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ABSTRACT
We introduce Graphene, a method and protocol for interactive
set reconciliation among peers in blockchains and related dis-
tributed systems. Through the novel combination of a Bloom
filter and an Invertible Bloom Lookup Table (IBLT), Graphene
uses a fraction of the network bandwidth used by deployed
work for one- and two-way synchronization. We show that, for
this specific problem, Graphene is Ω(n logn) more efficient at
reconciling n items than using a Bloom filter at the informa-
tion theoretic bound. We contribute a fast and implementation-
independent algorithm for parameterizing an IBLT so that
it is optimally small in size and meets a desired decode rate
with arbitrarily high probability. We characterize our perfor-
mance improvements through analysis, detailed simulation,
and deployment results for Bitcoin Cash, a prominent cryp-
tocurrency. Our implementations of Graphene, IBLTs, and our
IBLT optimization algorithm are all open-source code.

1 INTRODUCTION
Minimizing the network bandwidth required for synchro-
nization among replicas of widely propagated information is
a classic need of many distributed systems. Blockchains [41,
50] and protocols for distributed consensus [18, 31] are the
most recent examples of systems where the performance of
network-based synchronization is a critical factor in over-
all performance. Whether based on proof-of-work [30, 41],
proof-of-stake [15, 26], or a directed acyclic graph (DAG) [33],
guarantees that these systems can scale to a large user base
rely on assumptions about synchronization.
In all these systems, if the network protocol used for

synchronization of newly authored transactions and newly
mined blocks of validated transactions among peers is effi-
cient, there are numerous benefits. First, if blocks can be re-
layed using less network data, then the maximum block size
can be increased, whichmeans an increase in the overall num-
ber of transactions per second. Second, blocks that can be
relayed using less network data propagate more quickly [19],
thereby increasing consensus among distributed peers and
avoiding conflicts called forks. Moreover, systems based on
GHOST [45], such as Ethereum [50], record forks on the

chain forever, resulting in storage bloat. Finally, using less
bandwidth to relay a block allows greater participation by
peers who are behind limited-bandwidth links and routes
(e.g., China’s firewall).

Contributions. In this paper, we introduce Graphene, a
method and protocol for synchronizing blocks (and mem-
pools) among peers in blockchains and related systems using
a fraction of the network bandwidth of related work. For
example, for larger blocks, Graphene uses 12% of the band-
width of existing deployed systems. To do so, we make novel
contributions to network-based set reconciliation methods
and the application of probabilistic data structures to net-
work protocols. We characterize our performance through
analysis, detailed simulation, and open-source deployments.
Our contributions include:
• We design a new protocol that solves the problem of deter-
mining which elements in a setM stored by a receiver are
members of a subset N ⊆ M chosen by a sender. We apply
the solution to relaying a block of n = |N | transactions to
a receiver holdingm = |M | transaction. We use a novel
combination of a Bloom filter [11] and an Invertible Bloom
Lookup Table (IBLT) [28]. Our approach is smaller than
using current deployed solutions [17] and previous IBLT-
based approximate solutions [23]. Further, we prove that
our solution to this specific problem (where both parties
need all transactions in N ) is an improvement of Ω(n logn)
over using an optimal Bloom filter alone.

• We extend our solution to the more general case where
some of the elements of N are not stored by receiver. Thus,
our protocol extension handles the case where a receiver is
missing transactions in the sender’s block; we are a small
fraction of the size of previous work [49] at the cost of an
additional message. Additionally, we show how Graphene
can efficiently identify transactions held by the receiver
but not the sender.

• We design and evaluate an efficient algorithm for param-
eterizing an IBLT so that it is optimally small in size but
meets a desired decode rate with arbitrarily high proba-
bility and faster execution times. This result is applicable
beyond our context to any use of IBLTs.
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• We design and evaluate a method for significantly im-
proving the decode rate of an IBLT when two IBLTs are
available. This method is also a generally applicable.

• We provide a detailed evaluation using analysis and simu-
lation to quantify performance against existing systems.
We also characterize performance of our protocol as a live
Bitcoin Cash deployment, and as an Ethereum implemen-
tation for historic blocks. We also show that Graphene is
more resilient to attack than previous approaches.

We have publicly released our Bitcoin Cash and Ethereum
implementations of Graphene [6, 9], a C++ and Python im-
plementation of IBLTs including code for finding their opti-
mal parameters [5], and we have released a public network
specification of our basic protocol for standard interoper-
ability [7]. It has been adopted by blockchain developers
in released clients, replacing past approaches [3, 4]. While
our focus is on blockchains, any system that requires set
reconciliation, such as CRLite [32], where a client regularly
checks a server for revocations of observed certificates, or
synchronizing PGP key servers [43], are also potential use
cases for Graphene.

This submission extends and improves upon the authors’
previous workshop paper [2]. The contributions of our prior
work included only the first bullet above (i.e., Protocol 1 in
Section 3.1) and empirical simulations of its performance.
All other contributions listed above are new. This work does
not raise any ethical issues.

2 BACKGROUND AND RELATEDWORK
Below, we summarize and contrast related work in network-
based set reconciliation and protocols for block propagation.

2.1 Set Reconciliation Data Structures
Set reconciliation protocols allow two peers, each holding a
set, to obtain and transmit the union of the two sets. This
synchronization goal is distinct from set membership pro-
tocols [16], which tell us, more simply, if an element is a
member of a set. However, data structures that test set mem-
bership are useful for set reconciliation. This includes Bloom
filters [11], a seminal probabilistic data structure with myriad
applications [13, 35, 47]. Bloom filters encode membership
for a set of size n by inserting the items into a small array of
−n log2(f )

ln(2) bits; this efficiency gain is the result of allowing a
false positive rate (FPR) f .
Invertible Bloom Lookup Tables (IBLTs) [28] are a richer

probabilistic data structure designed to recover the symmetric
difference of two sets of items. Like Bloom filters, items are
inserted into an IBLT’s array of c cells, which is partitioned
into subsets of size c/k . Each item is inserted once into each
of the k partitions, at indices selected by k hash functions.
Rather than storing only a bit, the cells store the actual item.

Each cell has a count of the number of items inserted and
the xor of all items inserted (called a keySum). The following
algorithm [23] recovers the symmetric difference of two sets.
Each set is stored in an IBLT, A and B, respectively, (with
equal c and k values). For each pairwise cell of A and B, the
keySums are xor’ed and the counts subtracted, resulting in
a third IBLT: A △ B = C that lacks items in the intersection.
The cells inC with count = 1 hold an item belonging to only
A, and to only B if count = –1. These items are removed
from k − 1 other cells, which decrements their counts and
allows for the additional peeling of new items. This process
continues until all cells have a count of 0. (We’ve elided
details about a checkSum field for clarity.) If c is too small
given the actual symmetric difference, then iterative peeling
will eventually fail, resulting in a decode failure, and only
part of the symmetric difference will be recovered.
There are many variations on Bloom filters that present

different trade-offs, such as more computation for smaller
size. Similarly, IBLTs are one of several alternatives. For ex-
ample, several approaches involve more computation but
are smaller in size [22, 37, 51] (see [23] for a comparison).
We have not investigated how alternatives to IBLTs improve
Graphene’s size nor how, for example, computational costs
differ. Our focus is on IBLTs because they are balanced: min-
imal computational costs and small size. While miners may
have strong computational resources, full nodes and lighter
clients in blockchains do not. More importantly, as our de-
ployment results in Section 5.3 show, Graphene’s size is
almost flat as block size increases, demonstrating that IBLTs
are a good fit for our problem. Finally, some of these solu-
tions are complementary; for example, minsketch [51] can
be used within the cells of IBLTs to reduce Graphene’s size
further.

Comparison to Related Work. We provide a novel solu-
tion to the problem of set reconciliation, where one-way or
mutual synchronization of information is required by two
peers. Our results are significantly better than deployed past
works that are based on Bloom filters alone [49] or IBLTs
alone [23, 28], as we show in Section 5.3.
We provide several contributions to IBLTs. In general, if

one desires to decode sets of size j from an IBLT, a set of
values τ > 0 and k > 2 must be found that result in c = jτ
cells (divisible by k) such that the probability of decoding
is at least p. We provide an implementation-independent
algorithm for finding values τ and k that meet rate p and
result in the smallest value of c .

This is a significant advance over past work. Goodrich and
Mitzenmacher [28] provide values of τ that asymptotically
ensure a failure rate that decreases polynomially with j . But
these asymptotic results are not optimally small in size for
finite j and do not help us set the value of k optimally. Using
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their unreleased implementation, Eppstein et al. [23] iden-
tify optimal τ and k that meet a desired decode rate for a
selection of j values; however, the statistical certainty of this
optimality is unclear. In comparison, using our open-source
IBLT implementation [5], we are able to systematically pro-
duce statistically optimal values τ and k for a wide range of
j values. Our method, based on hypergraphs, is an order of
magnitude faster than this previous method [23].
We also contribute a novel method for improving the de-

code rate of IBLTs, which is complementary to related work
by Pontarelli et al. [42], who have the same goal.

2.2 Block Propagation
Blockchains, distributed ledgers, and related technology re-
quire a network protocol for distributing new transactions
and new blocks. Almost all make use of a p2p network of
peers, often a clique among miners that validate blocks, and
a random topology among non-mining full nodes that store
the entire chain. New transactions have an ID equal to their
cryptographic hash. When a new transaction is received,
a peer sends the ID as the contents of an inventory (inv)
message to all d neighbors, who request a getdata message
if the transaction is new to them. Transactions are stored in
a mempool until included in a valid block. Blocks are relayed
similarly: an inv is sent to each neighbor (often the header is
sent instead to save time), and a getdata requests the block
if needed. The root of a Merkle tree [36] of all transactions
validates an ordered set against the mined block.

The block consists of a header and a set of transactions.
These transactions can be relayed by the sender in full, but
this wastes bandwidth because they are probably already
stored at the receiver. In other words, blocks can be relayed
with a compressed encoding, and a number of schemes have
been proposed. As stated in Section 1, efficient propagation
of blocks is critical to achieving consensus, reducing storage
bloat, overcoming network firewall bottlenecks, and allowing
scaling to a large number of transactions per second.

Transactions that offer low fees to miners are sometimes
marked as DoS spam and not propagated by full nodes; yet,
they are sometimes included in blocks, regardless. To avoid
sending redundant inv messages, peers keep track, on a per-
transaction and per-neighbor basis, whether an inv has been
exchanged. This log can be used by protocols to send missing
transactions to a receiver proactively as the block is relayed.

Comparison to Related Work. Xtreme Thinblocks [49]
(XThin) is a robust and efficient protocol for relaying blocks,
and is deployed in Bitcoin Unlimited (BU) clients. The re-
ceiver’s getdata message includes a Bloom filter encoding
the transaction IDs in her mempool. The sender responds
with a list of the block’s transaction IDs shortened to 8-bytes

(since the risk of collision is still low), and uses the Bloom fil-
ter to also send any transactions that the receiver is missing.
XThin’s bandwidth increases with the size of the receiver’s
mempool, which is likely a multiple of the block size. In
comparison, Graphene uses significantly lower bandwidth
both when the receiver is and is not missing transactions.
However, Graphene may use an additional roundtrip time to
repair missing transactions.
Compact Blocks [17] is a protocol that is deployed in all

Bitcoin Core and Bitcoin ABC clients. In this protocol, the
receiver’s getdata message is a simple request (no Bloom
filter is sent). The sender replies with the block’s transaction
IDs shorted to 6-bytes (as well as the coinbase transaction).
If the receiver has missing transactions, she requests repairs
with a followup inv message. Hence, the network cost is 6n
bytes, which is smaller than XThin’s cost of ≈ m log2(f )

8ln(2) + 6n;
however, when the receiver is missing transactions, Compact
Blocks has an extra roundtrip time, which may cost more if
enough transactions are missing. Graphene is significantly
lower in cost than Compact Blocks, as we show in Section 5.3.

Recently, Xthinner [48] was proposed as a variant of Xthin
that employs compression techniques on the list of transac-
tions in a block. Since the author states that Xthinner is not
as compact as Graphene, we do not compare against it [8].

3 THE GRAPHENE PROTOCOL
The primary goal of Graphene is to reduce the amount of
network traffic resulting from synchronization of a sender
and receiver; we do so in the context of block propagation.
To motivate Graphene, consider a protocol that uses a Bloom
filter alone to encode a block containing n transactions. As-
sume the receiver has a mempool ofm transactions that are a
super set of the block. If we set the FPR of the sender’s Bloom
filter to f = 1

144(m−n) , then we can expect the filter to falsely
include an extra transaction in a relayed block about once
every 144 blocks (once a day in Bitcoin). This approach re-
quires −n log2(f )

8 ln(2) bytes, and it is easy to show that it is smaller
than Compact Blocks (6n bytes) whenm < 71982340 + n.
But we can do better: in Graphene, we shrink the size of

the Bloom filter by increasing its FPR, and we remove any
false positives with an IBLT. The summed size of the two
structures is smaller than using either alone. In practice, our
technique performs significantly better than Compact Blocks
for all but the smallest number of transactions, and we show
in Section 5.3 that it performs better than any Bloom-filter-
only approach asymptotically.

We designed two protocols for Graphene, which we define
presently. Both protocols use probabilistic data structures
that fail with a tunable probability. Throughout our exposi-
tion, we use the concept of probabilistic assurance. Specif-
ically, a property A is said to be held in data structure X
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Figure 1: (Left) The receiver’s mempool contains the entire
block; Protocol 1: Graphene manages this scenario. (Right)
The receiver’s mempool does not contain the entire block.
Protocol 2: Graphene Extended manages this scenario.

with β-assurance whenever it is possible to tune X so that A
occurs in X with probability at least β .
In Protocol 1, we assume that the receiver’s mempool

contains all transactions in the block, a typical case due
to the aggressive synchronization that blockchains employ.
This scenario is illustrated in Fig. 1-Left. As we show in
Section 5.3, mempools are sufficiently synchronized to use
only Protocol 1 almost all the time.

In Protocol 2, we do not assume that the receiver’s mem-
pool is synchronized, as illustrated in Fig. 1-Right, which
allows us to apply it to two scenarios: (i) block relaying be-
tween unsynchronized peers; and (ii) intermittent mempool
synchronization. A receiver may not be synchronized with
the sender because of network failures, slow transaction
propagation times relative to blocks, or if the block contains
unpropagated low-fee transactions erroneously filtered out
as spam. Protocol 2 begins when Protocol 1 fails: the receiver
requests missing transactions using a second Bloom filter;
and the sender transmits any missing transactions, along
with a second IBLT to correct mistakes. (Compact Blocks
and XThin also handle this scenario but do so with greater
network bandwidth.)

3.1 Protocols
Our first protocol is for receivers whose mempool contains
all the transactions in the block; see Fig. 1-Left.

PROTOCOL 1: Graphene
1: Sender: The sender transmits an inv (or blockheader)

for a block.
2: Receiver: The receiver requests the unknown block, in-

cluding a count of transactions in her mempool,m.
3: Sender: The sender creates Bloom filter S and IBLT I

from the transaction IDs of the block (purple area in
Fig. 1-Left). The FPR of S is fS =

a
m−n , and the IBLT

is parameterized such that a∗ items can be recovered,
where a∗ > a with β-assurance (outlined in green in
Fig. 2). We set a so as to minimize the total size of S and

I. S and I are sent to the receiver along with the block
header (if not sent in Step 1).

4: Receiver: The receiver creates a candidate setZ of trans-
action IDs that pass through S, including false positives
(purple and dark blue areas in Fig. 2). The receiver also
creates IBLT I′ from Z . She subtracts I △ I′, which eval-
uates to the symmetric difference of the two sets [23].
Based on the result, she adjusts the candidate set, vali-
dates the Merkle root in the block header, and the proto-
col concludes.

In blockchains, the sender knows the transactions for which
no inv message has been exchanged with the receiver (e.g.,
Bitcoin’s filterInventoryKnown data structure); those trans-
actions could be sent at Step 3, and in fact our implementa-
tion does just that. (N.b., the IBLT stores only 8 bytes of each
transaction ID; but full IDs are used for the Bloom filter.)
We use a fast algorithm to select a such that the total

amount of data transmitted over the network is optimally
small; see Section 3.3.1. The count of false positives from
S has an expected mean of (m − x)fS = a, whose variance
comes from a Binomial distribution with parameters (m − x)
and fS . If higher performance is desired that accounts for this
variance, then a∗ should be used to parameterize I instead
of a. We derive a∗ in Section 3.3.1 via a Chernoff bound.

3.2 Graphene Extended
If the receiver does not have all the transactions in the block
(Fig.1-Right), IBLT subtraction in Protocol 1 will not decode.
In that case, the receiver should continue with the following
protocol. Subsequently, we show how this protocol can also
be used for intermittent mempool synchronization. Our con-
tribution is not only the design of this efficient protocol, but
the derivation of parameters that meet a desired decode rate.

PROTOCOL 2: Graphene Extended
1: Receiver: The size of the candidate set is |Z | = z, where

z = x + y, a sum of x true positives and y false positives
(purple and dark blue areas in Fig. 3). Because the
values of x and y are obfuscated within the sum, the
receiver calculates x∗ such that x∗ ≤ x with β-assurance
(green outline in Fig. 3) She also calculates y∗ such that
y∗ ≥ y with β-assurance (green outline in Fig. 4).

2: Receiver: The receiver creates Bloom filter R and adds
all transaction IDs in Z to R. The FPR of the filter is
fR =

b
n−x ∗ , where b minimizes the size of R and IBLT J

in the next step. She sends R and b.
3: Sender: The sender passes all transaction IDs in the

block through R. She sends all transactions that are not
in R directly to the receiver (red area of Fig. 4)
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Figure 2: [Protocol 1] Passing m mem-
pool transactions through S results in a
FPs (in dark blue). A green outline illus-
trates a∗ > a with β-assurance, ensuring
IBLT I decodes.
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Figure 3: [Protocol 2] Passing m trans-
actions through S results in z positives,
obscuring a count of x TPs (purple) and
y FPs (in dark blue). From z, we derive
x∗ < x with β-assurance (in green).

n in block
m in mempool

less than
m − x∗m − x∗m − x∗

not in block

y
FP
s f
ro
m
S

y∗>yy∗>yy∗>y

Figure 4: [Protocol 2] From our bound
m − x∗ > m − x with β-assurance (in
yellow), we can derive a bound for the
false positives from S as y∗ > y with β-
assurance outlined in green.

4: Sender: The sender creates and sends an IBLT J of all
transactions in the block such that b + y∗ items can be
recovered from it. This size accounts for b, the number
of transactions that falsely appear to be in R, and y∗, the
number of transactions that falsely appear to be in S.

5: Receiver: The receiver creates IBLT J′ from the trans-
action IDs in Z . She decodes the subtraction of the two
blocks, J△ J′. From the result, she adjusts set Z , validates
the Merkle root, and the protocol concludes.

As in Protocol 1, we set b so that the summed size of R
and J is optimally small; see Section 3.3.1. We also derive
closed-form solutions for x∗ and y∗; see Section 3.3.2.

3.2.1 Mempool Synchronization.

With a few changes, Protocols 1 and 2 can be used by two
peers to synchronize their mempools. Instead of a block, the
sender places his entire mempool in S and I. The receiver
passes her mempool through S, adding any negatives to H ,
the set of transactions that are not in S. Some transactions
that the sender does not have in his mempool will falsely
pass through S, and these are identified by I (assuming that it
decodes); these transactions are also added toH . If I does not
decode, Protocol 2 is executed to find transactions in the sym-
metric difference of the mempools; all missing transactions
among the sender and receiver are exchanged, including
those in set H . The protocol is more efficient if the peer
with the smaller mempool acts as the sender since S will be
smaller. Section 5.3.2 shows that the protocol is efficient.

3.3 Ensuring Probabilistic Data Structure
Success

Cryptocurrencies allow no room for error: the header’sMerkle
root can be validated with an exact set of transactions only.
Yet, Graphene is a probabilistic solution, and if its failure rate
is high, resources are wasted on recovery. In this section, we

derive the parameters for Graphene that ensure a tunable,
very high success rate.

3.3.1 Parameterizing Bloom filter S and IBLT I.

Graphene sends the least amount of data over the network
when the sum of the Bloom filter S and IBLT I is minimal. Let
T = TBF +TI be the summed size of the Bloom filter and IBLT.
The size of a Bloom filter in bytes, TBF , with false positive
rate fS and n items inserted is TBF = −n ln(fS )

8 ln2 2 [11]. Recall
that we recover up to a∗ items from the IBLT, where a∗ > a
with β-assurance. As we show in Section 3.3.1, a∗ = (1+ δ )a,
where δ is parameterized by β . An IBLT’s size is a product of
the number of items recovered from a symmetric difference
and a multiplier τ that ensures recovery at a desired success
rate. Therefore, given the cost of r bytes per cell, TI is

TI = rτ (1 + δ )a. (1)

When we set fS = a
m−n , then the total size of the Bloom filter

and IBLT in bytes is

T (a) = −n ln( a
m−n )

8 ln2 2
+ rτ (1 + δ )a. (2)

The value of a that minimizes T is either: a = 1; a =m − n;
or the value of a where the derivative of Eq. 2 with respect
to a is equal to zero, which is

a ≈ n/(8rτ ln2 2). (3)

Eq. 3 is approximate as δ is a function of a rather than a
constant. The exact value is closed form but we omit it for
clarity. Furthermore, implementations of Bloom filters and
IBLTs involve non-continuous ceiling functions. As a result,
Eq. 3 is accurate only for a ≥ 100; otherwise the critical
point a′ produced by Eq. 3 can be inaccurate enough that
T (a′) is as much as 20% higher than its true minimum value.
Graphene exceeds the performance of previous work when
Eq. 3 is used to select a. However, implementations that
desire strictly optimal performance should take an extra step.

5
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If Eq. 3 results in a value of a less than 100, its size should
be computed using accurate ceiling functions and compared
against all points a < 100.

Derivation of a∗a∗a∗.We can parameterize IBLT I based on the
expected number of false positives from S, but to expect a
high decode rate, we must account for the natural variance of
false positives generated by S. Here we derive a closed-form
expression for a∗ as a function of a and β such that a∗ > a
holds with β-assurance, i.e. a∗ > a with probability at least β .
Define A1, . . . ,Am−n to be independent Bernoulli trials such
that Pr [Ai = 1] = fS , A =

∑m−n
i=1 Ai , and µ = E[A].

THEOREM 1: Letm be the size of a mempool that con-
tains all n transactions from a block. If a is the number
of false positives that result from passing the mempool
through Bloom filter S with FPR fS , then a∗ ≥ a with
probability β when

a∗ =(1 + δ )a,

where δ =
1
2 (s +

√
s2+ 8s) and s =− ln(1−β)

a
. (4)

A full proof appears in Appendix A. According to Theorem 1,
if the sender sends a Bloom filter with FPR fS =

a
m−n , then

with β-assurance, no more than a∗ false positives will be gen-
erated by passing elements from Z though S. To compensate
for the variance in false positives, IBLT I is parametrized by
a symmetric difference of a∗ = (1 + δ )a items. It will decode
subject to its own error rate (see Section 4), provided that
a < a∗ (which occurs with probability β) and the receiver
has all n transactions in the block. We evaluate this approach
in Section 5.3; see Fig. 12.

3.3.2 Parameterizing Bloom filter R and IBLT J.

Parameterizing bbb. In Protocol 2, we select b so that the
summed size of R and J is optimally small. Its derivation is
similar to a. We show below that y∗ = (1 + δ )y. Thus:

T2(b) =
z ln( b

n−x ∗ )
8 ln2 2

+ rτ (1 + δ )b . (5)

The optimal value of b assuming continuous values is

b ≈ z/(8rτ ln2 2). (6)

Similar to Section 3.3.1, an exact closed form of b exists and
we omit it for clarity; and a perfectly optimal implementation
would compute T2(b) using ceiling functions for values of
b < 100.

Using z to parameterize R and J. Here we offer a closed-
form solution to the problem of parameterizing Bloom filter
R and IBLT J. This is a more challenging problem because x
and y cannot be observed directly.

Let z be the observed count of transactions that pass
through Bloom filter S. We know that z = x + y: the sum of
x true positives and y false positives, illustrated as purple
and dark blue areas respectively in Fig. 3. Even though x is
unobservable, we can calculate a lower bound x∗, depending
on x , z, m, fS and β , such that x∗ ≤ x with β-assurance,
illustrated as a green outline in Fig. 3.

With x∗ in hand, we also have, with β-assurance, an upper
bound on the number of transactions the receiver is missing:
n − x∗ > n − x . This bound allows us to conservatively set
fR =

b
n−x ∗ for Bloom filter R. In other words, since x∗ < x

with β-assurance, the sender, using R, will fail to send no
more than b of the n − x transactions actually missing at the
receiver. IBLT J repairs these b failures, subject to its own
error rate (see Section 4).
We also use x∗ to calculate, with β-assurance, an upper

bound y∗ ≥ y on the number of false positives that pass
through S. The green area in Fig. 4 shows y∗, which is a
superset of the actual value for y, the dark blue area.

The sender’s IBLT J contains all transactions in the block.
The receiver’s IBLT J′ contains true positives from S, false
positives from S, and newly sent transactions. Therefore,
we bound both components of the symmetric difference by
b + y∗ transactions in order for the subtraction operation to
decode. In other words, both J and J′ are parameterized to
account for more items than actually exist in the symmetric
difference between the two IBLTs.

The following theorems prove values for x∗ and y∗.

THEOREM2: Letm be the size of amempool containing
0 ≤ x ≤ n transactions from a block. Let z = x + y be
the count of mempool transactions that pass through S
with FPR fS , with true positive count x and false positive
count y. Then x∗ ≤ x with probability β when

x∗ = argmin
x ∗

Pr [x ≤x∗; z,m, fS ] ≤ 1 − β .

where Pr [x ≤ k ; z,m, fS ] ≤
k∑
i=0

(
eδk

(1 + δk )1+δk
)(m−k )fS

and δk =
z − k

(m − k)fS − 1. (7)

A full proof appears in Appendix A.

THEOREM3: Letm be the size of amempool containing
0 ≤ x ≤ n transactions from a block. Let z = x + y be
the count of mempool transactions that pass through S
with FPR fS , with true positive count x and false positive

6
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count y. Then y∗ ≥ y with probability β when

y∗ = (1 + δ )(m − x∗)fS ,

where δ=
1
2 (s +

√
s2 + 8s) and s = − ln(1 − β)

(m − x∗)fS . (8)

A full proof appears in Appendix A.

Special case:m ≈ nm ≈ nm ≈ n.Whenm ≈ n, our optimization proce-
dure in Protocol 1 will parameterize S and fS to a value near
1, which is very efficient if the receiver has all of the block.
But ifm ≈ n and the receiver is missing some portion of the
block, Protocol 1 will fail. With z ≈ m, Protocol 2 will set
y∗ ≈m and x∗ ≈ 0, and fR ≈ 1; and most importantly, IBLT
J will be sized tom, making it larger than a regular block.
Fortunately, resolution is straightforward. If Protocol 1

fails, and the receiver finds that z ≈m, y∗ ≈m, and fR ≈ 1,
then in Step 2 of Protocol 2, the receiver should set fR to
a fixed value. We set fR = 0.1, but a large range of values
execute efficiently (we tested from 0.001 to 0.2). All mem-
pool transactions are inserted into Bloom filter R, and R is
transmitted to the sender.
The sender follows the protocol as usual, sending IBLT J

along with h transactions from the block not in R. However,
he deviates from the protocol by also sending a third Bloom
filter F intended to compensate for false positives from R.
The roles of Protocol 2 are thus reversed: the sender uses
Theorems 2 and 3 to solve for x∗ and y∗, respectively, to
bound false positives from R (substituting the block size
for mempool size and fR as the FPR). He then solves for b
such that the total size in bytes is minimized for F with FPR
fF =

b
m−h and J having size b+y∗. This case may be common

when Graphene is used for mempool synchronization; our
evaluations in Fig. 14 in Section 5.3.2 show that this method
is more efficient than Compact Blocks.

Alternatives to Bloom filters. There are dozens of varia-
tions of Bloom filters [35, 47], including Cuckoo Filters [24]
and Golomb Code sets [27]. Any alternative can be used if
Eqs. 2, 3, 5, and 6 are updated appropriately.

4 ENHANCING IBLT PERFORMANCE
The success and performance of Graphene rests heavily on
IBLT performance. Using IBLTs over a network has been
studied in only a handful of papers [12, 23, 28, 38, 42], and
current results are generally asymptotic with the size of the
IBLT (the notable exception is Eppstein et al. [23], which we
discuss in Section 2). In this section, we contribute several
important results that allow for IBLTs to be used in practical
systems with reliable precision. IBLTs are deceptively chal-
lenging to parameterize so that j items can be recovered with
a desired success probability of p, using the minimal number
of cells. Only two parameters can be set: the hedge factor,
τ (resulting in c = jτ cells total), and the number of hash
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Figure 5: Parameterizing an IBLT statically results in poor
decode rates. The black points show the decode failure rate
for IBLTs when k = 4 and τ = 1.5. The blue, green and yellow
points show decode failure rates of optimal IBLTs, which al-
ways meet a desired failure rate on each facet (in magenta).
Size shown in Fig. 7.

functions, k , used to insert an item (each function ranges
over c/k cells).

Motivation. Fig. 5 motivates our contributions, showing
the poor decode rate of an IBLT if static values for k and
τ are applied to small values of j. The figure shows three
desired decode failure rates (1−p) inmagenta: 1/24, 1/240, and
1/2400. The black points show the decode failure probability
we observed in our IBLT implementation for static settings
of τ = 1.5 and k = 4. The resulting decode rate is either
too small from an under-allocated IBLT, or exceeds the rate
through over-allocation. The colored points show the failure
rates of actual IBLTs parameterized by the algorithm we
define below: they are optimally small and always meet or
exceed the desired decode rate.

4.1 Optimal Size and Desired Decode Rate
Past work has never defined an algorithm for determining
size-optimal IBLT parameters. We define an implementation-
independent algorithm, adopting Malloy’s [40] and Goodrich
et al.’s interpretation [28] of IBLTs as uniform hypergraphs.
Let H = (V ,X ,k) be a k-partite, k-uniform hypergraph,

composed of c vertices V = V1 ∪ . . . ∪Vk and j hyper-edges
X , each connecting k vertices, one from each of the Vi . The
hypergraph represents an IBLT with k hash functions, j
inserted items, and c cells. Each cell corresponds to a vertex
such that |V | = c and |Vi | = c/k (we enforce that c is divisible
by k). Each item represents an edge connecting k vertices,
with the ith vertex being chosen uniformly at random from
Vi . Vertices Vi represent hash function i , which operates
over a distinct range of cells. The r -core [44] of H is the
maximal subgraph in which all vertices have degree at least

7
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ALGORITHM 1: IBLT-Param-Search
01 Search(j , k , p):
02 cl = 1
03 ch = cmax
04 tr ials == 0
05 L = (1 − p)/5
06 while cl , ch :
07 tr ials += 1
08 c = (cl + ch )/2
09 if decode(j , k , c ):
10 success += 1
11 conf=conf_int(success , tr ials )
12 r = success/tr ials
13 if r − conf ≥ p :
14 ch = c
15 if (r + conf ≤ p):
16 cl = c
17 if (r − conf > p − L) and (r + conf < p + L):
18 cl = c
19 return ch

Figure 6: This algorithmfinds the optimally small size of c =
jτ cells that decodes j itemswith decode success probabilityp
(within appropriate confidence intervals) from an IBLTwith
k hash functions. decode operates over a hypergraph rather
than a real IBLT.
r . H contains a non-empty 2-core iff the IBLT it represents
cannot be decoded.
We seek an algorithm for determining the most space-

efficient choice for c andk that is sufficient to ensure a decode
rate of p for a fixed number of inserted items j. Items are
inserted pseudo-randomly by applying the hash functions.
Therefore, it makes sense tomodel the edge setX as a random
variable. Define Hj,p = {(V ,X ,k) | E[decode((V ,X ,k))] ≥
p, |X | = j}, or the set of hypergraphs (V ,X ,k) on j edges
whose expected decode success rate is bounded by p. Based
on this definition, the algorithm should return

argmin
(V ,X ,k )∈Hj,p

|V |. (9)

Our approach for solving Eq. 9 is to fix j, p, and k and
perform binary search over all possible values for c = |V |.
Binary search is justified by the fact that the expected decode
failure rate is a monotonically increasing function of c , which
can explained as follows. A 2-core forms in (V ,X ,k) when
there exists some group of v vertices that exclusively share
a set of at least 2v edges. Define vertex set U such that
|U | > |V |. Since the j edges in X are chosen uniformly at
random, and there are more possible edges on vertex setU ,
the probability that a given set of 2v edges forms in (U ,X ,k)
must be lower than in (V ,X ,k).

Fig. 6 shows the pseudocode for our algorithm, which re-
lies on two functions. The function decode(j,k,c) takes a
random sample from the set of hypergraphs Hj,p and deter-
mines if it forms a 2-core (i.e., if it decodes), returning True
or False. The function conf_int(s,t) returns the 2-sided
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Figure 7: Size of optimal IBLTs (using Alg. 1) given a desired
decode rate; with a statically parameterized IBLT (k = 4,τ =
1.5) in black. For clarity, the plot is split on the x-axis. Decode
rates are shown in Fig. 5.

confidence interval of a proportion of s successes and t trials.
In practice, we call Alg. 1 only on values of k that we have
observed to be reasonable (e.g., 3 to 15), and prune the search
of each k when it is clear that it will not be smaller in size
than a known result.

We have released an open-source implementation of IBLTs
in C++ with a Python wrapper [5]. The release includes an
implementation of Alg. 1 and optimal parameters for several
decode rates. Compared to a version of our algorithm that
uses actual IBLTs, our hypergraph approach executes much
faster for all j. For example, to parameterize j = 100, our
approach completes in 29 seconds on average (100 trials).
Allocating actual IBLTs increases average run time to 426
seconds.
Fig. 7 shows the size of IBLTs when parameterized op-

timally for three different decode rates. If parameterized
correctly, the number of cells in an IBLT grows linearly, with
variations due to inherent discretization and fewer degrees
of freedom in small IBLTs.

4.2 Ping-Pong Decoding
Graphene takes advantage of its two IBLTs to increase the
decode rate for Protocol 2 in a novel fashion. IBLTs I and J
are different sizes, and may use a different number of hash
functions, but contain the same transactions. When an IBLT
fails to decode completely, it still can succeed partially. The
transactions that are decoded from J can be removed from I,
and decoding I can be retried. Transactions from I can then
be removed from J, and decoding J can be retried; and so on
in a ping-pong fashion. We note that if the count of a decoded
item is 1, then it should be subtracted from the other IBLT;
if the count is -1, then it should be added to the other IBLT.

8
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Figure 8: Decode rate of a single IBLT (parameterized for a
1/240 failure rate) versus the improved ping-pong decode rate
from using a second, smaller IBLT with the same items.

The IBLTs should use different seeds in their hash functions
for independence.
Fig. 8 shows an experiment where we compared the de-

code rate of a single IBLT parameterized to be optimally
small and recover j ∈ [10, 20, 50, 100] items with decode fail-
ure rate of 1 − p = 1/240. We then inserted the same items
into a second IBLT parameterized to hold 0 < i ≤ j items.
When i is the same size as j, the failure rate is (1 − p)2 or
lower. But improvements can be seen for values i < j as well.
When j is small, very small values of i improve the decode
rate. For larger values of j, larger values of i are needed for
decoding. The use of ping-pong decoding on Graphene is
an improvement of several orders of magnitude; results are
presented in Fig. 17 in Appendix C.

This approach can be extended to other scenarios that we
do not investigate here. For example, a receiver could ask
many neighbors for the same block and the IBLTs can be
jointly decoded with this approach.

5 EVALUATION
Our evaluation reaches the following conclusions:
• Graphene Protocol 1 is more efficient than using a Bloom
filter alone, by Ω(n logn) bits. For all but small n, it is more
efficient than deterministic solutions.

• We deployed Protocol 1 worldwide in Bitcoin Cash and
show it performs as expected; and our implementation of
Protocol 1 for Ethereum evaluated against historic data
also shows expected gains.

• Using extensive Monte Carlo simulations, we show that
Graphene Protocols 1 and 2 are always significantly smaller
than Compact Blocks and XThin for a variety of scenarios,
including mempool synchronization.

• In simulation, the decode success rates of Graphene Proto-
cols 1 and 2 are above targeted values.

5.1 Comparison to Bloom Filter Alone
The information-theoretic bound on the number of bits re-
quired to describe any unordered subset of n elements, cho-
sen from a set of m elements is ⌈log2

(m
n

)⌉ ≈ n log2(m/n)
bits [14]. Carter et al. also showed that an approximate so-
lution to the problem has a more efficient lower bound of
−n log2(f ) bits by allowing for a false positive rate f [16].

Because our goal is to address a restricted version of this
problem, Graphene Protocol 1 is more efficient than Carter’s
bound for even an optimal Bloom filter alone. This is because
Graphene Protocol 1 assumes all n elements (transactions)
are stored at the receiver, and makes use of that information
whereas a Bloom filter would not.

THEOREM 4: Relaying a block with n transactions to
a receiver with a mempool (a superset of the block) ofm
transactions is more efficient with Graphene Protocol 1
than using an optimally small Bloom filter alone, when
the IBLT uses k ≥ 3 hash functions. The efficiency gains
of Graphene Protocol 1 are Ω(n log2 n).

A full proof appears in Appendix B. Graphene cannot replace
all uses of Bloom filters, only those where the elements are
stored at the receiver, e.g., set reconciliation.
Asm − n approaches zero, Protocol 1 shrinks its Bloom

filter and approaches an IBLT-only solution. If we check the
special case of Graphene having an FPR of 1 (equivalent to
not sending a Bloom filter at all) then Graphene is as small
as any IBLT-only solution, as expected; Asm − n increases,
Graphene is much smaller than sticking with an IBLT-only
solution, which would have τ (m − n) cells.
Graphene is not always smaller than deterministic solu-

tions. As we show in our evaluations below, for small val-
ues of n (about 50–100 or fewer depending on constants),
deterministic solutions perform better. For larger values,
Graphene’s savings are significant and increase with n.
We leave analytic claims regarding Protocol 2 for future

work; however, below we empirically demonstrate its advan-
tage over related work.

5.2 Implementations
Bitcoin Cash Implementation. We coded Graphene (Pro-
tocol 1) for Bitcoin Unlimited’s Bitcoin Cash client at their
request. It appeared first in edition 1.4.0.0 (Aug 17, 2018), as
an experimental feature and since 1.5.0.1 (Nov 5, 2018) has
been the default. Currently, 686 nodes (operated by persons
unknown to us) are running Graphene on the Bitcoin Cash
mainnet. An updated count of nodes can be found at [1].
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Figure 9: [Deployment on BCH, Protocol 1]: Performance of
Protocol 1 as deployed on the Bitcoin Cash network. The
node was connected to one other peer running the same
code. The x-axis is split across two facets for clarity.
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Figure 10: [Implementation, Protocol 1] An implementation
of Protocol 1 for the Geth Ethereum client run on historic
data. The left facet compares against Ethereum’s use of full
blocks; the right compares against an idealized version of
Compact Blocks using 8 bytes/transaction.
Graphene is part of the formal plans for two major clients
on Bitcoin Cash (BCH): Unlimited [4] and ABC [3].
Fig. 9 shows results from our own peer running the pro-

tocol on the real network from January 9–31, 2019. Fig. 9
also shows results from using Bitcoin Unlimited’s XThin
implementation; however, we have removed the cost of the
receiver’s Bloom filter to make the comparison fair (hence it
is labelled XThin*). As expected, while XThin* costs grows
quickly, the costs of Graphene are almost flat as block size
increases. The cost of Graphene is not monotonically increas-
ing because it can take advantage of an already-synchronized
mempool, if available.
As of now, we have not deployed Protocol 2 (below we

discuss our simulation of Protocol 2). Out of 3,151 Graphene
blocks, all decoded successfully. This statistic also confirms
our two-protocol approach: most of the time Protocol 1 is
sufficient; and correcting failures with Protocol 2 is more
rarely needed. In our deployment, we included several ad-
ditional methods that improve decode rates. For example,
the sender uses Bitcoin’s filterInventoryKnown data struc-
ture to determine if an inv has not been sent or received for

all transactions in the block (in may be in-flight). And the
sender compares the reported size of the receiver’s mempool
to pad out the IBLT slightly. The mechanisms are simple and
practical.
Ethereum Implementation. We implemented Graphene
for Geth, Ethereum’s primary client software, and submitted
a Pull Request [9]. We replayed all the blocks produced on
the Ethereum mainnet blockchain on Jan 14, 2019 (a total
of 5,672 blocks), introducing new message types to com-
ply with Graphene’s protocol. During our test, the size of
the mempool at the receiver was kept constant at 60,000
transactions, which is typical (see https://etherscan.io/chart/
pendingtx). The left facet of Fig. 10 shows the size in bytes
of full blocks used by Ethereum and Graphene. The right
facet compares Graphene (including transaction ordering
information) against a line showing 8 bytes/per transaction
(an idealization of Compact Blocks without overhead).

5.3 Monte Carlo Simulation
Methodology and Assumptions.We also wrote a custom
block propagation simulator for Graphene (Protocols 1 and 2)
that measures the network bytes exchanged by peers relay-
ing blocks. We executed the protocol using real data struc-
tures so that we could capture the probabilistic nature of
Bloom filters and IBLTs. Specifically, we used our publicly
released IBLT implementation and a well-known Python
Bloom filter implementation. In results below, we varied
several key parameters, including the size of the block, the
size of the receiver’s mempool, and the fraction of the block
possessed at the receiver. Each point in our plots is one pa-
rameter combination and shows the mean of 10,000 trials or
more; if no confidence interval is shown, it was very small
and removed for clarity. For all trials, we used a bound of
β = 239/240 (see Eqs. 18 and 30).

In all experiments, we evaluated three block sizes (in terms
of transactions): 200, which is about the average size of Ether-
eum (ETH) and Bitcoin Cash (BCH) blocks; 2,000 which is
the average size of Bitcoin (BTC) blocks; and 10,000 as an
example of a larger block scenario. In expectation of being
applied to large blocks and mempools, we used 8-byte trans-
action IDs for both Graphene and Compact Blocks. Also
for Compact Blocks, we used getdata messages with block
encodings of 1 or 3 bytes, depending on block size [17].

5.3.1 Graphene: Protocol 1.

Size of blocks. Fig. 11 shows the cost in bytes of Graphene
blocks compared to Compact Blocks. We focus on varying
mempool size rather than block size. In these experiments,
the receiver’s mempool contains all transactions in the block
plus some additional transactions, which increase along the
x-axis as a multiple of the block size. For example, at fraction
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Figure 11: [Simulation, Protocol 1] Average size of Graphene
blocks versus Compact Blocks as the size of themempool in-
creases as a multiple of block size. Each facet is a block size:
(200, 2000, and 10000 transactions). (N.b., This figure varies
mempool size; Fig. 9 varied block size.)
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Figure 12: [Simulation, Protocol 1] Decode rate of Graphene
blocks with a Chernoff bound of β = 239

240 (red dotted line),
as block size and the number of extra transactions in the
mempool increases as a multiple of block size.

0.5 and block size 2,000, the mempool contains 3,000 transac-
tions in total. The experiments demonstrate that Graphene’s
advantage over Compact Blocks is substantial and improves
with block size. Also, the cost of Graphene grows sublinearly
as the number of extra transactions in the mempool grows.

Decode rate. Fig. 12 shows the decode rate of Graphene
blocks, as the mempool size increases. In all cases, the decode
rate far exceeds the desired rate, demonstrating that our
derived bounds are effective. Graphene’s decode rate suffers
when the receiver lacks the entire block in her mempool. For
example, in our experiments, a receiver holding 99% of the
block can still decode 97% of the time. But if the receiver
holds less than 98% of the block, the decode rate for Protocol 1
is zero. Hence, Protocol 2 is required in such scenarios.

5.3.2 Graphene Extended: Protocol 2.
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Figure 13: [Simulation, Protocol 2] Graphene Extended cost
as the fraction of the block owned by the receiver increases.
Black-dotted line is the cost of Compact Blocks.

Our evaluations of Protocol 2 focus on scenarios where
the receiver does not possess the entire block andm > n; we
evaluatem = n as a special case.
Size by message type. Fig. 13 shows the cost of Graphene
Extended, broken down into message type, as the fraction of
the block owned by the receiver increases. The dashed line
on the plot shows the costs for Compact Blocks, where the
receiver requests missing transactions by identifying each
as a 1- or 3-byte index (depending on block size) in the origi-
nal ordered list of transactions in the block encodings [17].
(We exclude the cost of sending the missing transactions
themselves for both protocols.)
Overall, Graphene Extended is significantly smaller than

Compact Blocks, and the gains increase as the block size
increases. For blocks smaller than 200, eventually Compact
Blocks would be smaller in some scenarios.
Decode rate. Fig. 17 in Appendix C shows the decode rate
of Graphene blocks; not only does it far exceed the desired
rate, but approaches close to 100% with ping-pong decoding.
Not shown are our simulations of the Difference Digest

by Eppstein et al. [23], which is several times more expen-
sive than Graphene. The Difference Digest is an IBLT-only
solution that is an alternative to our Protocol 2. In that work,
the sender begins by telling the receiver the value n. The
receiver creates a Flajolet-Martin estimate [25] ofm − n, us-
ing ⌈log2(m −n)⌉ IBLTs, each with 80 cells where roughlym
elements are inserted. The sender replies with a single IBLT
of twice the number of cells as the estimate (to account for
an under-estimate).
m ≈ nm ≈ nm ≈ n and mempool synchronization. As described in
Section 3.2.1, Graphene can be used for mempool synchro-
nization, setting n to the size of the sender’s mempool. In
these cases, if peers are mostly synchronized, thenm ≈ n,
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Figure 14: [Simulation, Mempool Synchronization] Here
m = n and the peers have a fraction of the sender’s mem-
pool in common on the x-axis. Graphene is more efficient,
and the advantage increases with block and mempool size.

which is a special case for Graphene discussed in Section 3.3.1.
Our evaluations of this scenario are shown in Fig. 14. In these
experiments, the sender’s mempool has n transactions, of
which a fraction (on the x-axis) are in common with the
receiver. The receiver’s mempool size is topped off with un-
related transaction so that m = n. As a result, Protocol 1
fails and modifications from Section 3.3.1 are employed. As
with previous experiments, Graphene performs significantly
better than Compact Blocks across multiple mempool inter-
section sizes and improvement increases with block size.

6 SYSTEMS ISSUES
6.1 Security Considerations

Malformed IBLTs. It is simple to produce an IBLT that
results in an endless decode loop for a naive implementation;
the attack is just as easily thwarted. To create a malformed
IBLT, the attacker incorrectly inserts an item into only k − 1
cells. When the item is peeled off, one cell in the IBLT will
contain the itemwith a count of -1.When that entry is peeled,
k − 1 cells will contain the item with a count of 1; and the
loop continues. The attack is thwarted if the implementation
halts decoding when an item is decoded twice. Once detected,
the sender can be dropped or banned by the receiver.

Manufactured Transaction Collisions. The probability
of accidental collision of two 8-byte transaction IDs in a
mempool of sizem is ≈ 1 − Exp

( −m(m−1)
265

)
[39]. An attacker

may use brute force search to discover and submit collisions.
SipHash [10] is used by some blockchain protocols to limit
the attack to a single peer.
With or without the use of SipHash, Graphene is more

resilient against such collisions than XThin and Compact
Blocks. Let t1 and t2 be transactions with IDs that collide with

at least 8 bytes. In the worst case, the block contains t1, the
sender has never seen t2, and the receiver possesses t2 but has
never seen t1. In this case, XThin and Compact Blocks will
always fail; however, Graphene fails with low probability,
fS · fR . For the attack to succeed, first, t2 must pass through
Bloom filter S as a full 32-byte ID, which occurs only with
probability fS . If it does pass, the IBLT will decode but the
Merkle root will fail. At this point, the receiver will initiate
Protocol 2, sending Bloom filter R. Second, with probability
fR , t1 will be a false positive in R as a full 32-byte ID and
will not be sent to the receiver.

6.2 Transaction Ordering Costs
Bloomfilters and IBLTs operate on unordered sets, butMerkle
trees require a specific ordering. In our evaluations, we did
not include the sender’s cost of specifying a transaction or-
dering, which is n log2 n bits. As n grows, this cost is larger
than Graphene itself. Fortunately, the cost is easily elimi-
nated by introducing a known ordering of transactions in
blocks. In fact, Bitcoin Cash clients deployed a Canonical
Transaction Ordering (CTOR) ordering in Fall 2018.

6.3 Reducing Processing Time
Profiling our implementation code revealed that processing
costs are dominated heavily by passing the receiver’s mem-
pool against Bloom filter S in Protocol 1. Fortunately, this
cost is easily reduced. A standard Bloom filter implemen-
tation will hash each transaction ID k times — but each ID
is already the result of applying a cryptographic hash and
there is no need to hash k more times; see Suisani et al. [46].
Instead, we break the 32-byte transaction ID into k pieces.
Applying this solution reduced average receiver processing
in our Ethereum implementation from 17.8ms to 9.5ms. Al-
ternative techniques [20, 21, 29] are also effective and not
limited to small values of k .

6.4 Limitations
Graphene is a solution for set reconciliation where there is a
trade-off between transmission size, complexity (in terms of
network round-trips), and success rate. In contrast, popular
alternatives such as Compact Blocks [17] have predictable
transmission size, fixed transmission complexity, use a triv-
ial algorithm, and always succeed. Graphene’s performance
gains increase as block size grows, but is a probabilistic solu-
tion with a (tunable) failure rate.

7 CONCLUSIONS
We introduced a novel solution to the problem of determin-
ing a subset of items from a larger set two parties hold in
common, using a novel combination of Bloom filters and
IBLTs. We also provided a solution to the more general case,
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where one party is missing some or all of the subset. Specifi-
cally, we described how to parametrize the probabilistic data
structures in order to meet a desired decode rate. Through a
detailed evaluation using simulations and real-world deploy-
ment, we compared our method to existing systems, showing
that it requires less data transmission over a network and is
more resilient to attack than previous approaches.
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A THEOREMS FROM SECTION 3.3
For completeness, we provide the proof of a well-known
version of Chernoff bounds that appears commonly in lecture
notes, but not in any formal reference to our knowledge.

LEMMA 1: Let A be the sum of i independent Bernoulli
trials A1, . . . ,Ai , with mean µ = E[A]. Then for δ > 0

Pr [A ≥ (1 + δ )µ] ≤ Exp
(
− δ 2

2 + δ µ
)
, (10)

PROOF: Starting from the well-known Chernoff bound [39]:

Pr [A ≥ (1 + δ )µ] ≤
(

eδ

(1 + δ )1+δ
) µ

(11)

= Exp(µ(δ − (1 + δ )ln(1 + δ ))) (12)

≤ Exp
(
µ

(
δ − (1 + δ )

(
2δ

2 + δ

)))
(13)

= Exp
( −δ 2
2 + δ µ

)
(14)

Above, we rely on the inequality ln(1+x) ≥ x
1+x/2 =

2x
2+x for

x > 0 (see [34]), and that ea−b ≤ ea−c when b ≥ c . 2

THEOREM 1: Letm be the size of a mempool that con-
tains all n transactions from a block. If a is the number
of false positives that result from passing the mempool
through Bloom filter S with FPR fS , then a∗ ≥ a with
probability β when

a∗ =(1 + δ )a,

where δ =
1
2 (s +

√
s2+ 8s) and s =− ln(1−β)

a
. (15)

PROOF: There arem − n potential false positives that pass
through S. They are a setA1, . . . ,Am−n of independent Bernoulli
trials such that Pr [Ai = 1] = fS . Let A =

∑m−n
i=1 Ai and

µ = E[A] = fS (m − n) = a
m−n (m − n) = a. From Lemma

1, we have

Pr [A ≥ (1 + δ )µ] ≤ Exp
(
− δ 2

2 + δ µ
)
, (16)

for δ ≥ 0. The receiver can set a bound of choice, 0 < β < 1,
and solve for δ using the right hand side of Eq. 16. To bound
with high probability, we seek the complement of the right
hand side

β = 1 − Exp
(
− δ 2

2 + δ a
)

(17)

δ =
1
2 (s +

√
s2 + 8s), where s = − ln(1 − β)

a
. (18)

2

THEOREM2: Letm be the size of amempool containing
0 ≤ x ≤ n transactions from a block. Let z = x + y be
the count of mempool transactions that pass through S
with FPR fS , with true positive count x and false positive

14

http://dl.acm.org/citation.cfm?id=982792.982896
https://doi.org/10.1016/j.ipl.2013.11.015
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https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/0378-8733(83)90028-X
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count y. Then x∗ ≤ x with probability β when

x∗ = argmin
x ∗

Pr [x ≤x∗; z,m, fS ] ≤ 1 − β .

where Pr [x ≤ k ; z,m, fS ] ≤
k∑
i=0

(
eδk

(1 + δk )1+δk
)(m−k )fS

and δk =
z − k

(m − k)fS − 1. (19)

PROOF: We can’t observe x or y, but whatever their real
values are, we know their dependency: Y =

∑m−x
i=1 Yi , where

Y1, . . . ,Ym−x are independent Bernoulli trials such that Pr [Yi =
1] = fS .

For a given value x , we can compute Pr [Y ≥ y], the proba-
bility of at leasty false positives passing through the sender’s
Bloom filter. We apply a Chernoff bound [39]:

Pr [y; z,x ,m] =

Pr [Y ≥ (1 + δ )µ] ≤
(

eδ

(1 + δ )1+δ
) µ

(20)

whereδ > 0, and µ = E[Y ] = (m−x)fS . By setting (1 + δ )µ = z − x
and solving for δ , we have

(1 + δ )(m − x)fS = z − x (21)

δ =
z − x

(m − x)fS − 1. (22)

We substitute δ into Eq. 20 and bound the probability of
observing a value of y = z − x or greater, given that the
receiver has x transactions in the block. This realization
allows us to enumerate all possible scenarios for observation
z. The cumulative probability of observing y, parametrized
by z, given that the receiver has at most k of the transactions
in the block, is:

Pr [x ≤ k ; z,m, fS ] =
k∑
i=0

Pr [y; z,k,m] (23)

≤
k∑
i=0

(
eδk

(1 + δk )1+δk
) (m−k )fS

(24)

where δk = z−k
(m−k )fS − 1. Finally, using this closed-form equa-

tion, we select a bounding probability β , such as β = 239/240.
We seek a probability β of observing z from a value x∗ or
larger; equivalently, we solve for the complement:

argmin
x ∗

Pr [x ≤ x∗; z,m, fS ] ≤ 1 − β . (25)

To summarize, x∗ is the smallest number of true positives
such that the cumulative probability of observing y = z − x∗

false positives is at least 1 − β . 2

For good measure, we validated the theorem empirically,
as shown in Fig. 15.
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Figure 15: [Simulation] The fraction of Monte Carlo exper-
iments where x∗ < x via Theorem 2 compared to a desired
bound of β = 239/240 (shown as a dashed red line).
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Figure 16: [Simulation, Protocol 2] The fraction of Monte
Carlo experiments where y∗ > y via Theorem 3 compared to
a desired bound of β = 239/240 (shown as a dashed red line).

THEOREM3: Letm be the size of amempool containing
0 ≤ x ≤ n transactions from a block. Let z = x + y be
the count of mempool transactions that pass through S
with FPR fS , with true positive count x and false positive
count y. Then y∗ ≥ y with probability β when

y∗ = (1 + δ )(m − x∗)fS ,

where δ=
1
2 (s +

√
s2 + 8s) and s = − ln(1 − β)

(m − x∗)fS . (26)

15
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PROOF: First, we solve for x∗ ≤ x with β-assurance using
Theorem 2. We find y∗ = z −x∗ ≥ y by applying Lemma 1 to
Y =

∑m−x ∗
i=1 , the sum ofm − x∗ independent Bernoulli trials

such that Pr [Yi = 1] = fS trials and µ = (m − x∗)fS :

Pr [Y ≥ (1 + δ )µ] ≤ Exp
(
− δ 2

2 + δ µ
)
, (27)

for δ ≥ 0. We select 0 < β < 1, and solve for δ using the
right hand side of Eq. 27. To bound with high probability, we
seek the complement of the right hand side.

β = 1 − Exp
(
− δ 2

2 + δ (m − x∗)fS
)

(28)

(29)

δ =
1
2 (s +

√
s2 + 8s), where s = − ln(1 − β)

(m − x∗)fS . (30)

Then, we set
y∗ = (1 + δ )(m − x∗)fS . (31)

Since, x∗ ≤ x with β-assurance, it follows thaty∗ also bounds
the sum ofm − x Bernoulli trials, where

y∗ = (1 + δ )(m − x)fS , (32)
with probability at least β for any δ ≥ 0 andm > 0. 2

We validated this theorem empirically as well, as shown
in Fig. 16.

B THEOREMS FROM SECTION 5.1
THEOREM 4: Relaying a block with n transactions to
a receiver with a mempool (a superset of the block) ofm
transactions is more efficient with Graphene Protocol 1
than using an optimally small Bloom filter alone, when
the IBLT uses k ≥ 3 hash functions. The efficiency gains
of Graphene Protocol 1 are Ω(n log2 n).

PROOF: We assume that m = cn for some constant c >
1. Our proof is asymptotic. Thus, according to the law of
large numbers, every value δ > 0 (where δ is defined as
in Theorem 1) is sufficient to achieve β-assurance when
choosing values for a∗, x∗, and y∗. Accordingly, we may

proceed under the assumption that δ = 0, i.e. there is no
need to lower the false positive rate of either Bloom filter to
account for deviations because the observed false positive
rate will always match its expected value asymptotically.
Let f , where 0 < f < 1, be the FPR of a Bloom filter

created in order to correctly identify n ≥ 1 elements from
a set of m ≥ 1 elements. The size of the Bloom filter that
has FPR, f , with n items inserted, is −n log2(f ) bits [16].
Let f =

p
m−n , where 0 < p < 1. The expected number

of false positives that can pass through the Bloom filter is
(m − n) p

(m−n) = p. Since 0 < p < 1, one out of every 1/p
Bloom filters is expected to fail.
To correctly identify the same set of items, Graphene

instead uses a Bloom filter with f = a
m−n , where we set

a = n/rt since the Bloom filter is optimal, and use an IBLT
with aτ cells (r bytes each) that decodes with probability p.
The expected number of false positives that pass through
Graphene’s Bloom filter is (m − n) a

(m−n) = a. An IBLT with
1 to a items inserted in it decodes with probability 1 − p.
In other words, one out of every 1/p Graphene blocks is
expected to fail.

The difference in size is

−n log2
(

p

m − n

)
−
(
− n log2

(
a

m − n

)
+ arτ

)
(33)

=n log2(a/p) − arτ (34)
=n(log2 n + log2 1/pτ ) − 1) (35)
=n(log2 n + Ω(τ 2−k )) (36)
=Ω(n(log2 n)), (37)

where Eq. 36 follows from Theorem 1 from Goodrich and
Mitzenmacher [28], given that we have an IBLT with k ≥ 3
hash functions. 2

C FIGURES FOR SECTION 5.3
Fig. 17 shows the decode rate of Protocol 2 when the re-
ceiver is missing some fraction of the block, for block sizes
of 200, 2000 and 10,000. Note that with the use of ping-pong
decoding, the decode rate increases to almost 100%.
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Figure 17: [Simulation, Protocol 2] Decode rate of Graphene
blocks with a Chernoff bound of β = 239

240 , shown by the red
dotted line, as block size and the number of extra transac-
tions in the mempool increases. Error bars represent 95%
confidence intervals.
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