
PROCEEDINGS OF THE AAAI FALL SYMPOSIUM ON

REASONING AND LEARNING IN REAL-WORLD SYSTEMS FOR

LONG-TERM AUTONOMY (LTA)

Edited and organized by

KYLE HOLLINS WRAY

JULIE A. SHAH

PETER STONE

STEFAN J. WITWICKI

SHLOMO ZILBERSTEIN

November 1, 2018

Contents

Acknowledgements i

Preface ii

Invited Speakers iii

Organizing Committee iv

Program Committee v

Deep CNN and Probabilistic DL Reasoning for Contextual Affordances
Hazem Abdelkawy, Sandro Rama Fiorini, Abdelghani Chibani, Naouel Ayari, and Yacine Amirat 1

Towards Robust Grasps: Using the Environment Semantics for Robotic Object Affordances
Paola Ardón, Èric Pairet, Subramanian Ramamoorthy, and Katrin Solveig Lohan 5

From Abstract to Executable Models for Multi-Agent Path Finding on Real Robots
Roman Barták, Jiřı́ Švancara, Věra Škopková, and David Nohejl 13

Behavior Modeling for Autonomous Driving
Aniket Bera and Dinesh Manocha 16

Predictions, Surprise, and Predictions of Surprise in General Value Function Architectures
Johannes Günther, Alex Kearney, Michael R. Dawson, Craig Sherstan, and Patrick M. Pilarski 22

SocialAnnotator: Annotator Selection Using Activity and Social Context
H. M. Sajjad Hossain and Nirmalya Roy 30

LAAIR: A Layered Architecture for Autonomous Interactive Robots
Yuqian Jiang, Nick Walker, Minkyu Kim, Nicolas Brissonneau, Daniel S. Brown, Justin W. Hart, Scott

Niekum, Luis Sentis, and Peter Stone 38

Evaluating Predictive Knowledge
Alex Kearney, Anna Koop, Craig Sherstan, Johannes Günther, Richard Sutton, Patrick Pilarski, and Matthew

Taylor 43

SOMA: A Framework for Understanding Change in Everyday Environments Using Semantic Object
Maps

Lars Kunze, Hakan Karaoguz, Jay Young, Ferdian Jovan, John Folkesson, Patric Jensfelt, and Nick Hawes 47

A Practical Distributed Knowledge-Based Reasoning and Decision-Theoretic Planning for Multi-robot
Service Systems

Abdel-Illah Mouaddib and Laurent Jeanpierre 55

Learning and Generalisation of Primitives Skills Towards Robust Dual-arm Manipulation
Èric Pairet, Paola Ardón, Frank Broz, Michael Mistry, and Yvan Petillot 62

Using hierarchical expectations grounded in perception for failure reasoning during task execution
Priyam Parashar, Ashok K. Goel, and Henrik I. Christensen 70

Partial Policy Re-use in Connected Health Systems
Matthew Saponaro and Keith Decker 74

Multi-Fidelity Model-Free Reinforcement Learning with Gaussian Processes
Varun Suryan, Nahush Gondhalekar, and Pratap Tokekar 82

Towards Perception Aware Task-Motion Planning
Antony Thomas, Sunny Amatya, Fulvio Mastrogiovanni, and Marco Baglietto 88

Risk-Aware Planning by Extracting Uncertainty from Deep Learning-Based Perception
Maymoonah Toubeh and Pratap Tokekar 96

Policy Networks for Reasoning in Long-Term Autonomy
Kyle Hollins Wray and Shlomo Zilberstein 103

Big Data and Deep Learning Models for Automatic Dependent Surveillance Broadcast (ADS-B)
Ying Zhao, Richard Wu, Andrew Polk, Matthew Xi, and Tony Kendall 111

Acknowledgements

The AAAI Fall Symposium on Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA) is
sponsored by Nissan Research Center - Silicon Valley and held in cooperation with the Association for the Advance-
ment of Artificial Intelligence (AAAI) as part of the AAAI 2018 Fall Symposium Series.

i

Preface

Over the past decade, decision-making agents have been increasingly deployed in industrial settings, consumer prod-
ucts, healthcare, education, and entertainment. The development of drone delivery services, virtual assistants, and
autonomous vehicles have highlighted numerous challenges surrounding the operation of autonomous systems in un-
structured environments. This includes mechanisms to support autonomous operations over extended periods of time,
techniques that facilitate the use of human assistance in learning and decision-making, learning to reduce the reliance
on humans over time, addressing the practical scalability of existing methods, relaxing unrealistic assumptions, and
alleviating safety concerns about deploying these systems.

The goal of this symposium on long-term autonomy (LTA) was to identify the challenges and bridge the gaps
between theoretical frameworks for planning and learning in autonomous agents and the requirements imposed by
deployment in the real world. The symposium consisted of eighteen paper presentations and three invited talks,
concluding in a lively and interactive panel discussion.

In total, there were twelve long papers and six short papers, ranging in topics from planning and learning to archi-
tectures and real-world systems. The three invited talks presented work with fully operational deployments of assistant
service robots, semi-autonomous vehicles, and large-scale multi-agent warehouse robots. Specifically, the techniques
leveraged: hierarchical and multi-objective (PO)MDP models; reinforcement learning with general value functions;
deep learning for grasping, environment understanding, and risk-aware planning; multiagent models for system ro-
bustness; and robotic architectures with a focus on tight component integration. Applications included: autonomous
vehicles, delivery robots, activity recognition in smart homes, mobile warehouse robots, air traffic surveillance, dual-
arm grasping robots, and mobile home healthcare robots.

Throughout the symposium four key themes emerged as topics for long-term autonomy research: (1) integration of
multiple AI components beyond traditional architectural, hierarchical, and multi-objective approaches; (2) methods to
proactively leverage humans to overcome any exceptional issues encountered, diminishing this reliance over time; (3)
standard metrics and verification methods in order to properly measure long-term autonomous agents, such as by their
exceptional issues encountered, number of human help requests, effect of system improvements made, and degree of
learning performed; and (4) a focus on the robustness of the system to enable these long-term deployments.

We would like to thank everyone who submitted their papers to the LTA symposium. We would also like to thank
the program committee members for their high quality reviews and feedback during the paper submission process.
Additionally, we would like to thank the invited speakers for their excellent talks and collaborative panel discussion that
grounded and motivated the symposium overall. Finally, we would also like to thank all of the organizing committee
members as their continued effort made the LTA symposium a success.

– Kyle Hollins Wray
LTA Symposium Chair

– Shlomo Zilberstein
LTA Symposium Organizing Committee Member

ii

Invited Speakers

Dr. Nick Hawes, Associate Professor of Robotics at the University of Oxford

Title: Learning From Four Years of Mobile Autonomy

Abstract: In this talk I will look back over four years of long-term deployments of autonomous mobile robots
in everyday environments. From this I will present examples of the kinds of things that mobile robots can learn
over long autonomous operations in such environments, including navigation information, human activities,
object models, and mission schedules. Following this I will explore the issues (software, hardware, and social)
that impacted upon the autonomy of our deployed robots, and look at what we can learn from these experiences
as both AI practitioners and as engineers deploying robots in real environments.

Dr. Maarten Sierhuis, Chief Technology Director at Nissan Research Center - Silicon Valley, Founder of Ejenta

Title: Seamless Autonomous Mobility (SAM)

Abstract: Artificial intelligence will make vehicles able to drive autonomously in a wide variety of scenarios.
However, unexpected situations can still arise as these long-term autonomous vehicles interact in the world,
potentially limiting the uses of fully autonomous driving in the near future. Nissan’s Seamless Autonomous
Mobility provides a solution that can overcome this issue through the intelligent integration of humans.

Dr. Peter Wurman, VP of Engineering at Cogitai, Former Co-founder of Kiva Systems

Title: The Disruptive Power of Robots

Abstract: Kiva Systems introduced swarms of agile robots into an industry dominated by stationary conveyor
systems. The path from concept through successful startup and eventual acquisition involved challenges on all
fronts. In this talk I’ll explain the business problem that motivated the innovation, Kiva technology and the
benefits it brought to customers, and the future of applications of robotics in warehouses.

iii

Organizing Committee

Kyle Hollins Wray, Chair
University of Massachusetts Amherst

Julie A. Shah
Massachusetts Institute of Technology

Peter Stone
University of Texas at Austin

Stefan J. Witwicki
Nissan Research Center - Silicon Valley

Shlomo Zilberstein
University of Massachusetts Amherst

iv

Program Committee

Joydeep Biswas
University of Massachusetts Amherst

Jeremy Frank
NASA Ames Research Center

Nick Hawes
University of Oxford

David Hsu
National University of Singapore

Erez Karpas
Technion - Israel Institute of Technology

Mykel Kochenderfer
Stanford University

Sven Koenig
University of Southern California

George Konidaris
Brown University

Abdel-Illah Mouaddib
University of Caen Normandy

Nicholas Roy
Massachusetts Institute of Technology

Reid Simmons
Carnegie Mellon University

Matthijs Spaan
Delft University of Technology

Siddharth Srivastava
Arizona State University

Kiri Wagstaff
NASA Jet Propulsion Laboratory

Shiqi Zhang
The State University of New York at Binghamton

v

vi

Deep CNN and Probabilistic DL Reasoning for Contextual Affordances

Hazem Abdelkawy∗, Sandro Rama Fiorini∗, Abdelghani Chibani, Naouel Ayari and Yacine Amirat
LISSI Laboratory

University of Paris-Est Créteil (UPEC),
Vitry-sur-Seine France

{hazem-khaled-mohamed.abdelkawy, sandro.fiorini, abdelghani.chibani, amirat}@u-pec.fr

Abstract

Endowing robots with cognitive capabilities for recognising
contextual object affordances is a big challenge, which re-
quires sophisticated and novel approaches. In this paper, we
propose a hybrid approach to interpret contextualised object
affordances from sensor data. The proposed approach com-
bines both Deep CNN networks for object and indoor place
recognition with probabilistic DL reasoning for affordance
inference. We argue that our hybrid approach can be an inter-
esting alternative in situations where no specific dataset for
contextualised affordances exists.

Introduction
Visual intelligence is one of the most important aspects of
human cognition, and the paramount goal of the visual in-
telligence is the contextual visual reasoning. Take a cup as
an example. From a single image, humans can infer its name,
texture, colour, and what actions the object affords. In (Gib-
son 2014), Gibson defined the notion of object affordance
as the ”properties of an object that determine what actions
a human can perform on them.” In this paper, we define
the notion of contextual object affordance as the relation-
ship between an object and a set of actions this object al-
lows in a given situation. In other words, objects might af-
ford different actions at different places, times, or situations.
In this work, contextual object affordances are proposed as
means to filter the possible actions that a companion robot
can monitor/do in an ambient environment. Besides, contex-
tual affordances can be used as part of a bigger process to
extract an agent intentions, by restricting the possible inten-
tions based on the affordable actions in the environment in a
given time.

The previous attempts to recognise object affordances can
be divided into two categories: visual features classifications
models, knowledge-based inference models. In (Fergus et al.
2005), the proposed approach is able to learn an object cat-
egory from its name, based on the output of Google Image
search results. In (Kjellström, Romero, and Kragić 2011),
the inference of the object affordances is based on moni-
toring humans while they use objects in different actions.
In (Yao, Ma, and Fei-Fei 2013), the proposed approach is

∗These authors contributed equally to this work

able to model the affordance of an object based on the ma-
jority of human poses while interacting with that object.
In (Chu and Thomaz 2017), object affordances are discov-
ered by a guided exploration approach that combines self-
learning with supervised learning. In (Do et al. 2017), Affor-
danceNet deep learning model is proposed to detect ambient
objects and their affordances simultaneously from RGB im-
ages. In (Zhu, Fathi, and Fei-Fei 2014), the authors propose
a Markov Logic Network (MLN) knowledge base to apply
zero-shot object affordance prediction besides object recog-
nition given human poses. Despite the previous serious at-
tempts, only the latter model is able to predict the object
affordances for unseen novel objects.

From a pure machine learning perspective, while it would
be possible to train a model to produce contextual affor-
dances, frequently data sets are not available for this task.
To the best of our knowledge, no data set with these charac-
teristics exists. Therefore alternative solutions are needed in
order to use this kind of information in autonomous systems.

In this work, we propose our initial findings to extend
a previously proposed cognitive architecture (Ayari et al.
2015; 2017) to predict the contextual object affordances
based on place information. The extension is based on Deep
Convolutional Networks (CNNs) and Probabilistic Descrip-
tion Logics (DL) Reasoning. The role of the probabilistic
DL reasoning is to provide the ability to produce contextual
affordances based on low-level object and place information.
Our contribution is methodological: we demonstrate how the
integration of Deep CNNs models and DL reasoning compo-
nents can produce more valuable output even in a situation
where the data of training is missing.

Cognitive Architecture
The overall cognitive architecture proposed in (Ayari et al.
2015; 2017) is depicted in Fig 1. At the low level, a commu-
nication service is implemented to enable the entities pop-
ulating the ambient environment to connect and subscribe
to cloud services as well as to interchange knowledge. The
communication service is based on standard communica-
tion technologies such as (XMPP, REST, etc.) In addition
to the communication service, emotion recognition, metric
maps and topological maps based environment modelling,
and multi-modal data sensing services are implemented at
the low level.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

1

Figure 1: Overview of the architecture.

Here we focus on the object recognition and indoor place
recognition services, as well as the probabilistic reasoning
service. Their objective is to enable the companion robots to
recognise the indoor places and the objects populating the
environment. Implemented as Deep CNNs, models, they ex-
tract and recognise ambient objects and the indoor places in
which these objects are located. This information is fed into
the High Level, where the DL reasoning is able to infer the
contextual object affordances based on probabilistic object
and place data provided by the Low Level, using mainly in-
stance classification and subsumption checking.

Object Recognition
We employ Y OLO (”Y ou Only Look Once”) algorithm
(Redmon et al. 2016) in order to recognise the objects pop-
ulating an environment. Y OLO object recognition model
predicts the object bounding boxes and the associated prob-
abilities for these boxes. Firstly, the input image is divided
into SxS regions, within each region the model outputs a
set of N bounding boxes. For each bounding box, the model
predicts the object class probability and the location values
for the bounding box. Finally, the model filters out bounding
boxes with class probabilities below a predefined threshold
value.
Y OLO model has 24 stacked convolution layers followed

by 2 dense fully connected layers. To reduce the output fea-
tures space, we applied 1X1 convolution reduction layers
followed by 3X3 convolution layers.

Indoor Place Recognition
The Deep Residual Network (ResNet) was developed by
Microsoft Research Labs and exploited in (He et al. 2016)
for image recognition. In this paper, we use a modified
ResNet deep architecture to recognise the indoor locations.
The model consists of number of stacked convolution layers,
combined with residual shortcut connections to train deeper
and more sparse networks. The input convolution layer con-
sists of 64 feature maps of size 7x7 with stride of 2. A max-
pooling layer of 3x3 kernel and stride of 2 is applied after the
input layer to down-sample the feature maps representation.
The max-pooling layer is followed by a set of 16 residual
blocks, each residual block consisting of 4 convolution lay-
ers with 3x3 kernel size. A Global Average Pooling (GAP)

layer (Lin, Chen, and Yan 2013) is used to minimise over-
fitting by reducing the total number of learned parameters.
Finally, a dense, fully connected neural network with 2000
neuron is exploited as a classification layer to recognise the
indoor location.

Probabilistic Reasoning
The objective of the probabilistic reasoning service is to in-
fer object affordances based on object and place data ex-
tracted by the CNN services described above. It is based on
a probabilistic DL reasoning model presented by (Riguzzi et
al. 2015), supported by an OWL 2 ontology.

The ontology is relatively simple (Fig. 3). It specifies the
notion of affordance as a relationship between an object in-
stance and a type of (or class of) action. It defines three main
high-level concepts: object, place and action type. Objects
are the common objects of daily living and places are the
physical places wherein these objects can be found. Objects
and places are linked by the relation placed at. Action types
are reified action concepts; its instances are types of actions
which objects may afford. The reification allows one to rep-
resent affordances as a first-order relations, without requir-
ing metamodeling subterfuges. The object relationship af-
fords captures this relation. Also, representing affordances
as relationships instance of class instances simplifies the rea-
soning, as it avoids the need of creating artificial class in-
stances during DL reasoning, which is not trivial to control.
The remainder of the ontology is a taxonomy of objects and
places which parametrizes the reasoning algorithm, as well
as a set of reified action types represented as instances.

The inference rules are captured by DL subsumption rules
with the general formula schema

O u ∃placedAt.P v ∃affords.{T},
where O is a subclass of the Object, P is a subclass of Place
and T is an instance of Action Type. So, if any object in-
stance of a certain class is placed at the right place, it is
possible to reason that it affords a given action. Objects and
places can be described as specific as necessary.

The probabilistic DL reasoning is based on DISPONTE
distribution semantics (Riguzzi et al. 2015) for DL knowl-
edge bases (KBs). In this model, DL axioms are annotated
with probabilities, which are assumed to be independent.
DISPONTE defines worlds that select subsets of axioms of
the KB. The probability of a world w is defined as a joint
probability over selected and non-selected axioms. Finally,
the probability of a query axiom (i.e. a inferred axiom) is
ultimately given by a marginalised joint probability over the
worlds that entail the query. We use the BUNDLE reasoner
(Riguzzi et al. 2015) carry out the inferences. BUNDLE
implements DISPONTE by joining traditional DL reason-
ers (i.e. Pellet1) with Binary Decision Diagrams (BDD). In
brief, given a probabilistic KB and a query axiom, BUNDLE
takes worlds to be possible explanations of a query gener-
ated by a standard DL reasoner. The probability of a query
then defined by marginalising over the joint probabilities of
each of its explanations. This computation is optimised by

1https://github.com/stardog-union/pellet

2

Figure 2: Deep ResNet model for indoor place recognition.

Place

Object

ActionType

Thing

placedAt affords

Figure 3: Overview of the ontology being used.

calculating BDDs of a disjunction of the explanations, and
subsequently recursively calculating the probability of the
query using the BDD.

Our affordances interpretation algorithm takes probability
vectors of object and places classes detected by the CNNs
as inputs. For a given input frame, the dCNN layer out-
puts a vector O = [p1 : C1, ..., pn : Cn], where Ci cor-
responds to the calculated class of the i-th detected object
with probability pi. For places, the dCNN layer outputs a
vector L = [p1 : C1, ..., pn : Cm], where Ci corresponds to
a possible classification for the current place with probabil-
ity pi. The affordances reasoner encodes this output as a set
of instances of the ontology. An instance l is created in the
KB and for each element pi : Ci of L, an axiom pi :: l : Ci

is added to the ontology. Also, for each element pi : Ci ofO,
an instance xi is created and an axiom pi :: xi : Ci is added
to the KB. All object instances xi are defined to be placed
at l. This KB is loaded into BUNDLE, which infers affor-
dance relationships between instances xi and actions types
present in the model, weighted by probabilities calculated
on xi class and placement. The output of the component is
the set of action types afforded by all objects in that frame,

weighed by their infered probability. In cases where two ob-
jects in the same frame afford the same action, then the ac-
tion type with maximum probability is taken. The object and
place instances are not kept from a frame to the next.

An advantage of this method is that all the ontology ax-
ioms are taken into consideration while reasoning, even non
probabilistic ones. For example, it is possible to aggregate
common object classes in the object dataset under super-
classes, to which one can define a single reasoning rule.
Such modelling can drastically reduce the amount of infer-
ence rules to cover all possible affordances.

Preliminary Evaluation
We carried out a preliminary evaluation of the proposed
method through an empirical experiment on real-world
datasets. The datasets are as follows:

• Microsoft COCO (Lin et al. 2014) (Common Objects
in Context) dataset was exploited to evaluate the perfor-
mance of Y OLO object recognition deep learning model.
The dataset consists of 80 different objects with total
number of 2.5 million annotated instances. The dataset
is divided into 118K images for training, 5K images for
validation, 41K images for testing.

• The Place365 standard dataset (Zhou et al. 2017) was
used to evaluate the Place recognition deep learning
model. The dataset consists of 2 million images of dif-
ferent 365 common places. The dataset is divided into
overlapped training, validation, and testing sets (1M, 36K,
300K images, respectively). The training set contains up
to 5,000 images per category, while the validation and
testing contains 100 and 900 images per category, respec-
tively.

• The Daily Living Activities (ADL) dataset (Pirsiavash
and Ramanan 2012) was exploited to evaluate the perfor-
mance of the DL reasoning. The dataset consists of one
million RGB frames of 20 persons while practising un-

3

scripted 32 daily activities. The dataset annotation con-
sists of objects, activities, hand positions, and environ-
mental events. Compared to the traditional datasets for
daily activities, this dataset combining long scale tempo-
ral activities for periods up to few minutes and complex
object interactions.

• The proposed ontology was populated with objects,
places and related action classes from COCO, Place365,
and ADL datasets respectively. We defined an initial col-
lection of 16 DL rules to cover a subset of objects, places
and action types. These rules have been defined by hand,
trying to match activities in ADL to possible combina-
tions of objects and places from COCO and Place365. By
aggregating dataset objects and places into superclasses,
we were able to define rules with higher reuse potential.
To evaluated the proposed approach, a set of 4577 con-

tinuous frames from the ADL dataset were used to ob-
tain some preliminary performance statistics. In the Low
Level, the Deep CNNs were able to recognise in average
up to three objects (x̄ = 3.43, s = 1.91) and five indoor
places (fixed value). The average processing time of recog-
nising the ambient objects with indoor Places is 260 ms
per frame of 288x384 pixels2. In the High Level, the rea-
soner component is able to generate approximately 11 ax-
ioms (x̄ = 11.87, s = 3.82), which were added to the on-
tology at each frame. Based on this input, the reasoner pro-
duced around 3 contextual affordances per frame in aver-
age (x̄ = 3.32, s = 2.2). The average reasoning time for
recognition of contextual affordances is approximately 350
ms (x̄ = 354.60, s = 216.29) for each frame3.

Conclusion
In this paper, we propose a hybrid approach based on Deep
CNNs and DL reasoning to recognise contextual affor-
dances. We evaluated the proposed approach through em-
pirical experiments on real-world datasets. The preliminary
evaluation shows that the processing time of the proposed
approach is reasonably fitting the constraints of real-time ap-
plications.

References
Ayari, N.; Chibani, A.; Amirat, Y.; and Matson, E. T. 2015.
A novel approach based on commonsense knowledge repre-
sentation and reasoning in open world for intelligent ambi-
ent assisted living services. In Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on,
6007–6013.
Ayari, N.; Abdelkawy, H.; Chibani, A.; and Amirat, Y. 2017.
Towards semantic multimodal emotion recognition for en-
hancing assistive services in ubiquitous robotics. In 2017
AAAI Fall Symposium Series.
Chu, V., and Thomaz, A. L. 2017. Analyzing differences be-
tween teachers when learning object affordances via guided

2Deep CNNs running on a Intel(R) Core(TM) i7-6820HQ CPU
@ 2.70GHz (8 CPUs), 2.7GHz, with 16Gb RAM.

3Reasoner running on a Intel(R) Xeon(R) CPU E5-1630 v4 @
3.70GHz, 4 Core(s), 8 Logical Processor(s), with 8Gb RAM.

exploration. The International Journal of Robotics Research
36(5-7):739–758.
Do, T.; Nguyen, A.; Reid, I. D.; Caldwell, D. G.; and
Tsagarakis, N. G. 2017. Affordancenet: An end-to-end deep
learning approach for object affordance detection. CoRR
abs/1709.07326.
Fergus, R.; Fei-Fei, L.; Perona, P.; and Zisserman, A. 2005.
Learning object categories from google’s image search. In
Computer Vision, 2005. ICCV 2005. Tenth IEEE Interna-
tional Conference on, volume 2, 1816–1823. IEEE.
Gibson, J. J. 2014. The ecological approach to visual per-
ception: classic edition. Psychology Press.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Kjellström, H.; Romero, J.; and Kragić, D. 2011. Visual
object-action recognition: Inferring object affordances from
human demonstration. Computer Vision and Image Under-
standing 115(1):81–90.
Lin, T.; Maire, M.; Belongie, S. J.; Bourdev, L. D.; Girshick,
R. B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; and Zit-
nick, C. L. 2014. Microsoft COCO: common objects in
context. CoRR abs/1405.0312.
Lin, M.; Chen, Q.; and Yan, S. 2013. Network in network.
arXiv preprint arXiv:1312.4400.
Pirsiavash, H., and Ramanan, D. 2012. Detecting activities
of daily living in first-person camera views. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, 2847–2854. IEEE.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Riguzzi, F.; Bellodi, E.; Lamma, E.; and Zese, R. 2015. Rea-
soning with probabilistic ontologies. In Proceedings of the
24th International Conference on Artificial Intelligence, IJ-
CAI’15, 4310–4316. AAAI Press.
Yao, B.; Ma, J.; and Fei-Fei, L. 2013. Discovering object
functionality. In Proceedings of the IEEE International Con-
ference on Computer Vision, 2512–2519.
Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; and Tor-
ralba, A. 2017. Places: A 10 million image database for
scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence.
Zhu, Y.; Fathi, A.; and Fei-Fei, L. 2014. Reasoning
about object affordances in a knowledge base representa-
tion. In European conference on computer vision, 408–424.
Springer.

4

Towards Robust Grasps:
Using the Environment Semantics for Robotic Object Affordances

Paola Ardón and Èric Pairet and Subramanian Ramamoorthy and Katrin Solveig Lohan
Edinburgh Centre for Robotics

Heriot-Watt University and University of Edinburgh, UK.
{paola.ardon,eric.pairet,s.ramamoorthy}@ed.ac.uk;k.lohan@hw.ac.uk ∗

Abstract

Artificial Intelligence is essential to achieve a reliable human-
robot interaction, especially when it comes to manipula-
tion tasks. Most of the state-of-the-art literature explores
robotics grasping methods by focusing on the target object or
the robot’s morphology, without including the environment.
When it comes to human cognitive development approaches,
these physical qualities are not only inferred from the object,
but also from the semantic characteristics of the surround-
ings. The same analogy can be used in robotic affordances
for improving objects grasps, where the perceived physical
qualities of the objects give valuable information about the
possible manipulation actions. This work proposes a frame-
work able to reason on the object affordances and grasping
regions. Each calculated grasping area is the result of a se-
quence of concrete ranked decisions based on the inference
of different highly related attributes. The results show that
the system is able to infer on good grasping areas depending
on its affordance without having any a-priori knowledge on
the shape nor the grasping points.

INTRODUCTION
Humanoid robots are playing increasingly important roles
when it comes to indoor applications. Consider a robot as-
sisting humans by finding, collecting and delivering an ob-
ject. In such complex and dynamic environments, it is hard
to provide the system with every possible representation of
objects. This limitation can confuse the system into reach-
ing very similar objects with completely different purposes,
such as a candle for a glass full of liquid. Thus, the impor-
tance of a rich common sense library on object affordances
that holds the start of robust robotics grasps.

Affordance is defined as “an opportunity for ac-
tion” (Greeno 1994). Thus the interest in robotics on ob-
jects affordances and in artificial intelligence to investigate
the best procedure to imitate the cognitive human develop-
ment on how to interact with objects (Horton, Chakraborty,
and Amant 2012). There is a wide range of theories that try
to explain the human thinking, none of them taken as the
ground truth one.

∗The authors would like to acknowledge the support of the EP-
SRC IAA 455791 along with ORCA Hub EPSRC (EP/R026173/1,
2017-2021) and consortium partners.

Contains
liquids

Place to be
grasped

Meant to be grasped upwards,
otherwise the effect is negative

+
Kitchen,
Livingroom
…

(c, a) e
(c, e) a
(a, e) c

{E}ffects{A}ctions

{C}ontext

Figure 1: Affordances map model to create a correlation be-
tween the objects properties and their environment to im-
prove on robotic grasps.

Thus, it is not surprising that the development of artificial
intelligence is still a wide area of research. Humans heav-
ily rely on shapes and environments to identify and cate-
gorise objects in order to infer an action (de Beeck, Torfs,
and Wagemans 2008; Oztop, Bradley, and Arbib 2004). As
a result, humans succeed at generalising an action towards
objects of the same category with significantly different
shapes, e.g. glasses: wine, tumbler, martini, etc., and differ-
entiate how to manipulate objects with similar shapes but for
different purposes, e.g. bowling pin vs water bottle.

In robotics, the most common approach to affordances is
to learn direct mappings to labels (Bonaiuto and Arbib 2015;
Hermans, Rehg, and Bobick 2011; Lenz, Lee, and Saxena
2015; Montesano et al. 2008). However, this mapping accu-
racy is constrained by the amount of data needed to learn the
grasping areas in each of the affordance groups. These learn-
ing methods do not reveal what are the features that encode
the good object affordances? Namely, these affordances do
not strictly belong to the object itself. Instead, they are the
result of the relationship established between them and the
surroundings. Moreover, to engage in an interaction with hu-
mans, the robot has to be able to represent and reason with
different sources of knowledge and decrease the already em-
inent uncertainty in the environment (Pairet et al. 2018b).

Studies on the development of human cognitive methods
demonstrate that humans improve the interactive learning
process with objects not only based on previous experience
with them (or similar ones) but also by inferring in the con-
text of the environment where these objects reside (Wertsh
and Tulviste 1990). As a result, creating a relationship be-

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

5

tween the object, the scenario where it is more likely to be
found, and the set of possible actions to interact with. Using
the same analogy, in robotics, obtaining the grasp actions de-
pending on the object affordances can be improved by inte-
grating semantic attributes of the object and the environment
in which these objects are usually found.

This paper summarises an architecture to address the chal-
lenges previously described. The presented solution builds
upon the assumption that, the robot visual feedback rep-
resents a good source of information. Thus, the focus on
the improvement of affordances reasoning and actions. The
work establishes its foundations on the affordances map
presented in Figure 1 (Montesano et al. 2008), particularly
on its context element where the affordance identification
resides. In this work the context C = {c1, c2, ..., cn} is
modified to be the set of semantic attributes of the ob-
ject and the environment that build upon the affordance;
while A = {a1, a2, ..., an} the set of available actions and
E = {e1, e2, ..., en} the effects of performing those actions
are kept as the original model.

The framework allows the system to model an unknown
object and to reason on its affordance by correlating fea-
tures from the target and its environment. This with the
objective of calculating the best possible grasping region
which is highly related to the object’s affordance group.
Each abstract grasping area is the result of a sequence of
concrete ranked decisions based on the inference of differ-
ent highly related attributes. The system combines object re-
construction methods based on geometrical approaches and
deep learning techniques that delivers an efficient Knowl-
edge Base (KB) for object affordances grasping behaviours
useful in indoor environments.

RELATED WORK
Despite the wide range of methods for robotic grasps, this
summary focuses on those that do not need a-priori infor-
mation about the object in order to reconstruct it and meth-
ods that focus on the object affordance independently of the
object grasp action.

Object Modelling for Grasping Based on Geometry
There are works that profit from superquadric modelling to
then extract the possible grasps of an object using classi-
fiers, (Goldfeder et al. 2009; Vezzani, Pattacini, and Natale
2017). (Goldfeder et al. 2009) integrates shape primitives
and superquadrics, but the object representation is a multi-
level superquadric tree. This tree is created using a decom-
position of the initial model, which contains the shape primi-
tives. After a pruning routine, a subspace containing a set of
suitable grasps is obtained. (Vezzani, Pattacini, and Natale
2017) uses the superquadric modelling for both the object
and the end-effector showing the method to be successful at
computing the grasping area of the object and the desired
pose of the end-effector.

Object Affordances for Grasping
Many methods extract viable grasping points on the objects,
independently if the object is known or novel to the system,

thus not explicitly considering the target’s affordance. Ex-
amples of such works are (Ardón, Dragone, and Erden 2018;
Lenz, Lee, and Saxena 2015; Zech and Piater 2016), to men-
tion some. Others focus on learning the robot’s control and
dynamic models to achieve a grasp, such as (Stoytchev 2005;
Bonaiuto and Arbib 2015). The latter learn grasp affor-
dances from motor parameters to plan grasps using trial-
and-error reinforcement learning. (Stoytchev 2005) follows
psychology theories such as the ones presented in (Greeno
1994) to learn from exploratory behaviours the invariants in
the resulting set of observations for the grasps.

There are also those who focus on the object affordances
themselves without taking into account the grasping region.
An example is (Moldovan et al. 2012) that implement a
Bayesian network probabilistic method to learn to differen-
tiate affordances models among two objects. Their proposed
method shows good results under uncertainty.

In the vast repertoire of learning methods connecting af-
fordances, not necessarily limited to objects, some works
try to mimic the human reasoning by building a KB of ac-
tions based on tasks built upon reinforcement learning (Zhu,
Fathi, and Fei-Fei 2014; Sridharan 2017). Instead, (Monte-
sano and Lopes 2009; Kraft et al. 2009; Madry, Song, and
Kragic 2012) learn the visual descriptors of the objects us-
ing classifiers, such as support vector machine (SVM), to
categorise the objects and obtain the possible grasps. Others
such as (Nguyen et al. 2017; Do, Nguyen, and Reid 2018)
use classifiers alone to build a model using deep Convolu-
tional Neural Networks (CNN) based on the visual objects
features, resulting in a plausible generalised method given
the robustness of their data.

PROPOSED SOLUTION AND SYSTEM
INTEGRATION

The proposed framework is divided into two sub-stages as
shown in Figure 2. This method focuses on modelling the
object and extracting the valuable features of the target and
its surrounding environment. These sets of features allow
the system to deduce the target’s affordance to improve the
grasping actions.

2-D	Object	
Images	Dataset Point	Clouds	 +

Object Modelling with Superquadrics and
Delaunay triangulation

Filter	a	grasp

Affordance	
Integration

Knowledge
Base

2-D	Scene	
Images	Dataset

OBJECT MODELLING

AFFORDANCE REASONING
Objects features

Scene
features

Conditional grasps

ModelDisparity

Scene
features

Figure 2: (a) Proposed solution to a grasping framework us-
ing affordances theory, where the context consists not only
of the object but also of the environment features.

6

Object Modelling
Learning techniques are part of the state-of-the-art when it
comes to extracting the grasping points on objects. How-
ever, they bring some limitations, such as to collect or find
a suitable dataset that maps the two-dimensional (2-D) im-
ages to the labelled three-dimensional (3-D) grasping points.
This approach models the object using a combination of su-
perquadric modelling and Delaunay triangulation allowing
the system to grasp novel objects without any a-priori infor-
mation. Superquadrics are a family of geometric shapes sim-
ilarly defined as ellipsoids and other quadrics, except that the
squaring operations are replaced by arbitrary powers that are
the ones that adapt the shape to the surface of the perceived
object. The framework starts by approximating the object to
a superquadric model (Jaklic, Leonardis, and Solina 2013):

F (x, y, z,λ) :

((
x

λ1

) 2
λ5

+

(
y

λ2

) 2
λ5

)λ5
λ4

+

(
z

λ3

) 2
λ4

,

(1)
where (x, y, z) is a 3-D point in the superquadric model and
λ = [λ1, ..., λ5] defines the superquadric shape. Equation 1
provides a simple test whether a given point lies inside or
outside a superquadric:

P (x, y, z) =





F < 1, inside

F = 0, on surface

F > 0, outside

(2)

Nonetheless, one of the known problems of superquadrics
is that it samples more points around the curvatures of the
perceived shape (Jaklic, Leonardis, and Solina 2013).

Thus, in order to extract grasping points along the whole
surface of the object, the superquadric is combined with a
Delaunay triangulation. A Delaunay triangulation considers
a set P of points in the (D-dimensional) Euclidean space.
An example is shown in Figure 3. For a triangulation to be
Delaunay no point in P should be inside the circumcircle
shaped by the D-dimensional triangulation DT, with the an-
gle vectors composed by the points in P, DT(P), formed by
four chosen points inside P (Lee and Schachter 1980). In
two dimensions, one way to detect if a point D lies in the
circumcircle of A, B, C is to evaluate the determinant

∣∣∣∣∣∣∣∣

Ax Ay A2
x +A2

y 1
Bx By B2

x +B2
y 1

Cx Cy C2
x + C2

y 1
Dx Dy D2

x +D2
y 1

∣∣∣∣∣∣∣∣
> 0, (3)

where A, B and C are sorted counterclockwise. This deter-
minant is then positive, if and only if, D is inside the cirum-
circle. The vertices of the Delaunay triangulation are the
ones extracted as the grasping points of the object.

Figure 4 shows the process of visualising the grasping re-
gion on the object. A superellipsoid is matched using the
dimensions of iCub humanoid robot end-effector (Metta et
al. 2008). This superellipsoid and the robot’s hand model
are portrayed in Figures 4(a) and 4(b), and an example of a
modelled object with the obtained grasping region is shown
in Figures 4(c) and 4(d) respectively.

A

DB

C

(a)

A

B

C

D

(b)

Figure 3: Delaunay Triangulation example. (a) Delaunay tri-
angulation, (b) not a Delaunay triangulation

Building the Knowledge Base
While the previous module does not need any a-priori infor-
mation on the object to obtain a model, reasoning about the
object affordance needs a library of features that gives some
background about its correct affordance group. Knowledge
Base (KB) methods are growing in artificial intelligence.
They learn a set of general rules and features that allow the
system to infer about an object or an action. Moreover, this
method is not restricted to the output task, but it also allows

(a)

z(m)

(b)

(c)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

z

0.76
0.74

y
0.020.010.72 0-0.01

x
-0.020.7 -0.03-0.04

(d)

Figure 4: End-effector and object modelling. (a)-(b) show
iCub humanoid Robot end-effector CAD model with its su-
perellipsoid in yellow (axis colors: x is red, y is green and
the z is blue); (c) target object used for the sample recon-
struction; (d) point cloud reconstruction using superquadrics
and Delaunay triangulation, the detected grasping points are
shown in green and the final location of the end-effector in
yellow.

7

Apples, etc

Bowl, etc.

Boxes, etc.

Toothbrushes

Toothpastes

Towels, etc.

Caps

To
eat

To
contain

To
brush

To
squeeze

To
clean

To
wear

To
hand

Figure 5: Objects used for our framework from the Wash-
ington dataset and the different affordances groups.

the system to query a larger array of questions regarding the
features involved in the process.

In this work, a KB graph is used as a predictive model to
an object affordance. The system collects a set of attributes
about the objects and the environment, to then connect them
in a graph style based on a set of general rules that defines
the relationship among these attributes. Consequently, al-
lowing the system to reason about the affordance group and
the previously calculated grasping points. This KB consists
of two steps: collecting data and learning this data relation-
ship to reason on the affordance for grasping.

Collecting data: This is the repository of images collected
from two datasets that are finally organised in the affor-
dance categories shown in Figure 5. The first one is the
Washington-RGB dataset that contains 300 objects and 51
different classes, providing the point clouds and the 2-D im-
ages for each one of the instances (Lai et al. 2012). The sec-
ond dataset is the MIT Indoor scene recognition that con-
tains 15620 different images of 67 different indoor environ-
ments (Quattoni and Torralba 2009).

Both datasets are split into 70% for training and the re-
maining 30% for testing. These subsets are used to train and
test a battery of classifiers that help with defining good ob-
ject affordances features.

Learning the knowledge base using the environment: A
KB is visualised as a graph representation as illustrated in
Figure 6 where the entities (nodes) are connected by general
rules (edges). In this proposed solution, the entities include
the target object, the object attributes and the resulting affor-
dances groups. The general rules are the attribute to attribute
relation. Weights define this relation, where the higher the
weight, the higher the correlation between the two entities.
The previously collected repertoire of images is used to de-
fine the attributes portrayed in Table 1 about the object:

• Shape attributes: This is defined as the set of visual at-
tributes that describe the objects geometrical appearance,

• Texture attributes: Are a set of categories based on visual
characteristics of the objects materials,

• Categorical attributes: Reflecting the semantic under-
standing of the object. For example, an apple is food, and

Box

Fabric

Utensils

Hand towel

To clean

Object
Shape
Texture
Categorical

Affordance
Environment

Bathroom

𝜓𝑠

𝜓𝑡

𝜓𝑐

𝜓𝑒

𝜓𝑎

Figure 6: Example of a cleaning object and the extracted
attributes used to build the KB graph learning the positive
weights Ψ (shown in red) that result in an affordance group.

• Environment attributes: The scenarios in which the ob-
jects are more likely to be found in. This attribute is added
with the purpose of facilitating the object affordances rea-
soning.

Figure 7 illustrates the hierarchical inference procedure fol-
lowed in the KB, to arrive to an affordance group. This KB is
built using four different deep learning neural networks that,
through the pre-trained CNN resnet50, (He et al. 2016), ex-
tract features from the perceived images. These four differ-
ent deep learning CNN correspond to the different attributes
that define an entity set of the graph.

The KB is then a predictive model based on the hierarchi-
cal information obtained from the different attributes of the
object (visualised as nodes in Figure 6) and the defined gen-
eral rule that correlates attributes (the edges in Figure 6 from
now on referred as weights). From each of the attributes,
a set of weights ΨAi = {ψ1, ψ2, ..., ψn} is extracted hier-
archically to infer on the next best entity candidate, where
{Ai} is an attribute and n the total number of entities in that
attribute. The higher the ψn the higher the probability that
the connected entities result in a better affordance inference.
These weights are proportional to the posterior probability
distribution obtained from the classification task. Such that
the posterior probability distribution is defined as the Bayes
rule:

P̂ (a|x) =
P (x|a)P (a)

P (x)
, (4)

Table 1: Used attributes and entities of the KB graph.
Attribute Attribute Categories

Shape box, cylinder, irregular, long, round

Texture aluminium, cardboard, coarse,
fabric, glass, plastic, rubber, smooth

Categorical container, food, personal,
miscellaneous, utensils

Environment bathroom, bedroom, children room,
closet, kitchen, livingroom, office

8

Affordance
output

shape texture categorical environment

Ψ𝑠 Ψ𝑡 Ψ𝑐 Ψ𝑒

Knowledge Base

Based on correlation
of entities

Hierarchical
feature extraction

Figure 7: KB representation used for the object affordance
inference. Given an image, the model estimates the attributes
features in a hierarchical manner following the stated infer-
ence rule. These attributes are then accessible information
on the KB. A predictive model is then applied to select the
object affordance.

where x is an image belonging a class a, P (a) is the pos-
terior distribution and P (x) is a normalisation constant that
consists of the sum over a of the multivariate normal den-
sity. Figure 6 depicts an example of a cleaning or to hand
over object, where the weights deduce the best path (shown
in red) to the to clean affordance.

The collected information from each of the deep CNN is
then learned using a decision tree as a predictive model,

(y, Z) = (y1, y2, y3, ..., yn, Z), (5)

where Z is the affordance group that the system is try-
ing to infer and the vector y is the set of features
{y1, y2, y3, ..., yn}, described as attributes categories in Ta-
ble 1, used for the inference task.

Selecting the new grasping points: Once the object is
classified into an affordance category, the grasping region
is limited accordingly. The system selects from the set of
grasping points obtained in the object reconstruction module
and limits the grasps depending on the affordance action-
effect of the object in the following manner:

• The grasping region should be in the middle and up-wards
for objects that are meant to contain edibles.

• For the rest of objects, it is considered as the grasping re-
gion those areas where the density of grasping points is
higher, given that the affordance action-effect is not criti-
cal (i.e., hand over, to brush, etc.).

SYSTEM RESULTS AND DISCUSSION
The results of the presented KB for object affordances in-
cluding the environment features are presented in this sec-
tion. As a reminder, the proposed framework is able to rea-
son on the object affordance. In this work, affordance is un-
derstood as an action-effect relation of an object, with the
purpose of discerning on the best possible grasps.

The current literature in affordances for grasping be-
haviours uses labelled grasping regions on the targets to train
on the object affordance. Given that this approach aims to

Table 2: Each of the deep CNN accuracy performance.
Classifier Accuracy

Shape 95.71%
Texture 98.83%

Categorical 99.91%
Environment 76.50%

reason on the object grasping affordance without having any
a-priori knowledge about its grasping regions, the presented
evaluation of the results is done qualitatively.

Reasoning on the Object Affordance
The first tests are done individually on each of the deep
learning CNN that build up the KB. 30% of the images from
the Washington-RGB dataset were used for testing the bat-
tery of classifiers. Table 2 presents a summary of their accu-
racies, whereas exhaustively presented in literature, the en-
vironment recognition is the hardest classification to boost.
Even though the aim of the proposed framework is not ex-
clusively to improve the performance of the individual clas-
sifiers, these illustrated results match the state-of-the-art re-
sults shown in (He et al. 2016; Lai et al. 2012). In order to
evaluate the overall performance of the KB the accuracy and
probabilities distributions before and after adding the envi-
ronment features were collected.

Figures 8 and 9 show the data for both cases. Not includ-
ing the environment in the affordances has lower accuracy
than adding these features to the KB, as illustrated in Fig-
ures 8(a) and 8(b). Furthermore, Figure 8(a) also shows a
slightly higher spread among different affordance classes.
For example, the case of affordances which objects have
a general semantic categorical attribute such as “miscella-
neous” or “container”. A percentage of objects get confused
among the to contain, to brush, to eat, and to squeeze cat-
egories. Regarding grasping, this miscue represents a sig-
nificant negative effect, especially for objects which real af-
fordance is to contain and its misclassification results in the
system ignoring the lifting-up orientation of the object, thus
dropping the food or liquid inside the object. This case is re-
duced by 4.24% when adding the environment features, as
portrayed in Figure 8(b).

The posterior probability distribution of the objects
among each category is also improved. Figures 9(a) and 9(b)
show the overall increase in the median probability of the
objects in the different affordances categories. Further, there
is a notable decrement in the distribution of categories such
as to contain, to hand, to brush, and to eat meaning that the
model is more confident about the classification.

Obtained Grasping Points
The final goal is to obtain a system that, without any a-priori
knowledge about the grasping regions of the objects, is able
to reason on the affordance category and calculate the best
possible grasping region. Figure 10 shows examples of dif-
ferent objects from which the grasping areas were extracted,
before and after, inferring on the affordance of the target.
These grasp regions are analysed qualitatively according to

9

Accuracy: 92.57%

86.8%

2.3%

3.3%

2.3%

2.1%

1.9%

1.5%

2.9%

93.2%

0.0%

1.2%

2.6%

0.0%

0.1%

0.0%

0.0%

99.8%

0.0%

0.1%

0.0%

0.0%

1.0%

1.2%

1.2%

92.3%

0.9%

2.6%

0.9%

2.5%

2.3%

3.5%

2.3%

80.9%

6.3%

2.3%

0.0%

0.0%

0.0%

0.0%

0.0%

100.0%

0.0%

0.2%

0.2%

0.0%

0.2%

0.1%

0.0%

99.3%

to contain to hand to brush to clean to eat to squeeze to wear

to contain

to hand

to brush

to clean

to eat

to squeeze

to wear

(a)

Accuracy: 96.81%

92.0%

1.3%

1.9%

1.3%

1.2%

1.0%

1.3%

2.1%

96.0%

0.0%

1.2%

0.6%

0.0%

0.1%

0.0%

0.0%

99.8%

0.0%

0.1%

0.0%

0.0%

1.0%

1.2%

1.2%

94.3%

0.9%

0.7%

0.9%

0.9%

0.6%

0.1%

0.6%

96.8%

0.3%

0.6%

0.0%

0.0%

0.0%

0.0%

0.0%

100.0%

0.0%

0.2%

0.2%

0.0%

0.2%

0.1%

0.0%

99.3%

to contain to hand to brush to clean to eat to squeeze to wear

to contain

to hand

to brush

to clean

to eat

to squeeze

to wear

(b)

Figure 8: Affordance category classification perfor-
mance. (a) Before adding environment features, showing an
average diagonal accuracy of 92.57%; (b) After including
the environment, showing an average diagonal accuracy of
96.81%.

the most likely action that a human would take in order to
obtain the less negative effect.

For example, Figures 10(a) and 10(b) show the obtained
model from a water bottle. In these images, the achieved
grasp before deducing the affordances, results on being
placed on the lid of the bottle, which would result in a neg-
ative effect if the bottle contained liquid. On the other hand,
Figure 10(b) shows the calculated grasping area after the af-
fordance has been inferred, which shows to be a more plausi-
ble solution given the risk of the object being full. The same
case can be pleaded for Figures 10(c) and 10(d). In a slightly
different case, Figures 10(e) and 10(f) show two different
grasping regions for an object which affordance has been
determined as hand over. Thus both grasping choices seem
acceptable given that there is no critical effect involved.

to contain to hand to brush to clean to eat to squeeze wear
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
o

st
er

io
r

P
ro

b
ab

ili
ty

 D
is

tr
ib

u
ti

o
n

(a)

to contain to hand to brush to clean to eat to squeeze wear

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

st
er

io
r

P
ro

b
ab

ili
ty

 D
is

tr
ib

u
ti

o
n

(b)

Figure 9: Distributional posterior probabilities per class of
the knowledge base. (a) Distribution before the environ-
ment inclusion, and (b) after the environment features are
included.

FINAL REMARKS AND FUTURE WORK
Past research has presented approaches to the grasping prob-
lem extensively. However, grasping behaviours depending
on the object affordances is still an open challenge due to
the large variety of object shapes and robotic platforms. Fur-
thermore, the current approaches need large amounts of data
to train a model without being able to generalise among dif-
ferent classes of objects successfully, nor to distinguish the
best grasp area depending on the object’s purpose of use.

Thus, in this work, the base of a cognitive grasping frame-
work that is able to identify and encapsulate the good affor-
dance features of an object is presented. This task is not only
limited to the relationship that can be built between the target
object and the agent but also considers the surrounding envi-
ronment. The results show that without any a-priori aware-
ness on the grasping area of the object, the designed KB is
able to induce on the object’s affordance. These results are
further improved by the incorporation of the environment in

10

0.01

0.02

0.03

0.04

0.05

0.06

z

0.07

0.08

0.72

0.09

0.040.7

y x

0.020.68 00.66 -0.02

(a)

0.01

0.02

0.03

0.04

0.05

0.040.72

0.06

z

0.07

0.08

0.09

0.020.7

y x
00.68

-0.02

(b)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

z

0.6
0.4

y

0.2

x
0 0.040.020-0.02-0.04-0.06

(c)

-0.06

0.05

-0.04

-0.02

0

z

0.02

0

x

0.660.68

y

0.7-0.05 0.720.740.760.78

(d)

-0.1

0.86 0.05
0.84

-0.05

x

0.82

y

0

z

0.8

0

0.78 -0.05

0.05

(e)

-0.08

0.040.86

-0.06

0.02

-0.04

0.84 0

x

-0.02

y

0.82 -0.02

z

0

0.8 -0.04

0.02

-0.06

0.04

0.78

(f)

Figure 10: Objects modelling and grasping points before
(left column) and after (right column) affordance reason-
ing, the tested objects are: first row, water bottle; second
row, bowl; and third row, scissors. The extracted grasping
points are shown in green while the region of the corre-
sponding grasp is shown in yellow.

which these objects likely reside. Thus, allowing the system
to have a better chance at deducing the grasping area of the
object. Likewise, the presented framework has room for im-
provement, which is facilitated by its modularity. Overall,
the performance of the KB can be increased by adding more
attributes to the base, as well as modifying the predictive
model in order to deal with uncertainty. Furthermore, the dy-
namics and system control schemes of the humanoid robot
are considered out of the scope of this work. Nonetheless,
(Pairet et al. 2018a) offers a learning-based framework that
combines relative and absolute robotic skills for dual-arm
manipulation suitable for dynamic environments tasks such
as grasping objects that together with the semantics of the
object offer a complete manipulation platform for humanoid
robots.

References
Ardón, P.; Dragone, M.; and Erden, M. S. 2018. Reaching
and grasping behaviours by humanoid robots through visual
servoing. In Haptics: Science, Technology and Applications,
Springer International Publishing AG, 353–365. Springer
Nature.
Bonaiuto, J., and Arbib, M. A. 2015. Learning to grasp
and extract affordances: the Integrated Learning of Grasps
and Affordances (ILGA) model. Biological cybernetics
109(6):639–669.
de Beeck, H. P. O.; Torfs, K.; and Wagemans, J. 2008. Per-
ceived shape similarity among unfamiliar objects and the or-
ganization of the human object vision pathway. Journal of
Neuroscience 28(40):10111–10123.
Do, T.-T.; Nguyen, A.; and Reid, I. 2018. Affordancenet:
An end-to-end deep learning approach for object affordance
detection. In International Conference on Robotics and Au-
tomation (ICRA).
Goldfeder, C.; Ciocarlie, M.; Peretzman, J.; Dang, H.; and
Allen, P. K. 2009. Data-driven grasping with partial sensor
data. In Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, 1278–1283. IEEE.
Greeno, J. G. 1994. Gibson’s affordances. Psychological
Review 336–342.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hermans, T.; Rehg, J. M.; and Bobick, A. 2011. Affor-
dance prediction via learned object attributes. In IEEE Inter-
national Conference on Robotics and Automation (ICRA):
Workshop on Semantic Perception, Mapping, and Explo-
ration, 181–184. Citeseer.
Horton, T. E.; Chakraborty, A.; and Amant, R. S. 2012. Af-
fordances for robots: a brief survey. AVANT. Pismo Awan-
gardy Filozoficzno-Naukowej 2:70–84.
Jaklic, A.; Leonardis, A.; and Solina, F. 2013. Segmentation
and recovery of superquadrics, volume 20. Springer Science
& Business Media.
Kraft, D.; Detry, R.; Pugeault, N.; Baseski, E.; Piater, J. H.;
and Krüger, N. 2009. Learning objects and grasp affor-
dances through autonomous exploration. In ICVS.
Lai, K.; Bo, L.; Ren, X.; and Fox, D. 2012. Detection-
based object labeling in 3d scenes. In Robotics and Au-
tomation (ICRA), 2012 IEEE International Conference on,
1330–1337. IEEE.
Lee, D.-T., and Schachter, B. J. 1980. Two algorithms for
constructing a delaunay triangulation. International Journal
of Computer & Information Sciences 9(3):219–242.
Lenz, I.; Lee, H.; and Saxena, A. 2015. Deep learning for
detecting robotic grasps. International Journal of Robotics
Research 34(4-5):705–724.
Madry, M.; Song, D.; and Kragic, D. 2012. From object
categories to grasp transfer using probabilistic reasoning. In
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 1716–1723. IEEE.

11

Metta, G.; Sandini, G.; Vernon, D.; Natale, L.; and Nori, F.
2008. The icub humanoid robot: an open platform for re-
search in embodied cognition. In Proceedings of the 8th
workshop on performance metrics for intelligent systems,
50–56. ACM.
Moldovan, B.; Moreno, P.; van Otterlo, M.; Santos-Victor,
J.; and De Raedt, L. 2012. Learning relational affordance
models for robots in multi-object manipulation tasks. In
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 4373–4378. IEEE.
Montesano, L., and Lopes, M. 2009. Learning grasping af-
fordances from local visual descriptors. In Development and
Learning, 2009. ICDL 2009. IEEE 8th International Confer-
ence on, 1–6. IEEE.
Montesano, L.; Lopes, M.; Bernardino, A.; and Santos-
Victor, J. 2008. Learning object affordances: From sensory–
motor coordination to imitation. IEEE Trans. Robotics
24:15–26.
Nguyen, A.; Kanoulas, D.; Caldwell, D. G.; and Tsagarakis,
N. G. 2017. Object-based affordances detection with con-
volutional neural networks and dense conditional random
fields. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).
Oztop, E.; Bradley, N. S.; and Arbib, M. A. 2004. Infant
grasp learning: a computational model. Experimental brain
research 158(4):480–503.
Pairet, È.; Ardón, P.; Brox, F.; Mistry, M.; and Petillot, Y.
2018a. Learning and generalisation of primitives skills to-
wards robust dual-arm manipulation. In AAAI Fall Sympo-
sium. Artificial Intelligence for Reasoning and Learning in
Real-World Systems for Long-Term Autonomy. AAAI Press.
Pairet, È.; Hernández, J. D.; Lahijanian, M.; and Carreras,
M. 2018b. Uncertainty-based Online Mapping and Mo-
tion Planning for Marine Robotics Guidance. In Intelligent
Robots and Systems (IROS), 2018 IEEE/RSJ International
Conference on. IEEE.
Quattoni, A., and Torralba, A. 2009. Recognizing indoor
scenes. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, 413–420. IEEE.
Sridharan, M. 2017. Integrating knowledge representa-
tion, reasoning, and learning for human-robot interaction.
In AAAI Fall Symposium. Artificial Intelligence for Human-
Robot Interaction, 69–76. AAAI Press.
Stoytchev, A. 2005. Toward learning the binding affor-
dances of objects: A behavior-grounded approach. In Pro-
ceedings of AAAI symposium on developmental robotics,
17–22.
Vezzani, G.; Pattacini, U.; and Natale, L. 2017. A grasp-
ing approach based on superquadric models. In Robotics
and Automation (ICRA), 2017 IEEE International Confer-
ence on, 1579–1586. IEEE.
Wertsh, J. V., and Tulviste, P. 1990. Apprenticeship in
thinking: Cognitive development in social context. Science
249(4969):684–686.
Zech, P., and Piater, J. 2016. Active and transfer learning of
grasps by sampling from demonstration.

Zhu, Y.; Fathi, A.; and Fei-Fei, L. 2014. Reasoning
about object affordances in a knowledge base representa-
tion. In European conference on computer vision, 408–424.
Springer.

12

From Abstract to Executable Models for Multi-Agent Path Finding on Real Robots

Roman Barták, Jiřı́ Švancara, Věra Škopková, David Nohejl
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

Abstract

Multi-agent path finding (MAPF) deals with the prob-
lem of finding a collision-free path for a set of agents
(robots). An abstract model with a graph describing the
environment and agents moving between the nodes of
the graph has been proposed. This model is widely ac-
cepted by the MAPF community and majority of MAPF
algorithms rely on this model. In this paper we argue
that the model may not be appropriate, when the plans
are to be executed on real robots. We provide some pre-
liminary empirical evidence that abstract plans deviate
from real plans executed on robots and we compare sev-
eral variants of abstract models. The paper motivates
further research on abstraction of problems with respect
to applicability of solutions in practice.

Introduction
Abstraction is the process of removing details from a prob-
lem representation. It is a critical step in problem solving as
without abstraction “intelligent agents would be completely
swamped by the real world” (Russell and Norvig 2009).
Despite its importance, little attention has been paid to ab-
straction techniques compared to, for example, solving tech-
niques. In areas, such as planning, the formal abstract model
has been proposed and many concrete domain models are
used for benchmarking, but the studies how to obtain such
models and how the models relate to real world are rare.

In this paper, we look at a specific planning problem
called multi-agent path finding (MAPF) that deals with find-
ing collision-free paths for a set of agents. We selected this
problem for several reasons. First, MAPF has a strong prac-
tical applicability in areas such as warehousing and intelli-
gent road junctions. Second, there exists a widely-accepted
uniform abstract model of MAPF that uses only a few ab-
stract types of actions that are easily executed on real robots.

Our goal is studying appropriateness of MAPF abstract
models from the perspective of executing the obtained plans.
We will present the core abstract model used by state-of-the-
art solvers together with several extensions closer to reality.
The obtained plans will be empirically compared by execut-
ing them on real robots called Ozobots (Ozobot & Evollve,
Inc. 2018). This is a short version of paper (Barták et al.
2018), which gives full technical details. We focus on moti-
vating this type of research and on discussing futures steps.

Background on MAPF
Formally, the MAPF problem is defined by a graph G =
(V,E) and a set of agents a1, . . . , ak, where each agent ai
is associated with starting location si ∈ V and goal location
gi ∈ V . The time is discrete and in every time step each
agent can either move from its location to a neighboring lo-
cation or wait in its current location. A grid map with a unit
length of each edge is often used to represent the environ-
ment (Ryan 2008). The task is to find a collision-free path
for each agent, where the collision occurs when two agents
are at the same node at the same time or two agents move
along the same edge at the same time in opposite directions.
The makespan (the maximal time when all agents reached
their destinations) objective function is often studied in the
literature (Surynek 2014). The problem to find a makespan-
optimal solution is NP-hard (Yu and LaValle 2013). Though
the plans obtained by different MAPF solvers might be dif-
ferent, the optimal plans are frequently similar and tight
(no superfluous steps are used). Hence, any optimal MAPF
solver can be used. We used the reduction-based solver in
the Picat programming language (Barták et al. 2017).

MAPF Models and Executable Plans
For our study we designed an environment that is intention-
ally close to the abstract model of MAPF, that is, it is a
grid map with equal distances between vertices that are con-
nected by lines used by robots to easily navigate between the
vertices, see Figure 1. The abstract plan outputted by MAPF
solvers is, as defined, a sequence of locations that the agents
visit. However, a physical agent has to translate these loca-
tions to a series of actions that the agent can perform. We as-
sume that the agent can turn left and right and move forward.
By concatenating these actions, the agent can perform all
the required steps from the abstract plan (recall, that we are
working with grid worlds). This translates to five possible
actions at each time step - (1) wait, (2) move forward, (3,4)
turn left/right and move, and (5) turn back and move. As the
mobile robot cannot move backward directly, turning back
is implemented as two turns right (or left). Ozobot robots,
used in our study, can directly perform these actions, which
together with the specific map simplifies typical “robotics”
problems such as localization and control.

As the abstract steps may have durations different from
the physical steps, the abstract plans, which are perfectly

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

13

Figure 1: Instance map for Ozobots. Ozobots follow the
black line, the gray circles indicate starting and goal loca-
tions (not printed on real map).

synchronized, may desynchronize when being executed,
which may further lead to collisions. The intuition says that
such desynchronization will indeed happen. In our setting,
the speed of the robots was set in such a way that moving
along a line takes 1600ms and turning takes 800ms. Note
that the real robots only blindly follow the computed plan
and do not intervene if, for example, an obstacle is detected.

In the rest of the section, we describe the studied ab-
stract MAPF models and possible transformations of ab-
stract plans to executable sequences of physical actions. Let
tt be the time needed by the robot to turn by 90 degrees to
either side and tf be the time to move forward to the neigh-
boring vertex in the grid. Both tt and tf are nonzero. The
time spend while the agent is performing the wait operation
tw will depend on each model.

Classical Model
The first and most straightforward model is a direct transla-
tion of the abstract plan to the action sequence. We shall call
this a classic model. At the end of each timestep, an agent is
facing in a direction. Based on the next location, the agent
picks one of the five actions described above and performs it.
This means that all move actions consist of possible turning
and then going forward. There are no independent turning
moves. As the two most common actions in abstract plans
are (2) and (3,4), we suggest to set the time tw of waiting
actions to be tf + 1/2 ∗ tt as the average of durations of
actions (2) and (3,4).

One can easily see that this simple model can be prone to
desynchronization, as turning adds time over agents that just
move forward. To fix this synchronization issue, we intro-
duce a classic+wait model. The basic idea is that each ab-
stract action takes the same time, which is realized by adding
some wait time to “fast” actions. The longest action is (5),
therefore each action now takes 2 ∗ tt + tf including the
waiting action. The consequence is that plan execution takes
longer time, which may not be desirable.

Note that both of these models do not require the MAPF
algorithm and model to change. They only use different du-
rations of abstract actions which are implemented in the
translation of abstract plans to executable actions.

Robust Model
Another way to fix the synchronization problem is to create
a plan π that is robust to possible delays during execution.
The k-robust plan is a valid MAPF plan that in addition re-
quires for each vertex of the graph to be unoccupied for at
least k time steps before another agent can enter it (Atzmon
et al. 2017). In our experiments, we choose k to be 1. We pre-
sume that this is a good balance between keeping the agents
from colliding with each other while not prolonging the plan
too much. The 1-robust plan is then translated to executable
actions using the same principle as the classic model. This
yields a 1-robust model. Though, this model does not solve
the synchronization issue directly, it adds some slack that
can prevent collisions caused by various reasons.

Split Actions Model
By making the model less abstract, we can directly represent
the executable actions, in particular, by introducing an ab-
stract turning action. In the reduction-based solvers, this can
be done by splitting each vertex vi from the original graph
G into four new vertices vupi , vrighti , vdown

i , vlefti indicating
directions where the agent is facing to. The new edges now
represent the turn actions, while the original edges corre-
spond to move only actions. This change needs to be accom-
panied by constraints restricting the agents not to be at split
vertices at the same time. The abstract plan is then translated
to an executable plan in a direct way as the agent is given a
sequence of individual actions wait, turn left/right, and move
forward. The waiting time tw is set as the bigger time of the
remaining actions: tw = max(tt, tf). We shall call this a
split model.

To make the model even closer to reality, we can ex-
ploit the weighted MAPF (Barták, Švancara, and Vlk 2018),
where each edge in the graph is assigned an integer value
that denotes its length. The weighted MAPF solver finds a
plan that takes these lengths into account. The lengths of
turning edges are assigned a length of tt and the other edges
are assigned a length of tf (or its scaled value to integers).
The waiting time tw is set as the smaller time of the remain-
ing actions: tw = min(tt, tf). We shall call this a weighted-
split model or w-split for short.

A final enhancement to the weighted-split model is to in-
troduce k-robustness there. This will again ensure that the
agents do not tend to move close to each other to avoid un-
desirable collisions. In this case, however, it is not enough
to use 1-robustness, as the plan is split into more time steps.
Instead, we use max(tt, tf)-robustness. We shall call this
robust-weighted-split model or rw-split for short.

Results of Experiments
We generated plans using each MAPF model for the prob-
lem instance described above and then we executed the plans
five times in total for each model. Several properties were
measured with results shown in Table 1.

Computed makespan is the makespan of the plan returned
by the MAPF solver. It is measured by the (weighted) num-
ber of abstract actions and this is the value optimized by
the solvers. Note that the split models have larger makespan

14

Comp.
Mksp

Failed
Runs

#Colls. Total
Time

[s]

Max
∆ [s]

classic 17 5 4 NA 5
classic+wait 17 0 4.2 53 0
1-robust 19 0 0 41 4
split 27 0 2 36 3
w-split 45 0 2.6 39 0
rw-split 47 0 0 39 0

Table 1: Real performance of Ozobots for studied models.

than the rest because the split models use a finer resolu-
tion of actions, namely turning actions are included in the
makespan calculation. This is even more noticeable with w-
split and rw-split, where the moving-forward action has a
duration (weight) of two. Total time is the actual time needed
to complete the plan by all robots. To measure the level of
desynchronization, we introduced the Max ∆ time. We made
abstract plans for all robots equally long by adding void wait
actions to the end (where necessary). The Max ∆ time is
the time difference between the real end times of the first
and last robots. This value is zero, if the robots remained
synchronized during plan execution. The larger value means
larger desynchronization. All of the times are rounded to
seconds because the measurements were conducted by hand.

The number of failed runs is also shown. The only model
that did not finish any run is the classic model while the rest
managed to finish all of the runs. A run fails if there is a
collision that throws any of the robots off the track so the
plan cannot be finished. The average number of collisions
per run shows how many collisions that did not ruin the plan
occurred. These collisions can range from small one, where
the robots only touched each other and did not affect the ex-
ecution of the plan, to big collisions, where the agent was
slightly delayed in their individual plan, but still managed
to finish the plan. For the classic model, where no execu-
tion finished, we present the number of collisions occurring
before the major collision that stopped the plan.

Conclusions and Future Steps
The goal of the paper is showing that abstract models should
be treated more carefully, when the results are supposed to
by used in real environment. Our preliminary experiment
showed that the most widely used MAPF model, the clas-
sic one, is actually not applicable even if the environment is
made very close to the model. The reason is that durations
of real actions are different from durations of abstract ac-
tions, which leads to desynchronization of agents’ plans. A
naive extension to make all actions equally long worsens the
quality of plan (makespan) significantly. Adding robustness
to abstract plans helps, but as the Max ∆ time shows, there
is some desynchronization, which may lead to collisions for
longer plans. The split model uses abstraction closer to real-
ity and adding weights makes the abstract plans even closer
to real plans when executed. However, solving such models
is more computationally expensive than solving the classical
model (Barták, Švancara, and Vlk 2018).

The results show that there is indeed a gab between
widely-used theoretical frameworks for MAPF and deploy-
ment of solutions in real environments. A wider experimen-
tal study is necessary to understand better the relations be-
tween abstract models and real environments. For example,
the ratio between the length of edges and the size of robots
seems important (Ozobots have diameter of 3 cm and dis-
tance between nodes in our map is 5 cm). Note also, that
blind execution of plans was assumed. It would be interest-
ing to look at plan-execution policies that assume communi-
cation between agents and exploit information from sensors
(Ma, Kumar, and Koenig 2017).

Acknowledgements
Roman Barták is supported by the Czech Science Founda-
tion under the project P202/12/G061 and together with Jiřı́
Švancara by the Czech-Israeli Cooperative Scientific Re-
search Project 8G15027.

References
Atzmon, D.; Felner, A.; Stern, R.; Wagner, G.; Barták, R.;
and Zhou, N. 2017. k-robust multi-agent path finding. In
Proceedings of the Tenth International Symposium on Com-
binatorial Search (SoCS), 157–158.
Barták, R.; Zhou, N.-F.; Stern, R.; Boyarski, E.; and
Surynek, P. 2017. Modeling and solving the multi-agent
pathfinding problem in picat. In 29th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI),
959–966. IEEE Computer Society.
Barták, R.; Švancara, J.; Škopková, V.; and Nohejl, D. 2018.
Multi-agent path finding on real robots: First experience
with ozobots. In Advances in Artificial Intelligence – IB-
ERAMIA 2018. Springer.
Barták, R.; Švancara, J.; and Vlk, M. 2018. A scheduling-
based approach to multi-agent path finding with weighted
and capacitated arcs. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 748–756.
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-agent
path finding with delay probabilities. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17), 3605–3612. AAAI Press.
Ozobot & Evollve, Inc. 2018. Ozobot — Robots to code,
create, and connect with.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. J. Artif. Intell. Res. 31:497–542.
Surynek, P. 2014. Compact representations of cooperative
path-finding as SAT based on matchings in bipartite graphs.
In 26th IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI, 875–882. IEEE Computer Society.
Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In Proceed-
ings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence.

15

Behavior Modeling for Autonomous Driving

Aniket Bera
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC

Dinesh Manocha
Department of Computer Science and
Electrical & Computer Engineering

University of Maryland at College Park
College Park, MD

Abstract

We present a novel approach to automatically identify driver
behaviors from vehicle trajectories and use them for safe nav-
igation of autonomous vehicles. We propose a novel set of
features that can be easily extracted from car trajectories. We
derive a data-driven mapping between these features and six
driver behaviors using an elaborate web-based user study. We
also compute a summarized score indicating a level of aware-
ness that is needed while driving next to other vehicles. We
also incorporate our algorithm into a vehicle navigation sim-
ulation system and demonstrate its benefits in terms of safer
real-time navigation, while driving next to aggressive or dan-
gerous drivers.

Introduction

There are different kinds of drivers in urban environments,
and an expert human driver will identify dangerous drivers
and avoid them accordingly. However, existing autonomous
driving systems often treat all neighboring vehicles the same
and do not take actions to avoid the dangerous drivers. This
problem has been studied in transportation and urban plan-
ning works (Meiring and Myburgh 2015). This line of works
map drivers’ behaviors with background information like
age, gender, driving history, etc., but this information is not
available to autonomous vehicles. Therefore, to allow au-
tonomous driving algorithms to account for driving behav-
iors, a mapping between sensor data and driving behaviors
must be available.

Previous studies in transportation and urban studies (Feng
et al. 2012) usually study the difference between aggres-
sive drivers, careful drivers and typical drivers. In partic-
ular, Guy et al. (Guy et al. 2011) and Bera et al. (Bera,
Randhavane, and Manocha 2017) applied psychological the-
ory to capture human behaviors. Autonomous driving sys-
tems that are on the roads right now uses a range of differ-
ent algorithms to interpret the sensor data: trajectory data
computation using semantic understanding or object detec-
tion methods (Geiger, Lenz, and Urtasun 2012). Some uses
an end-to-end approach to compute driving actions directly
from sensor data(Bojarski et al. 2016).

Main Results: Our approach takes into account behaviors
of neighboring entities and plans accordingly to perform

safer navigation. We leverage the results of an extensive user
study that learned the relationship between vehicular trajec-
tories and the underlying driving behaviors: Trajectory to
Driver Behavior Mapping (Cheung et al. 2018). This work
allows our navigation algorithms to classify the driving be-
haviors of neighboring drivers, and we demonstrated simu-
lated scenarios with vehicles, pedestrians, and cyclist where
navigation with our approach is safer.

Compared to prior algorithms, our algorithm offers the fol-
lowing benefits:

1. Driving Behavior Computation: Trajectory to Driver
Behavior Mapping established a mapping between five fea-
tures and six different driving behaviors, and conducted fac-
tor analysis on the six behaviors, which are derived from
two commonly studied behaviors: aggressiveness and care-
fulness. The results show that there exists a latent variable
that can summarize these driving behaviors and that can be
used to measure the level of awareness that one should have
when driving next to another vehicle. The same study ex-
amined how much attention a human pays to such a vehicle
when it is driving in different relative locations. We lever-
age the results of this study and develop a proximity cost
that reacts to aggressive drivers more appropriately.

2. Improved Realtime Navigation: We enhance an existing
Autonomous Driving Algorithm (Best et al. 2017) to navi-
gate according to the neighboring drivers’ behaviors. Our
navigation algorithm identifies potentially dangerous drivers
in real-time and chooses a path that avoids potentially dan-
gerous drivers. In particular, our approach accounts for
pedestrians and cyclists, and avoids them by considering
their velocity relative to the ego-vehicle. Our method can
offer saver navigation and plan more appropriately to avoid
dangerous drivers than prior works. We refer the readers to
read (Cheung et al.) for the technical details.

An overview of our approach is shown in Figure 1. The
rest of the paper is organized as follows. We present a de-
tailed overview of previous work in Section . We describe
the mapping from trajectories to driving behaviors in Sec-
tion and our autonomous driving algorithm in Section .

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

16

Figure 1: Overview of our Algorithm: (1) Training: a tra-
jectories database is training a mapping between trajectory
features and driving behaviors. (2) Behavior Extraction:
During navigation, the same set of features is extracted from
neighboring vehicles’ trajectories and mapped to driving
behaviors. (3) Navigation: a) the navigation algorithm first
plans a global route in accordance with map data, starting
point, and destination, and b) generates a set of candidate
local routes that obey traffic rules while considering real-
time traffics; c) the algorithm then removes infeasible can-
didates using dynamic constrains and control obstacles; d)
after that, it performs an optimization to obtain the best nav-
igation plan based on the driving behavior we extracted in
(2), along with several other factors: Efficiency, Passenger
Comfort, etc.

Related Works

Driving Behaviors Studies

Psychology, transportation, and urban planning researchers
have been studying human driving behaviors. Aljaafreh et
al. (Aljaafreh, Alshabatat, and Al-Din) classified drivers
into four different levels of aggressiveness with accelerom-
eter data. Feng et al. (Feng et al. 2012) categorized
drivers into three different level of aggressiveness accord-
ing to drivers’ background information (age, gender, ex-
perience, etc.), and environmental factors (weather, traf-
fic, etc.). Apart from that, social psychologist have also
studied the correlation between driver background infor-
mation and driving behaviors (Krahé and Fenske 2002;
Beck, Ali, and Daughters 2014), and previous driving be-
haviors (Brill et al. 2009). Besides, Meiring et al. (Meiring
and Myburgh 2015) pointed out that careless drivers, includ-
ing drunk and distracted drivers, are also dangerous. Despite
the fact that these works have found mappings between driv-
ing behaviors and a lot of other different factors, most of
these factors are unknown to autonomous vehicles during
navigation. We use neighboring vehicles’ trajectories, which
can be computed from sensor data, to map driving behaviors.

The following works have conducted analysis on aggres-
siveness and carefulness in accordance to trajectory related
data. Qi et al. (Qi et al. 2015) presented the relationship
between driving style, speed, and acceleration. Shi et al.

(Shi et al. 2015) concluded that measuring throttle open-
ing is better than merely measuring acceleration, as mea-
suring deceleration (negative acceleration) is not helpful in
understanding the aggressiveness of a driver. Murphey et al.
(Murphey, Milton, and Kiliaris) presented results to show
that measuring longitudinal jerk (changing lanes) is more
helpful than progressive jerk (along the traffic direction) in
terms of correlation to aggressiveness of drivers. Mohamad
et al. (Mohamad, Ali, and Ismail) performed abnormal de-
tection using speed, acceleration, and steering wheel move-
ment. Sadigh et al. (Sadigh et al. 2014) proposed a Con-
vex Markov Chains model to predict the attention drivers
spend on driving. There are also works that are deployed
in cars to sound an alert when they find the user is not pay-
ing attention to the road (Goldman 2011). Besides, there is
considerable number of simulated driving models(Treiber,
Hennecke, and Helbing 2000) that have proposed different
factors that imply driving behaviors that can be mapped to
navigation plans. Our work leverages the results from a de-
tailed user study described in Section to use the most rele-
vant trajectory features to driving behaviors.

Adaptation to Human Drivers’ Behaviors

One line of work went further to study how humans would
react to an autonomous vehicle’s actions. Sadigh et al.
(Sadigh et al. 2016) discovered that human drivers’ behav-
iors can be affected when they observe an autonomous ve-
hicle and that they will react in certain ways when they ob-
serve different actions of the autonomous vehicle (Sadigh et
al.). Huang et al. (Huang et al. 2017) proposed a technique
to make autonomous car actions more easily understand by
humans, so that their reactions are more predictable. Be-
sides, an active learning approach (Dorsa Sadigh, Sastry, and
Seshia 2017) using examples of expert human driver’s pref-
erences has been to model human driving behaviors. These
works show the importance of having autonomous vehicles
navigating according to human behaviors.

Autonomous Car Navigation

There is a significant number of works on navigating au-
tonomous vehicles (Katrakazas et al. 2015; Saifuzzaman
and Zheng 2014; Ziegler et al. 2014; Kolski et al. 2006;
Hoffmann et al. 2007). During the DAPRA Urban Grand
Challenge and the Grand Cooperative Driving Challenge,
the participating research teams proposed different naviga-
tion approaches (Buehler, Iagnemma, and Singh 2009). Re-
cently, Best et al. (Best et al. 2017) proposed a novel nav-
igation algorithm, AutonoVi, which also considers steering
and acceleration planning, dynamic lane changes, and sev-
eral other scenarios. We proposed a new approach that takes
into account driving behavior, which is complimentary to
these previous work and can be combined with them.

Trajectory to Driver Behavior Mapping
In this section, we describe the trajectory features that are
used to identify driver behaviors, the driving behavior met-

17

rics, and the attention metrics used in a detailed user study,
Trajectory to Driving Behavior Mapping (Cheung et al.
2018).

Features

The goal of Trajectory to Driving Behavior Mapping is to
leverage a set of trajectory features that map to driving be-
haviors, assuming that the trajectories have already been ex-
tracted from the raw sensor data. As described in the pre-
vious section, a lot of features (e.g., drivers’ backgrounds,
throttle opening, environmental factors, etc.) that have been
mapped to driving behavior are not available for autonomous
vehicles. Therefore, the user study has derived a set of vari-
ants and performed feature selection to select the most rele-
vant ones to use in the mapping.

Notation Description
vnei Relative speed to neighbors
vavg Average velocity
sfront Distance with front car
jl Longitudinal jerk
scenter Lane following metric

Table 1: Five Features selected in Trajectory to Driving Be-
havior Mapping

Acceleration Previous works (Murphey, Milton, and Kil-
iaris) have shown that acceleration can be used to identify
driver aggressiveness. This study (Murphey, Milton, and
Kiliaris) found out that longitudinal jerk can reflect aggres-
siveness better than progressive jerk, and this has been fur-
ther verified during the feature selection in the user study.

Lane following The metric proposed in this work
(Bergasa et al. 2014) measures the extent of lane follow-
ing using the mean and standard deviation of lane drifting
and lane weaving. Trajectory to Driving behavior proposes
a feature that also depends on lane drifting, but further dif-
ferentiates drivers who keep deviating from the center of the
lane to the left and right, and those drivers who are driving
stably off the center of the lane. Furthermore, when a ve-
hicle is performing lane changing, the effect on this metric
of these trajectory segments is nullified and will not impact
this metric.

Let yl and y(t) be the center longitudinal position of the lane
in which the targeted car is in and the longitudinal position
of the car at time t, respectively. Also suppose a set of lane
changing events happened at time ti, C = {t1, t2, ..., tn},
the lane drift metric sC(t) is given by:

sC(t) =

{
0, if∃t ∈ C s.t. t ∈ [t− k, t+ k],

y(t)− yl, otherwise.
(1)

where k is the amount of time that we nullify the impact of
lane changing to this metric.

Trajectory to Driving Behavior Mapping measures the rate
of change in drifting in τ seconds, so that this metric can
highlight those drivers who are drifting more frequently
from the center of the lane. The overall lane following met-
ric is therefore defined as below. It is also illustrated in Fig-
ure 2.

scenter =

∫
|sC(t)|

[
µ+

∫ t

t−τ
|s′∅(t)|dt

]
dt, (2)

where µ is a parameter that differentiates drivers who are
driving stably off the center of the lane, and those who are
driving along the center of the lane.

Figure 2: Lane following metric illustration. The lane fol-
lowing metric, scenter, is given by the sum of the area under
the plot s′center. The example shows that the lane following
metric can differentiate drivers from drifting left and right (i
iii), driving along the center of the lane (ii), changing lanes
(iv), and consistently driving off the center of the lane (v).

Relative Speed Trajectory to Driving Behavior Mapping
designed the following metric to capture the relationship be-
tween a given driving behavior and the relative speed of the
car with respect to neighboring cars:

vnei =

∫ ∑

n∈N
max(0,

v(t)− vn(t)
dist(x(t), xn(t))

)dt, (3)

where N is the set containing all neighboring cars within a
reasonably huge range. v(t), x(t), vn(t), xn(t) are the speed
and the position of the targeting car, and the position and the
speed of the neighbor n, respectively.

This metric relies merely on the speed and position of the
neighbors, and it can represent the actual driving speed of
the targeted vehicle with respect to it’s neighbor better than
simply using relative speed.

Driving Behavior Metrics and Attention Metrics

Aggressiveness (Feng et al. 2012; Aljaafreh, Alshabatat, and
Al-Din ; Harris et al. 2014) and Carefulness (Meiring and
Myburgh 2015; Sadigh et al. 2014; Lan et al.) are two met-
rics that are commonly used to identify dangerous drivers.
In typical social psychology studies, related items are intro-
duced into user evaluation to ensure the robustness of the
results. Therefore, Trajectory to Driving Behavior mapping
evaluated four more driving behaviors apart from Aggres-
siveness and Carefulness, and those are listed in Table 2.

18

When an aggressive or careless driver is observed, depend-
ing on the position of that driver with respect to the targeted
vehicle, the amount of attention that the driver of the tar-
geted vehicle pays would still vary. Therefore, when evalu-
ating the users’ responses when driving as the targeted vehi-
cle, the users are also asked to rate the four attention metrics
listed in Table2.

Symbol Description Symbol Level of Attention when
b0 Aggressive b6 following the target
b1 Reckless b7 preceding the target
b2 Threatening b8 driving next to the target
b3 Careful b9 far from the target
b4 Cautious
b5 Timid

Table 2: Six Driving Behavior metrics (b0, b1, ...,b5) and
Four Attention metrics (b6, b7, b8, b9) used in user evaluation
in obtaining the mapping

Data-Driven Mapping

Trajectory to Driving Behavior Mapping conducts a user
study that, has 100 participants identifying driver behaviors
from videos. The trajectories of the videos are extracted
from the Interstate 80 Freeway Dataset (Halkia and Colyar
2006). The users were asked to rate the metrics we listed
in Table 2 on a 7-point scale and a 5-point scale for driving
behavior and attention metrics, respectively.

After that, feature selection was applied to the results us-
ing least absolute shrinkage and selection operator (Lasso)
analysis. In addition, the five features that are most
appropriate for mapping to driving behaviors are ex-
tracted from ten potential ones. It concluded that using
{scenter, vnei, sfront, vavg, jl} in mapping between features
and driving behavior, and {scenter, vnei, vavg} in the map-
ping between features and attention metrics can produce best
regression models.

Using {scenter, vnei, sfront, vavg, jl} and
{scenter, vnei, vavg} as the features, linear regression
is applied to obtain the mapping between these selected
features and the drivers’ behaviors. The results we obtained
are below. For Bbehavior = [b0, b1, ..., b5]

T ,

Bbehavior =




1.63 4.04 −0.46 −0.82 0.88 −2.58
1.58 3.08 −0.45 0.02 −0.10 −1.67
1.35 4.08 −0.58 −0.43 −0.28 −1.99
−1.51 −3.17 1.06 0.51 −0.51 1.39
−2.47 −2.60 1.43 0.98 −0.82 1.27
−3.59 −2.19 1.75 1.73 −0.30 0.61







scenter
vnei
sfront
vavg
jl
1




(4)

Moreover, for Battention = [b6, b7, b8, b9]
T ,

Battention =



Bback
Bfront
Badj
Bfar


 =




0.54 1.60 0.11 −0.8
−0.73 1.66 0.63 −0.07
−0.14 1.73 0.25 0.15
0.25 1.47 0.17 −1.43






scenter
vnei
vavg
1




(5)

We refer the readers to read (Cheung et al.) for more tech-
nical details and analysis.

Navigation

In this section, we describe how we leverage the benefits
of identifying driver behaviors and ensure safe navigation.
TDBM (Cheung et al. 2018) extends an autonomous car nav-
igation algorithm, AutonoVi (Best et al. 2017), and shows
improvements in its performance by using our driver behav-
ior identification algorithm and TDBM. AutonoVi is based
on a data-driven vehicle dynamics model and optimization-
based maneuver planning, which generates a set of favor-
able trajectories from among a set of possible candidates,
and performs selection among this set of trajectories using
optimization. It can handle dynamic lane-changes and dif-
ferent traffic conditions.

The approach used in AutonoVi is summarized below: The
algorithm establishes a graph of roads from a GIS database
and computes the shortest global route plan using A* algo-
rithm. Taking into account traffic rules and real-time traffic,
the plan is translated to a static guiding path, which con-
sists of a set of C1 continuous way-points. AutonoVi then
samples the speed and steering angle in a favourable range
of values to obtain a set of candidate trajectories. Using the
Control Obstacles approach, AutonoVi eliminates the trajec-
tories that would lead to a possible collision. With the set of
collision-free trajectories, AutonoVi selects the best trajec-
tory using an optimization approach. It selects trajectories
that avoid: i) deviating from the global route; ii) unneces-
sary lane changes; ii) sharp turns, breaking, and accelera-
tion, which lead to discomforting experiences for passen-
gers; and iv) getting to close to other road entities (including
vehicles, pedestrians, and cyclists).

Neighboring Vehicles

AutonoVi proposed a proximity cost function to differenti-
ate entities by class to avoid getting too close to other ob-
jects. It considers all vehicles as the same and applies the
same penalization factor, Fvehicle, to them. Similarly, it ap-
plies higher factors : Fped and Fcyc to all pedestrians and
all cyclists, respectively. The original proximity cost used in
AutonoVi is:

cprox =
N∑

n=1

Fvehicle e
−d(n) (6)

This cost function has two issues: i) it cannot distinguish
dangerous drivers to avoid driving too close to them, and
ii) it diminishes too rapidly due to its use of an exponen-
tial function. Therefore, TDBM proposed a novel proximity
cost that can solve these problems:

c′prox =

N∑

n=1

c(n) (7)

19

c(n) =





0 if d ∈ [dt2, inf),

STDBMBfar
dt2−d(n)

dt2
if d ∈ (dt, dt2],

STDBM
[(dt−d(n))(Br−Bfar)

dt
+Bfar

]
if d ∈ (0, dt].

(8)

where d(n) is the distance between the car navigating with
TDBM and the neighbor n; dt is a threshold distance be-
yond which neighbors will be applied with the ‘far away’
metric Bfar; and dt2 is a threshold distance beyond which
neighbors would not have any impact on TDBM’s naviga-
tion. Bfar andBr refers to the attention metrics in Equation
5.

This proximity cost used in TDBM discouraged the opti-
mizer from picking any candidate whose path is close to
these dangerous drivers. However, this approach has a draw-
back: when the ego-vehicle and the neighboring vehicle are
both slow, some unnecessary lane changing may occur. To
avoid this, we add the relative velocity of the neighboring
vehicle in relation to the ego-vehicle into the cost function.
The new cost function also nullifies the effect of the cost
on vehicles that are driving away from the ego-vehicle. The
new cost function for vehicles is:

c′vehicle =
N∑

n=1

max(0, vego − vn)c(n) (9)

where vego and vn are the current progression speed along
the lane of the ego-vehicle and the neighbor n respectively.

Pedestrians and Cyclists

The proximity costs for pedestrians and cyclists in AutonoVi
and TDBM are still diminishing rapidly and do not take into
consideration the velocity of the pedestrian/cyclist. We pro-
pose accounting for the current velocity in order to better
predict and represent the zones to be avoided by the naviga-
tion algorithm:

c′obs =
N∑

n=1

F (n)max(0, vn · ~sego−~sn
||~sego−~sn||)

F (n) + ||~sego − ~sn||
(10)

where F (n) returns Fped or Fcyc depending on the type of
obstacle n. vn represents the current normalized velocity of
the pedestrian/cyclist. ~sego and ~sn are the position of the
ego-vehicle and the obstacle n, respectively.

Using these new cost functions, we can avoid drivers that are
potentially riskier, stay away from pedestrians and cyclists
more appropriately, and select a better navigation path.

Conclusion and future works

We present a new navigation approach leveraging the esti-
mation of neighboring human drivers’ behaviors and react

to them accordingly. Using our approach, the navigation al-
gorithm can more accurately estimate the level of awareness
the ego-vehicle should have about neighboring vehicles,
pedestrians and cyclists, and more effectively avoid those
that require a higher level of awareness. Our approach can
provide safer navigation among aggressive drivers, pedestri-
ans, and cyclist and more efficient navigation when facing
careful drivers.

The trajectory data that is currently available in the au-
tonomous driving research community are limited, as label-
ing raw images are expensive. Currently, pedestrian and ve-
hicle detection methods are advancing, and soon will be able
to extract trajectory data reliably from raw data. The Trajec-
tory to Driving Behavior Mapping applied in this work is
based on highways, and the driving behaviors could be dif-
ferent in urban environment as there are pedestrians and cy-
clists involved. Furthermore, driving and pedestrians behav-
iors are different across countries and regions. With more
data available, we would like to evaluate our approach on
urban environments. Besides, there are works conducted to
predict pedestrians trajectories (e.g., SocioSense (Bera et al.
)), and we can combine them to navigate even safer around
pedestrians and cyclists in the future.

References

[Aljaafreh, Alshabatat, and Al-Din] Aljaafreh, A.; Alshabatat, N.;
and Al-Din, M. S. N. Driving style recognition using fuzzy logic.
In Vehicular Electronics and Safety (ICVES), 2012 IEEE Interna-
tional Conference on, 460–463.

[Beck, Ali, and Daughters 2014] Beck, K. H.; Ali, B.; and Daugh-
ters, S. B. 2014. Distress tolerance as a predictor of risky and
aggressive driving. Traffic injury prevention 15(4):349–354.

[Bera et al.] Bera, A.; Randhavane, T.; Prinja, R.; and Manocha,
D. Sociosense: Robot navigation amongst pedestrians with social
and psychological constraints. In Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on, 7018–7025.

[Bera, Randhavane, and Manocha 2017] Bera, A.; Randhavane, T.;
and Manocha, D. 2017. Aggressive, tense, or shy? identify-
ing personality traits from crowd videos. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17.

[Bergasa et al. 2014] Bergasa, L. M.; Almerı́a, D.; Almazán, J.;
Yebes, J. J.; and Arroyo, R. 2014. Drivesafe: An app for alert-
ing inattentive drivers and scoring driving behaviors. In Intelligent
Vehicles Symposium Proceedings, 2014 IEEE, 240–245. IEEE.

[Best et al. 2017] Best, A.; Narang, S.; Pasqualin, L.; Barber,
D.; and Manocha, D. 2017. Autonovi: Autonomous ve-
hicle planning with dynamic maneuvers and traffic constraints.
arXiv:1703.08561.

[Bojarski et al. 2016] Bojarski, M.; Del Testa, D.; Dworakowski,
D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.;
Muller, U.; Zhang, J.; et al. 2016. End to end learning for self-
driving cars. arXiv:1604.07316.

[Brill et al. 2009] Brill, J. C.; Mouloua, M.; Shirkey, E.; and Al-
berti, P. 2009. Predictive validity of the aggressive driver behavior
questionnaire (adbq) in a simulated environment. In Proceedings of

20

the Human Factors and Ergonomics Society Annual Meeting, vol-
ume 53, 1334–1337. SAGE Publications Sage CA: Los Angeles,
CA.

[Buehler, Iagnemma, and Singh 2009] Buehler, M.; Iagnemma, K.;
and Singh, S. 2009. The DARPA urban challenge: autonomous
vehicles in city traffic, volume 56. springer.

[Cheung et al.] Cheung, E.; Bera, A.; Kubin, E.; Gray, K.; and
Manocha, D. Identifying driver behaviors using trajectory features
for vehicle navigation. In Intelligent Robots and Systems (IROS),
2018 IEEE/RSJ International Conference on.

[Cheung et al. 2018] Cheung, E.; Bera, A.; Kubin, E.; Gray, K.; and
Manocha, D. 2018. Identifying Driver Behaviors using Trajectory
Features for Vehicle Navigation. ArXiv e-prints.

[Dorsa Sadigh, Sastry, and Seshia 2017] Dorsa Sadigh, A. D. D.;
Sastry, S.; and Seshia, S. A. 2017. Active preference-based learn-
ing of reward functions. In Robotics: Science and Systems (RSS).

[Feng et al. 2012] Feng, Z.-X.; Liu, J.; Li, Y.-Y.; and Zhang, W.-H.
2012. Selected model and sensitivity analysis of aggressive driving
behavior. Zhongguo Gonglu Xuebao(China Journal of Highway
and Transport) 25(2):106–112.

[Geiger, Lenz, and Urtasun 2012] Geiger, A.; Lenz, P.; and Urta-
sun, R. 2012. Are we ready for autonomous driving? the kitti
vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR).

[Goldman 2011] Goldman, D. A. 2011. Using a smartphone while
driving can save your life. Israel Mobile Summit.

[Guy et al. 2011] Guy, S. J.; Kim, S.; Lin, M. C.; and Manocha, D.
2011. Simulating heterogeneous crowd behaviors using personality
trait theory. In Proceedings of the ACM SIGGRAPH/Eurographics
symposium on computer animation, 43–52.

[Halkia and Colyar 2006] Halkia, J., and Colyar, J. 2006. Interstate
80 freeway dataset. Federal Highway Administration, U.S. Depart-
ment of Transportation.

[Harris et al. 2014] Harris, P. B.; Houston, J. M.; Vazquez, J. A.;
Smither, J. A.; Harms, A.; Dahlke, J. A.; and Sachau, D. A.
2014. The prosocial and aggressive driving inventory (padi): A
self-report measure of safe and unsafe driving behaviors. Accident
Analysis & Prevention 72(Supplement C):1 – 8.

[Hoffmann et al. 2007] Hoffmann, G. M.; Tomlin, C. J.; Monte-
merlo, M.; and Thrun, S. 2007. Autonomous automobile trajec-
tory tracking for off-road driving: Controller design, experimental
validation and racing. In American Control Conference ACC’07,
2296–2301. IEEE.

[Huang et al. 2017] Huang, S. H.; Held, D.; Abbeel, P.; and Dragan,
A. D. 2017. Enabling robots to communicate their objectives.
arXiv:1702.03465.

[Katrakazas et al. 2015] Katrakazas, C.; Quddus, M.; Chen, W.-H.;
and Deka, L. 2015. Real-time motion planning methods for au-
tonomous on-road driving: State-of-the-art and future research di-
rections. Transportation Research Part C: Emerging Technologies
60:416–442.

[Kolski et al. 2006] Kolski, S.; Ferguson, D.; Bellino, M.; and Sieg-
wart, R. 2006. Autonomous driving in structured and unstructured
environments. In Intelligent Vehicles Symposium, 558–563. IEEE.

[Krahé and Fenske 2002] Krahé, B., and Fenske, I. 2002. Predict-
ing aggressive driving behavior: The role of macho personality,
age, and power of car. Aggressive Behavior 28(1):21–29.

[Lan et al.] Lan, M.; Rofouei, M.; Soatto, S.; and Sarrafzadeh, M.
Smartldws: A robust and scalable lane departure warning system
for the smartphones. In Intelligent Transportation Systems, 2009.
ITSC’09. 12th International IEEE Conference on, 1–6.

[Meiring and Myburgh 2015] Meiring, G. A. M., and Myburgh,
H. C. 2015. A review of intelligent driving style analysis
systems and related artificial intelligence algorithms. Sensors
15(12):30653–30682.

[Mohamad, Ali, and Ismail] Mohamad, I.; Ali, M. A. M.; and Is-
mail, M. Abnormal driving detection using real time global posi-
tioning system data. In Space Science and Communication (Icon-
Space), 2011 IEEE International Conference on, 1–6.

[Murphey, Milton, and Kiliaris] Murphey, Y. L.; Milton, R.; and
Kiliaris, L. Driver’s style classification using jerk analysis. In Com-
putational Intelligence in Vehicles and Vehicular Systems, 2009.
CIVVS’09. IEEE Workshop on, 23–28.

[Qi et al. 2015] Qi, G.; Du, Y.; Wu, J.; and Xu, M. 2015. Lever-
aging longitudinal driving behaviour data with data mining tech-
niques for driving style analysis. IET intelligent transport systems
9(8):792–801.

[Sadigh et al.] Sadigh, D.; Sastry, S. S.; Seshia, S. A.; and Dragan,
A. Information gathering actions over human internal state. In In-
telligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, 66–73.

[Sadigh et al. 2014] Sadigh, D.; Driggs-Campbell, K.; Puggelli, A.;
Li, W.; Shia, V.; Bajcsy, R.; Sangiovanni-Vincentelli, A. L.; Sastry,
S. S.; and Seshia, S. A. 2014. Data-driven probabilistic modeling
and verification of human driver behavior.

[Sadigh et al. 2016] Sadigh, D.; Sastry, S.; Seshia, S. A.; and Dra-
gan, A. D. 2016. Planning for autonomous cars that leverage effects
on human actions. In Robotics: Science and Systems.

[Saifuzzaman and Zheng 2014] Saifuzzaman, M., and Zheng, Z.
2014. Incorporating human-factors in car-following models: a re-
view of recent developments and research needs. Transportation
research part C: emerging technologies 48:379–403.

[Shi et al. 2015] Shi, B.; Xu, L.; Hu, J.; Tang, Y.; Jiang, H.;
Meng, W.; and Liu, H. 2015. Evaluating driving styles by nor-
malizing driving behavior based on personalized driver modeling.
IEEE Transactions on Systems, Man, and Cybernetics: Systems
45(12):1502–1508.

[Treiber, Hennecke, and Helbing 2000] Treiber, M.; Hennecke, A.;
and Helbing, D. 2000. Congested traffic states in empirical
observations and microscopic simulations. Physical review E
62(2):1805.

[Ziegler et al. 2014] Ziegler, J.; Bender, P.; Schreiber, M.; Late-
gahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt,
N.; Keller, C. G.; et al. 2014. Making bertha drivean autonomous
journey on a historic route. IEEE Intelligent Transportation Sys-
tems Magazine 6(2):8–20.

21

Predictions, Surprise, and Predictions of Surprise
in General Value Function Architectures

Johannes Günther 1, Alex Kearney1, Michael R. Dawson1, Craig Sherstan1 and Patrick M. Pilarski1, 2
1Departments of Computing Science and Medicine, University of Alberta, Edmonton, Alberta, Canada; 2DeepMind

{gunther, pilarski}@ualberta.ca

Abstract

Effective life-long deployment of an autonomous agent
in a complex environment demands that the agent has
some model of itself and its environment. Such mod-
els are inherently predictive, allowing an agent to pre-
dict the consequences of its actions. In this paper, we
demonstrate the use of General Value Functions (GVFs)
for learning and representing such a predictive model
on a robotic arm. Our model is composed of three types
of signals: (1) predictions of sensorimotor signals, (2)
measures of surprise using Unexpected Demon Error
(UDE) and (3) predictions of surprise. In a proof-of-
principle experiment, where the robot arm is manually
perturbed in a recurring pattern, we show that each per-
turbation is detected as a jump in the surprise signal. We
demonstrate that the recurrence of these perturbations
not only can be learned, but can be anticipated. We pro-
pose that introspective signals like surprise and predic-
tions of surprise might serve as a rich substrate for more
abstract predictive models, improving an agent’s ability
to continually and independently learn about itself and
its environment to fulfill its goals.

Introduction
Autonomous agents facing long-term deployment may en-
counter many challenges when interacting with the real
world. The conditions of the environment and the agent it-
self may change over time. Further, it is impossible for en-
gineers to fully anticipate all that such an agent must know
ahead of time. The only way to overcome these shortcom-
ings autonomously is for an agent to independently and con-
tinuously learn about itself and the environment in terms of
its ongoing sensorimotor experience. One potential way to
learn and represent information is to use predictions and
predictive knowledge (Clark 2013). To this end, predictive
models, such as General Value Functions (GVFs) (Sutton et
al. 2011), present a method by which an agent might con-
struct and represent information from its own experience.
Such models should enable the agent to predict upcoming
events and the outcomes of its actions, key information for
successfully acting on its own. The usefulness of machine-
made predictions has recently proven to be beneficial for
various complex problems, even in challenging and chang-
ing environments. Examples include, but are not limited to,
industrial laser welding (Günther et al. 2016), artificial limbs

(Pilarski et al. 2013; Sherstan, Modayil, and Pilarski 2015)
and robot navigation (Kahn et al. 2017). However, most re-
search has focused on the use and prediction of signals gen-
erated by the environment (i.e., signals originating outside
the agent, from the world or its physical body) and not inter-
nal signals (here defined as signals relating to the computa-
tional workings of the learning machine itself).

While knowledge about the environment is valuable for
an autonomous agent to successfully interact with the en-
vironment on its own, further insight might be required to
evaluate the consequences of the agent’s actions. As stated
by Schultz and Dickinson (2000, p. 476), “In general terms,
learning can be viewed as the acquisition of predictions of
outcomes (reward, punishment, behavioral reactions, exter-
nal stimuli, internal states)” [emphasis added]. It is there-
fore necessary to not only learn about external sources of
information but also about internal ones. Many authors have
looked at using various internally generated metrics to drive
exploration (White and White 2010; Gehring and Precup
2013), adapt algorithm parameters (White and White 2016;
2010; Sakaguchi and Takano 2004), adapt to changes in
the reward function (White and White 2010), and minimize
risk (Tamar, Castro, and Mannor 2016). Further, Sherstan
et al. (2016) argued that internally generated signals, such
as learning errors and statistical measures, should be made
available to the agent as state information, enabling an agent
to learn to make better decisions on its own. Learning exter-
nal and internal signals by employing GVFs will result in a
large number of predictions. Recent work has demonstrated
the ability to learn a large number of online predictions for
the sensor values of a mobile robot (Modayil, White, and
Sutton 2014); in Pilarski and Sherstan (2016), a precursor to
the present work,∼18k GVFs were deployed in real time on
the data stream of a robotic prosthesis.

In this paper we build on this prior work to provide an ex-
ample of how GVFs can be used to make thousands of pre-
dictions about both external and internal signals at different
time scales on a real-world problem domain. Using a proof-
of-principle experiment, we learn thousands of predictions
about incoming sensor readings provided by the sensors of
a robotic artificial limb. Furthermore, we investigate mea-
sures that are related to these predictions to gain knowledge
about the internal state of the prosthesis. One particular mea-
sure that we investigate in detail is the Unexpected Demon

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

22

Error (UDE) (White 2015). The UDE provides information
about the comparison of the current prediction error to an
average of previous errors. It can be seen as a measure of
surprise, as it takes previous experiences into account and
will only increase when current experience significantly dif-
fers from previous experience. Such a differing experience
might be due to changing conditions, either in the environ-
ment or in the agent itself, providing important knowledge
about the agent’s functioning within said environment. We
furthermore learn predictions about the UDE to provide the
agent with a sense of how much surprise it might experience.

As a main contribution of the present work, we propose
that predictions of raw perceptual data from an agent’s data
stream, along with sensations and predictions of surprise
with respect to this data stream, can be used as a platform
on which to build more powerful and more abstract predic-
tive models of an agent’s operation and interactions with its
world. In the remainder of this paper, we demonstrate that
such introspective information can be learned in a tractable,
scalable way for use during long-term operation.

General Value Functions
As suggested, General Value Functions (GVFs) are a means
to learn predictive knowledge (Sutton et al. 2011). A GVF
v is defined in terms of the return, Gt. The return at time t
is defined as Gt =

∑∞
k=0 γ

kCt+k+1, where C is the cumu-
lant and γ is the discount rate. The cumulant is the signal of
interest. The discount rate describes how future cumulants
are weighted in the return. In the simplest case, γ = 0, the
return is equal to the next cumulant. This setting is called
myopic. As γ increases and approaches 1, future cumulants
contribute more to the return. For γ = 1, the return is undis-
counted and all future cumulants contribute equally.

A GVF v is defined as v(s;π, γ, C) = Eπ[Gt|st = s]. It
maps from a state s to the expected return, given the agent
follows the policy π and starts in the state s. The policy π
specifies the behavior by providing the probability of taking
an action a for a given state s. Together, the three parame-
ters π, γ and C define what a GVF is about and are called
question parameters (White 2015).

A way to learn General Value Functions is temporal-
difference (TD) learning (Sutton 1988). TD learning allows
for online and incremental computation of the value function
by using estimates to make updates. This property makes
it ideal to compute a sufficiently big number of GVFs to
represent all information of interest. In this work, the value
function is approximated by the inner product of a binary
feature vector x(s) that represents the sensor readings and
a learned weight vector w. The value for a state is therefore
computed as v(s) = w>x(s). To update the value function,
the TD error δ is computed after each time step as stated
in line 3 in Algorithm 1. The TD error is then used to up-
date the weights by taking a step towards the new estimate,
based on the step size 0 < α. To potentially speed up learn-
ing by assigning credit to previously visited states, eligibility
traces z are used. These traces decay according to the decay
rate λ ∈ [0, 1]. The whole algorithm can be found in Algo-
rithm 1 and an extensive introduction to TD learning can be
found in Sutton and Barto (2018). The parameters α and λ

Figure 1: The Modular Prosthetic Limb (MPL) used for the
experiments. The arrows indicate the nature of the repeated
disturbance imposed during the experiment. The green ar-
row indicates the direction of the provided perturbation,
while the blue arrows indicate the resulting joint movement.

are called answer parameters, as they define how the GVFs
are learned. A collection of GVFs is called a Horde (Sutton
et al. 2011).

Algorithm 1 TD(λ)
1: Initialize vectors z ∈ 0n and w ∈ 0n; initialize a small

scalar α; observe state s
2: Repeat for each observation s′ and cumulant C:
3: δ ← C + γw>x(s′)− w>x(s)
4: For i = 1, 2, · · · , n:
5: zi ← ziγλ+ xi(s)
6: wi ← wi + αiδzi
7: s← s′

Unexpected Demon Error
One of the error measures we are most interested in for this
paper is the Unexpected Demon Error (UDE) (White 2015).
It provides a measure for unexpected changes in a signal due
to changes in the environment. Mathematically, the UDE is
calculated as

UDE =

∣∣∣∣∣
δ̄β√

var(δ) + ε

∣∣∣∣∣ , (1)

where .̄β is a moving average over the TD error δ and ε is
a small constant to prevent division by zero. During learn-
ing, small changes in the TD error are to be expected, as the
learner updates the value function and acquires knowledge
about the world. The way the UDE is defined, it will neither
react to the regular occurring learning nor to random noise,
as both are considered in the mean and the variance of the
TD error. The UDE will only significantly increase if the TD
error behaves significantly differently due to changes in the

23

REPEATED DISTURBANCES

Figure 2: Decoded percept data from the robot over the
20min duration of the experiment. The 21 disturbances are
clearly identifiable in data from the position, velocity and the
load sensors. The temperature sensors show an increasing
temperature over the experiment, with additional increases
for some sensors due to the perturbations.

environment, triggering an unexpected amount of error, as
the name implies. UDE can therefore very well be seen as
a measure of genuine surprise and might provide important
insight into the agent’s learning.

Implementation and Experiments
Experimental Setup
The robotic arm used in the experiment is the Modular Pros-
thetic Limb (MPL v3) (Bridges, Para, and Mashner 2011),
which can be seen in Figure 1. The MPL includes 26 artic-
ulated joints in the shoulder, elbow, wrist, and hand. Com-
plex coordinated movements are possible via custom mo-
tors that provide up to 17 active degrees of freedom. Each
of these motors is outfitted with sensors for load, position,
temperature, and current. Additionally, each fingertip of the
hand is instrumented with a 3-axis accelerometer and 14 pad
pressure sensor arrays to provide a detailed sensor stream
that is transmitted over a Controller Area Network bus and
then sent to the control computer as User Datagram Proto-
col (UDP) broadcast packets. As one of the most advanced
research prostheses currently available, the MPL provides a
unique sensory-rich platform for testing GVF architectures.

When using sensor data for machine learning, the first de-
cision to make is the choice of how infromation is repre-
sented to the learning machine. As in related work in the
Atari Learning Environment (ALE) (Bellemare et al. 2013),
we follow an approach of presenting the learning machine
with raw binary data, prior to this data being decoded into
real-valued numbers, states, or observations. Similar to the
random access memory data used for learning on the ALE
by Bellemare et al. (2013) and subsequent follow-up studies,
the UDP packets that convey the MPL’s data stream provide

Bit/Line Data / sensor readings
0-39 Header
40-903 Position
904-1767 Velocity
1768-2631 Load
2632-3495 Temperature
3496-3520 Footer & Checksum

Table 1: UDP packet structure: the position of data in the
MPL binary percepts (each bit corresponding to the respec-
tive line in the figures that follow).

a straight-forward, interpretable testbed with different dy-
namics for a system to learn about, including bits that do and
do not vary with respect to perturbations, pseudo-random
bits, and non-stationary bits that drift or slowly change activ-
ity over time (summarized in Table 1). As such, these bits—
and not the real-valued signals that they help transmit—are
the primary focus of our explorations below.

The experiment was conducted for approximately 20 min-
utes, resulting in 5217 time steps in total. For each time step,
predictions, UDE and predictions of the UDE were com-
puted and calculated, which took 0.23s per step on average.
For the duration of the experiment, the arm was controlled
to be compliant but motionless, streaming data regarding its
current sensor readings: the position, velocity, load and tem-
perature of all actuators. The experiment began with the arm
remaining motionless in its resting position. This enabled
the predictors to reach an acceptable level of accuracy. After
two minutes, the arm was manually perturbed by an experi-
menter as indicated by the arrows in Figure 1, resulting in a
change in the sensor readings for position, velocity and load.
The arm then was allowed to move automatically back to
its original resting position according to its compliance set-
tings. The arm was perturbed in a similar way every minute
for the remainder of the experiment, resulting in a recurring
yet noisy pattern of sensory information. In total, 21 distur-
bances were recorded. The stream of 108 decoded sensor
readings from this pattern are shown in Figure 2.

Predictive Architecture and Algorithmic
Implementation
To create all signals of interest (predictions, surprise and
predictions of surprise), at least two different hordes are
necessary—one for the predictions and the surprise (Horde
1) and one for the predictions of the surprise (Horde 2). A
third Horde (Horde 3) predicts the future values of the 108
decoded sensor values, and was added simply as an example
of how predictions of raw data can be used as a substrate for
more complex predictive questions. These Hordes are struc-
tured into two layers, as shown in Figure 3. Each Horde has
two inputs, the cumulant, denoted as C, and the state vector,
denoted as X. The first predictive layer receives the binary
sensor signals from the MPL as state information and cumu-
lant. As the signal consists of 3520 signals, there are 3520
GVFs in this Horde, one for each possible cumulant. The
outputs of the first Horde are myopic (γ = 0) predictions
about the binary inputs, and the predictions’ UDE.

24

Figure 3: The prediction architecture used in the experiments. The sensor stream from the MPL on the left side is received
over the network as a 3520 bit UDP packet, subsequently decoded into 108 floating point signals. These 3520 bits are delivered
directly as both cumulant (C) and state (X) for Horde 1. The output of the first Horde is then fed into Horde 2 and 3 as the state
X used in predicting the 108 decoded sensor signals and also to make predictions about the UDE (surprise) of Horde 1.

The outputs of the first predictive layer (Horde 1) are then
used as inputs for the second predictive layer. There are two
independent Horde architectures present in this layer (Horde
2 and 3). Horde 2 in the second layer receives the predic-
tions from the first layer as state inputs x(s) and the UDE as
cumulants. As this layer predicts 3520 cumulants, it again
consists of 3520 GVFs. Its outputs are predictions about the
UDE of the first layer, with a discount rate of γ = 0.999,
which corresponds to a prediction of 1000 steps into the fu-
ture. The discount rate was chosen such that the predictions
can reliably learn about the imposed perturbations, which
are about 260 time steps apart.

Horde 3 receives predictions from the first layer as its state
representation input x(st), and its cumulants are the floating
point decodings of sensor readings from the MPL. There are
108 GVFs in this Horde. Its outputs are predictions about
the sensor signals, based on a discount or termination signal
γ = 0.9, which corresponds to 10 time steps into the future.

For all predictive layers in this architecture, the same eli-
gibility trace decay rate λ = 0.99 was chosen as a standard
intermediate value of λ (Sutton and Barto 2018).

Experimental Results
To provide further intuition, we created synthetic data to
demonstrate the expected behavior of the internal signals
for a variety of potential external signal types, shown in
Figure 4. Subplot (a) shows a potential data stream, includ-
ing signals that do not change, recurring patterns, and ran-
dom noise. Subplot (b) shows the predictions and should
therefore match subplot (a), if the predictions are accurate.
Subplot (c), which shows the UDE, should only spike for
surprising changes in the original data and not for consis-
tent noise. While the TD error for noise will constantly
change, the UDE should only increase for the first occur-
rence of noise, as it keeps track of previous TD errors and
will therefore expect TD errors of the same magnitude. It
should furthermore not react to signals that are constant.

Figure 4: Simplified plots for the ideal relationship between
(a) binary data, (b) predictions, (c) UDE and (d) predictions
of UDE with γ = 0.999 for synthetic data.

The UDE should, however, react to recurring patterns, as
the short moving average will forget about these signals over
time. Subplot (d), which shows the predictions for the UDE,
should show a longer activation where the UDE is active.
The predictions of the UDE are only consistently active for
the recurring pattern, as the predictions are consistently re-
inforced. The actual recorded data for all sensors over the
whole duration of the experiment is shown in Figure 5.

25

Bits and Bit Predictions
To provide insight into the experimental results, Figure 5(a)
shows the binary features of the data stream for all sensors.
These features are created from the sensor readings by plot-
ting the full contents of the UDP sensor packet received from
the robot arm. Table 1 shows the line numbers of each sensor
value in Figures 5, 6 and 7.

Purple bits are highly active, while light blue bits are not
active, as indicated by the legend. Some bits do not change
their value over time—this corresponds to constant sensor
readings. For example, most sensor readings from the hand
will be constant, as it is not moving during the experiment.
Figure 6(a) shows a zoom in on the position and velocity bits
for 200 time steps. As expected, most of the sensor stream is
constant. However, around time step 4090 some of the val-
ues significantly change, as a result of the perturbation to the
prosthetic arm. Other bits will be constantly changing. This
may be due to sensor noise or due to inherently shifting sig-
nals, e.g. increasing temperature, or, in the case of the load
sensors (Figure 7(a)), because the actuators need to keep the
arm in place, resulting in the load sensors frequently being
active and their values varying by small amounts.

As the predictions for the bits are myopic, they should ide-
ally be the same as the actual bits. Figure 5(b) clearly shows
that the predictions for the bits that show a constant behav-
ior are identical. Even when zoomed in as shown in Figure
6(b) and 7(b), the bits that are constant are matching the pre-
dictions. The changing bits are not as trivial to predict. Bits
that change randomly should in fact not be predictable and
the predicted value should be distributed around the expec-
tation, i.e. 0.5. Such random behavior can be seen in Figure
7(b) for some of the bits related to load between lines 2000
and 2050. For the position and velocity, shown in Figure 6(b)
however, the predictions clearly map the disturbance, as can
be seen by the changing predicted value, as the perturbation
occurs around time step 4090.

UDE and UDE Predictions
To provide a meaningful measure of surprise, the UDE
should show its highest activation both at the beginning of
the experiment, when the sensor readings are new, and upon
the disturbances, as the readings will significantly change
when the arm is perturbed. Figure 5(c) clearly reveals the ex-
perimental design. The subplot shows the repetitive pattern
of the arm displacement around lines 100, 950 and 1800.
These binaries correspond to the position, velocity and load,
respectively. Every time the arm is perturbed, the UDE sig-
nificantly spikes as the sensor readings change. Noise still
shows up in the UDE plot, but the intensity is lower, due to
the UDE taking previous errors into account. The dampen-
ing of the noise is clearly displayed in Figure 6(d). Between
lines 900 and 1000, some of the velocity binary features are
highly volatile, as seen in subplot (a). The UDE, as shown
in subplot (d), in comparison, only spikes twice, around time
steps 4000 and 4090, where the actual displacements occur.
Figure 7 elucidates a further aspect of the functionality of
UDE: After the perturbation around time step 4310, the TD
error in subplot (c) stays quite volatile until around time step

4460. The UDE decreases over this period and only spikes
again when the TD error suddenly drops and stays low.

When looking at the predictions in Figure 5(d), it can be
seen that the predictions about the UDE are not significantly
active until the first disturbance occurs. After that, they are
consistently high for the binaries that are affected by the
perturbations. As the termination signal γ = 0.999 allows
the predictions to consider 1000 time steps in expectation,
the UDE predictions learn about the reoccurring movements
and correctly predict the spikes in UDE. Figures 6(e) and
7(e) show in detail that the predictions anticipate that there
will be changes in UDE due to perturbations, and at the same
time filter the impact of UDE spikes that are not directly re-
lated, e.g. in lines 2000 to 2050 in Figure 7(e).

Discussion
This work presented the use of a predictive architecture to
capture important information about the sensor stream of a
prosthetic limb. The raw sensor stream of the MPL was re-
ceived as binary values and served as an input to the first
predictive layer that learned to predict these inputs in a my-
opic way and produced the Unexpected Demon Error (UDE)
as a measure of the surprise with regard to the inputs.

In the original binary sensor data, the temporal structure
of the perturbations is hidden by a significant amount of
noise and general changes in the sensor values, for example
due to changes in temperature. The (myopic) predictions of
the sensor values match the original sensor values quite well
for a large amount of the readings. However, some binary
features behave randomly or almost randomly, resulting in
predictions that are not accurate.

The UDE, however, is able to capture the perturbations
and their effects on the position, velocity and load sensors.
Each time the arm is manually moved, the surprise for each
sensor peaks and falls afterwards. The UDE can therefore
be seen as a valuable measure to inform the system about
changes in its own functioning. Furthermore, the predictions
about the UDE are consistently high after the first displace-
ment, effectively capturing knowledge about the recurring
pattern. At the same time, UDE and the predictions about
the UDE are capable of filtering the noisy sensor readings
to some degree, providing a better distinction between the
perturbations and the normal, unperturbed running. For ex-
ample, the UDE is consistently low for the checksum and
the temperature, but spikes for signals that are impacted by
perturbations of the arm. Intuitively, the system has learned
about the potential changes in its functioning and to some
degree can predict and expect these perturbations.

The internal signals that are generated by the suggested
architecture can not only be thought of as direct inputs for a
potential controller but can be looped in as additional con-
text to improve the accuracy of these and other internal
signals. For example, one could imagine using the predic-
tions about surprise as additional context, incorporating un-
expected motions into the agent’s knowledge to improve its
predictions of the sensor values. Including internal signals
may improve the representation of the system, enabling the
agent to learn more complex dependencies about itself and
improve its performance autonomously.

26

(a)

POS

VEL

LOAD

TEMP

DECODED PERCEPTS

(b)

0 1000 2000 3000 4000 5000
Time Steps

0

500

1000

1500

2000

2500

3000

3500

P
re

d
ic

ti
o
n
s

o
f

E
a
ch

 P
e
rc

e
p
t

B
it

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

P
re

d
ic

ti
o
n
s

o
f

E
a
ch

 P
e
rc

e
p
t

B
it

 (
V

a
lu

e
)

(c)

REPEATED DISTURBANCES

(d)

LEARNED PREDICTIONS OF UDE

Figure 5: All recorded data for the experiment. The first subplot (a) shows the sensor stream from the MPL as decoded binaries.
The second subplot (b) contains the myopic predictions for the binaries, provided by the first predictive layer. In the third
subplot (c), the UDE is shown, followed by (d) the predictions about the UDE for a termination signal γ = 0.999.

27

(a)

(b)

(c)

4000 4050 4100 4150 4200
Time Steps

600

650

700

750

800

850

900

950

1000

1050

T
D

 E
rr

o
r

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

T
D

 E
rr

o
r

(V
a
lu

e
)

(d)

(e)

4000 4050 4100 4150 4200
Time Steps

600

650

700

750

800

850

900

950

1000

1050

P
re

d
ic

ti
o
n
s

o
f

U
D

E

0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

P
re

d
ic

ti
o
n
s

o
f

U
D

E
 (

V
a
lu

e
)

Figure 6: (a) Sensor data, (b) predictions (γ = 0), (c) predic-
tion error, (d) UDE and (e) predictions of UDE (γ = 0.999)
for position and velocity sensors.

(a)

4300 4350 4400 4450 4500
Time Steps

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

P
e
rc

e
p
t

B
it

s

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

P
e
rc

e
p
t

B
it

s
(V

a
lu

e
)

(b)

(c)

(d)

(e)

Figure 7: (a) Sensor data, (b) predictions (γ = 0), (c) predic-
tion error, (d) UDE and (e) predictions of UDE (γ = 0.999)
for load sensors.

28

Conclusion
The experiments in this paper were conducted to demon-
strate how a predictive architecture can learn predictions,
measure surprise, and learn predictions of surprise for a re-
curring pattern of sensor data from a prosthetic limb. The
results show that important information about the underly-
ing domain can be revealed by generating signals of inter-
est from the ongoing operation of a Horde of General Value
Function learners. The architecture in this paper learns sur-
prise and predictions of surprise but does not make use of
them. We suggest that the use of these signals in control
learning is a natural extension that promises benefits: in-
trospective signals can potentially help a learning agent to
extend its knowledge not only about the environment but
also about its own state within this environment. The present
work can therefore be viewed as the process of learning a
grounded, rudimentary model of actions and their conse-
quences, which may create a foundation for learning more
complicated concepts and relationships.

In the case of a learning artificial limb, predictions of sur-
prise should provide knowledge of a change in the dynamics
of the prosthesis before the change happens. If successfully
learned, such predictions might serve as indicators not only
of external variability like a new domain, a handshake, or un-
predictable contact with objects, but also of changes in the
function of the limb; the latter is a first step towards detect-
ing the need for maintenance before the system breaks down.
We suggest that introspective knowledge as presented in this
work can be a valuable extension to systems that continually,
autonomously learn and adapt in real-world settings.

Acknowledgements
This research was undertaken, in part, thanks to funding from the
Canada Research Chairs program, the Canada Foundation for In-
novation, the Alberta Machine Intelligence Institute, Alberta Inno-
vates, and the Natural Sciences and Engineering Research Council.
The authors also thank Kory Mathewson, Adam White, Richard
Sutton, and Joseph Modayil for suggestions and helpful discus-
sions, and Nadia Ady for her in-depth editorial feedback.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Bridges, M. M.; Para, M. P.; and Mashner, M. J. 2011. Con-
trol System Architecture for the Modular Prosthetic Limb.
Johns Hopkins APL Technical Digest 30(3):217–222.
Clark, A. 2013. Whatever Next? Predictive Brains, Situated
Agents, and the Future of Cognitive Science. Behavioral
and Brain Sciences 36(3):181–204.
Gehring, C., and Precup, D. 2013. Smart Exploration in
Reinforcement Learning Using Absolute Temporal Differ-
ence Errors. In Autonomous Agents and Multiagent Systems
(AAMAS), 1037–1044.
Günther, J.; Pilarski, P. M.; Helfrich, G.; Shen, H.; and
Diepold, K. 2016. Intelligent Laser Welding Through Rep-
resentation, Prediction, and Control Learning: An Architec-

ture with Deep Neural Networks and Reinforcement Learn-
ing. Mechatronics 34:1–11.
Kahn, G.; Villaflor, A.; Ding, B.; Abbeel, P.; and Levine,
S. 2017. Self-supervised Deep Reinforcement Learning
with Generalized Computation Graphs for Robot Naviga-
tion. arXiv preprint arXiv:1709.10489.
Modayil, J.; White, A.; and Sutton, R. S. 2014. Multi-
timescale Nexting in a Reinforcement Learning Robot.
Adaptive Behavior 22(2):146–160.
Pilarski, P. M., and Sherstan, C. 2016. Steps Toward Knowl-
edgeable Neuroprostheses. In Proceedings of the Interna-
tional Conference on Biomedical Robotics and Biomecha-
tronics, 220–220. IEEE.
Pilarski, P. M.; Dawson, M. R.; Degris, T.; Carey, J. P.; Chan,
K. M.; Hebert, J. S.; and Sutton, R. S. 2013. Adaptive Arti-
ficial Limbs: A Real-Time Approach to Prediction and An-
ticipation. IEEE Robotics & Automation Mag. 20(1):53–64.
Sakaguchi, Y., and Takano, M. 2004. Reliability of Inter-
nal Prediction/Estimation and Its Application. I. Adaptive
Action Selection Reflecting Reliability of Value Function.
Neural Networks 17(7):935–952.
Schultz, W., and Dickinson, A. 2000. Neuronal Coding of
Prediction Errors. Annual Rev. Neurosci. 23(1):473–500.
Sherstan, C.; Machado, M. C.; White, A.; and Pilarski, P. M.
2016. Introspective Agents: Confidence Measures for Gen-
eral Value Functions. In International Conference on Artifi-
cial General Intelligence, 258–261.
Sherstan, C.; Modayil, J.; and Pilarski, P. M. 2015. A Col-
laborative Approach to the Simultaneous Multi-joint Con-
trol of a Prosthetic Arm. In Proceedings of the International
Conference on Rehabilitation Robotics, 13–18. IEEE.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press, 2nd edi-
tion.
Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski,
P. M.; White, A.; and Precup, D. 2011. Horde: A Scalable
Real-time Architecture for Learning Knowledge from Un-
supervised Sensorimotor Interaction. In Proceedings of the
International Conference on Autonomous Agents and Multi-
agent Systems-Volume 2, 761–768. AAMAS.
Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine Learning 3(1):9–44.
Tamar, A.; Castro, D. D.; and Mannor, S. 2016. Learn-
ing the Variance of the Reward-To-Go. Journal of Machine
Learning Research 17(13):1–36.
White, M., and White, A. 2010. Interval Estimation for
Reinforcement-Learning Algorithms in Continuous-State
Domains. In Advances in Neural Information Processing
Systems, 2433–2441.
White, M., and White, A. 2016. A Greedy Approach
to Adapting the Trace Parameter for Temporal Difference
Learning. In International Conference on Autonomous
Agents and Multiagent Systems, 557–565.
White, A. 2015. Developing a Predictive Approach to
Knowledge. Ph.D. Dissertation, Dept. of Computer Science,
University of Alberta.

29

SocialAnnotator: Annotator Selection Using Activity and Social Context

H M Sajjad Hossain and Nirmalya Roy
Departmenf of Information Systems

University of Maryland Baltimore County

Abstract

Precise and eloquent label information is fundamental for in-
terpreting the underlying data distributions distinctively and
training of supervised and semi-supervised learning models
adequately. But obtaining large amount of labeled data de-
mands substantial manual effort. This obligation can be mit-
igated by acquiring labels of most informative data instances
using Active Learning. However labels received from humans
are not always reliable and poses the risk of introducing noisy
class labels which will degrade the efficacy of a model instead
of its improvement. In this paper, we address the problem
of annotating sensor data instances of various Activities of
Daily Living (ADLs) in smart home context. We exploit the
interactions between the users and annotators in terms of re-
lationships spanning across spatial and temporal space which
accounts for an activity as well. We propose a novel annotator
selection model SocialAnnotator which exploits the interac-
tions between the users and annotators and rank the annota-
tors based on their level of correspondence. We also introduce
a novel approach to measure this correspondence distance us-
ing the spatial and temporal information of interactions, type
of the relationships and activities. We validate our proposed
SocialAnnotator framework in smart environments achieving
≈ 84% statistical confidence in data annotation.

Introduction
Acquiring labeled data instances is an important task for
training supervised and semi supervised machine learning
models. In most of the problem domains, both domain
knowledge and label information for a learning algorithm
are compiled by the human annotators. As a result human
intervention is indispensable for collecting ground truths.
Labeling large amount of data suggests engaging more do-
main experts or extending the time for the labeling process.
Adapting either of these approaches is a daunting task as
it is difficult to find abundant domain experts who can re-
lentlessly provide labels. Consider building an Activities of
Daily Living (ADLs) classifier using accelerometry data. If
the sampling frequency is 30 Hz and we collect data from a
single user for a single day, we end up with approximately
2.5 million data instances. Moreover, the reliability, avail-
ability of domain experts, and the incurring costs associ-
ated with data annotation process makes it a painstaking
step while building a machine learning model. It is possible
to reduce the complexity of data annotation by dissecting

the problem domain and identifying the relevancy of data
with appropriate activity. For example, in case of ADLs we
can select a handful number of activities or emphasize more
on a specific period of the day instead of considering all of
the data. From a machine learning perspective, we can view
this as to look for most important data instances which can
have significant impact on our classifier. By utilizing Ac-
tive Learning (Bodó, Minier, and Csató), we can select the
most informative data instances and pose the label queries
to the annotators. There are alternative methods to reduce
annotation effort other than Active Learning like utilizing
Crowdsourcing platforms (Love and Hirschheim) or train-
ing the learning model using unlabeled data (Fiorini, Cav-
allo, and et al. 2017) (Gjoreski and Roggen 2017). However
these approaches can invoke negative impact, for example,
annotators in Crowdsourcing platforms are mostly not do-
main experts and can introduce noisy labels in the model.

Activity recognition using wearable and ambient sensors
in smart home domain is a well studied problem in liter-
ature (Guan and Plötz 2017)(Shoaib et al. 2015). Existing
activity recognition methods endure limitation in terms of
data scarcity and scalability. The sensors produce an im-
mense volume of data due to high sampling frequency in
order to capture fine-grained information without any loss.
In order to collect ground truth information, existing works
have relied on the video feed heavily where each video
frame is mapped with the timestamp (Hossain, Khan, and
Roy 2017a). In this paper, we propose an online annota-
tor selection model while exploiting active learning in smart
home activity recognition domain. Even though active learn-
ing can be effective in acquiring labels, its foundation is built
on impractical assumptions - an annotator who is always
available to provide the correct labels to every queries with-
out incurring any cost and the active learner can query as
many instances as possible (Donmez and Carbonell 2008).
In practical, a single annotator may or may not respond to
all of the queries. Therefore, exploiting multiple annotators
seems more practical (Yang and Wooldridge 2015), never-
theless their expertise level may differ drastically. Moreover,
the labels received from these imperfect annotators are not
always reliable, so if we pose an important query to a wrong
annotator all the efforts will be pointless. Thus based on the
informativeness of the selected data instance, it is always
desirable to pose the query to the right annotator.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

30

We first attempt to model the human relationships and as-
semble a knowledge base to represent the level of influence
to others according to social and physical context. We for-
mulate a corresponding distance metric using this knowl-
edge base which expresses the level of correspondence
between connected users given the current context. While
calculating this distance, we also consider the distance be-
tween activity space for a certain user. Activity distance en-
ables us to find out similar activities with respect to their
spatial and temporal properties. For example, if a person
eats and watches television in the living room most of the
time, then eating and watching television has similar spa-
tial property. In such cases if an annotator can label eating
activity efficiently, then our assumption is that he can also
effectively provide label for watching television activity. In
this paper we design an annotator selection model SocialAn-
notator based on Contextual Multi-Armed Bandit (CMAB)
algorithm where the context resembles the features of the
queried instance and action corresponds to the annotator se-
lection. We consider the time, space, prior context history
and the approximate label received from the learner as the
context information for CMAB. SocialAnnotator works in a
collaborative manner where the connected users collaborate
and provide label for each other.

Related Work
Activity recognition has been one of the core research ar-
eas in ubiquitous computing field for many years (Lara and
Labrador 2013) (He et al. 2008). This rapid surge and ad-
vancement in learning activity pattern have also assisted a
plethora of application domains ranging from sports (Daiber
and Kosmalla 2017) (Hossain, Khan, and Roy 2017b) to
health analytics (Samarah et al. 2017). Activity recogni-
tion research have been addressed from two pespectives us-
ing computer vision (Li and Vasconcelos 2017) (Jalal et
al. 2017) and sensor modalities (Hossain, Khan, and Roy
2017a) (Davila, Cretu, and Zaremba 2017). Various machine
learning models including both shallow learning (Lee and
Cho) (Wyatt, Philipose, and Choudhury 2005) and deep
learning (Guan and Plötz 2017) (Bhattacharya and Lane
2016) algorithms have been exploited in existing activity
recognition literature over the years. Activity recognition
models exploiting supervised and semi-supervised learning
algorithms have to heavily rely on the number of labeled
data instances. Some literature have proposed models us-
ing unsupervised learning algorithms (Twomey et al. 2017)
(Münzner et al. 2017) (Bouchard, Bouchard, and Bouzouane
2012) but if the distribution of the data is not clearly inher-
ent, unsupervised algorithms fail to find the pattern in the
data.

To address the problem of gathering ground truth informa-
tion, active learning has been employed by few researchers.
The authors of (Bagaveyev and Cook 2014) investigated sev-
eral active learning approaches in smart home activity recog-
nition context and evaluated with real world data set. Diethe
et al. proposed a bayesian approach by utilizing active and
transfer learning in (Diethe, Twomey, and Flach 2016). In
(Liu, Chen, and Huang 2010) and (Stikic, Van Laerhoven,
and Schiele 2008) the authors exploited uncertainty based

Classifier Unlabeled
Instances

Labeled
Instances

Active Learner

Parameter
Formulation

Contextual Multi-Armed
Bandit

Annotator Selection

Figure 1: A high level structure of the modules in SocialAn-
notator framework.

active learning. (Ho et al. 2009) used an entropy based ap-
proach to measure the informativeness of data instances.
In our previous work (Hossain, Khan, and Roy 2017a) we
proposed a clustering based heuristic to find the most in-
formative instances. Hasan et al. proposed a context aware
model using active learning (Hasan and Roy-Chowdhury
2015). They utilized entropy and mutual information of the
instances to filter out the most informative data instances.
(Xu et al. 2014) applied active learning in a contextual multi-
armed bandit setting to do the activity classification. How-
ever, while employing active learning it is not always guar-
anteed to receive correct and noise free labels (Donmez and
Carbonell 2008). In this paper we take a radically different
approach than the existing literature and focus on improving
the impact of active learning by selecting proper annotator
using social relationships.

Overall Framework
SocialAnnotator framework is composed of three major
components. We have an activity recognition classifier
which is trained on labeled data instances from wearable
devices that provide raw accelerometer data. After build-
ing a stable classifier, we start feeding unlabeled instances
and predict the class label. We then start filtering uncertain
data instances from the stream of unlabeled data instances in
our Active Learner module. In our active learner module, we
measure the entropy of the instances and select the instance
with maximum entropy. We then send the selected instance
to our Annotator Selection module. Note that in our daily life
we interact with a number of people. The interaction can be
physical or virtual through social network but every interac-
tion is an opportunity to observe and share information. The
key insight here is that we are connected and have more in-
teractions with the people who we are related with us. These
connected people might be direct witnesses of what we are
doing in our day to day life. As a result these social relation-
ships and correspondence lead us to have knowledge about
the activity patterns of the people we are connected with.

We model the level of correspondence using a distance pa-
rameter. We calculate the spatio-temporal distance between
two connected users using their probability distribution of
location. The spatio-temporal distance lets us know about
the intersection between their location distribution. We also
incorporate a weight based on the strength of the relation-

31

ship. The people with whom we interact more have higher
potential to know about our daily routines. After formulat-
ing the distance parameter, we model a budget constrained
context aware multi-armed bandit. The task of the bandit is
to select annotator given the distance parameter and context.
We design the bandit in such a way so that it does not act
in a greedy way by introducing costs associated with each
annotator and a budget constraint. We adapt a game the-
oretic approach where we have to ensure maximum gain
and keep track of our budget as well. The costs associated
with the annotators are not static, as the level of interac-
tion evolves over time. For example, we have regular inter-
actions with the people at our work place during the week
days, but over the weekend we tend to mingle with close
friends. Also a person can be connected through multiple re-
lationships (close friend and colleague in a work place at the
same time). Therefore, we consider the cumulative relation-
ship weights of all the relations for quantifying the level of
correspondence between two users. Figure 1 depicts a con-
ceptual structure of our SocialAnnotator framework.

Distance Metrics
In this section we discuss the metrics which correlate our
annotators with activities. We collect raw accelerometer and
location data from the users and formulate the following dis-
tance metrics using the temporal and spatial information of
these sensor modalities.

Spatio Temporal Distance
We calculate the spatio-temporal distance of the related
users when an activity is performed. This distance metric
implies if an user has any knowledge about the performed
activity by another user he or she is related to. While com-
puting this parameter, we also consider the neighboring lo-
cations of where the activity was performed. We calculate
the likelihood of each related user j being in a location li
given the current context xt. We process this as a categorical
distribution. Let us consider a set of activitiesW with whom
the user ui is connected. The location of each activity is an
observation of our distribution, and the location set L(W)
is a sample of that distribution with cardinality m. Each lo-
cation in li ∈ L(P) has a prior probability. We denote the
probabilities of locations as vector p = (p1, p2, p3...pm).
Let us consider q be the location probability distribution of
an annotator ai who is connected to user ui through a re-
lation. We then calculate the conditional distributions of p
and q given context xt and time t. Using these conditional
distributions we calculate the distance between them using
Bhattacharyya distance (Bhattacharyya). The distance be-
tween these two conditional distributions is defined as:

dst(p(x, t), q(x, t)) = −ln(B(p(x), q(x)))

=

m∑

i=1

√
pi(x, t)qi(x, t) (1)

In Eqn 1, B is the Bhattacharyya coefficient which provides
the measurement of overlap between the two probability dis-
tributions. This distance provides us information regarding
the annotators who reside closer to the user. We calculate
this spatio-temporal distance for all the connected users and
take the annotators who were closest to the vicinity where

the activity was performed. If no annotator was present in
the vicinity where the user performed the activity, we as-
sume that annotators dwelling in the neighboring locations
may have knowledge about the activity label.

Activity-Activity Distance
We exploit the connectivity among activities to filter appro-
priate annotators. Our intuition is that if the properties of an
activity Wi prevails in a similar spatial and temporal space
to another activity Wj and an annotator ak has efficiently
provided reliable labels to activity Wj then ak is a potential
annotator who can provide label of activity Wi. To calculate
this distance we consider three components of an activity
pair - correlation, spatial and temporal. Correlation cal-
culates the co-occurrence frequency of the activity pair, the
spatial and temporal component models the probability of an
activity pertaining to the same location and time constraints.
The distance is defined as:

d(wi, wj) = f(wi, wj)N (||tai − taj ||2, µt, σt)
N (||lai − laj ||2, µs, σs) (2)

In eqn 2, f(wi, wj) denotes the co-occurrence frequency
between a pair of activity, lai , laj , tai , taj are the spatial and
temporal parameters of the associated activities.

Relationship Weight
The strength of the social relationship can be integral in se-
lecting annotator. There may not be any annotator who di-
rectly witnessed the user doing an activity. However, human
being follows a cognitive routine most of the time and the
persons mostly associated with his life are acquainted with
the routine. For example, the family members living with the
user are usually more familiar with his routine. Some anno-
tators can also be remotely connected (e.g. updates on so-
cial network, talking over the phone or even playing online
games together). So certain relationships provide more em-
phasis and demand more attention while choosing the anno-
tator. For this reason, we try to provide weight to each con-
nected user according to the relation. However this weight
can not be static for all of the users as in real life not all
relationships are same and they evolve over time. For ex-
ample, consider the relationship with your office colleagues,
initially they could be just colleagues but over time some
might become your close friend. On the other hand one
might be in touch with their parents on regular basis, but
a different person might not. So for each person the weight
of relationship is different. We use the relationship intensity
strength proposed in (Srba and Bieliková 2010) to model
our relationship weight. The interaction between two users
(e.g. phone call, messaging, meeting etc.) or shared infor-
mation (e.g. playing soccer together, common hobby) are
designated as “rate factor”. Depending on the social aspect
these rate factors regulates the strength of a relationship. The
partial relationship weight between user k and j for one fac-
tor is defined as:

Yf (k, j) =
ωkj

∑l
i=1 ft

1 + ln(1 + lc)
(3)

32

In eqn 3 ωkj is the weight of the rate factor, l is the count
of rate factors, lc is the count of instances of the rate factor
and ft models the time influence. The final weight Y (k, j)
is measured by taking the arithmetic mean of the partial
weights of all the rate factors.

Now that we have formulated all our distance metrics,
we now define our final user to user distance metric. The
activity-activity distance metric provides the distance be-
tween activities and finds the similarity among them. We
maintain the count of such activities for which the annotators
have performance score more than a pre-defined threshold δ.
We utilize this count as an additional weight Wc for the an-
notators. The final distance is calculated using the following
equation:

D(k, j) = Y (k, j)Wc dkj
(
p(x, t), q(x, t)

)
(4)

Methodology
In this section, we discuss active learning, the contextual
multi armed bandit problem and the modeling of arms or ac-
tions of the bandit, the rewards and the context of our prob-
lem domain.

Active Learning
Active learning is fitting for problems pertaining to large
amount of unlabeled data instances. In the context of activ-
ity recognition using wearable devices, we have to process
overwhelming number of data instances which makes active
learning befitting. We only label the data instances which
provide highest gain which is reducing the generalized er-
ror of our classifier. In our proposed model we propose to
use Active learning using pool-based sampling as we receive
a stream of data in a very short period of time. We select
a data instance from a pool of instances in a greedy way.
Queries are typically conforming to the measure of uncer-
tainty. Here our assumption is that the instances which are
least certain are close to the decision boundary and label-
ing these instances will provide maximum gain. To measure
the uncertainty we calculate the entropy of the provided in-
stances and query the instance with maximum entropy. We
calculate the maximum entropy and select an instance by
following equation

xH = argmax
x

Hθ(Y |x)

= argmax
x
−
∑

y

Pθ(y|x)log Ptheta(y|x) (5)

Contextual Multi-Armed Bandit
A contextual bandit problem is composed of N arms or ac-
tions. In our context an action refers to selecting an anno-
tator. Our goal is to maximize this reward in each iteration.
However, by selecting a sub set of the actions in a regular
manner might always provide maximum reward. For exam-
ple, a person’s spouse or close friend has better idea about
his daily activity routine than any one else. So by select-
ing the spouse or close friend in each round will maximize
the reward outcome. If we consider the annotators as re-
sources, prompting the same set of annotators will lead to
resource exhaustion. In order to tackle this, we introduce
a resource constraint or budget for each of the annotator.
The annotators who ensures higher potential reward, incur

higher cost. As a result given an overall budget our aim is
to maximize the total reward while ensuring aggregated re-
source consumption remains bounded by a given budget. Let
us denote the action set as A = {a1, · · · , ak}. We consider
the cardinality of A to be finite as an user is connected to
a finite number of people. A d-dimensional feature vector
xt ∈ X denotes the context information received at time
t. At each time t, an agent or policy π decides to choose
an action ai based on the context xt and receives reward
rti . The history of taken actions and received reward is de-
noted by Ht−1 → {ai(τ), rτ , xi(τ)} for i = 1, . . . , N and
τ = 1,, t − 1 where ai(τ) denotes the chosen action
which generated reward rτ . The reward of an action is gen-
erated from an unknown distribution regulated by the given
context. Let us consider the optimum action at t is a∗i and its
corresponding reward is r̃ti .

We want to select the action which results in reward close
to the optimum one, so the aim is to maximize the reward
in each step and minimize the difference between the over-
all optimum reward and the reward received. The difference
between the optimal reward and the aggregated reward re-
ceived is called regret. We provide a formal definition of re-
gret as following

R =

T∑

t=1

Rt =

T∑

t=1

(r̃ti − rti) (6)

In this eqn, r̃ti is the optimum reward at step t and rti is
the reward received. Let us define our reward function as
rt = f(xt, ai(t)), where f(xt, ai(t)) is the reward map-
ping function for arm ai(t). In order to maximize the reward
function, the agent needs to learn the underlying function f
which maps the context to action. In order to acquire knowl-
edge about the latent function f , the agent has to explore
other actions instead of choosing the optimum action which
provides the best outcome. ε is our exploration parameter.
The predictive distribution of our reward function depends
on the current context and the history of actions taken. This
is a normal distribution with mean µr and variance V which
are defined as following

pθ(rt|HT−1, xt) = N (µr(t), Vt) (7)

Each action ai(t) is also associated with a cost ctai . The cost
associated with an annotator is variable in each round as the
distance between users defined in eqn 4 varies over time.
The costs are independently and identically drawn from an
unknown continuous distribution with mean µc. We adhere
to the same settings in (Xia, Qin, and et al.): (i) the rewards
of an action are independent of its costs (ii) the rewards and
costs of an arm are not influenced by other actions (iii) the
rewards and costs of an action are independent and iden-
tically distributed at each iteration. Let us define a known
parameter, budget B which designates the number of time
the algorithm can invoke annotators. This budget constrain
also helps us to supervise the stopping time ts(B) of our
algorithm which is defined as following

ts(B)∑

i=1

ciai ≤ B <

ts(B)+1∑

i=1

ciai (8)

Let us denoteR∗ as our optimum aggregated reward at stop-
ping time ts(B). We calculate the expected regret, evaluated

33

over the randomness of rewards and costs by modifying eqn
6.

R = R∗ − E
[ts(B)∑

t=1

(rtat)
]

(9)

Actions The action space for an user is proportional to the
number of connected annotators. An action corresponds to
selecting an annotator from the correspondence vector M .
Each element mij ≥ 0 is congruent to how relevant the an-
notator is with respect to the user in terms of our distance
metric and labeling accuracy. The expected reward to cost
ratio of an annotator ai is ρai = µ

ai
r

µ
ai
c

. According to (Xia,
Qin, and et al.), if both reward and cost distribution of an
action is known, pulling the arm with maximum ρ can pro-
vide the expected reward as the optimal algorithm. When
the distributions are unknown, we should select the annota-
tor with the maximum ρ and also ensure exploration on the
other rarely selected annotators.

Context A context vector xt portrays the features and
characteristics of each annotator. The features considered in
a context vector are the timestamp t, location s, n perfor-
mance metrics of the annotator with respect to each activity
c1, . . . , cn. We do not include the sensor data in the context
vector.

Reward Our reward mapping function randomly gener-
ates reward according to the conditional probability measure
defined in eqn 7. Initially the model is uncertain about the
value θ. Our reward mapping function f is defined to mea-
sure the reduction in variance of our classification model
between two iterations. For making things simple, our ob-
jective is to minimize the squared loss of the true label and
the label received from an annotator. We define our expected
error as following

E
[
(ŷ − y)2|xt, yl

]
= EY |x

[
(y − EY |x[y|x, yl])2

]

+ (EL[ŷ]− EY |x[y|x])2 + EL
[
(ŷ − EL[ŷ])2

]

(10)

In eqn 10 EL[.] is the expectation over the labeled train-
ing set L, ŷ is the label received from an annotator and y is
the true label of the instance. EY |x

[
(y − EY |x[y|x])2

]
in-

dicates noise or uncertainty of y given x. The second term
represents bias which is the error due to the selected action.
The third term represents the output variance of our model.
Therefore minimizing the variance will ensure to minimize
the generalization error of our model. So we try to reduce
error by selecting annotators that establish highest variance
reduction of our activity recognition model. For any action
ai, number of times it is invoked nai,t, average cost c̄ai,t
and average reward r̄ai,t and the exploration parameter is

εai,t =
√

2log(t−1)
ni,t

. We calculate index Dai,t for each an-
notator:

Jai,t =
r̄ai,t
c̄ai,t

+
r̄εi,t
c̄ai,t

+
r̄εi,t
c̄ai,t

D(k, i) (11)

In eqn 11, the average reward to cost ratio represents the
exploitation. The first influences our algorithm to choose the
arms with higher rewards. The exploration term r̄εi,t

c̄ai,t
favors

the annotators who provide less reward and as a result in-
voked infrequently with lower costs. Exploring weaker an-
notators may be conducive as our budget is limited. The final
term enforces joint exploitation and exploration. Our whole
methodology is summarized in Algorithm 1.

Algorithm 1 SocialAnnotator Annotator Selection

Require: U , A pool of unlabeled instances {(x)u}Uu=1,
A = {a1, a2, . . . ak}, A list of connected annotators

1: Output: Best annotator ai.
2: Select instance xt with maximum entropy
3: p← location probability distribution of the user
4: Reward Index J ← {}
5: for annotator ak ∈ A do
6: q ← location probability distribution of annotator ak
7: Calculate spatio temporal distance

dst(p(xt, t), q(xt, t))
8: Distance d← {}
9: for each activity wi do

10: d(wi, wj)← activity-activity distance
11: d.insert(d(wi, wj))
12: end for
13: maximum activity-activity distance dmax ←

max(d)
14: Yf (ak, user)← relationship weight
15: D(ak, user)← annotator-user distance
16: Jak ← reward index for annotator ak
17: J [k] = Jak)
18: Maximum reward Jmax = max(J)
19: i← index of Jmax
20: end for
21: return annotator ai

Experimental Evaluation
In this section we evaluate SocialAnnotator using real data
traces and compare the performance of our model using
different bandit algorithm. We also evaluate our classifier
based on annotator We provide a description of our setup
and dataset and data collection process in the following:

Setup
We collected activity data using wearable devices from 5
users over the course of 16 days. We used android smart
watch Moto360 to collect the accelerometer data. We also
collected the location information of the users using GPS
which we only used for ground truth. We developed smart-
phone apps for both ios and android platforms using which
the users can add correspondence (friend, spouse, roommate
etc.). Users were asked to log the interaction, location and
activity data using this platform. Users were asked to log
not only the in person interactions but also virtual or remote
(messaging, talking over the phone, interaction through so-
cial network etc.) interactions as well. Logging too much

34

0 50 100 150 200 250 300
Number of queries

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
N

o
rm

a
li
ze

d
 R

e
w

a
rd

Random
LinUCB
Epsilon-Greedy
EXP4
SocialAnnotator

(a)

User 1 User 2 User 3 User 4 User 5
0

200

400

600

800

1000

A
n
n
o
ta

ti
o
n
 T

im
e
 (

s
e
c
)

(b) (c) (d)
Figure 2: (a) shows the distribution of normalized reward with respect to number of queries. (b) shows per-annotator labeling
time distribution. (c) represents the stack plot of percentage of correctly labeled instances of all the connected users for each
user. (d) Precision, recall and f1-score of our base classifier using different settings.

interaction can become a burden, so only the number of in-
teraction was required to log. We established ground truth
using these log information. In our experiment we monitored
5 daily activities - {eating, sleeping, phone calling, working,
cooking}.

The sensor data are directly uploaded to our lab server
from the wearable device and we preprocess(feature extrac-
tion, filtering, noise reduction etc.) the data in the server. As
previously stated in our pipeline in Figure 1, we train a su-
pervised classifier first to recognize the performed activity.
We have used a simple decision tree based classifier. Initially
after training our model with labeled instances we achieved
an average accuracy of 77%. Even if we have achieved
low accuracy compared to the existing literature, we are
only concerned about investigating how efficient labeling
can help to improve the performance of activity recogni-
tion model. We have For our budgeted multi-armed bandit,
the reward and cost of each annotator are sampled from a
beta distribution. The parameters of the these distributions
are sampled from [1,5]. The budget of our framework is
chosen from the set {200, 300, 400, 500, 1000}. We com-
pare our annotator selection model with different contextual
multi armed bandit algorithm - LinUCB, ε-Greedy, EXP4
and Random sampling. In case of Random sampling, the an-
notator is chosen at random in each iteration. All the contex-
tual bandit algorithms are executed up to 300 iterations per
user in this experiment.

Table 1: Statistics of SocialAnnotator compared to other
multi-armed bandit algorithm

r̄ c̄ r̄/c̄ % opt
Random 0.763 0.793 0.962 1.67
LinUCB 0.758 0.814 0.932 0.8
ε-Greedy 0.796 0.886 0.8984 1.32

EXP4 0.864 0.810 1.067 61.17
SocialAnnotator 0.913 0.267 3.419 73.42

Bandit Performance
In Table 1, we list and compare average rewards(r̄), average
costs(c̄), average reward to cost ratio (r̄/c̄) and the percent-
age of time optimal annotator gets selected (% opt) of dif-
ferent bandit algorithms. From the statistics we see that Lin-

UCB and ε-Greedy perform worst with respect EXP4 and
our model. Both these algorithms are not meant for prob-
lems with budget constaints and as a result they do not take
budget into consideration. Our model can achieve higher re-
ward at lower cost contrast to other bandits which verifies
that we are choosing optimal annotator at each step. In fig-
ure 2a the trend of average reward obtained at each step is
shown. It is evident that our proposed algorithm outperforms
the other bandit algorithm settings. More context informa-
tion like detailed interaction, fine grained location informa-
tion etc. might further improve the model.

Annotator Selection
We monitor the performance of each annotator and maintain
a score for each activity associated with the connected users.
In Figure 2b we provide the annotation time distributions of
each user using boxplot. A box depicts the majority of anno-
tation times and the median time is marked with a solid line
inside the box. It is noticeable from the figure that each user
have different time distribution which means the efficiency,
promptness and reliability of each user varies. We also de-
duce that the annotator might not provide the label at all. We
show the percentage of correctly labeled instances by each
user in Figure 2c. As User 5 is only connected to User 4
and User 1 there are only three scores for him including the
score of labeling his own activity. It is apparent that all the
users are efficient in labeling their own activity.

Table 2: Labeling result of each user
Correct Label Wrong Label No Label

User 1 324 49 27
User 2 306 68 26
User 3 285 83 32
User 4 310 73 17
User 5 345 37 18

We notice that User 1 and User 5 were able to label each
others data quite precisely. We found that these two users
were living in the same apartment and User 1 is spouse of
User 5. Their quantity of interaction was also very high as
apart from living together they were also talking with each
other over the phone couple of times a day. We also notice
from the figure that User 2 and User 4 were able to label the

35

0 50 100 150 200 250
Number of queries

0

20

40

60

80

N
u
m

b
e
r

o
f

w
ro

n
g
 l
a
b
e
ls

LinUCB
Epsilon-Greedy
EXP4
SocialAnnotator

(a)

0 50 100 150 200 250 300
Number of queries

0

10

20

30

40

50

M
e
a
n
 A

n
n
o
ta

to
r

T
im

e
 (

M
in

)

Random
LinUCB
Epsilon-Greedy
EXP4
SocialAnnotator

(b)

0 50 100 150 200 250 300 350 400
Number of queries

76

77

78

79

80

81

82

83

84

A
cc

u
ra

cy
(%

)

Random
LinUCB
Epsilon-Greedy
EXP4
SocialAnnotator

(c) (d)
Figure 3: (a) shows the number of wrong labels received in 300 iterations for different bandit algorithms. (b) per-annotator
labeling time distribution (c) demonstrates the progression of accuracy after each iteration. (d) Precision, recall and f1-score
of each activity.

activity of each other with good accuracy (82% for User 2
and 78% for User 4). After investigating into it, we observed
that these two users were working together at the same place
and had a lot of interactions. User 3 and User 4 also worked
at the same place but they had very less interaction with each
other which is reflected in their annotation efficiency. Re-
ceiving the label information as early as possible is aslo im-
perative. If we do not receive a label for the queried instance
within a certain pre-defined threshold tme, we discard the
annotator. As a result, if we pose the query to an user who
may delay in providing the label or not provide the label at
all, we not only spoil resources but also lose valuable in-
formation. In Figure 3b we show the mean annotation time
needed using different bandit algorithm for varying number
of queries. Our model exhibits lowest mean (30 mins) than
all other approaches and getting the labels at the right time.
As a result our model also ensures immediate result along
with the conservation of information. To further validate our
claim, we show the number of wrong labels received for dif-
ferent bandit algorithms in 300 iterations in Figure 3a. After
300 iterations, SocialAnnotator indicates lowest number of
wrong labels, which proves that we are posing the queries
to the right person at the right time. The cumulative labeling
accuracy of each user is also described in Table 2.

Classifier Performance
We have achieved an overall accuracy of 77% for our base
classifier. We trained our model with only 5% (1050) of the
total labeled data instances. We apply active learning and
incrementally query instances. We show the overall accu-
racy of our classifier after 400 iterations in Figure 2d. By
employing SocialAnnotator we accomplish an average ac-
curacy of ≈ 84% which is an improvement of 7% compared
to our base classifier. NoAnnotator title demonstrates the re-
sults when we do not administer annotator selection. We no-
tice that it only improve the accuracy by ≈ 1-2% even if
we have applied active learning. So posing the query to the
right person helps to improve the accuacy of our classifier.
In Figure 3d we show the accuracy of individual activities
after applying SocialAnnotator. We see that Cooking and
Working show low accuracies with respect to other activ-
ities. After further investigation, we noticed that these two
activities itself are very complex and experienced low accu-
racies in our base classifier as well (68% and 64%). How-

ever, SocialAnnotator actually increased the accuracy by ≈
8-10%. Consequently SocialAnnotator helps to improve
the accuracies of complex activities which are hard to infer.
Figure 3c shows the change of accuracy in 400 iterations.
Our algorithm converges to optimum accuracy faster than
other approaches.

Conclusion
In this paper we have proposed a novel annotator selec-
tion method SocialAnnotator, by exploiting social rela-
tionships among the users to improve the efficiency of ac-
tive learning in activity recognition context. Our proposed
model selects annotator based on the strength of the rela-
tionships and spatio-temporal distance metrics among the
users. We also consider the similarities between the activ-
ities in our model to calculate the level of correspondence
among the users. Prior works with active learning that pro-
pose to mitigate the labeling effort, have not considered the
influence of annotators in their model. Our results show that,
SocialAnnotator can compliment active learning and es-
tablish reliabile, prompt and accurate label information. We
have demonstrated that by using our methodology, we im-
proved the accuracy of our base classifier by ≈ 7%. In our
current approach while calculating the distance between two
users, we only consider a very few interactions between
them. In future we want to apprehend more interactions as
well as more context information unobtrusively. We want
to monitor the users phone usages and social network inter-
actions without needing any feedback from them and add
more sensor modalities like ambient infrastructure sensor to
record the movements in detail. We also plan to do the re-
gret anaylsis of our algorithm and derive the upperbound in
future.

References
Bagaveyev, S., and Cook, D. J. 2014. Designing and evaluat-
ing active learning methods for activity recognition. In Pro-
ceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct Publica-
tion, UbiComp ’14 Adjunct, 469–478.
Bhattacharya, S., and Lane, N. D. 2016. From smart to
deep: Robust activity recognition on smartwatches using

36

deep learning. In IEEE International Conference on Per-
vasive Computing and Communication Workshops.
Bhattacharyya, A. On a measure of divergence between two
statistical populations defined by their probability distribu-
tions. Bulletin of the Calcutta Mathematical Society.
Bodó, Z.; Minier, Z.; and Csató, L. Active learning with
clustering. In Active Learning and Experimental Design
workshop, In conjunction with AISTATS 2010.
Bouchard, K.; Bouchard, B.; and Bouzouane, A. 2012. Un-
supervised discovery of spatial relationships between ob-
jects for activity recognition inside smart home. In The 2012
ACM Conference on Ubiquitous Computing, 655–656.
Daiber, F., and Kosmalla, F. 2017. Tutorial on wearable
computing in sports. In Proceedings of the 19th Inter-
national Conference on Human-Computer Interaction with
Mobile Devices and Services, 65:1–65:4.
Davila, J. C.; Cretu, A.; and Zaremba, M. B. 2017. Wear-
able sensor data classification for human activity recognition
based on an iterative learning framework. Sensors.
Diethe, T.; Twomey, N.; and Flach, P. 2016. Active transfer
learning for activity recognition. In 24th European Sympo-
sium on Artificial Neural Networks, ESANN 2016.
Donmez, P., and Carbonell, J. G. 2008. Proactive learn-
ing: Cost-sensitive active learning with multiple imperfect
oracles. In Proceedings of the 17th ACM Conference on In-
formation and Knowledge Management, CIKM.
Fiorini, L.; Cavallo, F.; and et al. 2017. Unsupervised ma-
chine learning for developing personalised behaviour mod-
els using activity data. Sensors.
Gjoreski, H., and Roggen, D. 2017. Unsupervised online
activity discovery using temporal behaviour assumption. In
Proceedings of the 2017 ACM International Symposium on
Wearable Computers, ISWC.
Guan, Y., and Plötz, T. 2017. Ensembles of deep LSTM
learners for activity recognition using wearables. IMWUT.
Hasan, M., and Roy-Chowdhury, A. K. 2015. Context aware
active learning of activity recognition models. In 2015 IEEE
International Conference on Computer Vision (ICCV).
He, Z.; Liu, Z.; Jin, L.; Zhen, L.-X.; and Huang, J.-C. 2008.
Weightlessness feature x2014; a novel feature for single tri-
axial accelerometer based activity recognition. In 2008 19th
International Conference on Pattern Recognition.
Ho, Y.-c.; Lu, C.-h.; Chen, I.-h.; Huang, S.-s.; Wang, C.-
y.; and Fu, L.-c. 2009. Active-learning assisted self-
reconfigurable activity recognition in a dynamic environ-
ment. In Proceedings of the IEEE International Conference
on Robotics and Automation, 1567–1572.
Hossain, H. M. S.; Khan, M. A. A. H.; and Roy, N. 2017a.
Active learning enabled activity recognition. Pervasive and
Mobile Computing.
Hossain, H. M. S.; Khan, M. A. A. H.; and Roy, N. 2017b.
Soccermate: A personal soccer attribute profiler using wear-
ables. In IEEE International Conference on Pervasive Com-
puting and Communications Workshops.

Jalal, A.; Kim, Y.; Kim, Y.; Kamal, S.; and Kim, D. 2017.
Robust human activity recognition from depth video using
spatiotemporal multi-fused features. Pattern Recognition.
Lara, O. D., and Labrador, M. A. 2013. A survey on human
activity recognition using wearable sensors. IEEE Commu-
nications Surveys Tutorials.
Lee, Y.-S., and Cho, S.-B. Activity Recognition Using Hier-
archical Hidden Markov Models on a Smartphone with 3D
Accelerometer.
Li, W., and Vasconcelos, N. 2017. Complex activity recog-
nition via attribute dynamics. International Journal of Com-
puter Vision.
Liu, R.; Chen, T.; and Huang, L. 2010. Research on human
activity recognition based on active learning. In 2010 Inter-
national Conference on Machine Learning and Cybernetics,
volume 1, 285–290.
Love, J., and Hirschheim, R. Crowdsourcing of information
systems research. EJIS.
Münzner, S.; Schmidt, P.; Reiss, A.; Hanselmann, M.;
Stiefelhagen, R.; and Dürichen, R. 2017. Cnn-based sen-
sor fusion techniques for multimodal human activity recog-
nition. In Proceedings of the 2017 ACM International Sym-
posium on Wearable Computers, ISWC ’17, 158–165.
Samarah, S.; al Zamil, M. G. H.; Al-Eroud, A. F.;
Rawashdeh, M.; Alhamid, M. F.; and Alamri, A. 2017. An
efficient activity recognition framework: Toward privacy-
sensitive health data sensing. IEEE Access 5.
Shoaib, M.; Bosch, S.; Incel, Ö. D.; Scholten, H.; and
Havinga, P. J. M. 2015. A survey of online activity recogni-
tion using mobile phones. Sensors.
Srba, I., and Bieliková, M. 2010. Tracing strength of re-
lationships in social networks. In Proceedings of the Inter-
national Conference on Web Intelligence and International
Conference on Intelligent Agent Technology.
Stikic, M.; Van Laerhoven, K.; and Schiele, B. 2008. Explor-
ing semi-supervised and active learning for activity recogni-
tion. In Proceedings of the 2008 12th IEEE International
Symposium on Wearable Computers, ISWC ’08, 81–88.
Twomey, N.; Diethe, T.; Craddock, I.; and et al. 2017. Unsu-
pervised learning of sensor topologies for improving activity
recognition in smart environments. Neurocomputing.
Wyatt, D.; Philipose, M.; and Choudhury, T. 2005. Unsuper-
vised activity recognition using automatically mined com-
mon sense. In Proceedings of the 20th National Conference
on Artificial Intelligence - Volume 1, AAAI’05, 21–27.
Xia, Y.; Qin, T.; and et al. Budgeted multi-armed bandits
with multiple plays. In Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence.
Xu, J.; Xu, J. Y.; Song, L.; Pottie, G. J.; and van der Schaar,
M. 2014. Context-driven online learning for activity classi-
fication in wireless health. In 2014 IEEE Global Communi-
cations Conference, 2423–2428.
Yang, Q., and Wooldridge, M., eds. 2015. Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI. AAAI Press.

37

LAAIR: A Layered Architecture for Autonomous Interactive Robots
Yuqian Jiang∗1, Nick Walker∗2, Minkyu Kim3, Nicolas Brissonneau3,

Daniel S. Brown1, Justin W. Hart1, Scott Niekum1, Luis Sentis3, Peter Stone1
1Department of Computer Science, University of Texas at Austin, Austin, USA

2Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, USA
3Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, USA

{jiangyuqian, nickswalker, steveminq, nicolasb}@utexas.edu
{dsbrown, hart, sniekum}@cs.utexas.edu, lsentis@austin.utexas.edu, pstone@cs.utexas.edu

Abstract

When developing general purpose robots, the overarching
software architecture can greatly affect the ease of accom-
plishing various tasks. Initial efforts to create unified robot
systems in the 1990s led to hybrid architectures, emphasiz-
ing a hierarchy in which deliberative plans direct the use of
reactive skills. However, since that time there has been sig-
nificant progress in the low-level skills available to robots,
including manipulation and perception, making it newly fea-
sible to accomplish many more tasks in real-world domains.
There is thus renewed optimism that robots will be able to
perform a wide array of tasks while maintaining responsive-
ness to human operators. However, the top layer in traditional
hybrid architectures, designed to achieve long-term goals, can
make it difficult to react quickly to human interactions during
goal-driven execution. To mitigate this difficulty, we propose
a novel architecture that supports such transitions by adding
a top-level reactive module which has flexible access to both
reactive skills and a deliberative control module. To validate
this architecture, we present a case study of its application on
a domestic service robot platform.

Introduction
Researchers have long sought to develop robots that are able
to undertake complex tasks autonomously in real-world en-
vironments. Early efforts to develop such robots resulted in
deliberative systems, in which the robot plans a sequence
of actions to achieve a goal, and reactive systems, in which
layers of local behaviors react to sensor input (Kortenkamp,
Simmons, and Brugali 2016). Hybrid architectures, which
layer deliberation and reactivity, emerged as a promising ap-
proach to the creation of integrated autonomous robots.

As efforts to improve individual robotic capabilities dom-
inated the research landscape, the outline of hybrid archi-
tectures for general purpose robotics has seen few changes
in the past two decades. In this time, researchers have
made significant progress towards robust robot capabilities
such as autonomous localization and navigation (Fox et
al. 1999), object manipulation (Gualtieri et al. 2016), ob-
ject recognition (Krizhevsky, Sutskever, and Hinton 2012).
This increased capacity—the fruit of better system mod-
eling, increased computational power, and new tools and

∗Equal contribution.

techniques—has made it feasible for robots to act intelli-
gently in more dynamic, real-world settings.

There is a renewed vision that robots will not only op-
erate autonomously, but do so in challenging environments
such as the home or office, where they must regularly in-
teract with humans. Many projects have taken on the grand
challenge of creating interactive autonomous robots for use
in daily settings (Khandelwal et al. 2017), and international
robotics communities have created competitions such as
RoboCup@Home (Holz and Iocchi 2013) and the World
Robot Summit Challenge1 to encourage research efforts in
this direction.

Though some hybrid architectures for general purpose
robots were created with human interaction in mind, the ex-
tent to which robots operate in populated human environ-
ments was neither possible nor expressly accounted for in
their design. In a typical layered architecture like 3T (Pe-
ter Bonasso et al. 1997), skills, which control the connec-
tions between sensors and actuators, are placed at the bot-
tom. These low-level control components are invoked and
monitored by the middle sequencer layer to achieve planned
behaviors. At the top, a task planning layer decomposes the
current task into a plan of lower-level behaviors. Given an
input task specification, these layers provide the complete
loop of planning, monitoring and executing a task.

This design does not address the desire for robot assistants
that constantly interact with people and dynamically receive
and execute all kinds of tasks in the environment over ex-
tended periods of time. In order to seamlessly respond to
human interactions, the top layer must be reactive and main-
tain direct control of the lower level components, such as a
dialogue handling skill and a component that parses com-
mands.

In this paper, we propose a layered architecture for au-
tonomous interactive robots, LAAIR, to facilitate complex
tasks in long-term settings and dynamic interactions with
humans in real-world domains. The top-level of a LAAIR
system is reactive control, which sequences and executes
skills in response to the environment and interactions. When
the top-level encounters tasks that cannot be statically de-
composed, it invokes a deliberative controller which plans
and executes actions to accomplish the goal. The bottom

1http://worldrobotsummit.org/en/about/

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

38

level consists of skills which interface with the world. We
contrast LAAIR with existing robot architectures and present
a case study of applying LAAIR on a mobile robot platform.

Related Work
The problem of structuring the software of an intelligent
robotic system has long been pursued. Early architectures
centered on robot planning systems, built around “sense-
think-act” cycles. Shakey, for example, leveraged a STRIPS
planner (Nilsson 1984). At the time of their development,
computational limitations made complex modeling method-
ologies such as those used for inverse-kinematic motion
planning an inaccessibly slow process, and technologies for
perception such as object recognition lacked the maturity of
modern systems. Partially as a response, reactive systems,
which more closely coupled sensing and acting, emerged.
In the Subsumption architecture, a well-known example, the
robot’s behavior is governed by a hierarchy of reactive layers
in which control from higher levels subsumes that of lower
levels (Brooks 1986).

Hybrid architectures draw together deliberative and reac-
tive control, most commonly by placing a high level plan-
ner in control of various reactive components. In three layer
architectures, this connection is mediated by an executive,
commonly a hierarchical state machine, which orchestrates
the particular low-level skills used to accomplish a plan
(Gat 1997). Notable examples of such architectures include
3T (Peter Bonasso et al. 1997), TCA (Simmons 1994) and
ATLANTIS (Gat 1992).

Our architecture shares many attributes with ATLANTIS.
In both architectures, the task planner is only called by the
executive control. In ATLANTIS, this design was driven by
the need to support asynchronous calls to the slow planning
process. Where ATLANTIS makes the planner the primary
decision maker for the system, in LAAIR, the top layer is
reactive control. This layer is responsible for decomposing
tasks, either by invoking the deliberative control layer or by
directly sequencing skills. This is driven by the need to en-
code both static and dynamic task decomposition and main-
tain responsiveness during long-term autonomous deploy-
ments.

In recent decades, many advancements have been made
towards general purpose autonomous interactive robots.
Robot Operating System (ROS) has emerged as a domi-
nant software framework in the community, encouraging
roboticists to think of their system as an agglomeration of
standard, interchangeable components (Quigley et al. 2009).
Many robotic systems have leveraged ROS and other stan-
dardized software components as a foundation on which to
improve specific skills or tasks.

These efforts have laid the groundwork for new ap-
proaches to the design of general purpose robot architec-
tures, the challenge LAAIR addresses. While several inte-
grated systems have been designed to address particular
challenges for service robots, such as interfaces to natural
language commands (Chen, Yang, and Chen 2016), plan-
ning in realistic domains (Tran et al. 2017; Hanheide et al.
2017), and real-world scene perception (Beetz et al. 2015).

Reactive Control

Deliberative Control

Skills

World

Figure 1: The prototype for a LAAIR system

Although these systems tackle similar challenges in archi-
tecting complex robotic systems, none of these efforts have
proposed an overall architecture to support general purpose
service robots. LAAIR was designed to organize and reuse
interfaces and skills across robots and tasks.

LAAIR
LAAIR, depicted in Figure 1, is a three layer hybrid archi-
tecture, consisting of a pool of modular skills, a deliberative
control layer that can sequence these skills to achieve goals,
and a reactive control layer which drives the system’s be-
havior. The reactive control layer can either directly sched-
ule skills or delegate to the deliberative control layer. Each
layer has asynchronous supervisory control over the layers
beneath it. This makes it easy to specify systems that remain
responsive to human interaction by, for instance, running
a user engagement detection skill from the reactive layer,
which can then redirect the rest of the system’s behavior.

LAAIR facilitates code and logic reuse by separating low-
level, often robot-specific implementation of skills from
robot-independent task structure. The top-level reactive
layer simplifies the specification of the top-level scripted be-
havior of the robot. The deliberative control layer provides
the robot with the ability to reason about its environment
flexibly as necessary.

Skills
Skills are the primary interface between the system and the
world. They encode robot behaviors, ranging from low-level
actions, like moving a joint, to higher level actions, like pick-
ing up an object. Everything from perceptual capabilities
to the robot’s dialog agent are implemented as skills. Skills
may accept parameters and are responsible for detecting and
reporting their own failure. Importantly, skills must adhere
to some uniform interface so they can be directly sequenced
by either reactive or deliberative control. This constraint pro-
motes the reuse of skills in different contexts and the porta-
bility of the architecture across different platforms. Outside
of these constraints, skills may be implemented as best suits
their objective—whether it be a procedural program, a state
machine or otherwise.

39

Deliberative Control
The deliberative control layer is responsible for turning a
goal into a sequence of actions that accomplish that goal.
These actions should either map directly to skills or be de-
composable into a sequence of skills. In addition to the ac-
tual process of generating the sequence of skills, the deliber-
ative control layer is responsible for monitoring the execu-
tion of the sequence, intervening when it determines that re-
sequencing or other corrective action is necessary. The delib-
erative control layer reports major milestones in execution,
such as completed actions or exceptional behavior to the re-
active control layer, so that they may be optionally handled
in a task-specific manner.

Because LAAIR gives the reactive control layer discretion
on the specification of goals, the architecture can be instanti-
ated with a broad range of deliberative components, or even
use different components within the course of accomplish-
ing a single task. Further, goal specification flexibility allows
the reactive control layer to statically decompose a compli-
cated task into several goals to limit the computational ex-
pense of deliberation.

Reactive Control
The reactive control layer is the primary executive in the
system. It contains a high-level representation of the robot’s
task, for instance, a hierarchical finite state machine. In sim-
ple cases, this layer uses a static representation of the task
to sequence skills and handle contingencies for different ex-
ecution outcomes. In complicated tasks where static decom-
position is infeasible, this layer produces a goal or goals that
can be dynamically resolved by the deliberative control layer
into a sequence of skills. The reactive control layer is respon-
sible for monitoring and handling the outcomes of the skills
that it directly calls, as well as for supervising deliberative
execution. This gives the layer overarching control of the
system, allowing it to preempt execution when, for instance,
a human engages with the robot.

The reactive control layer also facilitates the hand-
specification of actions for static parts of a task, while si-
multaneously supporting the use of deliberative control for
instances where the task is dynamic. Because executive con-
trol over the rest of the system is maintained from this layer,
the robot’s behavior is always attributable to some portion
of its top level representation. This makes LAAIR systems
easier to understand at runtime and easier to debug during
development.

Case Study
We show the instantiation of LAAIR on a Toyota Human
Support Robot (HSR) as part of an entry into the 2018
RoboCup@Home Domestic Standard Platform League. The
system is designed to execute both highly prescribed tasks,
like guiding a person from a vehicle to an apartment, as well
as open-ended tasks, like servicing requests that could re-
quire the robot to execute any number of actions in arbitrary
order.

HSR is a domestic robot platform equipped with an omni-
directional base, an arm, stereo and RGB-D vision systems,

a speaker as well as a microphone array. The software stack
of HSR is based on ROS. In this instantiation of the archi-
tecture, depicted in Figure 2, the reactive control layer is
provided by hierarchical finite state machines, deliberative
control leverages a symbolic task planner, and skills range
from custom implementations to open source components.

Reactive Control
We use SMACH2 to implement hierarchical finite state ma-
chines describing each RoboCup@Home task. Many of the
tasks follow a static series of steps, so they are implemented
purely by sequencing skills. When the robot is required to
accept natural language commands and dynamically decom-
pose the task, we enter a sub-state machine which calls skills
to formulate a goal that can be delegated to the delibera-
tive control layer. If the plan execution encounters errors, a
sub-state machine in the reactive control layer engages to ei-
ther specify another goal or execute a remedial sequence of
skills. The reactive layer connects a command dialogue skill
to a constantly-running wrist tap detection skill to enable the
robot to accept new tasking.

Deliberative Control
We implement the deliberative control of our robot using a
task planner and a plan executor. The task planner is based
on Answer Set Programming (ASP) (Lifschitz 2002), and
we use the answer set solver CLINGO to generate plans (Geb-
ser et al. 2011). The plan executor is responsible for invoking
the planner after receiving a goal, calling the corresponding
skills, and monitoring the execution.

Knowledge Base
Besides the control layers, central to our system is a knowl-
edge base module that stores a concept network and situated
knowledge about the domain. We implement the knowledge
base with a relational database managed by MySQL. The
knowledge base represents entities and attributes. Each en-
tity is assigned an ID, and can represent an abstract concept
or a concrete object in the environment. Attributes describe
properties and relations of entities.

The knowledge base is accessed by all layers of control in
the architecture: the reactive executive writes and reads the
identity of the operator and other task-level information; the
deliberative control plans over domain knowledge; the skill
components retrieve relevant information and update state as
necessary.

Skills
We leverage the action server/client abstraction available in
ROS to implement skills as processes which can be provided
a goal, send feedback to a supervisor, accept cancellation re-
quests and return outcomes. In exceptional cases, such as
skills that return significant amounts of data, we implement
skills as library functions to avoid interprocess communica-
tion overhead. Adopting this standardized interface for most
skills simplifies how the deliberative or reactive layers inter-
acts with them.

2http://wiki.ros.org/smach

40

Plan Executor

Reactive
Control

Deliberative
Control

Skills

Planner Database

Knowledge
Representation

Pick-up Navigate to Follow

Hierarchical Finite State Machines

Interfaces
...

Figure 2: Functional components of our LAAIR implementation for HSR.

The selection of skills described in this section highlight
the wide range of implementation in this layer.

Command Dialog agent This skill manages a dialogue
with the operator, parses the command, and resolves the
task type and parameters. The commands are generated from
the fixed grammar used in the Robocup@Home Competi-
tion3. Our current system understands 32 high-level domes-
tic tasks, such as finding people, answering questions, and
delivering objects, which can be sequenced in any order to
form a wide variety of complex commands.

Our implementation of the skill transcribes an utterance
using the Google Cloud Speech-to-Text API. We then build
a parse tree by expanding the production rules to all possible
sentences. For each command, we traverse the parse tree to
match the task type, such as “navigate to”, and to fill in task
parameters, such as “dining table”.

After fully parsing a command, we resolve coreferences
by searching backwards in the sentence to find the closest
name or object. If a coreference cannot be resolved, or a
command is incomplete, we engage in a correction dialogue
to attempt to recover the missing information. Based on the
semantics and type of missing information, the robot selects
from a library of templates in order to ask an appropriate
clarification question and resolve the parse.

Detection of movable objects We assume that objects
which the robot may need to move—to clear a path for nav-
igation, for instance—include a curved surface and at most
two accumulated degrees of freedom. We detect potentially
movable objects through two independent methods:

The first runs continuously, recording a 2D ground map of
the environment based on laser and depth readings and com-
paring it with incoming readings. This method is robust to
small changes to the environment, making it appropriate for
detecting whether small items such as books, bags or cans
on the floor have moved. The second searches for cylindri-
cal surfaces in the scene and classifies them as part of po-
tentially movable objects. This method is more efficient for
identifying bigger obstacles such as rolling chairs or doors
as it relies on their degrees of freedom.

Person Following We divide the person following skill
into three steps; detecting the target, tracking the target with

3https://github.com/kyordhel/GPSRCmdGen

?

Is target found? Look for target

Track target ?

Navigate to target
directly

Navigate to target
with collision

avoidance

Figure 3: Behavior tree for person following skill. Arrows
indicate sequence nodes and question marks indicate fall-
back nodes.

the robot’s head, and navigating towards the target for fol-
lowing. These behaviors must be coordinated based on the
state of the robot and its surroundings. We model this task as
a behavior tree, which provides a compact representation of
how the robot should move between actions while executing
the behavior. Our implementation leverages a ROS behav-
ior tree framework, described in (Colledanchise 2017). Our
behavior tree is designed with two fallback nodes and two
sequence nodes as shown in Figure 3.

Future Work
Our case study has demonstrated the potential for LAAIR
to address the needs of a general purpose robot operating
in a human-populated environment. We are currently imple-
menting LAAIR on an office robot platform to demonstrate
how the architecture enables a high degree of software porta-
bility across service robots. In further instantiations, we plan
to demonstrate the architecture’s ability to handle interup-
tions and concurrency.

Acknowledgements
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported
in part by NSF(IIS-1637736, IIS-1651089, IIS-1724157),
Intel, Raytheon, and Lockheed Martin. Peter Stone serves
on the Board of Directors of Cogitai, Inc. The terms of this
arrangement have been reviewed and approved by the Uni-
versity of Texas at Austin in accordance with its policy on
objectivity in research.

41

References
Beetz, M.; Bálint-Benczédi, F.; Blodow, N.; Nyga, D.;
Wiedemeyer, T.; and Marton, Z.-C. 2015. Robosherlock:
Unstructured information processing for robot perception.
In IEEE International Conference on Robotics and Automa-
tion (ICRA-2015), 1549–1556. IEEE.
Brooks, R. A. 1986. A Robust Layered Control System For
A Mobile Robot. IEEE Journal on Robotics and Automa-
tion.
Chen, K.; Yang, F.; and Chen, X. 2016. Planning with task-
oriented knowledge acquisition for a service robot. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16, 812–818. AAAI Press.
Colledanchise, M. 2017. Behavior Trees in Robotics. Ph.D.
Dissertation, KTH Royal Institute of Technology.
Fox, D.; Burgard, W.; Dellaert, F.; and Thrun, S. 1999.
Monte Carlo Localization: Efficient Position Estimation for
Mobile Robots. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence and the Eleventh In-
novative Applications of Artificial Intelligence Conference
Innovative Applications of Artificial Intelligence, AAAI
’99/IAAI ’99, 343–349. Menlo Park, CA, USA: American
Association for Artificial Intelligence.
Gat, E. 1992. Integrating Planning and Reacting in a Hetero-
geneous Asynchronous Architecture for Controlling Real-
world Mobile Robots. In Proceedings of the Tenth National
Conference on Artificial Intelligence, AAAI’92, 809–815.
AAAI Press.
Gat, E. 1997. On Three-Layer Architectures. In Ko-
rtenkamp, D.; Bonnasso, R. P.; and Murphy, R., eds., Ar-
tificial Intelligence and Mobile Robots.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The pots-
dam answer set solving collection. Ai Communications
24(2):107–124.
Gualtieri, M.; ten Pas, A.; Saenko, K.; and Platt, R. 2016.
High precision grasp pose detection in dense clutter. In 2016
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), volume 2016-Novem, 598–605. IEEE.
Hanheide, M.; Göbelbecker, M.; Horn, G. S.; Pronobis, A.;
Sjöö, K.; Aydemir, A.; Jensfelt, P.; Gretton, C.; Dearden, R.;
Janicek, M.; Zender, H.; Kruijff, G. J.; Hawes, N.; and Wy-
att, J. L. 2017. Robot task planning and explanation in open
and uncertain worlds. Artificial Intelligence.
Holz, D., and Iocchi, L. 2013. Benchmarking Intelli-
gent Service Robots through Scientific Competitions : The
RoboCup @ Home Approach. Technical report.
Khandelwal, P.; Zhang, S.; Sinapov, J.; Leonetti, M.;
Thomason, J.; Yang, F.; Gori, I.; Svetlik, M.; Khante, P.; Lif-
schitz, V.; Aggarwal, J. K.; Mooney, R.; and Stone, P. 2017.
BWIbots: A platform for bridging the gap between ai and
human–robot interaction research. The International Jour-
nal of Robotics Research.
Kortenkamp, D.; Simmons, R.; and Brugali, D. 2016.
Robotic Systems Architectures and Programming. In Bruno,

S., and Oussama, K., eds., Springer Handbook of Robotics.
Switzerland: Springer, Cham, 2 edition.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume
1, NIPS’12, 1097–1105. USA: Curran Associates Inc.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1-2):39–54.
Nilsson, N. J. 1984. Shakey the robot. Technical Report 323,
AI Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025.
Peter Bonasso, R.; James Firby, R.; Gat, E.; Kortenkamp, D.;
Miller, D. P.; and Slack, M. G. 1997. Experiences with an
architecture for intelligent, reactive agents. Journal of Ex-
perimental & Theoretical Artificial Intelligence 9(2-3):237–
256.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software.
Simmons, R. G. 1994. Structured control for autonomous
robots. IEEE transactions on robotics and automation
10(1):34–43.
Tran, T. T.; Vaquero, T.; Nejat, G.; and Beck, J. C. 2017.
Robots in retirement homes: Applying off-the-shelf plan-
ning and scheduling to a team of assistive robots. In IJCAI
International Joint Conference on Artificial Intelligence.

42

Evaluating Predictive Knowledge

Alex Kearney, Anna Koop, Craig Sherstan, Johannes Günther
Richard S. Sutton, Patrick M. Pilarski, Matthew E. Taylor

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada;
kearney@ualberta.ca

Abstract
Predictive Knowledge (PK) is a group of approaches to ma-
chine perception and knowledgability using large collections
of predictions made online in real-time through interaction
with the environment. Determining how well a collection of
predictions captures the relevant dynamics of the environ-
ment remains an open challenge. In this paper, we introduce
specifications for sensorimotor baselines and robustness-to-
transfer metrics for evaluation of PK. We illustrate the use of
these metrics by comparing variant architectures of General
Value Function (GVF) networks.

Predictive Knowledge
A key challenge for machine intelligence is that of represen-
tation: a system’s performance is tied to its ability to per-
ceive and represent its environment. Predictive knowledge
representations use large collections of predictions to model
the environment. An agent continually anticipates its sensa-
tion from its environment by making many predictions about
the dynamics of its environment with respect to its behaviour
(Modayil, White, and Sutton 2014). These predictions about
expected sensation can then be used to inform an agent’s
internal representation of its environment (Littman and Sut-
ton 2002). Other proposals describe inter-relations of pre-
dictions, similar to TD Networks (Tanner and Sutton 2005;
Makino and Takagi 2008) to enable abstract, conceptual rep-
resentations by making predictions of predictions (Schapire
and Rivest 1988).

In this paper we discuss the subtleties of evaluation pre-
dictive representation and propose two complimentary tech-
niques. We specifically consider PK methods that 1) are able
to expand their representations by proposing new predic-
tions, 2) are able to self-verify their predictions through in-
teraction with their environment, and 3) are able continually
learn their predictions on-line.

To examine these evaluation metrics we use the General
Value Function framework for predictive representations
(White 2015). GVFs estimate the expected discounted return
of a signal C defined as Gt =

∑∞
k=0(

∏k
j=1(γt+j))Ct+k+1.

Value is estimated with respect to a specific policy π,
discount function γ, and cumulant c: v(s;π, γ, c) =
Eπ[Gt|St = s].

The parameters c, π, and γ are the question parameters
which specify what a GVF is about; the answer param-

Environment

How many
layers should

be in the
network?

How do you determine which
GVFs to replace and when to

replace them?

How many GVFs
should be in each

layer?

How are the question
and answer

parameters chosen?

GVF1,1 GVF1,2 GVF1,3 GVF1,4

GVF2,1 GVF2,2 GVF2,3 GVF2,4

Question
Parameters

Answer
Parameters

π

γ

c

α

λ

How should the inputs
be constructed for each

layer?

ot

pt

Figure 1: Many of the decisions which specify a PK architecture.

eters—such as the step size α and eligibility decay λ—
describe how a learning method learns to answer the GVF
question. GVFs can be learnt online, incrementally through
methods such as Temporal-difference (TD) learning (Sutton
1988). The representational power of a given GVF network
depends not just on the quality of the answers, but also in
the architecture of the network, as illustrated in Figure 1.

PK systems have been shown to be a scalable way to
update and verify an agent’s representation of the world,
with examples of real-world robotic prediction tasks mak-
ing thousands or tens of thousands of predictions in real-time
on consumer-grade devices (Sutton et al. 2011; White 2015;
Pilarski and Sherstan 2016).

Evaluating PK Architectures
Existing evaluation metrics for PK fall into two categories:
1) reporting the average error over all predictions within the
PK system and 2) reporting errors on a known, challeng-
ing subset of the predictions within the system. Reporting
the average error penalizes the accuracy of every prediction
equally, when some predictions may have high error (such
as for inherently random signals) but still provide represen-
tational power. Conversely, a representation that makes irrel-
evant but constant predictions will perform well according to
average error, while providing no useful signals. Reporting
errors on a subset of predictions requires identification of
said subset across all architectures and lends itself to over-
fitting for those particular questions. It is difficult to iden-

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

43

tify predictions of interest without biasing towards particular
architectures or network structures. Identifying predictions
that require more complex representations in real-world set-
tings requires extensive domain knowledge. In addition, it
forces the inclusion of those pre-defined predictions when a
goal of PK is to independently construct a useful representa-
tion. Neither of these are entirely satisfactory proxies for the
real question: What is the representational power of a given
PK system?

As a result of this evaluation bottleneck, examples of PK
on real-world problems are largely proof-of-concept appli-
cations which serve to highlight the type, quantity, and di-
versity of predictions which can be made (Pilarski and Sher-
stan 2016; Modayil, White, and Sutton 2014; Sutton et al.
2011). Where evaluation exists, it focuses on prediction er-
ror as a means of evaluating the quality of a collection of pre-
dictions. This is insufficient, as the reliability of predictions
does not necessarily equate to the quality of a learned rep-
resentation. While low prediction error describes the quality
of a single predictor, low average prediction error is not nec-
essarily indicative of the best collection of predictions for
constructing representations of the environment.

For example, one could maintain a diverse collection of
GVFs for different time-scales γ and policies π that exclu-
sively anticipate the voltage of servos on a robotic limb—a
signal that is often constant. These trite predictions would
likely have a lower error than a collection of predictions
which represent the environment more completely. More-
over, comparing the average error between two collections
of predictions with different question parameters is inap-
propriate, as the errors are with respect to different signals.
When we compare the average error of different sets of pre-
dictions in PK architectures, we are unable to meaningfully
quantify how changes in the architectural proposal impact
the knowledgability of a system.

We propose sensorimotor predictions as a baseline which
balances our ability to meaningfully assess the representa-
tional capacity of a collection of predictions in a meaningful
way, while being general enough to be extensible to real-
world prediction problems.

Evaluation by Sensorimotor Baselines
A scalable alternative to comparison by hand-crafted pre-
dictions is to maintain a collection of baseline sensorimotor
predictions common between each architecture being eval-
uated. Instead of hand-crafting predictions based on the id-
iosyncrasies of a particular domain, a sensorimotor baseline
uses the observations from the environment as prediction tar-
gets. The identification of good features is integral to being
able to make reliable predictions; in evaluating the ability of
a system to predict its raw stimuli, we are in fact evaluating
the ability of the system to perform representation learning
for the simplest predictions we could want to make.

By comparing architectures based on how well they can
represent their stimuli, we are prioritizing architectures that
are able to find better representations for learning low-level
sensory input, rather than better representations of the envi-
ronment in general. While a limitation, it is a natural ap-
proach to evaluation: approaches to PK have been moti-

Figure 2: The data source for the experiments in this work: The
Bento Arm, controlled by a human participant, generating a stream
of multimodal sensory data from participants’ interactions with a
modified Box and Blocks task.

vated by being able to anticipate their environment (Mo-
dayil, White, and Sutton 2014), and low-level anticipatory
predictions are useful as inputs in applications of PK (Sher-
stan, Modayil, and Pilarski 2015).

Sensorimotor baselines are a balance between the two
aforementioned methods of evlauation: Baseline predictions
enable us to assess the representation generated by our PK
system with no designer intervention, making them a gen-
eral scalable alternative for evaluation of real-world systems.
By assessing representation quality, we can begin to pre-
cisely quantify the impact of different construction methods
in real-world domains. Using sensorimotor baselines is a fair
first step in bridging the evaluation gap between toy domains
and real-world problems.

Evaluation by Transfer
Perhaps one of the most natural qualities of an effective PK
system is generality. PK systems are intended for use in
life-long, continual learning methods—methods that are ex-
pected to learn for the duration of their deployment. In such
a setting it is imperative that the predictions being made are
resilient to changes in their environment. A method of eval-
uating the ability of a continual learning system to produce
general representations is through transfer-learning (Taylor
and Stone 2009). We can evaluate the generality of PK by
constructing GVFs in one setting and testing their general-
ity on experience in a transfer environment that shares some
traits with the source setting. An architecture that is able to
propose and interrelate GVFs such that they are more robust
to such transfers is an architecture that produces more gen-
eral representations.

Experiment: Prosthetic Prediction Task
We explore sensorimotor baselines and transfer using data
from a human control task on the Bento Arm (Dawson et
al. 2014), an open-source robot arm intended for use as a
research prosthesis. Human control of a robotic prosthesis
is an area with active interest in PK (Pilarski and Sherstan
2016), and GVFs have been previously used to improve the
control in this domain (Pilarski et al. 2013).

Data for this experiment was sourced from the previous
experiments of (Edwards et al. 2016). Four users performed
a common manipulation challenge where they used the robot
arm to move objects over a barrier (Figure 2). Each user

44

Layer 1 Layer
Layer

En
vi

ro
nm

en
t

Figure 3: The architecture used for comparison. Each layer has
d baseline predictions which predict each of the elements in the
observations ~o . Each layer has n additional predictions. The cu-
mulants c1...n are functions of some output of the previous layer
~pm−1, or in the case of the first layer, the observations ~ot. For
all predictions γ = 0.95, λ = 0, and step sizes are initialized
to α0 = 1

50
, where 50 is the number of active features. Predictions

are on-policy—π is always the robot arm’s behaviour. Experiments
vary the number of layers m and number of additional GVFs n.

performed the task three times using two different control
schemes. We use one control scheme as the source environ-
ment and the other as a transfer environment, yielding 12
trials in total. The signals used to construct the observations
are the position, load, velocity, and a binary movement sig-
nal for both the shoulder and hand joints.

The PK Architecture
To explore how choices in architecture impact the quality
of learned predictions, we start with a straightforward rep-
resentation using layers of GVFs (Figure 3). Inputs are pro-
duced in a feed-forward fashion: the base layer receives the
observations from the environment ot as state st, while each
additional layer receives the output predictions from the pre-
vious layer. At each time-step, the position, velocity, and
load of the shoulder and the gripper were used to construct
the environment observations ot. Step sizes are adapted us-
ing TIDBD (Kearney et al. 2017). We construct a binary
representation of state by using a selective Kanerva coder
(Travnik and Pilarski 2017) with 2000 prototypes and 50 ac-
tive features.

In addition to the baseline sensorimotor predictions, there
are n GVFs that are proposed and tested by the system.
When proposing a new GVF, the architecture must specify
both what the GVF is about by choosing c, γ, and π, and
how the prediction is learnt by choosing appropriate learning
parameters—in this instance, α and λ. Our architecture gen-
erates GVFs by randomly choosing cumulants, where c can
either be an accumulation of a signal from the previous layer,
or an operation on two signals—sums, differences, products,
and ratios.

Each trial includes 20000 time-steps on a non-adaptive
source setting where predictions are constructed, and 20000
time-steps on an adaptive switching transfer setting where
the GVFs remain the same, but continue to be updated at
each time-step. During the source setting, every 1000 time-
steps the worst 10% of GVFs by average prediction error are
culled and replaced with new GVFs, excluding the baseline

Layer 1

Layer 2

Layer 3

Layer 4

Environment
SwitchSetting Switch

Figure 4: Accumulation of prediction error averaged over all sen-
sorimotor baseline predictions in each layer. Our architecture has
four layers and 100 constructed predictions in addition to the senso-
rimotor baseline. Error is averaged over 12 trials; variance is plot-
ted but negligible.

predictions we use for evaluation. Prediction error is calcu-
lated online by estimating the discounted return from a sam-
ple of observed signals over approximately seven times 1

1−γ ,
the expected time to termination.

Evaluation
To demonstrate evaluation using baseline predictions and
setting transfer, we analyse the impact of two specification
choices: 1) the number of layers in a network (Figure 4) and
2) the number of predictions in each layer (Figure 5). As in-
dicated in Figure 1, these are decisions a designer must make
when designing an architecture, and to date there is no clear
intuition as to how these decisions impact the quality of the
representation constructed. Our baseline predictions are of
the load, position, velocity, and binary movement signal of
the shoulder and gripper, or 8 predictions in total.

Since the first layer constructs its state exclusively from
the observations from the setting ot, it is not using any
learned representations; by comparing each additional layer
to the first layer, we assess how increasing representational
abstraction impacts the baseline prediction error. Both the
second and third-layer representations outperform predic-
tions with no representation construction, while the fourth
layer performs the worst. The sensorimotor baseline clearly
illustrates the impact of abstraction on the ability to repre-
sent the environment.

There is a tension between what the GVFs in a layer can
describe and the dimensionality of the representation for the
following layer. Interestingly, the relationship between per-
formance is not directly proportional to the number of pre-
dictions: while 10 additional predictions has the greatest per-
formance, 100 additional predictions outperforms both 30
and 60 additional predictions. Of note is resilience to trans-
fer to new prediction settings. Under none of the circum-
stances did the the methods accumulate substantially more
baseline error after the switch to the transfer prediction set-
ting. This demonstrates that the constructed representations
generalized well between different control settings; how-
ever, in the future more complex transfer settings could be
chosen.

45

10 predictions

30 predictions

200 predictions

100 predictions

60 predictions

Environment
Switch

300 predictions

Setting Switch

Figure 5: Accumulation of prediction error for averaged over all
sensorimotor baselines predictions in the second layer. We vary the
number of constructed predictions and the sensorimotor baseline.
Error is averaged over 12 trials; variance is plotted but negligible.

By using a baseline of predictions, and performing trans-
fer, we were able to elucidate how changes in the architec-
ture impact predictive representations in a manner which re-
quires little computational overhead. In doing so, we are pro-
viding a first step towards being able to study the impact of
architectural choices on the learned representations of PK
systems on real-world domains.

Limitations & Further Work
This paper’s core contributions are a discussion of chal-
lenges in evaluation in PK and we do not perform an ex-
haustive evaluation of all the possible choices which could
be made. For instance, we only consider the on-policy case,
limiting the ability of our architecture to capture the impact
of behaviour on the dynamics of the setting. In addition, fu-
ture work could expand evaluation to include internal sig-
nals from predictions. For instance, internal signals of pre-
dictions corresponding to feature relevance could be used
to identify the degree to which predictions used in the con-
struction of state are impacting the model.

Conclusion
Predictive approaches to knowledge are a rich and varied
area of reinforcement learning research that focus on build-
ing internal representations of the environment through con-
tinual, life-long interaction. There has been recent success
in refining fundamental aspects of PK architectures on toy
domains; however, these evaluation methods do not transfer
effectively to large, real-world problems, such as applica-
tions in robotics, a core domain for predictive approaches to
knowledge. In this paper, we highlight challenges in devel-
oping PK architectures and, as a primary contribution, pro-
pose the use of sensorimotor baselines and setting transfer to
assess the quality of representations learned using PK. We
demonstrate the usefulness of sensorimotor baselines and
setting transfer by elucidating the impact of increasing the
numbers of layers and number of predictions in each layer
on the ability of an architecture to predict its stimuli. In pro-
viding preliminary evaluation methods for knowledge con-
struction, we are taking a necessary step in the development
of predictive knowledge.

References
[Dawson et al. 2014] Dawson, M. R.; Sherstan, C.; Carey, J. P.;

Hebert, J. S.; and Pilarski, P. M. 2014. Development of the Bento
Arm: An improved robotic arm for myoelectric training and re-
search. Proceedings of MEC 14:60–64.

[Edwards et al. 2016] Edwards, A. L.; Dawson, M. R.; Hebert, J. S.;
Sherstan, C.; Sutton, R. S.; Chan, K. M.; and Pilarski, P. M. 2016.
Application of real-time machine learning to myoelectric prosthe-
sis control: A case series in adaptive switching. Prosthetics and
orthotics international 40(5):573–581.

[Kearney et al. 2017] Kearney, A.; Veeriah, V.; Travnik, J.; Sutton,
R. S.; and Pilarski, P. M. 2017. Every step you take: Vectorized
Adaptive Step sizes for Temporal Difference Learning.

[Littman and Sutton 2002] Littman, M. L., and Sutton, R. S. 2002.
Predictive representations of state. In Advances in neural informa-
tion processing systems, 1555–1561.

[Makino and Takagi 2008] Makino, T., and Takagi, T. 2008. On-
line discovery of temporal-difference networks. In Proceedings of
the 25th international conference on Machine learning, 632–639.
ACM.

[Modayil, White, and Sutton 2014] Modayil, J.; White, A.; and
Sutton, R. S. 2014. Multi-timescale nexting in a reinforcement
learning robot. Adaptive Behavior 22(2):146–160.

[Pilarski and Sherstan 2016] Pilarski, P. M., and Sherstan, C. 2016.
Steps toward knowledgeable neuroprostheses. In Biomedical
Robotics and Biomechatronics (BioRob), 2016 6th IEEE Interna-
tional Conference on, 220–220. IEEE.

[Pilarski et al. 2013] Pilarski, P. M.; Dawson, M. R.; Degris, T.;
Carey, J. P.; Chan, K. M.; Hebert, J. S.; and Sutton, R. S. 2013.
Adaptive artificial limbs: A real-time approach to prediction and
anticipation. IEEE Robotics & Automation Magazine 20(1):53–64.

[Schapire and Rivest 1988] Schapire, R. E., and Rivest, R. L. 1988.
Diversity-based inference of finite automata. Master’s thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering
and Computer Science.

[Sherstan, Modayil, and Pilarski 2015] Sherstan, C.; Modayil, J.;
and Pilarski, P. M. 2015. A collaborative approach to the simul-
taneous multi-joint control of a prosthetic arm. In Rehabilitation
Robotics (ICORR), 2015 IEEE International Conference on, 13–
18. IEEE.

[Sutton et al. 2011] Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.;
Pilarski, P. M.; White, A.; and Precup, D. 2011. Horde: A scalable
real-time architecture for learning knowledge from unsupervised
sensorimotor interaction. In AAMAS 2011, 761–768. International
Foundation for Autonomous Agents and Multiagent Systems.

[Sutton 1988] Sutton, R. S. 1988. Learning to predict by the meth-
ods of temporal differences. Machine learning 3(1):9–44.

[Tanner and Sutton 2005] Tanner, B., and Sutton, R. S. 2005.
Temporal-Difference Networks. In International Conference on
Machine Learning.

[Taylor and Stone 2009] Taylor, M. E., and Stone, P. 2009. Transfer
learning for reinforcement learning domains: A survey. Journal of
Machine Learning Research 10(Jul):1633–1685.

[Travnik and Pilarski 2017] Travnik, J. B., and Pilarski, P. M. 2017.
Representing high-dimensional data to intelligent prostheses and
other wearable assistive robots: A first comparison of tile coding
and selective Kanerva coding. IEEE International Conference on
Rehabilitation Robotics: [proceedings] 2017:1443–1450.

[White 2015] White, A. 2015. Developing a predictive approach to
knowledge. PhD Thesis, PhD thesis, University of Alberta.

46

SOMA: A Framework for Understanding Change in Everyday Environments
Using Semantic Object Maps

Lars Kunze1, Hakan Karaoguz2, Jay Young3, Ferdian Jovan4,
John Folkesson2, Patric Jensfelt2, Nick Hawes1

1Oxford Robotics Institute, Dept. of Engineering Science, University of Oxford, United Kingdom
2Centre for Autonomous Systems, KTH Royal Institute of Technology, Sweden

3Sheffield Robotics, United Kingdom
4Howey Research Group, Dept. of Engineering Science, University of Oxford, United Kingdom

Abstract

Understanding change related to the dynamics of people and
objects in everyday environments is a challenging problem.
At the same time, it is a key requirement in many applications
of autonomous mobile service robots.
In this paper we present a novel semantic mapping frame-
work which maps locations of objects, regions of interest, and
movements of people over time. Our aim with this framework
is twofold: (1) we want to allow robots to reason semantically,
spatially, and temporally about their environment, and (2) we
want to enable researchers to investigate research questions in
the context of long-term scenarios in dynamic environments.
Experimental results demonstrate the effectiveness of the
framework which was deployed on mobile robot systems in
real-world environments over several months.

1 Introduction
Everyday environments such as our homes, hospitals, and
offices are dynamic and change over time. They change be-
cause people perform a broad range of everyday activities in
them. During those activities, the locations of people and ob-
jects change as they move (or are moved) from one place to
another. However, understanding change related to the dy-
namics of people and objects in everyday environments is
a challenging problem. Yet it is a key requirement for au-
tonomous robots to accomplish their tasks successfully.

For example, whilst setting a table for dinner a person
gets plates, cups, knives, and forks from cupboards and
drawers in the kitchen and lays them out on a dining table.
However, robots can only make partial observations of those
events due to their limited sensing capabilities and their ego-
centric viewpoints. Whilst observing such a scene, a mobile
robot might only perceive a person moving through space
and objects appearing and disappearing at various places at
different points in time. As the robot only perceives snap-
shots of the underlying events it needs to reason about what
it has seen, where and when to infer what to do next.

What have I seen? Where? and When? are essential ques-
tions in many robotic tasks such as searching for objects
and the surveillance of human activities (Galindo and oth-
ers 2008; Kostavelis and Gasteratos 2015). Semantic envi-
ronment maps can provide answers to these questions as
they link semantic information about the world (e.g. objects
and people) to spatio-temporal representations. To this end,

they are important resources in many robotic tasks. They al-
low autonomous robots to interpret (or ground) high-level
task instructions; to plan and reason about how to achieve a
task in a given environment; and to communicate observa-
tions and results to humans. However, constructing, main-
taining, and using such maps in everyday, dynamic environ-
ments poses several challenges: (i) observations from sen-
sor data need to be interpreted at a semantic level; (ii) inter-
pretations need to be integrated into a consistent map; (iii)
the map needs to be continuously updated to reflect the dy-
namic changes in an environment (over extended periods of
time); and (iv) queries to the semantic map need to provide
task-related information by taking semantic and/or spatio-
temporal constraints into account.

In the past, many semantic mapping approaches in com-
puter vision and robotics have addressed challenges (i) and
(ii) by interpreting and integrating data from various sensors
including laser rangefinders (Nuchter and Hertzberg 2008;
Rusu and others 2009; Blodow and others 2011), stereo
and monocular cameras (Sengupta and others 2013; Sun-
derhauf and others 2016), and RGB-D cameras (Panger-
cic and others 2012; Hermans, Floros, and Leibe 2014;
Gunther and others 2015). These approaches assume that
the environment is static and hence focus on the mapping
of large-scale structures such as rooms, walls and furniture.

In this work, we address challenges (ii), (iii), and (iv).
With respect to challenge (i), we use and adapt state-of-the-
art robot perception methods that provide intermediate se-
mantic interpretations from sensor data. Our work focuses
on dynamic aspects of everyday environments including the
varying locations of objects, regions of interest that poten-
tially change over time, and movements of people. To this
end, we investigate how objects, regions, and movements of
people can be indexed by space and time so that map updates
and queries can be handled both effectively and efficiently.

To address these challenges, we have designed, devel-
oped, and evaluated SOMA; a framework for constructing,
maintaining, and querying Semantic Object Maps. In our
work, Semantic Object Maps model semantic and spatial in-
formation about objects, regions, and trajectories of agents
over time. Therefore they can provide answers to the ques-
tions: What, Where and When?

The presented framework allows autonomous robots to
construct and update (or revise) maps automatically from

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

47

Table 1: SOMA concepts, their definition and examples.

Concept
(Representation)

Definition Examples

Object
(3D pose &
bounding box)

Object denotes a tangi-
ble thing that occupies a
volume in space

Table, chair,
monitor,
cup, book

Region
(2D polygon)

Region denotes an area
of interest in space

Workplace,
entrance,
waiting area

Trajectory
(2D pose
array)

Trajectory denotes
a path an agent has
followed through space
as a function of time

Human/
robot trajec-
tory

observations using state-of-the-art perception methods and
to query them from within the robots’ control programs. At
the same time, maps can be edited and queried by knowledge
engineers and researchers for providing domain knowledge
and for investigating research questions in long-term sce-
narios. It is important to note that we have designed SOMA
with these two different user groups in mind: autonomous
robots and researchers. While robots can add their observa-
tions and query maps for decision making, researchers can
model aspects of the environment and/or analyse and extract
spatio-temporal data collected by autonomous systems. The
latter enables researchers to build and learn novel models
about the (long-term) dynamics in everyday environments.

In this work, we have focused on the mapping for objects,
regions, and humans in long-term and dynamic settings. Ta-
ble 1 provides an overview of the high-level concepts used
within SOMA. At an abstract level, our approach is similar
to other works as it uses similar concepts for representing
entities in the environment. Concepts such as objects, re-
gions, and trajectories are natural and common sense. How-
ever, our approach differs significantly in the way we store,
index, link, and query observations, interpretations, and se-
mantic concepts over time. The main contributions of this
work are as follows:

• an open-source semantic mapping framework (SOMA),
designed for long-term, dynamic scenarios;

• a multi-layered knowledge representation architecture
linking observations, interpretations, and semantic con-
cepts using spatio-temporal indices;

• an adaptable mechanism for grounding objects in sensor
data and a set of (extendable) interfaces for updating Se-
mantic Object Maps over time;

• a query interface for retrieving and manipulating ob-
jects in Semantic Object Maps using semantic and spatio-
temporal constraints; and

• a long-term case study of SOMA and Semantic Object
Maps in a real world environment.

2 Related Work
Most research in the area of robotic mapping is based on
metric representations (Thrun 2003). However, in the last
decade, many approaches to semantic mapping have been
proposed; a detailed account on the topic is given by (Prono-
bis and others 2010; Pronobis 2011) and an overview is pro-
vided by (Kostavelis and Gasteratos 2015).

(Capobianco and others 2016) propose a standardised way
of representing and evaluating semantic maps. They define
semantic mapping as an incremental process that maps rele-
vant information of the world (i.e., spatial information, tem-
poral events, agents and actions) to a formal description sup-
ported by a reasoning engine. Our work adopts a similar
approach, we incrementally map spatio-temporal informa-
tion about objects, people and regions and query those in-
formation using both standardised database queries and spe-
cialised inference mechanisms.

Several semantic mapping approaches have mainly fo-
cused on both the interpretation and the integration of
data from various sensors including laser rangefinders,
e.g. (Nuchter and Hertzberg 2008; Rusu and others 2009;
Blodow and others 2011), stereo and monocular cameras,
e.g. (Sengupta and others 2013; Sunderhauf and others
2016) and RGB-D cameras, e.g. (Pangercic and others 2012;
Hermans, Floros, and Leibe 2014; Gunther and others 2015).
Most of these approaches assume that the environment is
static and hence focused on the mapping of static, large-scale
structures such as rooms, walls and furniture. Our work is
different from these approaches in two aspects. First, we do
not develop methods for interpreting sensor data, but rather
build on and adapt state-of-the-art robot perception methods
(Aldoma and others 2012; Wohlkinger and others 2012), and
secondly, we focus on the mapping, updating, and querying
of semantic maps in dynamic environments.

A few semantic mapping methods approached the topic
from a different angle. They focused on the design of ontolo-
gies and linking those to low-level environment representa-
tions (Zender and others 2008; Tenorth and others 2010). For
example, work by (Pronobis and Jensfelt 2012) shows how
different sensor modalities can be integrated with ontologi-
cal reasoning capabilities to infer semantic room categories.
Representing environment maps using Semantic Web tech-
nologies also enables robots to exchange information with
other platforms via the cloud (Riazuelo and others 2015).
We consider these types of approaches complementary to
our work, as the semantic categories in our framework can
be integrated and linked with exiting ontologies. For exam-
ple, in (Young and others 2017a) hypotheses about objects
are linked to structured, semantic knowledge bases such as
DBpedia1 and WordNet (Fellbaum 1998).

(Elfring and others 2013) presents a framework for prob-
abilistically grounding objects in sensor data. In general,
our framework does not make any strong assumptions about
how objects are grounded in robot observations. Instead, the
grounding of objects needs to be specified or learned by a
user in the Interpretation layer of the framework (cf. Sec-
tion 3.3).

1http://wiki.dbpedia.org

48

(Bastianelli and others 2013) present an on-line, inter-
active approach and an evaluation (Gemignani and others
2016) for the construction of semantic maps. Similarly, our
work supports labelling of discovered objects by the crowd
(cf. Section 3.5). However, our approach is off-line and is
designed to work in an asynchronous way.

Our work is similar to (Mason and Marthi 2012) and (Her-
rero, Castaño, and Mozos 2015) which both focus on seman-
tic querying of maps in dynamic environments. (Herrero,
Castaño, and Mozos 2015) propose an approach based on
relational databases which hold semantic information about
objects, rooms and their relations required for mobile robot
navigation. Our approach is similar as it also considers ob-
jects and regions in space (but not only rooms). However,
in our approach relations between objects and regions do
not have to be modelled explicitly, but can be inferred us-
ing spatial reasoning. (Mason and Marthi 2012) focus on
semantic querying and change detection for objects. In their
work, objects mean geometrically distinct occupied regions
on a plane whose locations are described in a global refer-
ence frame. In contrast, our work can distinguish between
unknown objects, classified objects, and known object in-
stances. Our spatial indexing allows us to relate objects in a
local, a global, and the robot reference frame. Furthermore,
we can relate objects to regions and human trajectories.

Most similar to our approach is the semantic mapping
framework by (Deeken, Wiemann, and Hertzberg 2018).
Their framework is designed to maintain and analyse the
spatial data of a multi-modal environment model. It uses a
spatial database to store metric data and link it to semantic
descriptions via semantic annotation. Spatial and semantic
data can be queried from the framework to augment metric
maps with topological and semantic information. This de-
sign and functionality is very similar to our approach. How-
ever, our approach goes beyond spatial and semantic infor-
mation as it also includes temporal information about ob-
jects, regions, and people. Thereby it allows robots and users
to reason not only about static configurations but also about
temporally extended events such as everyday activities.

3 The SOMA Framework
3.1 Overview
Figure 1 provides a conceptual overview of the designed
framework. The framework consists of two parts: (1) the
SOMA core and (2) a set of SOMA extensions (or tools).
Overall, the core has four layers. The three horizontal lay-
ers are interconnected and manage the information at differ-
ent levels of abstractions: from observations (i.e. raw sensor
data) and their interpretations to semantic concepts. These
three layers are responsible for the representation within
SOMA. The vertical interface layer provides access to all
three levels. A set of extensions (or tools) use this layer for
visualising, editing, querying and extending Semantic Ob-
ject Maps. This allows knowledge engineers to extend and
analyse them. Similarly, robots and user applications can ac-
cess and manage maps through the interface layer.

Let us now consider the process of storing new informa-
tion in SOMA. First, the robot’s observations, in form of raw

Figure 1: The SOMA framework consists of the SOMA
Core and a set of extensions/tools for visualising, editing,
and querying Semantic Object Maps.

sensor data, are stored and spatially and temporally indexed
in an observation layer. Second, an interpretation layer anal-
yses these observations using perception methods, such as
segmentation, object recognition, object classification, and
people tracking, consolidates the results, and generates con-
sistent descriptions at a semantic level. Finally, observa-
tions, interpretations, and semantic descriptions are linked
together which allows the robot to query them at various lev-
els using spatial, temporal, and/or semantic constraints.

3.2 Observation Layer
The role of the observation layer is to store both raw, un-
processed sensor data from the robot, along with any meta-
data that might be useful in interpreting and processing that
data by its systems. In order to accomplish this the obser-
vation layer stores the input from the robot’s sensors during
learning tasks. All other layers of SOMA also access this
stored data. We store views which contain data from a single
robot perception action, and we collect series of views into
episodes. For our object learning tasks, a single view stores
the point cloud, RGB image, depth image, current pose of
the robot as well as any odometric transforms. An episode
collects the series of views chosen by a planning algorithm
for a particular learning task. Episodes and views may also
have attached meta-data tags, which allows multiple differ-
ent perception pipelines—perhaps all using different criteria
to trigger, control and interpret data from learning tasks—to
make use of the same database.

One of our design goals was to produce a way of stor-
ing raw robot perception data that would allow us to fully
re-generate a SOMA database, performing all requisite pro-
cessing steps along the way. Given just a copy of a robot’s
observation layer, this is possible, as the enclosed raw ob-
servations can be re-played as though they are being made
in real-time. This is a key capability for evaluating different
perception algorithms and pipelines on or off a robot. This
functionality also helps in terms of fault tolerance—for in-
stance, if a robot has been running for period of time with
an undetected fault in a segmentation or object recognition
layer, we are able to correct the error and fully re-generate
the database from the observation layer, processing the data
with the new corrected system, resulting in no loss of data.

49

Figure 2: Data structures used in the Interpretation layer to
compose high-level objects in the Semantic layer. First, indi-
vidual views of a scene are stored. Second, object segments
are found and linked with multiple observations of the same
object across views. Finally, a SOMA object is created.

3.3 Interpretation Layer
The interpretation layer takes input from the observation
layer and mainly contains application-specific methods for
processing data. While the observation layer can be thought
of as a wrapper around a robot’s sensors, the interpretation
layer is regarded as the part of the system that engages in
application-specific processing of that data. In object learn-
ing, the first step in interpretation is to apply a segmentation
algorithm, such as a depth-based segmentation or a region
proposal network, in order to extract object proposals for
further processing. SOMA provides a way of structuring the
output of such segmentation algorithms by providing a scene
graph-like object structure. This provides tools for storing
data about individual segmented objects and their relation-
ship to a view, and an episode, and allows a developer to col-
late observations of objects as further views are taken. The
exact choice of algorithms used for scene segmentation, ob-
ject tracking between views, and otherwise, are all left up to
the developer as part of the design of their own application-
specific interpretation layer.

Once the interpretation pipeline has processed and filtered
the raw sensor output provided by the observation layer,
high-level SOMA objects can be composed from the pro-
cessed data. An example of this is shown in Figure 2. High-
level objects represent the results of processing, and may
record the output of object recognition algorithms over a se-
ries of views of an object, merged 3D models constructed
from multiple views, and meta-data. These high-level ob-
jects link back to the low-level observations from which
they are composed—the developer can go back and forth as
desired from complete, merged objects to their constituent
parts. The objects can then be used in further applications
built on-top of SOMA—they can be shown to end-users in a

Figure 3: Examples of SOMA extensions. Top: SOMAEdit
can be used for adding, editing or manipulating objects (left)
and regions of interest (right). Bottom: SOMAViz is used for
building spatio-temporal queries and visualising results.

labelling application, emailed, tweeted, visualised on a web-
site, used in an application to locate lost mugs, processed
further, or anything else the developer may desire.

3.4 Semantic Layer
The semantic layer stores high-level knowledge extracted
from the robot’s observations (cf. Table 1). The high-level
knowledge could be the recognised object instances received
from various recognition/detection pipelines or tracked ob-
jects from segmentation/tracking pipelines. Each high-level
data instance is stored with spatio-temporal information
such that the evolution of the knowledge about each object
instance is maintained and can be retrieved. Moreover, each
high-level SOMA object is linked with other SOMA layers
by means of SOMA IDs in order to access all the knowledge
about the object within the framework.

Furthermore, the semantic layer can store additional in-
formation about the object such as 3D models, camera im-
ages and any type of meta-data to build up a complete
knowledge base. The stored high-level information could
help the user to understand the semantics of individual en-
vironments, allow the robot to do high-level reasoning for
accomplishing tasks such as object finding and/or grasping.

3.5 Interface Layer & SOMA Extensions
The interface layer acts as a backbone between the different
SOMA layers and the user for exchanging data. As such,
the robot/user can insert, delete, update and query data using
SOMA extensions and other applications (Figure 3).

SOMAEdit allows users to create virtual scenes without
any perceptual data. With this editor, users can add, remove
or move objects and regions on top of a metric map.

SOMAQuery allows users to query maps using seman-
tic, spatial, and/or temporal constraints. A query might ask
for all objects of a certain type (“Select all cups”). Such
a query can be further constraint by spatio-temporal con-
straints (“Select all cups in meeting rooms on Mondays be-

50

Figure 4: Implementation details of SOMA.

tween 10:00–12:00”). Spatial constraints can be used to de-
termine if spatial entities are near to another entity, within an
entity (region), or if they intersect with another entity. Tem-
poral constraints can be formulated by using time points or
temporal intervals. To discover temporal patterns and peri-
odic processes hour of the day, day of the week, and day of
the month are of particular interest.

Other extensions allow users to visualise query re-
sults (SOMAViz) and crowd-source missing object labels
(SOMACrowd).

4 Implementation
We have implemented SOMA2 based on ROS and Mon-
goDB. The overall implementation structure of the frame-
work is shown in Figure 4. ROS is used as the backbone
of the entire SOMA framework as it is the most common
platform used in the robotics research community. The in-
dividual SOMA layers and components are all developed as
ROS nodes so that each of them can communicate with any
other ROS component. Data structures used to store SOMA
objects are themselves ROS messages composed of primi-
tive ROS types. This provides a common interface between
systems so long as they are built on the ROS stack.

For data storage and handling at all different layers, Mon-
goDB is used. MongoDB provides great flexibility both in
terms of the data structure and query capabilities. As such,
all the SOMA data that is populated at different layers can be
stored as ROS messages in MongoDB. Moreover, users can
perform complex spatial queries using MongoDB’s Geospa-
tial API and/or projection criteria.

For visualisation tools, we have employed the Qt frame-
work. Qt offers an end to end solution for developing graph-
ical user interface as front-end and combining the back-end
with ROS framework using multiple threads.

5 Experimental Validation
Our work was motivated by the European project,
STRANDS (Hawes and others 2016). In STRANDS, we in-
vestigated spatio-temporal representations and activities in

2https://github.com/strands-project/soma

Figure 5: Objects discovered during deployment. SOMA
stores the RGB-D images, point clouds, and other meta data.

long-term scenarios. Within the project, we were interested
in providing services to humans in everyday environments.
Tasks that our robots performed included object search, ob-
ject discovery as well as activity recognition and movement
analysis. In this context, we conducted a series of robot de-
ployments in real-world office environments over several
months in which we have evaluated this work.

Traditional, database-centric measures such as perfor-
mance metrics over read/write access times and load-bearing
tests would necessarily be evaluating the technology on
which SOMA is built, rather than SOMA itself as a tech-
nology. Instead, we prefer to evaluate SOMA by looking at
the range of applications it has been used for.

SOMA was used in multiple long-term deployments at
two different sites—the Transport Systems Catapult (TSC)
and a facility belonging to Group 4 Security (G4S), both in
the United Kingdom. We report details of these deployments
with respect to the three main entities that are represented
within SOMA: Objects, Regions, and Trajectories.

5.1 Objects
While SOMA has been used as the underlying technol-
ogy behind the development of more advanced and robust
robot perception systems as described above, it has also
served a dual role as the key component in many user-facing
robot applications. Figure 5 shows a small sample of ob-
jects learned by the robot at the Transport Systems Cata-
pult (TSC) deployment site, using the perception pipeline of
(Young and others 2017b). In particular, 2D images of ob-
jects were used to pass to a Convolutional Neural Network
(CNN) for identification, as in (Young and others 2017b;
2017a), as well as being passed to end-users at the site for
live labelling. SOMA is also a data collection platform—we
have used it to store and distribute scenes for future, offline
labelling by human annotators. SOMA’s performance in this
area is dependent on the perception pipelines that feed infor-
mation to it. Overall, the system stored 141 scenes and 341
scenes respectively, during the first and the second deploy-
ment at the TSC. The design of SOMA means that these

51

Table 2: Object learning performance (TSC, Y3/Y4).

Performance Measure Y3 Y4

Learning Episodes 56 80
Views Taken 141 341
Waypoints Visited 25 10
Avg. Views / Learning Episode ∼2.5 ∼4
Avg. Episodes / Waypoint ∼2.24 8
Autonomously Segmented Objects 445 668

Figure 6: SOMA was used to generate reports of predefined
surface areas in which objects were highlighted (TSC, Y3).

scenes can be re-processed later offline, using different per-
ception pipelines, algorithms or filters if so desired, to ex-
tract different objects or different kinds of information from
them. A comparison between the object learning pipelines
used in year three (Y3) and year four (Y4) at the TSC site
are shown in Table 2.

In the first deployment at TSC (Y3), SOMA was used to
provide reports of objects discovered on predefined surfaces
at the site (Figure 6). As the robot engaged in its normal
object learning tasks, reports were generated and presented
in a web-based blog interface for end-users to access.

In other experimental work, we designated two surfaces
at the TSC site to be “learning tables”, where office workers
could bring objects for the robot to learn about. The robot
would then visit the tables twice a day, and attempt to learn
and identify any objects it had found. Using a CNN trained
on a large image database, with 1000 possible categories, it
would tweet about them while attempting to identify them.
Internally, the system is made possible by SOMA’s function
of announcing when new objects are entered into the sys-
tem, which then triggers the object identification and tweet-
ing process by passing to those functions the 2D images of
objects entered into SOMA.

During the last long-term deployment in TSC site (Y4),

Figure 7: Processing steps of CNN-based object detection.
Left: Detect object candidate. Right: Extract partial view.

Table 3: Detection results (TSC, Y4, ≈120 days).

Object type Number of detections

People 178
Chairs 171
Monitors 104
Other objects 574

Table 4: Perceived objects (#) per time of day (TSC, Y4).

Hours 07:00-12:00 12:00-17:00 17:00-00:00

Monday 56 98 0
Tuesday 21 85 0
Wednesday 18 175 3
Thursday 184 224 0
Friday 0 67 0

we have employed a CNN based object detection pipeline.
This pipeline was able to detect 20 object categories includ-
ing person, chair, monitor, etc. and it was possible to extract
a partial 3D view of the object using the registered depth
information. As such the object location with respect to the
robot and the global metric map can be identified. Figure 7
shows an example of a detected chair and the extracted par-
tial 3D view. The detected objects were then stored as high-
level SOMA objects with spatio-temporal information. Ta-
ble 3 shows some detailed statistics about the objects de-
tected with this pipeline during the deployment. The results
show that the most detected objects were chairs, people and
monitors which can be expected given that the robot was
working on an office environment (Table 3).

We have also analysed temporal aspects of the Y4 deploy-
ment in terms of high-level SOMA object perception using
the SOMAQuery interface. Table 4 shows the daily object
perception statistics w.r.t the time of the day for the entire
deployment. From the table it is observed that the robot was
mostly active during Wednesdays and Thursdays while it has
never been used in the weekends for object perception. It is
also observed that the robot was most active during the af-
ternoon hours but it was only rarely used during out of office
hours (after 17:00). In total, the robot has perceived 930 high
level SOMA objects during the entire Y4 deployment.

5.2 Regions
SOMA was used as the main memory component in
(Karaoguz and others 2017) for human-centric partitioning
of the environment. In the work, it was assumed that the
co-occurrence of objects and humans can be used to iden-
tify densely populated areas. For this task, a CNN-based
object detector and RANSAC-based tabletop detector were
employed to detect objects. During the robot’s operation, the
detected objects were all stored as high level objects within
in SOMA. After a set of observations were made, a reason-
ing module was employed to query SOMA objects and lo-
cate object clusters. These object clusters were then used to
identify the dense regions. Figure 8 (left) shows the result-
ing regions. The proposed system discovered 16 regions of

52

Figure 8: Examples of learned regions. Left: Auto-generated
human-centric partitions of offices. Right: Learning of se-
mantic labels associated with regions at TSC (Y4).

which 14 actually corresponded to manually annotated ones.
The people density analysis showed that nearly 90% of the
dense areas lay within or around the generated regions.

SOMA was also used in (Young and others 2017a) as part
of a system for learning semantic labels associated with re-
gions of space. Here, SOMA was used to represent objects
discovered in the environment (Ambruş and others 2014).
These objects were then passed to a CNN to be labelled. The
system then used text mining of large text corpora (in this
case Wikipedia) to find those room categories most strongly
related to the labels of the discovered objects. Results from
the TSC deployment are show in Figure 8 (right).

Discovery of these semantic room labels allowed us to
draw bounding polygons around the areas of space where the
related objects were observed. The result, as shown in Fig-
ure 8 where blue regions indicate office areas and green re-
gions indicate kitchen areas, largely covered the same areas
as annotated by human annotators. These learned, labelled
regions can then be fed back in to SOMA and its own inter-
nal region representation, and potentially used by a robot for
various tasks such as object search or activity recognition.

In general, SOMA has been a powerful API for improv-
ing both the internal object perception pipelines used on our
robots—for instance, the region representation is key to our
approach to view planning—but also a tool for building user-
facing applications that provide a robot’s-eye view of the
world. SOMA’s ability to support input from multiple, arbi-
trary perception pipelines has also been a great tool in devel-
opment and debugging of these systems along with the suite
of visualisation tools available.

5.3 Trajectories
In STRANDS, we have used a multi-sensor-based approach
for people detection and tracking (Dondrup and others
2015). During the deployments, we gathered thousands of
human trajectories at both sites. (Jovan and others 2016)
analysed and predicted the level of activities at G4S. The
level of activity was measured by the number of trajectories,
within a particular time and location. This kind of analy-
sis on human trajectories in temporal and spatial scale are
possible via SOMAQuery. Temporal queries which involve
periodic intervals during the week such as “Select all tra-
jectories between 08:00–17:00 on every Monday” or spe-
cific time intervals such as “Select all trajectories between

Figure 9: Left: Trajectories in kitchen area (TSC, Y4). Right:
Region classification based on trajectories (G4S, Y2).

08:00–12:00 on Sunday 12th March 2016” can be inter-
preted by SOMAQuery and visualised by SOMAViz. With
help of SOMAQuery and background knowledge about the
normative behaviour of people at G4S (e.g. “no employee
is allowed to work during the weekend”), (Jovan and others
2016) employed a trajectory filtering to filter false detections
captured during the deployment. A trajectory statistics for a
set of temporal queries is shown in Table 5.

We used SOMAEdit to segment the sites’ map into re-
gions based on their functions. Given these regions, query-
ing trajectories within these particular areas becomes pos-
sible. Thereby, SOMAQuery is able to interpret spatial
queries such as “Select all trajectories within kitchen area”
at different times of day (Figure 9). A brief comparison be-
tween G4S and TSC on spatial queries is shown in Table 5.
(Jovan and others 2016) discovered that the temporal pre-
dictive model of human activities for each region provides a
spatio-temporal signature which can further be used to clas-
sify regions based on their functionality. The region classifi-
cation based on trajectories can be seen in Figure 9 (right).

6 Conclusions
In this paper, we have presented a semantic mapping frame-
work for mobile robots, called SOMA. SOMA uses a three
layered architecture to model objects, regions, and trajecto-
ries of agents. We explained how these layers interact with
each other, how they can be accessed via an interface layer
from both robots and user applications. We presented an ex-
perimental validation of SOMA by showcasing several use
cases for the framework in real-world, long-term scenarios.

SOMA stores discrete observations of objects and re-
gions. However, many new semantic mapping applications
are based on continuous observations from sensors (e.g.
cameras), and recent work on visual SLAM makes collec-
tion of this kind of data easy (Stückler and others 2015).
We will investigate, in future work, how this kind of data, as
well as segmented contents, can be integrated into our maps.
Conceptually, however, our representation tools are general
enough to support these, and other, new approaches. Hence,
we believe that the open-source framework SOMA can have
a wide within the robotics community.
Acknowledgments The work was supported by RAIN,
EPSRC [EP/R026084/1]; Mobile Robotics Programme
Grant, EPSRC [EP/M019918/1]; ALOOF, EPSRC
[EP/M015777/1]; STRANDS, EU FP7 [600623].

References
Aldoma, A., et al. 2012. Tutorial: Point cloud library: Three-
dimensional object recognition and 6 dof pose estimation.

53

Table 5: Trajectory statistics for temporal and spatial queries

Constraint Type Query G4S TSC (Y4)

Trajectories/hour Length # Trajectories/hour Length

Temporal

Workdays 08:00-12:00 16.08 2.47 9.07 3.61
Workdays 12:00-17:00 11.42 2.51 11.34 3.38
Workdays 17:00-00:00 0.19 2.31 0.36 3.34
Weekend 0.08 0.77 0.00 0.00

Spatial

Open Plan Area 3.02 2.45 0.18 3.90
Kitchen 0.55 2.82 1.43 3.60
Meeting Room 0.27 1.66 0.07 3.88
Hallway 3.51 2.72 1.60 3.86

IEEE RAM 19(3).
Ambruş, R., et al. 2014. Meta-rooms: Building and main-
taining long term spatial models in a dynamic world. In
IROS.
Bastianelli, E., et al. 2013. On-line semantic mapping. In
ICAR.
Blodow, N., et al. 2011. Autonomous semantic mapping for
robots performing everyday manipulation tasks in kitchen
environments. In IROS.
Capobianco, R., et al. 2016. A proposal for semantic map
representation and evaluation. CoRR abs/1606.03719.
Deeken, H.; Wiemann, T.; and Hertzberg, J. 2018. Ground-
ing semantic maps in spatial databases. RAS 105:146 – 165.
Dondrup, C., et al. 2015. Real-time multisensor people
tracking for human-robot spatial interaction. In ICRA.
Elfring, J., et al. 2013. Semantic world modeling using
probabilistic multiple hypothesis anchoring. RAS 61(2).
Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. Language, Speech, and Communication.
Galindo, C., et al. 2008. Robot task planning using semantic
maps. RAS 56(11).
Gemignani, G., et al. 2016. Interactive semantic mapping:
Experimental evaluation. In Experimental Robotics.
Gunther, M., et al. 2015. Model-based furniture recognition
for building semantic object maps. Artificial Intelligence.
Hawes, N., et al. 2016. The STRANDS project: Long-term
autonomy in everyday environments. IEEE RAM.
Hermans, A.; Floros, G.; and Leibe, B. 2014. Dense 3D
Semantic Mapping of Indoor Scenes from RGB-D Images.
In ICRA.
Herrero, J. C.; Castaño, R. B.; and Mozos, O. M. 2015.
An inferring semantic system based on relational models for
mobile robotics. In IEEE ICARSC.
Jovan, F., et al. 2016. A Poisson-Spectral Model for Mod-
elling the Spatio-Temporal Patterns in Human Data Ob-
served by a Robot. In IROS.
Karaoguz, H., et al. 2017. Human-centric partitioning of the
environment. In ROMAN.
Kostavelis, I., and Gasteratos, A. 2015. Semantic mapping
for mobile robotics tasks: A survey. RAS 66:86 – 103.

Mason, J., and Marthi, B. 2012. An object-based semantic
world model for long-term change detection and semantic
querying. In IROS.
Nuchter, A., and Hertzberg, J. 2008. Towards semantic maps
for mobile robots. RAS 56(11):915 – 926.
Pangercic, D., et al. 2012. Semantic object maps for robotic
housework - representation, acquisition and use. In IROS.
Pronobis, A., and Jensfelt, P. 2012. Large-scale semantic
mapping and reasoning with heterogeneous modalities. In
ICRA.
Pronobis, A., et al. 2010. Semantic modelling of space. In
Cognitive Systems.
Pronobis, A. 2011. Semantic Mapping with Mobile Robots.
Ph.D. Dissertation, KTH Royal Inst. of Tech., Sweden.
Riazuelo, L., et al. 2015. Roboearth semantic mapping:
A cloud enabled knowledge-based approach. IEEE T-ASE
12(2).
Rusu, R. B., et al. 2009. Model-based and learned semantic
object labeling in 3d point cloud maps of kitchen environ-
ments. In IROS.
Sengupta, S., et al. 2013. Urban 3d semantic modelling
using stereo vision. In ICRA.
Stückler, J., et al. 2015. Dense real-time mapping of object-
class semantics from rgb-d video. JRTIP 10(4).
Sunderhauf, N., et al. 2016. Place categorization and se-
mantic mapping on a mobile robot. In ICRA.
Tenorth, M., et al. 2010. Knowrob-map - knowledge-linked
semantic object maps. In IEEE-RAS Humanoids.
Thrun, S. 2003. Exploring artificial intelligence in the new
millennium. In Robotic Mapping: A Survey.
Wohlkinger, W., et al. 2012. 3dnet: Large-scale object class
recognition from cad models. In ICRA.
Young, J., et al. 2017a. Making sense of indoor spaces using
semantic web mining and situated robot perception. In The
Semantic Web: ESWC 2017 Satellite Events.
Young, J., et al. 2017b. Semantic web-mining and deep
vision for lifelong object discovery. In ICRA.
Zender, H., et al. 2008. Conceptual spatial representations
for indoor mobile robots. RAS 56(6).

54

A Practical Distributed Knowledge-Based Reasoning and Decision-Theoretic
Planning for Multi-robot Service Systems

A.-I Mouaddib and laurent Jeanpierre
GREYC–University of Caen Normandy

abdel-illah.mouaddib, laurent.jeanpierre@unicaen.fr

Abstract

This paper presents a practical model of dis-
tributed reasoning and planning for a fleet of
robots serving people in a shopping mall using
distributed knowledge-based reasoning and dis-
tributed Markov Decision Process (MDP) where
the environment changes frequently and the set of
goals is not static. The model we present, in this
paper, consists of distributed local reasoning and
planning where each robot locally reasons on its
perceived data (locally: onboard cameras and also
from global perception system: external cameras)
to update its local Knowledge Base (KB). Local
KBs derive local goals and the local planners select
the goal to accomplish and compute the policy to
accomplish it while maintaining a coordinated be-
havior with the other robots by avoiding conflicts
on goals. To this end, we propose a distributed
market-based auction planning algorithm using a
regret and opportunity costs in a distributed value
function leading to augmented MDPs to coordinate
the robots and to select the appropriate goals to ac-
complish. Our approach assumes communication
between robots and external sensor and we will de-
scribe a method to minimize the dis-coordination
(conflits on goals) when the communication is lack-
ing. Experimental results on the algorithm per-
formance and the implementation on real service
robots in a shopping mall showed a very satisfying
behavior as shown in the video.

1 Introduction
The claim of this paper is to present a practical model and
algorithm for a multi-robot system to be deployed in a public
area like a shopping mall, airport, train station, hospital, ...
to assist and guide customer. In our case, we consider assis-
tance, advertisement and security goals in a shopping mall.
The characteristics of such applications are :

• The environment is highly dynamic and a long-term
horizon planning could be unsuitable.

• No central planner or system could be considered.

• The set of goals is dynamic and can change during the
execution.

• The nature of the application is highly distributed in
terms of perception, reasoning and planning since the
robots sweep as large as possible the public space to de-
tect events to handle.

• Goals accomplishments are durative and planning for
the full set of goals could be inappropriate since new
high prior goals could be generated.

Reasoning and planning in such contexts make some clas-
sical approaches inappropriate. Indeed, local KB reasoners of
different robots can derive different goals distributed among
their Knowledge-Base and central planner should compute a
plan among all distributed goals to derive an optimal goal
allocation. While most central planners require a central
Knowledge base [Ghallab, Nau, and Traverso, 2016], plan-
ning with distributed knowledge bases becomes out of reach
of these existing algorithms [Ghallab, Nau, and Traverso,
2016]. Formalizing the planning problem where robots have
their own local observations leads to some strong mathe-
matical tools like DEC-POMDP [Bernstein, Zilberstein, and
Immerman, 2000; Amato, Bernstein, and Zilberstein, 2007;
Seuken and Zilberstein, 2007; Dibangoye et al., 2016]. How-
ever, DEC-POMDPs require a central planner which make
their use in this context inappropriate. Considering only in-
teractions between agents to formalize the planning prob-
lem has been considered in different POMDPs-based ap-
proaches like Networked POMDPs [Nair et al., 2003; 2005],
interactive POMPDs [Sonu and Doshi, 2015] or Augmented
MDPs [Matignon, Jeanpierre, and Mouaddib, 2012]. Such
approaches are promising to deal with distributed planning
which is more appropriate to the problems where knowledge-
based are distributed. Hiowever, they can show some limits
where the environment is highly dynamic and the set of goals
changes frequently. To this end, we extend the approach pre-
sented in [Iocchi et al., 2016] to the multi-robot system set-
tings where the architecture is fully decentralized and com-
bine auctionning and MDPs to coordinate the robot policies.
The combination between auctionning and (PO)MDPs is not
novel and has been introduced in [Spaan, Gonçalves, and Se-
queira, 2010]. However the auctionning phase is centralized
while our approach is fully decentralized and the auctionning
is distributed among robots.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

55

We present an approach which allows the robots to plan in
a distributed way and with a changing set of goals using a
distributed market-based auction algorithm combined with a
distributed value function [Matignon, Jeanpierre, and Mouad-
dib, 2012] allowing each robot to locally plan and select the
goals to accomplish. This algorithm has been implemented
and tested on real robots serving people and guiding them to
their requested destination showing a very satisfying behavior
as shown in the video1.

The rest of the paper is organized as follow: section 2 de-
scribes the overall architecture and the interaction between lo-
cal reasoners and planners. Section 3 presents the distributed
knowledge-base reasoning and the communication with the
planners. Section 4 representing the main contribution of the
paper where we describe the market-based auction algorithm
and the distributed value functions using opportunity cost and
the regret functions. Section 5 is dedicated to the evaluation
of our approach in terms of solution quality and the imple-
mentation on real robots.

2 Distributed multi-robot Architecture
The distributed architecture of the multi-robot system con-
sists of, as depicted in Figure 1, communicative local
knowlege-based reasoners, planners and executors. Each
robot has each local knowledge-based module which is split-
ted into two parts : static part describing the semantic map of
the environment (shops, restaurants, social areas in the mall
for instance) and the dynamic part describing the new incom-
ing information from sensors (onboard cameras of the robots
and external cameras in the environment) and from the other
modules such as the status of the robots (idle or active), their
goals under accomplishment and their priorities maintaining
a global partial view on the overall system. The KB is a set of
logical predicates similar to the classical STRIPS-like plan-
ning language [Ghallab, Nau, and Traverso, 2016]. The KB
uses a simple rule-based reasoning to derive new goals to ac-
complish. These new goals are communicated to the plan-
ning module which uses a maket-based auctionning algorithm
which is descibed bellow. This algorithm allows the robot to
select the goal to accomplish and to formalize it as an MDP
as presented in [Iocchi et al., 2016] and then communicate the
policy to the executor module to act. In order to compute the
goal to accomplish, each robot communicates with the others
the set of locally derived goals and the vector of associated
optimal policy values. Each robot fuses the set of received
goals with the locally derived ones. This shared information
allows to each robot to use global information to plan.

3 Distributed Knowledge-based reasoning
3.1 Local KB reasoning
Each robot maintains a local KB which is split into a static
KB representing the semantic map and a dynamic KB rep-
resenting the events occurring in the environments or on the
status of the robot. Indeed, when external or on-board sen-
sor detect an event (a person, an object for example), the KB
inserts a logical formula representing this event and executes

1https://youtu.be/iFC6-sCL3XI

P
E

R
R

C
E

P
T

IO
N

 W
P

2:

E
xt

er
na

l C
am

er
as

N
E

T
W

O
R

K

KB	

KB	

KB	

Informa+on	

GOALS	

GOALS	

GOALS	

DEC	

DEC	

DEC	

π	

π	

π	

EXEC	

EXEC	

EXEC	

ROBOT-­‐1	

ROBOT-­‐2	

ROBOT-­‐3	

Figure 1: General multi-robot decision-making Architecture

its logical inference engine to derive new goals. These new
goals are added to the existing ones and sorted according to
their priority. In the shopping mall case, the security goals
have higher priority than assistance goals which have high
priority than advertising goals. This order allows the robots
to start by allocating the goals according to their priority. The
other knowledge in the dynamic part concern the informa-
tion on the other robots particularly their status describing
whether the robot is active and which goal is achieving or
idle and its initial location when starting the execution of the
goal achievement policy.

3.2 KB update and Synchronization
The local KB for each robot should be updated by external
information coming from the environments (perception) and
the other robots. In Figure 2, we represent information com-
ing from the other robots by G∗i meaning the goal under ac-
complishment by the other robot and the information coming
from perception allow the KB module to generate Gt a goal
list at time t. These information allow the KB module to gen-
erate the new list of goals: Gt = Gt − G∗i . This list is then
sent to the decision module which uses a distributed matrix-
based auctioning algorithm, described in the next section, to
select a goal to accomplish and computes the policy to ac-
complish it. The decision module updates the KB with the
selected goal and the exec module about the policy to execute.
The exec module during the execution sends the status of the
execution and the current level of priority which is necessary
for considering new goals or not. The exec module updates
the KB at the end of the execution and this update is sent to
the other robots for their local KB update. This processing
is depicted in Figure 2. At the end of the goal accomplish-
ment, the robot switches to the idle status to consider a new
auctioning step. This information is sent to the other robots
which is useful when performing the distributed Matrix-based
auctioning algorithm.

Communication allows robot to exchange the information
concerning the status of execution and also the level of inter-
ruptibility allowing at the receipt of a list of goals to consider
only robot that could accomplish the goals according to their
current status and to synchronize their local KB, and to con-
struct their local matrix.

56

KB

DECISION

EXEC

External	
Sensor

List	of	goals	
Generated
at	time	t:	Gt

Goal	G*	selected	
by	the	robot

π(G*)	policy	

Goal	G*	of	the	robot	
sent	to	the	other	robots

Goals	Gi*	accomplished
by	the	other	robots

Message	of	the
end	of	the	 goal	G*	

Figure 2: Communication between KB, decision and execution

It’s possible that some messages contain values of some
goals that the robot hasn’t in its list. For these goals, the
robot initializes the value of these goals in its value vector
to −Vmax.

3.3 Interruptibility and changing set of goals
In this section, we address the problem of changing goal sets.
When the list of goals are communicated to the decision mod-
ule, the robot can have different status. Indeed, the robot can
be in a idle status or in a active status. When the robot is in
a idle status, she is able to consider new goals and decides
for the goals to accomplish. However, when the robot is in
active status, the robot should consider the new goals only
in the situations where the priority of one new goal is higher
than the one under accomplishment.

All robots with priority lower than the priority of new
goals, should consider them for a new auctioning. When the
matrix-based auctioning algorithm of a robot has been per-
formed and no goal is allocated, the robot pursues with the
current policy, otherwise, the robot executes the policy of the
new goal.

The priority of the robot is the one of the goal under pro-
cessing. However, this priority can change during the execu-
tion since when the execution task is at its beginning stages,
it’s easier to cancel the execution and skip to another task
rather than at its final execution stage. In our case, tasks
are represented in an hierarchical structure called PRU+ as in
[Iocchi et al., 2016]. Indeed, one benefit of the PRU+ struc-
ture is that goals could be accomplished partially and thus
could be interrupted when the rest of the goal is not highly
prior and in such case, we can enhance the PRU+ definition
with the priority of levels.

4 Distributed Matrix-Based Auction Planning
4.1 General principle
The allocation of goals to the robots is performed by a dis-
tributed decision-theoretic market auction algorithm, extend-
ing the approach presented in [Spaan, Gonçalves, and Se-
queira, 2010] to distributed auctioning and also using a dis-
tributed value function based on regret and opportunity cost
to solve different potential conflicts on goals and robots. The
proposed solution is illustrated in Figure 3 where each robot
has a local auctioneer which receives the list of goals G from

the local KB and sends this list to the decision-making mod-
ule. This latter uses a library of task MDP models to solve for
each goal in the list of goal its corresponding MDP by consid-
ering the current state of the robot. Thus the decision module
of robot i solves { MDPi(g, s

t
i)|∀g ∈ G }. This allows the

decision maker to compute the optimal value for each goal in
theG (vg1i , v

g2
i , . . . , v

gk
i) for all gi ∈ G. This vector of values

is sent the local auctioneer that exchanges with the other lo-
cal auctioneers. Once the local auctioneers collect all values
and organize them in matrix 4. This matrix allows us to solve
Equation (1). We consider in our approach the cases where
this equation can have more than one solution meaning that
more than one goal could be preferred by a robot and many
robots can have one preferred goal leading to some conflicts
situations which are not addressed in [Spaan, Gonçalves, and
Sequeira, 2010].

	
	
	
	
	
	
	
	
	
	
	
	

Robot-1

MDP	Model	
PRU	A	

MDP	Model	
PRU	B	

	
	
	
	
	
	
	
	
	
	
	
	

Robot-2

MDP	Model	
PRU	A	

MDP	Model	
PRU	B	

Local	Auc1oneer	 Local	Auc1oneer	
<V2

A,	V2
B>	

<V1
A,	V1

B>	

<V1
A,	V1

B>	 <V2
A,	V2

B>	Set	of	goals	 Set	of	goals	

Figure 3: Each robot has an MDP for each goal represented by an
acyclic PRU graph. The MDP of selected goal is active (solid box)

(α, g∗) = argmaxAi,gkVAi
(gk) (1)

To address these issues, we introduce regret and opportu-
nity cost functions. The regret function measures the loss in
value for a robot to accomplish a goal rather than it’s pre-
ferred and the opportunity cost of accomplishing a goal by a
robot measures the loss in value of the other robots because
of preventing them from this goal. More formally speaking,
the Regret of not accomplishing a goal g∗ is given by the fol-
lowing equation :

regretj(g) = V π
∗

j (g)−max
g′ 6=g

V π
∗

j (g′)

And the opportunity cost is defined by :

OCR(g) = max
R′ 6=R

max
g′ 6=g

V ∗,g
′

R′ − V ∗,gR′

Let Sg be the set of robots α optimizing the value of ac-
complishing the goal g (solutions of Equation 1), the best
robot to which we allocate the goal g is the one minimizing
the regret (Equation 2). If we havemany solutions, we can
proceed in the same way with the other goals and so on.

57

LetGr be the set of the preferred goals of robot r. The best
goal selected by robot r is the one minimizing the maximum
opportunity cost (Equation 3).

4.2 Market-based auction algorithm for goal
allocation using distributed value functions

The distributed market-based auction algorithm, illustrated in
Figure 3, consists of two steps : Matrix construction step and
Market-based auction step that we described in the following:

• Matrix construction: each robot i maintains a matrix
Mi representing the value of the optimal policy of each
robot to accomplish a goal. The matrix is constructed as
follows:

1. Each robot i computes the optimal value
V ∗,gli to accomplish goal gl. Value vector
(V ∗,g1i , V ∗,g2i , . . . , V ∗,gki) represents the values of
robot i optimal policies accomplishing goals in the
list. This vector represents the line i of the matrix.

2. Each robot constructs locally this vector, commu-
nicates it to its local auctioneer and this latter sends
its value vector to the others, allowing them to com-
plete their matrix

3. Each robot i (local auctioneer) has thus a matrix 4.
• Distributed Matrix-based auctioning: Each robot pro-

ceeds as depicted in 4 to the following steps:
1. Fo each each line L of the matrix, compute

maxj V
∗,gj
l corresponding to the best goal to ac-

complish for the robot L (its bid).
2. If there is only one goal g∗L maximizing the value of

the robot L, this means that there is only a unique
preferred goal for this robot. However, we should
check that this robot is the preferred one for this
goal. To this end, we check in the column g∗L that
there is no value V ∗,g

∗
L

i ≥ V
∗,g∗L
L . In such case,

the goal g∗L is assigned to the robot L and ligne L
and column g∗L are removed from the matrix and we
repeat the same process for the matrix until all goals
have been assigned or all robots have an assigned
goal.

3. If there is more than one maximum value existing
in columns or lines, we proceed as follows :

(a) Processing columns: this means that there is a
conflict between robots R on the same goals g.
We assign the goal to the robot having the mini-
mum regret ;

argminrobot∈Rmax
g′ 6=g

V ∗,g
′

robot − V
∗,g
robot (2)

Then we remove the adequate column and line.
(b) Processing lines: this means that there are more

than one goal G preferred by a robot R. In tis
situation, we assign the goal with the minimum
opportunity cost ;

argming∈GOCR(g) (3)

Then we remove the adequate column and line.

A1	
	
A2	
	
A3	
	
	
	
Aj	
	
	
	
	
An	

G1 	G2 	G3 	 	Gi 	 	 	 	Gk
		

V11	
	
V21	
	
V31	
	
	
	
Vj1	
	
	
	
	
Vn1	

V12	
	
V22	
	
V32	
	
	
	
Vj2	
	
	
	
	
Vn2	

V13	
	
V23	
	
V33	
	
	
	
Vj3	
	
	
	
	
Vn3	

V1k	
	
V2k	
	
V3k	
	
	
	
Vjk	
	
	
	
	
Vnk	

Max	=	Vji=V2i	
Conflict	between		
Agent	A2	and		Aj	

Max	=	V33=V3k		
Agent	A3	has	goals	
G3	and	Gk	as	the	
	most	Preferred	

V1i	
	
V2i	
	
V3i	
	
	
	
Vji	
	
	
	
	
Vni	

Unique	Max	for	Agent	An,	then	
no	conflict,	G2	is	allocated	to	and	
the	corresponding	line	and	
column	are	removed	

Figure 4: Matrix allocation processing

Proposition 1 Matrix-based auctioning algorithm is based
on solving |G| MDPs with the same state space but with dif-
ferent goal states. The complexity of Matrix-based auctioning
algorithm is O(|G| · |S|2 · |A|)
Proof Matrix-based auctioning algorithm solves one MDP
for each goal of the set of goals |G| with the same state space
but with different goal states. The complexity of solving and
MDP with value iteration algorithme is O(|S|2 · |A|).
Proposition 2 The cost of communication in Distributed
Matrix-based Auctioning algorithm is in O(n2) while in auc-
tioning POMDP is in O(3 · n).

Proof In Auctioning POMDP, each robot communicates with
the central auctioning module by receiving the set of goals
and sending its bid. The auctioning module sends n mes-
sage to announce the goals, n bid messages are received
from robots and sends n messages to robots for the auction-
ing result. In Distributed Matrix-based Auctioning algorithm,
robots exchanges the goals and their bids as values of their op-
timal policies to accomplish these goals (individually). These
message exchanges consist of n − 1 messages sent by each
robot (n robots). Thus the overall number of exchanged mes-
sages is n · (n− 1). Thus the complexity is O(n2).

4.3 The overall algorithm
1. The status of the Robot i is Idle :

(a) Proceed to the message processing and produce the
list of goals and sends local messages to the other
robots;

(b) Compute for each goal g in the list the value of the
optimal policy V ∗g and put Matrix(i, g) = V ∗g ;

(c) Send the vector value to the decision module;
(d) The decision module selects the best goal g∗ =

Market Based auction(i,g) (section 4.2) and
sends the message to the KB;

(e) The robot constructs the policy π(g∗) ;

58

(f) The robot sends to the EXEC module and it
changes its status to active;

2. The status of the robot i is active:
(a) Transforms the policy in a PNP (Petri-Net Plan) as

described in [Iocchi et al., 2016];
(b) Execute the PNP and sends at each step of the PNP,

the level of interruptibility;
(c) At the end of the execution, sends the message to

the local KB and changes the status to idle;

5 Dis-coordination minimization with lack of
communication

When communication is not available two aspects have to
be considered: (1) external sensor cannot communicate with
robots and only onboard sensor of robots can be used leading
to the lack of global perception and (2) robots cannot com-
municate and thus cannot exchange values of goals for auc-
tioning. In order to overcome these limitations, we propose
a simple policy estimation algorithm allowing each robot i to
estimate the policy of each other robot πj 6=i without commu-
nication. We consider that the policy πτk followed by robot
k is the policy computed from the MDPk(s

τ
k, G

τ) where sτk
is the initial state of robot k and Gτ is the set of goals at
time τ by selecting the policy maximizing the expected value
of accomplishing one goal. In order to estimate the policy
πtj 6=i followed by each robot j 6= i at time t, we need to es-
timate the policies followed by the robots during the interval
[t′, t]. However, during this interval one robot k can accom-
plish more than one goal and thus has followed a sequence of
policies, noted Sπk starting with πt

′
k which is the policy of the

MDPk(s
t′
k , G

t′) where (st
′
k , G

t′) are given by the local KB.
However, to compute the next policies we need to derive the
new MDP by deriving the new start state and the new set of
goals. To do so, we approximate the new start state of k by sτk
as the most likely state can be reached by the policy πt

′
k and

that the new set of goal Gτ = Gt
′ − goalπt′

k
where goalπt′

k

is the goal accomplished by πt
′
k and finishing at time τ . More

formally :
sτk = max

s′k
P (s′k|πt

′
k , s

t′
k)

When sτk and Gτ are derived, we can compute the next
policy πτk of Sπk from the MDPk(s

τ
k, G

τ). We repeat the
same processing until τ ≥ t. The last policy of Sπk , noted
πτk allows to estimate the sτk and thus we compute the policy
πtk of the MDPk(s

τ
k, G

t) with the current set of goals. This
principle is repeated for all robots and thus we get an ap-
proximate joint policy where each robot is assumed accom-
plishing a goal in Gt. Robot i compute a policy πti of the
MDPi(s

t
i, G

t −⋃k 6=i goalπt
k
).

Proposition 3 The complexity of approximating the policy of
the other robots during an interval of time is O(|S|3 · |A| ·
|G|2) where S and A are respectively the state and action
spaces and G the set of goals at the lost of communication.

Proof Solving an MDP with a goal and with an initial state
using value iterationis O(|A| · |S|2) [Puterman, 1994]. When

we extend this to a set of goals where we should select the
best goal, the complexity becomes |G| · |S| · |A|2. To consider
this problem for any initial state is in |G| · |S|3 · |A| because
we repeat the same problem for each state and extending this
problem for an interval of time is at most the resolution of
all goals and thus the complexity becomes |G|2 · |S|3 · |A|.
When we solve this problem for any state space and any set
of goals, then for any robot we need just to know its initial
state and which set of goals. Thus the complexity remains
O(|G|2 · |S|3 · |A|).

6 Empirical evaluation
We developed experiments where we consider our applica-
tion of the shopping mall with 3 robots and a dozen of goals
to accomplish. We compare our algorithm with the baseline
algorithm of solving a DEC-MDP with a central planner as
presented in [Hanna and Mouaddib, 2002] and an auction-
ing MDP approach using the principle presented in [Spaan,
Gonçalves, and Sequeira, 2010]. We used different situations
where goals are not located at the same place, for example for
goals ”guiding to shop” we consider different shops.

• We compare the computation time of each method:
DEC-MDP, auctioning MDP and Decentralized Market-
based Auctioning algorithm.

• We compare the values of the three approaches

• We compare the performance of these approaches when
the set of goals changes by adding two more goals to the
current list.

• We also compare the performance of these approaches
when the communication is broken.

6.1 First results on performance comparison
The first results on computation time for three robots show
that the computation time of DEC-MDP is higher than the
others as expected which is explained by the complexity
of DEC-MDP known to be NEXT-hard while our approach
(MBAA) and Auctioning MDP have comparable computa-
tion time and MBAA is little bit higher due to the cost of
communication.

The expected value of AMDP and MBA are the sum of
the policy values of different goals accomplished by the three
robots while for the DEC-MDP we get a value of a joint pol-
icy for the three robots. We observed that AMDP and MBAA
are not far from a centralized planning approach representing
more than 88% which is a satisfying performance. However,
our approach outperforms the AMDP because it solves bet-
ter the conflicts. We note that when conflicts doesn’t occur,
AMDP and MBAA obtain the same value.

To get more significant results more experiments are
needed with more scenarii. Actually, we are continuing our
evaluation.

6.2 Robustness to the changes of the goal set
The first experiment consists in starting with a list of 6 goals
and during the execution of the policies we add two new
goals. For this experiment, DECMDP approach considers the

59

goals only when she finishes the accomplishment of the cur-
rent goal and then consider the two new goals. The DEC-
MDP plans from scratch for 7 goals (5 remaining goals plus
the two new goals). In addition to that, the system should wait
during the execution time which depends on the goal under
execution (and the location of the shop). The AMDP finishes
the execution of the current goal and considers the new one
as DECMDP approach. This situation occurs in MBAA only
when the priorities of the goals are lower than the one under
execution otherwise, the executed is interrupted and the more
prior goals are considered. A situation we observe during the
experiment is when AMDP, DECMDP and MPAA are exe-
cuting an advertisement goal and a new assistance a person
goal arrive, the person should wait more than 3mn, 2mn and
30s respectively with DECMDP, AMDP and MPAA before
being considered. These durations doesn’t consider the exe-
cution time needed to meet the person (moving to the person).

6.3 Robustness to communication
DECMDP with no communication with the central plan-
ner they cannot work since they never receive their policy.
AMDP needs communication with the central auctioneer and
thus no solution is possible. However, MBAA can work with
degraded more where only local planning and estimation of
the other robots situations are performed. We use an experi-
ment with 3 robots and 12 goals with two classes of configu-
rations: Configuration A considers that goals scattered in the
mall and configuration B considers goals in a narrow space.
For configuration A, the approximation works well and only
one conflict is observed (one dis-coordination) at the accom-
plishment of the two last goals where two robots head the
same destination. However, in configuration B, we observe
4 conflicts (30%) where robots select the same goals. More
deeper experiments in different situations are needed and let
for future work.

6.4 Implementation on real-robots
The experiment on real robots as depicted in Figure 5 have
been developed in assistance mission of visitors of our Lab
where people can interact with the robot to ask for the of-
fice of a professor or administrative staff and then the robot
guide him to the requested destination. When the robot ac-
complishes a goal, she comes back to the welcoming point
to serve a new visitor depending on its location and the loca-
tion of the visitor. Figure 5 shows that the same robot doesn’t
serve at the same point but according to their locations, the
robot selects the appropriate welcoming point showing a very
satisfying behavior. A video of this scenario is available at
https://youtu.be/iFC6-sCL3XI.

7 Conclusion and discussion
We presented a practical approach allowing a fleet of robots to
reason on local information and plan their activities in a coor-
dinated way while activities and information are distributed
in the environment. We develop a distributed Market-based
auctioning method robust to the changes of the goal set and to
the communication unavailability showing a very satisfying
behavior. This method combines decision-theoretic planning

Figure 5: Figure showing different steps of robots serving visitors

by computing MDP policy for goals and bidding with values
of these policies to coordinate their activities. Our method en-
riches the auctioning POMDP technique [Spaan, Gonçalves,
and Sequeira, 2010] by considering distributed local auction-
eers but also to use distributed value function based on regret
and opportunity costs to solve some specific costs. Hoplites
[Kalra, Ferguson, and Stentz, 2005] addresses similar prob-
lem but it is limited to path planning tasks in the opposite
to ours. The dis-coordination minimization technique shows
satisfying results and future work will be concerned by this
aspect to deepen this problem and propose more efficient ap-
proach. Our approach has been successefuly used on real
robots showing a very convincing behavior. We will develop
more experiments to better evaluate the performance.

Aknowledgments:
This work has been developed in the COACHES project of
the CHIST-ERA program supported by the French National
Agency (ANR).

60

References
[Amato, Bernstein, and Zilberstein, 2007] Amato, C.; Bern-

stein, D. S.; and Zilberstein, S. 2007. Optimizing
memory-bounded controllers for decentralized pomdps. In
UAI 2007, Proceedings of the Twenty-Third Conference
on Uncertainty in Artificial Intelligence, Vancouver, BC,
Canada, July 19-22, 2007, 1–8.

[Bernstein, Zilberstein, and Immerman, 2000] Bernstein,
D. S.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of markov decision
processes. In UAI ’00: Proceedings of the 16th Confer-
ence in Uncertainty in Artificial Intelligence, Stanford
University, Stanford, California, USA, June 30 - July 3,
2000, 32–37.

[Dibangoye et al., 2016] Dibangoye, J. S.; Amato, C.; Buf-
fet, O.; and Charpillet, F. 2016. Optimally solving dec-
pomdps as continuous-state mdps. J. Artif. Intell. Res.
55:443–497.

[Ghallab, Nau, and Traverso, 2016] Ghallab, M.; Nau, D. S.;
and Traverso, P. 2016. Automated Planning and Acting.
Cambridge University Press.

[Hanna and Mouaddib, 2002] Hanna, H., and Mouaddib, A.
2002. Task selection problem under uncertainty as
decision-making. In The First International Joint Confer-
ence on Autonomous Agents & Multiagent Systems, AA-
MAS 2002, July 15-19, 2002, Bologna, Italy, Proceedings,
1303–1308.

[Iocchi et al., 2016] Iocchi, L.; Jeanpierre, L.; Lazaro, M. T.;
and Mouaddib, A. 2016. A practical framework for
robust decision-theoretic planning and execution for ser-
vice robots. In Proceedings of the Twenty-Sixth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2016, London, UK, June 12-17, 2016., 486–494.

[Kalra, Ferguson, and Stentz, 2005] Kalra, N.; Ferguson, D.;
and Stentz, A. 2005. Hoplites: A market-based framework
for planned tight coordination in multirobot teams. In Pro-
ceedings of the 2005 IEEE International Conference on
Robotics and Automation, ICRA 2005, April 18-22, 2005,
Barcelona, Spain, 1170–1177.

[Matignon, Jeanpierre, and Mouaddib, 2012] Matignon, L.;
Jeanpierre, L.; and Mouaddib, A. 2012. Coordinated
multi-robot exploration under communication constraints
using decentralized markov decision processes. In Pro-
ceedings of the Twenty-Sixth AAAI Conference on Arti-
ficial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada.

[Nair et al., 2003] Nair, R.; Tambe, M.; Yokoo, M.; Pyna-
dath, D. V.; and Marsella, S. 2003. Taming decentralized
pomdps: Towards efficient policy computation for multia-
gent settings. In IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003, 705–711.

[Nair et al., 2005] Nair, R.; Varakantham, P.; Tambe, M.; and
Yokoo, M. 2005. Networked distributed pomdps: A syn-
ergy of distributed constraint optimization and pomdps.

In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30 - August 5, 2005, 1758–1760.

[Puterman, 1994] Puterman, M. L. 1994. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
New York, NY, USA: John Wiley & Sons, Inc., 1st edi-
tion.

[Seuken and Zilberstein, 2007] Seuken, S., and Zilberstein,
S. 2007. Memory-bounded dynamic programming for
dec-pomdps. In IJCAI 2007, Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, Hy-
derabad, India, January 6-12, 2007, 2009–2015.

[Sonu and Doshi, 2015] Sonu, E., and Doshi, P. 2015. Scal-
able solutions of interactive pomdps using generalized and
bounded policy iteration. Autonomous Agents and Multi-
Agent Systems 29(3):455–494.

[Spaan, Gonçalves, and Sequeira, 2010] Spaan, M. T. J.;
Gonçalves, N.; and Sequeira, J. 2010. Multirobot co-
ordination by auctioning pomdps. In IEEE International
Conference on Robotics and Automation, ICRA 2010, An-
chorage, Alaska, USA, 3-7 May 2010, 1446–1451.

61

Learning and Generalisation of Primitives Skills
Towards Robust Dual-arm Manipulation

Èric Pairet and Paola Ardón and Frank Broz and Michael Mistry and Yvan Petillot
Edinburgh Centre for Robotics

University of Edinburgh and Heriot-Watt University, UK
{eric.pairet, paola.ardon}@ed.ac.uk, f.broz@hw.ac.uk, mmistry@inf.ed.ac.uk, y.r.petillot@hw.ac.uk

Abstract

Robots are becoming a vital ingredient in society. Some of
their daily tasks require dual-arm manipulation skills in the
rapidly changing, dynamic and unpredictable real-world en-
vironments where they have to operate. Given the expertise
of humans in conducting these activities, it is natural to study
humans’ motions to use the resulting knowledge in robotic
control. With this in mind, this work leverages human knowl-
edge to formulate a more general, real-time, and less task-
specific framework for dual-arm manipulation. The proposed
framework is evaluated on the iCub humanoid robot and sev-
eral synthetic experiments, by conducting a dual-arm pick-
and-place task of a parcel in the presence of unexpected ob-
stacles. Results suggest the suitability of the method towards
robust and generalisable dual-arm manipulation.

INTRODUCTION
The last decades have witnessed a drastic increase in the
use of robots in industry, professional and domestic en-
vironments. Among the countless competences that robots
have acquired, some of the most outstanding are automat-
ing repetitive and exhausting tasks in manufacturing plants,
working in hazardous scenarios unreachable to humans, as-
sisting doctors in challenging surgical operations, and tak-
ing the responsibility for household chores. A common is-
sue in all these applications is the need of manipulating large
objects and ensembling multi-component elements without
external assistance. On top of that, current manipulators
lack human-like generalisation capabilities to confront the
highly dynamic and changing environments. Thus, endow-
ing robots with human-like dual-arm manipulation capabili-
ties is essential to extend their competences and autonomy.

Traditional approaches for governing these dual-arm sys-
tems depend upon a great understanding of the model un-
derlying the system’s behaviour (Smith et al. 2012). Even
though deriving an accurate model is possible for some com-
plex systems, approximations are commonly used in order to
make the calculations computationally tractable, despite the
trade-off of the model’s uncertainty (Pairet et al. 2018). Fur-
thermore, some of these methods lack scalability and gener-
alisation capabilities along and across tasks. In other words,
they require an expert programmer to hand-define all possi-
ble scenarios, movements, tasks, and extensive manual tun-
ing of the system’s control architecture (Argall et al. 2009).

Figure 1: iCub humanoid being taught how to avoid an ob-
stacle (red sphere). Within the proposed framework, this
primitive skill provides robustness to novel scenarios.

The growth of artificial intelligence (AI) has popularised
more natural techniques for robot learning, reducing the la-
borious task of coding every possible scenario and thus, in-
creasing modularity and flexibility on the systems. An exam-
ple of this is imitation learning or learning by demonstration
(LbD). This method allows non-robotics-experts to inter-
act, teach and modify the robot’s behaviours (Nicolescu and
Mataric 2003), and, consequently, to obtain more human-
like behaviours with enhanced acceptability and compatibil-
ity to the human workspaces (Ajoudani et al. 2017). Given
the possibility to learn from humans’ expertise and dexterity
in using both arms for manipulation purposes, it is natural to
exploit LbD to use human motions in robotic control.

Teaching a robot from human demonstrations can be chal-
lenging. The different anatomical characteristics between
the teacher and the learner produces the correspondence
problem, i.e. the issue of identifying a mapping between the
teacher and the learner which allows transferring of informa-
tion from one to the other (Dautenhahn and Nehaniv 2002).
Moreover, complex motions involve a mixture of human in-
tentions, which are difficult to accurately learn when follow-
ing an all-at-once learning baseline (Bajcsy et al. 2018). On
top of that, teaching a dual-arm system can suppose a high
endeavour for non-robotics-experts (Akgun et al. 2012).

LbD offers some generalisation capabilities, such as
changes in initial and goal configurations of a given demon-
stration (Billard et al. 2008). However, being limited to simi-
lar scenarios is not realistic to the rapidly changing, dynamic
and unpredictable environments where robots have to oper-

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

62

ate. Extended robustness can be obtained by letting the sys-
tem iteratively adapt and improve the learnt task to new sce-
narios (Guenter et al. 2007). This leads to the well-known
exploration-exploitation dilemma and comes at the cost of
needing to fail in order to learn and consequently, at the risk
of causing harm to the robot during the self-learning process.

This paper presents a framework that seeks to jointly over-
come the aforementioned issues, namely (i) the complex and
ambiguous teaching procedures and (ii) the limited general-
isation capabilities. Aiming to provide a dual-arm system
with a more general and less task-specific method for real-
time and robust manipulation in challenging even unfamiliar
environments, the proposed framework (i) leverages human
knowledge to learn and create a library of primitive skills
and (ii) endows dual-arm systems with human-like manipu-
lation capabilities by combining the primitive behaviours.

The main contribution of this work is the formulation of a
framework which learns individual primitive skills from hu-
man demonstrations and exploits them for robust dual-arm
manipulation purposes. Such a framework extends the capa-
bilities of the method in (Pastor et al. 2009) to handle the
requirements of dual-arm systems. This leads to a frame-
work which reuses its knowledge to generalise according to
the environment awareness, differently from the proposals
in (Zöllner, Asfour, and Dillmann 2004; Topp 2017). The
potential of this method has been demonstrated in a simu-
lated environment on the iCub humanoid (see Figure 1). The
experimental results suggest the suitability of the framework
to address the aforementioned challenges.

SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

The aim of this paper is an end-to-end learning-based frame-
work that allows real-time autonomous dual-arm manipula-
tion in unfamiliar environments. Such a framework needs
to be able to adapt its plan to achieve a task according to
the surrounding environment, while ensuring some synchro-
nisation between both end-effectors. Moreover, it needs to
be easily programmable, making a dual-arm platform cus-
tomizable and accessible even to non-robotics-experts. Bear-
ing these problem requirements in mind, this section firstly
describes the typology and diversity of possible actions in a
dual-arm system. It then analyses the challenges that arise
when learning actions from human demonstrations. Finally,
this section puts the previous pieces together to formulate
the modelisation of the dual-arm system and its grasping.

Dual-arm Primitive Skills Taxonomy
Dual-arm manipulators are extremely sophisticated systems,
and consequently, their control actions to achieve a specific
performance. This work contemplates that any complex be-
haviour is composed of a vast repertoire of actions or primi-
tive skills (Montesano et al. 2008). In the context of manipu-
lation via a dual-arm system, a possible classification of any
primitive skill falls into these two groups:
• Absolute skills Sa: imply a change of configuration of

the manipulated object in the Cartesian space. Example:
move, place and/or turn an object in a particular manner.

• Relative skills Sr: exert an action on the manipulated ob-
ject in the Object space. Example: opening of a bottle’s
screw cap, or hold a parcel by means of force contact.

Each type of primitive skill uniquely produces movement
in its own space. In other words, the absolute and relative
skills lay on orthogonal spaces. It is natural to expect from
a dual-arm system to simultaneously carry out, at least, one
absolute and one relative skill to successfully accomplish a
task. Let us analyse the task of moving a bottle to a cer-
tain position while opening its screw cap. Both end-effectors
synchronously move to reach a desired configuration (abso-
lute skill). At the same time, the left end-effector is con-
strained to hold the bottle upright (relative skill), while the
right end-effector unscrews the cap (relative skill).

Learning for a Dual-arm Manipulator
Learning by demonstration (LbD) provides a large set of
recording techniques and mathematical supports for encod-
ing a demonstrated skill. However, learning a particular task
from human demonstrations raises some challenges, namely
(i) clearly understanding the intentions of a demonstration
and (ii) establishing a teacher-learner communication chan-
nel. Both issues can drastically affect the learning outcome
if they are not well adressed (Argall et al. 2009).

The demonstration clarity issue is tackled by leveraging
the belief of a vast repertoire of primitive skills being the ba-
sis of any complex behaviour. With this in mind, this work
avoids demonstrating a task itself but, instead, teaches the
robot the involved primitive skills. This task factorisation
provides similar benefits as the work in (Bajcsy et al. 2018):
it allows the user to teach one feature of the task at a time,
and, if required, to correct them individually.

Factorising a complex behaviour into primitive actions re-
duces the number of degree of freedom (DoF) to focus on
during demonstration time. As an example, the desired po-
sition and orientation of a task can be encoded in separate
primitive skills and thus, demonstrated one-at-a-time. This
fact becomes handy to ease the complex process of teaching
a dual-arm system (Akgun et al. 2012). This work employs
kinesthetic guiding to establish a teacher-learner communi-
cation channel which does not suffer from the correspon-
dence problem (Argall et al. 2009).

Dual-arm System Modelisation
Given the variety of primitive skills that a dual-arm system
can execute, this work seeks to model the robotic platform
in a generalisable yet modular fashion, which accounts for
both absolute and relative skills. To this aim, let us consider
the closed kinematic chain depicted in Figure 2. Each arm
i, where i = {L, R}, interacts with the same object O in
the workspace W ∈ RN , where N is the dimensionality of
the considered Cartesian subspace. In this context, the ab-
solute skill explains the movement of the object O in the
workspace W , while the relative skill describes the actions
of each end-effector i with respect to the object’s reference
frame {O}. Note that {O} is the centre of the closed-chain
dual-arm system. Thus, the remaining of the paper uses {O}
as object’s and system’s frame indistinguishably.

63

Figure 2: Dual-arm manipulator modelled in the Cartesian
space as a spring-damper closed-chain system.

Let the current state of the closed-chain dual-arm system
be defined by the position, velocity and accelaration of its
system’s frame {O} in each DoF of the workspace W , i.e.
(xo, ẋo, ẍo)n ∀ n ∈ [1, N]. The dynamics of such a sys-
tem are approximated by the ones of a spring-damper system
acting between the objects’s frame {O} and its goal config-
uration go (see Figure 2). This dynamical system genarates
in each DoF a movement trajectory xo with velocity ẋo and
acceleration ẍo profiles defined by:

τ ẍo = α(β(go − xo)− ẋo), (1)

where go is the model’s attractor that the system will con-
verge to with critically damped dynamics and null velocity
when α > 0, β > 0 and β = α/4 (Ijspeert et al. 2013).

Given any initial system state, the dynamical system in (1)
generates a linear displacement towards the goal configura-
tion go. Any other dynamical behaviour can be represented
by an external force acting on the system’s frame {O} as:

τ ẍo = α(β(go − xo)− ẋo) + fo(·), (2)

where the coupling term fo(·) describes the profile of the
external force affecting the natural dynamics of the system.
In other words, fo(·) characterises the system’s behaviour
and thus, can be used to encode and retrieve a primitive skill.

Dual-arm Grasping Geometry
Any action referenced to the object’s frame {O} can be pro-
jected to the end-effectors using the grasping geometry of
the manipulated object. This allows computing the required
end-effector control commands to achieve a particular abso-
lute task. To this aim, the grasp matrix needs to be computed.
The grasp matrix Gi of the end-effector i is a transformation
map which establishes a velocity relation between the con-
tact point Ci, and the systems reference frame {O}. For a
workspaceW of N = 6, i.e. considering the linear and rota-
tional information of the three-dimensional (3D) space, the
grasping geometry establishes the following relation:

ẋCi = GT
i ẋo, (3)

where

Gi ∈ R6×6 =

[
I3×3 O3×3

S(ri) I3×3

]
, (4)

where I3×3 is the identity matrix, and S(ri) ∈ R3×3 is the
skew-symmetric matrix performing the cross product:

S(ri) =

[
0 −rz ry
rz 0 −rx
−ry rx 0

]
, (5)

where ri is the distance from the object’s reference frame
{O} to the contact point Ci.

A global grasp map G for the dual-arm manipulator can
be defined by horizontally concatenating the grasp matrix of
each end-effector, i.e. G = [GL GR] ∈ R6×12 where GL

and GR are the left and right arm grasp matrix, respectively.

FRAMEWORK FOR ROBUST DUAL-ARM
MANIPULATION

In order to endow robots with real-time, robust and
autonomous dual-arm manipulation, while letting non-
robotics-experts to easily program and customise the sys-
tem’s behaviour, this work presents the learning-based
framework depicted in Figure 3. Such a framework jointly
addresses the aforementioned requirements with three se-
quential parts: (i) the learning module that learns a set of
primitive skills from human demonstrations, (ii) the roll-out
module that combines those primitive skills to plan a tra-
jectory which makes the system succeed at a task, even in
unfamiliar environments and (iii) the evaluation module that
lets a human-in-the-loop supervise the robot’s behaviour and
reteach a specific skill, if required.

Given a learnt repertoire (library) of absolute and rel-
ative primitive skills, such basic motions need to be
combined to confront any dual-arm task in any possi-
ble scenario. Each absolute task Sa is defined by its
coupling term fo(·), which leads to a desired triplet
(ẍo, ẋo, xo)n ∀ n ∈ [1, N] after rolling-out (2). Simi-
larly, each relative task Sr defines a desired triplet for each
end-effector i (ẍCi , ẋCi , xCi)n ∀ n ∈ [1, N]. This work
considers weighting and merging the contribution of each
primitive skill at the velocity level as:

[
ẋL

ẋR

]
= GT

J∑

j=1

wj ẋoj +
K∑

k=1

wk

[
ẋCL,k

ẋCR,k

]
, (6)

where ẋL and ẋR respectively are the velocity commands
for the left and right end-effector which satisfy the set of ac-
tivated primitive skills, ẋoj is the velocity of the j ∈ [1, J]
absolute primitive skills available in the library, and ẋCi,k is
the velocity of the k ∈ [1, K] relative primitive skills avail-
able in the library. Primitive skill selection according to a
desired task and environment is conducted with the weights
wj and wk. Works such as the one in (Ardón et al. 2018)
propose addressing this problem according to the object’s
affordances and environment analysis.

The generality of the proposed framework is narrowed
down to provide an application case. This work exploits such
a framework to endow a dual-arm system with enhanced au-
tonomy for the dual-arm task of pick-and-place of a parcel,
even in the presence of unexpected obstacles. Figure 4 de-
picts the main idea: parcels (brown prisms) are meant to be

64

Figure 3: Scheme of the three stages involved in the proposal. Learning: a human demonstrator teaches some primitives be-
haviours to a system. Rolling-out: the robot exploits (generalises and combines accordingly to the environment awareness) the
acquired knowledge. Evaluation: an evaluator inspects the system’s performance and decides whether reteaching is necessary.

moved from one side to another, adjusting the behaviour of
the dual-arm whether there is an obstacle or not (grey prism).
Not requiring complex grasping capabilities is the main rea-
son for choosing this application case. However, it is ex-
tremely challenging in the synchronisation aspect: manip-
ulators have to always maintain a certain amount of contact
forces with the carried parcel as any variation would result
in releasing or exposing the handled object to stress. To this
aim, the library of primitive skills is loaded with: underly-
ing dynamics of a pick-and-place task, obstacle avoidance
and grasp maintenance behaviours. Note that the former two
skills are absolute, while the latter is relative.

Skill Dynamics
The non-linear dynamical behaviour of any task can be rep-
resented using dynamic movement primitives (DMPs). This
mathematical encoding support has proven to be a versa-
tile tool for modelling and learning complex motions, since:
(a) any movement can be efficiently learned and generated,
(b) a unique demonstration is already generalisable, (c) con-
vergence to the goal is guaranteed, and (d) their represen-
tation is translation and time-invariant (Pastor et al. 2009;
Ijspeert et al. 2013). Some of these DMP-inherent generali-
sation capabilities are depicted in Figure 5.

Figure 4: Dual-arm pick-and-place of a parcel (brown prism)
in the presence of obstacles (grey prism).

The system modelisation in (2) can integrate a DMP as
the coupling term fo(·). This means that the perturbation-
less dynamics of the spring-damper system are modified ac-
cording to the DMP coupled in each DoF. IfW ∈ R3, three
position-encoding DMPs would describe the desired posi-
tion of the manipulated object. Instead, ifW ∈ R6, four ad-
ditional quaternion-based DMPs would be required to also
encode the object’s desired orientation (Ude et al. 2014).

Formally, a position-encoding DMP is a weighted
linear combination of non-linear radial basis functions
(RBFs) (Pastor et al. 2009; Ijspeert et al. 2013). The value of
such non-linear function fo(·) when evaluated at a specific
entry k ∈ k is defined as:

f(k) =

∑N
i=1 wiΨi(k)
∑N

i=1 Ψi(k)
k, (7)

Ψi(k) = exp
(
−hi(k − ci)2

)
, (8)

where ci and hi > 0 are the centres and widths, respectively,
of the i ∈ [1, N] RBFs distributed along the trajectory.
Each RBF is weighted bywi. The phase variable k is utilised
to avoid direct dependency of fo(·) ∼ f(k) on time. The
dynamics of k are defined as:

τ k̇ = −αkk, (9)

where the initial value of the canonical system k(0) = 1 and
αk is a positive constant.

The learning of the DMPs relies on adjusting the set of
RBF, i.e. the weight vector w, composed of all weights wi.
To this aim, least mean squares (LMS) is used to compute
the weight vector w which makes the system (2) adjust to a
recorded skill propioception information {ẍ, ẋ, x}.

Obstacle Avoidance
An analytical description of how humans steer around an
obstacle was first presented in (Fajen and Warren 2003).
Later on, such biologically-inspired formulation was used
in (Hoffmann et al. 2009) for single-arm manipulation pur-
poses. Let x, ẋ, and θ be respectively the system’s position,

65

Figure 5: DMP generalisation capabilities. Given a demon-
stration (red trajectory), rolling-out (2) with the DMP cou-
pling term fo(·) defined in (7) let the system generalise to
new goal configurations (blue trajectories).

velocity and orientation referenced to the workspace refer-
ence frame {W}. In order to avoid an obstacle, the system
in (2) needs to change its acceleration accordingly to:

f(x, ẋ) = R ẋ θ̇, (10)

where R is a π/2 rotation matrix with respect to the vector
r = (xobstacle−x)×ẋ, and θ̇ is the desired turning velocity:

θ̇ = γ θ exp(−β |θ|), (11)

where γ and β are tuning constants. Their effect can be best
understood in Figure 6: γ sets the abruptness of the obstacle
avoidance behaviour, and β determines its sensitivity.

Within the framework, the parameters of the obstacle
avoidance behaviour are leant from human demonstrations,
thus involving less parameter tuning. This is achieved using
LMS after log-linearising (11) and arranging it as:

log θ̇ = [log γ 1 β]




1

log θ

−|θ|


, (12)

where the training data θ̇ and θ contain the periodically sam-
pled value of θ̇ and θ experienced during the obstacle avoid-
ance demonstration. The change in steering angle θ̇ is re-
trieved from (10), where f(x, ẋ) = f(x)obs − f(x), i.e. the
difference on the dynamics between a perturbationless task
f(x) and one with obstacles f(x)obs is only motivated by the
presence of an obstacle.

Figure 6: Change of steering angle θ̇ following the original
formulation in (11) with γ = 1000 and β = 20/π.

Grasp Maintenance
Manipulation of a rigid object via a dual-arm system re-
quires each end-effector to be in contact with the object.
Moreover, when the interaction is by force contact (without
grasping the object) it is also essential to apply the suffi-
cient forces to ensure grasp maintenance, i.e. prevention of
contact separation and unwanted contact sliding. The com-
plexity of this task usually requires modelling the required
coupling forces as f(x, ẋ, ẍ). For applications with low-
dynamical requirements, the previous dynamical function
can be approximated to (Gams et al. 2014):

ẋCi
= K(Fd − Fr), (13)

where K is an error multiplying constant which transforms
errors in force contact to velocity commands, Fd is the de-
sired coupling force and Fr is the current coupling force
retrieved from the robot’s sensors. Thus, the learning of
this primitive skill resides on learning from demonstrations
which Fd ensures grasp maintenance.

RESULTS AND EVALUATION
The work presented in this paper is a generic framework for
any dual-arm manipulator. Experimental evaluation has been
carried out on synthetic environments and a simulated iCub
humanoid. This section firstly introduces the iCub robot and
the execution of kinesthetic learning on this platform. It then
describes the learning of the obstacle avoidance behaviour,
and it analyses its integration in a synthetic pick-and-place
task. Finally, this section depicts the potential of the pro-
posed framework for being used on a humanoid robot.

Experimental Platform
iCub is an open source humanoid robot testbed for re-
search into human cognition and artificial intelligence appli-
cations (Metta et al. 2008). The physical and software char-
acteristics of this robot make it an ideal platform for the pre-
sented research. Among all this robot’s features, some of the
most relevant to this work are the two 7-DoF manipulators
equipped with a torque sensor on the shoulder, tactile sen-
sors in the fingertips and palm, and integrated stereo vision.
iCub operates under the YARP middleware.

Kinesthetic teaching on the iCub humanoid is conducted
by setting all joints in gravity compensation allowing the
teacher to physically manoeuvre the robot through a desired
skill. During the demonstrations, proprioception informa-
tion is retrieved via YARP ports.

Obstacle Avoidance Behaviour
The primitive skill of obstacle avoidance has been taught
to iCub with two different behaviours: reckless (see Fig-
ure 7(a)) and conservative (see Figure 7(b)). While the for-
mer steers around the obstacle (red sphere) closely, the latter
keeps a larger distance to it. The recorded raw propriocep-
tion data of these two kinesthetic demonstrations is respec-
tively portraited in Figure 7(c) and Figure 7(d). As it can be
observed, the retrieved trajectories are noisy and not smooth.

To learn from these demonstrations, the data has been pre-
processed in two steps: (i) filtering to remove outliers and

66

(a) (b)

0.04

0.06

0.08

z
[m

]

-0.05
-0.1

y [m]
-0.15

-0.2

x [m]
-0.3-0.25

(c)

0.06

0.08

0.1

0.12

z
[m

]

-0.05
-0.1

y [m]
-0.15

-0.2

x [m]
-0.3-0.25

(d)

0
x [m]

00.050.10.150.20.25

y [m]

-0.01
0

0.01
0.02
0.03

z
[m

]

(e)

0
x [m]

0
0.05

0.1
0.15

0.2

y [m]

0

0.02

0.04

0.06

0.08

z
[m

]

(f)

Figure 7: iCub humanoid robot (Metta et al. 2008) learn-
ing the primitive skill of obstacle avoidance with two dif-
ferent behaviours: reckless (first column) and convervative
(second column). (a)-(b) Human demonstrations to avoid
an obstacle (red sphere). (c)-(d) iCub’s proprioception data.
(e)-(f) Processed iCub’s proprioception data (red trajectory)
and learned obstacle avoidance behaviour (blue trajectory).

high-frequency noise, and (ii) projecting the filtered infor-
mation to the two-dimensional (2D) space composed for the
two principal components of the data. Figure 7(e) and Fig-
ure 7(f) show the preprocessed data (red trajectory), which
has been used in (12) to learn the parameters defining the
demonstrator’s obstacle avoidance behaviour. The encoded
reckless and conservative styles are respectively depicted in
Figure 7(e) and Figure 7(f) (blue trajectory). Note that learn-
ing the parameters instead of the motion itself lets the robot
generalise such behaviour under different conditions.

In overall terms, from Figure 7 it can be concluded that
the obstacle avoidance encoding support and its learning
process from human demonstrations is able to encapsulate
the demonstrator style. The differences between the demon-
strated skill and the learnt one are mainly attributed to the
hypothesis that any steering around an obstacle follows the
formulation in (10)-(11). Moreover, the noise in the proprio-
ception data increases the variance in the learning. Alterna-
tively, a high-precision tracking system such as the one used
in (Rai et al. 2014) can be considered. Because the proposed
approach extracts the parameters of an obstacle avoidance
behaviour, the resulting knowledge would yet be indepen-
dent of the demonstration frame.

Synthetic Pick-and-Place Task
The performance of the obstacle avoidance behaviour in a
more realistic context has been validated using the pick-and-
place setup depicted in Figure 8. Particularly, an initial pick-
and-place demonstration is given to the system (red trajec-
tory), consisting of moving the parcel from the left to the
right without the presence of any obstacle (grey prism). The
underlying dynamics defining this primitive skill have been
encoded as a DMP. Due to the inherent generalisation ca-
pabilities of the DMPs, the system is already able to infer
the pick-and-place dynamics from any different starting and
goal positions (blue trajectory), but not able to generalise to
the presence of obstacles. Only after coupling the previously
learnt pick-and-place dynamics and obstacle avoidance be-
haviour together, the system is able to generalise in real-time
to the presence of unexpected obstacles (black trajectory).

Figure 8: Dual-arm pick-and-place of a parcel (brown prism)
in the presence of obstacles (grey prism). Demonstration
(red trajectory), inference to a new position (blue trajectory),
inference with obstacle avoidance (black trajectory).

Framework on Humanoid Robot
The applicability of the framework has been tested with a
particular dual-arm task. The framework has been developed
in YARP to deploy it on a simulated iCub humanoid. Due to
the lack of realistic simulated force sensors and thus, lack
of awareness of the exerted force on the carried object, the
grasp maintenance skill primitive in (13) has been replaced
according to the proposal in (Gams et al. 2014):

ẋCi = K(Ddi −Dri), (14)

where Ddi
is the desired distance from the object’s frame

{O} to the contact point Ci, being i = {L, R}, and Dri
is the current distance. Due to the symmetry of the task,
DdL

= DdR
. Thus, the learning of this primitive skill is re-

duced at setting Ddi
accordingly to the characteristics of the

manipulated parcel and the grasping points.
After this arrangement forced by the simulated nature of

the experimentation, the pick-and-raise activity was con-
ducted (see Figure 9). Such a task consists of picking a
parcel from the table and raising it with certain dynamics
(red trajectory), while avoiding obstacles and ensuring grasp
maintenance. iCub performed the described dual-arm task

67

(a) (b)

Figure 9: iCub humanoid robot (Metta et al. 2008) picking
a parcel and raising it with specific dynamics (red trajec-
tory) to a goal configuration (red star). (a) Following the
task dynamics previously learnt from a human demonstra-
tor. (b) Modifying the task dynamics in real-time to avoid
an obstacle (blue cross). Grasp maintenance is successfuly
ensured in both cases by the corresponding primitive skill.

in two different contexts. First, with the absence of obsta-
cles, where the robot can move the parcel with the desig-
nated dynamics (see Figure 9(a)). Second, with the presence
of unexpected obstacles (blue cross), where the robot had to
replan the trajectory to achieve the goal configuration (see
Figure 9(b)). Despite the simplicity of the used primitive
skill to ensure grasp maintenance, the trials were success-
ful: both end-effectors were accurately synchronised so the
handled parcel was neither released nor exposed to stress.

These results show that iCub has been able to perform
the pick-and-place task even in the presence of an unex-
pected obstacle, after learning three primitive skills individ-
ually from a human demonstrator. This fact raises expec-
tations about the degree of similarity that iCub’s final be-
haviour might have with the demonstrator’s behaviour under
the same conditions. Analysing this similarity is of interest
to the human-robot interaction (HRI) community, since it
can contribute to enhancing the acceptability and compati-
bility of robots in human workspaces (Ajoudani et al. 2017).
An alternative for conducting this study consists of record-
ing some samples of the robotic and human approach to
quantify their deviation with the Kullback-Leibler (KL) di-
vergence statistic. The lower this indicator is, the higher the
chances are that these two agents have similar behaviours.
Such a study is left for future work.

FINAL REMARKS AND FUTURE WORK
This work has presented a novel framework which endows a
dual-arm system with real-time, robust and less task-specific
manipulation capabilities. Such a framework is twofold:
(i) learns from human demonstrations to create a library
of primitive skills, and (ii) combines such knowledge to
confront challenging unfamiliar scenarios with human-like
manipulation capabilities. Unlike the framework of motion
primitives in (Pastor et al. 2009), the proposed approach
handles primitive skills for dual-arm manipulation purposes
while still being able to combine different primitives at

the same time. This feature is what differentiates the cur-
rent work from similar ones (Zöllner, Asfour, and Dillmann
2004; Topp 2017). The evaluation conducted on the iCub
humanoid suggest the proposal’s suitability for robust dual-
arm manipulation, yet with some room for improvement.

The framework is not restricted to the presented experi-
mental evaluation nor platform. Any system able to retrieve
proprioception information can benefit from this work.
Moreover, any primitive skill that might be required for
dual-arm manipulation can be included in the framework’s
library. The application case reported in this manuscript ex-
emplifies this fact by considering, among other primitive
skills, an obstacle avoidance behaviour which steers around
obstacles in real-time. The desired reactivity of this obstacle
avoidance behaviour is learnt from human demonstrations.

Future work will significantly extend the library of prim-
itive skills such that more tasks and scenarios involving
challenging dual-arm manipulation tasks can be addressed
within the framework. Action selection will be integrated to
automatically select from the framework’s library the nec-
essary set of skills to address a specific task. Apart from
the task itself, surrounding environment and characteristics
and constraints of the object to manipulate might need to be
considered. Finally, imminent efforts will focus on learning
force-dependant primitive skills, such as the grasp mainte-
nance one, on the real iCub humanoid robot, as well as eval-
uating the entire framework on such platform.

ACKNOWLEDGMENTS
This work has been partially supported by ORCA Hub
EPSRC (EP/R026173/1) and consortium partners.

References
Ajoudani, A.; Zanchettin, A. M.; Ivaldi, S.; Albu-Schäffer,
A.; Kosuge, K.; and Khatib, O. 2017. Progress and prospects
of the human–robot collaboration. Autonomous Robots 1–
19.
Akgun, B.; Cakmak, M.; Jiang, K.; and Thomaz, A. L. 2012.
Keyframe-based learning from demonstration. International
Journal of Social Robotics 4(4):343–355.

Ardón, P.; Pairet, È.; Ramamoorthy, S.; and Lohan, K. S.
2018. Towards robust grasps: Using the environment se-
mantics for robotic object affordances. In AAAI Fall Sym-
posium. Reasoning and Learning in Real-World Systems for
Long-Term Autonomy. AAAI Press.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Bajcsy, A.; Losey, D. P.; O’Malley, M. K.; and Dragan, A. D.
2018. Learning from physical human corrections, one fea-
ture at a time. In Proceedings of the 2018 ACM/IEEE In-
ternational Conference on Human-Robot Interaction, 141–
149. ACM.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Springer hand-
book of robotics. Springer. 1371–1394.

68

Dautenhahn, K., and Nehaniv, C. L. 2002. The correspon-
dence problem. In Imitation in Animals and Artifacts, MIT
Press. MIT Press.
Fajen, B. R., and Warren, W. H. 2003. Behavioral dynamics
of steering, obstable avoidance, and route selection. Journal
of Experimental Psychology: Human Perception and Perfor-
mance 29(2):343.
Gams, A.; Nemec, B.; Ijspeert, A. J.; and Ude, A. 2014.
Coupling movement primitives: Interaction with the envi-
ronment and bimanual tasks. IEEE Transactions on Robotics
30(4):816–830.
Guenter, F.; Hersch, M.; Calinon, S.; and Billard, A. 2007.
Reinforcement learning for imitating constrained reaching
movements. Advanced Robotics 21(13):1521–1544.
Hoffmann, H.; Pastor, P.; Park, D.-H.; and Schaal, S. 2009.
Biologically-inspired dynamical systems for movement gen-
eration: automatic real-time goal adaptation and obstacle
avoidance. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 2587–2592. IEEE.
Ijspeert, A. J.; Nakanishi, J.; Hoffmann, H.; Pastor, P.; and
Schaal, S. 2013. Dynamical movement primitives: learning
attractor models for motor behaviors. Neural computation
25(2):328–373.
Metta, G.; Sandini, G.; Vernon, D.; Natale, L.; and Nori, F.
2008. The icub humanoid robot: an open platform for re-
search in embodied cognition. In Proceedings of the 8th
workshop on performance metrics for intelligent systems,
50–56. ACM.
Montesano, L.; Lopes, M.; Bernardino, A.; and Santos-
Victor, J. 2008. Learning object affordances: from sensory-
motor coordination to imitation. IEEE Transactions on
Robotics 24(1):15–26.
Nicolescu, M. N., and Mataric, M. J. 2003. Natural methods
for robot task learning: Instructive demonstrations, general-
ization and practice. In Proceedings of the second interna-
tional joint conference on Autonomous agents and multia-
gent systems, 241–248. ACM.

Pairet, È.; Hernández, J. D.; Lahijanian, M.; and Carreras,
M. 2018. Uncertainty-based Online Mapping and Mo-
tion Planning for Marine Robotics Guidance. In Intelligent
Robots and Systems (IROS), 2018 IEEE/RSJ International
Conference on. IEEE.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning from
demonstration. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 763–768. IEEE.
Rai, A.; Meier, F.; Ijspeert, A.; and Schaal, S. 2014. Learn-
ing coupling terms for obstacle avoidance. In Humanoid
Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on, 512–518. IEEE.
Smith, C.; Karayiannidis, Y.; Nalpantidis, L.; Gratal, X.; Qi,
P.; Dimarogonas, D. V.; and Kragic, D. 2012. Dual arm
manipulation: A survey. Robotics and Autonomous systems
60(10):1340–1353.
Topp, E. A. 2017. Knowledge for synchronized dual-arm

robot programming. In AAAI Fall Symposium Series 2017.
AAAI Press.
Ude, A.; Nemec, B.; Petrić, T.; and Morimoto, J. 2014. Ori-
entation in cartesian space dynamic movement primitives. In
Robotics and Automation (ICRA), 2014 IEEE International
Conference on, 2997–3004. IEEE.
Zöllner, R.; Asfour, T.; and Dillmann, R. 2004. Program-
ming by demonstration: dual-arm manipulation tasks for hu-
manoid robots. In IROS, 479–484.

69

Using hierarchical expectations grounded in perception for reasoning

about failures during task execution

Priyam Parashar€, Ashok K. Goel£ and Henrik I. Christensen€
€ Contextual Robotics Institute, CSE Department, UC San Diego, 9500 Gilman Drive, La Jolla, CA USA

£ Design & Intelligence Laboratory, College of Computing Georgia Institute of Technology, Atlanta, Georgia USA

[pparasha, hichristensen] @eng.ucsd.edu, ashok.goel@cc.gatech.edu

Abstract

Traditionally, meta-reasoning architectures for planning
have used abstract representations of expectations about the
states of the world. However, embodiment of meta-
reasoning on a robot requires grounding the expectations in
perception. We propose a dual encoding of expectations
based in the concept of occupancy grids. We illustrate this
encoding for the task of designing shapes by block place-
ment on a tabletop.

Introduction

Agent architectures for meta-reasoning typically contain

three levels or types of information processing: an object

level that perceives the world and acts on it; a deliberative

level that makes sense of observations of the world and

plans actions on world, and a meta-level that monitors and

controls the deliberative level through goals and strategies,

failures and repairs, and learning and adaptation. Figure 1

outlines a basic general meta-reasoning architecture. (Cox

2005) provides a review of many meta-reasoning architec-

tures; Cox & Raja (2011) provide a more recent anthology

of projects on meta-reasoning.

 In a meta-reasoning architecture, when an agent reasons

about failures, it first generates expectations about the state

of the world, then compares the observed state of the world

with the expected state, next maps the discrepancy between

expected and observed state (the failure) into one or more

repairs at the deliberative level (Stroulia & Goel 1995;

Murdock & Goel 2008). The recognition of a failure

through a comparison of the expected state and the ob-

served state can be challenging if the observations are

made through low-level sensors and the expectations are

encoded in terms of abstract knowledge representations.

Meta-reasoning architectures sometimes use specialized

procedures to address this problem (Stroulia & Goel 1999;

Jones & Goel 2012). For example, the Augur system uses

specially designed “empirical verification procedures” to

map abstract knowledge representations with perceptual

observations (Jones & Goel 2012).

 For our work on robots capable of meta-reasoning (e.g.,

Parashar, Sheneman & Goel 2017), we seek a more general

strategy for comparing expected and observed states and

recognizing failures. In robotics, seeing sometimes garners

more information than translating it in terms of the pres-

ence or absence of pre-defined symbols. Grounding the

expectations into perception may have more transparency

between the way a robot and the algorithm operating in its

mind experience the world. Thus, we propose the use of

dual encodings of expectations that include low-level visu-

al encodings along with abstract representations.

In particular, in this article, we tackle the problem of de-

signing shapes on a tabletop via block placements. Such a

task design problem requires visual details beyond symbol-

ic bindings to be actuated. Our approach uses the concept

of functional indexing in meta-reasoning (Stroulia and

Goel 1995) to encode domain knowledge from visual per-

cepts into a grid-map which describes the form of physical

placement of objects on the workspace. We propose a hier-

archical representation for expectations where top-levels

are defined by variables bindings and graph-based block-

level symbol relationships, which can then be traced down

into the hierarchy to find the grid-map encoding of ex-

pected block placement.

Our experimental setup uses the robot Baxter which is

furnished with a library of hand-coded hierarchical task

Figure 1. General Meta-reasoning Architecture

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

70

networks and annotated expectation databases to plan for

drawing shapes. We create example failure cases to com-

pare the meta-reasoning cycle which uses our expectations

against one which only uses the symbolic-level.

The rest of the paper gives a quick introduction of rele-

vant concepts and related literature. Next we explain the

experimental setup and our methodology for extracting

expectation annotations from an image feed. Finally, in the

results section we present a qualitative assessment of our

system for failure recovery where failures are induced by

changing the environmental conditions to mismatch plan

pre-conditions at different depths.

Background

We use Hierarchical Task Networks (Erol, Hendler and

Nau 1994) to represent the plans for drawing shapes out of

blocks. HTNs have two kinds of tasks: primitive actions or

nonprimitive tasks. Each goal task is recursively decom-

posed into sub-tasks until a network of primitive actions

remains, which is the base unit of execution, directly trig-

gering some physical actuation in the agent. Nonprimitive

tasks on the other hand are compound entities which can be

further decomposed into sub-tasks. Each task has a set of

pre-conditions and effects attached to it. Pre-conditions

define in which state can a task be used to decompose a

parent goal and effects depict how the task changes the

state. In order to decompose a task into sub-tasks HTN

uses the following rule: {t} → {t′, t′′}, if pre(t’) = pre(t),
pre(t’’) = eff(t’) and eff(t’’) = eff(t). In our system, each

task is a hand-coded network which can be executed for

drawing the symbol, for example, task A is a network

which when executed forms the shape A on the table using

blocks.

We know from the introduction section above that a me-

ta-reasoner (figure 1) uses expectations to monitor agent’s

processes, records an execution trace and then reasons over

it to find explanations for a failure. A complete meta-

reasoning cycle would: (1) note ambiguities using expecta-

tions, (2) assess the reason for the unexpected scenario,

and (3) reason over the plan trace and environment to

guide a solution. Ambiguities are defined as mismatch be-

tween expected state description and encountered state

during execution, defined by a mismatch vector which is a

zero-vector of the same size as an expectation’s symbolic

description with mismatched variables assigned a 1. Find-

ing explanations for ambiguities is a research area of its

own and we are focusing on a very narrow range, i.e., un-

seen configurations of known objects. The current paper

only addresses the first two stages of this pipeline for the

outlined problem.

Related Work

Another framework relevant to meta-reasoning is that of

goal-driven agents (Muñoz-Avila, et al. 2010) which uses

expectations to monitor failures, and uses failures as an

opportunity to learn new intermediate goals which can help

with the overall task goal. Our work has some similarity

with (Dannenhauer and Muñoz-Avila 2015), since they too

use HTN plans annotated with expectations to conduct

meta-level reasoning over their incomplete plans. Howev-

er, their expectations are of a conceptual form, abstracted

on top of environmental symbols.

 (Stroulia and Goel 1995) use an explicit “structure-

behavior-function” model in to assign blame to various

parts of system’s current design in a failure case. (Jones

and Goel 2012) present “Empirical Verification Proce-

dures” which ground all high-level concepts and axioms

known to the agent in lower-level percepts of a video

game. (Parashar, Sheneman and Goel 2017) combine meta-

reasoning with reinforcement learning using purely visual

form expectations. However, they still use symbolic de-

scriptions or computerized descriptions of visual which

simplifies the perception part of the problem.

In robotics, (Beetz, Mösenlechner and Tenorth 2010)

and (Cox, et al. 2016) have used reasoning over abstracted

concepts to help with low-level manipulation and task

planning in robotics. However, all these methods use the

symbolic layer to integrate reasoning with the environ-

ment.

Approach

Experimental Setup

 We are using Mega BloksTM to draw shape and for sim-

plicity will be referring to a single unit as a block. Our sys-

tem considers two different shapes of blocks: 1x1 and 1x2;

and supports two different colors: blue and red. Goals are

communicated as strings naming the shape to be drawn.

Each block’s physical placement is described by two at-

tributes, its orientation with respect to the table’s axis and

the location of its centroid in the workspace (figure 1).

When blocks are recognized in an image they are indexed

with a number starting at 0, e.g. b0 = {color, shape}. To

describe the placement of two blocks with respect to each

other we use a graph-based format where R0,1 is a trans-

form which when applied to the orientation and location of

centroid of block b0 would result in the centroid of block

b1. A 1x1 sized Mega Blok is of length 6.1 cm and width

6.1 cm, which we denote as lb in the rest of the paper.

 In order to codify the pre-conditions and effects of the

HTN tasks we use a symbolic state descriptions which in-

clude: (a) obgrip: a single-value set depicting the block in

the gripper, φ if empty and {i, j} if a block of color i and

71

shape j is in the gripper, and (b) B: set of pairs depicting

the required blocks and their availability. Other variables

have been abstracted because they are not relevant to cur-

rent discussion. Similarly, the only primitive action is:

place(b, x, y) which subsumes smaller actions within it.

Hierarchical Representation of Expectations

The planning framework is still only using symbolic de-

scriptions since we do not want the high-level planner to be

bogged down by the details of the scene, however if a fail-

ure is noted we need access to a deeper knowledge-base

which is encoded in our expectations. Hierarchical expec-

tations are coded so that the 0th level has block-symbols

describing the resultant composition effect an action and

on the next or 1st level, we have cropped visual grid-maps

centered on each block to capture a locally detailed de-

scription of its placement. Each grid-map is of length

3𝑙𝑏x3𝑙𝑏 to include the block and some of the surrounding

context. The plans are annotated with expectations at the

primitive action level and backtracked to the goal task-

level by assigning the parent task the expectation of last

primitive action in its decomposition.

The expectation extractor uses a top-view image feed of

workspace, via the robot’s eye-in-hand setup, to extract

expectations associated with each stage of the hierarchical

task network. The block-level description of a symbol is

extracted by performing HSV color-thresholding for blob

detection on the tabletop view of the symbol under-

construction. Once a colored blob is found, its shape is

assigned by comparing blob-axis with 𝑙𝑏. Next, the visual

expectation is a cropped centered on the centroid of the

blob, and a quantized view of the form of the blob, i.e., a

grid-map is created. A grid-map is like an occupancy grid

where the occupancy of a cell is decided based on color

presence of the block on a uniformly colored background.

The resolution of grid-map is
1

2
lb .

It is to be noted that such a low-level description would

require domain knowledge to be encoded since its form is

tightly integrated with the goal of the problem itself. In the

current implementation, the HTN plan is executed by an

expert kinesthetically driving the agent to annotate the plan

with resulting “ideal profile” of expectations. After the full

execution, the expectation annotator creates two kinds of

databases, one of annotated plans, denoted as Pa, and an-

other one of the low-level grid-maps and symbolic expec-

tations annotated by the causing action(s) which points

back to the parent task itself, denoted by Edb. If multiple

instantiations collide with the same expectation entry, then

that expectation is annotated with all the corresponding

action labels. The second database is key for a two-way

communication between sensor information and plan

knowledge even when symbol grounding fails during run-

time.

Experimental Results

As one can see by looking at the state description, the fail-

ure can be of logical or physical kind. By physical we

mean misplacement of gripper, wrong state of gripper, etc.

This paper does not address these failures. In the rest of the

paper when we explain our algorithm we are addressing

only the logical failures, i.e., missing blocks, unexpected

configuration of blocks, etc. We broadly classify the fail-

ures into two kinds, one where known entities are observed

in an unseen configuration thus going against the explicit

nature of pre-conditions, and one where unknown entities

are observed breaking the planner’s assumptions. We pre-

sent here an example case where we create both kinds of

failures by manipulating the environment. In this example,

we have provided the agent with the plans for shape A and

H (figure 2), using two 1x1 blocks for H rather than one

1x2 block. We use these shapes because they possess the

kind of form similarities we want our algorithm to identify.

We want to see if our expectations can help in creating

connections between pieces of knowledge already stored in

our database better than symbolic expectations. Next, the

environment is modified to progressively make the failure

more difficult for drawing the shape A. We replace re-

quired 1x2 block with another:

• Block of same shape but different color

• Set of two 1x1 blocks of same color

• Set of two 1x1 blocks of different color

The mismatch vector is used to identify the 1st instance

of action in the invoked task which uses the mismatched

entity, i.e., block in our case. Next, this action’s expecta-

Figure 2. Depiction of Hierarchical Expectations, position of

centroid removed from symbolic description for brevity. At the

top, darker H shape is blue while lighter A is red.

72

tion is retrieved from 𝑃𝑎 and a nearest-neighbor algorithm

is invoked to find ranked matches from 𝐸𝑑𝑏 . We compare

the entries retrieved by symbolic matching and grid-map

matching to qualitatively assess the usefulness of our hier-

archical expectation representation.

Results and Discussion

Our results are summarized in table 1 and compare the

grid-map retrievals against symbol expectation matching.

The most significant result is shown in row 3 where due to

functional encoding of grid-maps its matches were able to

search for a visual similarity of form unlike symbolic

matching. For row 2, neither found a match since no shape

uses {1x1, red} blocks in the current HTN plan library.

Our approach lends itself naturally to hybrid execution

architectures where reactive learners manipulate raw-data

and work in synchrony with deliberative planners which

rely on some heuristic or some other form of domain

knowledge. While it is easy to think of meta-reasoner as

only an additional layer, its strength lies in enabling trading

of valuable information across these two layers. It is this

strength of meta-reasoner to form a global view which we

believe will be a valuable addition to the long-term auton-

omy literature in robotics. Specifically, its across-event

reasoning can augment the strength of episodic perfor-

mance exhibited by reactive learners and task-oriented

planners.

Conclusion

We presented in this paper dual encoding of expectations

used in meta-reasoning to ground abstract representations

of world states within perceptual encodings. We performed

an experiment by changing our task environment to break

pre-conditions coded for the required task and compared

the visual expectations against the abstract expectations to

see which form can help in recognizing failure as a first

step towards failure recovery. Our results match our hy-

pothesis: by encoding functional and visual form of the

world within expectations, the meta-reasoner can make

better connections within its knowledge base.

References

Beetz, M., L. Mösenlechner & M. Tenorth. 2010. CRAM - A
Cognitive Robot Abstract Machine for everyday manipulation in
human environments. IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1012-1017.

Cox, M.. 2005. Field Review: Metacognition in Computation: A
Selected Research Review. Artif. Intell. 169: 104-141.Cox, M. ,
Z. Alavi, D. Dannenhauer, V. Eyorokon, H. Muñoz-Avila & D,
Perlis. 2016. MIDCA: A Metacognitive, Integrated Dual-Cycle
Architecture for Self-Regulated Autonomy. AAAI. 3712-3718.

Dannenhauer, D & H. Muñoz-Avila. 2015. Goal-Driven
Autonomy with Semantically-Annotated Hierarchical Cases.
Case-Based Reasoning Research and Development, 88-103.

Erol, K., J. Hendler & D. Nau. 1994. HTN planning: Complexity
and expressivity. AAAI. 1123-1128.

Jones.,J. & A. Goel. 2012. Perceptually grounded self-diagnosis
and self-repair of domain knowledge. Knowledge-Based Systems
27: 281-301.

Muñoz-Avila, H., U. Jaidee, D. Aha & E. Carter. 2010. Goal-
Driven Autonomy with Case-Based Reasoning. Case-Based
Reasoning. Research and Development, pp. 228-241.

Parashar, P, B. Sheneman & A. Goel. 2017. Adaptive Agents in
Minecraft: A Hybrid Paradigm for Combining Domain
Knowledge with Reinforcement Learning. In Procs AAMAS-
2017, pp. 86-100.

Stroulia, E, & A. Goel. 1995. Functional representation and
reasoning for reflective systems. Applied Artificial Intelligence 9:
101-124.

Stroulia, E., & Goel, A. 1999. Evaluating Problem-Solving Meth-
ods in Evolutionary Design: The Autognostic Experiments. Hu-
man-Computer Studies 51:825-847, 1999.

Type of Replacement Affected Action-Exp Pair Grid-map Match Symbolic Match

1x2, red → 1x2, blue

b0 = {1x2,red} at 90o

b4 = {1x2,blue} at 90o b4 = {1x2,blue} at 90o

1x2, red → 1x1, red +

1x1, red

b0 = {1x2,red} at 90o

None None

1x2, red → 1x1, blue +

1x1, blue

b0 = {1x2,red} at 90o

b2 = {1x1,blue} at 0o

None

Table 1. Summary of Match results. The white square shows which block’s resultant placement expectation in shape H was matched

73

Partial Policy Re-use in Connected Health Systems

Matthew Saponaro and Keith Decker

Abstract

We examine Probabilistic Partial Policy Reuse (PPR) for the
purposes of developing tailored coaching strategies in the
Coach-Trainee Problem (CTP). Policy reuse (PR) aims to im-
prove a reinforcement learning agent by guiding exploration
with past similar problems’ learned policies. PPR extends
probabilistic policy reuse that transfers only relevant parts of
a policy for new problems. We explore PPR in the context of
a human CTP where a coaching agent must develop a coach-
ing strategy for the human trainee in order for the trainee to
efficiently solve their problem (e.g. lose weight). In human
CTPs, coach training data is limited because collecting too
much data may annoy/discourage/harm the human trainee. In
this paper, we present a decision tree-based algorithm, DT-
partition, to identify partitions in the state space based on the
problem’s features, and also examine the effects of group-
ing problem meta-data (i.e. pruning the decision tree) on CTP
performance. Particularly, we demonstrate that PPR improves
task library generation and expert policy utilization compared
with policy reuse.

Introduction
Wearable devices, such as smart watches, allow people to
monitor their daily behaviors. Current population estimates
of accelerometer-derived data indicate nearly 90% of US
adults are insufficiently active and are sedentary for over half
of all waking hours (55% or 7.7 hours/day) (Tucker, Welk,
and Beyler 2011; Troiano et al. 2008; Matthews et al. 2008).
Smart coaches, hosted/integrated with wearable devices, can
improve physical activity by nudging their users to do ex-
ercise. Unfortunately, most commercial smart coaches only
provide general intervention strategies and don’t make use
of the available information specific to their user. For ex-
ample, Fitbit provides nudges 15 minutes prior to the end
of each waking hour if the wearer does not walk more than
250 steps. Instead, an effective smart coach should take the
context of the wearer into consideration and provide nudges
when the wearer is receptive to the nudge. To create this tai-
lored intervention strategy (i.e. determining when to nudge),
a smart coach may learn when their user is receptive. We re-
fer to learning the intervention strategy as the coach-trainee
problem (CTP). For the purposes of this paper, we assume
learning is done via reinforcement on the human responses.
In order to learn the intervention strategy, the smart coach

can probe the human user with a nudge and observe the be-
havioral response. Learning human behavior in this scenario
is challenging because too many unsuccessful nudges may
result in the smart coach being ignored or not worn. How-
ever, because there are similarities across humans, we can
consider solving a single CTP by using information from
different, previously solved CTPs (i.e. multi-task learning).

In this paper, we examine probabilistic policy reuse (PR)
where past policies are used to guide the exploration of a
new, never-before-seen problem. Unfortunately, as seen with
many multi-task learning problem solutions, reusing past
policies may yield negative transfer. In the human CTP, neg-
ative transfer may result with significant consequences (e.g.
non-wear). PR attempts to avoid negative transfer by devel-
oping a core library of policies, then uses a policy from the
library with a probability based on the utility it achieves an-
nealed over time. In many multi-task learning scenarios, as-
pects of learning problems may be associated with a set of
common features. In human coaching domains, humans with
common traits often share similar behaviors. For example,
many graduate students stay up late, while most preschool-
ers go to bed early. In a reinforcement learning context, these
problem features may affect the underlying reward function
or transition model of the problem. For the purposes of this
paper, we assume that our CTP problem features are the
trainee’s accessibility to the gym, park, and unhealthy food
options which are known contributors to a person’s exercise
habits. The set of problem features in a particular multi-task
learning scenario are specific to the domain. For example, in
a Pacman learning environment, the problem features may
be the number and difficulty of the ghosts. In human coach-
ing domains, parts of an intervention strategy may be use-
ful to many different types of behavioral profiles but the full
strategy may include some useless or harmful nudges to par-
ticular individuals. Through an indirect relationship, the so-
lutions to learning individuals’ coaching strategies are influ-
enced by these problem features.

In this paper, we examine the effects of problem features
on our CTP reinforcement learning problem solutions in or-
der to more effectively develop smart coaches. First, we de-
velop an algorithm to identify the subset of states controlled
by the problem features (i.e. state space partitions) based on
previously solved problems. Second, we develop a library of
partial policies, where a partial policy is a policy for a sub-

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

74

set of states. Lastly, we examine how to integrate the partial
policy library into the exploration of a new problem. The key
benefit of partial policy reuse is that it captures the most rele-
vant parts of the policy, rather than using irrelevant parts of a
whole policy that resulted in net positive transfer. Addition-
ally, completed partial policies could be used immediately
without learning the whole policy. Finally, the decision trees
generated by our algorithm could be initially developed by a
human expert rather than computed strictly from the source
tasks as presented in this paper. A human expert (e.g. fitness
coach) with domain specific knowledge (e.g. what types of
individuals respond well to different intervention strategies)
can effectively provide initial solutions. In the human coach-
ing domain, initial human data may be scarce so a human ex-
pert can effectively jump start the proposed algorithms (i.e.
build the decision trees for DT-partition).

The remainder of this paper is outlined as follows: In sec-
tion 2, we discuss the related work done in multi-task learn-
ing. In section 3, we discuss our problem definition. In sec-
tion 4, we introduce the specific problem that we are trying
to address. In section 5, we discuss our partial policy reuse
algorithms. In section 6, we describe our experimental setup,
results, and analysis. Finally, we conclude our work and dis-
cuss our next steps in section 7.

Related Work
In many multi-task learning domains, meta-data regarding
problem features may describe the types of problems previ-
ously learned (Sinapov et al. 2015; Rosman, Hawasly, and
Ramamoorthy 2016). For example, in the coaching domain,
occupation and BMI may influence a person’s ability to do
moderate exercise throughout the day (e.g. waitresses walk
around the restaurant while at work whereas graduate stu-
dents must sit in front of a computer all day). Sinapov et al.
use multi-task meta-data to develop a M5 model tree to esti-
mate the transfer benefit from source to target task (Sinapov
et al. 2015). Policies of the highest estimated benefit source
tasks were directly used for the targets. Unfortunately, their
approach requires a significant amount of data (i.e. solved
problems) to develop their trees which makes it infeasible
in the human coaching domain. In this paper, we attempt to
use the problems’ meta-data to a develop decision tree for
each state to identify which parts of the solutions’ (i.e. par-
tial policies) state space are controlled by which problem
features and thus useful for transfer. In order to address the
training data issue, we extend Fernandez et al.’s work (Fern-
ndez, Garca, and Veloso 2010). Fernandez et al. develop a
policy reuse algorithm for guiding policy exploration for re-
inforcement learning problems; however, Fernandez et al.’s
problems do not have meta-data regarding problem features.
Particularly, policy reuse uses a Boltzmann exploration strat-
egy on past solved policies weighting the use of a policy
based on how well it did to solve the new problem. In this
paper, we address a common issue found in both of these
works—irrelevant/not useful parts of the source tasks’ poli-
cies are being transferred. Because our state space partition-
ing algorithm identifies relevant parts of the solution based
on the problem features, we improve transfer effectiveness.
Furthermore, we extend Fernandez et al.’s Boltzman explo-

ration to partial policies which then improves training data
utilization. Finally, we extend Fernandez et al.’s algorithm
to identify the core policy library to identify a core partial
policy library.

In reinforcement learning scenarios, deep architectures
typically require substantial data to train (Glatt, Da Silva,
and Costa 2016). In human coaching domains, training data
is limited. Furthermore, existing deep architectures require
completed solutions prior to transfer. Deep architectures like
ADAAPT and Actor-mimic network use neural networks to
determine how to do transfer; however, decision trees pro-
vide meaningful descriptions that a domain expert (e.g. hu-
man fitness coach) may utilize to jump start agent learn-
ers (Parisotto, Ba, and Salakhutdinov 2015; Rajendran et al.
2015). Additionally, attribution of problem features to so-
lutions can be easily identified and later used for feedback
to the human fitness coaches to update then guide coaching
agent learners’ domain knowledge (both jump start and on-
line).

In this paper, we make several assumptions regarding
the human model that are commonly found in the litera-
ture (Saponaro, Wei, and Decker 2017; Muntaner, Vidal-
Conti, and Palou 2015; Pavel et al. 2015). The goal for this
coaching system is to provide a tailored intervention strategy
for each trainee since general strategies tend to do poorly
(op den Akker, Jones, and Hermens 2014). Trainees in this
system are assumed to be either in the contemplation, prepa-
ration, or action phases of the trans-theoretical model of be-
havior change where trainees are thinking about and/or at-
tempting to make a behavioral change by educating or tak-
ing action in their exercise regimen (Prochaska 2013). Fur-
thermore, we provide trainees with just-in-time and adaptive
nudges precisely when trainees are susceptible for change
(in the moment), rather than scheduled. We consider trainees
persisting in free-living conditions, as opposed to laboratory
controlled environments (Suay and Chernova 2011). Fur-
thermore, in this paper, we only consider when to provide
nudges for activity. We do not consider the intention, con-
tent, or representation of the nudge due to the complexity
of the system (op den Akker et al. 2015). Instead of mod-
eling the fine-grained detail such as GPS location and heart
rate, we abstract the human state into general categories that
are meaningful across trainees, but still relevant and useful.
For example, numerical GPS location would be categorized
meaningful contexts such as park and gym. In this paper,
we consider the impulse model proposed by Hoffman et al.
(Hofmann, Friese, and Strack 2009). In Hoffman et al., hu-
mans were effectively modeled by blending a habit MDP
and impulse MDP together. Particularly, trainees will either
react or not to nudges to do exercise and learn the correct
evaluations of states due to being nudged. Furthermore, we
assume our trainees follow the markov assumption; though,
a semi-markovian model can be studied to improve accuracy
(Pavel et al. 2015), we chose to simplify our human models
to an MDP in order to compare our work with the other ma-
chine learning literature.

75

Problem Definition
We demonstrate our contributions in a multi-task rein-
forcement learning scenario as described by Sinapov et al.
(Sinapov et al. 2015). We assume the underlying problem
is represented as a Markov Decision Process (MDP). An
MDP is a tuple, 〈S,A, T,R〉, where S is the set of states
S = {s1, s2, s3, . . . , sn}, A is the set of actions, T is the
stochastic transition function T : S × A × S → R, and R
is the reward function R : S → R. The agent learner does
not have access to T and R. We assume our reinforcement
learning problems have the same domain, D = 〈S,A, T 〉
and differ only by reward function. A particular reinforce-
ment learning problem is defined as Ωi = 〈D,Ri〉. Each
Ωi is associated with a feature vector, Fi = [f1, f2, . . . fm],
such that there is an unknown and stochastic relationship be-
tween Fi and Ri.

An episode, k, of Ωi starts with the agent located in an ini-
tial state and ends when the agent reaches a goal state (ter-
minal) or after completingH steps. In this paper, the agents’
goal is to maximize the expected average reinforcement per
episode, W . This goal definition is taken from the defining
policy reuse paper (Fernndez, Garca, and Veloso 2010):

W =
1

K

K∑

k=0

H∑

h=0

γhrk,h (1)

where γ is the discount factor and rk,h is the reward signal
received from step h in episode k. In our specific applica-
tion area, it is important to learn and receive positive reward
early since the human may become annoyed quickly. In or-
der to achieve its goal to optimize W , the agent learner must
develop a policy π : S → A the dictates what action to be
taken in each state. In this paper, we assume there are a set
of source tasks, Tsource ⊂ Ω, that have been completely
solved (i.e optimal policy) and a set of target tasks that have
not been solved Ttarget = Ω−Tsource. In this paper, we ex-
amine developing the policy through Q-learning, though any
learning algorithm to create a policy could be implemented.

The goal of Policy Reuse is to use solutions of previously
solved tasks, to bias the exploration when learning the action
policy of a new task in the same domain (Fernndez, Garca,
and Veloso 2010). In this paper, we extend Fernandez and
Velosa’s policy reuse library and exploration bias strategy
for partial policies. Particularly, we aim to build a partial
policy library that builds a policy library for different parti-
tions of the state space. We formally define the partial policy
library as L = {LSp1 , LSp2 , LSp3 , . . . , LSpl } where LSpi
contains a library of core partial policies associated with the
states Spi ⊂ S. We note that Spi ∈ Sp is a partition of
the state space and that all partitions have unique states (i.e.
Spi ∩ Spj = ∅,∀i 6= j). The contributions of this paper
explore how to effectively create and use this partial policy
library (i.e. PPR). Particularly, we develop a library of rele-
vant partial policies, LSpi = {LSpi1 , L

Spi
2 , . . . , L

Spi
` } where

L
Spi
` is the set of core partial policies relevant to agent group

` in partition Spi . Later in the paper, we describe how to
partition the state space (i.e. determine Sp) based on F for
the purposes of identifying related solution parts (i.e. DT-

partition). We then describe how to build a core partial pol-
icy library, L.

Algorithm 1 DT-Partition
1: procedure DT-PARTITION(Tsource, S,)
2: for si ∈ S do
3: dti ← buildTree (si, Tsource)
4: end for
5: D ← ∅ . initialize state partition trees
6: Sr ← S . unpartitioned states
7: Sp ← ∅ . initialize state space partitions
8: d = 0 . initialize partition index
9: while Sr 6= ∅ do

10: sk ← Sr.pop ()
11: Spd ← Spd ∪ {sk} . initialize partition Spd
12: D ← D ∪ {dtk} . initialize partition’s DT
13: for si ∈ Sr do
14: if DT-equal(dti, dtk) then
15: Spd ← Spd ∪ {si} . add si to partition
16: Sr = Sr − {si}
17: end if
18: end for
19: Sp ← Sp ∪ {Spd}
20: d = d+ 1 . increment partition index
21: end while
22: return Sp, D
23: end procedure

a) Task 1

Park
(+1)

Start

Gym
(+1)

Park
(+.9)

Start

Gym
(+.2)

Park
(+.5)

Start

Park
(+.8)

Start

Gym
(+.9)

Park
(+1)

Start

Gym
(+.4)

Candy

Start

Fries

Gym

b) Task 2 c) Task 3

d) Task 4 e) Task 5 f) New Task

Fries
(-1)

Fries
(-.9)

Fries
(-1)

Candy
(-1)

Candy
(-.8)

Candy
(-.3)

Figure 1: Grid-based CTP where a) through e) are source
tasks and f) is the target task.

Grid-CTP
We demonstrate the effectiveness of partial policy reuse in
a grid-based coach-trainee problem (CTP) domain where a
coach must learn where an individual is most likely to do
exercise while not being distracted by their surroundings.

In our grid-based coach-trainee problem, the underlying
MDP can be modeled such that the states, S, are the grid
locations that the trainee can be located, the actions are

76

the nudged direction that the trainee should go, the transi-
tion model represents the trainee’s likeliness to follow the
coach’s nudge, and the reward function, R, is the health ben-
efits achieved by going to a particular location. All trainees
are assumed to have the same transition model—follow the
coach’s advice 90% of the time and wander randomly the
other 10%. The reward function’s are different per problem
and related to the problem features. In this paper, we ex-
amine features related to the trainee’s surrounding location.
Particularly, we examine the following trainee’s accessibil-
ity features: park, gym, candy store, and a fry shop. Candy
shops and fry shops are distractions to the health benefits
achieved at parks and gyms. In figure 1, we show 6 grid-
CTPs. Each grid-CTP have different problem features. For
example, in figure 1 a), the trainee has access to the gym,
park, fry shop, and candy store, but in figure 1 b) the trainee
doesn’t have access to a candy store. Due to the variance in
individual trainees, we assume rewards take a uniform dis-
tribution where health benefits are between 0 and 1 and dis-
tractions are between -1 and 0. If a trainee has no access to
a community utility (e.g. gym), then no reward is given for
that state. For an example, in figure 2 d), the trainee has no
access to a gym. An episode represents a day of the trainee
and the trainee may only go to one community utility; thus,
rewarding states are terminal. We assume there are only 18
steps per episode representing that a person only has 18 wak-
ing hours per day. Furthermore, we assume we have a col-
lection of previously solved CTPs where the coach policy is
complete. In this paper, we attempt to use this past collection
of coach policies to quickly learn a new trainee’s coach’s
policy.

We make several assumptions regarding CTP that do not
affect the contributions of this paper. Particularly, we assume
the transition model is fixed meaning that the trainee is not
changing any behaviors due to incomplete or incorrect per-
ceptions of the world. For example, in the full-CTP, a trainee
may initially highly value eating french fries because they
taste good, but when the coach indicates french fries are un-
healthy, the trainee would update its views on french fries
and avoid them. Furthermore, the coach does not model the
trainee’s readiness to receive an intervention. For example, a
trainee may be busy in the morning and unwilling to do exer-
cise, and therefore ignore whatever the coach says. Finally,
we limit the problem features in this paper to the accessibil-
ity of different physical locations. In the full CTP, problem
features include occupation, body mass index (BMI), age,
social status, community utilities, etc. Though we do not
examine the full problem, the algorithms in this paper can
generalize to the full problem.

Partial Policy Reuse
In policy reuse, a source task policy is used to guide the
exploration when solving a target task. We argue that the
source task’s full policy may include irrelevant/harmful parts
in the target’s problem. For example, all athletes may be
susceptible to nudges in the morning; however, some find
it beneficial to do light exercise at night, while other athletes
find it exhaustively harmful. In this example, there may be
a partition for the day coaching strategies and a partition for

the night coaching strategies. Additionally, we argue that all
source tasks may not be relevant to the target task’s solution.
For example, runners like to run at night because the air is
cool, but weight lifters do not like to lift weights at night be-
cause the gym is dirty from being used during the day. In this
example, using a coaching strategy for a jogger on a runner
may make sense since both like to do exercise at night, but
using the jogger coaching strategy for a weight lifter may
result in negative transfer. Partial policy reuse aims to miti-
gate these issues by determining what are the relevant parts
of the solution to transfer (i.e. DT-partition) and what are the
relevant source task solutions to use when transferring these
partial solutions (i.e. partial-policy library).

DT-Partition
This section explains the DT-partition algorithm. DT-
partition aims to partition the state space based on the simi-
larity of solutions for problems with the same features in or-
der to identify parts of solutions that are relevant for transfer.
We define a state space partition as a set of states Spi ⊂ S
such that a single partition has no overlap of states with any
other partition. The following DT-partition algorithm parti-
tions the states based on the agreement of the source task
policies. See algorithm 1.

Algorithm 2 DT-Compare
1: procedure DT-EQUAL(dti, dtj)
2: if nodeType (dti) 6= nodeType (dtj) then
3: return False . leaf vs. internal node
4: else if isLeaf (dti) then
5: return dti.tasks == dtj .tasks
6: else
7: if dtisplitAttribute 6= dtj .splitAttribute then
8: return False
9: else

10: isEqual← True
11: for chld ∈ children do
12: subEql← DT-equal (dti.chld, dtj .chld)
13: isEqual← isEqual && subEql
14: end for
15: return isEqual
16: end if
17: end if
18: end procedure

For each state, si, develop a decision tree, dti, using
Ωt ∈ Tsource as the instances such that Ft are the features
and πΩt (si) is the class value. For the purposes of this paper,
we use the C4.5 decision tree algorithm. Then, group states
together (i.e. label as a partition) such that the decision trees
are equivalent in structure. We assert that two decision trees
are equivalent if the internal nodes have the same split points
and the source tasks that reach the leaves are the same. See
algorithm 2. We note that the leaf classifications may be dif-
ferent across trees, but as long as the instances that reach
the node (i.e. Ω) and their class values are in agreement (i.e.
πΩt (si) = πΩu (si)), we consider the trees equivalent.

77

In our experiments section, we analyze how pruning the
tree structure (i.e. decreasing number of partitions) effects
transfer learning outcome. We note that if a tree were com-
pletely pruned, the algorithm would produce a single parti-
tion equivalent to S and thus replicate policy reuse.

Partial-Policy Library

The partial policy library consists of relevant core policies
for each partition of the state space for the purposes of effec-
tively transferring knowledge. We describe how to develop
a partial policy library in algorithm 3.

Algorithm 3 Build-Partial-Policy-Library
1: procedure BUILD-PP-LIBRARY(Tsource, S, θ)
2: L← ∅
3: Sp, D ← DT-partition (Tsource, S)
4: for i ∈ {0, . . . , |Sp|} do
5: LSpi ← ∅
6: for ` ∈ Di.leaves do
7: L

Spi
l ← add-core-PP (Spi , `.Ω, θ)

8: LSpi ← LSpi ∪ {L
Spi
l }

9: end for
10: L← L ∪ {LSpi}
11: end for
12: end procedure

In our algorithm, we partition the state space using a par-
titioning algorithm like the one previously discussed. For
each partition Spi , we use the corresponding partition’s de-
cision tree structure, Di, to determine the source tasks for
each relevant group `. Instances at each leaf in Di are con-
sidered within the same relevant source task group. In our
experiments described later, we examine pruning the tree’s
structure to show the effects of available source tasks and
relevancy for transfer.

As described in algorithm 5, using the relevant source
tasks at each leaf, Ω

Spi
` , we build the core partial library for

L
Spi
` . For a particular source task, Ωm, we add its corre-

sponding policy, πm, to the library if the percent increase
in expected performance (i.e. ŵm) of using its policy com-
pared with the expected performance of the best policy in
the library is greater than a threshold, θ. In order to estimate
theW , we use the task’s Q-values. It is non-trivial to directly
compute the partial policies expected performance because
the performance is dependent on the full policy.

We note that when we fully prune the tree’s structure
when determining source task selection, all source tasks are
used. Furthermore, when we prune both the state space par-
tition tree and the source task selection tree, we reduce our
partial policy reuse algorithms to the defining policy reuse
algorithm as defined in (Fernndez, Garca, and Veloso 2010).
Furthermore, though we present a decision tree based algo-
rithm that uses agreement between policies, other optimiza-
tions that better partition the state space and identify relevant
source tasks may be utilized.

Algorithm 4 Ωnew Learning from the partial policy library
1: procedure LEARN(Ωnew, L,K,H, v,∆τ)
2: Qnew (s, a) = 0,∀s ∈ S, a ∈ A
3: USpi ,n = 0,∀i : Spi ∈ Sp,∀n : π

Spi
n ∈ LSpi`

4: Wspi ,n
= 0

5: τ = 0
6: for k = 1 to K do
7: s← sstart
8: φ← φinit
9: πSpi ← πSpi ,n with probability e

τ·Wspi ,n∑
o
e
τ·Wspi ,o

10: Wk = 0
11: for h = 1 to H do
12: Spi ← Spk s.t. s ∈ Spk
13: With probability φ, a = πSpi
14: With probability 1−φ, a = ε-greedy (Ωnew)
15: s′ ← next state, rk,h ← reward signal
16: Wk ←Wk + γh · rk,h
17: update Qnew and πnew
18: φ← φ · v
19: s← s′

20: end for
21: τ ← τ + ∆τ
22: USpi ,n ← USpi ,n + 1,∀Spi ∈ Sp
23: Wspi ,n

← Wspi
,n·(Uspi ,n−1)+Wk

Uspi ,n
,∀Spi ∈ Sp

24: end for
25: end procedure

Algorithm 5 Add Core Partial Policies

1: procedure ADD-CORE-PP(Spi ,Ω
Spi
l , θ)

2: L
Spi
l ← ∅

3: for Ωm ∈ Ω
Spi
l do

4: πm ← Ωm.π
5: Ŵπm ←

∑
sj∈Spi

Qm (sj , πm (sj))

6: Ŵbest = max
πk∈L

Spi
l

∑
sj∈Spi

Qm (sj , πk (sj))

7: if Ŵπm − Ŵbest > θ
∣∣∣Ŵbest

∣∣∣ then

8: L
Spi
l ← L

Spi
l ∪ {πm}

9: end if
10: end for
11: return LSpil
12: end procedure

78

Partial-Policy Reinforcement Learning
In this section, we describe how an agent may use the par-
tial policy library to learn a policy for a new task Ωnew. See
algorithm 4. Partial Policy reinforcement learning extends
Policy Reuse reinforcement learning by simultaneously us-
ing multiple partial policies,πSpi , to guide the agent learner
for a particular episode, k.

For a particular episode, k, an agent chooses a partial pol-
icy to execute in each partition, Spi , of the state space. A par-
tial policy, πSpi ,n ∈ L

Spi
` is chosen from the library based

on the agent learner’s performance, W. A particular partial
policy is likely to be used when the agent has good per-
formance and unlikely to be used when the agent has poor
performance with respect to other partial policies in L

Spi
` .

In the proposed partial policy reinforcement learning algo-
rithm, the partial policy’s individual performance,WSpi ,n

, is
effected by the combined performance of all partial policies;
however,WSpi ,n

will eventually converge to the true evalua-
tion after collecting enough data. We believe this problem of
attributing individual partial policy performance is an open
area for researchers to address in order to improve partial
policy usages. For a particular step, h, the agent can either
use its own policy, πnew, or use the expert partial policy,
πSpi . When the agent learner uses the expert partial policy,
the agent passively learns and updates its Q-table based on
the expert’s action and the reward signal the learner received.
The learning agent anneals the temperature parameter, φ,
that controls the probability of using the expert’s policy with
respect to the number of steps taken. Additionally, the agent
learner anneals the reuse parameter, τ , over the episodes and
increases the likelihood to choose the best partial policies
based on their performances.

In domains with limited source tasks, our partial policy
library algorithm may result in state partition libraries (i.e.
L
Spi
`) that do not have any expert policies. In this particular

scenario, either the tree used to generate the libraries should
be pruned to impose a larger source task library or the agent
learner can simply use its own policy without the guidance
of an expert.

Experiments
We demonstrate the effectiveness of our algorithms in the
Grid-CTP domain. Particularly, we demonstrate the effects
of our state space partitioning algorithm, DT-partition, on
coach learning performance and the effects of the relevance
of source tasks on our coach’s performance. The algorithms
presented in this paper effectively target two questions: 1)
How much of the state space can be transferred in order to
effectively guide the new learner? 2) Which tasks are rele-
vant enough to be used when guiding the new learner? In
order to demonstrate that our algorithms address these ques-
tions, we present the following experiments. The first ex-
periment prunes the trees used to make the state partitions
in DT-partition. By pruning these trees, the partial policies
become larger (i.e. |Spi | increases). The second experiment
prunes the decision trees after creating the state space par-
titions; thus, increasing the number of the expert policies in

10 20 30 40 50 60
Episode

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

W

Average Gains per Episode

Q-Learning
PR
2-PPR
4-PPR

Figure 2: PPPR state space partition decision tree was
pruned to have a height of 2 (i.e. 2-PPR) and 4 (i.e. 4-PPR)

the source task library.
We generated 160 source tasks—10 repetitions of all com-

binations of our 4 Grid-CTPs’ problem features (i.e. acces-
sibility to gym, park, candy store, fry shop), where the re-
ward functions of each task take on a uniform distribution
between 0 and 1 for states with health benefits (i.e. gym
and park) and 0 and -1 for health distractions (i.e. candy and
fries). We then use these 160 source tasks as experts to guide
a coach learner to solve a new task. In order to efficiently use
these source tasks, we first build the partial policy library
as described above in algorithm 3. In order to add a partial
policy to the library, the partial policy needs to have a 10%
performance increase (i.e. θ = .1). We then use the partial
policy library to execute a coach learner on a new problem as
described in algorithm 4. The new problem has accessibility
to the gym, fry shop, and candy store, but no accessibility to
the park. Our coach learner’s initial φ is 1, and cools down
by 1% each step (i.e. v = .01). The coach expert preference
temperature parameter, τ increases linearly by 1 unit every
episode (i.e. ∆τ = 1); thus 1

τ decreases and prefers better
experts in future episodes. We execute the learning phase for
the agent coach 100 times and take the average performance
across 100 runs for each episode.

Increasing the State Partition Size
In this experiment, we build the full decision trees for each
state used to partition the state space, then prune them to
heights of 0, 2, and 4 before partitioning the state space in
algorithm 1. By pruning the trees, we decrease the entropy
of agreement of policies in the leaves. We note that when
we prune the trees to a height of 0, the algorithm reduces to
policy reuse. We show the performance of the coach learning
using partial policy reuse when the heights of the trees are 2
(i.e. 2-PPR), and 4 (i.e. 4-PPR) in figure 2.

We see that partial policy reuse, when building the full
tree, does best compared against standard Q-learning and
Policy Reuse. Interestingly, the relationship between the

79

height of the tree and the performance is not linear. Particu-
larly, the decision trees with height 2 do worse than when the
heights are 0 and 4. We hypothesize that the decision trees
of height 2 perform poorly with respect to the other heights
because the useful amount of knowledge per partition was
low. Particularly, we believe there were too many decisive
states (i.e. parts of trajectories that led to reward), yet not
enough useful knowledge gained from the experts in these
partitions.

Increasing the Quantity of Source Tasks in Library

In this experiment, we partition the state space using algo-
rithm 1; however, after we’ve determined the state space par-
tition, we prune the decision trees to heights of 0, 2, and 4
before developing the core partial policy library. For a par-
ticular partition, pruning the tree increases the number of
source tasks used in the partial policy library for that parti-
tion. When plotting the results of average performance per
episode, We get similar results as shown in figure 2 where
the fully developed tree performs best, while the height of
2 tree performs only better than Q-learning. We hypothesize
the that partitioning algorithm may not be yielding effective
partial expert policies in some of the partitions.

Conclusion

In this paper, we demonstrate the effectiveness of probabilis-
tic partial policy reuse in the CTP domain. In human learn-
ing domains where training data is limited and costly, agents
need to quickly learn a solution in order to not be seen as an-
noying or irrelevant (i.e. low time to threshold). Partial pol-
icy reuse allows agent learners to achieve this by partitioning
the state space and using relevant partial policies to solve a
problem. In this paper, we present novel algorithms to parti-
tion the state space, develop a core partial policy library, and
use a partial policy library while learning. Our algorithms
allow for agent learners to learn parts of the state space and
become partial experts (i.e. source tasks) without completely
solving the underlying problem. The partial policy reuse al-
gorithm presented in this paper trades off both the amount of
transferred content and the availability of source tasks with
the relevance of source tasks. In this paper, we examine de-
cision tree based solutions because domain experts (i.e. fit-
ness coaches) may be able to manually provide a structure
based on their expert opinion. For example, in the CTP do-
main, a physical activity coach may notice that occupation is
a strong indicator of group behavior in physical activity. Par-
ticularly, nurses walk often during the day, so nudges may
be useless during the day, but for graduate students, nudges
may be useful during the day. Though we develop partial
policies, individual partial policy performance attribution is
an open question. In realistic human learning systems such
as CTP, a better attribution design may be needed. The work
presented in this paper attempts to improve learning effi-
ciency in order to create tailored interventions strategies in
the human coaching domain; however, our work can also be
applied to other multi-task learning domains.

References
Fernndez, F.; Garca, J.; and Veloso, M. 2010. Probabilistic
policy reuse for inter-task transfer learning. Robotics and
Autonomous Systems 58(7):866 – 871. Advances in Au-
tonomous Robots for Service and Entertainment.
Glatt, R.; Da Silva, F. L.; and Costa, A. H. R. 2016. Towards
knowledge transfer in deep reinforcement learning. In Intel-
ligent Systems (BRACIS), 2016 5th Brazilian Conference on,
91–96. IEEE.
Hofmann, W.; Friese, M.; and Strack, F. 2009. Impulse and
self-control from a dual-systems perspective. Perspectives
on Psychological Science 4(2):162–176.
Matthews, C. E.; Chen, K. Y.; Freedson, P. S.; Buchowski,
M. S.; Beech, B. M.; Pate, R. R.; and Troiano, R. P.
2008. Amount of time spent in sedentary behaviors in the
united states, 2003–2004. American journal of epidemiol-
ogy 167(7):875–881.
Muntaner, A.; Vidal-Conti, J.; and Palou, P. 2015. In-
creasing physical activity through mobile device interven-
tions: A systematic review. Health informatics journal
1460458214567004.
op den Akker, H.; Cabrita, M.; op den Akker, R.; Jones,
V. M.; and Hermens, H. J. 2015. Tailored motivational
message generation: A model and practical framework for
real-time physical activity coaching. Journal of biomedical
informatics 55:104–115.
op den Akker, H.; Jones, V. M.; and Hermens, H. J. 2014.
Tailoring real-time physical activity coaching systems: a lit-
erature survey and model. User modeling and user-adapted
interaction 24(5):351–392.
Parisotto, E.; Ba, J. L.; and Salakhutdinov, R. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning.
arXiv preprint arXiv:1511.06342.
Pavel, M.; Jimison, H. B.; Korhonen, I.; Gordon, C. M.; and
Saranummi, N. 2015. Behavioral informatics and computa-
tional modeling in support of proactive health management
and care.
Prochaska, J. O. 2013. Transtheoretical model of behavior
change. In Encyclopedia of behavioral medicine. Springer.
1997–2000.
Rajendran, J.; Prasanna, P.; Ravindran, B.; and Khapra, M.
2015. Adaapt: A deep architecture for adaptive policy trans-
fer from multiple sources. arXiv preprint arXiv:1510.02879.
Rosman, B.; Hawasly, M.; and Ramamoorthy, S. 2016.
Bayesian policy reuse. Machine Learning 104(1):99–127.
Saponaro, M.; Wei, H.; and Decker, K. 2017. Towards
learning efficient intervention policies for wearable devices.
In Connected Health: Applications, Systems and Engineer-
ing Technologies (CHASE), 2017 IEEE/ACM International
Conference on, 298–299. IEEE.
Sinapov, J.; Narvekar, S.; Leonetti, M.; and Stone, P. 2015.
Learning inter-task transferability in the absence of target
task samples. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
725–733. International Foundation for Autonomous Agents
and Multiagent Systems.

80

Suay, H. B., and Chernova, S. 2011. Effect of human guid-
ance and state space size on interactive reinforcement learn-
ing. In 2011 Ro-Man, 1–6. IEEE.
Troiano, R. P.; Berrigan, D.; Dodd, K. W.; Masse, L. C.;
Tilert, T.; McDowell, M.; et al. 2008. Physical activity in
the united states measured by accelerometer. Medicine and
science in sports and exercise 40(1):181.
Tucker, J. M.; Welk, G. J.; and Beyler, N. K. 2011. Physical
activity in us adults: compliance with the physical activity
guidelines for americans. American journal of preventive
medicine 40(4):454–461.

81

Multi-Fidelity Model-Free Reinforcement Learning with Gaussian Processes

Varun Suryan, Nahush Gondhalekar, Pratap Tokekar
Virginia Tech, USA

Abstract

We study the problem of Reinforcement Learning (RL) us-
ing as few real-world samples as possible. A naive applica-
tion of RL can be inefficient in large and continuous state
spaces. We present a Multi-Fidelity Reinforcement Learning
(MFRL) model-free algorithm that leverages Gaussian Pro-
cesses (GPs) to learn the optimal policy in the real world. In
the MFRL framework, an agent uses multiple simulators of
the real environment to perform actions. With increasing fi-
delity in a simulator chain, the number of samples used in
successively higher simulators can be reduced. By incorpo-
rating GPs in the MFRL framework, further reduction in the
number of learning samples can be achieved as we move up
the simulator chain. We examine the performance of our al-
gorithm through simulations and through real-world experi-
ments for navigation with a ground robot.

Introduction
Reinforcement learning (RL) allows an agent to learn di-
rectly from an environment without relying on exemplary
supervision or complete models of the environment (Sut-
ton and Barto 1998). Recently, there has been a signifi-
cant development in RL applied to learning policies for
robots (Mnih et al. 2015; LeCun, Bengio, and Hinton 2015;
Silver et al. 2016). A major limitation of using RL for learn-
ing with robots is the need to obtain a large number of train-
ing samples. Obtaining a large number of real-world sam-
ples can be expensive and potentially dangerous. In partic-
ular, obtaining negative samples may require the robot to
collide or fail, which is undesirable. The overall goal of our
work is to reduce the number of real-world samples required
for learning optimal policies. In this paper, we show how to
leverage one or more simulators along with real-world sam-
ples to learn a policy for a robot.

We build on the Multi-Fidelity Reinforcement Learning
(MFRL) algorithm from (Cutler, Walsh, and How 2015).
MFRL leverages multiple simulators with varying fidelity
levels to minimize the number of real-world (i.e., high-
est fidelity simulator) samples. The simulators, denoted by

This work has been funded by the Center for Unmanned Aircraft
Systems (C-UAS), a National Science Foundation-sponsored in-
dustry/university cooperative research center (I/UCRC) under NSF
Award No. IIP-1161036 along with significant contributions from
C-UAS industry members.

Figure 1: MFRL framework: The first simulator captures
only grid-world movements of a point robot while the sec-
ond simulator has more fidelity modeling the physics as
well. Control can switch back and forth between the sim-
ulators and real environment which is the third simulator in
the chain. We use the Python-based simulator Pygame as Σ1,
Gazebo as Σ2 and Pioneer P3-DX robot in real-world as Σ3.

Σ1, . . . ,Σd, have increasing levels of fidelity with respect to
the real environment. For example, Σ1 can be a simple sim-
ulator that models only the robot kinematics, Σ2 can model
the dynamics as well as kinematics, and the highest fidelity
simulator can be the real-world (Figure 1).

MFRL differs from transfer learning (Taylor, Stone, and
Liu 2007), where a transfer of parameters is allowed only
in one direction. The MFRL algorithm starts in Σ1. Once it
learns a sufficiently good policy in Σ1, it switches to a higher
fidelity simulator. If it observes that the policy learned in the
lower fidelity simulator is no longer optimal in the higher fi-
delity simulator, it switches back to the lower fidelity simu-
lator. (Cutler, Walsh, and How 2015) showed that the result-
ing algorithm has polynomial sample complexity and mini-
mizes the number of samples required for the highest fidelity
simulator, i.e., the real world, under some technical condi-
tions.

The original MFRL algorithm uses the Knows-What-It-
Knows framework (Li et al. 2011) to learn the transition and
reward functions at each level. The reward and transition for
each state-action pair are learned independently of others.
While this is reasonable for general agents, when planning
for physically-grounded robots, we can exploit the spatial
correlation between neighboring state-action pairs to speed
up the learning.

We use Gaussian Process (GP) regression (Rasmussen
and Williams 2006) as a function approximator to speed
up learning in the MFRL framework. GPs can predict the

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

82

learned function value for any query point, and not just for
a discretized state-action pair. Furthermore, GPs can exploit
the correlation between nearby state-action values by an ap-
propriate choice of a kernel. GPs have been used in conjunc-
tion with policy search methods to obtain optimal policies
in simulation-aided reinforcement learning (Cutler and How
2016; M. Cutler and J. P. How 2015). We take this further
by using GPs in the MFRL setting.

In MFRL, the state-space of Σi is a subset of the state
space of Σj for all j > i. Therefore, when the MFRL al-
gorithm switches from Σi to Σi+1 it already has a policy
(better than naive) for states in Σi+1 \ Σi. Thus, GPs are
particularly suited for MFRL, which we verify through our
simulation results.

Our main contribution in this paper is to leverage GP re-
gression for model-free MFRL by directly estimating the
optimal Q-values (GPQ-MFRL) and subsequently calculat-
ing the optimal policy. We verify the performance of the
GP-based MFRL algorithm through simulations as well as
experiments with a ground robot. Our empirical evaluation
shows that the GP-based MFRL algorithm learns the optimal
policy faster than the original MFRL algorithm using even
fewer real-world samples. The original MFRL work was for
a model-based approach. We extend it to introduce a model-
free version. Model-free algorithms have been used in con-
junction with transfer learning in the past (Taylor, Stone, and
Liu 2007).

The rest of the paper is organized as follows. In the next
section, we present the background on RL and GPs followed
by a survey of related work. Next, we present the GP-MFRL
algorithm (GPQ-MFRL) followed by experimental results
along with comparisons with other MFRL and non-MFRL
techniques. We conclude with a discussion of the future
work.

Background
Reinforcement Learning
RL problems can be formulated as a Markov Decision
Process (MDP): M = 〈S,A,P,R, γ〉, with state space
S, action space A, transition function P(st, at, st+1) 7→
[0, 1], reward function R(st, at) 7→ R and discount fac-
tor γ ∈ [0, 1) (Sutton and Barto 1998; Puterman 2014).
A policy π : S → A maps states to actions. Together
with the initial state s0, a policy forms a trajectory ζ =
{[s0, a0, r0], [s1, a1, r1], . . .} where at = π(st). rt and st+1

are sampled from the reward and transition functions, re-
spectively.

We consider a scenario where the goal is to maximize the
infinite horizon discounted reward starting from a state s0.
The value function for a state s0 is defined as Vπ(s0) =

E[
∑t=∞
t=0 γtrt(st, at)|at = π(st)]. The state-action value

function or Q-value of each state-action pair under policy π
is defined as Qπ(s, a) = E[

∑t=∞
t=0 γtrt+1(st+1, at+1)|s0 =

s, a0 = a] which is the expected sum of discounted rewards
obtained starting from state s, taking action a and following
π thereafter. The optimal Q-value function Q∗ for a state-
action pair (s, a) satisfies Q∗(s, a) = maxπQπ(s, a) =

V∗(s) and can be written recursively as,

Q∗(st, at) = Est+1
[r(st, at) + γV∗(st+1)]. (1)

Our objective is to find the optimal policy π∗(s) =
argmaxaQ

∗(s, a) whenR and P are not known to the agent.
In model-based approaches, the agent learns R and P first
and then finds an optimal policy by calculating optimal Q-
values from Equation 1. The most commonly used model-
based approach is VI (Jung and Stone 2010; Brafman and
Tennenholtz 2002). We can also directly estimate the opti-
mal Q-values (model-free approaches) (Strehl et al. 2006;
Grande, Walsh, and How 2014) or directly calculate the
optimal policy (policy-gradient approaches) (Sutton et al.
2000). The most commonly used model-free algorithm isQ-
learning (Watkins and Dayan 1992). For our GPQ-MFRL
implementation, we use Q-learning to perform the policy
update using GP regression.

In this work, we focus on the model-free version of GP
based MFRL since they are computationally and memory
efficient (Brafman and Tennenholtz 2002).

Gaussian Processes
GPs are Bayesian non-parametric function approximators.
GPs can be defined as a collection of infinitely many random
variables, any finite subset X = {x1, . . . ,xk} 1 of which is
jointly Gaussian with mean vector m ∈ Rk and covariance
matrix K ∈ Rk×k (Rasmussen and Williams 2006).

Let X = {x1, . . . ,xk} denote the set of the training in-
puts. Let y = {y1, . . . , yk} denote the corresponding train-
ing outputs. GPs can be used to predict the output value at a
new test point, x, conditioned on the training data. Predicted
output value at x is normally distributed with mean µ̂(x) and
variance σ̂2(x) given by,

µ̂(x) = µ(x) + k(x,X)[K(X,X) + ω2I]
−1

y, (2)

σ̂2(x) = k(x,x)− k(x,X)[K(X,X) + ω2I]
−1

k(X,x) + ω2,
(3)

where K(X,X) is the kernel. The entry Kxl,xm
gives the

covariance between two inputs xl and xm. µ(x) in Equa-
tion 2 is the prior mean of output value at x.

We use a zero-mean prior and a squared-exponential ker-
nel where Kxl,xm is given by,

Kxl,xm = σ2 exp

(
−1

2

d=D∑

d=1

(
xdl − xdm

ld

)2
)

+ ω2, (4)

σ2, ld and ω2 are hyperparameters that can be either set by
the user or learned online through the training data.

In the GPQ-MFRL algorithm, we use GPs to learn Q-
values. GPs are proved to be consistent function approxi-
mators in RL with convergence guarantees (Melo, Meyn,
and Ribeiro 2008; Chowdhary et al. 2014). A set of state-
action pairs is the input to GP and Q–values are the out-
put/observation values to be predicted.

1Upper and lower bold face letters represent matrices and vec-
tors respectively. Scalar values are represented by a lower-case let-
ter.

83

Related Work
In model-based approaches, GPs are commonly used to
learn transition models for agents moving in the real
world (Dames, Tokekar, and Kumar 2015) and have been
used in RL to learn the transition function (Rasmussen and
Kuss 2003) and the reward function (Deisenroth 2010). GPs
have also been used in model-free approaches for approxi-
mating the Q-values in continuous state-action spaces (En-
gel, Mannor, and Meir 2003). This was extended to the GP-
SARSA algorithm which includes online action selection
and policy improvement steps (Engel, Yaakov and Mannor,
Shie and Meir, Ron 2005). The authors used the posterior
variance to compute confidence intervals around the value
estimate and note that the variance could be used for explo-
ration.

Using multiple approximations of real-world environ-
ments has previously been considered in the litera-
ture (Abbeel, Quigley, and Ng 2006; Taylor, Stone, and Liu
2007; Torrey and Shavlik 2009). (Yao and Doretto 2010)
extended the transfer learning framework for transferring
knowledge from multiple sources. (Yosinski et al. 2014)
show the transfer of features in deep neural networks and
demonstrate that initializing a network with transferred fea-
tures from almost any number of layers can generalize to
fine-tuning to the target dataset. Unlike these methods, the
MFRL algorithm allows for bi-directional switching, where
the agent is allowed to go back to lower fidelity simulator to
gather additional samples.

The MFRL algorithm was introduced by (Cutler, Walsh,
and How 2015) where they showed how to leverage the
model-based RMax algorithm to reduce the number of sam-
ples. Our empirical results demonstrate that the number of
samples for MFRL can be brought further down by leverag-
ing GPs.

Algorithm Description
In this section, we first describe our algorithm. We compare
the proposed algorithm with baseline strategies through sim-
ulations. A flowchart of the proposed algorithm is shown in
Figure 2.

Figure 2: Overview of our model-free algorithm (GPQ-
MFRL). Simulators are represented by Σ1,Σ2, . . . ,Σd.
GPQ-MFRL directly estimates Q-values using GPs.

GPQ-MFRL Algorithm
The agent learns the optimal Q-values using GPs directly,
instead of learning the model first. The underlying assump-

tion is that nearby state-action pairs will produce similar
Q-values. This assumption can also be applied to prob-
lems where the states and actions are discrete but the tran-
sition function implies some sense of continuity. We choose
the squared-exponential kernel because it models the spa-
tial correlation we expect to see in a robot. However, any
appropriate kernel can be used. We use a separate GP per
simulator to estimate the Q-values using only data collected
in that simulator.

Algorithm 1 GPQ-MFRL Algorithm
1: procedure
2: Input: confidence parameters σth and σsumth ; simulator

chain 〈Σ, fidelity parameters β, state mappings ρ〉; L.
3: Initialize: Q̂i = initialize GP for i ∈ {1, . . . , d}; state
s0 in simulator Σ1; i ← 1; change = FALSE.

4: Initialize: t ← 0; Di ← {} for i ∈ {1, . . . , d}.
5: while terminal condition is not met
6: at ← CHOOSEACTION(st, i)
7: if σi(st, at) ≤ σth: change = TRUE
8: if σ (ρi(st), at) > σth and change and i > 1
9: st ← ρi(st), i ← i− 1, continue

10: 〈rt, st+1〉 ← execute action at in Σi
11: append 〈st, at, st+1, rt〉 to Di
12: Yi ← {}
13: for 〈st, at, st+1, rt〉 ∈ Di //batch training//
14: yt ← rt + γmaxaQ̂i (st+1, a)
15: append 〈st, at, yt〉 to Yi
16: Q̂i ← update GPi using Yi
17: if

∑j=t−L
j=t σi(sj , aj) ≤ σsumth and t > L and i <

d
18: st ← ρ−1i+1 (st) , i ← i+ 1
19: change = FALSE
20: end procedure
21:
22: procedure CHOOSEACTION(s, i)
23: for a ∈ A(s)

24: Q(s, a) = Q̂i−1 (ρi(s), a) + βi
25: for k ∈ {i, . . . , d}
26: sk = ρ−1k . . . ρ−1i+2ρ

−1
i+1(s)

27: if σk(sk, a) ≤ σth: Q(s, a) = Q̂k(sk, a)
28: return arg maxaQ(s, a)
29: end procedure

Algorithm 1 gives the details of the proposed framework.
GPQ-MFRL continues to collect samples in the same simu-
lator until the agent is confident about its optimal actions. If
the running sum of the variances is below a threshold (Line
17), this suggests that the robot has found a good policy with
high confidence in the current simulator and it must advance
to the next one (Line 18).

GPQ-MFRL keeps track of the variance of the L most re-
cently visited state-action pairs in the current simulator. If
the running sum of the variances is below a threshold (Line
15), this suggests that the robot is confident about its ac-
tions in the current simulator and can advance to the next
one. In the original work (Cutler, Walsh, and How 2015),

84

the agent switches to the higher fidelity simulator after a cer-
tain number of known state-action pairs were encountered.
In our implementation (Line 7), the model of current envi-
ronment changes if the posterior variance for a state-action
pair drops below a threshold value (i.e., agent has a suffi-
ciently accurate estimate of the transitions from that state).
The algorithm checks if the agent has a sufficiently accu-
rate estimate of optimal Q-values in the previous simulator
(Line 8). Lines 10–15 describe the main body of the algo-
rithm where the agent records the observed transitions in
Di. We update target values (Line 14) for every transition
as more data gets collected in Di (Line 13). The GP model
is updated after every step (Line 16).

The agent utilizes the experiences collected in higher sim-
ulators (Lines 25–27) to choose the optimal action in the cur-
rent simulator (Line 6). Specifically, it checks for the max-
imum fidelity simulator in which the posterior variance for
(s, a) is less than a threshold σth. If one exists, it utilizes the
Q-values from the highest known simulator to choose the
next action in the current simulator. If no such higher simu-
lator exists, the Q-values from the previous simulator (Line
24) are considered to choose the next action in the current
simulator with an additive fidelity parameter β.

GPQ-MFRL performs a batch retraining every time the
robot collects the new sample in a simulator (Lines 13–15).
During the batch retraining, the algorithm updates the target
values in previously collected training data using the knowl-
edge gained by collecting new samples. Then these updated
target values are used to predict the Q-values using GPs
(Line 16). As the amount of data grows, updating the GP can
become computationally expensive. However, we can prune
the dataset using sparse GP techniques (Engel, Yaakov and
Mannor, Shie and Meir, Ron 2005). It is non-trivial to choose
values for confidence bounds but for the current experiments
we chose the σsumth to be ten percent of the maximum Q-
value possible and σth to be one fifth of σsumth .

Results
We use three environments to simulate GPQ-MFRL. Σ1 is
Python-based simulator Pygame (Shinners 2011), Σ2 is a
Gazebo environment, and Σ3 is the real world.

Evaluating the GPQ-MFRL Algorithm
We use three environments (Figure 1) to demonstrate the
GPQ-MFRL algorithm. The task of the robot is to navigate
through a given environment without crashing into the ob-
stacles, assuming the robot has no prior information about
the environments. There is no goal state.

The robot has a laser sensor that gives the distance read-
ings from the obstacles along seven equally spaced direc-
tions. The angle between two consecutive measurement di-
rections is π

8 radians and range of measurements is 5 me-
ters. The actual robot has a Hokuyo laser sensor that op-
erates in the same configuration. Distance measurements
along the seven directions serve as the state in the environ-
ment. Hence, we have a seven-dimensional continuous state
space: S ∈ (0, 5]7 (Figure 1), where individual state dimen-
sion corresponds to the distance measurement along a par-

ticular direction. Note that this is a different state represen-
tation than the standard one used in navigation where the X
and Y coordinates of the robot are used as the state. Since we
use the sensor input directly as the state, the learned policy
maps the sensor inputs directly to the actions, thereby learn-
ing a polygon that avoids collisions. This can easily gener-
alize to any environment.

The linear speed of the robot is held constant at 0.2 m/sec.
The robot can choose its angular velocity from nineteen pos-
sible options: {−π9 ,−π8 , . . . , π9 }. The reward in each state is
set to be the sum of laser readings from seven directions ex-
cept when the robot hits the obstacle when it gets a reward
of -50.

We train the GP regression, Q(s, a) : R8 → R. Hyperpa-
rameters of the squared-exponential kernel were calculated
off-line by minimizing the negative log marginal likelihood
of 2000 training points which were collected by letting the
robot run in the real world directly. The parameter values for
experiments in this section are given in Table 1.

Table 1: Parameters used in GPQ-MFRL
Description Type Value

σ 102.74Hyperparameters
l [2.1, 5.1, 14, 6.2, 15, 2, 2, 1]

ω2 20
σsum
th 60Confidence parameters
σth 15

Algorithm L 5

Average Cumulative Reward in the Real-World In Fig-
ure 3, we compare GPQ-MFRL algorithm with three other
baseline strategies by plotting the average cumulative reward
collected by the robot as a function of samples collected in
the real world. Three baseline strategies are,

1. Directly collecting samples in the real world without the
simulators (Direct),

2. Collect hundred samples in one simulator and transfer the
policy to the Pioneer robot with no further learning in the
real world (Frozen Policy) and

3. Collect hundred samples in one simulator and transfer the
policy to the robot while continuing to learn in the real
world (Transferred Policy).

Policy Improvement over Time Figure 4 shows the ab-
solute percentage change in the sum of the value functions
with respect to last estimated sum of value functions and av-
erage predictive variance for states {1, 3, 5}7 in all the three
simulators. Observe that initially most of the samples are
collected in the simulator, whereas over time the samples
are collected mostly in the real world. The simulators help
the robot to make its value estimates converge quickly as ob-
served by a sharp dip in the first white region. Note that GP
updates for ith simulator (Q̂i) are made only when the robot
is running in ith simulator.

85

0 100 200 300 400 500 600

Samples collected in real-world

8

10

12

14

16

18

20

22

A
v
e
ra

g
e
 c

u
m

u
la

ti
v
e
 r

e
w

a
rd

c
o
lle

c
te

d
 i
n
 r

e
a
l-
w

o
rl
d

Direct

Transferred Policy

Frozen Policy

GPQ-MFRL

Figure 3: Average cumulative reward collected by Pioneer
in real-world as a function of the samples collected in real-
world. The plot shows the average and standard deviation of
2 trials.

(a) Sum of absolute change in
value functions

(b) Average variances in value
function estimations

Figure 4: Yellow, green and white regions correspond to the
samples collected in the Pygame, Gazebo and real-world en-
vironments respectively. Plots are for state set {1, 3, 5}7.

Discussion and Future Work
The GP-based MFRL algorithm provides a general RL tech-
nique that is particularly suited for robotics. We demon-
strated empirically that the GP-based MFRL algorithm finds
the optimal policies using fewer samples than the base-
line algorithms. We plan to analyze the algorithms in or-
der to provide theoretical bounds for the sample complex-
ity. (Strehl et al. 2006) show that the sample complexity
of RMax algorithm after ignoring logarithmic factors is
Õ
(

S2A
ε3(1−γ)6

)
. Here S is the size of state space, A is the

number of actions available to the agent, γ is the discount
factor and ε denotes the desired accuracy until the algorithm
converges.

One disadvantage of using GPs is that as the number of
observations increase, the time taken to perform GP updates
also increases in with cubic complexity. However, we can
use adaptive sample selection techniques (Osborne 2010) as
well as numerical optimization techniques (Engel, Yaakov
and Mannor, Shie and Meir, Ron 2005) to speed up this pro-
cess.

References
Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using inac-
curate models in reinforcement learning. In Proceedings of
the 23rd international conference on Machine learning, 1–8.
ACM.
Brafman, R. I., and Tennenholtz, M. 2002. R-max-a gen-
eral polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research
3(Oct):213–231.
Chowdhary, G.; Liu, M.; Grande, R.; Walsh, T.; How, J.;
and Carin, L. 2014. Off-policy reinforcement learning
with Gaussian processes. IEEE/CAA Journal of Automat-
ica Sinica 1(3):227–238.
Cutler, M., and How, J. P. 2016. Autonomous drifting
using simulation-aided reinforcement learning. In 2016
IEEE International Conference on Robotics and Automation
(ICRA), 5442–5448.
Cutler, M.; Walsh, T. J.; and How, J. P. 2015. Real-world
reinforcement learning via multifidelity simulators. IEEE
Transactions on Robotics 31(3):655–671.
Dames, P.; Tokekar, P.; and Kumar, V. 2015. Detecting, lo-
calizing, and tracking an unknown number of moving targets
using a team of mobile robots. In International Symposium
on Robotics Research (ISRR).
Deisenroth, M. P. 2010. Efficient reinforcement learning
using Gaussian processes, volume 9. KIT Scientific Pub-
lishing.
Engel, Y.; Mannor, S.; and Meir, R. 2003. Bayes meets bell-
man: The gaussian process approach to temporal difference
learning. In Proceedings of the 20th International Confer-
ence on Machine Learning (ICML-03), 154–161.
Engel, Yaakov and Mannor, Shie and Meir, Ron. 2005. Re-
inforcement learning with Gaussian Processes. In Proceed-
ings of the 22nd international conference on Machine learn-
ing, 201–208. ACM.

86

Grande, R.; Walsh, T.; and How, J. 2014. Sample efficient
reinforcement learning with gaussian processes. In Proceed-
ings of the 31st International Conference on Machine Learn-
ing (ICML-14), 1332–1340.
Jung, T., and Stone, P. 2010. Gaussian processes for sam-
ple efficient reinforcement learning with rmax-like explo-
ration. In Proceedings of the European Conference on Ma-
chine Learning.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436–444.
Li, L.; Littman, M. L.; Walsh, T. J.; and Strehl, A. L. 2011.
Knows what it knows: a framework for self-aware learning.
Machine learning 82(3):399–443.
M. Cutler and J. P. How. 2015. Efficient reinforcement
learning for robots using informative simulated priors. In
2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2605–2612.
Melo, F. S.; Meyn, S. P.; and Ribeiro, M. I. 2008. An anal-
ysis of reinforcement learning with function approximation.
In Proceedings of the 25th international conference on Ma-
chine learning, 664–671. ACM.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Osborne, M. 2010. Bayesian Gaussian processes for se-
quential prediction, optimisation and quadrature. Ph.D.
Dissertation, University of Oxford.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Rasmussen, C. E., and Kuss, M. 2003. Gaussian processes
in reinforcement learning. NIPS.
Rasmussen, C. E., and Williams, C. K. I. 2006. Gaussian
Processes for Machine Learning. the MIT Press.
Shinners, P. 2011. Pygame. http://pygame.org/.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; and
Littman, M. L. 2006. Pac model-free reinforcement learn-
ing. In Proceedings of the 23rd international conference on
Machine learning, 881–888. ACM.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, 1057–1063.
Taylor, M. E.; Stone, P.; and Liu, Y. 2007. Transfer learn-
ing via inter-task mappings for temporal difference learning.
Journal of Machine Learning Research 8(Sep):2125–2167.

Torrey, L., and Shavlik, J. 2009. Transfer learning: Hand-
book of research on machine learning applications and
trends: Algorithms, methods, and techniques.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Yao, Y., and Doretto, G. 2010. Boosting for transfer learn-
ing with multiple sources. In Computer vision and pattern
recognition (CVPR), 2010 IEEE conference on, 1855–1862.
IEEE.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Advances in neural information processing systems, 3320–
3328.

87

Towards Perception Aware Task-Motion Planning

Antony Thomas, Sunny Amatya, Fulvio Mastrogiovanni, Marco Baglietto
Department of Informatics, Bioengineering, Robotics, and Systems Engineering

University of Genoa, Via All’Opera Pia, 13
{antony.thomas@dibris.unige.it, sunnyamatya@gmail.com, fulvio.mastrogiovanni@unige.it, marco.baglietto@unige.it}

Abstract

We present an integrated Task-Motion Planning (TMP)
framework in belief space. Autonomous robots operating in
real world complex scenarios require planning in the discrete
(task) space and the continuous (motion) space. We develop
a framework for integrating belief space reasoning within a
hybrid task planner. The expressive power of PDDL+ com-
bined with heuristic driven semantic attachments performs
the propagated and posterior belief estimates while planning.
The underlying methodology for the development of the hy-
brid planner is discussed, providing suggestions for further
improvements and future work. Furthermore, our approach
is unified with ROSPlan and we validate key aspects of our
approach using a realistic synthetic simulation.

1 Introduction
Autonomous robots operating in complex real world scenar-
ios require different levels of planning to execute their tasks.
High-level (task) planning helps to break down a given set of
tasks into a sequence of sub-tasks, depending on the required
level of abstraction. Actual execution of each of these sub-
tasks would require low-level control actions (i.e., motions).
Hence, planning should be performed in the task-motion or
the discrete-continuous space.

Traditionally, task planning and motion planning have
evolved as two independent fields. Since the seminal work
of Fikes and Nilsson (Fikes and Nilsson 1971), planning
has emerged as a specific field within AI. Techniques like,
planning graphs, planning as satisfiability and heuristic-
search planning have led to dominant task planning ap-
proaches like Fast Downward (Helmert 2006) and FF (Hoff-
mann and Nebel 2001) planning systems, that are capa-
ble of highly efficient planning in larger domains, handling
mathematical expressions and temporal aspects. Similarly,
the field of motion planning has evolved profusely. Prob-
abilistic Roadmaps (PRMs) (Kavraki et al. 1996; Kavraki,
Kolountzakis, and Latombe 1998) and Rapidly-exploring
Random Trees (RRTs) (Kuffner and LaValle 2000) are the
two notable approaches for high-dimensional motion plan-
ning. These are Sampling based approaches providing faster
execution and better efficiency.

In recent years, combining high-level task planning with
the low-level motion planning has been a subject of great
interest among the Robotics and Artificial Intelligence (AI)

community. This is inevitable as one of the ultimate goals
in Robotics is to create autonomous agents accepting high-
level task descriptions and executing them without further
human intervention. Planning frameworks such as the Plan-
ning Domain Definition Language (PDDL) (McDermott et
al. 1998) mainly focus on high-level task planning suppos-
ing that the geometric preconditions (e.g., grasping poses for
a pick-up task (Srivastava et al. 2014)) for the robot motion
to carry out these tasks are achievable. However, in reality,
such an assumption can be catastrophic as an action or se-
quence of actions generated by the task planning algorithm
might turn out to be unfeasible at the controller execution
level.

Let us consider a simple scenario where a robot is given
the task of picking up an object. In terms of task plan-
ning, a pick up action would suffice, subject to satisfying
the action preconditions, i.e., the robot hand being free and
the object being graspable. However, it is possible that the
robot is too close to the object and the pick up action can-
not be performed due to robot’s end-effector’s reachabil-
ity workspace. This would require the robot to assume a
different grasping pose, invoking a motion command that
leads to a suitable position. Though a simple scenario, it
clearly illustrates the need for a combined TMP strategy.
Several recent works (Cambon, Alami, and Gravot 2009;
Kaelbling and Lozano-Pérez 2012; Dornhege et al. 2012;
Srivastava et al. 2014; Toussaint 2015; Dantam et al. 2018)
have motivated the need for a combined Task-Motion Plan-
ning (TMP) approach pointing out the drawbacks of treating
them as separate.

Given an initial state and a suitable goal state, Task-
Motion Planning (TMP) synthesizes a plan interleaving dis-
crete high-level tasks with continuous low-level motion. In
robotics planning, reaching a goal pose xg from an initial
pose x0 requires continuous collision-free motion planning.
However, reaching a goal alone is not sufficient as most of-
ten we require the goal condition to be satisfied subject to
application dependent costs. As a result, certain decisions
are to be made with regards to visiting specific landmarks,
the order and type of actions to be performed. Yet, the most
important challenge for TMP problems is finding the right
correspondence between the task planner and the motion
planner. Given a discrete action, a TMP should be able to
recognize the corresponding geometry requirements to trig-

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

88

ger the action. Similarly, once the action is triggered, the
corresponding motion planning problems are to be identi-
fied.

Furthermore, real-world scenarios often induce uncertain-
ties. Such uncertainties arise due to insufficient knowledge
about the environment, inexact robot motion or imperfect
sensing. In such scenarios, the robot poses or other vari-
ables of interest can only be dealt with in terms of prob-
abilities. Planning is therefore done in the belief space,
which corresponds to the probability distributions over pos-
sible robot states. Consequently, for efficient planning and
decision making, it is required to reason about future belief
distributions due to candidate actions and the correspond-
ing expected observations. Such a problem falls under the
category of partially observable Markov decision processes
(POMDPs). Hence, the task planner should be capable of
reasoning in the belief space while synthesizing a plan. Be-
sides, the task planner also requires some amount of geomet-
rical information about the environment and the robot itself,
the lack of which leads to undesirable plans. At the execu-
tion level, the motion planner might encounter unexpected
scenarios notwithstanding the plan provided. This calls for
a re-plan, updating the task planner with the new belief, re-
sulting in a cyclic interdependency. Consequently, both task
and motion planning are interdependent and should not be
considered as separate processes.

Our contributions in this paper are as follows: (1) devel-
oping an integrated TMP algorithm for planning in the belief
space. (2) The expressive power of PDDL+ is exploited to
simulate robot motion and the belief updates within PDDL+.
Our domain description can hence be employed for any mo-
bile robot planning problem in general. (3) We sample land-
mark observable viewpoints, thereby facilitating perception
aware TMP. Our sampling strategy is also directed towards
parsimoniously selecting connected waypoints thereby re-
ducing the state space explosion (4) The developed frame-
work is also unified with ROSPlan (Cashmore et al. 2015),
which is a framework for embedding task planning in ROS
and hence can be easily adapted by the planning community.
Furthermore, we provide an interface for PDDL+ planning
in ROSPlan.

2 Related Work
The genesis of TMP can be credited to Fikes and Nilsson
for their work on STRIPS (Fikes and Nilsson 1971) which
further led to the Shakey project (Nilsson 1984). Shakey’s
planner had access to basic geometric knowledge like the
objects in a room, connectivity between rooms. However, it
performed a logical search first, assuming that the resulting
robot motion plans can be formulated. This assumption lim-
its the capability of the agent as the high-level actions may
turn out to be non executable due to geometric limitations.
Later works either carried out the generated plans, validating
them using a robot motion planner (Dornhege et al. 2009) or
performed a combined search in the logical and geometric
spaces using a state composed of the both the symbolic and
geometric paths (Cambon, Alami, and Gravot 2009). The
aSyMov planner used in (Cambon, Alami, and Gravot 2009)
used a combination of Metric-FF (Hoffmann 2003) and a

sampling based motion planner. In contrast, we use a hy-
brid temporal task planner (Piotrowski et al. 2016) incorpo-
rating robot state uncertainty. Srivastava et al. implicitly
incorporate geometric variables in a PDDL-based planning
model (Srivastava et al. 2014). An interface layer then con-
verts PDDL plans to numeric values of the symbols to check
the validity of each action in the configuration space.

Many of the planning problems need to plan well ahead
of time which also results in increased dimensionality, as
more and more objects and constraints get added. Longer
planning horizons and higher dimensionality directly affects
the computational time for these planners. Kaelbling and
Lozano-Péres (2012) propose a hierarchical approach that
tightly integrates the logical and geometric planning. The
complexities arising out of long horizon planning are tack-
led to the extent that planning is done at different levels of
abstraction, thereby reducing the long horizons to a number
of feasible sub-plans of shorter horizon. This regression-
based planner assumes that the actions are reversible while
backtracking. In contrast to their earlier work the serializ-
ability assumption of the subgoals is relaxed. Kaelbling and
Lozano-Péres (2013) further extended their work to consider
the current state uncertainty, modeling the planning prob-
lem in the belief space. Uncertain outcomes are modeled
by converting a Markov decision processes (MDP) into a
weighted graph, thereby modifying their earlier approach of
hierarchical planning in the now. Belief update is then per-
formed when observations are obtained. Phiquepal and Tou-
ssaint (2017) discuss an ongoing work for TMP under par-
tial observability, computing long-horizon policies that are
arborescent in nature.

The above discussed approaches focus on finding feasible
plans sacrificing optimality and hence emphasizes on per-
formance. Toussaint (2015) performs optimization over an
objective function based on the final geometric configuration
(and the cost thereby), finding approximately locally optimal
solutions by minimizing the objective function. The plan-
ning problem is modeled as a constraint satisfaction problem
with symbolic states used to define the constraints in the op-
timization. Lozano-Péres and Kaelbling (2014) model the
motion planning as a constraint satisfaction problem over
a subset of the configuration space. Iteratively Deepened
Task and Motion Planning (IDTMP) is a constraint based
task planning approach that incorporates geometric informa-
tion (motion feasibility) at the task planning level (Dantam
et al. 2018). In our approach, the waypoints fed into the task
planner are generated using the motion planner, similar to
the motion planner information that guides the IDTMP task
planner.

3 Preliminaries
Let xk denote the robot pose at any time k defined by xk

.
=

(x,y,θ), x and y are the robot Cartesian coordinates and θ
is the heading. We use zk to denote the measurement ac-
quired at time k and uk for the control action applied at time
k. Extended Kalman Filter (EKF) is used to represent the
robot belief at a given time, using the robot state mean µk
and covariance Σk. The robot dynamics is modeled using
the standard odometry based motion model

89

x′ = x+δtrans · cos(θ +δrot1)

y′ = y+δtrans · sin(θ +δrot1)

θ ′ = θ +δrot1 +δrot2

(1)

where uk
.
= (δrot1,δtrans,δrot2) is the control applied. For

brevity we write Eq. 1 as xk+1 = f (xk,uk). We assume Gaus-
sian noise and the process covariance is given by

Wk =




α1 ·δ 2
rot1 +α2 ·δ 2

trans 0 0
0 α3 ·δ 2

trans +α4 · (δ 2
rot1 +δ 2

rot2) 0
0 0 α2 ·δ 2

trans +α1 ·δ 2
rot2


 (2)

where α1-α4 are robot-specific error parameters (Thrun,
Burgard, and Fox 2005) modeling the accuracy of the robot
motion. To process the landmarks in the environment we
measure the range and the bearing of the landmark relative
to the robot’s local coordinate frame. It is to be noted that
we assume the data association problem is solved and hence
given a measurement we know the corresponding landmark
that generated it. Such a model can be represented by

zk =

[
r
φ

]
+ vk , vk ∼N (0,Qk) (3)

where r, φ is the range and bearing respectively and vk the
zero-mean Gaussian noise. For brevity, Eq. 3 will be written
as zk = h(xk, li)

The motion (Eq. 1) and observation (Eq. 3) models can
be written probabilistically as p(xk+1|xk,uk) and p(zk|xk) re-
spectively. Given an initial distribution p(x0), and the mo-
tion and observation models, the posterior probability distri-
bution at time k can be written as

p(Xk|Zk,Uk−1) = p(x0)
k

∏
i=1

p(xk|xk−1,uk−1)p(zk|xk) (4)

where Xk = {x0, ...,xk}, Zk = {z0, ...,zk} and Uk =
{u0, ...,uk−1} . This posterior probability distribution is the
belief at time k, denoted by b[Xk] ∼N (µk,Σk). Similarly,
given an action uk, the propagated belief can be written as

b[¯Xk+1] = p(Xk|Zk,Uk−1)p(xk+1|xk,uk) (5)
Given the current belief b[Xk], the control uk, the propa-

gated belief parameters can be computed using the standard
EKF prediction as

µ̄k+1 = f (µk,uk)

Σ̄k+1 = FkΣkFT
k +VkWkV T

k
(6)

where Fk and Vk are the Jacobians of f (·) with respect to
xk and uk respectively. For ease of representation, we de-
note Rk

.
= VkWkV T

k . Upon receiving a measurement zk, the
posterior belief b[Xk+1] is computed using the EKF update
equations

Kk = Σ̄k+1HT
k (HkΣ̄k+1HT

k +Qk)
−1

µk+1 = µ̄k+1 +Kk(zk+1−h(µ̄k+1, li))

Σk+1 = (I−KkHk)Σ̄k+1

(7)

where Hk is the Jacobian of h(·) with respect to x, Kk is
the Kalman gain and I ∈ R3×3.

4 TMP Design and Implementation
In this Section we detail our TMP planner concept and ap-
proach. We begin by making the following observation.
Planning in the belief space to obtain an optimal control pol-
icy essentially requires synthesizing a sequence of actions
that minimize an application dependent objective function.
Finding such an action sequence inherently involves search-
ing in the motion space. Consequently, we employ task plan-
ning to perform this search.

4.1 Rationale and Scenario
PDDL based planning frameworks are restricted, as they
are incapable of handling rigorous numerical calculations.
Most approaches perform such calculations via an exter-
nal module or semantic attachments, e.g. (Dornhege et
al. 2012). The term semantic attachment was coined by
Weyhrauch (1980) to describe attaching algorithms to func-
tion and predicate symbols via external procedure. Yet, the
effects returned by these semantic attachments are not ex-
ploited in identifying helpful actions and hence do not pro-
vide any heuristic guidance, deeming the task unsolvable
most often. An action is considered helpful if it achieves
at least one of the lowest level goals in the relaxed plan to
the state at hand (Hoffmann 2003). Recently Bernardini et
al. (2017) developed a PDDL based POPF-TIF planner to
implicitly trigger such external calls via a specialized se-
mantic attachments called external advisors. They classify
variables into direct, indirect and free variables. Direct (free)
variables are the normal PDDL function variables whose
values are changed in the action effects, in accordance with
the PDDL semantics. The indirect variables are affected by
the changes in the direct variables. A change in a direct
variable triggers the external advisor which in turn updates
the indirect variables. POPF-TIF is based on the temporal
extension of the metric-FF planner (Hoffmann 2003). An
intriguing feature of the planner is that it uses approximate
values of the indirect variables at the Temporal Relaxed Plan
Graph (TRPG) construction stage resulting in an efficient
goal-directed search. During the forward state space search,
the external advisor is called, updating the indirect variables
with the exact values.

Leveraging the ROSPlan framework (Cashmore et al.
2015) and using semantic attachments that incorporate
heuristic evaluation during the Relaxed Plan Graph (RPG)
construction, we develop a hybrid planning framework ca-
pable of reasoning in the robot belief space while synthesiz-
ing a plan. We use PDDL+ (Fox and Long 2006) to model
the planning task, providing the robot with a sequence of
actions that can be passed on to the low-level controller for
execution. PDDL+ provides the ability to model continu-
ous temporal change via processes and discrete exogenous
activities in the environment via events. The processes are
similar to durative actions and the events are akin to instan-
taneous actions. However, processes and events are distinct
from actions since a process or an event is triggered as soon
as its precondition is satisfied whereas an action trigger de-
pends on the planner search strategy. State uncertainty is
incorporated in our model and synthesizing an efficient plan

90

requires performing the belief updates within the task plan-
ner. PDDL+ processes enable the simulation of robot mo-
tion with time and the events are leveraged to perform the
corresponding belief updates. In our case, we use the DiNo
planner (Piotrowski et al. 2016) since it enables heuristic
search for linear and non-linear systems using the entire set
of PDDL+ features.

In this paper, we consider a mobile robot in a known en-
vironment (i.e., map is given) with uncertainty in its initial
pose. The set of landmarks in the environment are given by
l = {l1, l2, ..., ln}. The landmarks are features in the envi-
ronment and are not to be confused with the landmarks in
heuristic planning where they are intended as a set of op-
erators such that each plan must contain some element of
this set. The goal is to reach a certain final state xg with
the localization uncertainty not greater than a given bound.
Starting from an initial pose, the corresponding goal leading
plan is to be synthesized, minimizing the makespan. We use
the trace of the state covariance to quantify the uncertainty
and the uncertainty condition is mathematically written as
Tr(Σk)< η . To incorporate belief evolution while planning,
the DiNo planner is extended to support external calls eval-
uating the belief at each planning stage. The belief, the pro-
cess and the measurement noise are assumed to be Gaussian.

Our TMP approach depends directly on the temporal
planning horizon and the PDDL+ process discretization
used. A longer horizon and shorter discretization increases
planning complexity and directly affects the plan time. In
Section 5.2, we evaluate the performance based on these fac-
tors and analyze how our approach cope with the changes in
these elements.

4.2 Planner Workflow
An overview of our TMP planner framework is shown in
Figure 1. We assume that the environment map, robot ini-
tial belief N (µ0,Σ0), the goal pose to be reached xg and
the minimum pose certainty η required at goal are known.
As discussed in the beginning of the Section, we utilize task
planning to synthesize a plan, performing search in the mo-
tion space. Standard RRT based approaches sample way-
points that connects the start and end locations. However,
to reduce pose uncertainty it is to be ensured that such con-
nected paths have ample number of waypoints from which
landmarks can be observed. To facilitate this perception-
aware search we implement an RRT based potential field
approach to sample such relevant waypoints in the envi-
ronment. Waypoints near the potential field of the land-
marks are pulled closer towards it and once a sufficient num-
ber (currently user defined) of such waypoints are gener-
ated, the further nodes are pushed away from the poten-
tial field. This sampled set of waypoints will be denoted
as wp = {wp1, ...,wpm}.

The PDDL+ based event belief update triggers the seman-
tic attachment call to the external library. The external li-
brary performs the belief updates (Eqs. 6, 7) attaching to the
event effects the updated belief. Our semantic attachment ef-
fects guides the staged RPG (SRPG) construction in DiNo.
The belief estimates returned by the semantic attachments
guides the SRPG in identifying the helpful actions (e.g., the

landmarks that can be visited in the next state), besides pro-
viding a heuristic function to select the next best landmark
to visit. Based on the heuristics, a breadth first algorithm is
performed to determine the forward state space leading to a
state graph. The plan synthesized from the state graph such
that the makespan is minimized by choosing least cost path
that also satisfies all the constraints.

Figure 1: The TMP planner workflow.

4.3 External Calls in PDDL+
The PDDL+ description for our mobile robot scenario is
shown in Figure 2. We extend the DiNo planner to incorpo-
rate semantic attachments, computing the propagated belief
b[¯Xk+1] upon executing a control uk at state xk, as well as
the posterior belief b[Xk+1] upon obtaining a measurement.
Since we are in the planning phase and yet to obtain obser-
vation, we simulate future observations zk+1 given the prop-
agated belief b[¯Xk+1], the set of landmarks l and the mea-
surement model given in Eq. (3. Given a pose x ∈ b[¯Xk+1],
the nominal observation ẑ = h(x, li) is corrupted with noise
to obtain zk+1.

Now we describe the formal algorithm for performing
the belief updates. This procedure is summarized in Algo-
rithm 1. The focal elements in the planning domain are: the
action goto waypoint, the event belief update that triggers
the external call to evaluate to perform the belief updates
and the process odometry that simulates the robot motion
between each planner discretization ∆. Starting from a given
waypoint (line 2) the goto waypoint action (line 3) initiates
the robot motion towards a connected waypoint. The im-
mediate effect of this action is to initialize the distance be-
tween the two waypoints (line 4) which starts the process
odometry as seen in line 6. The process effect simulates the
translational motion at each ∆ and decreasing the distance
between the waypoints by δtransk = ∆× dFactor (line 7).

91

Event belief update is immediately initiated (line 9) which
triggers the semantic attachment call to perform belief up-
date, returning the propagated belief b[¯Xk+1] to the event ef-
fect (line 9). If a landmark li ∈ l is within the sensor range,
the posterior belief b[Xk+1] is evaluated returning its trace
(line 11) to the event effect. To ensure the process-event-
process ordering we employ a variable counter as shown in
Figure 2.

Algorithm 1 Belief update implementation in PDDL+
Input: Set of waypoints wp, set of landmarks l, trace of

initial pose covariance Tr(Σ0), upper bound on the goal
trace η , motion discretization factor dFactor, PDDL+
process discretization ∆

1: while Tr(Σk)> η and ¬(robot at goal pose)) do
2: (robot at wp f rom)
3: :action goto waypoint
4: d(f rom, to) = distance(wp f rom, wp to)
5: while d(f rom, to)>−δtransk do
6: :process odometry
7: d(f rom, to)← d(f rom, to)− δtrans k
8: :event belie f update
9: Tr(Σ̄k+1)← Tr(Σk) . Eq. 6

10: if landmark within sensor range then
11: Tr(Σk+1)← Tr(Σ̄k+1) . Eq. 7
12: end if
13: end while
14: :action reached
15: (robot at wp f rom)← (robot at wp to)
16: end while
17: return Plan

5 Experimental Results
We evaluate our approach in a simple yet realistic experi-
ment in the Gazebo simulator. Consider the corridor envi-
ronment as seen in Figure 3 where the turtlebot robot start-
ing from the initial waypoint (s in figure) needs to reach
near the only plug point or the goal waypoint (g in figure)
to recharge the batteries. The turtlebot is initially oriented
towards g. Due to the short length of the charging cable,
given the mean goal pose, there is a bound on the maximum
pose uncertainty the robot can afford. The cubes marked 1-4
are the landmarks in environment. The slam gmapping ROS
package is used to build the environment map. The resulting
map of the environment is shown in Figure 4a. The turtlebot
with its laser scanner can be seen facing the goal waypoint
marked in blue.

In the remainder of this section we discusses a number of
test cases performed with the same starting and goal way-
points as shown in Figure 3. It is to be noted that for each
given landmark we consider a potential field originating at
its center. With the inclusion of the occupancy grid ob-
tained during the mapping and the potential field, the RRT
is constructed maintaining a closer proximity to the land-
marks. The computational complexity depends exponen-
tially on the number of waypoints m generated. The heuris-

(define (domain landmark)

(:requirements :typing :durative-actions :fluents :time
:strips
:disjunctive-preconditions :durative-actions
:negative-preconditions :timed-initial-literals)

(:types
waypoint
robot
covariance

)

(:predicates
(robot_at ?r - robot ?wp - waypoint)
(visited ?wp - waypoint)
(observe)
(moving ?r - robot ?to - waypoint)
(connected ?from ?to - waypoint)
(lessthan ?c ?f - covariance)

)

(:functions
(distance ?wp1 ?wp2 - waypoint) (cov) (counter)
(update_covariance) (predict_covariance)
(relativeD) (dFactor) (finalTrace)

)
;; relativeD- a variable to store the distance
between state and wp as robot moves
;; dFactor \times #t - distance factor, to see
how many times kalman prediction to be done
;; cov is the initial covarianc trace,
finalTrace- the required trace upon reaching the goal state
;; action - Move between any two waypoints,
along the straight line between the two waypoints

(:action goto_waypoint
:parameters (?r - robot ?from ?to - waypoint)
:precondition (and (robot_at ?r ?from)

(observe) (not(robot_at ?r ?to))
(not (visited ?to)) (connected ?from ?to))

:effect (and
(not (robot_at ?r ?from))

(assign (relativeD) (distance ?from ?to))
(moving ?r ?to) (not (observe))

(assign (counter) 0)
(increase (update_covariance) 0)
(increase (predict_covariance) 0))

)

(:action reached
:parameters (?r - robot ?to - waypoint)
:precondition (and (moving ?r ?to)

(<= (relativeD) 0))
:effect (and

(robot_at ?r ?to) (visited ?to)
(not (moving ?r ?to) (observe))

)

(:event belief_update
:parameters ()
:precondition (and (> (counter) 0))
:effect (and

(assign (cov)
(update_covariance)) (assign (counter) 0))

)

;; to calculate the number of update steps needed
(:process odometry

:parameters ()
:precondition (and

(> (relativeD) (-dFactor)))
:effect (and

(decrease (relativeD) (* #t (dFactor)))
(increase (counter) (* #t 1)))

)
)

Figure 2: Domain description for the mobile robot scenario.
The process odometry is used to simulate the robot transla-
tion and the event belief update performs the belief propaga-
tion and posterior computation using semantic attachments.

92

Figure 3: Corridor environment in Gazebo.

tic based search of the DiNo planner, reduces this state
space explosion significantly. Furthermore, due to our po-
tential field based RRT sampling, we are able to prune un-
wanted state expansions by generate parsimoniously con-
nected waypoints which are sufficient for synthesizing satis-
ficing plans.

5.1 ROSPlan Simulation
The initial variance in x, y, θ are 0.6m2, 0.6m2, 0.02rad re-
spectively giving Tr(Σ0) = 1.22. PDDL+ process discretiza-
tion of ∆ = 1 and a temporal horizon of T = 20 is used
but with different values of η . Motion discretization fac-
tor dFactor = 1, giving δtransk = 1 (see Section 4.3). Per-
forming the belief updates at each δtransk helps in pruning
the nearby waypoints and thereby reducing the state space
explosion. However in the difficult regions where one can-
not afford to prune close-by waypoints, the updates are per-
formed upon reaching each of these waypoints. Unless oth-
erwise mentioned, the number of waypoints for each case
m = 40. The different test cases are detailed below.

Case 1: For this case η = 0.3. The plan generated is
shown via the red path in Figure 4b, starting form initial
state to the goal state. This is plan is quite expected due to
the landmark rich nature of the path and the tight bound on
the final trace. Case 2: For this case η = 0.6. The plan gen-
erated is the one following the red path shown in Figure 4c.
Case 3 has the same η = 0.6, however the path followed
is along the one with 3 landmarks (Figure 4d). This is due
to the randomness of the potential field based RRT motion
planner and the bound on the trace being less tight. Since
the objective function requires the planning time to be min-
imized, the planner returns the path which minimizes the
makespan which in turn is determined by the waypoint lo-
cations in the environment. As seen in Table 1, the states
expanded and the planning time is much larger than in Case
2 (around 4.8 times). This is due to the large number of
connected waypoints. Case 4 has η = 0.6 and the path fol-
lowed (see Figure 4e) is similar to the one in Case 3. How-
ever, as evident from Figures 4e, in this case the number of
connected waypoint is much less, resulting in a much lesser

planning time (see Table 1). case 5 (see Figure 4f) is similar
to the case 2 but with differences in the number of connected
waypoints. This is reflected in the states expanded and the
planning times as seen in Table 1.

Cases 6,7 and 8 have η = 0.9. However as discussed pre-
viously the sampling of waypoints affects the plan as can
be seen in Figures 4g- 4i. In Figure 4g the plan generated
is such that the trajectory upon reaching a waypoint near the
goal, is extended to a waypoint near landmark 4, from which
it can be observed. Case 8 has the highest number of con-
nected waypoints and this is reflected in the corresponding
row in Table 1.

Case 9 is similar to Case 1 but with higher number of
connected waypoints. In Case 10, m = 20 and η = 0.6. The
reduction in waypoint significantly reduces the state space
explosion and the planning time, as can be seen in the last
row of Table 1. However it can be seen in Figure 4k that
the upper path has no waypoints sampled. Though it is true
that for our all the cases discussed so far this doesn’t cause
any alarm, in general a lesser number of waypoints might re-
sulting in no plans being produced, even though there exists
one. For example, changing the starting or the gaol loca-
tion in our experiments can lead to a path via landmark 1.
Finding such a minimum number of waypoints is another
planning problem by itself.

Test cases States expanded Plan time (s)
Case 1 6184 116.62
Case 2 6934 156.62
Case 3 33769 744.36
Case 4 2710 60.64
Case 5 4847 99.74
Case 6 7646 190.44
Case 7 7289 143.04
Case 8 56544 1119.00
Case 9 28595 684.60

Case 10 388 4.60

Table 1: Different test case with number of states expanded
in each case and the corresponding planning time in seconds.

It is to be noted that in Cases 2, 5, 7 and 10, the robot
might collide with the walls due to the initial covariance in-
crease. This shows that a motion plan alone fails and logical
reasoning of action effects is required in conjunction with
motion planning. For example, rather than just the heuris-
tic search, an A? algorithm incorporating the Tr(Σg) in g(·)
would prevent the generation of such flawed plans.

5.2 Performance Analysis
To analyze the performance based on the temporal planning
horizon and the PDDL+ process discretization we perform
different simulations using Case1 in Section 5.1 as our base
case. We use different discretization ∆ and time horizon T
and analyze the states explored, computation/plan time t and
the goal covariance trace Tr(Σg).

From table 2 we can observe that the planning time is in-
versely proportional to the discretization ∆. This is because
we perform belief updates based on δtransk = ∆× dFactor.

93

(a) Initial configuration (b) Case 1 (c) Case 2 (d) Case 3

(e) Case 4 (f) Case 5 (g) Case 6 (h) Case 7

(i) Case 8 (j) Case 9 (k) Case 10

Figure 4: Initial configuration and the trajectories for the different test cases.

∆ T States expanded t (s) Tr(Σg)
0.5 20 47500 1231.60 0.076
0.5 25 112601 N/A N/A
0.5 30 112601 N/A N/A
0.5 35 112601 N/A N/A
1.0 20 6184 121.88 0.153
1.0 25 12788 249.14 0.156
1.0 30 23533 566.44 0.143
1.0 35 41682 1092.96 0.181
2.0 20 750 17.56 0.267
2.0 25 1290 39.66 0.273
2.0 30 995 37.98 0.290
2.0 35 967 47.78 0.255

Table 2: Performance parameters for different temporal
planning horizons and PDDL+ process discretization. N/A-
planner ran out of memory.

Since dFactor = 1, the number of updates is directly pro-
portional to ∆, thereby increasing the states expanded and
hence the plan time. It is seen that the temporal horizon and
total states searched are correlated, directly affecting the to-
tal plan time. It can be observed from the Table that for a
longer temporal horizon T and a larger ∆, the goal condition
is satisfied by expanding fewer states. Larger the value of T ,
the more deeper SRPG is built resulting in better heuristic.

However, for 2 given waypoints, lower value of ∆ implies
additional belief updates, leading to more states being ex-
panded. Conversely, lower discretization and a larger time
horizon will not result in successful plans. Longer T can
lead to more states being expanded and a large ∆ can lead to
unvalidated plans. Hence an efficient plan requires a trade-
off between the two.

6 Conclusion
We have discussed an ongoing research for mobile robot
localization in the area of TMP, equipping a hybrid task
planner with the capability of reasoning in the belief space
of the robot. Expressive power of PDDL+ combined with
heuristic base semantic attachments simulate the belief evo-
lutions given an action sequence and the corresponding ex-
pected future observations. The underlying methodology of
the hybrid planner has been discussed, validating the ap-
proach using a realistic synthetic simulation in Gazebo. We
also provide the first step towards perception aware TMP, by
sampling information rich waypoints and reasoning about
landmark observations from these waypoints in the plan-
ning phase. Our sampling strategy combined with motion
discretization help reduce the state space explosion while
planning.The TMP planner is also unified with the ROSPlan
framework.

While the scalability to larger domains still remains a

94

challenge, exploiting the planning-as-model-checking na-
ture of the of the DiNo planner along withing efficient
caching of plans might help in tackling this issue to some
extent. Effective sampling strategies can help in pruning the
unwanted state expansion. The extant of such pruning needs
to be studied in detail. At present, DiNo supports only the
minimize total-time metric and hence the plan synthesized
is the one with minimum makespan. In our experiments the
goal condition required only a bound on the trace of the final
covariance. Yet, most often we require different costs to be
minimized throughout the plan and hence we are working
towards incorporating the same. We agree that in this pa-
per we discuss in detail the planning algorithm and not the
low-level motion control for execution and leave it for future
work. However, we have successfully tested the execution
for all our experiments in ROSPlan.

References
Bernardini, S.; Fox, M.; Long, D.; and Piacentini, C. 2017.
Boosting Search Guidance in Problems with Semantic At-
tachments. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 29–37.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
The International Journal of Robotics Research 28(1):104–
126.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras,
M. 2015. ROSPlan: Planning in the Robot Operating Sys-
tem. In International Conference on Automated Planning
and Scheduling, 333–341.
Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,
L. E. 2018. An incremental constraint-based framework
for task and motion planning. The International Journal of
Robotics Research 0(0):0278364918761570.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009. Integrating symbolic and geometric planning for mo-
bile manipulation. In Safety, Security & Rescue Robotics
(SSRR), IEEE International Workshop on, 1–6. IEEE.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Bren-
ner, M.; and Nebel, B. 2012. Semantic Attachments for
Domain-Independent Planning Systems. In Towards Service
Robots for Everyday Environments. Springer Berlin Heidel-
berg. 99–115.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4):189–208.
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial In-
telligence Research 27(1):235–297.
Fox, D.; Burgard, W.; and Thrun, S. 1997. The Dynamic
Window Approach to Collision Avoidance. IEEE Robotics
& Automation Magazine 4(1):23–33.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
Journal of Artificial Intelligence Research 20:291–341.
Kaelbling, L. P., and Lozano-Pérez, T. 2012. Integrated
robot task and motion planning in the now. Technical Re-
port 2012-018, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology.
Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated
task and motion planning in belief space. The International
Journal of Robotics Research 32(9-10):1194–1227.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation 12(4):566–580.
Kavraki, L. E.; Kolountzakis, M. N.; and Latombe, J.-C.
1998. Analysis of probabilistic roadmaps for path planning.
IEEE Transactions on Robotics and Automation 14(1):166–
171.
Kuffner, J. J., and LaValle, S. M. 2000. Rrt-connect: An ef-
ficient approach to single-query path planning. In Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE Inter-
national Conference on, volume 2, 995–1001. IEEE.
Lozano-Pérez, T., and Kaelbling, L. P. 2014. A constraint-
based method for solving sequential manipulation plan-
ning problems. In Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, 3684–3691. IEEE.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL- The Planning Domain Definition Language. In
AIPS-98 Planning Competition Committee.
Nilsson, N. J. 1984. Shakey the robot. Technical Report
323, Airtificial Intellignece Center, SRI International, Menlo
Park, California.
Phiquepal, C., and Toussaint, M. 2017. Combined
task and motion planning under partial observability: An
optimization-based approach. RSS Workshop on Integrated
Task and Motion Planning.
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic Planning for PDDL+ Domains.
In AAAI Workshop: Planning for Hybrid Systems.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In Robotics and Automation (ICRA), IEEE International
Conference on, 639–646. IEEE.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT press.
Toussaint, M. 2015. Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. In Twenty-Fourth International Joint Conference
on Artificial Intelligence.
Weyhrauch, R. W. 1980. Prolegomena to a theory of mech-
anized formal reasoning. Artificial Intelligence 13.

95

Risk-Aware Planning by Extracting Uncertainty
from Deep Learning-Based Perception

Maymoonah Toubeh and Pratap Tokekar
Virginia Polytechnic Institute and State University

Bradley Department of Electrical and Computer Engineering
Blacksburg, Virginia 24061

Abstract

The integration of deep learning models and classical tech-
niques in robotics is constantly creating solutions to problems
once thought out of reach. The issues arising in most models
that work involve the gap between experimentation and real-
ity, with a need for a quantification of risk in real-world situ-
ations. In order to translate advances in robot planning tech-
niques that use deep learning to safety-critical applications,
strategies must be developed and applied to assess the risk in-
volved with different models. This work proposes the use of
Bayesian approximations of uncertainty from deep learning
in a robot planner, showing that this produces more cautious
actions in safety-critical scenarios. An example setup involv-
ing a deep learning semantic image segmentation, followed
by a path planner based on the resulting cost map, is used to
provide an empirical analysis of the proposed method.

Introduction
Recent advances in deep learning (DL) training algorithms,
paired with significant improvements in hardware, have
shown potential in many fields, including robotics. From en-
abling robot systems to navigate using high-dimensional im-
age inputs, to allowing tractable trial-and-error robot learn-
ing both in simulation and reality; deep learning is every-
where. However, as promising as applications of DL to robot
planning seem, the potential of the positive impact they may
have on real-world scenarios is inevitably proportionate to
their interpretability and applicability to imperfect environ-
ments.

For an example setup, this work utilizes a DL image seg-
mentation model to generate a cost map used in an A*
path planner. Figure 1 shows qualitative results given by the
DL model and the subsequent planner. In this image taken
from the Aeroscapes dataset (Nigam, Huang, and Ramanan
2018), the pedestrian near the top center is not sufficiently
segmented by the DL model prediction shown in Figure 1a.
Incorporating uncertainty associated with this prediction be-
fore passing it to the planner produces a more reasonable
and risk-aware resulting path, as seen in Figure 1f. Higher
levels of uncertainty are visualized by darker spots in Figure
1e.

DL is known for its data-driven rather than algorithmic
learned representations (LeCun, Bengio, and Hinton 2015).
A DL hierarchical structure can learn directly from data with

(a) Handcrafted ground truth seg-
mentation

(b) Planning based on ground
truth segmentation

(c) DL model segmentation (d) Planning based on DL model
segmentation alone

(e) Uncertainty of DL model seg-
mentation

(f) Planning based on DL model
segmentation with uncertainty

Figure 1: Qualitative results showing the path planned from
start to goal given (a) handcrafted ground truth image seg-
ments, (b) deep learning model segmentation alone, (c) deep
learning model segmentation with uncertainty.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

96

little to no handcrafted features or learning variables (Good-
fellow, Bengio, and Courville 2016). However, this often
comes at the expense of the interpretability of the learning
outcomes. Deep neural networks can even misrepresent data
outside the training distribution, giving predictions that are
incorrect without providing a clear measure of certainty as-
sociated with the result (Gal 2017). The outputs of a deep
neural network are generally point estimates of the parame-
ters and predictions present, so they do not provide a mean-
ingful measure of correlation to the overall data distribution
the network was trained on (Gal 2017). For this reason, deep
learning models are considered deterministic functions, of-
ten called “black-boxes”, unlike probabilistic models which
inherently depict uncertainty information.

As a step towards risk-aware robotic systems that utilize
the powers of DL, this work combines methods of approx-
imating uncertainty in DL with robot planners that are par-
tially reliant on an otherwise black-box approach. We utilize
modern methods of uncertainty extraction from deep learn-
ing models, specifically those that do not interfere with the
overall structure or training process (Gal and Ghahramani
2016). The extraction of uncertainty information, as opposed
to the reliance on point estimates, is crucial in safety-critical
applications, such as autonomous navigation in an urban set-
ting. If a robot planner encounters out-of-distribution data at
test time, it is preferable that the system provides an uncer-
tainty metric to allow for more meaningful interpretation of
a forced point estimate. With the acquired Bayesian uncer-
tainty estimates, the system produces an explicable metric
and can therefore be altered to accommodate for risks in the
environment.

In the robotics community, an emphasis has been placed
on methods that work in a controlled experimental setup,
but more recently risk-aware methods aim to ensure that
these methods are also safe in the real-world. As a relatively
new application to robotics, techniques have been adapted
from the fields of statistics and machine learning. Common
statistical methods of accommodating risk include altering
the optimization criterion so that it becomes risk-sensitive
(Garca and Fernández 2015). Although modern DL models
are usually considered black-boxes due to their mathemati-
cal nature, recent work has initiated theoretically grounded
understandings of them. Such works investigate the integra-
tion of deep learning techniques with information theoreti-
cal and statistical approaches for the purpose of calculating
model uncertainties (Gal 2017). It is these practical meth-
ods of quantifying risk associated with DL models that are
utilized in the proposed planning systems of this paper.

Related Work
Several prior works exist which have extracted uncertainty
information from a deep learning model, mainly Bayesian
neural networks, ensemble methods, and methods that uti-
lize stochastic regularization techniques (Gal 2017; Osband
et al. 2016). These works have also produced meaningful
contributions to real-world applications, such as gas turbine
control, camera relocalization, and robotic collision avoid-
ance (Depeweg et al. 2016; Kahn et al. 2017; Kendall and

Cipolla 2016). Our work seeks to extend the most suitable
of these approaches to robot planning.

Bayesian Neural Networks
Some of the earliest attempts to bind the reasoning of proba-
bilistic models, such as Gaussian processes, with deep learn-
ing (DL) is seen in Bayesian neural networks (BNN) (Gal
2017; Kononenko 1989). Unlike the DL models used in
modern practice which do not depict uncertainty, a BNN
produces an output that is a probability distribution over
its predictions. Probability distributions are placed over the
weights of a BNN, making it an approximation of a Gaus-
sian process as the number of weights tends to infinity. Un-
certainty can be extracted as a statistical measure, such as
variance or entropy, over this output distribution in order
to capture how confident the model is with its prediction.
However, BNN require a larger number of parameters to
be trained, with less practical training methods available for
them. A recent example of a Bayesian neural network ap-
plied to a stochastic dynamic system utilizes a smaller model
and trains by minimizing alpha-divergences (Depeweg et al.
2016). The system dynamics are learned using the BNN and
are fed into a model-based reinforcement learner for control,
with application to a gas turbine.

Ensemble Methods
Since the practicality of Bayesian neural networks is ques-
tionable, approximations of these structures have arisen, in-
cluding ensemble methods. One such recent method is re-
ferred to as the bootstrapped neural network, where sev-
eral deep learning (DL) models are trained on subsets of
the larger dataset sampled with replacement. The underlying
concept behind this method is that the different models will
agree in high density areas and disagree in low density areas
of the complete dataset. The outputs of the separate models
combine to form a probability density function from which
uncertainty of a particular prediction can be measured. This
method is theoretically sound; however, it is not ideal for ap-
plications that are faced with time and resource constraints,
such as robotics.

A recent work proposes using bootstrapped deep Q-
learning networks quantifying uncertainty to direct the
learning process towards more efficient exploration, which
is a key issue in reinforcement learning (Osband et al. 2016).
The technique involves sampling the past experiences in Q-
learning, rather than taking the whole sequence, in order to
form an estimate of the Q-value at a given state. Sampling is
also meant to scale better to large state-spaces. A similar ap-
proach is used to improve a form of Q-learning, Deep Deter-
ministic Policy Gradient (DDPG) (Kalweit and Boedecker
2017). The work demonstrates that using bootstrapped un-
certainty to direct data collection produces faster learning
that is also less expensive, tedious, or likely to lead to phys-
ical damage for a real robot.

Stochastic Regularization Methods
Most recently, the use of stochastic regularization meth-
ods common in deep learning (DL) has been shown to also

97

Class Sky Building Pole Road Pavement Tree Sign Symbol Fence Car Pedestrian Bicyclist Unlabeled
Cost 15 11 10 1 2 7 9 8 12 14 13 16

Color

Table 1: The fixed costs assigned to each segmentation to be used in A* search. These costs are hand-designed to generate
qualitative examples that demonstrate the utility of the proposed approach. In the real world, classes that are not navigable (e.g.,
fence, car, bicylist) will be assigned infinite cost.

approximate Bayesian neural network models without any
changes to the ready structures being used or their training
process (Gal 2017). Regularization methods are used as a
means to avoid overfitting of a DL model to its training set,
so that it generalizes to data that is similar enough but not
exactly the same. This ensures the learning model has not
simply memorized the training data, but has actually learned
something meaningful about the data that will translate to a
slightly different setting. At a high level, stochastic regular-
ization techniques work by introducing randomness in the
training process to increase the robustness of the model to
noise. Dropout is one such popular method that is inspired
by the probabilistic interpretations of deep learning models
that consider activation nonlinearity a cumulative distribu-
tion function (Bishop 2006). In its traditional use, dropout is
activated during training, in which case the weights of a deep
learning model are randomly multiplied by zero or one in a
certain predefined proportion. In this approach, at test time,
weight averaging by the percentage of dropout applied dur-
ing training is performed on the trained model, which then
leads to point estimate results.

In order to form a distribution over the outputs of a model
trained using a stochastic regularization technique such as
dropout, the regularization is activated at test time, produc-
ing stochastic estimates with multiple passes of the same
input through the model (Gal and Ghahramani 2016). The
multiple stochastic passes are then averaged to form a mean
estimate, as opposed to a point estimate, and uncertainty can
be extracted given the statistical or information theoretical
metrics over the distribution.

One recent work applies Bayesian approximation using
dropout to a pre-existing model-based reinforcement learn-
ing algorithm, called PILCO, in order to better quantify
uncertainty over longer periods of learning (Gal, McAllis-
ter, and Rasmussen 2016). The authors replace the origi-
nal Gaussian processes with a deep neural network. In an-
other work, the Bayesian approximation of uncertainty with
dropout is used to assist in camera relocalization for land-
mark detection in a SLAM problem (Kendall and Cipolla
2016).The uncertainty estimate is used to approximate the
localization error with no additional hand-crafted parame-
terizations. In a similar work, the same Bayesian approxi-
mation approach to uncertainty is applied to semantic seg-
mentation for improved learning and test time estimation
(Kendall, Badrinarayanan, and Cipoll 2015). In yet another
work, the authors combine bootstrapped neural networks
with stochastic regularization methods to avoid catastrophic
or harsh collisions during robot training for collision avoid-

(a) Risk-Neutral Perception

(b) Risk-Aware Perception

Figure 2: The overall flow of information in a robot planner
that relies in part on a DL model in (a) the risk-neutral and
(b) the risk-aware case.

ance (Kahn et al. 2017). They show that their method effec-
tively minimizes dangerous collisions during training, while
also showing comparable performance to baselines without
explicit account for uncertainty. A more recent approach
proposes the use of a Mixture Density Model (MDM) as a
replacement for the stochastic passes, where a single pass
saves time in comparison to multiple in a robotics setting
(Choi et al. 2017). However, this comes at the expense of
training a separate MDM network for the task of uncertainty
extraction.

Problem Formulation
The problem setup is inspired by a previous work (Christie
et al. 2017) that uses the overhead imagery provided by an
unmanned aerial vehicle (UAV) as input to an image seg-
mentation algorithm, which is then used to assist the nav-
igation of an unmanned ground vehicle (UGV). The UAV
acts as a “scout” by flying ahead of the UGV. The over-
head orthorectified imagery is then classified (into categories
such as “road”, “pavement”, “car”, etc.). Each category is as-
signed a cost (given in Table 1) which is used to determine
a path for the ground robot to follow.

Figure 2 shows a high-level schematic of the proposed
risk-aware approach by contrasting it with the traditional,
risk-neural approach. Unlike the previous work, here, in ad-
dition to performing the semantic segmentation of the im-

98

age, the uncertainty in the segmentation is also extracted.
The measure of uncertainty is then used to manipulate the
navigation away from low confidence regions. The naviga-
tion portion of the robot planner in this case is not a DL
model, but a classical method, A* search. A cost function
is mapped onto each semantic class (see Table 1). There-
fore, the uncertainty in the segmentation corresponds to un-
certainties in the cost, for which A* search is sufficient. If
the uncertainties in the transition function are to be consid-
ered instead, a Markov Decision Process (MDP) would be
more useful. Considering uncertainty is contrast to trusting
the outputs of the DL portion of the system invariably, which
could lead to catastrophic outcomes if a point estimate out-
lier is produced in the case the input is considered out-of-
distribution to the training data. In the proposed approach,
an uncertainty metric can be used to calibrate the robot plan
based on the level of confidence in the DL model predic-
tions.

The results of the segmentation given by any DL model
cannot guarantee complete accuracy in all settings. Varia-
tions in lighting, angle, or objects present in an image can
contribute to inaccurate predictions. There will always be a
prediction when a DL model is involved, as the model will
force an estimate even when it does not make sense to. A
good measure to account for this risk associated with DL
outputs being used in the robot planner is to evaluate the cer-
tainty associated with the DL result. One practical method is
using dropout, which is already being used as a regularizer
during training.

In the risk-neutral case, the pixel classification is taken
as is from the DL model and assigned a cost accordingly.
For the proposed risk-aware method, the cost is evaluated
by adding the uncertainty value, multiplied by some factor,
to the risk-neutral cost assignment. Specifically, the cost of
pixel p is given by,

C(p) = L(p) + λV̂ (p), (1)

where L(p) is the cost associated with the semantic class
that is predicted for p (given in Table 1) and V̂ (p) is the un-
certainty value extracted by dropout. In practice, V̂ (p) does
not need to be variance; it can be another statistical mea-
sure of uncertainty taken over the distribution provided by
the stochastic passes. λ is a weighting parameter. The risk-
neutral case corresponds to λ = 0 and the risk-aware case
corresponds to λ > 0.

Algorithm 1 shows a breakdown of uncertainty extrac-
tion given an input image. First, the stochastic outputs are
generated for a number of stochastic passes, giving a soft-
max value for each pixel each time. For each pass, Bernoulli
dropout is activated on the trained network, effectively mul-
tiplying random neuron weights by zero or one in a set
proportion. The softmax outputs O are averaged over all
stochastic passes. The maximum value of this average soft-
max is taken as the output class prediction Ind. Variance
is computed over the stochastic passes for each output class,
then the average of V over all classes produces a single value
for each pixel. The value V̂ is considered the uncertainty in
that pixel’s prediction.

Algorithm 1 Uncertainty Extraction
Input: image I
Output: class of average prediction for each pixel Ind(p),
average variance for each pixel V̂ (p)

1: p← pixels in image I
2: for t = 1 to number of stochastic passes do
3: O(p, c, t)← softmax output of stochastic pass t
4: end for
5: Ô(p, c)← average O(p, c, t) over stochastic passes
6: Ind(p)← argmax of softmax in Ô(p, c)
7: for c = 1 to number of classes do
8: V (p, c) ← variance in O(p, c, t) over stochastic

passes for class c
9: end for

10: V̂ (p)← average V (p, c) over classes

The uncertainty value is computed as the average variance
across all segment classes for a particular pixel. The higher
the average variance, the less confident the DL model is with
its prediction. Therefore, it is intuitive to incorporate this in-
formation along with the original prediction when planning
a path for navigation, especially in a safety-critical environ-
ment such as a road.

Experimental Setup
To demonstrate the utility of an uncertainty metric associ-
ated with a DL model being used as part of a robot planning
system, experiments involving this setup are portrayed to
compare the risk-neutral and risk-averse cases qualitatively.

We use the Bayesian SegNet to perform semantic seg-
mentation of every pixel in the input image (Kendall,
Badrinarayanan, and Cipoll 2015). The Bayesian SegNet
is first trained for the segmentation task using the prede-
fined model architecture, along with the pretrained weights
of the VGG16 image classification network (Kendall, Badri-
narayanan, and Cipoll 2015). Since the model is already
well adapted for image classification, less further training is
needed for per-pixel segmentation, in comparison to starting
with random model weighting. The CamVid dataset (Bros-
tow, Fauqueur, and Cipolla 2009) of 367 training and 233
testing images of road scenes is used. The model converges
with a test accuracy of 94.56 %. A batch size of 2 is used
to fit an 8GB Nvidia GeForce GTX 1080. Some results of
this network are shown in Figure 3 for the CamVid test
set, as well as for an entirely different road dataset called
KITTI (Geiger et al. 2013) in Figure 4. It is worth noting that
the KITTI dataset is an example for which the DL model is
not explicitly trained, but its images are similar enough to
the training set to expect reasonable segmentation perfor-
mance. Errors are common, and expected, in a varying or
real-world setting, but the uncertainty metric should provide
a means of detecting such errors.

After the DL model is trained to produce reasonable re-
sults on images similar to the training set, the next step
involves using the pixel segmentations as input to the A*

99

(a) Input road image (b) Handcrafted ground truth seg-
mentation

(c) DL model segmentation (d) DL model uncertainty

Figure 3: An example semantic segmentation produced by
the Bayesian SegNet trained model on (a) an input image
from the CamVid test set with (b) its handcrafted ground
truth segmentation, alongside (c) the resulting output seg-
mentation and (d) the model uncertainty associated with the
output, with darker regions signifying higher uncertainty.

(a) Input road image (b) DL model segmentation

(c) DL model uncertainty

Figure 4: An example semantic segmentation produced by
the Bayesian SegNet trained model on (a) an input image
from the KITTI dataset with (b) the resulting output seg-
mentation and (c) the model uncertainty associated with the
output, with darker regions signifying higher uncertainty.

Measure Ground Truth Risk-Neutral Risk-Aware
Expected Cost 251 234 253

Actual Cost 251 413 281
Surprise Factor 0 179 28

Table 2: The surprise factor calculated as the difference be-
tween the expected cost and actual cost for the example in
Figure 1, given ground truth, risk-neutral, and risk-aware
segmentation.

search planner. In order to use semantic segmentation in
robot planning, a cost function must be defined over the seg-
mentation result to be used in the planning. The most com-
mon method of translating segment identity into a real num-
ber cost involves some quantification of the segmentation
class traversability combined with the robot’s speed. For ex-
ample, in the previous work inspiring our problem setup,
segment traversability is proportionate to the power con-
sumption of the UGV based on prior experience (Christie
et al. 2017). However, for simplicity, here, the costs of the
segment classes are set to a fixed value, as shown in Table 1.
Once a cost is assigned, a start position and a goal position
are defined in the input image, and the planning algorithm
produces a path based on the cost assigned to the predicted
pixel identification.

Results and Discussion
In order to perform a qualitative analysis of the risk-neutral
and risk-aware methods, the surprise factor is calculated to
compare the expected path cost with the actual path cost by
subtracting the two. The expected path cost is found by sum-
ming up the cost associated with every pixel along the path.
We use the predicted class of every pixel to determine the
expected cost and the ground truth class of every pixel to
determine the actual cost. If a path passes through pixels
that the DL model classifies with low uncertainty, then we
expect the predicted classes to be largely the same as the ac-
tual cost, thereby given a low surprise factor. On the other
hand, if the predicted classes are wrong, then the surprise
will be high.

Table 2 shows this factor in three planning scenarios
of Figure 1: using ground truth segmentation, using DL
model segmentation alone, and using DL model segmen-
tation while taking into account its prediction uncertainty.
When using DL segmentation alone, not accounting for
model confidence increases the chance for a higher disparity
between the expectation and reality, as seen in our example.
On the other hand, although the risk-aware approach results
in longer paths, the expectation better matches the reality
and leads to lower surprise.

Table 3 shows a similar trend for the average surprise fac-
tor calculated over 100 randomly chosen starting and goal
positions. In this case, the risk-neutral strategy tends to un-
derestimate the actual path cost resulting in a larger surprise
factor. On the other hand, the risk-aware strategy conserva-
tively chooses longer paths but gives a significantly lower
surprise factor.

100

Measure Ground Truth Risk-Neutral Risk-Aware
Expected Cost 1221.60 1160.10 1427.40

Actual Cost 1221.60 1480.10 1405.35
Surprise Factor 0.00 320.00 22.05

Table 3: The average surprise factor calculated as the dif-
ference between the expected cost and actual cost for 100
randomly chosen starting and goal positions, given ground
truth, risk-neutral, and risk-aware segmentation.

Figure 5: Effect of varying λ on the surprise factor.

Figure 5 shows the effect of varying the λ parameter on
the surprise factor. When λ is small, the surprise factor is
large. This is consistent with previous findings, since λ = 0
corresponds to the risk-neutral case. As λ increases, the sur-
prise factor decreases finally converging to a fixed value.
This is because, once λ is sufficiently large, increasing λ
further does not change the path produced as output signifi-
cantly (except for a few pixels). In fact, for very large λ, the
path found will be the minimum uncertainty path since the
second term in Equation 1 dominates the first term. There-
fore, the surprise factor remains largely the same.

Conclusions and Future Work
This work proposes a risk-aware approach to robot planning
that already involves deep learning. Risk is quantified by the
model prediction uncertainty in the planning process. When
deep learning is used for perception as a portion of the plan-
ning loop, an understanding of confidence in DL estimates
is useful. Uncertainty is extracted directly from the DL mod-
els utilizing dropout as a practical method, especially in re-
source constrained settings such as robotics. Promising re-
sults show that including uncertainty in a planner provides
better predictability of actions, and even the avoidance of
catastrophic actions in a safety-critical setting. Further ex-
periments and empirical analysis are to be conducted us-
ing statistically significant data to explore the potential of
this method for real-world systems in the long run. Some
scenarios include those presented in this paper, such as the
UAV assisted navigation of a UGV using DL image seg-
mentation, on hardware and photorealistic simulators. The
main anticipated extensions of this work involve the use of a
larger dataset analysis, along with investigating different un-
certainty metrics extracted from the same experiment setup
presented in this paper.

Acknowledgements
The material is based upon work supported by the National
Science Foundation under Grant number 1566247.

References
Bishop, C. M. 2006. Pattern Recognition and Machine

Learning. New York: Springer.

Brostow, G. J.; Fauqueur, J.; and Cipolla, R. 2009. Seman-
tic object classes in video: A high-definition ground truth
database. Pattern Recognition Letters 30(2):88–97.

Choi, S.; Lee, K.; Lim, S.; and Oh, S. 2017. Uncertainty-
aware learning from demonstration using mixture density
networks with sampling-free variance modeling. arXiv
preprint arXiv:1709.02249.

Christie, G.; Shoemaker, A.; Kochersberger, K.; Tokekar, P.;
McLean, L.; and Leonessa, A. 2017. Radiation search op-
erations using scene understanding with autonomous uav
and ugv. Journal of Field Robotics 34(8):1450–1468.

Depeweg, S.; Hernández-Lobato, J. M.; Doshi-Velez, F.; and
Udluft, S. 2016. Learning and policy search in stochastic
dynamical systems with bayesian neural networks. arXiv
preprint arXiv:1605.07127.

Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learn-
ing, 1050–1059.

Gal, Y.; McAllister, R.; and Rasmussen, C. E. 2016. Improv-
ing pilco with bayesian neural network dynamics models.
In Data-Efficient Machine Learning workshop, ICML.

Gal, Y. 2017. Uncertainty in Deep Learning. Ph.D. Disser-
tation, University of Cambridge.

Garca, J., and Fernández, F. 2015. A comprehensive survey
on safe reinforcement learning. In Journal of Machine
Learning Research, volume 16, 1437–1480.

Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R. 2013. Vision
meets robotics: The kitti dataset. International Journal of
Robotics Research.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning, volume 1. Cambridge, MA: MIT Press.

Kahn, G.; Villaflor, A.; Pong, V.; Abbeel, P.; and Levine,
S. 2017. Uncertainty-aware reinforcement learning for
collision avoidance. arXiv preprint arXiv:1702.01182.

Kalweit, G., and Boedecker, J. 2017. Uncertainty-driven
imagination for continuous deep reinforcement learning.
In Conference on Robot Learning, 195–206.

Kendall, A., and Cipolla, R. 2016. Modelling uncertainty in
deep learning for camera relocalization. In Robotics and
Automation (ICRA), 2016 IEEE International Conference
on, 4762–4769. IEEE.

Kendall, A.; Badrinarayanan, V.; and Cipoll, R. 2015.
Bayesian segnet: Model uncertainty in deep convolutional
encoder-decoder architectures for scene understanding.
arXiv preprint arXiv:1511.02680.

101

Kononenko, I. 1989. Bayesian neural networks. Biological
Cybernetics 61(5):361–370.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436.

Nigam, I.; Huang, C.; and Ramanan, D. 2018. Ensemble
knowledge transfer for semantic segmentation. In 2018
IEEE Winter Conference on Applications of Computer Vi-
sion (WACV), 1499–1508. IEEE.

Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped dqn. Advances in Neu-
ral Information Processing Systems 4026–4034.

102

Policy Networks for Reasoning in Long-Term Autonomy

Kyle Hollins Wray and Shlomo Zilberstein
College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA

Abstract

Policy networks are graphical models that integrate decision-
making models. They allow for multiple Markov decision
processes (MDPs) that describe distinct focused aspects of
a domain to work in harmony to solve a large-scale problem.
This paper presents the formalization of policy networks and
their use in modeling reasoning tasks necessary for scalable
long-term autonomy. We prove that policy networks gener-
alize a wide array of previous models, such as options and
constrained MDPs, which can be equivalently viewed as the
integration of multiple models. To illustrate the approach, we
apply policy networks to the challenging real world domain
of robotic home health care. We demonstrate the benefits of
policy networks on a real robot and show how they facilitate
scalable integration of multiple decision-making models.

Introduction
Over the past decade, sequential decision-making models
have been increasingly deployed in large-scale domains with
high societal impact, ranging from aircraft collision avoid-
ance (Kochenderfer 2015) to autonomous vehicles (Wray,
Witwicki, and Zilberstein 2017). While these systems have
enjoyed rapid growth, they relied on a fragmented collection
of specialized approaches that combine either multiple ob-
jectives (Altman 1999; Klein et al. 2012) or multiple models
by hierarchical abstraction (Sutton, Precup, and Singh 1999;
Pineau et al. 2003) or by integrating their actions online (Bai
et al. 2015; Wray, Witwicki, and Zilberstein 2017).

Each one of these solutions introduces an important rea-
soning capability, but to support long-term autonomy in the
real world, we increasingly need to integrate multiple capa-
bilities within one system. As Marvin Minsky observed, “the
power of intelligence stems from our vast diversity, not from
any single, perfect principle” (Minsky 1986). It is unlikely
that any single MDP model will suffice. For the sake of scal-
ability and computational efficiency, we need new formal
ways to facilitate the integration of multiple models within
a single agent. To this end, we propose a novel framework
called policy networks that unifies prior approaches, offers
new insights, and provides a solid foundation on which to
build the next generation of large-scale decision models.

We consider a home healthcare robot domain for house-
hold and eldercare scenarios (Pineau et al. 2003). The robot
must perform a wide array of helpful tasks (e.g., medicine
delivery and cleaning), plan safe paths around the house, and
detect falls to call for help as needed (Broadbent et al. 2009)

while operating over a long duration. This domain has many
subproblems, each complex and nuanced, and they are all in-
terrelated as part of the whole solution. Systems of this scale
require an integration of many methods, as they quickly be-
come too large to solve with a single monolithic MDP.

Prior work on integrations of multiple models arose from
disparate ideas, each of which extends the MDP in a par-
ticular way. For hierarchies, a large problem is decomposed
into essentially subtasks (Sutton, Precup, and Singh 1999;
Tao et al. 2009). For multiple objectives, which we show is
related, solutions typically scalarize the objectives into one
or maximize a primary objective subject to constraints (Roi-
jers, Whiteson, and Oliehoek 2014; Klein et al. 2012). For
online solutions with multiple models, each update their
state spaces simultaneously and recommend actions for each
entity in the domain (Kochenderfer 2015; Bai et al. 2015).

While these approaches have been used in modest appli-
cations, it is not clear how they relate or how to combine
them to solve large-scale problems. This knowledge gap
manifests itself by the lack of a unified view across all model
forms, which leaves many questions unanswered. For exam-
ple, how are constrained MDPs (CMDPs) related to options
and can they be combined? What does it mean to perform an
action if it can induce updates in multiple models? How can
multiple models transfer control to one another if their state
and/or action spaces are different? More generally, how can
we create a principled mathematical framework that enables
the integration of multiple models with these concepts?

We propose the notion of a policy network that helps
us begin to answer these questions. It is a graph in which
the vertices denote a set of policies and the edges denote
their dependencies. A set of policies associated with a ver-
tex refers to a state and action space that can be shared or
distinct from any other vertices. A policy constraint edge en-
forces a restriction on a vertex’s set of policies from another
vertex. A policy transition edge defines a state transition in
a vertex’s state space or a transfer of control to another ver-
tex. The objective is to maximize expected reward in the in-
duced hierarchy of constrained semi-Markov decision pro-
cesses following the graph’s dependency structure.

Our primary contributions also form the sections of the
paper: (1) a formal definition of policy networks and their
properties; (2) a theoretical analysis that proves their gen-
erality, encapsulating prior models such as CMDPs and op-
tions; and (3) an implementation of the approach in a home
healthcare robot acting in a real household environment.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

103

Background
A multi-objective Markov decision process (MOMDP) is de-
fined by 〈S,A,T,R〉. S is a set of states. A is a set of
actions. T :S×A×S→ [0,1] is a state transition such that
T (s,a,s′)=Pr(s′|s,a). R=[R0, . . . ,Rk]T is a vector of
reward functions such that Ri :S×A→R. A policy may
be stochastic π :S×A→ [0,1] or deterministic π :S→A. Π
refers to any such set of policies. For a stochastic policy
π, infinite horizon objectives, with discount factor γ∈ [0,1),
have a value Vπ :S→Rk+1 for state s defined as:

Vπ(s)=
∑

a∈A
π(s,a)

(
R(s,a)+γ

∑

s′∈S
T (s,a,s′)V(s′)

)
.

A constrained MDP (CMDP) (Altman 1999) is a MOMDP
with the objective:

maximize V π0 (s0)
subject to −V πi (s0)≤ci, ∀i∈{1, . . . ,k} (1)

and given constraints ci∈R. Rewards are commonly treated
as costs Ri=−Ci for each Vi. An optimal policy π∗ obtains
a maximal value V ∗0 (s0).

A semi-Markov decision process (SMDP) (Puterman
1994) is an MDP in which control of the system is so-
journ, relinquished to a so-called natural process, defining
distinct decision epochs each with a sojourn time—duration
the agent was not in control. The discrete time SMDP may
be defined by 〈S,A,T,F,R,ρ〉. T :S×A×N×S→ [0,1]
is a state transition that includes the sojourn time τ such
that T (s,a,τ,s′)=Pr(s′|s,a,τ). F :S×A×N→ [0,1] is
the probability mass function (PMF) for the sojourn time
τ such that F (s,a,τ)=Pr(τ |s,a). ρ :S×A×N→R is the
expected reward rate for the sojourn time. For a determinis-
tic policy π, the value V π :S→R is defined as:

V π(s)=R(s,π(s))+
∑

s′∈S

∞∑

τ=1

γτPr(τ,s′|s,π(s))V π(s′),

with state transition Pr(τ,s′|s,a) and:

R(s,a)=R(s,a)+

∞∑

τ ′=1

F (s,a,τ ′)
τ ′−1∑

τ=1

ρ(s,a,τ).

Notationally, continuous time SMDPs define F as the cumu-
lative distribution function (CDF) to facilitate its integral and
derivative equations, whereas we equivalently define F as its
PMF to facilitate discrete time equations (Howard 1971).

The options framework (Sutton, Precup, and Singh 1999)
add special actions to an MDP, called options, that execute
a complete policy, performing the actions of the agent un-
til it stochastically returns control. It forms a special type
of discrete time SDMP defined by O={O1, . . . ,Ok} with
Oi=〈Ii,πi,βi〉. For Markov options, Ii⊆S is a set of ad-
missible initiation states, πi :S→A is a policy, and βi :S→
[0,1] is the probability of terminating the option at each
state. Semi-Markov options are instead defined over histo-
ries H̄—sequences h̄=〈s0,a0,s1,a1, . . .〉—with πi :H̄→A
and βi :H̄→ [0,1].

An infinite horizon MDP is generalized by both: (1) a
CMDP with no constraints (k=0), and (2) a discrete time
SMDP that immediately returns control (F (s,a,1)=1).

Policy Networks

In general, policy networks are graphs in which vertices de-
note sets of policies for a reward function and edges denote
policy dependences among them. The objective is to capture
the relations among distinct decision-making components to
solve large multi-objective hierarchical problems.

Specifically, a policy network is a sequential decision-
making model defined by a directed graph 〈V,E〉:

• V is a finite set of vertices such that each v∈V denotes
a set of policies Πv for reward Rv :Sv×Av→R; and

• E is a finite set of edges such that each 〈v,w〉=e∈E is:

– policy constraint Πe enforces Πw⊆Πe; and/or

– policy transition Te defines Te :Sv×Av×Sw→ [0,1]
as a partial function equal to Pr(w,s′w|sv,av).

The execution of a policy network operates over discrete
time steps t∈N as a form of Markov reward process. Each
vertex v has a state space Sv and action space Av for its pol-
icy and reward. Both, one, or neither space might be shared
by any number of other vertices—that is, the same random
variable in dynamic Bayesian networks or the same uncer-
tainty or decision nodes influence diagrams. Each unique
state space, say Sv for vertex v, has an initial state s0v∈Sv .

As in (PO)MDPs, to perform an action is simply the act
of conditioning on the action so as to induce an update in
the underlying vertex v’s stochastic process following the
state transition distribution Pr(w,s′w|sv,av). This proba-
bility distribution describes the state transition within the
state space of v (i.e., w=v and s′w=s′v∈Sv) as well as
across other state spaces used by other vertices (i.e., w 6=v
and s′w∈Sw). Policy networks require full specification of
Pr(w,s′w|sv,av), via the collection of functions Te. In its
simplest form, if v only transitions to itself by Te=Tvv , then
Te is equivalent to a typical (PO)MDP state transition. Any
induced state transition also induces a reward from Rv .

At each time step, any controller vertex v performs the
action πv(sv)∈Av at their current state sv∈Sv from avail-
able policy πv∈Πv . Actions performed by v may result in a
state transition to a different vertex w’s state space. We call
this a transfer of control, with the controller changing from
v to w who now performs the action πw(sw)∈Aw at their
state sw∈Sw from available policy πw∈Πw. Each policy
network has an initial controller v0∈V .

From an initial controller, we derive a graph describing
the direct constraint or transfer dependencies among two
vertices. Formally, the dependency graph 〈V,E′〉 is a di-
rected acyclic graph (DAG) with E′⊆E ensuring all paths
from each vertex lead to the initial controller v0. Generally,
we consider any such DAG that contains a maximal number
of edges E′ from E. A common special case is simply the
shortest path tree. Following the dependency graph, we can
denote the ancestors of vertex v asA(v)⊂V , its parents as
P(v)⊆A(v), its descendants asD(v)⊂V , and its children
as C(v)⊆D(v).

104

Hierarchy of Constrained Semi-MDPs
A policy network induces a dependency graph that induces
a hierarchy of constrained semi-Markov decision processes
(CSMDP). Each CSMDP is recursively dependent, starting
at the furthest vertices and ending at the initial controller.

Relative Times In discrete time SMDPs (Puterman 1994),
there are three notions of time which policy networks share.
These are relative to a vertex v, but subscripts will be omit-
ted when it is not ambiguous. First, the natural process
time is denoted by τ ∈N. It refers to the total number of
time steps following the state transitions for v’s CSMDP.
Second, a decision epoch is denoted by t∈N. It refers to a
time interval within the natural process time for v’s CSMDP:
[τ1 + · · ·+τ t, τ1 + · · ·+τ t+1) . Third, a sojourn time is de-
noted by τ t∈N for decision epoch t. It refers to the duration
of a decision epoch. This notation is overloaded, as it refers
to both this duration and the random variable that determines
this duration (F detailed below). In summary, vertex v’s rel-
ative decision epochs are when it is a controller, and its rela-
tive sojourn times are the duration between being in control.

Relative State Let ancestors that share v’s action space
be A(v)={w∈An(v)|Aw=Av}. Only these ancestors can
directly affect v’s state, because if one were to become a
controller then it would perform action, which by definition
would induce state updates in v. Variables which have this
consideration use the same notation, such as sojourn time τ t.

Since each decision epoch’s sojourn time reflects a vertex
v’s perspective on the effects ancestors have on its Markov
reward process, its CSMDP omits the time spent by ances-
tors which do not share its action space. Consequently, the
CSMDP state must consider which relevant ancestor is in
control w∈A(v), its state sw∈Sw, and the vertex’s own
current successor state s′v . Formally, this is defined by sv=
〈w,sw,s′v〉 with all such states denoted as Sv . This space
represents the CSMDP’s states while the natural process—
ancestors of v—is in control.

Relative State Transitions The relative CSMDP stochas-
tic process follows Pr(τ ,s|sv,av). It refers to the probabil-
ity that the next decision epoch for v occurs at or before
sojourn time τ and has successor state s′v , with ancestor w’s
state sw, after v had performed action av in state sv .

Additionally, as in discrete time SMDPs, we may write
Pr(τ ,s|sv,av)=Fv(sv,av, τ)Tv(sv,av, τ ,s) given the so-
journ time distribution following Fv and the state transition
distribution following Tv . Note that as in general SMDPs,
there are equivalent representations of Pr(τ ,s|sv,av) using
different definitions of Fv and Tv , which may be used here
as well if desired.

We can compute both Fv(sv,av, τ) and Pr(s|sv,av, τ)

directly by constructing a Markov chain M |S|×|S| from the
policy network and its dependency graph. The former is
computed by marginalization over the Markov chain’s tran-
sitions to states of the form 〈v,sv,sv〉, that is, transition-
ing back to v after sojourn time τ from Mτ . The latter is

computed directly following Mτ , as the τ -th iteration of the
Markov chain determines these probabilities. There are two
important properties regarding Markov chain M . First, as
the state only needs to consider ancestorsA(v), all other an-
cestorsA(v)−A(v) are summarized by their corresponding
transfer control probabilities. Second, all policy transitions
Te outside of v’s dependency graph are treated as absorbing
states in v’s CSMDP. This naturally captures the construc-
tion of abstractions with collections of subtasks: a subtask’s
goal or terminal states transfer control back to its parent after
it completes the task it was designed to handle.

Relative Rewards The discrete time CSMDP has two re-
wards: (1) immediate reward Rv , and (2) expected reward
gained at rate ρv :Sv×Av×N→R. Specifically, following
SMDPs, ρv(sv,av, τ) is defined as the reward rate at some
sojourn time τ after action av was performed in state sv , but
before the next action is performed. Thus, we have:

ρv(sv,av, τ)=γτv
∑

s∈S
Rv(s

′
v,πw(sw))Pr(s|sv,av, τ), (2)

with a discount factor γv∈ [0,1). The resulting reward is de-
notedRv :Sv×Av→R and is written as:
Rv(sv,av)=Rv(sv,av)

+

∞∑

τ ′=1

Fv(sv,av, τ
′)
τ ′−1∑

τ=1

ρv(sv,av, τ). (3)

Relative Constraints As this is a constrained SMDP, the
space of available policies used to perform action is re-
stricted by policy constraint edges. Formally, each vertex v
refers to a policy space such as Πv⊆{π :Sv→Av}. This
can be all possible policies or any non-empty subset, such as
in the options framework or CMDPs. Options define Πv=
{πv} as a single fixed policy that is the option itself πv (Sut-
ton, Precup, and Singh 1999). CMDPs define Πv⊂

⋂
iΠiv

by a restriction in this policy space by each other objective
i’s policy set Πiv that satisfies constant ci (Altman 1999).

In general, the set Πv is defined iteratively, by computing
the policy sets for all ancestors inA(v), ending with v’s own
edge constraint Πvv , if any exists. Formally, Πv ensures:

πv∈Πv⊆Πvv⊆
⋂

w∈P(v)
Πwv (4)

with v’s final chosen policy being any πv∈Πv , for any Πvv

and Πwv that exist in E.
To focus our discussion, we consider policy constraint

edges Πe in terms of a bound on regret from expected value
(defined in the next section) up to a slack—allowable de-
viation from optimal. Formally, policy constraint edge e=
〈v,w〉 has a slack δvw≥0 such that:

Πvw={π∈Πv|V ∗w(s0w)−V πw (s0w)≤δe}. (5)
While we focus on CMDPs in this paper, the lexico-

graphic MDP (LMDP) (Wray, Zilberstein, and Mouaddib
2015), LPOMDP (Wray and Zilberstein 2015a), and pos-
sibly other forms of slack (Wray, Kumar, and Zilberstein
2018) can be generalized by policy networks as well. How-
ever, we leave this discussion to future work.

105

Objective Function
The infinite horizon objective of a policy network is de-
fined recursively such that each vertex v’s objective to find a
policy πv∈Πv that maximizes the expected reward starting
from initial state s0v subject to its ancestors:

E
[∞∑

t=0

γtvRv(stv,πv(stv))
∣∣∣πv,s0v,∀w∈A(v),πw,Πw

]
(6)

with stv denoting the random variable for the state of v at its
decision epoch t generated following the policy network’s
dependency graph state transitions Pr(τ ,s|sv,av), and the
stationary ancestor policies πw and policy sets Πw. To fo-
cus the discussion, we consider an infinite horizon; however,
other objectives follow in the natural way.

For a policy πv∈Πv , the value V πv :Sv→R is the ex-
pected reward at state sv following the Bellman equation:

V πv (sv)=Rv(sv,πv(sv))

+
∑

s∈S

∞∑

τ=1

γτPr(τ ,s|sv,πv(sv))V πv (s′v). (7)

A policy π∗v ∈Πv is optimal if it obtains the maximal value
V ∗v . This optimal value can be computed by the Bellman
optimality equation over each state sv:

V ∗v (sv)= max
av∈Av

(
Rv(sv,av)

+
∑

s∈S

∞∑

τ=1

γτPr(τ ,s|sv,av)V ∗v (s′v)
)
. (8)

Stationarity
For a controller v and its policy set Πv , the chosen policy
πtv∈Πv for performing actions at time t can remain constant
or vary over time. Formally, if πtv=πv for all time t, then
we call the vertex’s policy stationary, otherwise it is non-
stationary. In the tradition of MDPs and planning, poli-
cies are commonly stationary. However, even solutions com-
puted offline can have time-varying non-stationary policies.
The holistic perspective policy networks affords a broader
view of stationarity that includes to the behavior of online al-
gorithms as well, which vary their policy over time in online
planning (Ye et al. 2017) and reinforcement learning (Sut-
ton and Barto 1998). The analysis is specific to the online
scenario and therefore we leave this analysis to future work.

Since policy networks relate sets of policies to one an-
other, the set of policies Πt

v at a time t can also remain con-
stant or vary over time. Formally, if Πt

v=Πv for all time t,
then we call the vertex’s policy set stationary, otherwise
it is non-stationary. In a simple MDP or POMDP within
a policy network, the policy set trivially remains constant.
However, in a growing number of online models—such as
MODIA used in autonomous vehicles (Wray, Witwicki, and
Zilberstein 2017)—the set of policies is constantly adjusted
online. While this is easily described in a policy network,
their formal analysis is nuanced and specific to the assump-
tions for each online scenario. For this reason, we leave any
such extensive analysis to future work, favoring a descrip-
tion of one such online model in terms of policy networks to
illustrate the approach.

(a) v (b) v

(c) v w
Πvw (d) v w

Tvw

Twv

(e)

v

w

x

y

Πxv

Πxy

Πyw

TvwTwv (f)
vwi

Πiv

i∈N

Figure 1: Basic examples of the graphical notation used
to represent policy networks, with each v∈V following
some v∼MDP(Sv,Av,Tv,Rv): (a) stationary vertex; (b)
non-stationary vertex; (c) constraint edge; (d) a transfer of
control; (e) a mixture of these previous concepts; and (f)
plate notation denoting a set of N constraints.

Graphical Representation
Policy networks continue the tradition set by probabilistic
graphical models (PGMs) with a clean and powerful graph-
ical representation. This allows for rich complex decision-
making with many objectives and levels of abstraction to be
easily described, analyzed, and implemented.

Figure 1 covers basic policy network notation. Each ver-
tex as v∈V is a circle and each directed edge e∈E as an ar-
row. Edges are directed and denote their policy dependencies
by any relevant variables. For example, policy constraints
are denoted by their policy set Πe and policy transitions are
denoted by their function Te. When it is not ambiguous, it is
suffices to denote parameters instead, such as slack δe or an
options’ initiation set Ie or termination function βe. Vertices
and edges are lowercase; their sets are uppercase. The initial
controllers v0 are denoted by double-lined circles. Station-
ary vertices are filled-in—e.g., solved by offline algorithms.
In contrast, non-stationary vertices which are not filled-in—
e.g., solved by online algorithms. Plate notation may be used
to easily group sets of similarly defined vertices.

Any vertex v which follows a standard MDP, POMDP,
etc. model uses the notation v∼MDP(·), v∼POMDP(·),
etc. in the tradition of PGMs. Intuitively, the “∼” sym-
bol refers to “selecting” a policy from a policy space. This
notation is used for convenience. It completely describes
the vertex’s policy set Π, reward R, and an implicit self-
loop edge with transition T and constraint Π∗—enforcing
only optimal policies, as applicable. Formally, this extra no-
tation means v∼MDP(S,A,T,R) defines v with policies
Π⊆{π :S→A} with reward R :S×A→R. Additionally, it
defines the implicit edge—that is, merely not graphically
drawn—self-looping edge e=〈v,v〉∈E with policy con-
straint Π⊆Πe=Π∗ and policy transition Te=T . POMDPs
are similarly defined as v∼POMDP(S,A,Ω,T,O,R) since
they are a special form of continuous state MDP called a
belief MDP (Kaelbling, Littman, and Cassandra 1998).

106

v0

v1 · · · vk

c1 ck

vi∼MDP(S,A,T,−Ci)
v0∼MDP(S,A,T,R)

ε

vi pj

δvi δpj

Te,Πe

i∈Kv j∈Kp

vi∼POMDP(Svi ,A,Ω
v
i ,T

v
i ,O

v
i ,R

v
i)

pj∼POMDP(Spj ,A,Ω
p
j ,T

p
j ,O

p
j ,R

p
j)

ε∼〈{πε :{sε}→A},Rε〉

v

oi

Iiβi

Ti

i∈K

v∼MDP(S,A∪O,T,R)
oi∼〈{πi},R〉

v

wj

TjvTvj

j∈K

v∼SSP(S,A,T,C,s0,sg)
wj∼POMDP(Sj ,Aj ,Ωj ,Tj ,Oj ,Rj)

(a) CMDP (b) MODIA (c) Options (d) SAS

Figure 2: Four policy networks: (a) a constrained MDP; (b) MODIA; (c) the options framework, traditionally for a reinforcement
learning agent; and (d) semi-autonomous systems, as a macro-action or subtask example.

Theoretical Analysis
We now show the generality of policy networks by prov-
ing that they can encapsulate various models such as the op-
tions framework and CMDPs. Additionally, this section also
serves as a demonstration of the design of policy networks to
provide guidance for how to create them. Proposition 1 be-
gins with a simple but important statement regarding policy
networks’ generality beyond MDPs and POMDPs.

Proposition 1. Policy networks generalize (PO)MDPs.

Proof. For any MDP, we must construct an equivalent policy
network. Let V ={v} with v∼〈Π,R〉. Let E={e=〈v,v〉}
with transition Te=T and Πe={π|V ∗(s0)=V π(s0)}.
Thus, Pr(τ ,s|s,a)>0 only if τ=1 and Pr(1,s|s,a)=
T (s,a,s′), also implying R(s,a)=R(s,a). Thus, Equa-
tion 7 becomes the MDP Bellman equation.

Next, we consider two related cases of policy constraint
edges: CMDPs and MODIA in Propositions 2 and 3, re-
spectively. Here, constraints limit the space of policies from
parent vertices to a child controller vertex. CMDPs repre-
sent a policy network with a shared both state and action
space, constrained offline with stationary policies. MODIA
represents a policy network with a different state space but
a shared action space—illustrating how performing action
can simultaneously affect many models—constrained online
with non-stationary policy sets.

Proposition 2. Policy networks generalize CMDPs.

Proof. For any CMDP, we must construct an equivalent
policy network. See Figure 2 (a). Let V ={v0, . . . ,vk}
with v0∼MDP(S,A,T,R0), vi∼MDP(S,A,T,−Ci), v0 =
v0, and stochastic policies. Let {〈vi,v0〉}⊂E with Πi0 =
{π|V ∗i (s0)−V πi (s0)≤δi} and δi=V ∗i (s0)+ci. Thus, the
policy network has the same objective as the CMDP objec-
tive from Equation 1, and Equation 7 equal to the CMDP
Bellman equation.

MODIA (Wray, Witwicki, and Zilberstein 2017) is for au-
tonomous vehicle (AV) decision-making about other enti-
ties: vehicles Kv and pedestrians Kp, analyzed a posteriori.
Multiple POMDP models (i.e., vi and pj) describe each AV-
entity pairwise interaction; each model is solved offline in

isolate, resulting in stationary polices πvi and πpj . An execu-
tor ε :A∗→A maps any tuple of action recommendations to
a final action performed by the executor. This action updates
the other models resulting in regret; e.g., for i∈Kv regret
is ri=V ∗i (bi)−Q∗i (bi, ε(a)). Following Wray et al. (2017),
we consider risk-sensitive MODIA with LEAF, which as-
sumes an ordering exists over actions � in terms of safety.
If a riskier action is performed πi(bi)�ε(a) then the model
i experiences a regret lower bounded by ri≥Q∗i (bi)−Q.
A so-called LEAF executor that selects the safest action
among the recommendations (i.e., ∀i, ε(a)�πi(bi) and ∃j
s.t. ε(a)=πj(bj)) minimizes the sum of one step regrets.

Proposition 3. Policy networks generalize MODIA.

Proof. For any MODIA, we must construct an equivalent
policy network. See Figure 2 (b). Let V ={ε}∪{vi}∪{pj}
with v0 =ε. Let each vi∼POMDP(·) and pj∼POMDP(·)
as in the figure with shared A. Let ε∼〈Πε,Rε〉 for policies
πε :Sε→A with trivial state space Sε={sε}. Let Rε(sε,a)
equal the index of a in the reverse of ordering� over A. Let
{〈ε,ε〉}∪{〈vi, ε〉}∪{〈pj , ε〉}⊂E. Let Tεε(sε, ·,sε)=1 be a
self-loop transition and let Πεε={π|V ∗ε (sε)=V πε (sε)} se-
lect optimal executor policies. Let Πε be a non-stationary
policy set that is defined by its parents’ constraint edges
Πt
iε={π :{sε}→A}|V ∗i (bti)−Q∗i (bti,π(sε))<δ

v
i }, with a

similarly defined Πjε, that only allow executor actions with
regret no greater than δvi =V ∗i (bti)−Q. By construction, the
executor vertex ε’s selected policy π∗ε ∈Πt

ε at time t maps its
state sε to the safest action among recommendations. This is
identical to the definition of LEAF, and thus minimizes the
sum of one step regrets implicitly through constraints.

Lastly, we consider two related cases of policy transition
edges: the options framework and SAS in Propositions 4
and 5, respectively. Here, transfer of control happens be-
tween parent and child vertices, both online (options) and
offline (SAS). Options represent a policy network with a
shared state space and shared action space, learning on-
line with a non-stationary policy. SAS represents a pol-
icy network with different state space and different action
space—illustrating how how different models can interact—
planning offline with a stationary policies.

107

Proposition 4. Policy networks generalize options.

Proof. For any set of options, we must construct an equiv-
alent policy network. See Figure 2 (c). First, we consider
Markov options. Let V ={v}∪{oi} with v0 =v. Let v∼
MDP(S,A∪O,T,R) and for each option Oi=〈Ii,πi,βi〉
let oi∼〈Πi,R〉 with only the option policy Πi={πi}. As
v is traditionally a reinforcement learning agent, we sim-
ply represent the vertex’s policy as non-stationary. Let
R include the option reward R(s,Oi)=R(s,πi(s)). Let
{〈v,oi〉}∪{〈oi,v〉}∪{〈oi,oi〉}⊂E. Let Tvi(sv,Oi,s′i)=
T (sv,πi(sv),s

′
i)[sv∈Ii] transfer control to the option, as

allowed by Ii, using Iverson bracket [·]. Without loss
of generality in MDPs, actions can be defined for each
state A(sv), handling any invalid execution of options in
states. Let Tiv(si,ai,sv)=βi(si)T (si,πi(si),sv) transfer
control back to v stochastically following βi; consequently,
Ti(si,ai,s

′
i)=(1−βi(si))T (si,ai,s

′
i) accounts for βi, too.

Semi-Markov options have a similar structure, except the
shared state space is H̄ instead of S, with v∼MDP(H̄,A∪
O,Tv,Rv) and oi∼〈Πi,Rv〉. When v is in control, its
transitions T remain at zero time states: Tv(h̄v,a, h̄′v)=
T (sv,a,s

′
v)[h̄

′=〈s′v〉] and Rv(h̄,a)=R(stv,a) for any h̄=
〈s0v,a0, . . . ,at−1,stv〉, again withRv(h̄,Oi)=R(stv,πi(s

t
v)).

When options are in control, they transition over time
by simply recording its action πi(s

t
i) and stochastic state

sti to iteratively construct a history embedded in its
state space H̄: Ti(h̄i,a, h̄′i)=(1−βi(sti))T (sti,a,s

′
i)[h̄
′=

〈s0i , . . . ,st−1i ,a,s′i〉]. Lastly, transfer of control is similarly
defined. Let Tvi(h̄v,Oi, h̄′i)=T (stv,πi(s

t
v),s

′
i)[s

t
v∈Ii] sim-

ply transfer to the option following Ii. Let Tiv(h̄i,a, h̄v)=
βi(s

t
i)T (sti,a,s

0
v) transfer back to v following βi, with it re-

setting time encoded in the state h̄v for v.
In both cases, the value equation follows the option frame-

work’s discrete time SMDP Bellman equation.

Semi-autonomous systems (SAS) (Wray, Pineda, and Zil-
berstein 2016) model the transfer of control of a single agent
among a group of actors I that control it, such as transfer-
ring control between an AV and a human driver. It is built on
a two-level hierarchy with a stochastic shortest path (SSP)
problem (Bertsekas and Tsitsiklis 1991) reasons about trans-
fer of control success and failure by executing a POMDP.
The SAS state space S=S×I includes the current actor,
and the action space A=A×I includes the desired next
actor. The state transition T :S×A×S→ [0,1] follows the
current actor’s state transition Ti :S×A×S→ [0,1]. How-
ever, if a transfer is attempted at s=〈s, i〉, we multiply
by ρ :S×I×I→ [0,1] as ρ(s, î, i′)=Pr(i′|s, î) denotes the
probability that the next actor is i′ given an attempt to trans-
fer from i to î. For each state-action pair, ρ is computed by
a POMDP in a completely different state and action space
that considers communication messages and belief about the
state of the actor’s preparedness to take control. Its execution
ends in a collapsed absorbing belief state: success bs, failure
bf , or abort ba. A mapping f :{bs, bf , ba}→I must be pro-
vided from these POMDP result states to the next SSP actor.
Given its policy, the probability of reaching these three ab-
sorbing states is computed as ρ for use by the SSP.

Proposition 5. Policy networks generalize SAS.

Proof. For any SAS, we must construct an equivalent policy
network. See Figure 2. Let V ={v}∪{wj} with v∼SSP(·)
and wj∼POMDP(·) as in the figure with distinct state and
action. Without loss of generality and to remain inline with
SAS, an SSP is used, which is akin to an MDP with discount
γ=1, initial state s0, and goal state sg . For each SSP state-
action pair there is a distinct POMDP wj , withK={j∈S×
A|j=〈s,a〉∧ i 6= î}. Let {〈v,wj〉}∪{〈wj ,v〉}⊂E. For Tvj
and Tjv, we have the notation j=〈s,a〉, s=〈s, i〉, a=〈a, î〉,
and s′=〈s′, i′〉. First, let Tvj(s,a, b0j)=1 be defined for any
i 6= î, always executing the corresponding POMDP starting
at its b0j . Second, Tjv has three cases: for each b∈{bsj , bfj , baj }
we have Tjv(b,aj ,s′)=Ti(s,a,s

′)[f(b)= i′]. Since the ac-
tion spaces are different (A 6=Aj), v’s CSMDP summarizes
the state transitions of each wj , resulting in v’s Bellman
equation producing a ρ for each wj . This is identical to the
SAS model. Thus, this policy network produces the same
Bellman equations for the SAS’s SSP and POMDPs.

Evaluation: Home Healthcare Robot
Home healthcare robots serve in household and eldercare
scenarios, providing solutions to a wide array of helpful
tasks ranging from cleaning to medicine delivery (Robin-
son, MacDonald, and Broadbent 2014). Surveys conducted
by Broadbent et al. (2009) analyzed and ranked the desired
tasks the robot could do to help improve the lives of the
elderly. Both elderly people and healthcare staff were sur-
veyed. The top ranked needs include: (1) medicine notifica-
tion and delivery; (2) forms of cleaning the house; and (3)
monitoring, detecting, and helping with falls. We focus on a
robot solution that captures all three.

The few mobile healthcare robots that exist tend to-
wards hand-engineered decision-making systems that work
well for their specific implementation (Graf, Hans, and
Schraft 2004). One of the notable exceptions of a general
model-based approach involves an early form of hierarchi-
cal POMDP (Pineau et al. 2003). They partitioned a single
POMDP’s action space into smaller groups, solving a col-
lection of identical POMDPs with differing reduced action
spaces. While successful, this early seminal work lacked the
generality of a policy network—such handling multiple ob-
jectives in CMDPs, use different models (state and action
spaces), or leverage grounding in SMDPs such as options.

Problem Description Consider a healthcare robot with
a set of high-level tasks it must continuously complete. The
medicate task is selected to complete by the high-level and
requires navigating to the bathroom, retrieving medicine,
finding the patient, and delivering it to them. The clean task
is also selected and requires moving any out-of-place objects
back in place while vacuuming. The monitor task must op-
erate at all times, reactively interrupting any other task, and
requires monitoring and detecting a fall of an elderly person.
If confident in the detection, the robot should check on the
person and autonomously call for the help of a healthcare
professional. The low-level path planning must take special
care to avoid obstacles to safely traverse the house.

108

h εi

ti fi

pij

Thi

Tih
Πe

δti δfi
Tij

Tji
i∈I

j∈J

h∼MDP(Sh,Ah,Th,Rh)
ti∼POMDP(Sti ,A

t
i,Ω

t
i,T

t
i ,O

t
i ,R

t
i)

fi∼POMDP(Sf ,Af ,Ωf ,T f ,Of ,Rf)
εi∼〈{πεi :{sε,sc}→Ati∪Af},Rεi〉
pij∼Harmonic(Sp,Ap,Op,Gpij)

Figure 3: The policy network for the home healthcare robot.

Name V |S| |A| |Ω| |Γ| Time
High-Level Task Selector h 16 4 — — <0.1
Medicate Task t1 289 13 5 1224 159.8
Clean Task t2 145 13 3 612 14.0
Fall Monitor/Assist Task fi 2 3 2 22 <0.1
Low-Level Path Planner pij 17766 9 — — 0.92

Table 1: The problem sizes and run times for each model.

Policy Network Solution Figure 3 shows the policy net-
work for the healthcare robot. We provide a description of
each vertex below. Also, Table 1 shows the problem sizes
and results of solving these problems using nova (Wray and
Zilberstein 2015b), with value iteration (VI), point-based VI
(PBVI) (Pineau, Gordon, and Thrun 2006), and harmonic
functions (Wray et al. 2016), for MDP, POMDP, and path
planning models, respectively. PBVI has a policy size de-
noted as |Γ|. Harmonic function path planning (Harmonic(·)
above) is equivalent to a special class of SSP with uniform
state transitions, goals Gpij⊂Sp, and cost of 1 for obsta-
cles Op⊂Sp. All source code will be provided for complete
problem descriptions and reproducability.

The high-level task h handles issues I={t1, t2,fi,∅}with
Sh=2I and Ah=I . Let ∅ denote a “complete” or “no-op”
state and action here. The high-level h transfers control by
Thi to the start state of the corresponding task when selected
as an action. Let a set of regionsR (e.g., kitchen, bathroom,
and bedroom) be given for the map. The medicate task t1
has St1 =R×R×{Y,N}∪{∅}, denoting region locations
for the robot and the person, as well as if the medicine is
carried or not. At1 =R refer to navigation to a region by the
path planner by Tij and Tji. Ωt2 ={Y,N}×{Y,N}∪{∅}
refers to detection of a person or not, holding medicine or
not, and completion. The clean task t2 is similarly defined
with St2 =R×R∪{∅} and A2 =R as it searches for a lo-
cation to clean. Ωt2 ={Y,N,∅} refers to detection of a per-
son or not and completion. The monitor task fi has state
space Sf ={Y,N} for if the person has fallen and needs
help. Af ={call,ask,∅} denotes calling for help, asking if
the person needs help, and no-op. Ωf ={Y,N} refers to de-
tecting a fall or not. The executor ε follows as in a MODIA,
with a preference for call and ask over region navigation
actions R. Tih transfers control back to h when in a task
complete state sc. The path planner pij navigates between
regions J=R×R in the occupancy grid map in Figure 4.

Figure 4: Experiments with the home healthcare robot us-
ing this policy network in the real household shown above.
Three highlights are shown: (1) medicine retrieval for task
t1, (2) medicine delivery completion with transfer t1→h→
t2, and (3) interruption of cleaning task t2 by detecting a fall
with task fi and calling for assistance.

Conclusion
We now revisit the questions posed in the introduction. First,
how are CMDPs related to options and can these two mod-
els be combined? In policy networks, they are different types
of edges between collections of distinct models: policy con-
straints and policy transitions. By simply adding any desired
vertices and corresponding edges, we can easily combine
both ideas, as evident by the previous section. Second, what
does it mean to perform an action? In policy networks, it
means conditioning on an action so as to induce a state up-
date in any models that share the same action space. Third,
how do these operate when the state and/or action spaces are
different? Following the definition of performing an action,
any shared action space induces state updates in the collec-
tion of models, as in options or more generally SMDPs. With
different action spaces, the policies can still affect one an-
other through transfer of control, treated as an abstraction or
macro-action.

Finally, is there a principled mathematical model that en-
ables the integrated design of multiple models with these
concepts? Policy networks serve as an answer to this. They
provide a theoretical model that generalizes select state-
of-the-art models. The implementation shown here demon-
strates they can successfully model and solve a challeng-
ing home healthcare robot domain. In summary, policy net-
works provide a general model for the reasoning component
in real-world systems for long-term autonomy.

109

Acknowledgments
We thank the reviewers for their helpful comments. This re-
search was supported by the National Science Foundation
grant number IIS-1724101.

References
Altman, E. 1999. Constrained Markov decision processes.
England: Chapman & Hall/CRC Press.
Bai, H.; Cai, S.; Ye, N.; Hsu, D.; and Lee, W. S. 2015.
Intention-aware online POMDP planning for autonomous
driving in a crowd. In Proceedings of the IEEE International
Conference on Robotics and Automation, 454–460.
Bertsekas, D. P., and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580–595.
Broadbent, E.; Tamagawa, R.; Kerse, N.; Knock, B.; Pa-
tience, A.; and MacDonald, B. 2009. Retirement home staff
and residents’ preferences for healthcare robots. In Proceed-
ings of the 18th IEEE International Symposium on Robot
and Human Interactive Communication, 645–650.
Graf, B.; Hans, M.; and Schraft, R. D. 2004. Care-o-bot
ii—development of a next generation robotic home assistant.
Autonomous Robots 16(2):193–205.
Howard, R. A. 1971. Dynamic Probabilistic Systems: Semi-
Markov and Decision Processes. New York, NY: Wiley.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1):99–134.
Klein, L.; young Kwak, J.; Kavulya, G.; Jazizadeh, F.;
Becerik-Gerber, B.; Varakantham, P.; and Tambe, M. 2012.
Coordinating occupant behavior for building energy and
comfort management using multi-agent systems. Automa-
tion in Construction 22:525–536.
Kochenderfer, M. J. 2015. Decision Making Under Uncer-
tainty: Theory and Application. MIT Press.
Minsky, M. 1986. The Society of Mind. New York, NY:
Simon and Schuster.
Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N.; and
Thrun, S. 2003. Towards robotic assistants in nursing
homes: Challenges and results. Robotics and Autonomous
Systems 42(3):271–281.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime point-
based approximations for large POMDPs. Journal of Artifi-
cial Intelligence Research 27:335–380.
Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming. New York, NY: John Wi-
ley & Sons.
Robinson, H.; MacDonald, B.; and Broadbent, E. 2014. The
role of healthcare robots for older people at home: A review.
International Journal of Social Robotics 6(4):575–591.
Roijers, D. M.; Whiteson, S.; and Oliehoek, F. A. 2014.
Linear support for multi-objective coordination graphs. In
Proceedings of the 13th International Conference on Au-
tonomous Agents and Multi-Agent Systems, 1297–1304.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.
Tao, Y.; Wang, T.; Wei, H.; and Chen, D. 2009. A behav-
ior control method based on hierarchical POMDP for in-
telligent wheelchair. In Proceedings of IEEE/ASME Inter-
national Conference on Advanced Intelligent Mechatronics,
893–898.
Wray, K. H., and Zilberstein, S. 2015a. Multi-objective
POMDPs with lexicographic reward preferences. In Pro-
ceedings of the 24th International Joint Conference on Arti-
ficial Intelligence, 1719–1725.
Wray, K. H., and Zilberstein, S. 2015b. A parallel point-
based POMDP algorithm leveraging GPUs. In Proceedings
of the AAAI Fall Symposium on Sequential Decision Making
for Intelligent Agents, 95–96.
Wray, K. H.; Ruiken, D.; Grupen, R. A.; and Zilberstein,
S. 2016. Log-space harmonic function path planning. In
Proceedings of the 29th IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1511–1516.
Wray, K. H.; Kumar, A.; and Zilberstein, S. 2018. Inte-
grated cooperation and competition in multi-agent decision-
making. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 4751–4758.
Wray, K. H.; Pineda, L.; and Zilberstein, S. 2016. Hier-
archical approach to transfer of control in semi-autonomous
systems. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, 517–523.
Wray, K. H.; Witwicki, S. J.; and Zilberstein, S. 2017. On-
line decision-making for scalable autonomous systems. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 4768–4774.
Wray, K. H.; Zilberstein, S.; and Mouaddib, A.-I. 2015.
Multi-objective MDPs with conditional lexicographic re-
ward preferences. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence, 3418–3424.
Ye, N.; Somani, A.; Hsu, D.; and Lee, W. S. 2017. DESPOT:
Online POMDP planning with regularization. Journal of
Artificial Intelligence Research 58:231–266.

110

Big Data and Deep Learning Models for Automatic Dependent Surveillance
Broadcast (ADS-B)

Ying Zhao
Naval Postgraduate School

yzhao@nps.edu

Richard Wu
UMass Dartmouth
rwu@umassd.edu

Andrew Polk
UC Santa Barbara

polk@umail.ucsb.edu

Matthew Xi
Indiana University Bloomington

mxi@iu.edu

Tony Kendall
Naval Postgraduate School

wakendal@nps.edu

Abstract

ADS-B functions with satellite (GPS) rather than radar tech-
nology to more accurately observe and track air traffic. Air-
craft equipped with an ADS-B Out transmitter sends position,
altitude, heading, ground speed, vertical speed, call sign, and
other aircraft information to a network of ground stations that
relays the information to air traffic controllers and other air-
craft. Our work in progress applies various big data tools and
deep learning models such as convolutional neural networks
to process and use the ADS-B big data to predict if a flight is
commercial or military.

Introduction
ADS-B functions with satellite (GPS) rather than radar tech-
nology to more accurately observe and track air traffic. Air-
craft equipped with an ADS-B Out transmitter sends their
position, altitude, heading, ground speed, vertical speed, call
sign, and other aircraft information to ground stations that
relays the information to air traffic controllers and those who
have ground ADS-B receivers. Pilots of aircraft equipped
with a receiver for optional ADS-B receive traffic and mete-
orological information. Aircraft operating in most controlled
U.S. airspace must be equipped for ADS-B Out by January
1, 2020 (FAA 2018).

With ADS-B operational across the country, pilots in
equipped aircraft have access to air traffic services that pro-
vide a new level of safety, better situational awareness, and
more efficient search and rescue.

Data Description
An aircraft can be identified by radar transponder identifi-
cation, friend or foe (IFF) modes such as one, three, and
five (military). This is done by Line of Sight (LOS) air traf-
fic control ground radar stations. For improved (coopera-
tive) surveillance for flight separation and control an aircraft
can have an Automatic Dependent Surveillance-Broadcast
(ADS-B) Out system to broadcast its identification and loca-
tion from the aircrafts GPS to LOS receiving ground stations
and other aircraft (around a 150 mile range). According to
International Civil Aviation Organization (ICAO), a.k.a, the
international “FAA”, states that notable outcomes of using
ADS-B include a new frequency allocation for space-based

Table 1: 3-month ADS-B Data Divided into 7 Data Sets
Name Month of Data
Data set 7 1 July, 2016,Train
Data set 7 0 July, 2016,Test
Data set 7 2 July, 2016,Test
Data set 8 0 August, 2016,Test
Data set 8 1 August, 2016,Test
Data set 6 0 June, 2016,Test
Data set 6 1 June, 2016,Test

ADS-B reception, enabling tracking of aircraft globally in-
cluding remote and polar regions. Plans are to fully employ
ADS-B and the related infrastructure by 2020 (FAA 2018).

Four terabytes ADS-B data (ADSBexchange.com 2017),
were downloaded from the website ADS-B Exchange sam-
pled every minute, for the whole year (6/2016 to 6/2017)
and processed the selected fields and geo-spatial areas for
a three month time period using the NPS high performance
computer. The data are divided into 7 data sets representing
about 10 days of the flights for a selected region as shown
Table 1. There are approximately 150,000 flights (tracks) in
each data set. Our goal is to build ML/AI models such as
lexical link analysis (LLA) and reinforcement learning (RL)
algorithms to rapidly and accurately classify military and
commercial aircraft based on kinematic characteristics. The
objective of this paper is to investigate how the track data
could be represented as images and fed into the deep learn-
ing algorithm such as convolutional neural networks (CNN)
for high classification accuracy.

There are two versions of all the three data sets

• Data: Original kinematic attributes with numeric values
for a whole track as follows:

– Mean altitude (barometric)
– Mean altitude change
– Mean altitude change absolute
– Mean speed
– Mean speed change
– Mean speed change absolute
– Mean heading change
– Mean heading change absolute
– Total altitude change

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

111

– Total altitude change absolute
– Total heading change
– Total heading change absolute
– Total speed change
– Total speed change absolute
– Total duration
The target attribute to predict is mil true: if an airborne
object is military (true) or commercial (false). The per-
centage of military flights is about 2%.

• Unique data: Discretized original kinematic at-tributes.
For example, the “average altitude attribute is turned into
the following categorical attributes:
– Likelihood to be commercial when average altitude be-

tween 16,607 feet and 29,525 feet
– Likelihood to be military when average altitude be-

tween 16,607 feet and 29,525 feet
– Likelihood to be commercial when average altitude be-

tween 3,689 feet and 16,607 feet
– Likelihood to be military when average altitude be-

tween 3,689 feet and 16,607 feet
– Likelihood to be commercial when average altitude less

than 3,689 feet
– Likelihood to be military when average altitude less

than 3,689 feet
– Likelihood to be commercial when average altitude

more than 29,525 feet
– Likelihood to be military when average altitude more

than 29,525 feet
The values of discretization are computed automatically

by examining the means and standard deviations of the origi-
nal attributes. After discretization, the percentage of military
flights is about 6%.

Methods
Data Exploration
Tableau (tab) can filter the data with any of the metrics in-
cluded in the data set. Changing the sizes of the nodes based
on the number of virtual tracks that pass through that point
allows for the visualization of heavy traffic paths over a map.
The example below clearly shows the most popular flight
paths based on the darker lines on the map. Tableau also
allows for coloring the points on the map though other pa-
rameters in the data. Tableau can display virtual tracks and
statistics. Figure 1 shows examples of virtual tracks of air-
craft for a selected region when the altitudes are higher than
18,000 feet for the training set 7 1. Figure 2 shows the vir-
tual tracks when the tracks altitudes are less than 18,000 feet
and total heading change for tracks are larger than 2000.
Heading is the compass direction toward which an airborne
object should be moving. The blue tracks are commercial
and the orange tracks are military. Comparing Figure 1 and
Figure 2, we can see that the kinematic characteristics for
Figure 2 (i.e., flying below 18,000 feet and total heading
change greater than 2000) are more likely to indicate mil-
itary aircraft, while the kinematic characteristic (i.e., flying

higher than 18,000 feet) for Figure 1 is more likely to indi-
cate commercial aircraft.

Supervised Learning Using Weka

We also reviewed and tested supervised learning methods
such as decision trees, logistic regression, nave Bayes, near-
est neighbors, and random forest models in the open source
data mining and machine learning tool Weka (Hall et al.
2009) as shown in Figure 3. K-nearest neighbors and ran-
dom forest perform the best for both versions of the data.
The part of the research gave us the baselines for compar-
ison for the data set. Since ADS-B data are mostly com-
mercial flights, even 2% flights are self-reported as military,
these aircraft mostly fly similar to commercial aircraft based
on their kinematic characteristics. This is the key reason for
the difficulty of the classification task of this data set.

Figure 1: Sample virtual commercial tracks with altitude
greater 18,000 feet

Figure 2: Map with altitude below 18,000 feet and total
heading change greater than 2000. The blue tracks are com-
mercial and the orange tracks are military

112

Convolutional Neural Networks (CNN)
CNN can train themselves to classify objects in images with
high accuracy (CNN 2018). We explored if CNN can be used
to predict military and commercial flights from the ADS-B
track data. We represented the ADS-B track data as images
and then apply CNN. The ADS-B data set contains a flights
information such as the aircraft name, timestamp, speed,
heading, altitude, military or commercial. We define a track
to be the period between takeoff and landing. For each track,
we focus on three in-put attributes i.e. speed, heading, and
altitude and one output attribute i.e. its classification as mili-
tary or commercial. Each track updates its kinematic data at
one-minute time intervals.

For this particular data set, the color scale will represent
altitude values ranging between -16,935 and 126,400. The
negative altitudes are probably data errors. Figure 5 shows
an example of a track heat map using the color scale in Fig-
ure 4 and altitude is the color or heat.

Segmenting Data into Tracks Microsoft Excel was used
to open the data set as a .csv file. A python script was cre-
ated to split the ADS-B data into tracks, or flight paths, and
two data folders. One folder for all the civilian aircraft and

Figure 3: Supervised learning methods and error rates used
for baselines and comparison

Figure 4: A graph showing the minimum and maximum alti-
tude range over 10 days of ADS-B data from July 10th, 2016
to July 20th, 2016

Figure 5: Sequential Color scale representing low altitudes
on the left (purple) and high altitudes on the right (yellow)

one for military. The complete data was presorted by time
and by aircraft ID. The python script split the full data set
into smaller ones based on aircraft ID and then again based
on the time between measurements. If the time between sen-
sor measurements for the aircraft was greater than one hour
a new track was formed. Afterward, another python pro-
gram is written to plot each flight into one figure. The main
problem with the flight heading data was the heading value
was absolute and not relative causing the data to jump when

Figure 6: Heat map of speed (x-axis), heading (y-axis) and
altitude (color) for one track

Figure 7: Three subplots demonstrating three different rela-
tions between speed, heading, and altitude

Figure 8: The CNN Architecture demonstrating a scatter plot
to be classified as military or commercial

113

crossing the 0◦or 180◦. To smooth the track headings in the
data was modified to fit between 90◦and 90◦. A full rota-
tion of the heading represented this way is visually equiv-
alent to that of a sine wave. Some data is lost in this rep-
resentation as there is no way to discern 0 ◦from 180 but
the relative change in heading between data points is saved.
This smoothing method solves the problem of data jump-
ing around when the heading changes from 1◦to 359◦as this
will be shown as a change of 2◦rather than 358◦allowing for
a cleaner visualization of the data for processing.

Transform Tracks into Images Before using a CNN, first
we converted a whole track into an image. We represent the
input attributes for a track as an image by plotting their rela-
tionship i.e. speed vs heading vs altitude as a color scale as
shown in Figure 5 The color bar and axis of the graph have
been turned off to reduce unnecessary noise in the image.
A perceptually uniform sequential color map (Colormaps
2018) has been chosen to represent the altitude data. Sequen-
tial color maps change in lightness and saturation incremen-
tally, using a single hue, and is suitable for information that
has ordering as shown in Figure 4.

Figure 4 is a graph showing the minimum and maximum
altitude for the train data set which is used to the color scale
in Figure 4. The color scale represents the altitudes within
the entire ADS-B data set, not within a single flight path.
This is so that when comparing two flight paths (i.e. two
plotted images) the color at a specific altitude would be rep-
resented as the same color.

In addition to the heat plot, we also tried to represent three
pairwise (speed vs heading, heading vs altitude, altitude vs
speed) kinematic feature scatter plots into one figure as an-
other way to transform track data into images as shown in
Figure 7. The top right section displays speed vs heading.
The top left displays speed vs altitude, and the bottom left
displays heading vs altitude. The borders of the subplot have
been turned off to reduce the noise in the image.

Running CNN
For both methods, a whole track as a graph is re-sized from
a 640x480 image to an 80x60 image. The sample ADS-B
data for a testing CNN run contains 50,293 images of com-
mercial flights and 2,316 images or 4.4% of military flights.
The images were prepared to be fed into the CNN to classify
commercial and military flights as shown in Figure 8.

The CNN in TensorFlow (Keras) performed ten iterations
of training on both transformed images to produce an accu-
racy of 95.6% for classifying commercial flights.

We explored various big data and deep learning methods
to classify ADS-B data sets. Supervised learning methods
show certain ML accuracy. We also explored how to repre-
sent track data as images and then applied CNN for clas-
sifications. Our work in progress did provide promise that
various big data tools and deep learning models such as con-
volutional neural networks can process and use the ADS-B
big data to predict if a flight is commercial or military. Other
software tools such as Tableau, Weka and even MS Excel
show the potential that ADS-B data could be manipulated to
identify commercial and military behavior to predict type of
aircraft.

Conclusion and Future Work
The result of CNN remains a work in progress. Future
work is needed, for example, using more data from differ-
ent sources to enrich military aircraft. Also while our tools
demonstrated some promising results we need to explore
tools that handle big data and near real time data such as
BDP (Big Data Platform) which is being used in related
work.

Acknowledgements
Authors would like to thank the Naval Research Program at
the Naval Postgraduate School and the Naval Research En-
terprise Internship Program at the Office of Naval Re-search
for the research support. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied of the U.S. Government.

References
ADSBexchange.com, L. 2017. Ads-b exchange.
CNN. 2018. Convolutional neural network, retrieved from
http://cs231n.github.io/convolutional-networks/.
Colormaps. 2018. Colormaps,retrieved from
https://matplotlib.org/tutorials/colors/colormaps.htmlsequential.
FAA. 2018. FAA,retrieved from
https://www.faa.gov/nextgen/how nextgen works/new technology/.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA Data Mining Soft-
ware: An Update. SIGKDD Explorations 11(1):10–18.
Tableau, https://www.tableau.com/.

114

