ)
∑
i,j∈X

‖F (X)
i φ(X) − F (X)

j φ(X)‖2W (X)
ij

+(1− µ)
∑
i,j∈Y

‖F (Y)
i φ(Y) − F (Y)

j φ(Y)‖2W (Y)
ij

+µ
∑

i∈X,j∈Y

‖F (X)
i φ(X) − F (Y)

j φ(Y)‖2W (X,Y)
ij)

, (6.16)

which is the same loss function as in linear manifold alignment except that W (X,Y) is

now a variable. The two constraints are the constraint in Equation 6.6 of linear manifold

alignment, and W (X,Y) must be a DTW matrix.

Theorem 2. Let L4,t be the loss function L4 evaluated at
∏t

i=1 φ
(X),i,

∏t
i=1 φ

(Y),i,W (X,Y),t

of Algorithm 7. The sequence L4,t converges to a critical point as t → ∞. Therefore,

Algorithm 7 will terminate.

Proof. The proof is similar to that of Theorem 1. At any iteration t, Algorithm 7 first

fixes the correspondence matrix at W (X,Y),t. Now let L′4 be like L4 except that we replace

F
(X)
i , F

(Y)
i by F (X),t

i , F
(Y),t
i and Algorithm 7 minimizes L′4 over φ(X),t+1, φ(Y),t+1 using

linear manifold alignment. Thus,

L′4(φ
(X),t+1, φ(Y),t+1,W (X,Y),t)

≤ L′4(I, I,W
(X,Y),t)

= L4(
∏t

i=1 φ
(X),i,

∏t
i=1 φ

(Y),i,W (X,Y),t)

= L4,t

(6.17)

because F (X),t = F (X)
∏t

i=1 φ
(X),i and F (Y),t = F (Y)

∏t
i=1 φ

(X),i. We also have:

79

L′4(φ
(X),t+1, φ(Y),t+1,W (X,Y),t)

= L4(
∏t+1

i=1 φ
(X),i,

∏t+1
i=1 φ

(Y),i,W (X,Y),t)

≤ L4,t.

(6.18)

Algorithm 7 then performs DTW to change W (X,Y),t to W (X,Y),t+1. Using the same

argument as in the proof of Theorem 1, we have:

L4(
∏t+1

i=1 φ
(X),i,

∏t+1
i=1 φ

(Y),i,W (X,Y),t+1)

≤ L4(
∏t+1

i=1 φ
(X),i,

∏t+1
i=1 φ

(Y),i,W (X,Y),t)

≤ L4,t

⇔ L4,t+1 ≤ L4,t.

(6.19)

The convergence follows.

Furthermore, when we set µ = 1, the loss function L4 will resemble CTW’s loss func-

tion. We can also substitute CTW in place of the loop in the algorithm.

6.3 Experimental Results

6.3.1 Synthetic data sets

We compare the performance of CTW and manifold warping by trying to align two

sin(x2) curves: one is on the flat plane, the another is projected onto the Swiss roll as

illustrated in Figure 6.3. Some duplicate points are added along the curves to create many-

to-one correspondences in the alignment.

As shown in Figure 6.4, manifold warping produced similar embeddings for two curves

based on their local geometry while CTW linearly collapsed the Swiss roll curve onto the

plane.

As a result, the warping path (that is, the alignment path) produced by manifold warping

stays closer to the true warping path than the warping path produced by CTW. The error

80

Figure 6.4: Two-dimensional embeddings of the nonlinearly warped sin(x2) curves illus-
trated in Figure 6.3.

81

Figure 6.5: The resulting warping path of each algorithm’s alignment and the ground truth
warping path for the warped sin(x2) curves in Figure 6.3.

is calculated as the area between the warping path and the ground truth path, as suggested

in the original paper on CTW [112]. To enable comparison, we normalize the error by

dividing by the plot area, nX × nY .

The warping paths and the calculated errors, shown in Figure 6.5 and Table 6.1, demon-

strate that manifold warping yields a smaller error than CTW.

6.3.2 COIL-100 data set

We also test these algorithms on a real-world vision data set from the Columbia Object

Image Library (COIL-100) [69]. The corpus consists of different series of images taken of

different objects on a rotating platform. Each series has 72 images, each 128× 128 pixels.

We try to align two series of images of two different objects, with differences in shape

and brightness producing very different high-dimensional representations. To demonstrate

our algorithm’s ability to work with data sets of different dimensionality, we compress one

82

Figure 6.6: Samples from pairs of COIL-100 image series

Synthetic Dog+Cat Cups Kitchen
1-step MW 0.0768 0.0447 0.0464 0.0257
2-step MW 0.0817 0.0282 0.0125 0.0396
2-step + CTW 0.0652 0.0298 0.0143 0.0772
CTW 0.2784 0.2656 0.1668 0.0966

Table 6.1: Alignment error across algorithms and data sets.

image series to a smaller resolution (64× 64 pixels). Additionally, some duplicate images

are added to each series, to ensure that the correct mapping is not trivially one-to-one.

In both experiments, manifold warping methods create alignments with a much smaller

error than CTW. The depiction in Figure 6.7 provides an intuitive picture of the manifold

warping algorithm. In the first projection to two dimensions, both image series are mapped

to circles. The next several iterations rotate these circles to match the first and last points,

then the points in between. For the case of one-step Manifold Warping (where all mappings

are nonlinear), we pick a small µ to prioritize preserving local geometry of each series. This

avoids over-fitting the embedding to a potentially bad intermediate DTW correspondence.

We perform the experiment with two pairs of COIL image series, illustrated in Fig-

ure 6.6.

83

Figure 6.7: Two-dimensional embedding of the dog and cat toy image series (Figure 6.6).

Figure 6.8: Warping paths for the dog and cat toy image series (Figure 6.6).

84

Figure 6.9: Two-dimensional embedding of the rotating cup image series (Figure 6.6).

Figure 6.10: Warping paths for the rotating cup image series (Figure 6.6).

85

Figure 6.11: Two-dimensional embeddings of the measurement series of IMU and MOCAP
sensors during the CMU kitchen task.

6.3.3 Kitchen data set

Our last experiment uses the kitchen data set from the CMU Quality of Life Grand

Challenge [18], which records human subjects cooking a variety of dishes. Here, we at-

tempt nonlinear alignments between the same subject and task across different sensors.

Our experiment considers two separate views of the same moment in time, during which

the subject prepares a brownie. The two views are 9-dimensional inertial measurement unit

(IMU) readings and 87-dimensional motion capture suit coordinates (MOCAP). Aligning

two views of the same task provides a straightforward evaluation metric, because the time

stamps on each reading yield ground-truth correspondence information. To make the prob-

lem computationally feasible, we subsampled the original data sets. Each manifold warp-

ing method performs better than CTW, based on the results shown below in Figure 6.11,

Figure 6.12, and Table 6.1.

86

Figure 6.12: Warping paths for each algorithm’s alignment of the sensor data from the
CMU kitchen task.

6.4 Discussion

Due to the lack of a linearity constraint, manifold warping consistently performs better

than canonical time warping when the inputs lie on manifolds that are not accessible via

linear transformations. Even in the linear case, the alignment quality of manifold warping

is equivalent to that of CTW.

Importantly, this improved alignment quality does not impose significant runtime over-

head. Both algorithms rely on the same DTW step, and tuned implementations of manifold

alignment are comparable in running time to the CCA step used in CTW. While each mani-

fold warping iteration is marginally slower than a similar CTW iteration, manifold warping

tends to converge with fewer steps.

87

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

Manifold discovery is the foundation upon which all effective manifold learning al-

gorithms are built. Without an accurate and reliable representation of the latent manifold

structures in the dataset of interest, even the most sophisticated graph-based manifold learn-

ing methods will fail.

The task of learning this manifold structure is often relegated to neighborhood graph

construction methods like k-nearest neighbors, which, while simple and efficient to imple-

ment, require an expert’s oversight to avoid choosing bad hyperparameters. This problem is

especially pernicious in applications with high-dimensional, real-world data sets, for which

global structure is rarely known a priori.

In this thesis, we proposed new methods for constructing high-quality manifold approx-

imation graphs that reduce the burden of parameter tuning and result in improved outcomes

when used in manifold learning tasks.

First, we introduced new ways to measure the manifold-approximation quality of a

graph, independent of a manifold learning task. We observed the way a graph’s global

geodesic structure changes as edges are added, then proposed an efficient incremental graph

construction algorithm that provides the means to generate these graph quality signals con-

currently with graph construction. This combination of methods provides a mechanism for

making informed parameter settings before the graph is used for any manifold learning task

applications, simplifying the manifold learning process considerably.

88

Next, we proposed the Manifold Spanning Graph, a graph construction algorithm that

connects local tangent subspaces with edges that preserve both locality and linearity. This

novel algorithm is designed to be parameter-insensitive, and requires little to no tuning to

produce high quality graphs.

The Mutual Neighbors Graph algorithm makes use of a cost function that guides the

addition of new edges to an initial sparse subgraph. The costs encode multiple desired

quality measures, incorporating standard manifold learning assumptions directly into the

process of graph construction. This algorithm exploits information about known edges on

the manifold to produce effective graphs, without relying on expert-tuned parameters.

Finally, we introduce Manifold Warping, a manifold alignment method for sequential

datasets that relies on manifold approximation graphs to balance intra-dataset structure

preservation against inter-dataset correspondences. The use of manifold learning methods

enables both linear and nonlinear alignment strategies, offering flexibility without substan-

tially increasing algorithm complexity.

7.2 Caveats

The success of manifold learning methods on a particular dataset is primarily reliant on

the degree to which the data conforms to the manifold hypothesis. For example, a dataset

sampled uniformly from Rn will not benefit from manifold learning approaches over tradi-

tional machine learning, no matter how sophisticated. In general, the more closely a dataset

follows the key assumptions of manifold structure (i.e., local linearity and smoothness), the

more effective manifold discovery and learning will be.

In addition to considerations of manifold structure, dataset size is also an important

factor when considering the use of manifold learning methods. If each instance in a dataset

is used as a graph vertex, the process of adding edges to learn the graph is usually at

least quadratic in the number of vertices. Furthermore, most popular graph-based mani-

fold learning methods require super-linear running time relative to the size of the dataset.

89

Methods have been proposed to choose anchor points on which to build graphs represent-

ing large datasets [81, 61], but in general, manifold learning methods are not especially

well-suited to large, out-of-core learning problems.

7.3 Future Work

This thesis leaves several directions open to future study in the pursuit of effective

algorithms for graph-based manifold discovery.

7.3.1 Directed Graph Construction

The methods proposed in this thesis have each assumed that any edge connecting two

vertices represents a symmetric relationship. For example, the Euclidean distance between

two points a and b is the same whether one measures from a to b or from b to a.

This property does not hold in all domains, however. In datasets with a temporal com-

ponent, relationships may only exist for pairs of points which respect the time ordering.

This condition is especially relevant in reinforcement learning domains, for which the ac-

tions that cause transitions between states in the environment are often non-reversible [45].

To discovery the manifolds representing datasets with asymmetric relationships, it will

be necessary to develop construction algorithms for directed graphs.

7.3.2 Nonlinear Metrics

Each of the graph construction methods in this thesis contain some notion of a distance

metric that is used to quantify how close pairs of points are. The straight-line Euclidean

distance metric is an appropriate choice in most cases, especially when the features of the

dataset are simple vectors in the input space.

There are datasets for which Euclidean distances are wholly inappropriate, however,

and in these cases an alternate distance metric must be used. These datasets include im-

age corpora, for which correlation measures are often more informative, or spectroscopy

90

databases, where spectral angle similarity is commonly used to determine the relationship

between instances.

Future work on specialized graph construction methods for non-Euclidean distances has

great potential for improving manifold discovery outcomes. Simple neighbor-based meth-

ods can be agnostic to the way distances are calculated, but more sophisticated algorithms

may be able to exploit this information effectively.

7.3.3 Active Manifold Discovery

The traditional model of manifold learning assumes that all available samples from the

input dataset are available at the outset of manifold discovery. This is the paradigm that

the graph construction methods in this thesis follow, with no additional vertices added or

removed from the graph after initialization.

Many real-world application settings do not permit this static view of a dataset, how-

ever. In some reinforcement learning domains, a full characterization of the environment

is not available until the agent discovers it via exploration. In the active learning paradigm,

new input points come at a cost, so learning cannot wait until a sufficiently large dataset

has been collected.

This limitation provides an interesting avenue for future research in manifold discovery.

Existing graph construction algorithms will need to be modified to model the uncertainty

inherent in working with partially-observed datasets. These algorithms should also permit

the addition of new data, either as new vertices in the graph or as additional evidence for or

against existing edge connections.

91

BIBLIOGRAPHY

[1] Anderson, T.W. An introduction to multivariate statistical analysis. Wiley series
in probability and mathematical statistics. Probability and mathematical statistics.
Wiley-Interscience, 2003.

[2] Ausiello, Giorgio, Italiano, Giuseppe F, Spaccamela, Alberto Marchetti, and Nanni,
Umberto. On-line computation of minimal and maximal length paths. Theoretical
Computer Science 95, 2 (1992), 245–261.

[3] Balasubramanian, Mukund, and Schwartz, Eric L. The isomap algorithm and topo-
logical stability. Science 295, 5552 (2002), 7–7.

[4] Belkin, M., and Niyogi, P. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. Advances in neural information processing systems 14 (2001),
585–591.

[5] Belkin, Mikhail, Niyogi, Partha, and Sindhwani, Vikas. Manifold regularization:
A geometric framework for learning from labeled and unlabeled examples. The
Journal of Machine Learning Research 7 (2006), 2399–2434.

[6] Bengio, Yoshua, and Monperrus, Martin. Non-local manifold tangent learning. Ad-
vances in Neural Information Processing Systems 17 (2005), 129–136.

[7] Berge, Claude, and Minieka, Edward. Graphs and hypergraphs, vol. 7. North-
Holland publishing company Amsterdam, 1973.

[8] Bishop, Christopher M, Svensén, Markus, and Williams, Christopher KI. Gtm: The
generative topographic mapping. Neural computation 10, 1 (1998), 215–234.

[9] Boucher, Thomas, Carey, CJ, Mahadevan, Sridhar, and Dyar, M Darby. Aligning
mixed manifolds. Twenty-Ninth AAAI Conference on Artificial Intelligence (2015).

[10] Bradley, Paul S, and Mangasarian, Olvi L. k-plane clustering. Journal of Global
Optimization 16, 1 (2000), 23–32.

[11] Brand, Matthew. Charting a manifold. In Advances in neural information processing
systems (2002), pp. 961–968.

[12] Brandes, Ulrik. A faster algorithm for betweenness centrality*. Journal of Mathe-
matical Sociology 25, 2 (2001), 163–177.

92

[13] Carreira-Perpinán, Miguel A, and Wang, Weiran. Lass: A simple assignment model
with laplacian smoothing. arXiv preprint arXiv:1405.5960 (2014).

[14] Cayton, Lawrence. Algorithms for manifold learning. Univ. of California at San
Diego Tech. Rep (2005), 1–17.

[15] Chapelle, O, Schölkopf, B, and Zien, A. Semi-supervised learning.

[16] Coifman, Ronald R, and Lafon, Stéphane. Diffusion maps. Appl. Comput. Harmon.
Anal 21 (2006), 5–30.

[17] Davis, Jason V, Kulis, Brian, Jain, Prateek, Sra, Suvrit, and Dhillon, Inderjit S.
Information-theoretic metric learning. In Proceedings of the 24th international con-
ference on Machine learning (2007), ACM, pp. 209–216.

[18] De la Torre, F., Hodgins, J., Bargteil, A., Martin, X., Macey, J., Collado, A., and
Beltran, P. Guide to the carnegie mellon university multimodal activity (cmu-mmac)
database.

[19] de Sousa, Celso André R, Rezende, Solange O, and Batista, Gustavo EAPA. Influ-
ence of graph construction on semi-supervised learning. In Machine Learning and
Knowledge Discovery in Databases. Springer, 2013, pp. 160–175.

[20] Deleforge, Antoine, and Horaud, Radu. 2d sound-source localization on the binaural
manifold. In Machine Learning for Signal Processing (2012), IEEE, pp. 1–6.

[21] Demartines, Pierre, and Hérault, Jeanny. Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets. Neural Networks,
IEEE Transactions on 8, 1 (1997), 148–154.

[22] Demetrescu, Camil, Finocchi, Irene, and Italiano, G. Handbook on data structures
and applications, chapter 36: Dynamic graphs. CRC Press 6, 7 (2005), 8.

[23] Demetrescu, Camil, and Italiano, Giuseppe F. A new approach to dynamic all pairs
shortest paths. Journal of the ACM (JACM) 51, 6 (2004), 968–992.

[24] Dijkstra, Edsger W. A note on two problems in connexion with graphs. Numerische
mathematik 1, 1 (1959), 269–271.

[25] Dong, Wei, Moses, Charikar, and Li, Kai. Efficient k-nearest neighbor graph con-
struction for generic similarity measures. In Proceedings of the 20th international
conference on World wide web (2011), ACM, pp. 577–586.

[26] Donoho, David L, and Grimes, Carrie. Hessian eigenmaps: Locally linear embed-
ding techniques for high-dimensional data. Proceedings of the National Academy of
Sciences 100, 10 (2003), 5591–5596.

[27] Elhamifar, Ehsan, and Vidal, René. Sparse subspace clustering. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (2009), IEEE,
pp. 2790–2797.

93

[28] Elhamifar, Ehsan, and Vidal, René. Sparse manifold clustering and embedding. In
Advances in neural information processing systems (2011), pp. 55–63.

[29] Floyd, Robert W. Algorithm 97: shortest path. Communications of the ACM 5, 6
(1962), 345.

[30] Fredman, Michael L, and Tarjan, Robert Endre. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM (JACM) 34, 3
(1987), 596–615.

[31] Freeman, Linton C. A set of measures of centrality based on betweenness. Sociom-
etry (1977).

[32] Frey, Brendan J, and Dueck, Delbert. Clustering by passing messages between data
points. science 315, 5814 (2007), 972–976.

[33] Gashler, Michael, Ventura, Dan, and Martinez, Tony. Manifold learning by grad-
uated optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 41, 6 (2011), 1458–1470.

[34] Gashler, Mike, and Martinez, Tony. Tangent space guided intelligent neighbor find-
ing. In Neural Networks (IJCNN), The 2011 International Joint Conference on
(2011), IEEE, pp. 2617–2624.

[35] Gashler, Mike, and Martinez, Tony. Robust manifold learning with cyclecut. Con-
nection Science 24, 1 (2012), 57–69.

[36] Ghazvininejad, Marjan, Mahdieh, Mostafa, Rabiee, Hamid R, Roshan, Parisa Kha-
nipour, and Rohban, Mohammad Hossein. Isograph: Neighbourhood graph con-
struction based on geodesic distance for semi-supervised learning. In 2011 IEEE
11th International Conference on Data Mining (2011), IEEE, pp. 191–200.

[37] Gruber, Peter, and Theis, Fabian J. Grassmann clustering. Proc. EUSIPCO 2006
(2006).

[38] Hadid, Abdenour, and Pietikäinen, Matti. Efficient locally linear embeddings of
imperfect manifolds. In Machine learning and data mining in pattern recognition.
Springer, 2003, pp. 188–201.

[39] Ham, Jihun, Lee, Daniel, and Saul, Lawrence. Semisupervised alignment of mani-
folds. In Proceedings of the Annual Conference on Uncertainty in Artificial Intelli-
gence (2005), vol. 10, pp. 120–127.

[40] He, Xiaofei, Yan, Shuicheng, Hu, Yuxiao, Niyogi, Partha, and Zhang, Hong-Jiang.
Face recognition using laplacianfaces. IEEE transactions on pattern analysis and
machine intelligence 27, 3 (2005), 328–340.

[41] Hinton, Geoffrey E, Dayan, Peter, and Revow, Michael. Modeling the manifolds of
images of handwritten digits. Neural Networks, IEEE Transactions on 8, 1 (1997),
65–74.

94

[42] Hotelling, H. Relations between two sets of variates. Biometrika 28 (1936), 321–
377.

[43] Huang, Bert, and Jebara, Tony. Maximum likelihood graph structure estimation
with degree distributions. In Analyzing Graphs: Theory and Applications, NIPS
Workshop (2008), vol. 14.

[44] Hubert, Lawrence, and Arabie, Phipps. Comparing partitions. Journal of classifica-
tion 2, 1 (1985), 193–218.

[45] Johns, Jeff, and Mahadevan, Sridhar. Constructing basis functions from directed
graphs for value function approximation. In Proceedings of the 24th international
conference on Machine learning (2007), ACM, pp. 385–392.

[46] Jolliffe, I.T. Principal component analysis. Springer series in statistics. Springer-
Verlag, 2002.

[47] Kambhatla, Nandakishore, and Leen, Todd K. Dimension reduction by local princi-
pal component analysis. Neural Computation 9, 7 (1997), 1493–1516.

[48] Kégl, Balázs. Intrinsic dimension estimation using packing numbers. In Advances
in neural information processing systems (2002), pp. 681–688.

[49] Kohonen, Teuvo. The self-organizing map. Proceedings of the IEEE 78, 9 (1990),
1464–1480.

[50] Konidaris, George, Osentoski, Sarah, and Thomas, Philip. Value function approx-
imation in reinforcement learning using the fourier basis. In Twenty-Fifth AAAI
Conference on Artificial Intelligence (2011).

[51] Kruskal, Joseph B. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society 7, 1 (1956),
48–50.

[52] Kruskal, Joseph B., and Wish, Myron. Multidimensional scaling, vol. 11. Sage,
1978.

[53] LeCun, Yann, and Cortes, Corinna. The mnist database of handwritten digits, 1998.

[54] Lee, John Aldo, Verleysen, Michel, et al. How to project circular manifolds using
geodesic distances? In ESANN (2004), Citeseer, pp. 223–230.

[55] Lee, John M. Smooth manifolds. In Introduction to Smooth Manifolds. Springer,
2003, pp. 1–29.

[56] Levina, Elizaveta, and Bickel, Peter J. Maximum likelihood estimation of intrinsic
dimension. In Advances in neural information processing systems (2004), pp. 777–
784.

95

[57] Lin, Tong, and Zha, Hongbin. Riemannian manifold learning. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 30, 5 (2008), 796–809.

[58] Liu, Bo, Jing, Liping, Yu, Jian, and Li, Jia. Robust graph learning via constrained
elastic-net regularization. Neurocomputing 171 (2016), 299–312.

[59] Liu, R., Hao, R., and Su, Z. Mixture of manifolds clustering via low rank embedding.
Journal of Information & Computational Science 8 (2011), 725–737.

[60] Liu, Wei, and Chang, Shih-Fu. Robust multi-class transductive learning with graphs.
In Computer Vision and Pattern Recognition, 2009 (2009), IEEE, pp. 381–388.

[61] Liu, Wei, He, Junfeng, and Chang, Shih-Fu. Large graph construction for scalable
semi-supervised learning. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10) (2010), pp. 679–686.

[62] Ma, Y., and Fu, Y. Manifold Learning Theory and Applications. CRC Press, 2011.

[63] Maaten, Laurens van der, and Hinton, Geoffrey. Visualizing data using t-sne. Journal
of Machine Learning Research 9, Nov (2008), 2579–2605.

[64] Mahadevan, Sridhar, and Maggioni, Mauro. Proto-value functions: A laplacian
framework for learning representation and control in markov decision processes.
Journal of Machine Learning Research 8, 2169-2231 (2007), 16.

[65] Maier, Markus, Luxburg, Ulrike V, and Hein, Matthias. Influence of graph con-
struction on graph-based clustering measures. In Advances in neural information
processing systems (2008).

[66] Martinetz, Thomas, and Schulten, Klaus. Topology representing networks. Neural
Networks 7, 3 (1994), 507–522.

[67] Mekuz, Nathan, and Tsotsos, John K. Parameterless isomap with adaptive neigh-
borhood selection. In Pattern Recognition. Springer, 2006, pp. 364–373.

[68] Narayanan, Hariharan, and Mitter, Sanjoy. Sample complexity of testing the man-
ifold hypothesis. In Advances in Neural Information Processing Systems (2010),
pp. 1786–1794.

[69] Nene, Sameer A, Nayar, Shree K, and Murase, Hiroshi. Columbia object image
library (COIL-100). Tech. rep., CUCS-006-96, February 1996.

[70] Nene, Sameer A, Nayar, Shree K, Murase, Hiroshi, et al. Columbia object image
library (COIL-20). Tech. rep., CUCS-005-96, 1996.

[71] Ng, Andrew Y, Jordan, Michael I, Weiss, Yair, et al. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems 2 (2002), 849–
856.

96

[72] Nguyen-Tuong, Duy, and Peters, Jan. Model learning for robot control: a survey.
Cognitive processing 12, 4 (2011), 319–340.

[73] Pan, Sinno Jialin, and Yang, Qiang. A survey on transfer learning. Knowledge and
Data Engineering, IEEE Transactions on 22, 10 (2010), 1345–1359.

[74] Raina, Rajat, Battle, Alexis, Lee, Honglak, Packer, Benjamin, and Ng, Andrew Y.
Self-taught learning: transfer learning from unlabeled data. In Proceedings of the
24th international conference on Machine learning (2007), ACM, pp. 759–766.

[75] Roweis, S.T., and Saul, L.K. Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–232 (2000).

[76] Rowland, Todd. Manifold. From MathWorld—A Wolfram Web Resource. Last
visited on March 30, 2015.

[77] Sakoe, H., and Chiba, S. Dynamic programming algorithm optimization for spoken
word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on
26, 1 (1978), 43–49.

[78] Samko, Oksana, Marshall, A David, and Rosin, Paul L. Selection of the optimal
parameter value for the isomap algorithm. Pattern Recognition Letters 27, 9 (2006),
968–979.

[79] Saul, Lawrence K, and Roweis, Sam T. Think globally, fit locally: unsupervised
learning of low dimensional manifolds. The Journal of Machine Learning Research
4 (2003), 119–155.

[80] Shi, Jianbo, and Malik, Jitendra. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 22, 8 (2000), 888–905.

[81] Silva, Vin D, and Tenenbaum, Joshua B. Global versus local methods in nonlinear
dimensionality reduction. In Advances in neural information processing systems
(2002), pp. 705–712.

[82] Souvenir, R., and Pless, R. Manifold clustering. In Tenth IEEE International Con-
ference on Computer Vision (2005), vol. 1, IEEE, pp. 648–653.

[83] Sutton, Richard S, and Barto, Andrew G. Introduction to reinforcement learning.
MIT Press, 1998.

[84] Tarjan, Robert. Depth-first search and linear graph algorithms. SIAM journal on
computing 1, 2 (1972), 146–160.

[85] Tenenbaum, J. B., Silva, V. De, and Langford, J. C. A global geometric framework
for nonlinear dimensionality reduction. Science (2000).

[86] Tenenbaum, Joshua B. Mapping a manifold of perceptual observations. Advances
in neural information processing systems (1998), 682–688.

97

[87] Thorup, Mikkel. Undirected single-source shortest paths with positive integer
weights in linear time. Journal of the ACM (JACM) 46, 3 (1999), 362–394.

[88] Tipping, Michael E, and Bishop, Christopher M. Mixtures of probabilistic principal
component analyzers. Neural computation 11, 2 (1999), 443–482.

[89] Van der Maaten, Laurens, and Hinton, Geoffrey. Visualizing data using t-sne. Jour-
nal of Machine Learning Research 9, 2579-2605 (2008), 85.

[90] von Neumann, J. Functional operators. vol. ii. the geometry of orthogonal spaces,
volume 22 (reprint of 1933 notes) of annals of math. Studies. Princeton University
Press (1950).

[91] Vu, H.T., Carey, CJ, and Mahadevan, Sridhar. Manifold warping: Manifold align-
ment over time. In AAAI (2012).

[92] Wang, C., and Mahadevan, S. Manifold alignment using procrustes analysis. In Pro-
ceedings of the 25th international conference on Machine learning (2008), ACM,
pp. 1120–1127.

[93] Wang, C., and Mahadevan, S. Manifold alignment preserving global geometry. The
23rd International Joint conference on Artificial Intelligence (2013).

[94] Wang, Chang, and Mahadevan, Sridhar. A general framework for manifold align-
ment. In AAAI Fall Symposium on Manifold Learning and its Applications (2009),
pp. 53–58.

[95] Wang, Fei, and Zhang, Changshui. Label propagation through linear neighborhoods.
Knowledge and Data Engineering, IEEE Transactions on 20, 1 (2008), 55–67.

[96] Wang, Y., Jiang, Y., Wu, Y., and Zhou, Z.H. Multi-manifold clustering. In PRICAI
2010: Trends in Artificial Intelligence. Springer, 2010, pp. 280–291.

[97] Wang, Yong, Jiang, Yuan, Wu, Yi, and Zhou, Zhi-Hua. Local and structural con-
sistency for multi-manifold clustering. In IJCAI Proceedings-International Joint
Conference on Artificial Intelligence (2011), vol. 22, Citeseer, p. 1559.

[98] Wang, Yong, Jiang, Yuan, Wu, Yi, and Zhou, Zhi-Hua. Spectral clustering on mul-
tiple manifolds. Neural Networks, IEEE Transactions on 22, 7 (2011), 1149–1161.

[99] Weinberger, Kilian Q, and Saul, Lawrence K. Distance metric learning for large
margin nearest neighbor classification. The Journal of Machine Learning Research
10 (2009), 207–244.

[100] Wu, Yiming, and Chan, Kap Luk. An extended isomap algorithm for learning multi-
class manifold. In Machine Learning and Cybernetics, 2004. Proceedings of 2004
International Conference on (2004), vol. 6, IEEE, pp. 3429–3433.

[101] Yale, Paul B. Geometry and symmetry. Courier Dover Publications, 1968.

98

[102] Yan, Shuicheng, and Wang, Huan. Semi-supervised learning by sparse representa-
tion. In SDM (2009), SIAM, pp. 792–801.

[103] Yang, Bo, and Chen, Songcan. Sample-dependent graph construction with applica-
tion to dimensionality reduction. Neurocomputing 74, 1 (2010), 301–314.

[104] Yang, Liu, and Jin, Rong. Distance metric learning: A comprehensive survey. Michi-
gan State Universiy 2 (2006).

[105] Zemel, Richard S, and Carreira-Perpiñán, Miguel Á. Proximity graphs for cluster-
ing and manifold learning. In Advances in neural information processing systems
(2004), pp. 225–232.

[106] Zhang, Limei, Chen, Songcan, and Qiao, Lishan. Graph optimization for dimension-
ality reduction with sparsity constraints. Pattern Recognition 45, 3 (2012), 1205–
1210.

[107] Zhang, Zhenyue, Wang, Jing, and Zha, Hongyuan. Adaptive manifold learning.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 34, 2 (2012), 253–
265.

[108] Zhang, Zhenyue, and Zha, Hongyuan. Principal manifolds and nonlinear dimension
reduction via local tangent space alignment. arXiv preprint cs/0212008 (2002).

[109] Zhang, Zhenyue, and Zha, Hongyuan. Principal manifolds and nonlinear dimension-
ality reduction via tangent space alignment. SIAM Journal on Scientific Computing
26, 1 (2005), 313–338.

[110] Zhou, Dengyong, Bousquet, Olivier, Lal, Thomas Navin, Weston, Jason, and
Schölkopf, Bernhard. Learning with local and global consistency. Advances in
neural information processing systems 16, 16 (2004), 321–328.

[111] Zhou, Dengyong, Bousquet, Olivier, Lal, Thomas Navin, Weston, Jason, and
Schölkopf, Bernhard. Learning with local and global consistency. Advances in
neural information processing systems 16, 16 (2004), 321–328.

[112] Zhou, F., and De La Torre, F. Canonical time warping for alignment of human
behavior. Advances in Neural Information Processing Systems (NIPS) (2009).

[113] Zhu, Xiaojin, and Ghahramani, Zoubin. Learning from labeled and unlabeled data
with label propagation. Tech. rep., CMU-CALD-02-107, Carnegie Mellon Univer-
sity, 2002.

[114] Zhu, Xiaojin, Lafferty, John, and Rosenfeld, Ronald. Semi-supervised learning with
graphs. PhD thesis, Carnegie Mellon University, School of Computer Science, 2005.

99

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Challenges
	The Manifold Learning Process
	Contributions

	Related Work
	Manifold Learning
	Overview
	Dimensionality Reduction
	Semisupervised learning
	Value Function Approximation for Reinforcement learning
	Transfer learning
	Metric learning

	Manifold Discovery via Graph Construction
	Graphs and Their Properties
	Manifold Approximation Without Explicit Graphs
	Unsupervised (Classical) Graph Construction
	Neighborhood graphs

	Semisupervised Graph Construction
	Multiple Manifold Discovery

	Graph Quality Metrics for Approximating Manifolds
	Overview
	Ground Truth Comparison
	Manifold Learning Task Evaluation
	Task-Independent Graph Quality
	Graph-theoretic Properties
	Efficient Computation of Betweenness Centrality

	Differential Graph Quality
	Incremental Graph Construction
	The k Graph
	Incremental Geodesics Update
	Theoretical Analysis

	Betweenness Centrality Update
	Theoretical Analysis

	Combined Incremental Update
	Theoretical Analysis

	Experimental Results
	Ground Truth Evaluation: Swiss Roll
	Ground Truth Evaluation: Isomap Faces
	Task-Based Evaluation: Image Classification
	Task-Based Evaluation: Binaural Localization

	Discussion

	Manifold Spanning Graphs
	Motivation
	Hyperparameter Sensitivity
	The Algorithm
	Connectivity Forest and Subspace Construction
	Component Joining
	Edge Addition Post-processing

	Theoretical Analysis
	Experimental Results
	Parametric Swiss Roll
	MNIST digit clustering

	Discussion

	Mutual Neighbors Graph Construction
	Background
	Short Circuit Pruning with Mutual Neighbors

	Mutual Neighbors Graph Construction
	Candidate Edge Ranking
	Candidate Edge Generation
	Algorithm Analysis
	Demonstration

	Experimental Results
	Swiss Roll
	MNIST Digit Classification
	Semi-Supervised Learning Benchmarks

	Discussion

	Manifold Warping
	Background
	Manifold Alignment
	Dynamic Time Warping
	Canonical Time Warping

	Manifold Warping
	One-step algorithm
	Two-step algorithm

	Experimental Results
	Synthetic data sets
	COIL-100 data set
	Kitchen data set

	Discussion

	Conclusions and Future Work
	Summary
	Caveats
	Future Work
	Directed Graph Construction
	Nonlinear Metrics
	Active Manifold Discovery

	Bibliography

