A STUDY OF HIGH PERFORMANCE MULTIPLE PRECISION
ARITHMETIC ON GRAPHICS PROCESSING UNITS

A Thesis Presented
by
NIALL EMMART

Submitted to the Graduate School of the
University of Massachusetts Ambherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
Sep 2017

College of Information and Computer Sciences

(© Copyright by Niall Emmart 2017
All Rights Reserved

A STUDY OF HIGH PERFORMANCE MULTIPLE PRECISION
ARITHMETIC ON GRAPHICS PROCESSING UNITS

A Thesis Presented

by
NIALL EMMART

Approved as to style and content by:

Charles C. Weems, Chair

J. Eliot B. Moss, Member

David A. Mix Barrington, Member

Israel Koren, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

DEDICATION

To Zoya

ACKNOWLEDGMENTS

I want to express my deeply-felt thanks to my thesis advisor, Professor Charles Weems,
for his enthusiasm and warm encouragement. This thesis would not have been possible
without his generosity and thoughtful guidance throughout my graduate studies. I also
thank the other members of my committee: Professor J. Eliot B. Moss, for his encourage-
ment, and careful reading of the text, and Professors David A. Mix Barrington and Israel
Koren for their feedback and helpful comments.

I am grateful to Justin Luitjens, Cliff Woolley, and the team at NVIDIA for their support
and sharing their deep knowledge of GPU architectures, compilers and software tuning and
to Professor Yang Chen for putting me on the path toward research in multiple precision
arithmetic. Thanks to Arjun Jayadev for his advice and encouragement and to Fabricio
Murai Ferreira and Mostafa Dehghan for their comradery.

Finally, I wish to thank my family: to my parents, Martini Niedbalski-Emmart and Bob
Niedbalski for their encouragement and for instilling an interest in academics, and to my
wife and daughter, Sunitha and Zoya, for giving me the time and unwavering support to
pursue a Ph.D.

This thesis is based in part upon work supported by the National Science Foundation

under Award Numbers CCF-1217590 and CCF-1525754.

ABSTRACT

A STUDY OF HIGH PERFORMANCE MULTIPLE PRECISION
ARITHMETIC ON GRAPHICS PROCESSING UNITS

SEP 2017

NIALL EMMART
B.A., UNIVERSITY OF MASSACHUSETTS, AMHERST
M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Charles C. Weems

Multiple precision (MP) arithmetic is a core building block of a wide variety of algo-
rithms in computational mathematics and computer science. In mathematics MP is used in
computational number theory, geometric computation, experimental mathematics, and in
some random matrix problems. In computer science, MP arithmetic is primarily used in
cryptographic algorithms: securing communications, digital signatures, and code breaking.
In most of these application areas, the factor that limits performance is the MP arithmetic.
The focus of our research is to build and analyze highly optimized libraries that allow the
MP operations to be offloaded from the CPU to the GPU. Our goal is to achieve an order
of magnitude improvement over the CPU in three key metrics: operations per second per
socket, operations per watt, and operation per second per dollar. What we find is that the
SIMD design and balance of compute, cache, and bandwidth resources on the GPU is quite

different from the CPU, so libraries such as GMP cannot simply be ported to the GPU. New

Vi

approaches and algorithms are required to achieve high performance and high utilization of
GPU resources. Further, we find that low-level ISA differences between GPU generations
means that an approach that works well on one generation might not run well on the next.
Here we report on our progress towards MP arithmetic libraries on the GPU and propose
enhancements in three areas: (1) large integer addition, subtraction, and multiplication; (2)
high performance modular multiplication and modular exponentiation (the key operations
for cryptographic algorithms) across generations of GPUs; (3) high precision floating point
addition, subtraction, multiplication, and division. We have also developed a new short di-
vision algorithm, which we prove is asymptotically optimal on EREW and CREW PRAMs,

which is discussed in the last chapter.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS e v

ABS T RACT ... vi

LIST OF TABLES e xii

LIST OF FIGURES e e XV
CHAPTER

1. INTRODUCTION ... e e e e 1

1.1 Application Areas for Multiple Precision Arithmetic 2

1.2 The Thesis e e e e e e e e 3

2. LITERATURE SURVEY 5

2.1 Number Representationttt 5

2.2 Sequential Algorithms i 6

2.2.1 Addition and Subtraction 6

222 Multiplication.ottt e 7

223 Fast Squaringuiiiiiii e 11

2.2.4 DIVISION ..ttt 12

2.2.5 Specialized Division Algorithms 16

2.2.6 Remainder / Modulo Reduction 18

227 Special Moduli..... 24

2.2.8 Square Root Algorithms 25

2.2.9 Modular Exponentiation Algorithms 27

2.3 Parallel Algorithms for Multiple Precision Arithmetic 28

2.3.1 Addition and Subtraction / Carry Resolution 28

232 Multiplication. e 29

2.33 DIVISION .ttt e 29

2.4 Parallel Multiple Precision Implementations on CPUs
2.5 GPU Implementationscoouuuiieunnennneennnennn..

2.5.1 Cryptographic Operations Requiring Multiple Precision

Arithmetic. o i
2.5.2 GPU Based Asymmetric Cryptography, Early Papers
2.5.3 GPU Based Asymmetric Cryptography, Recent Papers.
2.5.4 GPU Based Multiple Precision Libraries
2.5.5 Literature Survey — Conclusions
2.5.6 Parallel Algorithms iiiin...
2.5.7 Asymmetric Cryptography Primitives on the GPU
2.5.8 MP Librariesonthe GPU

3. ASYMPTOTICALLY OPTIMAL PARALLEL SHORT DIVISION /

DIVISION BY CONSTANTS

3.1 Prior Work . ..o
3.2 Short Division Algorithm

3.2.1 Proof of Correctnessouuviu .

3.3 Connections to Parallel Prefix/Suffix Sum
34 Optimality Proof

3.4.1 Asymptotic lower bound for REMPAR on a CREW PRAM
3.4.2 Asymptotic lower bounds for short division on a CREW

3.5 Experimentsand Results

3.5.1 Parallel Short Division Algorithms Tested
3.5.2 Experimental Setup i
3.5.3 Resultsand Discussionccoiiiiiinain...

4. HIGH PRECISION FLOATING POINT ARITHMETIC

4.1 Library Feature Overviewand APL
4.2 Implementation and Important Algorithms
4.3 Experimental Testingand Results
4.4 Comparisonto Prior Work
4.5 Conclusion and Future Worko o ..

S. LARGE UNSIGNED INTEGER ADDITION, SUBTRACTION AND

MULTIPLICATION.

X

5.1 Large Integer Addition and Subtraction 99

5.2 Large Unsigned Integer Multiplication 110
52,1 FastModulo 112
5.2.2 Multi-byte Sample Sizesttt 113
5.2.3 FFT Layout and Implementation 113
5.2.4 CUDA Implementation and Optimizations 117
5.2.5 Experimental Setupand Results............ 124
5.2.6 Conclusion and Future Work 125

6. MODULAR EXPONENTIATION ACROSS MULTIPLE GENERATIONS
OF GPU .. 127
6.1 Background 129
6.1.1 Code Generatoroouuiiniineiiiiinaenan. 131
6.2 Related Work 133
6.3 Three NModel 134
6.4 TwoNPlusLocalModel 136
6.5 SampledModel 138
6.6 Distributed Model 140
6.7 Experimental Setupand Results, 142
6.7.1 Utilization.t e 143
6.7.2 Resultsand Discussion 147
6.8 Comparison to Prior Work 150
6.9 CONCIUSIONSottt e e e e 153

7. MODULAR EXPONENTIATION USING DOUBLE PRECISION

FLOATING POINT ARITHMETIC 155
7.1 New Approach Using Wide Samples, 156
7.2 Performance Estimates for Various Cards 160
7.3 Implementation of Modular Exponentiation using Wide Samples.......... 162
7.4 Experimental Setupand Results 166
7.5 Conclusions and Future Work 169
8. CONCLUSION . .. e e e 171
Appendices 175
A. PERFORMANCE ACROSS A RANGE OF CPUSANDGPUS............. 176

BIBLIOGRAPHY

X1

Table

2.1

22

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

53

54

LIST OF TABLES

Page

Dominant computations at the heart of important cryptography

algorithms 37
Operations in the finite field Fy; EC point doubling, addition, and scalar

multiplicationt e 39
Run time results for algorithms wheren =2p......... 76
Arrays based floating point library APl forthe GPU...................... 80
Special value handling for floating point addition 82
GPU running time in milliseconds 93
CPU running time in milliseconds i 94
Speedup table: CPU running time / GPU running time. 95
A comparison of this work to Honda, Ito, and Nakano’s 95
A comparison of this work to Nakayama and Takahashi’s 96
Performance of the Hénon map implmented with CAMPARY running on

aTeslaC2075 GPU 97
XOR kernels and memory bandwidth achieved 102
Bandwidth achieved by the Large Adder kernels, the XOR kernels, and

the CUDA memory copy routines for various sizes................... 107
Effect of long carry chains on achieved bandwidth 109
Large integer multiplication performance on the GTX 980 and a Core

15-T400 . oo 125

Xii

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

8.1

8.2

A.l

A2

A3

A4

A5

A.6

Instruction counts to perform modular exponentiation

Instructions/Cycles for each madc.lo, madc.hi and add/sub across the
generationsof GPU cards i

Impact of Karatsuba on Performance - 512 bits with w = 5 and a launch
geometry of 128 threads perblock

Impact of algorithms on Performance - 512 bits with w = 5 and a launch
geometry of 128 threads perblock

Impact of Launch Geometry on Performance - GTX 580, 512 bits with
W D e et

Impact of Register Max allocation on Performance - GTX 580, 512 bits
With LG=128, w = 5. ..

Best Performing Model by Sizeand Card

Cycles required to dispatch a 52-bit sampled or 32-bit integer FPACS to a
warpof 32threads o

NVIDIA Driver / GPU card settingscoiiiiiinnenn...

Parameter that deliver the best performane on 1024, 1536 and 2048 bit
modular eXponentiationi .t e

Performance results for three sizes and different warm up counts and
HIMING TUN COUNES .+« . vt ettt ettt e e e e e e ie e e e et e

Speedup table: Throughput / Xeon E5-2690 Throughput
Speedup table: Throughput / Core 15-7400 Throughput
Parallel MPFR on a Core i5-7400 (running time in milliseconds)
Parallel MPFR on a Xeon E5-2690v3 (running time in milliseconds).
Our FP library on a GTX Titan Black (running time in milliseconds).
Our FP library on a GTX 980 (running time in milliseconds)
Our FP library on a P100 card (running time in milliseconds)

Our FP library on a V100 card (running time in milliseconds)

Xiii

A.7 Parallel GMP mpz_powm throughput (operations per second) 180

A.8 GPU modexp throughput (ops/sec) using the code generation approach
(SEE Chapter 60) . .. v ittt e e e e 180

A.9 GPU modexp throughput (ops/sec) using wide samples (see Chapter
) e e 180

X1V

Figure
2.1
2.2
2.3

2.4

2.5
2.6

3.1

32
33
3.4
4.6

5.1

5.2

53

5.7

LIST OF FIGURES

Page

Product terms to be summed for an n-word by n-word multiply. 7
Computation using Montgomery Representation. 19
Montgomery Product Algorithm 21
Product terms in the word-by-word approach to a Montgomery

TEAUCHION . . o ottt e e e e e 22
Summary of SOS, CIOS, FIOS, FIPS 23
Short Division Example 30
Example division and remainder sequence for X = 9935631, d = 7, and

B =100 . e 58
parallel short division algorithm 60
X represented as an array of bits L 68
REMPAR, 4, (V') algorithm implemented using short division 71
X represented as an array of bits 87
Grid Stride Loop processing using 64 blocks and 512 threads per

blocK . .o 100
Block Stride Loop processing using 64 blocks and 512 threads per

BlOCK . . o 101
Large addition using two kernels: Parallel Chunk Addition followed by

Carry Resolution i i 104
FFT layouts as the number of samplesisdoubled 114

XV

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

6.1

6.3

64K-Point FFT example: Column FFTs-Step 1........................ 116

64K-Point FFT example: Column FFTs -Step2........................ 117
64K-Point FFT example: Row FFTs....... 118
Exponentiation by Squaring 120
Unrolled Exponentiation by Squaring, 120
Unrolled Exponentiation, 2-bitsataTime 121
Transpose - 5 Shared Memory Cycles per warp per sample 121
Optimum - 4 Shared Memory Cycles per warp per sample 122
Typical Compiler vs. Our Code Generator.c...oon... 132
The API methods of the ExponentiationModel interface 134

Xvi

CHAPTER 1

INTRODUCTION

Multiple precision (MP) arithmetic is a field of growing importance. It is a key com-
ponent in cryptography (e.g., securing communications, digitial signatures, and next gen-
eration secure internet architectures), experimental mathematics (e.g., finding integer re-
lations in real-valued infinite series), computational number theory (e.g., prime testing,
prime proving, factoring), random matrix theory (e.g., least eigenvalues), quantum field
theory (e.g., zeta function identities), analysis of chaotic functions (e.g., logistic map), and
computing high precision constants.

A significant increase in the speed of MP calculations is needed to enable breakthroughs
in these areas. In addition, if a significant performance boost can be achieved with a modest
increase in cost and power, then we open the door to both commercial applications (such as
enabling wider use of encrypted communication channels and longer keys) and to a larger
community of researchers who can make use of MP arithmetic on affordable platforms.

Graphics processors (GPUs) have been applied in a wide range of areas of high perfor-
mance computing because their performance considerably exceeds CPU performance for
certain kinds of fine-grained data-parallel algorithms, at costs far lower than custom pro-
cessors, and with a very attractive performance per watt. Their performance is such that 65
machines in the November 2016 TOP500 list use NVIDIA GPU accelerators. The major
problem is that it can be difficult to write and tune the software to fully exploit the potential
performance.

Developing and maintaining an MP library for GPUs faces a major hurdle in that

successive generations of GPU architecture change in ways that necessitate non-standard

optimizations and alternate algorithmic approaches. To be useful, a library must be upwards
portable so that users can continue to rely on it as they upgrade hardware. In addition, it
must support a wide range of MP value sizes, which imposes significant variations in the
demands that are placed on the limited resources of the GPU’s thread engines. These chal-
lenges are further complicated by aspects of the vendor supplied development tools that
stand in the way of the necessary optimizations. Even so, developing a scalable, portable
MP arithmetic library for GPUs offers the potential for performance increases of up to two

orders of magnitude.

1.1 Application Areas for Multiple Precision Arithmetic

Multiple precision arithmetic is one of the fundamental building blocks of crypto-
graphic algorithms from key exchange (RSA, Diffie-Hellman, ECHD) to digitial signature
standards (DSA, ECDSA), to prime testing (Miller-Rabin) and proving (AKS), and factor-
ing (ECM, QS, SNFS, GNFS). These algorithms are used to secure communications and
to authenticate authorship/ownership of data, and underpin significant areas of the modern
economy: e-commerce, secure WWW browsing through Public Key Infrastructure (PKI),
secure inter-bank transfers, peer-to-peer networking, crypto-currencies, smart cards, digi-
tal signatures for software (e.g., apps), secure utility grids, command and control systems,
military communications, etc. Significantly reducing the cost and increasing the perfor-
mance of cryptographic algorithms could lead to wider deployment of cryptography with
better privacy and security, and entirely new applications with the potential for widespread
benefits.

New internet architectures such as content centric networking (CCN) [63], which use
a digital signature with each packet, will require very high performance, low power, and
low cost modular exponentiation support. In addition, research into fully homomorphic

encryption (FHE) [51] depends on very high precision arithmetic.

Experimental mathematics is yielding high-value results using MP arithmetic. In par-
ticular, integer relation algorithms were named among the top ten algorithms of the 20"
century. The most widely used, PSLQ [45], searches for relations between high precision
real values for a costly function, such as an infinite series, and a set of mathematical con-
stants, to establish the likelihood of a closed form expression of the function. Among its
well known applications was finding a formula to compute any digit of pi in base two [3].
It has also found closed forms for multiple zeta functions from quantum field theory, and
for identifying bifurcation points in the chaotic logistic map function. Accelerating very
high precision arithmetic with GPUs will enable more extensive searches for a wider range
of functions.

Multiple precision arithmetic is essential in computational number theory research, aid-
ing in the search for and proving of new primes, and for factorization. Certain problems
in random matrix theory, such as our recent work in finding the least eigenvalues of ill-
conditioned Hankel matrices, depend on extreme levels of precision to produce meaningful
results. Lastly, of course, our package will be useful in the computation of high precision
values for mathematical constants.

These are compelling applications and a number of researchers have attempted to build
MP libraries for the GPU, but none of them meet all the important criteria: high perfor-

mance, multiple generations of GPU, and support for a wide range of sizes.

1.2 The Thesis

The thesis that this dissertation will address is:

“Offloading multiple precision arithmetic computations from the CPU to the GPU will
result in an order of magnitude boost in performance across three metrics: operations per
second per socket, operations per watt, and operations per second per dollar. However,

due to the SIMD design and different balance of compute, cache, and bandwidth resources

on the GPU, achieving such a high level of performance requires new approaches and al-

gorithms.”

We will validate this thesis by building and testing three multiple precision GPU li-
braries. The first will implement multiple precision floating point addition, subtraction,
multiplication, division, and square root with mantissas that can range in size from 1024
bits to 8192 bits. The second will implement modular exponentiation using integer oper-
ations on sizes that range from 256 bits to 2048 bits. The third will implement modular
exponentiation using double precision floating point arithmetic. We will compare the GPU

libraries to GMP [54] and MPFR [48] two high performance libraries on the CPU.

CHAPTER 2

LITERATURE SURVEY

The literature survey is organized as five sections. Section 2.1 covers number represen-
tation. Section 2.2 covers the relevant sequential multiple precision arithmetic algorithms,
giving both the literature review and an overview of how the algorithms work. These al-
gorithms serve as core background knowledge for the proposal. In Section 2.3 we cover
the relevant parallel multiple precision algorithms that operate in a manner that is different
from their sequential counterparts. Section 2.4 covers parallel CPU implementations of

multiple precision arithmetic and Section 2.5 covers GPU implementations.

2.1 Number Representation

There are two common number representations for unsigned high precision positive in-
tegers, positional fixed radix number systems (FRNS) and residue number systems (RNS).
In an FRNS the radix 3 is typically chosen to be power of two, such as 232 on 32-bit

machines or 264

on 64-bit machines. A high precision number, X is then represented as
a sequence of n values (computer words) xg, z1,--- ,x,_1 Where X = Z?:_OI x;/4°, and
0 < x; < . The x; values are ofted referred to as limbs. The range of X that can be
uniquely represented by n-words is 0 .. 5™ — 1. In an RNS, a set of pair-wise coprime mod-
uli, {m; } are chosen. Then X is represented as a sequence of moduli, z; = X mod m;. The

range of X that can be uniquely represented is O .. (Hle mi> — 1. In an RNS, addition,

subtraction and multiplication are all linear time operations, computed component-wise:
(X £Y); = (z; £ y;) mod m;

(X -Y); = (x; - y;) mod m;

Due to the component-wise nature, these operations are inherently parallel, requiring no
communication between the components. However, other common arithmetic operations,
such as comparison, division, and modulo (by arbitrary values) are much slower. In effect,
what the implementations do is convert the RNS representation to an FRNS representation
and use standard algorithms. RNS representations also suffer from two other drawbacks.
First, the representation is not as compact as FRNS representations on binary computers.
Second, it’s quite easy to extend the range of X in an FRNS, just by adding another word
and increasing n. In an RNS, one must dynamically construct an extra modulus for the
set {m;} on the fly and precompute various constants needed to support the new modulus.
For much more on conventional and unconventional number representations, we refer the
reader to Computer Arithmetic Algorithms by Koren [75].

For the remainder of this proposal, we will use the convention that capital letters rep-
resent unsigned multiple precision values, represented in an FRNS (with radix 2* where w
is the machine word size) unless otherwise stated. Lower case letters represent single word

values in the range of 0 to 5 — 1.

2.2 Sequential Algorithms

There are several textbooks with good introductory material on sequential multiple pre-
cision algorithms. These include Knuth’s The Art of Computer Programming, Volume 2,
Seminumerical Algorithms [73], Koren’s Computer Arithmetic Algorithms [75] and Brent

and Zimmermann’s Modern Computer Arithmetic [16].

2.2.1 Addition and Subtraction

Addition and subtraction of two n-word multiple precision (MP) values, A + B, are
performed with the traditional grade school algorithm, going from the least significant word
to the most signficant word, pushing the carry/borrow along. These algorithms run in O(n)

time and there are no faster algorithms, because all n words of A and B must be read.

0 e 0 0 a,b, . a,b, ab, ayb,
0 e 0 a,4b, a,,b, ab, ab, O
ab, O 0
anqb,4 e ab,, ab,, e 0 0

Figure 2.1. Product terms to be summed for an n-word by n-word multiply.

2.2.2 Multiplication

For multiplication there are six main algorithms for computing the product of two n-
word MP values, A and B. These algorithms are presented below. The five general purpose
algorithms form a ladder, with decreasing asymptotic complexity, but unfortunately, as we
move up the ladder, the asymptotic notation hides increasing constants. Thus, for small n,
it’s actually faster to use the algorithms at the lower rungs of the ladder than the algorithm at
the top. A good multiple precision library usually implements several of these algorithms,
and will have some kind of tuning procedure to determine the best sizes of n (crossover

points) to switch between algorithms.

Grade School: the grade school is the simplest algorithm, where the n? product terms of

Figure 2.1 are summed along the columns from the right to the left. This algorithm runs in

O(n?) time.

Karatsuba: the Karatsuba multiplication algorithm [69] is an asymptotically faster recur-
sive divide and conquer approach. It works by splitting the A and B value into upper and
lower halves, A = Ay 3"/?l + A, and B = By /™! + B;. Computing the product A - B
requires computing three sub-products, Ay - By, Ar-Br,and (Ag+Apr)-(By+Bp). If the
length of the sub-products is short enough, it’s faster to compute them with the grade school
multiplier. If they are still large, then the code recursively calls the Karatsuba multiplier.

The product, A - B is easily computed from the three sub-products.

Since Karatsuba is a recursive divide and conquer algorithm and computing the final
product from the sub-products runs in time O(n), we can express the Karatsuba run time
as K(n) = 3K ([n/2]) + ©(n) and by the Master Theorem (see for example [27]), the run
time is ©(n'923), i.e., O(n'?8).

There are a few variants of the Karatsuba approach, such as using Ay — A, and/or
By — By, (instead Ay + Ap and By + Bp) and using different split points instead of

[1/2]. These are described in Knuth [73] and Brent and Zimmermann [16].

Toom-Cook: Proposed by Toom [105] and improved by Cook [24], Toom-Cook multi-
plication is also a divide and conquer algorithm. But instead of Karatsuba’s approach of
dividing A and B into halves, Toom-Cook divides them into 3 or more pieces. Toom-Cook
is not a single algorithm, rather it is a family of algorithms: Toom-Cook 3-way, 4-way,
5-way, etc, depending on the split count, k.

Toom-Cook works by mapping A and B to k — 1 degree polynomials, S(z) and T'(x),
such that S(8™/*1) = A and T'(8/™/*1) = B. For example, when k = 3, we have

S(l’) = 52.732 + Sll’ + So

and
S(@M/iﬂ) = S, 8231 4 g, 88T L5y = A

thus Sy, 51, 52 split A into thirds. Sy is the least significant [n/3] words of A, S is the
middle third and S is the remaining most significant third. The S and 7" coefficients are
analogous to the Karatsuba Ay, A;, By, and B, terms.

Next, Toom-Cook determines the product polynomial, P(z) = S(x) - T'(z), with
polynomial interpolation via a Vandermonde matrix. Since P(z) is degree 2k — 2 we’ll
need 2k — 1 evaluation points for the interpolation. These interpolation points can be
arbitrarily chosen, for example: P(0) = S(0) - 7(0), P(1) = S(1) - T(1), P(2) =
S(2)-T(2), ---, P2k —2) = S(2k — 2) - T(2k — 2). Performing the interpolation

thus requires computing 2k — 1 sub-products, but these sub-products are much shorter than

A and B because for small x, S(x) and 7'(x) will be roughly n/k words in length. If the
lengths of the sub-products are small enough, then it’s faster to compute them with the
grade school multiplier. If they are still large, the code calls the Toom-Cook multiplier
recursively.

The next step is to determine the coefficients of P(x), which requires solving the Van-
dermonde system of 2k — 1 linear equations. Since a general linear solver would be quite
slow, in practice, Toom-Cook implementations fix a set of evaluation points for each %, and
implement a custom piece of code to solve the resulting specific linear system. Thus, a fast
multiple precision library tends to have a few implementations of Toom-Cook, for specific
values of k, rather than a general solver that works for any k. Once P(z) is in hand, the
product A - B can be computed by evaluating P(™/*1),

The running time of Toom-Cook can be expressed as T’C'(n) = (2k — 1)T'C([n/k]) +
O(n), and again by the Master Theorem, we have T'C(n) = ©(n!°8s2k=1),

The actual performance of a Toom-Cook implementation depends heavily on the in-
terpolation points used. For small k, the best interpolation points have been extensively
researched by Cook [24], Knuth [73], Zuras [114], Zimmermann, and Bodrato [13, 14].
Further, it has been shown (see for example Chung and Hasan [21]) when £ > 3, the inter-
polation step requires an exact division by a non-power of two constant. Thus an efficient
Toom-Cook implementation requires an efficient short division implementation.

For unbalanced multiplication, where the length of A is longer or shorter than the length
of B, different split counts can be used on A and B. See Section 1.3.5 of Brent and

Zimmermann [16] for details.

FFT Multiplication: FFT Multiplication splits the A and B values into fixed length pieces,
A = (ag,a1, - ,a5-1), B = (b, b1, ,bg_1). The a; and b; terms can be thought of as
“digits” or as “samples”. The grade school algorithm tells us that the product sum of the
i"™ column is Z;:O a;-b,_; when i < k and E?:ifk a; - b,_; when ¢ > k. These sums are

exactly the convolution of the a and b samples. It is well known that FFTs can be used to

compute convolutions efficiently, as follows:
conv(a,b) = FFT ' (FFT(a) « FFT(b))

where @ and b represent the vector of samples, asterisk represents component-wise multi-
plication.

The challenge for FFT multiplication is that the FFT computations must be performed
in a ring, with a k™ primitive root of unity. The choice of ring is very important. One
possibility is to use complex numbers with floating point representations. This approach is
used in some FFT multiplication algorithms, but the error analysis of the round-off errors
in the floating point computations is very complicated. Another option, which we use in
our research, is to use finite rings or fields, represented as integers or multiple precision
integers. The computations will be exact. However, for a given finite ring/field, there is a
limit to the maximum length A and B that can be multiplied without the column sum over-
flowing the maximum ring value. Thus, FFT multiplication is not a general multiplication
algorithm that can multiply any size numbers, like the previous algorithms. However, given

this limitation, it is very efficient with a running time of O(nlogn).

Schonhage-Strassen: In 1971 Schonhage and Strassen [94] published a fast algorithm
for multiplying arbitrary length numbers, based on FFT multiplication. Here we present a
slightly simplified version of the Schonhage-Strassen algorithm. Given two n-bit numbers,
A and B, split A and B into k pieces where k is chosen according to a heuristic that ensures
k = ©(y/n). Next run FFT multiplication on the pieces, using the finite ring R consisting
of the integers modulo 2% + 1. The number 2 is a 4k™ primitive root of unity in R. Thus a
2k-point FFT can be run in R using w = 22

The FFTs and FFT! each run in O(klog k) operations in R and each operation (ad-
dition, subtraction, and multiplication by w’) in R runs in ©(k) bit operations. Thus
the total time to run the FFTs and FFT! is O(k - klogk) which is ©(nlogn). How-

ever, the convolution algorithm still requires performing k& component sub-products of

10

2k-bits times 2k-bits each. If k is small enough, these are done using a base case algo-
rithm (such as grade school). If not, they are done with recursive calls to the Schonhage-
Strassen algorithm. Thus the total running time of the algorithm can be expressed as
T(n) = k- T(2k) + ©(nlogn), where k = ©(y/n). By the substitution method, we
find that T'(n) = O(nlognloglogn) bit operations. Further, the Schonhage-Strassen al-
gorithm takes advantage of the cyclic nature of FFTs, which allows the sub-products to
be computed in 2k-bits rather than 4k-bits. This explanation of the algorithm and its time
complexity is somewhat terse; for a full description and analysis, please refer to [94], [73],
or [16].

For practical implementations, there are some helpful tricks to improve the performance

described by Gaudry, Kruppa and Zimmerman [50].

Faster Multiplication: In 2007 Martin Fiirer published [49] an algorithm with a running
time of O(nlogn 2008 ™) which is asymptotically faster than Schonhage-Strassen. In
2016 Harvey, van der Hoeven, and Lecerf published a related algorithm [56], but with
a slightly better complexity of O(nlogn K'°&" ™), where K = 8. If certain conjectures
about the distribution of Mersenne primes hold, then their algorithm can be shown to have
complexity O(nlogn K¢ "), where K = 4.

However, these algorithms are mostly of theoretical interest because the constant hidden
in the O-notation is very large. So in practice, Schonhage-Strassen is faster except for

“astronomically” large values of A and B.

2.2.3 Fast Squaring

Computing the square of an n-word MP value A is often faster than computing the
product of two n-word MP values A - B. Here we briefly present some of the approaches.
For small n, we will want to use the grade school algorithm, but we can take advantage of
symmetry. Considering Figure 2.1, if a column has a term a;0;, then the column will also

have a term a;b; when ¢ # j. Since we’re squaring, these two terms will be equal, which

11

leads to a fast algorithm, namely, add the terms above the slew diagonal, double the value
then add in the diagonal terms.

For larger n, in the Karatsuba range, we note that Ay + Ay = B + By so this sum
need only be computed once, and the sub-products are all squares, which can be computed
by recursively calling the square routine and once the values are small enough, will take
advantage of fast grade school squaring.

For Toom-Cook, S(z) and T'(x) will be the same, which eliminates a lot of calculations.
Also, like Karatsuba, all the sub-problems will be squares, and finally, Chung and Hasan
[21] prove that unlike Toom-Cook multiplication, Toom-Cook squaring can be performed
using only division by powers of two, thus eliminating the need for short division, which
represents a significant percentage of the running time for Toom-Cook multiplication.

For large n, using the FFT based algorithms, the convolution becomes FFT ' (FFT(a)?)
which saves an FFT.

For the rest of this dissertation, we will refer to these algorithms as “fast-squaring”.

2.2.4 Division

As with multiplication, there are a many algorithms for doing division. The algorithms
generally fall into two categories: slow quadratic algorithms which produce a fixed number
of bits of quotient per iteration, and fast sub-quadratic algorithms. Karp and Markstein’s
literature reivew in [21] covers many approaches to division, including some obscure ones,
such as Chebyshev polynomial approximations, CORDIC methods, Sweeney, Robertson,
and Tocher (SRT) division [92, 104], and Goldschmidt’s sub-quadratic algorithm [53].

Here we discuss in detail some of the algorithms presented by Brent and Zimmermann
in [16]. For each of these algorithms we wish to divide an n-word number, A, by an m-
word divisor, B, with n > m. We assume that B is normalized, meaning that the most
significant word of B is at least 3/2. If this is not the case, we can construct A’ and B’ by

shifting A and B by k bits to the left. % is chosen such that B’ is normalized. Then the

12

quotient A/ B is A’/ B’ and the remainder of A/B is the remainder of A’/ B’ shifted k bits
to the right.

Like multiplication, the following three division algorithms form a ladder, with decreas-
ing asymptotic complexity, but with increasing constants hidden by the Big-O notation. A
good multiple precision library will typically implement all three algorithms and have a

tuning routine to determine the best crossover points.

Grade School: For grade school division, we iterate over j from n — m down to 0. At
each iteration, we compute an estimate for the next quotient word as
q; = min (L(amﬂﬂ + Aprjo1)/bno1], B— 1>. This estimate is guaranteed to be greater
than or equal to g;, the next quotient word. The next step is to correct the estimate: while
A—q;-B- (7 < 0, decrement q;. After this loop, g; is correct and we set ¢; = ¢;, and
update A=A —q;-B- (.

Brent and Zimmermann [16] prove the correction step happens at most twice. Knuth

[73] notes that if q]’-‘ is chosen as

¢ = (@m0 + amij-18 + tmij2)/(bn18 + by s)]

then only one correction step is needed and it’s extremely rare.
The running time is O(nm), and when m = n/2, the running time is O(n?), so the

algorithm is quadratic.

Burnikel-Ziegler: The next algorithm is a recursive divide and conquer approach to divi-
sion, due to Burnikel and Ziegler [17]. The basic idea is that instead of computing a single
word estimate ¢*, we should go to longer, multiword estimates. Then when we do the cor-
rection step, A — ¢* - B - 37, we can take advantage of asymtotically fast multiplication to
compute ¢* - B. Without loss of generality, let’s assume that A is exactly twice as long as

B. We can split A into four pieces and B into two pieces as follows:

A= A353(n/4) + A252(n/4) + Alﬁnﬂl + AO and B = Blﬂn/4 + BO

13

Further, we can represent the quotient, Q = A/B as Q = Q,8"*+Q,. We can estimate (),
by calling the division routine recursively, Q% = divide(A33™"/* + Ay, Bi). The estimate
will not be exact, but it will be close and the exact value is easily obtained with a few
correction steps using the full values of A and B.

Next, construct A’ = A — Q; - B - 3/*. A’ can be represented as:

Qo can then be estimated by calling the division routine recursively again,
Qi = divide(AyB™* + A, Bj). The estimate will be close to the exact value, which
can be determined with a few more correction steps. The final Q is just Q1 5™/* + Qo.

This algorithm outperforms grade school in two ways. First, it takes advantage of
asymptotically fast multiplication. Second, the total number of words affected by correc-
tions is greatly reduced.

The running time analysis of this algorithm is complicated and depends on the mul-
tiplication algorithm being used. Brent and Zimmermann show that the running time to
divide an n-word number by a n/2-word number is roughly 2 to 3 times the running time
to multiply two n/2-word numbers.

Finally, as with Knuth’s observation about the grade school algorithm, the correction
steps can be greatly reduced by using one more word for both numerator and denominator

in the recursive calls.

Newton-Raphson: For very large numbers, the fastest approach to division is to use a
Newton iteration to find the reciprocal of B. The approach is similar to Burnikel-Ziegler
in that it splits A into 4 pieces (A, A1, A, A3), and B and () into two pieces (By, By and
o, Q1) and computes (), followed by ()y. Again we assume n = 2m.

The algorithm first uses a Newton iteration to compute an integer R (the reciprocal)

such that R = L%J . The algorithm follows the steps of Burnikel-Ziegler, except instead

14

of the recursive calls, the estimates of (] and @) come from computing the high n/4 words
of the product Q = high(As - R) and Q = high(A, - R).

Here we present some background on Newton’s iteration. Suppose we are given a
real number 0.5 < z < 1, and an initial estimate y, for 1/, where |yy — 1/x| < € and
1 < yo < 2, then the following sequence: yr+1 = yr + yp(l — xyy) which will rapidly
converge to 1/z. It can be proven that |y, — 1/x| < 4ke¢? (see for example Brent and
Zimmermann’s Section 3.4.1). In practice, this means that if an estimate ¥y, is accurate to ¢
bits of precision, then y;; will be accurate to 2¢ — 2 bits of precision.

Earlier we had described R = L%J as the “reciprocal” of B;, which seems strange
because they are both integers. Here’s the story. There is a duality here: B; and R can be
viewed as integers, but they can also be viewed as fixed point numbers with n /4 words after
the decimal point. In the fixed point context, /2 and B; are reciprocals. Further, because B
is normalized, B; as a fixed point number is between 1/2 and 1 and the Newton iteration
applies. Thus we can write a fixed point version Newton’s iteration as follows. We start out

by setting Ry = 32/ B,,_1 - 37/*~! and iterate log m times:
Rjp1 = R; + Ry - (B"* = By - R/ ")/ g™/

This is exactly the Newton iteration translated into fixed point arithmetic. R, is accurate to
1 word, and after each iteration, the number of words of accuracy approximately doubles.
We note that we’ve done one more iteration than is strictly necessary, which is to handle
the 4% term that crops up in the Newton iteration. Finally we note that the fixed point
representation is just an approximation to the real numbers used in Newton’s iteration.
Thus, in addition to the error analysis of Newton’s method, there are round off errors to
contend with, and up to two correction steps may be required to get the correct final value
for R.

This implementation of Newton’s iteration is inefficient because the early iterations are
computing with much more precision than required. Brent and Zimmermann give a more

complicated, but more efficient implementation in Section 3.4.1 of [16].

15

Computing the Newton reciprocal R to n/4-words and doing the division in two steps
(Q; followed by Qo) is significantly faster than computing R to 2n/4-words and computing
all of () in a single step and is due to Karp and Markstein [70]. It is sometimes called the

“Karp and Markstein trick™.

2.2.5 Specialized Division Algorithms
In some cases, there are special properties about the division that we can take advantage
of. We use the same notation, A is the dividend and B is the divisor. However, in next two

algorithms we do not assume B has been normalized.

Exact Division: Given an n-bit dividend, A, and an m-bit divisor B that exactly divides
A, find @ such that A = @ - B.

The division algorithms presented thus far all work by finding a Q* that when multiplied
by B and shifted, cancels off the most significant bits (left side) of the dividend, A. Then
these algorithms construct a smaller dividend, A’, such that A’/B equals the remaining
bits of the quotient still to be computed. Exact division, due to Jebelean [65] works in the
opposite direction. It determines the least significant bits of the quotient and cancels them
off the right side of the dividend. For now, let’s assume that the divisor, 5 is odd. We can

determine (), the & least significant bits of (), as follows:
A=Q-B = A=Q-B (mod2") = Q=A-B"' (mod2*)
and therefore
Qr = Qmod2" = A- B! (mod2*) = (Amod 2" - B~' mod 2¥) mod 2"

where A mod 2% is just the least significant k bits of A and the inverse, B! mod 2% will
exist because B was assumed to be odd.
With this computation we can compute the least significant & bits of Q. Next we want

to find a smaller A’ such that A’/B are the remaining high order bits of @ still to be

16

discovered. Thus we want A’/ B = (Q — Qy)/2*. Multiplying both sides by B gives:

_QB-QuB_A-QB

/
A 2k 2k

We keep iterating this process, finding the next k bits of (), until A’ is zero, at which time
all of () has been determined.
This algorithm requires an efficient technique for computing B~! mod 2. Jebelean

gives an algorithm: set /; = 1 and iterate:
L1 =L(2— B-I;)mod2? "

B~'mod 2* is I; mod 2* when 22" > k. This algorithm is very similar to Newton’s iter-
ation in that the accuracy doubles on each iteration, which can shown as follows. Suppose
I; is a k bit modular inverse of B. Then we have B - [; = C - 2k 4+ 1 for some integer C,

and we have:
B-Liyy=B-1;2-B-1;)=(C-2"+1)(1-C-2F) = -C?. 2% +1

Thus B - I;11 mod 2% = 1, and therefore I;,, is a 2k bit modular inverse of B. The origin
of this approach can be traced back to Kurt Hensel’s work on p-adic numbers, circa 1897.
We have assumed that B is odd. Suppose B is divisible by 27 but not 2! for
some p > 0. Then because the division is exact, 27 also divides A and we can com-
pute Q = exact_divide(A/2P, B/2P) where B/2P will be odd. Dividing by 2” to ensure
that B/2P is odd is the “least significant bit first” equivalent of normalizing the divisor.
Exact division is very efficient for a number of reasons. First, it can take advantage of
asymptotically fast multiplication. Second, the modular inverse step is faster than Newton
reciprocal computation. Third, there are no correction steps as there are with the prior

division algorithms.

Short Division / Division by Single Word Constants: In short division the divisor B is
only a single word value, i.e., B < f3. If the division is exact, the fastest approach is to use
exact division, with k£ equal to the machine word size. Exact short division is required to

implement Toom-Cook.

17

If the division is not exact, then there are two approaches. If the machine has a fast
division instruction, then the grade school division algorithm will be fast and efficient, and
no correction steps are required. However, some architectures, such as GPUs, do not have
fast division instructions. In this case, it is often faster to compute » = A mod b, followed
by @@ = exact_divide(A — r,by). A fast single word remainder algorithm is given at the

end of Section 2.2.7.

2.2.6 Remainder / Modulo Reduction

The division algorithms of Section 2.2.4 compute both the quotient and the remainder.
However, there are a few applications where just the remainder is required. In most cases,
there is a fixed modulus, M, and repeated computations modulo M are required. This is the
case for modulo exponentiation and computations in a finite field [Fp, where P is a prime

or a prime raised to the k™ power.

Barrett Reduction: The Barrett reduction is due to Paul Barrett [5]. Given a 2n-word
value X, and an n-word value M, where 5/2 < M, _; < (3, find X mod M. Since M
will be used repeatedly, we precompute [such that I - M < 3** < (I + 1) - M. The
precomputation can be done using a Newton iteration as described in Section 2.2.4.

The algorithm computes Q) = || X/f"| - I/5"], then computes R = X — @ - M. This
algorithm can be viewed in terms of fixed point representation, where / has n words of
precision after the decimal point, and is the reciprocal of M. With some careful analysis,
it can be shown that 0 < R < 4M. Thus, at most three correction steps are required to
compute the final remainder.

The Barrett reduction is quite fast in practice because, after the precomputation step,
the algorithm doesn’t require any division instructions, which are quite slow on many ar-
chitectures. Further, the correction steps are outside of the multiplication loops and are

done at most thrice per reduction.

18

Normal Representation Montgomery Representation

____________________________________ -
multiply Convert to Montgomery Space i
1
v i Montgomery
i Product
reduce E
i
 J
1
1
multiply E
! i Montgomery
i Product
1
reduce H
1
A / i
1
1
multiply H
1
v i Montgomery
! Product
reduce E
1
v‘ Convert from Montgomery Space i

Figure 2.2. Computation using Montgomery Representation

Montgomery Reduction: The main idea of a Montgomery reduction is to transform the
input to a different representation (Montgomery Representation), perform the computation
in the new representation and at the end transform the output back to the original FRNS
representation. This process is shown in Figure 2.2, where the dashed lines represent com-
putation in Montgomery representation.

The mapping is straightforward. In the FRNS domain, we have an n-word MP value,
A. In the Montgomery domain, it’s the n-word MP value A - 3" mod M where M is the
common modulus for the reductions. We note that A/ must be odd and less than 5. We

also use the convention that A means the value A mapped to the Montgomery domain.

19

We define two functions, ToMonty;(A) maps values from FRNS representation to

Montgomery representation and FromMonty(A) maps them back. Formally:
A = ToMonty(A) = A - " mod M

and

A = FromMonty (A) = A - 87" mod M

Next, we wish to define the product in the Montgomery domain MontPrody (A4, B)

such that it preserves modular multiplication, i.e.,
MontPrody (A, B) = ToMonty (A - Bmod M)
because A = A- B "mod M and B = B - 3" mod M, we have:

MontPrody (A, B) = ToMonty (A - Bmod M)
= ToMonty(A- 57" B -3 "mod M)
= A-p"-B-B"B"mod M
= A-B-B"mod M

In [83] Montgomery gives two efficient algorithms for computing MontPrody (A, B).
The clever idea behind the Montgomery algorithm is to note that if we can find () such
that A- B + M - Q is exactly divisible by 3" where 0 < @ < /3", then we can define

P = A-BIM-Q and we have:

-
MontPrody(A, B) = A-B-4" (mod M)
= (A-B+M-Q)-™"
= p.gn.p"

= P

and if we assume A < M and B < M, then P = E'E;nM'Q < MZEQH'M < 2M. At ahigh

level, the Montgomery algorithm runs the steps given in Figure 2.3.

20

1. Compute P=A-B

2. Find () such that P + @) - M is evenly divisible by 5"
3. Compute P = (P + M - Q)/B"

4. If P > M then P = P — M (correction step)

5. Return P

Figure 2.3. Montgomery Product Algorithm

Montgomery gives two versions of the algorithm to find (). The first, which we’ll call
the “three-products” approach, precomputes I = (" — (M ~Imod B”). Then

Q=A-B-Imodf"”and P = ‘T'E;nM @ This algorithm does three n-word by n-word

multiplies and can be implemented with asymptotically fast multiplications.
The second algorithm uses a quadratic “word-by-word” approach. It first precomputes
i=p8— (M‘1 modﬁ), then sets Py = A - B and loops for j = 1 to n:

q = Fj_l -1mod 3
pj _ Pii+gqi-M
B
the final result is P = P,,. This algorithm is implemented using an n-word by n-word
multiplication to compute P, and then n? + n word multiplications to reduce it. For very
large n, the three-products approach is faster. For small to moderate size n, the word-by-
word approach is faster.

There are a few implementation tricks. Conversion to and from Montgomery
representation can be implemented by precomputing C' = [*"mod M, then
ToMonty (A) = MontPrody (A, C) and FromMonty(A) = MontPrody (A, 1). The
modular inverse can be computed using the p-adic algorithm from Section 2.2.5.

The correction step is slow and can lead to non-uniform running times (which is a seri-

ous issue in cryptosystems). Several papers explore relaxing the normalization requirement

that X be less than M. In [110] Yanik, Savas and, Kog show that if X is allowed to range

21

+
mn-1qn-1 qun-1
P',Bn Pn Pn-1 Pn2"" Po 0o - 0

Figure 2.4. Product terms in the word-by-word approach to a Montgomery reduction

from 0 to 5™ — 1, then the correction step can be simplified to if P> 5" then P=P—M.
Allowing X to range from 0 to 3" — 1 is sometimes referred to as Almost Montgomery
representation. Orup [87] and later Walter [107] show that if X is allowed to range from
0 to 2M — 1 then the correction step can be removed entirely. Walter also shows that if
X < 2M, then FromMonty (X) < M provided that M < 5™ — 1.

In [74] Koc, Acar, and Kaliski look at five different strategies for ordering the sum-
mation of the terms in the Montgomery word-by-word approach. The terms are shown
in Figure 2.4. The authors call these five strategies: Separated Operand Scanning (SOS),
Coarsely Integrated Operand Scanning (CIOS), Finely Integrated Operand Scanning (FIOS),
Finely Integrated Product Scanning (FIPS) and Coarsely Integrated Hybrid Scanning (CIHS).!
In the separated approach, the product A- B is computed in full and then reduced by adding
M - Q. Shifting off the n zeros is always the last step. In the coarsely integrated approach,
we alternate computing a row or column of the product, A- B, followed by a row or column

of the reduction, M - (). In the finely integrated approach, we alternate, adding a single term

ICIHS is rarely used and we omit it for brevity

22

A-B M-Q

CIOS: P = boA +goM + b1 AB+q MB+---
~ e N —

row row row row

FIOS: P = boag + qomo + boa1 B + qomiB + -+ -+ braoB + qimoB + bra1 2 + qrmi S + -+ 4+ -

finely integrated row finely integrated row

FIPS: P = apbg + qomo + aob18 + gomi 8 + a1boB + gimoef + - -

finely integrated col finely integrated col

Figure 2.5. Summary of SOS, CIOS, FIOS, FIPS

of the product and single term of the reduction. In operand scanning the outermost loop
moves through the words of one of the arguments (usually B) and in product scanning the
outer loop moves through the words of the product. Geometrically, operand scanning goes
across the rows of Figure 2.4 from right to left in top to bottom order, while product scan-
ning goes down the columns from right to left. Figure 2.5 summarizes the computations
for SOS, CIOS, FIOS, and FIPS. The importance of [74] is not so much for its particu-
lar experimental results, but that it raises awareness of the different ways to organize the
Montgomery computation and these will turn out to be very important in GPU implemen-
tations. The best strategy is highly dependent on the features of the underlying hardware,
and performance can vary significantly between strategies.

For moderately large n, Montgomery reductions can be accelerated using Svoboda pre-
conditioning, also known as Montgomery folding. This is well described by Brent and
Zimmermann [16] in their Section 2.4.2. For very large n, Montgomery reductions can be
significantly accelerated using clever FFT multplication tricks as discovered by McLaugh-
lin [88].

The Montgomery reduction is very popular because it is fairly easy to implement and is
quite fast. It doesn’t require any division instructions after the precompute phase and there

is at most one fast correction step per reduction.

23

2.2.7 Special Moduli
There are several special moduli forms that have very fast modulo reduction algorithms.

k> with a bit-wise

The most common example, for a binary FRNS, is to replace “mod 2
logical and with 2¥ — 1. But there are other less well known examples that frequently

appear in multiple precision arithmetic. Here we look at a few of them.

Special Modulus 2% — 1: we split X into k bit chunks, X = (x¢, 21, - ,2,_1) such that
0 < <2%and X = 377 2,2°%. Since 2°* mod (2¥ — 1) = 1, for all i, we can rewrite

the equation as:
Xmod (2" —1) = (zg + 21 + 29 + ... + 2,_1) mod (2" — 1)
Primes of this form are called Mersenne primes.

Special Modulus 2* + 1: again, split X into k bit chunks, X = (zg, 21, -+ ,7,_1). Here

we note 2F mod (2% 4 1) is -1 when i is odd and +1 when i is even. Thus
Xmod (2" +1) = (vg — 21 + 29 — 23+ ...2,_1) mod (2% + 1)

This is used extensively in the Schonhage-Strassen algorithm. Primes of this form are

called Fermat primes.

22k _ 9k 1 1: Here we consider the case where X is exactly 4k bits in

Special Modulus
length, split into 4 chunks of k bits, X = (x¢, z1, Zo, 3). For brevity, let m = 22 —2F 41,

and we note 2%* mod m = —1 and 22* mod m = 2¥ — 1. Thus we can rewrite X as follows:

X 23k 0 + 2% g + 2%y + 1 (mod m)

(—D)as + (28 — 1) wy + 2721 + 20

= 2k(.1'1 —|—1’2> — T3 — T2 + X

It turns out, for k = 32, the number 22¢ — 2% + 1 is prime! Since k = 32, x¢, 71, 72 and x3
are all 32-bit values. Thus we can do extremely efficient computations in the finite field F,

(where p = 264 — 232 1 1) on a 32-bit machine.

24

Generalized Mersenne Moduli: There are many primes of the form 2" +2" +1. These are
referred to as generalized Mersenne primes, and they are frequently used in cryptographic
algorithms. Several standard ones are used by NIST because they have fast modulo opera-

tions and are computationally efficient. See Solinas [95] for a thorough discussion.

Single Word Remainder: Here we wish to compute X mod m, for an n-word dividend
X and a single word modulus m. There are a number of ways to do this. If the machine
has a fast division instruction, then simply use the grade school algorithm, noting that
correction steps are not needed, and keep the final remainder. If division is slow, as is the
case on GPUs, then the following algorithm is efficient. Precompute ¢ = 3? mod m. Next,

while X is 3 or more words in length, run the following steps:

1. Compute ' =z, 1-Cc+ Tp_of + Ty_3
2. IfT > B thensetT =T — 32 + ¢

3. Replace the top 3 words of X with T’

We note that after step 2, 7' < (32, thus each iteration reduces the length of X by one word,
without changing the value of X mod m. After the loop, return X mod m, which is fast to
compute because X is at most 2 words in length. This algorithm has many similiarites to

Svoboda preconditioning, see [98].

2.2.8 Square Root Algorithms

The square root algorithms are quite similar to the division algorithms. There is the
classic O(n?) algorithm, which computes a fixed number of bits of the square root with
each iteration, and is presented below. In addition there is asymptotically faster divide and
conquer algorithm, which is essentially an integer version of a Newton iteration. In the
interest of brevity, we omit the divide and conquer algorithm and refer the interested reader

to Brent and Zimmermann’s [16] Section 1.5.

25

We begin with a 2n-word value, X and we wish to find the n-word square root,
S = |VX|. As with division, square root has a normalization criteria, where we as-
sume that 32" /4 < X < (*". This algorithm is an iterative approach, where each iteration
solves for the next word of the square root. We introduce the following notiation, let X be

the value of the £ most significant words of X, i.e.,
Xi = o018 4 220282+ o+ Ton— 1B + Tani
and likewise, Sy, as the k£ most significant words of \S:
Sk = 8185 + 5, 9B 2+ o 4 Spkr 1B+ Snk

Thus on iteration k, the algorithm has solved Sy = | v/Xoz |-

At each step we define the remainder, R}, to be Xy, — S2, where 0 < R;, < 285,.
The algorithm works as follows, given S, = L\/X_%J , find the next word s < f3 such that
Sip1 = SpB+ s = |v/Xorsz|. We can write Xy, o in terms of Xy, or in terms of Sy
and we have:

Xopro = Xupf2+0C where C < 32
= (Si+Ru)*+C
= SpfP+ RS+ C

~ 2
X2k+2 ~ Sk;+1

Q

SZB% + 28,883 + s*

Thus R, /3% + C ~ 25,53 + s? and a good approximation for s is s* = };T’ff. Further, since

s* < fand R, < 2S5, we have:

o — RS _ |Re/B* 2] _ |Re/B*?]/2
28, 2|Sk/BR Y S

This is very efficient to compute, it’s just a two word numerator divided by a single word

divisor. Empirically, we find that if X is normalized, then s* is never more than 2 correction

steps from s. Since the k' iteration relies on S; and R}, an initial computation is required to

compute S; = | \/Z2n_18 + T2n—2| and Ry = 9,18 + Ta,_o — S. This can be achieved

26

using a floating point square root and appropriate correction steps or a simple binary search

on the bits of the square root.

2.2.9 Modular Exponentiation Algorithms

Modular exponentiation is the process of computing A% mod M where A, and M are
n-bit numbers, and K is a m-bit number. We describe three algorithms: the classic expo-
nentiation by squaring algorithm, fixed window exponentiation and sliding window expo-
nentiation. All three algorithms have the same asymptotic complexity, as each requires m
squaring steps, but the windowed algorithms use fewer multiplication steps and are faster
in practice.

The two windowed algorithms both precompute a table, 7', with 2* window entries,

where w is called the window size. The i entry of the table is initialized with

T[i] = A'mod M.

Exponentiation by Squaring: The exponentiation by squaring algorithm begins by initial-
izing the result, R, to 1 and the current square term, S, to Amod M. It loops through the
bits of the exponent from least significant to most significant. If the bit of the exponent is
set, then it updates R = R-S mod M. The algorithm then updates S = S-S mod M. When
the last bit of the exponent has been processed, the algorithms returns /2. This algorithm

does m squaring steps and on average m /2 multiplication steps.

Fixed Window Exponentiation: This algorithm starts by precomputing the window table,
then breaks K into w-bit chunks, ie., K = (ko ki, - ,kpmjw)-1) Where
K = ZIZ‘O/ wIT g2 and 0 < k; < 2¥. Next, the algorithm sets R to 1 and loops for
i = [m/w] — 1 down to 0, updating R = R*" - T'[k;] mod M. Once the exponent has been
processed, the algorithm returns R. This algorithm runs with roughly 2“~* 4+ m squaring

steps and 2¥~! + m /w multiplication steps.

Sliding Window Exponentiation: The sliding window algorithm is similar to the fixed

window algorithm, in that it processes the exponent from the most significant bit to least

27

significant. However, it uses a slightly different approach. If the next bit of the exponent is
a zero, then the algorithm can immediately square /2 and move on to the next bit, however,
if it’s a one, the algorithm extracts w bits from the exponent, which are used as an index of
T, and updates R = R?" - T'[i]. Once the exponent has been processed, it returns R.

In practice, the algorithm is a bit more complicated to ensure that it doesn’t grab bits
past the end of the exponent. But when implemented carefully, this algorithm does roughly

m squaring steps and 2*~! + m/(w + 1) multiplication steps.

2.3 Parallel Algorithms for Multiple Precision Arithmetic

By and large, parallel multiple precision arithmetic algorithms are just parallel versions
of the sequential algorithms, but here we present a few parallel algorithms that are surpris-
ing and operate in a different way than their sequential counterparts. In these algorithms,
we assume p is the number of processors and that the processors are connected with some
sort of efficient inter-process communication without worrying about the details of the ex-

act mechanism (shared memory, mesh network, packet switched network, shared bus, etc).

2.3.1 Addition and Subtraction / Carry Resolution

Parallel multiple precision addition and subtraction are interesting problems and the
solutions have been well studied in the guise of hardware circuits. Here we wish to com-
pute the sum of two n-word values, S = A £+ B (using two’s complement in the case of
subtraction), where the A and B arguments have been split into p (the number of proces-
sors) pieces of size n/p. We assume that processor ¢ has been assigned A; and B; and is
responsible for computing S; = A; £ B;.

The first step is for all the processors to compute S; in parallel, using the sequential
algorithm, and we note that the sum might carry out, which we store in a separate variable

¢;. To get the final (non-redundant) .S, we need to resolve the carries.

28

There are two common algorithms for resolving carries. The simplest algorithm is
ripple carry resolution, and it works like this: while any ¢; # 0, each processor computes
S; = S; + ¢;—1 and updates their ¢; according to the new carry out. In the average case,
this will resolve the carry in just a few iterations. However, in the worst case, a carry can
ripple from the first processor all the way to the last, and thus the algorithm is O(p — 1).
This algorithm is quite similar to a hardware Ripple Carry Adder.

The second algorithm uses a generate and propagate approach. Set g; = ¢;, set p; to one
if S; = ™? — 1 and zero otherwise. Next, we iterate for k = 1,2,4,8, - -- ,p/2: update
gi = g; V (pi A gi—x) and update p; = p; A p;_x. After the loop, the final step is to set
S; = S; + gi—1. This algorithm runs in O (logp) steps, and is equivalent to a Hierarchial
Carry Look-ahead Adder in hardware.

Finally, we note that if there are £ multiple precision values to be summed, X; + X5 +
--+ + X}, then we need not resolve the carries after each addition. Instead we can accu-
mulate the carries locally and then resolve them all at once after the last addition. In other
words, we leave the sum S in redundant form, and wait to resolve the carries until the
sum is needed in normal form, which is sometimes referred to as lazy carry resolution. In

hardware, it’s called a Carry Save Adder [34].

2.3.2 Multiplication

The multiplication algorithms of Section 2.2.2 are easily parallelized using standard
techniques and there are no special tricks or unique parallel algorithms other than to use
a redundant representation with local carry accumulation (as described above), with a fi-
nal carry resolution step at the end of the multiplication. Several parallel multiplication

implementations are discussed in sections 2.4 and 2.5.

2.3.3 Division
The sequential division algorithms (Section 2.2.4) are much more difficult to paral-

lelize. They all involve an iterative process: compute a portion of the quotient, then con-

29

0449 rem4
713147 Remainder Sequence:
o Rs=3mod7=3
31 R,=31mod7 =3
28 R, =314 mod7 =6
gg R,=3147 mod 7 = 4
6 7
63
4

Figure 2.6. Short Division Example

struct a smaller division problem A’/ B for the remaining quotient bits, which is inherently

sequential. That said, division algorithms are generally constructed out of addition, sub-

traction, and multiplication of MP values. These sub-operations can all be parallelized.
The two special case division algorithms, Exact Division and Short Division, do have

interesting parallel algorithms.

Bidirectional Exact Division: Krandick and Jebelean [76] propose a bidirectional exact
division algorithm. In this approach, two processors work in parallel on an exact divi-
sion instance. One processor finds the lower half of the quotient, (), using Jebelean’s
least significant bit first exact division algorithm (described in Section 2.2.5) and the other
processor uses a most significant bit first algorithm (similar to grade school division, but

computing only a truncated remainder) to find the upper half of the quotient,).

Parallel Short Division: In [101] Takahashi gives a parallel algorithm for short division.
Given an n-word dividend X divided by a single word divisor d < f find an n-word ()
and 7 such that X = d - @ + r. Consider Figure 2.6 which shows an example of a short
division, with n = 4. We begin by assuming that p (the number of processors) is n. Next,
let’s define the remainder sequence as the remainders that you get from doing grade school
division, these are shown in blue on the figure. Takahashi realized that the quotient, g
could be computed from the remainder sequence 7 in a single step as follows:
G = VkHBdJF ka

30

the trick was to find a fast parallel computation for the remainder sequence. Figure 2.6
shows that r;, can be computed from the most significant n — k digits (or words) of X mod

d. Formally:

rL = (leﬁhlﬁ mod d
i=k

and we can write these sums out for our four term example:

ro = (236 4+ 226% + 218 + 20) mod d
i = (238 + 298 + 1) modd
ro = (238 + x2)modd
r3 = xz3modd
These equations have a nice structure and can be computed as follows: set
rr, = xpmodd. Then update r, = (ry415 +) mod d, where over indexing, i.e., ry,
75, etc. is assumed to produce zero. After the update we have:
ro = (18 + xo)modd
r1 = (98 + x1)modd
ry = (308 + x2) modd
rg = xzmodd
then update r, = (74423 +) mod d and we have our desired final result. At each step
double the jump 7y, 1, Thi2, Tkia, - - and double the power, 3, 32, 5%, ---. Thus, this is
an O(logn) algorithm.
Next, we consider the case of n > p. Without loss of generality, let’s assume that n is
an exact multiple of p. We break X into p chunks of n/p words, thus each processor has the
responsibility for n/p words of the remainder sequence 7. Takahashi’s parallel remainder

sequence algorithm is presented in Figure 2.7. As we can see from the algorithm, the local

n/p elements of the remainder sequence are updated log p times. Thus the running time

31

k
m

... get my processor id (0 .. p-1) ...
n/p

// initialize my portion of the r vector
for (i=0; i<m; i++)
r[i] = (X[ksm + i] = beta’i) % d

for(j=1; j<=p; j=2xj) {
if(k + j >= p)
upd = 0;
else
upd = ...get r[m-1] from processor k+j ...

// update my portion of r vector with remainder from processor k+j
upd=upd * beta"(jx(m—1)+1) % d
for (i=0; i<m; i++)

r[i] = (r[i] + updxbeta”i) % d

Figure 2.7. Takahashi’s parallel remainder sequence algorithm

for this algorithm is O ((n/p) log p) which is the overall running time for Takahashi’s short

division algorithm.

2.4 Parallel Multiple Precision Implementations on CPUs

In this section, we cover seven parallel multiple precision arithmetic implementations.
Some implementations are used for specific interesting arithmetic computations; others are
implemented as general studies of multiple precision arithmetic and parallel algorithm scal-
ing. The papers are listed in chronological order with the first five dating from the 1990s.
These papers all implement their own custom inter-process communication schemes and
harken back to an earlier era of experimentation with parallel algorithms and processing,
where algorithms were very much tied to one specific machine. The last two papers, Taka-
hashi’s computation of 7 to 2.577 trillion digits from 2010 and our smallest eigenvalue
paper from 2014, are both more modern, using the MPI and OpenMP standards, and which
should be easily portable to a wide range of HPC cluster machines.

In [108] Weber implements addition, subtraction, and parallel multipication and tests
the implementations on two shared memory machines, an 8 processor Encore Multimax
and a 26 processor Sequent Balance. Weber starts with a Fortran multiple precision package

written by David Bailey, but modifies the multiplication algorithm to use a parallel FFT

32

implementation based on double precision floating point numbers with 16-bit FFT samples.
Weber uses his routines to prove that the 15" Fermat number, Fy5 = 22~ + 1, has at least
4 prime factors. One thing to note: Weber does not discuss the potential for round-off
error in the floating point computations to impact the multiplication results, which could be
because the numbers he’s multiplying are relatively small (roughly 10,000 decimal digits
in length).

In [44] Fagin implements large integer multiplication on a 32K Connection Machine,
using FFT multiplication in the ring modulo 922" 1 1, where the choise of b depends on the
size of the numbers being multiplied. This is the same FFT technique as the Schonhage-
Strassen algorithm, except that it uses a quadratic grade-school algorithm to do the component-
wise multiplications required for the FFT convolution, whereas Schonhage-Strassen uses
recursive calls to itself for the multiplications. Fagin uses his code to multiply numbers that
range in size from 2K-bits to 8M-bits with corresponding running times from 50 millisec-
onds to 2000 milliseconds.

In [19] Char, Johnson, Saunder, and Wick (CJSW) implement addition, subtraction,
and parallel multiplication on a network of 27 Sun IPC workstations. Addition and sub-
traction are fast operations and are handled locally using the sequential algorithms. For
multiplication, if both multiplicands are less than 6000 decimal digits, they run the sequen-
tial grade school algorithm locally. If not, they use a parallel version of Karatsuba. They
have a couple of schemes that they evaluate, but essentially, they all work as follows. The
system runs a shared work queue, where tasks can be queued. Each of the 27 workstations
then runs a worker process, which gets assigned tasks to exectue. The Karatsuba multiplier
queues four tasks: three sub-products (that would normally be handled with recursion) and
a merge task that can only be run after the three sub-products are complete. The result of
the Karatsuba multiplication is the result of the merge task. CJSW use their routines to
compute V/2 out to 1,000,000 decimal places, and achieve a speed up of about 15x over the

computation on a single workstation.

33

In [18] Cesari and Maeder implement Karatsuba multiplication on an Intel Paragon with
96 processors. They explore several strategies, the two fastest are covered here. The first
has a master process that forks 3¢ — 1 slave processes, where d is the depth. The master
process walks the Karatsuba recursion tree to a depth of d and for each leaf kicks off a
multiplication on one of the slave processes, except for the last leaf which is run locally.
Once the slave processes have completed their computation (using recursive Karatsuba)
and forwarded their results to the master process, the master process walks back up its
Karatsuba recursion tree and generates a final result. The second strategy uses a fork/join
approach where two processes are forked to compute two sub-products and the third sub-
product is computed locally. When a certain cut-off criterion is reached, the algorithm
switches from forking to local recursion for the sub-products. Cesari and Maeder test the
performance of their approach on numbers sized from 2'° words to 22° words.

In [66] Jebelean implements multiple precision parallel multiplication and division on
an 18 processor shared memory Sequent Symmetry system. There are three implemen-
tations of the multiplication routine. The first implementation is a quadratic grade school
multiplier. The second is based on Karatsuba and uses three recursive calls to the multiplier
to compute the half sized products. The third implementation is also based on Karatsuba,
but instead of doing three recursive calls, it forks two processes to compute two of the
sub-products, and the third is computed in the local process using a recursive call to the
multiplier. Jebelean explores two heuristics for choosing which implementation to call. In
the first heuristic, the forking Karatsuba multiplier is used for the first two levels of Karat-
suba and all the other levels use recursion. In the second heuristic, the forking Karatsuba
multiplier is called if the arguments are more than 24 words long, the recursive multiplier
is called if the arguments are between 6 and 24 words in length, and anything less than 6
uses the quadratic multiplier. Jebelean implements division using a recursive divide and
conquer algorithm (a forerunner to Burnikel-Ziegler algorithm of Section 2.2.4). The di-

vision algorithm is sequential, but whenever it requires multiplication, it uses the parallel

34

multiplier. Jebelean tests his multiplication routine with numbers from 10 to 500 words in
length. At 30 words, he finds a speedup of 3x compared to the single processor version and
at 500 words the speedup is 8x. For similar sized divisors, the speedup ranges from 1.1x to
3.4x.

In [102] Takahashi implements five basic arithmetic operations (addition, subtraction,
multiplication, division, and square root) for a cluster using Fortran, OpenMP, and MPI to
compute 7 to 2.5 trillion decimal places. He uses two different algorithms to compute 7 and
compares the results to ensure there were no errors in the computations. Takahashi uses an
FRNS, but instead of the standard 3 = 232, uses a base 10 system with 3 = 108. Addition
and subtraction are done in parallel with local carry/borrow accumulation. The carries are
then resolved using a ripple approach. Takahashi notes that since the digits of 7 are essen-
tially random, it never takes more than a few steps to resolve the carries. Multiplication is
implemented using FFTs on a double precision floating point “balanced representation” of
R to minimize errors (see Crandall and Fagin [29] for details). Takahashi puts 4 decimal
digits in each FFT sample and has a maximum FFT size of 3 - 52 - 233, allowing him to
represent products up to 2.577 trillion decimal digits in length. Division and square root
are implemented using Newton iterations and take advantage of the Karp and Markstein
trick [70]. The Newton iteration is just a sequence of multiple precision adds, subtracts,
and multiplies, and these are all done using the parallel primitives. Takahashi runs his al-
gorithms on a 640 node Appro Xtreme-X3 machine, which completes the calculation and
verification in 73 hours and 36 minutes elapsed time.

In [36] we report on a parallel algorithm for finding the smallest eigenvalue of a fam-
ily of extremely ill-conditioned Hankel matrices, where the condition number grows much
faster than N~ where N is the size of the matrix. Because the matrix is so ill-conditioned,
the computations must be performed using arbitrary precision integer fixed point arith-
metic. We explore four different algorithms for the eigensolver (Lanczos, Householder,

the Jacobi Method, and a direct secant method on the characteristic polynomial). We find

35

that the direct secant method is by far the fastest, but it finds only the smallest eigenvalue,
whereas other approaches, in particular the Jacobi method (which was second fastest), find
all the eigenvalues. For this problem, we are interested in only the smallest eigenvalue and
we built a parallel version of the secant algorithm using GMP for the arbitrary precision
arithmetic, and OpenMP and MPI to distribute columns of the matrix across a cluster of
machines. The matrices have a parameter, /3, which along with NV, the matrix size, deter-
mine the exact matrix elements. Our biggest run was for 5 = 7/4 and a 2500 by 2500
matrix. We used 12K bits of precision for the secant algorithm. The computation ran for
7 hours and 33 minutes on a 440-core Intel 3255 cluster and achieved a utilization (total

GMP compute time/total wall time) of 95%.

2.5 GPU Implementations

Papers concerning multiple precision arithmetic papers for GPUs generally fall into
two categories. In the first, there have been many papers dedicated to accelerating crypto-
graphic primitives. Small size arguments, up to 500 bits or so, are useful for implement-
ing elliptic curve cryptography. Sizes from 512-bits to 4096-bits are useful for RSA and
Diffie-Hellman key exchange. The second category of papers concerns building multiple
precision arithmetic libraries for acceleration of general computation, such as experimental
mathematics and number theory.

The remainder of this section on GPU implementations is organized as follows. In
Section 2.5.1 we provide some background on multiple precision arithmetic as used in
cryptographic operations. We do not attempt to explain the algorithms, as that’s beyond
the scope of this dissertaion, but we refer the interested reader to two textbooks, Applied
Cryptography by Bruce Schneier [93] and An Introduction to Mathematical Cryptography
by Hoffstein, Pipher, and Silverman [60]. Section 2.5.2 covers the early efforts, prior
to 2012, to implement multiple precision cryptographic operations on GPUs, where the

papers are reviewed in chronological order. Section 2.5.3 covers the later efforts, from

36

2012 on, which in some cases partially overlap with the work in this dissertation. Section
2.5.4 covers the papers on GPU implementations of multiple precision libraries for general
computation.

As a final note, elliptic curves can be defined over a prime finite field which can be
implemented with MP arithmetic as covered here. They can also be defined over finite
fields of the form p™ for prime p and n > 1. These are implemented with polynomial

arithmetic and we refer the interested reader to the following GPU papers: [9, 35, 22, 7].

2.5.1 Cryptographic Operations Requiring Multiple Precision Arithmetic

In this section we review some cryptographic operations that have compute-heavy mul-
tiple precision arithmetic at their core. These include key exchange and digital signature
algorithms such as RSA [91], Diffie-Hellman (DH) [32], Kravitz’s DSA algorithm [77],
and elliptic curve (EC) algorithms such as ECDH [79] and ECDSA [67].

The math underpinning these algorithms is very involved, especially for the elliptic
curve cryptography (ECC) algorithms. What’s important for our purposes is to understand
just the computational cost of the MP operation being performed at the heart of each of
these algorithms, as summarized in Table 2.1. We note that some of these algorithms

involve additional work, such as generating large random numbers, computing hash func-

Algorithm On Server On Client typical sizes

k-bit RSA key exchange XPmod M XFmod M k is typically 1024-4096 bits

X, D, and M are k-bits in length
E is typically 16-bits in length

DSA (k-bit RSA sign) XPmod M same as above
DSA (k-bit RSA verify) X¥ mod M same as above
k-bit DH key exchange X4 mod P XPmod P k is typically 2048-4096

X, A, B are k-bits in length

P is prime and k-bits in length
k-bit ECDH 2x ECPM: N - P | 2x ECPM: N - P | kis typically 256-521 bits in length
N is typically a k-bit number

P is an EC point

k-bit ECDSA (sign) ECPM: N - P same as above

k-bit ECDSA (verify) 2x ECPM: N - P | same as above

Table 2.1. Dominant computations at the heart of important cryptography algorithms

37

tions, and in some cases additional multiple precision operations inside a k-bit finite field,
but these are generally much less time consuming than the dominant operation.

For RSA, DSA, and DH, the computation is a modular exponentiation, with the mod-
ulus M = P - @, where P and () are prime and k/2-bits in length. On the server, the
factorization of M is known (it’s related to the private key), and therefore X” mod M can
be computed using the Chinese Remainder theorem with X” mod P and X mod Q, in
roughly 1/4 the time. This is known as the CRT trick and is due to Quisquater and Cou-
vreur [90].

For ECDH and ECDSA, the core operation is an elliptic curve scalar point multiplica-
tion (ECPM). At a very high level, we can define an elliptic curve E as a set points, (X, Y),
where Y2 = X3 4+ a- X + b (mod M) for a set of parameters (a, b, M) where a and b are
typically small constants and M is a k-bit prime.? It turns out that £ (with the inclusion
of a zero point) forms a finite Abelian group, where the group operator is point addition.
That is to say, that if we have two points, P; and P in E, then P, + P, will also be in £
and there is an algorithm to perform point addition (a black box for now). Further, if P
is in E, there will exist a point —P in £ such that P + (—P) = 0. In essence, £ (which
is defined by parameters a, b, M) forms a number system in which we can do interesting
computations.

Since we have point addition, we can also define scalar multiplication (ECPM): N- P =
P+ P+ ...+ P, where the sum has N copies of P. The naive algorithm to compute N - P
is set 7' = 0 and repeat N times: 7" = T' + P, which runs in O(N) steps, but we can do
better. We note that if N = 27, then we can compute N - P by setting 7' = P and repeating
j times: T' = T'+T. This algorithm runs in j steps rather than 27 steps. Since any NN can be
decomposed into a sum of powers of two, N - P can be calculated by computing the powers

of two and adding to the total if the corresponding bit of N is set, which runs in O(log N),

There is another case where M can be of the form p™ for prime p. These are Galois fields, GF(p™), which
require polynomial arithmetic.

38

i.e., O(k) steps. This is called the double and add algorithm and it is the exact analogue
of the exponentiation by squaring algorithm of Section 2.2.9, where squaring replaces dou-
bling and multiplication replaces addition. Likewise, the fixed window exponentiation and
sliding window exponentiation algorithms also have exact analogues in ECPM.

The running time of ECPM using the double and add algorithm is £ calls to point double
and on average k /2 calls to point addition. Returning to the black box for point addition and
point doubling, the details of these algorithms are presented in [60], but for our purproses,
we just need to know how many MP operations are needed. It turns out point addition and
point doubling do all of their computing in the finite field Fy;, where M is one of the curve
parameters and is k£ bits in length. Table 2.2 gives the MP operation counts for various
EC operations. Note, the fixed window algorithm can be faster than the double and add

algorithm, but it involves computing 2* modular inverses in Fy; where w is the window

size.
Operation Computations in the finite field Fyy
k-bit point doubling 7 modular multiplications
5 modular squares
k-bit point addition 9 modular multiplications

2 modular squares

k-bit point multiplication | 11.5 k modular multiplications
double and add algorithm | 6 k modular squares

1 modular inverse

Table 2.2. Operations in the finite field Fy; EC point doubling, addition, and scalar multi-
plication

As a final note, since M is a fixed curve parameter, it can be chosen to have a special
form where the modulo operation can be much faster than general division (see Section
2.2.7 on Special Moduli). Picking the right M can greatly improve the performance of
ECC. This is why NIST publishes several standard curves, with preselected special moduli.

In the event that M is not a special modulus, computations in the finite field Fy; can

still be done efficiently using a Montgomery representation.

39

2.5.2 GPU Based Asymmetric Cryptography, Early Papers

The GPGPU computing era was kicked off in the early 2000s. By this time it was clear
that GPUs were improving in performance at a rate much faster than CPUs and that GPUs
could be used for tasks other than graphics, in particular, scientific computing. At the
same time, the importance of the internet and secure web browsing through HTTPS/TLS
and public key infrastructure (PKI) had been well established. So an obvious application
for GPUs was to offload the computationally heavy MP arithmetic operations required to
support HTTPS/PKI.

Here we review the papers covering these early attempts. We note that the GPU is
inherently a batched device. So all of the papers run batches of cryptography operations
in each kernel. Some of the papers assign a problem instance to each thread, others use
groups of threads in a warp or block to handle problem instances.

In [84] Moss, Page, and Smart report on one of the first efforts to use GPUs for multiple
precision arithmetic. They use an RNS to implement 1024-bit modular exponentiation on
an NVIDIA 7800 GTX GPU, using OpenGL and GLSL (the shader language). They chose
an RNS over an FRNS so they could avoid resolving carries across GPU threads, or in
this case, pixels. They use a Cox-Rower architecture for Montgomery multiplication and
Szabo-Tanaka for base extension (see [72] and [99] for details). Moss, Page, and Smart
explore 5 different schemes for the moduli. The first scheme uses a 12-bit prime modulus
per word, stored as a single precision floating point value, and 88 words to represent a 1024
bit value. The idea is that two 12-bit (integer) values can be multiplied without overflowing
a single precision floating point value, and GLSL has a fast floating point mod function
which makes the computation on the RNS components fast. The other schemes use 24
bits per word (either a single 24-bit modulus, or two 12-bit moduli packed together) and
44 words per 1024 bit value. In essense, their approach spreads a 1024-bit modular expo-
nentiation across either 44 or 88 computing elements. The throughput results range from

46 modular exponentiations per second (12-bits per word) to 175 modular exponentiations

40

per second for their best tuned 24-bits per word implementation. Unfortunately, they only
achieve these throughputs for batch sizes over 1000, with a corresponding latency of over
5 seconds. The high latency makes the approach impractical for HTTPS acceleration.

In [47] Fleissner implements a 192-bit modular exponentiation routine using Mont-
gomery products and an FRNS with 3 = 224, Each multiple precision value consists of 8
single precision floating point numbers, each of which contains a 24-bit integer, stored in
texture memory. It’s not entirely clear from the paper how Fleissner computes the required
24-bit full products, but it appears that the 24-bit values are sampled into bytes and the
computations are done on bytes, and finally the results are packed back into 24-bit floats
and stored in the output. In contrast to Moss et al., Fleissner uses a single computing ele-
ment per 192-bit modular exponentiation. To test the performance, Fleissner runs batches
of 100K 192-bit modular exponentiations on three NVIDIA GPUs: a GeForce 6500, a
GeForce FX 5900 Ultra, and a 7800 GTX and compares the results to the same compu-
tation on the host computers, running on Intel Pentium 4 processors. Fleissner reports a
speedup of 136x to 169x. Unfortunately, Fleissner does not report the GPU running times,
only the speedups compared to the CPU, so it’s difficult to compare this result to others.
Also, we note that 192-bit modular exponentiation is not particularly useful.

In [100] Szerwinski and Giineysu implement three sets of algorithms. The first set per-
forms 1024-bit and 2048-bit modular exponentiation using an FRNS with 3 = 232 and
Montgomery products using the CIOS approach (see Section 2.2.6) with an exponentiation
instance per thread. The second set also performs 1024-bit and 2048-bit modular expo-
nentiation using a warp parallel RNS approach (an exponentiation instance per warp) with
32-bit moduli. They use a Cox-Rower architecture for the Montgomery multiplication and
explore several different base extension algorithms. The third set is for elliptic curve cryp-
tography and implements 224-bit ECMP using NIST’s P-224 curve (P-224 is a generalized
Mersenne prime with a fast modulo operation). Szerwinski and Giineysu implement their

algorithms using CUDA and run their experiments on an NVIDIA 8800 GTS GPU. They

41

achieve a performance of 813 1024-bit modular exponentiations per second using the CIOS
approach and 439 using the RNS approach. The 2048-bit results are roughly 8x slower than
the 1024-bit. For 224-bit EC routines, they achieve 1412 ECMP operations per second.
Harrison and Waldron’s paper [55] focuses on RSA-1024 decryption using two 512-
bit modular exponentiations and the CRT trick. They test three implementations, two are
based on an FRNS with 3 = 232 and Montgomery reductions. The third uses an RNS
approach. The first implementation runs a 512-bit modular exponentiation in each thread,
but it does so using the three-products approach to Montgomery reductions, where each
product runs a 16-word by 16-word multiplication. The second implementation does the
same computation, but uses 16 threads working together for each instance. The threads
each take one row of the multiplication and then they run a parallel reduction to sum the
rows. The third approach they implement uses a parallel RNS. They explore six different
schemes for the moduli that range from 12 to 32 bits in length. Their experiments on an
NVIDIA 8800GTX GPU show that the instance per thread implementation achieves the
highest throughput at 5536 1024-bit RSA decrypts/second, but also the highest latency. Of
the parallel approaches, the best of the RNS schemes outperforms the parallel Montgomery
by about 4 to 1, which is most likely due to the poor design of the parallel reductions. There
are much faster approaches, as we’ll see in Jang et al.’s work. One important contribution
of this paper is the observation that a good implementation should use a parallel approach
when the batch size is small (more overhead, but lower latency) and switch to an instance
per thread approach when the batch size is large (higher latency, but higher throughput).
In [10] Bernstein et al. implement a modular multiplication routine on a GTX 295.
They give performance numbers for 210-bit modular multiplication but their code supports
a range from 160 to 320 bits. The paper doesn’t give too many details about exactly how
their GPU algorithm is implemented, but we can read between the lines. For the 210-bit
result they use an FRNS with 15 limbs (i.e., n = 15) of 14-bits per limb (i.e., 3 = 2'4)

and assign a 210-bit modular multiplication instance to each thread. Although the paper

42

doesn’t say it explicitly, we assume they keep two or three 210-bit numbers in registers
in each thread. Then they take advantage of the fact that a GTX 295 has a multiply-and-
accumulate instruction that multiplies two 24-bit arguments, computes a 48-bit product,
then adds a third 32-bit argument and stores the lower 32-bit of the result into a destination
register. This instruction can be dispatched in a single cycle. Consider Figure 2.1 from
Section 2.2.2. Using the multiply-and-accumulate instruction, Bernstein et al. can sum
down the column (which has at most 15 product terms) into a 32-bit accumulator knowing
that the sum cannot overflow because 15 - 24 . 24 + ¢, < 232 where ¢;, is the carry
from the previous column and is less than 2!8. With enough values stored in registers and
complete unrolling of the loops, a 210-bit times 210-bit multiplication can be handled in
something like 285 device instructions (225 for the multiply and accumulate instructions
and approximately 60 instructions to handle initialization and column post processing).
Using this technique, Bernstein et al. are able to achieve a massive 481 million 210-bit
modular multiplications per second on a GTX 295. The authors also report a rate of 4928
ECMP operations per second but these are for special Edward’s curves and a much longer,
11797-bit scalar suitable for elliptic curve method (ECM) factoring.

In [52] Giorgi, Izard, and Tisserand build a GPU library for computing A + B mod P
and A - Bmod P for A, B and P in the range of 160 to 600 bits, assigning an instance
per thread. These computations are suitable for implementing elliptic curve cryptography.
They use an FRNS representation with Montgomery products and an FIOS approach. They
explore two limb sizes, 3 = 26 and 3 = 232 and a variety of strategies to locate tempo-
rary variables in registers, local memory, and shared memory. Giorgi, Izard, and Tisserand
also implement EC point addition, EC point doubling and ECMP routines, using Mont-
gomery representation for the finite field computations. One important contribution is that
they identfy register pressure and the compiler’s poor register management as one of the
key issues affecting performance. They run their experiments on a 9800GX?2 and achieve

throughputs of 45.5 million 160-bit modmuls/sec, 30.3 million 192-bit modmuls/sec, 18.2

43

million 224-bit modmuls/sec and 12.3 million 256-bit modmuls/sec and achieve a through-
put of 1972 ECMP operations/sec. Bernstein et al.’s results in [10] are roughly 20 to 25
times faster, but this is offset a bit by the fact that the GTX 295 has approximately two to
six times the performance of a 9800GX?2, depending on the exact code.

In [1] Antdo, Bajard, and Sousa implement ECMP based on an RNS for a 224-bit
underlying finite field. ECMP requires implementing A+ B mod P and A- B mod P where
A, B, and P are 224-bit numbers. They use a Cox-Rower architecture for Montgomery
multiplication and use a CRT based approach to base extension. Antdo, Bajard, and Sousa
test their algorithms on a GTX 285 and achieve a throughput of 9990 ECMP operations
per second. Unfortunately they do not provide their modular multiplication throughput.
However, Giorgi, [zard, and Tisserand [52] found that 224-bit ECMP was about 9200 times
slower than 224-bit modular multiplication. If we use that as a yardstick, we can estimate
that their performance is probably in the neighborhood of 92 million mod mul operations
per second. Even accounting for the differences in cards and sizes, this is significantly
slower than Bernstein et al.’s result.

In [86] Neves and Araujo implement 512-bit modular exponentiation using a thread per
instance. They use an FRNS representation with 5 = 232 and Montgomery reductions.
They implement and test three variants: CIOS, FIOS, and FIPS. They apply four optimiza-
tion techniques to maximize throughput: 1) try to keep as much of the computation in
registers as possible; 2) extensive use of CUDA PTX assembly; 3) they use school fast-
squaring (grade school) to reduce the number of multiplications; and 4) extensive use of
hand unrolled loops.*> Neves and Aurajo test their implementation on a GTX 260 GPU and
find that the FIOS method is fastest and achieves a throughput of 41.4K 512-bit modular
exponentiations per second. Neves and Araujo also estimate a performance of 26M 512-bit

modmuls per second. It’s not clear if these are all modular multiplications or some com-

3The Open64 compiler did not allow inline PTX inside a loop, so the loops had to be unrolled by hand.

44

bination of modular multiplications and modular squares. Adjusting for card and size, this
is probably in the neighborhood of 386 million 210-bit modular multiplications per second
on a GTX 295, while slower than Bernstein et al.’s result they are at least in the ballpark.
In [64] Jang et al. implement four sizes of RSA decryption (512-bits, 1024-bits, 2048-
bits, 4096-bits). They use the CRT trick, and run two half sized modular exponentiations,
1.e., 256-bits, 512-bits, 1024-bits, 2048-bits respectively. They explore two parallel ap-
proaches, an RNS and an FRNS both using Montgomery multiplications. They found that
the RNS implementation was always significantly slower, even with extensive optimiza-
tions. For their FRNS implementation they use 3 = 25* and parallelize the computation
across a warp. For the small sized modular exponentiations (256-bits to 1024-bits), they
pack multiple mod exp instances into each warp and they use an FIOS approach to comput-
ing the product. Carries are accumulated locally and after each Montgomery multiplica-
tion, they run a ripple carry resolution across the threads responsible for an instance. Jang
et al. test their implementation on a GTX 580 and report decrypt performance of 322K/sec
for RSA-512, 74.7K/sec for RSA-1024, 12.0K/sec for RSA-2048 and 1.66K/sec for RSA-
4096. Comparing this work to Bernstein et al., we find that the 322K RSA-512 decrypts/sec
requires a throughput of 199.6 million 256-bit modular multiplications per second. Scaling
this to a GTX 295 by number of cores, clock rates, and <%) ’ to adjust for size, gives 223
million 210-bit modular multiplications per second. This is clearly slower than Bernstein
et al. without even considering the fact that the GTX 580 has a more powerful multiplier.
Comparing to Neves and Araujo’s result, 74.7K RSA-1024 decrypts/sec requires 149.4K
512-bit mod exps/sec. Scaling this to a GTX 260 by number of cores and clock rate gives
47K 512-bit mod exps/sec. This is slightly faster than Neves and Araujo’s result, but it’s
worth noting that a GTX 580 has more than twice the throughput per core per clock than
a GTX 260 running 32-bit full multiplications. There are two likely explanations for the
performance gaps. First, even though this approach maps well to parallel processing of

a warp, there is still some overhead in inter-thread communication and carry resolution

45

that is not required in the instance-per-thread model. Second, there is no efficient way to
implement warp parallel fast-squaring because the algorithm is irregular and some threads
would have to do more processing than others. Since the majority of operations to do

modular exponentiation are squares, this has a big impact on final performance.

2.5.3 GPU Based Asymmetric Cryptography, Recent Papers

In [57] Henry and Goldberg look at a different facet of the cryptography space: code
breaking. They use the Pollard Rho algorithm to solve the discrete logarithm problem in a
cyclic group modulo M with a smooth totient. In particular, they show that they can solve
a discrete logarithm problem for a 1536-bit RSA in less than 2 minutes on a system with
two M2050 GPUs, provided P — 1 and () — 1 are 2°° — smooth, which is to say P — 1
and @ — 1 have no factors greater than 2°°. These are particularly weak RSA keys that
would not be used in practice by a good RSA implementation. It turns out the heart of
their code breaking routine is high performance modular multiplication, implemented with
an FRNS with 8 = 232 and Montgomery reductions. They assign an instance per thread
and use Kog et al.’s CIOS approach. Henry and Goldberg implement their code using PTX
assembly and take advantage of features such as the carry flag and the 32-bit multiply
and accumulate instruction. To get around the compiler issues, Henry and Goldberg wrote
Perl scripts to unroll loops containing PTX inlines. Henry and Goldberg report modmul
throughputs of 840M/sec at 192 bits, S05M/sec at 256 bits, 137M/sec at 512 bits, S2M/sec
at 768 bits, and 11.1M/sec at 1024 bits on a Tesla M2050 graphics card. They state that
the GPU cores are clocked at 1.55 GHz, but we believe that’s an error in their paper. The
M2050 memory is clocked 1.55 GHz, but the cores are clocked at 1.15 GHz. If we scale
the 192 bit result to a GTX 295 for number of cores, clock rate and size, we get a result of
812M 210-bit modmuls per second. If we take into consideration that an M2050 has twice
the 32-bit full multiplication throughput on a per core per clock basis, then we see these

results are only a bit slower than Bernstein et al.’s.

46

In [15] Bos investigates ECMP on a GTX 295 and a GTX 580 using the NIST P224

= 2224 _ 929 4 1 which has a fast modulo reduction. The author has two

curve, where P
concerns in his paper, throughput and latency and he tries to balance them. The approach
with the highest throughput would be to assign an ECMP operation to each thread, but this
would also have very high latency. Earlier, in Jang, et al., the approach was to take a sin-
gle MP value and spread it across multiple threads. In this paper, the author uses a novel
scheme to parallelize the computation at a less granular level. What he does is organize
the field finite operations of point addition into a complex workflow (rather like a dataflow
machine) and then use 7 threads to process the workflow in parallel. The parallelization
isn’t perfect, and there are a number of gaps where threads are idle, but it’s an intruiging
approach. One advantage of this approach is that there are no carry resolution issues as
there are in Jang et al.’s work. Bos runs his codes on several GPUs, and achieves a perfor-
mance of 79K ECMP operations/sec on a GTX 295 and 290K ECMP operations/sec on a
GTX 580. These are very fast results compared to Giorgi et al. [52] and Antdo et al. [1],
but still not as good as Bernstein et al., who achieved a scaled throughput of somewhere in
the neighborhood of 250K ECMP operations/sec on a GTX 295.

Leboeuf, Muscedere, and Ahmadi published one paper in 2012 [80] and a follow on
paper in 2013 [81]. The first paper deals with high speed computations of A - B mod P,
where P is a NIST defined prime with size 192, 224, 256, or 384 bits. These four primes
all have fast modulo operations. The second paper uses generic primes which range in
size from 112 to 521 bits. Both papers use an FRNS with § = 232 with grade school
multiplication. The former uses custom fast modulo routines to reduce the product. The
latter uses Montgomery reductions with a CIOS design and surprisingly outperforms the
fast modulo routines. Leboeuf, Muscedere, and Ahmadi are the first (in the context of MP
arithmetic) to explicitly discuss one of the major flaws of the compiler. When we write MP
arithmetic code in CUDA C, the compiler generates PTX using a static single assignment

form. Then the PTX code gets assembled to device code using far more registers than

47

strictly required. The excess register usage severely impacts performance of the device
code. They work around this by implementing a C-based code generator for their modular
multiplication routine, which allows them to generate the entire kernel in PTX with all
loops entirely unrolled. They have also carefully thought through their storage design,
keeping A entirely in registers, B in global memory, P in constant memory, and n words
of the product in registers. They also take advantage of the full 32-bit multiplier, using the
multiply and accumulate with carry in and carry out instruction. The authors then test their
results on a GTX 480 and report the following performance (mod mul/sec): 1563M at 192
bits, 1282M at 224 bits, 1031M at 256 bits, and 294M at 512 bits. This is a well thought
out approach and has higher performance than any previous paper. However, there are two
minor caveats. First, the prime P must be constant as it gets generated into the PTX code,
which would be unsuitable for RSA. Second, the paper implements only multiplication and
they did not consider fast-squaring.

In [113] Zheng et al., implement a 256-bit modular multiplication routine to compute
A-Bmod P for a fixed P = 226 — 2224 _ 29 4 964 _ 1 This prime is used in the Chinese
public key ECC algorithm SM2. The authors use an FRNS with § = 232 and a grade
school multiplication algorithm that computes the product by going across the rows rather
than down the columns. Once they have the product, they reduce it using a fast reduction
algorithm based on P. In addition to multiplication, the authors introduce a novel row
oriented algorithm for fast-squaring that requires significantly fewer add steps. It’s clear
from the paper that the authors are are using inlined PTX, because their algorithms are
described in terms of “madc.cc.lo” and “madc.cc.hi”, which are PTX instructions. But
they don’t discuss code generation or unrolling loops by hand. At some point between
2012 and 2014, NVIDIA updated the compiler to allow PTX inlines within unrolled loops.
So it’s possible that this paper uses straight CUDA C with no code generation. Another
novel contribution of this paper is they introduce a utilization metric. They measure the

number of 32-bit multiplications per second their code runs and divide the clock rate times

48

the number of multipliers on the chip, which gives them a utilization rate. They run their
code on a GTX Titan, and achieve excellent results. At 256-bits, they report throughputs
of 3.412B mults/sec, 3.384B mod muls/sec, 6.001B squares/sec and 5.993B mod sqrs/sec.
They also report 392K ECMP operations per second and a utilization of 96%. Adjusting for
clock rate and card, we see that this performance would correspond to somewhere around
1288M 256-bit mod mults (with a generic P) on a GTX 480. This is roughly 20% faster
than the results of Leboeuf, Muscedere, and Ahmadi. Perhaps some of this discrepancy can
be explained by clock boost and better overlap of instructions on the GTX Titan.

In [112] Zheng et al., implement a 2048-bit RSA implementation using two 1024-bit
modular exponentiations and the CRT trick. They implement modular exponentiation with
an FRNS and an unusual 3 of 223 and 45 limbs per MP value. They use a Montgomery rep-
resentation and a column oriented approach to sum up the product terms and Montgomery
reduction terms. Since they are using 45 limbs of 23-bits, the maximum sum in any column
will be 90 - 223 . 223, It’s 90 because 45 are from computing A limbs times B limbs and
45 are from computing M limbs times () limbs (as required for a Montgomery reduction).
Note, this maximum sum is less than 2°3, which allows the authors to do all of their limb
computations using double precision floating point. They don’t have to worry that round
off will poison the result because the mantissa is 53 bits in length (52 bits plus an implicit
one). Unfortunately, the approach would require too many registers to use a thread per in-
stance. So the authors employ a parallel technique, similar to Jang et al.’s, and divide a mod
exp across 4, 8, or 16 threads. They then test their implementation on GTX Titan (which
is one of the few GTX cards with high double precision floating performance) and achieve
an RSA-2048 throughput of 39.0K decrypts/sec with 4 threads per mod exp, 36.3K with 8
threads per mod exp, and 27.5K with 16 threads per mod exp. Unlike their previous paper,
the authors do not compute a utilization. It’s also unclear if they could have achieved better

performance in the integer domain.

49

In [33] Dong, Zheng, et al. improve upon their earlier work [112] and again use double
precision floating point arithmetic to implement RSA-2048, RSA-3072 and RSA-4096. For
RSA-2048 they use 23 bit samples, and for RSA-3072 and RSA-4096 they use 22 bit sam-
ples. Their new code achieves a throughput of 42.2K RSA-2048 decrypts/sec, 12.2K RSA-
3072 decrypts/sec and 5.8K RSA-4096 decrypts/sec. The RSA-4096 result is noteworthy,
when scaled for the differences in cards, it has the highest throughput of any RSA-4096

implementation published to date.

2.5.4 GPU Based Multiple Precision Libraries

In [111] Zhao and Chu implement a wide range of operators (comparison, addition,
modular addition, subtraction, modular subtraction, multiplication, modular multiplication,
division, and modular exponentiation) with precisions of 256 bits, 512 bits, 1024 bits, and
2048 bits in a library called GPUMP. They run their algorithms on a GTX 280 and report the
results for various operations and sizes. Zhao and Chu have not done a careful study: there
are many problems with the data and limited analysis. For example, in Figure 3, they report
3.8 million 512-bit multiplications per second, in Figure 7, they report 18 million 512-bit
modular multiplications per second (modular multiplications should be slower than regular
multiplications). Then in Figure 9 they report 8500 256-bit modular exponentiations per
second. If the 18 million number were right, this should be somewhere in the neighborhood
of 240K 256-bit modular exponentiations per second. Even if the data is interpreted in the
most optimistic light, Neves and Araujo’s and Bernstein et al.’s results are much faster on
similar hardware.

In [103] Thall investigates implementing 64-bit floating point and 128-bit floating point
operations represented as a sequence of native 32-bit floating point values. His library
supports addition, subtraction, multiplication, division, square root, and comparison. There
are three major limitations of the library: it doesn’t scale past 128 bits, performance is quite

limited, and it predates CUDA (it is written using Cg-based shader code).

50

In [82] Lu, He, and Luo port David Bailey’s QD and ARPREC libraries to the GPU,
calling them GQD and GARPREC. The GQD library supports double double and quad
double. The GARPREC library supports arbitrary precision. Like QD and ARPREC, both
implementations use a sequence of floating point values to represent an MP value. The
authors compare the performance of GQD and GARPREC running on a GTX 280 to QD
and ARPREC on an Intel Core 2 Q6600. The GQD library achieves a speedup of 10 to 20
over the CPU. GARPREC achieves a speedup of 7 to 12 depending on the operation and
precision over the CPU. Unfortunately, the authors do not report raw performance, in oper-
ations per second, they only report performance as a speedup versus the CPU, which makes
it difficult to compare this work with other papers. It’s also worth noting that ARPREC is
quite slow compared to GMP on the CPU.

In [85] Nakayama and Takahashi implement multiple precision floating point routines
for addition and multiplication on the GPU, which they call CUMP. Unlike GARPREC,
the authors represent the MP value with a sequence of 64-bit integers. They test their
implementation on a Tesla C2050 GPU and compare the results of their implementation
to GARPREC running on the same GPU and to GMP running on a 8-core AMD Opteron
6134. They run large batches and test at sizes of 100, 1000, and 10000 decimal digits. At
100 digits (roughly 333 bits) they achieve 143 million multiplies per second. At 1000 digits
(3322 bits), they achieve 3.6 million multiplies per second, and at 10K digits (33220 bits),
they achieve roughly 40K multiplications per second. For multiplication at 100 digits the
GPU is faster than the CPU. However, for 1000 and 10000 digits, the CPU outperforms
the GPU. Nakayama and Takahashi report that their implementation is between 1.7 and 2.6
times faster than GARPREC at all sizes. At 1000 digits, we estimate that the authors are
achieving about 25% utilization of the multipliers on a C2050.

In [68] Joldes et al. construct a multiple precision floating point library called CAM-
PARY for the GPU using sequences of floating point numbers, similar to the approach used

by QD and ARPREC. They implement addition, subtraction, multiplication, division, and

51

square root. One important feature of their library is that they give rigorous proofs of the
accuracy and implement rounding modes with correct rounding in their routines. They
also provide a set of “quick-and-dirty” routines that are faster, but do not come with the
accuracy guarantees or the rounding modes. They test their quick-and-dirty routines on
a Telsa C2075 GPU and compare their results to a multithreaded Intel 17-3820 running
QD and MPFR. They report speedups of 2 to 3x vs QD and up to 20x faster than MPFR.
Unfortunately, they don’t give throughput numbers.

In [61] Honda, Ito, and Nakano investigate batched integer multiplication where the
values to be multiplied range from 1024 bits to 32768 bits. Their approach is to assign a
multiplication instance to each warp and use a warp synchronous approach to computing
the product. For the smaller sizes, they use a grade school multiplication. For larger sizes
they have the option to use one or two levels of Karatsuba multiplication. They run their
experiments on a GTX 980 and achieve 65.8 million 1024-bit multiplication per second,
13.3M/sec at 2048 bits, 3.8M/sec at 4096 bits, 971K/sec at 8192 bits, 229K/sec at 16384
bits and 60.5K/sec at 32768 bits. They find that using Karatsuba improves the performance
by less than 5%, even at 32768 bits. Comparing the 4K result to Nakayama and Takahashi’s
3322 bit result, we see this 1s about 1.6 times faster and the 32K result is roughly 1.5 times
faster than Nakayama and Takahashi’s 33220 bit result. However, it’s worth noting that the

GTX 980 is a much faster card than a Tesla C2050.

2.5.5 Literature Survey — Conclusions
This section summarizes some open questions that have not been adequately addressed
by the existing literature. It is organized in three subsections: parallel algorithms, asym-

metric cryptography primitives on the GPU, and MP libraries on the GPU.

2.5.6 Parallel Algorithms
Takahashi’s parallel short division algorithm has a complexity of O((n /p) log p), but

this algorithm is not asymptotically optimal. If we cast short division as a parallel prefix

52

operation, it should be possible to achieve O(n/p + logp). This is an important problem

area because a good Toom-Cook implementation requires a fast short division algorithm.

2.5.7 Asymmetric Cryptography Primitives on the GPU
Even though there have been so many papers published, we believe that not a single

paper has reached peak performance at any size on any card:

1. For the 1.x cards (GTX 260, GTX 280, GTX 295) cards, no one has built a 48-bit
accumulator using the 24-bit instructions. In theory, this should lead to significantly

better performance on these cards.

2. For the 2.x and 3.x cards (GTX 580, M2050, GTX Titan), no one has explored Karat-

suba multiplication, which should be faster at the sizes of interest.

3. None of the algorithms to date will work well on the 5.x and 6.x cards (GTX 750Ti,
GTX 980, GTX 1080), which have 16-bit multipliers.

In general, all the papers are limited in scope. Some have just one algorithm, others
support only one size, some support only one card. However, to build a good library re-
quires achieving good performance across multiple generations of GPU and the full range
of cryptographically useful sizes. No one has accomplished this.

Finally we note that Zheng’s notion of a utilization metric is very important. Utilization

metrics should be developed for all cards and algorithms and applied uniformly.

2.5.8 MP Libraries on the GPU

The MP libraries for the GPU fall into two categories, the low precision routines range
from 60-bit mantissas to about 240-bit mantissas. At these scales, the best approach is
probably to store the MP value as a sequence of floating point values and leverage the

device level FP hardware to handle round off. This is the approach taken by Thall, and

53

the GQD and CAMPARY libraries. The CAMPARY library is the only one that supports
rounding modes with correct rounding.

For mantissas larger than 256 bits, GPUMP and Honda, Ito, and Nakano implement
integer libraries, while GARPREC and CUMP implement floating point libraries. At these
sizes, it’s probably best to represent the limbs as sequences of integer values and this is the

area where our research strength lies.

Weaknesses of GPUMP, GARPREC, CUMP, and Honda et al.’s work:

1. They test their implementations only on a single GPU.

2. Honda et al. have the only implementation that supports more than one multiplica-
tion algorithm, but their Karatsuba implementation achieve only a modest 5% per-

formance improvement over the grade school algorithm.
3. The only library to support division is GPUMP, but the performance is lacking.
4. The floating point libraries do not support important IEEE 754 features such as mul-

tiple rounding modes with correct rounding, or special values such as NaN and +oc.

In summary, we believe these four libraries are slow, performing significantly below
peak utilization on their respective cards, and are lacking important operations and features.

Considerable work still needs to be done in the area of MP libraries.

54

CHAPTER 3

ASYMPTOTICALLY OPTIMAL PARALLEL SHORT DIVISION /
DIVISION BY CONSTANTS

There has been a great deal of research studying PRAM models and proving upper and
lower complexity bounds across a broad range of algorithms, including arithmetic, in the
1980s. This work is well summarized in two surveys, A survey of parallel algorithms for
shared-memory machines by Karp and Ramachandran [71] and The complexity of compu-
tation on the parallel random access machine by Fich [46]. Since the late 90s, it’s rare to
find novel upper or lower bounds on PRAM arithmetic, but the research still continues. For
example, Modular exponentiation via the explicit Chinese remainder theorem by Bernstein
and Sorenson [8] in 2007 and Sorenson’s paper [96], A randomized sublinear time parallel
GCD algorithm for the EREW PRAM, from 2010. In this Chapter we present the results of
two of our papers: [40] gives a new parallel short division algorithm that’s asymptotically
faster than Takahashi’s algorithm (discussed in Section 2.3.3) and [43] which uses Cook,
Dwork and Reischuk’s [25] result on the complexity of Boolean functions to prove the new
short division algorithm is asymptotically optimal on EREW and CREW PRAMs. The
results are significant because they present an algorithm that achieves the lower bound for
two fundamental MP arithmetic operations: short division and division by constants on an
important class of parallel machine models.

Short division is the process of dividing a MP integer X by a single precision divisor
d to find a multiple precision quotient () and a remainder r such that X = d@) + r where

0 < r < d. We assume an FRNS with 3 to be a power of two and define X and () in the

55

usual way:

n—1 n—1
X=> wp ad Q=) ¢p
=0 =0

where 0 < z;, ¢; < . Throughout this chapter, we will use upper case variables to denote
MP values, [for the length of X in bits, n for the length of X in words, thus [= nlog, S,
and p for the number of processors.

It is often convenient to think of 5 as defined by a machine word, and we frequently
refer to z; and g; as words, but this need not be the case. 3 can be defined as 2* for an
arbitrary fixed k, regardless of the underlying machine word size and the operations a op
b, where op is addition, subtraction, multiplication, division, and modular inverse all run
in O(1) time when 0 < a,b < (. Likewise, we frequently rely on the fact that d can be
factored into d = d,, - d. where d,, is odd and d, is a power of two in O(1) time.

For division by a fixed constant integer, such as X/3 or X /31415926535, we simply
pick a (3 that is larger than the constant divisor and run the algorithm. The running time
and lower bound analyses apply, because as stated above, the primitive operations all run
in constant time.! Thus short division and division by constants are essentially the same
problem and the proofs that follow are applicable to both.

The rest of this chapter is organized as follows. Section 3.1 gives a short overview
of prior work. Section 3.2 presents the algorithm and proves correctness. Section 3.3
discusses the connections between short division and parallel prefix/suffix sum. Section 3.4
proves optimality of our short division algorithm and Section 3.5 covers our experimental

setup and results.

I'This argument does not apply to the general case of X /Y for arbitrary precision values X and Y because
no matter what /3 is chosen, there will always be a larger Y.

56

3.1 Prior Work

The literature survey chapter covers the important multiple precision sequential and
parallel division algorithms. Here we present a brief overview of some important results

related to this chapter from other research areas.

Division By Constants: For small constants, several authors [62, 2, 97] use the following
approach. Find a small k, such that the constant ¢ divides 2 & 1. Multiply X by Qk%
and use a combination of logical right shifts and sums to divide the result by 2% + 1.
The division step is no faster than the algorithm presented here and this approach does
not work for all constants. Another approach is to compute a fixed-point reciprocal of c.
This approach is quite slow because it involves computing the product of 1/c - X, where
1/c must be evaluated to roughly n word. The n-word by n-word multiplication has a
minimum running time of O(nlogn), which is at least as slow as the algorithm presented

here.

Circuit Complexity: A number of papers [6, 20, 58, 30] study the circuit complexity
of A/B where A and B are both MP values of length n. They show that a polynomial
sized circuit in n can compute A/B in O(logn) time. Although this solves the problem
with a hardware circuit, the same approach can be simulated with a PRAM. Thus, a cir-
cuit complexity argument using simulation could be made to establish an upper bound for
short division on a PRAM, but such a simulation would be less efficient than the algorithm
presented here, requiring either a polynomial number of processors (in 7), or more than
O(logn) time. Further, since PRAMs are more powerful than bounded fan in / bounded
fan out circuits, a circuit complexity argument cannot be used to establish a tight lower

bound for the complexity of short division on a PRAM (see for example [25]).

Parallel Prefix: The heart of our short division algorithm is a parallel prefix computation.
Blelloch [12] has an extensive survey on the applications of parallel prefix, but division

is not mentioned. In [78] Ladner and Fischer show how parallel prefix can be applied to

57

01 41 93 75 rem6 Remainder Sequence:
7/09 93 56 31
07 =09 mod7=2
%gi}l r,=0993mod7=6
=5 56 ry=099356mod 7=5
6 51 r,=09935631mod7=6
5 31
5 25
6

Figure 3.1. Example division and remainder sequence for X = 9935631, d = 7, and
£ =100

addition of binary numbers with fixed size, and states that division by a constant is possible
with a prefix computation but no construction or analysis is given, and short division is not

mentioned at all.

3.2 Short Division Algorithm

We begin by considering an easier problem, where we assume that d is relatively prime
to J and that p = n. See Figure 3.1 for an example. As in Takahashi’s algorithm, the idea is
to break the short division into two steps. First compute the remainder sequence, denoted
7 and then compute the quotient. We note that the quotient can be computed from the
remainder sequence (2, 6, 5, 6 in the example) in a single parallel step with n processors as
follows:

_ V}cﬂﬁd-i- IkJ

Further, as shown in Figure 3.1, each element of 7, can be computed from all the digits of

X toits left, i.e., z; where 7 > k:

rp = (nz:lxlﬁz_k> mod d
i=k

When d and §3 are relatively prime (as in the example), 3% (mod d) will exist, and can be

factored out of the sum as follows:

T = <ﬁ_k nzlxlﬁ) mod d

i=k

58

and the remaining sum, Zf:_kl x;3 mod d, is just a suffix sum problem — prefix and suffix
sums are classic problems with well know fast parallel algorithms (see for example Blelloch
[12]).

Next, we relax the two assumptions and consider the full short division algorithm,
where there are no restrictions on d, n, or p, provided that d < . In the case where d
and [are not relatively prime, d can be factored into d,, - d. where d, is odd and d. is a

power of two. The sub-division can be accomplished with two divisions, i.e.,

o-l3l- %

since [3 is required to be a power of two, d, and 3 will be relatively prime, and the division

by d, can be done using the remainder sequence approach. The result is then divided by d.
using logical bit-shift operations.

When n > p, the algorithm partitions X across the processors as follows. First pad X
with zeros until the length of X is evenly divisible by p. Then break X into equal sized
chunks each of length m = (%W The k™ chunk will consist of the words zy,, through

Trm+m—1 and will be assigned to processor k (where k € 0 .. p — 1). The partitioning of X

across the processors motivates the following definitions:

Definition 1. Let Xij be the value corresponding to the words from chunk i through chunk

J» i.e., T, through Ty, m—1 and we have

Jm+m—1 jm+m—1
J k—im J k—im
X = E] and Q) = E Q.

when 1 > j, the sum is empty and we define Xij = 0and Qg =0.

Definition 1 means that the chunk assigned to processor k is X}. Likewise, processor
k will be responsible for computing Q¥. Further, we have X? ™' = X, and Q} ™" = Q.

For a formal PRAM algorithm, we must define the input and output memory structure.
In this case, it’s quite simple, we put X in memory cells M[0] through M[n — 1] and the

store the divisor, d, in M[n]. The output of the algorithm stores () in M[0] through M[n —1]

59

1. If d is one, set the final remainder r to zero and exit, otherwise factor d into
d =d, - d. where d, is odd and d, is a power of two.

2. If d, is 1, then d is a power of two, use logical bit-shifting operations to compute
(2 and compute the final remainder, r = X mod d = x(, mod d., then exit.

3. Pad X with zeros so it can be evenly split into p chunks. Let m be the length of
each chunk, m = [n/p]. Assign the k™ chunk to processor k.

4. Each processor k € 0 .. p — 1 computes v, = XF3™" mod d,,.
5. Compute the parallel suffix sum of the terms,

p—1
t, = ; v; <mod d0>

6. Next each processor computes the remainder sequence 7:

T = tkﬂimk mod do

7. Each processor then computes the quotient for its chunk

QF = V}cﬂﬁ(’;*’ XII:J

8. At this point, () = L%J Next, use logical bit-shift operations to divide () by d,.

9. The final remainder r is computed as r = xo — d * qq (mod B).

Figure 3.2. parallel short division algorithm

and the final remainder in M[n]. Because X and () are overlaid, when the divisor is one,
we need not copy X to ().

To clarify, we describe the computation on processor k in terms of X¥ and Q¥ rather
than in terms of memory locations. The full short division algorithm is presented in Figure

3.2. We note that if p > n, then we only use the first n processors and leave the others idle.

60

Theorem 1. Let T;(n, p) represent the running time of the short division algorithm (Fig-

ure 3.2) on an EREW PRAM.

O(1) ifd=1

O([n/p]) ifd=2"andi >0
Td(”ap) €
O(n/p) + O(logp) ifd# 2 andp <n

O(logn) ifd#2 andp > n

\

Proof. Step 1 requires at most log, 3 bit tests and runs in constant time. If d, = 1 then
step 2 runs in O([n/p]) time.> Step 3 runs in constant time since at most p — 1 words must
be written using p processors. In step 4, X¥ mod d, and 3™ mod d, can be computed in
O([n/p]) time. Computing 5™* mod d, requires an additional O(log p) steps. For step 5,
we use the standard EREW PRAM two pass parallel suffix sum algorithm, which requires
O(logp) time. Since 3™ mod d, was computed in step 4, in step 6, 3™ mod d, the
modular inverse can be computed in constant time. Steps 7 runs in O([n/p]) time. Steps 8
and 9 run in constant time.

Thus, if d = 1, then the algorithm stops after step 1 and T4(n,p) € O(1). If dis a
power of two, then the algorithm stops after step 2 and Ty(n,p) € O([n/p]). If d is not
a power of two then all steps of the algorithm are run, and there are two cases. If p < n,
we have O([n/p]) = O(n/p), and the run time T,(n,p) € O(n/p) + O(log p). Lastly, if
p > n then only the first n processors are used and the running time for steps 4 and 5 will

be O(logn). All other steps run in constant time and we have Ty(n, p) € O(logn). O

As a final note in this section, there are several variants of the algorithm in Figure 3.2,
such as replacing the r;, computation with a parallel cyclic reduction (similar to Takahashi’s
algorithm), all with the same running time complexity. We chose this variant because

the proof of correctness is easier and because it highlights the connections between short

2Since p could be much larger than n, we use [n/p] to ensure it takes at least one time step.

61

division and parallel prefix/suffix sums. In the experimental results section we also explore

some of the other variants.

3.2.1 Proof of Correctness

For the correctness proof, if d = 1, then () = X, which completes after the first step. If
not, factor d into d = d, - d., where d,, is odd and d. is a power of two. If d, = 1 then d is a
power of two and we can compute () using logical shift operators and r will be xq mod d.

The challenging part is to show that steps 4-7 compute) = | X/d, |, when d, > 1.

Lemma 1. X/ =37 X}pk—im,

Proof.

jm+m—1
J_ E k—im

k=im
7 km+m-—1

_ Z Z xhﬂh_im

k=i h=km
j km+m—1

:Z Z Ihﬁh—km—i-(k—i)m
k;z‘ h=km

j
_ Z X]/;B(k*i)m [
k=i

Intuitively this can be understood by thinking of X} (the chunk assigned to processor
k) as a digit in the base 8™ and Xij as a sequence of these digits. It follows trivially that

X/ = Sl Xt

Lemma 2. X/ = X/ + "X/, ,, holds forall i,j € 0.. p — 1.

Proof. This follows directly by pulling the first term from the sum in Lemma 1. When
t=p—1and 7 = p — 1, we have X;’:ll = Xf,’:ll + BmXI’,’_l which holds because X;’_l

was defined to be zero. O]

Corresponding lemmas hold for Q{ .

62

Theorem 2. Steps 4-6 of the short division algorithm compute r, = X} “'modd,.

Proof.

v = ijﬁmk mod d,

p1 p1 .)
tr = <;vk> modd, = (;XZB)moddo

p—1

re = to3~™ mod d, — (@—mk ngﬂmi) mod d,

i=k
-1
= < pX: Xfﬁm(i_k)> mod d,
i=k
= X}j_l mod d,]

Theorem 3. Step 7 of the short division algorithm computes () such that X = d, - () + 7.

Proof. 'We use a reverse induction to show that X”~' = d, - Q"' + ; holds for all
i < p. For the base case, 7 = p holds trivially since X?~" and Q?~! and r, = X»"'mod d,
are all zero. For the inductive step, we assume the statement holds for 7 4+ 1 and prove it is

true for 7. Assume:
XP = d,Q0)
i+1 o<t i+1
Multiplying both sides by 3™ and adding X yields:
BUXEL + X[= B dQF + i) + X
Xfil = doﬁmeﬁl + (5m7”i+1 + XZ)
B + X|

X = dofm QU+ dy | (7 + XD mod d,)

[\ J/
-~

definition of Qi

XP = (7 QU + Q) + (87 XI5 + X)) mod d,)

XP =g, 4 (Xf_l mod do>

N J/

VvV
definition of 7;

XP' = d,Q" " 4y

63

By induction, we have X7 = d, - Q"' + r; foralli € 0.. p. Since X;' = X,

Q’Sil = @, wehave X = d,- Q)+, and since 0 < ry < d,, we can conclude Q) = | X/d,].

Step 8 of the algorithm sets () to () divided by d., thus computing the final quotient:

@= “Xﬁo” - Ldo)-(deJ = LX/d]

In step 9 the algorithm computes the final remainder, 7:
r=Xmodd=X—-d-Q=X—d-Q (modp) =xy—d-qy (mod)

Since Q = | X/d] and r = X mod d, we can conclude that X = d-)+ r and the algorithm

18 correct. O]

3.3 Connections to Parallel Prefix/Suffix Sum

We have already seen that the heart of the remainder sequence computation is a parallel
suffix sum. Now we show that exclusive suffix sum problems can be solved with the short
division algorithm.

Given a sequence of yg, y1, ... Yn—1 Where 0 < y; < ¢ for some maximum value g, the

exclusive suffix sum is defined as:

foreachk €0..n—1.

We wish to construct a short division problem instance consisting of X (xg, 1, ...
ZTn_1), 0 and d such that the resulting quotient words match the exclusive suffix sum, i.e.,
qr = si forall £ € 0.. n — 1 and prove the construction is correct. We choose [to be a
power of two greater than n - § + 1 and we choose d = 5 — 1 and we set all the x; values
to be equal to the y; values.

We know from the correctness proof that for an odd d, when we have solved for) and

r such that X = d(@ + r, there exists a remainder sequence, r;, that relates X ,’j to Q,’j. By

64

taking n = p and thus m = 1, we have X ,’j = x; and Qﬁ = @, and from their definitions,

we have:

T = (ga:lﬁl_") modd and ¢, = {W%J

Since d = 3 — 1 we have Amodd = 1 and therefore 3% mod d = 1 and the 3% term

drops out of the r; equation and we are left with:

n—1

rL = (le> mod d

i=k

since Zl:kl x; < n -y <dforall k, we have:

n—1 n—1 n—1
rk:<g xl-)moddzg xizg Yi = Sk_1
i=k 1=k i=k

Combining this result with our expression for ¢; and simplifying, we get:

o = V"k-i-lﬁd‘i‘wa

V”k:ﬂ(ﬁ — 1)+ ree1 + ka
8—1
$k+7"k+1J

L -1

$k+Z§§3+1$i

R e

Tk
= Tk+1+

3—1

= Tp41 T

= Tgy1+

= Tk+1
. . —1
We also note that the final remainder is r = ry = s_; = >, y;. We can conclude,

with an appropriate 5 and d, short division can be used to solve exclusive suffix sum prob-

lems.

3.4 Optimality Proof

In this section, we will show that parallel short division is subject to two distinct lower

bounds, i.e., Ty(n,p) € Q([n/p]) and Ty(n,p) € Q(logn). The first bound comes from the

65

fact that some processor must read every word of X. This is easy to prove by contradiction.
Suppose () and r could be computed without reading some word, z,,. Then there would be
two values, X and X' that differ at word w but have the same Q) and . But X =d-Q +r
and X' = d-Q +r, yet X # X'. Contradiction. Therefore some processor must read
[n/p]| words, and we have proven the first bound. The second bound is more difficult.

It is well known that computing the PARITY of n bits, by, by, ... b,_1 has a lower
bound of 2(log n) on a CREW PRAM (see for example Fich [46] Theorem 21.42). Using
the construction in the prior section, PARITY,, can be computed using short division as
follows: Set x; = b;, run short division with d = 3 — 1. Provided that n < /3 — 1, the parity
will be the least significant bit of the final remainder rg, because > b, = > x; = r = ry.
Since PARITY,, can be solved with short division, the lower bound for some short division
instances on a CREW PRAM must be Q(log n). This approach to the second lower bound
has some significant shortcomings. First, we would like to establish the bound for all
divisors, not just d = 8 — 1. Second, the restriction that n < 8 — 1 is problematic since we
are interested in the asymptotic behavior as n — oo. But it does give insight that the way
to attack the lower bound is through the least significant bit of the remainder.

In [25] Cook, Dwork and Reischuk (CDR) study the time complexity of OR,,, the time
it takes to compute the logical OR of n true/false values stored in memory on a CREW
PRAM. Their work establishes a lower bound for the computation of any Boolean function
of n variables, f:{0,1}" — {0,1}. The bound can be expressed in terms of the critical
complexity c(f) also known as the sensitivity of f. Since the least significant bit of the
remainder is a Boolean function of all the bits of X, we can use critical complexity for a
lower bound on short division. We will use the definition of critical complexity adopted by

Wegener in [109].

Definition 2. Let c(f, V), the critical complexity of [at point v (where v is a vector of

Boolean values) be the number of neighbors W of V' with Hamming distance 1, where

66

fW) # f(V). And let c(f), the critical complexity of f be the maximum of c(f,v) over
all Ve {0,1}"

For example, consider the critical complexity of OR,,. There are three cases. If V' is
a vector with multiple bits set, then ¢(OR,,, V) = 0. If V has exactly one bit set, then
c(OR,,, V) = 1. If V is a vector of zeroes, then all bits are critical and c(OR,,, V) = n.
c(OR,,) is the max of the three cases and is thus n.

Cook, Dwork and Reischuk require that the n input bits to f are stored in memory
locations M[0] through M[n — 1] and that the result of f is to be written to M[0] once
computed. They prove that the minimum number of steps to evaluate any boolean function,
f,ona CREW PRAM is at least log, (¢(f)), where b = (5 + v/21) ~ 4.79. This lower
bound holds regardless of the number processors available. Parberry and Yan [89] improve

the lower bound and show it holds when b = 4.

3.4.1 Asymptotic lower bound for REMPAR on a CREW PRAM

In this section, we define the Boolean function REMPAR, 4(V) to be the least signif-
icant bit (parity) of the remainder of the integer represented by V' divided by d, where [is
the length of the dividend in bits and d is the divisor. We will show that REMPAR, 4(V)
requires €2(log /) steps to evaluate on a CREW PRAM when d is odd and greater than one.
We begin with two helper functions that map integers to their standard bit representation (a

vector of Booleans) and bit representation back to integers.

Definition 3. X = 7,(V') maps a Boolean vector v of length [to its corresponding integer
X and V = 7;'(X) is the inverse function, that maps X back to vector representation.

Thus,
-1
Z1(vo, vy, .. vp_1) = ZQiUi and Zfl(Zl(V)) =V.

i=0
clearly there is a one to one mapping between X and V' and we can use them somewhat

interchangeably.

67

Definition 4. REMPAR; 4(V): {0, 1}' — {0, 1} is a Boolean function of | variables whose

result is zero if 7,(V') mod d is even and one if odd.

To simplify the discussion, we introduce a new operator &, and define V' ® 7 to mean
the vector V' with the i bit flipped. Further, the i bit is said to be critical if and only if
REMPAR, 4(V)) # REMPAR, 4(V ® 7). Thus the critical complexity, ((REMPAR; 4, V)
is just the count of the critical bits in V.

Next, given an odd divisor d > 1, we wish to construct an instance V' of length [, where
a significant majority of the bits are critical. The construction is done in two steps. First
we’ll assign values to the i™ element of V, where i € [log, 3, 1), according to the following
rule: if 2°mod d is even, we assign a one, otherwise a zero. Once these bits have been
fixed, we assign the remaining bits in the range i € [0, log,), such that Z;(V) is smallest
value that is exactly divisible by d. This construction is shown in Figure 3.3. We note that
once the first step is complete, there are log, (3 bits to assign in the second step. Thus the
second assignment gives rise to a set of possible values, {Z;(1')}, containing 5 consecutive
integers. Since > d, the interval must contain at least one value where 7,(V) is exactly

divisible by d. If there are multiple values exactly divisible by d, we choose the assignment

Least significant [bits Most significant
bit: bit 0 AL bit: -1
- ~
H_/ \ J
Y
1 word n-1 words
(log, B bits) (I - log, p bits)
CONSTRUCTION:

Step 1: Assign bit i in log, .. [-1 (dark gray bits) to 1 if 2" mod d is even, and 0 if 2' mod d is odd
Step 2: Assign bit iin 0 .. log, -1 (light gray bits) such that X is the smallest value exactly divisible by d

Figure 3.3. X represented as an array of bits

68

that produces the smallest Z;(1). We can conclude, for any [and odd d greater than 1, this

construction produces a unique vector, henceforth called V; 4 or equivalently X 4.
Claim 1. For odd d greater than I, the i" bit of V; 4 will be critical for all i € [log, 3,1).

Proof. By the construction 7;(V] 4) is evenly divisible by d, thus REMPAR, 4(V,4) = 0
and the i™ bit will critical if and only if REMPAR; 4(V; 4 ® i) = 1. There are two cases to
check.
Case 1 when 2" mod d is odd:
In accordance with the construction, the i bit of Via1s zero, and V; 4 ® ¢ flips the i™ bit
to a one, thus we have Z(V, 4 ® i) = X, 4 + 2', and:
REMPAR, 4(Vi 4 ®i) = ((Xl,d + 2" mod d) mod 2

_ (2@' mod d) mod 2

But since 2 mod d is odd, we have REMPAR, 4(V, 4 ® i) = 1 and the i bit is critical.

Case 2 when 2°mod d is even:
According to the construction, the i bit of Viais one and V) 4 ® 4 flips the i bit to a
zero, thus we have 7;(V, 4 ® i) = X, 4 — 2', and we have
REMPAR, ,(V, 4 ® 1) = ((Xl,d — 2" mod d> mod 2
- ((0 — 2')mod d) mod 2
= (d — (2" mod d)> mod 2
Since d is odd and greater than one, 2¢ is not evenly divisible by d, thus, 0 < 2 mod d < d.
Further, since d is odd and 2 mod d is even, d — (2 mod d) must be odd, and therefore,

REMPAR,; 4(V, 4 ® 7) = 1 and the i bit is critical.

We can conclude that each bit in the range [log, /3,) is critical. O

It is worth noting that this construction only works for odd divisors greater than 1. If

d is even, then 7,(V') and Z;(V ® ¢) will either both be even or both will be odd, and as a

69

result, none of the bits in the range [log, /3, 1) will be critical. If d is one, then 2/ mod d will
always be zero, and again, none of the bits in the range will be critical.

It follows immediately from Claim 1 that ((REMPAR,; ;) > ¢(REMPAR,; 4,V 4) >
[— log, 8 and by Cook, Dwork, and Reischuk’s and Parberry and Yan’s bounds, we can
conclude that the minimum number of time steps to evaluate REMPAR; ; on a CREW
PRAM is in log, (I — log, (), even if there are an unlimited number of processors available.
Since [is constant, REMPAR, ; € Q(log!), or equivalently Q(logn), when d is odd and

greater than one.

3.4.2 Asymptotic lower bounds for short division on a CREW PRAM
In the previous section, we established a lower bound on REMPAR, ; for odd d greater
than one. Here we show that REMPAR, ; can be reduced to short division (for all non-

power of two divisors) and therefore short division must be in Q(logn).
Definition 5. Ler S;(n, p) be the running time of an optimal short division algorithm.

Theorem 4. Let S;(n,p) represent a lower bound on the running time of an optimal short

division algorithm on an CREW PRAM for three cases:

Q1) if d is one
Sa(n,p) € S Q([n/p)) if d is a power of two greater than 1

Q(max(n/p,logn)) ifdis not a power of two

Proof. When d = 1, then ()=X and the only work to be done is to set » = 0. This can be
done in constant time if X and () are overlaid in the same memory cells or in time [n/p]
if X must be copied.

Next, if d > 1, as we have shown, every word of X must be read by some processor,

and therefore a lower bound is [n/p].

70

The algorithm starts with V', a vector of [bits, in memory cells M[0] through
M|l — 1], where [= nlog, [.

1. Use the available processors to pack the bits of V' into the first n memory cells
so that:

[y

n—
Zi(v) = » M[i|p’

i

In essence, this step constructs X from input vector V. Since 3 is a constant
and each processor is responsible for packing [n/p]| words, the run time is

O([n/p])-

2. Run the optimal short division algorithm that computes () and r from X and d
using the available processors in as few time steps as possible.

Il
o

3. Factor d into d, - d., where d, is odd and d_ is a power of two. Compute 7’ = r
mod d,.

4. If ' is even, write zero to M[0] else write one to M[0].

Figure 3.4. REMPAR, 4, (V') algorithm implemented using short division

The tricky case is when d is not a power of two. In this case, d can be factored into
d,-d. where d, is odd and greater than one and d, is a power of two. Consider the algorithm
presented in Figure 3.4. This algorithm starts with a vector V' of [Boolean values in
memory and constructs an X such that 7;(V) = X. It uses short division to compute

r = X mod d, then computes 7’ = r mod d,. Since d, divides d, we have
r" = X modd, = Z;(V)modd,

Thus the algorithm computes REMPAR; ;, where d, is odd and greater than one. Let
Ry(n, p) be the run time of this algorithm on a CREW PRAM. By the bound of the previous
subsection, we know Ry(n,p) € Q(logn). Further, since step 1 of the algorithm takes

O([n/p]) time, step 2 takes Sy(n, p) time, steps 3 and 4 run in constant time, we have

Ru(n,p) = Sa(n,p) + O([n/p]) + O(1)

71

Since d > 1, the short division algorithm must read every word of X, and we have

Sa(n,p) > [n/p], therefore

Rd(nvp) S C- Sd(nap)

for some ¢ > 0. Thus we have Sy(n,p) € Q(logn) and Sy(n,p) € Q([n/p]). The logn
bound holds regardless of the number of processors available. From these two bounds we
can conclude Sy(n, p) € Q(max(n/p,logn)) and we have established Sy(n, p) as a lower

bound for short division. L]

We conclude this section with two asides. It is tempting to try to simplify the logn
bound using a circuit height argument, i.e., since each word of X can change the remainder,
the height of the expression tree for the remainder must be O(log n). Unfortunately, this
is not possible. As Cook, Dwork, and Reischuk observe, a PRAM is fundamentally more
powerful than a circuit. It has constant time read indexing and can pass information by
both writing into memory and by not writing into memory, whereas a circuit must always
“write” its result. The importance of CDR’s work is that it places a strict limit on the
amount of information that can be passed by not writing.

The lower bound was derived from the least significant bit of the remainder, so perhaps
it is possible to compute () = | X/d| without and beat this bound? Alas, the answer is
no. If () and X are known, r can be computed in constant time. Thus it is the computation

of () that drives the complexity.

3.4.3 Short division algorithm is asymptotically optimal for all d
Claim 2. The short division algorithm presented in Figure 3.2 is asymptotically optimal

for all divisors on a CREW PRAM, i.e., Ty(n,p) € ©(Sa(n,p)).

Proof. If d = 1 is one, then the short division algorithm runs in constant time. If d is a
power of two, then the short division algorithm runs in ©([n/p]) time which matches the

lower bound of Q([n/p]).

72

If d is not a power of two and p < n then the run time T4(n, p) € ©(n/p) + O(log p)

and we have:

Ta(n,p) < c1-n/p+calogp
< ¢1-n/p+calogn

< (e1 +) max(n/p,logn)

for some ¢y, ¢, > 0 and we have Ty(n, p) € Q(max(n/p, log n)), which matches the lower
bound.

Finally, if d is not a power of two and p > n, then the run time is O(log n) which
matches the lower bound since max(n/p,logn) = logn. We can conclude that our short
division algorithm is asymptotically optimal and the lower bound S,(n, p) is tight for all

divisors. u

3.5 Experiments and Results

To evaluate the performance of a variety of parallel short division algorithms, we reran
the code developed for the 2011 HiPC paper [40] with some minor updates to support the
Maxwell architecture. In Section 3.5.1 we describe the algorithms tested, in Section 3.5.2

we describe the experimental setup and in Section 3.5.3 we present the results and analysis.

3.5.1 Parallel Short Division Algorithms Tested

We have implemented and tested four different algorithms:

Takahashi: the first algorithm is Takahashi’s parallel short division algorithm, which is
described earlier in Section 2.3.3. Takahashi’s algorithm has a running time complexity of
O((n/p) log p), where n is the length of the dividend and p is the number of processors.
This algorithm is performs well when n = p, but as we will see, when the number of limbs

per processor increases, the performance suffers.

73

RTL Quotient: this is essentially the algorithm presented in Figure 3.2, where 7, is com-
puted using 3¥ mod d, a parallel suffix sum and 3~* mod d. However, instead of using the
classic left-to-right division to compute (), we use a Jebelean right-to-left (RTL) approach,
as described in Section 2.2.5 on exact division. The right-to-left approach has the advantage
of swapping multiplication instructions for division instructions. Division is quite slow on

the GPU. The running time of this algorithm is still O(n/p + log p).

Hybrid: this algorithm is a hybrid approach. It turns out the 3* mod d and 3~* mod d com-
putations are expensive on the GPU. These can be avoided by using a parallel cyclic reduc-
tion to compute 7. This is similar to Takahashi’s algorithm, except it runs in

O(n/p + log p) time. It then uses the RTL approach to compute Q).

Constant: for this algorithm, we explore doing short division by the constant 360. 360 is
of interest because it’s suitable for implementing 3-way and 4-way Toom-Cook multipli-
cation. This algorithm follows the approach described in Figure 3.2, first divide by 8 using
logical shifting, then divide by 45. Further, we take advantage of two optimizations. First,
we can replace the 3% mod d and 3% mod d computations with small precomputed tables.
Second, we can replace x mod 45 where x is a 32-bit value, with |z /2°] - 16 + x mod 2.
This latter approach reduces a 32-bit value to roughly a 20-bit value and is very fast on the

Maxwell architecture. This algorithm also has a running time complexity of O(n/p+logp).

3.5.2 Experimental Setup

To evaluate our algorithms we ran our experiments on an NVIDIA GeForce GTX 980
GPU with a clock running at 1.22 GHz. The host machine is an Intel Core 15-7400 clocked
at 3.0 GHz with 16 GB of memory, running 64-bit Ubuntu Server version 16.04.1 LTS and
CUDA 8.0 with version 375.26 of the NVIDIA driver. For the CPU tests, we use the GNU
Multiple Precision Library (GMP) version 6.1.1.

The GTX 980 has 16 Streaming Multiprocessors (SMs). Each SM consists of 96KB

of shared memory, a 64K word register file (divided amongst the resident threads) and 128

74

CUDA cores, for a total of 2048 cores on the GPU. GPUs are based on a Single Instruction,
Multiple Threads (SIMT) paradigm, where computations are organized into threads, warps,
blocks and grids. Each thread has a thread ID and a private set of registers. 32 consecutive
threads are then grouped together into a warp. Instructions are dispatched to a warp, and
each thread in the warp executes the instruction in parallel. Thus at the hardware level,
dispatching an instruction to a warp is equivalent to executing an instruction on a 32-way
vector unit. Warps are further grouped into blocks where the warps in a block are co-
located on the same SM. Finally, blocks are grouped into grids which are scheduled across
the available SMs and resources on a GPU. Threads that reside in the same block can
be synchronized and can communicate via shared memory, but communication between
threads in different blocks is prohibited (except in very limited circumstances). For a full
description of the GPU programming model, we refer the reader to the NVIDIA CUDA C
Programming Guide [28].

To simplify our experiments and timing analysis, we designed our code around warp
parallelism. Each warp is assigned a short division problem instance and the 32 threads of
the warp work in parallel to solve the instance. Assigning an instance per warp is beneficial
because warps are inherently synchronized and thus no special synchronization operations
are required to communicate between threads in the warp. In our experiments, we run 4
warps (128 threads) in each block, and therefore, each block handles 4 separate instances.
For each algorithm, we perform a series of three tests, the first uses n = 32 (32 limbs)
with 3 = 232 for a total of 1024 bits and p = 32 (each thread in the warp counts as a
“processor”). In the second set of tests, we use 2 limbs per thread (2048 bits), and in the
third set, 4 limbs per thread (4096 bits). For each set, we proceed by generating 10,000
random multi-word dividends and 10,000 random divisors where each divisor is less than
216 The choice of 16 bit divisors was somewhat arbitrary, but it has the advantage that

a - bmod d, where a and b are 32-bit values, can be implemented efficiently on the GPU

75

n=p (1024 bits) n = 2p (2048 bits) n = 4p (4096 bits)

Algorithm time ops/sec time ops/sec time ops/sec
Takahashi 0.194 ms | 258.3 M/s || 0.501 ms | 999 M/s || 0.936 ms | 53.4 M/s
RTL Quotient 0.518 ms | 96.6 M/s || 0.589 ms | 84.7M/s || 0.703 ms | 71.2 M/s
Hybrid 0.171 ms | 293.0 M/s || 0.223 ms | 224.3 M/s || 0.263 ms | 190.0 M/s
Divide by 360 0.071 ms | 701.7 M/s || 0.081 ms | 613.7 M/s || 0.120 ms | 416.4 M/s
GMP (CPU based) 13.9 M/s 7.4 M/s 3.5M/s

Table 3.1. Run time results for algorithms where n = 2p

as (amod d) - (bmod d) mod d using only 32-bit arithmetic, which is the native size of the
ALUs on the GPU.?

The test procedure is straightforward: generate the random data, copy it to the GPU, run
the appropriate short division kernel, copy the results back to the CPU and verify against
the results computed using GMP on the CPU. We measure the time for the kernel to run,
but do not include the time to generate the data, copy it to or from the GPU, or to verify the
results.

In our initial experiments, we discovered that some of the algorithms were so fast they
actually become memory bound instead of computation bound. To work around this prob-
lem, we perform 5 consecutive divisions for each dividend, i.e., for each X, we compute
X/d/d/d/d/d. This means that we perform 5 divisions for each load of the dividend and

store of the result, which reduces the bus bandwidth requirements by a factor of 5.

3.5.3 Results and Discussion

For each algorithm, we test the three sizes (1024, 2048 and 4096 bits) and report the av-
erage running time for 10 runs, and from that compute the average throughput (operations
per second). These results are presented in Table 3.1. For the CPU, we report the through-
put of a single thread running the mpz_div_ui function, which is the GMP equivalent of

short division.

30n Maxwell, the multiplications are actually based on a 16-bit hardware multiplier.

76

At 1024 bits, where n = p, we see that Takahashi’s algorithm is approximately 2.7
times faster than RTL Quotient. When n = 2p, then the Takahashi’s algorithm is just 17%
faster and when n = 4p, RTL Quotient algorithm is 33% faster. When n is roughly p,
the RTL Quotient algorithm has the overhead of computing both 5* mod d and 3~* mod d.
When n > 4p, this extra overhead is outweighed by the better asymptotic complexity of
the RTL Quotient.

The Hybrid algorithm has the best of both worlds, having an O(n/p+log p) complexity
without needing to compute 3* mod d and 3% mod d. At 1024 bits it is 13% faster than
Takahashi’s algorithm. At 2048 bits it is 2.2 times faster and at 4096 bits it is 3.6 times
faster.

The 4™ algorithm, division by the constant 360, is significantly faster than the others.
This is due to the fact that 3 mod d and 5~% mod d can be precomputed into small tables
which improves performance of the short division algorithm significantly.

Finally we note that at 4096 bits running the Hybrid algorithm, the GPU is about 54x
the performance of a single Intel core and the divide by 360 is about 119x the performance

of a single core. These represent good performance gains over a CPU.

77

CHAPTER 4

HIGH PRECISION FLOATING POINT ARITHMETIC

In this chapter we present our work on a high precision floating point library for the
GPU, which provides the basic arithmetic operations, and is a small subset of the MPFR
[48] library that runs on the CPU. This chapter is organized as follows: Section 4.1 presents
an overview of the library, including supported features and APIs. Section 4.2 describes
the implementation and important algorithms in the library and Section 4.3 presents our
experimental setup, testing, results and comparisons to prior papers. Finally, Section 4.5

gives our conclusions and future directions for the library.

4.1 Library Feature Overview and API

GPUs provide extremely high performance for many applications of single precision
(24-bit mantissa) floating point (FP) arithmetic and some GPUs support high performance
double precision (53-bit mantissa) FP arithmetic. In this library, we support much higher
precision arithmetic, where the size of the mantissa (henceforth n) can range from 1K bits
to 8K bits in 1K increments.

The library provides an array oriented API, where each operation works on an array
of floating point values. Each value in the array must have the same size mantissa. The
operations all support six special values: zero, NaN (not a number), positive infinity, neg-
ative infinity, positive 1/infinity and negative 1/infinity. The library will detect overflows
and return positive or negative infinity and will detect underflows and return positive or
negative 1/infinity. Division by zero, square roots of negative numbers, and a variety of

special cases such as infinity minus infinity all return a NaN value.

78

The IEEE 754 standard does not support £ 1/infinity, instead underflows get mapped to
40 and optionally raise an exception. This is fine for sequential computation, where it is
clear which computation underflowed. However, since this is an array based API, we felt it
was better to have explicit values, different from zero, to represent the underflow condition,
so there is no ambiguity about where in the array the underflow(s) occurred.

Internally, the library uses a standard radix 2 floating point representation with a sign
bit (s), an exponent (e¢), and a mantissa (M). The sign bit, exponent, and the special
values (zero, NaN, infinities) are encoded in a 32-bit value called the exponent word. The
mantissa is an unsigned multiple precision fixed point value, with an implicit decimal point
immediately to the left of the most significant bit of the mantissa. The mantissa is always
normalized, which means the most significant bit is always one, and therefore 1/2 < M <

1. Formally, a non-special floating point value is defined as:
fp value = (—1)% - 2(¢~%es) . pf

The bias is a fixed value which allows an unsigned exponent to represent values less than
1. Unlike some hardware implementations, the library does not support subnormal (also
known as denormalized) floating point values, where M/ < 1/2. Since we have a 32-
bit exponent word, we can represent numbers as small as 107323228491 and the additional
overhead and complexity of supporting subnormal values was not justified by the small
increase in range. In the IEEE 754 standard, the most significant one bit of the mantissa is
usually not stored — it’s an implicit bit. In our implementation, the most significant one
bit is always explicit and is stored.

The library has support for the five standard IEEE rounding modes: round to nearest
with ties to even, round to nearest with ties away from zero, round up (towards positive
infinity), round down (towards negative infinity) and truncate (round towards zero). Since
round to nearest with ties to even is the most common and most complex mode, we use it

as the default mode for testing and timing results.

79

API Call

Description

fpa_init(fpa_t r, uint32_t count, uint32_t precision)

Construct a FP array on the GPU of count ele-
ments each with precision bits of mantissa

fpa_clear(fpa_t x)

Free the FP array and associated GPU memory

fpa_set_ui(fpa_t r, uint64_t *ui_array)
fpa_set_si(fpa_t r, int64_t *si_array)
fpa_set float(fpa_t r, float *float_array)

fpa_set_double(fpa_t r, double *double_array)

Set the corresponding elements of the array to the
unsigned values in ui_array

Set the corresponding elements of the array to the
signed values in si_array

Set the corresponding elements of the array to the
single precision values in float_array

Set the corresponding elements of the array to the
single precision values in double_array

fpa_set(fpa_t r, fpa_t X, fpa_rm_t mode)

Copy the FP values from x to r. Currently, X must
have the same size mantissa as r, but in a future
version of the library will support extension and
rounding.

fpa_sgn(int32_t *results, fpa_t x)

Return an array of int32s, containing the signum
of each element of the FP array x.

fpa_cmp(int32_t *results, fpa_t a, fpa_t b)

Return an array of int32s, containing 1 if the cor-
responding element of a is greater than the b ele-
ment, 0 if equal, and -1 if less.

fpa_neg(fpa_t r, fpa_t x)

Set each element of r to the negative of the corre-
sponding element of x.

fpa_add(fpa_t r, fpa_t a, fpa_t b, fpa_rm_t mode)

Add the corresponding elements of a and b and
put the results in r

fpa_sub(fpa_t r, fpa_t a, fpa_t b, fpa_rm_t mode)

Subtract the corresponding elements of a and b
and put the results in r

fpa_mul(fpa_t r, fpa_t a, fpa_t b, fpa_rm_t mode)

Multiply the corresponding elements of a and b
and put the results in r

fpa_div(fpa_t r, fpa_t a, fpa_t b, fpa_rm_t mode)

Divide the corresponding elements of a and b and
put the results in r

fpa_sqrt(fpa_t r, fpa_t X, fpa_rm_t mode)

Compute the square root of each element of x and
store the results in r

Table 4.1. Arrays based floating point library API for the GPU

Table 4.1 gives the list of supported API calls. The API calls are modeled on MPFR, but
extended for arrays. There are two basic types, fpa_t represents an array of floating point
numbers, where each element of the array has the same precision, i.e., the same length
mantissa. fpa_rm_t is a C enum containing the five rounding modes. The API methods
are briefly described in Table 4.1. If an API method has multiple fpa_t arguments, those
arguments must have the same number of elements in the arrays and all the elements across

all the arrays must have the same precision.

80

At this point, the API has been designed to support research into the MP floating point
performance that can be attained with a GPU. To be used in practical applications, the
API would need to be enhanced to support more arithmetic operations and better data

import/export APIs. Further enhancements are discussed at the end of the chapter.

4.2 Implementation and Important Algorithms

The algorithms that are used to implement the floating point library fall into three cate-
gories. Handling special values (such as NaN, zero, plus/minus infinity), correct rounding
for the five rounding modes, and low level algorithms for performing math on the mantis-
sas.

We begin with the special value handling. For performance reasons, we implement the
special value handling using a table driven approach. We have a very simple fast function

that classifies the exponent word of an FP number as a O through 7 value as follows:

0 | positive value

1 | negative value

zero value

special value -1/infinity
special value +1/infinity

special value -infinity

AN L B~ W

special value +infinity

7 | special value NaN

The classify function is then used to index an action table, for example see Table 4.2, which
presents the action table for the fpa_add API function. The table encodes four possible
actions: add, sub, copy_a, and copy_b, and the rest just set the result to a special value.

Each of the arithmetic APIs in the library has its own action table, which drives the rest of

81

a=+value -value zero -l/inf +1linf -inf +inf nan

b=+value add sub copy-b copy-b copy.b -inf +inf nan
-value sub add copy.b copyb copyb -inf +inf nan
zero | copy-a copy-a Zzero -1/inf +1/inf -inf +inf nan
-l/inf | copy.a copy.a -l/inf -1/inf nan -inf +inf nan
+1/inf | copy.a copy.a +1/inf nan +1/inf -inf +inf nan
-inf -inf -inf -inf -inf -inf -inf nan nan

+inf +inf +inf +inf +inf +inf nan +inf nan

nan nan nan nan nan nan nan nan nan

Table 4.2. Special value handling for floating point addition

the computation. This approach to special values is extremely efficient on the GPU and all
special values are handled in about a dozen instructions.

The next set of algorithms handles correct rounding. The idea behind correct rounding
is that we wish to compute each operation to infinite precision, and then round the result,
according to the rounding mode, to the nearest value exactly representable with a finite
mantissa and exponent. Correct rounding is, in some sense, the gold standard — it’s the best
that you can do given the representation and finite precision. In practice, the computation
need never be carried out to infinite precision, in fact, usually all that’s required is two
extra guard bits. These are usually referred to as the round bit and the sticky bit. The round
bit represents one half of the least significant bit of the finite precision mantissa and the
sticky bit is computed as the logical OR of all bits less significant (in the infinite precision

computation) than the round bit. Consider rounding the following 16 bit mantissa to 8 bits:

x = 0.1000 1010 1000 0001

desired precision to be rounded

the round bit is 1 (it’s the MSB of the rounding portion), and the sticky bit would be 1 (it’s
the logical OR of the bits 000 0001). Applying this technique to floating point addition,
assume we have two floating point values a and b to be added. Without loss of generality,
assume a’s exponent is greater than b’s. The first step is to align the decimal points. Thus,
we must shift the b mantissa to the right by the difference of the exponents. The round

bit and the sticky bit are computed from the bits that are shifted out of b’s mantissa. This

82

// we assume the FP values representing a and b have been loaded into unsigned integer
// variables a_exp, b_exp, a_mantissa and b_mantissa, and that a_exp > b_exp.

round_bit = 0;
sticky_bit = 0;
shift = a_exp — b_exp;

for (bit = 0; bit<shift —2; bit++) {
if (get_bit(b_mantissa, bit)==1)
sticky_bit = 1;

if (shift >0)
round_bit = get_bit(b_mantissa, shift —1);

b_mantissa = b_mantissa >> shift;

Figure 4.1. Computing the guard bits for floating point addition

is shown in Figure 4.1. Once the mantissa has been shifted and the guard bits have been
computed, the correct rounding algorithm for addition proceeds according to the algorithm
in Figure 4.2. The algorithm calls fpa_round which takes five arguments: the rounding

mode, the sign bit of the result value, a flag indicating the mantissa is odd, the round bit,

// we assume that the round_bit and sticky_bit have been computed, n is the size
// of the mantissa (in bits), mode is one of the five rounding modes, and sign is
// the sign of the result.

r_mantissa = a_mantissa + b_mantissa;

if (romantissa >= 2") {
// r_mantissa is too long, normalize it
sticky_bit = sticky_bit | round_bit;

round_bit = r_mantissa & 0x01;
r_mantissa = r_mantissa >> 1;
r_exp = a_exp + 1;
}
// round bit will be 1 for round up, 0 for round down
round_up = fpa_round(mode, sign, r_mantissa & 0x0l, round_bit, sticky_bit);

if (r_mantissa==2"—1 && round_up==1) {
// r_mantissa is all ones, and we have a round up — need to normalize
r_mantissa = 27~ 1;
r-exp = a-exp + 1;

else if (round_up==1) {
r_mantissa++;
r_exp = a-exp;

}

// handle overflow
if (r_exp > MAXEXPONENT)
r_exp = sign ? NEG.INFINITY : POS_INFINITY ;

Figure 4.2. Correct rounding for floating point addition

83

and the sticky bit, and returns 1 if the mantissa should be rounded up and a 0 if the mantissa
should be rounded down.

We use the same approach for all of the arithmetic operations — operate on the mantis-
sas in the integer domain and use the two guard bits for the correct rounding. For multipli-
cation, the round and sticky bits come from the lower half of the product of the mantissas.
For division, the mantissa of the numerator is multiplied by 2" and divided by the mantissa
of the denominator. The round bit is set if the remainder is at least half of the denomina-
tor, and the sticky bit is set if the remainder is non-zero. For square root, we multiply the
mantissa by 2", thus X = 2" - M and compute the integer square root, S = L\/Y |. The
remainder is R = X — S? and the round bit is set if R > S and the sticky bit is set if R
is non-zero. The algorithms for handling correct rounding are well studied and we refer
the reader to [16, 73, 75, 48] for further information. For implementation on the GPU, it’s
generally faster to use a round word and a sticky word (32-bit values) instead of round and
sticky bits.

For the computations on the mantissas, we use a warp parallel approach, where a prob-
lem instance is assigned to a warp of 32 threads which work together in parallel to solve
the problem. This is similar to the approach taken for Short division (see Chapter 3). We
begin by splitting the mantissa into 32 contiguous slices one slice per thread. For a 1024
bit mantissa, each slice is 1 limb (32 bits) in length. For a 2048 bit mantissa, each slice
consists of 2 consecutive limbs (64 bits). For a 3072 bit mantissa, each slice consists of 3
consecutive limbs, etc, through 8192 bits and 8 consecutive limbs. In the code, the Slice
type holds an unsigned value between 0 and 2"/32 — 1, where n is the length of the manissa.
Addition and subtraction of slices wrap around, from 2"/3? — 1 back to 0, just like unsigned
types in C.

The code makes extensive use of two instructions that allow threads in the same warp
to communicate: the ballot instruction takes a single bit (true / false) from each thread in a

warp and concatenates them together into a 32 bit value (the bits are ordered, where thread

84

0 contributes the LSB through thread 31 which contributes the MSB). The resulting 32-bit
value is then distributed to each thread as the result of the ballot. The ballot operation has

the following format:
x = __ballot(true / false expression)

The second instruction is shuffle which uses a hardware cross-bar that allows an ar-
bitrary exchange of 32-bit values between all the threads in a warp. It has the following

format:
xr = _shfl(v, src)
The shuffle operation is equivalent to a shared memory store followed by a shared memory
load:
SHM[threadldx % 32] = v;
x = SHM[src%32];

In the algorithns that follow, we take advantage of the ballot and shuffle instructions
and other low level features of the architecture to build efficient warp parallel unsigned
multiple precision integer arithmetic algorithms. The algorithm in Figure 4.3 shows how to

compare MP values represented as slices across a warp. First the algorithm compares the

local slices in the variables X and Y, then ballot operations are used to build greater and

int slice_compare (Slice X, Slice Y) {
int32_t compare;
uint32_t greater , lesser;

// each thread computes signum(X=Y);
compare=signum (X=Y);

// next we construct two ballots for threads where X>Y and threads where XY

greater=__ballot (compare==1);
lesser=__ballot (compare==—1);
if (greater > lesser)

return 1; /7 X>Y

else if(lesser > greater)
return —1; /7 Y>X
else
return O; // X==Y

Figure 4.3. Comparing unsigned MP values represented as slices

85

lesser bit masks. Suppose X > Y, then there must be a thread, ¢, such that the local slices
for thread ¢, X; > Y, and for all threads, s > t, we have X, = Y. Thus the greater ballot
will have bit ¢ set to one and all more significant bits will be zero, whereas the lesser ballot
will have bit ¢ and all more significant bits set to zero. We can conclude that greater will
be greater than lesser. Finally, we note that the function will return the same result to all
threads in the warp.

In Figure 4.4 we present the algorithm for counting the leading zeros in an unsigned
MP value represented as slices across a warp. The algorithm sets mask to the ballot of
threads where the local slice is non-zero. Next we set count to the clz(mask). Suppose ¢
is the most significant thread with a non-zero slice, X;. Then we have X, = 0 for s > t,
and count is the count of such threads. If the count is zero, then ¢ must be 31. If the count
is 1, t must be 30, etc. Thus ¢ = 31 — count. Finally, the total number of leading zeros is

count - n/32 + clz(X;), which is the value returned to all threads in the warp.

int slice_clz (Slice X) {
uint32_t local_count, mask;

mask=__ballot (X!=0);
count=clz (mask);
if (count==32)
return n;
local_count=clz (X);
return count*n/32 + __shfl(local_count, 31—count);

Figure 4.4. Count the leading zeros of an unsigned MP integer represented as slices

In Figure 4.5 we present an algorithm for incrementing a value represented as slices.
The tricky case is when the carry ripples from slice to slice. The algorithm works by

first computing a bit mask of the critical threads, i.e., threads where a carry in will lead to a

void slice_increment(Slice &X) {
uint32_t critical , lane=l<<warp_thread;

critical=,,ballot(X==2”/32—1);
if ((critical " critical + 1) & lane)
X++;

Figure 4.5. Increment an unsigned MP integer represented as slices

86

thread t: first non-critical thread

\ critical threads
—

critical= | X X XXX XXXXX01111
XOor

critical +1= - X X X X X XXX XX10000

g

critical xor (critical + 1) = 000000000001 1 1 1 1
H_J

these threads will have a carry in

Figure 4.6. X represented as an array of bits

carry out. The ballot is stored in the variable critical. Next, suppose t is the least significant
thread where X, is not critical. Then incrementing the value will ripple the carry through
threads 0, 1, 2, etc, up to thread ¢, where it will stop. Computing critical xor critical + 1
builds a mask for how far the carry will ripple, for example, see Figure 4.6 which shows 4
critical threads. Each thread then tests its bit in the mask to determine if it should increment
its local slice. Note, the local slices behave like unsigned values in C, so incrementing a

critical slice will wrap around to zero.

void slice_increment(Slice &X) {
uint32_t check, critical , lane=l<<warp-_thread;

check = X[O0];

#pragma unroll

for (int word=1; word<n/1024; word++)
check = check & X[word];

critical=__ballot (check == OxFFFFFFFF);
critical=(critical "~ critical + 1) & lane;

add_cc(critical , OxFFFFFFFF); // sets the carry flag if critical is non—zero
#pragma unroll
for (int word=0; word<n/1024; word++)

X[word] = addc_cc(X[word], 0);

Figure 4.7. Low-level implemation of increment

87

The increment is written in terms of MP slices. Figure 4.7 shows how the algorithm is
implemented at the level of unsigned 32-bit words. X[index] refers to a word within the
slice X. It also makes use of three add routines, add_cc which adds two 32-bit unsigned
values and has a side effect of setting the hardware carry flag, addc adds two values with
carry in, and addc _cc takes carry in and sets carry out. These are inlined functions and the
result is just a single instruction in the compiled kernel. Corresponding methods, sub_cc,
subc, and subc_cc are used for subtract with carry in/carry out.

Negating a slice is quite similar to the above, except a thread is critical if its slice is 0

instead of 2/32 — 1 and is presented in Figure 4.8.

void slice_negate (Slice &X) {
uint32_t critical , lane=l<<warp-thread;

// computes X=1 + "X

// carry will ripple across least significant slices that are zero
critical=__ballot (X == 0);

critical=(critical ~ critical + 1) & lane;

add_cc(critical , OxFFFFFFFF); // sets the carry flag if critical is non—zero
#pragma unroll
for (int word=0; word<n/1024; word++)

X[word] = subc_cc (0, X[word]);

Figure 4.8. Negate an unsigned MP integer represented as slices

We find that there are many places in the library where it is beneficial to accumulate
a local “carry out” word in each thread, rather than immediately and repeatedly pushing
the carry out to the thread above. This is sometimes called lazy carry resolution and is
discussed in Section 2.3.1. Figure 4.9 gives a fast algorithm for resolving the carries across
a warp using ballot operations and a generate/propagate scheme similiar to a carry look-
ahead adder.

The multiplication algorithm in Figure 4.10 computes the full product of X and Y
and places the high half of the result into A and the low half into L. X, Y, H, and L
are all represented as slices spread across the warp. The algorithm appears complicated,
but in fact all the main loop is just iterating over the limbs of X and computing ACC' =

ACC + X|i] * Y. After each limb product is accumulated, the code shifts AC'C' one limb

88

void slice_resolve (uint32_t cw, Slice &X) {
uint32_t carry, critical , lane=l<<warp_thread;

// shift the carry word to the next higher thread, where it can be added to X
carry=__shfl (cw, warp_thread —1);
if (warp-thread==0)

carry =0;

// X=X + carry_word

X[0]=add_cc (X[0], carry);

#pragma unroll

for (int word=1; word<n/1024; word++)
X[word]=addc_cc (X[word], 0);

// grab the hardware carry flag, set if the add carried out
carry=addc (0, 0);

generate=__ballot (carry !=0);
propagate=__ballot(X == 27/32 _1);

carry=(generatex2+propagate ~ propagate) & lane;
if (carry !=0)
X++;

Figure 4.9. Resolve the carry words across a warp

to the right, placing the shifted out limb into the next position of L. At the end of the loop,
the product is complete, but AC'C' can have lazy carries that need to be resolved, hence the

final call to slice_resolve. We note, that for the Maxwell architecture, the performance of

void slice_multiply (Slide X, Slice Y, Slice &H, Slice &L) {
uint32_t words_per_-thread=n/1024;

Slice ACC(words_per_thread + 2); // two extra words are needed for high and carries
ACC=0;
for (int index=0; index<n/32; index++) {

temp = __shfl(X[index % words_per_thread], index / words_per_thread);

ACC = temp * Y + ACC;

// shift off the least significant word into L

if (warp_thread == index / words_per_thread)
Llindex % words_per_thread] = __shfl (ACC[0], 0);
temp = __shfl (ACC[0], warp_thread + 1);
if (warp_thread == 31)
temp=0;
ACC = ACC + (temp<<n/32);

ACC = ACC>>32;
}

for (int word=0; word<words_per_thread; word++)
H[word]=ACC[word |;
slice_resolve (ACC[words_per_thread], H);

}

Figure 4.10. Multiplication algorithm for two MP values represented as slices

89

this algorithm could probably be improved by broadcasting and multiplying a full slice at
time rather than a limb at a time, which could take better advantage of the 16-bit multiplier
on Maxwell.

Division instructions on the GPU are very slow, and the algorithms that we imple-
ment for MP division attempt to avoid them as much as possible. We begin with two low
level algorithms used to accelerate division of a 64-bit unsigned value by a common 32-
bit normalized divisor. Common meaning the same divisor is used repeatedly, normalized
meaning the most significant bit of the divisor must be a one. The approach is similar to a
Barrett reduction (see Section 2.2.6), where we precompute an approximate inverse of the

divisor, d, as follows:
approx iny = min ((264/0[} — 232 932 _ 1)

with the code shown in Figure 4.11. Once the approximation has been computed, division
can be performed with the code in Figure 4.12. The proof of correctness is quite involved
and is beyond the scope of this thesis. What is important about these routines is that they
run very efficiently on the NVIDIA hardware, and use only two correction steps, versus the
three required in the usual Barrett reduction. These routines also are much faster than what
the compiler generates because we can assume normized divisors. Finally, we note there is
nothing that limits these algorithms to 32 bits, in fact, the same algorithms can be applied
to any length values, by replacing the uint32_t type with higher precision types, including

multiple limb values such as the value of a slice on a particular thread. These algorithms

uint32_t approx-inv32(uint32_t divisor) {
uint64_t approx;

// assert(divisor >=0x80000000);

if (divisor == 0x80000000)
return OxFFFFFFFF;

approx = (—(uint64_t)divisor) / divisor;
return 2+(uint32_t)approx;

Figure 4.11. Construct an approximation of the inverse of a 32-bit value

90

uint32_t div32(uint32_t hi, uint32_t lo, uint32_t divisor, uint32_t approx-inv) {
uint32_t q, add, ylo, yhi;

add = (lo<divisor) ? 1 : 2;

// computes q=MIN(-_umulhi(approx, hi) + add + hi, OxFFFFFFFF)
q = --umulhi(approx_inv, hi) + add + hi;
if (q<hi)

q = OxFFFFFFFF;

// computes yhi and ylo as full 64—bit product of q and divisor
ylo = gxdivisor;
yhi = __umulhi(q, divisor);

// first correction step
lo = sub_cc(lo, ylo);

hi = subc_cc(hi, yhi);
add = subc (0, 0);

q = q + add;

// second correction step
lo = add_cc(lo, divisor);
hi = addc_cc(hi, 0);

q = addc(q, add);

return q;

Figure 4.12. 64 bits divided by 32 bits

are one of the most important contributions for achieving high performance and are used
repeatedly in the library.

The next algorithm, shown in Figure 4.13 computes () = LN UM -2"/ DENOMJ , where
Q, NUM, and DENOM are unsigned MP values represented as slices across a warp. The
algorithm sets Q to the quotient and returns the remainder in NUM, and is just the classic
sequential MP division algorithm described in Section 2.2.4 implemented with slices. The
parallelism comes from the fact that the sub-operations (add, subtract, multiply) on slices
all run in parallel with local carry/borrow accumulation. The division routine makes use
of two subroutines, APPROX_INV and DIV, which are the algorithms discussed above,
implemented on the limbs of a particular thread’s slice. The implementation also assumes
a generalized __shfl that works on all the limbs of a slice.

The last algorithm in this section is square root, which computes S = _\/ﬁj where
S and X are unsigned MP values represented as slices across a warp. The corner cases in

the square root code make it significantly longer and more complex than other algorithms,

91

void slice_divide (Slide &UM, Slice DENOM, Slice &Q) {
Slice APPROX, EST, PROD_HI, PROD_LO;
int32_t carry_word;

// Compute APPROX = min(ceil (27/16 / DENOMsy) — 2m/32 2n/32 _1q)
APPROX=APPROX_INV (__shfl (DENOM, 31));

for (index=31; index >=0; index ——) {
// Compute EST = (NUMsj -2"/32 + NUMso)/DENOMsy, using APPROX
EST = DIV(__shfl (NUM, 31), __shfl (NUM, 30), __shfl(DENOM, 31), APPROX);

PROD_LO
PROD_HI

LO(EST x DENOM) ; // compute the low half of EST x DENOM
HI(EST x DENOM); // compute the high half of EST x DENOM

// each thread has a local carry word (cw) to track lazy carries/borrows

cw=0;
NUM = sub(cw, NUM, PROD_HI); // NUM=NUM — PROD_HI, using cw for local borrows
NUM = __shfl (NUM, warp_-thread —1); // equivalent to NUM=NUM << n/32;
cw = __shfl(cw, warp_thread —1); // shift cw (special code is req’d for thread 31)
NUM = sub(cw, NUM, PRODLO); // NUM=NUM — PROD_LO, using cw
while (slice_signed_resolve (cw, NUM)<0) { // ar most two corrections are req’'d
EST——;
NUM = add(cw, NUM, DENOM); // NUM=NUM + DENOM, using cw for local carry out
}
if (warp_thread == index)
Q=EST; // store next slice of Q
}

Figure 4.13. Division algorithm for two MP values represented as slices

so we omit the pseudo-code. However, it follows the iterative approach from Section 2.2.8.
It is quite similar to the division algorithm in Figure 4.13, in that it uses 32 iterations where
each iteration generates the next slice of the result by computing an estimate of the slice
and using correction steps. In both algorithms, the estimate is computed by dividing the
most significant two slices of the remainder by a common divisor (in the square root case,
the divisor comes from the initial approximation of the square root). To accelerate the

divisions, the square root routine also uses APPROX_INV and DIV.

4.3 Experimental Testing and Results

To evaluate our algorithms we ran our experiments on an NVIDIA GeForce GTX 980
GPU running at 1.22 GHz. The host machine is an Intel Core 15-7400 running at 3.0
GHz with 16 GB of memory and is running 64-bit Ubuntu Server version 16.04.1 LTS and
CUDA 9.0 with version 384.81 of the NVIDIA driver. For the CPU tests, we use the GMP

92

version 6.1.1 for integer arithmetic and MPFR version 3.1.5 for floating point arithmetic.
For all of our experiments, we use nvidia-smi to set the persistence mode to 1 and set the
memory clock rate to 3505 MHz and the graphics cores clock rate to 1392 MHz. These are
the maximum values supported on this GTX 980 card.

The first set of tests we perform is simply to confirm that our low level approx_inv32
and div32 routines of Figures 4.11 and 4.12 outperform the built-in compiler routines. To
test this, we launch a large number of threads where each thread divides 1000 random 63-
bit numbers by a normalized common 32-bit divisor using the compiler division. When we
perform the same test using the approx_inv32 and div32 algorithms. The compiler version
runs in 20.6 ms vs 3.36 ms in our optimized approach, which is roughly a 6x speedup.

For the performance testing of the library, we generate arrays of random values. For
1024-bit mantissas, we generate 1M instances. For 2048-bit through 4096-bit mantissas we
generate S00K instances and for 5120-bit through 8192-bit mantissas, we generate 100K
instances. Then for each API, we run the API function 10 times on the random input
and average the resulting run times, which we report Table 4.3. After the 10th run, we

copy the data back to the CPU and verify it using MPFR, to ensure GPU computation

GPU Run Time (ms)

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: 1M 500K 500K 500K 100K 100K 100K 100K
set_ui 1.79 1.14 1.36 1.69 051 058 0.64 0.70
set_si 1.72 1.18 1.36 1.69 051 057 064 0.70
set_float 1.90 129 1.35 1.51 050 056 062 0.69
set_.double | 344 181 1.84 1.82 049 054 060 0.66
sgn 0.04 002 0.02 0.02 0.01 001 0.01 0.01
cmp 0.27 0.14 0.14 0.14 0.03 003 0.03 0.03
neg 1.54 135 1.97 264 0.67 081 096 1.10
add 269 194 2091 388 097 1.16 136 1.55
sub 273 194 291 388 097 1.16 136 1.55
mul 7.11 11.83 23.82 38.70 11.31 15.80 2095 27.02
div 64.24 63.72 81.00 10240 2541 3190 38.72 47.83
sqrt 5791 76.63 9586 118.65 29.51 3580 43.05 51.48

Table 4.3. GPU running time in milliseconds

93

CPU Run Time (ms)

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: 1M 500K 500K 500K 100K 100K 100K 100K
set_ui 27.85 21.29 29.82 38.29 1093 11.02 12.70 14.33
set_si 25.18 21.27 29.68 38.25 939 11.05 12.71 14.32
set_float 26.00 21.34 29.83 38.29 987 11.09 12.81 14.47
set_double | 24.44 2047 2844 3634 892 1052 12.14 13.64
sgn 2.97 1.68 1.67 1.66 0.62 0.62 0.62 0.62
cmp 5.11 2.68 2.80 278 0.84 0.84 0.84 0.84
neg 36.77 31.77 4486 5791 1445 17.12 19.73 22.37
add 48.78 4196 59.07 76.18 19.00 22.35 25.72 29.08
sub 48.82 42.02 59.19 76.17 1898 2234 2573 29.07
mul 50.04 64.82 11092 189.15 52.64 6960 87.85 105.71
div 105.15 115.04 203.53 297.24 85.87 111.19 142.66 178.44
sqrt 147.41 123.84 176.59 256.31 66.02 84.44 100.81 123.25

Table 4.4. CPU running time in milliseconds

matches MPFR. The random values explore a range of signs, exponents and mantissas, but
no special values.

For comparison, we also implement a multithreaded version of the same APIs built on
top of MPFR. The threaded version uses OpenMP and runs with 8 threads on the CPU
(an Intel core 15-7400) to handle the arrays. The test results are thus a socket to socket
comparison between the GPU and the CPU. As on the GPU, we run each API 10 times
and average the running time. These results are presented in Table 4.4. It’s important to
note that the arrays are quite large, and do not fit in the CPU cache, thus we are measuring
memory = compute = memory, as we are on the GPU.

In Table 4.5 we present the speed-ups, where we divide the CPU running time by the
GPU running time for the same APIs with the same size mantissas. The last column is
the average of the speed-ups across all the sizes in each row. For the set APIs, the GPU is
roughly 17x faster. For the comparisons, the GPU is over 20x faster. For neg, add, and sub,
the GPU is roughly 19x faster. For the compute intensive APIs, mul is 4.9x faster, div is

2.9x faster, and sqgrt is 2.2x faster.

94

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: 1M 500K 500K 500K 100K 100K 100K 100K | average
set_ui 15.6 18.7 219 227 214 19.0 19.8 205 19.9
set_si 146 18.0 218 226 184 194 199 205 19.4
set_float | 13.7 165 22.1 254 197 198 20.7 199 19.9
set.double | 7.1 11.3 155 200 182 195 202 20.7 16.6
sgn 743 838 834 828 620 61.7 615 615 71.4
cmp 189 19.1 20.0 199 28.0 28.0 279 279 23.7
neg 233 242 225 21.7 215 207 204 202 22.0
add 18.1 21.6 203 19.6 196 193 189 188 19.5
sub 179 21.7 203 196 19.6 193 189 18.8 19.5
mul 70 55 4.7 4.9 4.7 4.4 4.2 3.9 4.9
div 1.6 1.8 2.5 29 34 3.5 3.7 3.7 29
sqrt 2.5 1.6 1.8 2.2 2.2 24 2.3 24 2.2

Table 4.5. Speedup table: CPU running time / GPU running time

4.4 Comparison to Prior Work

There are several papers that have implemented multiple precision integer or floating
point libraries on the GPU which were discussed in Section 2.5.4. Here we compare our
results to the three most recent papers. The most straightforward comparison is to Honda,
Ito, and Nakano’s [61] MP integer multiplier. They use a warp synchronous approach
(much like our own) to implement their multiplier and test at power of two sizes from 1024
bits through 32768 bits on a GTX 980. We use the same card and support some of the

sames Sizes:

Throughput Ops/Sec
1024 bits | 2048 bits | 4096 bits | 8192 bits
Hondaet al. [61] | 65.8 M 13.3 M 3.8M 970 K
Ours 1427M | 422 M 13.5M 3.7M
Speed Up 2.2 3.2 3.6 3.8

Table 4.6. A comparison of this work to Honda, Ito, and Nakano’s

Nakayama and Takahashi [85] implement array oriented high precision floating point
addition and multiplication in CUMP. They evaluate their library running at three sizes,

384 bits (roughly 100 decimal digits), 3328 bits (roughly 1000 decimal digits) and 33280

95

bits (roughly 10,000 decimal digits) on a Tesla C2050 GPU card. The C2050 is quite an
old card which does not support the __shfl instruction. However, with some changes to our
library, we were able emulate the __shfl operations using shared memory and were able to

get our library up and running on a C2050. We compare their reported performance to our

library at 384 bits and 3328 bits.

Addition
size throughput size throughput
Nakayama and Takahashi | 384 bits 240 M 3328 bits 41 M
Ours 1024 bits | 64.6 M | 4096 bits | 424 M

Multiplication
size throughput size throughput
Nakayama and Takahashi | 384 bits 145 M 3328 bits 3.6 M
Ours 1024 bits 169M | 4096 bits 42M

Table 4.7. A comparison of this work to Nakayama and Takahashi’s

At 3328 bits, our library has greater precision and greater performance for both addition
and subtraction. If we scale the 384 bit results by 2.67 for addition, we find our performance
is roughly 172 M/sec and by 2.67% for multiplication, our performance is roughly 120
M/sec. This is less than what is achieved by Nakayama and Takahashi, but there are several
things to note. First, the lack of a __sAfl instruction significantly impacts the performance
of our library on the C2050. Second, our library supports a rich set of features, such as
correct rounding and special values that are not supported in Nakayama and Takahashi’s
library. The associated overheads are especially burdensome at small sizes.

Finally we compare our library to CAMPARY by Joldes et al. [68]. CAMPARY is an
MP floating point library that supports correct rounding and a quick and dirty mode which
will be close to correctly rounded result, but is not guaranteed in all cases. CAMPARY
represents a floating point value as a sequence of double precision values, similar to David
Bailey’s QD library. CAMPARY is very fast at low precision (106-212 bits) but perfor-

mance suffers at larger sizes. In [68] Joldes et al. implement a Hénon map routine using

96

CAMPARY and measure the performance at sizes from 106 bits to 424 bits on a Tesla

C2075 card. These results are presented in Table 4.8:

Precision | Hénon Map Iterations per second
106 bits 227 M

159 bits 76 M

212 bits 37TM

318 bits I5M

424 bits 8 M

Table 4.8. Performance of the Hénon map implmented with CAMPARY running on a Tesla
C2075 GPU

We have implemented the same Hénon map iteration using our library. Unfortunately,
our library doesn’t support sizes less than 1024 bits at this time, so we compare our library
at 1024 bits to COMPARY at 424 bits. We see from Table 4.8 that each doubling of the
precision results in roughly a factor of 5 slowdown, thus we would expect CAMPARY at
848 bits to achieve roughly 1.6 M iterations per second. At 1024 bits, our library achieves

a throughput of 4.87 M iterations per second on a C2075, about a factor of 3 faster.

4.5 Conclusion and Future Work

The floating point library is a good start toward a high precision library for the GPU. It
has rich feature set, including support for all five IEEE 754 rounding modes and supports a
superset of the IEEE 754 special values. The performance of the library is also quite strong.
It outperforms all of the GPU MP libraries with one small exception, Nakayama and Taka-
hashi’s CUMP at very small sizes. We believe that comparing our library to CAMPARY
and CUMP on a more recent Tesla GPU with warp shuffle support, such as a K40, would
show even further gains.

The socket to socket comparison against an Intel processor running MPFR is also quite

strong. For linear operations: addition, subtraction, comparison, the GPU library is over

97

19x faster than the CPU library. For more compute intensive operations: multiply is 5.4x
faster, divide is 3x faster and square root is 2.3x faster.

However there are some important caveats. To date the library is best classified as
research-ware. We have tested the library with random data, but that does not perform a
thorough test of the corner cases which exist in an FP library, especially with the complex
carry chains that can occur using a warp oriented approach with local carry accumulation.
The code has been written carefully and we have done limited ad-hoc testing for many
cases, but to thoroughly test the library would be a very big project, on the order of the
time to write the software in the first place. We leave this testing for the future.

In addition, there are a number of enhancements that should be done in the future,

which would improve the usability of the library. These include:

e Support fused multiply and add / fused multiply and subtract.

Support support a dot product operation, based on fused multiply and add, which

would enable an efficient matrix multiply routine.

Allow multiple instances per warp, specifically, 1, 2, 4, 8 and 16 instances per warp.

Improve the internal algorithms for better performance.

Better import/export and input/output routines.

98

CHAPTER 5

LARGE UNSIGNED INTEGER ADDITION, SUBTRACTION AND
MULTIPLICATION

In this chapter we present our work on large unsigned integer addition, subtraction, and
multiplication. This chapter is organized as follows: Section 5.1 presents our work on large
integer addition and subtraction. This section describes the problem, algorithms used, and
experimental results. In Section 5.2 we report on our prior efforts to implement an FFT
approach to large integer multiplication, published in [39]. We present the basics of FFT
multiplication, the memory layout, implementation details, optimizations, and experimen-

tal setup and results.

5.1 Large Integer Addition and Subtraction

In this section, we look at the problem of adding two very large integer values, stored
in contiguous blocks of memory and writing the resulting sum to a third block of memory.
The scales that we are interested in range in size from 1 megabit to 8 gigabits. On the
CPU, this is quite an easy problem, just run through the blocks from least significant word
to most significant word, pushing the carry along. A single CPU core can easily saturate
the memory bus, so there is no need to use a multi-core/multi-threaded approach. On the
GPU, this not the case. It’s not possible for a single thread, warp, block or even streaming
multiprocessor (SM) to saturate the GPU memory bus. To achieve saturation, a large num-
ber of blocks must be run across multiple SMs. Thus on the GPU the adder will need to
break the problem up into a number of chunks that are run in parallel. These chunks are

then assigned to blocks, or warps within a block. Since communication between blocks is

99

very restricted, it’s best to structure the adder as two kernels, where the first kernels com-
putes the sums and carry outs, and the second kernel resolves the carries that cross block
boundaries. Since addition is not a compute intensive operation, our goal for the kernels is
to achieve as close to full memory bandwidth as possible, even in the presence of very long
carry chains across block boundaries.

Our first attempt to implement the kernels for large addition had terrible performance.
The bandwidth achieved was just a small fraction of what we had expected. It was so bad
that we thought there must be a bug in the code. After checking it carefully, we realized the
code was fine, but something about the access pattern of the kernel was causing the memory
subsystem to significantly underperform. To understand the influence of access patterns on
bandwidth, we looked at a much simpler problem — computing the logical XOR of two
blocks of memory of 8 gigabits (256M words) each and writing the result to a third block.
We implemented and tested 5 kernels (described below) based on common GPU design
patterns. The 5 kernels all use 128-byte aligned and coalesced global memory read and
writes and our expectation was that we should see only minor differences in the bandwidth

achieved, but that is not what we found.

R = AxorB
XOR —/ | 256M words |
B | 256M words |

Each iteration processes one
“grid” worth of data. Each thread uses the
grid size (blocks * threads per block) as the stride value.

Al 256M words |

Timestep 0 Timestep 1 Timestep 8190 Timestep 8191
[7 T 7 T 1

1 grid (64 * 512 = 32K words) 1 grid Indicates

Assigned
Timestep 0 to Block 0
Grid processed in parallel by all 64 blocks T e
\ v J\) -
Block 0 Block 1 Block 63
512 threads 512 threads 512 threads

Figure 5.1. Grid Stride Loop processing using 64 blocks and 512 threads per block

100

R = AxorB

Al 256M words |
XOR —/8 | 256M words |

B | 256M words |

Chunks are assigned to blocks

Chunk 1 Chunk 2 Chunk 63 Chunk 64

Block 62 Block 63

Block 0
Indicates ;
Timestep 0

Blocks process the chunk with an iteration from left to right Processing

| 512threads | 512threads | . n o | 512threads |
Timestep 0 Timestep 1 Timestep 8191

Figure 5.2. Block Stride Loop processing using 64 blocks and 512 threads per block

Thread per Word: here we use the standard approach of launching enough blocks so that
we have a thread per result word. Each thread loads a single word from A and B, computes

the exclusive OR and writes the resulting word to R and then terminates.

Grid Stride Loop: this another common technique. Instead of launching a thread per
word, we launch a much smaller fixed grid of threads, whose size is typically chosen such
that all threads can be run simultaneously on the device. The threads iterate through the
arrays using the grid size as the stride value. This is generally quite an efficient approach.

This is shown in Figure 5.1 which uses 64 blocks and 512 threads per block.

Block Stride Loop: in this approach, a fixed number of blocks are launched. The arrays
are then split into equal sized contiguous chunks, and exactly one chunk is assigned to each
block. The blocks then run in parallel and each block iterates through its chunk using the

block size as a stride value for the iteration. This is shown in Figure 5.2.

Warp Stride Loop: this is similar to a block stride loop. The array is again split into equal
sizes contiguous chunks, and exactly one chunk is assigned to each warp. The warps all run
in parallel and each warp iterates through its chunk using a stride value of 32 (the number

of threads in each warp).

101

BW (gigabytes/sec) | bandwidth (gigabytes/sec)
Approach no synchthreads with syncthreads
Thread per Word 203.2 203.2
Grid Stride Loop 170.9 197.8
Block Stride Loop 169.0 197.2
Warp Strde Loop 22.5 22.5
Grid Stride Loop (4 word Read/Write) 190.2 196.5

Table 5.1. XOR kernels and memory bandwidth achieved

Grid Stride Loop using 4 Word Read/Writes: the last approach makes use of grid stride
loop, but instead of processing a single word on each iteration, each thread processes 4
words at a time. The memory system supports 1 word, 2 word and 4 words per thread for
reads and writes. This kernel makes use of the 4 word reads and writes.

For each kernel, we run two tests, the first runs the kernel as described above. The sec-
ond test adds a syncthreads operation after the write step. The syncthreads is not required
for correctness, but as we’ll see, it can have an impact on performance. For each test, we
do 10 runs with 4 blocks of 512 threads per SM and we calculate the average running time.
The bandwidth is then computed as 3 GB divided by the running time and these results are
shown in Table 5.1. The tests are performed on a GTX 980, which has 16 SMs, so a total
of 64 blocks and 1024 warps (16 warps per block) are launched per run.

On the GPU, there are two well known issues that can cause the memory bandwidth
to drop, the first is uncoalesced reads or writes, which occurs when the threads of a warp
issue reads or writes to non-consecutive addresses. The second well known issue is when
the warp is accessing addresses that are not 128-byte aligned. The cache tends to hide
some of these issues, but they can still impact the bandwidth significantly. However, in the
5 kernels above, all reads and writes are 128-byte aligned and warp coalesced. Further,
since we are streaming through extremely large arrays, virtually all reads and writes go

directly to global memory and the cache has a negligible impact on performance.

102

The results in Table 5.1 can be clusted in the three groups. On the low end, Warp Stride
Loops have terrible performance of 22.5 GB/s or roughly 1/9th of the potential bandwidth.
On the high end, above 195 GB/s, achieved by Thread per Word, Grid Stride Loops with
Syncthreads and Block Stride Loops with Syncthreads almost fully saturates the memory
bandwidth. Then there are the results in the middle that range from 165 GB/s to roughly
190 GB/s. The middle range are all derived from kernels without syncthreads. Collectively,
these results suggest that as the warps are spread further and further apart, i.e., with less
locality of reference in global memory, the bandwidth drops. This explains the terrible
performance of Warp Stride Loops where each of the 1024 warps are accessing different
regions of memory (3096 different regions to be precise, 1024 for each of the A and B
arguments, and 1024 regions for the result), versus the excellent performance of Thread
per Word and Grid Stride Loops with Syncthreads, where all threads are accessing the
same regions of memory. The interesting cases are the kernels without syncthreads. We
believe that what’s happening is that as the kernel is running, some of the warps get further
and further out of sync with the others. So the kernel starts off with excellent locality
of reference, but as it runs, the warps get out of sync and spread out in memory, and
the locality of reference drops to the point where it starts to impact the bandwidth. The
other interesting case is the excellent performance of Block Stride Loops with Syncthreads,
in which the 64 blocks are each accessing different regions of the arguments and result.
This implies that the memory subsystem can efficiently handle accesses to 192 regions
of memory, but somewhere between 192 regions and 3096 regions, the memory subsystem
hits a big performance cliff. NVIDIA does not describe the hardware internals in any detail,
but there are two scenerios that seem plausible. First, the GPU uses a paged memory
system, so perhaps we’re thrashing the page table translation look-aside buffer. Another
possibility is that modern DRAMs architectures employ a system of open pages. Accesses
to the open pages are much faster than to other pages. Maybe we’re actually passing a page

threshold in the DRAMs which causes performance to drop significantly. In any case, the

103

In this example, A, B and the intermediate result are divided into 4 chunks

A A
r A r A}

2 I - N N N

Parallel Addition Kernel

\ Status Table
chunk 1 status
Intermediate ‘ ‘ ‘ | chunk 2 status
Sum chunk 3 status

\ / chunk 4 status

Carry Resolution Kernel

Final Sum | |

Figure 5.3. Large addition using two kernels: Parallel Chunk Addition followed by Carry
Resolution

simplistic view that GPU main memory is flat, i.e., a uniform access time regardless of
locality of reference, is clearly wrong. There can be a wide variance in achieved bandwidth
and this needs to be factored into the design of certain memory bound kernels, such as large
addition.

Next we turn our attention to the construction of the large adder. As mentioned earlier,
due to the restrictions in communication between GPU blocks, it’s best to perform the
addition using two kernels. The first breaks the A and B arguments into chunks, then
corresponding chunks from A and B are added. The chunk sums are all run in parallel.
The second kernel then resolves the carries that cross the chunk boundaries. This approach
is shown in Figure 5.3. The carry resolution kernel needs to know which chunks generate
carry-outs and which chunks are critical, i.e., a carry-in will produce a carry-out. This is
tracked in the Status Table, where each entry is one of three states No carry out, Critical,

and Carry out. It’s worth noting that carries can ripple across critical chunks, thus to

104

compute the carry in for the k™, potentially requires examining the chunk status for all
chunks less than k. For this reason, it’s preferable to keep the number of chunks relatively
small.

The the Thread per Word and Warp Stride Loop approaches both achieve excellent
memory saturation, however, it can be seen in Figure 5.1 that every 512 words will be
handled by a different GPU block, and thus the A and B arguments must be broken into
512 word chunks. For a 256M-word problem, we’ll have 512K chunks and a corresponding
number of status entries. Thus, the carry resolution kernel potentially has to do a lot of
computation just to determine the carry in for each chunk, which makes the Thread per

Word and Warp Stride Loop approaches unattactive for the large adder.

void addition_-kernel (uint32_t *SUM, uint32_t =status , uint32_t %A, uint32_t *B) {
int carry_forward=0, sum_word, a_word, b_word;
bool critical=true;

block_size = ... the size of the GPU block, i.e., 512
chunk_size = ... compute the size of my chunk
chunk_offset = ... compute the offset (in A and B) of my chunk

// we assume the chunk_size is evenly divisible by the block size
for (int index=0; index<chunk_size / block_size; index++) {
a_word = A[chunk_offset + block_sizexindex + thread_id];
b_word = B[chunk_offset + block_sizexindex + thread_-id];

sum_word = a_word + b_word;
if (thread_-id==0 && carry_forward !=0)
sum_word ++;

resolve carries across the threads in the block
set carry_forward to the carry out of the last thread

if (sum_word !=0xFFFFFFFF)
critical=false ;

SUM[chunk_offset + block_sizexindex + thread_id] = sum_word;

}

// since the initial carry in was 0, a block can either be CARRY.OUT or
// critical , but it can’t be both
if (carry_foward==1)
status [block_id]=CARRY_OUT;
else if(block-id>0 && critical is true in all threads)
status [block_id]=CRITICAL;
else
status [block_id]=NO_.CARRY_OUT;

Figure 5.4. Parallel Chunk Addition kernel pseudo-code

105

Using the Warp Stride Loop or Block Stride Loops approaches keeps the status table
to a much more managable size, 1024 entries for WSL, and 64 entries for BSL. Our first
attempt to implement large addition used a WSL approach, but we ran into the bandwidth
limitations as described above. Our second implementation uses a BSL approach and it
achieves good bandwidth saturation across a range of size. The pseudo-code for the chunk
addition kernel is presented in Figure 5.4. Carries that are internal to the chunk are resolved
using __ballot operations within warps (this technique is described in depth in Chapter 4,
see Figure 4.9), shared memory across warps in the block, and with the carry_forward
variable across iterations of the block stride loop. When the addition for the chunk is
complete, the routine writes its entry to the status table and terminates. The pseudo-code for
inter-chunk carry resolution is presented in 5.5. This routine also uses __ballot operations
and shared memory to handle communications within the warp and shared memory across

warps in the block.

void resolution_kernel (uint32_t *SUM, uint32_t *status) {
__shared__ uint32_t shared_status [64];
uint32_t carry = CRITICAL;
int index ;

if (thread_id <64)
shared_status[thread_id]=status[thread_id];

__syncthreads ();

for (index=block_id —1; carry==CRITICAL ; index ——)
carry=status [index];

// if the prior block did not carry out, we’re done
if (carry==NO_CARRY.OUT)

return;

for (int index=0; index<chunk_size / block_size; index++) {
sum_word = SUM[chunk_offset + block_sizexindex + thread_id];

if all threads in the block less than my thread_id have
sum_word==0xFFFFFFFF, then increment sum_word

SUM|[chunk_offset + block_sizexindex + thread_id] = sum_word;

if any thread has sum_word != 0, then break

Figure 5.5. Parallel Chunk Resolution kernel pseudo-code

106

To test the performance of the large adder, we generate blocks of random data for the
A and B arguments and measure the total running time of the two kernels. We perform
10 runs for each size and average the running times together. From the running times,
we compute the bandwidth achieved. These results are presented in Table 5.2, along with
the bandwidth achieved by XOR using block stride loops for the same size blocks and
the bandwidth achieved by the system cudaMemcpy function. As we can see, from the
table, at the small sizes (128K, 256K, and 512K words), the Large Adder is considerably
slower (35%, 25%, and 16% respectively) than the XOR kernel. At larger sizes, the Large
Adder performs almost as well as the XOR kernel and cudaMemcpy function. Most of
the performance difference at the small sizes seems to be driven by the fact that the Large
Adder runs two kernels instead of one, and thus has twice the kernel launch overhead.
To test this, we run only the first adder kernel and measure the bandwidth performance
achieved. At 128K words, the first kernel achieved 121.1 GB/sec and at 256K words, the
first kernel achieved 151.1 GB/sec, which closes the performance gap considerably. At the
larger sizes, the overhead of two kernel launches is amortized over a much larger number

of bytes which which shrinks the performance gap.

Bandwidth Gigabytes/sec
Size in Words | Large Adder | XOR | Memory Copy

128K 86.9 134.6 127.6
256K 119.3 159.4 155.4
512K 143.7 170.6 165.8
1024K 165.1 182.9 179.8
2048K 179.7 189.1 189.0
4096K 188.7 194.0 193.7
8192K 193.0 195.9 195.7
16M 195.7 197.1 197.3
32M 197.0 197.8 197.4
64M 198.2 198.3 197.9
128M 197.4 197.4 198.1
256M 197.0 197.0 197.8

Table 5.2. Bandwidth achieved by the Large Adder kernels, the XOR kernels, and the
CUDA memory copy routines for various sizes

107

There is still one thing to note. These kernels are running on random data. Thus on
average, carries rarely propagate far and it’s extremely improbable that a block could be
critical. However, not all computations are on random data. For example, we might be
computing X — Y where X and Y are very large integers, and Y happens to be equal to
X. In this case, the carry will literally ripple through the entire large integer from the first
block to the last. Thus, the first kernel will read 2n words and write n words (all words
will be OxFFFFFFFF), and the second kernel (carry resolution) will read the n words and
overwrite all of them with zeros. The total memory reads and writes will be 5n words,
where 7 is the length of the arguments. The problem here is that the first kernel is writing
out critical words at the start of the block and the carry in isn’t available until the second
kernel, which might need to flip all those words. We can improve the kernels as follows.
Instead of the first kernel writing least significant critical words, it should count them, but
not write them. Then it writes this count into the status table. The second kernel, which has
the block carry-in information, can then write the critical ones if there was no carry-in, or
write zeros and increment the next word if there was a carry-in. This brings the total reads
and writes down to 3n (plus a small number of words for the increments) from 5n words.
We implement this approach in our third and final set of kernels.

To test this, we generate random data for the A argument, and set the B argument to the
bit-wise complement of A. We then overwrite each k™ word of B with random data. Thus,
on average, we have k length carry chains, and on average half of them have carry-ins and
half do not.

We compare the performance of the version 2 of the large adder which does not im-
plement the critical word counting to version 3 which does on a 256M-word addition with
carry chain lenghts (k) that range from 10 to 10° words. The results are presented in Table
5.3. The Effective Bandwidth is computed as 3 GB divided by the kernel running time. For
short carry chains, only a small number of words need updating by the second kernel and

the performance of the two versions is roughly equal. But when the carry chains get to

108

Effective Bandwidth Gigabytes/sec

k, the carry chain length | Large Adder Version 2 | Large Adder Version 3
10 197.0 196.9
100 196.6 196.3
1,000 196.8 196.7
10,000 196.7 195.7
100,000 195.5 196.0
1,000,000 185.0 196.8
10,000,000 147.2 199.0
100,000,000 151.2 196.2
10° with carry in 116.9 195.3
10° no carry in 196.8 195.7

Table 5.3. Effect of long carry chains on achieved bandwidth

about 1M words, version 2 performance starts to drop (because it’s reading and writing far
more than the required 3n words). When £ is greater than the length of the arguments, then
the entire addition is critical. In the case where there is a carry in, version 2 must flip every
word and the effective bandwidth is only 60% of version 3.

Large subtraction is implemented using a twos complement adder. The code is almost
identical to large addition, the only differences are that in the first kernel, B is comple-
mented after loading, and the Carry Resolution kernel forces a carry in to the first block.
As expected, the bandwidth performance of large subtraction routine matches that of large
addition routing.

We conclude this section with a short discussion of bandwidth utilization. According
to NVIDIA specifications, the GTX 980 uses a GDDRS memory subsystem with a 256-bit
interface bus running at 3.5 GHz, with a theoretical bandwidth of 224 GB/sec. The large
addition and subtraction kernels achieve between than 190 and 200 GB/sec when the ar-
guments are larger than 8M words. This is better than 85% of peak theoretical bandwidth.
It’s also worth noting that not all of the bandwidth is available for data in CUDA applica-
tions. It’s shared with the frame buffers, the virtual memory paging system, various caches

(instruction, texture, constant), various on chip microcontrollers/microprocessors that run

109

the GPU operating system, etc. During our various tests, the best bandwidth we’ve seen
delivered to an application is 203 GB/sec, so the large addition and subtraction routines are

within a few percent of the best that’s possible for large arguments on a GTX 980.

5.2 Large Unsigned Integer Multiplication

In this section we report on our earlier work [39], where we explore FFT multiplication
on the GPU using a 64-bit finite field, F,, where p = 2% — 232 4 1. The prime, p, is
a special modulus and supports a very fast modular reduction that is suitable for 32-bit
ALUs. Moduli of this form were discussed earlier in Section 2.2.7. The code base for this
work was designed for the Fermi architecture, but the same code still runs without change
on later generations and in Section 5.2.5 we report results of the original code running on
a GTX 980. There are a number of optimization that could be made to better exploit later
architectures and these changes are described in Section 5.2.6, Conclusions and Future
Work.

One of the operations that GPUs are able to perform quickly is an FFT. Thus, it’s rea-
sonable to expect that a multiplication algorithm based on the FFT would be an effective
means of obtaining good performance on a GPU. In 1971 Schonhage and Strassen pub-
lished [94], an arbitrary precision multiplication algorithm that uses a recursive approach
where each level of the recursion runs an FFT multiplication in the ring of integers modulo
2ki 4+ 1, where i is the level in the recursion with kiv1 ~ V/k;. The idea to use FFT convo-
lutions for multiplication is older and generally attributed to Strassen circa 1968, however,
there are some limitations to using a single FFT: for any fixed finite ring / finite field, there
is a maximum size integer that is guaranteed not to overflow the ring/field. However, for
practical purposes, as we’ll see, a 64-bit field can efficiently support very large integers, up
to sizes of 4 GB times 4 GB, which is sufficient for our needs on the GPU.

Figure 5.6 presents Strassen’s FFT convolution multiplication algorithm. The FFT com-

putations can be done in C (the complex numbers) with floating point operations, however,

110

l1: Given a base b, compute the fast Fourier transform of the digits (with respect
to the base) of A and B, treating each digit as an FFT sample.

2: Multiply the FFT results , component by component: set C[i] = FFT(A)[i]*xFFT(B)[1i]
3: Compute the inverse fast Fourier transform: set C’ = invFFT(C)
4: Resolve the carries: whenever C'[i] >=b:

set C'[i+1] = C'[i+1] + (C'[i] div b)

set C'[i] = C'[i] modb.

5: return C’

Figure 5.6. Strassen Multiplication

the error analysis is very difficult. Instead, most implementations perform the computation
using a finite field F), consisting of the integers modulo p, for some prime p. Using integers,
the FFT computations are exact, however, there are several important restrictions on b (the

base), p (the size of the finite field), and k (the size of the FFT):
e The field F, must have a k™ primitive root of unity.
e The length (in base b digits) of the product of A times B must be less than k.
e The maximum value in the convolution must fit in the field, that is, %(b -1 <p

e Multiplication in the field F,, requires computing modulo p. Therefore, the existence

of a fast modulo p operator is desirable.

Our first attempt to implement large integer multiplication on the GPU [38] used a
32-bit field, with p = O0xFFF00001, &k = 65536, b = 256 (for byte sized samples), and
a single word Montgomery reduction to avoid the slow modulo operations on the GPU.
Unfortunately, the largest values that could be multiplied were 32KB times 32KB and for
larger size, the code switched to an implementation of Karatsuba built on top of the 32KB
“digit” multiplier. The performance was lacklaster and worse yet, as the size increased,
GMP using a comparable 64-bit CPU outperformed our GPU implementation. The main
problem was the choice of a 32-bit field which required another algorithm for very large

sizes.

111

For the next implementation, we investigated a variety of 64-bit primes for finite fields,
but we found that p = OxFFFFFFFF00000001, i.e., 24 — 232 +1 has a number of especially

useful properties:

e The field F,, supports power of two FFT sizes up to 232. It also supports FFT sizes of

3,5,and 7.

e On 32-bit processors, there is a very fast direct method to compute x modulo p for

any z (without Montgomery reductions).

e The number 8 is a 64" root of unity. This means that 64-point FFTs can be done with

shifts rather than requiring 64-bit by 64-bit multiplications.

5.2.1 Fast Modulo

The computation of an FFT in the field F, requires the three field operators: addition,
subtraction and multiplication. Addition and subtraction modulo p are straightforward.
However, multiplication requires computing z modulo p where z is an arbitrary 128-bit
number. Fortunately, choosing p = 26* — 232 4 1 simplifies the computation. The 128-bit
number z can be represented as z = 2%a + 2%4b + 23%2¢ + d (where a, b, ¢ and d are each
32-bits). Using two identities of p, namely, 2° mod p = —1 and 2% mod p = 232 — 1 we

can rapidly reduce z as follows:

z = 2%a+2%p+2%c+d (mod p)

(—Da+ (22 - 1)b+ (2**)c+d

= 2)0b+c)—a—b+d

Although we discovered this prime and the modulo algorithm on our own, it turns out that
it is well known in the cryptography community and there are whole families of primes of
the form 2™ 4 2" + 1 with fast modulo reductions. The seminal paper is by Jerome Solinas

[95] hence they are oftened called Solinas Primes.

112

5.2.2 Multi-byte Sample Sizes

The first step of the Strassen algorithm is to break A and B into digits. In theory, b (the
base), could be any number, but for performance reasons b should be a power of 2. To keep
the complexity of the load and store routines reasonable, samples should be byte-aligned.
Thus, where we formerly used 1-byte samples, we are now able to support 2-byte and 3-
byte samples, i.e., b = 2'¢ or 224, Recall the restriction that the maximum convolution
value must fit in the field, g(b — 1)2 < p. Thus, for 2-byte samples, k, (the size of the FFT)

233 and for 3-byte samples, k must be less than or equal to 27,

must be less than or equal to
The more bits in each sample, the shorter the FFTs and the more efficient the computation.
Therefore, if the product of A times B is less than 3-2'7 bytes in length, our implementation
will use the more efficient 3-byte samples. Otherwise it uses 2-byte samples.

Although k can be up to 233 for 2-byte samples, there is no corresponding primitive
root of unity in the field. The largest power of two FFT size supported by the field is
232, Therefore the largest product that can be computed (using power of two FFTs) with
2-byte samples is 2 - 232, or 8 GB. However, memory limitations alone will often preclude

working with values this large, without resorting to alternative algorithms that stage data

from tertiary storage.

5.2.3 FFT Layout and Implementation

We had three key goals in designing the FFT layout for the GPU:
1. Avoid launching kernels whose sole function is to transpose global memory.
2. Always use coalesced accesses for GPU global memory.
3. Maximize use of the fact that 64-point FFTs can be done with shifts rather than

multiplies.

Avoiding Transpose Operations: there is an elegant way to lay out each FFT size that
accomplishes all three goals. We begin by factoring k (the FFT size) into £ = 8xy where

1 <2 < 64 and y = 64". Figure 5.7 shows the layout for several sizes of FFT. As

113

64K samples 128K samples 1024K samples 2048K samples

16 Samples 32 Samples 256 Samples 8 Samples
B S B
o o o
© [(e} [{e}
(o] (o] (o]
w w» 2]
Q Q Q
3 3 3
;= ;= ;=1
[o] [] []
w (2] (2]
N
(o))
(2]
~
8 8 88 88 8888 -+ 8 %",’
S
]
FFT size is factored into 8xy where:
Width is 8*x where 0<x<64.
Height is y=64*n where 1<n<6.

©

Figure 5.7. FFT layouts as the number of samples is doubled

the number of samples doubles, the width of the matrix doubles, until the matrix is 256
samples wide. Upon the next doubling, the width is shrunk to 8 samples wide and the
height is expanded by a factor of 64. We store the data in row-major order, i.e., the rows
of the samples are stored consecutively in memory. At the top level, we use the standard
four-step Cooley-Tukey [26] algorithms to compute the convolution of the samples. Con-
sider the code in Figure 5.8 that computes the convolution of two 64K samples. Doing
the computation in this straightforward manner would involve three transpose operators
(steps 1d, 2d, and 4d). We can avoid the transposes by reversing the order of the FFTs
in step 4. Instead of treating the samples as 16 columns of 4096 rows, we will use 4096
columns of 16 rows. Thus we can compute the inverse FFT with an alternate four step pro-
cess: a) transpose the matrix from 4096 columns by 16 rows to 16 columns by 4096 rows;
b) compute inverse FFTs of the rows [4096 16-point FFTs]; ¢) multiply by twiddle factors;
d) compute the inverse FFTs of the columns [16 4096-point FFTs]. Using this approach

for step 4 allows us to drop all the transpose operators, leading to the much more effi-

114

1)

2)

3)

4)

Compute the 64K point FFT of the X samples [16 cols, 4096 rows]
a) compute the FFTs of the columns (16 4096—point FFTs)

b) multiply by twiddle factors

c¢) compute the FFTs of the rows (4096 16—point FFTs)

d) transpose the matrix to 4096 columns by 16 rows

Compute the 64K point FFT of the Y samples [16 cols, 4096 rows]
a) compute the FFTs of the columns [16 4096—point FFTs]

b) multiply by twiddle factors

c¢) compute the FFTs of the rows [4096 16—point FFTs]

d) transpose the matrix to 4096 columns by 16 rows

Multiply the samples of X by the samples of Y

Compute the 64K point inverse FFT samples [16 cols, 4096 rows]
a) compute the inverse FFTs of the columns [16 4096—point FFTs]
b) multiply by twiddle factors

c¢) compute the inverse FFTs of the rows [4096 16—point FFTs]
d) transpose the matrix to 16 columns by 4096 rows

Figure 5.8. 64K-Point Convolution using the Cooley-Tukey 4-step algorithm

2)

3)

4)

Compute the 64K point FFT of the X samples [16 cols, 4096 rows]
a) compute the FFTs of the columns (16 4096—point FFTs)

b) multiply by twiddle factors

c¢) compute the FFTs of the rows (4096 16—point FFTs)
—transpose-the-matrixto-4096-columns; H6-rows

Compute the 64K point FFT of the Y samples [16 cols, 4096 rows]
a) compute the FFTs of the columns [16 4096—point FFTs]

b) multiply by twiddle factors

c¢) compute the FFTs of the rows [4096 16—point FFTs]

—transpose-the-matrixto-4096-columns; H6-rows
Multiply the samples of X by the samples of Y
Compute the 64K p

oint inverse FFT samples [4096 cols, 16 rows]

b) compute the inverse FFTs of the rows [4096 16—point FFTs]
c¢) multiply by twiddle factors
d) compute the inverse FFTs of the columns [16 4096—point FFTs]

Figure 5.9. 64K-Point Convolution using the Cooley-Tukey 4-step algorithm, without

transposes

cient algorithm in Figure 5.9. The key point about this algorithm is that during the entire

computation, the samples are always organized as 16 columns by 4096 rows and stored in

row-major order.

Coalesced Accesses to GPU Global Memory: the large FFTs (along the columns) will
not fit in a single CUDA kernel (they require too much shared memory). So we process
them using the technique described by David Bailey [4]. The large FFTs have 64" samples

and thus we handle them as a series of n radix-64 steps. Bailey’s paper describes indexing

115

formulas originally due to Swartztrauber and Stockham. The indexing formulas allow a
large FFT to be broken into steps with the transpose operators folded into the indexing.
In the GPU implementation, we load 512 samples in each CUDA kernel block. The 512
samples are from 8 different consecutive columns (64 samples from each columns). Once
the samples are loaded, the GPU computes 8 64-point FFTs, multiplies by twiddle factors
and stores the results, often to different locations rows. Although it may seem somewhat
counterintuitive, each block computes eight independent 64-point FFTs. This is done to
ensure that accesses to GPU memory are always coalesced. Loads will always load 8 con-
secutive samples and stores will always store 8 consecutive samples. Also, note, because
the load and store indexes can differ, the matrix must be double buffered, i.e., the data
is loaded from buffer A and written to buffer B. Returning to our example of a 64K point

FFT, Figures 5.10 and 5.11 show the implementation of the 4096-point column FFTs, using

. _8Samples , 8 Samples Kerne|1 } 8 Samples % 8 Samples |

|
I T 1

Row 0 Block 0 Block 1 Row 0 Block 0 Block 1
Row 1 Block 2 Block 3 q Row 1 Block 0 Block 1

Each block loads
512 samples,

Block 126 Block 127 8 consecutive X 64 Row 63 Block 0 Block 1
Block 0 Block 1 Row 64 Block 2 Block 3
Block 2 Block 3 Row 65 Block 2 Block 3

Computes 8

64-point FFTs

Multiplies by
Block 126 Block 127 twiddle factors Row 127 Block 2 Block 3
Block 0 Block 1 Row 128 Block 4 Block 5
Block 2 Block 3 R 129 Block 4 Block 5
Stores the results "
according to
the mapping
4096 row mapping:
Row n — Row (n%64)*64+n/64
Block 126 Block 127 Row 4095 Block 126 Block 127
Load from buffer 1 Store to buffer 2

Figure 5.10. 64K-Point FFT example: Column FFTs - Step 1

116

| 8 Samples , 8 Samples | Kerne|2 .8 Samples % 8 Samples |,

T 1 I 1
Row 0 Block 0 Block 1 Row 0 Block 0 Block 1
Row 1 Block 2 Block 3 q Row 1 Block 2 Block 3

Each block loads

512 samples,

Block 126 Block 127 8 consecutive x 64 Row 63 Block 126 Block 127
Block 0 Block 1 Row 64 Block 0 Block 1
Block 2 Block 3 Row 65 Block 2 Block 3

Computes 8

64-point FFTs

Multiplies by
Block 126 Block 127 twiddle factors Row 127 Block 126 Block 127
Block 0 Block 1 Row 128 Block 0 Block 1
Block 2 Block 3 Block 2 Block 3
o o Stores the results "% 1% o oc
according to
the mapping
Kernel 2
4096 row mapping:
Row n — Row n
Block 126 Block 127 Row 4095 Block 126 Block 127
Load from buffer 2 Store to buffer 1

Figure 5.11. 64K-Point FFT example: Column FFTs - Step 2

variant 2 indexing described by Bailey. Since each block handles 512 samples (8 64-point
FFTs), it requires 64K/512=128 blocks to run each radix-64 step. The two figures show
the mapping of rows to blocks for a 64K-point convolution. More detail on these mapping
functions can be found in Bailey’s paper.

Once the column FFTs have been computed, the row FFTs need to be computed. Figure
5.12 shows the how the rows are mapped to blocks on the GPU. Since each CUDA block
handles 512 samples, each block will handle multiple rows. For the 64K example, each

block will run 32 16-point FFTs.

5.2.4 CUDA Implementation and Optimizations
General purpose GPU code must be well thought out and optimized in order to achieve

anywhere near its maximum performance. If the code is poorly designed, it can run much

117

16 Samples

Kernel 3 ‘ Wide
Row 0 Block 0 — FFT 0 T
Row 1 Block 0 — FFT 1
Each block loads
512 consecutive
samples 4
Row 31 Block c1) —FFT 81 0
Row 32 Block 1 — FFT
Comp.UteS 32 Row 33 Block 1 — FFT 1 9
16-point FFTs 6
No twiddle R
multiplications 0
required Row 63 Block 1— FFT 31 W
Row 64 Block 2 —FFT 0 S
Row 65 Block 2 — FFT 1
The 512 values
are written
over the original
values
Row 4095 Block 127 — FFT 31 1

Figure 5.12. 64K-Point FFT example: Row FFTs

slower than on the CPU. With CPU code, the way a problem is partitioned will impact
performance, but because the cache is so large in a modern system, partitioning is typically
much less significant than in the design of GPU code. With the GPU the programmer must

carefully think through each of the following constraints:

e Accesses to global memory should be coalesced

e Accesses to shared memory should minimize bank conflicts

e The problem must be partitioned into a large number of blocks

e Minimize the number of kernel launches, which are very expensive

e Multiple blocks (preferably 8 blocks) must concurrently fit on each streaming mul-
tiprocessor (SM), which implies a small number of registers and very small shared

memory footprint

118

e Each kernel needs to have enough warps so that GPU code can make maximum use

of the global memory bandwidth

In addition to the memory layout described in Section 5.2.3, our CUDA implementation
was heavily influenced by Volkov and Kazian’s [106] FFT work. We follow their design
principals: (a) aggressive use of registers to store FFT samples so that small FFTs can be
computed locally in each thread without the need for synchronization; (b) shared memory
is then used to handle the inter-warp communication required for transpose operators. In
our implementation, each block has 64 threads and each thread holds 8 samples in registers

for a total of 512 samples. To perform eight 64-point FFTs:

1. Each thread runs a local 8-point FFT
2. Transpose the samples using shared memory to pass data between warps
3. Each thread then twiddles the 8 samples using shifting and fast reduction

4. Each thread then runs another local 8-point FFT

This process requires only a single __syncthreads call to compute eight 64-point FFTs.
With this basic design in mind, we looked at a number of specific optimizations to

increase the overall performance:

Finite Fields: we explored a number of different primes as the basis for the field computa-

tions. We found p = 2%4 — 232 4 1 to have the fastest modulo operator.

Computation of Roots: the FFT routines require various powers of the primitive root of
unity. The roots are computed at the start of each kernel and cached in shared memory. The
usual algorithm to compute the power of the primitive root is exponentiation by squaring,
as shown in Figure 5.13. Since the primitive root is fixed, we can improve the performance
by unrolling the loop and precomputing the powers of two of the primitive root, see Figure
5.14. Next, since the ProductModP code requires about 25 instructions, it is faster still to

process the bits two at a time and reduce the number of ProductModP calls. This version

119

uint64_t PowModP(uint32_t k) {
uint64_t current=1, square=root;

while (k>0) {
if (k & 0x0001)
current=ProductModP (current , square);
sqr=ProductModP (square , square)
k=k>>1;
}

return current;

}

Figure 5.13. Exponentiation by Squaring

uint64_t PowModPUnrolled(uint32_-t k) {
uint64_t current=1;

if (k & 0x0001)

current=root;
if (k & 0x0002)

current=ProductModP (current , root_2)
if (k & 0x0004)

current=ProductModP (current , root_4)

if (k & 0x8000)
current=ProductModP (current , root_8000)

return current;

Figure 5.14. Unrolled Exponentiation by Squaring

proved to be the fastest and is shown in Figure 5.15. We tested processing the bits three at

a time, but it was slower than the two bits at a time version.

Assembly Language Add, Subtract and Multiply: we have implemented all of the core
math routines to do computation in the field F, in PTX assembly language because they
are significantly faster than the corresponding C versions. The performance of C versions

is limited by the lack of direct access to the carry flag and MAD instructions.

Custom Transpose Operators: the implementation of FFT routines requires a variety
of transpose operators for samples within a block. Each transpose operator uses shared
memory to pass samples between different threads in the block. The basic structure of a

transpose to write the samples to shared memory, synchronize the threads, then read the

120

uint64_t PowModPUnrolled2(uint32_t k) {
uint64_t current, mult;

current=1;

if ((k & 0x0003)==0x0001)
current=root_1;

if ((k & 0x0003)==0x0002)
current=root_2;

if ((k & 0x0003)==0x0003)
current=root_3;

mult=1;

if ((k & 0x000C)==0x0004)
mult=root_4;

if ((k & 0x000C)==0x0008)
mult=root_8 ;

if ((k & 0x000C)==0x000C)
mult=root_C;

current=ProductModP (current , mult)

mult=1;

if ((k & 0xC000)==0x4000)
mult=root_4000 ;

if ((k & 0xC000)==0x8000)
mult=root_8000 ;

if ((k & 0xC000)==0xC000)
mult=root_-C000 ;
current=ProductModP (current , mult)

return current;

Figure 5.15. Unrolled Exponentiation, 2-bits at a Time

values back using a mapping. Consider the example of the transpose in the middle of a

64-point FFT:

__shared__ uint64_t buffer[512];
uint64 _t samples [8];

void blockTransposeSamples () {
uint32_t low = threadldx.x % 8, high = threadldx.x / 8;

#pragma unroll
for (int index=0; index <8; index++)
buffer[threadldx .x + index*64] = samples[index];
__syncthreads ();
#pragma unroll
for (int index=0; index <8; index++)
samples[index]=buffer [low + index*8 + high=x64];

Figure 5.16. Transpose - 5 Shared Memory Cycles per warp per sample

121

In the first part of the transpose (writing to shared memory), there are no bank conflicts. In
the second part (reading shared memory), there are 4-way bank conflicts. So this transpose
takes 5 shared memory cycles per warp per sample. But the question is: can this transpose
be done with fewer shared memory cycles? What is the optimum?

In our approach, we break the transpose into two mappings. We use the first mapping
to write to shared memory and the second mapping to read from shared memory. Each
mapping is a permutation of the 9 bits used to index shared memory. The mappings come in
pairs, e.g., once you pick a write mapping, there is only one read mapping that will produce
the desired transpose. Since there are 9 factorial permutations of the 9 index bits, there are
exactly 362,880 permutation pairs. We developed a small utility that takes the desired

transpose and searches through all the permutation pairs to find the one with the smallest

__shared__ uint64_t buffer[512];
uint64 _t samples [8];

void TransposeSamples () {
uint32_t tid=threadIdx.x, to, from;

to=(tid & 0x07) | ((tid & 0x38)<<1);

// 2—way bank conflicts

buffer[to+0x000]=samples [0];
buffer [to+0x008]=samples[1];
buffer [to+0x080]=samples[2];
buffer [to+0x088]=samples[3];
buffer [to+0x100]=samples [4];
buffer[to+0x108]=samples[5];
buffer[to+0x180]=samples[6];
buffer[to+0x188]=samples[7];

__syncthreads ();
from=(tid & 0x0F) | ((tid & 0x30)<<3);

// 2—way bank conflicts

samples [0]=transpose [from+0x000];
samples[l]=transpose [from+0x010];
samples[2]=transpose [from+0x020];
samples[3]=transpose [from+0x030];
samples[4]=transpose [from+0x040];
samples[S]=transpose [from+0x050];
samples[6]=transpose [from+0x060];
samples[7]=transpose [from+0x070];

Figure 5.17. Optimum - 4 Shared Memory Cycles per warp per sample

122

number of memory cycles and with simple bit permutations. The resulting transpose code is
shown in Figure 5.17. As can be seen from this example, the permutations are not obvious
and would have been difficult to discover by hand. This is the optimum implementation

where the read and write mappings are based on permutations of the address bits.

We encountered one serious difficulty during the development — each kernel must run a
number of steps, for example our first FFT kernel does the following: computes the powers
of the roots, loads the X data 24 bits per sample, computes the 64-point FFT on the X data,
multiplies by the twiddle factors, stores the X data, then does the same steps for the Y
data. We could split this into two kernels, one for the X data and one for the Y data, but
performance would suffer because we would be incurring two expensive kernel launches
and more significantly, the same roots would need to be computed twice.

Unfortunately, processing the X and Y samples in a single kernel causes other perfor-
mance problems. The CUDA C compiler does a great job of generating fast assembly,
unrolling loops, reusing subexpressions, etc. But it does not optimally schedule the register
file. For example, in our code, we call a set of functions to process the X data, and then
call exactly the same functions to process the Y data. In theory the same registers could
be used to process both data sets. But the CUDA C compiler/assembler does not reuse the
same registers. What we observe is that the number of real registers required to process
both X and Y data in the same kernel increases over the number of registers required to
just process the X data. This may be due to bugs in the compiler/assembler or it may be
due to the compiler/assembler aggressively reusing subexpressions. Either way, the cost of
using more registers far outweighs any benefits from the optimized code. If we specify a
__launch_bounds__ directive, the compiler just spills some of those registers to local mem-
ory. The only way we were able to force the compiler/assembler to stay within the physical
register file without any spilling to local memory was to write all of the core FFT routines

in PTX assembly language.

123

5.2.5 Experimental Setup and Results

For our experiments, we compare an NVIDIA GeForce GTX 980 running at 1.22 GHz
against its host machine, an Intel Core 15-7400 running at 3.0 GHz with 16 GB of memory
running 64-bit Ubuntu Server version 16.04.1 LTS. On the GPU, we run our original large
integer multiplier software (which had been tuned for the Fermi architecture) and compare
the performance to running GMP on all of the cores of the host processor. The GPU
software was compiled with CUDA 8.0 with version 375.26 of the NVIDIA driver. For
the CPU test we use a small test program based on OpenMP and GMP 6.1.1 for the large
integer multiplications.

Although the finite field we have chosen (with p = 26* — 232 4- 1) supports a wide range
of FFT sizes, each size requires a significant amount of customized assembly code. At
this time we have implemented seven different FFT sizes: 32K, 64K, 128K, 256K, 512K,
1024K, and 2048K samples. These correspond to multiplications of 48K bits by 48K bits
through 16384K bits by 16384K bits. For the 32K, 64K and 128K p oint FFTs we use three
bytes per sample and for the other sizes, two bytes per sample.

Our test procedure is straightforward. For the GPU tests, we generate a pair of random
numbers of the required size and copy them to the GPU global memory. We then start a
timer on the GPU, run the sequence of kernels needed to multiply the numbers, then stop
the timer. After each run we copy the results back to the CPU verify that the computation
was correct using GMP. For each size we do five runs and report the average running time
in milliseconds. The throughput is then computed as one over the average running time. On
the CPU side, we generate 1000 random pairs of numbers of the specific size, and then use
an OpenMP parallel for loop to process the array of multiplications. By default, OpenMP
uses the environment variable OMP_NUM_THREADS to control the number of threads to
run. The best number of threads turned out to be 4, which makes sense since the Core
15-7400 is a 4 core processor. To generate the time for a single multiply on the CPU, we

simply test with a single thread, and divide the running time by 1000.

124

Single Multiply (ms) Throughput (Mults/Sec)

Size in Bits | GTX 960 | Core 15-7400 | GTX 960 | Core 15-7400 | speed-up
384K 0.156 1.173 6410.3 2960.6 2.17
768K 0.300 2.569 33333 1458.4 2.28
1536K 0.450 5.654 22222 651.6 3.41
2048K 0.746 7.995 1340.5 450.6 297
4096K 1.785 18.102 560.2 190.9 2.93
8192K 3.545 48.441 282.1 69.7 4.05

16384K 5.691 103.338 175.7 30.3 5.79

Table 5.4. Large integer multiplication performance on the GTX 980 and a Core 15-7400

The results are presented in Table 5.4. The first column is the size in bits. The next
two columns report the running time to multiply a pair of random numbers. The next
two columns report throughput and the final column gives speedup (computed as the GPU
throughput over the CPU throughput).

As we can see from Table 5.4 the single multiplication performance on the GPU ranges
from roughly 7.5x faster at 384K bits to roughly 18x faster at 16384K bits. The throughput
measurements compare socket to socket and we see that the GPU is between 2.2x at 384K
bits to 5.8x faster at 16384K bits. We note that at 1536K the GPU is 3.4x faster than
the CPU but at the next size up, 2048K bits, the speed-up drops to 2.97x. This is most
likely because the GPU algorithm has switched from 3 byte samples to 2 byte samples so
more computation is needed per bit of the result. The performance improvements are quite
modest, but it’s worth noting that the implementation was designed and tuned for Fermi

and doesn’t take advantage of many of the recent architectural improvements such as the

funnel shifter, the warp shuffle, and the larger shared memories.

5.2.6 Conclusion and Future Work

The original implementation of the multiplier was in 2011. A lot has changed since
then. The compiler’s register management has improved significantly, so CUDA code with
some inlines should be as fast as the monolithic PTX code implemented here, but it would

be much easier to maintain. The GPU architecture has also evolved, the new shuffle in-

125

structions could be used to support 512-point FFTs within a warp (without the need for
a transpose through shared memory) and a 4096-point FFT within a block. The small
FFT routines could also be significantly improved by taking advantage of the byte permute
instructions and hardware funnel shifter that was introduced in compute capability 3.5. Fi-
nally, we note there are better approaches to the shared memory transposes. With a small
increase, of about 10%, in the size of the shared memory transpose buffer, it’s possible to
implement mappings with no bank conflicts. These changes would considerably improve

the performance of the large multiplier on recent GPU architectures.

126

CHAPTER 6

MODULAR EXPONENTIATION ACROSS MULTIPLE
GENERATIONS OF GPU

Multiple precision (MP) modular exponentiation, in which a value M is raised to a
power K and reduced modulo P, is a central component of many cryptographic opera-
tions such as key exchange (RSA, DH, and ECDH) digital signatures (DSS and ECDSA)
and prime testing algorithms such as Miller-Rabin. Given that the values being computed
are hundreds to thousands of bits in length, the computational cost of modular exponen-
tiation is high. When servers are handling thousands of sessions at once, the cost can be
overwhelming.

While this effort can be offloaded to custom hardware, recent research has shown that
graphics processors (GPUs) offer an effective low-cost alternative. Neves and Araujo[86]
gives an excellent overview of cost-performance and architectural issues related to using
GPUs for modular exponentiation.

In this chapter we go beyond prior work to obtain throughput over batches of modular
exponentiations that is very close to the theoretical peak capability of NVIDIA GPU archi-
tectures ranging from early Compute Capability 1.1 designs to the most recent. Our efforts
improve on prior results by factors ranging from 2.6 to 24 times and leave little room for
further gains.

A key insight we offer is that the commonly used approaches proposed by Koc et al.
[74] in the uniprocessor context are not appropriate for GPUs. It is necessary to completely
rethink the layout of the computation. Ko¢ was targeting a small register file with a fast

cache, and showed several methods to implement the Montgomery multiplication at the

127

core of modular exponentation that trade off cache reads and writes against computation
and temporary storage. Since the computation fits entirely in cache, the access pattern of
the MP values has little impact on the overall performance.

On the GPU, however, best throughput is obtained via maximum parallelism, with one
instance computed per thread. When an instance doesn’t fit the resources available to a
thread, then the goal is to at least maximize the instances per warp. On the GPU, there
is a large register file and only a small amount of cache (on a per thread basis) available.
Register to register computation is fast and inexpensive, but due to the high latency of
memory access, another goal is to minimize the shuffling of data through main memory.
Thus, the most effective approach on the GPU is to entirely avoid loads and stores within
the inner loops of the square, multiply, and reduce operations. It is essential to keep entire
MP values in registers and carefully manage the access patterns.

Attaining these goals is directly dependent on the particular configuration of resources
within a given GPU architecture. Different generations shift the balance of available threads,
registers, and shared memory. A secondary effect is that each generation changes the avail-
able operations and the rates at which they execute. For example, in some GPUs, 24 bit
arithmetic can be substantially faster than 32 bit arithmetic because there are more floating
point units than integer units. Thus, more 24 bit integer operations can be passed through
the mantissa ALUs in parallel than through the dedicated integer ALUs.

Obtaining high throughput therefore depends primarily on mapping the MP operands
to the available registers so as to maximize instances per warp. Secondarily, optimization
must take maximal advantage of the given computational capabilities. We have identified
four distinct parameterized mapping models that are needed to address the range of GPU
generations and problem sizes.

Our experiments have found that the optimal mapping is not at all obvious on the ba-
sis of an architectural specification. The many potential combinations of problem size,

mapping model and parameters, launch geometry, exponentiation window size, and GPU

128

architecture form a multidimensional design space that must be searched via generating and
running actual code. We have developed tools that facilitate the search, which we employ
to obtain our results.

The remainder of the chapter is organized as follows. In Section 6.1, we present neces-
sary background material. Section 6.2 reviews prior work. Sections 6.3 through 6.6 explain
the different mapping models. In section 6.7 we describe the setup for our experiments and
propose a utilization metric to analyze the efficiency of the software. In section 6.7.2 we

give the results and related discussion and we conclude with Section 6.9.

6.1 Background

GPU architectures are now commonly accepted for use in parallel computing, and their
architectures and programming models are well known. We refer the reader to [28] for
details and in the experimental setup section we summarize the capabilities of the specific
architectures used in our experiments.

Throughout this chapter, we use uppercase to represent MP values and lowercase for
single precision scalar values. We follow the typical RSA exponentiation naming con-
vention where M¥ mod P refers to message (M), key (K), and prime modulus (P). M,
K, and P have the same length, denoted b in bits and n when measured in words. For
windowed exponentiation algorithms, we use w as the bit size of the window. For RSA de-
cryption, we assume the use of Quisquater’s “CRT trick” [90], where a message of length
2b is handled using the Chinese Remainder Theorem (CRT) and two exponentiations of
length b.

When implementing MP arithmetic, and modular exponentiation in particular, there are
many choices for representation and algorithms. For example, numbers can be represented
with a fixed radix or in a residue number system. Since Harrison and Waldron [55] have
shown that the former significantly outperform the latter, we explore only algorithms that

use a fixed radix number system, where (3, the base, is a power of two.

129

There are three common modular exponentiation algorithms, discussed in Section 2.2.9.
Each of these rely on two sub-operators to square and multiply the MP numbers. All three
require roughly the same number of squaring steps, but the sliding window algorithm uses
fewer multiplications and is somewhat faster. However, only the fixed window algorithm is
immune to timing side channel attacks, since the execution time of the other two depends
on the bit pattern in the key. Thus, we use only the fixed window algorithm. To accel-
erate the computations on the GPU we use a standard Montgomery reduction, except we
allow the values in the Montgomery domain, X, to range from O to 2° — 1, which simpli-
fies the correction step. Throughout the chapter, we refer to this as Almost Montgomery
representation. For further information on Montgomery reductions, see Section 2.2.6.

As previously noted, we have identified four mapping models for placing MP values
in registers. We refer to these as Three-N, Two-N plus Local, Sampled, and Four-N Dis-
tributed. These are each described in a later section. Here we briefly summarize them.

Three-N keeps 3 n-word values in registers, and can perform all the key operations in
registers. With K and P stored in shared memory.

Two-N plus Local places 2 n-word values in registers, and enables separate computation
of low and high order portions of the MP operations. It requires four times as many memory
accesses, but conserving registers can enable greater parallelism on some architectures.

Sampled uses fewer bits per register (between 20 and 22) to take advantage of archi-
tectures where 24-bit multiplication is faster than 32-bit multiplication. It trades faster
computations for the cost of using more registers.

Four-N Distributed uses a group of 2, 4, 8, or 16 threads for a single exponentiation. It
keeps four MP values in registers but distributed across threads instead of being local to a
single thread. For ¢ threads, it uses 4n/t + 1 registers. Although it uses registers efficiently,
it suffers inter-thread communication overhead, and cannot take advantage of fast squaring

or multiplication.

130

Much prior work has been done using the NVIDIA CUDA tools, but our experience
is that they are inadequate for developing highly tuned libraries. Although their optimiza-
tions are improving, their register allocation scheme often wastes registers. For our work,
careful management of the register usage is critical to obtaining maximum performance.
In addition, MP arithmetic often involves long chains of add with carry and multiply-add
with carry instructions which are cumbersome to implement with CUDA inlines. Thus we
have developed custom tools to generate large blocks of PTX assembly language giving us
much better control over the register allocation. Our tools also target a simulator we use
for debugging and performance estimation.

Based on the preceding factors, our design space has the following dimensions that we

search for the optima:

1. GPU card (compute capability, number of SMs, etc.)

2. Size of the exponentiation (b)

3. Window size for the exponentiation algorithm (w)

4. Model and parameters (e.g., sample size, # of threads, etc.)
5. Launch geometry (i.e., the number of threads per block)

6. Max reg count (limit assembler’s use of extra registers).

6.1.1 Code Generator

The main tool in our environment is the code generator. In a traditional compiler,
source code is translated into assembly language. Instead, our code generator takes an XML
specification of parameters for the desired algorithm (target card, size of exponentiation,
window size, model/parameters, launch geometry) and generates PTX assembly. The code
generator is somewhat analogous to a template system, but instead of processing template
files, we invoke Java objects that are responsible for generating the code for a particular

algorithm. We call these Java objects coders. See Figure 6.1.

131

Typical Compiler

Parse Tree Instruction Assembly
Source Representation | |nstruction Tuples L. Language
——» Parse > . »| Optimizer ———»
Generation

Our Code Generator

Specifications S Thread / Warp
pecs Simulation

A

\ Enhanced

Instruction
Tuples | [Instruction Output
Ll a Lol
Coder Generation PTX
Assembly

Coder Environment

Figure 6.1. Typical Compiler vs. Our Code Generator.

Throughout the remainder of this chapter, we present pseudocode for a variety of al-
gorithms and routines. However, it is important to note that the pseudocode presented is
actually the output of the corresponding coders, which is quite distinct from how the coders
are implemented. For a full explanation of the code generator and its features, see [41].

Our coders are quite general and provide a sophisticated environment for generating
PTX code. An important feature is that coders can dynamically invoke each other, resulting
in an assembly language equivalent to inlined function calls. Further, since coders are
full fledged Java objects, they benefit from many of Java’s features including subclassing
and interfaces. The latter is especially useful because it enables polymorphism, where
multiple coders all supply the same set of APIs. For example, consider the fixed window
exponentiation (FWE) coder in Figure 6.2. The FWE coder takes a model coder as an
argument. The idea here is that the FWE coder is agnostic about the register layout and
representation of the MP values. Whenever it needs to perform an operation, it invokes the
model coder to generate the actual code for the operation. This approach cleanly separates

the code generation for the exponentiation algorithm from the code generation specific

132

procedure exponentiate (ExponentiationModel modelCoder)
// the values K, P, and R2 are in shared memory
// where R2=2"(2b) mod P

modelCoder.loadArgument () // loads M
modelCoder. multiplyByConstant (R2)

. CONSTRUCT THE WINDOW TABLE ..

i=b— ((b%w==0)?w:Db%w)
j = extract bits i to b—1 from K
modelCoder . loadCurrentFromWindow (j)
while i>0 do
for j=0 to w—1 do
modelCoder. square ()

end
j = extract bits i to i+w—1 from K
modelCoder . multiplyByWindow ()
i =i-w
end

modelCoder. multiplyByConstant (1)
modelCoder. storeResult ()
end

Figure 6.2. Fixed Window Exponentiation

to the register layout and MP value representation, which are managed by the model. A
further advantage of this approach is that the FWE coder is generic and it works with any
model coder that implements the ExponentiationModel interface.

Fixed window exponentiation starts by loading M and converts it to Montgomery form.
Next it constructs the window table of values, table[k] = M* mod P, fork € 0,1, ...,2¥—1.
Then the main loop processes K from the most significant bit to the least significant bit,
breaking it into chunks of w bits. The algorithm keeps a “current” value, and at each step
it either squares the current value or multiplies it by a value from the window table. The
FWE routine does not manipulate the MP values directly. Instead it delegates the work
to the model according to the ExponentiationModel interface. The function of each of the
APIs is described in Figure 6.3. In subsequent sections, we describe each model in terms

of how they implement the ExponentiationModel APIs.

6.2 Related Work
Several papers have looked at modular multiplication and modular exponentiation on

the GPU, see for example: [84, 47, 100, 55, 10, 86, 64, 52, 22]. Jang et al [64] give

133

METHOD FUNCTION

load Argument() loads M from global memory into the “current” value
storeResult() store the “current” value into global memory as the final result
loadCurrentFromWindow(i) loads a value from the window table into the “current” value
storeCurrentToWindow(i) stores the “current” value into the window table

multiplyByConstant(i) multiply the “current” value by a constant value in shared
memory and reduce modulo P

multiplyByWindow(i) multiply the “current” value by a value from the window table
and reduce modulo P

square() square the “current” value and reduce modulo P

Figure 6.3. The API methods of the ExponentiationModel interface

throughput rates for a GTX 580 running RSA decryption of various key sizes, which in-
volves two half-size modular exponentiation operations and an application of the CRT.
Neves and Araujo [86] present results for a GTX 260 running 512-bit modular exponenti-
ation. These last two papers report the best performance we are aware of. Because we are
able to generate code for the architectures they use, we can make a direct comparison in
our results section, as well as showing how performance improves with later architectures.
For the same architectures, we improve upon their results by factors of from 2.6 to 8.8. On

a more recent architecture, we show results ranging from 3.1 to 24 times faster.

6.3 Three N Model

There are two standard approaches to implementing O(n?) multiplication, X - Y, where
X and Y are each n words in length. The first is column oriented: for £ = 0 to n — 1,
compute the column sum »_, ; X[i] - Y[j] where i + j = k. While straightforward to
code, handling carries during the sum can be slow. The second approach is row oriented:
the product is the sum of the rows X[i] - Y - 3? where 3 is 232, If the architecture has
instructions that directly handle carry propagation, row oriented is usually preferred.

The NVIDIA 2.x and 3.x architectures provide 32-bit by 32-bit integer multiply and

accumulate with carry instructions, which are ideal for the row oriented approach, because

134

they propagate carry with no extra instructions. Thus each row requires 2n madc instruc-
tions and one addc instruction.

The Three N model takes advantage of these instructions. It reserves space to hold 3
n-word values in registers, which we call A, B and C'. A stores the “current” value while
B and C are used during the multiplication, squaring and reduction steps. We also define
R as a 2n word long alias for the concatenation of B and C, i.e., R]i] refers to B[i| when
i < mnandto C[i —n| wheni > n.

The implementation of loadArgument reads the M value from global memory into
A and storeResult writes the result from A to global memory. Likewise, loadCurrent-
FromWindow and storeCurrentToWindow read and write A to the given index in the win-
dow table for the current thread.

The multiplies, multiplyByWindow and multiplyByConstant, read or copy the value into

C, then compute A times C, storing the result in R. They use a row oriented approach as

follows.
temp = C[O0]
R[0O .. n] = temp * A
for i=1 to n—1 do
temp = C[1i]
R[i .. i+n] = temp * A + R[i .. i+n—1]
end

Figure 6.4. Three N Multiplication

Note that, because C' and R overlap, care must be taken to ensure that updates to R
don’t overwrite values of C' that are still needed (hence the temp variable).

The squaring operation square, computes A% and stores the result in 2. It runs in about
half the time of the multiply operation. The algorithm works by exploiting the symmetry in
each column of the product terms. The algorithm computes the sum of the terms above the
main diagonal, then doubles the sum (because each term appears twice in each column),
then adds in the products on the diagonal. We frequently refer to this as fast squaring. For

the Three N model, this algorithm can be implemented with a row oriented approach.

135

Once the result of the multiplication or squaring is in R, we reduce the value modulo P.
P is loaded from shared memory into A followed by an Almost Montgomery row oriented
reduction. The result is stored in A, as the “current” exponentiation value.

The Three N model also implements Karatsuba squaring and limited Karatsuba mul-
tiplication as options. The Karatsuba [69] algorithm uses a divide and conquer approach
that is asymptotically faster than the O(n?) multiplication algorithm. However, for small
sizes (fewer than about 16 words), there is at best a modest improvement in performance.
Typically Karatsuba is implemented with a threshold parameter — below a certain size, it
switches to the O(n?) algorithm. However, in our environment it is more appropriate to
specify the number of levels of recursion before switching algorithms. Thus, the Three N
model has two model parameters, KS specifies the levels of recursion to use for squaring
and KM is the number of levels for multiplication. Specifying KS=0 and KM=0 disables
Karatsuba and uses only the regular multiplication and squaring algorithms.

In the interest of brevity, we omit the psuedocode for our Karatsuba square and multiply
routines, but they are quite similar to those presented by Brent & Zimmermann [16]. We
use their additive method for multiplication and subtractive method for squaring.

One significant drawback of Karatsuba is that it tends to require many temporary reg-
isters. With careful reuse, however, an arbitrary number of levels of Karatsuba squaring
can be done with 3n registers plus one additional temporary per level. However, Karatsuba
multiplication seems to require at least 4n registers plus one temporary per level. Our code
generator supports a single level of Karatsuba multiplication, which can be done with 3.5n

registers and one temporary.

6.4 Two N Plus Local Model

The Two N plus Local model (or just Local model) places two n-word values in registers

and one in GPU local memory. The registers are A and B. Like the other models, Local

136

keeps the “current” exponentiation value in the A registers and uses the B registers for
multiplication, squaring and reduction operations.

The implementations of loadArgument, storeResult, loadCurrentFromWindow and store-
CurrentToWindow all read/write their respective values to/from the A registers. The mul-
tiplyByWindow and multiplyByConstant routines operate as follows: load the window or
constant value into the B registers. Compute the high order n words of the product of A- B
using a row oriented approach that overwrites the words of B as the product is computed.
When complete, write the high order words to local memory. Next, reload the window or
constant value into B and compute the low order n words of A - B. One extra register holds
all of the carries out of the low order n words of the product.

The square routine is analogous. Compute the high portion of A? in B, write the result
to local memory. Then compute the low order words and an extra word to hold the carries.
This algorithm uses optimized squaring for both the low and high halves, which saves a
significant amount of computation.

Once the product is computed, we run Almost Montgomery, which assumes the lower
order n words of the product are in B, there is a register holding carries (which has to
be added to the high order words), and the high order words of the product are in local
memory.

The Montgomery reduction loop depends only on the low order n words of the product.
Because we computed the low order words last, we can immediately start the reduction.

We load P into the A registers and run the following:

// Assume the A registers contain P and the B register
// the n low order words of the product
for i=0 to n—1 do
temp = B[0O] * npO
B = (temp * A + B)>>32 // no carry out
end

. add the carry outs word to B
. read the high order words from local memory
and add the value to B
if there was a carry out, then subtract P
from B

Figure 6.5. Local Model Almost Montgomery Reduction

137

At this point, the result has been reduced to an Almost Montgomery value, and we copy

it back to the “current” exponentiation value (the A registers).

6.5 Sampled Model

On the NVIDIA 1.x architectures, the GPU lacks a native 32-bit by 32-bit integer mul-
tiply. Instead 32-bit multiplies are implemented with a sequence of 4 instructions based on
16-bit multiplies. However, the hardware does support single cycle 24-bit integer multiply
and accumulate instructions. There are two instructions mad24.lo and mad24.hi. Both are
four argument opcodes of the form d < lo(a - b) + ¢ and d < hi(a - b) + ¢ where each of a,
b, ¢, and d are 32-bit registers. They function as follows. The .lo instruction computes the
48-bit product of a times b then extracts the least significant 32-bits of the product and adds
c. The .hi instruction computes the 48-bit product, then extracts the most significant 32-bits
of the product and adds c. These are rather unusual instructions in that the high order 16
bits of the .lo variant overlap the low order 16 bits of the .hi variant. But we use them to
construct a fast 48-bit accumulator as follows. Given a set of A samples (ag, a1, ... a,_1)
and B samples (b, by, . .. b,_1) where the samples are each less than 24-bits, the following
code will compute the 48-bit dot product, Z?:_(]l a; - b;, provided the sum does not exceed

2%8 and n < 2'%. We discuss the second condition below.

// computes the 48—bit dot product of A and B,
// low 32 bits will be in acclo, high 16 bits in acchi
acclo = 0
acchi = 0
for i=0 to n—1 do
mad24 .10 .u32 acclo, A[i], B[i], acclo
mad24 . hi.u32 acchi, A[i], B[i], acchi
end
// post processing step
if acclo<0x80000000 then

acchi = acchi + n
end
acchi = acchi>>16

Figure 6.6. 48-bit Dot Product

The if statement in the post processing resolves a corner case. Consider A =(0xOFFFF,

0x00001) and B =(0x10001, 0x00001). Without the if, the code would return zero for the

138

sum, which is clearly incorrect. The reason is that a carry is generated out of the low order
16 bits of acclo, but an equivalent carry is not injected into acchi. This condition can happen
at most n — 1 times, so adding n to acchi resolves the problem, provided n < 2. Since
we have at most a few hundred registers to work with, this is not a significant limitation.
The Sampled model takes advantage of this fast dot product. The model has a parame-
ter, s, to specify the number of bits to use in each sample, which can range from 20-22. It
represents a b-bit value as a sequence of n = [b/s] samples and the model uses 3n regis-
ters to hold three MP values, A, B, and C. Since 1.5s ~ 32, the Sampled model requires
roughly 50% more registers than the Three N model for the equivalent size. As before, R
is the concatenation of B and C, A holds the “current” value, and B and C are used for
squaring, multiplication and reduction. The implementation of loadArgument reads the MP
value M from global memory, which has 32-bits of data per word and samples it into A
with s bits per sample. storeResult is similar, except it compresses the samples of A back
into 32-bit words and writes the result to global memory. The window APIs (loadCurrent-
FromWindow, storeCurrentToWindow, multiplyByWindow) all work on sampled MP values.
To implement multiplyByWindow and multiplyByConstant we first load the sampled
window value or constant value into C'. Then we use column oriented multiplication with
the fast 48 bit dot product, as shown in Figure 6.7. In this algorithm we refer to the post

processing after the sum as resolving the high word. When implemented carefully, it takes

int acclo=0, acchi

for k=0 to 2n—2 do
acchi = 0
. use fast dot product to sum
.. A[i]*C[j] where i+j=k
R[k] = acclo & ((1<<s)—1)

// resolve the high word
if acclo<0x80000000 then

acchi = acchi + n
end
acclo = ((acchi>>16)<<32—s) | (acclo>>s)

end
R[2n—1] = acclo

Figure 6.7. Sampled Multiplication

139

as few as 5 single cycle instructions. As in the Three N model, we implement multiply so
the R values only overwrite C' values that are no longer required.

Sampled squaring is similar to multiply in that it works on a sampled MP value in A
and stores the result into B and C, using a column oriented approach. It works on the
same principal as the standard fast squaring algorithm (doubling the off diagonal terms).
Because samples are at most 22 bits, we can double each sample and it is still shorter than
24 bits. So we first double each element of A and store it in C'. Then whenever we need to
compute 2 - A[i] - A[j], we instead compute Ai] - C'[j]. Again, care must be taken to ensure
the values of ? don’t overwrite values of C' while they are still needed.

For the Almost Montgomery reduction, we use a column oriented approach similar to
Kog et al’s FIPS method, see [74]. First, we load the modulus P (kept in sampled form)
from shared memory into A. Then for each column, £ = 0 to n — 1 we use the fast dot

product to compute:
k-1
Blk] = (R[k;] +acchiy_ + Y B[i] - Alk — ¢]> - 1p0
i=0

Where acchi;_; is the carry from the prior column. For columns £ = n to 2n — 1, we

Compute:
2n—1—k
R[k] = R[k] +acchir_1 + Y Bli]- Alk —i — n]
=0

The reduced result is in C'. Finally, following the Almost Montgomery rule, if the value

in C' is greater than 2° we subtract the modulus P, and store the result back in A.

6.6 Distributed Model

The distributed model is different from the others in that it uses groups of threads to
solve an instance instead of an instance per thread. The model parameter ¢ configures the
number of threads per group. ¢ must be 2, 4, 8 or 16. The distributed model breaks each
MP value into ¢ chunks and assigns consecutive chunks to consecutive threads in the group.

This approach significantly reduces the number of registers per thread, which allows our

140

tools to code much larger sizes. The main disadvantage of the approach is the lack of a fast
squaring algorithm. Thus, squaring takes almost twice as much computation as the other
models. The second disadvantage is there is a small overhead for communication between
threads.

The distributed model reserves enough registers to store 3 n-word values and an n + 1
word value, using roughly 4n/t 4 1 registers. Beside A, B, C, it defines 7" (which is n + 1
words in length). The model uses A for the “current” exponentiation value. The others
are used during multiplication/reduction. The model is based on Kog et al’s CIOS method
[74], but with distributed values and is similar to Jang et. al’s approach [64].

The implementations of loadArgument, storeResult, loadCurrentFromWindow and store-
CurrentToWindow all read/write their respective values to/from the A registers.

The implementations of multiplyByWindow, multiplyByConstant and square all work

the same way. They leave the “current” value in A, load the multiplicand into B, and load

-
I

the number of threads in each group ..

g my thread index within the group (0 .. t—1) ..
T=20
for i=0 to n—1 do

x = BROADCAST(g==i/t, A[i % t])

T=T+ x B

if g!=0 then .. transmit T[0] to g—1 ..

x =0

if g!=t—1 then .. receive x from g+l

T =T + x<<(n/t—1)%32

X
T
end

BROADCAST(g==0, T[0])
(T + LO(x * np0) *x C)>>32

// resolve any carries
do

x = BROADCAST(g==t —1, T[n/t])

if x!=0 then T =T — C

if g!=t—1 then

transmit T[n/t] to g+l
T[n/t] = 0

end

if g!=0 then .. receive x from g—1 ..

T=T+ x // note: x can be negative
until ALL(T[n/t]==0)

Figure 6.8. Distributed Multiply and Reduce

141

P into C, then multiply A times B and reduce by C, placing the running result in 7". The
psuedocode is presented in Figure 6.8

The pseudocode is written with message passing to make the algorithm more under-
standable. The actual code uses shared memory, with a word per thread. The BROAD-
CAST routine takes a boolean and a value. If the boolean evaluates to true, then this thread
is the broadcaster, otherwise it’s a recipient. All broadcasts are written to/read from group

thread zero’s shared memory.

6.7 Experimental Setup and Results

To evaluate our algorithms, we used six different NVIDIA GeForce GPU cards: 9800
GT, GTX 260, GTX 580, GTX 680, GTX 780Ti, and GTX 750Ti. These cover a wide
range of NVIDIA micro-architectures. The host is an ASRock X79 Extremel 1, configured
with a quad core Intel Core 17-4820K, clocked at 3.7 GHz, with 16GB of memory, running
64-bit Ubuntu Server (version 14.04.1), using CUDA version 6.5 and version 340.29 of
the NVIDIA driver. We use GMP version 6.0.0a with GCC version 4.8.2 to verify the
exponentiation results from the GPUs.

A main application of modular exponentiation is RSA public key/private key encryp-
tion. An RSA key of length [is based on the product of two primes, P and (), each of length
1/2. To decrypt an RSA message it is necessary to compute M X mod PQ) where M is the
message and K is a constant based on P and (). Since P and () are prime, it is faster to do
two smaller modular exponentiations (mod P and mod () and combine their results using
the CRT. For useful key sizes, CRT reconstruction time is less than 1% of exponentiation
time. Thus, the exponentiation time is the metric of interest and we can ignore the CRT
time. For RSA, the most common key lengths are 1024 and 2048 bits, so performance of
the 512 bit and 1024 bit modular exponentiations is especially important.

Our test procedure is straightforward. We use the code generator to build a CUDA

kernel from a set of parameters (target compute capability, launch geometry, exponentia-

142

tion window size, model, and parameters specific to the model such as bits per sample and
number of levels of Karatsuba, etc). The CUDA kernel is compiled with standard ptxas
options (-v and -abi=no) and linked with the tester. It always has the same calling inter-
face regardless of the model or parameters so we can use a generic testing tool across all
implementations. It essentially serves as a wrapper for the inline PTX.

The tester first generates a large number of messages, either 128000 for 256 and 512 bit
exponentiations or 32000 for 1024 and 2048 bit exponentiations. Each message consists of
a random number between 1 and 2° — 1 where b is the size of the exponentiation. Then,
for every 32 message (one warp) the tester generates a random modulus P and random
exponent K also between 1 and 2° — 1. We ensure the modulus is odd, but not necessarily
prime. From the modulus, we compute the Montgomery constant 22 mod P and then copy
the data to the GPU.

We run the GPU kernel 12 times on the same data: 2 for warm-up and 10 for timing.
On every run the GPU computes M % mod P for each message. The times are combined
with an arithmetic mean to give the average throughput (exponentiations per second). The
time we report is for the GPU to load the data (from GPU global memory), perform the
exponentiation, and store the result. It does not include the time to generate the data on the

CPU, to copy the data to and from the GPU, or to verify the results on the CPU.

6.7.1 Utilization

One of the key questions we wish to answer with our results is: what is the efficiency
of the software? With floating point programs, this is easy to assess: it’s the delivered
floating point operations per second divided by the theoretical maximum sustainable by
the architecture. Of course, this metric isn’t a complete picture of performance, but it is
still useful. If utilization is high, it means the code is well tuned for the hardware. If the

utilization is low, there might be opportunities to further tune the software. Although a

143

256-bit (w=4)

512-bit (w=5)

1024-bit (w=6)

2048-bit (w=6)

Model madc.lo madc.hi add/sub | madc.lo madc.hi add/sub |madc.lo madc.hi add/sub |[madc.lo madc.hi add/sub
Three N, KS=2, KM=1|31.59K 31.59K 51.78K |234.77K 234.77K 200.06K|1.780M 1.780M 778.75K|13.73M 13.73M 3.040M
Three N, KS=1, KM=1|32.36K 32.36K 33.13K |244.22K 244.22K 127.61K|1.868M 1.868M 494.98K|14.48M 14.48M 1.931M
Three N, KS=2, KM=0|32.72K 32.72K 48.52K |242.32K 242.32K 189.91K|1.831M 1.831M 745.22K|14.11M 14.11M 2.918M
Three N, KS=1, KM=0| 33.50K 33.50K 29.87K [251.77K 251.77K 117.46K|1.920M 1.920M 461.45K|14.86M 14.86M 1.809M
Three N, KS=0, KM=1|33.92K 33.92K 21.22K |258.92K 258.92K 80.36K |1.994M 1.994M 307.90K|15.5I1M 15.51M 1.196M
Three N no karatsuba | 35.05K 35.05K 17.95K [266.47K 266.47K 70.21K [2.046M 2.046M 274.39K|15.89M 15.89M 1.074M
Local 35.05K 34.79K 18.96K |266.47K 265.95K 73.14K |2.046M 2.045M 282.70K|15.89M 15.89M 1.102M
Distributed, T=1 45.02K 42.37K 21.85K [340.03K 329.73K 83.72K |2.60IM 2.568M 323.53K|[20.24M 20.08M 1.260M
Distributed, T=2 47.66K 42.37K 38.40K [350.34K 329.73K 146.83K|2.648M 2.568M 566.81K|20.39M 20.08M 2.206M
Distributed, T=4 52.96K 42.37K 71.50K [370.94K 329.73K 273.06K|2.729M 2.568M 1.053M |20.70M 20.08M 4.098M
Distributed, T=8 63.55K 42.37K 137.70K [412.16K 329.73K 525.50K|2.889M 2.568M 2.026M |21.33M 20.08M 7.882M
Sampled, S=20 95.81K 91.51K 3.37K [716.13K 699.39K 13.65K [5.451M 5.385M 54.65K [41.34M 41.08M 213.93K
high word resolves 16.27K 65.11K 257.17K 1.003M
Sampled, S=21 95.81K 91.51K 3.37K |662.98K 646.88K 13.13K |4.844M 4.783M 51.50K 48
high word resolves 16.27K 62.54K 242.13K overflows 2
hisgznvlvpol :;’ress_oiz’es 82.06K Zigzi 311K overflows 248 overflows 248 overflows 248

Table 6.1. Instruction counts to perform modular exponentiation

low utilization can also indicate that the problem has low computational intensity or that it
intrinsically maps poorly to the hardware.

For our analysis, we develop a similar metric. For each of our models we track the exact
number of madc.lo operations, madc.hi operations (in most cases, 32-bit by 32-bit multi-
plies with carry in/out) and add/sub operations that are required to compute X? mod P and
X - Y mod P. For the Sampled model, targeting 24-bit arithmetic units, the counts are for
mad24.lo and mad24.hi instructions and because carries are not done in hardware, we also
track the number of times high word resolve is run, since it represents a significant percent-
age of the computation time for small b. Multiplying these counts by the number of squar-
ing and multiplication steps executed during the fixed window exponentiation algorithm,
we derive the exact number of computation instructions required for an exponentiation.

The instruction counts for various models and sizes are in Table 6.1. The leftmost
column gives the model and model parameters: KS is the number of levels of Karatsuba
squaring, KM is the levels of Karatsuba multiplication, S is the sample size, and T is the
number of threads in the group. Each column to the right represents a different size of b.
Since the algorithms are roughly O(b*), as we move from left to right, each doubling of b

results in the counts increasing by nearly a factor of 8.

144

Micro Compute | Freq |Number | Cores Cycles/Instructions per Operation
CARD Architecture | Capability | GHz | of SMs | Per SM | madc.lo | madc.hi | add/sub | mad24.1o | mad24.hi | carry resolution

9800 GT G92 1.1 1.500 14 8 5 5 1 1 1 5
GTX 260 G200 1.3 1.296 24 8 5 5 1 1 1 5
GTX 580! Fermi 2.0 1.544 16 32 2 2 1 - - -
GTX 680! Kepler 3.0 1.110? 8 192 1 1 1 - - -
GTX 780Ti! Kepler 35 1.046 15 192 1 1 1 - - -
GTX 750Ti' | Maxwell 5.0 1.084 5 128 4 6 1 - - -

Table 6.2. Instructions/Cycles for each madc.lo, madc.hi and add/sub across the genera-
tions of GPU cards

Note that the Three N model with Karatsuba has the fewest multiplications and thus
we would expect it to perform best. But it also requires more registers per thread than the
Local or Distributed models. Although the instruction counts increase for those models, the
number of registers per thread decreases, enabling more threads to execute in parallel. The
Sampled model uses the most registers and has the highest instruction counts, so we would
expect it to always have the worst performance. But as we will see, it outperforms the other
models on the 1.x architectures for small b. For large b, however, its performance is always
worse. Our implementation would need to be further extended to handle an overflow that
occurs with larger samples on larger instances of b, but since there is nothing to gain from
doing so, we simply note it in those table entries.

To establish the theoretical maximum sustained instruction throughputs on each archi-
tecture, we turn to four sources. Section 5.4 of the CUDA C Developers Guide (Maximiz-
ing Instruction Throughput) [28], the cuobjdump tool, the deviceQuery tool. and our own
micro-benchmarks. Our findings are summarized in Table 6.2.

On the 9800 GT, the GTX 260 and on the GTX 750Ti, there are no native 32-bit by 32-
bit multiply instructions. Instead, the code generator and ptxas assembler emulates them

with a sequence of simpler instructions based on 16-bit multiplies. These instructions all

124.bit multiplications are emulated in software on these cards, but we haven’t determined the number of
instructions used to emulate them

2device query reports the clock rate as 1056 MHz, but when we actually measure the rate, it is 1110 MHz

145

run in a single cycle. On the 9800 and 260, each madc.lo and each madc.hi is emulated with
5 instructions. On the 750Ti, madc.lo takes 4 instructions and madc.hi takes 6 instructions.

The 580, 680 and 780Ti all support native madc.lo and madc.hi instructions. How-
ever, these architectures are asymmetric in the sense that they have fewer 32-bit integer
multipliers than floating point units or add/sub units. Thus a 680 or 780Ti can dispatch
6 instructions to 4 different warps in a single cycle, but only one of those warps can be
running a multiply instruction. Since our software does so many multiplications as com-
pared to adds and subtracts, in most cases the latter can be completely overlapped with
the multiplications and we find the overall throughput is dominated by the time for the
multiplications. Thus for the 580, 680 and 780Ti, we define utilization as the measured
multiplications per second divided by the theoretical maximum number of multiplications
per second.

In the 9800GT and GTX 260, adds and subtracts cannot be issued in parallel with
multiplies. In the 750Ti, two instructions can be issued at once (per warp scheduler), but
only one integer instruction can be issued per cycle. Thus, adds and subtracts also compete
with multiplies in this most recent architecture. In recognition of this serialization of integer
operations, for these architecture we define utilization as the measured integer instructions
dispatched per second divided by the theoretical maximum integer dispatch rate.

To clarify, we give an example of how we calculate utilization. On the GTX 580, the
Three N with no Karatsuba achieves 713,913 512-bit modular exponentiations per second.
Each modular exponentiation requires 532,940 multiplications. Thus the software achieves
a rate of 380.5 billion multiplications per second. The card is capable of 395.3 billion
multiplications per second (1.544 GHz - 16 SMs - 32 cores / 2 cycles). Thus we achieve a

utilization of 96.3%.

146

Model Exponentiations Per Second (thousands) / Utilization
9800 260 580 680 780Ti | 750Ti
Three N 28.56 | 45.20 | 713.91 | 515.83 | 894.42 | 201.90
no karatsuba | 46.5% | 49.7% | 96.3% | 96.7% | 94.9% | 79.6%
Three N 29.33 | 46.61 | 726.50 | 540.24 | 956.17 | 198.11
KM=0, KS=1 | 46.0% | 49.4% | 92.6% | 95.7% | 95.9% | 75.3%
Three N 29.52 | 47.39 | 700.34 | 550.78 | 972.22 | 178.27
KM=0, KS=2 | 459% | 49.8% | 85.9% | 93.9% | 93.9% | 67.2%
Three N 28.80 | 46.10 | 729.10 | 527.79 | 942.16 | 177.27
KM=1, KS=0 | 45.8% | 49.5% | 95.5% | 96.2% | 97.2% | 68.2%
Three N 29.40 | 47.85 | 740.00 | 554.51 | 967.72 | 181.64
KM=1, KS=1 | 45.0% | 49.4% | 95.3% | 95.3% | 94.1% | 67.3%
Three N 29.55 | 48.27 | 710.14 | 566.49 | 976.48 | 177.00
KM=1, KS=2 | 44.8% | 49.4% | 84.4% | 93.6% | 91.3% | 65.0%

Table 6.3. Impact of Karatsuba on Performance - 512 bits with w = 5 and a launch
geometry of 128 threads per block

6.7.2 Results and Discussion

In this section we present our results and analysis. We first examine the impact of the
different algorithms and model parameters on the performance of 512 bit exponentiation
with a window size of 5 bits and 128 threads per block. In Table 6.3 we present the impact
of Karatsuba on Three N performance. For each architecture, we mark the parameters that
produced the best performance in bold.

As can be seen from Table 6.1, going from KM=0, KS=0 to KM=1, KS=0, saves
roughly 15K multiplications at the cost of 10K additions and subtractions (and some control
instructions). On the 9800 GT and the GTX 260, each multiplication takes 5 instructions.
Thus, as one would expect, using Karatsuba multiplication is faster than not. Going from
KM=1, KS=1 to KM=1, KS=2, saves roughly 19K mulitplications at a cost of 62K addi-
tions. Again, because because multiplication is more expensive than addition, this is still
profitable, but the returns are diminishing.

On the 580, 680 and 780Ti, multiply, add and subtract each require only a single instruc-
tion dispatch. However, as mentioned earlier, multiply and add/subtract can be dispatched
simultaneously. On the 580 one multiply and one add/subtract can be dispatched every

two cycles. On the 680 and 780Ti, one multiply and 5 add/subtracts can be dispatched

147

Model Exponentiations Per Second (thousands) / Utilization
9800 260 580 680 780Ti | 750Ti
Sampled | 47.15 | 96.70 | 137.04 | 104.52 | 160.13 | 34.80
S=20 49.3% | 68.2% - - - -
Sampled | 51.60 | 106.51 | 148.81 | 113.79 | 176.57 | 37.48
S=21 50.2% | 70.0% - - -
Distributed | 4.50° | 41.0° [562.21 | 409.30 | 719.73 | 147.57
T=1 9.0% | 552% | 95.3% | 96.5% | 96.0% | 72.8%
Distributed | 30.4° | 44.7° | 547.20 | 395.94 | 663.39 | 132.87
T=2 61.1% | 61.5% | 94.2% | 94.8% | 89.9% | 67.5%
Distributed | 27.0° | 40.23 | 393.53 [381.45 | 581.69 | 116.67
T=4 56.3% | 56.6% | 69.8% | 94.1% | 81.2% | 62.8%
Local 14.89 | 44.17 | 715.58 | 513.91 | 894.99 | 199.21
242% | 48.6% | 96.4% | 97.2% | 94.9% | 78.5%

Table 6.4. Impact of algorithms on Performance - 512 bits with w = 5 and a launch
geometry of 128 threads per block

per cycle. On the 580, the fastest is KM=1, KS=1. The jump to KS=2 shifts the workload
enough that other instructions start to interfere with dispatching multiplies (this can be seen
by the drop in utilization). On the 680 and 780Ti, the jump to KS=2 continues to improve
performance, although the returns are diminishing.

The results for the 750Ti are a surprise. Given that it takes 4 instructions for madc.lo
and 6 instructions for a madc.hi, one would expect using Karatsuba would be profitable, as
is the case on the 9800 and 260. However, from our results, we see that it is faster to not use
Karatsuba multiplication or squaring. The decreasing utilization rates suggest that perhaps
the control instructions used in the Karatsuba implementation are substantially slower on
Maxwell than on the other architectures.

In Table 6.4 we look at the Sampled, Distributed and Local models. The table is for
512 bit exponentiation with a window size of 32 and 128 threads per block.

The Sampled model is designed to take advantage of the native 24-bit multiplication
instructions and shines on the 9800 and 260 cards, achieving rates of 51.60K and 106.51K

modular exponentiations per second respectively, as compared to 29.40K and 47.85K for

3results from our prior work [41], compiled under CUDA 4.2

148

Model Exps per Second (thousands) / Utilization / Warps / Blocks

LG=32 | LG=64 | LG=128 | LG=192 | LG=256 | LG=512

Three N | 414.25 | 714323 | 71391 | 729.14 | 709.21 | 708.63
nokar | 559% | 963% | 963% | 98.3% | 95.6% 95.6%
warps 8 16 16 18 16 16
blocks 8 8 4 3 2 1

Table 6.5. Impact of Launch Geometry on Performance - GTX 580, 512 bits with w = 5

the Three N model. For the other cards where 24-bit multiplication is emulated in software,
the performance is quite poor. As noted in Table 6.2 we have not determined the number
of instructions required for each 24-bit multiplication on each card, so we are unable to
calculate the utilization. However, it’s not a serious omisssion because the Sampled model
is so much slower than the Three N model on these cards.

For the Distributed model, we show three sets of results for T=1, T=2 and T=4, where T
is the number of threads per exponentiation instance. Comparing the results for T=1 to the
Three N model with no Karatsuba, we see that the Distributed model is roughly 20% slower
for equivalent configurations. This is due to the inter-thread communication overhead and
the lack of a fast square operation. For the 9800 and 260, we ran into what appears to be
compiler errors under CUDA 6.5, so we report our results from our prior work [41] which
was compiled under CUDA 4.2.

The Local model uses a two pass approach to multiplication and squaring, allowing it
to efficiently run with 2 MP values in registers instead of 3. As we can see, the 512-bit
performance is roughly equivalent to the Three N model without Karatsuba.

In Table 6.5 we look at the impact of launch geometry on the performance of 512 bit
modular exponentiation on the GTX 580 using the Three N model, with no Karatsuba.

The modular exponentiation kernel compiled for the GTX 580 uses 54 registers. The
580 supports a maximum of 8 blocks and 32K registers. With a launch geometry of 32
threads per block, the GTX 580 will run 8 warps per SM. With a launch geometries of 64,
128, 256 and 512 threads per block, there will be 16 resident warps per SM. With a launch

geometry of 192, there will be 18 resident warps. From Table 6.5 we see that performance

149

Model | Exps per Second (thousands) / Utilization / Warps / Blocks

RM=54 | RM=50 | RM=44 | RM=42 | RM=36 | RM=32

Three N | 713.91 | 725.07 | 720.00 | 722.80 | 713.34 | 509.79
nokar | 963% | 97.8% | 97.1% | 97.5% | 96.2% | 68.7%
warps 16 20 20 24 28 28
blocks 4 5 5 6 7 8

Table 6.6. Impact of Register Max allocation on Performance - GTX 580, 512 bits with
LG=128, w =5

on the GTX 580 is maximized by maximizing the number of resident warps and secondarily
by maximizing the number of blocks.

The CUDA ptxas assembler supports an option -maxrregcount to specify the maximum
number of registers that can be used by the kernel. The fewer registers the more often
the kernel will spill to local memory, thus making the kernel run slower. However, the
fewer registers used, the more warps that can be resident, which increases parallelism and
increases throughput. We explore these trade-offs in Table 6.6.

Without specifying a maximum number of registers (RM), ptxas allocates 54 registers
for the modular exponentiation kernel. This produces the nominal 713.91K mod exps per
second seen in the prior tables. As we reduce the number of registers available for allo-
cation, the performance decreases smoothly until we reach 50 registers at which point, the
number of resident warps on the GTX 580 jumps to 20 and the performance increases to
725.07K mod exps per second. From 50 to 44 registers the performance again decreases
smoothly, and at 42 registers the GTX 580 can fit a 6th block and the performance increases
slightly to 722.80K. But at some point, the number of register spills overwelms the benefits
of the added parallelism. For this kernel it starts at 34 registers and by 32 registers, the

performance has dropped to 509.79K mod exps per second.

6.8 Comparison to Prior Work
In Table 6.7 we present our best results for each of the six architectures and for four

problem sizes. The top section gives the peak throughput achieved (in thousands where

150

256 bits 512 bits 1024 bits 2048 bits
Card | Model Exps/s (1000s) Utiliz. | Model Exps/s (1000s) Utiliz. | Model Exps/s (1000s) Utiliz. | Model Exps/s Utiliz.
9800 | Sampled 545.61 77.3% | Sampled 51.63 50.3% | Distrib 3.67 57.0% | Distrib 478 58.0%
260 | Sampled 822.42 78.7% | Sampled 118.72 78.0% | Distrib 5.68 59.5% | Distrib 643 52.7%
580 | Three N 5806.28 95.1% | Three N 765.94 94.7% | Local 85.58 88.6% | Distrib 9163 95.6%
680 | Three N 3913.66 89.9% | Three N 566.97 94.5% | Local 59.72 86.8% | Distrib 6476 95.3%
780Ti | Three N 6753.25 87.1% | Three N 998.81 93.4% | Three N 127.85 95.1% | Distrib 10778 89.4%
750Ti | Three N 1736.34 90.2% | Three N 204.49 80.6% | Three N 22.75 69.1% | Distrib 2052 63.2%
Corresponding Model Parameters
256 bits, W=4 512 bits, W=5 1024 bits, W=6 2048 bits, W=6 or 7
Model / Parameters Model / Parameters Model / Parameters Model / Parameters
9800 Sampled: LG=192, S=22 Sampled: LG=128, S=21, RM=60 Distrib: LG=64, T=2 Distrib: LG=64, T=4, W=6
260 Sampled: LG=128, S=22 Sampled: LG=192, S=21 Distrib: LG=64, T=2 Distrib: LG=64, T=4, W=6
580 Three N: LG=128, KS=1, KM=1 Three N: LG=128, KS=1, KM=1, RM=50 | Local: LG=128 Distrib: LG=128, T=8, W=6
680 Three N: LG=128, KS=1, KM=1 Three N: LG=128, KS=2, KM=1 Local: LG=128 Distrib: LG=128, T=8, W=6
780Ti Three N: LG=128, KS=1, KM=1 Three N: LG=128, KS=2, KM=1, RM=63 | Three N: LG=128, KS=1, KM=1, RM=126 | Distrib: LG=128, T=8, W=7
750Ti Three N: LG=128, KS=0, KM=1 Three N: LG=512, KS=0, KM=0 Three N: LG=128, KS=0, KM=0, RM=126 | Distrib: LG=128, T=8, W=7

TABLE KEY: LG=Launch Geometry KS=Karatsuba Squaring levels KM=Karatsuba Multiplication Levels S=Bits per Sample
T=Threads per exponentiation instance RM=Register max (specified via ptxas option -maxrregcount) W=Window Size

Table 6.7. Best Performing Model by Size and Card

noted). The bottom section has the same organization but shows the search parameters
corresponding to each of those results.

We compare our results to the two papers with the fastest results we are aware of. The
first is by Jang et al [64]. They report RSA decryptions per second of 322K at 512 bits,
75K at 1024 bits, 12K at 2048 bits and 1.7K at 4096 bits on a GTX 580. Each RSA decrypt
requires two half-size modular exponentiations and a CRT reconstruction. To scale our
results to compare with Jang we must divide our throughput numbers by approximately
2.05 (the 0.05 is to make allowance for the CRT reconstruction). On the GTX 580, for
512-bit RSA decryption, our peak throughput is 2.83M per second, 8.8 times faster than
Jang et al. At 1024 bits, our peak performance is 374K, 5 times faster. At 2048 bits, our
peak is 41.7K, or 3.5 times faster and at 4096 bits, our peak is 4.5K, slightly more than 2.6
times faster. Compared with the 780Ti, our performance is 10.2, 6.5, 5.2, and 3.1 times
faster, respectively, for the same problem sizes.

Neves and Araujo report a throughput of 41.4K 512-bit modular exponentiations per

second on a GTX 260. Our result for the same computation on the same processor is

151

118.72K, so we are roughly 2.9 times faster. Our result for 512-bit exponentiation on the
780Ti is 998.81K, or 24 times faster.

Some interesting points to note in our results are that the GTX 680 and 750Ti both
deliver lower performance than their immediate predecessors and in fact the 750Ti is only
about twice as fast as the GTX 260. In the case of the 680, the architecture halved the
number of SMs (and thus the number of integer multipliers), doubled the throughput of the
multipliers, and decreased the clock speed by nearly 30%. Although the new SMs (called
SMX) each have double the number of registers, the GTX 680 ends up with the same
number of registers as the GTX 580. As we have noted, GPU performance on modular
exponentiation depends on keeping values in registers, so the GTX 680 only matches the
580s multiplication capacity, but falls behind due to the decreased clock speed.

The 750Ti is an early release of the Maxwell architecture, which is redesigned for
lower power. It has even fewer SMs than the GTX 680 and runs at essentially the same
clock speed. It also returns to the practice of the earliest generations of requiring multiple
instruction cycles for integer arithmetic. We found it particularly interesting that this archi-
tecture, unlike the Kepler generation, does better without Karatsuba squaring, and at all but
the smallest problem size, it even needs to avoid the Karatsuba multiply.

One of the particularly interesting aspects of our results is that in the majority of cases, a
unique combination of the search space parameters was needed to obtain best performance.
Although we do not show the hundreds of weaker results from suboptimal combinations, in
nearly every case, there was a large gap between the best and next best combination. Thus,
the full search was indeed necessary. And at the same time, our high utilization figures
indicate that our search space was sufficient for finding combinations that closely approach

peak performance.

152

6.9 Conclusions

We have shown that GPUs are capable of performing multiprecision modular expo-
nentiation at a very high level of throughput. For the most common size employed in
cryptography, we report that a recent GPU can perform nearly a million exponentiations
per second, and even for a GPU that is two generations old, a rate of 766 thousand per sec-
ond is achievable. Our results are several times better than prior work, and in many cases
are within ten percent of the theoretical peak utilization, leaving little room for additional
improvement. We have applied our techniques across six generations of NVIDIA GPU,
reaching as far back as Compute Capability 1.1. These levels of performance can provide a
low cost means of offloading computationally intensive decryption work from server CPUs.

We found that it was very difficult to predict performance a priori for any given com-
bination of algorithm and architecture. Many of our optimal combinations were counter-
intuitive and it took considerable effort to understand why they outperformed others that
appeared to be better choices. In many cases we were only able to find the optima as a
result of searching a multidimensional design space. After years of preliminary ad hoc
exploration, it was the development of this comprehensive search space that enabled us to
methodically find the best combinations. A key enabling element was the identification of
four different storage models for registers and memory that enabled us to treat these re-
sources as a dimension in the search, and that offer alternative virtual views of the storage
resources for different algorithms and problem sizes.

A critical insight was that prior approaches implicitly assumed a small register file and
fast cache, whereas maximizing parallelism on the GPU depends on keeping computations
in registers as much as possible and minimizing the shuffling of data through memory.
Although of secondary importance, the available operations also have a strong influence
on optimization. Thus, attaining best performance depends on creating and searching a

comprehensive design space that in part involves defining a set of virtual views that manage

153

storage resources in different arrangements to which specific algorithms more naturally
map.

Our work was partly motivated by inefficiencies we observed in traditional register al-
location as done in the CUDA compiler. In solving that problem, it became clear that the
traditional approach used in CUDA and ptxas, where an intermediate form assumes infinite
registers and a subsequent phase tries to allocate those to the actual resources through tech-
niques such as dependence and live range analyses, is inadequate, at least for developing
core libraries.

Instead, we would argue that a new paradigm is needed in which operations are im-
plemented through multiple equivalent algorithms that can be described and parameterized
at a higher level. Code generation then involves search over a well-defined space with
dimensions such as parameterized algorithms, storage models, problem sizes, processor
capabilities, launch geometry, etc. The virtual views presented by our models, in particu-
lar, provide a higher level organization for register allocation that avoids much of the waste
we observed in the usual fine-grained view.

If we can find ways to apply such a paradigm more broadly, then obtaining best per-
formance from GPU-like architectures, especially for core libraries, will no longer have to
depend on heroic manual efforts that can nonetheless fail to obtain optimality and which

can be made obsolete with even a minor change in the next generation of hardware.

154

CHAPTER 7

MODULAR EXPONENTIATION USING DOUBLE PRECISION
FLOATING POINT ARITHMETIC

In this chapter we examine a new approach to multiple precision (MP) modular expo-
nentiation on the GPU using double precision floating point arithmetic. There have been a
number of papers that have used floating point arithmetic as the basis for modular multi-
plication and exponentiation algorithms. Moss, Page and Smart [84] use an RNS approach
with a vector of co-prime moduli, where each modulus is 12-bits in length and compute
a; - b; fmod m; using single precision floating point arithmetic. Fleissner [47] implements
192-bit modular exponentiation with six 24-bit values. The 24-bit values are further sam-
pled into bytes and the computations on the bytes are done using single precision floating
point arithmetic. In [11] Bernstein et al. implement a 280-bit modular multiplication based
on a traditional FRNS with 28 limbs of 10-bit samples and a three-product Montgomery
reduction (see Section 2.2.6 for a full explanation of the Montgomery reduction). They
use a complicated scheme to distribute each multiplication across 28 threads in a warp.
But in essence, each column sum can be thought of as a dot product, ZZ ;ai - b; where A
and B are the MP values to be multiplied and ¢ + 7 equals the column number. The a;
and b; samples and all of the computations are done using single precision floating point
arithmetic. But we note that 28 - (2!° — 1) - (2!° — 1) can exceed 2?* which can result in
rounding errors. To work around this problem, Bernstein et al. compute two partial sums
of at most 14 terms, which guarantees there won’t be any rounding. Bernstein et al. have
carefully crafted a highly optimized implementation, but unfortunately, 10-bit samples are
just too small to be efficient. In their subsequent paper [10], Bernstein et al. perform all

computations in the integer domain, which proved to be much faster. Zheng et al. in [112]

155

and a follow-on paper by Dong, Zheng, et al. [33] again use floating point arithmetic to
implement modular multiplication, modular exponentiation, and RSA. They use an FRNS
with either 22 or 23 bits per limb (depending on the size of the RSA) and a fast word-
by-word Montgomery reduction. The samples and all computations are performed using
double precision floating point arithmetic and by using 22 and 23 bit limbs, they can ensure
that the column sum does not exceed 2%, the largest integer that can be stored in a double
without rounding. The latter work by Dong, Zheng, et al. is the first paper that shows that
floating point implementations can outperform the best integer implementations, at least at
large sizes. These papers all use narrow samples, i.e., the number of bits in each sample
is always less than or equal to half the number of bits (width) available in the mantissa.
In this chapter, we will develop techniques for a new approach using wide samples where
each sample will have almost the same number of bits as the mantissa.

The rest of this chapter is organized as follows, Section 7.1 describes the wide samples
approach with tricks and optimizations that allows it to be implemented efficiently. Section
7.2 estimates the performance of the wide samples approach as compared to the traditional
integer approach across a range of NVIDIA micro-architectures. Section 7.3 covers our
implementation of modular exponentiation and modular multiplication using wide samples.
In Section 7.4 we present our experiments and results, and we close with conclusions and

future work in Section 7.5.

7.1 New Approach Using Wide Samples

The idea behind our approach is straightforward. We will use wide samples with 52-bits
per sample and will compute the products with double precision arithmetic. We will require
the ability to compute the high and low products of two samples a; and b;. Computing these
products is a well known problem with solutions that date back to the 1970s. Dekker [31]
solved the problem by splitting a; and b; into upper and lower halves and computing the

products from the half precision values. Dekker’s approach is quite slow, but with the

156

advent of hardware based fused-multiply-and-add (FMA), which is present on the GPU,
there is a fast algorithm as follows, where __fina_rz is the CUDA built-in function for a

double precision FMA with rounding towards zero:

full_product (double a_sample, double b_sample)
p-hi = __fma_rz(a_sample, b_sample, 0.0);
p-lo = __fma_rz(a_sample, b_sample, —p_hi);
return (p-hi, p-lo);

}

Figure 7.1. Compute the high and low product of two samples using fused multiply and
add

this approach is discussed in [70] and [59]. However, the resulting products must be nor-
malized to align the decimal points before they can be added to a column sum. To illustrate,
consider the following example: suppose ag and by are both 2°° and a, and b, are both 1.
Using the full product routine gives us py = (2'°°,0), p; = (1,0). With component-wise
addition py + p; yields (2'%°,0) because of round-off and alignment problems, not the
desired sum of (2% 1),

The double precision format in the IEEE-754 standard uses a 64-bit representation,
where the most significant bit is the sign, the next 11 bits are the exponent (with a bias
of 1023), and for normal floating point values, the remaining 52 bits form a 53-bit man-
tissa, where the most significant bit of the mantissa is always implicitly set to one. Implicit
meaning the most significant bit of the mantissa is not stored in the IEEE-754 representa-
tion, which saves a bit.

We can take advantage of this representation as follows. Since the product of two

2104 2104

samples is guaranteed to be less than , if we compute p_hi' = a; - b; + as a floating
point value, then 2'°* will be the most significant bit of the result and will become the
implicit bit in the representation. The next 52 bits (the explicit bits) of the mantissa will
exactly match the 52-bit high product that would have resulted from the same computation
in the integer domain. The same trick can be applied in the computation of the low product,

plo' = a; - b; — (p_hi' — 2'91) + 252, Computing the low and high products in this way

157

full_product (double a_sample, double b_sample)
double c1=2104 = 2=2104 4 952 = gyp;
uint64_t mask=2%2 — 1;

p-hi = __fma_rz(a_-sample, b_sample, cl);
sub = ¢2 — p_hi;
p-lo = __fma_rz(a_sample, b_sample, sub);

return (to_u64(p_hi) & mask, to_u64(p_-lo) & mask);

}

Figure 7.2. Normalized high and low products. Note, this algorithm requires rounding
towards zero. Rounding towards nearest will produce incorrect results.

forces the alignment of the decimal points and can be efficiently computed using only
three double precision instructions. Once we have the low and high products, we have to
accumulate them into column sums. If we try to compute the column sums in the floating
point domain, we will need more precision than a double since our high and low products
already have 53-bit values. It makes more sense to compute the column sums using 64-bit
unsigned integer arithmetic. To do so, we can simply convert the p_hi’ and p_lo’ values
to their IEEE-754 bit representation and mask off the top 12 bits. The bottom 52 bits are
exactly the integer value that needs to added to the column sum. This leads to the full
product algorithm shown in Figure 7.2 which returns a pair of unsigned 64-bit integers
representing the high and low products. The routine employs a function fo_u64 to convert
double precision values to their bit representation. The function can be implemented with
an inline PTX assembly or with C unions. On the GPU, the floating point values use the
same registers as integer values, so the conversion is essentially free.

With one more small trick, we can eliminate the masking operations by noticing that
the sign bit of p_hi’ is always 0 and the exponent is always 104 plus 1023 (the bias), thus
the top 12 bits of p_hi’ are always 0x467, and the top 12 bits of p_lo" are always 0x433 (52
plus 1023). Instead of the masking operations, we can add the top 12 bits into the column
sums and then by tracking how many high and low products have been summed into each
column, we can cancel off their total with a single subtraction operation. We can even save
the final subtraction by initializing the column sums with the correct magic values. The

algorithm in Figure 7.3 computes an 8-sample (420 bits) by 8-sample multiple precision

158

#define N 8

void sampled_product(uint64_t xcolumn_sums, double xa_samples, xdouble b_samples)
double c1=2104 ¢2=0104 4 952 gyb;
uint64_t mask=2%2 —1;
int index ;

for (index=0;index<N;index++) {
column_sums[index]J=magic (index , index+1);
column_sums[2*N—I—index]=magic(index+1, index);

}

for (i=0;i<N;i++) {
for (j=0;j<N;j++) {

p-hi = __fma_rz(a_samples[i], b_samples[j], cl);
sub = ¢2 — p_hi;
p-lo = __fma_rz(a_samples[i], b_samples[j], sub);

column_sums[i+j+1] += to-u64 (p-hi);
column_sums[i+j] += to_u64(p-lo);

Figure 7.3. MP Sampled Product Algorithm

full product returning the 16 column sums of the result. The algorithm uses a routine called
make _initial (shown in Figure 7.4) which takes two arguments, the high product count and
low product count, and generates the correct initial value for the column sum that will
cancel the 0x467s and 0x433s.

If the loops of the algorithm in Figure 7.3 are completely unrolled and we make some
reasonable assumptions about the code generated by the CUDA tool chain, then an
N-sample by N-sample product will require 3N? double precision floating point opera-
tions and 4N? 32-bit additions (two 32-bit addition instructions per 64-bit addition in the
algorithm). This can be quite efficient for GPU cards with high double precision through-

put.

uint64_t make_initial (int high_count, int low_count) {
uint64_t value=high_count*0x467 + low_countx0x433;

return —((value & OxFFF)<<52);

}

Figure 7.4. MP Sampled Product Algorithm

159

7.2 Performance Estimates for Various Cards

In the previous section, we established that a 52-bit full product can be computed with 3
double precision instructions and 4 32-bit integer add operations. In this section we look at
the NVIDIA micro-architectures where a sampled approach could potentially outperform
the traditional 32-bit integer approach to MP multiplication and modular reduction. The
basic operation needed to implement the classic O(N?) algorithms is the ability to com-
pute a full product and accumulate it with the column sum(s), henceforth called FPACS.
Table 7.1 shows the number of instruction dispatch cycles to implement FPACS across a
warp of 32 threads on a single streaming multiprocessor (SM) of a particular generation
using the 52-bit sampled approach and a traditional 32-bit integer approach. On the GPU,
the number of dispatch cycles is the most important metric in determining the throughput
of an operation, assuming there are sufficient ready warps to saturate the ALU pipelines.
Compute capability 1.x devices do not support double precision arithmetic, so Table 7.1
begins with Fermi, compute capability 2.x. The first row of the table is directly calculated
from the tables in Section 5.4 of the CUDA Programming Guide [28] on the throughput
of various instructions, for example, Kepler cards supporting fast double precision floating
point arithmetic can dispatch 64 double precision operations per clock cycle and 160 32-bit
add operations per clock cycle. Thus the 52-bit sampled FPACS represents 1.5 cycles of
floating point dispatch and 0.8 cycles of 32-bit addition, for a total of 2.3 cycles. Fractional
cycles might seem like a strange notion, but keep in mind that a streaming multiprocessor

can dispatch multiple instructions to multiple warps simultaneously. We also note that all

Fermi | Kepler | Maxwell | Pascal | Volta
2.x 3.x 5.x 6.x 7.x
52-bit sampled FPACS 10.0 23 25.0 5.0 5.0
32-bit integer FPACS 4.0 2.0 1.2 2.4 1.1
Estimated speedup, if faster | 6% 130% — 27% —

Table 7.1. Cycles required to dispatch a 52-bit sampled or 32-bit integer FPACS to a warp
of 32 threads

160

Maxwell cards have very poor double precision performance, hence the 25 cycles for the
sampled FPACS method. The second row of the table represents the number of cycles to
dispatch a 32-bit integer FPACS and is slightly more complicated. The Fermi and Kepler
values are derived from the same tables in [28]. Maxwell has a 16-bit multiplier in hard-
ware, which leads to complicated alignment problems. It takes 10 instruction dispatches
to implement a single 32-bit integer FPACS, however, Maxwell can dispatch four instruc-
tions to different warps simultaneously, thus for throughput measurements it’s 2.5 cycles
per 32-bit integer FPACS for a single column sum. For MP multiply and reduce, there are
some clever algorithms that can significantly reduce the alignment problems which brings
the cycles down to something in the neighborhood of 1.2 cycles per 32-bit integer FPACS
on a 256-bit multiply and reduce (see for example [37]). Pascal is quite similar to Maxwell,
with a 16-bit hardware multiplier. The difference is that it has half as many cores per SM,
but it has more than twice as many SMs. Thus the cycles per 32-bit FPACS doubles (com-
pared to Maxwell), but the overall throughput per GPU increases. Unlike Maxwell, some
Pascal GPUs do have good double precision performance. Finally, there is Volta. Volta
has a full 32-bit multiplier in hardware and can dispatch a 32-bit times 32-bit value plus
a 64-bit value in a single cycle. However, it is a new architecture and the compiler is not
yet generating very good code on the MP routines. Our best guess is that when everything
settles down it’ll be between 1.0 and 1.1 cycles per 32-bit integer FPACS.

From the 52-bit sampled FPACS cycles (which we’ll call s) and the 32-bit integer
FPACS cycles () we can calculate an estimate for the speed up of the sampled approach

over an integer approach as:

i+ 52?

timated dup = ——
estimated speedup = ——_;
The bit sizes (52 and 32) are squared because the classic multiply and reduce algorithms are
O(N?). The calculated estimated speedup is shown in the third row of the table. We note

there are many factors that impact performance that are absent from this analysis includ-

ing register pressure, detailed instruction pairing rules on each generation, compiler code

161

generation, sampling overhead, memory access patterns, shared memory block conflicts,
and finally, sometimes the hardware just doesn’t behave the way you expect it to. Thus,
while this is a useful analysis, it’s important to understand its limitations. However, we can
safely conclude that Kepler will, by a large margin, be the best target for the wide samples

approach.

7.3 Implementation of Modular Exponentiation using Wide Samples
We implement modular exponentiation using the fixed window algorithm of Section
2.2.9. As in the previous chapter, the fixed window exponentiation routine uses an abstract
interface to decouple it from the implementation details of the modular multiplier. The
interface between the two classes is similar to the one described in Figure 6.3, but in this
case, we assume that there are three MP values, A, B and M stored in sampled form in
registers. The interface relies on two routines, the multiply routine computes A - B mod M
using a Montgomery reduction and square computes A - Amod M, also using a Mont-
gomery reduction. Since we wish to use the same code to support sizes up to 2048 bits,
we employ a distributed model where 2, 4, or 8 threads are assigned to each instance. The
limbs of the A, B, and, M values and the column sums are divided into contiguous chunks
which are distributed to the group of threads responsible for the instance. This is analogous
to the slices of Chapter 4. The modular multiplier is split up in three routines, as follows.

The first is shown in Figure 7.5, whereby each thread computes a product of a single 52-bit

template<int limbs>
void rowmul(uint64_t sums[limbs+1], double term, double v[limbs]) {
double hi, temp, lo, c1=2104 (2=0104 4 952.

for (int index=0;index<limbs;index++) {

hi=__fma_rz (term, v[index], cl);
temp=hi—c2;
lo=__fma_rz(term, v[index], temp);

sums|[index+1] += to_u64(hi);
sums[index] += to_u64(lo);

Figure 7.5. 52-bit sampled row multiplier

162

template<int n, int threads, int limbs>
void modmul(uint64_t sums[limbs+1], double a[limbs], double b[limbs],
double m[limbs], uint64_t np0) {
uint32_t groupBase=threadldx .x & ~(threads —1);
uint64_t send64, mask52=0xFFFFFFFFFFFFFull;
double term ;

// initialize the low limbs
for (int word=0;word<limbs ; word++)
sums [word]=make_initial (2xword, 2+«word+2);

for (int index=0;index<n;index++) {
// initialize the high limb
if (index<n—1—1limbs)
sums|[limbs]=make_initial (2%limbs, 2xlimbs);
else if (index<n—1)
sums[limbs]=make _initial (2*(n—Il—index), 2x(n—I—index —1));

// accumulate b_i x A, followed by q-i * M
term=__shfl(b[index % limbs], index/limbs + groupBase);
rowmul<limbs >(sums, term, a);

term=(double) __shfl (sums[0]*np0 & mask52, groupBase);
rowmul<limbs >(sums, term, m);

// because of the Montgomery property, the least significant 52 bits of the
// least significant thread will always be zero. So we can use wrap around
// without any additional zeroing.

send64=__shfl (sums[0] & mask52, threadldx.x+1, threads);

sums [O]=sums[1] + (sums[0])>>52);

// all other limbs shift right by one column
for (int word=1;word<limbs —1;word++)

sums [word]=sums [word+1];
sums [limbs —1]=sums[limbs] + send64;

// the high limb is empty, zero it
sums [limbs |=0;

}
Figure 7.6. 52-bit sampled modular multiplication based on a CIOS Montgomery product

sample (called term) by its slice of the MP value and accumulates the results into its slice
of the column sums. The routine uses a single template argument to specify the number of
52-bit limbs in the slice.

The second algorithm, shown in Figure 7.6, implements a word-by-word CIOS Mont-
gomery product. It uses three template arguments, where n specifies the total number of
limbs in an instance, threads is the number of threads assigned to each instance and limbs
is the number of 52-bit limbs in each slice. Note, in some cases, n might be less than
threads - limbs. The algorithm first initializes the column sums. Then it iterates through

the limbs of B, accumulating A - b; followed by M - g; into the column sums. Since the

163

column sums are 64 bits per limb, rather than the 52 bits of the sample, the column sums
form a redundant representation where the upper 12 bits of each column overlap with the
next (more significant) column sum. At the end of each iteration, we must shift the column
sums one sample, or 52 bits to the right. To implement this, each thread splits the least
significant column sum into an upper 12 bits and a lower 52 bits. The upper 12 bits gets
added to its next most significant column sum. The lower 52 bits gets sent, using a __shfl, to
the next lower thread for inclusion in its most significant column sum. One clever trick we
use is that the shuffle is circular, i.e., the lowest thread in the group sends its value around to
the highest thread. This only works because we know that the lowest thread’s value will be
zero (recall that a word-by-word Montgomery product always zeros out the least significant
limb). Once we have iterated through all n of the b; terms, the column sums will represent
Montgomery product result. However, the column sums are still in an overlapped form,
and these carries must be resolved and the column sums reduced down to 52 bits before the
next multiplication can be performed.

Since we are using a sampled approach, for the most common modular exponentiation
sizes of 1024 bits, 1536 bits, and 2048 bits, we will have at least 16 extra bits available in
at the top of each MP value. We can take advantage of this to improve performance. First,
as per Orup [87] and Walter’s [107] work, we can allow the Montgomery results to range
from O to 2M — 1 and thus eliminate the need for the correction step. Second, even after
allowing for the greater range, the top 15 bits of the MP value will always be zero and we
can use that to shave off a few instruction here and there in the carry resolution routine.

The third algorithm, shown in Figure 7.7, is used to resolve the carries between col-
umn sums (within a thread) and between threads. It first sends the upper 12 bits the most
significant column sum to the next higher thread. This is done in a circular fashion where
the highest thread sends its 12 bits, which will be zero, to the lowest thread in the group.
The received values are added in to the least significant column sum in the thread. Next,

we iterate from least significant column sum to the most significant, masking off the top 12

164

template<int threads, int limbs>

void resolve(uint64_t xsums) {
uint32_t send32, generate, propagate, lane=1<<(threadldx.x & OxIF), carry, nextCarry;
uint64_t mask52=0xFFFFFFFFFFFFFull, testCritical;

// use a circular shift, we assume the top 12 bits of the highest thread are zero
send32=sums[limbs —1]>>52;

send32=__shfl (send32, threadldx.x—1, threads);

sums[limbs —1] = sums[limbs —1] & mask52;

// shift upper 12 bits to next limb

sums [0] += send32;

for (int index=1;index<limbs;index++) {
sums[index] += sums[index —1]>>52;
sums [index —1] = sums[index —1] & mask52;

}

testCritical=sums[0];
for (int index=1;index<limbs ;index ++)
testCritical=testCritical & sums[index];

// Construct the generate and propagate masks.

// For 1024, 1536, and 2048 bits, no interference between instances is possible
generate=__ballot (sums[limbs —1]>mask52);

propagate=__ballot(critical==mask52);

// if carry in, increment the critical samples
carry =((generate + generate + propagate) ~ propagate) & lane;
for (int index=0;index<limbs;index++) {

nextCarry=carry !=0 && sums[index]J==mask52;

if (carry)

sums[index]=(sums[index]+1) & mask52;

carry=nextCarry ;

}
}

Figure 7.7. 52-bit sampled carry resolution routine

bits which are added to the next column up. At the end of this iteration, all columns will
be less than 2°? with the exception of the last column, which will be less than 252 + 212,
The next step is to resolve the carries across threads. There are two approaches which
were described in Section 2.3.1. Here we use a generate/propagate scheme implemented
with __ballot instructions to resolve all the carry propagation without looping. This a nice
approach because it runs in constant time and is therefore resistant to side channel attacks.
Further, we note that the top 15 bits in the most significant column sum of the highest thread
will always be zero. Therefore, the highest thread can neither be critical nor can it generate
a carry out. Thus, we don’t require any special handling to prevent carries from propagat-
ing from one instance to another within the same warp. All carries and carry chains will be

stopped at the highest thread in each instance.

165

These three routines serve as the implementation of the modular multiplier. The other
routines required to implement fixed window exponentiation are straightforward, requiring
only data loading, data storing, and some sampling routines that convert a standard 32-bit

FRNS to and from a 52-bit sampled representation.

7.4 Experimental Setup and Results

To evaluate the wide samples approach to modular exponentiation, we ran experiments
on a GeForce GTX Titan Black card, which uses a Kepler micro-architecture with 15 SMs
with a nominal clock rate of 889 MHz and a maximum clock rate of 1280 MHz. The
Titan Black card supports high throughput double precision floating point operations. The
card is hosted a 64-bit Ubuntu Server (version 16.04 LTS) machine, with an MSI Z270M
motherboard and an Intel Core 15-7400 running at 3.0 GHz with 16 GB of main memory.
We have installed CUDA version 8.0 and NVIDIA driver version 375.26 and use GMP
version 6.1.1 to verify the modular exponentiation results generated on the GPU. For all of

our experiments, we use ndivia-smi to configure several settings on the driver/card:

Setting Value

GPU Operating Mode (-gom) 1 (Compute)
Persistence Mode (-pm) 1 (Enabled)
Application Clocks (-ac) 3500,1280

Table 7.2. NVIDIA Driver / GPU card settings

The GPU Operating Mode enables high performance double precision floating point on
the card. The Persistence Mode and Application Clocks are to turn off Turbo Boost mode
and lock the GPU to its highest available memory and compute ALU clock rates of 3500
MHz and 1280 MHz respectively.

To test the performance for each size n, (1024, 1536, or, 2048 bits), we generate the
number of random instances in accordance with Table 7.3. Each random instance consists

of three randomly generated values A, K, and M, each of which is n bits in length. There

166

Bits |Threads / Instance|Samples / Thread | Threads / Block|Max Registers|Instances|Blocks
1024 4 5 768 80 2880 15
1536 8 4 768 80 1440 15
2048 8 5 768 80 1440 15

Table 7.3. Parameter that deliver the best performane on 1024, 1536 and 2048 bit modular
exponentiation

are no restrictions on A or K, but M must be odd as required for use in Montgomery
reductions. The test procedure is straightforward. Generate the random instances on the
CPU and for each instance pre-compute two terms that are dependent on M: Rmod M
and R?mod M, where R is 2°%1"/521 Then copy the five n-bit values for each instance
to the GPU. On the GPU we first launch warm up kernels, followed by the timing runs.
Once all the timing runs are complete, we copy the results back to the CPU where they
are checked for correctness using GMP. For the timing runs, we launch the kernel and
measure the execution time. The kernel loads the instance data from GPU global memory
computes AX mod M and writes the result back to global memory. The timing runs do not
include any of the CPU processing time such as generating the random instance data, the
pre-computations, copying the instances to and from the GPU or verifying the result.

The modular exponentiation kernel can be compiled with a number of different parame-
ters, such as threads per instance, samples per thread, threads per block, maximum number
of registers to use per thread, etc. For each size n, we test a few of the possibilities and pick
the set of parameters that produces the best performance. The best values are summarized
in Table 7.3. One result that is surprising is that we achieve the best performance with a
single large block per SM rather multiple smaller blocks. With other kernels it’s common
to see multiply smaller blocks outperform a single large block.

In Table 7.4 we gives the throughput (modular exponentiations per second) and latency
of the wide samples approach on a Titan Black card. As can be seen from the table, a single

warm up run followed by small number of timing runs gives the best performance. As we

167

Bits | Warm Up Count | Timing Run Count | Average Throughput | Average Latency
1024 1 4 159.4K 18.0 ms
1 10 158.4K 18.2 ms
1 50 137.1K 21.0 ms
1 100 134.4K 21.4 ms
100 200 131.8K 21.8 ms
100 500 131.9K 21.8 ms
1536 1 4 44.0K 32.7 ms
1 10 40.2K 35.8 ms
1 50 37.3K 38.7 ms
1 100 36.9K 39.0 ms
100 200 36.5K 39.4 ms
100 500 36.3K 39.6 ms
2048 1 4 18.9K 76.1 ms
1 10 17.9K 80.6 ms
1 50 17.6K 82.0 ms
1 100 17.4K 82.9 ms
100 200 16.8K 85.5 ms
100 500 16.9K 85.5 ms

Table 7.4. Performance results for three sizes and different warm up counts and timing run
counts

increase the number of timing runs, the performance drops, but then levels off. In the last
two rows for each size, we do 100 warm up runs and then either 200 or 500 timing runs.
The throughput and latency of these last two rows are similar and represents the steady state
for the size. The nvidia-smi can be used to monitor the current state of the GPU, including
temperature, power consumption, clock rates, etc. What we see is that at the start of a set
of runs, the GPU core clock rate is 1280 MHz and the power consumption of the GPU
hits the maximum allowed, which is 250 watts. The GPU responds by ratcheting down the
core clock rate. At the end of the first few runs it has dropped down to 1030 MHz, and by
about the 100th run, the clock rate settles between 862 MHz and 875 MHz and the power
consumption hovers at around 245 watts. We can conclude that the kernel is not compute
bound or memory bound, it’s actually limited by power consumption.

We can compare our results to those of Dong, Zheng, et al. in [33] who used double

precision floating point and 22/23 bit limbs on a Titan GPU card. They achieved the equiv-

168

alent of 84.4K modexp ops/sec at 1024 bits, 24.3K modexp ops/sec at 1536 bits and 11.6K
modexp ops/sec at 2048 bits. Comparing to our steady state results, we find we are 56%
faster at 1024 bits, 49% faster at 1536 and 45% faster at 2048 bits. The Titan GPU has one
less SM than the Titan Black GPU and has a nominal clock rate of 837 MHz vs. 889 MHz.
However, since our software is hitting the power cap, it’s likely that our results wouldn’t
change by more than 5%-10% on the older Titan GPU.

The Titan Black card is very similar to the GTX 780Ti and we can compare these re-
sults against the integer implementations in Chapter 6. Both GPUs are based on the Kepler
micro-architecture, have 2880 cores, and have the same power limit of 250 watts. The
main differences are that the Titan Black card supports high performance double precision
and has a slightly higher nominal clock rate of 889 MHz vs. 875 MHz. At 1024 bits, the
wide samples approach achieves a steady state performance of 131.9K modular exponenti-
ations per second, versus the 127.9K reported in Chapter 6. At 2048 bits the wide samples
approach achieves 16.9K ops/sec, versus 10.8K ops/sec reported in Chapter 6. At 1024
bits, the integer implementation is using the Three N model with an instance per thread,
which tends to be much more efficient (because it’s possible to implement fast squaring
and Karatsuba), but at the expense of higher latency and a more complex code base. At
2048 bits where the integer and wide samples implementations are both using a distributed
model, we see that the wide samples implementation significantly outperforms the integer

one.

7.5 Conclusions and Future Work

The important contribution of this chapter was the combination of three tricks that al-
lowed efficient use of wide samples. The first trick was the injection of 2!%* and 2°? into
the floating point computations to solve the normalization/alignment problems. The sec-
ond was taking advantage of the IEEE 754 representation, whereby the least significant

52 bits of the double precision value exactly matches the integer high and low products,

169

and performing the column sums with unsigned 64-bit integers. The final trick was to take
advantage of the fact that upper 12 bits of a high product is always 0x467 and for a low
product is always 0x433. Rather than repeatedly masking off the top bits, we can include
them in the column sums and cancels them off with a single subtraction or alternatively by
initializing the column sum with the right magic value.

The combination of these tricks allowed our wide samples approach to outperform both
narrow samples and integer implementations. However, there is still significant work to
be done. We could implement a wider range of models, including the Three N model and
Two N plus Local model using wide samples and double precision arithmetic. This would
significantly improve the performance at smaller sizes. It would also be interesting to look
at more GPU cards, such as Pascal and Volta. According to Table 7.1 the wide samples
approach should be faster than an integer approach on Pascal, but slower on Volta. It would
be nice to confirm this conjecture experimentally.

In Chapter 6 we built utilization metrics for all of the models. These metrics gave us
insight into the number of dispatch cycles that were being wasted. However, in this case,
the performance is not limited by wasted dispatch cycles, but rather that we’re hitting the
power cap for the card. Wasting fewer dispatch cycles would only serve to increase the
power requirements of the computation and the card would probably respond by further
slowing the clock rate. Thus, the software as it stands is probably close to its peak potential
performance.

Finally, we believe that it might be possible to improve the performance of libraries

such as QD and CAMPARY using the same tricks explored in this chapter.

170

CHAPTER 8

CONCLUSION

We return to the hypothesis of this dissertation — an order of magnitude improvement
in three important criteria could be achieved by moving multiple precision operations from
the CPU to the GPU. The criteria are operations per second per socket, operations per watt,
and operations per second per dollar. We test the codes developed in the Chapters 4, 6,
and 7 across four generations of GPU and compare these results against two CPUs, a con-
sumer grade Core 15-7400 and a server class Xeon E5-2690v3 with 12 cores running CPU
equivalents (GMP and MPFR using multiple threads to saturate the cores). The speedups
achieved are presented in Tables 8.1 and 8.2. The raw data for the tables is quite lengthy

and can be found in Appendix A.

Xeon Core GTX GTX Pascal Volta
E5-2690 v3 15-7400 Titan Black 980 P100 V100

set_{ui,si,f,d} 1 0.3 6.9 5.9 14.2 19.6
sgn 1 0.6 43.9 439 528 477

cmp 1 0.5 10.8 134 24.1 39.5

neg 1 0.3 7.5 5.9 15.8 239

add 1 0.3 6.3 5.2 133 214

sub 1 0.3 6.3 5.2 133 214

mul 1 0.5 2.7 2.6 4.9 15.9

div 1 0.5 1.4 1.3 2.6 8.1!

sqrt 1 04 1.1 1.0 1.9 6.0!
256-bit powm 1 0.4 7.6 7.8 11.6 47.6
512-bit powm 1 0.5 6.2 5.1 9.9 32.9
1024-bit powm 1 0.6 6.1 34 156 37.0
1536-bit powm 1 0.5 4.7 2.9 3.2 29.8
2048-bit powm 1 0.5 4.9 2.7 145 29.8

Table 8.1. Speedup table: Throughput / Xeon E5-2690 Throughput

171

Core Xeon GTX GTX Pascal Volta
15-7400 ES5-2690 v3 Titan Black 980 P100 V100

set_{ui,si,f,d} 1 3.2 22.4 189 452 62.2
sgn 1 1.8 71.4 714 91.2 838

cmp 1 2.1 20.0 237 452 81.4

neg 1 3.7 27.8 220 584 88.4

add 1 3.7 23.5 19.5 49.7 80.0

sub 1 3.7 23.5 19.5 49.7 80.1

mul 1 1.9 5.2 49 94 304

div 1 2.2 3.1 2.9 5.7 15.5¢

sqrt 1 2.3 34 2.2 4.3 11.6!
256-bit powm 1 2.4 18.1 185 274 112.8
512-bit powm 1 1.9 11.7 9.8 18.9 62.6
1024-bit powm 1 1.8 10.7 59 32.5 65.6
1536-bit powm 1 2.0 9.4 59 264 59.6
2048-bit powm 1 2.0 9.8 53 29.1 58.4

Table 8.2. Speedup table: Throughput / Core 15-7400 Throughput

Operations per Second per Socket: the Xeon E5-2690v3 is a server class processor with
excellent throughput on a per socket basis. From Table 8.1, we see a Volta V100 card
has over 20x the performance on most APIs and between 6x and 15x the performance for
MP floating point multiplication, division and square root. It’s worth noting that the MP
floating point library has not been carefully optimized or tuned for the Volta architecture
and there are likely significant gains still to come. Intel does offer larger server CPUs,
in particular the 22 core E5-2699v4 processor at 2.2 GHz. If we scale the E5-2690v3 by
number of cores and clock rate, we estimate the E5-2699v4 should be about 1.6 times
faster than the E5-2690v3. Volta would still be at least an order of magnitude faster on all
operations except MP floating point division and square root. It’s also worth noting that
division and square root represent only a small fraction of the floating point operations in a

typical application.

'Division and square root on Volta are produce incorrect results due to a compiler bug. These table entries
represent our estimate for the performance of the current code once the compiler is fixed.

172

Operations per Watt: first, we note that we do not have the instrumentation to measure
the actual power consumption of the GPU or CPU. For this analysis, we will assume that
the CPUs and GPUs are all running at their full Thermal Design Power (TDP). Operations
per Watt is a tricky metric because performance tends to drop linearly with clock speed,
whereas power usage quadratically. Thus low end processors with slow clocks, such as
the NVIDIA Jetson SoC cards have the best performance per watt. Here we restrict our
comparison to the cards and processors that we have data for. The Xeon E5-2690v3 has
better performance per watt than the Core i15-7400. Thus we compare it against the Volta
card which has the best performance per watt of the GPUs. The V100 uses 300 watts
vs 135 for the Xeon, i.e., 2.2 times the power. APIs that achieve the order of magnitude
improvement must have speedup of at least 22 in the last column of Table 8.1. As we can
see, most APIs meet this requirement except for the three compute heavy floating point
operations. As noted above, there is probably considerable headroom for improvement in

these three APIs.

Operations per Second per Dollar: we see from Table 8.2 that a Xeon E5-2690v3 is
somewhere between 2 and 3 times the performance of a Core i15-7400. However, as a
server chip, it’s much more than 3 times the cost. Therefore the consumer grade Core 15
represents a better performance per dollar. If we look at shipping GPUs, there is a GTX
1080 card and we estimate it has 85% of the performance of a P100. The GTX 1080 costs
2.9 times as much as a i5-7400 ($549 vs $189), thus to achieve an order of magnitude
improvement in price performance we would need to see greater than 34 (2.9 divided by
0.85) in the 5 column of table 8.2. A few of the APIs achieve this level of performance
but not the important compute bound ones. This is largely a result of NVIDIA going with
a 16-bit multiplier at the hardware level for the Maxwell and Pascal micro-architectures.
In the next few months, NVIDIA is likely to release a consumer grade Volta graphics card
and if the performance is proportionate at the same price point, then we will easily meet

the order of magnitude improvement in performancce per dollar.

173

In conclusion, in this thesis and related publications, we have shown that it is possible
to obtain significant gains in operations per second per socket, operations per watt, and
operations per second per dollar by moving multiple precision operations from the CPU to
the GPU and we have made significant strides towards producing libraries that enable mul-
tiple precision arithmetic on the GPU, however further work needs to be done to produce

production quality libraries for release to a broader audience.

174

Appendices

175

APPENDIX A

PERFORMANCE ACROSS A RANGE OF CPUS AND GPUS

In table A.1 through A.6 we present the performance of multiple precision floating
point arithmetic implemented with a multithreaded (OpenMP) testing tool based on MPFR
for the CPU and our floating point library from Chapter 4, for the GPU. Volta was recently
released and there are some compiler issues that are causing the floating point library to
return incorrect results. These entries are marked with an X. We have reported the bugs to
NVIDIA and they have acknowledged the problem. In tables A.7 through A.9 we present
the performance of multiple precision modular exponentiation. For the CPU, we use a
multithreaded (OpenMP) testing tool based on GMP’s mpz_powm function. For the GPU
we use the modular exponentiation routines as implemented in Chapters 6 & 7. For the
Three N Model, we generate simple kernels with KM=0 and KS=0. For the Wide Samples
approach we always use 768 threads per block and 4 threads if the size is 1024, otherwise
8 threads. The Distributed Model does not produce correct results on Volta (which could
be because of the forementioned compiler bugs), thus we mark those entries in the table
with an X. The Wide Samples approach only supports three sizes: 1024 bits, 1536 bits and
2048 bits. All performance testing is done in accordance with the procedure described in

the corresponding chapters.

176

Core i5-7400 @ 3.00 GHz (4 cores)

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: IM 500K 500K 500K 100K 100K 100K 100K
set_ui 27.85 21.29 29.82 3829 1093 11.02 1270 14.33
set_si 25.18 21.27 29.68 3825 939 11.05 1271 14.32
set_float 26.00 21.34 2983 3829 987 11.09 1281 1447
set.double | 2444 2047 2844 3634 892 1052 12.14 13.64
sgn 2.97 1.68 1.67 1.66 0.62 0.62 0.62 0.62
cmp 5.11 2.68 2.80 278 0.84 0.84 0.84 0.84
neg 36.77 31.77 4486 5791 1445 17.12 19.73 22.37
add 4878 4196 59.07 76.18 19.00 2235 2572 29.08
sub 48.82 42.02 59.19 76.17 1898 2234 2573 29.07
mul 50.04 64.82 11092 189.15 52.64 69.60 87.85 105.71
div 105.15 115.04 203.53 297.24 85.87 111.19 142.66 178.44
sqrt 147.41 123.84 176.59 25631 66.02 84.44 100.81 123.25

Table A.1. Parallel MPFR on a Core i5-7400 (running time in milliseconds)

Xeon E5-2690v3 @ 2.60 GHz (12 cores/24 hyperthreads)

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: IM 500K 500K 500K 100K 100K 100K 100K
set_ui 740 640 884 11.29 3.1 362 413 4.62
set_si 742 640 885 11.29 3.11 362 412 4.62
set_float 7.51 642 885 11.29 3.12 362 412 461
set_.double | 7.32 6.21 847 1079 299 345 392 438
sgn 094 071 0.71 072 055 055 055 055
cmp 2.98 1.43 1.43 143 074 074 074 0.76
neg 9.73 847 11.78 1510 4.12 477 544 6.12
add 1275 11.05 1544 19.82 527 6.14 7.01 7.89
sub 12.80 11.05 1546 19.81 527 6.14 7.02 7.89
mul 2890 34.07 6026 9585 2656 3476 4448 53.06
div 4299 52.61 90.70 138.18 39.35 5220 6634 81.65
sqrt 59.28 52.09 76.67 109.77 29.61 38.03 47.82 58.79

Table A.2. Parallel MPFR on a Xeon E5-2690v3 (running time in milliseconds)

177

GTX Titan Black (Kepler)
bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: 1M 500K 500K 500K 100K 100K 100K 100K

set_ui 175 117 1.22 1.33 044 047 053 0.56
set_si .76 117 1.23 1.33 043 047 051 0.56
set_float 1.87 123 128 126 042 046 050 0.54
set.double | 2.23 1.43 1.46 143 043 045 049 054
sgn 0.04 0.02 0.02 0.02 001 001 0.01 0.01
cmp 028 0.15 0.14 0.14 004 0.04 0.04 0.04
neg 1.1 1.19 1.56 199 050 059 0.69 0.78
add 283 171 244 297 077 093 1.09 1.21
sub 285 172 251 296 077 095 1.06 1.18
mul 6.75 995 2086 3596 11.08 1548 2125 26.96
div 63.00 64.83 7523 98.67 22.63 29.69 36.40 44.94
sqrt 53.93 77.47 90.78 10839 26.11 3299 38.69 45.96

Table A.3. Our FP library on a GTX Titan Black (running time in milliseconds)

GTX 980 (Maxwell)
bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: IM 500K 500K 500K 100K 100K 100K 100K

set_ui 1.79 1.14 1.36 1.9 051 058 0.64 0.70
set_si .72 1.18 1.36 1.9 051 057 064 0.70
set_float 190 129 135 .51 050 056 0.62 0.69
set.double | 3.44 1.81 1.84 1.82 049 054 0.60 0.66
sgn 0.04 0.02 0.02 0.02 001 0.01 0.01 0.01
cmp 0.27 0.14 0.14 0.14 003 0.03 0.03 0.03
neg 1.54 135 197 264 067 081 096 1.10
add 269 194 291 38 097 1.16 136 1.55
sub 273 194 2091 388 097 1.16 136 1.55
mul 7.11 11.83 23.82 3870 11.31 15.80 20.95 27.02
div 64.24 63.72 81.00 10240 2541 3190 38.72 47.83
sqrt 5791 76.63 9586 118.65 29.51 35.80 43.05 51.48

Table A.4. Our FP library on a GTX 980 (running time in milliseconds)

178

P100 (Pascal)

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: 1M 500K 500K 500K 100K 100K 100K 100K
set_ui .12 099 1.01 1.06 0.15 0.17 020 0.22
set_si .15 1.00 1.02 1.05 0.15 0.17 020 0.22
set_float .39 1.12 1.15 .12 0.16 0.17 0.19 0.21
set.double | 1.44 1.13 1.16 .13 0.16 0.17 0.19 0.21
sgn 002 002 002 002 001 0.01 001 0.01
cmp 0.11 0.06 006 006 002 0.02 002 0.02
neg 070 052 073 095 025 030 034 039
add .38 0.85 1.10 143 036 043 050 0.57
sub 1.38 085 1.11 143 036 043 050 0.57
mul 372 6.13 1248 1988 5.89 820 10.86 14.05
div 3043 30.89 40.68 51.12 1296 16.17 1997 2441
sqrt 29.21 38.66 48.27 59.19 15.00 18.56 22.39 26.95

Table A.S. Our FP library on a P100 card (running time in milliseconds)

V100 (Volta)

bits: 1024 2048 3072 4096 5120 6144 7168 8192
instances: 1M 500K 500K 500K 100K 100K 100K 100K
set_ui .21 079 0.79 086 0.11 0.13 0.14 0.16
set_si 098 0.75 0.78 086 0.11 0.13 0.14 0.16
set_float 095 073 0.76 084 0.11 0.12 0.14 0.15
set_.double | 097 0.75 0.76 0.84 0.11 0.12 0.13 0.15
sgn 0.02 0.02 0.02 002 001 001 0.01 o0.01
cmp 0.05 0.03 0.03 003 001 001 001 0.02
neg 042 034 049 064 0.17 020 023 0.26
add 063 049 070 093 024 029 033 038
sub 064 049 070 093 024 029 033 0.38
mul 1.32 201 372 6.02 174 235 339 4.07
div X X X X X X X X
sqrt X X X X X X X X

Table A.6. Our FP library on a V100 card (running time in milliseconds)

179

CPU modular exponentiation
bits: 256 bits 512 bits 1024 bits 1536 bits 2048 bits
instances: 10M IM 100K 100K 100K
Core 15-7400 357.3K 753K 12.3K 3.86K 1.72K
Xeon E5-2690v3 | 847.4K 143.0K 21.8K 7.73K 3.44K

Table A.7. Parallel GMP mpz_powm throughput (operations per second)

GPU modular exponentiation (using the Three N and Distributed models)
card 256 bits 512 bits 1024 bits 1536 bits 2048 bits
GTX Titan Black (Kepler) 6471.7K 882.4K 118.5K 27.0K 10.0K
GTX 980 (Maxwell) 6629.8K 736.2K 73.1K 22.7K 9.2K
P100 (Pascal) 9788.8K 14219K 160.6K 44.3K 17.8K
V100 (Volta) 40306.1K 4711.5K 611.9K X X

Table A.8. GPU modexp throughput (ops/sec) using the code generation approach (see
Chapter 6)

GPU modular exponentiation (using Wide Samples)
card 256 bits 512 bits 1024 bits 1536 bits 2048 bits
GTX Titan Black (Kepler) X X 131.9K 36.3K 16.9K
GTX 980 (Maxwell) X X 24.2K 6.7K 3.1K
P100 (Pascal) X X 339.8K 101.9K 50.0K
V100 (Volta) X X 806.4K 230.1K 100.4K

Table A.9. GPU modexp throughput (ops/sec) using wide samples (see Chapter 7)

180

BIBLIOGRAPHY

[1] Antdo, S., Bajard, J. C., and Sousa, L. Elliptic curve point multiplication on GPUs.
In Application-Specific Systems Architectures and Processors (ASAP), 2010 21st
IEEE International Conference on (Rennes, France, July 2010), IEEE, pp. 192-199.

[2] Artzy, E., Hinds, J. A., and Saal, H. J. A fast division technique for constant divisors.
Communications of the ACM 19, 2 (1976), 98-101.

[3] Bailey, D., Borwein, P., and Plouffe, S. On the rapid computation of various poly-
logarithmic constants. Mathematics of Computation of the American Mathematical
Society 66, 218 (1997), 903-913.

[4] Bailey, D. H. FFTs in external of hierarchical memory. In Proceedings of the 1989
ACM/IEEE conference on Supercomputing (1989), ACM, pp. 234-242.

[5] Barrett, P. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Conference on the Theory and
Application of Cryptographic Techniques (1986), Springer, pp. 311-323.

[6] Beame, P. W., Cook, S. A., and Hoover, H. J. Log depth circuits for division and
related problems. SIAM Journal on Computing 15, 4 (1986), 994-1003.

[7] Ben-Sasson, E., Hamilis, M., Silberstein, M., and Tromer, E. Fast multiplication in
binary fields on GPUs via register cache. In Proceedings of the 2016 International
Conference on Supercomputing (Istanbul, Turkey, June 2016), ACM.

[8] Bernstein, D., and Sorenson, J. Modular exponentiation via the explicit chinese
remainder theorem. Mathematics of Computation 76, 257 (2007), 443-454.

[9] Bernstein, D. J., Chen, H., Cheng, C., Lange, T., Niederhagen, R., Schwabe, P., and
Yang, B. ECC2K-130 on NVIDIA GPUs. In International Conference on Cryp-
tology in India (Hyderabad, India, December 2010), vol. 6498 of LNCS, Springer,
pp. 328-346.

[10] Bernstein, D. J., Chen, H. C., Chen, M. S., Cheng, C. M., Hsiao, C. H., Lange, T.,
Lin, Z. C., and Yang, B. Y. The billion-mulmod-per-second PC. In Workshop Record
of Special-purpose Hardware for Attacking Cryptographic Systems (SHARCS) (Lau-
sanne, Switzerland, September 2009), vol. 9, pp. 131-144.

[11] Bernstein, D. J., Chen, T. R., heng, C. M., Lange, T., and Yang, B. Y. Ecm on
graphics cards. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques (2009), Springer, pp. 483-501.

181

[12] Blelloch, G. E. Prefix sums and their applications. In Synthesis of parallel algo-
rithms, J. H. Reif, Ed. Morgan Kaufmann Publishers Inc, 1993, ch. 1, pp. 35-60.

[13] Bodrato, M. and Zanoni, A. What about Toom-Cook matrices optimality? available
at http://bodrato.it/papers/whatabouttoomcookmatricesoptimality.pdf, 2006.

[14] Bodrato, M. Towards optimal Toom-Cook multiplication for univariate and mul-
tivariate polynomials in characteristic 2 and 0. In WAIFI 2007 Proceedings (June
2007), C. Carlet and B. Sunar, Eds., vol. 4547 of LNCS, Springer, pp. 116—133.

[15] Bos, J. W. Low-latency elliptic curve scalar multiplication. International Journal of
FParallel Programming 40, 5 (2012), 532-550.

[16] Brent, R. P., and Zimmermann, P. Modern Computer Arithmetic, vol. 18. Cambridge
University Press, 2010.

[17] Burnikel, C., and Ziegler, J. Fast recursive division. Tech. Rep. MPI-1-98-1-022,
Max-Planck-Institut fuer Informatik, 1998.

[18] Cesari, G., and Maeder, R. Performance analysis of the parallel Karatsuba multipli-

cation algorithm for distributed memory architectures. Journal of Symbolic Compu-
tation 21, 4 (1996), 467-473.

[19] Char, B., Johnson, J., Saunders, D., and Wack, A. P. Some experiments with parallel
bignum arithmetic. Proceedings of the st International Symposium on Parallel
Symbolic Computation (1994), 94—-103.

[20] Chiu, A., Davida, G., and Litow, B. Division in logspace-uniform NC. RAIRO-
Theoretical Informatics and Applications 35, 3 (2001), 259-275.

[21] Chung, J., and Hasan, M. A. Asymmetric squaring formulae. In /8th IEEE Sympo-
sium on Computer Arithmetic (ARITH 07) (2007), IEEE, pp. 113-122.

[22] Cohen, A. E., and Parhi, K. K. GPU accelerated elliptic curve cryptography in
GF(@2™). In 2010 53rd IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS) (Seattle, USA, August 2010), IEEE, pp. 57-60.

[23] Cole, R., and Vishkin, U. Faster optimal parallel prefix sums and list ranking. Infor-
mation and Computation 81, 3 (1989), 334-352.

[24] Cook, S. On the minimum computation time of functions. PhD thesis, Harvard
University, Cambridge, MA, 1966.

[25] Cook, S., Dwork, C., and Reischuk, R. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM Journal on Computing
15,1 (1986), 87-97.

[26] Cooley, J. W., and Tukey, J. W. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation 19, 90 (1965), 297-301.

182

[27] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algo-
rithms, vol. 6. MIT Press, Cambridge, MA, 2001.

[28] Corporation, NVIDIA. CUDA C Programming Guide, version 9.0.176 ed.,
2017. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf.

[29] Crandall, R., and Fagin, B. Discrete weighted transforms and large-integer arith-
metic. Mathematics of Computation 62, 205 (1994), 305-324.

[30] Davida, G., Litow, B., and Xu, G. Fast arithmetics using Chinese remaindering.
Information Processing Letters 109, 13 (2009), 660-662.

[31] Dekker, T. J. A floating-point technique for extending the available precision. Nu-
merische Mathematik 18, 3 (1971), 224-242.

[32] Diffie, W., and Hellman, M. New directions in cryptography. IEEE Transactions on
Information Theory 22, 6 (1976), 644—654.

[33] Dong, J., Zheng, F., Pan, W., Lin, J., Jing, J., and Zhao, Y. Utilizing the double-
precision floating-point computing power of GPUs for RSA acceleration. Security
and Communication Networks (September 2017).

[34] Earle, J. G. Latched carry save adder circuit for multipliers, Sept. 5 1967. US Patent
3,340,388.

[35] Emeliyanenko, P. Efficient multiplication of polynomials on graphics hardware. In
International Workshop on Advanced Parallel Processing Technologies (Rapperswil,
Switzerland, August 2009), vol. 5737 of LNCS, Springer, pp. 134-149.

[36] Emmart, N., Chen, Y., and Weems, C. C. Computing the smallest eigenvalue of large
ill-conditioned Hankel matrices. Communications in Computational Physics 18, 01
(2015), 104-124.

[37] Emmart, N., Luitjens, J., Weems, C., and Woolley, C. Optimizing modular multipli-
cation for NVIDIA’s Maxwell GPUs. In 2016 IEEE 23nd Symposium on Computer
Arithmetic (ARITH) (Santa Clara, USA, July 2016), IEEE, pp. 47-54.

[38] Emmart, N., and Weems, C. High precision integer addition, subtraction and multi-
plication with a graphics processing unit. Parallel Processing Letters 20, 04 (2010),
293-306.

[39] Emmart, N., and Weems, C. High precision integer multiplication with a GPU using
Strassen’s algorithm with multiple FFT sizes. Parallel Processing Letters 21, 03
(2011), 359-375.

[40] Emmart, N., and Weems, C. Parallel multiple precision division by a single precision
divisor. In 2011 18th International Conference on High Performance Computing
(HiPC) (Bangalore, India, December 2011), IEEE, pp. 1-9.

183

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[41] Emmart, N., and Weems, C. Search-based automatic code generation for multipreci-
sion modular exponentiation on multiple generations of GPU. Parallel Processing
Letters 23, 04 (2013).

[42] Emmart, N., and Weems, C. Pushing the performance envelope of modular expo-
nentiation across multiple generations of GPUs. In 2015 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS) (Hyderabad, India, May 2015),
IEEE, pp. 166-176.

[43] Emmart, N., and Weems, C. Asymptotic optimality of parallel short division. In
2016 IEEE International Parallel and Distributed Processing Symposium (Chicago,
USA, May 2016), IEEE, pp. 864-872.

[44] Fagin, B. S. Large integer multiplication on hypercubes. Journal of Parallel and
Distributed Computing 14, 4 (1992), 426—430.

[45] Ferguson, H., Bailey, D., and Arno, S. Analysis of PSLQ, an integer relation finding
algorithm. Mathematics of Computation of the American Mathematical Society 68,
225 (1999), 351-369.

[46] Fich, F. E. The complexity of computation on the parallel random access machine.
Department of Computer Science, University of Toronto, 1993.

[47] Fleissner, S. GPU-accelerated Montgomery exponentiation. In International Con-
ference on Computational Science (ICCS) (Beijing, China, May 2007), vol. 4487 of
LNCS, Springer, pp. 213-220.

[48] Fousse, L., Hanrot, G., Lefévre, V., Pélissier, P., and Zimmermann, P. MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33, 2 (June 2007).

[49] Fiirer, M. Faster integer multiplication. SIAM Journal on Computing 39, 3 (2009),
979-1005.

[50] Gaudry, P., Kruppa, A., and Zimmermann, P. A GMP-based implementation of
Schonhage-Strassen’s large integer multiplication algorithm. In Proceedings of the
2007 International Symposium on Symbolic and Algebraic Computation (2007),
ACM, pp. 167-174.

[51] Gentry, C. Fully homomorphic encryption using ideal lattices. In 471st ACM Sym-
posium on Theory of Computing (STOC) (Washington DC, USA, May 2009), vol. 9,
ACM, pp. 169-178.

[52] Giorgi, P, 1zard, T., and Tisserand, A. Comparison of modular arithmetic algorithms
on GPUs. In ParCo’09: International Conference on Parallel Computing (Lyon,
France, September 2009).

[53] Goldschmidt, R. E. Applications of division by convergence. Master’s thesis, Mas-
sachusetts Institute of Technology, 1964.

184

[54] Granlund, Torbjorn, and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 5.0.5 ed., 2012. http://gmplib.org/.

[55] Harrison, O., and Waldron, J. Efficient acceleration of asymmetric cryptography on

graphics hardware. In International Conference on Cryptology in Africa (Gammarth,
Tunisia, June 2009), vol. 5580 of LNCS, Springer, pp. 350-367.

[56] Harvey, D., van der Hoeven, J., and Lecerf, G. Even faster integer multiplication.
Journal of Complexity 36 (2016), 1-30.

[57] Henry, R., and Goldberg, 1. Solving discrete logarithms in smooth-order groups with
CUDA. In Workshop Record of Special-Purpose Hardware for Attacking Crypto-
graphic Systems (SHARCS) (Washington, DC, USA, March 2012), pp. 101-118.

[58] Hesse, W., Allender, E., and Barrington, D. A. M. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System
Sciences 65, 4 (2002), 695-716.

[59] Hida, Y., Li, X. S., and Bailey, D. H. Algorithms for quad-double precision floating
point arithmetic. In Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium
on (2001), IEEE, pp. 155-162.

[60] Hoffstein, J., Pipher, J., and Silverman, J. H. An Introduction to Mathematical Cryp-
tography, vol. 1. Springer, New York, USA, 2008.

[61] Honda, T., ITO, Y., and Nakano, K. GPU-Accelerated bulk execution of multiple-
length multiplication with warp-synchronous programming technique. IEICE
TRANSACTIONS on Information and Systems 99, 12 (2016), 3004-3012.

[62] Jacobsohn, D. H. A combinatoric division algorithm for fixed-integer divisors. IEEE
Transactions on Computers 100, 6 (1973), 608-610.

[63] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F,, Briggs, N. H., and Bray-
nard, R. L. Networking named content. In Proceedings of the 5th International Con-
ference on Emerging Networking Experiments and Technologies (CoNEXT) (Rome,
Italy, December 2009), ACM, pp. 1-12.

[64] Jang, K., Han, S., Han, S., Moon, S. B., and Park, K. SSLShader: Cheap SSL accel-
eration with commodity processors. In 8th USENIX Conference on Networked Sys-
tems Design and Implementation (NSDI), Proceedings of the (Boston, USA, March
2011), USENIX Association.

[65] Jebelean, T. An algorithm for exact division. Journal of Symbolic Computation 15,
2 (1993), 169-180.

[66] Jebelean, T. Using the parallel Karatsuba algorithm for long integer multiplica-
tion and division. In European Conference on Parallel Processing (1997), Springer,
pp- 1169-1172.

185

http://gmplib.org/

[67] Johnson, D., Menezes, A., and Vanstone, S. The elliptic curve digital signature
algorithm (ECDSA). International Journal of Information Security 1, 1 (2001), 36—
63.

[68] Joldes, M., Muller, J. M., Popescu, V., and Tucker, W. CAMPARY: CUDA multiple
precision arithmetic library and applications. In International Congress on Mathe-
matical Software (Berlin, Germany, July 2016), Springer, pp. 232-240.

[69] Karatsuba, A., and Ofman, Y. Multiplication of multidigit numbers on automata. In
Soviet Physics Doklady (1963), vol. 7, p. 595.

[70] Karp, A. H., and Markstein, P. High-precision division and square root. ACM
Transactions on Mathematical Software (TOMS) 23, 4 (1997), 561-589.

[71] Karp, R. M., and Ramachandran, V. A survey of parallel algorithms for shared-
memory machines. University of California at Berkeley, Berkeley CA, 1989.

[72] Kawamura, S., Koike, M., Sano, F., and Shimbo, A. Cox-Rower architecture for fast
parallel Montgomery multiplication. In International Conference on the Theory and
Application of Cryptographic Techniques (Bruges, Belgium, May 2000), vol. 1807
of LNCS, Springer, pp. 523-538.

[73] Knuth, D. E. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3 ed., vol. 2. Addison-Wesley, Reading, MA, USA, 1997.

[74] Kog, C. K., Acar, T., and Kaliski, B. S. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro 16, 3 (1996), 26-33.

[75] Koren, I. Computer arithmetic algorithms. Universities Press, 2002.

[76] Krandick, W., and Jebelean, T. Bidirectional exact integer division. Journal of
Symbolic Computation 21, 4 (1996), 441-455.

[77] Kravitz, D. W. Digital signature algorithm, July 27 1993. US Patent 5,231,668A.

[78] Ladner, R. E., and Fischer, M. J. Parallel prefix computation. Journal of the ACM
(JACM) 27, 4 (1980), 831-838.

[79] Law, L., Menezes, A., Qu, M., Solinas, J., and Vanstone, S. An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography 28, 2 (2003),
119-134.

[80] Leboeuf, K., Muscedere, R., and Ahmadi, M. High performance prime field multi-
plication for GPU. In 2012 IEEE International Symposium on Circuits and Systems
(ISCAS) (Seoul, Korea, May 2012), IEEE, pp. 93-96.

[81] Leboeuf, K., Muscedere, R., and Ahmadi, M. A GPU implementation of the Mont-
gomery multiplication algorithm for elliptic curve cryptography. In 2013 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS) (Beijing, China, May 2013),
IEEE, pp. 2593-2596.

186

[82] Lu, M., He, B., and Luo, Q. Supporting extended precision on graphics processors.
In Proceedings of the Sixth International Workshop on Data Management on New
Hardware (Indianapolis, USA, June 2010), ACM, pp. 19-26.

[83] Montgomery, P. L. Modular multiplication without trial division. Mathematics of
Computation 44, 170 (1985), 519-521.

[84] Moss, A., Page, D., and Smart, N. P. Toward acceleration of RSA using 3D graphics

hardware. In IMA International Conference on Cryptography and Coding (Cirences-
ter, UK, December 2007), vol. 4887 of LNCS, Springer-Verlog, pp. 364-383.

[85] Nakayama, T., and Takahashi, D. Implementation of multiple-precision floating-
point arithmetic library for GPU computing. In Proceedings of the 23rd IASTED
International Conference on Parallel and Distributed Computing and Systems (Dal-
las, USA, December 2011), ACTA Press, pp. 343-349.

[86] Neves, S., and Araujo, F. On the performance of GPU public-key cryptography.
In Application-Specific Systems, Architectures and Processors (ASAP), 2011 IEEE
International Conference on (Santa Monica, USA, September 2011), IEEE, pp. 133-
140.

[87] Orup, H. Simplifying quotient determination in high-radix modular multiplica-
tion. In Computer Arithmetic, 1995., Proceedings of the 12th Symposium on (1995),
IEEE, pp. 193-199.

[88] P. B. McLaughlin, Jr. New frameworks for Montgomerys modular multiplication
method. Mathematics of Computation 73, 246 (2004), 899-906.

[89] Parberry, 1., and Yan, P. Improved upper and lower time bounds for parallel random
access machines without simultaneous writes. SIAM Journal on Computing 20, 1
(1991), 88-99.

[90] Quisquater, J. J., and Couvreur, C. Fast decipherment algorithm for RSA public-key
cryptosystem. Electronics Letters 18, 21 (1982), 905-907.

[91] Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21,2 (1978), 120-126.

[92] Robertson, J. E. A new class of digital division methods. IRE Transactions on
Electronic Computers, 3 (1958), 218-222.

[93] Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 2007.

[94] Schonhage, A., and Strassen, V. Schnelle multiplikation grosser zahlen. Computing
7,3-4 (1971), 281-292.

[95] Solinas, J. A. Generalized Mersenne numbers. Tech. Rep. CORR-99-39, Center for
Applied Cryptography Research, University of Waterloo, 1999.

187

[96] Sorenson, J. P. A randomized sublinear time parallel GCD algorithm for the EREW
PRAM. Information Processing Letters 110, 5 (2010), 198-201.

[97] Srinivasan, P., and Petry, F. E. Constant-division algorithms. [EE Proceedings-
Computers and Digital Techniques 141, 6 (1994), 334-340.

[98] Svoboda, A. An algorithm for division. Information Processing Machines 9, 25-34
(1963), 28.

[99] Szabo, N. S., and Tanaka, R. I. Residue arithmetic and its applications to computer
technology. McGraw-Hill, 1967.

[100] Szerwinski, R., and Giineysu, T. Exploiting the power of GPUs for asymmetric
cryptography. In International Workshop on Cryptographic Hardware and Embed-
ded Systems (Washington, DC, USA, August 2008), vol. 5154 of LNCS, Springer,
pp- 79-99.

[101] Takahashi, D. A parallel algorithm for multiple-precision division by a single-
precision integer. In International Conference on Large-Scale Scientific Computing

(2007), Springer, pp. 729-736.

[102] Takahashi, D. Parallel implementation of multiple-precision arithmetic and
2,576,980,370,000 decimal digits of 7 calculation. Parallel Computing 36, 8 (2010),
439-448.

[103] Thall, A. Extended-precision floating-point numbers for GPU computation. In ACM
SIGGRAPH 2006 Research Posters (Boston, USA, July 2006), ACM, p. 52.

[104] Tocher, K. D. Techniques of multiplication and division for automatic binary com-
puters. The Quarterly Journal of Mechanics and Applied Mathematics 11, 3 (1958),
364-384.

[105] Toom, A. L. The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. In Soviet Mathematics Doklady (1963), vol. 4, pp. 714-716.

[106] Volkov, V., and Kazian, B. Fitting fft onto the g80 architecture,
2008. https://people.eecs.berkeley.edu/~kubitron/courses/
cs258-508/projects/reports/project6_report.pdf.

[107] Walter, C. D. Montgomery exponentiation needs no final subtractions. Electronics
Letters 35, 21 (1999), 1831-1832.

[108] Weber, K. An experiment in high-precision arithmetic on shared memory multipro-
cessors. ACM Special Interest Group on Symbolic and Algebraic Manipulation 24,
2 (1990), 22-40.

[109] Wegener, I. The critical complexity of all (monotone) Boolean functions and mono-
tone graph properties. In Fundamentals of Computation Theory (1985), Springer,
pp- 494-502.

188

https://people.eecs.berkeley.edu/~kubitron/courses/cs258-S08/projects/reports/project6_report.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs258-S08/projects/reports/project6_report.pdf

[110] Yanik, T., Savas, E., and Kog, C. K. Incomplete reduction in modular arithmetic.
IEEE Proceedings-Computers and Digital Techniques 149, 2 (2002), 46-52.

[111] Zhao, K., and Chu, X. GPUMP: A multiple-precision integer library for GPUs. In
2010 IEEE 10th International Conference on Computer and Information Technology
(CIT) (Bradford, UK, June 2010), IEEE, pp. 1164-1168.

[112] Zheng, F., Pan, W., Lin, J., Jing, J., and Zhao, Y. Exploiting the floating-point
computing power of GPUs for RSA. In International Conference on Information
Security (Hong Kong, China, October 2014), vol. 8783 of LNCS, Springer, pp. 198—
215.

[113] Zheng, F., Pan, W., Lin, J., Jing, J., and Zhao, Y. Exploiting the potential of GPUs
for modular multiplication in ECC. In International Workshop on Information Se-
curity Applications (Jeju Island, Korea, August 2014), vol. 8909 of LNCS, Springer,
pp- 295-306.

[114] Zuras, D. More on squaring and multiplying large integers. IEEE Transactions on
Computers 43, 8 (1994), 899-908.

189

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Application Areas for Multiple Precision Arithmetic
	The Thesis

	Literature Survey
	Number Representation
	Sequential Algorithms
	Addition and Subtraction
	Multiplication
	Fast Squaring
	Division
	Specialized Division Algorithms
	Remainder / Modulo Reduction
	Special Moduli
	Square Root Algorithms
	Modular Exponentiation Algorithms

	Parallel Algorithms for Multiple Precision Arithmetic
	Addition and Subtraction / Carry Resolution
	Multiplication
	Division

	Parallel Multiple Precision Implementations on CPUs
	GPU Implementations
	Cryptographic Operations Requiring Multiple Precision Arithmetic
	GPU Based Asymmetric Cryptography, Early Papers
	GPU Based Asymmetric Cryptography, Recent Papers
	GPU Based Multiple Precision Libraries
	Literature Survey – Conclusions
	Parallel Algorithms
	Asymmetric Cryptography Primitives on the GPU
	MP Libraries on the GPU

	Asymptotically Optimal Parallel Short Division / Division by Constants
	Prior Work
	Short Division Algorithm
	Proof of Correctness

	Connections to Parallel Prefix/Suffix Sum
	Optimality Proof
	Asymptotic lower bound for REMPAR on a CREW PRAM
	Asymptotic lower bounds for short division on a CREW PRAM
	Short division algorithm is asymptotically optimal for all d

	Experiments and Results
	Parallel Short Division Algorithms Tested
	Experimental Setup
	Results and Discussion

	High Precision Floating Point Arithmetic
	Library Feature Overview and API
	Implementation and Important Algorithms
	Experimental Testing and Results
	Comparison to Prior Work
	Conclusion and Future Work

	Large Unsigned Integer Addition, Subtraction and Multiplication
	Large Integer Addition and Subtraction
	Large Unsigned Integer Multiplication
	Fast Modulo
	Multi-byte Sample Sizes
	FFT Layout and Implementation
	CUDA Implementation and Optimizations
	Experimental Setup and Results
	Conclusion and Future Work

	Modular Exponentiation Across Multiple Generations of GPU
	Background
	Code Generator

	Related Work
	Three N Model
	Two N Plus Local Model
	Sampled Model
	Distributed Model
	Experimental Setup and Results
	Utilization
	Results and Discussion

	Comparison to Prior Work
	Conclusions

	Modular Exponentiation using Double Precision Floating Point Arithmetic
	New Approach Using Wide Samples
	Performance Estimates for Various Cards
	Implementation of Modular Exponentiation using Wide Samples
	Experimental Setup and Results
	Conclusions and Future Work

	Conclusion
	Appendices
	Performance Across a range of CPUs and GPUs
	Bibliography

