
INTEGRATION OF ROBOTIC PERCEPTION, ACTION,
AND MEMORY

A Dissertation Presented

by

LI YANG KU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2018

College of Information and Computer Sciences

c© Copyright by Li Yang Ku 2018

All Rights Reserved

INTEGRATION OF ROBOTIC PERCEPTION, ACTION,
AND MEMORY

A Dissertation Presented

by

LI YANG KU

Approved as to style and content by:

Erik Learned-Miller, Co-chair

Rod Grupen, Co-chair

Subhransu Maji, Member

Erik Cheries, Member

James Allan, Chair
College of Information and Computer Sciences

DEDICATION

To my family, friends, and those who dance to music � �

ACKNOWLEDGMENTS

This dissertation is like a hilltop cabin on the path of my lifelong journey on

understanding intelligence. Here I can re-examine what I have discovered on the

path and thank those who have helped me reach here. Many have led me on this

journey and without their guidance I would likely still be lost in the woods.

I first thank my advisers, Rod Grupen and Erik Learned-Miller. Rod is my trip

manager, he pointed me possible paths to the cabin and showed me the whole map.

Many ideas in this dissertation are spawn from inspirational discussions with Rod

and I learned from him how to think from the big picture. Erik is my trip guide, he

made sure my every step is on solid ground and no running on slippery banks. I still

remember during the early years of this trip, Erik and I will debate for hours until

both of us are comfortable with every equation we wrote down. I learned from Erik

the beauty of crystal clear thinking. The robots, Robonaut-2 and uBot-6, are my

jeep and bike in this trip; without them, I would only be able to reach the cabin in

simulation. I then thank my mentors and colleagues at NASA, Julia Badger, Philip

Strawser, Jonathan Rogers, Will Baker, Vienny Nguyen, Logan Farrell, Kimberly

Vana, Evan Laske, et al., who are the local guides and mechanics that help me pass

through difficult terrains while keeping the jeep running. I would then like to thank

previous lab members, Steve Hart, who signed me up for this trip, and Shiraj Sen,

whose previous work is the bus that took me to the starting point. I also thank my

committee members Subhransu Maji and Erik Cheries who gave me directions and

light up the end of the path.

I am also grateful to friends and colleagues that act as fellow hikers and forest an-

imals that accompanied me throughout this journey. Specially, I would like to thank

v

my housemates, Kevin Winner, Misha Badov, Myungha Jang, Keen Sung, Amanda

Gentzel, Larkin Flodin, et al., my robotics labmates, Dirk Ruiken, Tiffany Liu, Scott

Jordan, Takeshi Takahashi, Mike Lanighan, Eric Wilkinson, et al., my vision lab-

mates, Tsung-Yu Lin, Aruni Roy Chowdhury, SouYoung Jin, Pia Bideau, Jong-Chi

Su, Hang Su, Huaizu Jiang, Chenyun Wu, et al., my other colleagues in computer

science, Kyle Wray, Luis Pineda, Garrett Bernstein, Samer Nashed, Jarrett Holtz,

Pinar Ozisik, JD DeVaughn-Brown, Joe Chiu, Steve Li, et al., and my Taiwanese

friends, Hsin-Fei Tu, Hsin-Ting Huang, Celia Lin, Ning-Hsuan Tseng, Ming-Che Liu,

Fang-Ling Yeh, Shao-Yu Chen, et al. I would also like to thank Leeanne Leclerc, who

is the cabin manager that made sure I eventually checked in, and Laurie Downey who

managed my resources for this trip.

I also have to thank people that guided me prior to this trip. My undergraduate

adviser and mentor, Tian-Sheuan Chang and Nelson Chang, taught me how to hike

while Sheng-Jyh Wang inspired me to hike. I am also grateful to my master degree

adviser, Alan Yuille, who gave me a starting point for my previous trip. I also thank

my former HRL colleagues, Ryan Uhlenbrock, David Payton, Heiko Hoffmann, Ken

Kim, et al., who were guides of my previous journeys.

Lastly, I thank my family, who also represents my family in this journey metaphor,

for sending me letters from home throughout this trip; without their trust and sup-

port, I would not have make it this far. As a non-native speaker, I often found myself

limited in how I can express my gratitude by words. I hope the analogies I made

above will not make my thanks by any means less sincere or less formal. Finally, as

all of my publications do, I will end my acknowledgments with the following: This

material is based upon work supported under a NASA Space Technology Research

Fellowship. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily reflect the views of the

National Aeronautics and Space Administration.

vi

ABSTRACT

INTEGRATION OF ROBOTIC PERCEPTION, ACTION,
AND MEMORY

SEPTEMBER 2018

LI YANG KU

B.Sc., NATIONAL CHIAO TUNG UNIVERSITY

M.Sc., UNIVERSITY OF CALIFORNIA, LOS ANGELES

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik Learned-Miller and Professor Rod Grupen

In the book “On Intelligence”, Hawkins states that intelligence should be mea-

sured by the capacity to memorize and predict patterns. I further suggest that the

ability to predict action consequences based on perception and memory is essential

for robots to demonstrate intelligent behaviors in unstructured environments. How-

ever, traditional approaches generally represent action and perception separately—as

computer vision modules that recognize objects and as planners that execute actions

based on labels and poses.

I propose here a more integrated approach where action and perception are com-

bined in a memory model, in which a sequence of actions can be planned based on

predicted action outcomes. In this framework, hierarchical visual features based on

convolutional neural networks are introduced to capture the essential affordances.

These features in different hierarchies are associated with robot controllers of cor-

responding kinematic subchains to support manipulation. Through learning from

vii

demonstration, both actions and informative features in the memory model can be

learned efficiently. As more demonstrations are recorded and more interactions are

observed, the robot becomes more capable of predicting the consequences of actions,

thus, is better at planning sequences of actions to solve tasks under different circum-

stances.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Memory Model . 3
1.2 Hierarchical Aspect Representation . 3
1.3 Learning From Demonstration . 4
1.4 Document Overview . 5

2. BACKGROUND . 7

2.1 Object Representation . 7
2.2 Brain Theories . 9
2.3 Affordance . 10
2.4 Belief Space Planning . 10
2.5 Error Detection and Surprise . 11
2.6 Grasping Based on Vision . 12
2.7 Visual Servoing . 13
2.8 Convolutional Neural Networks . 14
2.9 Plan Generalization . 15
2.10 Learning From Demonstration . 16

3. MEMORY MODEL . 18

3.1 The Aspect Transition Graph . 19

3.1.1 Definitions . 20

ix

3.1.2 Convergence . 22
3.1.3 Funnel Slide Metaphor . 22
3.1.4 Completeness and Sufficiency . 23

3.2 Handling Uncertainty With Belief Space Planning . 24

3.2.1 Modeling Objects with ATG . 26
3.2.2 Information Theoretic Planner . 30
3.2.3 Experiments . 31

3.2.3.1 Settings . 32
3.2.3.2 Results . 33
3.2.3.3 Reaching a Target Aspect . 34

3.3 Funnel-Slide-Funnel Structure . 36

3.3.1 Visual Servoing . 36

3.3.1.1 Potential Function . 38
3.3.1.2 Gradient Descent . 40
3.3.1.3 Learning the Visuomotor Jacobian 41

3.3.2 Experiments . 42

3.3.2.1 Settings . 43
3.3.2.2 Analyzing Region of Attraction . 44
3.3.2.3 Convergence and Accuracy . 45

3.4 Acting without Explicit Pose Estimation . 49

3.4.1 Approach . 49
3.4.2 Experiments . 49

3.5 Error Detection and Surprise . 51

3.5.1 Modeling Randomness . 52
3.5.2 Recovery from Surprises . 53
3.5.3 Experiments . 57

3.5.3.1 Settings . 58
3.5.3.2 Surprise Recovery . 58
3.5.3.3 Error Detection Through Fine-Grained Actions 59

3.6 Conclusions . 59

x

4. HIERARCHICAL ASPECT REPRESENTATION 61

4.1 Hierarchical CNN Features . 62

4.1.1 Definitions . 62
4.1.2 Supporting Grasping . 66

4.1.2.1 Consistent Features . 66
4.1.2.2 Generating Grasp Points . 68

4.1.3 Experiments on the R2 Grasping Dataset . 70

4.1.3.1 Dataset . 70
4.1.3.2 Cross-Validation Results . 71
4.1.3.3 Comparison . 72

4.1.4 Experiments on Robonaut-2 . 75

4.1.4.1 Settings . 75
4.1.4.2 Hierarchical Controller . 77
4.1.4.3 Results . 78

4.2 Aspect Representation . 80

4.2.1 Descriptors . 81
4.2.2 Experiments on Pose Estimation . 84

4.2.2.1 Dataset . 84
4.2.2.2 Settings . 84
4.2.2.3 Results . 85

4.3 Conclusions . 86

5. LEARNING FROM DEMONSTRATION . 88

5.1 Demonstration Types . 89
5.2 Building Models From Demonstrations . 92

5.2.1 User Interface . 94
5.2.2 Creating ATG models . 94

5.3 Distilling Multiple Demonstrations . 96

5.3.1 Identifying Common Features . 96
5.3.2 Recognizing Consistent Actions . 97

5.4 Experiments on the Ratchet Task . 100

xi

5.4.1 Demonstrations . 100
5.4.2 Planner . 102
5.4.3 Evaluating Ratchet Task . 103
5.4.4 Comparing Accuracy in Simulation . 105
5.4.5 Effects of Multiple Demonstrations and Feature

Complexity . 107

5.5 Experiments on Drill Grasping . 109

5.5.1 Settings . 109
5.5.2 Demonstrations . 110
5.5.3 Approach . 111
5.5.4 Results . 112

5.6 Conclusions . 113

6. CONCLUSIONS AND FUTURE DIRECTIONS 115

6.1 Conclusions and Discussions . 116
6.2 Future Directions . 118

6.2.1 Haptic . 118
6.2.2 Hierarchical Aspect Transitions . 118
6.2.3 Cross Modality Top Down Inference . 119
6.2.4 Generalizing to Object Categories . 119
6.2.5 Planning Across Hierarchies . 119
6.2.6 Learning Through Intrinsic Motivation . 120

BIBLIOGRAPHY . 121

xii

LIST OF TABLES

Table Page

3.1 Notations . 25

3.2 The success rate of an information theoretic planner in recognizing
the object (10 actions per trial) . 34

3.3 The success rate of an information theoretic planner in recognizing
the object (20 actions per trial) . 34

3.4 Average position error in the X-Y plane in centimeters. 48

4.1 Average grasp position error on cylindrical and cuboid objects in
meters. 72

4.2 Comparison on alternative approaches. 75

4.3 Grasp success rate on novel objects based on 5 trials per object. 80

4.4 Median and average instance pose estimation error on Washington
RGB-D Objects dataset. 86

5.1 Number of successful trials on subtasks. 104

xiii

LIST OF FIGURES

Figure Page

1.1 A proposed conceptual diagram of layers and connections in the
neocortex. 2

3.1 An ATG containing two aspects x1 and x2, each a likely result of
applying a closed-loop action within their respective regions of
attraction. The edge labeled u is a model-referenced open-loop
action that reliably maps the ε-region of x1 to the interior of the
region of attraction of x2. 21

3.2 Funnel-slide-funnel structure. The funnel metaphor introduced by
Burridge et al. [9] is used to describe a closed-loop controller or a
track control action that converges to a subset of states, while the
slide metaphor is used to describe an open-loop controller or a
search control action that causes state transitions. 23

3.3 Example of an incomplete aspect transition graph (ATG) of a cube
object. Each aspect is consists of observations of two faces of the
cube. The lower right figure shows the coordinate of the actions
and the aspect with question marks is the collection node
representing all unknown aspects of the object. Each solid edge
represents an observed action edge while each doted edge
represents a set of unobserved action edges. 25

3.4 Bayes Filter Algorithm . 29

3.5 The plot shows the average success rate of 10 tests as the number of
actions per trial are increased. Selecting actions that minimize
entropy leads to a higher success rate then selecting actions at
random. 35

3.6 The simulated Robonaut-2 interacting with an ARcube. 35

xiv

3.7 Visual servoing sequences. Each image pair shows the target aspect
(left) and the current observation (right). A line in between
represents a pair of matching keypoints. The top image pair
represents the starting observation and the bottom image pair
represents when the controller converged. 38

3.8 Components of the signature of the target aspect (left) and the
current observation (right). The circle and the triangle represent
the ith and jth matched keypoints. 39

3.9 Robonaut-2 approaching a pre-grasp pose for a screwdriver on a tool
stand in simulation. 42

3.10 The first, second, and third aspect stored in the ATG through
demonstration are shown from left to right. In the first aspect,
the object on top of the table is a screwdriver on a tool stand. In
the second aspect, the robot hand is in a position where a straight
movement toward the screwdriver would lead to a pre-grasp pose.
The third aspect represents a pre-grasp pose. This is the goal
aspect for the pre-grasp task designed in this experiment. 43

3.11 Iteration till convergence with respect to noise in the relative pose
between the robot hand and the object for the second aspect. 45

3.12 Iteration till convergence with respect to noise in the relative pose
between the robot hand and the object for the third aspect. 46

3.13 Iteration till convergence with respect to noise in the object position
for the second aspect (left image) and the third aspect (right
image). 46

3.14 Convergence with respect to artificial noise added to the test cases.
Each dot represents a test case where the X Y value represents
the summed magnitude and direction of the manually added
kinematic noise. A red diamond indicates that the controller fails
to converge to the third aspect while a blue circle indicates that
the action sequence converged. 48

3.15 Robonaut-2 grasping the drill posed at different orientations. Image
pairs in the same row represents the intermediate and final states
of one drill grasping trial. 50

3.16 Fine-grained flip action. The photos shown from left to right are the
five intermediate stages of a flip action. The robot checks whether
the sub-action succeeded for each stage. 53

xv

3.17 Part of an aspect transition graph model of a dice. The top right
node indicates the observation when the robot successfully flipped
the dice while the bottom right node indicates when the dice
slipped. The red circles indicate the robot hands and the green
arrows indicate haptic feedback. 54

3.18 The uBot-6 mobile manipulator performing a “what’s up?” gesture to
convey that it is surprised after an unexpected event. 56

3.19 Algorithm for achieving goal aspect and handling surprise
transitions. 58

4.1 Hierarchical CNN feature visualizations among cuboid objects (left)
and cylinders (right). Each square figure is the visualization of a
CNN filter while the edges connect a lower layer filter to a parent
filter in a higher layer. The numbers under the squares are the
corresponding filter indices. Filters are visualized using the
visualization tool introduced in [101]. Notice that the lower level
filters represent local structures of a parent filter. 64

4.2 Localizing features in different layers. The color image is the input
image. The following images from left to right represent the
location map of hierarchical CNN features (f 5

87), (f 5
87, f

4
190), and

(f 5
87, f

4
190, f

3
168) obtained from backpropagating the feature

response along a single path to the image layer. The blue dot in
each location map represents the mean of the response locations.
The mean response locations of conv-3 layer features are located
closer to edges and corners of the cuboid object compared to the
conv-4 and conv-5 features. The conv-3 layer features can be
interpreted as representing local structures of the cuboid object.
. 65

4.3 Overall architecture of the proposed system. The input for this
example is the RGB image and point cloud of a yellow jar. Tuples
of the yellow dots (conv-5), the cyan dots (conv-4), and the
magenta dots (conv-3) represent hierarchical CNN features. These
features can be traced back to the image input and mapped to the
point cloud to support manipulation. φ|σconv3τhand

represents the
function that controls hand motor resources τhand based on conv-3
layer features σconv3 and φ|σconv4τarm represents the function that
controls arm motor resources τarm based on conv-4 layer features
σconv4. φ represents the potential function computed from input σ
whose derivative with respect to motor resources τ constitute a
controller. 69

xvi

4.4 Left: the data collection interface where the robot arm and hand is
adjusted to the grasp pose. Right top: The set of objects used in
the R2 grasping dataset. Right bottom: The set of novel objects
used in the grasping experiment. 71

4.5 Sample cross-validation results for single object scenario. The red,
green, and blue spheres represent the calculated grasp points for
the hand frame and endpoint positions for the thumb and index
finger of the left robot hand. The grasp points are the weighted
mean of the colored dots that each represents a possible grasp
position based on one training example. Notice that for the
cuboid object the grasp points for the thumb and index finger are
located on the opposing face and about 3cm away from the left
edge of the face as it was trained. For the cylinder object the
grasp points for the thumb and index finger are on the right side
of the cylinder to form an enveloping grasp. The black pixels are
locations behind the point cloud that are not observable. 73

4.6 Examples of grasping in a cluttered scenario. The red, green, and
blue spheres represent the grasp points of the hand frame, thumb
tip, and index finger tip of the left robot hand. The grasp points
are the weighted mean of the colored dots that each represents a
possible grasp position based on one training example. The top
two row is trained on grasping cuboid objects and the bottom two
row is trained on grasping cylindrical objects. Notice that this
approach is able to identify the only cuboid or cylinder in the
scene and generate grasp points similar to the training examples.
. 76

4.7 Comparison in a cluttered scenario. Notice that the colored dots are
scattered around in the baseline approach since the highest
response filter in conv-3 or conv-4 layer are no longer restricted to
the same high level structure. 77

4.8 Robonaut-2 grasping 10 different novel objects. The first and third
columns show the pre-shaping steps while the second and fourth
columns show the corresponding grasp and pickup. The cuboid
objects are grasped on the faces while the cylinder objects are
grasped such that the object is wrapped in the hand. 79

5.1 Example of a robot-visual action (aRV) that reaches the ratchet
pre-grasp pose. 90

5.2 Example of a robot-proprioceptive action (aRP) that extracts the
ratchet. 90

xvii

5.3 Example of a visual-visual action (aV V) that places the ratchet on
top of the bolt. 91

5.4 The sensorimotor architecture driving transitions in the ATG
framework. The sensory resources σF that represent a set of
features based on visual and force feedback and σP that represents
a set of robot frames based on proprioceptive feedback are used to
parameterize actions φ|στ . Here φ is a potential function that
describes the error between the current and target robot
configuration and τ represents the motor resources allocated. In
this example, the 5th layer hierarchical CNN features σv5 are used
to control the arm motors τarm and the 3rd and 4th layer
hierarchical CNN features σv3,v4 are used to control the hand
motors τhand. 93

5.5 Identifying informative features from multiple demonstrations. The
two rows represent two demonstrations that place the socket of
the ratchet on top of the bolt. The columns from left to right
show the aspect nodes representing the tool, the target object,
and the interaction for this visual-visual action aV V = φV|

σV′
τ . The

green circles in the tool and interaction aspect nodes represent the
top visual feature v ∈ V used to reach the minimum of the
potential function φV while the red circles in the target object
aspect node represent corresponding features v′ ∈ V ′ that are
used as references. 98

5.6 Visualization of the hierarchical CNN feature (f 5
23, f

4
60, f

3
184) that is

identified on the ratchet head by showing the top 9 images that
have the highest response among ImageNet for filter f 5

23, f
4
60, and

f 3
184. 99

5.7 Visualization on what pixels contribute to the hierarchical CNN
feature (f 5

23, f
4
60, f

3
184) using guided backpropagation. 99

5.8 The visualization of the set of ATGs created from demonstrations for
the ratchet task. Each connected ATG represents a sub-task. The
images represents aspect nodes and the edges indicate the type of
actions used to model transitions. 101

5.9 The ratchet task sequence performed by Robonaut-2. The images
from left to right, then top to bottom, show a sequence of actions
where Robonaut-2 grasps the ratchet, tightens a bolt on a
platform, and puts the ratchet back into a tool holder. 104

xviii

5.10 Top down views of initial poses and failed poses on the ratchet task.
The green objects in the left image shows a set of initial poses
tested and the blue objects are the initial poses for the
demonstrations. The pink objects in the right image shows a set
of initial poses that failed to mate the socket with the bolt and
the purple objects are the initial poses that failed to place the
ratchet back. The red ratchet pose failed in both subtasks in two
different trials. 105

5.11 Corner case initial settings for mating the socket with the bolt. Note
that in the 3rd and 4th image the in-hand ratchet positions are
different. 105

5.12 The accuracy of the placing socket on top of the bolt task versus the
number of demonstrations used to create the ATG. 106

5.13 Informative features identified in experiments in simulation. The
images from left to right corresponds to tool aspect nodes for the
putting socket on top of the bolt task using ATGs created from
one, two, and five demonstrations. The green dots represent the
visual features selected to represent the action. The feature
selected in the ATG created from a single demonstration is further
away from the socket and may result in less accurate actions. 107

5.14 Success rate versus number of demonstrations and size of feature
space . 108

5.15 Initial drill poses that the robot succeeded and failed in grasping with
its left hand during testing. The green drill poses in the left figure
shows the succeeded poses and the red drill poses in the right
figure shows the failed poses. This approach allows the robot to
grasp drills located at position that is normally out of reach. 111

5.16 Sequence of actions in one grasping test trial. The images are ordered
from left to right then top to bottom. The initial pose of the drill
is at an angle that is not graspable and is located too far right for
the left hand to reach. Therefore the robot turns the drill then
drags it to the center before grasping with its left hand. 112

6.1 The proposed conceptual diagram of the neocortex with modules and
connections implemented in this dissertation highlighted. The
colored blocks and connections are the parts that are tested in
robotics experiments. 116

xix

CHAPTER 1

INTRODUCTION

To act autonomously in an unstructured environment, it would be beneficial for a

robot to integrate its perception and past experience to handle a wide variety of sit-

uations. However, traditional approaches generally represent action and perception

separately—as object models in computer vision and as action templates in robot

controllers. Due to this separation, the robot can only interact with objects based on

learned models when the object label is identified. Interacting based on object labels

is not only vulnerable to recognition errors but also limits how past experiences can

be generalized to novel situations. In the book “On Intelligence” [33], Jeff Hawkins

introduces the memory-prediction framework of intelligence and proposes that intel-

ligence should be measured by the capacity to memorize and predict patterns. This

dissertation extends on this concept and proposes a memory model that integrates

action and perception. With this integrated model, a robot would be capable of solv-

ing novel tasks through predicting perceptual action consequences based on memory

and observation.

Figure 1.1 shows a modified conceptual diagram of the neocortex taken from the

book “On Intelligence”. Blocks with the same vertical positions represent neurons of

the same cortex layer and arrows represent the direction of the information flow based

on neuron connections. A neuron in a higher layer represents more abstract notions

while a neuron in a lower layer represents simpler features. For example, visual

neurons in a higher layer have larger receptive fields, represent object categories,

and change slower over time. In this figure, memory regions that connect sensory

1

Figure 1.1. A proposed conceptual diagram of layers and connections in the neo-
cortex.

neurons and motor neurons of the same layer is added to the original diagram. These

memory regions associate neurons across modalities and can be used to infer bottom

up signals that are missing. The connection loops within memory regions indicate

predictions made based on observations, motor commands, and past memories. These

connections not only allow motor commands to act based on memory and sensory

feedback but can also explain mirroring effect of neurons that fire both when an agent

acts and when it observes the same action. These memory regions have connections

similar to the pyramidal neurons in the neocortex that have many connections within

the same layer and an extended axon that sends signal to distant regions. However,

these conjectured connections of the memory region are not based on neurological

discoveries but on computational structures that shown to be practical in solving

robotic tasks. In this work, a subset of this diagram is constructed and experimented

on different robotic tasks.

This dissertation demonstrates that integrated memory models of action and per-

ception can be learned efficiently from demonstrations and be used to complete tasks

2

under different situations. There are three major contributions in this dissertation:

1) a memory model that fuses perception and action information, 2) a hierarchical

aspect representation that can be associated with controllers of different kinematic

subchains, and 3) an approach that learns memory models and aspect representations

from demonstrations efficiently. I describe them in the following.

1.1 Memory Model

In computer vision, there are two common types of object models used for identi-

fication. One represents objects in 2D and the other in 3D. However, neither of these

incorporates information regarding how perceptions of objects change in response

to actions. A robot that recognizes objects with traditional models knows nothing

more than the label of the object. It is clear that humans have a different kind of

object understanding—they can often predict the state and appearance of an object

after an action. Incorporating actions into object models allows robots to gather

information by interacting with objects and predict action outcomes. Instead of an

independent object recognition system, I propose an integrated model called aspect

transition graph (ATG) that fuses information acquired from sensors and robot ac-

tions to achieve better recognition and understanding of the environment. An ATG

is a memory model that memorizes past experiences on how actions change aspects,

observations stored in the model, and thus, maps observable states and actions to

predicted future observable states.

1.2 Hierarchical Aspect Representation

An aspect is defined as an observation that is memorized by the robot. This

concept is inspired by experiments done in the field of human psychophysics and

neurophysiology, which suggest that humans memorize a set of canonical views of

an object instead of maintaining a single object-centered model [17] [8]. In an ATG

3

model, an aspect representation that captures the affordance of the environment is

crucial for executing actions robustly and generalizing to different situations.

Convolutional neural networks (CNNs) have attracted a great deal of attention

in the computer vision community and have outperformed other algorithms on many

benchmarks. However, applying CNNs to robotics applications is non-trivial for two

reasons. First, collecting the quantity of robot data typically required to train a

CNN is extremely difficult. Second, the final output of a CNN contains little loca-

tion information from the observed object, which is essential for grasping. Based

on the hierarchical nature of CNNs, the proposed hierarchical CNN feature captures

the hierarchical support relations between filters in different CNN layer. This work

demonstrates that by extracting these features from CNNs trained on ImageNet [76],

a mapping from these features to grasp configurations of the robot hand/arm can be

learned from a small set of grasping examples and generalize across different objects

of similar shapes. In addition, the 3D positions of such features can be identified by

tracing activations of high-level filters backwards in the CNN to discover the loca-

tions of important structures that can direct robot control. By associating features

in different CNN layers with controllers that engage different kinematic subchains in

the hand/arm systems and combining haptic information, a hierarchical aspect rep-

resentation that supports manipulation and captures the essential affordances of an

object can be built.

1.3 Learning From Demonstration

A robot that plans actions based on ATG models can only solve a task if ATGs

related to the task exists in memory. While creating ATGs that represent tasks

manually is tedious and not accurate in real environments, learning them from random

exploration also has a small chance of success in high dimensional spaces. Learning

from demonstration (LfD) is an appealing approach to teach robots new tasks due

4

to its similarity to how humans teach each other. However, most work on LfD has

focused on learning the demonstrated motion, action constraints, and/or trajectory

segments and has assumed that object labels and poses can be identified correctly.

This assumption may be warranted in well-structured industrial settings, but does

not hold, in general, for the kinds of uncertainty and variability common in everyday

human environments.

This dissertation presents an approach for learning ATG models and its aspect

representation from demonstrations efficiently. The proposed approach treats iden-

tifying informative sensory features as part of the learning process. This gives the

robot the capacity to manipulate objects without fiducial markers and to learn actions

focused on salient parts of the object. Instead of defining actions as relative move-

ments with respect to the object pose, actions in ATG models are based on features

that represent meaningful sensory milestones. With additional guidance provided by

the operator, the informative features specific to an object instance can be identi-

fied automatically. I show that a challenging tool use task—tightening a bolt using

a ratchet—can be learned from a small set of demonstrations. The proposed ap-

proach learns what part of the ratchet should be aligned with the bolt by recognizing

consistent spatial relations between features among a set of demonstrations.

1.4 Document Overview

The document is organized as follows. Chapter 2 provides background on object

representation and related work on grasping, error detection, convolutional neural net-

work, learning from demonstration, etc. Chapter 3 provides an introduction to the

proposed memory model, a discussion on how it can be used to handle uncertainty,

and an example on how open loop and closed loop controllers can be combined in

this model. In Chapter 4, a hierarchical aspect representation based on the proposed

hierarchical CNN features is introduced and how these features can be associated

5

with controllers of different layers is described. Chapter 5 explains how the proposed

memory model combined with the hierarchical aspect representation can be learned

from demonstrations efficiently. Experimental results on drill grasping and bolt tight-

ening based on this framework are analyzed. In Chapter 6, I draw connections from

this proposed framework to the proposed conceptual diagram of the neocortex and

discuss future directions of this work.

6

CHAPTER 2

BACKGROUND

In this chapter, research on object representation in human brains and background

on aspect transition graphs (ATG) are first discussed. Different brain models are then

compared to the ATG. Related work on affordance and how the ATG can be used to

model actions that an object affords are further explained in Section 2.3. In Section

2.4 and 2.5, background on belief space planning, error detection, and surprise is

described. In Section 2.6, 2.7, and 2.8, related work in vision-based grasping, visual

servoing, and convolutional neural networks is compared. Lastly, background on plan

generalization and learning from demonstration is discussed in Section 2.9 and 2.10.

2.1 Object Representation

In human psychophysics and neurophysiology, the study of visual object recogni-

tion is often motivated by the question of how humans recognize 3-D objects while

receiving only 2-D light patterns on the retina [90]. Two types of models for object

recognition have been proposed to answer this question. The structural description

model represents each object by a small number of view-invariant primitives and

their position in an object-centered reference frame [62]. Alternatively, viewer cen-

tered models represent each object as collections of viewpoint-specific local features.

Since the development of these models, experiments in human psychophysics and

neurophysiology have provided converging evidence for viewer centered models. In

experiments done by Edelman and Bülthoff [17] [8], it is shown that when a new

object is presented to a human subject, a small set of canonical views are formed

7

despite the fact that each viewpoint is presented to the subject for the same amount

of time. Experiments on monkeys done by Logothetis et al. further confirm that a

significant percentage of neurons in the inferior temporal cortex respond selectively

to a subset of views of a known object [57]. However, how an infinite set of possible

views can be effectively reduced to a smaller set of canonical views remains an open

question. Different approaches such as view interpolation introduced by Poggio [73]

and linear combinations of views introduced by Ullman [92] have been proposed.

Closely related to the viewer centered models in the field of psychophysics, aspect

graphs are first introduced by Koenderink and Van Doorn as a way to represent 3-

D objects using multiple 2-D views in the field of computer vision [45]. An aspect

graph contains distinctive views of an object captured from a view sphere centered

on the object. Research on aspect graphs have focused on the methodologies for

automatically computing aspect graphs of polyhedra and general curved objects [26]

[47]. The set of viewpoints on the view sphere is partitioned into regions that have the

same qualitative topological structure as an image of the geometric contours of the

object. However, work done in this field is mostly theoretical and is not applicable

in real practice as discussed by Faugeras et al. [18]. One of the difficulties faced

in this work concerned the large number of aspects that exist for normal everyday

objects. An object can generate millions of different aspects, but many of these may

be irrelevant at the scale of the observation. In this work, a consistent treatment for

segmenting observations into aspects within a practically-sized subset of all possible

aspects for most types of objects including deformable objects is proposed.

The Aspect Transition Graph (ATG) representation is an extension of these con-

cepts. In addition to distinctive views, an ATG summarizes how actions change

viewpoints or the state of the object and thus, the observation. Besides visual sen-

sors, extensions to tactile, auditory and other sensors also become possible with this

representation. ATGs were first introduced in Sen’s work [81] as an efficient way of

8

storing knowledge of objects hierarchically. Sen’s ATG was composed of nodes that

are represented by dynamic controller statuses. The action that lead from one node to

another is determined based on the differences in controller statuses implicitly. This

work redefines aspect transition graph (ATG) as a directed multigraph, composed of

a set of aspect nodes connected by a set of action edges that capture the probabilistic

transition between aspect nodes. An aspect is defined as a multi-feature observation

that is stored in the model and an action edge represents an action that transitions

between aspect nodes. An ATG is a viewer centered model that summarizes empir-

ical observations of aspect transitions in the course of interaction. This new ATG

definition is more general and can model uncertainty and integrate with belief space

planning more easily.

2.2 Brain Theories

The Memory-Prediction framework, a brain model that is consistent with neuro-

logical discoveries, is proposed by Hawkins in his book “On intelligence” [33]. This

model emphasizes prediction from sequence memory based on the observation that

humans recognize quotations and songs based on their sequences stored in memory.

George and Hawkins further propose the Hierarchical Temporal Memory model that

gives the Memory-Prediction framework mathematical foundations under Bayesian

terms [23]. Lee and Mumford also suggests that based on findings on the early visual

cortex activation, particle filtering and Bayesian-belief propagation algorithms might

be used in cortical computations [52]. In this work, the concept of sequence memory

is extended to recognizing objects. The relationship between a sequence of actions

and a sequence of views are modeled not only to recognize objects, but also to provide

robots with the capability to plan actions based on prediction.

9

2.3 Affordance

The term affordance first introduced by Gibson has many interpretations, I prefer

the definition of affordance as “the opportunities for action provided by a particular

object or environment” [25]. Affordance can be used to explain how the “value”

or “meaning” of things in the environment is perceived. The proposed framework

is based on this interactionist view of perception and action that focus on learning

relationships between objects and actions specific to the robot. Some recent work

in computer vision and robotics extended this concept of affordance and applied it

to object classification and object manipulation [29] [44] [87]. Affordances can be

associated with parts of an object, such as the work done by Varadarajan et al. where

predefined base affordances are associated with surface types [95] [94]. In this work,

models that inform inference in an extension of Gibson’s original ideas about direct

perception is built [24] [27].

Affordance describes the interaction between an agent and an object or environ-

ment. The proposed ATG is an affordance-based representation that is grounded in

the robot’s own actions and perceptions. Instead of defining object affordances from a

human perspective, they are learned through direct interaction with objects from the

robot’s perspective. This work demonstrates that by exploiting these learned ATGs

the robot can recognize objects and manipulate them to reach goal states.

2.4 Belief Space Planning

Planning based on belief is introduced by Sondik and Smallwood for solving the

optimal control problem characterized by the Partially Observable Markov Decision

Processes (POMDPs) [85] [84]. The value iteration algorithm for solving POMDP

is further improved by many authors such as [42] and [68] to solve larger problems.

However, the maximum number of states these algorithms can handle is still largely

10

restricted. Some recent work [70] [65] [55] in computing optimal solutions for the

POMDP problem have focused on solving this problem in Gaussian belief spaces

where beliefs are modeled as Gaussian distributions. However, Gaussian distribu-

tions are not suitable for modeling beliefs in problems where states are defined as

aspects of objects. In [72] a sample-based approach to belief space planning is intro-

duced to handle non-Gaussian belief state. In this work, the non-Gaussian beliefs for

all states are propagated through a history of observation. The belief update is sim-

plified by using one collection state that represents all unknown states for each object

model. One of the difficulties in belief space planning is to predict future observa-

tions. In work done by Platt et al., future observation is modeled based on Gaussian

distribution under the assumption that the maximum likelihood observation is always

obtained [70]. In this work, the probability of an observation is estimated based on

past observations stored in ATG models. The prediction gets more accurate as more

information is memorized.

2.5 Error Detection and Surprise

In the work done by Rodriguez et al. [74] a classifier is used to predict whether

a grasp is a successful grasp for completing a task based on haptic feedback. If it

is classified as a failed grasp the robot aborts and retries. The introduced ATG

model can also be used to detect errors based on a similar concept, but instead of

running a classifier at a specific step, a general framework that constantly checks if

the observation is within expectations is introduced. In research done by Donald [16],

a theory for error detection and recovery strategies based on geometry and physical

reasoning are introduced. In this work, error detection and recovery is based on an

observation-based model of the environment.

Baldi introduces a computational theory of surprise where surprise is defined by

the relative entropy between the prior and the posterior distribution of an observer

11

[4]. This formula is shown to be consistent with what attracts human gaze in natural

video stimuli [39]. However, this theory of surprise would identify informative robot

actions that reduces the entropy over models significantly as surprising. In this work,

a simpler definition that agrees better with intuition is proposed.

Behaviors based on intrinsic motivations have been well studied in the field of

psychology. The concept of “drives” such as hunger, pain, sex, or escape in human

behavior has been introduced by Hull [37] and applied to manipulation [31] and

explorations [59]. Berlyne further proposed a number of other intrinsically motivating

factors such as novelty, habituation, curiosity, surprise, challenge, and incongruity [6].

In this work, surprise is used as an intrinsic motivator to learn new models of the

environment.

2.6 Grasping Based on Vision

A lot of work has been done on generating robotic grasp plans from visual in-

formation. In work done by Saxena et al., a single grasp point is identified using

a probabilistic model on a set of visual features such as edges, textures, and colors

[78]. Similar work uses contact, center of mass, and force closure properties based

on point cloud and image information to calculate the probability of a hand config-

uration successfully grasping a novel object [79]. Platt et al. uses online learning to

associate different types of grasps with the object’s height and width [71]. A shape

template approach for grasping novel objects was also proposed by Herzog et al. [34].

A shape descriptor called a height map that captures local object geometry is used

for matching part of a point cloud generated by a novel object to a known grasp

template. Another work uses a geometric approach for grasping novel objects based

on point clouds [63]. An antipodal grasp is determined by finding cutting planes that

satisfy geometric constraints. A similar approach based on local object geometry was

also introduced [104]. In the work done by Lenz et al., a deep network trained on

12

1035 examples is used to determine a successful grasp based on RGB-D data [53].

Grasp positions are exhaustively searched and evaluated. In this work, the proposed

hierarchical CNN features are associated to a known grasp and both the local pattern

and the higher level structure are considered. This approach localizes features in a

pre-trained convolutional neural network and can generate grasp points based on a

small set of grasping examples.

2.7 Visual Servoing

Visual servoing can be classified into two major types: position-based servoing,

where servoing is based on the estimated pose; and image-based servoing, where

servoing is based directly on visual features [38]. The image-based servoing approach

has the advantage that it performs with an accuracy independent of extrinsic camera

calibration and does not require an accurate model of the target object or end effector.

The visual servoing approach introduced in this work uses an image-based servoing

technique inspired by Jägersand and Nelson [40], in which Broyden’s method is used

to estimate the visuomotor Jacobian online. This work uses a similar update approach

but is implemented on top of a changing set of features. Some other work in visual

servoing has also investigated approaches that do not rely on a predefined set of

features. In [82], a set of robust SIFT features are selected to perform visual servoing.

In [35] moments of SIFT features that represent six degrees of motion are designed.

An approach that is based on the image entropy was also introduced in [13]. However

these approaches all assume a setting in which the camera is mounted on the end

effector. In this work, the setting is more similar to human manipulation. Unlike a

system where the camera is mounted on the end effector, only part of the observed

features move in correspondence with the end effector. The propose visual servoing

algorithm is used to guide the robot end effector, within the field of view, to a pose

13

that is defined relative to an object that was memorized. The features that are

controllable are learned and reused.

2.8 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks that

contain more then one convolutional layers introduced by Lecun and Bengio [51]. In

the 2012 ImageNet Large Scale Visual Recognition Challenge, the CNN based ap-

proach proposed by Krizhevsky et al. generated results that surpassed other methods

by a large margin [48]. CNN based approaches have since outperformed other ap-

proaches on most benchmarks in computer vision. Several authors have also applied

CNNs to robotics. In the work done by Levine et al., visuomotor policies are learned

using an end-to-end neural network that takes images and outputs joint torques [56].

A three layer CNN is used without any max pooling layer to maintain spatial in-

formation. In this dissertation, multiple convolution layers are also used; but unlike

the previous work, relationships between layers are used to define a feature. Finn et

al. use an autoencoder to learn spatial information of features of a neural network and

demonstrate that the robot can learn tasks with reinforcement learning [21]. In [20],

Finn and Levine further demonstrated that robots can learn to predict the conse-

quences of pushing objects from different orientations and execute pushing actions to

reach a given object pose based on a neural network structure with nine convolutional

layers. In research done by Pinto and Gupta, a CNN is used to learn what features

are graspable through 50 thousand trials collected using a Baxter robot [69]. The

final layer is used to select 1 out of 18 grasp orientations. CNN is also used in the

deep Q-network that generates control commands for agents that play Atari games

using reinforcement learning [58]. The authors show that the deep Q-network agent

is able to achieve professional human gamer performance on 49 games.

14

Many research have been done on understanding the relationship between CNN

filter activations and the input image. In the work done by Zeiler and Furgus, de-

convolution is used to find what pixels activate each filter [102]. In another work, a

saliency map that can be used for object localization is obtained by calculating the

derivative with respect to the image [83]. An approach called guided backpropaga-

tion that adds guidance signal to obtain a better visualization of higher level filters

is also introduced [86]. In this work, backpropagation is performed on a single fil-

ter per layer to consider the hierarchical relationship between filters. Recent work

by Zhang et al. introduces the excitation backprop that uses a probabilistic winner-

take-all process to generate attention maps for different categories [103]. This work

localizes features based on similar concepts.

Some authors have explored using intermediate filter activation in addition to the

the response of the output layer of a CNN. Hypercolumns, which are defined as the

activation of all CNN units above a pixel, are used on tasks such as simultaneous

detection and segmentation, keypoint localization, and part labelling [30]. The hier-

archical CNN feature proposed in this work groups filters in different layers based on

their hierarchical activation instead of just the spatial relationship. In [80], the last

two layers of two CNNs, one that takes an image as input and one that takes depth

as input, are used to identify object category, instance, and pose. In [97], the last

layer is used to identify the object instance while the fifth convolution layer is used

to determine the aspect of an object. This work considers a feature as the activation

of a lower layer filter that causes a specific higher layer filter to activate and plans

grasp poses based on these features.

2.9 Plan Generalization

The idea of generalizing plans can be traced back to the STRIPS-style robot

planners [19], where macro operations are generated by combining primitive actions

15

and generalized through replacing constants with variables. Since then, temporal

abstraction that combines actions of smaller time scales to abstractions of larger time

scales has become an active research area in planning and reinforcement learning [89]

[46]. In this work, abstraction over perception is considered instead of identifying

macro operations. A lot of work have also focused on the action model learning

problem, where the goal is to learn the preconditions and effects of an action given a

set of observations [3] [100] [96]. However, this series of work mostly focus on solving

problems in a symbolic world. Instead, the proposed approach is grounded in the

observation, where preconditions and action effects are defined by visual or haptic

features.

Similar approaches have also been applied on robotic tasks. In work by Wörgötter

et al., generalization is done through finding plans similar to the current situation

[99]. A replacement object can also be chosen based on a manually defined table of

object attributes. In this dissertation, instead of finding similarities based on symbols

defined in human language, generalization is done based on visual appearance.

2.10 Learning From Demonstration

Much research has focused on methods for “learning from demonstration (LfD),”

in which robots acquire approximate programs for replicating solutions to sensory and

motor tasks from a set of human demonstrations. In work by Calinon et al. [11] [10],

Gaussian mixture models are used to model multiple demonstrated trajectories by

clustering segments based on means and variances. A Gaussian mixture regression is

used to generate motions for different start and goal states during execution. In work

by Pastor et al. [64], dynamic movement primitives are used to generalize trajectories

with different start and end point. Instead of modeling trajectories in terms of motion

invariants, the learning from demonstration approach introduced in this dissertation

16

focuses on learning consistent perceptual feedback that provides informative guidance

for actions.

Approaches that learn from multiple demonstrations often require an experienced

user to show a variety of trajectories in order to estimate task information like state

variables, task constraints, relative frame, etc. In work by Alexandrova et al. [2],

instead of generalizing from multiple examples, the user demonstrates once and pro-

vides additional task and feature information via a user interface. This is similar to

the proposed approach where the user specifies action types and informative features

are identified automatically.

In the work by Phillips et al. [67], experience graphs are built from demonstration

and used to speed up motion planning. A manipulation task such as approaching

a door and opening it can be planned in a single stage by adding an additional

dimension that represents the state of the object. However, the demonstrated tasks

are restricted to cases where the object can be manipulated in a one dimensional

manifold that is detectable based on the position of a single contact point. In this

work, demonstrations are stored as ATG models. ATGs are directed multi-graphs

composed of aspect nodes that represent observations and edges that represent action

transitions. Aspect nodes represent observations directly and can, therefore, be used

to model a higher dimensional space.

In the work by Akgun et al. [1], a demonstrator provides a sparse set of consecutive

keyframes that summarizes trajectory demonstrations. Pérez-D’Arpino and Shah [66]

also introduced C-Learn, a method that learns multi-step manipulation tasks from

demonstrations as a sequence of keyframes and a set of geometric constraints. In this

work, aspect nodes that contain informative perceptual feedback play a similar role as

keyframes that guide the multi-step manipulation. Instead of considering geometric

constraints between an object frame and the end effector frame, relations between

visual features and multiple robot frames are modeled.

17

CHAPTER 3

MEMORY MODEL

Memorizing past experiences is crucial for a robot to plan actions in a new en-

vironment. In the book “On Intelligence” [33], Hawkins states the following “Your

brain receives patterns from the outside world, stores them as memories, and makes

predictions by combining what it has seen before and what is happening now”. This

work extends on the same concept and considers an agent that interacts with the envi-

ronment and memorizes the consequences of actions. As more memories are recorded

and more interactions are observed, the agent becomes more capable of predicting the

consequences of actions and better at planning sequences of actions to solve tasks.

Object manipulation is an essential skill for a general purpose robot, and recog-

nizing known objects is often a first step in manipulation tasks. In computer vision

and robotics, object recognition is often defined as the process of labeling segments in

an image or fitting a 3-D model to an observed point cloud. The object models used

to accomplish these tasks usually include information about visual appearance and

shape. However, what these object recognition systems provide is merely a label for

each observed object. The sequence of actions that the robot should perform based

on the object label are often manually defined. Without linking actions to object

labels, these object models themselves have limited utility to the robot.

In this chapter, a memory model that tightly couples perception with action is

introduced. This integrated model allows the robot to act directly on observations

instead of object labels and can be used to predict action outcomes based on past

18

experience. The advantages of this memory model is shown in partially observed and

non-deterministic environments.

This chapter begins with introducing the aspect transition graph (ATG) memory

model and its definition on convergence and completeness. Under what condition can

a sequence of closed loop and open loop actions in an ATG model guarantee success is

analyzed. In Section 3.2, the benefit of ATGs in a partially observable environment is

discussed. An information theoretic planner and results of handling uncertainty with

belief space planning are also described. Section 3.3 explains how visual servoing can

be used to construct a funnel-slide-funnel structure in an ATG that improves action

accuracy significantly. An ATG-based approach that allows the robot to interact

with objects without explicit pose information is further introduced in Section 3.4.

In Section 3.5, how ATG models can be used to detect and handle errors early in a

non-deterministic environment is explained. An equation for determining a surprising

situation is also proposed.

3.1 The Aspect Transition Graph

The aspect transition graph (ATG) explained in this section is a representation

that memorizes how actions change observations of objects or the environment. It

is an extension of the original concept of an aspect graph used in the field of Com-

puter Vision [45]. In addition to distinctive views, the ATG object representation

summarizes how actions change viewpoints or the state of the object and thus, the

observation. The term “observation” is defined to be the combination of all sensor

feedback of the robot at a particular time and the “observation space” as the space

of all possible observations. This limits the representation to a specific robot, but

allows the representation to present object properties other than viewpoint changes.

Extensions to tactile, auditory and other sensors is possible with this representation.

An ATG of an object can be used to plan manipulation actions for that object to

19

achieve a specific target aspect. For example, in order for the robot to pick up an

object, the target aspect is a view where the robot’s end effector surrounds the object.

It is expected that this view will be common to many such tasks and that it can be

the target outcome of a sequence of actions executed by open-loop and closed-loop

controllers.

3.1.1 Definitions

Different from prior work on aspect graphs, this work defines “aspect” as a single

observation that is stored in the object representation. This usage is consistent with

the term “canonical view” coined in the psychophysics literature for image-based

models discussed in Section 2.1. An ATG is represented using a directed multigraph1

G = (X ,U), composed of a set of aspect nodes X connected by a set of action edges U

that capture the probabilistic transition between aspects. An action edge u is a triple

(x1, x2, a) consisting of a source node x1, a destination node x2 and an action a that

transitions between them. Note that there can be multiple action edges (associated

with different actions) that transition between the same pair of nodes.

In contrast to aspect graphs and image-based models that differentiate views based

on visual appearance, I argue that, in general, discriminating between object obser-

vations should depend on whether the actor is capable of manipulating the object

such that the observation converges to a target aspect without using prior knowledge

of the object. That is, aspects are determined by functions of the visual servoing and

action abilities of the robot.

Figure 3.1 shows an example of an ATG that contains two aspects x1, x2 and

one action edge u connecting the two aspects in the observation space. An aspect

is represented as a single dot in the figure. The ellipses around x1, x2 represent the

ε-region of the corresponding aspect. Inside the ε-region, the observation is close

1A multigraph allows multiple edges between a given pair of vertices.

20

x
1

x
2

region of attraction of x
1

ε-region of x
1

xβ

ε-region of x
2

region of attraction of x
2

u

xα

Figure 3.1. An ATG containing two aspects x1 and x2, each a likely result of
applying a closed-loop action within their respective regions of attraction. The edge
labeled u is a model-referenced open-loop action that reliably maps the ε-region of x1
to the interior of the region of attraction of x2.

to the target aspect, and the closed-loop action is considered to have “converged.”

The ε-region is task dependent; a task that requires higher precision such as picking

up a needle will require a smaller ε-region. Each aspect x is located in the ε-region

but does not have to be in the center. The location and shape of the ε-region also

depends on the given task since certain dimensions in the observation space might be

less relevant when performing certain tasks.

The larger ellipses surrounding the ε-regions are the region of attraction of a

closed-loop controller referenced to aspects x1 and x2. Observations within the region

of attraction converge to the ε-region of the target aspect by running this closed-loop

controller that does not rely on additional information from the object model. For

example, a visual servo can be implemented to perform gradient descent to minimize

the observation error. The region of attraction for using such a controller is the set

of observations from which a gradient descent error minimization procedure leads to

the ε-region of the target aspect.

The arrow in Figure 3.1 that connects the two aspects is an action edge (x1, x2, a)

that represents a transition. Action a is an open-loop controller that causes aspect

21

transitions. Instead of converging to an aspect, open-loop controllers tend to increase

uncertainty in the observation space. An example is an end point position controller

that moves to a relative pose with respect to a visual feature on an object point cloud.

Under situations when there is no randomness in observation, action execution and

the environment, executing action a from aspect x1 will transition reliably to aspect

x2.

3.1.2 Convergence

The arrow in Figure 3.1 that connects the observation xα within the ε-region of x1

to observation xβ represents a scenario where action a is executed when xα is observed

in a system in which actions have stochastic outcomes. εu is defined as the maximum

error between the aspect x2 and the observation xβ when action a is executed while

the current observation is within the ε-region of aspect x1. εu can be caused by a

combination of kinematic and sensory errors generated by the robot or randomness

in the environment. If the region of attraction of the controller that converges to

aspect x2 covers the observation space within εu from x2, by running the convergent

controller it is guaranteed to converge within the ε-region of aspect x2 under such an

environment.

3.1.3 Funnel Slide Metaphor

Burridge et al. describe a controller as a funnel that guides the robot state to

convergence; multiple controllers can be combined to funnel robot states to a desired

state that no one single controller can reach alone [9] . However under certain sit-

uations the goal state may not be reachable through a combinations of controllers

that act like funnels. For example, a visual servoing controller can control the end

effector to a certain pose based on the robot hand’s visual appearance. However, to

reach the goal state, a controller that transitions from a state where the robot hand is

not visible to one in which the visual servoing controller can be executed is required.

22

Figure 3.2. Funnel-slide-funnel structure. The funnel metaphor introduced by Bur-
ridge et al. [9] is used to describe a closed-loop controller or a track control action
that converges to a subset of states, while the slide metaphor is used to describe an
open-loop controller or a search control action that causes state transitions.

Such a controller can be an open-loop controller that moves the end effector to a

memorized pose and may not necessarily converge to a certain state like a funnel.

The notion of a slide as a metaphor for the kind of action that transitions from

one set of states to another is introduced in this work. Uncertainty of the state

may increase after transitioning down a slide, but may still reach the goal state if a

funnel-slide-funnel structure is carefully designed. As long as the end of the slide is

within the region of attraction of the next funnel, convergence to the desired state can

be guaranteed even when open-loop controllers are within the sequence. Figure 3.2

illustrates the funnel-slide-funnel concept using the same style of figure demonstrated

by Burridge et al. [9]. In Section 3.3, the action accuracy of a funnel-slide-funnel

structure where visual servoing is used as a closed-loop controller is analyzed.

3.1.4 Completeness and Sufficiency

An ATG is complete if the union of the regions of attraction over all aspects

cover the whole observation space and a path exists between any pair of aspects. A

complete ATG allows the robot to manipulate the object from any observation to one

23

of the aspects. Complete ATGs are informative but often hard to acquire and do not

exist for irreversible actions. On the other hand, it is not always necessary to have

a complete ATG to accomplish a task. For example, a robot can accomplish most

drill related tasks without memorizing the bottom of the drill. Therefore, an ATG is

defined to be sufficient if it can be used to accomplish all required tasks of the object.

This work focuses on sufficient ATGs.

3.2 Handling Uncertainty With Belief Space Planning

This section describes how ATGs can be used to handle uncertainty in a partially

observable environment by addressing the dual problem of modeling and reasoning.

A belief space planner that takes into account the uncertainty across aspects and

objects to plan efficiently is presented. The goal is to have the robot build up a

set of object models by interacting with random objects one at a time. The task is

evaluated based on whether the robot can identify novel objects and recognize which

object model it corresponds to if it have been observed in the past. Once the object

is recognized, the robot can manipulate the object to reach a goal aspect by finding

the shortest path from the current aspect node to the target aspect node in its ATG

model.

In this section, how objects are modeled as an ATG is first described. An infor-

mation theoretic planner that picks the most informative action is then introduced.

This planner with ATG object models is further tested on a dual problem of modeling

and reasoning and shown to outperform a baseline approach. How this framework

can be used to reach a given goal aspect is also discussed. Table 3.1 lists the symbols

used in this section.

24

Table 3.1. Notations

Notation Definition

xt the aspect at time t

zt the observation at time t

at the control data at time t

bel(xt) p(xt|z1:t, a1:t)
bel(xt) p(xt|z1:t−1, a1:t)

M the current memory pool

Gi an ATG in memory pool, Gi ∈M
|Gi| the number of total aspects in an ATG Gi

Oi the object given to the robot at the ith trial

oj the object labeled id j

O the set of objects in the world, ∀j oj ∈ O
|O| the total number of objects in the world

ST the set of objects given to the robot up to the T th trial,

Oi ∈ ST i = 1 . . . T

Xj the set of robot states that represents oj

Uj the set of action edges in oj

|F | the number of possible features

Figure 3.3. Example of an incomplete aspect transition graph (ATG) of a cube
object. Each aspect is consists of observations of two faces of the cube. The lower
right figure shows the coordinate of the actions and the aspect with question marks
is the collection node representing all unknown aspects of the object. Each solid
edge represents an observed action edge while each doted edge represents a set of
unobserved action edges.

25

3.2.1 Modeling Objects with ATG

An object in the proposed framework is represented using an ATG where each

aspect node x represents an observation from an unique view point of an object and

each edge represents an action a that causes transition between aspects. z is used to

denote an observation.

The memory pool M is defined as a set of ATGs that the robot created through

past observations. Each ATG in the memory pool represents a single object given to

the robot in the past. The ATG of an object is complete if it contains all possible

aspect nodes and node transitions. However, in practice, when ATGs are learned

through exploration they are almost always incomplete. In addition, an object might

be represented by multiple (incomplete) ATGs. A complete model is more informative

but harder to learn autonomously. This work focuses on handling incomplete object

models. Figure 3.3 shows an example of an incomplete ATG on a cube object with a

character on each face. The action edges in the ATG describe what action allows the

robot to transition from one aspect node to another aspect node.

Assuming that an object has a total of |G| aspects, if the robot has already

observed |X | aspects on this object, a naive way to build an incomplete object model

is to add |G| − |X | unknown aspects to the model and connect them with possible

action edges. To make the calculation more efficient, each ATG model has a single

collection node representing all unobserved aspects. The belief of a collection node is

defined as the probability that the robot is currently viewing an unobserved aspect

of the object this ATG model represents. By specifying the transition probability

between an observed and unobserved aspect, the belief of each state can be updated

using the Bayes Filter Algorithm (Figure 3.4)

For each ATG in the memory pool M, a conditional update is applied after ob-

serving each new measurement zt. If the new observation tuple (zt−1, at−1, zt) cannot

be generated by the current ATG, the ATG is augmented to keep track of what the

26

ATG would be if it matches the observation. If a new aspect node is created during

the conditional update to match the new observation, the belief associated with the

collection node representing all unobserved aspects will be transitioned to this newly

created node. If a new observation tuple is in conflict with existing nodes or edges

in the ATG, the new observation is discarded and the belief of the collection node is

reset to zero.

Ideally, if there is high certainty that the given object is identical to the object

an ATG inM represents, saving the augmented ATG representing this object might

be beneficial. However, it is unlikely that the robot can be 100% sure that the two

objects are identical with a finite number of observations. In this work, the problem

is simplified by not saving the augmented nodes and edges to avoid a false match that

might contaminate the memory pool.

An ATG is added to the memory pool M only if the presented object is judged

to be novel. A novel object is defined as an object that has not been presented to

the robot in the past. Although the robot might not have seen all the objects or

all the aspects of each object, a limiting assumption that the robot knows that |O|

objects exist in the environment and each object has |G| aspects is made to simplify

the problem. If the robot assumes that there are more objects in the environment or

more aspects of an object then there actually are, it will bias the judgment toward

novelty. Let ST−1 denote the set of objects that have been presented to the robot in

the first T − 1 trials. Given a sequence of observations z1:t and actions a1:t during

trial T , the probability that the object presented during trial T , OT , is novel can be

calculated;

27

p(OT /∈ ST−1|z1:t, a1:t,M)

=
∑

oi /∈ST−1

p(OT = oi|z1:t, a1:t,M)

=
∑

oi /∈ST−1

∑
xt∈Xi

p(xt|z1:t, a1:t). (3.1)

Where oi is an element of set O designating all of the objects in the environment.

Element xt of set Xi describes all the aspects comprising object oi. The conditional

probability p(xt|z1:t, a1:t) of observing an aspect is inferred using a Bayes filter. Object

OT is classified as novel if p(OT /∈ ST−1|z1:t, a1:t,M) > 0.5.

If a particular object is judged to be a previously observed object, it is associated

with the ATG that is most likely to generate the same set of observations. The

posterior probability of object oi is calculated by summing the conditional probability

of observing aspect xt over all aspects comprising object oi,

p(OT = oi|z1:t, a1:t,M) =
∑
xt∈Xi

p(xt|z1:t, a1:t). (3.2)

The posterior probability of an aspect is calculated after each measurement and

control update using the Bayes Filter Algorithm ([91]). The algorithm is stated in

Figure 3.4, where bel is the posterior probability p(xt|z1:t−1, a1:t) after executing a

new action at and bel is the posterior probability p(xt|z1:t, a1:t) after observing a new

measurement zt. Line 3 is the control update step and line 4 is the measurement

update step.

The initial belief over aspects is determined based on the number of aspect nodes

and ATGs in the memory pool. Assuming that there are |M| ATGs in the memory

pool and |Xi| aspect nodes are observed in Gi, the initial belief is given by

28

bel(x0) =
1

|Gi| · |M|
(3.3)

bel(xu0) =
|Gi| − |Xi|
|Gi| · |M|

, xu0 ∈ Gi, (3.4)

where xu is the collection node representing all unobserved aspects in Gi and |Gi| is

the number of total aspects in Gi. In this experiment, all ATGs are assumed to have

the same |Gi|.

1: procedure Bayes Filter(bel(xt−1), at, zt)
2: for all xt do
3: bel(xt) =

∑
xt−1

p(xt|at, xt−1) · bel(xt−1)
4: bel(xt) = p(zt|xt) · bel(xt)
5: end for
6: normalize(bel(xt))
7: end procedure

Figure 3.4. Bayes Filter Algorithm

Assuming that transitions between aspects are deterministic; given the current

aspect, the same action always leads to the same next aspect. Therefore, each as-

pect only has one outward action edge of the same type. The transition probability

p(xt|at, xt−1) in the control update step for each aspect can be calculated by counting

how many possible aspect nodes (including the collection nodes) the current aspect

can transition to.

To simplify the problem, it is assumed that there is no noise in the measurement

data. Therefore, the observation probability p(zt|xt) would be either 1 for a match

or 0 for a mismatch. Note that, although there is no uncertainty in the measurement

data, there is still uncertainty over aspects since the same observation zt can be

generated by different objects.

29

3.2.2 Information Theoretic Planner

The challenge of integrating task-level planners with incomplete representations

requires handling partial observability of the state while building plans. Since the

true state of the system cannot be observed, it must be inferred from the history of

observations and actions. The proposed planner belongs to a set of approaches (such

as [70]) that select actions to reduce the uncertainty of the state estimate maximally

with respect to the task.

Object recognition can be viewed as one such task in which the uncertainty over

object identities (as quantified by the object entropy) is reduced with each observa-

tion. Selecting the action at that minimizes the expected entropy of the distribution

over elements of set OT representing the object identity reduces the uncertainty over

object identities the most after the next observation zt+1;

argmin
at

E(H(OT |zt+1, at, z1:t, a1:t−1))

= argmin
at

∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1) · p(zt+1|at, z1:t, a1:t−1).

Where H is the entropy associated with the random variable. The entropy is zero

if the state is uniquely determined; it reaches its maximum if all states are equally

likely;

H(OT |zt+1, at, z1:t, a1:t−1)

=
∑
oi∈O

p(oi|z1:t+1, a1:t) log p(oi|z1:t+1, a1:t). (3.5)

The posterior probability p(oi|z1:t+1, a1:t) can be calculated by updating the existing

belief using the Bayes Filter Algorithm. The prior probability p(zt+1|at, z1:t, a1:t−1) of

30

observing zt+1 given past observations can be calculated by summing the probability

of all aspects generating observation zt+1,

p(zt+1|at, z1:t, a1:t−1)

=
∑
oi∈O

∑
xt+1∈Xi

p(xt+1|at, z1:t, a1:t−1) · p(zt+1|xt+1). (3.6)

Where the posterior probability of an aspect p(xt+1|at, z1:t, a1:t−1) is updated using

the Bayes Filter Algorithm.

The runtime for calculating the expected entropy given an action is O(|F | · |O|2 ·

|X |). To speed up the calculation, an approximate expected entropy for each action

is calculated instead:

E(H(OT |zt+1, at, z1:t, a1:t−1))

'
∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1)·

p(zt+1|at, z1:t, a1:t−1)·

1(threshold,∞)(p(zt+1|at, z1:t, a1:t−1)). (3.7)

Here 1(·) is the indicator function and the threshold is set to 1/|F | in this experiment.

The value of the indicator function is 1 if the input is greater than threshold and 0

otherwise.

If an observation zt+1 is unlikely to be observed, the entropyH(OT |zt+1, at, z1:t, a1:t−1)

will not be calculated. The approximate expected entropy will be lower than the ac-

tual entropy, however it effects all estimates in the same way and should allow us to

identify the action that leads to the minimum entropy most of the time.

3.2.3 Experiments

The proposed information theoretic planner combined with ATG object models

is tested on the dual problem of modeling and reasoning formalized as simultaneous

31

object modeling and recognition (SOMAR). The goal of SOMAR is to have the robot

build up a set of object models through interacting with random objects one at a

time. The task is evaluated based on whether the robot can identify novel objects

and recognize which object model it corresponds to if it have been observed in the

past. How ATG object models can be used to reach certain goal aspect by recognizing

objects is also demonstrated.

This problem is inspired by the simultaneous localization and mapping (SLAM)

problem introduced in [54]. Instead of building a map while localizing the robot, the

task requires performing object modeling and recognition at the same time. The SO-

MAR problem is equivalent to a modified SLAM problem where multiple incomplete

maps are given to the robot and the goal is to locate the robot in one of the maps

or identify that the robot is in none of these maps and start modeling the current

environment.

3.2.3.1 Settings

The capabilities of the proposed model and planner is evaluated using the Robonaut-

2 simulator shown in Figure 3.6 ([15]) and an exclusively kinematic simulator. The

kinematic simulator runs much faster and is used to collect more data for comparing

different planners. The simulation environment contains 100 unique objects called

ARcubes that consist of a 28cm cube with unique combinations of ARtags on the

six faces; 12 different ARtag patterns are used in this experiment. ARcubes are sim-

ple objects that share a common set of manual actions and introduce a challenging

amount of hidden states from any single sensor viewpoint. In an ATG for an ARcube,

an aspect consists of ARtag features observed on the top face and the front face. As in

Figure 3.1 each ATG has 24 unique aspects and each aspect has 132 different pattern

combinations. For the sake of simplicity, it is assumed that an object does not have

two faces with the same ARtag.

32

In the Robonaut-2 simulator, the simulated Asus Xtion sensor located in Robonaut-

2’s head is used for visual and depth input. The ARtags located on the ARcubes are

detected and recognized using the ARToolkit ([43]) and are classified as the top or

front ARtag based on the 3 dimension position.

The robot can perform 3 different manipulation actions on the object: 1) flip the

top face of the cube to the front, 2) rotate the left face of the cube to the front, and

3) rotate the right face of the cube to the front. The robot will be able to execute

any of these actions under the condition that it observes both of the ARtags. If the

ARcube is tilted, too far or too close to manipulate, the robot will try to adjust the

cube until it is in the right position. These adjustment actions are not stored in the

ATGs.

3.2.3.2 Results

Tables 3.2 and 3.3 show the result of using the planner to recognize the object

presented. Each test involves 100 trials and starts with an empty memory pool M.

In each trial, the task is to decide which ATG in memory pool the given object

corresponds to or to declare it as a novel object. For each trial, an object is chosen

at random and presented to the robot. The robot observes the object and executes

an action. This process is repeated 10 times in the first experiment and 20 times in

the second experiment. At the end of each trial the robot determines the likelihood

that the presented object is novel and the most likely existing object in memory pool

is identified.

The last row in Table 3.2 and Table 3.3 presents the results averaged over all

the tests. The success rate is the percentage of objects correctly classified, that is,

correctly identified in memory pool or declared as a novel object. When 10 actions are

performed per trial, the system correctly recognizes the object 90.7% of the time and

correctly determines if the presented object is novel 81.6% of the time. The overall

33

Table 3.2. The success rate of an information theoretic planner in recognizing the
object (10 actions per trial)

Test Correct Identification Correct Recognition Success Rate

1 80/100 20/21 79%
2 79/100 25/27 77%
3 87/100 21/25 83%
4 78/100 26/28 76%
5 84/100 24/27 81%

average 81.6% 90.7% 79.2%

Table 3.3. The success rate of an information theoretic planner in recognizing the
object (20 actions per trial)

Test Correct Identification Correct Recognition Success Rate

1 100/100 34/34 100%
2 98/100 32/32 98%
3 98/100 40/40 98%
4 99/100 37/37 99%
5 99/100 32/32 99%

average 98.8% 100% 98.8%

success rate is 79.2% in this experiment. When 20 actions are performed per trial,

the overall success rate reaches 98.8%.

The efficiency of the planner is also tested against a random policy. The number of

actions executed per trial were varied from 4 to 20. Figure 3.5 shows how the success

rate of a test varies with the number of actions executed per trial. As is evident from

the plots, the information theoretic planner outperforms a random exploration policy

for all cases except when the number of actions per trial is low. Both algorithms

perform equally poor when not enough information is provided.

3.2.3.3 Reaching a Target Aspect

To demonstrate how ATGs can be used to reach certain goal state, an environment

where three ARcubes are located in front of the simulated Robonaut-2 is set up as

34

Figure 3.5. The plot shows the average success rate of 10 tests as the number of
actions per trial are increased. Selecting actions that minimize entropy leads to a
higher success rate then selecting actions at random.

Figure 3.6. The simulated Robonaut-2 interacting with an ARcube.

35

shown in Figure 3.6. The goal is to rotate the cubes until certain faces are observable.

The robot starts with a memory pool learned through interacting with 20 different

ARcubes including the three ARcubes located in the test environment. To achieve

the goal state, Robonaut-2 manipulates the object to condense belief over objects.

Once the object entropy is lower than a threshold, Robonaut-2 tries to execute the

sequence of actions that is on the shortest path from the current aspect node to

the goal aspect node in the corresponding ATG if such goal aspect node exists. In

this demonstration, the simulated Robonaut-2 successfully reaches the goal state by

manipulating the cubes so that the observed aspects match the given goal aspects.

3.3 Funnel-Slide-Funnel Structure

Designing robots that can model unstructured environments and act predictably

in those environments is challenging. This section addresses the issue of how to make

actions repeatable in a noisy environment. Subsection 3.1.3 describes how open-loop

and closed-loop controllers can be constructed into a funnel-slide-funnel structure

(Figure 3.2) such that under certain conditions a sequence of actions that include

open-loop controllers can guarantee success. In this section, a novel visual servoing

algorithm that can be used to converge to a certain aspect node within the ATG is

first introduced. This visual servoing alogrithm is then used to construct a funnel-

slide-funnel structure and have shown to improve action accuracy significantly on a

tool grasping task in the Robonaut-2 simulator.

3.3.1 Visual Servoing

Hutchinson et al. classify visual servoing approaches into two major types: position-

based servoing, where servoing is based on the estimated pose; and image-based ser-

voing, where servoing is based directly on visual features [38]. In this section, a novel

image-based visual servoing algorithm that can be used to converge from an obser-

36

vation within the region of attraction to the ε-region of the corresponding aspect

in an ATG is introduced. This visual servo controller falls under the control basis

framework [36] and can be written in the form φ|στ , where φ is a potential function,

σ represents sensory resources allocated, and τ represents the motor resources allo-

cated. The control basis framework provides a means for robot systems to explore

combinations of sensory and motor controls. In this experiment, the visual servoing

controller is used to control the end effector of the robot to reach a pose relative to a

target object using visual sensor feedback. Unlike many visual servoing approaches,

this visual servoing algorithm does not require a set of predefined visual features on

the end effector or target object nor does it require an inverse kinematic solution for

the robot. The only information required is the current observation and the target

aspect. Figure 3.7 shows a trial of the visual servoing algorithm converging to a stored

target aspect.

In the control basis framework, a potential function φ represents an error function

that the controller minimizes. To reach minimum error, a closed loop controller

performs gradient descent on the potential function. Artificial potential functions

that guarantee asymptotically stable behavior are usually used to avoid local minima

[32]. However, potential functions with a unique minimum often do not exist in

visual servoing due to occlusion, lighting, and noisy sensory data. Instead of trying to

define a potential function with a unique minimum, I define a potential function with

possibly many local minima and call the region in which gradient descent converges

to a particular minimum the region of attraction. If the current aspect is within

the region of attraction, convergence to the target aspect can be guaranteed through

gradient descent.

37

Figure 3.7. Visual servoing sequences. Each image pair shows the target aspect
(left) and the current observation (right). A line in between represents a pair of
matching keypoints. The top image pair represents the starting observation and the
bottom image pair represents when the controller converged.

3.3.1.1 Potential Function

The potential function is defined as the weighted squared Euclidean distance be-

tween the signature of the current observation s̃ and the signature of the target aspect

s. This approach can be used with most feature detectors and feature descriptors. In

this work, the Fast-Hessian detector and the SURF descriptor [5] are implemented.

A depth filter that uses the depth image is first used to filter out most keypoints

that belong to the background. The first step to calculate the signature of an ob-

servation is to find a subset K of keypoints in the current observation that match

to keypoints in the target aspect. The signature of an observation can then be cal-

culated based on this subset K of keypoints. The signature is a combination of the

distance signature vector sD and the angle signature vector sA. sD is a signature vec-

tor that consists of Euclidean distances sDij between all pairs of keypoints (ki, kj) in K:

38

Figure 3.8. Components of the signature of the target aspect (left) and the current
observation (right). The circle and the triangle represent the ith and jth matched
keypoints.

sDij =
√

(xi − xj)2 + (yi − yj)2. Here xi, yi are the X Y image coordinates of keypoint

ki ∈ K. The angle signature vector sA consists of angle differences sAij between all

pairs of keypoints (ki, kj) in K: sAij = ωij − θi. Here ωij represents the orientation of

the ray from keypoint ki to keypoint kj and θi represents the orientation of keypoint

ki. Figure 3.8 illustrates examples of sDij and sAij of the target aspect and the current

observation.

The potential φ is then the scaled squared Euclidean distance between distance

signature vectors of the target aspect sD and the current observation s̃D plus the

weighted squared Euclidean distance between angle signature vectors of the target

aspect sA and the current observation s̃A;

φ =
1

ND

·
∑

{i,j|ki,kj∈K}

(sDij − s̃Dij)2 +
∑

{i,j|ki,kj∈K}

wAij · (sAij − s̃Aij)2,

where ND = |K| · (|K| − 1)/2 and wAij = sDij/
∑
{i,j|ki,kj∈K} s

D
ij . Here |K| is the number

of matched keypoints between the current observation and the target aspect and wAij

is a normalized weight proportional to the keypoint pair distance sDij in the target

aspect. The purpose of wAij is to weight angle differences more heavily for keypoints

that are far apart.

39

3.3.1.2 Gradient Descent

In order to perform gradient descent on the potential function, the potential-motor

Jacobian defined as

J =
∂φ(σ)

∂τ

need to be estimated. A seven degree freedom arm is used in this experiment, there-

fore τ = [q1, q2, ..., q7] where qi represents the ith joint in Robonaut-2’s right arm.

The control signal that leads to the greatest descent can then be calculated by the

expression:

∆τ = −c(J#φ(σ)),

where c is a positive step size and J# is the Moore-Penrose pseudoinverse [61].

In order to calculate the partial derivative of the potential function φ with respect

to each joint q, the visuomotor Jacobian is defined as

Jv =
∂V

∂τ
,

where V is the X Y positions and orientations of the set of keypoints detected in the

current observation that match to keypoints in the target aspect based on its feature

descriptor. Knowing ∆τ we can calculate the change in the keypoint positions and

angles as follow:

40



ẋ1

ẏ1

θ̇1
...

ẋn

ẏn

θ̇n



=



∂x1

∂q1

∂x1

∂q2
· · ·

∂x1

∂q7

∂y1

∂q1

∂y1

∂q2
· · ·

∂y1

∂q7

..

.
...

. . .
...

∂θn

∂q1

∂θn

∂q2
· · ·

∂θn

∂q7


·



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7



∆V = Jv ·∆τ ,

where xi, yi, and θi represent the X Y position and orientation of keypoint ki that

match to the ith keypoint in the target aspect; n is the number of keypoints detected

in the target aspect. Given Jv we can estimate how changing joint values τ will change

the position and orientation of the matched keypoints on the image plane. Since the

potential only depends on matched pairs, estimated potential for every joint value

can be calculated.

3.3.1.3 Learning the Visuomotor Jacobian

This visuomotor Jacobian that models how features change with respect to joint

values is inspired by work done in understanding how humans obtain a sense of

agency by observing their own hand movements [93]. This approach learns that

certain feature positions on the robot end effector are controllable while features

in the background are not. The visuomotor Jacobians for each aspect are updated

on-line using a Broyden-like method

Jvt+1 = Jvt + µ
(∆V − Jvt∆τ)∆τ T

∆τ T∆τ
,

41

where Jvt is the visuomotor Jacobian at time t and µ ∈ (0, 1] is a factor that specifies

the update rate [60]. When µ = 1 the updating formula will converge to the correct

Jacobian Jv after m noiseless orthogonal moves and observations, where m is the

dimension of Jv. In this experiment, µ set to 0.1 is found to be more robust. The

visuomotor Jacobians for each aspect are initialized randomly for the first run and

memorized afterwards. The more trials the controller runs the more accurate the

estimated Jv is on average. Using Broyden’s method to estimate Jacobians on-line

for visual servoing was first introduced in [40].

3.3.2 Experiments

The ATG in conjunction with the visual servoing algorithm are tested on a tool

grasping task on the NASA Robonaut-2 simulator ([15]). The goal of the task is to

control Robonaut-2’s right hand to a pose where a screwdriver on a tool stand is in

between the robot’s right thumb, index finger and middle finger as shown in Figure

3.9. An ATG object model consisting of three aspects, that is sufficient for this task,

is used in this experiment. It is shown that a “slide-funnel-slide-funnel” controller

sequence decreases the average pose error over a “slide-slide” controller sequence.

Figure 3.9. Robonaut-2 approaching a pre-grasp pose for a screwdriver on a tool
stand in simulation.

42

Figure 3.10. The first, second, and third aspect stored in the ATG through demon-
stration are shown from left to right. In the first aspect, the object on top of the
table is a screwdriver on a tool stand. In the second aspect, the robot hand is in a
position where a straight movement toward the screwdriver would lead to a pre-grasp
pose. The third aspect represents a pre-grasp pose. This is the goal aspect for the
pre-grasp task designed in this experiment.

3.3.2.1 Settings

The ATG used in this experiment consists of three aspects. The first aspect

represents an observation in which the screwdriver is on a tool stand on a table and

is 0.6 meters in front of the robot. The left image in Figure 3.10 is the corresponding

observation of this aspect. The second aspect represents an observation where the

robot’s right hand is about 7 centimeters right of the screwdriver. The action edge

between the first and second aspects represents an action that moves the robot’s right

hand to a pose relative to the center of the object point cloud observed in the first

aspect. The middle image in Figure 3.10 is the corresponding observation of this

aspect. The third aspect represents an observation where the robot’s right thumb,

index and middle finger surrounds the screwdriver handle. The right image in Figure

3.10 is the corresponding observation of this aspect. The action edge in between the

second and third aspects represents an action that moves the robot’s right hand to a

pose relative to the right hand pose of the previous aspect.

43

3.3.2.2 Analyzing Region of Attraction

The region of attraction of the second and third aspect of the ATG with respect to

the visual servoing controller can be analyzed. The region of attraction of an aspect

is defined as the observation space in which a closed loop convergence controller that

does not rely on the object representation can converge to the ε-region of the aspect.

An aspect or observation lies in a high dimensional observation space and can be

varied by multiple different parameters or noise. In this experiment, two types of

noise are considered. 1) Noise in the relative pose between the robot hand and the

object. This kind of noise can be caused by kinematic errors from executing an action

or imperfect object positions calculated from a noisy point cloud and will result in a

different end effector pose relative to the object. 2) Noise in the object position. This

kind of noise can be caused by placing the tool stand and screwdriver in a different

position than the position previous observed in the demonstration. This noise can

cause the estimated object center position to vary and affect the visual servoing

controller since the object and the robot end effector will look visually different from

a different angle. In this experiment, our goal is to find the region of attraction of

the second and third aspect with respect to these two kinds of noise.

These two kinds of noise are artificially added in the experiment and the number

of gradient descent iterations required to reach the ε-region of the aspect are recorded.

In this experiment, only noise on the X Y plane is considered for easier visualization

and analysis. For each type of noise and each aspect, 289 different combination of

noise in the X and Y axis roughly within the scale that the visual servoing controller

can handle is tested. The results for adding noise in the relative pose between the

robot hand and the object to the second aspect are shown in Figure 3.11. The plot

on the left indicates how many iterations the visual servoing controller executed till

convergence for different noise values. Each color tile is one single experiment and

dark blue means the controller converges fast while orange means the controller took

44

longer to converge. A yellow tile means that the controller could not converge within

the 1000 iteration threshold. The region of attraction is the set of observations that

include the aspect plus the set of noise that corresponds to a non yellow tile connected

to the origin. The plot on the right is a visualization of the same result in 3D which

has some resemblance to the funnel metaphor used in Figure 3.2.

Figure 3.11. Iteration till convergence with respect to noise in the relative pose
between the robot hand and the object for the second aspect.

The results for adding noise in the relative pose between the robot hand and the

object to the third aspect are shown in Figure 3.12. Note that this aspect has a

smaller region of attraction with more tolerance in the direction perpendicular to

the hand opening. If there is a large error in the Y axis the robot’s hand may end

up in front or behind the screwdriver. Under such situations, without additional

information the visual servoing controller will not be able to avoid colliding with the

screwdriver while trying to reach the goal. The results for adding noise in the object

position are shown in Figure 3.13. Notice that the regions of attraction are much

larger for this type of noise.

3.3.2.3 Convergence and Accuracy

By analyzing the observed regions of attraction of the visual servo controller that

converges to the two aspects, the magnitude of noise this “slide-funnel-slide-funnel”

45

Figure 3.12. Iteration till convergence with respect to noise in the relative pose
between the robot hand and the object for the third aspect.

Figure 3.13. Iteration till convergence with respect to noise in the object position
for the second aspect (left image) and the third aspect (right image).

46

controller sequence can tolerate can be estimated. As shown in Figure 3.11 and Figure

3.12, the visual servo controller has a region of attraction with about 1.5 centimeter

radius of kinematic noise around the second aspect and about 0.5 centimeter radius of

kinematic noise around the third aspect. These sequences of actions are evaluated by

comparing the final end effector position in the X-Y plane to the demonstrated pose

relative to the screwdriver. Noise of three different magnitudes are added to each

open-loop action; 0.5, 1.0, and 1.5 centimeters for the action that transitions from

the first aspect to the second aspect and 0.1, 0.2, and 0.3 centimeters for the action

that transitions from the second aspect to the third aspect. For each combination

of noise, eight uniformly distributed directions are tested. Among the 72 test cases

100% of them converged to the second aspect and 87.5% of them converged to the

third aspect.

This experiment did not reach a 100% overall convergence rate for two possible

reasons. First, in addition to the artificial noise, randomness in the action planner

and simulator also exist in the system. Second, the region of attractions shown in the

previous section are estimated based on visual similarity. Two observations can be

visually similar but position wise quite different therefore causing a false estimate of

convergence. Figure 3.14 shows the test cases that the controller fails to converge on;

most of the failed test cases are located in the lower right corner. This is consistent

with the shape of the region of attraction of the controller with respect to the third

aspect shown in Figure 3.12. The final poses of the end effector relative to the

screwdriver are recorded and compared to the demonstrated pose.

The results are further compared to a sequence of “slide-slide” controllers without

visual servoing acting as a funnel. The average position error is shown in Table

3.4. The “slide-funnel-slide-funnel” structure reduces the error by 55.8% and has

an average error of 0.75 cm in the X-Y plane when only considering test cases that

converged.

47

Figure 3.14. Convergence with respect to artificial noise added to the test cases.
Each dot represents a test case where theX Y value represents the summed magnitude
and direction of the manually added kinematic noise. A red diamond indicates that
the controller fails to converge to the third aspect while a blue circle indicates that
the action sequence converged.

Table 3.4. Average position error in the X-Y plane in centimeters.

complete test set converged test set

“slide-slide” structure 2.24 cm 2.06 cm
“slide-funnel-slide-funnel” structure 0.99 cm 0.75 cm

48

3.4 Acting without Explicit Pose Estimation

In most robotics tasks that require manipulating known objects, accurate pose

estimation is often required before planning end effector trajectories. In the Willow

Garage grasping pipeline [98], the iterative closest point algorithm is used to check

how well a segmented point cloud matches to a stored mesh model. Pre-computed

grasp points associated with the model are then used to generate a valid motion

trajectory. However, object pose estimation is often computationally expensive and

inaccurate. Using the ATG representation introduced in this work, an alternative

approach that interacts with objects directly based on memory and observation is

introduced.

3.4.1 Approach

Instead of storing a 3D representation that contains invariant features in the object

frame, the ATG stores a set of viewpoint-specific observations. Since available actions

from one observation to another are stored in action edges of an ATG, explicit object

pose estimation is not required to interact with an object. Given a sufficient ATG,

the robot can directly interact with objects based on memorized observations.

3.4.2 Experiments

Such approach is tested on a tool grasping task on Robonaut-2. The goal is to

have Robonaut-2 use the drill directly with its left hand or grasp the drill from the top

or the side with its left hand so that it can adjust the drill to a better grasping pose

for the right hand. An ATG of a drill representing five different grasping trajectories

for different drill orientations ranging from 0 to 180 degree is first created. One goal

aspect that represents successfully grasping the drill is used to connect aspect nodes

representing the end of the five grasping trajectories.

A grasping test is performed on 21 random drill poses ranging from 0 to 180 degrees

and within 10 cm from the original training position. This approach successfully

49

grasped the drill 19 out of 21 times in this experiment. One of the two failures was

caused by the planner failing to generate a valid trajectory to an intermediate aspect

and the other was caused by failing to reach an intermediate aspect. Figure 3.15

shows examples of Robonaut-2 grasping the drill oriented at different poses during

testing.

Figure 3.15. Robonaut-2 grasping the drill posed at different orientations. Image
pairs in the same row represents the intermediate and final states of one drill grasping
trial.

50

3.5 Error Detection and Surprise

Building robots that can handle uncertainty is necessary for autonomous robots

to accomplish tasks in a non-deterministic environment. However, the vast majority

of failures either evade detection completely or are detected only after a high level

action fails to reach the target state. This makes robots inefficient and can lead to

catastrophic failure if the robot continues to execute a plan when the actual state

is quite different from what the robot expected. In Section 3.2, how ATG models

can be used to handle uncertainty caused by partial observability is discussed. In

this section, a framework that uses ATG models to tackle uncertainty caused by a

non-deterministic environment is introduced. In this framework, plans are monitored

during the execution of low-level actions to create a fine-grained observer for error

detection. This allows the robot to compare observations to stored ATG models

frequently and to handle unexpected outcomes immediately after they are detected.

In the book Probabilistic Robotics [91], environment, sensors, robots, models,

and computation are considered as the five factors that give rise to uncertainty in

robotic applications. This section focuses on how uncertainty is perceived instead of

categorizing it based on the cause. Uncertainties a robot may encounter are classified

into two categories: 1) random transitions that are within the model domain but

may still be unlikely given transition probabilities, and, 2) “surprise” transitions that

lead to outcomes that are not represented in the model domain. An example of a

random transition is the outcome of rolling a loaded die that should come up 6 with

high probability, but instead comes up 1. The robot will not be able to predict the

exact outcome, but by having a model that captures low probability outcomes it is

capable of handling each of them accordingly. An example of a surprise transition is

if the outcome of rolling a 6 sided die is 13 while the robot’s die model has possible

outcomes from 1 to 6. In [12], Casti describes that “surprise can arise only as a

consequence of models that are unfaithful to nature.” Therefore I define a “surprise”

51

transition as when the robot observations are not explainable by any model in the

robot memory. During the surprise transition a new model of the environment that

can explain this surprising outcome is learned. Failures detected by the fine-grained

observer are then recovered differently based on this classification.

In a non-deterministic environment it is inevitable that a robot will encounter

randomness and surprises while performing tasks. In this section, how randomness

can be modeled and handled is first described. A new formula for surprise is then

introduced. In Subsection 3.5.3, experiments are tested on the balancing mobile ma-

nipulator uBot-6 [75]. It is shown that the framework can handle random transitions

and recover from surprise transitions at fine-grained time scales.

3.5.1 Modeling Randomness

In an ATG model, an action edge u represents an action that causes an aspect

transition. Actions can be implemented with open-loop or closed-loop controllers. For

each action, its type, parameterization, and reference frame are stored. A robot has

a set of actions available to interact with objects. These actions include visual and

haptic servoing actions as well as gross motor (mobility) actions and fine motor (arm

and hand) actions. While mobility actions can be used to bring an object into reach

for manipulation, they also alter the view of an object, possibly revealing previously

hidden visual features. Actions such as pick-up and lift can be used to manipulate

objects, but they can also gather haptic feedback and change the current viewpoint

to reveal otherwise unavailable features (e.g. surface markings on the bottom face of

a box).

High-level manipulation actions can be represented as a sequence of primitive ac-

tions and aspect transitions. For example, the “flip” macro action is implemented as

a sequential composition of the following four primitive actions: 1) reach, 2) grasp, 3)

lift, and 4) place. These four actions connect five fine-grained aspect nodes that repre-

52

Figure 3.16. Fine-grained flip action. The photos shown from left to right are the
five intermediate stages of a flip action. The robot checks whether the sub-action
succeeded for each stage.

sent expectations for intermediate observations. Figure 3.16 shows these intermediate

stages. These fine-grained aspect nodes allow us to monitor and detect unplanned

transitions at many intermediate stages of the flip interaction.

I define a random transition as an outcome of an action that is non-deterministic

but is within a previously seen set of outcomes that can be captured in the model. For

example, due to uncertainty, the lift action may drop the object in the lifting process

due to slippery hands, thus, causing a different observation in the terminating state.

These random outcomes can be represented in the ATG using transition probabilities

p(xt|at, xt−1), which is nonzero for all possible outcome states. As a consequence,

the Bayesian filtering algorithm will update the belief accordingly. For simplicity,

equal transition probabilities are assigned to all of the outcome states possible under

action at. In general, each outcome of a randomized transition requires a different

action to achieve the goal aspect. Figure 3.17 shows an ATG model that handles such

randomness.

3.5.2 Recovery from Surprises

In [12], surprise is described as “the difference between expectation and reality.”

Although one might associate surprise or unexpected events with low probability

events, observing a rare event does not always lead to surprise. For example, a

person that observes a lottery drawing will likely not be surprised if the outcome is

29 - 41 - 48 - 52 - 54 even though this outcome has a low probability.

53

Figure 3.17. Part of an aspect transition graph model of a dice. The top right
node indicates the observation when the robot successfully flipped the dice while the
bottom right node indicates when the dice slipped. The red circles indicate the robot
hands and the green arrows indicate haptic feedback.

Baldi [4] measures the degree of surprise in a Bayesian setting in which there is

a well-defined distribution P (M) over the space of models M. He uses a measure S

of how much the new information in an observation d changes the distribution over

models. Specifically, he computes the KL-divergence between the current belief state

P (M) and the belief state P (M |d) induced by the new observation:

S(d,M) =

∫
M
P (M) log(P (M)/P (M |d))dM.

An event is then defined to be a surprise if this divergence is greater than some

threshold θ.

However, this formula considers transitions where an informative action reduces

the entropy over models significantly as surprising. If there is a uniform distribution

over models, observing an outcome that concentrates the posterior probability on one

model should not be surprising. I offer a simpler definition of surprise that agrees

better with intuition. This definition can be applied to a distribution over models,

54

but it also applies when there is just a single model M , and I start with this simpler

case.

The entropy HM(D) = E[− logPM(D)] associated with a model M of observation

D defines the expected negative log probability of an observation D. I define a specific

observation d to be surprising if its information, − logPM(d), is much greater than

the entropy:

− log(PM(d))� HM(D).

Consider the example of a perfect fair die with six outcomes. No outcome can be

surprising since the information of each outcome is equal to the entropy of the die.

On the other hand, if we acknowledge that there is some minute probability of a die

landing on its corner and balancing, then a better estimate of the probability of each

face is 1
6
− ε, and the probability of landing on a corner extremely small. If the die

does in fact land on a corner, it is not the rarity of this event that makes it surprising,

but the probability relative to the entropy of the die. That is, the event is thousands

of times less likely than what we expected, which is 1
6
− ε.

In the Bayesian setting, where the model M is unknown, this definition of surprise

is extended by simply computing expectations over the unknown models:

EM[− log(PM(d))]� EM[HM(D)].

Intuitively, a “surprising event” is still an outcome whose probability is far lower

(and information is much higher) than what was expected. And again, when all

events are a uniform low probability, there can be no surprise.2

In practice, rather than trying to define a precise probability for extremely rare

events, events that are not part of a model are simply defined as having extremely

2This addresses the case of “television snow” that Baldi raises. When snow occurs in the context
of a low entropy process, it is surprising, since it has much lower probability. However, when it
occurs in the context of a snow distribution, it has probability equal to the other outcomes.

55

Figure 3.18. The uBot-6 mobile manipulator performing a “what’s up?” gesture to
convey that it is surprised after an unexpected event.

low probability. For example, while the robot is grasping an object if someone cov-

ered the robot’s camera and such a transition is not modeled in any of the object

models, the observation will be inconsistent with what the robot expects (i.e., has an

extremely low probability) and therefore be classified as a surprise transition. During

the surprise transition a new ATG model that includes this new transition is cre-

ated by extending the ATG model with the highest belief in memory. If an identical

transition reoccurs the robot will be able to expect the outcome with the new model.

Since surprise transitions are unpredictable and do not lie within a bounded set

of possible outcomes, they are handled by resetting the belief among all aspect nodes

to the prior distribution. If a possible plan that will lead to the goal still exists,

the robot will continue to accomplish the task. In this experiment, when a surprise

transition occurs the robot also shows a “What’s up?” gesture that conveys confusion

as in Figure 3.18. This gesture has proven to be useful for indicating the robot’s

current state in experiments.

The action selection algorithm that uses the ATG to achieve goals and handle

surprise transitions is described in Figure 3.19. Here, M represents a set of ATG

56

models stored in the robot memory and xtarget is the target aspect given to the robot.

The function InitializeBelief(M) initializes prior probability specified in the set

of ATG models M. The function InferAspects(M, bel) infers a set of possible

aspects Xcandidate based on the belief bel. The function GetObservation(Xcandidate)

returns the current observation zcurrent and the corresponding feature positions in R3

fpose from active feature detectors derived from the set of possible aspects Xcandidate.

The function BayesFilterObs(bel, zcurrent) refers to part of the Bayesian filtering

algorithm that updates the belief given an observation. The function Surprise(bel)

returns true if the belief in all aspect nodes are zero. If a surprise transition occurs,

the robot shows the “What’s up?” gesture, backs up and move arms to the ready pose.

The function CreateNewModel(M, bel, a, zcurrent) creates a new ATG model by

adding a new aspect node representing zcurrent and an action edge representing action

a to the ATG model with the highest belief in M. The belief over aspects are

reset to the prior distribution through function ResetBelief(bel,M). The function

InferAction(M, xtarget, bel) finds a shortest path to the target aspect xtarget. The

function then returns the first action on the shortest path. ExecuteAction(a, fpose)

executes the action based on information stored in the action edge a and feature

positions fpose. The function BayesFilterAct(bel, a) refers to part of the Bayesian

filtering algorithm that updates the belief given an action.

3.5.3 Experiments

In order to evaluate the introduced techniques that handle randomness and un-

certainty, two different experiments are performed. For both cases, the uBot-6 mobile

manipulator has to perform simple manipulation tasks. The performance is compared

with and without the presented techniques.

57

1: procedure Algorithm(xtarget,M)
2: bel = InitializeBelief(M)
3: while true do
4: Xcandidate = InferAspects(M, bel)
5: zcurrent, fpose = GetObservation(Xcandidate)
6: bel = BayesFilterObs(bel, zcurrent)
7: if Surprise(bel) then
8: What’sUpGesture(())
9: CreateNewModel(M, bel, a, zcurrent)

10: bel = ResetBelief(bel,M)
11: BackupAndReadyPose()
12: continue
13: end if
14: a = InferAction(M, xtarget, bel)
15: ExecuteAction(a, fpose)
16: bel = BayesFilterAct(bel, a)
17: end while
18: end procedure

Figure 3.19. Algorithm for achieving goal aspect and handling surprise transitions.

3.5.3.1 Settings

The goal of task is to manipulate an ARcube until the requested features are

observed on the corresponding faces. An ARcube is a cube box with a different

ARtag on each of its face as shown in Figure 3.16. An ARtag is a square fiducial

marker commonly used in robotics due to ease of use and robust detection. In this

work an ATG model representing an ARcube has 174 nodes and 408 edges.

3.5.3.2 Surprise Recovery

For the first experiment, the model is provided with a fairly detailed ATG model

of the handled ARcube. The robot has to reach the desired state with ARtags 1 and 2

on the top and front faces of the cube respectively. The robot has to first perform this

task solely based on the provided model and the contained transitions. Despite the

model being fairly complete, a small perturbation in the visual and haptics sensors,

as well as slightly different dynamics when manipulating the ARcube can result in

an observation not contained in the model or not agreeing with the model (e.g. an

58

action resulting in new outcome). Without the ability to recover, reaching such a

state, the robot will not be able to complete the task.

The robot is repeatedly provided with random configurations of the ARcube and

the performance of both methods is compared. The robot is able to complete the task

reliably 10 out of 10 times when provided with the ability to recover from unforeseen

observations. Without this capability, the robot succeeds 5 out of 10 runs.

3.5.3.3 Error Detection Through Fine-Grained Actions

In the second experiment, the robot is presented with an ARcube such that one flip

action of the cube will lead to the desired goal state. The ARcube is then perturbed

during the grasping action to cause a grasp failure. The performance of the robot is

evaluated based on the number of actions it needed to complete the task despite this

perturbation.

Two different setups are tested. In the first setup the robot has access to a “flip”

macro which combines four primitive actions described in Subsection 3.5.1 into one

macro action. In the second setup, the robot uses the fine-grained actions and aspects

directly. The experiment is performed 10 times for each setup. Using the flip macro,

the robot needs 16.1± 3.37 primitive actions to complete the task, whereas with the

fine-grained actions it only needs 10.6± 0.69 primitive actions. The difference in the

required number of primitive actions is due to the capability of detecting the error

much earlier and reacting appropriately when using fine-grained actions and aspects.

3.6 Conclusions

This chapter introduces the aspect transition graph (ATG), a memory model that

represents how actions change observations and can be used to capture the affordances

of the environment. This viewer centered model categorizes different observations into

a subset of aspects based on interactions instead of just visual appearance. Based on

59

this ATG model, an incremental learning framework for building memories through

interaction can be constructed.

First, I discuss how this memory model can be used to handle uncertainty in

a partially observed environment. A Bayes framework that performs inference over

incomplete object models is presented. The strengths of combining the ATG repre-

sentation with a belief-space planner is then demonstrated on a problem formalized

as simultaneous object modeling and recognition. Second, I propose that a sequence

of controllers that form a “funnel-slide-funnel” structure based on the ATG model

can have high rates of success even when open-loop controllers are within the se-

quence. To demonstrate this, a visual servoing controller that funnels the current

observation to a memorized aspect is introduced. This proposed structure decreases

the average final position error significantly. Third, how interacting with objects can

be performed without explicit pose information using the ATG model is described.

This approach is tested on a drill grasping task on Robonaut-2. Last, I describe how

failures in stochastic robotic actions can be detected and handled properly using ATG

models. A general framework that stores fine-grained ATGs for early error detection

is introduced. Detected failures are further categorized into random transitions or

surprise transitions based on how it is perceived by the robot. These two types of

uncertainties are then handled and recovered separately. It is shown that the overall

framework increases the robustness towards handling uncertainties and decreases the

number of actions needed on manipulation tasks experimented on the uBot-6 mobile

manipulator.

60

CHAPTER 4

HIERARCHICAL ASPECT REPRESENTATION

In the previous chapter, the aspect transition graph (ATG), which represents how

actions lead to new observations using a directed multi-graph consisting of aspect

nodes and action edges, is introduced. An aspect is defined as an observation that is

memorized by the robot. Aspect representations are generated by mapping observa-

tions to an aspect space and can provide controllers information for interacting with

the environment. An aspect representation that captures the affordance of an obser-

vation is critical for the framework to handle a variety of situations beyond the given

example. In this chapter, an aspect representation that supports manipulation in a

hierarchical fashion and captures the essential affordances is proposed. A hierarchical

correspondence where higher level features are associated with higher level actions

that require less accuracy is introduced. This design allows the robot to plan more

efficiently in different levels of abstraction based on the task requirement; an action

that does not require high precision would only need a rough location reference.

In Section 4.1, the hierarchical convolutional neural network (CNN) feature that

supports manipulation is introduced. An approach that associates these features

with grasp configurations is then described. With this approach, Robonaut-2 can

successfully grasp novel objects of the same class reliably. In Section 4.2, an aspect

representation based on hierarchical CNN features is introduced. The robustness of

this aspect representation is tested on the Washington RGB-D Objects Dataset and

achieves state of the art result for instance pose estimation.

61

4.1 Hierarchical CNN Features

Although convolutional neural networks (CNNs) have outperformed other ap-

proaches on object recognition benchmarks, identifying the category of an object

is not enough for manipulation. Knowing visual feature locations in 3D is also cru-

cial for interacting with it precisely. The key observation is the following. A lower

layer CNN filter often represents a local structure of a more complicated structure

represented by a higher layer filter. The hierarchical CNN feature identifies local

structures at each level that are related to a hierarchical “part-based” representa-

tion of an object that each afford opportunities for control and interaction. In this

work, the arm controllers are associated with the hierarchical CNN features in the 4th

convolutional layer while the hand controllers are associated with hierarchical CNN

features in the 3rd convolutional layer. By associating features and controllers based

on their corresponding hierarchy, combinatorial explosion can be avoided.

In this section, the hierarchical CNN features are first introduced. How consis-

tent features can be identified and used to support manipulation is then explained

in Subsection 4.1.2. Two sets of experiments are conducted. In Subsection 4.1.3,

the difference between the calculated grasp points and the ground truth in the R2

grasping dataset is analyzed. In Subsection 4.1.4, this approach is tested on grasping

novel objects using Robonaut-2 [14]. Results show that these features that consider

hierarchical relationships can increase accuracy in cluttered scenario and outperform

a point cloud based approach on an object grasping task.

4.1.1 Definitions

Convolutional neural networks (CNNs) are a class of deep neural networks that

contains more then one convolutional layers. This work uses a CNN model similar

to Alexnet [48] introduced by Yosinski [101] and implemented with Caffe [41]. This

network is trained on the ImageNet [76] and has five convolutional layers followed

62

by two fully connected layers. A filter is defined as a kernel used for the convolution

operation in each convolutional layer. In the following, fmi is used to represent the ith

filter in the mth convolutional layer. The convolution operation between a filter and

the previous layer generates a two dimensional grid of responses called the activation

map. The final layer of a CNN or a set of activation maps of a single convolutional

layer are often considered as CNN features that are used as inputs for a wide range

of computer vision tasks.

CNN features are by nature hierarchical; a filter in a higher layer with little

location information is a combination of lower level filters with higher spatial accuracy.

For example, filter f 5
87 in the conv-5 layer in the CNN represents a box shaped object.

This filter is a combination of several filters in the fourth convolution (conv-4) layer.

Among these filters, f 4
190 and f 4

133 represents the lower right corner and top left corner

of the box respectively. Filter f 4
190 is also a combination of several filters in the third

convolution (conv-3) layer. Among these filters, f 3
168 and f 3

54 represents the diagonal

right edge and diagonal left edge of the lower right corner of the box. The activation

map of filter f 3
168 will respond to all diagonal edges in an image, but if we only look at

the subset of units of f 3
168 that has a hierarchical relationship with f 4

190 in the conv-4

layer and f 5
87 in the conv-5 layer, local features that correspond to meaningful parts of

a box-like object can be identified. Instead of representing a feature with a single filter

in the conv-3 layer, the proposed approach uses a tuple of filters to represent a feature,

such as (f 5
87, f

4
190, f

3
168) in the previous example. I call such features hierarchical CNN

features. Within a hierarchical CNN feature, a higher level filter is called the parent

filter of a lower level filter. Figure 4.1 shows the visualization of several hierarchical

CNN features identified in cuboid and cylindrical objects, including the features in

the previous example.

Given an observation, a set of hierarchical CNN features that have high activation

can be identified. This set of features can be localized through one single forward

63

Figure 4.1. Hierarchical CNN feature visualizations among cuboid objects (left)
and cylinders (right). Each square figure is the visualization of a CNN filter while
the edges connect a lower layer filter to a parent filter in a higher layer. The numbers
under the squares are the corresponding filter indices. Filters are visualized using
the visualization tool introduced in [101]. Notice that the lower level filters represent
local structures of a parent filter.

path and one backward path for each feature on the network. For each observed point

cloud, the flat supporting surface is segmented using Random Sample Consensus

(RANSAC) [22] and create a 2D mask that excludes pixels that are not part of the

object in the RGB image. This mask is dilated to preserve the boundary of the

object. During the forward pass, for each convolution layer the responses that are

not marked as part of the object according to the mask is zeroed out. This approach

removes filter responses that are not part of the object. The masked forward pass

approach is used instead of directly segmenting the object in the RGB image to avoid

sharp edges caused by segmentation.

During the backward pass, the top N j filters in the jth convolutional (conv-j) layer

that have the highest sum of log responses are identified. For each of these filters,

the maximum response of the activation map is identified and all other responses are

64

zeroed out. The max unit response is then backpropagated to the conv-(j − 1) layer.

The top N j−1 filters that have the highest sum of log partial derivatives obtained

from backpropagation is then identified. For each of these N j−1 filters, the gradi-

ent of backpropagation is calculated and everything except for the maximum partial

derivative is zeroed out. The same procedure is used recursively to find N j−2 filters

in the conv-(j − 2) layer. This process back traces along a single path recursively

and yields a tree structure of hierarchical CNN features. This set of hierarchical

CNN features can be located in 3D by backpropagating to the image and mapping

the mean of the response location to the corresponding 3D point in the point cloud.

The response of a hierarchical CNN feature is defined as the maximum gradient of

the lowest layer filter in the tuple. Figure 4.2 shows an example of results of per-

forming backpropagation along a single path to the image layer from features in the

conv-5, conv-4, and conv-3 layers. The conv-3 layer features can be interpreted as

representing lower level features such as edges and corners of the cuboid object.

Figure 4.2. Localizing features in different layers. The color image is the input im-
age. The following images from left to right represent the location map of hierarchical
CNN features (f 5

87), (f 5
87, f

4
190), and (f 5

87, f
4
190, f

3
168) obtained from backpropagating the

feature response along a single path to the image layer. The blue dot in each location
map represents the mean of the response locations. The mean response locations of
conv-3 layer features are located closer to edges and corners of the cuboid object com-
pared to the conv-4 and conv-5 features. The conv-3 layer features can be interpreted
as representing local structures of the cuboid object.

65

4.1.2 Supporting Grasping

In this work, a solution for posturing the robot hand and arm for grasping based

on visual information is proposed. Experiments conducted by Goodale and Milner

[28] have shown that humans are capable of pre-shaping their hands to grasp an object

based exclusively on visual information from an object. There are, in general, many

possible kinds of grasps for each object; here the focus is on generating a specific

grasp that is similar to a demonstrated grasp. To learn how to grasp a previously

unseen object, hierarchical CNN features that represent meaningful characteristics of

the geometric shape of an object are identified to support grasping. In this work, the

network is trained on ImageNet and not retrained for the grasping task. Therefore

only require a small amount of examples. In this subsection, an approach that iden-

tifies hierarchical CNN features that activate consistently among the training data

is first proposed. How grasp points, Cartesian grasp positions of end effectors, are

generated based on offsets between features and robot end effectors is then further

described.

4.1.2.1 Consistent Features

Given a set of grasp records that demonstrates grasping objects with similar

shapes, the goal is to find a set of hierarchical CNN features that activate consis-

tently. The assumption is that some of these features represent meaningful geometric

information regarding the shape of an object that supports grasping. For each train-

ing example, a masked forward pass described in Subsection 4.1.1 is first processed.

Next, filters that activate consistently over similar object types (consistent filters),

in the fifth convolution (conv-5) layer are identified. The top N5 filters that have

the highest sum of sum of log responses
∑

e∈E
∑

a∈A5,e
i

log a among all the training

examples e ∈ E of the same type of grasp are identified, where A5,e
i is the activation

map of filter f 5
i of example e, and fmi represents the ith filter in the mth convolutional

66

layer. In this work, only one type of grasp is demonstrated for the same type of ob-

ject. I observe that many filters in the conv-5 layer represent high level structures and

fire on box-like objects, tube-like objects, faces, etc. Knowing what type of object is

observed can determine the type of the grasp but is not sufficient for grasping, since

boxes can have different sizes and presented in different pose. However, if lower level

features such as edges or vertices exist, robot fingers can be placed relative to them.

The proposed hierarchical CNN feature represented as a tuple of filters can be used

to represent features that have such hierarchical relationship. A higher layer filter in

the tuple can be used to represent object level features while a lower layer filter can

be used to represent low level features that support manipulation. Defining a feature

based on both low level and high level features restricts the low level feature to be

part of the high level feature.

To identify lower layer filters that fire consistently and represent features that are

part of what the top N5 conv-5 layer filters selected represent, the max response of

the activation map A5,e
i for each of the consistent filters f 5

i in the conv-5 layer for

each example is first identified. For each consistent filter f 5
i and each example e,

all responses except for the maximum a5,emax are zeroed out and backpropagated to

obtain the gradient of the max response with respect to the conv-4 layer: G4,e =

∂a5,emax/∂conv-4. The filters that contribute to f 5
i consistently in the conv-4 layer

are identified by picking the top N4 filters that have the highest sum of sum of log

gradients
∑

e∈E
∑

g∈G4,e
j

log g, where G4,e
j represents components of the gradient G4,e

that corresponds to filter f 4
j for example e. With the same procedure, the top N3

filters that contribute to f 4
j consistently is identified by calculating the gradient with

respect to the conv-3 layer: G3,e = ∂g4,emax/∂conv-3 for each example, where g4,emax is

the maximum partial derivative of G4,e
j . This process traces backward along a single

path recursively and yields a tree structure of consistent hierarchical features that are

activated consistently among the same type of grasp within the training examples.

67

4.1.2.2 Generating Grasp Points

For each target object during testing, a set of grasp points for the index finger,

thumb, and the arm are generated. Grasp points are the locations that the corre-

sponding end effectors should be positioned for a successful grasp and are calculated

based on a set of relative positions between 3D features and end effectors. For each

type of object a set of possible grasp offsets for each end effector and the correspond-

ing feature is stored. A grasp offset is determined by the relative position from a

robot end effector to a feature based on a demonstrated grasp. Although modeling

a type of grasp based on the offsets between grasp points and feature positions may

not result in consistent grasp points when dealing with objects of different sizes at

different orientations, there usually exists a subset of feature points that are close

to the end effector consistently therefore result in smaller offset variances. In this

work, the robot hand frame is associated to features in the conv-4 layer and the robot

index finger and thumb is associated to features in the conv-3 layer. This mapping

is inspired by the observation that humans are capable of moving their arms toward

the object for grasp without recognizing detailed features; the precise locations of

low level features are only needed when the finger locations need to be accurate. To

my knowledge, this is the first work that associates features in different CNN layers

with controllers that engage different kinematic subchains in the hand/arm systems.

Figure 4.3 shows the overall architecture and how such hierarchical CNN features are

mapped to a point cloud to support manipulation.

Not all features that fire consistently on the same object type are good features

for planning actions. For example, when grasping a box, positioning the index finger,

which contacts the back edge of the box, relative to the front edge of the box will

result in positions with high variance, since the size of the box may vary. In contrast,

positioning the index finger relative to the back edge of the box will result in a lower

position variance. For each end effector position, the top N hierarchical CNN features

68

Figure 4.3. Overall architecture of the proposed system. The input for this example
is the RGB image and point cloud of a yellow jar. Tuples of the yellow dots (conv-5),
the cyan dots (conv-4), and the magenta dots (conv-3) represent hierarchical CNN
features. These features can be traced back to the image input and mapped to the
point cloud to support manipulation. φ|σconv3τhand

represents the function that controls
hand motor resources τhand based on conv-3 layer features σconv3 and φ|σconv4τarm represents
the function that controls arm motor resources τarm based on conv-4 layer features
σconv4. φ represents the potential function computed from input σ whose derivative
with respect to motor resources τ constitute a controller.

that have the lowest 3D position variance among training examples and have the same

parent filter in the conv-5 layer are selected. The other features are then removed.

The final set of features have the same conv-5 filter f 5
i . It is shown that restricting

all the hierarchical CNN features to have the same parent filter allows this approach

to perform well in a cluttered scenario.

During testing, the hierarchical CNN features associated with grasp offsets are first

identified. The 3D positions of these features are then located through backpropa-

gation to the 3D point cloud. A set of possible grasp positions are then calculated

69

based on the grasp offsets and the 3D positions of the corresponding hierarchical

CNN features. The grasp points for the robot hand frame, and end points for the

thumb and index finger are then determined by the weighted mean position of the

corresponding set of possible grasp positions with the feature responses as weights.

Figure 4.5 shows examples of the grasp points and the set of possible grasp positions

on different objects.

4.1.3 Experiments on the R2 Grasping Dataset

In this subsection, the performance of the proposed approach on a grasping dataset

is analyzed. First, the R2 grasping dataset is introduced. The accuracy of generated

grasp points based on cross-validation is then evaluated. Last, approaches with and

without the hierarchical CNN features are compared.

4.1.3.1 Dataset

In this work, the R2 grasping dataset that contains grasp records of each demon-

strated grasp is created. A grasp record contains the point cloud and RGB image

of the target object observed from the robot’s viewpoint, and the Cartesian pose of

each joint in the Robonaut-2 hand in the camera frame. The data is collected using

an Asus Xtion camera and the Robonaut-2 simulator [15]. The object is placed on a

flat surface where the camera is about 70 cm above and looking down at a 55 degree

angle. The left robot arm and each finger of the left hand are manually adjusted so

that the robot hand can perform a firm grasp on the object. For cuboid objects, the

thumb tip and index finger tip are adjusted to the front and back faces of the cuboid

and about 3cm away from the left edge of the face. For cylindrical objects, the thumb

tip and index finger are adjusted to perform an enveloping grasp on the object.

A total of 120 grasping examples of twelve different objects are collected. Six of the

objects are cylindrical and six of them are cuboids. The same object is presented at

different orientations and under different lighting conditions. The collection interface

70

Figure 4.4. Left: the data collection interface where the robot arm and hand is
adjusted to the grasp pose. Right top: The set of objects used in the R2 grasping
dataset. Right bottom: The set of novel objects used in the grasping experiment.

and the objects used are shown in Figure 4.4. In addition to grasping examples with

a single object, 24 grasping examples in cluttered scenarios are also created. Twelve

of them include a single cylindrical object and twelve of them include a single cuboid

object. The joint poses of the hand while grasping these objects are also recorded.

4.1.3.2 Cross-Validation Results

Cross-validation is applied by leaving out one object instance at a time during

training and testing on the left out object by comparing the calculated grasp points

to the ground truth. The distance between the example position and the targeted

position of the hand frame, index finger tip, and thumb tip is calculated and shown

in Table 4.1. The average grasp position error for the hand frame is higher than the

thumb and index finger; this is likely because the positions of local features alone are

not sufficient to predict an accurate position for the hand frame. However, since the

hand frame is not contacting the object, its position is less crucial for a successful

grasp. Figure 4.5 shows a few results of cross-validation on different objects with

different pose and lighting. Similar to the training data, the cuboid objects are

71

grasped at positions closer to the left side while the cylindrical objects are grasped

such that the fingers would wrap around the cylinder.

Table 4.1. Average grasp position error on cylindrical and cuboid objects in meters.

cylindrical objects

cetaphil wood maxwell blue paper yellow
averageleft hand jar cylinder can jar roll jar

thumb tip 0.0197 0.0164 0.0134 0.0202 0.0136 0.0147 0.0163
index tip 0.011 0.0111 0.023 0.017 0.0155 0.0126 0.015
hand frame 0.0128 0.0393 0.0234 0.0183 0.0328 0.0173 0.024

cuboid objects

cube redtea bandage twinings brillo tazo
averageleft hand box box box box box box

thumb tip 0.0094 0.0101 0.0093 0.0095 0.0088 0.0111 0.01
index tip 0.0135 0.0207 0.0278 0.0134 0.0098 0.0157 0.0168
hand frame 0.0241 0.0203 0.0195 0.0177 0.0177 0.0285 0.0213

4.1.3.3 Comparison

To evaluate the proposed hierarchical CNN feature (hier-feat), cross-validation

results with four alternative approaches that do not consider relationships between

layers are compared. The first approach is a baseline that uses the same set of

features identified by the proposed approach but only considers the lowest level filter

of the hierarchical CNN features, therefore removing relationship with higher level

CNN filters. The grasp points are then generated based on offsets to these individual

filters in each layer. The second approach (indv-filter) also associates grasp points

with individual CNN filters instead of hierarchical CNN features but learns the set

of filters that fire consistently instead of using the same set of features used by the

proposed approach. Similar to the second approach, the third alternative (conv5-

filter) identifies individual CNN filters instead of hierarchical CNN features but only

considers filters in the conv-5 layer. The fourth approach (conv5-max) identifies the

top five consistent filters in the conv-5 layer and uses the one that has the max

72

Figure 4.5. Sample cross-validation results for single object scenario. The red,
green, and blue spheres represent the calculated grasp points for the hand frame and
endpoint positions for the thumb and index finger of the left robot hand. The grasp
points are the weighted mean of the colored dots that each represents a possible grasp
position based on one training example. Notice that for the cuboid object the grasp
points for the thumb and index finger are located on the opposing face and about
3cm away from the left edge of the face as it was trained. For the cylinder object the
grasp points for the thumb and index finger are on the right side of the cylinder to
form an enveloping grasp. The black pixels are locations behind the point cloud that
are not observable.

73

response during testing. To make the comparison fair, filters other than the top

N hierarchical CNN features that have the lowest position variance among training

examples are also removed for the first three comparative approaches. N5 = N4 =

N3 = 5 and N = 15 is used in this experiment.

The results are shown in the first row of Table 4.2. The proposed approach

performs better than all four alternatives. However the difference is not significant,

this is because the lower level filter that has the maximum response is mostly the same

with or without restricting it to have the same parent filter when only one object is

presented. In the next test, it is shown that associating low level filters with high

level filters has a greater advantage when low level features may be generated from

different high level structures, i.e., when there is clutter present. The fact that the

proposed approach outperforms the conv5-max approach shows the benefit of using

lower level features to higher level features on planning actions. In the absence of

clutter, the conv5-filter approach performs well because although filters in the conv-5

layer are more likely to represent higher level object structures, many of them also

represent low-level features like corners and edges.

Hierarchical CNN features are most useful when the scene is more complex and

the same lower layer filter fires at multiple places. Since the proposed approach limits

the filters in the conv-3 layer to have the same parent filter in the conv-5 layer, only

lower layer features that belong to the same high level structure are considered. These

five approaches are further tested on the cluttered test set. A test case is considered

successful if the distance errors of the thumb tip and index finger tip are both less

than 5cm and the hand frame error is less than 10cm. The results are shown in the

second row of Table 4.2. Figure 4.6 shows a few example results on cluttered test

cases. The proposed approach performs significantly better than the baseline, indv-

filter, and conv5-filter approaches since filters may fire on different objects without

74

constraining it to a single high level filter. Figure 4.7 shows two comparison results

between the proposed approach and the baseline approach.

Table 4.2. Comparison on alternative approaches.

hier- base- indv- conv5- conv5-
feat line filter filter max

Single Object Experiment:
cross validation average 1.719 1.805 2.114 1.755 2.138
grasp position error (cm)

Cluttered Experiment:
number of failed cluttered 2 20 13 19 2
cases (24 total)

4.1.4 Experiments on Robonaut-2

This subsection describes the evaluation of the proposed pre-shaping algorithm

based on the percentage of successful grasps on a set of novel objects on Robonaut-2

[14]. Details on the experimental setting, the hierarchical controller used for pre-

shaping, and results are explained.

4.1.4.1 Settings

For each trial, a single object in the novel object set is placed on a flat surface

within the robot’s reach. Given the object image and point cloud, the robot moves

its wrist and fingers to the pre-shaping pose. After reaching the pre-shaping pose,

the hand changes to a pre-defined closed posture and tries to pick up the object by

moving the hand up vertically. A grasp is considered to be successful if the object

did not drop after the robot tries to pick it up. A total of 100 grasping trials on 10

novel objects with the proposed approach and a comparative baseline approach are

tested. The novel objects used in this experiment are shown in Figure 4.4.

75

Figure 4.6. Examples of grasping in a cluttered scenario. The red, green, and blue
spheres represent the grasp points of the hand frame, thumb tip, and index finger
tip of the left robot hand. The grasp points are the weighted mean of the colored
dots that each represents a possible grasp position based on one training example.
The top two row is trained on grasping cuboid objects and the bottom two row is
trained on grasping cylindrical objects. Notice that this approach is able to identify
the only cuboid or cylinder in the scene and generate grasp points similar to the
training examples.

76

Figure 4.7. Comparison in a cluttered scenario. Notice that the colored dots are
scattered around in the baseline approach since the highest response filter in conv-3
or conv-4 layer are no longer restricted to the same high level structure.

4.1.4.2 Hierarchical Controller

A hierarchical controller constructed from hierarchical CNN features in different

CNN layers is implemented to reach the pre-shaping pose. Given the object image

and point cloud, this approach generates targets for the robot hand frame, index

finger tip, and thumb tip. The hand frame target is determined based on hierarchical

CNN features in the conv-4 layer while the thumb tip and index finger tip target

is determined based on hierarchical CNN features in the conv-3 layer. The pre-

shaping is executed in two steps. First, the arm controller moves the arm such that

the distance from the hand frame to the corresponding grasp point is minimized.

Once the arm controller converges, the hand controller moves the wrist and fingers

to minimize the sum of squared distances from the index finger tip and thumb tip to

their corresponding target.

77

These controllers are based on the control basis framework [36] and can be written

in the form φ|στ , where φ is a potential function that describes the sum of squared

distances to the targets, σ represents sensory resources allocated, and τ represents the

motor resources allocated. In this work, the hand controller is represented as φ|σconv3τhand
,

where τhand is the hand motor resources and σconv3 is the conv-3 layer hierarchical

CNN features; the arm controller is represented as φ|σconv4τarm , where τarm is the arm

motor resources and σconv4 is the conv-4 layer hierarchical CNN features.

4.1.4.3 Results

The proposed algorithm is compared to a baseline point cloud approach that moves

the robot hand to a position where the object point cloud center is located at the

center of the hand after the hand is fully closed. The results are shown in Table 4.3.

Among the 50 grasping trials only one grasp failed with the proposed approach due

to a failure in controlling the index finger to the target position. This demonstrates

that the proposed approach has a much higher probability of success in grasping novel

objects than the point cloud based approach. Figure 4.8 shows Robonaut-2 grasping

novel objects during testing.

78

Figure 4.8. Robonaut-2 grasping 10 different novel objects. The first and third
columns show the pre-shaping steps while the second and fourth columns show the
corresponding grasp and pickup. The cuboid objects are grasped on the faces while
the cylinder objects are grasped such that the object is wrapped in the hand.

79

Table 4.3. Grasp success rate on novel objects based on 5 trials per object.

cylindrical objects

tumbler
wipe basil hemp

duster average
package container protein

point cloud
40% 60% 0% 20% 40% 36%

approach

hier-feat
100% 100% 100% 100% 100% 100%

(our’s)

cuboid objects

cracker ritz bevita bag energy
average

box box box box bar box

point cloud
80% 20% 60% 60% 60% 52%

approach

hier-feat
100% 80% 100% 100% 100% 96%

(our’s)

4.2 Aspect Representation

In this section, a novel aspect representation that supports manipulation and cap-

tures the essential affordances of an object based on sensory feedback is introduced.

In a traditional planning system, robots are given a pre-defined set of actions that

take the robot from one symbolic state to another. However symbolic states often lack

the flexibility to generalize across similar situations. The proposed representation is

grounded in the robot’s observations and lies in a continuous space that allows the

robot to handle similar unseen situations. This representation is based on the hier-

archical CNN features introduced in the previous section and allows the robot to act

precisely with respect to the spatial locations of individual features. A primary step

of a system that uses ATGs to determine actions is to match the current observation

to an aspect, a stored observation in memory, so that the robot can apply learned

actions to the current situation. This work represents an aspect as a set of hierarchi-

cal CNN features, an appearance descriptor, a pose descriptor, a location descriptor,

and a force descriptor. This representation is used to identify the aspect that affords

80

the same type of interactions given the current observation and allows the robot to

manipulate the object based on the feature locations when combined with an ATG.

In the following, how hierarchical CNN features are used to create descriptors is first

described. This representation is then evaluated on the Washington RGB-D Objects

Dataset and is shown to achieve state of the art results for instance pose estimation.

4.2.1 Descriptors

Based on the response and 3D location of the hierarchical CNN features extracted,

this approach generates an appearance descriptor r, a pose descriptor q, a location

descriptor l, and a force descriptor f for each aspect. The appearance descriptor

r is a set of hierarchical CNN feature responses based on the feature tuple. The

assumption is that aspects similar to the current observation have similar appearances

and therefore similar hierarchical CNN features and responses.

The pose descriptor q is a set of relative 3D positions in the camera frame between

each pair of hierarchical CNN features. If H is the set of all possible hierarchical CNN

features and r contains |h| responses of a subset h ⊂ H of hierarchical CNN features,

then q contains |h| × |h− 1|/2 XYZ differences. Assuming that aspects similar to the

observation should have similar poses, the relative location of the features are used to

further distinguish aspects that have the same features but are oriented differently.

The location descriptor l is a set of distances from the centroid of the hierarchical

CNN features to a set of pre-defined robot frames. The robot shoulder and hand

frames are used in experiments conducted on Robonaut-2 in this dissertation. The

location descriptor captures the object position with respect to the robot and can

provide information on the reachability of an object.

The force descriptor g is based on force feedback. The load cells in the Robonaut-2

forearms are used to receive force information in the ratchet experiment described in

81

section 5.4. The observed force values are projected to the body frame at 10Hz and

averaged over the preceding one-second interval.

The following describes how to find the aspect x in memory most likely to match

the current observation z based on the descriptors. Let p(x|z) be the probability

that aspect x is generated from the same state that generates observation z. This

probability can be calculated through Bayes’ rule p(x|z) ∝ p(z|x) · p(x), which the

likelihood is modeled as

p(z|x) = p(rz|rx) · p(qz|qx) · p(lz|lx) · p(gz|gx). (4.1)

Here rz and rx are the appearance descriptors of the observation z and the aspect x,

qz and qx are the pose descriptors of z and x, lz and lx are the location descriptors

of z and x, and gz and gx are the force descriptors of z and x.

The probability p(rz|rx) is modeled as the geometric mean of the probabilities

p(rzn|rxn) of individual appearance descriptor values rzn and rxn. The probability p(rzn|rxn)

is modeled as a Generalized Gaussian Distribution (GGD) of the value difference

between rzn and rxn scaled by their sum.

p(rz|rx) =
(∏

rxn∈rx∨rzn∈rz
p(rzn|rxn)

) 1
N
, (4.2)

p(rzn|rxn) = GGD(rxn − rzn;α = rxn + rzn), (4.3)

where N is the number of appearance descriptors. A missing descriptor value rn 6∈ r is

considered to be zero. Different individual appearance descriptors rn refer to different

hierarchical CNN feature tuples. The GGD function is defined as

GGD(y;µ, α, β) =
1

Z(α, β)
· e−(

|y−µ|
α

)β , (4.4)

82

where µ is the mean parameter, α is the scale parameter, β is the shape parameter,

and Z(α, β) is the partition function. µ is set to zero and β is set to 0.1 in this work.

A shape parameter β that produces a heavier tail is found to perform better than a

standard Gaussian on the Washington RGB-D Objects dataset.

The pose descriptor likelihood p(qz|qx), location descriptor likelihood p(lz|lx), and

force descriptor likelihood p(gz|gx) are modeled similarly and the equations are shown

in the following:

p(qz|qx) =
(∏

qxn∈qx∧qzn∈qz
p(qzn|qxn)

) 1
N
, (4.5)

p(qzn|qxn) = GGD(qxn − qzn;α = Cq), (4.6)

where qxn and qzn are the individual pose descriptor values, and N is the number of pose

descriptors. Different individual pose descriptors refer to different pairs of hierarchical

CNN features and XYZ coordinates in the camera frame. Cq is a constant set to 0.1.

p(lz|lx) =
(∏
lxn∈lx∧lzn∈lz

p(lzn|lxn)
) 1
N
, (4.7)

p(lzn|lxn) = GGD(lxn − lzn;α = Cl), (4.8)

where lxn and lzn are the individual location descriptor values, and N is the number of

location descriptors. Different individual location descriptors refer to different robot

frames. Cl is a constant also set to 0.1.

p(gz|gx) =
(∏

gxn∈gx∧gzn∈gz
p(gzn|gxn)

) 1
N
, (4.9)

p(gzn|gxn) = GGD(gxn − gzn;α = Cg), (4.10)

83

where gxn and gzn are the individual force descriptor values, and N is the number of

force descriptors. Different individual force descriptors refer to force projections on

different axis for different load cells. Cg is a constant set to 100.

4.2.2 Experiments on Pose Estimation

The goal of the proposed aspect representation is to identify an observation in

memory that is similar to the current observation and, thus, affords similar actions.

The proposed representation is tested on instance pose recognition on the Washing-

ton RGB-D Objects dataset [49] under the assumption that an object’s pose and

affordance are strongly correlated; the same object usually supports the same set of

actions when placed in similar orientations. This approach is shown to achieve state

of the art results in accuracy.

4.2.2.1 Dataset

The Washington RGB-D dataset contains RGB images, depth images, point clouds,

and masks for 300 objects. Each object is placed on a turntable and approximately

250 frames are captured for each elevation angle (30◦, 45◦, 60◦). Every 5th frame is

labeled with the approximated turntable angle. The 30◦ and 60◦ frames are used for

training and the 45◦ frames are used for testing. The goal of the instance pose esti-

mation task is to identify the turntable angles of frames taken at 45◦ elevation angle.

Experiments on category pose estimation is not tested since the task is to identify

the aspect of a specific object instance in this work. For this experiment, the depth

images are preprocessed to fill in empty values with the values of the closest pixels.

Point clouds are also generated for each data based on the processed depth images.

4.2.2.2 Settings

During testing, the frames in the training set are treated as aspects x and the

test frame as observations z. The prerecorded frame in memory that has the closest

84

turntable angle to the current observation should also afford the most similar set of

actions. Hence, the angle of the frame in the training set that has the maximum

posterior probability p(x|z) given the test frame is chosen as the estimated angle. For

each frame that is labeled with the turntable angle, the hierarchical CNN features is

extracted and used to generate the appearance and pose descriptor. The number of

extracted hierarchical CNN features is set to N5 = 30 and N4 = 5 in the conv-5 and

conv-4 layer. conv-3 layer features is not included to reduce the test time. In this

dataset, there are no force information from interacting with the object and there is

no need to identify the object location with respect to the robot, therefore the force

descriptor and location descriptor are not used in this experiment. The likelihood

is modeled as p(z|x) = p(rz|rx) · p(qz|qx) instead. The force descriptor and location

descriptor are tested in experiments described in the next chapter.

4.2.2.3 Results

Since the distribution of angle differences are skewed across objects, both the

average error and the median error are used for evaluation. This framework that

uses the proposed aspect representation is compared against three other reported

approaches, (a) object pose tree with kernel descriptors [50], (b) hierarchical matching

pursuit [7], and (c) pre-trained CNN with RGB and depth image [80]. This approach

achieves a 38.1◦ average pose error and a 16.3◦ median pose error; both of these

numbers achieve state of the art results as shown in Table 4.4. Note that while this

experiment evaluates every test frame in the test set, other works only evaluate on

frames that are correctly classified as the correct instance. Many of the errors are due

to objects in the dataset that have similar appearance across multiple viewpoints. I

argue that these objects often support the same set of actions when they are oriented

at visually similar poses and only need to be represented by one aspect. For example,

85

the orientation of an orange is not important to the robot as long as the robot learned

to manipulate it from one similar observation.

Table 4.4. Median and average instance pose estimation error on Washington RGB-
D Objects dataset.

Angular Error (◦)
Work MedPose(I) AvgPose(I)

OPTree, Lai et al. [50] 30.2 57.1
HMP, Bo et al. [7] 18.0 44.8

CNN: RGB-D, Schwarz et al. [80] 18.7 42.8
Hierarchical CNN feature (proposed approach) 16.3 38.1

4.3 Conclusions

This chapter presents an aspect representation that captures the essential affor-

dances and supports manipulation in a hierarchical fashion. I first introduce the

hierarchical CNN feature that captures the hierarchical relationship between filters in

a convolutional neural network. These features are used to tackle the problem of pre-

shaping a human-like robot hand for grasping based on visual input. The proposed

approach first identifies hierarchical CNN features that are active consistently among

the same type of grasps and localizes them by backpropagating the response along a

single path to the point cloud. Robot controllers of different kinematic subchains are

then associated with features in different convolutional neural network layers based on

their corresponding hierarchy. The proposed approach is evaluated on the collected

dataset and show significant improvement over approaches that do not associate fil-

ters in different layers in cluttered scenarios. This solution is further tested in a

grasping experiment on Robonaut-2 where a total of 100 grasp trials on novel objects

are performed and is shown to have a much higher success rate compared to a point

cloud based approach. An aspect representation that supports manipulation and al-

lows generalization to similar observations based on these hierarchical CNN features

86

is then introduced. This representation is evaluated on the instance pose estimation

task in the Washington RGB-D Objects dataset and is shown to perform better then

state of the art approaches.

87

CHAPTER 5

LEARNING FROM DEMONSTRATION

The aspect transition graph (ATG) memory model introduced in Chapter 3 is

created through exploration in Section 3.2 and is manually designed in Section 3.5.

These approaches for generating ATGs may work in lower dimensional spaces but do

not scale well to higher dimensions. In this chapter, how ATG models combined with

the hierarchical aspect representation introduced in Chapter 4 can be learned from

demonstrations efficiently is introduced.

Learning from demonstration (LfD) is an attractive approach to programming

robots because it resembles how humans transfer skills to each other. However, most

work on LfD has focused on learning the demonstrated motion, action constraints,

and/or trajectory segments with respect to the object pose. The assumption that an

accurate object pose can be obtained may be accomplished in an industrial setting,

but does not hold, in general, for the uncertainty and variability common in unstruc-

tured environments. This work deviates from this standard and defines actions based

on features. An integrated approach that treats identifying informative features as

part of the learning process is taken. This gives robots the capacity to manipulate

objects without explicit pose information and to learn actions focused on salient parts

of the object. With this approach, the robot can still interact with an object even if

1) the object does not have a global notion of pose, such as an articulated object, or

2) when the object’s global pose is ambiguous but it’s affordance can be identified.

In Section 5.1, a method for classifying demonstrations into three different types

based on the interaction between visual features and robot end effectors is introduced.

88

In Section 5.2, how this categorization can help build ATG models from demonstra-

tions is described. Section 5.3 explains how multiple demonstrations can be distilled

to create more robust ATGs. Experiments performed on a ratchet task is then de-

scribed in Section 5.4. With a small amount of demonstrations, the robot can perform

tasks that require high accuracy. In Section 5.5, a drill grasping task that requires

extending the robot’s reach with both arms is demonstrated.

5.1 Demonstration Types

An action in an ATG is represented using a controller in the control basis frame-

work [36] and is written in the form φ|στ , where φ is a potential function that describes

the error between the current and target robot configuration, σ represents sensory

resources allocated, and τ represents the motor resources allocated. The potential

functions are formulated as φV =
∑

v∈V (v − gv)2, where v and gv are visual features

and goal locations for these features (v, gv ∈ R3) and φR =
∑

r∈R(r − gr)2, where r

and gr are robot frames and goals for these frames (r, gr ∈ SE(3)).

Demonstrated actions are classified into three types:

1. robot-visual actions aRV = φR|σVτ

2. robot-proprioceptive actions aRP = φR|σPτ

3. visual-visual actions aV V = φV|
σV′
τ

Parameters σV and σP are the sensory resources containing a set of observed visual

features V and a set of robot frames P based on proprioceptive feedback, respectively.

Potential functions φR and φV have a minimum when a set of robot frames R and a set

of visual features V that are controllable by the robot matches a set of corresponding

goals G calculated based on offsets to σ. In this work, hierarchical CNN features

introduced in Section 4.1 are used as visual features. Examples of these three types

of demonstrations are in the following.

89

Figure 5.1. Example of a robot-visual action (aRV) that reaches the ratchet pre-grasp
pose.

a) The robot-visual action (aRV) specifies the target pose of a set of robot frames

with respect to a set of visual feature locations in 3-D. The left and right image in

Figure 5.1 shows the result of executing an aRV action where the goal is to reach

the ratchet pre-grasp pose. The yellow and cyan dots are visual features represented

by the 5th and 4th layer hierarchical CNN features and the red and green circles

represent the minima of potential functions for the hand and fingers. The arrows

represent the offset from features used as references to construct potential functions

and the red and green ellipses represent the contour lines of the potential functions

for the hand and index finger.

Figure 5.2. Example of a robot-proprioceptive action (aRP) that extracts the ratchet.

90

b) The robot-proprioceptive action (aRP) specifies the target pose of a set of robot

frames with respect to a set of current robot frames based on proprioceptive feedback.

The left and right image in Figure 5.2 shows the result of executing an aRP action

where the goal is to move the hand relative to the current hand frame so that the

grasped ratchet is extracted from the tool holder. The yellow ellipse is the current

hand pose and the arrow indicates the reference offset derived from demonstration.

The red ellipses represent the contour lines of the potential functions for the hand.

Figure 5.3. Example of a visual-visual action (aV V) that places the ratchet on top
of the bolt.

c) The visual-visual action (aV V) specifies the goal position of a set of controllable

visual features relative to another set of visual features on a different object in 3-D.

The left and right image in Figure 5.3 shows the result of executing an aV V action

where the goal is to place the socket on top of the bolt. The purple dots are features

on the bolt used as references for constructing the potential function and the orange

dot is the feature on the socket controlled by the potential function. The blue dots are

goal positions generated based on relative positions to features indicated by the black

arrows. The red dotted arrow shows a path for the feature to reach the minimum of

the potential function represented by the blue ellipse contours.

After a single visual-visual action, visual features on the grasped object may fail

to reach the goal location due to movement error, change in object in-hand pose, or

91

imperfect camera calibration. To tackle this problem, the same action is executed

multiple times with updated visual feature locations on the grasped object until

convergence. Unlike robot-visual actions, modeling spatial relations between visual

features achieves the same intended outcome even when the in-hand ratchet poses

are different.

The detected locations of visual features and robot frames are inevitably influ-

enced by noise in the system that may be caused by imperfect sensors or changes

in the environment. This makes tasks that require high precision challenging. To

accommodate this problem, the references for motor resources τ is assumed to be

generated by adding zero mean noise N(0,Σ) to the original reference. By sampling

from this distribution during execution, the controller superimposes an additive zero

mean search to the motion. Such structural search movement increases the tolerance

to uncertainty of tasks such as insertion.

5.2 Building Models From Demonstrations

The hierarchical aspect representation introduced in Chapter 4 can be combined

with ATG models based on the demonstration types introduced in the previous sec-

tion. Action edges in an ATG can be represented by one of the three demonstration

types based on interactions with hierarchical CNN features and proprioceptive feed-

back in the hierarchical aspect representation stored in the aspect nodes. Figure 5.4

shows this sensorimotor architecture that drives transitions in the ATG model. The

perceptual feedback is used to represent aspect nodes and actions are executed based

on these sensory resources defined in action edges.

Each demonstration coupled with information provided by the operator is used to

create an ATG model. During execution, this set of ATG models is used to determine

the next action based on the current observation and the given target. This section

92

Figure 5.4. The sensorimotor architecture driving transitions in the ATG frame-
work. The sensory resources σF that represent a set of features based on visual and
force feedback and σP that represents a set of robot frames based on propriocep-
tive feedback are used to parameterize actions φ|στ . Here φ is a potential function
that describes the error between the current and target robot configuration and τ
represents the motor resources allocated. In this example, the 5th layer hierarchical
CNN features σv5 are used to control the arm motors τarm and the 3rd and 4th layer
hierarchical CNN features σv3,v4 are used to control the hand motors τhand.

describes the user interface for learning from demonstration and how ATG models

based on hierarchical aspect representation can be learned.

93

5.2.1 User Interface

Demonstrated tasks are performed using a teleoperator implemented in the MoveIt!

platform [88], in which the user can drag interactive markers in a graphical interface

to move the robot end effector or change the robot hand configuration. Similar to

the keyframe demonstration approach [1] [66], users indicate intermediate steps for

each demonstration required for creating the ATG model. After the robot reaches an

intermediate step, the interface asks the user to provide the type of demonstration

listed in Section 5.1 that the user performed.

For the robot-proprioceptive action aRP = φR|σPτ , the user can select either the end

effector frame or the body frame as the proprioceptive sensor resource σP . The user

also has the option to add a structural search movement described in Section 5.1 to

the demonstrated action.

5.2.2 Creating ATG models

During the demonstration, an aspect node is created for each observed feature

cluster at each intermediate step. A feature cluster can be a single object or multiple

objects in contact based on the Euclidean cluster extraction algorithm in the point

cloud library [77]. Based on the demonstration type selected by the user, the system

connects new aspect node xt to aspect node xt−1 created at the previous time step

with action edge at−1 that models the demonstrated action.

For the robot-visual action aRV = φR|σVτ , the relative poses between a set of visual

features V and a set of robot frames R are recorded in the action edge. This set of

visual features is selected based on the feature’s proximity to the robot end effector

after action execution. In this work, hierarchical CNN features mentioned in Section

4.1 are used as visual features. Five 5th layer hierarchical CNN features that are

closest to each hand frame and eight 4th layer hierarchical CNN features that are

closest to each finger tip frame are selected. For example, the action that moves

94

the robot hand to a pre-grasp pose for grasping the ratchet will use features such as

the corner of the handle or the neck of the ratchet that are close to the fingers as

references for placing the fingers relative to the ratchet. The aspect nodes connected

by this action is identified based on their proximity to the active robot end effector.

For the robot-proprioceptive action aRP = φR|σPτ , the relative poses between the

set of robot frames R and the set of reference robot frame P are recorded in the

action edge. For example, the action that lifts the ratchet up after grasping it is

modeled by moving the hand frame relative to the current hand frame. The aspect

nodes connected by this action is identified based on their visual similarity to the last

connected aspect node.

For the visual-visual action aV V = φV|
σV′
τ , the relative poses between a set of

visual features V on the tool grasped by the robot and a set of visual features V ′

on the target object interacting with the tool is recorded in the action edge. The

set of visual features on the tool is selected based on the feature’s stability with

respect to movement under the assumption that the grasped object is rigid. This is

determined by the position differences of the features in the hand frame before and

after the action. The set of visual features on the target object is then selected based

on the feature’s distance to the selected features on the tool after the action. This

visual-visual action is represented by two action edges that connect the aspect nodes

that represent the tool and the target object to the aspect node that represents the

interaction. These aspect nodes can be identified base on their relative distance and

proximity to the active end effector.

This sequence of aspect nodes connected by action edges become the ATG model

that represents the demonstration. Aspect nodes that are created from other feature

clusters that are not chosen are grouped into a background ATG that is used to

recognize feature clusters that are not targets for manipulation. For example, a

demonstration that only grasps the ratchet does not care about the bolt platform. A

95

background ATG that represents the bolt is therefore used to match to the feature

cluster of the bolt during execution.

5.3 Distilling Multiple Demonstrations

With a single demonstration, there remain ambiguities regarding the goal. For

example, in the action that puts the socket on top of the bolt, it is ambiguous whether

the demonstration intends to convey a spatial relationship between the socket and the

bolt or some other part of the ratchet and the bolt. With multiple demonstrations,

this ambiguity may be resolved by observing consistent relations between features. In

this section, how to take multiple demonstrations of the same task and create more

robust ATG models is described. These ATGs created from multiple demonstrations

are called distilled ATGs.

5.3.1 Identifying Common Features

A set of features are stored in the aspect node to represent the observation of

an aspect. Correctly associating the current observations with a memorized aspect

node is crucial for implementing transitions to goal status. However, not all features

provide the same amount of information. Moreover, some features are more sensitive

to lighting changes and some may belong to parts of the visual cluster that may

change appearance across examples. With a single demonstration, these kinds of

features may be indistinguishable. With multiple demonstrations, common features

can be identified by estimating the feature variance across demonstrations.

Given demonstrations of the same task with the same sequence of intermediate

steps, the proposed approach looks for features that are consistent across multiple

demonstrations. For the observations at each intermediate step, the N most consis-

tent features are chosen. The consistency score is defined as Sc = nf/std(f), where

nf is the number of times feature f appears among the matched intermediate steps

96

and std(f) is the standard deviation of the value of feature f . Visual features, pro-

prioceptive features, and force features are scored together with weights of 1, 1, 0.001,

respectively.

5.3.2 Recognizing Consistent Actions

For action edges that represent a robot-visual action aRV or a visual-visual action

aV V in an ATG model, the action reference is specified in terms of a subset of features

stored in the aspect node. As result of a single demonstration, features are chosen

based on their proximity to robot frames or features controllable by the robot. With

multiple demonstrations, a more robust set of features can be identified and used to

define the aspect.

For the robot-visual action aRV = φR|σVτ , the top N pairs of robot frames r ∈ R and

visual features v ∈ V that have the lowest variances in XYZ position offsets are chosen

to represent the action. For example, when learning from multiple demonstrations

of the action that grasps the ratchet, this approach concludes that features on the

ratchet are more reliable than features on the tool holder since the ratchet may be

placed at different positions in the tool holder across demonstrations.

For the visual-visual action aV V = φV|
σV′
τ , the top N pairs of visual features in

the tool aspect node v ∈ V and the target object aspect node v′ ∈ V ′ that have the

lowest variance var(v, v′) is selected. var(v, v′) is the variance of the XYZ position

offsets between feature v and feature v′ after the action across demonstrations. For

example, the action that places the socket of the ratchet on top of the bolt deter-

mines that a consistent spatial relation exists between the features on the socket and

those on the bolt after executing the action. Figure 5.5 shows the top feature pairs

identified for constructing a visual-visual action from demonstrations. The robot is

able to comprehend that the head of the ratchet should be aligned with the bolt

autonomously.

97

Figure 5.5. Identifying informative features from multiple demonstrations. The
two rows represent two demonstrations that place the socket of the ratchet on top of
the bolt. The columns from left to right show the aspect nodes representing the tool,
the target object, and the interaction for this visual-visual action aV V = φV|

σV′
τ . The

green circles in the tool and interaction aspect nodes represent the top visual feature
v ∈ V used to reach the minimum of the potential function φV while the red circles in
the target object aspect node represent corresponding features v′ ∈ V ′ that are used
as references.

To confirm that the selected visual features represent meaningful parts of an ob-

ject, the feature identified on the ratchet head is visualized in Figure 5.5 using the

visualization tool introduced by Yosinski et al. [101]. Figure 5.6 shows the top 9

images that the filters f 5
23, f

4
60, and f 3

184 have the highest response on among the

ImageNet dataset [76]. The feature tuple (f 5
23, f

4
60, f

3
184) can be interpreted as a red

region surrounded by black regions. Although there are no ratchet class trained on

the neural network, it reuses similar visual patterns learned among other classes such

as bird species. The left image in Figure 5.7 shows a visualization on what pixels

98

contribute to the feature using guided backpropagation [86]. The background grey

corresponds to zero contribution and the red dot represents the mean location of all

the responses weighted by its contribution. Notice that the feature is only contributed

by the head of the ratchet and represents meaningful parts for modeling the action.

The right image is the corresponding input image.

Figure 5.6. Visualization of the hierarchical CNN feature (f 5
23, f

4
60, f

3
184) that is

identified on the ratchet head by showing the top 9 images that have the highest
response among ImageNet for filter f 5

23, f
4
60, and f 3

184.

Figure 5.7. Visualization on what pixels contribute to the hierarchical CNN feature
(f 5

23, f
4
60, f

3
184) using guided backpropagation.

99

5.4 Experiments on the Ratchet Task

This section shows that with a small set of demonstrations, Robonaut-2 is capable

of performing a ratchet task that involves grasping the ratchet, tightening a bolt, and

putting the ratchet back into a tool holder. The success rate of mating the socket

to the bolt as a function of the number of demonstrations is analyzed. To evaluate

the accuracy of the position of the socket with respect to the bolt, experiments in

the Robonaut-2 simulator [15] using up to five demonstrations are conducted. The

success rate of mating the socket to the bolt as a function of the number of demon-

strations and the size of the feature space is further compared on the real robot.

The demonstration collection process, the planner, the experimental setting, and the

result of the comparison is described in the following.

5.4.1 Demonstrations

Instead of demonstrating the entire ratchet task in one session, the task is seg-

mented into shorter sequences of sub-tasks that are easier to demonstrate. The ratchet

task is segmented into five different subtasks, a) grasping the ratchet, b) mating

socket to the bolt, c) tightening the bolt, d) removing the socket from the bolt, and

e) putting the ratchet back into the tool holder. For subtasks a), two demonstrations

are provided. For subtask b) and e) four demonstrations are combined to create the

distilled ATG model as described in Section 5.3. For subtasks c) and d), only one

demonstration is performed since the features that support these actions are unam-

biguous.

Figure 5.8 shows the ATGs created from these five sub-tasks from top to bottom.

The type of demonstrations classified for each action are listed next to the action

edges. For example, the ATG created for subtask a) (grasping the ratchet) has four

different relations between the hand, the ratchet, and the tool holder: the ratchet

in the tool holder (no hand), pre-grasp, grasped within and without the tool holder.

100

Figure 5.8. The visualization of the set of ATGs created from demonstrations for
the ratchet task. Each connected ATG represents a sub-task. The images represents
aspect nodes and the edges indicate the type of actions used to model transitions.

ATG for b) shows that in order to execute the visual-visual action, both the ratchet-in-

hand aspect and the bolt aspect have to exist. The second action edge that mates the

socket to the bolt incorporates a structural search motion as well. ATG for subtask c)

is created from demonstrations of two tightening turns. Each clockwise and counter-

clockwise turn is categorized as a type a2 demonstration that moves relative to the

hand frame.

101

5.4.2 Planner

The set of ATG models created from demonstrations stores observations of each

feature cluster in aspect nodes and predicts transitions caused by action edges (Figure

5.8). During execution, this set of ATG models is used to plan actions to reach a

given goal state.

At time step t, the aspect node xt in the set of ATGs that has the highest posterior

probability p(xt|zt) given the current observation zt of the feature cluster is first

identified for each feature cluster. The prior probability p(x0) of being in an aspect

node x0 at time 0 is set to be uniform over all aspect nodes in the set of ATGs

unless modified by the user. The probability p(xt) of being in an aspect node xt is

updated by the Bayes filter algorithm, p(xt) =
∑

xt−1
p(xt|at−1, xt−1) · p(xt−1), where

at−1 is the action taken at time step t− 1. The transition probability p(xt|at−1, xt−1)

is set proportional to p(at−1|xt, xt−1), which is modeled as a multivariate Gaussian

distribution based on the value difference between the parameters of the executed

action at−1 and the action edge â that connects aspects xt−1 and xt in the ATG

model. The maximum a posteriori (MAP) aspect node for each feature cluster can

therefore be determined by calculating p(xt|zt) ∝ p(zt|xt) · p(xt), where p(zt|xt) is

modeled with generalized Gaussian distributions as introduced in Section 4.2.

During execution, the user selects a goal aspect. Based on the MAP aspect node

xt of each feature cluster, the next action is chosen based on the first action edge on

the shortest path from the MAP aspect node to the goal aspect node. If the chosen

action edge is a visual-visual action type, the planner needs to confirm that both

the tool aspect node and the target object aspect node is observed. There are two

ways to transition between nodes, 1) follow edges learned from demonstrations, or

2) identify equivalent aspect nodes in ATGs and transition between them. If there

is no valid path from the current aspect node xt to the given goal aspect node, the

planner guesses possible paths by merging similar aspect nodes from the current ATG

102

to other ATGs until a path exists. The similarity between two aspect node uses the

same model as the likelihood function p(zt|xt). These two ways of identifying paths

in ATGs allow the robot to learn subtasks separately and repeat the full task during

execution.

In this experiment, the aspect where the bolt is tightened is first submitted as a

goal aspect to the robot. The planner identifies the current aspect node and finds

a path to reach the goal aspect. Once the robot finishes tightening the bolt, the

aspect where the ratchet is put back to the tool holder is set as the goal aspect.

Figure 5.9 shows the sequence of the complete task. With this approach Robonaut-2

is capable of executing the complete ratchet task successfully even when there are

small differences in the initial tool, bolt, and tool holder locations.

5.4.3 Evaluating Ratchet Task

In this experiment, the robustness of the framework is tested on the ratchet task

based on the ATGs created from demonstrations. A total of 22 settings are tested.

For each setting, the initial location of the tool holder or bolt platform is altered. For

the first 16 settings, the bolt platform is moved away 5 cm from the demonstrated

position and the tool holder is placed at 16 different locations on a four by four grid

that are 1 cm apart. For the other 6 settings, different bolt platform positions and

orientations and one randomly chosen tool holder position on the four by four grid

are set. These initial poses are shown in Figure 5.10. For each different settings, if

grasping fails, the robot retries grasping. If mating the socket with the bolt fails, the

robot skips tightening and continue. The number of successes for each subtask are

shown in table 5.1. Grasping failed twice when the ratchet got stuck and the robot

lifted the whole tool holder. Mating socket with the bolt and placing the ratchet back

have 86.3% and 81.8% success rate. Tightening failed once when the socket slipped

away from the bolt while tightening. 14 out of 24 trials succeeded the complete task.

103

Figure 5.9. The ratchet task sequence performed by Robonaut-2. The images from
left to right, then top to bottom, show a sequence of actions where Robonaut-2 grasps
the ratchet, tightens a bolt on a platform, and puts the ratchet back into a tool holder.

Table 5.1. Number of successful trials on subtasks.

subtask (a) (b) (c) (d) (e)

successful trials
22 / 24 19 / 22 18 / 19 22 / 22 18 / 22

/ total trials

13 corner case settings are further tested on mating the socket with the bolt.

This set contains test cases with initial ratchet positions that are close to the sensor

104

Figure 5.10. Top down views of initial poses and failed poses on the ratchet task.
The green objects in the left image shows a set of initial poses tested and the blue
objects are the initial poses for the demonstrations. The pink objects in the right
image shows a set of initial poses that failed to mate the socket with the bolt and
the purple objects are the initial poses that failed to place the ratchet back. The red
ratchet pose failed in both subtasks in two different trials.

and joint limit, in hand ratchet positions that are at opposite ends, and cluttered

scenarios. This approach achieved a similar success rate of 84.6%. Figure 5.11 shows

some of the initial settings.

Figure 5.11. Corner case initial settings for mating the socket with the bolt. Note
that in the 3rd and 4th image the in-hand ratchet positions are different.

5.4.4 Comparing Accuracy in Simulation

To understand how the number of demonstrations used affect the action accu-

racy, ATGs created with one to five demonstrations in the Robonaut-2 simulator

are compared. For each of these five ATGs, 125 trials are tested on the placing

socket on top of the bolt task with different in-hand ratchet poses and bolt platform

locations. For each trial, a perturbation P = (rxy, rθ, bxy) is added to an initial con-

figuration, where rxy is the ratchet offset in the XY plane in hand, rθ is the ratchet

105

angle difference on the Z axis in hand, and bxy is the bolt platform offset in the

XY plane. All combinations of the following set of parameters are tested, rxy =

{(0, 0), (2, 0), (0, 2), (−2, 0), (0,−2)} in centimeters, rθ = {−0.2,−0.1, 0, 0.1, 0.2} in

radians, and bxy = {(0, 0), (3, 0), (0, 3), (−3, 0), (0,−3)} in centimeters. For each trial,

the distance between the final socket location and the ground truth socket location

calculated based on the demonstration is recorded.

Figure 5.12. The accuracy of the placing socket on top of the bolt task versus the
number of demonstrations used to create the ATG.

The results are shown in Figure 5.12. With two demonstrations a distilled ATG

can lower the socket position error significantly. Adding more demonstrations did

not improve the accuracy much on this task. This may be because that with two

demonstrations the visual features identified are already the best among the detected

set. Figure 5.13 shows the informative features, represented by green dots, identified

on the ratchet for ATGs created with one, two, and five demonstrations. The feature

selected in the ATG created from a single demonstration is further away from the

socket than the features selected by ATGs created from multiple demonstrations.

106

This offset may result in less accurate actions when the ratchet is held in the hand

with a different angle. In this case, the features identified among ATGs created from

two to five demonstrations are similar, and therefore result in similar accuracy. This

result is consistent to findings in the Robonaut-2 experiment. With a small set of

demonstrations, the distilled ATG identifies more informative features and lowers the

action error significantly.

Figure 5.13. Informative features identified in experiments in simulation. The
images from left to right corresponds to tool aspect nodes for the putting socket on
top of the bolt task using ATGs created from one, two, and five demonstrations. The
green dots represent the visual features selected to represent the action. The feature
selected in the ATG created from a single demonstration is further away from the
socket and may result in less accurate actions.

5.4.5 Effects of Multiple Demonstrations and Feature Complexity

To further evaluate how the number of demonstrations and the size of the visual

feature space affect the learned action on the real robot, the success rates of mating

the socket to the bolt under different configurations are compared. In this experiment,

the robustness of ATGs created from one to four demonstrations and with hierarchical

CNN features in the 3rd and 4th layer is compared. Hierarchical CNN features in

the 3rd layer H3 = (f 5
i , f

4
j , f

3
k), represents a feature with an additional filter f 3

k and

have a feature space |f 3| = 384 times larger compared to features in the 4th layer

H4 = (f 5
i , f

4
j), where |f 3| is the number of filters in the conv-3 layer. The assumption

107

is that more complex features will require more demonstrations to learn, but may

result in more robust actions. For each trial, the robot starts with the grasped

ratchet and the bolt placed on the right side of the robot. The trial succeeds if the

robot mates the socket to the bolt. 22 trials are performed for each ATG. The results

are shown in Figure 5.14.

Figure 5.14. Success rate versus number of demonstrations and size of feature space

Consistent with the assumption, the success rate of using H3 features increases

with more demonstrations and performs better than H4 features when more demon-

strations are used. The results for using H4 features however fluctuates with more

than two demonstrations. I suspect that this is because H4 features have a smaller

feature space and good features can be found with fewer demonstrations. The up and

down in success rate with more demonstrations may be due to imperfect demonstra-

tions and H4 features that are less precise in location.

108

5.5 Experiments on Drill Grasping

In this section, experiments on a drill grasping task on Robonaut-2 using the

proposed frame work is described. It is demonstrated that with the hierarchical

aspect representation, the current observation can be associated with the aspect that

supports the same set of actions. Through a few demonstrated manipulations on a

drill, the robot is able to grasp the drill in a position that is normally out of reach by

combining learned actions in sequence.

5.5.1 Settings

The goal of the task is to grasp the drill handle correctly with the left robot hand

based on 8 demonstrated manipulation action sequences on a drill on Robonaut-

2 collected through teleoperation. Three of the demonstrated action sequences are

grasp action sequences, where the drill is placed at three different orientations and

the user teleoperates the robot to hold the drill handle with its left hand. Four of the

demonstrated actions are drag action sequences, where the drill is placed at the right

side of the robot and the user teleoperates the right hand to drag the drill from the

right side to the center. The other demonstrated action sequence is a turn action,

where the drill is placed such that the tip of the drill is facing toward the right side

of the robot and the user teleoperates the right hand to turn the drill such that the

tip of the drill is facing away from the robot.

For each test trial, the drill is placed on the table in front of the robot. The robot

can manipulate the drill until it successfully grasps it on the handle. For example, if

the drill is placed on the right side of the table and not reachable with the left hand,

the robot can drag the drill closer with its right hand and grasp it with its left hand.

If the drill ends up in a pose that is no longer graspable or if the robot tries to grasp

and fails, the trial is recorded as failed. The experiment is evaluated based on the

109

number of successful grasps where the robot fingers surround the handle such that

the tip of the drill is facing outward from the wrist.

5.5.2 Demonstrations

An ATG is generated for each of the 8 demonstrations based on intermediate steps

and demonstration types indicated by the user during teleoperation as described in

Section 5.2; an aspect node that stores the proposed aspect representation is created

between each action. For example, one demonstrated turn example is a three action

sequence of moving the hand to a pre-turn pose, pushing the drill tip to turn the

drill, and moving the hand back. These demonstrations are classified into robot-

visual actions aRV and robot-proprioceptive actions aRP described in Section 5.1. In

this experiment, the top three filters with the highest responses in the conv-5, conv-

4, and conv-3 layers (N5 = N4 = N3 = 3) is used for extracting the hierarchical

CNN features. Each aspect representation is composed of an appearance descriptor

with 39 hierarchical CNN feature response values, a pose descriptor with 741 XYZ

differences between these 39 features, and a location descriptor with 4 distance values

from the centroid of these features to the robot’s palms and shoulders. An action edge

that connects from aspect xt to xt+1 in an ATG stores an action that is configured

by the position offset between the robot end effectors and the set of corresponding

hierarchical CNN features in aspect xt. The top K features in xt that the robot end

effectors are closest to after executing the action is chosen. K is set to 5 in this

test. In this experiment, the arm controllers are associated with the conv-4 layer

hierarchical CNN features while the hand controllers are associated with the conv-3

layer hierarchical CNN features as described in Section 4.1.

The 8 ATGs created from demonstration are combined into one ATG that rep-

resents all the manipulations the robot memorized for different aspects of the drill.

Both the drag and turn action sequences conclude in a state where the drill is on the

110

Figure 5.15. Initial drill poses that the robot succeeded and failed in grasping with
its left hand during testing. The green drill poses in the left figure shows the succeeded
poses and the red drill poses in the right figure shows the failed poses. This approach
allows the robot to grasp drills located at position that is normally out of reach.

table with no contact with the robot; since the orientation and location of the drill

is uncertain after these actions, the last aspect node of the ATGs corresponding to

these demonstrations is connected to an intermediate node that is connected to the

first aspect of all of the 8 ATGs created. The three grasp action sequences end up in a

state where the drill is grasped correctly in the robot hand; since the task is to reach

such state, the last aspect nodes of the ATGs corresponding to these demonstrations

is connected to an aspect that indicates that the drill is grasped. The final ATG

contains 31 aspect nodes and 32 action edges.

5.5.3 Approach

For each trial, the aspect node x in the combined ATG that has the highest

posterior probability p(x|z) given the current observation z is first identified. The

prior probability p(x) is set to be uniform among aspect nodes that are the first

aspect of each demonstration. As in the ratchet experiment described in the previous

section, the maximum a posteriori (MAP) aspect node p(x|z) can be determined by

calculating p(z|x) · p(x), where p(z|x) is described in Section 4.2. The next action is

111

then chosen based on the first action edge on the shortest path from the MAP aspect

node to the goal aspect node.

For each action, the target positions for the palms are determined by the mean

position of a set of conv-4 layer features plus the corresponding offsets. The same

approach is used to determine target positions for the fingers and thumbs from a set

of conv-3 layer features plus their respective offsets.

Each action is executed in two steps. First, the arm controllers move the arms

such that the distance from the palms to their corresponding targets are minimized.

Once the arm controllers converge, the hand controllers move the wrists and fingers

to minimize the sum of distance from the index finger tip, middle finger tip, and

thumb tip to their corresponding target. The posterior probability p(x|z) is recur-

sively updated based on the Bayesian filtering algorithm [91] after each action and

observation as described in Subsection 3.2.1. The next action is always chosen based

on the MAP aspect node after the update.

Figure 5.16. Sequence of actions in one grasping test trial. The images are ordered
from left to right then top to bottom. The initial pose of the drill is at an angle that
is not graspable and is located too far right for the left hand to reach. Therefore the
robot turns the drill then drags it to the center before grasping with its left hand.

5.5.4 Results

22 grasping trials are performed in this experiment and the proposed approach

successfully grasped the drill on the handle 16 times. Among 11 of the successful trials,

112

the robot turned or dragged the drill with its right hand before grasping it with its

left hand. Figure 5.16 shows one of the trials that the robot executed both turning

and dragging before grasping the drill. The initial poses of the drill that the robot

succeeded or failed in grasping are shown in Figure 5.15. Three of the failed trials

are due to the robot trying to grasp the drill while the drill is placed at a pose almost

within reach. Adding more demonstrations or the ability to recover from error may

improve the performance on this task. Calculating the aspect representation takes

about 3 seconds on a desktop computer with the NVIDIA GTX 780 graphics card.

Matching the current aspect to a memorized aspect has a complexity of O(n), where

n is the number of memorized aspects; this matching process takes less then a second

in this experiment.

5.6 Conclusions

This chapter describes how ATG models combined with the proposed hierarchical

aspect representation can be learned from demonstrations efficiently. I first introduce

a categorization that classifies demonstrations into three different types depending

on what frames or features are used as references and what is used to calculate the

error to the target. Having the user provide additional information about the type of

the demonstration allows the system to create action edges in ATGs by modeling the

spatial relations between hierarchical CNN features automatically. It is then shown

that through multiple demonstrations, informative visual features and relative poses

may be identified and used to model actions that are more accurate than models of

single demonstrations. This effect is clearly observed in the improvement in success

rate and accuracy over single demonstration models on the task on mating the socket

to the bolt on Robonaut-2. I show that with this proposed approach, Robonaut-2 is

capable of grasping the ratchet, tightening a bolt, and putting the ratchet back into

a tool holder with a small set of demonstrations. The capability of such framework

113

is further demonstrated in a drill grasping task that requires the robot to use both

hands to extend its reach. The goal is to grasp the drill placed in multiple poses

based on a small set of grasp, drag, and turn actions demonstrated to the robot. It

is shown that by combining learned subtasks, the robot can extend the situations it

is capable of solving beyond the ones it was demonstrated.

114

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

The goal of this dissertation is to present a framework that allows robots to solve

tasks in an unstructured environment through predicting perceptual action conse-

quences based on memory and observation. I propose a framework where hierarchical

aspect representations are used to construct aspect transition graph (ATG) models

that memorize how actions change observations. I then show that this integrated

memory model of perception and action can be learned efficiently from demonstra-

tions and is capable of solving tasks beyond the given examples.

Chapter 3 introduces the aspect transition graph memory model that memorizes

action consequences through a directed multigraph composed of aspect nodes and

action edges. By predicting action outcomes with this memory model, I show that

the robot can perform actions that help distinguish objects, reach a goal reliably with

a sequence of open-loop and closed-loop actions, grasp a drill without explicit pose

estimation, and detect errors early.

Chapter 4 presents the hierarchical CNN feature that is capable of representing

local parts that belong to a high level structure. These features can be localized in

3D and are associated with controllers that belong to different kinematic subchains

to support grasping. Based on these hierarchical CNN features and other sensory

feedback, a hierarchical aspect representation that captures object affordance is in-

troduced. This approach achieves state of the art result on instance pose recognition

and outperforms a baseline approach on grasping novel objects.

115

Chapter 5 describes how ATG models combined with the proposed hierarchical

aspect representation can be learned from demonstrations efficiently. Demonstrations

are classified into three different types based on the reference frames. Through mul-

tiple demonstrations, informative visual features and consistent spatial relationships

can be identified and used to model actions with higher accuracy. I show that this

approach is capable of accomplishing a challenging bolt tightening task where the in

hand ratchet poses vary. This approach is also tested on drill grasping task where

the robot has to extend its reach by combining a sequence of learned actions.

6.1 Conclusions and Discussions

In the introduction, I presented a modified conceptual diagram of the neocortex

(Figure 1.1) taken from the book “On Intelligence” [33]. In this figure, memory regions

that connect sensory neurons and motor neurons of the same layer is added to the

original diagram. The modules and connections of this diagram that are implemented

in this dissertation are highlighted in Figure 6.1 and discussed in the following.

Figure 6.1. The proposed conceptual diagram of the neocortex with modules and
connections implemented in this dissertation highlighted. The colored blocks and
connections are the parts that are tested in robotics experiments.

116

• The memory regions in the diagram correspond to the memory model introduced

in Chapter 3. The connection loops within the memory regions resemble the

action edges that can be used to predict action consequences in an ATG.

• The visual neuron layers in the diagram are represented by hierarchical CNN

features introduced in Section 4.1 and are combined with the somatosensory

neurons to form the hierarchical aspect representation described in Chapter 4.

• The highlighted layer-wise connections between visual neuron layers and mo-

tor neuron layers correspond to the hierarchical controller introduced in the

Robonaut-2 grasping experiment in Subsection 4.1.4.

• The connections between the aspect transition graph, hierarchical aspect repre-

sentation, and the hierarchical controller can be learned through demonstration

as introduced in Chapter 5.

Throughout the robotic experiments conducted in this dissertation, I show the ad-

vantages of the proposed memory model and the merit of having hierarchical associa-

tions between controllers, perceptual features, and memory models. This framework

is tested on multiple robotic tasks including 1) recognizing and modeling partially

observed objects through interaction, 2) grasping tools with visual servoing, 3) han-

dling error in a stochastic environment, 4) grasping novel objects, 5) tightening bolts

with learning from demonstrations, and 6) grasping drills with both arms to extend

reach. This framework has shown to be effective in many aspects and capable of

accomplishing challenging tasks that few current approaches can achieve under sim-

ilar conditions. These results can be seen as support to the conjectured connections

between sensory neurons, motor neurons, and memory regions in the neocortex.

117

6.2 Future Directions

This dissertation can be seen as a proof of concept on building intelligent robots

that interact with the environment through predicting action consequences based

on memory. There are many directions for extending this proposed framework to

achieve a reliable system capable of solving more complicated tasks. As shown in

Figure 6.1, this dissertation only covers parts of the proposed conceptual diagram of

the neocortex and there are many additional experiments that can provide insights on

how to build more robust robots and reveal a more complete picture of the neocortex.

I discuss a few possible future directions in the following.

6.2.1 Haptic

In this dissertations, force information is incorporated into the aspect representa-

tion but is not used in controllers directly. In addition, only simple force features are

considered. In future work, I would like to investigate in more complex hierarchical

haptic features that matches the proposed visual features. A higher layer may repre-

sent more abstract notions such as force closure and insertion. These haptic features

should also provide information for the hierarchical controllers to execute tasks that

have to rely on haptic feedback.

6.2.2 Hierarchical Aspect Transitions

The current implementation of the aspect transition graph contains features of

different visual layers and connects them with controllers within different robotic

subchains. However, transitions of aspect nodes in different layers are not considered

separately. In future work, I would like to consider a more flexible model where aspect

nodes of different layers transition based on features and actions of corresponding

layers and information from neighbor layer aspect nodes.

118

6.2.3 Cross Modality Top Down Inference

The current framework can infer missing visual features through a top down pro-

cess based on memory. If a hierarchical CNN feature is not detected bottom up but is

expected to appear based on memory, it can be inferred based on the features stored

in aspect nodes in a top down fashion. This can also be done between different modal-

ities. For example, if the robot’s haptic sensor touches an object, the robot should

expect to see the object in contact with the robot. If it does not see this object based

on bottom up detection, it should be able to enhance the detection through a top

down process based on previous joint observations.

6.2.4 Generalizing to Object Categories

The experiments conducted in this dissertation either work on object instances or

simple categories such as cuboids and cylinders. For a general purpose robot to be

useful, it will need to be able to interact with complex novel objects. Based on the

recent success on deep learning approaches on object classification, storing categorical

representations in an aspect reliably is possible. By learning the object class through

a large amount of images and interaction with a small amount of demonstrations,

meaningful hierarchical CNN features that can support actions and generalize across

categories can be identified.

6.2.5 Planning Across Hierarchies

The planner used in this work can identify a path from the current aspect node

to a goal aspect node on a different ATG model. This allows the robot to plan

sequence of actions based on demonstrations of subtasks. With a hierarchical aspect

transition graph, a planner that can plan across different hierarchies can solve novel

tasks in a more creative way. A higher level aspect transition may correspond to

categorical behaviors, while a middle level aspect transition may be related to instance

manipulation. Being able to transition from instance level to categorical level planning

119

when a novel observation occurs may allow the robot to test out combinations of

learned interactions in a creative way.

6.2.6 Learning Through Intrinsic Motivation

In this dissertation, memory models can be created through explorations, or

learned from demonstrations. Learning action transitions through exploration allows

the robot to acquire models of the world autonomously, but may require a significant

amount of time to experience meaningful interactions in a high dimensional space.

Intrinsic motivation can possibly be used to guide these explorations. By rewarding

actions that may identify consistent causal relationships of action and observation, the

created memory models would only consist of scenarios where actions have predictable

consequences. These memories on actions that can achieve consistent outcomes may

be sufficient to accomplish many tasks.

�

The framework introduced in this dissertation is by no means comparable to the

real intelligence all of us possess. The purpose of this dissertation is not to show a

proof or solution but to ignite your imagination. By now, I hope some of you would

be intrigued and join me on this lifelong journey on understanding the mystery of

intelligence.

120

BIBLIOGRAPHY

[1] Akgun, Baris, Cakmak, Maya, Yoo, Jae Wook, and Thomaz, Andrea Lockerd.
Trajectories and keyframes for kinesthetic teaching: A human-robot interaction
perspective. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction (2012), ACM, pp. 391–398.

[2] Alexandrova, Sonya, Cakmak, Maya, Hsiao, Kaijen, and Takayama, Leila.
Robot programming by demonstration with interactive action visualizations.
In Robotics: science and systems (2014).

[3] Amir, Eyal, and Chang, Allen. Learning partially observable deterministic
action models. Journal of Artificial Intelligence Research 33 (2008), 349–402.

[4] Baldi, Pierre. A computational theory of surprise. In Information, Coding and
Mathematics. Springer, 2002, pp. 1–25.

[5] Bay, Herbert, Tuytelaars, Tinne, and Van Gool, Luc. SURF: Speeded up robust
features. In Computer vision–ECCV 2006. Springer, 2006, pp. 404–417.

[6] Berlyne, Daniel E. Conflict, arousal, and curiosity.

[7] Bo, Liefeng, Ren, Xiaofeng, and Fox, Dieter. Unsupervised feature learning
for rgb-d based object recognition. In Experimental Robotics (2013), Springer,
pp. 387–402.

[8] Bülthoff, Heinrich H, and Edelman, Shimon. Psychophysical support for a two-
dimensional view interpolation theory of object recognition. Proceedings of the
National Academy of Sciences 89, 1 (1992), 60–64.

[9] Burridge, Robert R, Rizzi, Alfred A, and Koditschek, Daniel E. Sequential com-
position of dynamically dexterous robot behaviors. The International Journal
of Robotics Research 18, 6 (1999), 534–555.

[10] Calinon, Sylvain, and Billard, Aude. A probabilistic programming by demon-
stration framework handling constraints in joint space and task space. In In-
telligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on (2008), IEEE, pp. 367–372.

[11] Calinon, Sylvain, Guenter, Florent, and Billard, Aude. On learning, repre-
senting, and generalizing a task in a humanoid robot. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 37, 2 (2007), 286–298.

121

[12] Casti, John L. Complexification Explaining a Paradoxical World Through the
Science of Surprise. HarperCollinsPublishers, 1994.

[13] Dame, Amaury, and Marchand, Eric. Entropy-based visual servoing. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on (2009),
IEEE, pp. 707–713.

[14] Diftler, Myron A, Mehling, JS, Abdallah, Muhammad E, Radford, Nicolaus A,
Bridgwater, Lyndon B, Sanders, Adam M, Askew, Roger Scott, Linn, D Marty,
Yamokoski, John D, Permenter, FA, et al. Robonaut 2-the first humanoid
robot in space. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on (2011), IEEE, pp. 2178–2183.

[15] Dinh, Paul, and Hart, Stephen. NASA Robonaut 2 Simulator, 2013. [Online;
accessed 7-July-2014].

[16] Donald, Bruce R. A geometric approach to error detection and recovery for
robot motion planning with uncertainty. Artificial Intelligence 37, 1 (1988),
223–271.

[17] Edelman, Shimon, and Bülthoff, Heinrich H. Orientation dependence in the
recognition of familiar and novel views of three-dimensional objects. Vision
research 32, 12 (1992), 2385–2400.

[18] Faugeras, Olivier, Mundy, Joe, Ahuja, Narendra, Dyer, Charles, Pentland, Alex,
Jain, Ramesh, Ikeuchi, Katsushi, and Bowyer, Kevin. Why aspect graphs are
not (yet) practical for computer vision. CVGIP: Image Understanding 55, 2
(1992), 212–218.

[19] Fikes, Richard E, Hart, Peter E, and Nilsson, Nils J. Learning and executing
generalized robot plans. Artificial intelligence 3 (1972), 251–288.

[20] Finn, Chelsea, and Levine, Sergey. Deep visual foresight for planning robot mo-
tion. In Robotics and Automation (ICRA), 2017 IEEE International Conference
on (2017), IEEE, pp. 2786–2793.

[21] Finn, Chelsea, Tan, Xin Yu, Duan, Yan, Darrell, Trevor, Levine, Sergey, and
Abbeel, Pieter. Deep spatial autoencoders for visuomotor learning. reconstruc-
tion 117, 117 (2015), 240.

[22] Fischler, Martin A, and Bolles, Robert C. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Communications of the ACM 24, 6 (1981), 381–395.

[23] George, Dileep, and Hawkins, Jeff. Towards a mathematical theory of cortical
micro-circuits. PLoS Comput Biol 5, 10 (2009), e1000532.

[24] Gibson, J. J. The Ecological Approach to Visual Perception. Houghton Mifflin,
Boston, 1979.

122

[25] Gibson, James J. Perceiving, acting, and knowing: Toward an ecological psy-
chology. chap. The Theory of Affordance). Michigan: Lawrence Erlbaum Asso-
ciates (1977).

[26] Gigus, Ziv, and Malik, Jitendra. Computing the aspect graph for line draw-
ings of polyhedral objects. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 12, 2 (1990), 113–122.

[27] Goldstein, E Bruce. The ecology of jj gibson’s perception. Leonardo (1981),
191–195.

[28] Goodale, Melvyn, and Milner, David. Sight unseen: An exploration of conscious
and unconscious vision. OUP Oxford, 2013.

[29] Grabner, Helmut, Gall, Juergen, and Van Gool, Luc. What makes a chair
a chair? In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on (2011), IEEE, pp. 1529–1536.

[30] Hariharan, Bharath, Arbeláez, Pablo, Girshick, Ross, and Malik, Jitendra. Hy-
percolumns for object segmentation and fine-grained localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 447–456.

[31] Harlow, Harry F. Learning and satiation of response in intrinsically motivated
complex puzzle performance by monkeys. Journal of Comparative and Physio-
logical Psychology 43, 4 (1950), 289.

[32] Hart, Stephen W. The development of hierarchical knowledge in robot systems.
PhD thesis, University of Massachusetts Amherst, 2009.

[33] Hawkins, Jeff, and Blakeslee, Sandra. On intelligence. Macmillan, 2007.

[34] Herzog, Alexander, Pastor, Peter, Kalakrishnan, Mrinal, Righetti, Ludovic,
Bohg, Jeannette, Asfour, Tamim, and Schaal, Stefan. Learning of grasp selec-
tion based on shape-templates. Autonomous Robots 36, 1-2 (2014), 51–65.

[35] Hoffmann, Frank, Nierobisch, Thomas, Seyffarth, Torsten, and Rudolph,
Günter. Visual servoing with moments of sift features. In Systems, Man and
Cybernetics, 2006. SMC’06. IEEE International Conference on (2006), vol. 5,
IEEE, pp. 4262–4267.

[36] Huber, Manfred. A hybrid architecture for adaptive robot control. PhD thesis,
University of Massachusetts Amherst, 2000.

[37] Hull, Clark Leonard. Principles of behavior: an introduction to behavior theory.

[38] Hutchinson, Seth, Hager, Gregory D, and Corke, Peter I. A tutorial on visual
servo control. Robotics and Automation, IEEE Transactions on 12, 5 (1996),
651–670.

123

[39] Itti, Laurent, and Baldi, Pierre F. Bayesian surprise attracts human attention.
In Advances in neural information processing systems (2005), pp. 547–554.

[40] Jägersand, Martin, and Nelson, Randal. On-line estimation of visual-motor
models using active vision. image 11 (1996), 1.

[41] Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long,
Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093 (2014).

[42] Kaelbling, Leslie Pack, Littman, Michael L, and Cassandra, Anthony R. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1 (1998), 99–134.

[43] Kato, Hirokazu, and Billinghurst, Mark. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Augmented Reality,
1999.(IWAR’99) Proceedings. 2nd IEEE and ACM International Workshop on
(1999), IEEE, pp. 85–94.

[44] Katz, Dov, Venkatraman, Arun, Kazemi, Moslem, Bagnell, J Andrew, and
Stentz, Anthony. Perceiving, learning, and exploiting object affordances for
autonomous pile manipulation. Autonomous Robots 37, 4 (2014), 369–382.

[45] Koenderink, Jan J, and Van Doorn, Andrea J. The internal representation of
solid shape with respect to vision. Biological cybernetics 32, 4 (1979), 211–216.

[46] Konidaris, George. Constructing abstraction hierarchies using a skill-symbol
loop. arXiv preprint arXiv:1509.07582 (2015).

[47] Kriegman, David J, and Ponce, Jean. Computing exact aspect graphs of curved
objects: Solids of revolution. International Journal of Computer Vision 5, 2
(1990), 119–135.

[48] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems (2012), pp. 1097–1105.

[49] Lai, Kevin, Bo, Liefeng, Ren, Xiaofeng, and Fox, Dieter. A large-scale hierar-
chical multi-view rgb-d object dataset. In Robotics and Automation (ICRA),
2011 IEEE International Conference on (2011), IEEE, pp. 1817–1824.

[50] Lai, Kevin, Bo, Liefeng, Ren, Xiaofeng, and Fox, Dieter. A scalable tree-based
approach for joint object and pose recognition. In AAAI (2011).

[51] LeCun, Yann, and Bengio, Yoshua. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks 3361, 10
(1995), 1995.

124

[52] Lee, Tai Sing, and Mumford, David. Hierarchical bayesian inference in the
visual cortex. JOSA A 20, 7 (2003), 1434–1448.

[53] Lenz, Ian, Lee, Honglak, and Saxena, Ashutosh. Deep learning for detecting
robotic grasps. The International Journal of Robotics Research 34, 4-5 (2015),
705–724.

[54] Leonard, John J, and Durrant-Whyte, Hugh F. Simultaneous map building and
localization for an autonomous mobile robot. In Intelligent Robots and Systems’
91.’Intelligence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ In-
ternational Workshop on (1991), Ieee, pp. 1442–1447.

[55] Leung, Cindy, Huang, Shoudong, Kwok, Ngai, and Dissanayake, Gamini. Plan-
ning under uncertainty using model predictive control for information gathering.
Robotics and Autonomous Systems 54, 11 (2006), 898–910.

[56] Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel, Pieter. End-to-end
training of deep visuomotor policies. arXiv preprint arXiv:1504.00702 (2015).

[57] Logothetis, Nikos K, Pauls, Jon, and Poggio, Tomaso. Shape representation in
the inferior temporal cortex of monkeys. Current Biology 5, 5 (1995), 552–563.

[58] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Ve-
ness, Joel, Bellemare, Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland,
Andreas K, Ostrovski, Georg, et al. Human-level control through deep rein-
forcement learning. Nature 518, 7540 (2015), 529.

[59] Montgomery, Kay C. The role of the exploratory drive in learning. Journal of
Comparative and Physiological Psychology 47, 1 (1954), 60.

[60] More, Jorge J, and Trangenstein, John Arthur. On the global convergence of
broydens method. Mathematics of Computation 30, 135 (1976), 523–540.

[61] Nakamura, Yoshihiko. Advanced robotics: redundancy and optimization, 1991.

[62] Palmeri, Thomas J, and Gauthier, Isabel. Visual object understanding. Nature
Reviews Neuroscience 5, 4 (2004), 291–303.

[63] Pas, Andreas ten, and Platt, Robert. Using geometry to detect grasps in 3d
point clouds. arXiv preprint arXiv:1501.03100 (2015).

[64] Pastor, Peter, Hoffmann, Heiko, Asfour, Tamim, and Schaal, Stefan. Learning
and generalization of motor skills by learning from demonstration. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on (2009),
IEEE, pp. 763–768.

[65] Patil, Sachin, Duan, Yan, Schulman, John, Goldberg, Ken, and Abbeel, Pieter.
Gaussian belief space planning with discontinuities in sensing domains. In Int.
Symp. on Robotics Research (ISRR)(in review) (2013).

125

[66] Pérez-D’Arpino, Claudia, and Shah, Julie A. C-learn: Learning geometric con-
straints from demonstrations for multi-step manipulation in shared autonomy.
In IEEE International Conference on Robotics and Automation (2017).

[67] Phillips, Mike, Hwang, Victor, Chitta, Sachin, and Likhachev, Maxim. Learning
to plan for constrained manipulation from demonstrations. In Robotics: Science
and Systems (2013), vol. 5.

[68] Pineau, Joelle, Gordon, Geoff, Thrun, Sebastian, et al. Point-based value itera-
tion: An anytime algorithm for pomdps. In IJCAI (2003), vol. 3, pp. 1025–1032.

[69] Pinto, Lerrel, and Gupta, Abhinav. Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours. arXiv preprint arXiv:1509.06825
(2015).

[70] Platt, R., Tedrake, R., Kaelbling, L., and Lozano-Perez, T. Belief space plan-
ning assuming maximum likelihood observations. In Proceedings of Robotics:
Science and Systems (Zaragoza, Spain, June 2010).

[71] Platt, Robert, Grupen, Roderic A, and Fagg, Andrew H. Re-using schematic
grasping policies. In Humanoid Robots, 2005 5th IEEE-RAS International Con-
ference on (2005), IEEE, pp. 141–147.

[72] Platt, Robert, Kaelbling, Leslie, Lozano-Perez, Tomas, and Tedrake, Russ. Ef-
ficient planning in non-gaussian belief spaces and its application to robot grasp-
ing. In International Symposium on Robotics Research (2011).

[73] Poggio, Tomaso, and Edelman, Shimon. A network that learns to recognize 3d
objects. Nature 343, 6255 (1990), 263–266.

[74] Rodriguez, Alberto, Mason, Matthew T, Srinivasa, Siddhartha S, Bernstein,
Matthew, and Zirbel, Alex. Abort and retry in grasping. In Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on (2011),
IEEE, pp. 1804–1810.

[75] Ruiken, Dirk, Lanighan, Michael W, Grupen, Roderic, et al. Postural modes
and control for dexterous mobile manipulation: the umass ubot concept. In Hu-
manoid Robots (Humanoids), 2013 13th IEEE-RAS International Conference
on (2013), IEEE, pp. 280–285.

[76] Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, San-
jeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein,
Michael, Berg, Alexander C., and Fei-Fei, Li. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV) 115,
3 (2015), 211–252.

[77] Rusu, Radu Bogdan, and Cousins, Steve. 3d is here: Point cloud library (pcl).
In IEEE International Conference on Robotics and Automation (ICRA) (Shang-
hai, China, May 9-13 2011).

126

[78] Saxena, Ashutosh, Driemeyer, Justin, and Ng, Andrew Y. Robotic grasping of
novel objects using vision. The International Journal of Robotics Research 27,
2 (2008), 157–173.

[79] Saxena, Ashutosh, Wong, Lawson LS, and Ng, Andrew Y. Learning grasp
strategies with partial shape information. In AAAI (2008), vol. 3, pp. 1491–
1494.

[80] Schwarz, Max, Schulz, Hannes, and Behnke, Sven. Rgb-d object recognition
and pose estimation based on pre-trained convolutional neural network features.
In 2015 IEEE International Conference on Robotics and Automation (ICRA)
(2015), IEEE, pp. 1329–1335.

[81] Sen, Shiraj. Bridging the gap between autonomous skill learning and task-specific
planning. PhD thesis, University of Massachusetts Amherst, 2013.

[82] Shademan, Azad, and Janabi-Sharifi, Farrokh. Using scale-invariant feature
points in visual servoing. In Optics East (2004), International Society for Optics
and Photonics, pp. 63–70.

[83] Simonyan, Karen, Vedaldi, Andrea, and Zisserman, Andrew. Deep inside con-
volutional networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034 (2013).

[84] Smallwood, Richard D, and Sondik, Edward J. The optimal control of partially
observable markov processes over a finite horizon. Operations Research 21, 5
(1973), 1071–1088.

[85] Sondik, Edward Jay. The optimal control of partially observable markov pro-
cesses. Tech. rep., DTIC Document, 1971.

[86] Springenberg, Jost Tobias, Dosovitskiy, Alexey, Brox, Thomas, and Riedmiller,
Martin. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

[87] Stoytchev, Alexander. Toward learning the binding affordances of objects: A
behavior-grounded approach. In Proceedings of AAAI Symposium on Develop-
mental Robotics (2005), pp. 17–22.

[88] Sucan, Ioan A., and Chitta, Sachin. Moveit!, 2013. [Online].

[89] Sutton, Richard S, Precup, Doina, and Singh, Satinder. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1 (1999), 181–211.

[90] Tarr, Michael J, and Bülthoff, Heinrich H. Image-based object recognition in
man, monkey and machine. Cognition 67, 1 (1998), 1–20.

127

[91] Thrun, Sebastian, Burgard, Wolfram, and Fox, Dieter. Probabilistic robotics.
MIT press, 2005.

[92] Ullman, Shimon, and Basri, Ronen. Recognition by linear combinations of
models. IEEE transactions on pattern analysis and machine intelligence 13, 10
(1991), 992–1006.

[93] Van Den Bos, Esther, and Jeannerod, Marc. Sense of body and sense of action
both contribute to self-recognition. Cognition 85, 2 (2002), 177–187.

[94] Varadarajan, Karthik Mahesh, and Vincze, Markus. Object part segmentation
and classification in range images for grasping. In Advanced Robotics (ICAR),
2011 15th International Conference on (2011), IEEE, pp. 21–27.

[95] Varadarajan, Karthik Mahesh, and Vincze, Markus. Afrob: The affordance
network ontology for robots. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on (2012), IEEE, pp. 1343–1350.

[96] Wang, Xuemei. Learning planning operators by observation and practice. PhD
thesis, Carnegie Mellon University, 1996.

[97] Wilkinson, Eric, and Takahashi, Takeshi. Efficient aspect object models using
pre-trained convolutional neural networks. In Humanoid Robots (Humanoids),
2015 IEEE-RAS 15th International Conference on (2015), IEEE, pp. 284–289.

[98] Wise, Melonee, and Ciocarlie, Matei. ICRA Manipulation Demo, 2010. [Online;
accessed 19-September-2015].

[99] Wörgötter, Florentin, Geib, Chris, Tamosiunaite, Minija, Aksoy, Eren Erdal,
Piater, Justus, Xiong, Hanchen, Ude, Ales, Nemec, Bojan, Kraft, Dirk, Krüger,
Norbert, et al. Structural bootstrappinga novel, generative mechanism for faster
and more efficient acquisition of action-knowledge. IEEE Transactions on Au-
tonomous Mental Development 7, 2 (2015), 140–154.

[100] Yang, Qiang, Wu, Kangheng, and Jiang, Yunfei. Learning action models from
plan examples using weighted max-sat. Artificial Intelligence 171, 2 (2007),
107–143.

[101] Yosinski, Jason, Clune, Jeff, Nguyen, Anh, Fuchs, Thomas, and Lipson, Hod.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

[102] Zeiler, Matthew D, and Fergus, Rob. Visualizing and understanding convolu-
tional networks. In Computer vision–ECCV 2014. Springer, 2014, pp. 818–833.

[103] Zhang, Jianming, Lin, Zhe, Brandt, Jonathan, Shen, Xiaohui, and Sclaroff,
Stan. Top-down neural attention by excitation backprop. In European Confer-
ence on Computer Vision (2016), Springer, pp. 543–559.

128

[104] Zhang, Li Emma, Ciocarlie, Matei, and Hsiao, Kaijen. Grasp evaluation with
graspable feature matching. In RSS Workshop on Mobile Manipulation: Learn-
ing to Manipulate (2011).

129

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Memory Model
	Hierarchical Aspect Representation
	Learning From Demonstration
	Document Overview

	Background
	Object Representation
	Brain Theories
	Affordance
	Belief Space Planning
	Error Detection and Surprise
	Grasping Based on Vision
	Visual Servoing
	Convolutional Neural Networks
	Plan Generalization
	Learning From Demonstration

	Memory Model
	The Aspect Transition Graph
	Definitions
	Convergence
	Funnel Slide Metaphor
	Completeness and Sufficiency

	Handling Uncertainty With Belief Space Planning
	Modeling Objects with ATG
	Information Theoretic Planner
	Experiments
	Settings
	Results
	Reaching a Target Aspect

	Funnel-Slide-Funnel Structure
	Visual Servoing
	Potential Function
	Gradient Descent
	Learning the Visuomotor Jacobian

	Experiments
	Settings
	Analyzing Region of Attraction
	Convergence and Accuracy

	Acting without Explicit Pose Estimation
	Approach
	Experiments

	Error Detection and Surprise
	Modeling Randomness
	Recovery from Surprises
	Experiments
	Settings
	Surprise Recovery
	Error Detection Through Fine-Grained Actions

	Conclusions

	Hierarchical Aspect Representation
	Hierarchical CNN Features
	Definitions
	Supporting Grasping
	Consistent Features
	Generating Grasp Points

	Experiments on the R2 Grasping Dataset
	Dataset
	Cross-Validation Results
	Comparison

	Experiments on Robonaut-2
	Settings
	Hierarchical Controller
	Results

	Aspect Representation
	Descriptors
	Experiments on Pose Estimation
	Dataset
	Settings
	Results

	Conclusions

	Learning From Demonstration
	Demonstration Types
	Building Models From Demonstrations
	User Interface
	Creating ATG models

	Distilling Multiple Demonstrations
	Identifying Common Features
	Recognizing Consistent Actions

	Experiments on the Ratchet Task
	Demonstrations
	Planner
	Evaluating Ratchet Task
	Comparing Accuracy in Simulation
	Effects of Multiple Demonstrations and Feature Complexity

	Experiments on Drill Grasping
	Settings
	Demonstrations
	Approach
	Results

	Conclusions

	Conclusions and Future Directions
	Conclusions and Discussions
	Future Directions
	Haptic
	Hierarchical Aspect Transitions
	Cross Modality Top Down Inference
	Generalizing to Object Categories
	Planning Across Hierarchies
	Learning Through Intrinsic Motivation

	Bibliography

