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ABSTRACT

MOTION SEGMENTATION
SEGMENTATION OF INDEPENDENTLY MOVING OBJECTS IN VIDEO

DECEMBER 2019

PIA KATALIN BIDEAU

B.Sc., UNIVERSITY OF APPLIED SCIENCE DÜSSELDORF

M.Sc., RUHR UNIVERSITY BOCHUM

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik Learned-Miller

The ability to recognize motion is one of the most important functions of our visual

system. Motion allows us both to recognize objects and to get a better understanding

of the 3D world in which we are moving. Because of its importance, motion is used

to answer a wide variety of fundamental questions in computer vision such as: (1)

Which objects are moving independently in the world? (2) Which objects are close

and which objects are far away? (3) How is the camera moving?

My work addresses the problem of moving object segmentation in unconstrained

videos. I developed a probabilistic approach to segment independently moving ob-

jects [4] in a video sequence, connecting aspects of camera motion estimation, relative

depth and flow statistics. My work consists of three major parts:
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• Modeling motion using a simple (rigid) motion model strictly following the

principles of perspective projection and segmenting the video into its different

motion components by assigning each pixel to its most likely motion model in

a Bayesian fashion. [5]

• Combining piecewise rigid motions to more complex, deformable and articulated

objects, guided by learned semantic object segmentations. [7]

• Learning highly variable motion patterns using a neural network trained on

synthetic (unlimited) training data. Training data is automatically generated

strictly following the principles of perspective projection. In this way well-

known geometric constraints are precisely characterized during training to learn

the principles of motion segmentation rather than identifying well-known struc-

tures that are likely to move. [6]

This work shows that a careful analysis of the motion field not only leads to a

consistent segmentation of moving objects in a video sequence, but also helps us

understand the scene geometry of the world we are moving in.
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INTRODUCTION

The human visual system has an incredible ability to detect, analyze and act on

motion perceived as motion stimuli (light changes) on the human eye’s retina. These

motion stimuli might arise when the observer himself moves or an object moves in

the world. Of course both of these situations might happen at once, but often it is

helpful to consider these cases separately first.

To get a sense for the complexity of the task of motion processing happening in the

human visual cortex let’s consider three situations that result in three very different

stimuli on the retina.

Consider an observer looking at a stationary scene in which one object is moving

(see Figure 4.1(c)). This might be a person walking in the world, which is pictured

as a person moving across the observer’s retina. This case is simple to interpret. The

perceived motion on the retina exactly corresponds to the motion in the world.

Now let’s consider the second case, a moving observer looking at a stationary scene

(see Figure 4.1(d-f)). The observer might be just turning his head (rotating), walking

through world (translating) or both. If the observer only turns his head the entire

image projected onto the retina moves across the retina according to the observer’s

motion. If the observer is walking through the world, the pictured motion on the

retina is far more complex. The change on the retina highly depends on the scene

geometry that is pictured. Objects that are close, for example a nearby tree, lead

to a “faster” motion than farther objects. Objects at the horizon create no change

on the retina. Observing this type of motion on the retina might be interpreted in

several ways: (1) the entire world is moving while the observer stands still, (2) if

1



(a) frame (b) motion segmentation

(c) no observer motion - moving goat

(d) observer rotation - stationary scene

(e) observer translation - stationary scene

(f) observer rotation and translation - stationary scene

(g) observer rotation and translation - moving goat

Figure 1: What is moving? It is extremely challenging to distinguish between mov-
ing and stationary objects from optical flow directly. Three different scenarios are
pictured: (1) stationary observer watches a moving goat (c), (2) observer is moving
while watching a stationary scene without moving objects (d-f) and (3) observer is
moving while watching a stationary scene with a moving goat (g).
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we observe different “speeds” of motion, some objects might be moving faster than

their environment or alternatively, objects might be located at different depth, (3)

the observer moves while the world is standing still. In most cases the last option

might appear to be the most reasonable interpretation of the observed motion on the

retina.

The third situation to consider is a moving observer and a moving object in the

world. The motion due to the observer as well as the motion due to the object results

in a motion of the pictured scene on the retina as described in the previous two cases.

However if we track the moving object with our eyes, the object will not create any

motion on the retina. On the retina, the object will appear to be stationary whereas

the world appears to be moving. However, in reality, the world is stationary and the

object is moving.

This means that just because something is moving across our retina, doesn’t mean

that it is actually moving in the world. Conversely, just because something appears

to be stationary on our retina doesn’t mean that it is actually stationary in the world.

How do humans know what is moving in the world and what is not?

This question is the subject of current research in many different areas such as

neuroscience, psychology, and computer science [10, 9, 2, 122, 26, 40, 8, 35].

In the human visual system motion perception begins on the human eye’s retina.

Photoreceptor cell’s in the retina respond to light changes, which often correspond

to motion but also many other possible causes. One can think of a photoreceptor

as a pixel on a camera sensor. At this stage visual information is simply received.

Further information processing of the visual signal is done in different areas of the

visual cortex [10, 9, 2], where pure visual information is combined with additional

information from the vestibular system and eye movement signals to process and

interpret the perceived visual information correctly [122, 26].
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The strong ability of humans to detect motion can be especially highlighted by

tackling the task of spotting camouflaged animals in nature. In those cases, where

environment and object share similar appearance, it is quite challenging to spot the

object solely based on its appearance, instead we need additional cues such as motion

to reliable detect the object. Figure 2 shows two examples of camouflaged animals

in the wild. The goatweed leafwing (Figure 2: left) is a butterfly which can be often

found sitting on the ground, with wings folded over its back. In this position it mimics

almost perfectly a dry leaf on the ground. This well developed adaptation ability

allows the goatweed leafwing to rest on the ground quite safely. Natural enemies are

not able to detect the goat leafwing as long as it is not moving. The other scenario

shows an owl sitting in a tree. The owl’s feathering mimics the tree’s bark, thus the

owl can sit quietly and look for prey without being seen. These are two scenarios

showing animals that are almost invisible as long as they stand still, however due to

the great sensitivity to motion of our visual system we are able to spot them as soon

as they move. For this reason we selected videos of camouflaged animals and formed

a new data set - camouflaged animals, the purpose of which is to evaluate the ability

of motion segmentation in challenging tasks where the object’s appearance is a rather

weak clue to spot and segment the moving object correctly in video [5].

This dissertation presents an approach that aims to accurately interpret the per-

ceived motion on the retina. Of course we are not able to receive an image directly

from our eye, that we could process to segment moving objects. Instead we help

our self by using video sequences taken by a camera and methods to estimate the

motion field between two consecutive frames. The task is then to develop a method

that correctly interprets the observed motion field regardless of the complexity of the

scene’s geometry and segments objects that are moving in the world.

The document is organized as follows Chapter 1 defines the problem of motion

segmentation and makes a distinction to other closely related topics such as fore-
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Figure 2: The challenge of object detection in scenarios of well-camouflage. Cam-
ouflage is one of multiple adaptation mechanisms found in nature. If an animal
is well camouflaged, it is almost impossible to spot them just based on their ap-
pearance. This makes it possible for animals to live in environments together with
their natural enemies. Left: goatweed leafwing (Accessed 22 May, 2018. https: //

c2. staticflickr. com/ 6/ 5180/ 5538111287_ 44b43d58c2_ o. jpg ), right: owl
(Accessed 22 May, 2018. https: // www. maxpixel. net/ static/ photo/ 1x/

Tree-Nature-Owl-Wildlife-Camouflaged-Bird-Prey-1738971. jpg )

ground/background segmentation or video object segmentation. Chapter 2 reviews

closely related literature dealing with the problem of motion segmentation as well as

motion estimation. Basic background information about the motion field are pro-

vided in Chapter 3. A probabilistic approach for the motion segmentation task, the

segmentation of a motion field into its rigid motion components, is presented in Chap-

ter 4.1. Building on this work Chapter 4.2 introduces a more advanced approach that

combines piecewise rigid motions to more complex, deformable and articulated ob-

jects, guided by learned semantic segmentations. Chapter 5.1 presents an approach to

learn motion segmentation in a self-supervised manner. A procedure to automatically

generate an unlimited amount of synthetic training data while strictly following the

principles of perspective projection is proposed. The goal of this training data is to

precisely characterize well-known geometric constraints during training to learn the

principles of motion segmentation rather than identifying well-known structures that

are likely to move. Motion estimation as a fundamental sub-task of motion segmen-

tation also finds its application in other related areas such as mobile computing and

5
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research related to UAVs, details are described in Chapter 6. I conclude my work with

a discussion and an outlook into possible future research directions in Chapter 7.
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CHAPTER 1

PROBLEM STATEMENT

The goal of my thesis is to develop a fully automatic motion segmentation system,

that works in diverse scenarios showing different scene geometries (objects located at

different depths) and irrespectively of the object’s camouflage.

Given a video of a natural scene, this can be for example a video showing road

traffic, animals in nature or people, the goal is to segment all independently moving

objects. Besides the motion of the object itself there might be image motion 1 due

to the observer’s motion (camera motion). As shown in Figure 1 the optical flow

field couples motion information and scene depth in case of present camera motion,

which often makes the distinction between moving object and static environment

a challenging task. Related topics such as depth estimation and camera motion

estimation will be examined in the context of motion segmentation.

In Section 1.1 we define the problem of motion segmentation. What exactly should

be segmented? This appears to be not always an obvious question. Should leaves

wiggling in the wind be segmented as a moving object? The following Section pro-

vides a guideline for motion segmentation and distinguishes between the binary (Sec-

tion 1.1.1) and the more general version of multi-label motion segmentation (Sec-

tion 1.1.2). Several situations still appear to debatable whether an object (or part of

1We refer to image motions, if the environment or the objects move over the image plane. Image
motion might occur due to object motion or due to the observer’s motion. Image motion does not
necessarily require true 3D motion in the world. We might observe image motion in areas of static
environment solely due to the observer’s motion and not due to a 3D motion of the environment in
the world.
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an object) should be segmented as moving or not, those cases are discussed in the

remainder of Section 1.1.

1.1 Definition of motion segmentation

General image segmentation is the subject of current research in computer vision

and machine learning. The goal is to produce k connected regions by pooling pixels,

which share one or multiple common criteria. k refers to the number of predefined

labels the image should be segmented in. Those criteria (labels) might be for example

color, texture or motion. Motion segmentation groups pixels which share the same

motion.

Object motion as well as the observer’s motion, can be observed as a pixel dis-

placement on the image plane. If observed motions are tiny it is often hard to decide

whether those motions actually belong to a moving object or not. The border between

stationary objects and moving objects can be quite fluent. If a person is walking there

are short time periods where one foot is moving, but the other foot stands still. Do

we want to segment just the part of the person, that is moving or the entire moving

person? Those difficulties (1) are those pixels moving or not? and (2) Is just part

of the object moving or the entire object? turns creating a ground truth to evaluate

motion segmentation algorithms into a challenging problem.

Since the criterion “motion” (referring to all kinds of motion including motions

of just object parts) alone is hard to evaluate we will instead refer to object motion.

This is a useful and practical simplification. Using this simplification the entire object

needs to be segmented even if just part of it is moving. If just one foot of a walking

person is moving, we’ll segment the entire object or if just the shovel of a digger

is moving, we’ll segment the entire digger - not the shovel only. This decision is for

sure debatable and whether it makes sense depends upon the higher-level task motion

information is used for.
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In the following we’ll address motion segmentation as a binary segmentation prob-

lem and extend this task to the more general task of motion segmentation where it

is distinguished between individual objects that are independently moving.

1.1.1 Definition: Binary Motion Segmentation

Figure 1.1: Binary motion segmenta-
tion. Every pixel is given one of two
labels: static environment or moving
objects. Left to Right: original image,
correct binary segmentation

Binary motion segmentation segments each video frame into two components. It

is distinguished between (1) static environment and (2) independently moving objects

moving differently than the camera motion. The environment itself is not moving,

however the pixels describing static environment can show a displacement from frame t

to t+ 1 due to the camera’s motion. We define motion segmentation as follows:

(I) Every pixel is given one of two labels: static environment or moving objects.

(II) If only part of an object is moving (like a moving person with a stationary

foot), the entire object should be segmented.

(III) All freely moving objects (not just one) should be segmented, but nothing

else. We do not considered tethered objects such as trees to be freely moving.

(IV) Stationary objects are not segmented, even when they moved before or will

move in the future. We consider segmentation of previously moving objects to

be tracking. Our focus is on segmentation by motion analysis.

1.1.2 Definition: Motion Segmentation

Motion segmentation is a task that groups pixels sharing the same motion. Just

following the criteria of motion it’s often not possible to distinguish between different

objects, since those might move together. Due to their shared motion they form
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Figure 1.2: Motion segmentation. Ev-
ery pixel is given one of k labels: k
is the number of independently moving
objects and static environment. Left to
right: original image, motion segmen-
tation

a common pixel group which is segmented together. How to segment a video into

k independently moving objects is clear if the moving objects are not touching in

3D and clearly move independently like the four cars shown in Figure 1.2. However

there are a few cases where segmenting a frame into k independently moving objects

is challenging: (1) two persons walking hand in hand, (2) a person jumping onto

a carriage, which is pulled by a horse or (3) laundry fluttering in the wind. After

defining motion segmentation as a general segmentation problem of a video into k

moving objects, we’ll take a closer look at those broader cases.

We build upon our previous definition of binary motion segmentation:

(I) Every pixel is given one of k labels. k is the number of observed independently

moving objects and static environment.

(II) If only part of an object is moving (like a moving person with a stationary

foot), the entire object should be segmented.

(III) All freely moving objects (not just one) should be segmented, but nothing

else. We do not considered tethered objects such as trees to be freely moving.

(IV) Stationary objects are not segmented, even when they moved before or will

move in the future. We consider segmentation of previously moving objects to

be tracking. Our focus is on segmentation by motion analysis.

(V) If objects are moving together and are connected in 3D, they should be seg-

mented together since they share the same motion. A person carrying a basket

- here the person and the basket are forming one common motion component.

(VI) If objects are connected in 3D but move independently from each other, they

should be segmented separately since they do not share the same motion. A

10



person walking with a leashed dog. The person and the dog are connected in

3D, but move independently from each other. Thus the person and the dog get

their own motion segment.

(VII) An object which is not moving (but could be connected in 3D with an other

moving object) should be not segmented unless it is considered an integral

part of an other object. Is a person sitting on a stationary chair, then the chair

should not be segmented. However if the chair is moving with that person (for

example a wheelchair), then the person should be segmented together with the

chair following rule (V).

Based on the provided definition (I-VII) of motion segmentation, we discuss the three

previously mentioned challenging cases.

• Two persons walking hand in hand The two persons are connected in 3D and

move pretty much independently even if there might be some influence from one

person to the other. Basically there are two independent ”motion sources” thus

we observe two independent motions and label both persons separately accord-

ing to (VI). This is a challenging case since as long as the persons are connected

in 3D it is hard to judge based on the video whether this is one complex motion

component or two simpler and probably similar motion components.

• A person jumping onto a carriage, which is pulled by a horse We start with

carriage and horse. This situation corresponds to (V). The horse is pulling

the carriage such that the carriage is moving with the horse. Carriage and

horse form together one independently moving object. Now we consider the

man jumping onto the carriage. This situation gets significantly more tricky.

The man is for sure moving independently at the beginning and thus rule (VI)

can be applied however in the later run if the man doesn’t move significantly

independent anymore - sitting on the carriage, the man can be considered to

be segmented with the carriage and horse (V). This is a very difficult case and
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can be interpreted differently, however we consider together moving objects as

one moving object, if they move as a whole independently.

• laundry fluttering in the wind. Even though laundry does not belong to a

tethered object such as the leaves of a tree, which a wiggling in the wind, we

do not consider laundry as an independently moving object. This situation is

quite similar as described in (III). Thus laundry fluttering in the wind is not

considered to be a freely moving object.
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CHAPTER 2

LITERATURE REVIEW

Many works tackling the problem of motion segmentation focus on binary motion

segmentation, where pixels are classified as either moving or part of the background,

but no distinction is made between separate moving objects [5, 72, 81, 22]. Oth-

ers [109, 48, 25] address multi-label motion segmentation, where a separate label is

given to each independently moving object. In the following sections, we do not

distinguish between binary and multi-label motion segmentation.

In most cases information about motion is derived from matched pixels across

consecutive frames. This could be in the form of either sparse point trajectories or

optical flow. We review four fundamentally different approaches to tackle the problem

of motion segmentation. All of them rely on point-to-point correspondences (matched

pixels) from one frame to an other. We start with methods based on motion trajecto-

ries (Section 2.1.1), followed by methods based on projective geometry (Section 2.1.2)

and perspective projection (Section 2.1.3) concluding with the most recent approaches

based on convolutional neural networks (Section 2.2) to learn general motion patterns

throughout a video.

2.1 Classical approaches for motion segmentation

2.1.1 Methods based on motion trajectories

Methods based on point trajectories [48, 12, 25, 75, 47, 132, 101, 58] have shown

good results for tracking and time consistent video segmentation. Point trajectories

are either formed by tracked image features or dense optical flow. Feature tracks
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are produced by tracking sparse image features (key-points) across multiple frames,

whereas optical flow is a dense estimate of the motion field between two consecutive

frames. Trajectories typically end if the tracked feature moves outside of the image

plane or gets occluded by a different object (this can happen due to object or camera

motion), they can arise any time with a new detected image feature. Trajectories

based on either feature tracks or optical flow are able to track motion patterns co-

herently over multiple frames and are thus very effective for motion segmentation.

Trajectories sharing similar motion characteristics are grouped into coherent motion

clusters describing the motion of a particular object.

Different approaches vary in defining typical motion characteristics based on which

the trajectories are clustered. [132] propose to cluster trajectories based on geometric

constraints (trajectories of the same motion lie in a manifold) and locality. In [47, 48]

the segmentation problem is represented as a minimum cost multicut graph problem

following underlying principles that trajectories belonging to the same motion share

fundamental criteria like motion similarity, color similarity and spatial distance be-

tween trajectories. Objects are detected by clustering the trajectories and are tracked

naturally which leads to a time consistent segmentation of a short video sequence.

Trajectories based on image features are mostly quite computational efficient since

those are sparse motion representations other than than a dense optical flow field.

But due to their sparsity obtained segmentations are sparse as well and need further

post processing to turn these sparse segmentations into a dense video segmentation.

Trajectory based approaches reach their limit if scene understanding is necessary

to segment a moving object correctly. Trajectories perfectly represent individual pixel

displacements, however drawing a geometrically plausible conclusion based on more

or less individual tracks rather than a coherent motion field remains challenging.

Pixel displacements from one frame to the next are a function of depth and motion.

Thus motion-trajectory based clustering methods often form clusters not only for
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independently moving objects, but also for objects at different depths. Methods based

on occlusions [78, 109] are subject to similar depth-related problems. Trajectory-

based methods are non-causal, since they require information of the entire video. To

segment earlier frames, one must wait for trajectories which are computed over future

frames.

2.1.2 Methods based on projective geometry

Projective geometry is an extension of the Euclidean and affine space and contains

properties of perspective projection. Often projective geometry is used as a geometri-

cal model to explain the properties of perspective projection. In Euclidean space valid

transformations are restricted to the transformations of rotation and translation, thus

Euclidean space is not sufficient anymore to model the more complex imaging process

(perspective projection). Affine geometry adds transformations covering shearing and

scaling. Projective geometry seems to be a reasonable extension of the Euclidean and

affine geometry. Its is widely used as a mathematical formalism to describe the geome-

try of cameras and its associated transformations [112, 134, 123, 46, 45, 130, 118, 131].

Leading to elegant mathematics on one hand, the universality of projective geometry

comes with several problems being inconsistent with the true physical world [36, 5].

Different from trajectory based motion segmentation approaches projective geom-

etry methods analyze the optical flow between a pair of frames, grouping pixels into

regions whose flow is consistent with various motion models consistent with projective

geometry [112, 134, 123, 46, 45, 130, 131]. Torr [112] develops a sophisticated prob-

abilistic model of optical flow, building a mixture model that explains an arbitrary

number of rigid components within the scene. Interestingly, he assigns different types

of motion models to each object based on model fitting criteria. His approach is fun-

damentally based on projective geometry rather than based directly on perspective

projection equations. Zamalieva et al. [134] and Xun Xu et al. [131] present a com-
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bination of methods that rely on homographies and fundamental matrix estimation.

The two methods have complimentary strengths, and the authors attempt to select

among the best dynamically.

Horn has identified drawbacks of using projective geometry in such estimation

problems and has argued that methods based directly on perspective projection are

less prone to overfitting in the presence of noise [36]. In contrast to the quite universal

approaches based on projective geometry there are methods based on perspective

projection only. These methods focus more on realistic representations of the physical

world rather than nice mathematical models.

All these methods relying on projective geometry perform well in cases of planar

motion (motion obtained by a translating or rotating camera picturing a planar scene

or a very distant scene, where effects of 3D parallax are negligible), however if the

camera undergoes arbitrary translational or rotational motions and the scene shows a

more complex geometry with objects located at different depth the motion field gets

quiet complex and methods based ob projective geometry reach their limits.

2.1.3 Methods based on perspective projection

A human eye, a painter and a pin hole camera - all deal with the same task,

which is the projection of the three-dimensional world onto a two-dimensional im-

age plane. Artists and scientists like Albrecht Dürer, Leon Batista Alberti, Filippo

Brunelleschi or Leonardo da Vinici - to name just a few, have made a significant

contribution [87, 20, 21] to the current successes in computer vision. Understanding

the process of image formation (perspective projection) is essential for most computer

vision problems like optical flow estimation, ego-motion estimation or segmentation.

Perspective geometry allows us to mathematically explain and model the process

of how the three dimensional world is projected on to a just two-dimensional image

plane. One of the key aspects of perspective projection is, that the larger the distance
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to the viewer the smaller appears the imaged object leading to an observation that

parallel lines (in the euclidean space) that undergo the transformation of perspective

projection lead to two lines that intersect in the vanishing point at the horizon on

the image plane.

Approaches based on perspective projection [40, 5, 7, 72, 119, 135] are in general

more accurate (in terms of model agreement to the physical world) than those based

on projective geometry, since the latter omits certain constraints in modeling image

transformations [36, 5]. Having a model that is confirm with the physical world might

be especially critical for certain tasks where interaction with the physical world is

required in a second step such as in robotics or autonomous driving. A commonly

first step towards motion segmentation is to estimate ego-motion, which is equivalent

to camera motion in video.

Widely used are approaches fro ego-motion estimation relying on epipolar geom-

etry [116, 125, 105]. Epipolar geometry [32] describes the correspondence between

image points originating from two different images taken from two different points of

view at the same time - typically taken with stereo cameras. Camera calibration and

the their relative position to each other is usually known.

Bundle adjustment is an alternative approach that jointly estimates 3D structure

and camera poses and calibration via optimization procedures [113]. The optimization

procedure is often formulated as nonlinear least square problem [30, 127, 11, 102, 53].

Different from epipolar geometry stereo vision is not required, instead structure is es-

timated from camera motion. Also often referred to as structure from motion (SfM).

For stereo vision the relative camera position between the two stereo frames is known,

however in case of bundle adjustment the relative camera motion between two con-

secutive frames is jointly estimated estimated together with 3D feature coordinates.

Unlike previous works on motion segmentation relying on either bundle adjust-

ment or epipolar geometry, our work presented in this thesis incorporates an optimiza-
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tion procedure to estimate the motion field due to camera rotation, without directly

reconstructing the three dimensional scene structure. The idea is to simplify the

observed motion field by compensating for motion due camera rotation. Given a mo-

tion field formed by only camera translation and scene structure, all effects of camera

rotation and the need for camera calibration can be completely eliminated. Further

more the image motion direction is only determined by the translational camera mo-

tion direction and only shows minor influences by the scene depth (due to the optical

flows noise, which is showing larger influence if image motion is small corresponding

to either no camera motion or a distant scene). These fundamental characteristics

make the translation only motion field attractive for the motion segmentation task.

In Chapter 4.1 we present a fully automatic motion segmentation method [5]

based on optical flow. Following the geometry of perspective projection, a frame

is segmented based on the optical flow’s direction. Assuming that the underlying

motion field magnitude is equal to the optical flow magnitude, we use the motion

field magnitude to model the informativeness of the direction of each flow vector.

In Chapter 4.2 the previous presented approach is extended by dealing with the

unknown motion field magnitude in a Bayesian fashion, rather than assuming its

value is equal to the flow magnitude[7]. This naturally leads to a confirmation of the

previous statement made in Chapter 4.1, that small flow vectors are less informative

and allows us to segment a video sequence into static environment and independently

moving objects regardless the complexity of the scene structure.

2.2 Learning motion segmentation using convolutional neu-

ral networks

2.2.1 Supervised approaches for motion segmentation

Recent approaches as [110, 111, 42, 18, 19, 91, 117] use deep neural networks to

learn characteristic motion patterns and produce binary motion masks distinguishing
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whether a pixel is moving or not. Most approaches propose a two-stream archi-

tecture [111, 42, 19] to separately process motion and appearance. [19] is the first

fully learning based approach for spatio-temporal grouping. Other than previous

approaches they segment individual object instances.

Theses approaches learn motion patterns given the optical flow, the raw video

frames or optical flow together video frames. Rather than following the true physics

of image formation, which are described by perspective projection, fully convolutional

neural networks are able to learn high level motion patterns such as background

motion or object motion. Without analyzing specifically in which direction the camera

or an object moves these approaches are able to distinguish whether a pixel in an

image belongs to a background motion pattern or not. This ability has the clear

advantage of not being dependent upon technical camera parameters such as the

focal length or image distortions due to various lens characteristics or constraints

induced by technical parts of the camera (mechanical or electronic). Different lenses

may lead to significant image distortions an extreme example is the fisheye lens.

Exact parameters of a lens are provided in rare cases only, however we as humans

are still able to detect independently moving objects quite reliable where as classical

motion segmentation methods might fail completely. Technical constraints leading to

unpredictable image distortions can be induced by camera sensors. A CMOS sensor

records an image gradually over time (line by line), which results in wired looking

image distortion not explainable by perspective projection.

General concerns of deep-learning based approaches are overfitting to a particular

type of object category [19] and the lack of large amounts of training data [42]. Instead

of learning typical objects categories that are likely to move one has to ensure that

also never-before-seen objects are segmented based on their motion and regardless of

what particular semantic name it happens to be associated with.
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The other well known problem of learning based approaches is the lack of large

amount of training data. This might enforce the problem of overfitting and makes

the task of learning universal motion models a challenging task. Two possible ideas

often used in latest approaches are either using synthetic training data from animated

videos [110, 111] or relying on noisy optical flow [42] estimated by other algorithms [63,

107, 39, 99, 106]. The lack of sufficient training data rises the need to consider self-

supervised approaches for the task of motion segmentation, some of which we will

review in the following Section.

2.2.2 Self-supervised approaches for motion segmentation

High capacity convolutional neural networks [56] and large-scale labeled data [52,

62, 51] have lead to significant changes in computer vision. Vision tasks like object

detection [28, 27, 95, 93, 94] or semantic segmentation [86, 85, 33] have experienced

a great boost in performance, but requiring large amounts of labeled training data.

Labeling training data is time consuming and expensive. However a significant portion

of human learning happens actually unsupervised - without the need of labeled data.

A child learns from observations as well as explorations and interactions with the

world [29, 104]. These natural learning techniques are not restricted by the need

of labels. How can one minimize the need of labeled training data? Self-supervised

learning methods like [136, 74, 121, 44, 126] attempt to address this question and

develop approaches that are able to learn from unlabeled data. Mostly a pretext

task like colorization [136, 121], solving jigsaw puzzles [74] or predicting if a video

plays forward or backwards [126] is explored to learn some fundamental underlying

structure of the data before fine-tuning the network one a smaller data set for the

actual task that has to be solved. There have been multiple approaches to tackle the

motion segmentation task in an self-supervised or unsupervised manner [121, 6, 24,

138, 82, 69, 133]. Other than traditional self-supervised learning approaches, that use
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some hidden information present in the data as a learning signal, we propose a self-

supervised learning approach using knowledge about the underlying physics behind

the process of motion field formation. Given these very basic principles we generate

training data to train a neural network for the motion segmentation tasks relying on

motion information only.

[120, 138] attempt to incorporate knowledge about the physical image formation

process into the learning pipeline of neural networks. They developed an fully unsu-

pervised approach (nor requiring any labeled data) to learn depth, ego-motion and

motion segmentation simultaneously by warping nearby images to the target image

using single-view depth and multi-view pose estimation results.

Incorporating knowledge about the real world physics into the training procedure

of a neural network is subject of current and is far from being solved yet [115].
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CHAPTER 3

THE MOTION FIELD

Object motion or camera motion produce changes in images captured at differ-

ent time. These changes lead to a motion field - a purely geometrical concept. The

motion field assigns a velocity vector to every image point, which describes the dis-

placement of each pixel. There are a few exceptions where true physical motions do

not necessarily lead to image changes as for example a perfect sphere rotating under

constant illumination. In those cases the true motion field doesn’t correspond with

it apparent (perceived) motion field. Table 3.1 shows a specific camera motion and

the corresponding motion field. These motion fields represent a pure camera motion

assuming continuous depth. We normalized the focal length, such that (f = 1). A

normalized focal length leads to an exaggerated field of view. The motion field is rep-

resented with the Middlebury color coding [3], here the magnitude is visualized using

color intensity and different angles are shown in different color. Besides the Middle-

bury color coding the vector plot of motion field is shown. A flow field of realistic

scenes look much more complicated than the synthetically generated motion fields

pictured in Table 3.1. To estimate the motion field of a realistic scene, containing

objects at different depth, an typically an essential assumption is made. Brightness

pattern in the image move accordingly to the object motion [37]. Motion corresponds

to an apparent motion of the brightness pattern. This apparent motion pattern is

called the optical flow [37]. We provide here background information on motion fields

that occur due to camera rotation, translation or a combination of both.
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Table 3.1: Camera motions and the associated motion field with normalized focal
length (f = 1)
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3.1 The motion field of a moving camera

Suppose we took a short video with a camera. We assume a moving camera in

a static environment. When the camera moves, the pixels belonging to the static

background no longer maintain their positions in consecutive frames. Pixels move

according to a the motion of the camera (Figure 3.1). If the camera moves to the left,

then all image pixels will move to the right. If the camera moves along the Z-axis,

pixels will spread out from the image center to the border. The camera is moving

with 6 degrees of freedom. (U, V,W ) describe the linear velocity (translation) along

the three axes of the coordinate system and (A,B,C) describe the angular velocity

(rotation).

Why are we talking about velocity? We are starting with the idea of pixel dis-

placements [66]. P0 is a point in 3D at time t. P1 is a point in 3D at time t + 1. So

the pixel displacement can be described as follows.

3D position at time t: P0 (3.1)

3D position at time t+ 1: P1 = P0R + T (3.2)

3D displacement: ∆P = RP0 + T − P0 (3.3)

A typical frame rate for videos is 30 frames per second (fps). Due to the small time

period from frame to frame we assume a small rotation angle between frame a at time

t and b at time t+ 1.
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In case of small angle approximation:

cos(x) = 1

sin(x) = x

sin(x) sin(y) = 0
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Small angle approximation allows us to write a multiplication of three rotation

matrices Rx, Ry and Rz as one matrix, which can be separated in two parts - one

skew symmetric matrix and one identity matrix. Let α, β and γ be the three rotation

angles in 3D, then one can write the corresponding rotation matrices as follows:

Rx(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)



Ry(γ) =


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

 (3.4)

Rz(β) =


cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)


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R = Ry(γ)Rz(β)Rx(α)

=

cos(β) cos(γ) cos(γ) sin(α) sin(β)− cos(α) sin(γ) cos(α) cos(γ) sin(β) + sin(α) sin(γ)
cos(β) sin(γ) cos(α) cos(γ) + sin(α) sin(β) sin(γ) cos(α) sin(β) sin(γ)− cos(γ) sin(α)
− sin(β) cos(β) sin(α) cos(α) cos(β)



=


1 −γ β

γ 1 −α

−β α 1

 = I +


0 −γ β

γ 0 −α

−β α 0

 = I + S (3.5)

Assuming that the rotation angles are small, we could replace the rotation matrix

R and rewrite equation 3.1.

3D displacement: ∆P = (I + S)P0 + T − P0 (3.6)

∆P = T + SP0 (3.7)

In limit displacement become a velocity. SP0 can be written as a cross product ω×P0,

where ω = (A,B,C)T is the angular velocity. t = (U, V,W )T is the linear velocity.

Under small angle approximation we can interpret a pixel displacement as a velocity,

such that the flow field assigns a velocity vector to each point in the image. The

velocity of P0 = (X, Y, Z)T in 3D with respect to the object coordinate system is

V = −t− ω × P0 (3.8)

dX

dt
= −U −BZ + CY

dY

dt
= −V − CX + AZ

dZ

dt
= −W − AY +BX (3.9)
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The optical flow assigns a 2D velocity vector to each image point (x, y) in the

image plane. Therefor we project the point P in the object coordinate system onto

the image plane using the equations for perspective projection. The coordinates of

the corresponding point p are

x =
Xf

Z
y =

Y f

Z
(3.10)

A velocity is the derivation of location with respect to time t. So that the optical

flow at point (x, y), denoted by (u, v) is

u =
dx

dt
=
f · (dX

dt
Z − dZ

dt
X)

Z2
v =

dy

dt
=
f · (dY

dt
Z − dZ

dt
Y )

Z2
(3.11)

After using the derivatives 3.9 it becomes visible that we can separate the optical

flow into a translational and rotational component.

u = ut + ur =
dx

dt
(3.12)

=
f · ((−U −BZ + CY )Z − (−W − AY +BX)X)

Z2
(3.13)

=
f · (−UZ −BZ2 + CY Z +WX + AYX −BX2)

Z2
(3.14)

= −fU
Z
− fB +

fCY

Z
+
fWX

Z2
+
fAY X

Z2
− fBX2

Z2
(3.15)

= −fU
Z
− fB + Cy +

Wx

Z
+
Ayx

f
− Bx2

f
(3.16)

=
−fU + xW

Z
+
Ayx

f
− fB − Bx2

f
+ Cy (3.17)

v = vt + vr =
dy

dt
=
−V f + yW

Z
+ fA+

Ay2

f
− Bxy

f
− Cx (3.18)

In the following we explicitly address the geometry of the motion field due to

camera rotation, which contains no information about the scene structure (depth).
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We continue with motion field due to camera translation, which is informative in many

regards, and thus is very valuable for the motion segmentation task and conclude with

the motion field produced by general camera motion - the combination of camera

translation and rotation.

3.1.1 Camera rotation

Let f be the camera’s focal length. A camera rotation is defined by its three

rotational parameters (A,B,C). Given the three rotational parameters (A,B,C), we

can compute the rotational optical flow vector at each pixel position (x, y) as follows:1

~vr =

ur
vr

 =

A
f
xy −Bf − B

f
x2 + Cy

Af + A
f
y2 − B

f
xy − Cx

 (3.19)

The rotational flow vector ~vr is independent of the scene depth (see Figure 3.1(b)),

thus it can be simply subtracted from the optical flow ~v to “stabilize” the image.

3.1.2 Camera translation

Let (U, V,W ) be the translational motion of the camera relative to an object.

Let (X, Y, Z) be the real world coordinates in 3D of a point that projects to (x, y)

in the image. The motion field vector (u, v) at the image location (x, y) due to a

translational motion is given by

~vt =

ut
vt

 =
1

Z

−fU + xW

−fV + yW

 . (3.20)

The translational flow vector ~vt is inversely proportional to the scene depth Z, thus

a large flow magnitude might be due to high motion speed, or the pictured object is

1This equation only holds if rotation angles are small. However camera rotation is always inde-
pendent of the scene depth regardless their amount.
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just very close to the camera (see Figure 3.1(c)). Just based on the flow magnitude,

we are not able to distinguish between the two possible sources - speed and depth.

The 2D translational motion direction at each point in the image is then given by the

angle of the motion field vector (u, v) at image location (x, y):

θ =


arccos (W · x− U · f), if (W · y − V · f) > 0

2π − arccos (W · x− U · f), otherwise

(3.21)

The translational flow direction at a particular pixel (x, y) however is purely deter-

mined by the parameters (U, V,W ) and the focal length f .

3.1.3 Camera rotation and translation

The motion field emerging due to combined camera translation and rotation is

difficult to interpret. Since the motion angles (direction) are in this case influenced

by the camera motion as well as the scene depth. The motion magnitudes are de-

pendent upon the scene depth and the camera’s motion speed. All theses interacting

dependencies make the interpretation of a raw motion field given an arbitrary camera

motion a challenging task (see Figure 3.1(d)).
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(a) depth

(b) rotation

(c) translation

(d) rotation and translation

Figure 3.1: Motion fields of different camera motions of a static scene containing
objects at different depth. (a) Shows a synthetically generated depth map. The color
black describes a pictured region that is far away, white pixels correspond to nearby
regions. (b), (c) and (d) show three different motion fields corresponding to the depth
pictured in (a). On the left the motion field using the middleburry color coding [3] is
used, where color encodes the direction of a motion field vector and color intensity the
speed of a motion field vector. On the right the motion field is shown using a vector
plot representation. The motion field shown in (b) corresponds to camera rotation
around the horizontal axis. As one can see the motion field is purely determined by
the camera’s motion and independent of the scene depth. The motion field shown in
(c) corresponds to camera translation to the left. The motion field is determined by
camera motion and scene depth. Objects close to the camera lead to a larger image
motion than objects far away. (d) pictures the motion field due to camera rotation
and translation together. Motion field and depth are coupled. The motion field’s
direction at each image location as well as the its magnitude are depth and motion
dependent.
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CHAPTER 4

A PROBABILISTIC MODEL FOR MOTION
SEGMENTATION

We perceive motion as flow fields (see Figure 4.1) that emerge due to the observer’s

motion, object motions or both. Depending upon the scene geometry these flow fields

can be quite difficult to interpret correctly. Given a flow field as pictured in Figure

3.1(d), can one tell which objects (symbolized as rectangles) are moving? None of

these objects are moving. Interaction of depth and camera motion lead to highly

complex flow fields. Without further knowledge about the scene or the camera’s

motion, understanding the scene and answering questions addressing objects and

their motion are hard to answer.

In nature the principle of gaze stabilization (compensation for rotational ego-

motion) is a very wide spread mechanism that can be found in the vision system of

humans and animals, which has the goal to reduce the complexity of the perceived

flow field. Similar to gaze stabilization of the human visual system performed by little

human eye movements, we propose an approach that first rectifies the flow field for

camera rotation to obtain a new flow field, that is much easier to interpret in terms

of observer motion and independent object motion.

In our work on probabilistic models for causal motion segmentation [7, 5] we devel-

oped a motion model to model independent object motion in short video sequences

given the rotation compensated flow field. To each pixel the most likely motion

model is assigned in a Bayesian fashion leading to a dense motion segmentation mask

as shown in Figure 4.1(d). Our work can be devided into two large parts:

31



(a) frame (b) optical flow (c) rot.-compensated flow

(d) segmentation (e) angle of (c) (f) angle of (e)

Figure 4.1: Decide what is moving given the different optical flow fields. It is ex-
tremely challenging to distinguish between moving and stationary objects solely from
optical flow. Notice that neither the raw optical flow (c) nor the angle of the raw
optical flow (d) makes it clear that the goat is the only thing moving in this video.
However, the angle of the rotation-compensated flow (f) strongly highlights the only
moving object.

• Modeling motion using rigid motion models while re-examining classi-

cal methods based upon perspective projection [5]. Rigid motion models

are defined by a 3D unit vector representing a particular translational motion

direction. Following rules of perspective projection, this 3D motion direction

leads to a unique angle field, which is independent of technical camera param-

eters such as focal length and the scene depth. We use these motion models

to approximate the true object motion observed in a video sequence. Focus-

ing on the true physics of perspective projection and combining these physical

constraints with a Bayesian approach for segmentation, has led to high quality

object segmentation results even in challenging camera videos with complex

scene geometry and the lack of strong appearance cues.

• Combining piecewise rigid motions to complex deformable and artic-

ulated objects, guided by learned semantic object segmentations [7].
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The motion of objects can be quite varied. Human body motion for example

combines the motion of legs and arms which might move in contrary directions

for a short period of time and thus create complex motion patterns in the flow

field. To deal with these kind of complex motion patterns we use a set of rigid

motion models together with objectness knowledge obtained from a network

for semantic segmentation. Each part of an object can easily be described by a

single rigid motion, but how does one know that these parts like legs and arm of

a person actually move together? Knowing about objects and their appearance

is one possible approach that I pursued in my work. Another possibility would

be a temporal (long term) analysis of motion patterns to retrieve the character-

istic’s of a motion pattern for a particular object. Using additional knowledge

about ”objectness” we combine individual motion components to segment the

object as a whole although its parts might move independently for a short pe-

riod of time. This way a scene can be segmented into its independently moving

objects regardless of the complexity of their motion pattern.

In Chapter 4.1 we will present an approach to segment a video into static envi-

ronment and moving objects (binary segmentation mask) using rigid motion models.

In Chapter 4.2 we extend our developed model by combining piecewise rigid motion

models guided by learned semantic object segmentations to a more complex object

motion model to be able to model deformable and articulated motions accurately.

This way we are able not only to segment the video into moving object and static

background (two labels), furthermore we are able to distinguish between differently

moving objects and to track them over time.

33



Figure 4.2: Where is the camouflaged insect?
Before looking at Figure 4.3, which shows the
ground truth localization of this insect, try iden-
tifying the insect. While it is virtually impossible
to see without motion, it immediately “pops out”
to human observers as it moves in the video.

4.1 Binary Segmentation: Segmentation of a video sequence

based upon different motion directions

How can we match the ease and speed with which humans and other animals detect

motion? This remarkable capability works in the presence of complex background

geometry, camouflage, and motion of the observer. Figure 4.2 shows a frame from

a video of a “walking stick” insect. Despite the motion of the camera, the rarity

of the object, and the high complexity of the background geometry, the insect is

immediately visible as soon as it starts moving.

To develop such a motion segmentation system, we re-examined classical methods

based upon perspective projection, and developed a new probabilistic model which

accurately captures the information about 3D motion in each observed optical flow

vector ~v. First, we estimate the portion of the optical flow due to rotation, and

subtract it from ~v to produce ~vt, the translational portion of the optical flow. Next,

we derive a new conditional flow angle likelihood L = p(θ~vt |M, ‖~vt‖), the probability

of observing a particular flow angle θ~vt given a model M of the angle part of a

particular object’s (or the background’s) motion field and the flow magnitude ‖~vt‖.

M , which we call an angle field, describes the motion directions of an object in

the image plane. It is a function of the object’s relative motion (U, V,W ) and the

camera’s focal length f , but can be computed more directly from a set of motion

field parameters (U ′, V ′,W ) = (fU, fV,W )2, where the “2” subscript indicates L2

normalization.
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Figure 4.3: Answer: the insect from Figure 1 in
shown in red. The insect is trivial to see in the
original video, though extremely difficult to iden-
tify in a still image. In addition to superior results
on standard databases, our method is also one of
the few that can detect objects is such complex
scenes.

Our angle likelihood helps us to address a fundamental difficulty of motion seg-

mentation: the ambiguity of 3D motion given a set of noisy flow vectors. While we

cannot eliminate this problem, the angle likelihood allows us to weigh the evidence for

each image motion properly based on the optical flow. In particular, when the under-

lying image motion is very small, moderate errors in the optical flow can completely

change the apparent motion direction (i.e., the angle of the optical flow vector). When

the underlying image motion is large, typical errors in the optical flow will not have a

large effect on apparent motion direction. This leads to the critical observation that

small optical flow vectors are less informative about motion than large ones. Our

derivation of the angle likelihood (Section 4.1.1) quantifies this notion and makes it

precise in the context of a Bayesian model of motion segmentation.

We evaluate our method on three diverse data sets, achieving state-of-the-art per-

formance on all three. The first is the widely used Berkeley Motion Segmentation

(BMS-26) database [12, 114], featuring videos of cars, pedestrians, and other common

scenes. The second is the Complex Background Data Set [72], designed to test algo-

rithms’ abilities to handle scenes with highly variable depth. Third, we introduce a

new and even more challenging benchmark for motion segmentation algorithms: the

Camouflaged Animal Data Set. The nine (moving camera) videos in this benchmark

exhibit camouflaged animals that are difficult to see in a single frame, but can be

detected based upon their motion across frames.
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4.1.1 Methods

The motion field of a scene is a 2D representation of 3D motion. Motion vectors,

describing the displacement in 3D, are projected onto the image plane forming a

2D motion field. This field is created by the movement of the camera relative to a

stationary environment and the additional motion of independently moving objects.

We use the optical flow, or estimated motion field, to segment each video image into

static environment and independently moving objects.

The observed flow field consists of the flow vectors ~v at each pixel in the image.

Let ~m be the flow vectors describing the motion field caused only by a rotating and

translating camera in its stationary 3D environment. ~m does not include motion

of other independently moving objects. The flow vectors ~m can be decomposed in

a translational component ~mt and a rotational component ~mr. Let the direction or

angle of a flow vector of a translational camera motion at a particular pixel (x, y) be

θ ~mt .

When the camera is only translating, there are strong constraints on the optical

flow field – the direction θ ~mt of the motion at each pixel is determined by the camera

translation (U, V,W ), the image location of the pixel (x, y), and the camera’s focal

length f , and has no dependence on scene depth [35].

θ ~mt =


arccos (W · x− U · f), if (W · y − V · f) > 0

2π − arccos (W · x− U · f), otherwise

(4.1)

The collection of θ ~mt forms a translational angle field M representing the camera’s

translation direction on the 2D image plane.

Simultaneous camera rotation and translation, however, couple the scene

depth and the optical flow, making it much harder to assign pixels to the right angle

field M described by the estimated translation parameters (U ′, V ′,W ).
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Figure 4.4: An overview: A probabilistic model for binary motion segmentation.
Given the optical flow (b) the camera rotation is estimated. Then, the flow ~mr due to
camera rotation defined by the motion parameters (A,B,C) (c) is subtracted from the
optical flow ~v to produce a translational flow ~vt. The flow angles θ~vt of ~vt are shown
in (e). The best fitting translation parameters (U ′, V ′,W ) to the static environment
of ~vt yield an estimated angle field M (f), which clearly shows the forward motion of
the camera (rainbow focus of expansion pattern) not visible in the original angle field.
The motion component priors (g) and negative log likelihoods (h) yield the posteriors
(i) and the final segmentation (j).

To address this, we wish to subtract off the flow vectors ~mr describing the ro-

tational camera motion field from the observed flow vectors ~v to produce a flow ~vt

comprising camera translation only. The subsequent assignment of flow vectors to

particular angle fields is thus greatly simplified. However estimating camera rotation

in the presence of multiple motions is challenging.

In Chapter 4.1.1.1, we describe how all frames after the first frame are segmented,

using the segmentation from the previous frame and our angle likelihood. After re-

viewing Bruss and Horn’s motion estimation technique [14] in Chapter 4.1.1.2, Chap-

ter 4.1.1.3 describes how our method is initialized in the first frame, including a

process for estimating camera motion in the presence of multiple motions.
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4.1.1.1 A probabilistic model for motion segmentation

Given a prior motion segmentation of frame t − 1 into k different motion com-

ponents and an optical flow from frames t and t + 1, segmenting frame t requires

several ingredients: a) the prior probabilities p(Mj) for each pixel that it is assigned

to a particular angle field Mj, b) the estimate of the translational angle field Mj,

1 ≤ j ≤ k to be able to model the motion for each of the k motion components

from the previous frame, c) for each pixel position, a likelihood Lj = p(~vt | Mj), the

probability of observing a flow vector ~vt under an estimated angle field Mj, and d)

the prior probability p(Mk+1) and angle likelihoods Lk+1 given an angle field Mk+1 to

model a new motion. Given these priors and likelihoods, we use Bayes’ rule to obtain

a posterior probability for each translational angle field at each pixel location. We

have

p(Mj | ~vt) ∝ p(~vt |Mj) · p(Mj) (4.2)

We directly use this posterior for segmentation. We now describe how the above

quantities are computed.

Propagating the posterior for a new prior. We start from the optical flow

of Sun et al. [106] (Figure 4.4(b)). We then create a prior at each pixel for each

angle field Mj in the new frame (Figure 4.4(g)) by propagating the posterior from

the previous frame (Figure 4.4(i)) in three steps.

1. Use the previous frame’s flow to map posteriors from frame t−1 (Figure 4.4(i))

to new positions in frame t.

2. Smooth the mapped posterior in the new frame by convolving with a spatial

Gaussian, as done in [72, 73]. This implements the idea that object locations

in future frames are likely to be close to their locations in previous frames.
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3. Renormalize the smoothed posterior from the previous frame to form a proper

probability distribution at each pixel location, which acts as the prior on the k

motion components for the new frame (Figure 4.4(g)). Finally, we set aside a

probability of 1/(k+1) for the prior of a new motion component, while rescaling

the priors for the pre-existing motions to sum to k/(k + 1).

Estimating and removing rotational flow. We use the prior for the mo-

tion component of the static environment to weight pixels for estimating the current

frame’s flow due to the camera motion. We estimate the camera translation param-

eters (U ′, V ′,W ) and rotation parameters (A,B,C) using a modified version of the

Bruss and Horn algorithm [14] (Section 4.1.1.2). As described above, we then render

the flow angle independent of the unknown scene depth by subtracting the estimated

rotational flow (Figure 4.4(c)) from the original flow (Figure 4.4(b)) to produce an

estimate of the flow without influences of camera rotation (Fig. 4.4(d)). For each flow

vector we compute:

~̂vt = ~v − ~̂mr(Â, B̂, Ĉ) (4.3)

θ~vt = ](~̂vt, ~n) (4.4)

, where ~n is a unit vector [1, 0]T .

For each additional motion component j besides the static environment, we esti-

mate 3D translation parameters (U ′, V ′,W ) using the segment priors to select pixels,

weighted according to the prior, such that the motion perceived from video frame t

to t+ 1 is described by j independent angle fields Mj.

The flow angle likelihood. Once we have obtained a translational flow field

by removing the rotational flow, we use each flow vector ~vt to decide which motion

component it belongs to. Most of the information about the 3D motion direction

is contained in the flow angle, not the flow magnitude. This is because for a given
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translational 3D motion direction (relative to the camera), the flow angle is completely

determined by that motion and the location in the image, whereas the flow magnitude

is a function of the object’s depth, which is unknown. However, as discussed above,

the amount of information in the flow angle depends upon the flow magnitude–flow

vectors with greater magnitude are much more reliable indicators of true motion

direction. This is why it is critical to formulate the angle likelihood conditioned on

the flow magnitude.

Other authors have used flow angles in motion segmentation. For example, Papa-

zoglou and Ferrari [81] use both a gradient of the optical flow and a separate function

of the flow angle to define motion boundaries. Narayana et al. [72] use only the optical

flow angle to evaluate motions. But our derivation gives a principled and effective

method of using the flow angle and magnitude together to mine accurate information

from the optical flow. In particular, we show that while the translational magnitudes

alone have no information about which motion is most likely, the magnitudes play

an important role in specifying the informativeness of the flow angles. In our exper-

iments section, we demonstrate that failing to condition on flow magnitudes in this

way results in greatly reduced performance over our derived model.

We now derive the key element of our method, the conditional flow angle likelihood

p(θ~vt | Mj, ‖~vt‖), the probability of observing a flow direction θ~vt given that a pixel

was part of a motion component undergoing the 2D motion direction Mj, and that

the flow magnitude was ‖~vt‖. We make the following modeling assumptions:

1. We assume the observed translational flow ~vt = (‖~vt‖, θ~vt) at a pixel is a noisy

observation of the translational motion field ~mt = (‖ ~mt‖, θ ~mt):

~vt = ~mt + η, (4.5)

where η is independent 2D Gaussian noise with zero mean and circular but

unknown covariance.
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2. We assume the translational motion field magnitude ‖ ~mt‖ is statistically inde-

pendent of the translation angle field M created by the estimated 3D translation

parameters (U ′, V ′,W ). It follows that ‖~vt‖ = ‖ ~mt‖ + η is also independent of

M , and hence p(‖~vt‖ |M) = p(‖~vt‖).

With these assumptions, we have

p(~vt |Mj)
(1)
= p(‖~vt‖, θ~vt |Mj) (4.6)

= p(θ~vt | ‖~vt‖,Mj) · p(‖~vt‖ |Mj) (4.7)

(2)
= p(θ~vt | ‖~vt‖,Mj) · p(‖~vt‖) (4.8)

∝ p(θ~vt | ‖~vt‖,Mj), (4.9)

where the numbers over each equality give the assumption that is invoked. Equa-

tion (4.9) follows since p(‖~vt‖) is constant across all estimated angle fields.

We model p(θ~vt | ‖~vt‖,M) using a von Mises distribution V(µ, κ) with parameters

µ, the preferred direction, and concentration parameter κ. We set µ = θ ~mt , since θ ~mt

is the most likely direction assuming a noisy observation of a translational motion θvt .

To set κ, we observe that when the ground truth flow magnitude ‖ ~mt‖ is small, the

distribution of observed angles θvt will be near uniform (see Figure 4.5, ~mt = (0, 0)),

whereas when ‖ ~mt‖ is large, the observed angle θ~vt is likely to be close to the flow

angle θ ~mt (Figure 4.5, ~mt = (2, 0)). We can achieve this basic relationship by setting

κ = a(‖ ~mt‖)b, where a and b are parameters that give added flexibility to the model.

Since we don’t have direct access to ‖ ~mt‖, we use ‖~vt‖ as a surrogate, yielding

p(θ~vt | ‖~vt‖,Mj) ∝ V(θ~vt ;µ = θ ~mt , κ = a‖~vt‖b). (4.10)

Note that this likelihood treats zero-length translation vectors as uninformative–it

assigns them the same likelihood under all motions. This makes sense, since the
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Figure 4.5: The von Mises distribution. When a motion field vector ~mt is perturbed
by added Gaussian noise η (figure top left), the resulting distribution over optical flow
angles θvt is well-modeled by a von Mises distribution. The figure shows how small
motion field vectors result in a broad distribution of angles after noise is added, while
larger magnitude motion field vectors result in a narrower distribution of angles. The
red curve shows the best von Mises fit to these sample distributions and the blue
curve shows the lower quality of the best Gaussian fit.

direction of a zero-length optical flow vector is essentially random. Similarly, the

longer the optical flow vector, the more reliable and informative it becomes.

Likelihood of a new motion. Lastly, with no prior information about new

motions, we set p(θ~vt | ‖~vt‖,Mj) = 1
2π

, a uniform distribution.

Once we have priors and likelihoods, we compute the posteriors (Equation 4.2)

and label each pixel as

L = arg max
j

p(Mj | ~vt). (4.11)
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4.1.1.2 Bruss and Horn’s motion estimation.

To estimate the translation parameters (U ′, V ′,W ) of the camera relative to the

static environment, we use the method of Bruss and Horn [14] and apply it to pixels

selected by the prior of Mj. The observed optical flow vector ~vi at pixel i can be

decomposed as ~vi = ~pi +~ei, where ~pi is the component of ~vi in the predicted direction

θmt and ~ei is the component orthogonal to ~pi. The authors find the motion param-

eters that minimizes the sum of these “error” components ~ei. The optimization for

translation-only is

arg min
U ′,V ′,W

∑
i

‖~ei(~vi, U ′, V ′,W )‖, (4.12)

where (U ′, V ′,W ) = (Uf, V f,W ) are the three translation parameters. Since we do

not know the focal length it’s not possible to compute the correct 3D translation,

but we are able to estimate the parameters (U ′, V ′,W ), which show the same angular

characteristics in 2D as the true 3D translation (U, V,W ). Bruss and Horn give a

closed form solution to this problem for the translation-only case.

Recovering camera rotation. Bruss and Horn also outline how to solve for

rotation, but give limited details. We implement our own estimation of rotations

(A,B,C) and translation as a nested optimization:

M̂ = arg min
A,B,C

[
min

U ′,V ′,W

∑
i

‖~ei (~vi, A,B,C, U ′, V ′,W ) ‖
]
. (4.13)

Given (A,B,C) one can compute the flow vectors ~mr describing the rotational motion

field of the observed flow, one can subtract off the rotation since it does not depend

on scene geometry: ~̂vt = ~v − ~̂mr(A,B,C). Subtracting the rotation (A,B,C) from

the observed flow reduces the optimization to the translation only case. We solve

the optimization over the rotation parameters A,B,C by using Matlab’s standard

gradient descent optimization, while calling the Bruss and Horn closed form solution
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Figure 4.6: The Bruss and Horn error. Let ~p be
a vector in the direction of preferred motion with
respect to a motion hypothesis (U, V,W ). The
Bruss and Horn error assigned to a translational
flow vector ~vt is then the distance of its projec-
tion onto ~p. However, this same error would be
assigned to a vector −~vt pointing in the opposite
direction, which should have much lower compat-
ibility with the motion hypothesis. direction, its
error is computed as its full magnitude, rather
than the distance of projection (left side of Fig-
ure). This new error function keeps objects mov-
ing in opposite directions from being confused
with each other.

for the translation variables given the rotational variables as part of the internal

function evaluation. Local minima are a concern, but since we are estimating camera

motion between two video frames, the rotation is almost always small and close to

the optimization’s starting point.

4.1.1.2.1 Modified Bruss and Horn Error We introduce a modification to

the error function of the Bruss and Horn algorithm that we call the modified Bruss

and Horn (MBH) error. We first describe the Bruss and Horn error function and a

particular issue that makes it problematic in the context of motion segmentation, and

then describe our modification to the algorithm.

The Bruss and Horn Error Function. The goal of the Bruss and Horn

algorithm (translation-only case) is to find the motion direction parameters (U, V,W )

that are as compatible as possible with the observed optical flow vectors. Let ~p be a

vector in the direction of the flow expected from a motion (U, V,W ) (see Figure 4.6).

Then the Bruss and Horn error for the observed flow vector ~vt is the distance of the

projection of ~vt onto ~p, shown by the red segment e on the right side of the figure.

The problem with this error function is that this distance is small not only for

vectors which are close to the preferred direction, but also for vectors that are in a
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direction opposite the preferred direction. That is, observed optical flow vectors that

point in exactly the wrong direction with respect to a motion (U, V,W ) get a small

error in the Bruss and Horn algorithm. In particular, the error assigned to a vector

~vt is the same as the error assigned to a vector −~vt in the opposite direction (See

Figure 4.6).

Because the Bruss and Horn algorithm is intended for motion estimation in sce-

narios where there is only a single motion (the camera motion), such motions in the

opposite direction to the preferred motion are not common, and thus, this “prob-

lem” we’ve identified has little impact. However, in the motion segmentation setting,

where flows of objects may point in opposite directions, this can make the flow of a

separately moving object, look as though it is compatible with the background. We

address this problem by introducing a modified version of the error.

The modified Bruss and Horn error. For the first frame we do not have

any estimate about static environment and moving objects. As stated above, the

Bruss and Horn error is the distance of the projection of an optical flow vector onto

the vector ~p representing the preferred direction of flow according to a translational

motion (U, V,W ). This can be written simply as

eBH(~vt, ~p) = ‖~vt‖ · |sin(](~vt, ~p)|. (4.14)

This error function has the appropriate behavior when the observed optical flow is

within 90 degrees of the expected flow direction, i.e., when ~vt · ~p ≥ 0. However, when

the observed flow points away from the preferred direction, we assign an error equal

to the magnitude of the entire vector, rather than its projection, since no component

of this vector represents a “valid direction” with respect to (U, V,W ). This results in

the modified Bruss and Horn error (see Figure 4.7):
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Figure 4.7: The modified Bruss and Horn error.
When an observed translation vector ~vt is within
90 degrees of the preferred direction, its error is
computed in the same manner as the traditional
Bruss and Horn error (right side of Figure). How-
ever, when the observed vector is more than 90
degrees from the preferred direction, its error is
computed as its full magnitude, rather than the
distance of projection (left side of Figure). This
new error function keeps objects moving in op-
posite directions from being confused with each
other.

eMBH =


‖~vt‖, if ~vt · ~p < 0

‖~vt‖ · |sin(](~vt, ~p)|, otherwise.

This error has the desired behavior of penalizing flows in the opposite direction to

the expected flow.

4.1.1.3 Initialization: Segmenting the first frame

The goals of the initialization are a) estimating translation parameters (U ′, V ′,W )

and the rotation (A,B,C) of the motion of static environment due to camera motion,

b) the estimated set of parameters (U ′, V ′,W ) form an angle field M corresponging to

the observed flow c) finding pixels whose flow is consistent with M , and d) assigning

inconsistent groups of contiguous pixels to additional angle fields. Bruss and Horn’s

method was not developed to handle scenes with multiple different motions, and so

large or fast-moving objects can result in poor motion estimates (Figure 4.10).

Constrained RANSAC. To address this problem we use a modified version of

RANSAC [23] to robustly estimate motion of static environment (Figure 4.8). We

use 10 random SLIC superpixels [1]1 to estimate camera motion (Section 4.1.1.2). We

modify the standard RANSAC procedure to force the algorithm to choose three of

1We use the http://www.vlfeat.org/api/slic.html code with regionSize=20 and regularizer=0.5.
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Figure 4.8: Initialization: Segmenting the first frame using random sample consensus
(RANSAC). The result of our RANSAC procedure is to find image patches of the
static environment. Notice that none of the patches are on the person moving in
the foreground. Also notice that we force the algorithm to pick patches in three of
the four image corners (a “corner” is 4% of the image). The right figure shows the
negative log likelihood of the static environment.

the 10 patches from the image corners, because image corners are prone to errors due

to a misestimated camera rotation. 5000 RANSAC trials are run, and the camera

motion resulting in the fewest outlier pixels according to the modified Bruss-Horn

(MBH) error is retained, using a threshold of 0.1.

Otsu’s Method. While using the RANSAC threshold on the MBH image pro-

duces a good set of pixels to estimate the motion of the static environment due to

camera motion, the method often excludes some pixels that should be included in the

motion component of static environment. We use Otsu’s method [79] to separate the

MBH image into a region of low error (static environment) and high error: (1) Use

Otsu’s threshold to divide the errors, minimizing the intraclass variance. Use this

threshold to do a binary segmentation of the image. (2) Find the connected compo-

nent C with highest average error. Remove these pixels (I ← I \C), and assign them

to an additional angle field M . These steps are repeated until Otsu’s effectiveness

parameter is below 0.6.
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Algorithm 1: A causal motion segmentation algorithm.

Input: video with n frames

Output: binary motion segmentation

1 for t← 1 to n− 1 do

2 compute optical flow from frame t to frame t+ 1

3 if first frame then

4 foreach RANSAC iteration do

5 find best set of translation parameters (U ′, V ′,W ) for 10 random

patched (3 in corners)

6 retain best angle field for the static environment Mk

7 end

8 p(M)← segment MBH error image into k comp. using Otsu’s method

9 else

10 p(M)← propagate posterior p(M | ~vt)

11 find (U ′, V ′,W ) and rotation (A,B,C) of static environment using

gradient descent

12 foreach flow vector ~v do

13 ~vt = ~v − ~mr(A,B,C)

14 end

15 end

16 for j ← 1 to k do

17 compute angle field Mj of motion component j

18 foreach flow vector ~vt do

19 p(θ~vt |Mj, ‖~vt‖)← V(θ~vt ;µ = θj~mt
, κ = a‖~vt‖b)

20 end

21 end

22 foreach flow vector ~vt do

23 p(Mk+1)← 1
k+1

24 p(θ~vt |Mk+1, ‖~vt‖)← 1
2π

25 normalize p(Mj) that they sum up to 1− p(Mk+1)

26 p(M | ~vt)← p(θ~vt |M, ‖~vt‖) · p(M)

27 end

28 given the posteriors p(M | ~vt) assign every pixel one of two labels: static

environment or moving objects

29 end
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4.1.2 Experiments

Several motion segmentation benchmarks exist, but often a clear definition of

what people intend to segment in ground truth is missing. The resulting inconsistent

segmentations complicate the comparison of methods. We define motion segmentation

as follows.

(I) Every pixel is given one of two labels: static background or moving objects.

(II) If only part of an object is moving (like a moving person with a stationary

foot), the entire object should be segmented.

(III) All freely moving objects (not just one) should be segmented, but nothing else.

We do not considered tethered objects such as trees to be freely moving.

(IV) Stationary objects are not segmented, even when they moved before or will

move in the future. We consider segmentation of previously moving objects to

be tracking. Our focus is on segmentation by motion analysis.

Experiments were run on two previous data sets and our new camouflaged animals

videos. The first was the Berkeley Motion Segmentation (BMS-26) database [12, 114]

(Figure 4.11, rows 5,6). Some BMS videos have an inconsistent definition of ground

truth from both our definition and from the other videos in the benchmark. An

example is Marple10 whose ground truth segments a wall in the foreground as a

moving object (see Figure 4.9). While it is interesting to use camera motion to

segment static objects (as in [123]), we are addressing the segmentation of objects

that are moving differently than the background, and so we excluded ten such videos

from our experiments (see [4] for more details). The second database used is the

Complex Background Data Set [72], which includes significant depth variation in the

background and also significant amounts of camera rotation (Figure 4.11, rows 3,4).

We also introduced the Camouflaged Animals Data Set (Figure 4.11, rows 1,2). These

videos were ground-truthed every 5th frame.
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Figure 4.9: Example of com-
mon segmentation inconsistencies
in widely used motion segmenta-
tion data sets. Some BMS-26
videos contain significant ground
truth errors, such as this seg-
mentation of the foreground wall,
which is clearly not a moving ob-
ject.

Setting von Mises parameters. There are two parameters a and b that affect

the von Mises concentration κ = arb. To set these parameters for each video, we train

on the remaining videos in a leave-one-out paradigm, maximizing over the values

0.5, 1.0, 2.0, 4.0 for multiplier parameter a and the values 0, 0.5, 1, 2 for the exponent

parameter b. Cross validation resulted in the selection of the parameter pair (a =

4.0, b = 1.0) for most videos, and we adopted these as our final values.

4.1.2.1 Results: Binary motion segmentation

In Tab. 4.1, we compare our model to five different state-of-the-art methods [81,

134, 72, 25, 48]. We compared against methods for which either code was available

or that had results on either of the two public databases that we used. However, we

excluded some methods (such as [109]), as their published results were less accurate

than [48], to whom we compared.

Some authors have scored algorithms using the number of correctly labeled pixels.

However, when the moving object in the foreground is small, a method can achieve

a very high score simply by marking the entire video as background. The F-measure

is also not symmetric with respect to foreground and background, and is not well-

defined when a frame contains no foreground pixels. Matthew’s Correlation Co-

efficient (MCC) handles both of these issues, and is recommended for scoring such

binary classification problems when there is a large imbalance between the number of

pixels in each category [89]. However, in order to enable comparison with [72], and
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Keuper Papaz. Frag. Zama. Naray. ours
[48] [81] [25] [134] [72]

Camouflage MCC 0.4305 0.3517 0.1633 0.3354 - 0.5344
F 0.4379 0.3297 0.1602 0.3007 - 0.5276

BMS-26 MCC 0.6851 0.6112 0.7187 0.6399 - 0.7576
F 0.7306 0.6412 0.7276 0.6595 0.6246 0.7823

Complex MCC 0.4752 0.6359 0.3257 0.3661 - 0.7491
F 0.4559 0.6220 0.3300 0.3297 0.3751 0.7408

Total avg. MCC 0.5737 0.5375 0.4866 0.5029 - 0.6918
F 0.5970 0.5446 0.4911 0.4969 - 0.6990

Table 4.1: Binary motion segmentation - Comparison to state-of-the-art. We compare
our final method to other motion segmentation approaches using the Matthew’s cor-
relation coefficient and F-measure. Numbers for each data set and the total average
across all valid videos are provided. Best viewed in color ( 1st-best , 2nd-best).

to allow easier comparison to other methods, we also included F-measures. Table 4.1

shows the highest average accuracy per data set highlighted in yellow and the second

best in blue, for both the F-measure and MCC. We were not able to obtain code

for Narayana et al. [72], but reproduced F-measures directly from their paper. The

method of [25] failed on several videos (only in the BMS data set), possibly due to the

length of these videos. In these cases, we assigned scores for those videos by assigning

all pixels to background.

4.1.2.2 Ablation study

Conditioning our angle likelihood on the flow magnitude is an important factor

in our method. Table 4.2 shows the detrimental effect of using a constant von Mises

concentration κ instead of one that depends upon flow magnitude. In this experiment,

we set the parameter b which governs the dependence of κ on ~tr to 0, and set the

value of κ to maximize performance. Even with the optimum constant κ, the drop in

performance was 7%, 5%, and a whopping 22% across the three data sets.
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final constant κ no RANSAC

BMS-26 0.7576 0.6843 0.6450
complex background 0.7491 0.7000 0.5757
camouflaged animals 0.5344 0.3128 0.5176

Table 4.2: Ablation study. The effect of RANSAC and the concentration parameter
κ.

We also show the consistent gains stemming from our constrained RANSAC ini-

tialization procedure. In this experiment, we segmented the first frame of video

without rejecting any pixels as outliers. In some videos, this had little effect, but

sometimes the effect was large, as shown in Figure 4.10.

The method by Keuper et al. [48] performs fairly well, but often makes errors in

segmenting rigid parts of the foreground near the observer. This can be seen in the

third and fourth rows of Figure 4.11, which shows sample results from the Complex

Background Data Set. In particular, note that Keuper et al.’s method segments the

tree in the near foreground in the third row and the wall in the near foreground in the

fourth row. The method of Fragkiadaki et al., also based on trajectories, has similar

behavior. These methods in general seem to have difficulty with high variability in

depth.

4.1.3 Summary

We developed a new motion segmentation algorithm based on Bayesian statistics.

A new angle likelihood function is presented that accurately captures the amount

of independent object motion information contained in the flow angle using the flow

magnitude as an informativeness measure. The larger the flow magnitude the more

reliable the information contained in the optical flow angle. We are not making any

compromises in modeling motion. We are directly using the perspective projection

equations leading to the translational angle field to analyze motion, as has been
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Figure 4.10: Ablation study: Initialization of the first frame with and without
RANSAC. Top row: robust initialisation with RANSAC. Bottom row: using Bruss
and Horn’s method directly on the entire image. Left to right: flow angles of transla-
tional flow, flow angles of estimated background translation and segmentation. Note
that without RANSAC the estimated background translation is the best fit for the
car instead of background.

Figure 4.11: Qualitative segmentation results. Left to right: original image, ground
truth, [48], [81], [25], [134] and our binary segmentations. Rows 1-2: sample results
on the Animal Camouflage Data Set (chameleon and stickinsect). Rows 3-4: sample
results on Complex Background (traffic and forest). Rows 5-6: sample results on
BMS-26 (cars5 and people1).
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advocated by Horn [36], rather than approximations based on projective geometry.We

showed great performance on three data sets, one of which is the new introduced

Camouflaged Animal data set. This data set focuses on scenes where motion is

the strongest cue (exceeding appearance significantly) to detect otherwise invisible

animals.
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4.2 Multi-label Segmentation: Adding semantic information

to distinguish among differently moving objects

Motion segmentation is an intriguing problem in that it combines subareas of

vision in which geometry is a powerful constraint–the understanding of how images

will change under camera motion–with “messy” problems like segmentation and the

deformation of flexible moving objects, in which there are virtually no hard geometric

constraints. This has given rise to a range of methods–some that use mostly geometric

techniques while largely ignoring appearance [40, 5, 134], and others that try to learn

the entire pipeline using CNN architectures [110, 111, 42] attempting to learn both

the image patterns and the flow patterns in CNNs.

Methods that use motion cues alone, without appearance models of moving ob-

jects, are likely to fail in cases where flow is noisy, ambiguous, or hard to determine.

Such purely “geometric” approaches are often not sufficient to understand motion

well. The appearance of what is moving must also be considered. This suggests using

deep learning methods to incorporate high-level semantic object information besides

motion cues alone.

Of course, CNNs are excellent at modeling the appearance of objects [52, 103, 34].

They excel at finding objects in static images and videos [27, 64, 92]. They are also

very good at segmenting objects [17, 137, 61, 31, 65, 97], exceeding performance of

pre-CNN methods. However, there are cases where appearance alone is simply not

enough to segment well. Such cases are highlighted by the Camouflaged Animal

motion segmentation data set [5], in which moving objects are virtually invisible in

many of the static frames.

In this Chapter we extend our work presented in Chapter 4.1 and combine careful

motion modeling using classical ideas with a modern CNN for appearance modeling,

yielding excellent results. Towards this end, we design a hierarchical motion seg-

mentation system in which the first phase identifies simple rigid motion components,
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Figure 4.12: A hierarchical model for motion segmentation. The first level of our
method estimates rigid motion components from optical flow. The second level groups
these components based upon object proposals from SharpMask [86] to form object
motion models.

and the second phase assembles these rigid motion components into full objects,

guided by a semantic segmentation of each frame [86] (see Figure 4.12). This new

hierarchical system allows the first low-level phase to focus on the geometry of per-

spective projection, segmenting the frame into its rigid motions. Then, in the second

phase, deformable and articulated objects, like pedestrians and animals, are mod-

eled as a combination of a number of rigid motion components, as suggested by the

semantic segmentation results. While neither the motion analysis nor the semantic

segmentations are error free, their combination results in a significant improvement

in performance on the multi-label motion segmentation problem. Our contributions

include:

• A new hierarchical model for motion segmentation with two steps:

1. segmenting a frame into rigid motions;
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2. using objectness knowledge from SharpMask [86] to combine these rigid

parts into object models that describe the motions of articulated and de-

formable objects such as people or animals.

• A new statistical model for optical flow as a noisy measurement of the underlying

motion field. We set noise distribution parameters using statistics of the Sintel

database [15].

• A Bayesian approach to computing the likelihood of a 3D motion direction asso-

ciated with an optical flow vector, in which we integrate over the unobservable

motion field magnitude. This allows us to assign pixels to rigid motion models

in a fashion consistent with perspective projection and our statistical model.

We report results on three motion segmentation benchmarks that are consistent

with the classical definition of motion segmentation: Freiburg-Berkeley Motion Seg-

metnation [12], Complex Background [72], and Camouflaged Animals [5]. The Davis

data set [83, 88] is a popular video segmentation benchmark which focuses on seg-

menting prominent objects rather than all moving objects. While our method is not

designed for such benchmarks, we still discuss results on that benchmark and the

relationship between object segmentation and motion segmentation.

4.2.1 Methods

Our approach is not limited to a certain type of scenes. Our intention is to propose

a new method to segment any video into static environment and moving objects

without any prior knowledge about the video with its objects, motions and scene

structure. To get an initial estimate about the scene, our algorithm is (automatically)

initialized with an estimate of the background region and a set of rigid objects. We

adopt the initialization procedure presented in Chapter 4.1.1.3 for this purpose.

Throughout our system, we consider two separate notions of movement:
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• Rigid motions: motions that can be described by translating rigid 3D regions.2

• Object motions: motions of real objects (e.g., pedestrians or cars) that are

modeled as compositions of one or more rigid motions.

Throughout the video, we maintain a set of rigid motions. This set may be expanded,

to contain newly discovered motions, or contracted, if we find there is no more evi-

dence of a previously seen rigid motion. Multiple rigid motions together can describe

highly complex object motions. These means complex object motions such as a walk-

ing person is often split into simple rigid motions describing just the motion of the

arm or the leg. We maintain a set of such object motions, which typically correspond

to real world objects such as cars, pedestrians, or animals. The “background”, which

is typically the static environment, can be modeled with a single rigid motion. De-

pending upon the specific task the entire object motion, but also the piece wise rigid

motion might be of interest.

Algorithm 2 gives the overview of our main loop. Given the optical flow (Sun et

al. [106]), object proposals from SharpMask [86] and information from the previous

time steps we first segment the video into its different rigid motions and then use

object proposals provided by Sharpmask to segment the video into different object

motions.

The main steps of our method are (1) removing rotational flow (Sec. 4.2.1.1),

(2) estimating rigid motion components and assigning pixels in each frame to rigid

motion components (Sec. 4.2.1.2), (3) grouping rigid motion components into sets to

form object models (Sec. 4.2.1.3) and (4) assigning the pixels in each frame to objects

for a final segmentation (Sec. 4.2.1.3.4).

2Object rotations are not modeled.

58



Algorithm 2: Estimate motion models and segment frame into objects

Input:

Optical flow.

Rigid components of previous frame.

Moving objects of previous frame.

Assignment history of rigid motions to objs.

SharpMask object proposals for current frame.

Output:

Current rigid components.

Current moving objects.

1 // Estimate rotational flow and remove it 4.2.1.1.

2 // Estimate rigid motion components 4.2.1.2.

3 for each rigid component region from prev. frame do

4 Est. current rigid motion model for that region.

5 end

6 for each pixel in current image do

7 Assign it to a rigid motion model.

8 end

9 // Grouping rigid motion components 4.2.1.3.

10 for moving object mask in object proposals do

11 Assign rigid motion models to object mask.

12 Check consistency with assignment history.

13 end

14 Create object motion models

15 //Assign pixels to moving objects 4.2.1.3.4.

16 for each pixel in current image do

17 Assign it to an object motion model.

18 end

4.2.1.1 Removing rotational flow

We seek a camera rotation such that, after subtracting off this rotation from the

optical flow, the remaining flow corresponds to purely translational motion (details

of this basic idea are described in the previous Chapter 4.1). Unless specified oth-
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erwise, all remaining optical flows discussed in this Chapter 4.2 refer to the rotation

compensated flow, i.e. the optical flow after camera rotation has been removed.

4.2.1.2 Rigid motions

We want to discover the “set of motions” of rigid structures in the image, and then

to determine which pixels belong to each motion, as shown in Figure 4.12 leading to

a video segmentation into piece wise rigid motions. The next step of our system is to

estimate a set of J rigid motion models M j, j = 1 . . . J , and to assign each pixel in

the current image to one of the motion models.

4.2.1.2.1 The rigid motion model. We use the translational angle field as in-

troduced in Chapter 4.1.1 to model the nature of rigid motions. Equation 3.21 essen-

tially leads us to our rigid motion model M , which is a h × w matrix (h and w are

the image height and width), defined by a 3D translational motion (U, V,W ). The

elements of this matrix are the motion directions at each pixel location (x, y) in the

image.

Independence of the set of rigid motion models from the focal length f .

The rigid motion model M is dependent upon the focal length (Equation 3.21). Thus,

a motion field alone, without the focal length, is not enough to infer the 3D motion

direction of an object. While our method segments objects based upon different 3D

motions projected on a 2D image plane, it is not important for the method to infer the

exact 3D direction; rather, it is only important that for each focal length f there is a

unique mapping from 3D directions to rigid motion models (at each pixel location).

We show that for any fixed but unknown focal length, each rigid motion model maps

to a unique motion direction in 3D. Thus, the rigid motion models are enough to

distinguish among different motions even though they are not enough to distinguish

the exact 3D motion. In other words, if our goal is merely to separate different types

of motions, the rigid motion models are sufficient. We present a proof that for any
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camera focal length f , there is a one-to-one mapping from rigid motion models to 3D

motions.

Notation and Preliminaries: Let S(f) be the set of all possible rigid motion models

in a static environment for a camera with focal length f . M(f, T ) is a motion model

defined by the focal length f and the motion direction T = (U, V,W ). Let T be the

set of all translational directions, i.e., the set of points on the unit sphere. That is

S(f) = {s : s = M(f, T ), T ∈ T }, (4.15)

Consider the set S∗ of rigid motion models generated by the set of all possible motion

directions T when the focal length f is equal to 1. We are interested in the question

of how the set S(f) of motion models differs from S∗, due to the difference of focal

length.

Theorem 1. Let f and f ′ be two different focal lengths. Let M(f, T ) be a canonical

rigid motion model that results from the focal length f and motion direction T . The

same rigid motion model can be obtained for another focal length f ′ = cf and a

different motion direction T ′ = (U, V, cW ), as M(f ′, T ′). We show that

M(f, T ) = M(f ′, T ′). (4.16)

Thus the direction θ(x, y, f, U, V,W ) at each pixel location (x, y) can be obtained with

different focal length f ′ = cf and a different motion direction T ′ = (U, V, cW ), or

θ(x, y, f ′, U, V, cW ) = θ(x, y, f, U, V,W ) (4.17)

Proof.
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θ(x, y, f ′, U, V, cW ) (4.18)

= arctan(cW · y − V · f ′, cW · x− U · f ′) (4.19)

= arctan(c(W · y − V · f), c(W · x− U · f)) (4.20)

= arctan(W · y − V · f,W · x− U · f) (4.21)

= θ(x, y, f, U, V,W ). (4.22)

Since this establishes a one-to-one mapping among rigid motion models governed

by the two focal lengths, it establishes that the total set S of rigid motion models

is independent of focal length. In particular, while the rigid motion model M(f, T )

for a particular motion direction is affected by the focal length, the set of all possible

rigid motion models S is the same for all focal lengths.

3D trans. direction focal length rigid motion model
[U, V,W ] in pixel M

[−1, 1, 1] 1000

[−1, 1, 0.001] 1

Table 4.3: Independence of the set of rigid motion models from the focal length.
Same rigid motion model can be obtained using a different focal length and a different
motion direction [U, V,W ].

4.2.1.2.2 Estimating a rigid motion model for each rigid motion segment.

We examine the regions from the rigid motion segmentation of the previous frame to
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estimate a rigid motion model that describes the current optical flow in each rigid

motion region. First, we “flow forward” the previous frame’s rigid motion regions to

obtain the approximate positions of the same rigid structures in the current frame.

We then use the optical flow vectors in each region to estimate the motion model by

using Horn’s method [14], which gives a closed form solution for the best fit to the

current translational flow of each region using a least-squares estimation procedure.

Given the estimates [U, V,W ] for each region, we can substitute them into Eq. 3.21

to obtain a set of rigid motion models for the current frame.

4.2.1.2.3 Assigning pixels to rigid motion models. Given the set of rigid

motion models M j, j = 1 . . . J , we assign each pixel to one of the estimated rigid

motion models in a Bayesian fashion. Let ~vt = (ut, vt) be an observed translational

flow vector at a particular pixel position (x, y), containing only motion due to camera

translation and object motion. The current goal is to choose from among J motion

models at each pixel location the one with highest probability given the observed flow

vector:

Lrigid = arg max
j

p(M j
xy | ~vt). (4.23)

Each pixel in the image will be assigned to its maximum a posteriori motion model,

resulting in the segmentation of a frame into its J rigid motion components. We

compute these posteriors using Bayes’ rule as

p(M j
xy | ~vt) ∝ p(~vt |M j

xy) · p(M j
xy). (4.24)

To compute this posterior, we introduce a new model for the flow likelihood p(~vt|M j
xy)

and the prior p(M j
xy), details of which are described in Section 4.2.1.4.

63



4.2.1.3 Object motions

The segmentation Lrigid (Eq. 4.23) segments a frame into its rigid motion compo-

nents. Common objects such as pedestrians, cars or animals show more deformable,

articulated and unstructured motion patterns. These type of motion patterns exceeds

the complexity one can model using a single rigid motion model. A complex object

motion is broken into pieces (segments) if one attempts to model object motion using

rigid motions. This over segmentation might not be unreasonable and of interest for

certain tasks, however an understanding of an object itself that moves as a whole is

not accessible at this point. To be able to model a characteristic motion for an object

accurately we incorporate the strength of convolutional neural networks for the task

of object detection and segmentation leveraging the semantics of high level image

understanding. According to object proposals generated by [86] - a network trained

for object segmentation capturing both object-level information as well as low-level

pixel data - we join rigid motion models into sets that belong to a specific object.

Thus a set of rigid motion models is used to model an object’s motion.

Given the rigid motion models M j, the segmentation Lrigid (Eq.4.23) of a frame

into J rigid motions and a set of object proposal masks for objects in this frame,

we form mutually exclusive subsets Mk of the rigid motion models M j. Each Mk,

k = 1 . . . K comprises a set of rigid motion models describing a specific object’s

motion. The steps are as follows:

1. Generate object proposals using the SharpMask segmentation method [86] to

create candidate masks of objects and select masks corresponding to moving

objects only.

2. Join rigid motion models into sets that belong to a specific object motion guided

by semantic segmentations of [86].
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Figure 4.13: Grouping rigid motion models with temporal consistency. Colored dots
represent rigid motions, that are grouped to object motions A, B and C. Top row:
tracking objects over time: (i) Two rigid motion components, dark blue and violet
assigned to Object C previously, become isolated in frame 4; (ii) The yellow compo-
nent suddenly shifts from Object B to C in frame 3. Bottom row: time consistent
assignment of rigid motions to object motions addresses both of these issues.

4.2.1.3.1 Generating moving object proposals. We first generate a large set

of object proposals and objectness scores using the SharpMask segmentation method [86],

and keep the top 100 proposals (based on objectness score). We analyze these object

proposal masks and select a subset that best covers the non-background portions of

the image, the latter being estimated from the rigid motion models.

4.2.1.3.2 Joining rigid motion models into sets that describe a specific

object motion. Given moving object proposal masks and the segmentation Lrigid,

we could simply assign each motion model M j to the object proposal mask that has

the highest intersection with the rigid motion region corresponding to M j. However

object proposal masks (based on single frames) are not necessarily time consistent

– they might arise, disappear or cover part of other objects in single frames. Thus

a more sophisticated approach than simply assigning each motion model M j to its

object proposal mask is required. To achieve a temporally consistent segmentation, we

address the following three consistency constraints: (1) tracking objects consistently

over time, (2) each object owns a consistent set of independently moving parts, where
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each part is modeled by a rigid motion M j and (3) motion components M j are

assigned to objects they belong to in a time consistent manner.

We will address consistency constraint (1) and (2). Following up with describing an

approach to incorporate consistency constraint (3).

Rigid motions of the current frame are estimated based on the propagated poste-

rior of the previous frame (see Chapter 4.2.1.2.2), thus it is easy to track these motions

over time which form the basis of our segmentation system. High level object motions

are tracked in a time consistent manner by evaluating key criteria like each object

owns a consistent set of independently moving parts. A rigid motion describing the

motion of a persons leg is very unlikely to change its owner (the object), unless the leg

is a prosthesis the owner changes occasionally. However we call these the rare cases.

We track objects by evaluating shared rigid motion components among objects in the

current frame and objects detected in the past.

Let Q be the number of object proposal masks (i.e., the output of SharpMask at

the current frame) and q ∈ 1, .., Q its index. Let K be the number of all dif-

ferent objects detected till the current video frame T , indexed by k ∈ 1, ..., K.

Given the Q object proposal masks, the segmentation of all frames into rigid motion

components {Ltrigid}t=1,..,T , and the object segmentations from all previous frames

{Ltobject}t=1,...,T−1,3 the problem is to find the lowest-cost way to assign each object

proposal mask at the current frame to its corresponding object segmentation. This

problem can be represented in a matrix of the component similarity - the number of

common rigid motion components between the object k and a motion mask q. This

leads to a Q × K matrix. Then the Hungarian algorithm is used to find the best

matching such that the component similarity is maximized.

3We do not have LTobject, the object segmentation of the current frame, at this point.
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The third consistency requirement we address is time consistent assignment of

rigid motion models M j of the current frame to the K objects detected in the video

sequence so far. To guarantee a time consistency it is important to assign detected

rigid motions to the K objects detected in the video sequence so far, instead of

assigning to the Q object proposals of the current frame only, which are independent

object proposals based on a single frame. We assign a rigid motion component M j

to an object according to its conditional probability,

p(M j | Mk
T ) =

∑T
t=1 1[M j

t ∈Mk
t ]

T
. (4.25)

In words, the probability that a rigid motion M j is part of the set Mk
T (set of rigid

motions that define a specific object’s motion of the current frame T ) is the number

of frames t, with tv ∈ 1, ..., T , where M j was assigned toMk
t , out of the total number

of frames seen so far, T .

In summary we first assign rigid motions to Q motion masks of the current frame

based on its component similarity (top row of Figure 4.13). We then re-assign rigid

motions to the K moving objects that have been seen so far (bottom row of Figure

4.13).

4.2.1.3.3 The object motion model. Mk
T is a set of rigid motion models be-

longing to a specific object’s motion. Each rigid motion model describes part of that

object’s motion at the current frame T . Let r be the index over elements (rigid mo-

tions) in the setMk
T . We now explain how a new high level object motion model Ok

is generated from a set of rigid motion models M r ∈Mk
T .

Similar to a rigid motion model M j, an object motion model Ok determines a

motion direction at each pixel location. M j often models just a part of an object’s

motion due to its rigidity constraint, whereas the high level object motion model
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overcomes this limitation by modeling the entire object’s direction of motion as a

whole.

The object motion model Ok is a MAP-estimate at each pixel over the set of rigid

motion models in Mk
T . We compute the probability of each rigid motion M r ∈ Mk

T

given the observed flow ~vt at a particular pixel position (x, y) (Eq. 4.26) and assign

the most likely motion model to that pixel (Eq. 4.27). An example of this is shown

in Figure 4.14.

p(M r
xy|~vt) =

p(~vt|M r
xy) · p(M r

xy)

p(~vt)
(4.26)

Ok
xy = arg max

Mr
xy

(p(M r
xy|~vt)) (4.27)

4.2.1.3.4 Assigning pixels to moving objects Given the object motion models

Ok we segment a frame into its independently moving objects. Similar to how we

assign pixels to rigid motion models (Eq. 4.23), the goal is now to choose among K

high level object motion models at each pixel location (x, y), the one with highest

probability given the optical flow vector ~vt:

p(Ok
xy|~vt) =

p(~vt|Ok
xy) · p(Ok

xy)

p(vt)
. (4.28)

This leads to a moving object segmentation,

Lobject = arg max
k

(p(Ok
xy|~vt)). (4.29)

Likelihoods and priors are computed similarly as for the segmentation procedure of a

frame into rigid motion components (Equation 4.23) and are derived in the following

section 4.2.1.4.
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Figure 4.14: The object motion model. In this figure, the k-th object’s motion
(walking person) is described by three rigid motion models forming the set Mk =
{M2,M3,M4}. The object motion model Ok is a MAP-estimate at each pixel (x, y)
over rigid motion models in Mk.

4.2.1.4 Flow likelihood and prior

In this section we describe our new flow likelihood and a prior that are used to

assign to each pixel its most likely motion model. The motion model can be either a

rigid motion model M j or an object motion model Ok, the principle how to compute

the flow likelihood in both cases remains the same.

4.2.1.4.1 Flow likelihood. Let ~q = (r, θ) be the true translational motion field

vector (with magnitude r and angle θ), representing the motion field at a particular

pixel location less the component due to camera rotation. Let ~vt be the translational

component of the observed 4 optical flow vector ~v. We model ~vt as a noisy observation

of ~q:

~vt = ~q + ~n. (4.30)

4We refer to the flow vector as “observed”, but it is the output of an optical flow algorithm which
has access to a pair of frames.

69



Inspired by [41], we model flow noise ~n = (nu, nv) as a product of Laplacian distribu-

tions (for the u and v components), where the parameters depend upon the motion

field magnitude r:

~n ∼ Laplace(bnu(r)) · Laplace(bnv(r)). (4.31)

With these assumptions we derive our new flow likelihood, the probability of ~vt given

a rigid motion model M j (or given an object motion model Ok, respectively):5

p(~vt |M j
xy) =

∫ ∞
0

p(~vt, r |M j
xy) dr (4.32)

=

∫ ∞
0

p(~vt | r,M j
xy) p(r |M j

xy) dr (4.33)

(a)
=

∫ ∞
0

p(~vt | ~q) p(r |M j
xy) dr (4.34)

(b)
=

∫ ∞
0

p(~n; r) p(r |M j
xy) dr. (4.35)

The equality (a) follows since the motion field vector ~q is just a combination of

the motion field magnitude r and the motion direction M j
xy. The final equality (b)

expresses the fact that the only uncertainty in ~vt is due to the flow noise ~n. The noise

variance depends upon r. Parameters of the flow noise distribution are estimated

from the Sintel database [15], details of which can be found in Section Modeling the

flow noise.

p(r |M j
xy) is the probability of flow magnitude r given a particular motion direc-

tion M j
xy. We assume that p(r) is independent of the flow direction θ and approximate

it as an exponential distribution with parameter br:

5We define the likelihood of a “new motion” that was not observed before to be p(~vt |Mnew) =
1
2π

∫ 2π

0
p(~vt | M) dM . The likelihood of a new motion direction is the average likelihood over all

possible motion directions.
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p(r |M j
xy) ≈ Exp(r; br). (4.36)

The scale parameter br is learned using the FBMS-59 training data set [12, 5]. We

discuss the relationship between the variance of the flow noise and the magnitude r

of the motion field in the subsequent paragraph.

Modeling the flow noise. We use the ground truth optical flow provided by

the Sintel [15] data set for modeling the characteristics of optical flow computed by

the algorithm of Sun et al. [106].

We measure the variance of the observed flow noise for different magnitudes r

of the ground truth flow. Figure 4.15 shows four histograms of the flow noise (u-

component) for different ground truth flow magnitudes. The last plot shows the

observed variances as blue dots and in red the exponential function that best models

the relationship between flow noise variance and the motion field magnitude r. A

significant relation between the variance of the flow noise and magnitude can be

observed – the larger the flow magnitudes, the larger the covariance of the flow noise.

For large pixel displacements the computation of optical flow becomes very noisy. To

incorporate this relationship into our model, we model the variance as a function of

r with an exponential function of the form s(r) = a · ebr.

The least squares fit for a and b are:6

Var(nu(r)) : a = 1.145× 10−4, b = 35.85 (4.37)

Var(nv(r)) : a = 1.635× 10−4, b = 45.8 (4.38)

Additionally we introduce a multiplier m, to add flexibility to our noise model. This is

supportive for real world videos, since the measurements rely on the synthetic action

6Parameters a and b are measured based on the normalized flow – the flow relative to the frame
size.
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movie Sintel which comes with additional challenges, like textureless regions, artificial

motion blur effects and large pixel displacements. We learn the parameter m using

the FBMS-59-3D motion training data set [4, 77].

4.2.1.4.2 Prior. The prior p(M j
xy) on a particular rigid motion model at each

pixel includes information about the posterior probability of each motion from the

previous frame (the motion prior) and another factor that restricts the position of

that component in the next frame to a position close to its expected position (the

location prior). The location prior is important because each rigid motion model

should model exactly one rigid motion component of an object. The number of rigid

motion models correspond to the number of existing rigid motion components in the

image. This way a new motion gets only introduced by a prior for a new motion and

not by priors for existing motion components.

Motion prior. To get a rough estimate about the motion modeled by M j we

proceed as follows: (1) We propagate the posterior of p(M j
xy|~vt) from the previous

frame along the previous frame’s optical flow. (2) We interpolate regions of disocclu-

sion by iteratively smoothing from adjacent unoccluded regions. (3) Then we spatially

distribute the probability that each motion component is presents by smoothing the

prior with a 7x7 Gaussian.

Location prior. The location prior restricts the location of a motion component

to being near its former location. If there are multiple rigid motion components with

similar motion, it is important that each object motion is described by its own set

of rigid motion components. A rigid motion model cannot be shared among multiple

objects. Therefore we propagate the hard segmentation from the previous frame and

distribute it spatially in a manner similar to the motion prior.
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(a) first quartile (b) second quartile

(c) third quartile (d) fourth quartile

(e) variance of flow noise

Figure 4.15: Variance of flow noise. (a)-(d): Histograms of the optical flow noise of the
first, second, third and fourth quartile of motion field magnitudes (Q1, Q2, Q3, Q4).
(e): Visualization of the dependence of the flow noise variance and the corresponding
motion field magnitude r. The blue dots show the flow noise variance for a particular
motion field magnitude.
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Motion Segmentation

Testset: FBMS-motion (30 sequences) complex background (5 sequences)
P R F ∆Obj P R F ∆Obj

[48] 74.64 62.03 63.59 7.7 67.62 58.28 60.27 3.4

[109] 72.69 54.36 56.32 11.7 60.79 44.74 45.83 3.4

ours+CRF 74.23 63.07 64.97 4 64.85 67.28 65.60 3.4

camouflaged animals (9 sequences) all (44 sequences)
P R F ∆Obj P R F ∆Obj

[48] 77.78 68.10 69.97 5.7 74.48 62.84 64.52 6.8

[109] 84.71 59.40 61.52 22.2 73.80 54.29 56.19 12.9

ours+CRF 83.84 69.99 72.15 5 75.13 64.96 66.51 4.1

Table 4.4: Motion segmentation: Comparison to state-of-the-art. We compare motion
segmentation approaches (multi-label) [48, 109]. Best viewed in color ( 1st-best ,
2nd-best).

4.2.2 Experiments

We evaluate our work on three motion segmentation data sets: FBMS-59 [12],

the Complex Background data set [72], and the Camouflaged Animals data set [5].

As discussed in [4], FBMS-59 shows a significant number of annotation errors. We

use a corrected version of the data set that is linked on the original data set’s web

site. Our main results are for multi-label segmentation, but we also convert our

results to a binary segmentation form for comparison with previous work on binary

motion segmentation. In addition, we show segmentation results of each stage of

our moving object segmentation algorithm – segmentation into rigid motion models

(rMM ), segmentation of the video using object proposals mask of SharpMask directly

(objP), segmentation of the video using a constant variance of the optical flow error

for all flow magnitudes (cVar) and results of our final moving object segmentation

algorithm (ours).
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4.2.2.1 Evaluation scheme

We adopt the multi-label evaluation scheme from [77] and add an additional

measure ∆Obj that represents the accuracy of the segmented object count. ∆Obj is

the average absolute difference of the ground truth object count in each frame and the

number of objects identified by the algorithm. A drawback of the evaluation scheme

proposed by [77] is that it does not penalize algorithms much for large numbers of

unnecessary (additional) segmented objects. If there is a large background in the

image and the algorithm identifies 10 false positive moving objects, these will only

affect the score for the background region according to the proportion of the area

taken up by the false positive objects. Thus, the F-score of [77] alone does not entirely

capture whether the algorithm has an accurate count of the number of objects and

the additional ∆Obj measure is necessary for a representative evaluation.

Multi-label Video Segmentation Binary Video Segmentation

all (44 sequences) all (44 sequences)
P R F ∆Obj P R F

cVar 76.43 62.19 64.86 3.4 85.78 81.09 81.15

rMM 76.01 50.11 52.69 85.88 81.05 81.81 78.91

objP - - - - 77.15 85.03 78.78

ours 74.75 64.70 66.45 4.3 83.66 82.68 81.27

ours+CRF 75.13 64.96 66.51 4.1 84.72 82.65 81.49

Table 4.5: Ablation study: Intermediate results of our motion segmentation algo-
rithm. We compare five versions of our algorithm to show how each part of the
algorithm affects the performance of the overall motion segmentation method.

4.2.2.2 Results: Multi-label motion segmentation

We outperform [48, 109] by significant margins on FBMS-59, Complex Back-

ground and Camouflaged Animals data set (see Tab. 4.4). The Complex Background

data set shows videos with high variance in depth, which is particularly challeng-

ing for trajectory based motion segmentation approaches such as [48], as well as for
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Binary Motion Segmentation

Testset: FBMS-motion (30 sequences) complex background (5 sequences)
P R F P R F

[5] 79.94 80.76 77.33 84.31 91.74 86.56

[81] 83.86 79.96 79.56 87.57 84.95 80.64

[22] 86.24 76.25 77.33 79.91 69.31 73.65

[110] 87.29 72.19 74.79 86.78 77.49 78.19

[111] 92.40 85.07 86.96 74.58 77.02 70.52

ours+CRF 85.53 83.14 81.85 87.69 93.13 90.11

camouflaged animals (9 sequences) all (44 sequences)
P R F P R F

[5] 81.86 74.55 76.31 80.83 80.74 78.17

[81] 73.31 56.65 60.38 82.12 75.76 75.76

[22] 82.34 68.45 72.48 84.72 73.92 75.91

[110] 77.82 62.03 64.84 85.30 70.71 73.14

[111] 77.62 51.08 50.82 87.35 77.20 77.67

ours+CRF 80.37 75.21 75.95 84.72 82.65 81.49

Table 4.6: Binary motion segmentation: Comparison to state-of-the-art. We compare
to binary [22, 5, 81, 110] motion segmentation approaches. Best viewed in color
( 1st-best , 2nd-best).

occlusion-based object segmentation approaches [109]. Over all the videos in these

data sets combined, we gain an average improvement of 2% in F-score compared

to the second best performing segmentation method [48]. Our ∆Obj results are on

par or better for Complex Background and Camouflaged Animals; on FBMS, we are

more accurate than either of the other methods in segmenting the correct number of

objects (Fig.4.16 for qualitative results).

4.2.2.3 Results: Binary motion segmentation

In these experiments, we segment each frame into either static background or

moving objects, but do not distinguish among the moving objects, enabling us to

compare to other methods that address the binary segmentation problem. We out-

perform other methods based on overall F-score and recall, and on all three perfor-

mance metrics on the Complex Background data set. On FBMS we are in second
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ground truth ours ours - basic MM ours - objProp Keuper Taylor Bideau Papazoglou Faktor

Multi-label Video Segmentation Binary Video Segmentation

our - rMM

Figure 4.16: Qualitative segmentation results. Row 1-3: cars5 from the FBMS-59
test set. Rows 4-6: forest from the complex background data set. For both videos
we show frames 1, 10 and 20. We show results on our final version of our algorithm
(“ours”) as well as for intermediate results of our final algorithm (“ours - rMM” and
“ours - objProp”). “ours - rMM” shows the segmentation of a frame into its rigid
motions. “ours - objProp” shows the object segmentations produced by SharpMask
[86], which are used to join rigid motions to object motions. Comparisons to state of
the art methods on multi-label segmentation and binary segmentation are shown in
columns 6-10 [48, 109, 5, 81, 22].

place behind Tokmakov et al. [111] and on Camouflaged Animals the method from

Bideau et al. [5] is slightly better (0.36%) than ours. On average over all videos we

have a lead of 3.32% over the next best method [5].

4.2.2.4 Ablation study

To show the contribution of each part of our algorithm separately, we evaluate

intermediate results of our method and specific variants, shown in Tab. 4.5:

1. Constant variance (cVar): Modeling the variance of optical flow error as a

function of the optical flow magnitude leads to an improvement of about 2%

over all data sets. Regarding precision and ∆Obj, we outperform our final

motion segmentation approach – cVar segments fewer objects and, due to less

false positives, the precision increases. However, the overall performance is

worse due to low recall.
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2. Segmentation into rigid motion models (rMM): Simple rigid motion models are

not sufficient to model complex object motion. After the first stage – segmen-

tation of a frame into its rigid motion models – complex motion patterns are

broken into multiple simple rigid motion models. Thus, it is not surprising that

∆Obj increases dramatically to 85.55.

3. Segmentation into moving object proposals (objP): Moving object proposals are

generated from a subset of the object proposals out of SharpMask[86]. In Figure

4.16 (“ours - objProp”), it can be seen that the obtained proposals are cover-

ing the object completely (high recall); however the object boundaries are very

rough. Those inaccurate boundaries – where a large part of the static back-

ground is segmented along with a moving object – lead to low performance.

Therefore a composed motion model for modeling the motion of an object ac-

curately is necessary and leads to an improved performance.7

4. Conditional Random Field (ours+CRF): We add a fully-connected CRF [50]

on top of our method to refine the segmentations [110, 16]. The CRF hyper-

parameters were set by cross-validation on the FBMS Training set.

4.2.3 Summary

Many previous methods have shown impressive results in motion segmentation

using just low-level or low and mid-level cues [5, 48, 25, 81, 109, 78, 76, 134, 22]. Like

recent work in optical flow [100] that uses the power of CNNs to condition optical flow

on semantic regions, it seems logical to incorporate this type of high-level information

into motion segmentation. We presented an hierarchical statistical method that lever-

ages perspective geometry to model low level parts and semantic segmentation results

from a CNN, and combines these parts in a logical way to form higher level objects.

7Since the object proposal masks of SharpMask might be overlapping or describe the same object,
an evaluation of multi-label segmentation is not directly possible for objP.
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We demonstrated best average results across three major motion segmentation data

sets and showed strong performance on a wide variety of challenging videos.
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CHAPTER 5

LEARNING MOTION PATTERNS

Modern learning based methods of motion analysis excel at identifying well-known

structures, but may not precisely characterize well-known geometric constraints. In

this Chapter we present an approach to learn highly variable motion patterns using

a convolutional neural network. We start with answering the following question: is

there a formal and principled description of a moving object, that one could use as a

recipe to learn what a moving object is? If one had this kind of recipe maybe one could

generate training data accordingly in a synthetic manner to train a neural network

for the motion segmentation task. This leads us to our following work presented

in Chapter 5.1 and 5.2 which attempts to learn motion patterns of object’s using a

neural network.

• Learning highly variable motion patterns in a self-supervised manner

for moving object segmentation [6]. A possible high level description of

a moving object in a static scene could sound as follows: A moving object is a

connected image region that undergoes some independent motion. The connected

image region can be of any size and shape. Having a good motion model for the

camera motion (a rigid motion model as introduced in Chapter 4.2.1.2) and a

motion model for moving objects (following ideas presented in Chapter 4.2.1.3),

one can synthesize large amount of training data consistent with the definition

of a moving object and consistent with true physics of perspective projection.

This approach has been shown very promising results on synthetic (perfect)

flow fields. In particular, in scenarios where the scene is rather complex and
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objects are located at different depths our approach outperforms state of the

art motion segmentation methods trained on original flow fields directly.

• Learning object motion from noisy estimated motion fields Making the

transfer from synthetic data to realistic noisy flow fields remains still challenging.

How can one train a network being conform with the true physics of the world

(scene structure) and interpreting independent objects motions robustly. This

is topic of Chapter 5.2.

5.1 Self-Supervised Motion Segmentation

The human visual system has an incredible ability to detect motion, regardless of

its complexity. While we are moving through the world our eye captures an enormous

number of images over time. Images are projected onto our retina and the perceived

motion (image change over time) is processed by the brain. In computer vision, optical

flow is used to describe the motion between two consecutive images. Low level optical

flow methods are based on two images alone [68, 37, 106, 13, 96, 107]; other methods

attempt to incorporate object knowledge and the knowledge about object motions

[100, 129, 38]. In this work we propose an approach to learn motion segmentation

given a motion field as input. A motion field describes the (perfect) motion between

two consecutive frames, where as the optical flow is its noisy estimate.

For the human visual system little eye movements play a key role in simplifying

the motion field on the eye’s retina and making it easier to interpret for our brain

[122]. Motion fields produced by eye motions (rotations) contain no information

about the scene’s geometry (see Equation 3.19) and thus can be used for motion

compensation without adding or reducing critical information. The two major reasons

for eye movements are (1) to stabilize vision and (2) to change direction of gaze.

In this work we aim to develop an approach that accurately interprets the per-

ceived motion field on the retina. Inspired by visual ecology, we start with vision
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step 1: rotation compensation step 2: motion segmentation

angle field motion segmentationoptical flow rotation compensated flow

MoA-Net
input: frames

Figure 5.1: An overview: Self-supervised motion segmentation. Given a motion
field our goal is to segment a frame into independently moving objects and static
environment. Due to the complexity of motion fields, previous neural network models
have had difficulty segmenting motion directly, in addition semantic cues to handle
challenging motion cases. To deal also with highly complex motion field we use a two
step approach (like in previous work [5]), which first involves adjusting the optical
flow for camera rotation (left) and then segments the angle of the compensated flow
into static environment and moving objects (right). We show strong potential of
training a network to segment the angle field rather than the raw motion field to be
able to mutually interpreting true physics of the scene and motion correctly.

stabilization before processing the motion field to segment independently moving ob-

jects. Of course one is not able to receive an image directly from the human’s eye.

Instead one typically uses video sequences taken by a camera and methods to estimate

the optical flow between two consecutive frames.

Unlike most learning-based approaches, we are not relying on labeled training

data, which is limited. Instead we carefully analyse the underlying geometry of the

motion field and break down the problem of motion segmentation into two subprob-

lems: compensating the motion field for rotation (similar to vision stabilization of our

eye movements) and segmenting the remaining motion field into static background

and moving objects. The step of compensating the image motion for camera rotation

is a challenging step especially because only a noisy estimate of the motion field is

accessible for real world videos [7, 5]. Estimating the camera rotation given the opti-

cal flow as input is not further explored in this work; possible approaches to estimate

the camera rotation are presented in [7, 5].
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As stated already in several previous literature [40, 72, 7, 5] the remaining motion

field (after compensating for rotation) has a well interpretable geometrical pattern.

We follow geometrical principles behind the rotation compensated flow to synthesize

training data in large amounts while consistently following rules of perspective pro-

jection. In this way we do not rely on any training data set for motion segmentation,

which are limited in size, the variety of shown scene structures, or quality.

Our contributions are as follows:

• Inspired by visual ecology, we present a two step approach for motion seg-

mentation, which first involves compensation of the optical flow for camera

rotation and then segments the compensated flow into static environment and

independently moving objects. While this two step approach is a well estab-

lished approach for motion segmentation [7, 5, 40], we present in this Chapter

its great potential for learning based video segmentation methods. We aim to

leverage the strength of classical geometrical approaches (based on perspective

projection) and learning based approaches for motion segmentation.

• For evaluation purposes, motion segmentation ground truth for the optical flow

data set Sintel [15] is generated.

• A new self-supervised training approach is presented that does not rely on lim-

ited training data. Instead the problem of motion segmentation is broken down

into two smaller subproblems. Guided by perspective projection, we provide

a principled (abstract) definition of a moving object, which allows us to gen-

erate an unlimited amount of training data in a synthetic way that covers the

fundamental principles of motion.

• We show state-of-the-art performance on ground truth optical flow (the motion

field) of Sintel [15] and FlyingThings3D [71].
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This Chapter is organized as follows. The principles behind the formation pro-

cess of a motion field (see Chapter 3) lead us to our approach of training a neural

network for motion segmentation as described in Chapter 5.1.1. Rather than relying

on labeled training data, synthetic training data is automatically generated consid-

ering the geometry of optical flow. We explain the automatic generation procedure

for training data in chapter 5.1.1.2.1. In Chapter 5.1.2 we evaluate our motion seg-

mentation network and compare its performance to two other networks for motion

segmentation.

5.1.1 Methods

Motion patterns of the motion field are often quite difficult to interpret directly.

Camera rotation and translation couple the scene depth, which makes it impossible to

judge whether an object is moving or not. Motion magnitude as well as direction are

dependent on camera motion, object motion and depth, when the camera is rotating

and translating simultaneously. Inspired by visual ecology and the purpose of human

eye movements, we use a two step approach for motion segmentation (see Figure 5.1).

The two steps are as follows:

1. Compensate the motion field for rotation

• Compensate the motion field for the rotational component of the observer’s

motion, similar to the way that image stabilization is done on the human

retina, which is done via small eye rotations. The rotation compensated

motion vector is ~v.

2. Segment the motion field into static environment and moving objects

• Given a motion vector ~v compute its direction θ at each pixel location

(Equation 3.21).
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• A neural network MoA-Net (Motion Angle - Network) takes an angle image

as input and generates per-pixel motion labels.

Rather than having the network learn complex geometrical dependencies, the

fundamental idea is to break down the motion field into a pattern that is easier to

interpret. The input to the network - the angle image - is simpler and contains all of

the motion information that can be obtained from motion field. Rather than adding

additional information we reduce the amount of information required to train a neural

network successfully to its minimum.

In this work we assume the rotation to be known and present an approach that

automatically segments the motion field into static environment and moving objects.

5.1.1.1 Network architecture

Our basic network architecture is adopted from [110, 111]. It its a U-Net architec-

ture [97], which is a well established architecture for image segmentation. Originally

[110, 111] the networks input was the motion field’s angle and magnitude - leading to

a three dimensional input of size [height×width× 2]. Instead our network takes the

angle image of the rotation compensated motion field, which just has two dimensions

[height × width], as input. The angles are in the range of [−π, . . . , π]. The network

is trained using the binary cross-entropy loss. Its output are “soft” motion segmen-

tation masks with values in the range of [0, 1], which are rounded in a second step to

obtain binary motion segmentation masks for final evaluation.

5.1.1.2 Training: Incorporating the Basics of Perspective Projection

Training a neural network for the task of motion segmentation usually requires

large amounts of optical flow and its corresponding motion segmentations. The prob-

lem of using those data sets for training is that those data sets are often limited in

size and the variety in scene geometry and motion is often restricted.
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Rather than relying on these limited data set we present an approach to generate

training data in an automatic way incorporating the physics of perspective projection

and independent motion.

5.1.1.2.1 Generating Training Data We start with a definition of a moving

object and guided by this definition we introduce a procedure to generate training

data to learn to segment independently moving objects.

Definition: Moving Object. A moving object is a connected image region

that undergoes some independent motion. The connected image region can be

of any size and shape.

True object motion can be quite complex, since objects can be deformable and artic-

ulated. If an object is articulated, each part might move independently of the other

parts, e.g. a walking person. In case of a walking person, one arm might move for-

ward while the other is standing still - here, although the body parts are physically

connected, each part can move relatively independently of each other. The static en-

vironment undergoes a single pure translational motion due to the observers motion.

Training data should contain these key criteria reflecting object motion along with

observer motion.

We generate training data for motion segmentation in 5 steps:

1. Generating connected object regions: To cover a large variety of different pos-

sible shapes and sizes, we use the binary segmentations masks of FlyingTh-

ings3D [110, 71] (Figure 5.2(a)).

2. Modeling articulated object motion: To model object motion, each object region

is split into n subregions using superpixels. n is a random number between one

and ten. Splitting objects into subregions as shown in Figure 5.2(b) leads to
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multiple different motion regions. In Figure 5.2(b) we have eight motion regions

including the region of static environment.

3. We assign to each motion region a translational 3D direction (Figure 5.2(c)).

A 3D translational direction is represented as a 3D unit vector. We generate a

set of equally distributed translational motion direction on a sphere using the

vertices of an icosahedron as approximation. Each vertex of an icosahedron

represents a translational motion direction. To generate a large set of possi-

ble translational motion direction, we generate an icosahedron of frequency 50

which has 25002 vertices representing the set of translational motion directions.

4. Smoothing motion boundaries: To smooth motion boundaries within an object,

we use a Gaussian filter with standard deviation σ = 50 (Figure 5.2(d)). Object

boundaries remain sharp.

5. We add random Gaussian noise with zero mean and standard deviation σ = 0.1

(Figure 5.2(e)).

This procedure to generate training data is entirely independent of any color

images or other labeled training data. It incorporates all geometrical information re-

quired to segment independently moving objects. This abstraction - reducing objects

to connected image regions that undergo independent motion - allows us to train a

network with unlimited training data in a self-supervised manner.

5.1.2 Experiments

We evaluate our work on Sintel [15, 128] and FlyingThings3D [71]. These data

sets are briefly discussed below. We generated additional motion segmentation ground

truth for Sintel to use this data set for evaluation. Both data sets provide camera

motion information, which allows us to evaluate the performance of MoA-Net, which

requires flow angles of the rotation compensated flow field as input. We compare our
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(a) Generating connected ob-
ject regions

(b) Splitting object regions into
motion regions

(c) Assigning 3D translational
directions

(d) Smoothing motion bound-
aries

(e) Adding Gaussian noise

Figure 5.2: The process of generating training data for motion segmentation. The
abstract object definition reduces an object to connected image regions that undergo
independent motion. (a)-(e) show the process of generating abstract objects for the
motion segmentation task.

work to two recently published motion segmentations approaches [111, 42]. Both ap-

proaches are learning based approaches that attempt to learn motion patterns given

the optical flow as input. In combination with a neural network that produces object

segmentations based on appearance, both approaches have shown great results on a

variety of different data sets [83, 12, 77, 108, 90, 43, 59]. For comparison purposes,

we extract the motion segmentation network of both works and compare their per-

formance on ground truth optical flow with our proposed method. The very modular

motion segmentation pipeline of Tokmakov et al. [111] as well as of Jain et al. [42]

allows us to analyze their “motion-stream” exclusively.

FlyingThings3D [71] is a relatively large synthetic flow data set comprising

2700 videos, containing 10 stereo frames each. Along with these videos, ground truth

optical flow, disparity, intrinsic, extrinsic camera parameters and object instance

segmentation masks are provided. However this data set doesn’t picture realistic

scenarios - random objects like tables, chairs and cars are flying in the 3D world.
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Sintel [15, 128] is a well-known optical flow data set, containing 23 video se-

quences with 20 to 50 frames each. These short video sequences are taken from the

computer animated movie Sintel. Scenes are relatively realistic simulated. Videos

come with ground truth optical flow, depth, intrinsic and extrinsic camera parame-

ters and material segmentation.

Compensating for camera rotation Besides ground truth optical flow, Sintel

and FlyingThings3D provide ground truth extrinsic and intrinsic camera matrices.

This allows us to compensate the flow for camera rotation. (1) We move image

coordinates xt along the optical flow and obtain new image coordinates xt+1. (2)

The new image coordinates xt+1 are transformed into 3D camera coordinates Xt+1.

(3) Given the ground truth camera motion (rotation and translation) between two

consecutive frames, we undo the camera rotation in 3D space. (4) The new camera

coordinates Xtrans (after undoing the camera’s rotation) are projected back onto the

2D image plane. (5) The rotation compensated flow can be obtained from the pixel

displacement between image coordinates xt and xtrans.

5.1.2.1 Evaluation

We use the evaluation scheme of [83]. We show results on two different motion

segmentation networks and compare their performance with our motion network on

Sintel and the test set of FlyingThings3D.

Jain et. al train a motion segmentation network given rgb-flow images as input.

For training, they used estimated optical flow images in rgb-format. Since no motion

segmentation are available for ImageNet [98], they propose a procedure to produce

(pseudo)-ground truth segmentations based on the provided object bounding boxes,

the segmentations of their appearance network and the appearance of the estimated

optical flow. Flow images are discarded from the training set, if average rgb-flow

inside an object bounding box differs not sufficiently from the background’s optical
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Motion Segmentation: Sintel
Motion

J Mean J Recall J Decay F Mean F Recall F Decay
↑ ↑ ↓ ↑ ↑ ↓

Tokmakov et al. [110, 111] 50.38 55.43 45.32 52.43 54.95 45.58
Jain et al. [42] 30.27 24.78 32.72 28.07 14.02 31.89
ours 55.13 55.24 26.62 59.94 61.67 16.76

Table 5.1: Self-supervised motion segmentation: Comparison to state-of-the-art. We
compare our motion segmentation network with two recent motion segmentation net-
works that segment optical flow into static background and independently moving
objects. Best viewed in color ( 1st-best , 2nd-best).

flow. Their segmentations are rather conservative - they often segment just a small

portion of the moving object or nothing, which leads to an overall low performance of

their motion segmentation network. On both data sets - Sintel and FlyingThings3D

- their performance is rather low. One might argue that moving objects in Sintel and

FlyingThings3D are quite different from objects that the network trained on ImageNet

has seen before. Also, their automatic procedure to generate (pseudo)-ground truth

significantly limits the variability of motion fields.

Tokmakov et. al trained their network on ground truth optical flow provided by

the FlyingThings3D data set. Each flow vector is represented using polar coordinates

(flow magnitude and angle) during training. On Sintel as well as FlyingThings3D they

show overall a good performance. If a video scene shows high variance in depth as in

the bamboo video sequences of Sintel (Figure 5.3(c) and 5.3(d)), their segmentation is

highly depth dependent, which leads to erroneous motion segmentations. Especially

in those cases, MoA-Net outperforms both other motion segmentation networks by a

large margin.

MoA-Net (ours) is trained purely on translational angle fields, which are generated

in a synthetical manner as described in Chapter 5.1.1.2.1. This allows for producing

motion segmentations that are completely independent upon the scene depth. Since
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Motion Segmentation: FlyingThings3D-Test
Motion

J Mean J Recall J Decay F Mean F Recall F Decay
↑ ↑ ↓ ↑ ↑ ↓

Tokmakov et al. [110, 111] 89.13 98.40 -2.11 93.55 98.54 -2.29
Jain et al. [42] 21.57 6.47 2.51 30.04 8.77 1.85
ours (flow angle FT3D) 91.12 99.78 -0.02 94.33 99.63 -0.41
ours (self-supervised) 75.53 95.76 3.55 82.25 97.65 1.68

Table 5.2: Comparison of motion networks trained on different training data and
tested on FlyingThings3D-Test. Tokmakov et al. and ours-FT3D are trained using
the provided ground truth optical flow of FlyingThings3D, Jain et al. relies on esti-
mated optical flow of a subset of videos from ImageNet, and ours is trained on fully
automatically generated training data as described in 5.1.1.2. Best viewed in color
( 1st-best , 2nd-best).

the motion of moving objects is only approximated during training using multiple

rigid motion models (3D translational direction) there is some deviation from real

world motions, e.g. real world motions might also have sharp motion boundaries

within a moving object. This leads to failure cases in certain situations.

5.1.2.2 Results: Binary motion segmentation

On Sintel we outperform Tokmakov et al. by 4% points using the J-Mean metric

and by more than 7% points regarding the F-Mean (see Table 5.1). On FlyingThings3D-

test, the motion segmentation network of Tokmakov et al. produces high quality

motion segmentation masks. Their accuracy in terms of IoU differs from their per-

formance on Sintel by a large margin (39% points). This significant difference is very

likely due to the similar nature of training and test data (their network is trained

on FlyingThings3D-train). When our MoA-Net is trained on the same ground truth

flow as Tokmakov et al., but using only the optical flow’s angle after compensat-

ing for camera rotation, we outperform their method (91.12% versus 89.13% - see

Table 5.2)). Our proposed motion segmentation network, however, is trained in a

self-supervised manner. We show significantly better performance than Jain et al.
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Jain et al. Tokmakov et al. ours

video frame ground truth

(a) Sintel - alley1

Jain et al. Tokmakov et al. ours

video frame ground truth

(b) Sintel - alley2

Jain et al. Tokmakov et al. ours

video frame ground truth

(c) Sintel - bamboo1

Jain et al. Tokmakov et al. ours

video frame ground truth

(d) Sintel - bamboo2

Figure 5.3: first row : input frame and ground truth motion segmentation. Second
row : input to the motion segmentation network of the two different methods used
for comparison an our input - optical flow as rgb image, optical flow in its angle and
magnitude representation, angle of the rotation compensated flow. Third row : raw
motion network output for each method. Fourth row : motion segmentation of each
method

on Sintel as well as FlyingThings3D. We achieve state-of-the-art results on Sintel,

whereas on FlyingThings3D we rank second best after Tokmakov et al.

Tokmakov et al. and Jain et al. do not need any pre-processing of the optical flow,

however, here we show that a more analytical approach, which includes a step of pre-

processing the optical flow - compensating for camera rotation, has a high potential

for further improvements and solving the task of motion segmentation without the

need of large training data sets.
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5.1.3 Summary

There have been several works for self-supervised video segmentation (and also

fully unsupervised approaches) incorporating second order cues and tasks such as

colorization or solving jigsaw puzzles for the task of video segmentation [121, 6, 24,

138, 82, 69]. In this Chapter we pretend an alternative form of self-supervised learning

attempting to incorporate physical knowledge about the motion field and its formation

given a complex scene geometry with high variation in depth. We show promising

results on two synthetic (and ideal) data sets with ground truth camera rotation

information provided. It remains to be explored to develop an end to end approach

that first estimates the camera motion given noisy optical flow and second segments

the video into its moving objects and static background. This is subject of the

following Chapter 5.2.

5.2 Learning Object Motion from Rotation-Compensated Flow

Fields

Humans and animals have developed various approaches to improve their motion

perception and detection. One key tool developed in the visual system of humans

and animals is motion field stabilization. Humans for example use smooth pursuit

tracking [122, 54] using eye rotations, to keep the perceived motion field as stable as

possible. And some bird species, e.g., chickens, bob their heads to keep the motion

field stable for short periods of time. Inspired by these strategies and previous work

we propose a two-step approach for motion segmentation that first attempts to sta-

bilize the motion field (compensating for the observer’s rotation), and then given the

rotation-compensated field, motion patterns are learned using a convolutional neural

network.

We combine our geometry-based method for estimating camera rotation, and a

CNN framework for learning to segment moving objects. Other than in Chapter 5.1
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CNN
first step second step

optical flow rotation compensated flow angle field motion segmentation

Figure 5.4: An overview: End-to-end approach of learning object motions from optical
flow. Inspired by classical approaches for the problem of motion segmentation [5, 40,
72], we first compensate the observed motion field for camera rotation (“first step”),
and segment the remaining translational optical flow field using a learning based
approach (“second step”). The observed flow field on the left has complex motion
patterns: the motion directions of foreground and background are pointing in opposite
directions, due to large variance in scene depth, and the combined impact of camera
rotation and translation. Estimating the camera rotation (“the right spin”), and
compensating the flow field for this rotation simplifies the motion field dramatically,
in this case yielding similar motion directions for foreground and background. This
provides simpler inputs to our learning based motion segmentation framework.

we develop an end-to-end system that starts from estimating the camera rotation

and then segments the rotation compensated (noisy) flow field - rather than the ideal

motion field - into static background and independently moving objects.

In Chapter 5.2.1.2 we present a new likelihood for a translational motion field

vector. We then introduce an approach for estimating the camera rotation and the

translational motion direction using a likelihood maximization approach, given the

rotation compensated flow in Chapter 5.2.1.1. We show in Chapter 5.2.2 that the task

of learning motion patterns is improved, resulting in an better motion segmentation

performance.

5.2.1 Methods

Our estimation of camera rotation depends upon finding the rotation [A,B,C]

which maximizes the likelihood of the resulting translation flow field. Our flow likeli-
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~vt

θ
(x, y)

Figure 5.5: The translational motion field vector. Left: motion field vector ~vt at a
particular pixel position (x, y). Right: color coding of the angle field θ(x, y) at each
pixel location for the case of camera translation along the optical axis [U, V,W ] =
[0, 0, 1].

hood incorporates a model for the optical flow’s noise as well as a prior distribution

over the inverse scene depth.

To address the challenge of estimating camera motion in the presence of moving

objects, we weight each pixel using soft object motion masks, which are output of our

segmentation method and evolve over time. This way independently moving objects

have almost no influence on our optimization for camera motion - the influence of

moving objects is suppressed due to a low weight.

In the following, we first introduce the flow likelihood. This likelihood is used as

an error function to estimate camera motion. We then describe how camera motion

parameters are estimated by minimizing this error.

5.2.1.1 Likelihood of the translational motion field

Let ~ot be the observed translational flow vector, e.g., flow estimated with [107],

at a particular pixel position (x, y). Let the translational 3D motion direction of

the camera given by [U, V,W ] be a unit vector. The three translational camera

parameters [U, V,W ] and the pixel position (x, y) define the direction of a motion

field vector at a particular pixel location in the image (see Fig. 5.5). As derived in

Chapter 4.2 equation 4.35, the probability of observing ~ot at (x, y) given a motion
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direction [U, V,W ] is given by:

p(~ot | U, V,W, x, y) =

∫ ∞
0

p(~n) pr(r | U, V,W, x, y) dr, (5.1)

which represents all the ways that the observed flow vector ~ot could occur as a com-

bination of motion in the direction [U, V,W ], a random motion magnitude r, and an

optical flow error ~n.

The motion field magnitude is not independent of the motion direction. As we

can see, the likelihood (5.1) depends on the distribution of motion field magnitudes

pr. This magnitude is challenging to model directly, since it depends on the camera’s

translational motion direction [U, V,W ] and the pixel location. In Chapter 4.2 we

modeled pr by assuming that the motion field magnitude r is independent on the flow

direction [U, V,W ]. However this turns out to be quite inaccurate. Especially in case

of strong z-motion (forward motion) the motion field magnitudes close to the focus of

expansion are near zero, whereas the motion field magnitudes of a horizontal camera

motion are independent of image location. Next we present a new way of modeling

the distribution over motion field magnitudes pr that alleviates these problems.

From flow magnitudes to inverse depth. Given the motion field of a pure

translational motion, from the perspective projection equations [14], we can derive

the motion field components ut and vt as:

ut =
−fU + xW

Z
, vt =

−fV + yW

Z
. (5.2)

Then the motion field magnitude r is:

r =
√
u2
t + v2

t , (5.3)

=
1

Z
·
√

(−fU + xW )2 + (−fV + yW )2, (5.4)

=
1

Z
· g(f, x, y, U, V,W ), (5.5)
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where g is a function that controls all aspects of the magnitude that are not related

to depth.

Distributions over flow magnitudes. Given the reformulation of magnitude r

in terms of g(·) and the inverse depth 1
Z

, we would now like to determine the induced

distribution on motion field magnitudes, given the distribution on inverse depths,

i.e., we aim to compute pr(r|g(f, x, y, U, V,W )) through p 1
Z

(1
z
). Using the relation

between r and g(·) from (5.5), we can rewrite pr(r|g(·)) as follows

pr(r|g(·)) =
p 1

Z
( r
g(·))

g(·) , (5.6)

which is effectively just a change of units. Expressing the distribution over flow

magnitudes in terms of the distribution over inverse depth has a significant advantage.

This formulation effectively factors motion direction (U, V,W ), focal length f and

scene depth into the function g(·), and the distribution over depth can be modeled

without relying on these dependencies and making further approximations.

Flow likelihood. Now the likelihood (5.1) can be written using a distribution

over inverse depth, rather than flow magnitudes:

p(~ot | U, V,W, x, y) =

∫ ∞
0

p(~n) pr(r | g(·)) dr, (5.7)

=

∫ ∞
0

p(~n)
p 1

Z

(
r
g(·)

)
g(·) dr. (5.8)

The key advantage of this is that while flow magnitudes are not independent of the

motion direction, the inverse depths ARE independent of motion direction, and thus

the model is more realistic.

5.2.1.1.1 Implementation details. We model the probability of the flow noise

p(~n) as a multivariate normal p(~n) ∼ N (µ,Σ) and the inverse depth p( 1
Z

) as an

exponential distribution p( 1
Z

) ∼ Exp(λ).
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~ot

(a) Translational (observed) flow vector ~ot at
pixel location (x, y).

∆θ ~ot

~n~vt = (r, θ)

(b) Observed optical flow vector ~ot, is a noisy
observation of the motion field vector ~vt: ~ot =
~vt + ~n.

∆θ ~ot

~n~vt = (r, θ)

(c) To compute the flow likelihood, we inte-
grate over the unknown motion magnitude of
the motion field vector ~vt.

0 0.5 1 1.5 2
0
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r
g(·)

p
1 Z
(

r
g
(·)

)

(d) Probability distribution over inverse depth.

Figure 5.6: Flow likelihood (a)-(c): computation of the probability p(~n) at a par-
ticular pixel position (x, y). (d): probability distribution over inverse depth. The
flow likelihood is maximal is the observed flow vector ~ot and the motion field vector
~vt point into the same direction with similar magnitude - which refers to small flow
noise ~n.
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The noise covariance Σ is assumed to be spherical and is measured using the

ground truth flow of Sintel [15] and the corresponding estimated optical flow [107].

We obtain σ = 16.5 · 10−5I, where I is the identity matrix. λ is the rate parameter

of the exponential distribution modeling the inverse depth, and is estimated using

ground truth depths from Sintel. We measured λ = 0.64. The distribution over

inverse depth can be seen in Figure 5.6(d).

3D Lookup table. For computational efficiency the integral in equation 5.8 is

approximated using a discrete sum over motion field magnitudes r and flow likelihood

values are pre-computed for efficiency. Towards the goal of representing the flow

likelihood using a 3D lookup table we express the likelihood function with only three

degrees of freedom. We start from equation 5.8 and revise each part of the function

and reduce its dimensionality.

Probability of the flow noise p(~n). Let ~ot be the estimated (observed) motion vector

with magnitudem and direction α and let ~vt be the true motion vector with magnitude

r and direction θ, then the noise is the difference between those two. We represent

those vectors using the exponential form (Euler’s formula), which decomposes a vector

into its magnitude part and angle part:

~n = ~ot − ~vt = m · eiα − r · eiθ (5.9)

= eiα ·
(
m− r · ei(θ−α)

)
(5.10)

= eiα ·
(
m− r · ei(∆θ)

)
(5.11)

Since the noise covariance Σ is assumed to be spherical, the probability of the noise is

independent of its direction. However it is dependent upon the flow noise magnitude.

The flow noise magnitude is defined by m, r and ∆θ.

|~n| =
∣∣∣m− r · ei(∆θ)∣∣∣ (5.12)
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Thus one can write the probability of the flow noise p(~n) as the probability of the

flow noise vector ~n with magnitude |~n| and angle of zero degree.

p
(
~n(|~n|, 0)

)
∼ N

(
µ,Σ

)
(5.13)

The probability of the flow noise comes with two degrees of freedom, which are ∆θ

and the observed flow magnitude m.

Probability over inverse depth and scale factor g(·). We will start from equation

5.5. Here the probability over inverse depth initially comes with three degrees of

freedom for the camera translation U, V and W , the focal length f and the pixel

location x, y. In the following we will reformulate the equation, such that just one

additional degree of freedom besides the flow magnitude m and the angle difference

∆θ between the two motion vectors ~ot and ~vt is required to compute the likelihood of

a flow vector at a particular image position.

g(·) =
√

(−fU + xW )2 + (−fV + yW )2 (5.14)

=

√√√√W 2 ·
((
−fU
W

+ x

)2

+

(
−fV
W

+ y

)2
)

(5.15)

= W ·
√

(x− x0)2 + (y − y0)2 (5.16)

= W ·D (5.17)

The Eq. 5.16 describes a circle with center coordinates (x0, y0) =
(
−fU

W
,−fV

W

)
. Here

the coordinates (x0, y0) describe the position of the focus of expansion. D is the

distance of a point in the image from the focus of expansion. Consequentially, g(·) is

the distance of a point in the image from the focus of expansion scaled by W . One

can see that g(·) is only determined by one factor, the scaled distance of a point in

the image to the focus of expansion. Thus, the probability over inverse depth comes
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with just one additional degree of freedom which is g(·), the scaled distance of a point

in the image to the focus of expansion.

Flow likelihood lookup table. Using the reformulation of the probability of the

flow noise and the scale factor g(·) allows us to pre-compute the flow likelihood and

generate a 3D lookup table to simply lookup the likelihood values during camera

motion estimation. The three dimensions of the lookup table are ∆θ, flow magnitude

m and g(·). The integral over motion field magnitudes r is approximated using a

discrete sum over r. This leads to the following final Equation:

p(~ot | U, V,W, x, y) =

∫ ∞
0

p (~n(r,m,∆θ))
p 1

Z

(
r
g(·)

)
g(·) dr (5.18)

=
R∑
r=0

p (~n(r,m,∆θ))
p 1

Z

(
r
g(·)

)
g(·) ∆r. (5.19)

Our flow likelihood addresses the challenge of estimating the camera’s motion in the

presence of noisy optical flow. To get an intuition about its behaviour we visualize the

structure of our lookup table and show a slice for g(·) = const. (see Figure 5.7). The

color red indicates high likelihood values, dark blue indicates low likelihood values.

The lower the angle difference ∆θ between the vectors ~ot and ~vt, the higher the

likelihood. Also please note that for very small flow magnitudes m the flow likelihood

is almost the same regardless ∆θ. This makes sense, since the flow direction tends to

be unreliable if its magnitude is close to zero.

5.2.1.2 Camera motion estimation via likelihood maximization

Given an observed optical flow vector ~o we want to find a translational motion

direction (U, V,W ) and a camera rotation (A,B,C), such that the flow likelihood is

maximal or the negative log-likelihood is minimal. Recall ~ot, which is the observed

translational flow vector after subtracting off the flow ~vr due to camera rotation:
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∆θ

m
g(·)

(0, 0, 0)

Figure 5.7: Lookup table. Right: 3D lookup table, left: visualization of one slice (for
g(·) = const.) of the lookup table (Best viewed in pdf.)

~ot = ~o− ~vr(A,B,C). (5.20)

Given the rotation compensated flow, we minimize the negative log-likelihood as

follows:

Â, B̂, Ĉ, Û , V̂ , Ŵ

= arg min
A,B,C,U,V,W

∑
− log(p(~ot(A,B,C)|U, V,W, x, y)).

The estimated rotational motion field defined by [Â, B̂, Ĉ] is then subtracted off from

the original flow field and we obtain the rotation compensated flow field. Local min-

ima are a concern, especially in cases of noisy optical flow, inaccurate estimates of

independently moving objects present in the scene or complex scene geometry. To re-

duce the risk of an unstable optimization, we start from different starting points: (1)

camera rotation and translation estimate of the previous frame, (2) camera rotation

estimate weighted by depth estimate of previous frame and the translation estimate

of the previous frame and (3) camera rotation estimate weighted by depth estimate

of previous frame and the translation estimate of the previous frame in opposite di-
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rection. Especially for scenes with complex scene geometry and high variation in

depth a pre-estimate of the camera rotation alone weighted by the scene’s depth im-

proves stability and avoids local minima. At very distant scenes the motion is mainly

influenced by the camera rotation and not the camera translation (see Figure 5.8).

5.2.1.3 Object Motion Segmentation

Motivated by the success of CNN based approaches for object motion segmenta-

tion, we build our segmentation framework on a state-of-the-art model [110] based

on the widely used U-Net architecture [97]. In contrast to the original method, our

network takes rotation-compensated flow fields as input to segment independently

moving objects. Learning object motion based on rotation-compensated flow field

appears to be a task, that is much easier to learn for a network. Since the com-

plexity of optical flow patterns that couple the scene geometry, camera motion (rota-

tion+translation) is dramatically simplified. While our network architecture is similar

to [110], we propose important modifications to the training procedure, as described

in the following section.

5.2.1.3.1 Incorporating geometric information into training We train our

network on estimated translational flow fields. First, we estimate optical flow us-

ing [107] on the FlyingThings3D data set [71]. The ground truth camera rotation pro-

vided with the data set is subtracted from the flow to obtain a rotation-compensated

flow field. This flow field is input to our network as a matrix of size h × w × 3.

Unlike [110] we represent the flow angle using a unit vector representation instead

of explicit angles in the range of [0, ..., 2π]. This avoids segmentation discontinuity

in angle at 0 (or 2π respectively). The third component of the input vector is the

optical flow’s magnitude, which is simply concatenated. An interesting question for

training the motion segmentation network without rotation-compensated optical flow
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(a) video frame

(b) optical flow

(c) rotation compensated optical flow

(d) depth estimate

Figure 5.8: Flow, rotation compensated flow and the relative depth estimate. We
show sample videos from the data set Complex Background (video sequences: traffic,
forest) as well as two sample videos from the Davis data set (video sequence: park-
our, goat). A comparison of (b) and (d) shows how motion at distant is dominated
by camera rotation. After subtracting of the camera’s rotation the remaining flow
magnitude in these areas is very small (light color). If the flow magnitude is small
the motion direction is noisy. This can be seen in (e).
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is whether it is worthwhile to incorporate magnitude into the training procedure. We

study this question in detail in Section 5.2.2.1.

5.2.2 Experiments

We evaluate our approach on the widely used DAVIS data set [83] and show

ablation studies on FlyingThings3D [71]. Different variants of our core network are

analyzed using the FlyingThings3D data set [71]. We begin with a brief presentation

of the data sets used for training and evaluation, and then discuss the variants of our

motion segmentation network, and its evaluation and comparison to the state of the

art on DAVIS.

DAVIS [83] (Densely Annotated VIdeo Segmentation) contains 50 video se-

quences in total. They show different moving objects in various environments. A

segmentation of the most prominent moving object is provided for each frame. This

data set has been widely used for general video segmentation as well as motion seg-

mentation. In our experiments we show an evaluation comparing motion segmentation

methods and general video segmentation methods separately. We use the entire data

set (validation+test set) for evaluation, in accordance with previous work [110].

FlyingThings3D [71] (FT3D) is a large optical flow data set, providing ground

truth optical flow, the original RGB images, camera motion and depth. It is a syn-

thetic data set showing random objects like chairs, tables, etc. flying in the 3D world

along random trajectories. The data set is split into test and training sets. We show

experiments using ground truth optical flow and also the estimated optical flow from

the RGB images.

5.2.2.1 Ablation study

5.2.2.1.1 Network variants. We trained four variants of our motion segmenta-

tion network, with: (1) ground truth optical flow, (2) the ground truth flow after

having removed ground truth camera rotation, i.e., with rotation compensated-flow
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flow angle field segmentation

Figure 5.9: Comparison of motion segmentation results based on the original and
the rotation-compensated flow field. Top row: motion segmentation with the original
flow field that includes camera rotation, translation and object motion. Bottom row:
motion segmentation based on rotation-compensated flow field. Note that the angle
field (middle) of the rotation-compensated flow is entirely depth independent. The
angle field is fully determined by the translational camera motion and object motion.
In this example one can observe a clear z-motion of the camera, which is shown by the
rainbow pattern. The angle field of the original flow containing both camera rotation
and translation is depth dependent (top row, middle image). This angle field clearly
shows discontinuities in angle at the wall, which is due to significant changes in depth
and not because of independent object motion.

fields, (3) estimated optical flow field using PWC-Net [107], and (4) estimated ground

truth flow compensated with ground truth camera rotation, i.e., estimated rotation

compensated-flow field.

Table 5.3 shows the analysis with these four variants. Training and testing with

ground truth optical flow (original: gt FT3D or compensated: gt transFT3D) is

significantly better than using estimated optical flow. Segmentation accuracy is about

20% higher on the FT3D test set for ground truth, compared to estimated optical

flow. Training on rotation-compensated optical flow consistently leads to improved

quality of the final segmentation, e.g., 90.68% vs 93.23%. This motivates us to use

rotation-compensated flow fields for training a motion segmentation network. A direct

comparison in terms of segmentation quality between using the original optical flow

instead of the rotation-compensated optical flow as input is shown in Figure 5.9.
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trained with... tested with... angle+magnitude

gt FT3D gt FT3D 90.68

gt transFT3D gt transFT3D 93.23

PWC-Net FT3D PWC-Net FT3D 77.18

PWC-Net transFT3D PWC-Net transFT3D 78.69

Table 5.3: Ablation study: Network variants. We trained four networks using flow
angle and magnitude with: the provided ground truth optical flow of FT3D [71] (gt
FT3D), ground truth optical flow after subtracting ground truth camera rotation
(gt transFT3D), estimated optical flow using [107] (PWC-Net FT3D), and estimated
optical flow after subtracting ground truth camera rotation (PWC-Net transFT3D).
Segmentation accuracy is measured on the FT3D test set with intersection over union
(IoU) scores.

5.2.2.1.2 Training on flow angle only versus angle+magnitude. As dis-

cussed in Chapter 3, rotation-compensated flow comprises all the information about

independent object motion and the scene structure (depth). In this context, two

interesting questions to tackle are: how well can one extract information about inde-

pendent object motion from the angle alone, and does including the flow magnitude

(training the network on the full optical flow) improve motion segmentation?. We

show this analysis in Table 5.4, with further variants of our network. Using angle

and magnitude together (angle+magn in the table) leads to the highest performance.

However, note that we achieve reasonable segmentation quality even when using the

flow angle alone. The network trained on ground truth optical flow adapts very poorly

to estimated optical flow, with the segmentation accuracy dropping from 93.23% to

24.44% for the angle+magn variant.

5.2.2.1.3 Rotation estimation via likelihood maximization. The FT3D data

set is not suitable for evaluating the performance of the camera rotation, since pixel

displacements are unrealistically large. Instead we show results on the Sintel data

set (Tab. 5.5), and compare our new likelihood optimization procedure with Bideau

et al. [5]. The ground truth focal length is provided, so an accurate estimate of the
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trained with... tested with... angle angle+magn

gt transFT3D gt transFT3D 77.47 93.23

gt transFT3D PWC-Net transFT3D 24.06 24.44

PWC-Net transFT3D PWC-Net transFT3D 77.79 78.69

Table 5.4: Ablation study: Training with angle vs angle and magnitude. We trained
four variants of our segmentation network with: (1) angle of the rotation-compensated
flow of FT3D, (2) angle and magnitude of the rotation-compensated flow of FT3D
(angle+magn), (3) angle of the estimated (PWC-Net) rotation-compensated flow,
and (4) angle and magnitude of the estimated rotation-compensated flow. We show
consistently better performance by including magnitude. The performance is the
worst when the network is trained on the angle of the rotation-compensated ground
truth flow. Here, the noise in angle leads to a very significant drop on estimated
optical flow data. Segmentation accuracy is measured on the FT3D test set with
intersection over union (IoU).

Bideau et al. [1] ours

gt-flow 0.08 / 0.22 / 0.02 0.03 / 0.06 / 0.01
PWC-flow 0.13 / 0.34 / 0.04 0.05 / 0.11 / 0.03

Table 5.5: Ablation study: Camera rotation estimation. Avg. yaw/pitch/roll error
in degrees between 2 consecutive frames. gt-flow, PWC-flow: To evaluate rotation
estimation we used ground-truth segmentation masks to weight the optim. loss. Thus,
errors in the segmentation procedure are not propagated throughout the video.

camera’s rotation is possible. If no ground truth focal length is available as in Davis,

we use a fixed focal length for all videos. This leads eventually to a wrong estimates

of the three camera rotation parameters [A,B,C] (by a fixed offset), however the

error of the induced motion field (Equation 3.19) is negligible small. Our camera ro-

tation estimation based on maximizing the flow likelihood shows consistently better

results on the Sintel data set. More importantly, the gap in performance gets very

significant when using estimated flow (PWC-flow). Our new optimization approach

is significantly more robust to noisy flow data, since it incorporates an explicit noise

model.
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Measure LMP [110] TMM [5] Ours-flow Ours-flow*

J
Mean ↑ 58.4 40.1 59.7 62.5
Recall ↑ 67.3 34.3 69.6 73.8
Decay ↓ 5.6 15.2 4.3 3.8

F
Mean ↑ 58.4 39.6 59.5 61.1
Recall ↑ 66.0 15.4 66.4 69.9
Decay ↓ 7.9 12.7 5.4 5.6

T Mean ↓ 87.8 51.3 74.5 83.4

Table 5.6: Binary motion segmentation: Comparison to other approaches using only
motion cues on DAVIS, i.e., without any appearance. Ours-flow refers to the variant
of our model using only motion cues and no appearance terms and Ours-flow* denotes
a motion-only upper bound, which uses ground truth segmentation for camera motion
estimation. Best viewed in color ( 1st-best , 2nd-best).

5.2.2.2 Results: Binary motion segmentation

5.2.2.2.1 DAVIS: Optical flow only. We begin by comparing our motion seg-

mentation network with other methods that use optical flow as the only cue for

segmentation. Table 5.6 shows these results on DAVIS. LMP is a learning based

approach that estimates motion cues [110]. This network is trained on ground truth

optical flow of FlyingThings3D, ignoring scene geometry, i.e., it does not compen-

sate for camera rotation. TMM [5], on the contrary, compensates flow for camera

rotation and attempts to model the motion field using translational motion models.

Their translational motion models are quite limited however, and fail to capture the

complex motion of certain moving objects, such as a walking person. Our approach

(Ours-flow in the table) improves over both these state-of-the-art motion segmenta-

tion methods. We also compute an upper bound for our result (Ours-flow* in the

table) by masking out independently moving objects, with ground truth segments,

for our camera motion estimation procedure. This masking procedure eliminates er-

rors in our camera motion estimation due to outliers in optical flow, such as moving

objects.

5.2.2.2.2 DAVIS: Optical flow + Appearance. Table 5.7 compares the results

of our complete approach, using motion and appearance cues, with the state of the art.
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Ours-final

Ours-motion

LMP

ARP

FSEG

Figure 5.10: Qualitative segmentation results. Qualitative segmentation results on
the DAVIS data set, showing a comparison with three other best performing methods.
Ours-final denotes our complete method and Ours-flow the variant based on motion
cues alone. (Best viewed in pdf.)

Our approach outperforms nearly all the methods. Our performance is comparable

to [49] in terms of mean/recall J and F , while we outperform on the decay measures

and T . We also show a qualitative comparison with the best performing methods in

Figure 5.10. Since [49] relies on segmenting the primary object(s) in a video, it is

biased towards the object’s appearance. For example, it only segments a part of the

car (2nd column from the right), which moves from the darker (shadow) area to the

brighter (sunny) region. It can also incorrectly segment stationary objects, e.g., the

flamingo in the background (2nd column from the left), as it matches the primary

object in appearance. Our variants, shown in the last two rows in the figure, overcome

such errors. We highlight the complementarity of motion and appearance cues in the

example shown in the last column, where we miss the hiker’s foot when relying on

motion alone (Ours-flow), since it is not moving. However, integrating motion with

appearance, we segment the entire object accurately.
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Measure [22] [110] [55] [42] [109] [49] [57] [81] [111] Ours

J
Mean ↑ 64.1 69.7 68.3 71.6 51.4 76.3 56.9 57.5 75.1 75.8
Recall ↑ 73.1 82.9 77.7 87.7 58.1 89.2 67.1 65.2 87.9 89.3
Decay ↓ 8.6 5.6 5.7 1.7 12.7 3.6 7.5 4.4 2.0 1.5

F
Mean ↑ 59.3 66.3 67.2 65.8 49.0 71.1 50.3 53.6 70.9 71.4
Recall ↑ 65.8 78.3 75.9 79.0 57.8 82.8 53.4 57.9 82.9 83.7
Decay ↓ 8.6 6.7 7.4 4.3 13.8 7.3 7.9 6.5 3.3 2.2

T Mean ↓ 36.6 68.6 25.8 29.5 25.6 35.9 21.0 29.3 22.0 25.6

Table 5.7: Binary motion segmentation: Comparison to state-of-the-art motion seg-
mentation methods on DAVIS. Best viewed in color ( 1st-best , 2nd-best).

5.2.3 Summary

We proposed a new motion segmentation approach that lies at the intersection of

classical methods based on perspective geometry and learning based frameworks. Our

approach first estimates camera rotation, and then extracts rotation-compensated

flow fields to learn a motion segmentation model. We show that combining the

strengths of two motion segmentation paradigms achieves state-of-the-art results on

the widely used DAVIS data set.
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CHAPTER 6

APPLICATIONS: ROTATION ESTIMATION OF
UNMANNED AREA VEHICLES

Relatively inexpensive, high quality and versatile video cameras of various types

such as the GoPro action camera or drone-mounted cameras have increased the

amount of publicly available video data enourmously [124]. Drone-mounted cameras

have enabled citizens to provide video coverage of land areas previously inaccessible.

Drones are part of search and rescue missions, they can access areas in cases of nat-

ural disasters and can monitor wildlife world wide. This new data source creates a

completely new application area for classical computer vision tasks such as object

detection [33], semantic segmentation [70, 80], tracking [67, 60] and camera motion

estimation [84, 91]. However, this vast amount of unstructured video material sud-

denly available comes with several uncertainties questioning the trustworthiness of

these videos. Does the meta data coming with the video data actually correspond to

the video? How can we ensure that the meta data was not manipulated after the video

was taken? If one wishes to use and analyse these type of new accessible data in a

meaningful manner one has to find ways to ensure the trustworthiness of those videos.

Most drone videos come with a flight plan and/or meta data defining the motion of

the camera, however their trustworthiness is not ensured.

The goal of this work is to verify that the motion depicted in the video is consistent

with the set of flight instructions given at the beginning of the flight. For this purpose

we use our camera rotation estimation algorithm presented in Chapter 4.2 and aim to

verify provided flight instructions using the visual information from the video. Given

a video of an arbitrary scene with unconstrained camera motion and the camera’s
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focal length this algorithm estimates the three camera rotation parameters [A,B,C]

and the translational motion direction [U, V,W ].

Drone. For experiments a DJI Mavic Air drone was used. This drone has a

three-axis gimbal, a 4K UHD (3840x2160) 30 fps camera, and capable of speeds of 30

km/h in obstacle avoidance mode. Its camera comes with a 1/2.3” CMOS sensor and

a field of view (FOV) of 85◦. To estimate the correct camera rotation information

about the field of view or the focal length f in pixel is required. One can convert one

measure into the other (see Equation 6.1 and Equation 6.2).

f [in pixel] = image width [in pixel] · f [in mm]

sensor width [in mm]
(6.1)

FOV = 2 · arctan

(
1

2
· sensor width [in mm]

f [in mm]

)
(6.2)

6.1 Videos of unmanned area vehicles

Given a video taken by an unmanned area vehicle (UAV) we verify its motion

pattern (defined by a motion program) by comparing the provided motion instruc-

tions with camera motion estimates based on the raw video. There are two general

ways to create the motion program: unconstrained and constrained programs. In a

constrained program we restrict the drone to a small number of types of motions in

a small geographic area. In an unconstrained program we use any type of motion a

drone is capable of, using a hand-crafted series of motions over a wide-area.

6.1.1 Constrained unmanned area vehicle motion

Constrained motions for an UAV can be of various types such as a series of transla-

tions (move up/down, left/right, forward/backwards), or rotations (yaw, roll, pitch),

and combinations of the two. In our experiments we instruct the drone to follow a

series of movements consisting of two parts: one hotpoint motion (combined camera
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rotation and translation), either clockwise or counter-clockwise, followed by a motion

to fly towards the point of interest to an inner radius around the point of interest and

moving backwards to the outer circle. A motion type like the hotpoint motion leads

to challenging flow fields, where it is hard to estimate the coupled camera rotation

and translation. In these cases camera rotation to the left comes with a camera trans-

lation to the right (in opposite direction) to keep the object in focus. This opposite

characteristics of motion patterns in combination with near planar scene structures

lead to almost indistinguishable motion patterns of camera rotation and translation

challenging current motion estimation algorithms.

6.1.2 Unconstrained unmanned area vehicle motion

To collect videos with unconstrained motion we take advantage of a popular online

drone flight planning and execution application called Litchi1. Litchi allows users to

publicly post their flight plans and link to videos from the flight hosted by YouTube

and Vimeo. We take advantage of these public videos by downloading the flight plans

and the video and use them in our evaluation. Using videos such as third party videos

helps us to eliminate any potential bias in how we collected videos and gives us access

to a large variety of scenes (rural, nature, cities, etc.), lighting conditions, and DJI

drone models.

6.2 Experiments

Figure 6.1 shows a flight plan taken from Litchi. Each plain numbered pin repre-

sents a waypoint for the drone to fly to, and each numbered pin containing a camera

icon represents a point of interest for the drone to focus on during different parts

of the mission. The curves around waypoints represent the actual flight path to be

taken to smooth out the drones motion to and from the way point. The drone mo-

1https://flylitchi.com/
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(a) Sample mission 1 (b) Sample mission 2

Figure 6.1: (a) A sample unconstrained mission from Litchi. https://flylitchi.

com/hub?m=wsi7vg9HQl and (b) a sample unconstrained mission from Litchi. https:
//flylitchi.com/hub?m=bHg7fNYTSW (accessed November 22nd, 2019)

tion following such a flight plan based on points of interests rather than specific flight

instructions comes with unconstrained and very variable motion patterns in 3D.

Drone video sequences. Videos taken by a a drone are usually much longer

with higher resolution than typical test video sequences used in standard computer

vision data sets. This comes with a challenge for computational speed. The original

video taken by a drone and downloaded from Youtube has a frame size of 1920x1080.

To speed up the optical flow computation [107] and our motion estimation algorithm

the video is first compressed by reducing the frame size to a size of 256x144. Second,

the frame rate is reduced which leads to smoother motion and increases the motion

between two consecutive frames. Compression and reduced frame rate together lead

to a high quality camera motion estimate with minimal noise (see Figure 6.1).

Motion verification. To ensure the trustworthiness of these drone videos online

available to the public, we estimate the drone’s camera rotation (in degree) and the

translational motion direction (a 3D unit vector) using the motion estimation algo-

rithm described in Chapter 4.2. Figure 6.3 shows motion estimates of our algorithm
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Figure 6.2: Unconstrained motion pattern estimation. Comparison of the camera
motion from the original video (left) and the compressed video (right). The camera
motion from the compressed video is smoother that the camera motion from the
uncompressed video due to the lower frame rate.

on the left and the motion instructions based on the Litchi flight plan on the right.

We are able to match the flight plan quite accurately in both cases. So the flight-plan

that comes with the uploaded video sequences matches the flight pattern of the drone

in the video.

6.3 Summary

High quality and online available drone videos have opened a area of application

for camera motion estimation algorithms. This enormous amount of newly available

data rises new questions. What motion pattern does the drone fly? Is the motion

pattern consistent with the provided flight instructions? These drone videos come

with a high variety of interesting aspects and challenges to be explored. Highly

variable camera motion in 3D, mostly planar scenes (due to large distance to the

ground) and computational efficiency are aspects to consider in this context. We

have been able to show that our camera motion estimation algorithm developed as a
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(a) Sample mission 1

(b) Sample mission 2

Figure 6.3: Comparison of the UAV’s motion from compressed video (left) and the
Litchi flight plan (right).
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part of our motion segmentation approach is not only robust on standard computer

vision data sets, it also works on diverse real world videos with different motion and

scene characteristics such as drone videos presented in this Chapter.
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CHAPTER 7

DISCUSSION AND FUTURE DIRECTIONS

7.1 Discussion

In this dissertation we developed an approach to segment independently moving

objects combining cues of optical flow, depth and ego-motion. We will discuss the

connection of these three closely related areas in further detail and how they can

be integrated to benefit from each other (see Chapter 7.1.1). Not always is motion

information captured by a single optical flow field sufficiently to segment a frame

into its independently moving parts. Challenges arise in cases where (i) an object

or just part of an object stands still just for a short amount of time, (ii) its motion

doesn’t differ significantly from the camera’s motion or (ii) optical flow is misesti-

mated. Some of these challenging scenarios and approaches to address cases of weak

motion information are discussed in the following (see Chapter 7.1.2).

7.1.1 Interpreting optical flow by integrating motion segmentation, ego-

motion estimation and depth estimation

Motion segmentation, ego-motion estimation, and depth estimation are three

closely related areas of current research. Motion segmentation attempts to segment

all independently moving objects, ego-motion estimation aims to estimate the ob-

server’s (camera) motion and methods addressing the problem of depth estimation

produce depth estimates of the pictured scene, based on two or more multiple video

frames. All three approaches are related to the task of analyzing how an image, the

projection of the 3D world on a 2D image plane, changes over time while we as the
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observers and other objects move. These changes over time are captured by optical

flow field. Thus it makes sense to focus on examining all three areas simultaneously

rather than in isolation if one want to interpret information captured in optical flow.

Estimating scene depth. Depth can be computed from rotation compensated flow

following Equation 3.20. The quality of depth estimation highly depends upon the

camera’s motion since a change of view point (parallax) is required to form a motion

field that captures the depth information of the pictured scene. Without “sufficient”

parallax one is not able to obtain a good depth estimate of the scene in a geometrical

manner. Since optical flow couples motion information due to camera motion as well

as scene depth, depth estimates can be a supportive source of additional information

to robustly estimate the cameras motion.

Incorporating scene depth for camera rotation estimation. Our approach

incorporates relative depth estimates of the scene to improve camera rotation esti-

mation (Chapter 5.2.1.2). General statistics capturing the distribution over inverse

scene depth are included in our flow likelihood presented in Chapter 5.2.1.1. This

distribution captures important statistics of inverse depth across multiple different

videos (statistics are measured using the Sintel data set [15]). However scene depth

varies quite a bit among different videos showing different scenes and can even vary

within a single frame, if variation in depth is high. Indoor scenes show a quite dif-

ferent distribution of the inverse depth than an outdoor scene where most objects

are at distant. This detailed information about local relative depth for unique scene

structures is not captured by our flow likelihood function. In future work depth could

be modeled more locally by taking depth estimates of the past into account instead

of having one global depth distribution for all videos regardless of the pictured scene.
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7.1.2 Handling cases of weak motion information in optical flow

Optical flow captures the motion between two consecutive frames. However

motion patterns change over time so an object’s motion can be temporally hard to

separate from static background. These challenging cases can occur, when (i) an

object or just part of an object stands still just for a short amount of time, (ii) its

motion doesn’t differ significantly from the camera’s motion or (iii) optical flow is

misestimated. In those cases motion segmentation approaches that are solely based

on a single optical flow field might fail. Considering long-term motion analysis and

object appearance are possibilities to overcome these challenges, which are possible

future directions to address in further detail.

Long-term motion analysis for a temporal consistent segmentation. In

Chapter 4.1 and 4.2 temporal consistencies are naturally incorporated into our ap-

proach. We segment a frame into its different motion components in a Bayesian

fashion, where the prior probability of a motion component is developed based on its

posterior probability of the previous frame. Our work on learning motion patterns

from optical flow however doesn’t take any temporal information into account. In

Chapter 5.1 motion patterns of objects are learned given a single rotation compen-

sated optical flow field. Since object motion patterns change smoothly over time a

long-term motion analysis based on multiple video frames or taking the estimate of

the previous frame into account might be helpful to refine those segmentations and

to guarantee a temporal consistent segmentation regardless uncertainties in optical

flow.

Incorporating object appearance in cases where the object’s motion cues

alone are not sufficient. We tackle the problem of motion segmentation, thus ob-

jects appearance is only a secondary cue to be considered. However object appearance

clearly can add additional valuable information to segment moving objects in a more
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(a) video frame

(b) angle field of rotation compensated flow

Figure 7.1: Motion information contained in optical flow is not always sufficient to
segment the moving object accurately. We show frame 1,4,7,10,13,16 and 19 of the
forest video sequence of the complex background data set [72]. Note that in the first
five frames the person is clearly visible in the angle field (second row). In the last
two frames the person’s motion “melts” with the background motion and is hard to
separate based on optical flow information alone. Considering temporal information
as well as information about objects appearance are possibilities to address weak
motion information in optical flow in this case.

robust manner in several cases. These cases are (i) partial object motion, where part

of an object moves while other parts are still or (ii) object motion temporally moves

into the same direction as the camera such that their motion patterns “melt” into each

other. An example showing these challenging cases is given in Figure 7.1. In the first

five frames the person clearly is visible in the angle field of the translational optical

flow field. However in the last frames the persons motion melts with the background

motion and is hard to segment based on the current optical flow field alone. An

appearance model has been incorporated in many previous works addressing motion

segmentation [42, 110, 111]. These appearance models are mostly implemented as a

separate network stream which connected with the motion segmentation stream in a

final step. Rather than learning segmentations based on motion and appearance in

isolation, future work might benefit from learning motion patterns using appearance

cues and motion cues simultaneously.
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7.2 Future directions

Computer vision and human perception are closely related research areas. How

can one teach a computer to see and understand the world as we humans do? What

are the strengths of a computer vision system compared to a human vision system

and what are the weaknesses? We move, we discover new interesting stuff that raises

our curiosity – especially if a perceived situation doesn’t match certain expectations,

and we learn.

Teaching a machine to see, to understand what it sees and setting the perceived

information into context is a highly challenging task towards creating the opportunity

for smart interactions between humans and machines. Yet we are far away from ma-

chines being able to interact successfully with an unstructured environment involving

interaction with objects as well as humans. The work of this thesis addressed the

challenge of segmenting independently moving objects in an arbitrary environment.

Motion - our motion as well as our motion perception - is a key ability that we as

living beings have to explore our environment. Our motion for example helps us to

perceive depth, and the motion of objects helps us recognizing these objects even if

those are unknown to us or due to missing unique appearance cues invisible when they

are still. We might not be able to name those objects at that time, but due to their

independent motion we perceive them as objects and connect them with important

information about their motion characteristics. Solely based on motion we are able

to detect objects in complex scenes regardless their appearance, which is a big step

towards understanding an unstructured environment.

As a next subsequent step it is important not only to perceive the world as it is,

one also has to understand situations, set objects and actions into context with each

other to form expectations about what is going to happen next. Then the action has

to be performed as a logical consequence based on previously perceived information

and its resulting expectations. If we ask a vision system - a machine - what should
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be expected next, we ask the system to solve multiple standard vision tasks and to

connect those simultaneously. Examples of those tasks include detecting actors and

analyzing their motions, actions as well as their interactions with each other while

being consistent with the physics of the real world. If an actor climbed a mountain

and is walking towards a cliff he will stop walking as soon as he reached the cliff

to enjoy the view. Obviously he will not continue walking since he would fall. We

know that, not because we have seen hundreds of people fall off cliffs. Instead, we

understand the principles of the physical world and can easily adapt to new scenarios.

Creating a common sense understanding (in this context often referred to as intuitive

physics) for machines requires consideration of many different aspects, which makes

it an especially challenging and interesting task for current vision systems.

In future incorporating an understanding about physical principles into learning

based vision systems will be essential to build machines that understand observed

scenarios and can adapt learned principles to a never seen situation - a big step

towards intelligent interactions.
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[20] Dürer, A., and Strauss, W.L. The Painter’s Manual: A Manual of Measure-
ment of Lines, Areas, and Solids by Means of Compass and Ruler Assembled by
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[114] Tron, Roberto, and Vidal, René. A benchmark for the comparison of 3-d motion
segmentation algorithms. In 2007 IEEE conference on computer vision and
pattern recognition (2007), IEEE, pp. 1–8.

[115] Tung, Hsiao-Yu Fish, Cheng, Ricson, and Fragkiadaki, Katerina. Learning
spatial common sense with geometry-aware recurrent networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2019),
pp. 2595–2603.

[116] Van den Bergh, Michael, and Van Gool, Luc. Real-time stereo and flow-based
video segmentation with superpixels. In 2012 IEEE Workshop on the Applica-
tions of Computer Vision (WACV) (2012), IEEE, pp. 89–96.

[117] Vertens, Johan, Valada, Abhinav, and Burgard, Wolfram. SMSnet: Semantic
motion segmentation using deep convolutional neural networks. In Proc. IROS
(2017).
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