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ABSTRACT

DATABASE USABILITY ENHANCEMENT
IN DATA EXPLORATION

SEPTEMBER 2017

YUE WANG

B.Sc., FUDAN UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Gerome Miklau and Professor Alexandra Meliou

Database usability has become an important research topic over the last decade. In

the early days, database management systems were maintained by sophisticated users like

database administrators. Today, due to the availability of data and computing resources,

more non-expert users are involved in database computation. From their point of view,

database systems lack ease of use. So researchers believe that usability is as important as

the performance and functionality of databases and therefore developed many techniques

such as natural language interface to enhance the ease of use of databases. In this thesis, we

find some deeper technical issues in database usability, so we look at several core database

technologies to further improve the ease of use of databases in two dimensions: we help

users process data and exploit computing capacities.

We start by helping users find the data. In the real world, public data is everywhere on

the Web, but it is scattered around. We extract a prototype relational knowledge base to

vi



solve this problem. We start from the most basic binary mapping relationships (sometimes

also named bridge tables) between entities from the web. This mapping relationship facili-

tates many data transformation applications such as auto-correct, auto-fill, and auto-join.

After finding the data, we help users explore the data. When users issue queries to

explore the data, their query results may contain too many items. So the system designer

has to present a small subset of representative and diverse items rather than all items. This

is known as the query result diversification problem. We propose the RC-Index, which

helps to solve the diversification problem by significantly reducing the number of items

that must be retrieved by the database to form a diverse set of a desired size. It is nearly an

order of magnitude faster than the state-of-the-art and has a good performance guarantee,

which improves the ease of use of databases in terms of querying.

Finally, we shift our focus from data to computing capacities. We propose a frame-

work to help users choose configurations in the cloud. Cloud computing has revolutionized

data analysis, but choosing the right configuration is challenging because the common pric-

ing mechanism of the public cloud is too complicated. Users have to consider low-level

resources to find the best plan for their computational tasks. To address this issue, we

propose a new market-based framework for pricing computational tasks in the cloud. We

introduce agents to help users configure their personalized databases, which improves the

ease of use of databases in the cloud.
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CHAPTER 1

INTRODUCTION

Since the invention of database management systems, databases have been used by so-

phisticated users like database administrators (DBAs) and professionals who process data

within large institutions. These large institutions have very big data and complex require-

ments so they hire highly skilled DBAs to manage databases. For example, institutions do

not have databases on their machines and clusters initially, so DBAs need to install and

configure databases first. Institutions usually have limited computing resources, so DBAs

must know how to assign disk space, memory, and CPU to databases and how to optimize

the performance. Institutions care about fault tolerance, so DBAs back up data periodically.

All the above tasks require the DBAs’ expertise.

In contrast with the high level of expertise with these sophisticated users, unsophis-

ticated users often outside large institutions have limited experience with databases but

are increasingly involved in database computation. There are two reasons. First, data is

more readily available and accessed by increasing number of non-experts. Today, data

is produced by more applications and activities. For example, social networks and online

shopping websites have captivated billions of users whose activities provide a large amount

of data every day. The Internet of Things makes data collection easier and cheaper. Even

an application developer may collect and analyze sensor data from wearable devices and

smartphones. In addition, more data is publicly available. Many governments and organi-

zations are publishing their data online, resulting in a “data democratization”. For example,

the federal government of the United States has established the “Data.Gov”1 website con-

1https://www.data.gov
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taining thousands of datasets to make the government more open and accountable. Another

well-known example is the Sloan Digital Sky Survey2 program that publishes terabytes of

relational data through a Web interface. Microsoft even builds an Azure data market to con-

nect data providers and users. Such ease of data collection and availability of data attract

users with different technical backgrounds, many of whom are unfamiliar with databases.

Second, computing capabilities offered by the public cloud brings availability of comput-

ing and cheap computing. Many large companies like Amazon, Google, and Microsoft are

providing cloud services to end users. Every individual today can build a database on a

virtual machine or cluster in the cloud. Cloud services are not expensive at all. For exam-

ple, Amazon Web Service gives a user 750 machine hours per month for free. If the user

runs out of the 750 machine hours, the cheapest virtual machine costs less than 1 cent per

hour. In summary, the availability and affordability of data and capabilities make the user

community much broader.

However, current database technology cannot support current users in all the above new

scenarios in which data analysis may occur. Users still face many challenges if they want

to utilize the available data and computing capacities. For instance, imagine an application

developer Bob who is implementing a restaurant recommendation application. Although

the Web is a rich resource of public data, he still has to browse the restaurant datasets online

and manually examine their quality. Although the public cloud service providers make

computational resources available to everyone, he is still confused about how to choose

the appropriate virtual machine for his task. Although the database is good at answering

various queries, he cannot find an easy way to query and present diverse restaurants in

his application. Similar problems arise for a lot of non-expert users such as analysts and

researchers from business and scientific fields. From their point of view, databases lack

ease of use.

2http://www.sdss.org
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The lack of ease of use of databases is a hurdle between users and today’s rich data/capacities,

hindering non-expert users from performing data analysis. Researchers have already devel-

oped more advanced interfaces like natural language interfaces to improve database usabil-

ity, but in addition to interfaces, we find some deeper technical issues that prohibit users

from doing data analysis. In this thesis, we consider core database technologies that fur-

ther enhance the ease of use of databases. We propose several new technologies in two

dimensions. First, we help users process democratized data. Second, we help users exploit

democratized computational capabilities.

In Chapter 2, we firstly help users find the data. In the real world, a relational dataset

can be incomplete or incorrect. Although we can see public data everywhere on the Web,

it is scattered around. For example, if a user wants to find a table of company names and

stock tickers like 〈Microsoft, MSFT〉 in the global mainstream stock markets, it is very

difficult to find a complete and accurate dataset. So the user has to search online and manu-

ally integrate this information from multiple websites. This process could be more painful

when multiple websites inconsistently represent the same or equivalent entities. In this

chapter, we extract a prototype relational knowledge base to solve this problem. We start

from the most basic binary mapping relationships (sometimes also named bridge tables)

between entities from the web. Given instances of mapping entities such as 〈Microsoft,

Redmond〉 and a query “Facebook”, we can return 〈Facebook, Menlo Park〉 as the result.

Our algorithm solves two challenges: (1) how to extract meaningful individual mapping

instances; (2) how to group them correctly. We compare our algorithm with existing al-

ternative approaches. The evaluation shows that our algorithm has greater precision and

recall.

In Chapter 3, we help users conveniently view the data through query result diversifica-

tion. The problem of returning diversified query results consists of finding a small subset

of valid query answers that are representative and different from one another, usually quan-

tified by a diversity score. Query result diversification is widely used in data exploration,

3



Web search, and recommendation systems. Most existing techniques for query diversifi-

cation first compute all query results and then find a diverse subset. They are inefficient

when one or more users repeatedly query a substantial number of items in a database. In

this chapter, we propose the RC-Index, which helps to solve the diversification problem by

reducing the number of items that must be retrieved by the database to form a diverse set

of a desired size. The RC-Index enables us to return a diverse set of, for example 25 items,

from a set of a million items within one second. To the best of our knowledge, this is the

first index-based method with guaranteed approximation ratio for range queries.

In Chapter 4, we improve the ease of use of publicly available computing capacity. The

availability of public computing resources in the cloud makes data analysis easier, but re-

questing cloud resources often involves complex decisions for consumers. Estimating the

completion time and cost of a computation and requesting the optimal cloud resources with

respect to time and cost are challenging tasks even for an expert user. A suboptimal request

of resources can make consumers miss the deadline or waste time or money. We propose

a new market-based framework for pricing computational tasks in the cloud. Our frame-

work introduces an agent between consumers and cloud providers. The agent takes data

and computational tasks from users, estimates time and cost for evaluating the tasks, and

returns to consumers contracts that specify the price and completion time. Our framework

can be applied directly to existing cloud markets without altering the way cloud providers

offer and price services. In addition, it simplifies cloud use for consumers by allowing

them to compare contracts, rather than choose resources directly. We present design, ana-

lytical, and algorithmic contributions focusing on pricing computation contracts, analyzing

their properties, and optimizing them in complex workflows. We conduct an experimen-

tal evaluation of our market framework over a real-world cloud service and demonstrate

empirically that our market ensures three key properties: (a) that consumers benefit from

using the market due to competitiveness among agents, (b) that agents have an incentive to

price contracts fairly, and (c) that inaccuracies in estimates do not pose a significant risk
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to agents’ profits. Finally, we present a fine-grained pricing mechanism for complex work-

flows and show that it can increase agent profits by more than an order of magnitude in

some cases.

In the following section we give a background discussion of this thesis.

1.1 Background

Databases play an important role in data analysis and data exploration. Many organiza-

tions and individuals deploy database management systems to collect data and perform data

analysis because of the expressiveness of its relational model and its good performance. For

example, many users query the database to look for patterns or trends interactively. They

issue queries and get responses within a few seconds to make business decisions. These

queries are known as analytical queries. When the data is small, even a spreadsheet appli-

cation like Office Excel can do the work. When the data size reaches gigabytes or terabytes,

only databases can answer queries efficiently thanks to many system optimizations. The

success of analytical query evaluation on big data results from the good performance and

functionality of databases.

However, performance and functionality alone are not enough to support data analysis.

Researchers have noticed that the usability of databases is as important as its performance

and functionality [83]. The study of usability dates back to 1970s. Early studies focus

on improving the querying interface. For example, researchers study Query-By-Example

[188], natural language query [142], form-based query [50, 33], and visual query [120].

Then more studies on database usability appear around 2000. For example, keyword search

allows users to query the database with a set of keywords [39, 27, 184, 29]; Query relaxation

returns results to users even when the user’s query is imprecise [8, 151]. There are also

studies on query recommendation, query explanation, query result visualization etc. Below

we review some general concepts of three areas of this thesis: mapping synthesis, query

result diversification, and cloud pricing.
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1.1.1 Mapping Synthesis

Data cleaning [133] is a common step in data analysis. In practice, data is often in-

complete, incorrect or inconsistent. For example, Li et al. [102] study the stock data from

multiple data sources like Yahoo! Finance, Google Finance, NASDAQ, Bloomberg, and

so on. They find that 83% data items are inconsistent, suggesting that real-world data may

have many mistakes. So users must perform certain data transformation to make data us-

able. They can utilize various techniques including erroneous value detection [163], entity

resolution [96, 62], schema matching [131], etc.

These techniques are not very user-friendly, so researchers have studied interactive tech-

niques to further make data cleaning easier for users. For example, Potter’s Wheel [135]

allows users to gradually build transformations through graphical operations or examples.

Ajax [56] helps users with interactive entity resolution. Wrangler [86] provides natural

language descriptions and visual transform previews in addition to interactive data trans-

formation.

Our mapping synthesis technique also attempts to facilitate data cleaning, with an em-

phasis on finding data for users. Specifically, we propose to extract and materialize map-

ping relationships for users. Mapping relationships are two-column tables like (zip-code,

city-name) and (state, state-abbreviation) that satisfy functional dependency. These map-

pings enable rich applications in data cleaning. For example, if some items of a restaurant

dataset miss city names but have zip codes, the mapping from zip code to city name can

help users complete the missing city names. This is a typical auto-fill scenario in data clean-

ing. Another example scenario is auto-correct. When a relational dataset mixes state names

and state abbreviations in a column, the mapping from state name to state abbreviation can

fix the inconsistency.
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1.1.2 Query Result Diversification

Diversification is a very common technique for visualizing query results, which en-

hances the ease of use of database. When a user queries the database, the query result may

have too many answers to be visually displayed. Diversification helps the system select a

representative diverse set of answers to present. For example, imagine a user who searches

restaurants in New York City on Google Map. Google will return fewer than 30 restaurants

at different locations, which is more informative than displaying all hundreds of restaurants

or displaying a few restaurants in the same street. So query result diversification is widely

used in Web search, data exploration, recommendation systems, and so on.

The diversification problem is an NP-hard optimization problem. A greedy polynomial

algorithm can provide a 1/2 approximation ratio. This is known as the best ratio that can

be achieved by polynomial algorithms unless P=NP [137]. However, this algorithm has to

retrieve all answers of the query result first, which can be very slow when the query result

covers millions of answers.

In order to shorten query evaluation time, we utilize indexes. When a table in the

database is very large, it is prohibitively slow to scan the entire table to find the answers of

a query. For example, given a table containing the salaries of employees, how can we find

the first 10 employees with the most salary? Scanning thousands of employees is obviously

unnecessary because the query result only has 10 answers. A better option is to build an

index on salary attribute. This index maintains a collection of links pointing to the items

and order the links according to the corresponding items’ salary values. So we can follow

the links to extract 10 answers one by one. Conventional indexes like B+ tree can answer

ORDER-BY queries or range queries. Indexing is a central topic in databases and has been

widely studied. In Chapter 3, we propose a novel index for query result diversification,

which significantly reduces the evaluation time.
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1.1.3 Cloud Pricing

Many researchers have attempted to improve the ease of use of cloud resources. Current

pricing models of the mainstream cloud providers are at the resource level: they charge

users based on how many resources the users consume. For example, Amazon RDS charges

based on the capacity and number of computational nodes per hour. A more powerful node

costs more per hour. This pricing mechanism guarantees profit for cloud providers but lacks

ease of use for users, because users can hardly understand how many resources are required

for their tasks. Floratou et al. [54] propose Benchmark as a Service to benchmark users’

workload and suggest the optimal resource configuration for repetitive execution. Tanaka et

al. [149] make cloud providers bid for service contracts under the VCG auction. Ortiz et al.

[125, 126] propose to classify user tasks into service tiers like (< 3.5 minutes, $1.20/hour,

SELECT 1 attribute FROM 1 table WHERE condition). All these pricing approaches make

cloud computing more convenient for users. We will introduce how our mechanism solves

some limitations of the existing approaches in Chapter 4.
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CHAPTER 2

SYNTHESIZING MAPPING RELATIONSHIPS FOR DATA
TRANSFORMATION

2.1 Introduction

Mapping tables, sometimes also referred to as bridge tables [94], are two-column tables

where each distinct value in the left column maps to a unique value in the right column

(or functional dependencies hold). Table 2.1 gives a few example mapping tables with

one-to-one mapping relationships. Table 2.2 shows additional examples with many-to-one

mappings.

Mapping tables like these are important data assets for a variety of applications such as

data integration and data cleaning. We briefly discuss three scenarios here.

Auto-correction. Real-world tables are often dirty, where inconsistent values may

be present in same columns. Table 2.3 shows such an example. The last column about

state are mixed with both full state names and state abbreviations. An intelligent data

quality agent, equipped with the mapping table in Table 2.1c, can easily detect and alert

users about such inconsistency, by discovering that values in the left and right column of

Table 2.1c are mixed in one user data column. Furthermore, it can automatically suggest

corrections based on the mapping relationship (e.g., correcting CA to California).

Auto-fill. In this example scenario in Table 2.4, a user has a list of city names.

She wants to add a column of state names corresponding to the cities. By just entering

a few example values (e.g., California for San Francisco), the system automatically

discovers the intent by matching existing value pairs with those in Table 2.2b, and can thus

suggest to automatically fill remaining values in the right column (grayed out in Table 2.4).
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Country	 Code	
United	States	 USA	

Canada	 CAN	
South	Korea	 KOR	

Japan	 JPN	
China	 CHN	
…	 …	

(a) ISO country codes

Ticker	 Company	
MSFT	 Microso+	Corp	
ORCL	 Oracle	
INTC	 Intel	
GE	 General	Electric	
UPS	 United	Parcel	Services	
…	 …	

(b) Stock tickers

State	 Abbrev.	
Alabama	 AL	
Alaska	 AK	
Arizona	 AZ	
Arkansas	 AR	
California	 CA	

…	 …	

(c) State abbreviations

Airport	Name	 IATA	
Los	Angeles	Interna.onal	Airport	 LAX	
San	Francisco	Interna.onal	Airport	 SFO	

Tokyo	Interna.onal	Airport	 HND	
London	Heathrow	Airport	 LHR	

Beijing	Capital	Interna.onal	Airport	 PEK	
…	 …	

(d) Airport IATA codes

Table 2.1: Example one-to-one mapping tables: (a) Countries to ISO codes, (b) Company
names to stock-tickers, (c) State names to abbreviations, (d) Airports to IATA-codes.

Model	 Make	
F-150	 Ford	

Mustang	 Ford	
Accord	 Honda	
Camry	 Toyota	
Charger	 Dodge	

…	 …	

(a) Car make and model

City	 State	
Chicago	 Illinois	

San	Francisco	 California	
Los	Angeles	 California	
Houston	 Texas	
Sea9le	 Washington	

…	 …	

(b) City and state

Table 2.2: Example many-to-one mapping tables: (a) Car makes and models, (b) Cities and
states.

ID	 Employee	 Residence	State	
2910	 Bren,	Steven	 California	
1923	 Morris,	Peggy	 Washington	
1928	 Raynal,	David	 Oregon	
2491	 Crispin,	Neal	 CA	
4850	 Wells,	William	 WA	
…	 …	 …	

Table 2.3: Auto-correction: correct incon-
sistent values (highlighted) using Table 2.1c.

City	 State	
San	Francisco	 California	

Sea/le	 Washington	
Los	Angeles	 California	
Houston	 Texas	
Denver	 Colorado	

…	 …	

Table 2.4: Auto-fill: automatically populate
values based on mappings from Table 2.2b.

Ticker	 Market	Cap	 Company	 Total	'89	-'13	 Dem	 Rep	
GE	 255.88B	 General	Electric	 $59,456,031		 41%	 58%	

WMT	 212.13B	 Walmart	 $47,497,295		 52%	 44%	
MSFT	 380.15B	 Oracle	 $34,216,308		 35%	 64%	
ORCL	 255.88B	 MicrosoG	Corp.	 $33,910,357		 48%	 50%	
UPS	 94.27B	 AT&T	Inc.	 $33,752,009		 47%	 51%	
…	 …	 …	 …	 …	 …	

Table 2.5: Auto-join: joining related tuples based on mappings from Table 2.1b.
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Auto-join. In data integration and ad-hoc data analysis, users often need to “join” two

tables together, whose key columns may have different representations. In Table 2.5 for

example, an analyst needs to join the left table that has stocks by their market capitalization,

with the right table that lists companies by their political contributions, to analyze potential

correlations. However a direct join is not possible since the subject column of the left

table is stock tickers, while the right table uses company names. A system equipped with

mapping tables would make the join possible by using Table 2.1b as an intermediate bridge

that performs a three-way join to connect these two user tables, without asking users to

provide an explicit mappings.

2.1.1 Solution Highlight

2.1.1.1 Synthesize Mapping Tables with Human Curation

In this work, we develop methods to automatically synthesize mapping relationships

from existing table corpora, where the goal is to generate as many high-quality mappings

as possible. Because algorithms are bound to make mistakes, additional human verification

and curation can be used to ensure very high precision (Section 2.4.3). The resulting map-

pings can then be utilized to enable the applications discussed above in a unified manner.

2.1.1.2 Why Pre-Compute Mappings

While there are separate solutions for auto-join and auto-fill problems (e.g., [72, 176]),

our approach has a few important advantages.

First, synthesized mappings are amenable to human inspection and curation, which is

critical to ensure very high quality. In attempting to commercialize technologies similar

to [72, 176] in enterprise spreadsheet software like Excel, the main feedback we received

is the trustworthiness of results produced by black-box algorithms. Algorithms with even

99% correctness is still unacceptable in the context of enterprise spreadsheets, because

any error introduced by algorithms would be difficult for users to detect, but is highly

embarrassing and damaging in enterprise settings.
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An analogy we would like to draw is the knowledge-bases used in search engines such

as Google and Microsoft Bing. Similar to our problem, the quality required for knowledge-

bases is also very high, so commercial knowledge bases are created in offline processes

that combine algorithmic automation with human curation. Mapping tables can be viewed

as the counterpart of knowledge bases in the relational world, where a similar curation

process may be needed because of the quality requirement. And like search engines that

have millions of users, spreadsheet software can reach millions of data analysts, such that

the cost of curating mappings can be amortized over a large user base to make the effort

worthwhile.

Second, synthesized mapping relationships can be materialized as tables, which are

easy to index and efficient to scale to large problems. For example, instead of perform-

ing expensive online reasoning over large table corpora for specific applications like auto-

join [72] and auto-fill [176], one could index synthesized mapping tables using hash-based

techniques (e.g., bloom filters) for efficiently lookup based on value containment. Such

logic is both simple to implement and easy to scale.

Lastly, mapping tables are versatile data assets with many applications. By solving

this common underlying problem and producing mapping tables as something that can be

easily plugged into other applications, it brings benefits to a broad class of applications

as opposed to requiring separate reasoning logic to be developed for different applications

(e.g., [72] for auto-join and [176] for auto-fill).

2.1.1.3 Why Synthesize Tables

Given table corpora such as HTML tables from web or spreadsheets from enterprises,

fragments of useful mapping relationships exist. For example, the country and country-ISO3-code

columns in Table 2.1a are often adjacent columns in same tables on the web. As such, an

alternative class of approaches is to “search” tables based on input values and then ask

users to select relevant ones (e.g., Google Web Tables [61], Microsoft Power Query [116],
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and DataXFormer [1]). However, because desired values pairs often span across multiple

tables, users frequently need to search, inspect and understand table results, before manu-

ally piecing them together from multiple tables. Our experience suggests that this process

is often too cumbersome for end users.

Mappings synthesized from multiple tables, on the other hand, take away the com-

plexity and make it easy for end users. More specifically, synthesized mappings have the

following benefits.

• Completeness. In many cases one table only covers a small fraction of mappings in the

same relationship. For example, while there exist thousands of airports, a web table like

Table 2.1d often lists only a small fraction of popular airports. Stitching together tables in

the same relationship provides better coverage and is clearly desirable.

• Synonymous mentions. Each individual table from a table corpus typically only has one

mention for the same entity. For example, Table 2.1a has South Korea and KOR. In reality

different tables use different but synonymous names. Table 2.6 shows real results synthe-

sized from many web tables, which has different synonyms of South Korea. Similarly the

right part has many synonyms for Congo. Note that a specific synonym of South Korea

may not necessarily co-occur with another synonym of Congo in the same web table, and

the probability of co-occurrence in conjunction with synonyms of additional countries is

even lower. However, any combination of these synonyms may actually be used in user

tables that may require auto-join or auto-fill. Using single tables as mappings would not

provide sufficient coverage in these cases. On the other hand, if all these synonyms are syn-

thesized together as one table like in Table 2.6, then any combination of these synonyms

can still be covered without requiring users to perform manual synthesis from multiple

tables.

• Spurious mappings. Certain mappings that appear to hold locally in single tables

may not be meaningful. For example, a random table listing departure-airport and

arrival-airport may happen to have values observe functional dependency at the in-
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Country	 Code	 Country	 Code	
Korea	(Republic)	 KOR	 Congo	(Democra6c	Rep.)	 COD	
Korea	(South)	 KOR	 Congo	(Demographic	Republic	of)	 COD	

KOREA	REPUBLIC	OF	 KOR	 Congo,	Democra6c	Republic	of	the	 COD	
Korea,	Republic	of	 KOR	 CONGO,	DEMOCRATIC	REPUBLIC	OF	(WAS	ZAIRE)	 COD	

Korea,	Republic	of	(South	Korea)	 KOR	 Congo,	Democra6c	Republic	of	the	(Congo	&	Kinshasa)	 COD	
Korea,	South	 KOR	 Congo,	The	Democra6c	Republic	of	 COD	

Republic	of	Korea	 KOR	 CONGO,	THE	DRC	 COD	
South	Korea	 KOR	 Democra6c	Republic	of	Congo	 COD	

…	 …	 …	 …	

Table 2.6: Examples from a synthesized mapping relationship (country,
country-ISO3-code) using real web tables. The left table shows examples of syn-
onyms for the country South Korea, all of which map to the same code KOR. The right
table shows similar examples for Congo.

stance level. However, at a conceptual level this is not a useful mapping. Such a spurious

mapping, when indexed from single tables, can trigger false-positive results for applications

like auto-correct and auto-join. A holistic analysis of global relationships are necessary to

identify true mappings from spurious ones.

2.1.1.4 Existing Approaches

Given that table synthesis is needed to assist human curation, we look at existing tech-

niques that can be used here.

Union tables. Ling and Halevy et al. studied the problem of stitching together web

tables in the same web-domain (where tables are more homogeneous) based on meta data

such as column names [107]. While the technique is not designed to synthesize relation-

ships from a large heterogeneous corpus, it is the only work we are aware of that performs

table synthesis from corpora. We will show that adapting this to a large corpus of hetero-

geneous tables will fail, because column names are often undescriptive [37] that leads to

over-grouping and low-quality mappings. For example, in Table 2.1a, the column name

for countries are often just name, and the column name for country-codes may be code.

As a result, grouping by column names tends to lump this table with other name-to-code

mappings. Our approach reasons about compatibility of tables based on values, which are

more reliable in telling the true relationships.
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Schema matching. There is a long and fruitful line of research on schema matching

that suggests possible mappings between table columns [132]. However, schema match-

ing is typically used in database contexts for a small number of schemas, and produces

pair-wise matches for human users to evaluate. In our problem we are given hundreds

of millions of schemas as input, for which pairwise human verification is infeasible, and

aggregation of pairwise decisions to a group level is necessary for human curation. Further-

more, since we are only interested in mapping relationships, which are a specific type of

tables that always observe functional dependencies, we can derive additional negative in-

compatibility induced by FDs that is not explored by schema matching. For example, there

are multiple country-to-code relationships such as (country → ISO3-country-code),

(country→ FIFA-country-code), (country→ IOC-country-code), etc, all of which

share substantial value overlap as well as similar column names. Schema matching tech-

niques would identify them as matches and merge them incorrectly, whereas we would

prevent the synthesis because of the FD-based incompatibility. Considering both positive

and negative signals is critical for high-quality synthesis at a large scale.

Knowledge base. Knowledge bases (KB) such as Freebase [17] and YAGO [146]

have important entity-relationships that can be viewed as synthesized (semi-automatically)

from different sources. However, many mappings are missing from KB. For instance,

YAGO has none of the example mappings listed in Table 2.1 (all of which are com-

mon mappings), while Freebase misses two (stocks and airports). Furthermore, for map-

pings that do exist in KB, they typically do not have synonyms like the ones in Ta-

ble 2.6. Lastly, KB have limited coverage beyond the public web domain, such as mapping

(cost-center-name→ cost-center-code) that is specific to enterprises domains.

2.1.1.5 Contribution

Observing that mapping relationships are well-represented in tables, we propose to

automatically synthesize mapping relationships using table corpora. We formalize this
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Figure 2.1: Solution overview with three main steps: (1) Extract candidate two-column-
tables; (2) Synthesize related tables; (3) Resolve conflicts in the same relationship.

as an optimization problem that maximizes positive compatibility between tables while

respecting constrains of negative compatibility imposed by functional dependencies. We

show a trichotomy of complexity for the resulting optimization problem, and develop an

efficient algorithm that can scale to large table corpus (e.g., 100M tables). Our evaluation

using real table corpora suggests that the proposed approach can synthesize high quality

mapping tables.

2.2 Solution Overview

In this section, we first introduce notions like mapping relationships and table corpora

necessary for discussions. We then give a high-level overview of our synthesis solution.

2.2.1 Preliminaries

2.2.1.1 Mapping Relationships

. The goal of this work is to discover mapping relationships. Specifically, we focus on

binary mappings involving two attributes.

Definition 2.2.1. Let R be a conceptual relation with two attributes X ,Y . The relationship

is a mapping relationship, denoted by M(X ,Y ) or X → Y , if for all x ∈ X, x functionally

determines one and precisely one value y ∈ Y .
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Examples of mapping relationships include (country→ country-code) and (company

→ stock-ticker) as shown in Table 2.1 and Table 2.2. There is a mapping relationship

between attributes country and country-code, for instance, since value in one attribute

is uniquely associated with precisely one value in the other attribute.

Note that this is closely related to functional dependency (FD), traditionally defined

over one physical table. We make the distinction to define mappings as conceptual rela-

tionships that can be represented in multiple tables, but may never be fully embodied in one

physical table (e.g., the synthesized mapping shown in Table 2.6 with both South Korea

and Korea (South) would not occur in one table).

Existing FD discovery work mainly focuses on efficiency (e.g., [79]), because it is

intended for interactive data exploration on ad-hoc data sets. However, in our problem the

key challenge is to produce high-quality synthesis of tables to assist human curation, where

efficiency is not as important because the corpus is given a priori and synthesis can be run

as offline jobs.

For cases where both X → Y and Y → X are mapping relationships, we call such bi-

directional relationships 1:1 mappings (examples are in Table 2.1). If the mapping relation-

ship only holds in one direction, then it is an N:1 mapping (Table 2.2).

It is worth noting that in practice, because of name ambiguity, functional relationship

in some mappings may appear to only hold approximately. For example, city→ state

is conceptually a mapping relationship. However, when entities are represented as strings,

the functional relationship may not completely hold. For example, in the same table there

may be a city called Portland in the state of Oregon, and another city Portland in the

state of Maine, thus giving the appearance of violating FD. To take such name ambigu-

ity into account, we consider relationships whose surface forms are approximate mapping

relationships.

Definition 2.2.2. Let R be a conceptual relation with two attributes X ,Y . The relationship

is a θ -approximate mapping relationship, denoted by Mθ (X ,Y ) or X→θ Y , if there exists a
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subset R⊂ R with |R| ≥ θ |R|, in which all x ∈ X functionally determines one and precisely

one value y ∈ Y .

We consider approximate mappings with θ over 95%. Hereafter we will simply use

mapping relationship to refer to its θ -approximate version when the context is clear.

2.2.1.2 Table Corpora

The only input to our problem is a corpus of tables.

Definition 2.2.3. A table corpus T = {T} is a set of relational tables T , each of which

consists of a set of columns, or written as T = {C1,C2, ...}.

Today relational tables are abundant and are very rich in nature. In this study, we use a

corpus of 100M tables extracted from the Web, and a corpus of 500K tables extracted from

spreadsheet files crawled from the intranet of a large enterprise.

2.2.2 Solution Overview

Our approach has three main steps, as shown in Figure 2.1.

• Step 1: Candidate Extraction. This step starts by exhaustively extracting pairs of

columns from all tables in the corpus as candidates for synthesis. For each table T =

{C1,C2, ...,Cn} with n columns, we can extract 2
(n

2

)
such ordered pairs. However, many

column pairs are not good candidate for mapping relationships because (1) for some col-

umn pair if the local relationship is already not functional, then it is unlikely to participate

in true mappings; and (2) some table columns are of low quality and are not coherent

enough (e.g., with mixed concepts). To address these issues, we use FD constraints as well

as value-based co-occurrence statistics to prune away low-quality candidate tables.

• Step 2: Table Synthesis. In this step, we judiciously synthesize two-column tables

that describe the same relationship and are compatible with each other. The reason this is

necessary is because many web tables and spreadsheets are for human consumption [107],
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Home	Team	 Away	Team	 Date	 Stadium	 Loca3on	
Chicago	Bears	 Greenbay	Packers	 10-12	 Soldier	Field	 Chicago,	IL	60605	
Detroit	Lions	 Minnesota	Vikings	 10-12	 Ford	Field	 Detroit,	MI	
Detroit	Lions	 Greenbay	Packers	 10-19	 Ford	Field	 Detroit,	MI	

Minnesota	Vikings	 Chicago	Bears	 10-19	US	Bank	Stadium	 Minneapolis	
Greenbay	Packers	 Minnesota	Vikings	 10-26	 Lambeau	Field	 1265	Lombardi	Ave	

…	 …	 …	 …	 …	

Table 2.7: An example input table. Candidate two-column tables can be extracted using
both PMI and FD filtering.

and as a result contain only a subset of instances for the ease of browsing. Furthermore, one

table in most cases mentions an entity by one name; synthesis helps to improve coverage

of synonyms that are important for many applications.

• Step 3: Conflict Resolution. Because results from table synthesis piece together many

tables, some of which are bound to have erroneous values inconsistent with others, namely

two pairs of values in the same mapping with the same left-hand-side value but different

right-hand-side (thus violating the definition of mappings). These can often happen due to

quality issues or extraction errors. We apply a post-processing step to resolve conflicts in

synthesized mapping relationships to produce our final results.

2.3 Candidate Table Extraction

In this section we briefly describe the preprocessing of tables. Recall that in this work

we focus on synthesizing binary mapping relationships. We start with two-column tables

extracted from an existing table corpus. Given a table T = {C1,C2, ...Cn} with n columns,

we can extract binary tables with pairs of columns {(Ci,C j)|i, j ∈ [n], i 6= j}, for a total of

2
(n

2

)
such column pairs. For example, in Figure 2.7, we can conceptually extract all pairs of

columns such as (Home Team, Away Team), (Home Team, Date), (Home Team, Stadium),

(Home Team, Location), etc.

Because not all these pairs are meaningful mappings, we filter out candidates with a

coherence-based filtering and a local FD based filtering.

19



2.3.1 Column Filtering by PMI

When given a large table corpus (especially web tables), some tables are inevitably

of low quality. Quality issues can arise because (1) columns may be mis-aligned due to

extraction errors (especially for complicated tables like pivot table and composite columns);

or (2) some table columns just have incoherent values.

In both of these cases, the resulting table column will appear to be “incoherent” when

looking at all values in this column. For example, the last column Location in Table 2.7

have mixed and incoherent values. We would like to exclude such columns from consider-

ation for mapping synthesis.

Therefore we measure the coherence of a table column based on semantic coherence

between pairs of values. We apply a data-driven approach to define coherence based on co-

occurrence statistics in a corpus. Let s(u,v) be the coherence between two values u and v.

Define C (u) = {C|u ∈C,C ∈ T,T ∈ T } as the columns in the table corpus T containing

value u, and define C (v) similarly. Clearly, if C (u)∩C (v) is a large set, it means u and

v are co-occurring frequently (e.g., u = USA and v = Canada). Then they intuitively are

highly related and thus should have a high semantic coherence score.

We use Point-wise Mutual Information (PMI) [35] to quantify the strength of co-occurrence

as a proxy for coherence.

PMI(u,v) = log
p(u,v)

p(u)p(v)
(2.1)

Where p(u) and p(v) are the probabilities of seeing u and v from a total of N columns

in a table corpus T , defined as p(u) = |C (u)|
N , p(v) = |C (v)|

N and p(u,v) = |C (u)∩C (v)|
N .

Example 2.3.1. Let u =USA and v = Canada. Suppose N = 100M (there are a total of

100M columns), |C (u)|= 1000, |C (v)|= 500, and |C (u)∩C (v)|= 300 (individually, the

two strings occur 1000 and 500 times respectively; together they co-occur 300 times). It

can be calculated that PMI(u,v) = 4.78 > 0, suggesting that they have high co-occurrence

and strong semantic coherence.
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We define coherence of two values, denoted by s(u,v), as a normalized version of PMI

called Normalized PMI (NPMI), which has a range of [−1,1]:

s(u,v) = NPMI(u,v) =
PMI(u,v)
− log p(u,v)

Using s(u,v), the coherence score of a column C = {v1,v2, ...}, denoted as S(C), is

simply the average of all pair-wise scores.

S(C) =
∑vi,v j∈C,i< j s(vi,v j)(|C|

2

) (2.2)

We can then filter out a column C if its coherence S(C) is lower than a threshold.

Example 2.3.2. Table 2.7 is an example table with five columns. Column coherence com-

puted using NPMI in Equation (2.2) would reveal that the first four columns all have high

coherence scores, because values in these columns co-occur often in the table corpus.

The last column Location, however, has low coherence, because values in this column

are mixed and do not co-occur often enough in other columns. We will remove this column

when generating column pairs.

2.3.2 Column-Pair Filtering by FD

After removing individual columns with low coherence scores, we use the resulting

table T = {C1,C2, ...,Cn} to generate binary tables with ordered column pairs B(T ) =

{(Ci,C j)| i, j ∈ [n], i 6= j} as candidate tables. However, most of these two-column ta-

bles do not express meaningful mapping relationships, such as (Home Team, Away Team),

and (Home Team, Date) in Table 2.7.

Since our goal is to produce mapping relationships, we apply local FD checking to

prune away column pairs unlikely to be mappings. As discussed in Definition 2.2.3 we

account for name ambiguity (like (Portland → Oregon) and (Portland → Maine)) by

allowing approximate FD that holds for 95% of values.
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Example 2.3.3. Continue with Example 2.3.2, we have pruned away the last column Location

from Table 2.7 based on coherence scores. Four columns remain, for a total of 2
(4

2

)
= 12

ordered column pairs. Only 2 out of the 12 column pairs satisfy FD, namely, (Home Team,

Stadium) and (Stadium, Home Team).

We note that around 78% candidates can be filtered out with these methods. Algo-

rithm 1 gives the pseudo-code for candidate table extraction. The two steps correspond to

PMI-based filtering and FD-based filtering, respectively.

Algorithm 1: Candiate Extraction
Input: Table corpus T
Output: Candidate two-column table set B

1 B⇐ /0
2 foreach T ∈T do
3 T ′⇐ /0
4 foreach Ci ∈ T do
5 if Ci is not removed by PMI filter then
6 T ′⇐ T ′∪{Ci}

7 foreach Ci,C j ∈ T ′ (i 6= j) do
8 B⇐ (Ci,C j)
9 if B is not removed by FD filter then

10 B⇐B∪{B}

2.4 Table Synthesis

Using candidate two-column tables produced from the previous step, we are now ready

to synthesize relationships. Recall that synthesis provides better coverage for instances

(e.g., synonyms) as discussed in the introduction.

2.4.1 Compatibility of Candidate Tables

In order to decide what candidate tables should be stitched together and what should

not, we need to reason about compatibility between tables.
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Figure 2.2: Mappings from Wikipedia1 for country names and three types of country codes:
IOC, FIFA, and ISO. The three have identical codes for many countries, but also different
ones for many others (in red circles).

Country	 IOC	
Afghanistan	 AFG	
Albania	 ALB	
Algeria	 ALG	

American	Samoa	 ASA	
South	Korea	 KOR	

US	Virgin	Islands	 ISV	

(a) B1: IOC-(1)

Country	 IOC	
Afghanistan	 AFG	
Albania	 ALB	
Algeria	 ALG	

American	Samoa	(US)	 ASA	
Korea,	Republic	of	(South)	 KOR	
United	States	Virgin	Islands	 ISV	

(b) B2: IOC-(2)

Country	 ISO	
Afghanistan	 AFG	
Albania	 ALB	
Algeria	 DZA	

American	Samoa	 ASM	
South	Korea	 KOR	

US	Virgin	Islands	 VIR	

(c) B3: ISO

Table 2.8: Example two-column binary tables for synthesis: (a) Countries and IOC codes,
(b) Countries and IOC codes, where some countries use alternative synonyms compared
to the first table, (c) Countries and ISO codes, where the code for some country can be
different from the first two tables.

2.4.1.1 Positive Evidence for Compatibility

Let B = {(li,ri)} and B′ = {(l′i ,r′i)} be two binary relationships produced by the pre-

vious step, each with sets of (left, right) value pairs. If these two relations share many

common value pairs, or |B∩B′| is large, they are likely in the same relationship and com-

patible for synthesis.

Let w+(B,B′) be the positive compatibility between B and B′. We would like to use set-

based similarity to quantify compatibility based on the overlap |B∩B′|. However, common

metrics like Jaccard Similarity, defined as |B∩B′|
|B∪B′| , would not work because if one small rela-

1https://en.wikipedia.org/wiki/Comparison_of_IOC,_FIFA,_and_ISO_3166_country_

codes
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tion is fully contained by another (B⊃ B′, |B| � |B′|), the compatibility should intuitively

be high, but the Jaccard Similarity score would actually be low.

Containment metrics would mitigate this issue, but Jaccard Containment is asymmetric

– we want it to be symmetric because both the compatibility of B, B′ and the compat-

ibility of B′, B are essentially the same thing (w+(B,B′) = w+(B′,B)). Given these we

use a symmetric variant of Jaccard Containment called Maximum-of-Containment [19] for

w+(B,B′):

w+(B,B′) = max{|B∩B′|
|B| ,

|B∩B′|
|B′| } (2.3)

Example 2.4.1. Table 2.8 shows three two-column candidate tables, B1, B2 and B3, re-

spectively. The first two are for the IOC code, while the last is for a different ISO code.

All of these three are valid mappings but are for two different country-code standards, as

explained in Figure 2.2.

Using Equation (2.3), we can compute the positive compatibility between each pair of

tables. For example, we have w+(B1,B2) = max{3
6 ,

3
6} = 0.5, because |B1∩B2| = 3 (the

first three rows), suggesting that the two tables share a significant fraction of mappings and

are likely to be compatible for synthesis.

Efficiency. Although conceptually compatibility scores can be computed for all pairs

of candidates, in reality most tables share no common values, and will have a score of 0.

A practical issue here is that given N total candidate tables, we need to perform O(N2)

expensive containment computations. With millions of tables, this quadratic step is too

expensive even for large Map-Reduce clusters.

In reality we observe that the scores for most pairs of tables are zero since they share

no overlapping values at all. For example, Table 2.1a is about countries and Table 2.1b is

about stock tickers. They have no overlaps in value-pairs, so both positive and negative

weights are 0. Computing scores for these non-overlapping sets is clearly wasteful.

To address this problem, we use inverted-index-like regrouping in a Map-Reduce round

to map all tables sharing at least some common value-pairs to the same partition, so that
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compatibility is computed only for pairs of tables within each partition. Specifically, we

evaluate w+(B,B′) only if B and B′ share more than θoverlap value pairs (both left and right

values), and similarly we evaluate w−(B,B′) only if B and B′ share more than θoverlap left-

hand-side values. In practice, the number of non-zero weighted edges is much smaller than

N2. This optimization makes it possible to scale the pair-wise computation step to hundreds

of millions of tables.

Approximate String Matching: In real tables, values from different tables often have

slight variations, such as “Korea, Republic of” & “Korea Republic”, or “American Samoa”

& “American Samoa (US)”. In practice, there are other extraneous information in table

cells, such as the footnote mark “[1]” in the fourth row in Figure 2.2. These artificially

reduce positive compatibility and in some cases increase negative compatibility between

tables, which is undesirable.

To account for such minor syntactic variations, we use approximate string matching

between cell values. Specifically, we measure the Edit Distance, denoted as ded(v1,v2),

between a pair of values v1 and v2. We treat v1 and v2 as a match if ded(v1,v2) is smaller than

a threshold θed . Here we use a fractional threshold defined as θed = min{b|v1| · fedc,b|v2| ·

fedc}, which is dynamically determined based on the length of string |v1|, |v2|, and a fixed

fractional value fed (e.g., 0.2). We choose to use a fractional distance instead of an absolute

distance, because the desired edit distance should change based on the length of values. For

example, for short values such as “USA” or “RSA” (for South Africa), any absolute distance

threshold ≥ 1 would incorrectly match the two. Fractional threshold on the other hand

would require an exact match for short strings like these. We further restrict the threshold

to be within some fixed threshold ked = 10 to safeguard false positives. Combining, we use

θed(v1,v2) = min{b|v1| · fedc,b|v2| · fedc,ked}.

Example 2.4.2. We continue with Example 2.4.1 in Table 2.8. When using approximate

matching for positive compatibility, w+(B1,B2) will now be updated to max{4
6 ,

4
6}= 0.67.

This is because in addition to the first three matching rows between B1 and B2, now the
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fourth row “American Samoa” and “American Samoa (US)” will also be considered as a

match, as the Edit Distance between the two values is 2 (ignoring punctuations), which is

no greater than θed = min{b13 ·0.2c,b15 ·0.2c,10}= 2.

Efficiency. There are hundreds of millions of table pairs for which we need to compute

compatibility. Let m and n be the numbers of values in a pair of tables. For each pair we

need to make O(nm) approximate string comparisons, each of which is in turn O(|v1||v2|)

when using conventional dynamic programming on the full matrix. This is too expensive

even for production Map-Reduce clusters.

Our observation is that the required edit distance threshold θed is small in most cases.

So using ideas similar to the Ukkonen’s algorithm [153], we only compute DP on the nar-

row band in the diagonal direction of the matrix, which makes it O(θed ·min{|v1|, |v2|}).

Since θed is small it makes this step feasible. The algorithm for efficient approximate

string matching is shown in Algorithm 2. We leverage the fact that the desired distance θed

is often small to only perform dynamic programming on a narrow band in the diagonal di-

rection of the matrix instead of performing a full DP, which is in spirit similar to Ukkonen’s

algorithm [153].

Synonyms: In some cases, synonyms of entity names may be available, e.g., using

existing synonym feeds such as [26]. If we know, for instance, “US Virgin Islands” and

“United States Virgin Islands” are synonyms from external sources, we can boost positive

compatibility between B1 and B2 in Table 2.8 accordingly.

2.4.1.2 Negative Evidence for Incompatibility

Positive evidence alone is often not sufficient to fully capture compatibility between

tables, as tables of different relationships may sometimes have substantial overlap. For

example, it can be computed that the positive compatibility between B1 in Table 2.8a and

B3 Table 2.8c is max{3
6 ,

3
6} = 0.5 (the first, second and fifth rows match). Given the high

score, the two will likely merge incorrectly (note that one is for IOC code while the other is
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Algorithm 2: Approximate String Matching
Input: Strings v1 and v2, distance bound θed
Output: Boolean Matched

1 if |v1|> |v2| then
2 swap(v1,v2)

3 dist|v1|,|v2|⇐ ∞

4 disti,0⇐ i, ∀(i ∈ 0..|v1|)
5 dist0, j⇐ j, ∀( j ∈ 0..|v2|)
6 for i ∈ 1..|v1| do
7 lower⇐max{1, i−θedit}
8 upper⇐min{|v2|, i+θedit}
9 for j ∈ lower..upper do

10 disti, j⇐ ∞

11 if disti−1, j 6= NULL then
12 disti, j⇐min{disti−1, j +1,disti, j}
13 if disti, j−1 6= NULL then
14 disti, j⇐min{disti, j−1 +1,disti, j}
15 if disti−1, j−1 6= NULL then
16 disti, j⇐min{disti−1, j−1 +1{v1[i] 6= v2[ j]},disti, j}

17 Matched⇐ (dist|v1|,|v2| ≤ θed)

for ISO). This issue exists in general when one of the columns is short and ambiguous (e.g.

codes), or when one of the tables has mixed values from different mappings (e.g., both city

to state and city to country).

We observe that in these cases the two tables actually also contain conflicting value

pairs, such as the third and fourth row in the example above where the two tables have the

same left-hand-side value, but different right-hand-side values. This violates the definition

of mapping relationship, and is a clear indication that the two tables are not compatible,

despite their positive scores.

We thus introduce a negative incompatibility between tables. Given two tables B and

B′, define their conflict set as F(B,B′) = {l|(l,r)∈ B,(l,r′)∈ B′,r 6= r′}, or the set of values

that share the same left-hand-side but not the right-hand-side. For example, between B1 in

Table 2.8a and B3 Table 2.8c, (Algeria, ALG) and (Algeria, DZA) is a conflict.
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To model the (symmetric) incompatibility between two tables B and B′, we define a

negative incompatibility score w−(B,B′) similar to positive compatibility in Equation (2.3):

w−(B,B′) =−max{|F(B,B
′)|

|B| ,
|F(B,B′)|
|B′| } (2.4)

Example 2.4.3. We continue with Example 2.4.2 in Table 2.8. As discussed earlier, the

positive compatibility between B1 in Table 2.8a and B3 in Table 2.8c is max{3
6 ,

3
6} = 0.5,

which is substantial and will lead to incorrect merges between two different relationships

(IOC and ISO).

Using negative incompatibility, we can compute w−(B1,B3) as −max{3
6 ,

3
6} = −0.5,

since the third, forth and sixth rows conflict between the two tables, and both tables have 6

rows. This suggests that B1 and B3 have substantial conflicts, indicating that a merge will

be inappropriate.

In comparison, for B1 in Table 2.8a and B2 in Table 2.8b, which talk about the same

relationship of IOC, their conflict set is empty and w−(B1,B2) = 0, indicating that we do

not have negative evidence to suggest that they are incompatible.

2.4.2 Problem Formulation for Synthesis

We use a graph G = (B,E) to model candidate tables and their relationships, where

B is the union of all binary tables produced in the preprocessing step in Section 2.3. In G

each vertex represents a table B ∈B. Furthermore, for each pairs of vertices B,B′ ∈B,

we use compatibility scores w+(B,B′) and incompatibility scores w−(B,B′) as the positive

and negative edge weights of the graph.

Example 2.4.4. Given the tables B1, B2 and B3 in Table 2.8, we can represent them and

their compatibility relationships as a graph as in Figure 2.3(a).

As discussed in Example 2.4.2, the positive compatibility between w+(B1,B2) = 0.67,

which is shown as solid edge with positive weight in this graph. Similarly we have negative
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edge weights like w−(B1,B3) = −0.5 as discussed in Example 2.4.3. This graph omits

edges with a weight of 0, such as w−(B1,B2).

Since we need to synthesize compatible tables into larger mapping relationships, in

the context of graph G we need to group compatible vertices/tables together. This naturally

corresponds to a partitioning P = {P1,P2, ...} of B, where each Pi⊆B represents a subset

of tables that can be synthesized into one relationship. Since different partitions correspond

to distinct relationships, the partitioning should be disjoint (Pi ∩Pj = /0, i 6= j), and they

should collectively cover B, or
⋃

P∈P P = B.

Intuitively, there are many ways to partition B disjointly, but we want to find a good

partitioning that has the following desirable properties: (1) compatible tables are grouped

together as much as possible to improve coverage of individual mapping relationships; and

(2) incompatible tables should not be placed in the same partition.

We translate these intuitive requirements into an optimization problem. First, we want

each partition P to have as many compatible tables as possible. Let w+(P) be the sum of

positive compatibility in a partition P:

w+(P) = ∑
Bi,B j∈P,i< j

w+(Bi,B j)

We want to maximize the sum of this score across all partitions, or ∑P∈P w+(P). This is

our optimization objective.

On the other hand, we do not want to put incompatible tables with non-trivial w− scores,

such as B1 and B3 in Example 2.4.4, in the same partition. Since we disallow this to happen,

we treat edges with negative scores w− below a threshold τ as hard-constraints. Note that

a negative threshold τ (e.g., −0.2) is used in place of 0 because we do not over-penalize

tables with slight inconsistency due to minor quality and extraction issues. We ignore the

rest with insignificant negative scores by essentially forcing them to 0. Let w−(P) be the

sum of substantial negative weights in P defined below.
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w−(P) = ∑
Bi,B j∈P,w−(Bi,B j)<τ

w−(Bi,B j)

We use this as a constraint of our formulation – we want no edges in the same partition to

have substantial conflicts, or, w−(P) = 0,∀P ∈P .

Putting these together, we formulate table synthesis as follows.

Problem 2.4.5 (Table Synthesis).

max ∑
P∈P

w+(P) (2.5)

s.t. ∑
P∈P

w−(P) = 0 (2.6)

Pi
⋂

Pj = /0, ∀Pi 6= Pj (2.7)⋃
P∈P

P = B (2.8)

By placing compatible tables in the same partition, we score more in the objective func-

tion in Equation (2.5), but at the same time Equation (2.6) guarantees that no conflicting

negative edge can be in the same partition. Equation (2.7) and (2.8) are used to ensure that

P is a proper disjoint partitioning.

Example 2.4.6. We revisit the example in Figure 2.3(a). Using the formulation above, it

can be verified that the best partitioning is {{B1,B2}, {B3,B4,B5}}, which groups two ISO

tables and three IOC tables into separate partitions. This partitioning has a total score of

2.77 based on Equation (2.5), without violating constraints in Equation (2.6) by not placing

negative edges in the same partition.

It is worth noting that existing techniques like schema matching [132] only consider

positive similarity (because FD do not generally hold in tables), and as a result merge all

5 tables in this example, producing results of low quality.

Theorem 2.4.7. The problem Table-Synthesis is NP-hard.
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Figure 2.3: Graph representation of candidate tables. Solid vertices on the left represent
tables for ISO codes; hollow vertices on the right represent tables for IOC codes. Fur-
thermore, solid edges indicate positive compatibility, while dashed edges indicate negative
incompatibility. Edges with weight of 0 are omitted on the graph.

We prove this using a reduction from graph multi-cut. There also exists a trichotomy

of complexity depending on the number of negative edges in the graph.

Proof. We prove it by showing that Problem 2.4.5 is a more general case of a typical multi-

cut problem in a weighted graph [77]. Given an undirected graph GC = (VC,EC), a weight

function wC of the edges, and a set of kC pairs of distinct vertices (si, ti), the multi-cut

problem is to find the minimum weight set of edges of GC that disconnect every si from ti.

The multi-cut problem is NP-hard [38].

Now we transform GC = (VC,EC) to graph G= (B,E) as follows: (i) We first divide the

weights by a large number, max{wC(vi,v j)}, to change the range of weights to (0,1]. (ii)

We define B = VC and E = EC. (iii) We make positive weights w+(vi,v j) = w+(v j,vi) =

wC(vi,v j). (iv) For each pair of vertices (si, ti), we make negative weights w−(si, ti) =

w−(ti,si) =−1 < τ .

As a result, each partitioning P in Problem 2.4.5 corresponds to exactly one cut Ecut in

the above multi-cut problem because: (i) Constraint (2.6) guarantees that si and ti are never

in the same partition. (ii) The edges across partitions are Ecut (i.e. the set of edges to be

removed) in the multi-cut problem. (iii) Let w+(P) be the objective function ∑P∈P w+(P)
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of Problem 2.4.5, the sum of weights of the graph be wC(GC), and the weight of cut be

wC(Ecut). Then w+(P)+wC(Ecut) = wC(GC). So maximizing w+(P) is equivalent to

minimizing wC(Ecut). Therefore we reduce the multi-cut problem to Problem 2.4.5.

So Problem 2.4.5 is NP-hard.

What is interesting is that there exists a trichotomy result in terms of complexity [41].

Specifically, if the graph has exactly 1 negative edge, the problem is equivalent to min-cut,

max-flow because we can make the pair of vertices incident to the negative edge as source

and sink, respectively. When there exist 2 negative edges, the problem can be solved in

polynomial time using results from [177]. In the more general case when there are no

fewer than 3 negative edges, the problem becomes NP-hard.

Despite the hardness, there is a O(logN)-approximation algorithm for the loss-minimization

version of Problem 2.4.5. Specifically, the loss-minimization version of the problem can

be written as follows, which minimizes the positive edge weights that are lost as a result of

the partitioning that disconnects all the negative edges.

Problem 2.4.8 (Loss Minimization).

min ∑
B∈Pi,B′∈Pj,i 6= j

w+(B,B′) (2.9)

s.t. ∑
P∈P

w−(P) = 0 (2.10)

Pi
⋂

Pj = /0, ∀Pi 6= Pj (2.11)⋃
P∈P

P = B (2.12)

Using standard embedding techniques, we can encode partition decisions using distance

variables di j. di j = 0 if vertices Bi and B j are in the same partition, and di j = 1 if they are

in different partitions. This produces the following formulation.
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Problem 2.4.9 (Embedding).

min ∑w+(Bi,B j) ·di j

s.t. di j +d jk ≥ dik, ∀i, j,k (2.13)

di j = d ji (2.14)

di j ∈ {0,1} (2.15)

di j = 1, ∀w−(Bi,B j)< τ (2.16)

This problem is known to be APX-hard [38]. We can relax it by replacing the integrality

constraint with di j ∈ [0,1] to make it an LP, which can then be solved using a standard solver

in polynomial time.

Using the optimal fractional solution from the LP, one can round such a solution in a

region-growing procedure [10, 59, 156] that finds an integral solution close to the fractional

solution. This randomized rounding process guarantees O(logN) approximation for the

loss minimization version of the problem.

Such an approximation scheme requires to model each pair of vertices as a decision

variable di j, and then solve the associated LP before applying randomized rounding. While

it may be practical for problems of moderate sizes, we are dealing with graphs with millions

of vertices, where solving an LP with a quadratic number of variables is clearly infeasible.

As a result, we use an efficient heuristic to perform greedy synthesis. Specifically,

we initially treat each vertex as a partition. We then iteratively merge a pair of partitions

(P1,P2) that are the most compatible to get a new partition P′, and update the remaining

positive/negative edges. The algorithm terminates when no partitions can be merged. Al-

gorithm 3 shows the pseudo-code for table synthesis.

Efficiency. While the procedure above appears straightforward for graphs that fit in a

single machine, scaling to large graphs on Map-Reduce is not straightforward. We use a
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Algorithm 3: Table-Synthesis by Partitioning
Input: Graph G = (B,E), threshold τ

Output: Set of Partitions P
1 P(Bi)⇐{Bi}, ∀Bi ∈B
2 BP⇐

⋃
Bi∈B{P(Bi)}

3 EP⇐
⋃

(Bi,B j)∈E{(P(Bi),P(B j))}
4 w+

P (P(Bi),P(B j))⇐ w+(Bi,B j)
5 w−P (P(Bi),P(B j))⇐ w−(Bi,B j)
6 GP⇐ (BP,EP)
7 while true do
8 e(P1,P2)⇐ argmax

P1 6=P2,w−P (P1,P2)≥τ

(w+
P (P1,P2))

9 if e =NULL then
10 break

11 P′⇐ P1∪P2
12 Add P′ and related edges into BP and EP

13 foreach Pi /∈ {P1,P2} do
14 w+

P (Pi,P′)⇐ w+
P (P

′,Pi)⇐ w+
P (Pi,P1)+w+

P (Pi,P2)
15 w−P (Pi,P′)⇐ w−P (P

′,Pi)⇐min{w−P (Pi,P1),w−P (Pi,P2)}
16 Remove P1,P2 and related edges from BP and EP

17 P ⇐BP

divide-and-conquer approach to first produce components that are connected non-trivially

by positive edges on the full graph, and then look at each subgraph individually.

We use the Hash-to-Min algorithm to compute connected components on Map-Reduce [32].

This algorithm treats every vertex and its neighbors as a cluster initially. Then for each clus-

ter, it sends a message of the cluster ID to all its members. Next every vertex chooses the

minimum cluster ID it receives and propagate this minimum ID as the new ID of all the

other clusters who sends message to it. The algorithm iteratively apply the above steps until

convergence. This algorithm solves our problem very efficiently.

Now given a subgraph, we apply Algorithm 3 to solve Problem 2.4.5. Set union and

lookup are two frequent operations in Algorithm 3. So we use a disjoint-set data structure

to speed up the process [76]. Its idea is to maintain a tree to represent each set so that union

and lookup of the tree root are much faster than a naı̈ve set operation.
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Figure 2.4: A real table with errors that can cause conflicts.

Example 2.4.10. Figure 2.3 shows how Algorithm 3 works on a small graph. The algo-

rithm first merges {B3} and {B5} to get Figure 2.3b because Edge ({B3},{B5}) has the

greatest weight. The weight of Edge ({B2},{B3,B5}) changes as w+({B2},{B3,B5})⇐

w+({B2},{B3}) + w+({B2},{B5}). The weight of Edge ({B4},{B3,B5}) also changes

similarly.

The algorithm then merges {B3,B5} and {B4} to get Figure 2.3c and finally combines

{B1} and {B2} to get Figure 2.3d. The algorithm stops because of the negative weight

between {B1,B2} and {B3,B4,B5}.

2.4.2.1 Conflict Resolution

We observe that synthesized relations often have conflicts that require post-processing.

Specifically, when we union all tables in the same partition together, there will be a small

fraction of rows that share the same left-hand-side value, but have different right-hand-side

values. This could be due to quality issues in the original input tables, such as the exam-

ple in Figure 2.4 that has incorrect chemical symbols for two of the rows (the symbol of

Tellurium should be Te and Tellurium should be I). Quality issues like this are actually

common in large corpus, and manifest themselves as inconsistent mappings in synthesized

results. Since the majority of tables in the partition should agree with the ground-truth

mapping, we resolve conflicts by removing the least number of low-quality tables, such

that the resulting partition has no conflicts.

Let P be a partition with candidate tables {B1,B2, ...}, each of which is a set of value

pairs Bi = {(l,r)}. Recall that in Section 2.4.1 we define a conflict set F(B,B′) to be
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{l|(l,r)∈B,(l,r′)∈B′,r 6= r′}. We can again leverage synonyms and do not treat (l,r),(l,r′)

as conflicts if (r,r′) are known to be synonyms.

Now we want to find out the largest subset PT ⊆P such that no two tables in PT conflict

with each other, which can be formulated as follows.

Problem 2.4.11 (Conflict Resolution).

max

∣∣∣∣∣ ⋃
Bi∈PT

Bi

∣∣∣∣∣
s.t. F(Bi,B j) = /0, ∀Bi,B j ∈ PT (2.17)

The objective is to include as many value pairs as possible, under the constraint that

no pairs of tables in the selected subset PT can have conflict. This problem is NP-hard

(reduction from Independent Set).

Proof. We prove the hardness of conflict resolution by reducing the maximum independent

set (MIS) problem to it. Given a graph GM = (VM,EM) in MIS, we correspondingly build a

partition P = {B1,B2, ...} in Problem 2.4.11 as follows: (1) For each vm ∈VM, we create a

Bm. (2) For each em(vi,v j)∈EM, we create a pair of contradicting value pairs ((l,r),(l,r′)).

We add (l,r) to Bi and (l,r′) to B j. (3) Let the maximum vertex degree of GM be deg. We

add dummy value pairs to each Bi to make |Bi| = deg. These dummy value pairs do not

conflict with any existing value pairs. Obviously, the MIS problem has a solution with size

SMIS, if and only if Problem 2.4.11 has a solution with weight SMIS ·deg.

Since this problem is NP-hard, we iteratively find and remove a value pair that conflicts

with the most other value pairs. Algorithm 4 iteratively finds value pairs that conflict with

the most other value pairs and removes its candidate table. Specifically, given a value pair

(v1,v2), Line 3 to Line 5 counts the number of conflicting value pairs. Line 6 to Line 9 finds

the candidate that introduces the most conflicts and removes it. In practice, we maintain an
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index for each value pair and each candidate to keep track the number of conflicts. We use

a heap that supports update to select the most conflicting candidate efficiently.

Algorithm 4: Conflict Resolution
Input: Partition P = {B1,B2, ...}
Output: PT without conflict

1 PT ⇐ P
2 while ∃Bi,B j ∈ PT , |F(Bi,B j)|> 0 do
3 InstSet⇐⋃

Bi∈PT
Bi

4 foreach (v1,v2) ∈ InstSet do
5 cntV (v1,v2)⇐ # conflicting value pairs in InstSet

6 foreach Bi ∈ PT do
7 cntB(Bi)⇐max(v1,v2)∈Bi{cntV (v1,v2)}
8 Bi⇐ argmaxBi∈PT cntB(Bi)
9 PT ⇐ PT n{Bi}

2.4.2.2 Table Expansion

Another potential issue is that for large mapping relationships such as (airport-name,

airport-code) that has more than 10K instances, synthesized tables may still miss values

that are unpopular with little or no presence in web tables. We see that synthesized rela-

tionships provide a robust “core”, which can be used to bring in additional instances. We

perform an optional expansion step, by using external data resources such as data.gov or

spreadsheet files (.xlsx) crawled from other trustable web sources, that are more likely to

be comprehensive (web tables on the other hand are often for human consumption and tend

to be short). We compute the similarity and dissimilarity between our synthesized “cores”

and these external sources, and merge if certain requirements are met. Note that this step

can also happen at curation time with human users in the loop.

We compare the f-score before and after table expansion. Overall the effect is lim-

ited. F-score is improved substantially for only two cases, namely (airport-name →

IATA-code) and (airport-name → ICAO-code). These two have over 10k instances in

ground truth. So synthesis alone is not sufficient to recover the full relationship, and ex-

pansion brings more pronounced effect.
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We note that there are many existing methods for conflict resolution [103] that can

conceptually be applied to the post-processing step, and it is interesting to explore their

applicability. Because we do not consider this post-processing step to be our key contri-

bution, and we include this step here for completeness, we do not perform an exhaustive

comparison.

2.4.3 Synthesized Mappings for Curation

While the synthesized mappings produced by our algorithm are generally of high qual-

ity, for many applications a very high precision is required. For example, for commercial

spreadsheet software like Excel, any error introduced by black-box algorithms can be hard

to detect by users, but has damaging consequences and thus unacceptable. In such settings,

our approach of pre-computing all candidate mappings from table corpora allows humans

to inspect and curate these mappings to ensure very high accuracy. High-quality mappings

produced by automatic algorithms can greatly reduce the effort required by human curators.

It is interesting to note that synthesized results we produce have a natural notion of

importance/popularity. Specifically, for each synthesized mapping, we have statistics such

as the number of web domains whose tables contributed to this mapping, and how many

raw tables are synthesized in the same cluster, etc. Such statistics are very well correlated

to the importance of the mapping, because the more it occurs in the table corpus, the more

likely it is frequently used and important. This property makes results produced by our

approach amenable to human curation – instead of looking at a full corpus with millions of

tables, one just needs to look at synthesized results popular enough.

In our experiments using a web corpus, we only use about 60K synthesized mappings

from at least 8 independent web domains, which is orders of magnitude less than the the

number of input tables. Additional filtering can be performed to further prune out numeric

and temporal relationships.
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While most mappings are static that rarely change, some are temporal in nature and

may be changing over time. But like knowledge-bases used by search engines that also

face the same “data freshness” problem (e.g., when a famous actor gets newly married,

the knowledge-card used by search engines should reflect that new fact within a short pe-

riod of time), algorithms and human curation can for the most part mitigate this problem

(e.g., regularly refreshing the data by rerunning the pipeline and alert human curator for

changes). Additional mechanisms include crowd-sourcing that allows users to report/flag

stale values for them to be corrected. We would like to note that because a large fraction of

the mappings harvested are static in nature, a one-shot curation of just these mappings can

already produce significant values to a variety of applications.

2.5 Experiments

2.5.1 Experimental Setup

2.5.1.1 Table Corpus

We use two table corpora for our evaluation.

The first table corpus, henceforth denoted as Web, has over 100 million tables crawled

and extracted from the public web. These tables cover diverse domains of interests.

The second table corpus, denoted as Enterprise, has about 500K tables extracted from

spreadsheets files crawled from the intranet of a large IT company.

2.5.1.2 Computing Environment

We implemented algorithms described in this chapter as Map-Reduce programs. We

ran our jobs in a large Map-Reduce cluster, alongside with other production jobs. Our

input for Web has about 223M two-column tables with a size of over 200GB.
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list of countries and capitals list of pokemons and categories
list of car models and makes list of amino acids and symbols

Figure 2.5: Example queries with “list of A and B”

FIPS 5-2 ISO 3166-1 Alpha-3
FIPS 10-4 ISO 3166-1 Numeric
IANA Country Code ITU-R Country Code
IATA Airport Code ITU-T Country Calling Code
ICAO Airport Code MARC Country Code
IOC Country Code NUTS (EU)
ISO 3166-1 Alpha-2 SGC Codes (Canada)

Figure 2.6: Geocoding Systems

2.5.1.3 Benchmarks

We have built a benchmark dataset to evaluate our framework on Web table corpus 2.

This benchmark dataset contains 80 desirable mapping relationships that we manually cu-

rated. These relationships are collected from two sources.

• Geocoding: We observe that geography is a common domain with rich mapping relation-

ships that are often used in auto-join and auto-correction scenarios. Examples here include

geographical and administrative coding such as country code, state code, etc. So we take

14 cases from a Wikipedia list of geocoding systems3. We omit codes that are impossi-

ble to enumerate such as military grid reference system, and ones not completely listed on

Wikipedia such as HASC code. Figure 2.6 lists all cases we take.

• Query Log: We sample queries of the pattern “list of A and B” in Bing query logs that

search for mapping relationships. Figure 2.5 shows a few examples with true mappings.

For Web, after selecting mapping relationships, we curate instances for each relation-

ship, by combining data collected from web tables as well as knowledge bases. Specifically,

2Mappings in the web benchmark is available at https://www.microsoft.com/en-us/research/
publication/synthesizing-mapping-relationships-using-table-corpus/

3https://en.wikipedia.org/wiki/Geocoding
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we find a group of tables for each relationship, and then manually select high-quality ones

to merge into the ground truth. Finally we combine these high-quality web tables with

instances in Freebase and YAGO if they have coverage. Note that the resulting mapping

relationships have rich synonyms for the same entity (e.g., as shown in Table 2.6), as well

as more comprehensive coverage for instances. Constructing such a benchmark set, and

ensuring its correctness/completeness is a time-consuming process. We intend to publish

this benchmark set online to facilitate future research in this area.

Enterprise is more difficult to benchmark because of the difficulty in ensuring com-

pleteness of instances in certain mappings – the ground truth may be in master databases

for which we have no access (e.g., employee and login-alias). Nevertheless, we built 30

best effort benchmark cases. Recall results on these tests should be interpreted as relative-

recall given the difficulty to ensure completeness.

2.5.1.4 Metrics

We use the standard precision, recall and f-score to measure the performance. Let

B∗ = {(l∗,r∗)} be a ground truth mapping, and B = {(l,r)} be a synthesized relationship

for which we want to evaluate its quality. The precision of B is defined as |B∩B∗|
|B| , the recall

is |B∩B∗|
|B∗| , and the f-score is 2precision·recall

precision+recall .

2.5.1.5 Methods Compared

We compare the following methods.

• UnionDomain. Ling and Halevy et al. [107] propose to union together tables within the

same website domain, if their column names are identical but row values are disjoint. We

apply this technique by essentially grouping tables based on column names and domain

names. We evaluate the resulting union tables against each benchmark case by picking the

union table with the highest F-score.

• UnionWeb. Noticing that only union-ing tables in the same domain may be restrictive and

missing instances for large relationships, we extend the previous approach to also merge
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tables with the same column names across the web, and evaluate all benchmark cases like

above. This is a variant of UnionDomain.

• Synthesis. This is our approach that synthesizes mapping relationships as described in

Section 2.4.

• SynthesisPos. This is the same as Synthesis except that it does not use the negative

signals induced by FDs. This helps us to understand the usefulness of negative signals.

• WiseIntegrator [69, 70]. This is a representative method in a notable branch in

schema matching that collectively matches schemas extracted from Web forms. It measures

the similarity between candidates using linguistic analysis of attribute names and value

types, etc., and performs a greedy clustering to group similar attributes.

• SchemaCC. In this method, we mimic pair-wise schema matchers that use the same posi-

tive/negative similarity as our approach. Because match decisions are pair-wise, we aggre-

gate these to a group-level based on transitivity (e.g., if table A matches B and B matches

C, then A also matches C). This is implemented as connected components on very large

graphs, where edges are threshold based on a weighted combination of positive/negative

scores. We tested different thresholds in the range of [0,1] and report the best result.

• SchemaPosCC. This is the same as SchemaCC but without negative signals induced by

FDs, since they are not explored in the schema matching literature. We again test thresholds

in [0,1] and report the best number.

• Correlation [31]. In this method, we again mimic pair-wise schema matchers with

the same positive/negative scores as Synthesis. Instead of using connected components

for aggregation as in SchemaCC above, here we instead use the correlation clustering that

handles graphs with both positive or negative weights. We implement the state-of-the-art

correlation clusterin on map-reduce [31], which requires O(log |V | ·∆+) iterations and takes

a long time to converge (|V | is the number of vertices of the graph and ∆+ is the maximum

degree of all vertices). We timeout after 20 hours and evaluate the results at that point.
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• WikiTable. Wikipedia has many high-quality tables covering various domains, many of

which have mapping relationships. To understand the quality of using raw tables instead

of performing synthesis, we also evaluate each benchmark case by finding best pair of

columns in a Wikipedia table that has the highest in F-score.

• WebTable. This method is very similar to the previous WikiTable, but use all tables in

the Web corpus instead of just Wikipedia ones.

• Freebase. Freebase [17] is a well-known knowledge base that has been widely used.

We obtained its RDF dump4 and extract relationships by grouping RDF triples by their

predicates. We treat the subject→ object as one candidate relationship, and the object→

subject as another candidate.

• YAGO. YAGO [146] is another public knowledge base that is extensively used. We pro-

cess a YAGO data dump similar to Freebase, by grouping YAGO RDF triples using their

predicates to form subject-object and object-subject relationships.

Note that in all these cases, we score each benchmark case by picking the relationship

in each data set that has the best f-score. This is favorable to all the methods – a human

who wishes to pick the best relationship to be used as mappings, and who could afford to

inspect all these tables, would effectively pick the same tables.

2.5.2 Quality Comparison

Figure 2.7 shows the average f-score, precision and recall across all 80 benchmark cases

in the Web benchmark for all methods compared. Synthesis scores the best in average

recall (0.88) and f-score (0.90), while WikiTable has the best average precision (0.98) 5.

In comparison, using only raw tables from WikiTable with no synthesis has high pre-

cision but low recall, because not only are certain instances and synonyms missing (these

4https://developers.google.com/freebase/

5Since WikiTable methods miss many relationships, we exclude cases whose precision is close to 0 from
the average-precision computation. This makes the average precision favorable to WikiTable. The same is
applied to other table and knowledge based methods.
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Figure 2.7: Average f-score, precision and recall comparison.

tables tend to be short for human consumption), many relationships are also missing alto-

gether from WikiTable. So the approach of manually going over high-quality WikiTable

to curate mapping relationships is unlikely to be sufficient.

The WebTable approach uses raw tables similar to WikiTable, but considers tables not

limited to the Wikipedia domain and thus has substantially better recall. While the precision

of WebTable and Synthesis are comparable, the recall of Synthesis is substantially

higher (0.88 vs. 0.32). Despite this, we want to note that the setup of this comparison of

is very favorable for WebTable – we select the best table among the hundreds of millions

of raw tables in WebTable, whereas in Synthesis we only use relations synthesized from

over 8 website domains that is three orders of magnitude less (Section 2.4.3). Because it

is not possible for human to go over millions of tables to pick useful mappings in practice,

WebTable only provides an upper-bound of what can be achieved and not really a realistic

solution.

UnionDomain and UnionWeb synthesize tables based on table column names and do-

main names. The recall of these two approaches is considerably better than WikiTable

and WebTable, showing the benefit of performing table synthesis. However, this group of
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approaches merge tables only based on column names, which are known to be uninforma-

tive and undescriptive in many cases. We observe that when applied to the whole web, this

often leads to over-grouping and under-grouping. The overall f-scores of these approaches

are the best among all existing methods, but still lag behind Synthesis, which uses values

that are more indicative of table compatibility.

SynthesisPos uses the same algorithm as Synthesis but does not consider the neg-

ative incompatibility induced by FDs. It is interesting to observe that result quality suffers

substantially, which underlines the importance of the negative signals.

SchemaCC performs substantially worse than Synthesis. Recall that it uses the same

positive/negative signals, but aggregate pair-wise match decisions using connected com-

ponents. This simple aggregation tends to over-group and under-group different tables,

producing undesirable table clusters.

SchemaPosCC ignores the negative signals used in SchemaCC, since FD-induced nega-

tive signals are not explored in schema matching. Unsurprisingly, result quality drops even

further.

Correlation is similar to SchemaCC that also mimics schema matchers with same sig-

nals, but aggregate using correlation clustering. Overall, its f-score is better than SchemaCC,

but is still worse than Synthesis. We think there are two main reasons why it does not

work well. First, at the conceptual level, the objective of correlation clustering is the sum

of positive and negative edges. Because the number of table pairs that would be in different

clusters far exceeds the ones that should be in the same clusters, making negative edges

dominate the objective function. However, in our problem, we should actually only care

about whether tables in the same clusters correspond to the identical mapping, which are

the intra-cluster positive edges that are more precisely modeled in our objective function.

Second, a shortcoming of the parallel-pivot algorithm [31] is that it only looks at a small

neighborhood for clusters (i.e. one-hop neighbors of cluster centers) for efficiency. When

small tables in the same mapping form a chain of connected components, looking at the im-
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mediate neighborhood of a pivot (cluster center) will misses most other tables, producing

results with low recall.

We implemented the collective schema-matching method WiseIntegrator. It per-

forms reasonably well but still lags behind Synthesis, mainly because of the difference in

how scores are aggregated to produce holistic matches.

2.5.2.1 Detailed Example Mappings

Now we discuss additional synthesized mappings that are not in the benchmark. Fig-

ure 2.8 lists additional popular mappings synthesized using Web. Many relationships

involve geographic information such as (US-city → state-abbreviation), (India-

railway-station→ state), (UK-county→ country), etc. There are a variety of other

relationships such as (wind → Beaufort-scale), (ASCII-abbre-viation → code),

(automobile → type) etc. We find reasonable meanings of these binary relationships

and consider them to be high quality.

However, certain synthesized binary relationships are less ideal as mappings. We show

such cases in Figure 2.9. For example, certain relationships are temporal that only hold for a

period of time. Examples like (F1-driver, team), (English-football-club, points),

(college-football-team, ranking) are in this category. Because this leads to many

mappings of the same type that are true in different point of time (e.g., points of soccer

teams), additional reasoning of conflicts between synthesized clusters can potentially iden-

tify such temporal mappings. We leave improving results in this regard as future work.

Certain tables are used repeatedly for formatting purpose, whose values would get ex-

tracted as popular mappings. For example, the (month, month) in Figure 2.9 maps January

to July, Feb to August and so on, simply because many pages list 12 month calendar as

two column tables. Results in this category are not significant in numbers, and should be

relatively easy for human to prune out.
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Mapping Relationship Example Instances Mapping Relationship Example Instances

(US-city, state-abbr.) (New York, NY), (movie, year) (Pulp Fiction, 1994),
(Chicago, IL), ... (Forrest Gump, 1994), ...

(gun-powder-name, (Varget, Hodgdon), (movie, distributor) (The Dark Knight Rises, WB),
company) (RL-15, Alliant), ... (Life of Pi, Fox), ...
(UK-county, (Suffolk, England), (ODBC-configuration, (odbc.check persistent, on),
country) (Lothian, Scotland), ... default-value) (odbc.default db, no value), ...
(India-railway-station, (Vadodara Junction, Gujarat), (automobile, type) (F-150, truck),
state) (Itarsi Junction, Madhya Pradesh), ... (Escape, SUV), ...
(wind, (gentle breeze, 3), (family-member, (Mother, F),
Beaufort-scale) (storm, 10), ... gender) (Brother, M), ...
(state/province abbr., (QLD, AU), (ASCII-abbr., code) (NUL, 0),
country) (ON, CA), ... (ACK, 6), ...
(ISO3166-1-Alpha-3, (USA, US), (ISO-4217-currency- (USD, 840),
ISO3166-1-Alpha-2) (FRA, FR), ... code, num) (EUR, 978), ...

Figure 2.8: Additional mappings synthesized from Web.

Mapping Relationship Example Instances Mapping Relationship Example Instances

(MiLB-leagues, level) (PCL, AAA), (college-football-team, (Alabama, 1),
(IL, AAA), ... ranking) (Clemson, 3), ...

(baseball-team, league) (NYY, AL), (college-football-team, (Stanford, 5-0),
(LAD, NL), ... score) (Michigan, 5-0), ...

(English-football-club, (Manchester City, 16), (football-player, (Marques Colston, NO),
points) (Liverpool, 17), ... team) (Victor Cruz, NYG), ...
(US-soccer-club, (Houston Dynamo, 48), (month, month) (January, July),
points) (Chicago Fire, 49), ... (February, August), ...

(F1-driver, team) (Sebastian Vettel, Ferrari), (day, hour) (Monday, 7:30AM - 5:30PM),
(Lewis Hamilton, Mercedes), ... (Tuesday, 7:30AM - 5:30PM), ...

Figure 2.9: Synthesized relationships not ideal as mappings.

2.5.2.2 Usefulness of Mappings

We sample the top clusters produced based on popularity (the number of tables/domains

contributing to the cluster). We classify the mapping corresponding to each cluster into

three categories: Meaningful mapping (static), Meaningful mapping (temporal), and Mean-

ingless mapping. For top 500 clusters we inspected, 49.6% are static, 37.8% are temporal,

and only 12.6% are meaningless, which is encouraging.

2.5.2.3 Individual Cases

Methods using knowledge bases Freebase and YAGO have reasonable precision, which

is expected because they are extensively curated. The recall numbers of these methods,

however, are substantially lower, because a significant fraction of useful mappings are
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Figure 2.10: Comparison with alternatives on individual cases (Sorted by f-score of our
Synthesis approach).

missing from existing knowledge bases. This indicates that knowledge bases alone are

unlikely to be insufficient for harvesting rich mappings.

Figure 2.10 gives detailed quality numbers for individual cases in the benchmark. The

overall observation here is consistent with Figure 2.7. We can see that for a large fraction

of test cases, Synthesis produces results of high quality, which are amenable to further

human curation before they are applied in data-driven applications. It is interesting to note

that even when high-precision methods WikiTable and Freebase already have a com-

plete table covering instances in certain benchmark cases such as chemical element and

country code, their f-scores are still low despite almost perfect precision. This is because

the ideal ground truth mapping should contain many synonymous names for the same en-

tity (e.g., shown in Figure 2.6 for country code). In fact, the results Synthesis produces

have over 470 entries for country code (compared to around 200 distinct countries), and

over 200 entries for chemical element (compared to about 100 distinct ones). Methods

like WikiTable and Freebase tend to have only one name mention for the same entity

in one table, thus producing inferior scores for recall. As we have discussed in the intro-

duction, such synonymous entity names are important for applications like auto-join and

auto-correct, since a user data table can always have one name but not the other.

Interestingly, for a number of cases where Synthesis does not produce satisfactory

results (towards the right of the figure), Freebase performs surprisingly well. It appears
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that for domains like chemicals, mappings such as (Case 80: chemical-compound →

formula) and (Case 74: substance→ CAS number) have little web presence, which gives

limited scope for synthesis using tables. On the other hand, Freebase has many structured

data sets curated by human from specialized data sources covering different domains, thus

providing better coverage where no techniques using web tables gives reasonable perfor-

mance. We believe this shows that knowledge bases are valuable as a source for mapping

tables, which in fact can be complementary to Synthesis for producing mapping relation-

ships.

An issue we notice for Synthesis, is that while it already distills millions of raw

tables into popular relations that requires considerable less human efforts to curate, in some

cases it still produces many somewhat redundant clusters for the same relationship because

inconsistency in value representations often lead to incompatible clusters that cannot be

merged. Optimizing redundancy to further reduce human efforts is a useful area for future

research.

2.5.3 Run-time Comparison

We analyze the the complexity of our approach in this section. The basic input of our

problem is a graph G = (V,E) where V represents candidate tables and E represents their

similarity. The most expensive part of our algorithm is in table synthesis (Step 2) that

computes edge similarity and performs iterative grouping.

Figure 2.11 compares the runtime of all approaches. Knowledge bases are the most

efficient because it amounts to a lookup of the relation with the highest f-score among all

relations. WikiTable, WebTable, UnionDomain, UnionWeb, and WiseIntegrator are

all relatively efficient but requires scans of large table corpus. Our approach Synthesis

usually finishes within 10 hours (e.g., using parameters suggested here). Correlation is

clearly the slowest, as correlation clustering converges very slowly even using the state-of-

the-art parallel implementation on map-reduce [31].
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Figure 2.12: Scalability.

To test scalability of the proposed method, we sample {20%,40%,60%,80%} of the

input data and measures execution time, as shown in Figure 2.12. The complexity of the

algorithm depends on the number of edges |E|. In the worst case |E| can be quadratic to the

number of tables |V |, but in practice |E| is usually almost linear to |V | due to edge sparsity.

Figure 2.12 suggests that the algorithm scales close to linearly to the input data, which is

encouraging as it should also scale to even larger data sets with billions of tables.

2.5.4 Sensitivity Analysis

We analyze the effect of parameters used in Synthesis.

• θ . We use θ as a parameter when defining approximate mapping relationship, which is

empirically set as 95%. When we vary θ between 93% and 97%, the number of resulting

mappings change very little (by up to 1%). We have also reverse-engineered by calculating

the degree of approximation in desirable ground truth mappings (e.g. Springfield →

Illinois and Springfield→ Texas will create a violation). 95% is sufficient to ensure

that desired mappings will not be pruned incorrectly in almost all cases.

• τ . This parameter controls when we determine two candidates conflict. Our results

suggest that the quality is generally insensitive to small τ . The performance peaks at around

−0.05. In our other experiments we actually used τ =−0.2 that also produces good quality.
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Figure 2.13: Comparison with the alternative on Enterprise

• θoverlap is a parameter for efficiency that determines the number of pruned edges |E| in

our graph. As θoverlap increases, |E| drops quickly. The quality of resulting clusters are

insensitive to θoverlap.

• θedge. We make θedge the threshold to filter out edges with insignificant positive weight.

Our experiment suggests that θedge = 0.85 has the best performance.

2.5.5 Experiments on Enterprise

As we discussed earlier, unlike the Web domain where a large fraction of ground truth

mappings can be constructed using common sense knowledge and online data sources,

the ground truth mappings in the Enterprise domain is difficult to build. We are not

familiar with many enterprise-specific data values and encodings in this corpus, which

makes ensuring completeness and correctness of these mappings difficult.

We build 30 benchmark cases with best effort to ensure completeness (for some map-

pings the ground truth may be in master databases we have no access to). To put the quality

numbers in perspective, we compare Synthesis with single-table based EntTable, which

is similar to WebTable in Web. As Figure 2.13 suggests that Synthesis achieve signifi-

cantly higher recall by merging small tables. Its precision is also high by avoiding merging

conflicting content.

Figure 2.14 shows some examples of mapping relationships produced. A large frac-

tion of relationships are indeed important mappings, such as (product-family→ code),

(profit-center→ code), (data-center→ region), etc. Most of these results are well-

structured and look consistent (shown in the right column of Figure 2.14), which is a good

indication that results produced are of high quality.
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Mapping Relationship Example Instances

(product-family, code)
(Access, ACCES),

(Consumer Productivity, CORPO), ...

(profit-center, code)
(P10018, EQ-RU - Partner Support),

(P10021, EQ-NA - PFE CPM), ...

(industry, vertical)
(Accommodation, Hospitality),

(Accounting, Professional Services), ...

(ATU, country)
(Australia.01.EPG, Australia),

(Australia.02.Commercial, Australia), ...

(data-center, region)
(Singapore IDC, APAC),

(Dublin IDC3, EMEA), ...

Figure 2.14: Example mapping relationships and values, from the enterprise spreadsheets
corpus

Just like in the Web domain, applications equipped with these mapping relationships

and some human curation can perform intelligent operations such as auto-join as discussed

earlier. We note that these mappings are specific to this enterprise in question. Using

tables to build such relationships would be the only reasonable choice, since alternatives

like knowledge bases would not exist in enterprise domains.

Inspecting the results produced in Enterprise does reveal interesting issues. For ex-

ample, we observe that for certain mapping relationships, the results are of low quality with

mixed data values and meta-data values (e.g., column headers). It turns out that in spread-

sheets, tables with complex structures such as pivot tables are popular. These complex

tables are usually not flat relational tables that create difficulty for correct extraction.

Overall, given that rich mappings are produced for a completely different Enterprise

corpus, we believe that this exercise shows the promise of the Synthesis approach to

generalize and produce mappings by just using a corpus of tables as input.

2.5.6 Effect of Conflict Resolution

Conflict resolution improves the f-score for 48 out of the 80 cases tested. On average,

the precision increases from 0.903 to 0.965, while the average recall only dips slightly
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Figure 2.15: Conflict resolution improves performance.

from 0.885 to 0.878. Such improvements shows that this post-processing step is useful in

removing inconsistent value pairs without affecting coverage.

Cases such as (state→ capital) see the biggest improvement. These relationships

tend be confused with other relationships that disagree only on a small number of val-

ues. For example, the relationship (state→ capital) tends to be confused with (state

→ largest-city) with only minor disagreements such as Washington and Olympia vs.

Washington and Seattle. These conflicting value pairs will get mixed into results be-

cause for some subset of values there may not be sufficient incompatibility to prevent

merges from happening. The conflict resolution step helps to prune away such incorrect

values.

Figure 2.15 compares the f-scores with and without conflict resolution. Conflict reso-

lution improves the f-score in many cases.

We also compare our conflict resolution with majority voting. The proposed approach

has a slightly higher f-score than majority voting.

2.6 Related Work

Ling and Halevy et al. studied the problem of stitching together web tables from the

same domain based on column names [107]. When adapting this technique to generate

mapping relationships for the whole Web, however, it tends to lead over-grouping and
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low-quality mappings (as we show in the experiments), because column names are often

undescriptive and too generic to be indicative of the true meanings [37] (e.g., column names

like code and name are common).

Knowledge bases such as Freebase [17], and YAGO [146] curate important entity-

relationships, some of which may be mapping relationships. However, the coverage of

knowledge bases is low as they often miss important mappings. For instance, YAGO has

none of the example mappings listed in Table 2.1, while Freebase misses two (stock and

airport). For mappings that do exist in knowledge bases, there are typically no or very few

synonyms such as ones listed in Table 2.6. Lastly, knowledge bases are expensive to build,

yet their mappings only cover the public Web domain, and does not generalize to other

domains such as enterprises.

There is a long and fruitful line of research on schema matching [132] that can suggest

semantic correspondence between columns for human users. These matching relationships

provide useful information about positive compatibility between tables. However, using

only positive signals of compatibility are insufficient for an unsupervised algorithm to syn-

thesize diverse tables on the web, since distinct relationships can share substantial value

overlap. We introduce negative incompatibility specific to functional dependency observed

by mapping relationships, which is shown in experiments to be critical for high-quality

synthesis.

A notable branch in schema matching [20, 68, 70, 145, 185] deals with schemas ex-

tracted from Web forms collectively for matches. These techniques mainly use linguistic

similarity of attribute names and distributions. However, the input schemas are required to

be homogeneous and from the same conceptual domain (e.g., all forms are required to be

about books, or automobiles, but not mixed). Methods in this class are the closest to our

problem in the schema matching literature – we experimentally compare with a represen-

tative method from this class [70].
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Compared to the traditional schema matching, there are two key aspects that differenti-

ate our work from existing schema matching. (1) Traditional schema matching is studied in

the context of a small number of database schemas. In our problem, while we also “match”

semantically compatible table columns, we have to deal with millions of schemas (223M

for the Web data set), which is many orders of magnitude larger than previously studied.

(2) As a consequence of the scale, we can no longer afford to ask humans to verify results

produced by the traditional pair-wise “match” operator ([14, 132]), which is designed to

be recall-oriented with false-positives that human users are supposed manually filter out.

Because in our problem pair-wise manual verification for millions of schemas is no longer

feasible, we choose to group all compatible schemas and have them verified only at the

group level, which would be easier and more efficient for human curation.

Although our problem would appear more difficult than schema matching, it is still

tractable because we are interested in a very specific type of schemas, that are two-column

tables satisfying functional-dependencies. This induces strong constraints for schema com-

patibility (the negative signal we exploit), which has not been explored in the classical

schema matching for general tables (the existing literature mostly uses single-column type

information to infer incompatibility). Furthermore, by looking at schemas holistically

instead of one-pair-at-a-time, it allows us to reason globally and actually produce better

matches (e.g., if table B is mostly contained by table A, and table C is also contained by A,

then even if B and C share little overlap, we may still be able to group B and C using these

information holistically, which may not be possible for pair-at-a-time matching).

Techniques such as the novel DataXFormer [1] represent an alternative class of ap-

proaches that “searches” tables based on user input and asks users to select relevant results

to fill/join. While this is already a great improvement, our experience suggests that in many

cases the need to search, retrieve, read, and manually piece together results from multiple

tables is too cumbersome for this to be a viable feature in Google Doc or Microsoft Excel,

where most users may not have the necessary experience to go through the full process.
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Like knowledge-bases used by search engines today, we hope curating knowledge of map-

pings can make them easily accessible to a large number of spreadsheet users.

A related problem is to discover and validate logic rules given knowledge bases [28, 55].

Our problem is not about efficiently discovering rules that are satisfied by a monolithic

knowledge base, instead we start from a large set of isolated tables and we synthesize rela-

tionships that are functional. To some extent, the relationships discovered by our technique

can be used to by humans to complement and enhance existing knowledge bases.

Gupta et al. [63] build Biperpedia, which is an ontology of attributes extracted from

query stream and Web text. They focus on attribute name extraction for different entity

classes, but not instance values in these relationships.

Mapping tables and FDs are powerful constructs that have been studied in other con-

texts. For example, authors in [106, 138] study the problem of automatically inferring

functional relationships using results extracted by Information-Extraction systems from a

text corpus. The difficulty there is that instances extracted for the same relation may be

inconsistent. For example, from sentences like “Barack Obama was born in Hawaii” and

“Barack Obama was born in USA” IE systems would extract “Barack Obama” on the left,

“Hawaii” and “USA” on the right, thus leading to the incorrect conclusion that the relation-

ship of birth-place is not functional. If the results extracted by a text-pattern can be thought

of as a table, then the task here is to infer if FD exists for that table, and the challenge is

that values in the table may not be consistent. In comparison, we use tables where values

are in most cases consistent in the same column. Our task is to go across the boundary of

single tables and produce larger relations.

While separate solutions have been proposed for certain applications of mapping tables

such as auto-join [72] and auto-fill [1, 176], we argue that there are substantial benefits for

using synthesized mapping tables. First, mapping tables are general data assets that can

benefit applications beyond auto-join and auto-fill. Synthesizing mapping tables in essence

provides a unified approach to these related problems, instead of requiring a different solu-
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tion for each problem. Second, without mapping tables, techniques like [72] perform heavy

duty reasoning at runtime where the complexity grows quickly for large problem instances,

and thus have trouble scaling for latency-sensitive scenarios. In comparison, mapping table

synthesis happens offline. Applying mapping tables to online applications often reduces

to table-lookup that is easy to implement and efficient to scale. Lastly, in trying to pro-

ductizing auto-join and auto-fill using techniques like [72, 176], we notice that while the

quality are good in many cases, they can also be unsatisfactory in others, which prevents

wider adoption in commercial systems. Synthesized mapping tables, on the other hand,

provide intermediate results that are inspectable, understandable, and verifiable, which are

amenable to human curation and continuous user feedback. Thus it is an important problem

worth studying.
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CHAPTER 3

RC-INDEX: INDEX FOR RANGE QUERY RESULT
DIVERSIFICATION

3.1 Introduction

Query result diversification is an important aspect of user-facing applications, such as

data exploration, Web search, and recommendation systems [158, 46, 43, 186]. The need

for diversification arises when the system has to limit the number of query results: since

human users can visually process limited information, interfaces typically need to limit the

data they display on the screen to a few points on a map or a small number of items on

a list. Diversification is one common way to present representative results to users, and it

is employed by many real-world systems. For example, even though there are thousands

of ATMs in Manhattan, a search in Google Maps typically reveals no more than 20 at any

zoom level, and the chosen locations are typically dispersed in the viewing area. Product

searches in online marketplaces, such as Amazon, also employ diversity: a search for lap-

tops in a particular price range typically yields diverse brands and models on the first page

of results, rather than similar laptops from different retailers.

Our goal is to provide an efficient and scalable solution to the problem of selecting

a diverse subset of the result of general range queries over a single relation. Systems

that employ diversification typically try to optimize a specified diversity score function.

The diversity score is defined over a bivariate distance function, which is domain- and

application-specific, and measures the distance between any two items of a dataset. When

a user issues a query, the system needs to retrieve a set S of k items such that: (1) every

item in S is in the result of the query; (2) the diversity score of S is maximized. This is a
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challenging problem to solve efficiently and in a scalable way, as it is practically infeasible

to compute the diversity score of every k-sized subset of the query result.

Existing approaches fail to address this problem effectively. Many existing diversifi-

cation techniques follow a “process-first-diversify-next” approach [89]: First, they execute

the query normally to retrieve all results, and they subsequently employ appropriate al-

gorithms to identify a subset with high diversity score. The “process-first-diversify-next”

techniques have a big problem: efficiency. In practical diversification scenarios, systems

typically only need to retrieve a relatively small subset of items, thus, computing the entire

query result is often computationally wasteful.

Some prior work on result diversification has achieved efficient solutions at the expense

of generality. For example, some work focuses on extracting diverse items from a data

stream through continuous querying [118, 47, 44]. These techniques achieve efficiency by

reusing prior diversification results as new items arrive. Similarly, in some data exploration

scenarios, such as geolocation visualization, subsequent queries are correlated, which again

allows reuse of overlapping items in query results [90, 91, 92]. These techniques do not

perform well in more general cases where query results do not overlap significantly, even

if the query predicates are over a fixed set of attributes. For example, if a user issues subse-

quent queries for “laptops under $1000”, “laptops between $1000 and $1500”, and “laptops

above $1500”, even though the queries are very similar, their results do not overlap, and

thus these techniques do not apply.

In this chapter, we propose a general, index-based approach for diversifying the re-

sults of multi-dimensional range queries over a single relation. At a high level, our ap-

proach transforms each range query into a set of subordinate searches, performs subordi-

nate searches using a novel index structure, called RC-Index, and finally extracts a diverse

subset from the merged results of subordinate searches. The RC-Index achieves efficiency

by retrieving a very small set of candidate items compared to “process-first-diversify-next”
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techniques. Furthermore, we prove theoretically and demonstrate empirically that our

method has a good approximation ratio compared to the state-of-the-art algorithms.

Our work addresses four important challenges.

• Efficiency. Existing techniques for addressing diversification in ad-hoc queries require

the retrieval of the entire query result before applying diversification algorithms to retrieve

a diverse k-sized subset. In contrast, RC-Indexes retrieve a much smaller set of candi-

date items (up to 99.4% reduction compared to state of the art), which leads to order of

magnitude faster response times.

• Generality. One of our main goals in this chapter is to support general range queries

over a relation. Prior work achieved efficiency only by restricting generality, through the

assumption that subsequent queries share a large portion of results. In contrast, RC-Indexes

do not make such assumptions. The RC-Index is a new index-based access method to

relations that allows for fast retrieval of diverse subsets of results for range queries.

• Effectiveness. RC-Indexes provide theoretical guarantees with respect to diversification

quality. The approximation ratio is based on tunable parameters, and at the limit approaches

1
2 , which is the optimal polynomial time ratio for our diversification problem [137].

• Flexibility. RC-Index use existing indexing structures as submodules to support range

search. Our implementation is based on range trees, but a system designer may opt for

different index structures (e.g., k-d trees) if they are better-suited for a given application.

We organize our contributions as follows.

• We define the problem of query result diversification, provide background on existing

diversity score functions, discuss important properties of distance metrics, and give an

overview of our solution. (Section 3.2)

• We introduce the core of our approach, a novel index structure called RC-Index, which

combines range selection indexes (range trees) with diversity indexes (cover trees). We
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describe the query module of our system, which uses the RC-Index to answer range queries

with diversification requirements, and analyze its complexity. (Section 3.3)

• We perform a theoretical analysis to show that RC-Index is effective at providing diverse

results. Specifically, the diversity score of sets returned by our system approximates the

optimal diversity score by a factor of b−1−2b1−δ

2(b−1) , where b > 1 and δ ≥ 1 are parameters that

control the ratio and time/space complexity. When b or δ approaches infinity, the limit of

the ratio is 1
2 . This is the optimal polynomial approximation for our diversification problem

under pseudometric distance functions [137]. (Section 3.4)

• We discuss index selection with respect to RC-Indexes, and considerations in the choice

of attributes the index is built on. (Section 3.5)

• We evaluate our prototype system over real-world datasets and demonstrate that RC-

Indexes are both efficient and effective at range result diversification. Specifically, we

demonstrate that our approach achieves better diversity scores than the state of the art and

alternative baselines, and it is substantially faster as well. Overall, RC-Indexes provide an

extremely effective way to support range query diversification: our system can 106 items

in 330 seconds and answer a query in under a second. Our approach is also more general,

as it subsumes prior work, handling both streaming and relational queries. (Section 3.7)

• Finally, we discuss related work and extensions. (Sections 3.8 and 3.9)

3.2 Overview and Background

We begin this section with the definition of range query result diversification, an op-

timization problem over a diversity score function f (S,dis). We then discuss two pop-

ular diversity score functions from prior work, and desirable properties for the domain-

specific distance measures used by the diversity score functions. We continue to present

an overview of our system solution in Section 3.2.3. The core of our approach is a special

index structure, the RC-Index. The RC-Index is a novel combination of two types of in-
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dex structures: cover trees and range trees. We describe these structures in Sections 3.2.4

and 3.2.5 before proceeding with the details of our framework in Section 3.3.

3.2.1 Result Diversification

In this section, we define the problem of selecting a diverse subset of the results of

a range query. We use X to denote a database with a single relation R(A) over the set of

attributes A= {A1,A2, ...}. A range query q can apply interval filters to a subset of attributes

Aq ⊆ A. Each attribute in Aq has an ordered domain, and a bivariate function dis(xi,x j)

measures the distance between items xi,x j ∈ X . The distance function is defined over a

subset of attributes Adis ⊆ A, which may or may not overlap with Aq. Given a database

X and a query q, we wish to find the subset of k items in the result q(X) that maximizes a

diversity score function defined over dis.

Problem 3.2.1 (Range Query Result Diversification). Given a set of items X = {x1,x2, ...},

a bivariate distance function dis(·, ·) on X, a range query q with result set q(X), and a

positive integer k ≤ |q(X)|, range query result diversification selects the subset S ⊆ q(X)

that maximizes a diversity score function f over dis:

max
S

f (S,dis)

s. t. S⊆ q(X)

|S|= k

The distance measure dis is application-specific. The diversity score function f (S,dis)

has two popular forms [45, 158, 43]:

fmin(S,dis) = min
xi,x j∈S ∧ xi 6=x j

{dis(xi,x j)}

fsum(S,dis) = ∑
xi,x j∈S ∧ xi 6=x j

dis(xi,x j)
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The first form, fmin, computes the minimum distance of the items in S; the corresponding

diversification problem is called MAXMIN. The second form, fsum, computes the sum

of pairwise distances of items in S; the corresponding diversification problem is called

MAXSUM. Both MAXMIN and MAXSUM are NP-hard [51, 147, 43].

In practice, the diversification score is used to select appropriate top-k items. We

demonstrate its application with an example:

Example 3.2.2. A user queries a dataset of ATM information to find those with closing

time after 8pm. The application displays 10 of the ATMs in the result with diverse locations

based on their Euclidean distance disE(·, ·), using the following query:

SELECT *

FROM ATM_data

WHERE Close_time >= 20

LIMIT 10 DIVERSE(disE(Latitude, Longitude)) MAXMIN;

This query, q, applies a range filter to one attribute (Aq = {Close_time}). The LIMIT

clause specifies that the query will return 10 items. Normally, the LIMIT clause would re-

turn any 10 items, but in this case, the clause is augmented with a diversification objective:

We want the set of 10 results that maximizes the MAXMIN diversity score defined over the

Euclidean distance disE(·, ·) on attributes Latitude and Longitude (Adis = {Latitude,

Longitude}).

Figure 3.1a illustrates the result of the query of Example 3.2.2 over a small sample of

the ATM dataset. All ATMs locations that satisfy the range predicate are denoted with blue

triangles; the red circles denote the selected 10 diverse locations. Figure 3.1b shows the

result of the same query with the MAXSUM diversity score.

We can see that solution under fmin provides better coverage [46, 47]. So we focus on

fmin, i.e., MAXMIN, in the rest of this chapter. We extend it to MAXSUM in Appendix 3.6.

63



0.0 0.5 1.0
Normalized Longitude

0.0

0.5

1.0

N
o
rm

a
li
ze

d
 L

a
ti

tu
d

e

(a) fmin(S,disE) = min{disE(xi,x j)}
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(b) fsum(S,disE) = ∑disE(xi,x j)

Figure 3.1: Diversification on a sample of ATMs in New York City under two diversity
score functions. We select k = 10 ATMs (red circles), out of a total of 30 (blue triangles)
in each figure. The solution under fmin has better coverage than the one under fsum.

3.2.2 Distance Function

The distance function is an important component of diversification, as the problem ob-

jective involves the maximization of pairwise distances of items in S. The distance function

is domain- and application-specific, and can involve any of the attributes.

Intuitively, one can cluster X according to the distance metric dis(·, ·), and use this

clustering to solve Problem 3.2.1. However, the challenge is that the attributes over which

the distance is defined may or may not overlap with the attributes filtered by q: In Ex-

ample 3.2.2, the distance is defined over the latitude and longitude attributes (Adis =

{Latitude, Longitude}), while the range condition is over the Close_time attribute

(Aq = {Close_time}).

While there are no general restrictions on the distance metric with respect to the def-

inition of Problem 3.2.1, some properties of the distance metric affect the problem com-

plexity. Problem 3.2.1 under MAXMIN is APX-hard for general distance functions [137].

This means that no polynomial time algorithm can provide a performance guarantee better
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than a constant ratio unless P=NP. However, when the distance function is symmetric and

satisfies the triangle inequality, a simple greedy heuristic provides a 1/2-approximation; no

polynomial algorithm can provide a performance guarantee better than 1/2 unless P=NP

[147, 137]. Following prior work in this area [147, 137, 47, 44], we also assume the dis-

tance function should satisfy symmetry and triangle inequality in this chapter.

Definition 3.2.3 (Distance Function). The bivariate distance function dis : X ×X → R≥0

in Problem 3.2.1 must be a pseudometric satisfying the following properties:

dis(x,x) = 0

dis(x,y) = dis(y,x) (Symmetry)

dis(x,y)+dis(y,z)≥ dis(x,z) (Triangle Inequality)

Many common distance functions used in practice satisfy Definition 3.2.3. Here we list

a few:

• The metrics induced by any Lp-norm with p ≥ 1. These include Manhattan distance

(L1-norm) and Euclidean distance (L2-norm).

• Graph metric. This is based on a graph with vertices and edges. The distance between

two vertices is the number of edges in the shortest path connecting them.

• The “diversity ordering”-based distance [157]. This distance function defines a total

ordering of the attributes like car make ≺ car model ≺ color ≺ year, which means car

make has higher priority than car model does and so on. The distance between two items

is greater if the two items differ on a higher priority attribute.

3.2.3 Solution and System Overview

Our framework has two modules as illustrated in Figure 3.2: Query Module and Diver-

sification Module. The Query Module builds an index, RC-Index, offline to support range

queries. Then when a query arrives, the Query Module uses the index to extract a set of

candidates and passes this set to the Diversification Module. Finally, this Diversification
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Figure 3.2: Solution overview. Our approach involves two modules: Query Module and
Diversification Module.

Algorithm 5: Query Evaluation
Input: Range query q; Parameter k; RC-Index RC; Extra level δ .
Output: Set of diverse items S.

1 T ⇐ RangeQueryTreeExtraction(q,k,RC,δ ) // QM: Algo. 7

2 XC⇐ CandidateExtraction(k,T,δ ) // QM: Algo. 6

3 S⇐ GreedyDiversification(XC,k) // DM: Algo. 8

Module finds k representative items to present to the user. Algorithm 5 shows the pipeline

of query evaluation at a high level. Line 1 and Line 2 belong to Query Module (QM).

Line 3 is Diversification Module (DM). We will elaborate in Section 3.3.

The key to the success of this approach is that we limit the number of candidates ex-

tracted by the Query Module but ensure their diversity. On the one hand, we significantly

reduce the number of candidates to save much evaluation time. On the other hand, we de-

sign a special index in the Query Module to ensure high diversity of these few candidates,

which eventually guarantee a good final result.

The special index, RC-Index, in the Query Module combines two types of indexes:

Range Index and Diversity Index. The Range Index is to support range queries. It can be a

B+ tree (for 1-dimensional queries), interval tree, R-tree, VA-file, k-d tree, range tree, and

so on. Each Diversity Index is a cover tree built on a subset of items. It organizes the items

according to their pairwise distances. Items near root are far from each other while items

near bottom are close to each other. It can help us limit the number of candidate items we
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extract, while ensuring the diversity of candidates. We will prove this desired property in

Section 3.4.1.

3.2.4 Cover Tree

A cover tree [15] is a data structure that naturally diversifies items. It is similar to

navigating nets [97], which were originally designed for nearest neighbor search. Every

level of a cover tree has a distance threshold. The distance between every pair of items at

this level must be greater than this threshold. The threshold decreases from root to leaf. So,

items at a higher level (i.e., closer to the root) are farther away from each other. Intuitively,

one can use a cover tree over a dataset X to retrieve k diverse items from X by selecting

any k items from the highest level that contains k or more items. Drosou and Pitoura [47]

used cover trees for diversification. However, that work assumes queries over continuous

data with sliding windows, so a single cover tree can answer consecutive queries that share

results. In this chapter, we are looking at a more general problem, as we wish to support

range queries that may or may not share results. Our RC-Index uses cover trees internally,

but it is a more complex structure, and our algorithms and approximation guarantees differ

from the ones in the prior work.

Formally, a cover tree embeds items into a tree with multiple levels. Each level has an

integer level number, `. The root is at the highest level, `max. Each level also has a distance

threshold θ` = b`, where b > 1 is a “base” distance parameter defined for each cover tree.

Let C` be the set of items at Level `. A cover tree must obey the following three invariants:

1. Nesting: C` ⊆C`−1. If an item appears at level `, it must appear at all levels below `.

2. Covering: If xi ∈C` and x j is its direct child, dis(xi,x j)≤ θ` = b`. This implies that

an item at Level ` covers all its direct children within a ball whose radius is θ`.

3. Separation: If xi,x j ∈ C` and xi 6= x j, dis(xi,x j) > θ` = b`. This indicates that the

pairwise distances between all distinct items at Level ` must be greater than θ`. In
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(a) `max = 0 (b) `=−1 (c) `=−2 (d) `=−3

Figure 3.3: The highest four levels of an example cover tree on ATMs in New York City
with normalized coordinates. Items at each level ` are highlighted in red. The tree satisfies
Nesting, Covering, and Separation.

practice, items with dis(xi,x j) = 0 should be aggregated as a list of ids at all levels to

satisfy the separation invariant.

We should note that, conceptually, the level number ` of a cover tree goes from `max

to −∞. When ` is very small, C` is all items, each of which has itself as the only child at

C`−1. However, we still need only O(n) space to store all items of a cover tree where n is

the number of distinct items. We will defer the discussion of cover tree’s time and space

complexity to Section 3.4.

Figure 3.3 depicts the highest four levels of an example cover tree on a set of ATMs in

New York City (south of Central Park). The ATMs’ latitude and longitude are normalized

to [0,1). We highlight items at each level as red points and display all other items as grey

points. We set the base distance of this cover tree as b = 2.0, so the root of the cover tree

turns out to be at Level `max = 0. Nesting: every lower level contains all items at higher

levels. For example, the root appears in all levels in the figure. Covering: the distance

between a parent item and a child item must be within the distance threshold of the parent’s

level. For example, the distances between the root and all its direct children are no more

than θ`max = b`max = 1.0. Separation: the pairwise distances between all items at each level
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Figure 3.4: An example 2-dimensional range tree. Every node in the first dimension range
tree points to another range tree in the second dimension.

are greater than the corresponding threshold. For example, at Level `=−1 where θ` = 0.5,

the pairwise distance between items are greater than 0.5.

3.2.5 Range Tree

A range tree [111, 12, 166, 100] is a nested tree structure. The left hand side of Fig-

ure 3.5 shows an example of a simple, 1-dimensional range tree. The root of the tree

represents the entire range and every descendant non-leaf node corresponds to a subrange.

The leaf nodes are the actual data items. Figure 3.4 illustrates a 2-dimensional range tree.

In this particular example, we assume the data space is [0,8)× [0,8) and each inner range

is evenly split into two subranges to simplify the presentation. In practice, the actual space

and separator depends on the data distribution. We also omit leaf items for simplicity. The

root of the whole range tree is [0,8)× [0,8) at the left side. It splits on the first dimen-

sion to get the two children [0,4)× [0,8) and [4,8)× [0,8). In the meantime, it points to

another range tree at the right hand side. This range tree splits on the second dimension

till the finest subrange like [0,8)× [0,2) and [0,8)× [2,4). Similarly, every inner node in

the first dimension points to a range tree that splits on the second dimension. So when we

implement a range tree, each node can have at most three children in two categories: le f t

and right for the current dimension and next for the next dimension. A node at the finest

subrange does not have le f t and right. A node in the last dimension does not have next.
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3.3 Index-based Framework

In this section we focus on how the Query Module and the Diversification Module

work. We prove their complexity and approximation ratio in Section 3.4.

3.3.1 Query Module: Sketch

We start by explaining how we devise the Query Module from scratch, hopefully pro-

viding some insight of the entire work here before diving into the details.

The fundamental question in Problem 3.2.1 is how to extract diverse items from a large

set of input items. We first notice that a Diversity Index (DI), which organizes items accord-

ing to their distances, is required. A cover tree meets the requirement, but one single cover

tree is not enough to answer various user queries. For example, if we build only one cover

tree CT[0,8) for items in range [0,8), how can we answer a query on [2,8)? Remember, as

we point out in Section 3.2.2, the attributes used to compute distance (e.g. latitude and

longitude) can be different from the attributes filtered by a range query (e.g. close time).

So we cannot assume a cover tree’s structure follows any range pattern. Specifically, we

cannot assume one or more subtrees of CT[0,8) cover and only cover items in range [2,8).

So we build multiple cover trees on different partitions of X and extract diverse items

from them with performance guarantee, which is one of our main contributions. We base

our approach on two important techniques. First, we can carefully extract items from mul-

tiple non-overlapping cover trees to ensure the diversity score be no less than a factor times

the optimal diversity score. In other words, this approach is a constant-factor approximation

algorithm (Section 3.3.2). Second, we answer various queries while limiting the number of

cover trees we build. This is because we transform all range queries to a limited number of

subordinate searches. For example, we may change a 1-dimensional range query on [2,8)

into two subordinate searches on [2,4) and [4,8). So we only need to build cover trees for

these subordinate searches. These two techniques together form an index to sustain our

Query Module. We call it RC-Index.
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Figure 3.5: RC-Index: maps every Range Index (RI) node to a Diversity Index (DI) tree.
It is the core of Query Module. This example Range Index supports 1-dimensional range
queries.

Example 3.3.1 (Continuing Example 3.2.2). A user can create RC-Index as follows to

support query q in Example 3.2.2:

CREATE RC_Index ON X(Close_time)

DISTANCE disE(Latitude, Longitude);

Figure 3.5 depicts the high level idea of RC-Index of our Query Module. It consists

of two indexes: Range Index (RI) and Diversity Index (DI). The RI is to support the range

query. It can be a B+ tree, R-tree, k-d tree, range tree, and so on. On the left hand side in the

figure, we exhibit an example RI for 1-dimensional range queries. We display a range on

each node to indicate its coverage. The root covers the range [0,8). Then it splits the range

into sub-ranges as children until the range is small enough. All these ranges correspond to

inner nodes, while the leaves are actual items.

Every RI node is mapped to a DI tree on the right hand side. The root of the RI is

mapped to a DI tree that covers all the eight items. Then the RI node [0,4) is mapped to

a DI tree that covers all five items within this range. Similarly, all inner nodes of RI are

mapped to a corresponding DI tree. At the bottom, every individual item is itself a DI tree,

so we do not need to explicitly map leaves of RI to DI, which saves some space.

Our Query Module has the following features.
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• As we mentioned before, we allow the attributes used for distance calculation Adis to

be different from the attributes filtered by the range query Aq, which makes our approach

applicable to more applications.

• Our approach supports not only any range query q on the query attributes Aq but also

various k. For instance, if a system such as Amazon would like to return top 10 results to

one user but top 20 results to another user due to customized settings, our approach can do

it without rebuilding the indexes.

• Our approach works in a dynamic scenario where a system inserts and deletes items

between queries.

3.3.2 Query Module: Diversity Index

We introduce Diversity Index first as it is the essential part of our approach. We use the

cover tree [15] which is originally designed for nearest neighbor search. It organizes items

according to distance. So we can extract diverse items from one or more cover trees with a

performance guarantee.

Intuitively, we can extract diverse items top-down from a single cover tree. But one

cover tree is not capable of answering various range queries. So we build multiple cover

trees which together cover the items to be diversified, i.e. q(X), and do not contain any

extra items (Section 3.3.3). We extract more than k candidate items from these cover trees

in our Query Module. Later we choose exactly k diverse items from the candidates in our

Diversification Module (Section 3.3.5).

Algorithm 6 explains how we extract more than k candidate items from multiple cover

trees. We enumerate the cover trees and extract a level of items from each tree in Function

ExtractTree (from Line 5 to Line 10). This function finds the highest level with at least

k items (Line 8) and goes δ levels down (Line 9) to return all items at that level. Level

(`k−δ ) always exists because the level number of a cover tree goes from `max to −∞.
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Algorithm 6: Candidate Extraction
Input: Parameter k; Set of cover trees T = {CT1,CT2, ...}; Extra level δ .
Output: Set of candidate items XC.

1 XC⇐ /0
2 foreach CT ∈ T do
3 XC⇐ XC ∪ExtractTree(CT,k,δ)

4 return XC

5 Function ExtractTree(CT,k,δ)
6 if |CT | ≤ k then
7 return All items in CT

8 `k⇐ argmax
`
|C`| ≥ k

9 `⇐ `k−δ

10 return C`

Example 3.3.2. Consider applying Algorithm 6 to one single cover tree in Figure 3.3 with

parameters k = 3 and δ = 1. Our function ExtractTree firstly makes sure this tree has

more than 3 items. Then it finds the highest level with at least 3 items: Level `k = −1.

Finally it goes δ = 1 level down to Level −2 and returns all its 9 items.

The candidate items extracted by Algorithm 6 are diverse, which allows us to later

select k items with high diversity score from these candidates. Formally, if the optimal

diversity score on X is f ∗, and the optimal diversity score on extracted XC is fC, we have

fC ≥ b−1−2b1−δ

b−1 · f ∗. We prove this property in Section 3.4.1.

3.3.3 Query Module: Range Index

We use Range Tree [111, 12, 166, 100] to transform any range query to logd n subor-

dinate searches, where n is the size of the data and d = Aq is the dimensionality. Range

tree is one of the data structures that efficiently support range query [13]. We utilize range

tree as our Range Index for two reasons: (1) It can help us transform a range query to a

reasonable number of subordinate searches. Given any range query, we visit at most logd n

nodes in a range tree, each of which can be viewed as a subordinate search. Then we can

perform each subordinate search with the help of a Diversity Index. (2) It can answer a

range query efficiently. In a conventional range query evaluation scenario, one can extract
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Algorithm 7: Range Query Tree Extraction
Input: Range query q; Parameter k; RC-Index RC; Extra level δ .
Output: Set of cover trees T .

1 T ⇐ QueryRangeTree(q,RC.root)
2 return T
3 Function QueryRangeTree(q,node)
4 if node.range⊆ q.range then
5 return {node.CT}
6 if node.range∩q.range = /0 then
7 return /0

8 nowT ⇐ /0
9 foreach child ∈ {node.le f t,node.right,node.next} do

10 nowT ⇐ nowT ∪QueryRangeTree(q, child)

11 return nowT

the entire q(X) with time complexity O(logd n+ |q(X)|). So it is faster than k-d tree [11]

or quad tree [53] whose worst case query complexity is O(d ·n1−1/d + |q(X)|) [99].

Given a range query, we can answer the query by visiting at most logd n nodes. Let’s

see an example on a 2-dimensional query.

Example 3.3.3. When receiving a 2-dimensional query [2,8)× [2,6) on a range tree in

Figure 3.4, we split the first dimension and stop at [2,4)× [0,8) and [4,8)× [0,8). Then we

split the second dimension to reach four nodes [2,4)× [2,4), [2,4)× [4,6), [4,8)× [2,4),

and [4,8)× [4,6).

We briefly present the time and space complexity of a conventional range tree. The

query complexity is O(logd n), because the range of each dimension is split to logn sub-

ranges. Its batch construction time is O(n logd n). The amortized time complexity of in-

sertion and deletion is O(logd n) when we carefully maintaining the balance of the tree

[166, 100, 112]. Its space complexity is O(n logd n).

3.3.4 Query Module: Candidate Extraction

We map every range tree node to a cover tree to form our RC-Index. So instead of

retrieving all data items of range tree nodes, we query the corresponding cover trees to
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extract a few diverse items as candidates. Algorithm 7 depicts how we traverse the RC-

Index to collect a set of cover trees for a range query. We later pass the cover trees to

Algorithm 6 to get candidates. Here is an example:

Example 3.3.4. (Continuing Example 3.3.3) Given the range query [2,8)× [2,6), we tra-

verse our index and stop at four nodes: [2,4)× [2,4), [2,4)× [4,6), [4,8)× [2,4), and

[4,8)× [4,6). We collect their corresponding cover trees into a set T . Then we pass it to

Algorithm 6 to get candidate items XC.

This approach successfully reduces the number of scanned items from |q(X)|, i.e. O(n)

in the worst case, to O(kγ4(δ+1) logd n) in the worst case as we prove in Section 3.4.1.

3.3.5 Diversification Module

This module takes a set of candidate items XC = {x1,x2, ...} as input and output exactly

k diverse items. Since the number of candidates is limited by the previous Query Module,

we deploy a simple O(k · |XC|) greedy algorithm here [147, 137]. Notice that this module

does not stick to any particular algorithm. One can change the algorithm here to any other

algorithms when necessary.

Algorithm 8 introduces the detail of this greedy algorithm. Initially, it selects a random

item from XC to put into the output set S (Line 2). Then it maintains an array to track the

distances between selected items and unselected items (Line 5). The algorithm iteratively

chooses the item with the greatest distance from the selected items until it finds k items

(Line 6 to 11). If we want to solve the MAXSUM version of this problem, we change

Algorithm 8 to another one as we explain in Section 3.6.

The time complexity of Algorithm 8 is O(k · |XC|). The space complexity is O(|XC|).

It is a 1/2-approximation algorithm [147, 137].
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Algorithm 8: Greedy Diversification
Input: Candidate set XC = {x1,x2, ...}; Size of output k where k ≤ |XC|.
Output: Set of diverse items S.

1 xrandom⇐ one random item in XC

2 S⇐{xrandom}
3 XC⇐ XC−{xrandom}
4 foreach xi ∈ XC do
5 dist[xi]⇐ dis(xi,xrandom)

6 while |S|< k do
7 x f arthest ⇐ argmax

xi∈XC
dist[xi]

8 S⇐ S∪{x f arthest}
9 XC⇐ XC−{x f arthest}

10 foreach xi ∈ XC do
11 dist[xi]⇐min{dist[xi],dis(xi,x f arthest)}

12 return S

Query Approximation Ratio: b−1−2b1−δ

2(b−1)
Space Complexity: O(kγ4(δ+1) logd n)
Time Complexity: O(k2γ4(δ+1) logd n)

Index Batch Construction Time: O(γ6n logd+1 n)
Amortized Insert/Delete: O(γ6d logd+2 n)
Space Complexity: O(n logd n)

Figure 3.6: Performance.

3.4 Performance Analysis

We analyze the performance of query evaluation and index construction in this section.

Figure 3.6 summarizes it.

3.4.1 Query Quality and Complexity

We prove the approximation ratio, time complexity, and space complexity for answer-

ing a query using Algorithm 5.
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3.4.1.1 Approximation Ratio

Given a set of cover trees that covers items in query result q(X), we prove that Algo-

rithm 6 extracts a high-quality set of candidate items XC:

Theorem 3.4.1. Let the optimal diversity score on q(X) be f ∗ and the optimal diversity

score on extracted XC be fC. We have fC ≥ b−1−2b1−δ

b−1 · f ∗, where b is the base distance

parameter of the cover trees we build and δ is the extra level parameter of Algorithm 6.

In order to prove this theorem, we show there exists a subset Y = {y1, ...,yk} ⊆ XC

whose diversity score fY is at least b−1−2b1−δ

b−1 · f ∗. Specifically, let the optimal set be

S∗ = {x1, ...,xk} ⊆ q(X) which leads to the optimal diversity score f ∗. These {x1, ...,xk}

may come from one or more cover trees. Now we define Y = {y1, ...,yk} based on S∗. Each

yi can be viewed as a “substitute” of xi on xi’s cover tree CT:

• Case 1: If the tree CT has no more than k items, Algorithm 6 puts all items of this

tree into XC. So we define yi = xi ∈ XC.

• Case 2: If the tree CT has more than k items, we define yi as the ancestor of xi at

Level (`k−δ ), where `k is the highest level of tree CT with at least k items (Line 8). This

yi is also returned in XC.

We would like to show xi and yi are close enough so that fY is not much worse than f ∗.

Formally, the distance between xi and yi satisfies the following lemma:

Lemma 3.4.2. dis(xi,yi)≤ b−δ

1−b−1 · f ∗.

Proof. Similarly, dis(xi,yi) has two cases:

• Case 1: When the tree CT has no more than k items, since yi = xi, dis(xi,yi) = 0 ≤
b−δ

1−b−1 · f ∗.

• Case 2: When the tree CT has more than k items, any k items at Level `k also exist

at Level (`k− δ ) due to Nesting and should be extracted. They have already formed a

solution with diversity score b`k because of Separation. In addition, as f ∗ is the optimal

diversity score of all items, b`k ≤ f ∗.
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Since yi is the ancestor of xi and yi is at Level (`k−δ ), according to Covering,

dis(xi,yi)<
`k−δ

∑
`=−∞

b` =
b`k−δ

1−b−1

So

dis(xi,yi)<
b`k−δ

1−b−1 =
b−δ

1−b−1 ·b
`k ≤ b−δ

1−b−1 · f ∗

Now we can prove Theorem 3.4.1:

Proof. According to triangle inequality and symmetry (Definition 3.2.3), for any xi and the

corresponding yi:

dis(xi,x j)≤ dis(xi,yi)+dis(yi,y j)+dis(x j,y j)

Since f ∗ is the diversity score of {x1, ...,xk}, dis(xi,x j)≥ f ∗. So for any distinct yi and

y j:

dis(yi,y j)≥ dis(xi,x j)−dis(xi,yi)−dis(x j,y j)

≥ f ∗− b−δ

1−b−1 · f ∗− b−δ

1−b−1 · f ∗

= (1− 2b−δ

1−b−1 ) · f ∗

=
b−1−2b1−δ

b−1
· f ∗

Since fC ≥ fY ≥ dis(yi,y j), fC ≥ b−1−2b1−δ

b−1 · f ∗.

Note that b−1−2b1−δ

b−1 must be greater than 0 to ensure a non-trivial bound. For instance,

when b = 2.0 and δ = 3, the bound is 1/2. When b = 3.0 and δ = 2, the bound is 2/3.

We further prove the bound in Theorem 3.4.1 is tight.
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Figure 3.7: The bound in Theorem 3.4.1 is tight in the worst case.

Theorem 3.4.3. Given any ε > 0, there exists a worst case making (b−1−2b1−δ

b−1 + ε) · f ∗ ≥

fC.

Proof. We prove it by providing a worst case example (Figure 3.7). In this case, k = 2 and

the distance function is Euclidean. All items are on a straight line. Items from x1 to root1

belong to one cover tree rooted at root1. Items from root2 to x2 belong to another cover tree

rooted at root2.

As illustrated, there are finite number of items between x1 and y1 leading to dis(x1,y1)=

( b−δ

1−b−1 − ε

2) · f ∗. There are also δ items between y1 and root1, each of which is at a different

level. The other cover tree on the right is symmetric.

So the extracted XC will be all items between y1 and y2. The optimal diversity score of

XC is therefore fC = dis(y1,y2) = (b−1−2b1−δ

b−1 + ε) · f ∗

Now we conclude the query result quality of Algorithm 5:

Theorem 3.4.4. The approximation ratio of Algorithm 5 is b−1−2b1−δ

2(b−1) .

Proof. Algorithm 5’s approximation ratio is the product of the two module’s approximation

ratios. The Query Module’s ratio is b−1−2b1−δ

b−1 as in Theorem 3.4.1. The Diversification

Module’s ratio is 1
2 . So the ratio of Algorithm 5 is b−1−2b1−δ

b−1 · 1
2 = b−1−2b1−δ

2(b−1) .

Note that the approximation ratio approaches 1/2 as b increases or δ increases.

This bound is also tight because the approximation bounds of both modules are tight.
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3.4.1.2 Time Complexity

A cover tree’s complexity analysis requires a data-dependent expansion constant, γ .

Given X , let the closed ball of radius r centered at x be B(x,r) = {x′ ∈ S|dis(x,x′)≤ r}. So

expansion constant is the smallest γ such that |B(x,b · r)| ≤ γ|B(x,r)| for every x ∈ X and

r > 0 [15].

Each item can have at most γ4 children [15]. Remember the number of items at Level

(`k + 1) is strictly less than k according to Algorithm 6. So the number of items at Level

(`k−δ ) is at most kγ4(δ+1). Therefore we extract O(kγ4(δ+1)) items and the time complex-

ity is also O(kγ4(δ+1)) on one single cover tree.

We have the following conclusion on multiple cover trees:

Lemma 3.4.5. The Query Module (Algorithm 7 and 6) returns a candidate item set XC

with O(kγ4(δ+1) logd n) items.

Proof. A range query visits O(logd n) nodes in the range tree. We map each node to a cover

tree. For each cover tree, we extract O(kγ4(δ+1)) items. So we extract O(kγ4(δ+1) logd n)

candidate items totally.

Lemma 3.4.6. The worst-case time complexity of the Query Module (Algorithm 7 and 6)

is O(kγ4(δ+1) logd n).

Lemma 3.4.6 follows from Lemma 3.4.5.

Theorem 3.4.7. The worst-case time complexity of Algorithm 5 is O(k2γ4(δ+1) logd n).

Proof. The time complexity is the sum of the complexities of the Query Module (Algo-

rithm 7 and 6) and the Diversification Module (Algorithm 8). The complexity of the Query

Module is in Lemma 3.4.6. The complexity of the Diversification Module is O(k · |XC|),

which equals O(k2γ4(δ+1) logd n) because |XC|=O(kγ4(δ+1) logd n) based on Lemma 3.4.5.

So the worst-case time complexity is dominated by Algorithm 8, O(k2γ4(δ+1) logd n).
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Algorithm 9: RC-Index Batch Construction
Input: Set of items X ; Dimensionality d.
Output: RC-Index RC.

1 RC.root⇐ Construct(1,X .sortByDimension(1))
2 return RC
3 Function Construct(nowD,sortedX)
4 if |sortedX |= 0 then
5 return NULL

6 node.le f t⇐ Construct(nowD, f irstHal f (sortedX))
7 node.right⇐ Construct(nowD,secondHal f (sortedX))
8 if nowD < d then
9 nextX ⇐ sortedX .sortByDimension(nowD+1)

10 node.next⇐ Construct(nowD+1,nextX)

11 node.CT ⇐ construct cover tree on sortedX
12 return node

The exponential term O(γ4(δ+1)) looks expensive. But one should notice that cover

tree is designed for nearest neighbor search, and one search query takes O(γ12 logn) time

[15], whose exponent of γ is also large. In practice, this exponential term turns out to be

insignificant. We demonstrate it by showing the wall-clock runtime in Section 3.7.

3.4.1.3 Space Complexity

During query evaluation, we need to store the candidates we extract. So the space

complexity is O(kγ4(δ+1) logd n) as in Lemma 3.4.5.

3.4.2 Index Complexity

We discuss the batch construction time complexity, insertion/deletion time complex-

ity, and space complexity of RC-Index. We show that the RC-Index can be created and

maintained efficiently, proving formal bounds on the cost of key operations

3.4.2.1 Batch Construction

Algorithm 9 shows how we batch construct RC-Index. Given a node, it builds a cover

tree for the node, construct its le f t and right children in the same dimension, and construct

its next child in the next dimension.
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Theorem 3.4.8. The batch construction of RC-Index on n item takes O(γ6n logd+1 n) time

in the worst case.

Proof. We prove it through induction.

•When d = 1, we build a 1-dimensional range tree, each node of which is a cover tree.

We first sort all items into an array in O(n logn) time so that we can identify the items

of each inner node in linear time 1. Then we use divide and conquer algorithm to build

the RC-Index. At each node, we find the median using the sorted array, divide the items

into two children, build RC-Index for each child, and finally construct a cover tree for the

current node. We know that building a cover tree on n items takes O(γ6n logn) time. So we

have the following recurrence relation:

t(n) = 2 · t(n/2)+O(γ6n logn)

According to the master theorem, t(n) = O(γ6n log2 n). The overall time complexity T1(n)

including sorting is still T1(n) = O(n logn)+ t(n) = O(γ6n log2 n).

• Suppose Theorem 3.4.8 holds when d = m, so Tm(n) = O(γ6n logm+1 n). Now we

prove it also holds when d = m+1.

We construct a (m+1)-dimensional RC-Index by recursively splitting the first dimen-

sion and building an m-dimensional RC-Index for each node. Similarly, we also sort the

items by the first dimension with O(n logn) time. Then we divide and conquer to build each

child. Finally, we construct a cover tree for the current node. So we have the recurrence

relation:
t(n) = 2 · t(n/2)+Tm(n)+O(γ6n logn)

= 2 · t(n/2)+O(γ6n logm+1 n)+O(γ6n logn)

= 2 · t(n/2)+O(γ6n logm+1 n)

1This is faster than recursively applying the O(n) selection algorithm in practice.
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Algorithm 10: RC-Index Insertion
Input: New item x; RC-Index RC.
Output: Updated RC-Index RC.

1 Insert(x,RC.root)
2 return RC
3 Function Insert(x,node)
4 Insert x into the cover tree node.CT
5 Update node.im based on x
6 if node.im /∈ [β ,1−β ] then
7 Batch construct the tree rooted at node with x included
8 return

9 foreach child ∈ {node.le f t,node.right,node.next} do
10 if x ∈ child.range then
11 Insert (x, child)

According to the master theorem, t(n) = O(γ6n logm+2 n). So the overall complexity is

Tm+1(n) = O(n logn)+ t(n) = O(γ6n logm+2 n).

3.4.2.2 Insertion and Deletion

Algorithm 10 lists the pseudocode of insertion. The deletion process is similar. Our idea

is to apply a balance bound as in [121, 112]. Specifically, we define a rank of each node

in our range tree as rank(node) = (1+# nodes in subtree rooted at node). A subtree here

only means the subtree in the same dimension, excluding the nested subtrees in the next

dimension. An empty tree has rank = 1 while a leave node has rank = 2. Then we define

imbalance factor for each node as im(node) = rank(node.le f t)/rank(node). Intuitively,

an im(node) closer to 1/2 means a more balanced subtree rooted at node. A range tree

after batch construction has im ∈ [1/3,2/3] for all nodes. In Algorithm 10, we insert a new

item to the range tree and rebalance by batch constructing a subtree if its im falls out of

[β ,1−β ], where 0 < β < 1/3.

Our cover tree insertion, deletion, and querying algorithms are slightly different from

the original one in the cover tree paper [15]. We must support general base distance b > 1

for our approach while the original algorithms only works when b = 2. The major dif-
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Algorithm 11: Cover Tree Insertion
Input: Cover Tree CT ; New item x
Output: Cover Tree CT with x inserted

1 Raise the level of CT.root until it covers x
2 x.parent⇐CT.root
3 x.level⇐CT.root.level−1
4 f actor⇐CT.b/(CT.b−1)
5 con f lict⇐{CT.root}
6 level⇐CT.root.level
7 levelD⇐ (CT.b)level

8 while con f lict 6= /0 do
9 foreach v ∈ con f lict do

10 if dis(x,v)< f actor · levelD then
11 if dis(x,v)≤ levelD then
12 x.parent⇐ v
13 x.level⇐ level−1

14 else
15 con f lict⇐ con f lict−{v}

16 level⇐ level−1
17 levelD⇐ levelD/CT.b
18 con f lict⇐{v|v.parent ∈ con f lict ∧ v.level ≥ level}

ference is that we need to compute an upper bound of the radius of a node. Suppose

an item v is at level `v. Its direct children is within a ball of radius b`v . Its “grand-

children” is within a ball of radius b`v + b`v−1 and so on. The limit of the radius is

lim`→∞ b`v(1− b−`)/(1− b−1) = b`v · b/(b− 1). So we precompute f actor = b/(b− 1)

as the upper bound factor for all items at different levels. An item x may conflict with an

descendant of item v if dis(x,v)< f actor ·b`v . Algorithm 11 shows the insertion procedure.

Deletion and querying algorithms are very similar.

Theorem 3.4.9. The amortized time complexity of insertion or deletion of RC-Index is

O(γ6d logd+2 n).

Our proof is similar to the proof in [112]. We define an imbalance score of the tree. An

insertion or deletion may increase the imbalance score while a rebuild always decreases the

imbalance score.
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Proof. A pure insertion/deletion without batch construction visits O(logd n) nodes and per-

form insertion/deletion on the corresponding cover trees. So the complexity is O(logd n) ·

O(γ6 logn) = O(γ6 logd+1 n).

Now we analyze the cost of batch construction. Let the imbalance score of a tree be

IM(tree) = ∑
vi∈tree

im(vi)rank(vi) logdi+1 rank(vi)

where vi are the nodes and di is the node’s dimension. A node in the first dimension has

di = d and a node in the last dimension has di = 1.

Suppose we perform n operations each of which can be an insertion or deletion. So

the tree has at most n items. Through an easy induction, we can prove that one inser-

tion/deletion can increase IM(tree) by O(d · logd+2 n) (Lemma 3.4.10).

Given the imbalance score

IM(tree) = ∑
vi∈tree

im(vi)rank(ni) logdi+1 rank(vi)

we have:

Lemma 3.4.10. One insertion/deletion increases IM(tree) by O(d · logd+2 n).

Proof. For each node ni, an insertion/deletion can increase the imbalance factor im(vi) by

at most O(1/rank(vi)). So im(vi)rank(vi) always increase by O(1).

In the first dimension where di = d, we visit a path of O(logn) nodes. The sum of imbal-

ance factor increments is thus ∑path O(1) · logdi+1 rank(vi) = ∑path O(1) logd+1 rank(vi) ≤

∑path O(1) logd+1 n = O(logd+2 n). In the second dimension where di = d − 1, we visit

O(log2 n) nodes for all subtrees. The sum of imbalance factor increments is also O(logd+2 n).

We have similar results for all dimensions.

So one insertion/deletion increases IM(tree) by O(d · logd+2 n) for all dimensions.
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So after n operations, IM(tree) is at most IM+ = O(n ·d · logd+2 n).

In addition, each insertion/deletion can result in several batch constructions of subtrees.

Assume u constructions occur during the process. Each construction reduces the imbalance

factor im of a node from (0,β )∪ (1−β ,1) to [1/3,2/3]. In other words, it decreases im by

at least (1/3−β ) = O(1). Formally, suppose every construction occurs at v j in dimension

d j, it decreases im by at least O(1) · rank(v j) · logd j+1 rank(v j). So all u constructions

together decreases IM(tree) by IM− = ∑
u
j=1 O(1) · rank(v j) · logd j+1 rank(v j).

Initially, IM0 is zero. After n operations, IMn = IM+−IM− is positive. So IM−< IM+.

Based on Theorem 3.4.8, the cost of all constructions is cost = ∑
u
j=1 O(γ6rank(v j) ·

logd j+1 rank(v j)). So cost = O(γ6 · IM−) < O(γ6 · IM+) = O(γ6 · n · d · logd+2 n). So the

amortized construction complexity of each operation is O(γ6d logd+2 n), dominating the

pure insertion/deletion cost O(γ6 logd+1 n). Therefore the amortized complexity of each

operation is O(γ6d logd+2 n).

3.4.2.3 Space Complexity

The actual space complexity of a cover tree on n items is O(n), although the number of

conceptual levels of a cover tree is infinite. We store only one record for each distinct item

containing its id, highest level number, parent id, and children ids. So even though an item

appears in many levels, we only store it once.

Theorem 3.4.11. The RC-Index on n items takes O(n logd n) space.

Proof. We again prove it through induction.

•When d = 1, each node of the range tree is a cover tree. The root has n items, each of

its two children has n/2 items, and so on. The space complexity of a cover tree is O(n), so

the 1-dimensional RC-Index takes P1(n) = O(n logn) space.

• Suppose the space complexity is O(n logm n) when d = m, we now prove the space is

O(n logm+1 n) when d = m+1.
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Remember we build (m+1)-dimensional RC-Index by splitting the first dimension and

building an m-dimensional RC-Index for each node. So we have the following recurrence

relation:
Pm+1(n) = 2 ·Pm+1(n/2)+Pm(n)+O(n)

= 2 ·Pm+1(n/2)+O(n logm n)+O(n)

= 2 ·Pm+1(n/2)+O(n logm n)

So Pm+1(n) = O(n logm+1 n) based on the master theorem.

3.5 Index Selection

In this section, we briefly discuss how to build indexes given a set of queries. Before

this section, we only consider building one specific RC-Index RC to answer a given query q.

Formally, suppose a range query q applies filters on an attribute set Aq and the Range Index

of RC is built on an attribute set ARC. We have only considered the case where ARC = Aq.

Now let’s see some interesting properties of RC-Index when ARC may not equal Aq. These

properties are useful when we discuss index selection.

Theorem 3.5.1. The database can utilize RC to evaluate q with approximation ratio b−1−2b1−δ

2(b−1)

if Aq ⊆ ARC.

Proof. This is simply due to the property of the range tree. Recall how we traverse a

range tree to answer a query q. Initially, q corresponds to a single search at the root of the

range tree. If q applies a filter on the first dimension, we transform the root to O(logn)

subordinate searches. However, if q applies no filter on the first dimension, we simply goes

from the root to its child in the next dimension without branching new searches. Similar

procedure happens in all dimensions. We still end up with multiple subordinate searches

and extract items from the corresponding cover trees. Obviously, the approximate ratio in

Theorem 3.4.4 still holds. So we can use RC to answer query q as long as Aq ⊆ ARC.
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Figure 3.8: When Aq ⊃ ARC, naı̈vely extend RC to answer q can result in arbitrarily bad
diversity score.

Then a natural question is: can we utilize RC when Aq ⊃ ARC? Specifically, can we

use RC to find a diverse set of items satisfying filters on ARC and then apply filters on

(Aq−ARC)? Unfortunately, the output diversity score of this approach can be arbitrarily

bad. For example, consider a special case where Aq = Adis = {Latitude,Longitude}.

The distance function is still Euclidean. ARC = {Latitude} ⊂Aq. Assume k = 2. As Fig-

ure 3.8 illustrates, RC may mistakenly pick diverse items within {x2, ...,xn} because their

latitudes are different from each other. However, the best diverse set should be {x1,xn}. In

this case, the diversity score is arbitrarily bad because dis(x2,xn)/dis(x1,xn) can approach

zero.

Following the proof of Theorem 3.5.1, we can easily derive the time complexity of

evaluating q. Assume d = |ARC| and dq = |Aq|. We have:

Theorem 3.5.2. The database can utilize RC to evaluate q with time complexity

O(k2γ4(δ+1) logdq n) if Aq ⊆ ARC and d = O(k2).

d = O(k2) means that the dimensionality of the RC-Index is not greater than order of

k2. This usually holds in practice. d is small because a user is unlikely to apply filters on

more than 10 dimensions. But k could be easily greater than 5, resulting in k2 = 25.

Proof. As we explain in the proof of Theorem 3.5.1, every time we apply a filter on a di-

mension, we branch O(logn) subordinate searches. So our algorithm ends up with (logdq n)

subordinate searches in the range tree in O((d− dq) logdq n) time where (d− dq) implies

we go directly from one node to its child next in the next dimension without branching
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new searches. Finally our algorithm extracts items from O(logdq n) cover trees to diver-

sify them in O(k2γ4(δ+1) logdq n) time. So the time complexity is O
(
(d − dq) logdq n +

k2γ4(δ+1) logdq n
)
. Since (d− dq) ≤ d = O(k2), the overall query time is dominated by

O(k2γ4(δ+1) logdq n).

Given the above two properties of RC-Index, now we discuss how to build indexes given

a set of queries Q = {q1,q2, ...}. Theorem 3.5.1 and 3.5.2 suggest that an RC-Index on

ARC can answer queries whose Aq ⊆ ARC with the same approximation ratio and time

complexity as those when Aq = ARC. So a naı̈ve plan is to build a large index that covers

all queryable attributes, i.e. ARC = ∪q∈QAq. The only problem of this plan is its large

space complexity, O(n log|ARC| n). We cannot build this large RC-Index when the database

has a small space limit. Then the index selection becomes an optimization problem that

optimizes the runtime and the approximation ratio of a workload while satisfying the space

constraint. We defer the study of this problem in our future work.

3.6 MAXSUM

We show how to extend our framework to support MAXSUM in this section.

We build the same RC-Index on the items. Then we apply the same Algorithm 7 and 6

to extract candidates. Finally, we can change the greedy Algorithm 8 for our diversification

module to a very similar greedy algorithm in [137] with 1/4 approximation ratio to support

MAXSUM. We prove the approximation ratio of this pipeline is b−1−2b1−δ

4(b−1) .

Assume the optimal solution is S∗ = {x1,x2, ...,xk} with diversity score f ∗. The candi-

date items we extract is XC. Suppose we construct the same Y = {y1,y2, ...,yk} on XC with

diversity score fY as we do for Theorem 3.4.1. Let K = k(k−1)
2 where k ≥ 2 for non-trivial

cases. We have the following lemma and theorem.

Lemma 3.6.1. dis(xi,yi)≤ b−δ

1−b−1
1
K · f ∗.

Proof. Similarly, dis(xi,yi) has two cases:
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• Case 1: When the tree CT has no more than k items, since yi = xi, dis(xi,yi) = 0 ≤
b−δ

1−b−1
1
K · f ∗.

• Case 2: When the tree CT has more than k items, any k items at Level `k also exist

at Level (`k− δ ) due to Nesting and should be extracted. They have already formed a

solution with diversity score b`k because of Separation. In addition, as f ∗ is the optimal

diversity score of all items, b`kK ≤ f ∗.

Since yi is the ancestor of xi and yi is at Level (`k−δ ), according to Covering,

dis(xi,yi)<
`k−δ

∑
`=−∞

b` =
b`k−δ

1−b−1

So

dis(xi,yi)<
b`k−δ

1−b−1 =
b−δ

1−b−1 ·b
`k ≤ b−δ

1−b−1 ·
1
K

f ∗

Theorem 3.6.2. Let the optimal diversity score on X be f ∗, and the optimal diversity score

on extracted XC be fC, fC ≥ b−1−2b1−δ

b−1 · f ∗.

Proof. According to triangle inequality and symmetry (Definition 3.2.3), for any xi and the

corresponding yi:

dis(xi,x j)≤ dis(xi,yi)+dis(yi,y j)+dis(x j,y j)

equivalent to

dis(yi,y j)≥ dis(xi,x j)−dis(xi,yi)−dis(x j,y j)

Since f ∗ is the diversity score of {x1, ...,xk}, ∑1≤i< j≤k dis(xi,x j) = f ∗. So for any

distinct yi and y j:
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∑
1≤i< j≤k

dis(yi,y j)≥ ∑
1≤i< j≤k

(
dis(xi,x j)−dis(xi,yi)−dis(x j,y j)

)
= ∑

1≤i< j≤k
dis(xi,x j)− ∑

1≤i< j≤k

(
dis(xi,yi)+dis(x j,y j)

)
≥ f ∗− ∑

1≤i< j≤k

(
b−δ

1−b−1
1
K
· f ∗+

b−δ

1−b−1
1
K
· f ∗
)

= f ∗−K

(
2 · b−δ

1−b−1
1
K
· f ∗
)

= (1− 2b−δ

1−b−1 ) · f ∗

=
b−1−2b1−δ

b−1
· f ∗

Since fC ≥ fY ≥ dis(yi,y j), fC ≥ b−1−2b1−δ

b−1 · f ∗.

After extracting the candidates, we apply a 1/4-approximation algorithm for MAXSUM

in [137]. So the overall approximation ratio is b−1−2b1−δ

4(b−1) .

3.7 Experimental Evaluation

In this section we evaluate our approach. Our results demonstrate that our approach can

extract high quality diverse items efficiently.

3.7.1 Settings

3.7.1.1 Data

We experiment with two types of datasets. Figure 3.9 lists the real-world datasets. We

obtain the City dataset containing 5,922 Greek cities and villages from [46, 47]. Bank

[119] and Census are two most popular datasets with ≥ 10,000 items from UCI Machine

Learning Repository [105]. Forest [16] and Gas [78] are two larger datasets from the same

repository. We remove categorical attributes because their small domain over-simplifies the

diversification problem. Then we randomly pick the remaining numerical attributes as Aq

and Adis. We also generate synthetic datasets whose attributes follow uniform distributions.
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Dataset # Instances Description
City 5,922 Greek cities
Bank 45,211 Marketing data of a Portuguese bank
Census 48,842 Census income of US
Forest 581,012 Forest cover type in Colorado, US
Gas 928,991 Gas sensors

Figure 3.9: Datasets.

We vary the following parameters one at a time in our experiments. The bold value of

each parameter is the default value when we are not varying this parameter in any individual

experiment. We vary n within {103,5×103,104,5×104, ...,106} and k in {10,50,100,150,

200}. The query q applies filters on {1,2,3} attributes always covering 80% items. The dis-

tance function is Euclidean on another two attributes. We vary b in {1.1,1.5,2.0,3.0,4.0}

and δ in {0,1,2,3,4,5}, which means 1/4 approximation ratio when b = 2.0 and δ = 3

by default. Some (b,δ ) combinations makes the ratio less than 0, but they work well in

practice as we will show in Section 3.7.3.

3.7.1.2 Configuration

We use a MacBook with 2GHz dual-core Intel Core i7 and SSD. Our prototype system

runs in PostgreSQL, which utilizes 4GB memory.

We implement our prototype as user defined functions (UDFs) using C language at

server side. The user can specify the attributes that allow range queries and also a distance

function on certain attributes. Then we create two auxiliary tables as our indexes: one for

Range Index and the other for Diversity Index. The user can conduct batch construction,

insert items, or query diverse items by invoking our UDFs.

Such UDF-based implementation is flexible because it does not force a user to modify

the source code of PostgreSQL. A user may not have the privilege to install a customized

PostgreSQL if s/he is not the admin. GiST [73] also has such flexibility but there is no

simple way to manipulate the inner nodes of an index tree using GiST. So we end up
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Algorithm Query Complexity Approx. Ratio Max Ratio

RC-Index O(k2γ4(δ+1) logd n) b−1−2b1−δ

2(b−1) < 1/2
Greedy O(kn) 1/2 1/2
Tree O(n2) (b−1)

2b2 ≤ 1/8
Tree++ O(γ6n logn) (b−1)

2b2 ≤ 1/8

Figure 3.10: Algorithms.

with UDFs. We can adapt the UDFs to seamless triggers in the future to improve user

experience. The efficiency of our UDFs is not an issue as we will demonstrate soon in this

section.

3.7.1.3 Comparison with Baselines

We compare with three baseline approaches. They are the state-of-the-art to the best of

our knowledge.

• Greedy. Greedy algorithm selects a random item to initialize the diverse result set S.

Then for every unselected item x, it maintains an array of the minimum distance between

x and any item in S. It iteratively adds the item with the maximum minimum distance

into S and updates the distance array. Its pseudo code is the same as Algorithm 8 but it

takes all items in q(X) as input. So in the worst case, its query time is O(kn). This is a

1/2-approximation algorithm [147, 137].

• Tree. Drosou and Pitoura [47] have developed an approximation algorithm based

on a single cover tree. They assume the items continuously get into the system so they

perform insertion and deletion while selecting diverse items from the cover tree. We adapt

this approach to support arbitrary range queries by updating the cover tree between queries.

Their streaming data scenario is different from ours so such an adaptation is slower than

our approach. Its batch construction time for building a cover tree is O(n2). In addition, its

maximum approximation upper bound is 1/8 when b = 2.0. But our approach can achieve,

for example, 1/4 approximation ratio within very short query time.
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Figure 3.11: Synthetic data with varying size n: RC-Index is nearly an order of magnitude
faster than the state-of-the-art while ensuring high quality result.

• Tree++. This is the original cover tree algorithm [15], which can be viewed as a

variant of the above approach. Instead of finding the farthest pair of items to construct a

tree in Tree, we randomly pick an item to start the tree construction in Tree++, which

reduces O(n2) complexity to O(γ6n logn).

Figure 3.10 shows the worst-case query complexity and approximation ratio of all algo-

rithms. At a glance, all three baselines’ query complexity is Ω(n) because they have to scan

the entire q(X) when |q(X)|=O(n) in the worst case. But our complexity has no O(n) term

with the help of indexes. Our approximation ratio α = (b−1−2b1−δ )/2(b−1) is better

than Tree and Tree++’s. Moreover, α’s upper limit equals Greedy’s ratio 1/2, which is

the best possible approximation ratio of a polynomial algorithm unless P=NP [137].

Since Greedy has the best approximation ratio while finding the optimum solution takes

exponential time, we compare the diversity scores against Greedy’s. We compute the rela-

tive score for each algorithm Algo as fAlgo/ fGreedy in the following experiments.

3.7.2 Quality and Scalability

We vary n and k to see how diversity score and runtime change. We also show the num-

ber of scanned items |XC| to help demonstrate that our approach is more efficient because

we scan much fewer items.

Figure 3.11 compares the performance on synthetic data where n varies within {103,5×

103,104, ...,106}. We do not run Tree on n ≥ 105 because its query time is too long. (1)
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Figure 3.13: Real-world data: RC-Index is the fastest approach while ensuring high quality
result.

Figure 3.11a depicts the relative score compared to Greedy’s. The quality of our result

is as good as Greedy’s, and they are both better than Tree and Tree++ when n ≥ 104.

In some cases, RC-Index outperforms Greedy even though its theoretical approximation

ratio is worse than Greedy’s. This is simply because the synthetic data is not the worst case

data for RC-Index. (2) Figure 3.11b shows that RC-Index is an order of magnitude faster

than the state-of-the-art, Greedy and Tree++. Our query time is 0.9 second when there are

106 items. (3) Figure 3.11c tells us why RC-Index is efficient: it scans far fewer candidate

items than the other baselines do. (4) Finally, Figure 3.11d shows the batch index creation

time of the synthetic data. It is a one-time cost after loading the data. RC-Index can

index 105 items within only 28 seconds, or 106 items within 330 seconds. The indexing

time increases almost linearly with regard to n (both in log scale in the figure), which is a

desired property.
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Figure 3.14: (a) Varying k: RC-Index delivers good result in short query time when k
increases. (b) Varying d: RC-Index’s query time gets closer to Greedy’s but the result
quality is the same as d increases.

We also plot the insertion time as n grows. For each n in {103,5×103,104, ...,106}, we

insert 100 new items into RC-Index and compute the average insertion time. As Figure 3.12

illustrates, the insertion time grows slowly as n increases.

RC-Index also outperforms the others on real-world data as illustrated in Figure 3.13.

We do not run Tree on Forest and Gas because its query time is too long. Figure 3.13a

shows that RC-Index’s score is as good as Greedy’s and is better than Tree and Tree++.

Figure 3.13b shows our query time is orders of magnitude less than the other three base-

lines, because we scan much fewer items as depicted in Figure 3.13c. Finally, Figure 3.13

shows our indexing time is short: only 13.3 seconds for 48,842 items or 343.8 seconds for

928,991.

Now we fix n = 5× 104 and vary k in {10,50,100,150,200}. As we can see in Fig-

ure 3.14aa, the quality of result is roughly the same as k increases. Figure 3.14ab also

shows the query time does not increase much for larger k.

Next, we vary d in {1,2,3} while fixing n = 5×104 and k = 10. Figure 3.14ba demon-

strates that the quality is stable. Figure 3.14bb shows the query time increases because the

query time complexity is proportional to logd n.

Finally, we change the distance function from Euclidean to Manhattan distance and

compare all algorithms as n grows. Figure 3.15 depicts the relative score and query time.
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Figure 3.15: Comparison under Manhattan distance. RC-Index outperforms the other al-
gorithms.
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Figure 3.16: (a) Varying b: greater b means longer query time. (b) Varying δ : greater δ

means better result but longer runtime.

Similar to the performance under Euclidean distance, RC-Index is nearly an order of mag-

nitude faster than the other algorithms and provides high diversity score.

3.7.3 Sensitivity

We test the sensitivity of our approach on synthetic data with 105 items in this section.

Two parameters, b and δ , impact our approximation ratio b−1−2b1−δ

2(b−1) and query complexity

O(k2γ4(δ+1) logd n). We vary them to see how performance changes. Note that some (b,δ )

combinations makes b−1−2b1−δ

2(b−1) ≤ 0, but they actually lead to good result in practice. So we

still present them in the following figures.

Figure 3.16a depicts the performance using different b. We vary b in {1.1,1.5,2.0,3.0,4.0}

for six different δ between 0 and 5. On the one hand, greater b means greater approxima-

tion ratio in the worst case. But we do not observe such trend in Figure 3.16aa, because the
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Figure 3.17: (a) Our algorithm works well on streaming data. (b) RC-Index supports partial
range query well.

synthetic data following uniform distribution is not the worst-case data. It is unusual to run

into worst-case scenario in practice. On the other hand, greater b means greater expansion

constant γ . So the query time is longer as Figure 3.16ab shows. When b and δ are large

enough, the query time converges because the algorithm has extracted all items from q(X).

Figure 3.16b shows how performance changes along with δ . We vary δ in {0,1,2,3,4,5}

but fix b at different values this time. Intuitively, greater δ means our algorithm goes deeper

in each cover tree to extract more candidate items. So the diversity score gets slightly better

in general as Figure 3.16ba depicts. The cost is that the query time gets longer as in Fig-

ure 3.16bb. Again, the query time converges when b and δ are large, because the algorithm

has extracted the entire q(X).

3.7.4 Data Stream

In this experiment, we examine the performance of RC-Index on streaming data. We

redesign and reimplement the algorithms in Figure 3.10 and apply them on a data stream.

We query this data stream through a sliding window. The window covers 50,000 items.

Every time we slide the window, we remove 10 old items, add 10 new items, and query the

diverse items again.

We compare the performance of four algorithms on 10 queries and plot the average

relative score and query time in Figure 3.17a. The diversity score of our algorithm is close
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to the best score and better than Tree and Tree++. In terms of query time, Tree [47] is the

fastest approach, but our algorithm is only slightly slower than Tree.

3.7.5 Index Selection

In this experiment we demonstrate Theorem 3.5.1 and 3.5.2. Given a range query q that

applies filters on a set of attributes Aq, one can build an RC-Index whose Range Index is on

an attribute set ARC to answer q as long as Aq ⊆ ARC. Theorem 3.5.1 and 3.5.2 show that

the diversity score and query time are irrelevant to the size of ARC. Here we fix |Aq| = 1

and vary d = |ARC| in {1,2,3}. As Figure 3.17b depicts, the diversity score and query time

are stable as d grows.

3.8 Related Work

Search result diversification is about selecting a small subset of diverse items to present

to the user when a large set of items satisfy the user query. It finds its application in many

scenarios such as data exploration, Web search, and recommendation systems. According

to the survey [45, 139, 186], diversification problems can be classified into three categories:

(1) content-based (or similarity-based) diversification finds items that are dissimilar to each

other; (2) intent-based (or semantic coverage-based) diversification finds items relevant to

various topics to help user further disambiguate the query; (3) novelty-based diversification

finds items that are different from the previously retrieved ones for the user. Our work

focuses on content-based diversification, which mainly maximizes the distance between

selected items and the relevance of items to the query [60, 42, 43]. In our setting, we treat

relevance score of an item as either relevant or irrelevant rather than a continuous score

because we are dealing with conventional relational queries. We select only relevant items

to present to the user.

There are two most common objective functions in content-based diversification prob-

lems: MAXMIN and MAXSUM. MAXMIN maximizes the minimum pairwise distances
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between selected items while MAXSUM maximizes the sum of pairwise distances. Both

problems have been studied earlier in operational research as dispersion problems. The

original motivation is to locate undesired facilities like nuclear reactors among the given

nodes in a network. These two problems are proved to be NP-hard in discrete and contin-

uous cases [51, 147, 137]. We focus on MAXMIN as its result is more representative in

many applications like geolocation based diversifications. Ravi et al. [137] prove that

MAXMIN is not only NP-hard but also APX-hard for general distance functions. But

when the distance function obeys the triangle inequality, a greedy heuristic results in a

1/2-approximation algorithm, and no polynomial algorithm can achieve better performance

guarantee unless P=NP.

However, researchers cannot directly migrate this greedy 1/2-approximation algorithm

to a database because it is too expensive. The time complexity of this algorithm is O(kn)

where n is the number of items in a query result. A database can have a million items

satisfying a query in a data exploration or product search scenario. So O(kn) can be very

large even when k is as small as ten. Its bottleneck is the scan of O(n) items. Yu et al.

[183] have developed a similar approach which starts with k items and swaps better items

with them greedily. Carbonell and Goldstein [24] iteratively selects items with maximal

marginal relevance. Vieira et al. [158] merge more scores and apply randomization in the

greedy algorithm. Khan et al. [89] classify the above techniques as “process-first-diversify-

next”, which are expensive because they may scan or sort O(n) items in the worst case. Our

index-based approach avoids this issue to be much faster.

Many researchers use indexes to improve the efficiency. Vee et al. [157] work on cate-

gorical distance and therefore use index to probe diverse items. Qin et al. [129] considers

binary distance. So they reduce the problem to weighted independent set and solve it with

the help of the graph structure. But our approach are dealing with more general distance

functions. Some researchers reuse the selected items to further shorten query evaluation

time. Several papers [118, 47, 44, 25] work on extracting diverse items from continuous

100



data stream. While new items getting into the system, user also continuously query the

stream. So they can reuse processed old items as result. Some other papers [90, 91, 92]

assume correlation between consecutive queries during data exploration. So they can reuse

previously returned items. Our approach does not make such assumptions. We support any

range queries efficiently with quality guarantee, making our approach applicable to more

general scenarios. Drosou and Pitoura [46] also utilize index, but they solve a variant of

diversification problem where the distance between selected items only need to be greater

than a given threshold. Khan and Sharaf [89] prune items according to the sorted partial

distance. But they focus on MAXSUM and the performance guarantee is unclear. We focus

on MAXMIN and our algorithm has an approximation bound.

Our approach uses cover tree [15], which is originally designed for nearest neighbor

search. Some other early data structures like ball tree [123], metric skip list [88], and

navigating net [97] also have similar features. We use cover tree as our Diversity Index

because of its simplicity and good runtime performance in practice, but our approach does

not stick to any particular data structure.

The study of range query dates back to 1970s. Researchers propose k-d tree [11], quad

tree [53], B+ tree [36], VA-file [164], range tree [111, 12, 166, 100], and so on. We use

range tree because of its good time complexity [166, 100, 112]. The range tree in our

approach can be replaced by any other range query index if necessary.

3.9 Discussion

Currently, we make no assumption about the workload. So we build balanced Range

Index (RI) to answer each range query with O(logd n) subordinate searches. However,

in practice, some ranges may be very popular, so a system designer can directly specify

the bounds of the inner nodes of an RI. For example, if many users search for laptops

between $1,000 and $3,000, the system designer can force an inner node of RI to cover

[$1,000,$3,001). Remember, our framework does not rely on any particular RI. We can
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build cover trees on any partition. The problem then becomes another optimization problem

whose target is minimize the query cost and index construction cost to answer a set of

queries.
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CHAPTER 4

A CONSUMER-CENTRIC MARKET FOR DATABASE
COMPUTATION IN THE CLOUD

4.1 Introduction

The availability of public computing resources in the cloud has revolutionized data

analysis. Users no longer need to purchase and maintain dedicated hardware to perform

large-scale computing tasks. Instead, they can execute their tasks in the cloud with the

appealing opportunity to pay for just what they need. They can choose virtual machines

with a wide variety of computational capabilities, they can easily form large clusters of

virtual machines to parallelize their tasks, and they can use software that is already installed

and configured.

Yet, taking advantage of this newly-available computing infrastructure often requires

significant expertise. The common pricing mechanism of the public cloud requires that

users think about low-level resources (e.g. memory, number of cores, CPU speed, IO rates)

and how those resources will translate into efficiency of the user’s task. Ultimately, users

with a well-defined computational task in mind care most about two key factors: the task’s

completion time and its financial cost. Unfortunately, many users lack the sophistication

to navigate the complex options available in the cloud and to choose a configuration1 that

meets their preferences.

As a simple example, imagine users who need to execute a workload of relational

queries using the Amazon Relational Database Service (RDS). They need to select a ma-

1A configuration here means a set of system resources and its settings, provided by the cloud provider. It
includes the number of virtual instances of a cluster, the buffer size of a cloud database, and so on.
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chine type from a list of more than 20 possible options, including “db.m3.xlarge” (4 virtual

CPUs, 15GB of memory, costing $0.370 per hour) and “db.r3.xlarge” (4 virtual CPUs,

30.5GB of memory, costing $0.475 per hour). The query workload may run more quickly

using db.r3.xlarge, because it has more memory, however the hourly rate of db.r3.xlarge is

also more expensive, which may result in higher overall cost. Which machine type should

the users choose if they are interested in the cheapest execution? Which machine type

should they choose if they are interested in the cheapest execution completing within 10

minutes? Typical users do not have enough information to make this choice, as they are

often not familiar with configuration parameters or cost models.

The reality of users’ choices is even more complex since they may choose one of five

data management systems through RDS, or other query engines using EC2, including par-

allel processing engines, and different configuration options for each. They might also be

tempted to compare multiple service providers, in which case they would have to deal with

different pricing mechanisms in addition to different configuration options. Amazon RDS

charges based on the capacity and number of computational nodes per hour; Google Big-

Query charges based on the size of data processed; Microsoft Azure SQL Database charges

based on the capacities of service tiers like database size limit and transaction rate.

As a result of this complexity, many users of public cloud resources make naı̈ve, sub-

optimal choices that result in overpayment, and/or performance that is contrary to their

preferences (e.g., it exceeds their desired deadline or exceeds their budget). Thus, instead

of paying only for what they need, the reality is that they pay for what they do not need

and, even worse, they pay more than they have to for it.

A market for database computations: To ease the burden on users we propose a new

market-based framework for pricing computational tasks in the cloud. Our framework

introduces an entity called an agent, who acts as a broker between consumers and cloud

service providers. The agent accepts data and computational tasks from users, estimates
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the time and cost for evaluating the tasks, and returns to consumers contracts that specify

the price and completion time for each task.

Our market can operate in conjunction with existing cloud markets, as it does not alter

the way cloud providers offer and price services. It simplifies cloud use for consumers

by allowing them to compare contracts, rather than choose resources directly. The market

also allows users to extract more value from public cloud resources, achieving cheaper and

faster query processing than naive configurations. At the same time, a portion of the value

an agent helps extract from the cloud will be earned by the agent as profit.

Agents are conceptually distinct from cloud service providers in the sense that they

have their intelligent models to estimate time and cost given consumers queries. In other

words, agents take the risk of estimation, while service providers simply charge based on

resource consumption, which guarantees profit. In practice, an agent could be a service

provider (who provides estimation as a service in addition to cloud resources), a piece of

software sold to consumers, or a separate third party who provides service across multiple

providers.

Scope: Our goal in this chapter is not to develop a new technical approach for estimat-

ing completion time or deriving an optimal configuration for a cloud-based computation.

Prior work has considered these challenges, but, in our view, has not provided a suitable

solution to the complexity of cloud provisioning. The reason is that estimation, even for

relatively well-defined tasks like relational workloads, is difficult. Proposed methods re-

quire complicated profiling tasks to generate models and specialize to one type of workload

(e.g., Relational database [87] or MapReduce [74]). In addition, there is inherent uncer-

tainty in prediction, caused by multi-tenancy common in the cloud [160, 140, 52, 152, 93].

Lastly, users’ preferences are complex, involving both completion time [134] and cost

[128, 181, 95, 187, 104], which have been considered as separate goals [75, 113, 115],

but have not been successfully integrated.
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Our market-based framework incentivizes expert agents to employ combinations of ex-

isting estimation techniques to provide this functionality as a service to non-expert con-

sumers. Users can express preferences in terms of their utility, which includes both time

and cost considerations. Uncertainty in prediction becomes a risk managed by agents, and

included in the price of contracts, rather than a problem for users. Ultimately our work

complements research into better cost estimation in the cloud [172, 30, 75]. In fact, our

market will function more effectively as such research advances and agents can exploit

new techniques for better estimation.

Our work makes several contributions:

• We define a novel market for database computations, including flexible contracts reflect-

ing user preferences.

• We formalize the agent’s task of pricing contracts and propose an efficient algorithm for

optimizing contracts.

• We perform extensive evaluation on Amazon’s public cloud, using benchmark queries

and real-world scientific workflows. We show that our market is practical and effective,

and satisfies key properties ensuring that both consumers and agents benefit from the

market.

The chapter is organized as follows. We present an overview of the market and main

actors in Section 4.2. We formally define contracts and optimal pricing of contracts in

Section 4.3 and 4.4. We extend our framework to support fine-grained pricing to further

optimize contracts in Section 4.5. In Section 4.6, we introduce several alternatives. In

Section 4.7, we present a thorough evaluation of our proposed market, and demonstrate that

it guarantees several important properties. Finally, we discuss related work and extension

in Sections 4.8 and 4.9.

106



Consumer	   Agent	   Cloud	  
Provider	  
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Figure 4.1: An overview of interactions of the main participants in the computation market:
the consumer, the agent, and the cloud provider.

4.2 Computation Market Overview

In this section, we discuss the high-level architectural components of our computation

market: three types of participants and their interactions through computation contracts.

Our computation market exhibits several desirable properties, which we mention in Sec-

tion 4.2.3.

4.2.1 Market Participants

Our goal is to model the interactions that occur in a computation market, and design

the roles and framework in a way that ensures that the market functions effectively. Our

computation market involves three types of participants:

• Cloud provider. Cloud providers are public entities that offer computational resources

as a service, on a pay-as-you-go basis. These resources are often presented as virtual

machine types and providers charge fees based on the capabilities of the virtual machines

and the duration of their use. Our framework does not enforce any assumptions on the

types, quantity, or quality of resources that a cloud provider offers.

• Consumer. A consumer is a participant in our computational market who needs to com-

plete a computational task over a dataset D. We assume the computational task is a set of

queries or MapReduce jobs2, denoted as Q = {Q1,Q2, ...,Qn}. We assume that the con-

2For simplicity of terminology we use “query” to refer to either a query or MapReduce job.
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sumer does not own the computational resources needed to complete Q, and thus needs

to use cloud resources. However, the consumer may not have the expertise to determine

which cloud provider to use, which resources to lease, or how to configure them. In our

framework, the consumer wishes to retrieve the task results Q(D) = {Q1(D),Q2(D), ...,

Qn(D)} within a specified timeframe, and pay for these results directly. Therefore, the

consumer’s goal is to complete the task efficiently and for low cost. Different consumers

have different time and cost preferences. They will describe these preferences precisely

using a utility function, as described later in Section 4.3.1.

• Agent. Consumers’ needs are task-centric (time and price to complete a given task),

whereas cloud providers’ abilities are resource-centric (time and price for a type of re-

source). Due to this disparity, consumers and providers do not interact directly in our

framework. Rather, a semantically separate entity, the agent, is tasked with handling the

interactions between consumers and cloud providers. The agent receives a task request

from a consumer and, in response, calculates a price to complete the task, providing the

consumer with a formal contract. We review contracts in Section 4.2.2, and describe

them in detail in Section 4.3. The agent executes accepted contracts using public cloud

resources, and earns a profit whenever the contract price is greater than the actual cost of

executing the task. The agent’s goals are to attract business by pricing contracts competi-

tively and to earn a profit with each transaction. One of the main challenges for the agent

is to assign accurate prices to consumer requests, which requires knowledge of cloud

resources, their capabilities and costs, and expertise in tuning and query prediction.

Figure 4.1 illustrates the interactions among the three market participants. In step 0,

the agent collects details on available configurations from the cloud provider to derive later

price quotes on consumers’ requests. This step may only need to be initiated once, and

reused afterwards. In steps 1 through 3, the agent receives a proposal including Q and

statistics about dataset D, denoted sD, which are sufficient for pricing. For example, sD

can be the number of input records in each table [6], histograms on key columns or sets of
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columns [170, 169, 171], a small sample of data [74], and other standard statistics relevant

to the task. The agent reasons about possible configurations and estimates the completion

time and financial cost of the queries, returning a priced contract to the consumer. If the

consumer accepts the contract, in steps 4 through 6, the agent executes a job in the cloud

according to the contract, computes the result, and returns a link to the consumer. The link

can be, for example, an URL pointing to Amazon S3 or any other cloud storage service. Fi-

nally the agent receives payment based on the accepted contract and the actual completion

time. We will see in Section 4.3.2 that contracts can involve complex prices that depend on

the actual completion time.

4.2.2 Contracts

The contract is the core component of our framework, describing the terms of a com-

putational task the agents will perform and the price they will receive upon completion

of the task. The design of our market framework is intended to cope with the inevitable

uncertainty of completion time. Therefore, our contracts support variable pricing based on

the actual completion time when the answer is delivered.

We also formally model the time/cost preferences of the consumer using a utility func-

tion that we assume is shared with the agent. The main technical challenge for the agent is

to price a contract of interest to a consumer. Pricing relies on the agent’s model of expected

completion time for the task as well as the consumer’s utility. From the consumers’ side,

they may receive and compare contracts from multiple agents in order to choose the one

that maximizes their utility.

In this chapter, we consider contracts and computational tasks that only involve analytic

workloads. These analytic workloads are different from long-running services in the sense

that their evaluation takes limited amount of time, even though this time can be several

hours or days. Given this focus, we can assume that cloud resources do not change during

the execution of task. This means, for example, that the capacity of virtual machines and
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their rate remain the same during the execution of a contract. We discuss relaxing these

factors in Section 4.9.

4.2.3 Properties and Assumptions

Our framework is designed to support three important properties: competitiveness, fair-

ness, and resilience. Competitiveness guarantees that agents have an incentive to reduce

runtime and/or cost for consumers. Fairness guarantees that agents have an incentive to

present accurate estimates to consumers, and that they do not benefit by lying about ex-

pected completion times. Resilience means that an agent can profit in the marketplace even

when their estimates of completion time are imprecise and possibly erroneous. We demon-

strate empirically in Section 4.7 that our framework satisfies these crucial properties.

Our framework assumes honest participants; we defer the study of malicious consumers

and agents to future work. Accepting an agent’s contract means the consumer’s data will be

shared with the agent for evaluation of their task, however requesting contract prices from

a set of agents reveals only the consumer’s statistics and task description.

Monopoly is not possible in this framework, and collusion among agents is unlikely.3

First, an agent cannot constitute a monopoly, since consumers may always choose to use a

cloud service provider directly. A service provider cannot constitute a monopoly either, as

any agent with a valid estimation model can enter the market. Second, collusion becomes

unlikely as the number of agents in the market increases. Any agent who does not collude

with others can offer a lower price and draw consumers, making any collusion unstable.

4.3 The Consumer’s Point-of-View

In this section, we describe the consumer’s interactions with the market. A transaction

begins with a consumer who submits a request. This request reflects their utility, which

3In fact, the agents and the existing cloud service providers naturally form a monopolistic competition
[155, 114].
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is a precise description of their preferences. Later, given multiple priced contracts, the

consumers can formally evaluate them according to the likely utility they will offer.

4.3.1 Consumer Utility

One of our goals is to avoid simplistic definitions of contracts in which a task is carried

out by a deadline for a single price. For one, many consumers have preferences far more

complex than individual deadlines: they can tolerate a range of completion times, assuming

they are priced appropriately. In addition, we want agents to compete to offer contracts that

best meet the preferences of consumers.

A consumer’s preferences are somewhat complex because they involve tradeoffs be-

tween both completion time and price. We adopt the standard economic notion of con-

sumer utility [155] and model it explicitly in our framework. A utility function precisely

describes a consumer’s preferences by associating a utility value with every (time, price)

pair. A utility function can encode, e.g., the fact that the consumer is indifferent to receiv-

ing their query answer in 10 minutes at a cost of $2.30 or 20 minutes at a cost of $1.90

(when these two cases have equal utility values) or that receiving an answer in 30 minutes

at a cost of $0.75 is preferable to both of the above (when it has strictly greater utility).

Definition 4.3.1 (Utility). Utility U(t,π) is a real-valued function of time and price, which

measures consumer satisfaction when a task is evaluated in time t with price π .

Larger values for U(t,π) mean greater utility and a preferred setting of t and π . For a

fixed completion time t0, a consumer always prefers a lower price, so U(t0,π) increases as

π decreases. Similarly, for a fixed price, π0, a consumer always prefers a shorter completion

time, so U(t,π0) increases with decreasing t.

To simplify the representation of a consumer’s utility, we will restrict our attention to

utility functions that are piecewise linear. That is, we assume the range of completion times

[0,∞) is divided into a fixed set of intervals, and that utility on each interval is defined by a
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linear function of t and π . This means that for each interval, the consumer has a (potentially

different) rate at which she/he is willing to trade more time for lower price, and vice versa.

Definition 4.3.2 (Utility – piecewise). A piece-wise utility function consists of a list of

target times τ0, . . . ,τn, where 0 = τ0 < τ1 < · · · < τn−1 < τn = ∞, and linear functions

u1(π, t), . . . ,un(π, t). The utility is ui(π, t) for t ∈ [τi−1,τi).

Such utility functions can express conventional deadlines, but also much more subtle

preferences concerning the completion time and price of a computation.

Example 4.3.3. Consumer Carol has two target completion times for her computation:

10 minutes and 20 minutes. Results returned in less than 10 minutes are welcome, but

she doesn’t wish to pay more to speed up the task. When results are returned between 10

minutes and 20 minutes, every minute saved is worth 1 cent to her. She does not want result

returned after 20 minutes. Her piecewise utility function is:

U(t,π) =


u1(t,π) =−π (t < 10)

u2(t,π) =− t−π +10 (10≤ t < 20)

u3(t,π) =−50 (t ≥ 20)

Figure 4.2 depicts U(t,π) when t < 20.

In practice, users can construct the utility function by defining several critical points on

a graphical user interface, or answering a few simple pair-wise preference questions.

4.3.2 Consumer Contract Proposal

The process of agreeing on a contract starts with the consumer advertising to agents the

basic terms of a contract: the task Q, the statistics of the database sD, and their piecewise

utility function U .

The terms of the contract are structured around the target times in the utility function.

Agents use the utility function to choose a suitable configuration and pricing to match the
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Figure 4.2: Utility function for Example 4.3.3 when t < 20.

preferences of the consumer. A complete, priced contract is returned to the consumer,

which is defined as follows:

Definition 4.3.4 (Contract). A contract is a six-tuple C = (Q,sD,T ,P, T̂ ,Π), where Q is

a task, sD consists of statistics about the input data, T = (τ0,τ1, . . . ,τn) is an ordered list

of target completion times, P = (p1, . . . , pn) is an ordered list of probabilities, ∑i pi = 1,

T̂ = (t̂1, . . . , t̂n) is an ordered list of expected completion times, and Π = (π1(t), . . . ,πn(t))

is a list of price functions where πi is defined on [τi−1,τi).

When a consumer and agent agree on a contract C , it means that the agent has promised

to deliver the answer to task Q on D after time t ∈ [0,∞), where the likelihood that t falls in

interval [τi−1,τi) is pi. Accordingly, if the answer is delivered in the time interval [τi−1,τi)

the consumer agrees to pay the specified price, πi(t). T̂ is used for computing expected

utility as we will see in Section 4.3.3. The data statistics sD are given to the agent by the

consumer; the agent includes them in the contract because the pricing calculation relies on

these statistics.

The contract is an agreement to run the task once. The probabilities provided by the

agent are a claim that if the task were run many times, a fraction of roughly pi of the

time, the completion time would be in the interval [τi−1,τi). Without this information, the

consumer has no way to effectively evaluate the alternative completion times that could

occur in a contract. For example, all alternatives but one could be very unlikely and this
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Figure 4.3: (a) Price function for Example 4.3.5. (b) Comparison of two contracts.

would change the meaning of the contract. We will see in Section 4.4 how the agent

generates these probabilities.

Example 4.3.5. An example contract based on the utility function of Example 4.3.3 is

defined by T =(0,10,20,∞), probabilities P=(0.2,0.5,0.3), expectations T̂ =(9,15,21),

and prices Π (also illustrated in Figure 4.3a) defined as:

Π(t) =


π1(t) =2 (t < 10)

π2(t) =3−0.1t (10≤ t < 20)

π3(t) =1 (t ≥ 20)

4.3.3 Consumer’s Contract Evaluation

In response to a proposed contract, a consumer hopes to receive a number of priced

versions of the contract from agents. Each contract may offer the consumer a different

range of utility values over the probability-weighted completion times. The consumer’s

goal is to maximize their utility, so to choose between contracts, the consumer should

compute the expected utility of each contract and choose the one with greatest expected

utility. All contracts based on 1 utility request should share the same target completion

times.
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Definition 4.3.6 (Expected utility of a contract). The expected utility of a contract C = (Q,

sD,T ,P, T̂ ,Π) with respect to utility function U(t,π) is

n

∑
i=1

piui(t̂i,πi(t̂i))

when ui(t,π) and πi(t) are linear functions.

Example 4.3.7. Suppose the consumer uses the utility function in Example 4.3.3, and two

agents return two contracts C1 and C2. Further assume both agents return the same price

function Π in Example 4.3.5, and the expected time T̂ are also the same. Only the proba-

bilities P differ as illustrated in Figure 4.3b. The consumer computes the expected utility

according to Definition 4.3.6 and chooses C2 as it has greater utility.

4.4 The Agent’s Point-of-View

We now explain the agent’s interactions in the market. The agent’s main challenge is

to assign prices to a contract, coping with the uncertainty of completion time, while taking

into account the consumer’s utility and the market demand. We formalize two variants of

pricing (risk-aware and risk-agnostic) and formulate both as optimization problems.

4.4.1 Pricing Preliminaries

Upon receipt of the terms of a contract and the utility function of a consumer, the agent

must complete the contract by computing prices for each interval and assigning probabili-

ties to each interval.

For each configuration, we assume the financial cost C borne by the agent is a function

of t: C(t) = αC · t, where αC is the unit rate of the configuration, and can be different

across configurations. Thus, the pricing of a contract depends critically on the estimate

of the completion time for Q. Since estimates of completion time are uncertain, we model

completion time T as a probability distribution over [0,∞) with probability density function
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fT (t). The true fT (t) is unlikely to be known and, in practice, must be estimated by the

agent with respect to a selected configuration. Based on fT (t) and C(t), the agent proposes

a price function π(t), which means the consumer should pay π(t) when the completion

time is t.

The agent has three goals when pricing a contract: (i) to maintain profitability, (ii) to

offer the consumer appealing utility, and (iii) to compete with the offerings of other agents.

We discuss each of these goals below.

(i) Profitability. Naturally the agents would like to price the contract higher than their

cost of execution so that they can earn a profit. Profit is uncertain for an agent because

it is difficult to predict completion time in the cloud. We say a contract is profitable in

expectation if its expected profit, with respect to the distribution fT (t), is greater than zero.

E[profit] =
n

∑
i=1

pi (πi(t̂i)−C(t̂i)) (4.1)

We call a contract profitable (for the agent) as long as it is profitable in expectation. The

agents should always price contracts so that they are profitable, but it is possible that a

particular contract ends up being unprofitable.

Definition 4.4.1 (Profitable contract). A profitable contract is a contract with E[profit]> 0.

(ii) Prioritizing consumer utility. Since the agents knows the consumer’s utility func-

tion U(t,π) they can (and should) take it into account when choosing a configuration and

pricing. To the extent that the agents can match the consumer’s utility, their pricing of

the contract will be more appealing to the consumer. The agents can evaluate the expected

utility E[U ] over the distribution of time T based on their estimates and price function π(t):

E[U ] =
n

∑
i=1

piui(t̂i,πi(t̂i)) (4.2)
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Profitability for the agent and utility for the consumer are conflicting objectives: a contract

that offers greater profit to the agent will offer lower utility to the consumer. We will see

that the agent will attempt to maximize the consumer’s utility, subject to constraints on

their profitability.

(iii) Market competitiveness and demand. In all markets, including ours, market forces

and competition prevent agents from raising prices without bound. In economics, a market

demand function describes how these forces impact the pricing of goods [155].

When the agents decrease the price of a contract, the expected profit of the contract is

reduced but they increase the utility of the contract to consumers. In a marketplace, when

utility for the consumer increases, a greater number of consumers will accept the contract.

Thus, the agents must balance the profit made from an individual contract with the overall

profit they make from selling more contracts. To model this, we must make an assumption

about the relationship between utility and the number of contracts that will be accepted by

consumers in the market. This relationship is represented by the demand function which

is defined as a function of utility. A linear demand curve is common in practice [155], so

we focus on demand functions of the form M(U) = a+ bU . Our framework can support

demand functions of different forms, but we do not discuss these in detail.

In a real market, agents would learn about demand through repeated interactions with con-

sumers. An agent’s demand function could depend on, for example, customer loyalty, the

best contracts competitors can offer, and other factors. These factors are beyond our scope.

In order to simulate the functioning of a realistic market, we must assume a demand func-

tion and, for simplicity, we assume the demand functions of all agents are the same in the

rest of this chapter.

4.4.2 Contract Pricing

We start from the simplest case in which the consumer has a task Q and a single con-

figuration φ . So the cost function C(t) and the pdf of the distribution of completion time
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fT (t) are fixed. The agent needs to define the price function π(t) to present a competitive

contract to the consumer. Let the overall profit be P , which equals the unit profit profit

multiplied by the sales M(U). Notice that profit is the profit of a single contract while P is

the overall profit of all contracts that the agent returns to all consumers in the market. The

agent wants to find the price function that leads to the greatest total profit while satisfying

the profitability constraint. This results in the following optimization problem:

Problem 4.4.2 (Contract pricing). Given a contract C = (Q,sD,T ,P, T̂ ,Π), utility func-

tion U, and demand function M, the optimal price for C is:

maximize : P = E[profit] ·E[M(U)]

subject to : E[profit]> 0

Let Ii be the interval (ti, ti+1), and recall that pi is the probability that the completion

time falls in Ii:

pi =
∫ ti+1

t=ti
fT (t)dt (4.3)

Let Ti be a random variable of completion time in interval Ii. It is a truncated distribution

with probability density function fT (t|t ∈ Ii). Let Ci be a random variable of cost in interval

Ii. Ci =C(Ti). So expectation t̂i and expectation ci is:

t̂i = E[Ti] =
∫

t∈Ii

t fT (t|t ∈ Ii)dt (4.4)

ci = E[Ci] =
∫

t∈Ii

C(t) fT (t|t ∈ Ii)dt (4.5)

Therefore the expected unit profit and expected demand are:

E[profit] =
|I|
∑
i=1

(πi− ci)pi (4.6)

E[M(U)] =
|I|
∑
i=1

M (U(t̂i,πi)) pi (4.7)
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4.4.2.1 Linear Case

When U and M are linear functions, this problem becomes a convex quadratic program-

ming problem. It has an analytical solution. We provide an analytical solution to the linear

case, in which the utility function U and demand function M are linear:

• The consumers specifies a linear utility function U(t,π) =−αU ·t−βU ·π , which means

they are always willing to pay αU units of cost to save βU units of time.

• The demand function is linear: M(U) = γM + λM ·U , which means that when U in-

creased by 1/λM, 1 more contract would be accepted. Since U(t,π) is linear, the demand

function can be written as M(U) = γM−αMt−βMπ .

Applying Equations 4.6 and 4.7 to Problem 4.4.2, we compute the overall profit as:

P =
|I|
∑
i=1

(πi− ci)pi ·
|I|
∑
i=1

M (U(t̂i,πi)) pi

=(π− c)T p ·
(
γM−αM t̂T p−βMπ

T p
)

=−βM

(
π

T p− γM−αM t̂T p+βMcT p
2βM

)2

+
(γM−αM t̂T p−βMcT p)2

4βM

P is maximized when

π
T p =


γM−αM t̂T p+βMcT p

2βM
, γM−αM t̂T p−βMcT p≥ 0

cT p+ ε, otherwise

where ε is a small positive value.

Furthermore, when γM−αM t̂T p−βMcT p≥ 0,

P =
(γM−αM t̂T p−βMcT p)2

4βM
(4.8)
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Example 4.4.3. Let I = [0,∞); then p1 = 1, and t̂1 is the expected completion time. The

only variable is π1. The problem becomes:

maximize :

P =(π1− c1) · (γM−αM t̂1−βMπ1)

subject to :

E[pro f it] = (π1− c1)> 0

The result for the price π1 is:

π1 = max
(

γM−αM t̂1 +βMc1

2βM
,c1 + ε

)

We denote a configuration by its probability, time, and cost tuple: (p, t̂,c). We can

apply utility function directly to this configuration as E[U(p, t̂,c)] =−αU t̂T p−βU πT p. We

define that a configuration (p1, t̂1,c1) is better than another configuration (p2, t̂2,c2) when

E[U(p1, t̂1,c1)] > E[U(p2, t̂2,c2)]. If an agent finds a better configuration than another

configuration, she/he can provide consumers greater utility (defined in Equation 4.2) while

making more profit (defined in Equation 4.8). Formally:

Theorem 4.4.4. When E[U(p1, t̂1,c1)]> E[U(p2, t̂2,c2)], consumer’s utility E[U1]> E[U2]

and overall profit P1 > P2.

Proof. We ignore the corner case in which γM−αM t̂T p−βMcT p < 0, which means even

the most efficient configuration found by the agent leads to zero demand. When γM −

αM t̂T p−βMcT p≥ 0, according to Section 4.4.2.1, the overall profit P is maximized when

πT p = γM−αM t̂T p+βMcT p
2βM

. So
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E[U ] =−αU t̂T p−βU π
T p

=−αU t̂T p−βU
γM−αM t̂T p+βMcT p

2βM

=−αU t̂T p−βU
γM−λMαU t̂T p+λMβU cT p

2λMβU

=− γM

2λM
− αU t̂T p

2
− βU cT p

2

=− γM

2λM
+

1
2

E[U(p, t̂,c)]

So E[U1]> E[U2] if E[U(p1, t̂1,c1)]> E[U(p2, t̂2,c2)].

In addition,

P =
(γM−αM t̂T p−βMcT p)2

4βM

=
(γM−λMαU t̂T p−λMβU cT p)2

4βM

=
(γM +λME[U(p, t̂,c)])2

4βM

Since γM −αM t̂T p− βMcT p = γM + λME[U(p, t̂,c)] ≥ 0, P1 > P2 if E[U(p1, t̂1,c1)] >

E[U(p2, t̂2,c2)].

4.4.2.2 Selecting a Configuration

An agent typically has many available configurations for evaluating Q. We denote the

set of configurations by Φ = {φ1,φ2, ...}. Every configuration φ j has its own cost function

C j(t) = αC j · t, where αC j is the unit rate for φ j.

The agent will select the configuration that results in the most profit. The distribution

of time T and its corresponding pi, t̂i, and ci then become variables in Problem 4.4.2. A

naı̈ve agent can select and enumerate a small Φ to find the best possible solution. A smarter

agent will use an analytic model to solve the problem [171, 75].
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4.4.3 Risk-Aware Pricing

Pricing contracts involves some risk for the agents: if their estimated distributions of

time and cost are different from the actual ones, they can lose profit or even suffer losses.

Next, we formally define risk based on loss and add it as part of the objective.

Definition 4.4.5 (Loss). Let the actual distribution of completion time be T ∗ and the opti-

mal price function be π∗. When the agent generates a contract with price function π , the

loss of revenue L is: LT ∗(π)=P(π∗,T ∗)−P(π,T ∗)=P(π∗, p∗, t∗,c∗)−P(π, p∗, t∗,c∗),

where p∗ is the actual probabilities, t∗ is the actual expected completion times, and c∗ is

the actual costs.

There is always inherent uncertainty in the prediction of the distributions of completion

of time and cost, so it is generally not possible for the agents to achieve the theoretically

optimal profits based on the actual distributions. However, they can plan for this risk, and

assess how much such risk they are willing to assume. We proceed to define risk as the

worst-case possible loss that an agent can suffer.

Definition 4.4.6 (Risk). The risk of the agent is a function of price π , and is defined as the

maximum loss over possible distributions of completion time: R(π) = maxT ∗ LT ∗(π).

We incorporate risk into the agent’s optimization problem by adding it to the objective

function:
maximize : P(π, p, t,c)−λR(π)

subject to : E[pro f it]> 0
(4.9)

The parameter λ in the objective is a parameter of risk that the agent is willing to assume.

Larger values of λ reduce the worst-case losses (conservative agent), while smaller values

of λ increase the assumed risk (aggressive agent). The agent can estimate the risk R(π) by

solving the following optimization problem, with variables π∗, p∗, t∗, and c∗:
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maximize : LT ∗(π) = P(π∗, p∗, t∗,c∗)−P(π, p∗, t∗,c∗)

subject to : E[pro f it∗] = ∑(π∗i − c∗i )p∗i > 0

LBoundt ≤ t∗i − t̂i ≤UBoundt

LBoundc ≤ c∗i − ci ≤UBoundc

0≤ p∗i ≤ 1

∑ p∗i = 1

where LBound and UBound are empirical values set by the agent. For instance, an agent’s

analytic model reports estimated t̂1 = 1 min. However, the agent has executed 10 contracts

and the actual mean of the time is t1 = 1.1 min. The agent can set LBoundt = 0 and

UBoundt = 0.1.

4.5 Fine-Grained Contract Pricing

Our treatment of pricing in Section 4.4 assumes that agents select a single configura-

tion for the execution of a consumer contract. However, computational tasks often contain

well-separated, distinct subtasks (e.g., operators in a query plan or components in a work-

flow). These subtasks may have vastly different resource needs. For example, Juve et al.

[85] profile multiple scientific workflow systems including Montage [82] and SIPHT [109]

and find that their components have dramatically different I/O, memory and computational

requirements.

We now extend our pricing framework to support fine-grained pricing, which allows

agents to optimally assign separate configurations to each subtask of a computational task.

It provides more candidate contracts without changing the pricing Problem 4.4.2. Fine-

grained pricing has two benefits. First, by assigning a configuration for each subtask, in-

stead of the entire task, agents can achieve improved time and cost, resulting in higher

overall utility and/or higher profit. Second, considering subtasks separately gives agents

the flexibility to outsource some computation to other agents. While outsourcing computa-
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(10', 5¢)

(5',1¢)
(5', 2¢)
(2 ', 4¢)σ(R) 

⨝ 
γ(S) 

Figure 4.4: An example of a simple relational query that can be broken into 3 subtasks,
corresponding to different operators.

tion across agents is not a focus of our work, it is a natural fit for our fine-grained pricing

mechanism. Agents can choose to outsource subtasks to other agents based on their special-

ization and capabilities, or for load balancing. However, some challenges of outsourcing,

such as utility and forms of contracts that agents need to exchange are beyond the scope of

our current work.

We model a computational task Q as a directed acyclic graph (DAG) GQ. Every node

in GQ is a subtask Qi. An edge between subtasks (Qi,Q j) means that the output of Qi is an

input to Q j. When subtasks are independent of one another, the DAG may be disconnected.

Our model assumes no pipelining in subtask evaluation. Therefore, a subtask Q j cannot be

evaluated until all subtasks Qi, such that (Qi,Q j) ∈ GQ, have completed their execution.

Given the graph representation GQ of a computational task, an agent needs to determine

a configuration φi ∈ Φ for each subtask Qi ∈ Q. This is in contrast with coarse-grained

pricing (Section 4.4.2), where the agent had to select a single configuration from Φ to be

used for each subtask of Q. When the agent chooses φi, the time and cost of Qi is Ti(φi) and

Ci(φi). A set of selected configurations results in total cost CQ = ∑Qi Ci(φi), i.e., the sum

of the costs of all subtasks. The completion time of Q is determined by the longest path

(P) in the task graph: TQ = maxP∈GQ ∑Qi∈P Ti(φi). Given demand M and contract utility

U , TQ and CQ determine the agent’s profit P . The goal of the agent is to select the set of

configurations that maximizes P .

Problem 4.5.1 (Fine-grained contract pricing). Given graph GQ representing a task Q,

and possible configurations Φ, the agent needs to specify a configuration φi ∈ Φ for each
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Qi ∈Q, so that the time TQ = maxP∈GQ ∑Qi∈P Ti(φi) and cost CQ = ∑Qi Ci(φi) maximize the

overall profit P .

Our problem definition does not model data storage and transfer time and costs explic-

itly. Rather, we assume that these are incorporated in the time and cost of a subtask (TQi

and CQi). This simplifies the model and offers an upper bound on time and cost. In practice,

when two subsequent tasks share the same configuration, it is possible to reduce the costs

of data passing, but these optimizations are beyond the scope of this work.

We demonstrate the intricacies of the fine-grained pricing problem through a simple ex-

ample. Figure 4.4 shows a relational query with three distinct subtasks (operators): (1) se-

lect tuples from relation R, (2) aggregate on relation S, and (3) join of the results. We

assume deterministic times and costs to evaluate each subtask, denoted next to each node

in Figure 4.4. The select and join subtasks have only a single possible configuration each,

but the aggregate subtask has two. Assume the utility function is U(t,π) =−t−π , which

means every one minute is worth 1 cent for the consumer. Therefore, the configuration

(2′,4¢) is better for the aggregate subtask, since it has higher utility than the configuration

(5′,2¢). However, following a greedy strategy that picks the configuration that is optimal

for each subtask can result in sub-optimal utility for the overall task. In this example, the

join subtask has to wait 5 minutes for the select subtask to complete. Therefore, there is no

benefit in paying a higher price to complete the aggregate subtask sooner, making (5′,2¢)

a better configuration choice.

Theorem 4.5.2. Fine-Grained Contract Pricing is NP-hard.

Our reduction follows from the discrete Knapsack problem.

Proof. We prove this by reducing a 0-1 Knapsack problem to it. In a knapsack problem,

there are n items, each of which has a value vi and a weight wi. The maximum weight of

a knapsack is W . One wants to maximize the sum of values V of selected items while the

sum of their weights does not exceed W . We construct a contract optimization problem
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Algorithm 12: Fine-Grained Contract Pricing
Require: Q,GQ,Φ,P(T,C)
Ensure: maximum P

1: Add node Qterminal with 0 time and cost to GQ
2: for all Qi ∈Q do
3: Add edge (Qi,Qterminal) to GQ
4: Qorder⇐ TopologicalSort(GQ)
5: boundT ⇐ longest time to evaluate GQ
6: for all Qi ∈Qorder do
7: f (Qi,0)⇐ ∞

8: for t⇐ 1 to boundT do
9: f (Qi, t)⇐ f (Qi, t−1)

10: for all φ ∈Φ do
11: costφ ⇐Combine

q∈pred(Qi)
( f (q, t−Ti(φ)))+Ci(φ)

12: if costφ < f (Qi, t) then
13: f (Qi, t)⇐ costφ
14: return maxt P(t, f (Qterminal, t))

correspondingly. We make n subtasks in a chain. Their time and cost are deterministic.

The ith subtask has two options (wi,v0−vi) and (0,v0), where v0 = maxi{vi}. Then let the

overall profit be

P(T,C) =


n∗ v0−C T ≤W

0 T >W

So one can achieve value V in the knapsack problem without exceeding weight limit W if

and only if the P =V in the contract optimization problem.

We next introduce a pseudo-polynomial dynamic programming algorithm for this prob-

lem, and show that it is both efficient and effective in real-world task workflows (Sec-

tion 4.7.3). Without loss of generality, we assume that time and cost are deterministic, but

the algorithm can be extended to the probabilistic case in a straightforward way.

Algorithm 12 uses dynamic programming to compute the optimal profit for task graphs.

The algorithm derives the exact optimal solution for cases where GQ is a tree (e.g., rela-

tional query operators) and computes an approximation of the optimum for task graphs that

are DAGs.
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In Algorithm 12, f (Qi, t) represents the minimum cost for evaluating the subgraph

terminated at subtask Qi when it takes at most time t.4 Then, f (Qi, t) can be computed

based on a combination of the costs of the direct predecessors of Qi (pred(Qi)) in the task

workflow (lines 7–13). When GQ is a tree, the Combine function (line 11) is simply the

sum of the costs of the predecessors (∑q∈pred(Qi) f (q, t−Ti(φ))), and Algorithm 12 results

in the optimal profit.

If GQ is not a tree, predecessors of a subtask Qi can share common indirect predeces-

sors, which introduces complex dependencies in the choice of configurations across differ-

ent subtrees. For example, let q1,q2 ∈ pred(Qi), and q0 ∈ pred(q1)∩ pred(q2). Therefore,

q0 affects both subgraphs terminated at q1 and q2, respectively. This impacts the Combine

function in two ways. First, the cost of q0 should be counted only once. Second, there may

be discrepancies in the configuration choice for q0 by the different subgraphs. There are

three strategies to resolve the discrepancy: (1) use the configurations with minimum time

T ; (2) use the configurations with minimum cost C; (3) use the configurations with maxi-

mum P(T,C). The Combine function applies the above strategies one by one, computes

the time TQi and cost CQi of the subgraph terminated at Qi, and updates f (Qi, t) if TQi ≤ t

and CQi is better. Note that Strategy 1 guarantees a feasible solution whenever one exists.

4.6 Alternative Approaches

4.6.1 Benchmark-Based Approach

Floratou et al. [54] propose a Benchmark as a Service (BaaS) approach to help con-

sumers select configurations. This new BaaS benchmarks user’s workload and use the

optimal configuration to execute the workload repetitively. As they mention in the paper,

changes such as growth of input data make BaaS complicated. So a BaaS provider need to

monitor and react to these changes. In our approach, we do not make assumptions about

4We turn the continuous space of time t into discrete space by choosing an appropriate granularity (e.g.,
minute).

127



the repetitiveness of workloads. The disadvantage is that consumers may pay more for

repetitive workloads even when they are very similar. The advantage is that consumers do

not need to worry about the change of the workloads.

We compare with the benchmark-based approach in Section 4.7.4.

4.6.2 VCG-Auction-Based Approach

VCG auction is a pricing mechanism. Its strategy-proof property makes it popular in

many studies. We develop a VCG auction model and compare it with our approach. In

this VCG model, a customer opens a bidding and agents bid on prices. Notice that this

model defines consumers payment according to the utility instead of the pure price, which

is different from the canonical VCG mode.

Assume agent i proposes its contract with utility Utili. The consumer takes the contract

with the highest utility Utili but pays based on the second highest utility U∗ = max j 6=i(U j).

The payment is a piecewise function Ω(t) = ωk(t). From agent i’s perspective, its cost

function is Ci(t), so its payoff is:

payoff i =


E[profit] =

n

∑
k=1

pk(ωk(t̂k)−Ci(t̂k)) if Ui > max
j 6=i

(U j)

0 otherwise

Here is the definition of Ω(t) when U(t,π) =−αU t−βU π is linear: Let ∆ =Ui−U∗.

The inverse function of U(t,π) is Π(t,u) = (−αU t − u)/βU . We define Ω(t) = Π(t,u−

∆) = Π(t,u)+∆/βU .

Example 4.6.1. Suppose the utility function is U(t,π)=−t−2π (0< t <∞). So Π(t,u)=

(−t − u)/2. When ∆ = Ui−U∗ = 10, Ω(t) = Π(t,u−∆) = (−t − (u− 10))/2 = (−t −

u)/2+5.

Theorem 4.6.2. When U(t,π) is linear, the above Ω(t) satisfies:

1) Ui >U∗ >UC
i ⇒ E[profit]< 0;
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2) UC
i >U∗ >Ui⇒ E[profit]> 0.

Given the payment function, we can show that our developed VCG auction is strate-

gyproof.

Proof.

1) ∆ =Ui−U∗ and Ui >U∗ >UC
i

⇒ ∆ <Ui−UC
i = ∑

n
k=1 pk[U(t̂k,πk)−U(t̂k,ck)]

⇒ ∑
n
k=1 pk[U(t̂k,πk)−U(t̂k,ck)]−∆ > 0.

0≤ pk ≤ 1 and ∑
n
k=1 pk = 1

⇒ ∆ = ∑
n
k=1 pk∆.

So ∑
n
k=1 pk[U(t̂k,πk)−∆−U(t̂k,ck)]> 0

⇒ ∑
n
k=1 pk(−βU πk−∆+βU ck)> 0.

So E[profit] = ∑
n
k=1 pk(ωk(t̂k)−Ci(t̂k)) =−∑

n
k=1 pk(−βU πk−∆+βU ck)< 0.

Therefore Ui >U∗ >UC
i ⇒ E[profit]< 0;

2) Similar to above, we can prove UC
i >U∗ >Ui⇒ E[profit]> 0.

Theorem 4.6.3. Every agent truthfully revealing its cost is a weakly-dominant strategy.

Proof. Truthfully bidding means Ui =UC
i .

1) The strategy of overbidding, Ui >UC
i , is dominated by truthfully bidding.

When U∗ >Ui >UC
i , both strategies yield payoff i = 0.

When Ui >UC
i >U∗, both strategies yield payoff i = E[profit]> 0.

However, when Ui > U∗ > UC
i , overbidding yields payoff i = E[profit] < 0 (Theo-

rem 4.6.2) while truthfully bidding yields payoff i = 0.

So overbidding is dominated by truthfully bidding.

2) The strategy of underbidding, Ui <UC
i , is dominated by truthfully bidding.

When U∗ >UC
i >Ui, both strategies yield payoff i = 0.

When UC
i >Ui >U∗, both strategies yield payoff i = E[profit]> 0.
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However, when UC
i >U∗>Ui, underbidding yields payoff i = 0 while truthfully bidding

yields payoff i = E[profit]> 0 (Theorem 4.6.2).

So underbidding is dominated by truthfully bidding.

So truthfully bidding is a weakly-dominant strategy.

Theorem 4.6.4. Every agent truthfully revealing its cost is a weakly-dominant strategy.

In other words, every rational agent will make its cost be the price in its contract. This

proof is very similar to the proof for the canonical VCG auction.

Our posted-price model and VCG auction model both exist in the real world market.

We discussed in the related work section that neither of them dominates the other. They

have 2 main differences in our case: 1) Posted-price model requires the agent to better

understand the demand function of the market. Then an agent can set the price actively to

gain more profit. In contrast, agents in VCG auction only needs to truthfully reveal their

costs, then the price is passively decided based on the second best utility. 2) VCG auction

requires a centralized auctioneer who ensures the consumers pay according to the second

best utility. It makes a cross-platform market more difficult to form. Posted-price model

does not have such requirement.

We quantitatively compare with the VCG-auction-based approach in Section 4.7.4.

4.6.3 Differentiated Bertrand

Multiple agents competing in the market is a typical differentiated Bertrand model.

Specifically, Bertrand model solves the equilibrium of optimal prices based on all agents’

demand functions. But in practice, an individual agent can hardly know other agents’ de-

mand function when pricing in the market. So our model assumes that each agent observes

a demand function of its own price. Such demand function is valid given the other agents’

current prices. An agent will change its price when others change. The prices will converge

to the equilibrium in the long term. Now we show the connection through an example.
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In a differentiated Bertrand model, suppose there are 2 agents numbered 1 and 2. Their

prices are µ1 and µ2. Agent 1’s demand function is M1(µ1,µ2) = γ −αµ1 +β µ2 where

α,β ,γ are positive parameters. Higher µ1 means lower M1 but higher µ2 means higher

M1 due to competition. Similarly, M2(µ1,µ2) = γ − αµ2 + β µ1. So the overall profit

P1 =M1(µ1,µ2) ·µ1
5, P2 =M2(µ1,µ2) ·µ2. Given a fixed µ1, the best µ2 that maximizes

P2 is:

µ
∗
2 = (γ +β µ1)/2α. (4.10)

Similarly, the best µ1 is:

µ
∗
1 = (γ +β µ2)/2α. (4.11)

So one can solve these two equations to get a Nash Equilibrium: µ∗1 = µ∗2 = γ/(2α−β ).

In the real world, agents’ demand functions cannot be exactly the same. Thus we should

use different demand functions M1(µ1,µ2) = γ1 − α1µ1 + β1µ2 and M2(µ1,µ2) = γ2 −

α2µ1+β2µ2. So µ∗1 = (2α2γ1+β1γ2)/(4α1α2−β1β2) and µ∗2 = (2α1γ2+β2γ1)/(4α1α2−

β1β2).

The above calculation, however, requires that both agents know both demand functions

M1 and M2, which may not be a realistic assumption; one may easily obtain one’s own de-

mand function by fitting historical data, but it may not be possible to know the other party’s

demand function. Without knowledge of the other party’s demand function, one generally

cannot settle for the NE (µ∗1 ,µ
∗
2 ) in one shot, but has to adjust one’s price dynamically ac-

cording to the observed demand function. Thus we have a repeated game here, and rational

agents will follow the best response functions 4.10 and 4.11. Our approach uses exactly

the same response functions, where the impact of the other agent’s price is absorbed into

the intercept. More precisely, in our model, Agent 1 tries to optimize M1(µ1) = γ ′1−α1µ1

where γ ′1 = γ1 +β1µ2, so it sets µ1 = γ ′1/2α1 = (γ1 +β1µ2)/2α1. Similarly, Agent 2 sets

5The Bertrand model in [136] assumes marginal cost c = 0 for simplicity. So the price in [136] corre-
sponds to the profit in our approach. i.e. µ + c = π .
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µ2 = (γ2+β2µ1)/2α2. If both agents keep updating their prices in this manner, their prices

will eventually converge to the NE (µ∗1 ,µ
∗
2 ).

Recall that in the Differentiated Bertrand Model with nonidentical demand functions,

the best response functions are given by

µ1 = f1(µ2) = a1µ2 +b1, (4.12)

µ2 = f2(µ1) = a2µ1 +b2, (4.13)

where

ai =
βi

2αi
, bi =

γi

2αi
, for i = 1,2.

If a1a2 < 1, there exists a Nash Equilibrium (µ∗1 ,µ
∗
2 ), which is the unique solution to the

following equations, 
µ∗1 = f1(µ

∗
2 ),

µ∗2 = f2(µ
∗
1 ).

Suppose that both agents keep updating their prices to the best response to the currently

observed price of the other party. We show that their prices eventually converges to the NE

(µ∗1 ,µ
∗
2 ).

We allow for asynchronous updates. Thus at the x-th update, there are three possibili-

ties,

(1) Only agent 1 updates his prices, in which case

(µ1,x+1,µ2,x+1) = F1(µ1,x,µ2,x) = ( f1(µ2,x),µ2,x). (4.14)

(2) Only agent 2 updates his prices, in which case

(µ1,x+1,µ2,x+1) = F2(µ1,x,µ2,x) = (µ1,x, f2(µ1,x)). (4.15)
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(3) Both agents update their prices, in which case

(µ1,x+1,µ2,x+1) = F3(µ1,x,µ2,x) = ( f1(µ2,x), f2(µ1,x)). (4.16)

Thus (µ1,x,µ2,x) = Gx ◦Gx−1 ◦· · ·◦G1(µ1,0,µ2,0), where µ1,0 and µ2,0 are the initial prices,

and Gi ∈ {F1,F2,F3} for i = 1,2, . . . ,x. We assume that both agents keep updating their

prices, i.e.,

lim
x→∞

x

∑
i=1

1{Gi 6= F1}= lim
x→∞

x

∑
i=1

1{Gi 6= F2}= ∞. (4.17)

Theorem 4.6.5. Assume a1a2 < 1. If both agents keep updating their prices, i.e. (4.17)

holds, then for any initial prices µ1,0 and µ2,0, we have

lim
x→∞

(µ1,x,µ2,x) = (µ∗1 ,µ
∗
2 ).

Proof. For any function f , let f (0) = id, the identity function, and f (m) = f (m−1) ◦ f for

m ≥ 1. Note that F(2)
i = Fi and F3 ◦Fi = F3−i ◦Fi for i = 1,2. By repeated applications of

these relations, we obtain

(µ1,x,µ2,x) = F(m2)
2 ◦H(m)

1 ◦F(m1)
1 ◦F(m3)

3 (µ1,0,µ2,0), (4.18)

where H1 = F1 ◦F2, m1 ∈ {0,1}, m2 ∈ {0,1} and m1 +m2 +m3 +m = Nx. Note that Nx

is the number of effective updates that can potentially change the prices. Without loss of

generality, we assume that Nx = x, which amounts to discarding those updates that cannot

change the price of either agent.

• Case I: m1 = m2 = m = 0
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In this case, both agents always synchronize their updates and

(µ1,x,µ2,x) = F(x)
3 (µ1,0,µ2,0)

=


(g

( x
2 )

1 (µ1,0),g
( x

2 )
2 (µ2,0)), for x even,

(g
( x−1

2 )
1 ◦ f1(µ2,0),g

( x−1
2 )

2 ◦ f2(µ1,0)), for x odd,

where g1 = f1 ◦ f2 and g2 = f2 ◦ f1. Note that g1(µ
∗
1 ) = µ∗1 , and, for any z,

g1(z)−µ
∗
1 = g1(z)−g1(µ

∗
1 ) = a1[ f2(z)− f2(µ

∗
1 )] = a1a2(z−µ

∗
1 ).

Thus for any z,

|g(k)1 (z)−µ
∗
1 |= (a1a2)

k|z−µ
∗
1 | → 0, as k→ ∞.

Similarly, for any z,

|g(k)2 (z)−µ
∗
2 |= (a1a2)

k|z−µ
∗
2 | → 0, as k→ ∞. (4.19)

It follows that

lim
x→∞

(µ1,x,µ2,x) = (µ∗1 ,µ
∗
2 ).

• Case II: m1 +m2 +m > 0

In this case, the agents do not always synchronize their updates and m→∞ in (4.18).

By symmetry, we assume m1 = 1; the other case can be dealt with similarly. Note

that

H(m)
1 ◦F1(µ1,µ2) = ( f1 ◦g

(bm
2 c)

2 (µ2),g
(dm

2 e)
2 (µ2)).

Let (µ1,µ2) = F(m3)
3 (µ1,0,µ2,0). By (4.19),

lim
m→∞

H(m)
1 ◦F1(µ1,µ2) = ( f1(µ

∗
2 ),µ

∗
2 ) = (µ∗1 ,µ

∗
2 ).
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Type CPU (virtual) Memory $/hour

db.m3.Medium 1 3.75GB $0.095
db.m3.Large 2 7.5GB $0.195
db.m3.xLarge 4 15GB $0.390
db.m3.2xLarge 8 30GB $0.775
db.r3.Large 2 15GB $0.250
db.r3.xLarge 4 30.5GB $0.500
db.r3.2xLarge 8 61GB $0.995
m1.Medium 1 3.75GB $0.109
m1.Large 2 7.5GB $0.219
m1.xLarge 4 15GB $0.438

Figure 4.5: Types of Amazon machines and associated features and costs (in January 2015).
The first 7 types (db.*) are RDS configurations, whereas the last 3 (m1.*) are EMR config-
urations. The prefixes (db and m1) are omitted from some figures for brevity.

It follows that

lim
x→∞

(µ1,n,µ2,n) = lim
m→∞

F(m2)
2 ◦H(m)

1 ◦F1(µ1,µ2)

= F(m2)
2 (µ∗1 ,µ

∗
2 ) = (µ∗1 ,µ

∗
2 ),

where in the last step we have used the fact that (µ∗1 ,µ
∗
2 ) is a fixed point of F(m2)

2 for

m2 = 0,1.

4.7 Experimental Evaluation

In this section we evaluate our market using a real-world cloud computing platform:

Amazon Web Services (AWS). Our experiments collect real-world data from a variety of

relational and MapReduce task workloads, and use this data to simulate the behavior of

our market entities on the AWS cloud. Our results demonstrate that our market framework

offers incentives to consumers, who can execute their tasks more cost-effectively, and to

agents, who make profit from providing fair and competitive contracts.

We proceed to describe our experimental setup, including computational tasks, con-

sumer parameters, and contracts.
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1. Data and configurations. We spent 8,106 machine hours and $3,118 in obtaining the

distributions of time and cost for two types of computational tasks: relational query work-

loads, and MapReduce jobs.

• Relational query tasks: We use the queries and data of the TPC-H benchmark to

evaluate relational query workloads. We use all 22 queries of the benchmark on a

5GB dataset (scale factor 5). We use the Amazon Relational Database Service (RDS)

to evaluate the workloads on 7 machine configurations, each of which has 200GB

of Provisioned IOPS SSD storage, and runs PostgreSQL 9.3.5. Figure 4.5 lists the

capacity and hourly rate of each configuration.

• MapReduce tasks: We evaluate MapReduce workloads using three job types (Word-

Count, Sort, and Join) over 5GB of randomly generated input data. We use the Ama-

zon Elastic MapReduce service (EMR) to test our framework on these workloads. We

select 3 machine configuration types. Figure 4.5 lists the capacities and hourly rates

of these configurations. We experimented with 4 different sizes of clusters for each

machine configuration: 1, 5, 10, and 20 slave nodes.

• Scientific workflows: We use real-world scientific workflows that represent computa-

tional tasks with multiple subtasks, to evaluate fine-grained pricing (Section 4.5). We

retrieved 1,454 workflows from MyExperiment [40], one of the most popular scientific

workflow repositories. These workflows were developed using Taverna 2 [168], and

comprise the majority of workflows in the repository. The size of workflows ranges

from 1 to 154 subtasks.

2. Consumer models. We simulate the consumer behavior in our framework using the

utility and demand functions.

• Utility: In our evaluation, utility is a linear function U(t,π) =−αU t−βU π modeling

consumer preferences. αU represents the unit cost that the consumer is willing to pay

to save βU unit time. For our experiments, we assume U(t,π) = −t−π , where t is
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measured in minutes and π is measured in cents, which means every minute is worth

1 cent to the consumer.

• Demand: In our evaluation, the demand function is linear: M(U) = γM +λMU , which

means that when U increases by 1/λM, 1 more contract would be accepted. We use

M(U) = 100 + 50U for RDS, and M(U) = 100 + 5U for EMR. λM is smaller for

EMR because the times and costs for MapReduce jobs are much larger than those of

relational queries.

3. Contracts. All our experiments involve contracts with a deadline, which means that ev-

ery consumer request specifies one target completion time. We execute each task 100 times

using every configuration and set the deadline of each query as the average completion time

across all configurations.

4.7.1 Consumer Incentives

In this section, we evaluate whether our market framework offers sufficient incentive for

consumers to participate in the market. Our first set of experiments simulates several naı̈ve

cloud users who select one of the default configurations for their computational tasks: 7

configurations for RDS, and 12 configurations for EMR. Then we simulate a baseline user

who intuitively chooses configurations based on a simple feature of a task. Specifically, the

user chooses a configuration with the best CPU performance for a CPU-intensive task, or a

configuration with the best IO performance for an IO-intensive task. Predicting whether a

task is CPU-intensive or IO-intensive is a difficult task for a user. However, we unfairly bias

toward this baseline by indeed executing the task to measure its CPU time and IO time. We

consider a task is CPU-intensive if its CPU time is greater, otherwise IO-intensive. Finally

we simulate an expert agent, who, for every task, selects the configuration that maximizes

the consumer’s utility function. Figure 4.6a presents the price and time achieved by each

of the 7 default configurations for RDS, as well as the price and time offered by the expert

agent. The line in the graph is the utility indifference curve for the agent’s configuration,
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representing points with the same utility value. Points on the curve are equally good, from

the consumer’s perspective, as the one achieved by the expert agent. Points above the curve

have worse utility values (less preferable than the agent’s offer), while points below the

curve have better utility values (more preferable than the agent’s offer).

Our experiments show that the expert agent provides more utility to 4 out of 8 naı̈ve

cloud users with relational query tasks on RDS. This means that, even though the agent

makes a profit, a good portion of the users would still benefit from using the market instead

of relying on default settings. This effect is even more pronounced for EMR workloads.

Figure 4.6c shows that the expert agent offers better utility to all simulated naı̈ve users.

This means that, in every single case, the consumers get better utility by using the agent’s

services, instead of selecting a default configuration. It is noteworthy that the heuristic-

based baseline approach is 189% and 67% worse in utility than our approach for RDS and

EMR workloads, respectively.

4.7.2 Agent Incentives and Market Properties

In this section we demonstrate that the pricing framework satisfies three important prop-

erties: competitiveness, fairness, and resilience. These properties incentivize consumers

and agents to use and trust the market by ensuring that (a) the agents will identify efficient

computation plans and provide accurate pricing, and (b) inaccurate estimates will not pose

a great risk to the agents.

4.7.2.1 Competitiveness

We run experiments on Amazon RDS and EMR to demonstrate how different configura-

tions impact profitability in practice. Our goal is to show that, in our market, well-informed,

expert agents can make more profit than naı̈ve agents, thus creating incentives for agents

to be competitive and offer configurations and contracts that benefit the consumers. In

this experiment, a naı̈ve agent selects one configuration to use for all queries. In contrast,

the expert agent always selects the optimal configuration for each query. The goal of this
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Figure 4.6: (a, c) Users achieve better utility by using an expert agent, compared to naı̈vely
selecting a default configuration. The agent benefits 40% of the consumers in RDS work-
loads, and 100% of the consumers in EMR workloads. (b, d) Expert agents always achieve
the largest profits. This means that our market framework gives incentives to agents to find
optimal configurations.

experiment is to show the impact of configuration selection. Thus we control for other

parameters, such as the accuracy of the agents’ estimates. So, for now, we assume that all

agents know the distributions of time and cost accurately. We relax this assumption in later

experiments.

We generate histograms of time and cost by evaluating each query with each config-

uration 100 times. All agents use these histograms to approximate the distributions and

price contracts based on these distributions. After an agent prices a contract, we compute

the number of accepted contracts according to the demand function, M(U). Then we ran-

domly select M executions to do trials. The agent receives payments based on whether the

execution met or missed the deadline.
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Task Configuration

RDS
q1–q3, q5–q16, q18, q22 db.r3.Large
q4, q17, q19, q20 db.r3.xLarge
q21 db.r3.2xLarge

EMR
WordCount m1.Medium × 20
Sort m1.Large × 5
Join m1.xLarge × 1

Figure 4.7: The expert agents select different configurations for different tasks to maximize
profit.

Figure 4.6b illustrates the total profit made by each agent pricing RDS workloads.

There are 7 naı̈ve agents, each using one of the RDS configurations from Figure 4.5, and

one expert agent, who always uses the best configuration for each task. Figure 4.6d il-

lustrates the same experiment on EMR workloads. We use one expert agent and 12 naı̈ve

agents who used the three EMR configurations from Figure 4.5, each with a cluster size

of 1, 5, 10, or 20 nodes. Figure 4.7 lists the configuration chosen by the expert agent for

each RDS and each EMR task. In both experiments, the expert agent achieves the highest

overall profit.

Figures 4.6b and 4.6d also show the utilities offered by the agents for the same contracts.

We plot the relative utility of each naı̈ve agent, using the utility of the expert agent as a

baseline: AgentUtility−ExpertUtility
|ExpertUtility| . On both RDS and EMR workloads, the utility offered by

the expert was the best among all agents.

Our experiments on both RDS and EMR demonstrate that expert agents achieve bet-

ter utility and profit than all other agents. This verifies empirically that our market design

ensures incentives for agents to improve their estimation techniques and configuration se-

lection mechanisms. This benefits both consumers, who get better utility, and agents, who

get more profit.
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Figure 4.8: Agents’ estimates are often inaccurate, and such inaccuracies can lead to loss
of profit.

4.7.2.2 Fairness

Fairness guarantees the incentive for agents to present accurate estimates to consumers.

If the agent uses inaccurate estimates, she/he will be penalized with lower profits. Our goal

is to show that more accurate estimates lead to greater profit for the agent in practice.

We consider an agent using db.m3.medium on RDS and PostgreSQL’s default query

optimizer to estimate the completion times of queries. The PostgreSQL optimizer provides

an estimate of the expected completion time and the agent assumes a Gaussian distribution

with a mean value equal to the completion time predicted by the optimizer. We chose 0.05

for the standard deviation, which is very close to the actual average standard deviation of

the distributions of the 22 TPC-H queries (0.04).

We also consider another agent using m1.medium on EMR, with one master and one

slave node. The agent estimates the expected completion time by executing queries on a

5% sample of the data, and assumes a Gaussian distribution around the estimated mean.

The agent uses an empirical standard deviation, 0.55, which is close to the average true

standard deviation of all three EMR job types (0.56).

We compare the agents’ estimate with the true distributions in Figures 4.8a and 4.8b.

We plot the average completion time for each TPC-H query and each EMR task. The

standard deviation is very low (under 0.75 min) for all tasks. As these plots show, the

agents’ estimates can often be far from the actual completion times (e.g., q18).
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Figure 4.9: Poor estimation moderately impacts the market.

Next, we use the similarity between two distributions and relative loss to show the rela-

tionship between estimation accuracy and profit. We compare the true distribution of com-

pletion time (which is a histogram) with the agent’s estimate (a Gaussian distribution) by

turning the agent’s estimate into a histogram and computing the cosine similarity between

two histograms. The relative loss measures how much profit the agents lose compared to

the optimal profit they could have made. We define relative loss of profit as:

RelativeLoss =
OptimalPro f it−ActualPro f it

OptimalPro f it
(4.20)

As Figures 4.8c and 4.8d illustrate, when the agent’s estimate is more accurate, the relative

loss is smaller.

Our market does not rely on the assumption that the estimates are accurate, and it can in

fact tolerate inaccuracies well. As long as there exists at least one task for which an agent

can produce better estimates than a consumer, the agent offers utility to the market. In our

experimental evaluation, we showed that this is easy to achieve in practice: even agents

using simple estimation methods (such as using the PostgreSQL optimizer or sampling),

which result in fairly inaccurate estimates, can provide benefit to non-expert consumers.

Existing research has shown that time and cost estimation is non-trivial [2, 75, 171], and
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Figure 4.10: By adjusting for risk, agents can reduce their losses in case of inaccurate
estimates.

agents using such specialized tools would always produce better estimates than non-expert

consumers.

In addition, we further expanded our evaluation to study an extreme case: when all

agents in the market make worse estimation than all consumers, for all tasks. We multiply

the agents’ estimated time and cost by a coefficient. A > 1 coefficient means overestimation

and a < 1 coefficient means underestimation.

As depicted in Figure 4.9a, overestimation leads agents to post higher prices lowering

the consumers’ utilities. However, switching to using the cloud provider directly becomes

preferable (on average) only when agents overestimate substantially: in our empirical sim-

ulation, agents had to overestimate time and cost by 49% in RDS workloads, and by 120%

in EMR workloads before a switch was beneficial to consumers on average.

On the other hand, figure 4.9b shows that underestimation of time and cost decreases

an agent’s profit by 2% in RDS and 36% in EMR if it underestimates time and cost by

a factor of 10. Depending on the agents’ profit margins, they may be able to absorb the

difference without losses. To avoid losses, agents can follow risk-aware pricing strategies

(Section 4.4.3).
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Figure 4.11: DP outperforms Greedy and Search

4.7.2.3 Resilience

The property of resilience provides assurances to the agents, by ensuring that inaccurate

estimates will not pose a significant risk to the agents’ profits. This property is crucial, as

errors in the estimates are very common [6, 48, 171]. Our framework ensures resilience

to these inaccuracies by accounting for risk (Definition 4.4.6). Specifically, the agents

can profit by adjusting the risk they prefer to take. According to Equation 4.9, the risk

is part of the objective and controlled by a parameter λ . When λ is large, the agent has

low confidence in the estimate (conservative). This setting reduces the loss of profit if the

agent’s estimate is inaccurate.

We again consider an RDS agent using db.m3.medium and the default PostgreSQL

optimizer, and an EMR agent using m1.medium and sampling to estimate runtime. We

evaluate relative loss using Equation 4.20 and plot it for different values of λ (Figure 4.10).

A value of λ = 0 means that the agent is confident that their estimate is correct. However,

since in this case the estimates were inaccurate, the relative loss for λ = 0 is high: the

agents’ profit is much lower than the optimal profit they could have achieved. For both

agents (EMR and RDS), the relative loss decreases for higher values of λ . This shows that

by adjusting for risk, the agents can reduce loss of profit.
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Figure 4.12: Pricing at finer granularities can vastly increase the agents’ profits.

4.7.3 Fine-Grained Pricing

In our final set of experiments, we evaluate fine-grained pricing (Algorithm 12) against

a large dataset of real-world scientific workflows [40]. This dataset is well-suited for this

experiment, as it provides diverse computational flows of varied sizes and complexities.

The published workflows do not report real execution information (time and cost), and we

are not aware of any public workflow repositories that provide this information. Therefore,

we augment the real workflow graphs with synthetic time and cost histograms for each

subtask, drawn from random Gaussian distributions with means in the [1,100] range, and

variances in the [0,5] range. Each subtask has 5 candidate configurations with different

time and cost histograms. We compute the profit using utility U(t,π) =−t−π and demand

M(U) = 100+0.01U (Section 4.4.2.1). We set λM (the coefficient of U) to a smaller value

than the ones used for RDS and EMR workloads, because the completion times and costs

for workflows are much larger.

First, we evaluate our Dynamic Programming algorithm (Algorithm 12) against two

baselines: (1) an exhaustive search strategy (Search) that explores all possible configuration

assignments, and (2) a greedy strategy (Greedy) that selects the configuration that leads to

the maximum local profit for each subtask. We perform 10 repetitions for each workflow,

using different random time and cost distributions for each repetition. Figure 4.11a shows

the relative profit achieved by Search and DP compared to Greedy: P−PGreedy
PGreedy

. DP achieves

better profits than Greedy, and the effect increases for larger workflows: for workflows
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Figure 4.13: Consumers prefer our approach to benchmark except for highly repetitive
workloads

with 154 subtasks, DP achieves 50.0% higher profit than Greedy. Search provides few

data points, as it cannot scale to larger graphs. For small workflows (up to 12 subtasks)

Search and DP select equivalent configurations that result in the same (optimal) profit.

Figure 4.11b shows the running time of the three algorithms. As expected, exhaustive

search quickly becomes infeasible, and Greedy is faster than DP. However, the runtime of

DP remains low even for larger workflows. Combined with the profit gains over Greedy,

this experiment demonstrates that Algorithm 12 is highly effective for fine-grained pricing.

Second, we evaluate the benefits of fine-grained pricing, compared to coarse-grained

pricing. Figure 4.12 shows the profit achieved by DP, which assigns a configuration to

each subtask, relative to the optimal single configuration for the entire workflow. In this

experiment, fine-grained pricing doubled the agents’ profits for small workflows, compared

to coarse-grained pricing, and the gains increase as workflows grow larger. For the largest

workflows in our dataset, fine-grained pricing achieved 12.5 times higher profits.

4.7.4 Comparison with Alternative Approaches

4.7.4.1 Benchmark-based Approach

Contrasting our work with Benchmarking as a Service (BaaS) [54] is meaningful when

workload repetition is significant. We assume a consumer who repeate RDS and EMR
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workloads without any modifications, and with each repetition tested a different configura-

tion; once all configurations were tested, the consumer would continue using the best one

in subsequent repetitions. For this experiment, we limited the number of possible configu-

rations to 7 for RDS and 12 for EMR. This biases the experiment in favor of benchmarking,

as in practice the number of configurations that the consumer would have to try is much

higher. In this simplified setting, we found that it took 12 repetitions in RDS and 68 repe-

titions in EMR before the consumer would start benefiting from benchmarking. In the real

world, these numbers are much higher, as cloud providers offer way more configurations

than the ones we considered here. Cluster size alone causes an explosion in the number of

options, so having an agent with an analytical model, such as in [75] , is necessary.

In practice, BaaS has additional challenges: As discussed in [54], data growth and

changes in the input make BaaS complicated. Workloads are almost never repeated ex-

actly, as the input changes between executions, requiring the BaaS provider to monitor and

react to changes. Moreover, cloud providers change machine types, parameters, and pric-

ing very frequently — e.g., between 2012 and 2015, AWS introduced on average 2.6 new

instances every three months. When these settings change, resource selection needs to be

re-evaluated, even if a workload stays the same.

4.7.4.2 VCG-auction-based Approach

In this experiment, we compare our model with an VCG auction model. In a strategy-

proof VCG auction, the agents truthfully reveal their best costs of executing a task. Then the

consumer selects the agent with the best utility but pays according to the second best utility.

Therefore, given a specific task, only the best and the second best agents’ contract together

define the price. So we create one agent who is always able to find the best configuration

for each task, and another agent who is doing just worse than the best one. We assume a

delta ∆ that is the difference between the best utility and the second best utility, and vary

this delta to see how much profit the best agent can get.
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Figure 4.14: VCG auction brings less profit to agents without necessarily reducing con-
sumers’ payments. (PP = our posted-price approach)

As depicted in Figure 4.14, when ∆ becomes greater, the best agent’s profit goes up

but then drops down. This is because of the demand. Larger ∆ means more profit of each

contract but less demand. So the profit reaches maximum at a certain point. Even this

maximum VCG profit is less than the profit in our approach. It is because our approach

optimizes the profit for each individual task in a workload, while the VCG approach in

this experiment applies unified profit. Moreover, when ∆ gets greater, consumers’ average

payment for each contract is bigger. This is by definition of VCG. The VCG’s average

payment goes higher than our approach’s when ∆ is very small. In a word, our approach

brings more profit to agents without necessarily increasing consumer’s payment.

4.8 Related Work

In contrast to our market framework, which emphasizes the consumer need for task-

level pricing, existing work on cloud pricing largely focuses on resource usage. One study

used game theory to model a pricing framework where consumers compete with each other

to maximize their utilities [7, 64]. Specifically, each consumer has a demand on resources,

and their utility is a function of demand and price. A choice of price by a service provider

triggers a change in the consumers’ demands to maximize their utilities, thus affecting

the provider’s revenue. This work makes two key assumptions that are not present in our

framework. First, the chosen utility functions indicate that the quality of service (QoS) de-
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grades when consumers share resources. While meaningful for resources such as wireless

bandwidth, this assumption has been shown to not always hold in many types of resources

relevant to computation [4, 5]. In fact, QoS can improve when, for example, consumers

share data and cache, and agents in our framework can take advantage of this to make more

profit. Second, it is assumed that the consumers know each other’s demands and strategies,

and adjust their demands accordingly. In contrast, in our framework we consider con-

sumers’ tasks separately and use probability distributions to model runtime and financial

cost, leading to a simpler yet practical model.

Variants of pricing mechanisms assume that providers price dynamically, based on the

consumer arrival and departure rates [9, 117, 173, 174, 175]. In turn, prices also guide

consumer demand. In a different direction, Ibrahim et al. [80] argue that the interference

across virtual machines sharing the same hardware leads to overcharging. They suggest

cloud providers to price based on effective virtual machine time. This framework guaran-

tees benefits to consumers and urges providers to improve their system design.

Wong et al. [84] have compared three different pricing strategies in terms of fairness

and revenue: (1) Bundled pricing, in which providers sell resource bundles (e.g., virtual

machine with CPU, memory, and other resources) to consumers; (2) Resource pricing, in

which providers charge consumers separate prices for the consumed resources; (3) Differ-

entiated pricing, in which providers charge consumers personalized prices. They define

fairness as a function of equitability and efficiency of utilities among all consumers and

conclude that differentiated pricing provides the best fairness. They treat consumers’ jobs

identically and define fairness based on the number of jobs that are successfully executed

by the cloud provider. They do not consider the connection between uncertain completion

time and utility.

Economic-based resource allocation has been extensively studied in grid computing [21,

22, 67, 130, 93]. Researchers have developed different economic models in two main

categories: “commodity markets” and “auctions”. In a commodity market, resources are

149



sold at a posted-price. The price of resources affects consumers’ utility and demand, and

therefore impacts the providers’ profit. Finding the equilibrium is the main focus in these

models. Yeo et al. proposed a utility-driven pricing function [179, 141] and an auto-

nomic pricing approach [180]. Stuer et al. [144] adapted Smale’s method [143] to price

resources in grid computing markets. Bossenbroek et al. [18] introduced option contracts

into the market and used hedge strategies to reduce consumers’ risk of missing task dead-

lines. Auction-based pricing in grid computing contains several different forms. Double

auction requires consumers and providers to publish their requests and offers in a mar-

ketplace [71, 148, 165, 81]. Vickrey auction is a type of sealed-bid auction in which the

highest bidder wins but pays the second-highest bid [159, 122]. Combinatorial auction

allows consumers to bid on combinations of resources [34].

Posted-price selling and auctions are both established ways of selling, and it is not clear

which one is better. The key challenge is the uncertainty of the value of the commodity

(in this case, the computational resource) and researchers have developed different models

to compare the two mechanisms under various assumptions. Computer scientists measure

system metrics in these two mechanisms. Wolski et al. [167] state that posted-price brings

more price stability, higher task completion rate and higher resource utilization ratio than

auctions. Vanmechelen and Broeckhove [154] conclude that posted-price results in more

stable pricing, while Vickrey auction results in fewer message passing in dynamic pricing.

Economists have discussed the revenues in these two mechanisms. Wang [161] compares

posted-price selling and auctions where the buyers have independent private values of the

commodity. He finds that posted-price selling brings more profit to the seller when the

buyers’ values of the commodity are widely dispersed. Campbell and Levin [23] state

that auctions perform worse than posted-price when buyer valuations are interdependent.

Hammond [65, 66] concludes that revenues of the two mechanisms cannot be statistically

distinguished based on his study on eBay.
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In contrast to our framework, this entire body of work focuses on resource-level pric-

ing, and does not provide a mechanism for consumers to select resources based on their

tasks. Recent work has started shifting the focus to task-level pricing. Floratou et al. [54]

propose a Benchmark as a Service (BaaS) that benchmarks user’s workload and suggests

the optimal configuration for repetitive execution. As they mention in the paper, changes

such as growth of input data make BaaS complicated. In our approach, we do not assume

repetitiveness of workloads. Consumers may pay more for extremely repetitive workloads,

but are free from benchmarking evolved workloads.

Auction-based models [150, 149] assume that providers bid for service contracts. These

models use the Vickrey-Clarke-Groves auction mechanism, which redefines the payment to

the winner and guarantees that all providers report their true cost of providing the service.

While this work provides a good model for task-level pricing, it does not consider execution

time for tasks. In our framework, we balance the consumers’ trade-off of execution time

and price through their utility function.

Personalized Service Level Agreements (PSLA) [124, 125, 126, 127] resemble the con-

tracts in our framework, and describe a vision of a system that analyzes consumers’ data

and suggests to them tiers of service. Each tier describes three properties: completion time,

price per hour, querying capabilities. For example, a tier on Amazon EMR can be (< 3.5

minutes, $0.12/hour, SELECT 1 attribute FROM 1 table WHERE condition). In our frame-

work, consumers do not subscribe to a tier of service, but rather provide the task they need

and the agent provides a specific price for the task.

When multiple agents find the same best configuration for some tasks, their prices affect

each other and finally converge to the Nash Equilibrium in differentiated Bertrand model

[136] in the long run.

The agents in our computation framework derive estimates of cost and time. Several ap-

proaches employ machine learning to predict the execution time of a query [57, 6]. Li et al.

[101] use statistical model to estimate CPU time and other resource comsumption. Duggan
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et al. [48, 49] introduce special metrics and predict performance based on sampling. Wu

et al. analyze the query execution plan directly to derive runtime predictions [170, 169],

or use probabilistic models [171]. Ye et al. [178] perform service composition given the

resource requirement of individual tasks. Uncertainty of time and cost is an important com-

ponent in our framework. Existing work on scheduling SLAs considers uncertainty in the

completion time when contracts specify a price. Specifically, scheduling considers 3 pos-

sible outcomes: (1) the provider accepts the SLA and returns results before the deadline,

earning some profit; (2) the provider accepts the SLA but misses the deadline, and pays

some penalty to the consumer; (3) the provider rejects the SLA and pays some penalty

immediately. Xiong et al. [172] have developed an SLA admission control system that

predicts the distribution of completion time, and accepts or rejects SLAs based on the ex-

pected profit. Chi et al. [30] assume a stream of SLAs all of which must be accepted. Their

system minimizes loss by determining the execution order of SLAs based on the uncertain

completion time and the penalty of missing the deadline. Liu et al. [108] have proposed an

algorithm to solve tenant placement in the cloud given the distribution of completion time

and the penalty of SLAs. Our market works differently in two aspects. First, our contracts

consist of multiple target times, which are more flexible than the single deadline implicit

in these SLAs. Second, we do not require the consumer to propose an SLA that may be

rejected. Instead, the consumer makes a request that is priced by the agent according to

their capabilities.

Fine-grained contract pricing is related to query optimization in distributed databases [98,

58] as we execute subtasks using different virtual machines. However, contract optimiza-

tion has two objectives (time and cost), while query optimization has only one (time). These

two objectives propagate differently in the task graph, making the problem more difficult.
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4.9 Discussion

Our framework can be easily extended to handle applications with different QoS pa-

rameters. For example, in long-running services, completion time is not relevant and thus

should not be part of the utility function. In contrast, other factors, such as response

time, are important. These parameters are also uncertain due to unstable cloud perfor-

mance [110, 162]. While we did not experiment with alternative QoS parameters and

different application settings, our market framework is already equipped to handle them

with appropriate changes to the utility function.

A meaningful extension to our work is to augment the market to handle varying prices.

Our current framework assumes fixed prices for resource configurations. However, fluctu-

ating prices do exist in the real world. For example, Amazon EC2 allows agents bid spot

instances with much lower price [182, 3]. Agents set a maximum price threshold when

requesting a spot instance. The request can be fulfilled when the market price of a spot

instance is lower than this threshold. If the market price increases above the threshold,

the spot instance will be terminated. In addition, agents can rent reserved instances either

directly from Amazon EC2 or through its Reserved Instance Marketplace. In these cases,

agents have more options to execute a task: 1) buy spot instances; 2) use their previously

reserved instances; 3) buy reserved instances from others. These options introduce two

additional factors to the market. First, the market needs to account for a supply function

S(αC, t). This means there are S(αC, t) instances with rate αC and available time t, where

αC is usually lower than the regular instance rate and t must be a limited period ranging

from hours to years. Second, the framework needs to consider the starting time of a task.

The starting time is inconsequential when there are only regular instances with fixed rates:

The agent starts regular instances whenever a consumer accepts the contract. However, the

starting time matters when the rates fluctuate. In this case, agents need to estimate (a) the

supply function at different points in time to ensure enough machine hours for finishing

consumers’ tasks, and (b) the demand function at different points in time to decide how
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many instances they want to reserve. This is not a straightforward extension to our work,

and will likely lead to a more complex market model.
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CHAPTER 5

CONCLUSIONS

This thesis proposes several new technologies to enhance the ease of use of databases

in two dimensions: we help users process democratized data and exploit democratized

computational capabilities.

In Chapter 2, we study the problem of synthesizing mapping relationships using ta-

bles. Mapping relationships, such as (country, country-code) or (company, stock-

ticker), are versatile data assets for an array of applications in data cleaning and data

integration like auto-correction and auto-join. Our synthesis process leverages compati-

bility of tables based on co-occurrence statistics, as well as constraints such as functional

dependency. Experiment results using web tables and enterprise spreadsheets suggest that

the proposed approach can produce high quality mappings. Our work is a first step in the

direction to facilitate the curation of mapping relationships. Questions that we would like

to address in the future include: (1) how to best present related result clusters with overlap-

ping values to human users to solicit feedback, so that users will not be confused by clusters

with repeating values; (2) how to complement the corpus-driven approach to better cover

mappings with large numbers of instances, by using other sources such as authoritative

third-party data sets.

In Chapter 3, we study the query result diversification problem. We propose RC-

Index to significantly reduce the number of items we extract to answer a range query.

Compared to the state-of-the-art algorithms which are linear or quadratic, our query time is

sublinear with respect to the number of items that satisfy the query. Moreover, the quality

of our result has an approximation ratio. It is tunable through two parameters. When the
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parameters are large, the approximation ratio approaches 1/2, which is the best possible

ratio of a polynomial algorithm unless P=NP. We experiment with synthetic data and real

data. The result shows the quality of our result is close to or even better than the Greedy al-

gorithm whose approximation ratio is 1/2. In addition, our RC-Index is efficient to create.

We can index 106 items within 6 minutes.

In Chapter 4, we propose a new marketplace framework that consumers can use to

pay for well-defined database computations in the cloud. In contrast with existing pricing

mechanisms, which are largely resource-centric, our framework introduces agent services

that can leverage a plethora of existing tools for time, cost estimation, and scheduling, to

provide consumers with personalized cloud-pricing contracts targeting a specific computa-

tional task. Agents price contracts to maximize the utility offered to consumers while also

producing a profit for their services. Our market can operate in conjunction with existing

cloud markets, as it does not alter the way cloud providers offer and price services. It sim-

plifies cloud use for consumers by allowing them to compare contracts, rather than choose

resources directly. The market also allows users to extract more value from public cloud

resources, achieving cheaper and faster query processing than naı̈ve configurations, while

a portion of this value is earned by the agents as profit for their services. Our experimental

evaluation using the AWS cloud computing platform demonstrated that our market frame-

work offers incentives to consumers, who can execute their tasks more cost-effectively, and

to agents, who make profit from providing fair and competitive contracts.

In summary, this thesis has studied how to enhance database usability in data explo-

ration. With the help of the techniques we have proposed, users can perform data transfor-

mation using materialized mapping relationships conveniently, explore the data by querying

diverse and representative items efficiently, and configure the database easily in a market.

156



BIBLIOGRAPHY

[1] Abedjan, Ziawasch, Morcos, John, Gubanov, Michael N., Ilyas, Ihab F., Stonebraker,
Michael, Papotti, Paolo, and Ouzzani, Mourad. Dataxformer: Leveraging the web
for semantic transformations. In CIDR (2015).

[2] Aboulnaga, Ashraf, Wang, Ziyu, and Zhang, Zi Ye. Packing the most onto your
cloud. In CloudDB (2009), pp. 25–28.

[3] Agmon Ben-Yehuda, Orna, Ben-Yehuda, Muli, Schuster, Assaf, and Tsafrir, Dan.
Deconstructing amazon ec2 spot instance pricing. TEAC 1, 3 (2013), 16:1–16:20.

[4] Ahmad, Mumtaz, Aboulnaga, Ashraf, Babu, Shivnath, and Munagala, Kamesh.
Interaction-aware scheduling of report-generation workloads. VLDBJ 20, 4 (2011),
589–615.

[5] Ahmad, Mumtaz, Duan, Songyun, Aboulnaga, Ashraf, and Babu, Shivnath. Predict-
ing completion times of batch query workloads using interaction-aware models and
simulation. In EDBT/ICDT (2011), pp. 449–460.
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light: Portable workload performance prediction for the cloud. In ICDEW (2013),
pp. 258–265.

159



[49] Duggan, Jennie, Papaemmanouil, Olga, Çetintemel, Ugur, and Upfal, Eli. Con-
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