
Tight Coupling of Character, Word, and Place Recognition
for End-to-End Text Recognition in Maps

Archan Ray1?, Aruni Roy Chowdhury2?, Yi Fung3?, Jerod Weinman4† Erik Learned-Miller5?
?University of Massachusetts, Amherst, MA 01003, USA

† Grinnell College, Grinnell, Iowa, USA
1ray@cs.umass.edu, 2arunirc@cs.umass.edu, 3yfung@umass.edu, 4jerod@acm.org, 5elm@cs.umass.edu

Figure 1: The challenges of text recognition in maps. Text recognition in maps comes with extreme challenges such as wide letter
spacing (green box), overlapping words (red boxes), unusual word orientations (yellow box) and dense distractors (blue box).

Abstract

Text recognition in maps is a special case of general
text recognition that features some especially difficult chal-
lenges, including texts at extreme orientations, wide char-
acter spacings, complex text-like distractors, and unusual
non-dictionary strings. Off-the-shelf OCR systems, and
even sophisticated scene text recognition systems do not
work satisfactorily on many map-text recognition problems.
While many OCR and scene text systems have produced
high quality results by considering detection, recognition,
and error-correction as separate components, we believe
that map text recognition can benefit immensely from the
tight coupling of different components of an overall sys-
tem. In particular, we present an end-to-end system for
recognizing text in maps that uses strong coupling in two
different ways. In the first, we train individual character
detectors, and use these detections as inputs in a new word
detection CNN architecture to improve word detection. We
show dramatic increases in word detection accuracy for a
strong baseline detection architecture. In the second contri-
bution, we use a geographically-based lexicon to constrain

our interpretations of initial detections. If the lexicon sug-
gests that the word detection is either too short, we “re-
prime” the word detector by inserting expected characters
locations back into the word detector using a novel input
mechanism. We then rerun the word detector using the ad-
ditional character suggestions, giving a solid improvement
in accuracy. We report end-to-end recognition results on a
public map-text recognition benchmark.

1. Introduction

The recognition of text in historical maps is a sub-area
in document recognition that is receiving increased atten-
tion [4, 6, 57, 58, 64], both because it has important prac-
tical applications and because it presents certain technical
challenges that require new models and methods. In par-
ticular, traditional text recognition methods, including stan-
dard optical character recognition (OCR) systems, and more
specialized systems such as scene-text recognition systems,
simply do not work well in this domain. Text in maps
is characterized by certain hallmarks that make it particu-

1

larly challenging (see Figure 1) – words at extreme orien-
tations, often over an angle span of more than 180 degrees
(Fig. 1, yellow box); large and variable spacings between
letters Fig. 1, green box); confusing distractors, such as a
large numbers of lines and junctions that are easily confused
with characters (Fig. 1, blue box); overlapping strings and
curved baselines (Fig. 1, red boxes). While traditional text
recognition systems may partially deal with some of these
issues, the confluence of them can cause traditional methods
to break down.

Word recognition systems generally have separate com-
ponents for detection, segmentation, and recognition of
characters, and similar components for detection, segmen-
tation and recognition at the word level. Some systems are
strictly “feed-forward”, in such a system once a decision has
been made about a character, it cannot be changed, even if
higher level context suggests that it is wrong. Many sys-
tems, such as hidden Markov models [2, 40], hedge their
bets on low-level tokens like characters by specifying a
probability distribution over them, and use higher level con-
text (such as the probabilities of longer sequences) to re-
solve ambiguous low-level symbols. Probabilistic models
provide elegant systems for managing uncertainty and mak-
ing maximum likelihood decisions. However, given they
have been outperformed by neural network architectures on
a wide variety of tasks, this raises the question of how to
best incorporate feedback, naturally handled in probabilis-
tic systems, into neural network style models.

There are several possible approaches to unify low-level
and high level systems in a complex structured output prob-
lem like map text recognition. One method is co-training
a system to output intermediate values, such as character
labels, even though they are not strictly needed during the
final output, in a multiple-task learning (MTL) setup. An-
other class of methods are based on “attention”, where im-
portant parts of an input can be revisited for more detailed
analysis (see, e.g. [52]).

In this paper, we suggest two novel forms of feedback
in a map text recognition system that dramatically improve
its performance. While it is theoretically feasible to train
a standard neural network from scratch to develop similar
structure, we will argue that the amount of training data re-
quired to do this would be prohibitive. Thus, our feedback
mechanisms provide more of a mechanism to improve the
statistical efficiency of a word recognizer rather than some
fundamental new theoretical capability.

We are motivated by the following observations – first,
in complex images like maps, detecting letters can be an
initial step in finding words, but words can also be used to
find letters. E.g., whether or not a word should be “termi-
nated” after a particular character is often judged not by the
spacing around the word (as it is in regular optical character
recognition) but rather, by whether the recognized string is

complete yet. In cases where the spacing of letters is very
large, the only clue that the word has not ended yet is that
we don’t yet have a recognized string (e.g. green box in Fig-
ure 1). Second, in a highly cluttered map, a reliable way to
find words may be to first understand the orientation of a
particular character, and then form an imaginary baseline
under that character. We then search for a word consistent
with that suggested baseline. In this case, it is clear that
some characters provide more orientation information than
others. E.g., an “Oh” written as a perfect circle may be rec-
ognizable, but is not informative of the word’s orientation.
An “X” has four possible orientations, but the letter “E” just
has a single reasonable orientation. Third, in addition to the
cues that words give for finding letters, and that letters give
for finding words, a good modern CNN-based detector, such
as the Faster R-CNN [44] or EAST [68], can also provide
a good baseline based on the Gestalt of a word impression.
However, as we shall see below, even such advanced mod-
ern detectors do not do a great job at detecting words in an
error free manner.

Based on these observations, we have designed a sys-
tem that incorporates tight feedback among character rec-
ognizers, word detectors, word recognizers, and lexicons in
a CNN based model. We make the following contributions:
• We present a novel neural network architecture in

which information about every individual character
detection in an entire map, including the type of char-
acter, its location, its orientation, and its scale, can be
provided as input to the network to facilitate the train-
ing of a word detector.
• We provide a mechanism in which our initial word

guesses can be used to hypothesize that the original
word detection was truncated; triggering a modifica-
tion of the original word detection. We show that these
“re-detections” improve both detection and recogni-
tion performance.
• We provide all of the components of an end-to-end

system for map text recognition, including character
recognition, word detection, word recognition, and
feedback mechanisms discussed above.

The paper is organized as follows – we discuss prior
work in map text recognition and related areas like scene
text recognition in Sec. 2, our methodology in Sec. 3, the
experimental details in Sec. 4 and conclusion in Sec. 5.

2. Related work
Text detection. The deep learning era has shown rapid

advancement in computer vision techniques. However, text
detection from natural scenes and documents has remained
a challenging problem given the presence of extreme varia-
tions in forms, shapes and styles of scene text. As convolu-
tional neural networks (CNNs) became more powerful, the
hand crafted features from classical methods [25, 39, 60, 62,

63, 39, 7, 28, 53, 56, 11, 22] came to be replaced by end-
to-end learnable representations. Pixel level methods (e.g.
[61, 67, 16]) learn to predict pixel regions corresponding to
texts in images. This is followed by a grouping algorithm to
construct contiguous regions of text in the image. The in-
stance level methods (e.g. [8, 20, 35]) use object detection
pipelines to predict text regions. The region proposal-based
methods (e.g. [26, 31, 37, 45, 66, 65]) builds on the R-CNN
framework [13, 44, 14] which predicts region proposals fol-
lowed by classification of these regions to determine texts.
Anchor-based methods (e.g. [18, 35]) are generally deriva-
tive of the Single Shot Detector (SSD) [32]. The origi-
nal image is split into patches and regions of interest for
each patch are pre-defined. Prediction and regression are
done only for these pre-defined regions. Textboxes [30, 29]
adapts SSD [32] by allowing for quadrilaterals instead of
bounding boxes. This helps in detecting texts in multiple
orientations. SegLink [47] uses a fixed aspect ratio for all
anchors. The links between anchor boxes are then predicted
by the network. It works especially for long and multi-
oriented text. EAST [68] uses the U-Net architecture [46]
(a gradual up-sampling procedure) to combine feature maps
with varying receptive field sizes.

Wordspotting. The notion of wordspotting—matching
word images without explicitly recognizing them—was pi-
oneered by Rath and Manmatha [41], who used the tech-
nique to identify additional instances of a given word
(through its image) in a corpus of historical documents, i.e.,
handwritten letters. Alamazàn et al. [1] expanded the util-
ity of this approach by learning projections from different
modalities (e.g, image and text) into a shared embedding
space. While still useful for query-by-image matching, the
technique allows us to find the the best matching string
from a lexicon of words by projecting into the embedded
space. Wang and Belongie [55] used this alternate notion of
wordspotting—recognition from a restricted vocabulary—
in the scene text domain.

End-to-end text detection and recognition. The last
decade saw an explosion of work focused on robust read-
ing, namely scene text. Most of these works were focused
on either detection or recognition, but the field has more
recently begun to focus on end-to-end systems and eval-
uations. Wang et al. [54] generalized their wordspotting
method to include a detection phase, using a random fern
model on HOG features as a generative likelihood for in-
dividual characters. Jaderberg et al. [24] addressed the
poor localization of word bounding boxes with a learned
box regression stage. Dey et al. [10] explore the impact
of improper word segmentation on word recognition in a
wordspotting framework, addressing the issue of poor word
localization. Tong et al. [19] and Liu et al. [33] simulta-
neously learn shared features for both detection and recog-
nition by completely coupling the loss functions for both

stages, saving computation and also improving recall. Sim-
ilarly, Gomez et al. [15] directly combine a CNN for de-
tecting text regions with a regression output that directly
produces the PHOC representation of Alamazàn et al. [1].
Their combined network enables a reasonably fast search
for any image containing a given word, in addition to the
usual method of finding the best match from a given lex-
icon for any detected region. In a similar context, Liu et
al. in [34] and Busta et al. in [3] uses text proposals from
EAST [68] and YOLOv2 [43]. Bilinear sampling is used
on the detection vectors and CTC-based recognition meth-
ods are used. He et al. [68] also uses EAST for detection of
regions and combine them with character spatial informa-
tion in their attention-based recognition branch.

Map processing. Much of the work on map understand-
ing is from early document analysis literature [12, 4, 5];
Chiang et al. [6] provide a comprehensive review of the
field. Despite the plethora of deep-learning based ap-
proaches for scene text detection, such approaches have not
yet been applied to historical maps in the literature. Taraf-
dar et al. [50] propose a two-stage approach. Following
a connected component analysis, initial characters are de-
tected and identified. If these detections represent a partial
lexicon word (i.e., with a letter missing from the middle),
a more rigorous search for the missing character is made,
subject to appropriate geometric constraints. Moreover, the
existing exemplars of characters already detected are used
as models in the search, an important form of feedback. Yu
et al. [64] correct recognition errors, which may or may not
be due to poor bounding boxes, by merging the OCR output
from a set of geographically aligned maps. Several works in
map reading have used geographical dictionaries or charac-
ter similarities to aid in recognition. Weinman [57, 58] uses
an automatically determined geographical alignment to pro-
duce a pixel-specific lexicon for detected words. The work
also uses a CNN for robust word recognition.

3. Methodology
Figure 2 shows an overview of our end-to-end map word

recognition system. Our system relies heavily on the PHOC
representation of Alamazàn et al. [1], and will be discussed
in Sec. 3.3. Our system progresses according to the follow-
ing sequence of events:

1. We run 36 separate character detectors on the input
map. Each character detection includes the character
detected, its orientation, and its bounding box, which
includes scale and location.

2. All of the information about the detected characters
is passed as additional inputs, along with the original
map, to a word detector. The information about the de-
tection of each separate character (A, B, ..., Z, 0, ..., 9)
is passed in 36 separate layers, along with the 3 RGB
layers of the original map image, to the word detector

Figure 2: Flowchart of map word detection. The first step is the detection of individual characters at arbitrary positions, scales and
orientations within the map. These detections are then encoded in 36 binary layers as inputs, along with the original map image to a word
detector. The output from the word detector is input to the pre-trained PHOC Net (word recognizer). The word recognizer predicts uffalo,
which is recognized as a one character shortening of Buffalo. The missing letter ’B’ is fed back through the system as though it were
recognized, to “prime” the word detector. The red lines denote the feedback path. Finally, the word is re-detected and re-recognized.

CNN.
3. The word detector outputs an initial set of word de-

tections for the map. Of course, it may include true
positives, false positives, and partial detections. Non-
maximal suppression is done to eliminate duplicate de-
tections.

4. For each word detection, a crop of the word is sent to
a word recognizer, whose task is to create the PHOC
vector representation of the cropped section of the
map.

5. The PHOC vector is compared against a pre-computed
database of PHOC vectors that correspond to an “ex-
tended lexicon” for each map (see Sec. 3.3.1).

6. The word from the extended lexicon that best matches
the initial recognition is determined. If this word is a
non-truncated word, the system outputs this word as its
final guess. Otherwise, it performs another iteration as
follows.

7. When a truncated word is matched, the missing let-
ters from that word are written back into the character
detection layers in their expected positions, and the al-
gorithm is started again from step 2.

In the following Sec. 3.1 we describe our character de-
tectors and in Sec. 3.2 we describe the word detector CNNs.
This is followed by the word recognition model in Sec. 3.3.
In Sec. 3.4 we discuss how we use the recognition model to
improve the performance of the detectors.

3.1. Character detection with approximate labels

Our goal is to obtain approximate locations for individ-
ual characters in a map image. However, the training an-
notations consist of ground truth bounding boxes for words
and corresponding labels – the precise locations of individ-
ual characters in a word are not available as ground-truth.

Figure 3: Approximate character location estimates. Locations
of “A” and “a” are marked with blue bounding boxes. Note that
certain challenging cases can still be missed, like the rotated “A”
in SANGRE.

We first describe a pseudo-labeling strategy to accurately
estimate character locations given word-level annotations.
Individual character detectors are then trained on this set of
approximate character locations.

Parsing characters from word annotations. While
majority of text detection datasets tend to contain only word
level annotations, our the first step requires us to obtain
good estimates of character locations within a given word
annotation. There are two ways of solving this issue – one,
use approximate estimates from ground truth annotations.
With conservative estimates it can almost always be ensured
that a given character is contained with an estimated region.
But this comes with the added disadvantage of containing
other characters or distractors and non-centered bounding
boxes. Two, we can use character classifiers to get charac-
ter location estimates within a word. In [51, 21], the authors

have shown that this can be achieved using detectors based
off a VGG16 [48] backbone.

One-versus-all character detectors. We train individ-
ual character classifiers in a one-versus-all set up on an ex-
ternal dataset of scene text character crops (ICDAR [27] and
Chars74K [9] datasets). Given a word annotation (location
in an image and the word as text), we have a restricted set of
possible characters than can be present in that word-image.
We run character classifiers corresponding to each charac-
ter in the annotated word on all possible crops to obtain an
estimate for the location of each character in that word. The
exact implementation details such as localizing multiple in-
stances of the same character in a word etc. are deferred to
the Supplementary Material.

Constructing a multi-class CNN for character detection
would lead to a network which may be confused between
shapes that closely resemble a certain class of the outputs
– e.g. a partial crop of “d” can be easily confused with a
“c”. Instead, for each character class, we retrain a separate
detector model to detect it in the image in a one vs. all setup.
This ensures a large pool of negative examples, allowing the
network to focus on one unambiguous positive category and
resulting in robust character classifiers.

Applying all 36 detectors to each map gives us noisy es-
timates of the characters in each map (Figure 3 shows this
for detecting upper and lowercase “a”). Our goal is to use
these character estimates to enhance the performance of a
word detector, by giving the detector clues for where to look
for words in the map. There are several ways to accomplish
this, as described in the next section.

3.2. Word detection with character-level priming

The character detections obtained are very informative
of the regions which may contain a word. For example con-
sider two a’s detected in the word “national”. We would
be naturally inclined to look for the existence of other char-
acters in that region and if found, we know that these char-
acters are to be clubbed together to construct a word. We
employ a similar strategy to cue the word detector to look at
regions containing characters detections for possible words.
It may so happen that a false positive may exist in the char-
acter detection, but we expect that as our detector trains
on ground-truth word annotations, it will be able to reason
about the plausible associations of characters and learn to
reject isolated spurious character detections provides as in-
puts. We call this approach “priming” and explore two vari-
ants – firstly, we input all the detected masks corresponding
to each character in a single extra channel (see Figure 4),
resulting in a 4-channel input image (3 RGB channels and
one binary mask). This allows the word detector to be aware
of all character detections in the mask (some of which may
be overlapped). Secondly, to allow the word detector to dis-
tinguish among different classes of characters, we put de-

(a)

(b)

(c)

Figure 4: Character detection masks. (a) portion of the original
map; (b) center-lines of the bounding boxes of detected charac-
ters marked in blue; (c) the character detections are represented
as masks which are then fed back to the word detector as an extra
input channel, priming the network to focus on areas of the image
that are more likely to have words.

tections for each character class in a separate binary mask,
resulting in a 39 channel input image (36 character channels
of binary masks and 3 RGB channels). An example of this
is shown in Figure 5. We then modify the architecture of
the word detector’s initial layer to accept the modified input
images. We specifically did not use bounding boxes to cre-
ate the character masks because their orientations are highly
ambiguous, instead using the center-line of the boxes.

Figure 5: Noisy character detections. Illustrative examples of
visualized noisy character estimates, obtained as in Sec. 3.2 (a
unique color is used for each character). E.g. the letter “O” is
denoted in red, appearing in HUNTINGTON and Roanoke; “T” is
correctly detected in two places in HUNTINGTON (marked in pur-
ple). Note that the character model can distinguish between the
letter “O” and numeral “0” in 10.

This concludes the description of our detection pipeline
in the first forward pass of an input image through the sys-

tem. However, later, if we discover that certain letters of a
word went undetected, we can add hypothesized detections
for missing letters back into these detection map layers and
rerun the detector (detailed below).

3.3. Adapting PHOCNet [49] for word spotting

The PHOC representation was introduced in [1], and an
architecture to learn this representation from images for
word spotting was introduced in [49]. An example im-
age explaining the PHOC representation is shown in Fig-
ure 6. We use the same architecture of as PHOCNet[49].
The initial layer and final layers are reshaped to fit our re-
quirements. We re-scale each detection to a fixed size of
135 × 487 before feeding it into PHOCNet. We augment
the PHOC representation with additional bins to account for
case sensitivity of letters and to handle special characters
present in the detected regions.

Figure 6: PHOC representation. The above figure shows a two
level representation of the word Route9. The bins for PHOC are
defined as 26 lower case characters, 26 upper case characters, 10
bins for numerals 0-9 and one bin for the & symbol. Level 1 puts
a 1 at every bin that appears in the word, and a zero elsewhere. In
Level 2, the word is split in half – “Rou” and “te9”, resulting in
two vectors. After a certain depth of levels, all the sub-vectors are
concatenated to form a final PHOC representation.

3.3.1 Extended lexicon

We now describe how a lexicon is created for word spotting
by using geo-spatial data.
Incorporating geo-spatial information. Each image in
our experimental database is associated with a geo-tagged
list of possible names of places in the image (henceforth
referred to as GIS). We cross reference the learned PHOC
embedding from each detected region with the PHOC em-
beddings of the words appearing in the GIS. For every map
we construct an extended lexicon using the GIS informa-
tion. Maps can be localized using the prior work of [59]
and given their location, list of place names can be obtained
from a GIS toponym dictionary. Thus, we can construct a
list of geographic terms from an expanded region around a
map.
Additional lexicon expansions. The above list is aug-
mented with 5000 most frequent English words, up to 500

Roman numerals, and integers from 0 to 99. In addition, for
each word in the extended lexicon we can create three ver-
sions from the same word – (i) by converting each word to
all upper case; (ii) all lower case; (iii) leading uppercase by
all lower case example, e.g. “Rudolph” will be converted
to “RUDOLPH”, “rudolph” and “Rudolph”. We further
augment this list by adding truncated versions of all words
of length greater than equal to three. The truncations are
of the form of dropping the first letter or dropping the last
letter from the word, e.g. “Rudolph” gives rise to the new
words “Rudolp”, “udolph” and “Rudolph”. We call
the initial word in the extended lexicon as the root word,
the subsequent versions of case sensitive words as altered
case words and the words with dropped first or last charac-
ter as decapitated words.

In the next Sec. 3.4 we discuss the ways we introduce
feedback and incorporate them in learning algorithm.

3.4. The feedback loop from recognition

We briefly discussed how feedback could be added from
the results of the character detector at the beginning of this
section. In this section, we discuss about how the recognizer
helps improve detection accuracy.

For each detection, we compare its PHOC representation
to the extended lexicon. If the root word is recognized, we
stop and report the detection. If any derived word is rec-
ognized, we identify if it is a decapitated word. If it is, we
use the following methods to improve the recognition accu-
racy — (i) we can match the derived word to its root word
(e.g. after detecting “udolph” we can match it to the root
word “Rudolph”); (ii) we can go back to the map, extend
the detected region in the direction of the missing character
and redo word spotting (Sec 3.3). For (ii), if the new region
detection matches with the root word we call it an extended
detection; (iii) once we have the extended detections, we
again go back to the map and create masks for the particu-
lar character. Then, we re-run detection followed by word
spotting on these modified inputs.

In the next part (Sec. 4), we begin by describing our
dataset followed by the evaluation of our method and com-
parisons with relevant baselines.

4. Experiments
4.1. Dataset description

We perform our experiments on a curated list of 31 his-
torical maps [42] chosen from nine atlases in the David
Rumsey Map Collection. 1 The maps are of U.S. regions
and are dated between the late 19th and early 20th century,
typically of sizes 3000×3000. The images and correspond-
ing annotations for word detection and recognition can be
obtained from [42]. The train/val/test splits used to report

1https://www.davidrumsey.com

our 5-fold cross-validation results are summarized in Ta-
ble 1. It should be noted that the annotations are not just
rectangular bounding boxes around a word, but can also be
oriented polygons. Each rectangle or polygon is associated
with a label containing the string corresponding to the word
in the image.

Table 1: Dataset description for detection. Here we describe the
number of images and total annotations in the maps dataset [42].
Note here the average number of annotations are reported for train-
ing, validation and test data as we do five-fold cross-validation for
training the models.

#images #annotations
Train 18 17,151

Validation 7 9,136
Test 6 7,668

4.2. Baselines and ablation settings

We have experimented with Resnet 50 [17] as our back-
bone network for the task of text detection. We report re-
sults here using the EAST word detector (results using the
Faster R-CNN architecture [44] are in the Supplementary
Material). For recognition, we use the PHOCNet architec-
ture presented in [49]. We now discuss our implementation
details and experimental settings, along with ablations, to
show the efficacy of our proposed methods:
Ablation settings for detection.
• EAST: we use the EAST detector with a Resnet-50

backbone. We use the same architecture as in the orig-
inal work. We use our map data to finetune the fourth
block of Resnet-50, feature merging branch and the
output layer.
• EAST+1C: single-channel approximate character lo-

calization masks are appended to the input RGB im-
age. This shows the effect of priming the word detec-
tor with character level detections. The first convolu-
tion layer of the first block along with the fourth block
of Resnet-50, feature merging branch and output layer
is finetuned for this model.
• EAST+36C: the results of character detection are ap-

pended as separate channels to the input image, one
for each character class. This allows the model to rea-
son separately about the presence of individual charac-
ters in a region, their effect on the presence of a word
and its effect on word detection. The finetuning of this
model is similar to EAST+1C.
• EAST+36C+feedback: information from the word

spotting module is fed back into the detector as de-
scribed in Sec. 3.4. The feedback information is pro-
vided on-the-fly during test time, without requiring the
word detectors to be re-trained.

Ablation settings for word-spotting.

• PHOC: as mentioned in Sec. 3.3, the baseline method
used for recognition is PHOCNet [49]. We have used
the same architecture as in the original work. We re-
trained the network from scratch to detect words. The
baseline is trained to recognize words irrespective of
their case. The bounding box annotations in the train-
ing images is used as the training data. The lexicon
used for word-spotting is created from the GIS data
associated with the maps.
• PHOC+wordvar: the lexicon from GIS is expanded

with word variations as described in Sec. 3.3.1.
• PHOC+wordvar+ext: re-doing detection and word-

spotting with feedback from the truncated-word-
extension stage (PHOC+wordvar), as described in
Sec. 3.4 (iii).

Ablation settings for the end-to-end pipeline.
• EAST+36C→ PHOC: the best word-detection model

output is fed into the best-performing word-spotting
model.
• EAST+36C+feedback → PHOC+ext: the effect of

incorporating feedback from word-spotting into the
word detection model, and then re-running word-
spotting.

Implementation details. The detection architecture re-
quires a fixed sized input (512× 512 for Resnet-50). How-
ever, the images in the map dataset are of the order of
3000 × 3000 pixels. If we shrink the image to the input
size of the networks, then we lose a huge amount of in-
formation. Moreover, the smaller texts become illegible.
Therefore, we use a sliding window approach to feed the
image into the detection network. To avoid words getting
broken between consecutive windows we keep overlaps of
200 pixels between windows. The output of the detector
may contain overlapping bounding-box predictions, which
is handled by non-maximal suppression (NMS).

4.3. Results

Detection. The detection results on the map-dataset are
shown in Table 2. The baseline EAST detector trained on
our dataset shows relatively low precision and recall, with
an F1-score of 0.426. When we add the character detec-
tion information back into the image, the precision and re-
call improves, leading to an F1-score of 0.551 and 0.675 for
the 1 channel and 36 channel character masks, respectively.
While using a single-channel character location mask does
show some improvement, providing this information as sep-
arate channels for each character class allows the detector
to reason about how individual characters are grouped into
words, resulting in more information that helps the task of
word detection.

Word-spotting. The baseline PHOC [49] is trained with
the SynthText dataset [23] and finetuned with the word re-
gions from map annotations. The results are summarized in

Table 2: Comparison of proposed detection algorithms on maps
dataset [42].

Method Precision Recall F1-score
EAST 0.431 0.417 0.426
EAST+1C 0.541 0.560 0.551
EAST+36C 0.673 0.677 0.675
EAST+36C+
feedback 0.682 0.701 0.691
Finetuned
MASK-textspotter [36] 0.603 0.764 0.674

Table 3. In section 3.3.1, we discussed the various versions
of lexicons we obtained from the GIS. The basic lexicon
consisting of concatenated GIS information yields 39.88%
accuracy using the output of the EAST+36C detector. When
we include word variations the performance increases to
41.08%. This is because the variation of the root word al-
lows from correct spotting of decapitated word detections.
When using feedback we get a further improvement. The
feedback information helps to break ties for similar derived
words with dissimilar root word. E.g. consider the root
words Carfield and Hatfield. Consider a partial de-
tection where the detector gets only “field”. Extending
the bounding box to the left would include the missing pre-
fix, allowing for a better match to the correct root word.

Table 3: Comparison of the proposed recognition algorithms on
multiple versions of GIS data for maps dataset [42].

Method Accuracy (%)
PHOC 39.88
PHOC+wordvar 41.08
PHOC+wordvar+ext 43.62

End-to-end recognition. We now consider the over-
all performance of the entire detection and recognition
pipeline. There are certain points to consider when eval-
uating end-to-end results. E.g. an extremely high-recall
recognition model might get around 99% accuracy, but if
the detector in that pipeline has either a very low recall or
extremely bad precision, the overall performance will be
heavily penalized despite the high-performing recognizer.
Similarly, have a weak recognizer coupled with a high-
performing detector will also result in sub-optimal end-to-
end performance. We compute the Precision and Recall
metrics as follows — any true positive in both detection and
recognition is considered a true positive for the whole sys-
tem. Any false positive in detection and any true detection
subsequently not recognized correctly is considered a false
positive. A false negative for the end-to-end system is any
bounding box which is not detected by the detector. Having
defined all the terms we can now compute the precision and

recall for the whole system.
We consider the extended character detections to im-

prove detection as well as recognition accuracy. The fi-
nal end-to-end system (“EAST+feedback+PHOC”) is com-
pared with the “EAST+PHOCNet” with the extended lexi-
con. While the latter performs with an F1-score of 0.4723,
our final model’s F1-score is 0.4948. The results are com-
piled in Table 4.

Table 4: End-to-end comparisons for the complete pipeline of text
detection and recognition showing the effect of feedback.

Method Precision Recall F1-score (%)
EAST to PHOC 0.4084 0.5598 0.4723
EAST+feedback

to PHOC 0.4244 0.5933 0.4948

5. Discussion and Conclusions
One of our main contributions is the addition of ex-

tra channels to record the results of 36 character detectors
which are then used as addition inputs to our word detectors.
In addition to detecting words that may otherwise be com-
pletely missed, there is another benefit to these extra chan-
nels. Object detectors tend to break the word regions into
separate parts when used for text detection, leading to poor
confidence scores for the sub-regions. To mitigate this in
[38], the authors have used multiple RPNs and aggregated
the proposed anchors. In this work, we propose a simpler
mechanism to overcome this problem. The addition of the
extra character channels cues the detectors to look at ex-
tended regions. The masks strengthen the response for tex-
tual regions increasing the likelihood of correct detection.

Another major contribution is the feedback from the lex-
icon to the detector, giving us a way to revist the detec-
tions and find previously missed letters. Consider the word
“Brattleboro” and suppose the cropped detection says
“Brattle”. The closest English word to match this would
be “Battle”. Let us assume the recognizer matches with
“Brattle” and “Battle” using our variations of the
GIS lexicon. Since “Brattle” is a derived word from
“Brattleboro”, we go back to the map and extend the
detection boundary towards the right of the original detec-
tion. Now the new cropped image has “Brattleb” writ-
ten in it. If we compare the recognized word now, the
PHOC-distance between the embeddings of the cropped re-
gion and “Brattleboro” would decrease and the PHOC-
distance between the cropped region and “Battle” would
increase. This helps in correctly identifying the word or its
root word in the GIS lexicon.

We show consistent performance gains on a challeng-
ing problem by incorporating feedback and priming mech-
anisms at various levels of the detection and recognition

pipeline. The improved performance on this specific do-
main suggests a general approach for designing pipelines
that incorporate such feedback at multiple levels in general
object detection as future work.

6. Acknowledgement

This work is supported by the National Science Founda-
tion under Grant No.:1526350.

References
[1] J. Almazán, A. Gordo, A. Fornés, and E. Valveny. Word spot-

ting and recognition with embedded attributes. IEEE Trans.
Pattern Anal. Mach. Intell., 36(12):2552–2566, 2014. 3, 6

[2] L. E. Baum and T. Petrie. Statistical inference for proba-
bilistic functions of finite state markov chains. The annals of
mathematical statistics, 37(6):1554–1563, 1966. 2

[3] M. Busta, L. Neumann, and J. Matas. Deep textspotter: An
end-to-end trainable scene text localization and recognition
framework. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2204–2212, 2017. 3

[4] R. Cao and C. Tan. Text/graphics separation in maps. In
D. Blostein and Y.-B. Kwon, editors, Graphics Recognition,
volume 2390 of Lecture Notes in Computer Science, pages
167–177. 2002. 1, 3

[5] Y.-Y. Chiang and C. A. Knoblock. Classification of line and
character pixels on raster maps using discrete cosine trans-
formation coefficients and support vector machine. In Proc.
Intl. Conf. on Pattern Recognition, volume 2, pages 1034–
1037, 2006. 3

[6] Y.-Y. Chiang, S. Leyk, and C. A. Knoblock. A survey of
digital map processing techniques. ACM Comput. Surv.,
47(1):1:1–1:44, May 2014. 1, 3

[7] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh,
T. Wang, D. J. Wu, and A. Y. Ng. Text detection and char-
acter recognition in scene images with unsupervised feature
learning. In Document Analysis and Recognition (ICDAR),
2011 International Conference on, pages 440–445. IEEE,
2011. 3

[8] Y. Dai, Z. Huang, Y. Gao, Y. Xu, K. Chen, J. Guo, and
W. Qiu. Fused text segmentation networks for multi-oriented
scene text detection. In 2018 24th International Conference
on Pattern Recognition (ICPR), pages 3604–3609. IEEE,
2018. 3

[9] T. E. de Campos, B. R. Babu, and M. Varma. Character
recognition in natural images. In Proceedings of the Interna-
tional Conference on Computer Vision Theory and Applica-
tions, Lisbon, Portugal, February 2009. 5

[10] S. Dey, A. Nicolaou, J. Lladós, and U. Pal. Evaluation of the
effect of improper segmentation on word spotting. CoRR,
abs/1604.06243, 2016. 3

[11] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natu-
ral scenes with stroke width transform. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 2963–2970. IEEE, 2010. 3

[12] L. A. Fletcher and R. Kasturi. A robust algorithm for text
string separation from mixed text/graphics images. IEEE
Trans. on Pattern Anal. Mach. Intell., 10(6):910–918, 1988.
3

[13] R. Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 3

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,
2014. 3

[15] L. Gómez, A. Mafla, M. Rusinol, and D. Karatzas. Single
shot scene text retrieval. In Proc. European Conf. on Com-
puter Vision, 2018. 3

[16] D. He, X. Yang, C. Liang, Z. Zhou, A. G. Ororbi, D. Kifer,
and C. Lee Giles. Multi-scale fcn with cascaded instance
aware segmentation for arbitrary oriented word spotting in
the wild. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3519–3528,
2017. 3

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 7

[18] P. He, W. Huang, T. He, Q. Zhu, Y. Qiao, and X. Li. Single
shot text detector with regional attention. In The IEEE Inter-
national Conference on Computer Vision (ICCV), volume 6,
2017. 3

[19] T. He, Z. Tian, W. Huang, C. Shen, Y. Qiao, and C. Sun. An
end-to-end textspotter with explicit alignment and attention.
In Proc. Conf. on Computer Vision and Pattern Recognition,
2018. 3

[20] W. He, X.-Y. Zhang, F. Yin, and C.-L. Liu. Deep direct
regression for multi-oriented scene text detection. arXiv
preprint arXiv:1703.08289, 2017. 3

[21] H. Hu, C. Zhang, Y. Luo, Y. Wang, J. Han, and E. Ding.
Wordsup: Exploiting word annotations for character based
text detection. In Proc. ICCV, 2017. 4

[22] W. Huang, Z. Lin, J. Yang, and J. Wang. Text localization in
natural images using stroke feature transform and text covari-
ance descriptors. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1241–1248, 2013. 3

[23] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.
Synthetic data and artificial neural networks for natural scene
text recognition. arXiv preprint arXiv:1406.2227, 2014. 7

[24] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.
Reading text in the wild with convolutional neural networks.
Intl. Journal of Computer Vision, 116(1):1–20, 2016. 3

[25] A. K. Jain and B. Yu. Automatic text location in images and
video frames. Pattern recognition, 31(12):2055–2076, 1998.
3

[26] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu,
and Z. Luo. R2cnn: rotational region cnn for orientation ro-
bust scene text detection. arXiv preprint arXiv:1706.09579,
2017. 3

[27] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh,
A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R.
Chandrasekhar, S. Lu, et al. Icdar 2015 competition on ro-
bust reading. In Document Analysis and Recognition (IC-
DAR), 2015 13th International Conference on, pages 1156–
1160. IEEE, 2015. 5

[28] J.-J. Lee, P.-H. Lee, S.-W. Lee, A. Yuille, and C. Koch. Ad-
aboost for text detection in natural scene. In Document Anal-
ysis and Recognition (ICDAR), 2011 International Confer-
ence on, pages 429–434. IEEE, 2011. 3

[29] M. Liao, B. Shi, and X. Bai. Textboxes++: A single-shot
oriented scene text detector. IEEE Transactions on Image
Processing, 27(8):3676–3690, 2018. 3

[30] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu. Textboxes: A
fast text detector with a single deep neural network. In AAAI,
pages 4161–4167, 2017. 3

[31] M. Liao, Z. Zhu, B. Shi, G.-s. Xia, and X. Bai. Rotation-
sensitive regression for oriented scene text detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5909–5918, 2018. 3

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21–37.
Springer, 2016. 3

[33] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan.
FOTS: fast oriented text spotting with a unified network.
2018. 3

[34] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan. Fots:
Fast oriented text spotting with a unified network. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5676–5685, 2018. 3

[35] Y. Liu and L. Jin. Deep matching prior network: Toward
tighter multi-oriented text detection. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3454–3461. IEEE, 2017. 3

[36] P. Lyu, M. Liao, C. Yao, W. Wu, and X. Bai. Mask textspot-
ter: An end-to-end trainable neural network for spotting text
with arbitrary shapes. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 67–83, 2018. 8

[37] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and
X. Xue. Arbitrary-oriented scene text detection via rotation
proposals. IEEE Transactions on Multimedia, 2018. 3

[38] Y. Nagaoka, T. Miyazaki, Y. Sugaya, and S. Omachi. Text
detection by faster r-cnn with multiple region proposal net-
works. In 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), pages 15–20.
IEEE, 2017. 8

[39] L. Neumann and J. Matas. A method for text localization
and recognition in real-world images. In Asian Conference
on Computer Vision, pages 770–783. Springer, 2010. 3

[40] L. R. Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition. Proceedings of the
IEEE, 77(2):257–286, 1989. 2

[41] T. Rath and R. Manmatha. Word spotting for historical docu-
ments. Intl. Journal on Document Analysis and Recognition,
9(2-4):139–152, 2007. 3

[42] A. Ray, Z. Chen, B. Gafford, N. Gifford, J. J. Kumar,
A. Lamsal, L. Niehus-Staab, J. Weinman, and E. Learned-
Miller. Historical map annotations for text detection and
recognition. Technical report, Grinnell College, Depart-
ment of Computer Science, Grinnell College, Grinnell, Iowa
50112, Oct. 2018. 6, 7, 8

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 779–788, 2016. 3

[44] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015. 2, 3, 7

[45] L. Rong, E. MengYi, L. JianQiang, and Z. HaiBin. weakly
supervised text attention network for generating text propos-
als in scene images. In Document Analysis and Recognition
(ICDAR), 2017 14th IAPR International Conference on, vol-
ume 1, pages 324–330. IEEE, 2017. 3

[46] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer,
2015. 3

[47] B. Shi, X. Bai, and S. Belongie. Detecting oriented text
in natural images by linking segments. arXiv preprint
arXiv:1703.06520, 2017. 3

[48] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 5

[49] S. Sudholt and G. A. Fink. Phocnet: A deep convolutional
neural network for word spotting in handwritten documents.
In Frontiers in Handwriting Recognition (ICFHR), 2016
15th International Conference on, pages 277–282. IEEE,
2016. 6, 7

[50] A. Tarafdar, U. Pal, P. P. Roy, N. Ragot, and J.-Y. Ramel.
A two-stage approach for word spotting in graphical docu-
ments. In Proc. Intl. Conf. on Document Analysis and Recog-
nition, pages 319–323, 2013. 3

[51] S. Tian, S. Lu, and C. Li. Wetext: Scene text detection under
weak supervision. In Proc. ICCV, 2017. 4

[52] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,
X. Wang, and X. Tang. Residual attention network for image
classification. arXiv preprint arXiv:1704.06904, 2017. 2

[53] K. Wang, B. Babenko, and S. Belongie. End-to-end scene
text recognition. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 1457–1464. IEEE, 2011.
3

[54] K. Wang, B. Babenko, and S. Belongie. End-to-end scene
text recognition. In Proc. Intl. Conf. on Computer Vision,
pages 1457–1464, 2011. 3

[55] K. Wang and S. Belongie. Word spotting in the wild. In
Proc. European Conf. on Computer Vision, September 2010.
3

[56] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text
recognition with convolutional neural networks. In Pattern
Recognition (ICPR), 2012 21st International Conference on,
pages 3304–3308. IEEE, 2012. 3

[57] J. Weinman. Toponym recognition in historical maps by
gazetteer alignment. In Proc. Intl. Conf. on Document Anal-
ysis and Recognition, pages 1044–1048, 2013. 1, 3

[58] J. Weinman. Geographic and style models for historical map
alignment and toponym recognition. In Proc. IAPR Interna-
tional Conference on Document Analysis and Recognition,
Nov. 2017. 1, 3

[59] J. Weinman. Geographic and style models for historical map
alignment and toponym recognition. In Document Analy-
sis and Recognition (ICDAR), 2017 14th IAPR International
Conference on, volume 1, pages 957–964. IEEE, 2017. 6

[60] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting texts of
arbitrary orientations in natural images. In 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1083–1090. IEEE, 2012. 3

[61] C. Yao, X. Bai, N. Sang, X. Zhou, S. Zhou, and Z. Cao.
Scene text detection via holistic, multi-channel prediction.
arXiv preprint arXiv:1606.09002, 2016. 3

[62] C. Yi and Y. Tian. Text string detection from natural scenes
by structure-based partition and grouping. IEEE Transac-
tions on Image Processing, 20(9):2594–2605, 2011. 3

[63] X.-C. Yin, X. Yin, K. Huang, and H.-W. Hao. Robust text de-
tection in natural scene images. IEEE transactions on pattern
analysis and machine intelligence, 36(5):970–983, 2014. 3

[64] R. Yu, Z. Luo, and Y.-Y. Chiang. Recognizing text on histor-
ical maps using maps from multiple time periods. In Proc.
Intl. Conf. on Pattern Recognition, pages 3993–3998, 2016.
1, 3

[65] L. Yuliang, J. Lianwen, Z. Shuaitao, and Z. Sheng. Detecting
curve text in the wild: New dataset and new solution. arXiv
preprint arXiv:1712.02170, 2017. 3

[66] S. Zhang, Y. Liu, L. Jin, and C. Luo. Feature enhancement
network: A refined scene text detector. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018. 3

[67] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai.
Multi-oriented text detection with fully convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4159–4167, 2016. 3

[68] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and
J. Liang. East: an efficient and accurate scene text detector.
In Proc. CVPR, pages 2642–2651, 2017. 2, 3

Supplementary Material:
Tight Coupling of Character, Word, and Place Recognition

for End-to-End Text Recognition in Maps

Abstract

In the supplemental sections, we report additional re-
sults using the standard Faster R-CNN detector instead of
the EAST detector reported in the main paper (Sec. 1). In
addition, we provide details on how character-level parsing
is done from word-level ground-truth annotations (Sec. 2).
The results of this character level parsing are used to train
our individual character models, as reported in the main
paper.

1. Faster R-CNN Results
To show that our approach generalizes beyond a specific

detector architecture, we replace the EAST detector [10]
with the widely-used Faster R-CNN detector [7] for the
word detection task. We demonstrate that we continue to
see benefits from the main feedback mechanisms presented
in the paper in the context of using another mainstream de-
tection architecture.

Figure 1: Detections from Faster R-CNN and EAST. A quali-
tative example showing that EAST (left) localizes words better as
compared to Faster R-CNN (right) – tighter bounding-box, com-
plete words enclosed in the box, etc. The lower quality localization
affects the downstream task of word recognition, which is why the
EAST-based pipeline performs better than Faster R-CNN.

Detection. The detection results on the map-dataset are
shown in Table 1. The baseline Faster R-CNN detector [7]
trained on our dataset shows relatively low precision and

recall, with an F1-score of 0.303. When we add the charac-
ter detection information back into the image, the precision
and recall dramatically improves, leading to an F1-score of
0.563 and 0.652 for the 1 channel and 36 channel character
masks, respectively. While using a single-channel character
location mask does show some improvement, providing this
information as separate channels for each character class al-
lows the detector to reason about how individual characters
are grouped into words, resulting in more information that
improves the performance of word detection.

Table 1: Word detection results using Faster R-CNN on the maps
dataset [6].

Method Precision Recall F1-score
F-RCNN 0.322 0.289 0.303
F-RCNN+1C 0.614 0.520 0.563
F-RCNN+36C 0.684 0.623 0.652
F-RCNN+36C
+feedback 0.697 0.637 0.665

Word-spotting. For recognition of the words detected in
a map by the Faster RCNN, we use a wordspotting approach
— associating images of words to the best matching string
from a given lexicon of words [5, 9, 1]. In particular, we
adopt the approach of [8], which performs this matching
using the PHOC representation [1] for a word.

The baseline PHOC-Net [8] is trained with the Synth-
Text dataset [3] and finetuned on the word regions from
map annotations. The results are summarized in Table 2.
The basic lexicon consisting of concatenated GIS informa-
tion yields 34.59% accuracy using the output of the FR-
CNN+36C detector. When using feedback we get a further
improvement.

End-to-end recognition. We consider the extended
character detections to improve detection as well as
recognition accuracy. The final end-to-end system (“F-
RCNN+feedback+PHOC”) is compared with the “F-
RCNN+PHOCNet” with the extended lexicon. While the
latter performs with an F1-score of 0.434, our final model’s
F1-score is 0.452. The results are compiled in Table 3.

1

Table 2: Comparison of the word recognition algorithms on mul-
tiple versions of GIS data for maps dataset [6].

Method Accuracy (%)
PHOC 34.59
PHOC+wordvar 35.74
PHOC+wordvar+ext 37.29

Table 3: End-to-end comparisons for the complete pipeline of text
detection and recognition showing the effect of feedback.

Method Precision Recall F1-score
F-RCNN to PHOC 0.392 0.487 0.434
F-RCNN+feedback

to PHOC 0.408 0.507 0.452

2. Approximate character localization
The map dataset provides us with word bounding boxes

and the words present in those boxes. We detail the proce-
dure for obtaining approximate locations of each character
in that word bounding box (which is not part of the ground-
truth annotations). Given a region (a bounding box) con-
taining some set of characters (annotations/labels), we im-
plement an algorithm that computes the score for each char-
acter given any possible sub-regions (by possible we mean
any sub-region within the word image which can contain
the character). Given these scores we can obtain the maxi-
mum sum of scores such that all characters in that word can
be accommodated in the given region.

The character scores are obtained running a per-
character CNN on each word region in a sliding win-
dow fashion. The CNNs are trained on ICDAR [4] and
Chars74K [2] scene text character crops. There is a substan-
tial domain shift between the external training data we use
to train the per-character recognizers and the map text we
are applying them on, however these noisy estimates were
sufficient for our purpose.

We use Algorithm 1 to obtain the character location esti-
mates. It should be noted that this makes two assumptions:
(1) the input region is rectangular, (2) we have a rough es-
timate of each character’s beginning and end position (col-
umn). A rough estimate of a character’s position would be
a crop around l

n in width, where l is the length of the word
image and n is the number of characters in the word. An
example is shown in Figure 3.

References
[1] J. Almazán, A. Gordo, A. Fornés, and E. Valveny. Word spot-

ting and recognition with embedded attributes. IEEE Trans.
Pattern Anal. Mach. Intell., 36(12):2552–2566, 2014. 1

[2] T. E. de Campos, B. R. Babu, and M. Varma. Character
recognition in natural images. In Proceedings of the Interna-

Algorithm 1: Pseudo-code to estimate character re-
gions from an annotated word image

Result: begin pos, end pos
1 Inputs: word image, word, rough begin estimate,

rough end estimate;
2 begin pos, end pos = [];
3 for i in list(word) do
4 load detector[word[i]];
5 max score, bj , bk = 0;
6 for j,k ∈ [rough begin estimate[i],

rough end estimate[i]] do
7 score = detector[i](word image, j, k);
8 if score ≥ max score then
9 bj = j;

10 bk = k;
11 max score = score;
12 end
13 end
14 begin pos.append(bj), end pos.append(bk);
15 end

Figure 2: Character parsing from word annotations. Top row:
we are provided with the cropped word image, and the word anno-
tation (“NORTH”). Knowing the letters present in the word, we run
each character classifier over all sub-regions of this image. The
sub-region with the highest response is visualized in the each row,
for the letters N, O, R, T and H. This gives us approximate character
localization.

tional Conference on Computer Vision Theory and Applica-
tions, Lisbon, Portugal, February 2009. 2

[3] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.
Synthetic data and artificial neural networks for natural scene
text recognition. arXiv preprint arXiv:1406.2227, 2014. 1

[4] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh,
A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R.
Chandrasekhar, S. Lu, et al. Icdar 2015 competition on ro-
bust reading. In Document Analysis and Recognition (IC-
DAR), 2015 13th International Conference on, pages 1156–
1160. IEEE, 2015. 2

[5] T. Rath and R. Manmatha. Word spotting for historical docu-

Figure 3: Qualitative results. We show comparative detection results for the baseline EAST detector (left) and the final results from our
improved pipeline (right). There is a clear reduction in false positives (the short parallel lines wrongly considered as text is a prominent
example). Further, challenging words are better localized (e.g. top row: “MOUNTAINS”, 3rd row: “MERIDIAN”).

ments. Intl. Journal on Document Analysis and Recognition,
9(2-4):139–152, 2007. 1

[6] A. Ray, Z. Chen, B. Gafford, N. Gifford, J. J. Kumar,
A. Lamsal, L. Niehus-Staab, J. Weinman, and E. Learned-
Miller. Historical map annotations for text detection and
recognition. Technical report, Grinnell College, Depart-
ment of Computer Science, Grinnell College, Grinnell, Iowa
50112, Oct. 2018. 1, 2

[7] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015. 1

[8] S. Sudholt and G. A. Fink. Phocnet: A deep convolutional
neural network for word spotting in handwritten documents.
In Frontiers in Handwriting Recognition (ICFHR), 2016
15th International Conference on, pages 277–282. IEEE,
2016. 1

[9] K. Wang and S. Belongie. Word spotting in the wild. In
Proc. European Conf. on Computer Vision, September 2010.
1

[10] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and
J. Liang. East: an efficient and accurate scene text detector.
In Proc. CVPR, pages 2642–2651, 2017. 1

