
MODELING TEMPORAL STRUCTURES IN
TIME-VARYING NETWORKS

A Dissertation Presented

by

KUN TU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Feb 2019

College of Information and Computer Science

c© Copyright by Kun Tu 2018

All Rights Reserved

MODELING TEMPORAL STRUCTURES IN
TIME-VARYING NETWORKS

A Dissertation Presented

by

KUN TU

Approved as to style and content by:

Don Towsley, Chair

Ananthram Swami, Member

Weibo Gong, Member

David Jensen, Member

Ramesh Sitaraman, Member

James Allan, Chair of the Faculty
College of Information and Computer Science

ACKNOWLEDGMENTS

First and foremost, I feel lucky to have Prof. Don Towsley as my advisor. In

the past few years, I gained a lot under Don’s guidance and supervision. Don, thank

you for inspiring me to work on so many interesting problems, for giving detailed

suggestions on doing research and writing, for providing so many opportunities to

work with different researchers in different fields.

I also thank my thesis committee, Dr. Ananthram Swami, Prof. Weibo Gong,

Prof. David Jensen, and Prof. Ramesh Sitaraman. Ananthram has given so much

help and advice during my stay in ARL. Weibo has raised many exciting topics in

our group meetings. David has provided helpful advice in my research. I also gain a

lot when working with Ramesh as a TA of the algorithm course. Most importantly,

I would thank them for their feedback on my proposal.

It was a great pleasure to join the Computer Network Research Group at the

College of Information and Computer Science. I want to thank Dr. Jian Li and Prof.

Bruno Ribeiro for their help during our collaborations. I am grateful to other group

members for giving enjoyable experience in UMass: Bo Jiang, Fabricio Ferreira, James

Atwood, Yung-Chih Chen, Yeon-sup Lim, Sookhyun Yang, Amir Ramtin, Gayane

Vardoyan, Stefan Dernbach, Arman Kabir, Nitish Panigrahy. I would also like to

thank my other co-authors, collaborators and colleagues in different teams, who have

made the research experience far more enjoyable.

Last but not least, I would like to express my deepest gratitude to my parents

and my wife for their constant love and support.

iv

ABSTRACT

MODELING TEMPORAL STRUCTURES IN
TIME-VARYING NETWORKS

FEB 2019

KUN TU

B.E., SOUTH CHINA UNIVERSITY OF TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

A dynamic network is a network whose structure changes because of the emer-

gence and disappearance of node or edges. It can be used to study complex systems

where individuals in a system are represented as nodes and their relations/interactions

are represented as edges. Studying dynamic network structures helps to better un-

derstand changes in relationships. Considerable work has been conducted on learning

network structure. However, due to the complexity of dynamic networks, there is con-

siderable room for improvement to obtain better analysis results. This thesis studies

different aspects of characteristic and dynamics of a network, focusing on their appli-

cation in link prediction between nodes, temporal community detection and network

representation.

In the first part of the thesis, we study bipartite networks constructed from online

dating website data where nodes represent users and edges represent user interaction

v

such as the exchange of invitation messages. We first formulate the prediction of

future interaction between users as a link prediction problem, then propose a latent

Dirichlet allocation (LDA) method to model user preferences and predict edges such

that a recommendation system is built to recommend potential partners for a user.

We find that user preferences changes over time and our method can adapt to these

changes and outperforms baseline methods.

In the second part of the thesis, we consider more general dynamic networks

and model the changes in similarities between nodes over time. We present network

generative models using these similarities to detect communities and their lifetime.

We present a low-rank tensor decomposition technique to learn the generative models.

We show that our model is robust to the change in time granularity of network during

analysis and has the best performance compared to baseline methods.

Finally, the last contribution of the thesis focuses on network graphlets, non-

isomorphic subgraphs that represent node connection patterns in a network. We

compute the significance of the graphlets by comparing the graphlet counts in an

empirical network to random graphs and use this significance as feature representa-

tions for networks to analyze and characterize directed networks. Experiments show

that our approach for network representation can significantly improve the accuracy

on the-state-of-the-arts in network classification problem such as identifying depart-

ments in an email-exchange network or detect mobile users given their app-switching

behavior represented as temporal networks.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Thesis Contribution . 4

2. PRELIMINARIES . 6

2.1 Networks . 6

2.1.1 Static Networks . 6
2.1.2 Representation of Static Networks . 7
2.1.3 Temporal Network . 7
2.1.4 Representation of Temporal Networks . 8
2.1.5 Other Concepts Related to Networks . 9

2.2 Null Models . 9
2.3 Graphlets . 10

3. LINK PREDICTION FOR RECOMMENDATION IN ONLINE
DATING WEBSITE . 13

3.1 Introduction . 13
3.2 Related Work . 18
3.3 Problem Formulation . 19
3.4 Latent Dirichlet Allocation for Link Prediction . 21

vii

3.4.1 Learning the Model . 21
3.4.2 Prediction . 25

3.5 Experiment . 26

3.5.1 Experiment Setup, Metrics and Baseline Methods 26
3.5.2 Evaluation of User Preferences with Synthetic Data 28
3.5.3 Real-world Dataset . 39
3.5.4 Experiment Setup . 39
3.5.5 Change of Stated Preferences . 44

3.6 Conclusion . 47

4. TEMPORAL CLUSTERING IN DYNAMIC NETWORKS 48

4.1 Introduction . 48
4.2 Contribution . 50
4.3 Model Description and Problem Fomulation . 51

4.3.1 Problem Formulation . 52

4.4 Temporal Clustering . 53

4.4.1 Learning Generative Model with PARAFAC
Decomposition . 53

4.4.2 Dynamic Community Detection with Generative Models 54
4.4.3 Cluster Ranking . 56
4.4.4 Lifetime Detection . 56

4.4.4.1 Lifetime Threshold . 57
4.4.4.2 Formation and Dissolution of a Community 57

4.5 Evaluation . 58

4.5.1 Clustering Error Caused by Low Rank Decomposition 59
4.5.2 Baseline and Metrics . 60

4.5.2.1 Baseline methods . 60
4.5.2.2 Metrics for Clustering and Lifetime Detection 61

4.5.3 Evaluation Results . 63

4.5.3.1 Synthetic networks . 63
4.5.3.2 Lakehurst Data . 67

4.5.4 Application to Enron Email Data . 70

viii

4.6 Conclusion . 72

5. CHARACTERIZING NETWORKS WITH NETWORK
MOTIFS . 74

5.1 Introduction . 74
5.2 Problem Formulation . 77

5.2.1 Problem Formulation . 77

5.3 Network Embedding Using Graphlets . 78

5.3.1 Algorithm . 80

5.4 Experiments . 81

5.4.1 Datasets . 82

5.4.1.1 Static directed network datasets . 82
5.4.1.2 Temporal directed network datasets 84

5.4.2 Experiment Setup . 85
5.4.3 Network Domain Classification . 86

5.4.3.1 Static Directed Network . 87
5.4.3.2 Temporal directed network . 89

5.4.4 Subgraph Identification . 89

5.4.4.1 Static directed networks . 90
5.4.4.2 Algorithm performance with graphlet features 91
5.4.4.3 Temporal directed networks . 91

5.5 Related Work . 96
5.6 Conclusion . 97

6. CONCLUSION AND FUTURE WORK . 98

APPENDICES

A. PARAFAC DECOMPOSITION . 100
B. MODEL TIME SERIES WITH A PIECEWISE LINEAR

FUNCTION . 102
C. MAPPING CLUSTERS TO GROUND TRUTH

CLUSTERS . 105

ix

BIBLIOGRAPHY . 106

x

LIST OF TABLES

Table Page

2.1 Four Possible Structures for node u, v and their edges 10

4.1 Clusters Recall and Member Recall for Lakehurst Data 69

5.1 Network type classification accuracy. We use “+” to denote an
embedding generated by combining two embedding methods.
Bold indicated best performance machine learning model for each
embedding. 88

5.2 Accuracy in correctly identifying 26 EmailEU department in static
directed networks. 92

5.3 Accuracy in correctly identifying EmailTraffic department in static
directed networks. 93

5.4 Accuracy in correctly identifying 53 SwitchApp user in static directed
networks. 94

xi

LIST OF FIGURES

Figure Page

2.1 All four possible structures in a two-node static directed network. 10

2.2 All 16 triads in static directed network. 11

2.3 All 2-node and 3-node, 3-edge δ-temporal graphlets as defined in [79].
Edge labels correspond to the ordering of edges. All 36 graphlets
are labeled with Mi,j across 6 rows and 6 columns. The first edge
in each graphlet is from the bottom to the left node. The second
edge is the same along each row, and the third edge is the same
along each column. 12

3.1 LDA Graphical Model. 22

3.2 Number of Retrieved Ground Truth Preferences. X-axis is the log
scale average D̄KL(φt||φk) of both gender. The total number of
user preferences in a dataset is 80(, 40 for each gender). We set
T = 10, 20, 30, 40, 50 for each gender in our model. Small
D̄KL(φt||φk) indicates that ground truth preferences are similar
and causes LDA model to retrieve less ground truth
preferences. 31

3.3 Y axis: errors in retrieving user preferences, measured by D̄KL(φ̂t||φt)
(average KL-divergence between retrieved preferences and ground
truth preferences). X axis: diversity of ground truth user
preferences, measured by average D̄KL(φt||φk) (average
KL-divergence between ground truth preferences). Retrieved
preferences are obtained by LDA model with T = 40. Small
D̄KL(φt||φk) indicates ground truth preferences are similar with
one another, resulting in larger preference retrieving error,
D̄KL(φ̂t||φt). As D̄KL(φt||φk) increases, ground truth preferences
are easier to distinguish, and LDA obtains the ground truth
preferences with less error. 33

xii

3.4 Y axis: error in retrieving user preferences, denoted as D̄KL(φ̂t||φt)
(KL-divergence measures the difference between retrieved
prefererence φ̂t and ground truth prefererence φt). X axis:
number of user preferences in LDA model, denoted by T . Our
model was tested on synthetic datasets with different
D̄KL(φt||φk). Small D̄KL(φt||φk) indicates that ground truth
preferences are similar and difficult to be distinguished from one
another. The results suggest that increasing T in our model can
more significantly improve the approximation of ground truth
preferences when D̄KL(φt||φk) is larger. 33

3.5 Log scale of D̄
(i)
KL(p̂||p), the averge KL-divergence between retrieved

personal preferences and ground truth preferences as a function of
i, the number of training behavior per user for four synthetic
datasets. Personal preferences for senders and receivers are
retrieved with our LDA model for four datasets that differ in
D̄KL(φt||φk), the average difference between user preferences. The

accuracy is measured with D̄
(i)
KL(p̂||p). As the number of training

behaviors for a user increases, D̄
(i)
KL(p̂||p) decreases, implying that

personal preferences are closer to ground truth. 34

3.6 Average ROC curves of behavior prediction for invitation senders. (a)
ROC curves for LDA model and KNN on a dataset with
D̄KL(φt||φk) = 0.56, (b) ROC curves for LDA model and KNN on
a dataset with D̄KL(φt||φk) = 0.13 where ground truth user
preference φt is more difficult to distinguish than in (a). Senders’
personal preferences are easier to learn in dataset in (a) than (b).
For each sender d in test data, i of his/her behaviors are selected
as observed data to train d’s personal preference for our LDA
model and to calculate his/her similarities to other sender to
obtain K near neighbor for KNN. For both methods, performance
improves with the increase in i, the number of training data for
each sender. However, when i reaches 200 from 100, the
improvement becomes less significant. Comparing the two figures
(a) and (b), the improvement is more significant when
D̄KL(φt||φk) is larger, as shown in (a). Given the same i, LDA
performs better than KNN, especially when i is small. 37

xiii

3.7 ROC curve for prediction of receivers’ behaviors on dataset with
D̄KL(φt||φk) = 0.56. Receivers’ behaviors are more difficult to
predict than senders’ behavior. ROC curve for prediction shows
that even ground truth preferences are unable to obtain high
accuracy. Since a user uses the same personal preferences to send
and respond to invitations. User preferences learned from senders
behaviors have better performance than those learned from
receiver behaviors. 38

3.8 ROC Curve for Prediction of Sender Behaviors in Baihe Online
Dating website. Model with stated Preferences has higher TPR
compare to most of other models when FPR is low. An LDA
model without features for personal preference estimation for
“cold start” users (LDA w/ i = 0) performs poorly, just a little
better than a random classification (small dot line). With
observation of personal behaviors, our LDA model greatly
improves its performance (LDA w/ i = 6). If features in user
profiles are used to initialize user personal preferences, our model
improves on predictions for “cold start” user (according to ROC
curves for LDA feature w/i = 0). We also test KNN and plot the
ROC curve for a KNN (The number of neighbors K ranges from
10 to 100, it has its best overall performance on the test sets when
K = 68.) . 43

3.9 ROC Curve for Predictions of Receiver Behaviors. All ROC curves
suggest that receiver behaviors are difficult to predict. The LDA
model using both user features and observed behaviors (LDA
feature w/ i = 6) has the best overall performance. A model with
stated preferences (red dash line) has TPR a little higher than all
other methods when FPR is low (below 0.1). This suggests that
the model, on average, captures a receiver’s the most preferred
type of partner. However, its TPR is lower than LDA models
using observed personal behaviors as FPR increases. This is
because a receiver’s stated preferences do not cover all his favorite
type. KNN has its best performance when K = 47. Logistic
regression and random forest use user features for classification
without personalizing each receiver’s own preference and have
poor performances than others. 45

3.10 AUC for Sender Behavior Prediction by All Models. We adjust the
time of some invitations such that all senders register in the first
week. At the end of each week, models are trained with all
previous data and predict sender behaviors for the next week. 46

xiv

3.11 AUC for Receiver Behavior Prediction by All Models. We adjust the
time of some invitations such that all receivers register in the first
week. At the end of each week, models are trained with all
previous data and predict receiver behaviors for the next week. 46

4.1 Learning temporal clustering model using PARAFAC decomposition.
A dynamic network is represented as a three-mode I × I × T
tensor X . PARAFAC decomposition decomposes X into R
components that represents generative models {X(r)}Rr=1 53

4.2 Plot of loading vector Ar: (a) PARAFAC with small R generates
loading vectors Ar that fail to represent ground truth
communities; (b) PARAFAC with proper R provides loading
vectors that represent ground truth communities. 60

4.3 F1 Score for Community Detection. K is the number of ground truth
communities in a network, BC and TC apply PARAFAC with
rank R1 = K, R2 = 0.8K, and R3 = 0.6K. Both BC and TC are
robust to the changes in w. TC is more robust to the change in R
when compared to BC. 65

4.4 F1 Measure for Community Member Identification. BC and TC apply
PARAFAC with rank R1 = K, R2 = 0.8K, and R3 = 0.6K 66

4.5 F1 Measure for Lifetime Detection. BC and TC apply PARAFAC
with rank R1 = K, R2 = 0.8K, and R3 = 0.6K 67

4.6 Periodic Lifetime Detection for Two Clusters C∗1 and C∗2 at
Granularity w = 1, 128. (a) Periodic lifetime with short period
loses periodicsity at large time granularity w = 128. (b) Lifetime
with long period maintains its periodicity at w = 128. 68

4.7 PR Curves for BC and SO Ranking Performance. SO score improves
the performance of BC. 70

xv

4.8 Different Email Exchanging Behavior between Identified Clusters.(a)
Email exchange rate of a community consisting of two CEOs (
David Delainey and John Lavorato), three vice presidents(James
Steffs, Richard Sanders and Richard Shapiro) and an Employee
(Jeff Dasovich) (b) Email exchange rate of a community
consisting of a president (Louise Kitchen), director(Jonathon
Mckay), Employees (Cara, Kate) and traders (Diana, Ryan). The
first community exchanges emails even on weekends while the
second only exchange emails on weekdays. Time steps belong to a
community lifetime when email-generatig rate is larger than
theshold. 72

5.1 Classifying email datasets and SwitchApp Temporal Networks. 90

5.2 (Left): Department identification in EmailEU dataset. Five graph
embedding methods (with Sub2Vec, SRPs of temporal graphlets,
static graphlets, both temporal and static graphlets, and
concatenation of Sub2vec and all SRPs) are applied in three
machine learning models (XGBoost, SVM and random forest)
(Middle): BBN department identification in EmailTraffic;
(Right): User identification in SwitchApp. Dash line represents
the accuracy of a random selection model. 95

A.1 PARAFAC decomposition of a 3 mode tensor X . 100

xvi

CHAPTER 1

INTRODUCTION

A network, where nodes represent interacting individuals and edges represent re-

lations or interactions between individuals, is a useful tool to study complex systems

such as partnership in online dating websites, friendship in social networks, email

communication between people or switching between mobile apps observed from user

behaviors. These relations and interactions often change over time. These changes

can modeled by temporal networks, which include timestamps on edges to store and

represent temporal information for relations between individuals. This temporal in-

formation can be used to study the dynamics of complex systems.

Importantly, temporal networks representing real-world relations often display

repeated patterns in the way that nodes are connected and suggest special network

structures. Studying these network structures as well as changes in structure has

become a fundamental and highly relevant endeavor in network science. First, it

helps to understand structural properties of networks such as topologies and node

degrees. This further allows inference of special relations among a group of nodes

that may not be easily observed (e.g., communities). Second, it allows inference of

the dynamics of these relations so that their changes are predictable. Application of

the knowledge to real-world problems has triggered a wide range of studies on network

structures, several of which are the focus of this thesis.

One topic of study focuses on relation or interaction between individuals in a

complex system. The fundamental task of this topic is to understand and model the

connectivity between nodes or the existence of edges. Researcher usually formalize

1

this task as a link prediction problem: future links between nodes are predicted based

on the assumption that node attributes (whether they are observable or hidden) or

network structural information (such as node degree) have strong correlations with

the existence of an edge. Real-world applications includes learning preferences of

customers towards products or relations between users on social network to build

recommendation systems.

Another topic focuses on properties of groups of individuals in complex systems,

such as their composition, formation, and dissolution. When a temporal network is

constructed to represent a real-world complex system, some individuals are observed

to be more densely connected as a group than individuals across groups (if the edges

are weighted, the weights of edges within groups are much high than across groups).

These groups are called network communities. Many studies show that members

of a network community usually share similarities in some of their attributes. For

example, community members who have frequent email exchanges in an email network

may be of the same team. There exists considerable work formalizing this problem

as community detection (or clustering) and proposing different techniques to detect

network communities[20, 60, 78].

A third topic related to network structure focuses on connectivity patterns of

nodes in small non-isomorphic subgraphs, namely graphlets. Recent research has

discovered that distributions of graphlets are similar for networks constructed from

the same network domain (e.g., email networks, question answering networks). This

has triggered considerable effort to study the relationship between graphlets and

networks structures. For instance, the difference in graphlet counts between a real-

world network and random graphs helps to characterize network structures and is

useful for practical problems such as network embedding and network classification.

2

This thesis explores the three topics mentioned above based on various networks

to deepen our understanding of temporal network structures and the application to

real-world problems.

In Chapter 3, we learn the evolving topological structure of a bipartite network,

under the assumption that the existence of an edge depends on node attributes.

We formalize this as a link prediction problem. Solving this problem helps us to

understand user behaviors in an online dating website, where we can observe users’

profiles and their interactions. We represent users as nodes and their interactions as

directed edges. We use “information gain ratio” from a decision tree to select node

attributes that are relevant to the emergence of edges and construct a feature space

from the attributes. We propose a latent Dirichlet allocation (LDA) method to model

relations between edges and the feature space, and then use these relations to predict

future edges. The LDA model is easily updated with new data.

In Chapter 4, we shift our focus from bipartite networks to more general complex

networks. These networks are time-varying networks with a fixed set of nodes and

edges changing over time. We present a temporal clustering framework to model these

networks as a mixture of generative models and apply tensor decomposition (TD) to

learn them. Further, we identify network communities from those models with a

K-means algorithm and provide a bottom-up time series segmentation algorithm to

obtain the lifespans of detected clusters.

In Chapter 5, we study the feature representation for directed networks (also called

network embedding) using both static and temporal graphlets. More specifically, we

use subgraph ratio profiles (SRPs), a measure of the difference in graphlet counts

between a real-world network and random graphs, as a feature vector to represent

a directed graph and investigate the effect of features created by static/temporal

graphlets on network classification problem. Experiments on a wide range of real-

world networks show that features from both static and temporal graphlets are im-

3

portant to characterize network structures because a combination of these features

yields the best network classification accuracy.

1.1 Thesis Contribution

This thesis makes the following contributions.

• We propose a novel method using latent Dirichlet allocation (LDA) to compute

the probability of node connectivity in a network to solve a link prediction prob-

lem. When this method is applied to online dating recommendation, the feature

vector can be interpreted as a user preference to his/her partner. We show that

user preferences learned by our method can be updated quickly with new incom-

ing data and adapts to user changing behavior. Results from experiments on an

online dating dataset show that our model has better performance than base-

line methods such as K-nearest neighbor (a popular method in recommendation

systems) in predicting user invitation sending and accepting. Compared to a

model using stated preferences, our model adapts to changes in user behavior

and improves the prediction of matching of users over time.

• We present a temporal clustering framework based on edge-generation between

nodes in a time-varying network to detect evolving communities. We represent

a temporal network as a three-way tensor with the similarity of nodes defined

as a function of time base on the edge generation rate learned from tensor de-

composition. K-means clustering and Silhouette criterion are applied to detect

network communities. Experimental results show that our method, compared

with baseline methods, is more robust to change in a hyper-parameter of clus-

tering methods: the number of clusters in the dataset. We propose a similarity

ordering score to improve temporal clustering methods on a precision-recall

metric for community detection and community member detection. We also

4

apply filtering methods for smoothing the edge generation rate in a cluster and

propose a bottom-up segmentation algorithm for detecting formation, dissolu-

tion, and lifetimes of communities. We provide evidence that the performance

of our model is robust to changes in time granularity and density of network

snapshots.

• We propose gl2vec, a novel, flexible and scalable feature representation method

for characterizing network structure in both static and temporal directed net-

works. This feature representation is based on relative differences in graphlet

counts between a real-world network and random graphs. We compare gl2vec

with state-of-the-art methods on network classification problems such as net-

work type (email network, question answering network) classification and sub-

graph identification in several real-world static and temporal datasets. We find

that gl2vec outperforms state-of-the-art methods in these two tasks. We further

show that concatenating the feature vector computed by gl2vec with those from

state-of-the-art methods, produce significant improvements in classification ac-

curacy in real-world applications. This indicates that gl2vec provides important

features not captured by state-of-the-art methods. We investigate the impact of

different random graph models on the performance of network classification in

static directed networks and results show that all models achieve equally good

performance.

The rest of this thesis is organized as follows: Chapter 2 introduces definitions and

concepts that are used in the rest of this thesis. Chapter 3 presents an LDA model

for link prediction to make recommendation for an online dating website. Chapter

4 provides temporal clustering methods to track evolving network communities in

a temporal network. Chapter 5 investigates the improvement obtained by network

embedding with static and temporal graphlet in network classification problem. We

conclude this thesis in Chapter 6 and provide directions to extend our work in future.

5

CHAPTER 2

PRELIMINARIES

In this chapter, we introduce networks, null models, graphlets and other concepts

we use in the rest of this thesis.

2.1 Networks

A network (or a graph) is a useful tool to represent relations or interactions be-

tween individuals in a complex system. In this section, we introduce different concepts

related to networks.

2.1.1 Static Networks

Definition 1. A static network G(V,E) is defined as a set of nodes, denoted as V

and a set of edges, denoted as E.

The concept of edge is important for a network. There are several type of edges

according to their properties.

• An undirected edge is an unordered pair of nodes in a network, denoted as (u, v)

(or (v, u), or euv), where u, v are nodes in a network G.

• A directed edge in a network is an ordered pair of nodes, denoted as (u, v) or

euv, where u, v are nodes in a network G. The ordered pair (u, v) represents a

direction from node u to node v.

A static network can be categorized as different types according to the attributes

of an edge.

6

• A static undirected network G(V,E) is a static network whose edges are undi-

rected.

• A static directed network G(V,E) is a static network whose edges are directed.

2.1.2 Representation of Static Networks

Common representations of a static network includes:

1. Edge list. A static network G(V,E) can be represented as an edge list, de-

noted as {(ui, vi)}|E|i=1, where ui, vi ∈ V . For undirected network, an edge is an

unordered node pair and can be represented as either (ui, vi) or (vi, ui).

2. Adjacency Matrix A static networkG(V,E) can also be represented as a |V |×|V |

binary matrix, denoted as M , where an element Mu,v = 1 in M represents that

there is an edge from node u to v, otherwise Mu,v = 0. For an undirected

network, M is a symmetric matrix (that is, Mu,v = Mv,u).

An edge-list representation requires less space to store or represent a static network

if the network is sparse. On the other hand, an adjacency-matrix representation is

convenient in computation for the network. The adjacency matrix can be extend to

a weighted matrix whose element represents a numeric attribute of an edge.

2.1.3 Temporal Network

A temporal network in discrete time is used to represent a complex system that

evolves over time.

Definition 2. A temporal network (or time-varying network) G(V,E, T) is a set of

nodes, denoted by V , and a collection of edges, denoted by E, with a timestamp t ∈ T

on each edge. We refer to a tuple (u, v, t) as a temporal edge, where u, v ∈ V and

t ∈ T , t is a timestamps representing the time steps when an edge exists. In this

thesis, we focus on temporal networks represented in discrete time. The timestamp of

an edge represent a time step when the edge exists.

7

• A temporal undirected edge (u, v, t) is a temporal edge, where nodes u, v ∈ V is

an unordered pair.

• A temporal directed edge (u, v, t) is a temporal edge, where nodes u, v ∈ V is an

ordered pair.

Similar to static networks, temporal networks can be categorized as follows:

• A temporal undirected network (u, v, t) is a temporal edge, where nodes u, v ∈ V

is an unordered pair.

• A temporal directed netowrk (u, v, t) is a temporal edge, where nodes u, v ∈ V

is an ordered pair. A temporal edge (u, v, t) 6= (v, u, t), if u 6= v.

2.1.4 Representation of Temporal Networks

There are two representations for a temporal network.The first representation is

a temporal-edge list, denoted as {(ui, vi, ti)}|E|i=1, where ui, vi ∈ V and ti ∈ T is a

timestamp.

The second representation is a set of Network snapshots (a series of static net-

works), denoted as {Gt(V,Et)}Tt=1, where V is a set of nodes and Et is a set of edges at

time step t, T is the total number of time steps (timestamps of edges are represented

as time step t). This representation is preferred in analyzing temporal network in

discrete time at different time granularities.

We define time granularity w as the number of network snapshots to merge to

construct a new static network. In this thesis, the t-th network snapshot in coarse

time granularity is represented as a weighted matrix M(w). The weight of an edge

(u, v) is computed as

Muvt(w) =
tw∑

i=(t−1)w+1

Muvi(1)

8

2.1.5 Other Concepts Related to Networks

Definition 3. A self-loop (or loop) is an edge that connects a node to itself.

Definition 4. Multi-edges in a network are two or more edges that are incident to

the same pair of nodes.

Definition 5. A simple graph is a network that does not allow self-loops or multi-

edges.

Datasets studied in this thesis contain relations or interactions between different

individuals of a complex system. As a result, networks created from these dataset do

not have self-loops. We do not allow multi-edges and focus on simple graphs.

2.2 Null Models

A null model [72] is a generative model that generates random graphs that match

the structural features of a specific graph, such as the degrees of nodes or number

of nodes and edges. A null model is useful to determine if a network has a certain

property value by chance by comparing this property to those in random graphs. In

Chapter 5, the difference in network property are used to characterize a network.

For static networks, we consider three different null models, (i) NE : random

graphs with the same number of nodes and edges; (ii) MAN : random graphs with the

same numbers of (M)utual, (A)symmetric and (N)ull edges; and (iii) BDS : random

graphs with the same in/out degree-pair sequence (also called bidegree sequence,

BDS).

For temporal networks, since there is no equivalent null model, we consider en-

sembles of randomized time-shuffled data as a temporal null model [61]. To be more

specific, we randomly permute the timestamps on the edges while keeping the node

pairs fixed. This model breaks the temporal dependences between edges but preserves

the network structure.

9

Figure 2.1: All four possible structures in a two-node static directed network.

2.3 Graphlets

Grahplets are small connected non-isomorphic induced subgraphs of a larger net-

work. They are useful to study patterns of node connectivities in a network. Graphlets

in static undirected networks have been applied in graph kernel [92] for network clas-

sifications. Recent research [62, 47] discovers that the distribution of graphlets in a

directed network is strongly related to network domains.

In this thesis, we focus on graphlets in both static and temporal directed networks.

In a static directed network, graphlets are categorized according to the number of

nodes, such as dyad (graphlet of two nodes), triad (graphlet of three nodes), tetrad

(graphlets of four nodes) and so on.

Let u, v be nodes in a dyad and eu,v be a directed edge from node u to v, there are

four possible node connectivity types (Table 2.1), classified as three isomorphic dyad

classes: null dyad (with no edges), asymmetric dyad (with only one directed edge)

and mutual dyad (contain reciprocal edges).

Table 2.1: Four Possible Structures for node u, v and their edges

node connection type 1 2 3 4
directed edges N/A eu,v ev,u eu,v, ev,u

dyad class null asymmetric asymmetric mutual

Dyad motifs are basic structures to study other graphlet because properties of

subgraphs can be derived from those of dyads.

In particular, we focus on triads in static networks (shown in Figure 2.2) because

they provide more structural information than dyads and incur much less compu-

10

Figure 2.2: All 16 triads in static directed network.

tational complexity than tetrad. Note that the first three triads are not connected,

hence do not satisfy the graphlet definition, but we argue that they should be included

when constructing vectors for network feature representation.

Definition 6. Temporal network graphlets are defined as induced subgraphs on se-

quences of temporal edges [79]. Formally, a k-node, l-edge, δ-temporal graphlet is

a sequence of l edges, M = (u1, v1, t1), · · · , (ul, vl, tl) that are time-ordered within a

duration δ, i.e., t1 < · · · < tl and tl − t1 ≤ δ, such that the induced static graph from

edges is connected with k nodes.

Note Paranjape et.al [79] refered to these as temporal motifs. However, network

motifs are referred to as graphlets that occur significantly more frequently in a specific

network than by chance. We rename the temporal motif to temporal graphlets for

consistency. We consider all 2-node and 3-node, 3-edge, δ-temporal graphlets, as

shown in Figure 2.3.

11

Figure 2.3: All 2-node and 3-node, 3-edge δ-temporal graphlets as defined in [79].
Edge labels correspond to the ordering of edges. All 36 graphlets are labeled with
Mi,j across 6 rows and 6 columns. The first edge in each graphlet is from the bottom
to the left node. The second edge is the same along each row, and the third edge is
the same along each column.

12

CHAPTER 3

LINK PREDICTION FOR RECOMMENDATION IN
ONLINE DATING WEBSITE

3.1 Introduction

A bipartite network is a network whose nodes are split into two disjoint sets such

that each edge in the network connects two nodes in both sets. Many relationships

between real-world entities can be modeled with bipartite networks, e.g., relations

between queries from users and documents retrieved by a search engine, partnerships

between users from an online dating website and purchase behaviors of consumers

at an online store. Studying a bipartite network and learning its evolving structure

help us to not only understand but also predict future relationships. Unveiling the

existence of edges between nodes or inferring edge weights is a fundamental problem

in learning network structure.

We obtained a dataset from an heterosexual online dating website that records

invitations sent/received by 200, 000 users registered in November 2011. The dataset

contains 293, 804 user profiles (including users who did not register in November 2011)

and two million invitations between November 2011 and January 31st 2012. We model

the interactions of users by a directed bipartite network: male users and female users

are considered nodes and divided into two sets; user profiles are node attributes and

the behavior of sending/accepting an invitation is represented as a directed edge

between a male and female user. Since accepting an invitation suggests a potential

partnership, the problem of predicting a partnership between users according to their

profiles is then equivalent to predicting future edges based on node attributes and

existing edges in an evolving bipartite network.

13

Given the observable properties of a network and a problem objective, different

approaches have been proposed for edge prediction. The first approach includes

conventional classification methods such as logistic regression, decision trees, and

random forest[13]. These methods label a directed edge as “exist” or “non-exist’

according to observable attributes of two nodes. However, collected node attributes

may not be fully indicative of or directly related to the existence of an edge. As a

result, accuracy of edge prediction by these methods is low.

To improve the prediction on the conventional method, a second approach creates

new attributes from the observable ones. These new attributes are usually called

hidden (latent) variables, and they are strongly correlated to the existence of edges.

Neville et al.[68] proposed a latent group model to predict edges for nodes within

the same group in a general network. Other works [106, 63, 83, 11] predict links

within communities in social networks where edges represent exchanged text mes-

sages: Latent Dirichlet allocation (LDA) models [12] are used to learn the topics of

those messages, and these topics serve as node attributes for community detection.

Nodes exchanging messages of the same topic are likely to be in the same community

and are expected to have links with one another in future. However, They rely on

community detection to estimate the probabilities of links between nodes within or

across communities. As a result, these methods do not apply to link prediction in

bipartite networks, where nodes linked by an edge may be incomparable, and the re-

lations between nodes are irrelevant to communities (it is less likely that a consumer

belong to the same community as a product)

Another approach for predicting edges in a bipartite network is used in recom-

mender systems, which are widely used in all kinds of online services such as shopping

and dating [57, 53]. It considers one set of nodes as users and the other set as prod-

ucts. It uses “user preferences” (usually represented as a vector) to estimate the

probability of an edge between nodes on two sides (interpreted as a user behavior

14

such as buying a product or sending invitations for dating on an online dating web-

site). User preferences are learned with the objective of maximizing the probability

of all observed edges in the network. In machine learning, real-world data processed

by recommender systems are usually imbalanced: only a small fraction of edges are

observed in the bipartite network constructed from the data. This causes a problem

in learning: there is an insufficient amount of data to learn a user’s personal pref-

erence and some models are trained to simply classify all edges as “non-exist” so as

to achieve high accuracy. A solution is “collaborative filtering” [90], which is widely

applied and studied even nowadays. It assumes that some users have similar prefer-

ences on products and thus they have edges (representing behaviors such as “like” or

“buy”) linked to the same products. Users are grouped into clusters based on their

preferences. Once some users in a cluster buy a product, other users in the same

cluster are expected to perform similarly in future. In this case, an edge is predicted

to exist from a user to a product. Xiang et al.[100] proposed a latent variable model

for item recommendation based on user similarities. However, users within the same

cluster in real-world data have unique preferences, and the difference between user

preferences causes errors during prediction. Other methods [6, 15, 28, 51, 67, 81]

model user preferences directly and learn them through the observed data.

These methods work well on datasets where user preferences remain unchanged

and user profiles are accurate. According to our previous analysis of the data [99],

there are several characteristics of user behaviors that make the edge prediction prob-

lem challenging and cause large errors in the previous methods:

• There is a significant discrepancy between a user’s stated preference and his/her

actual online dating behavior. Users send/reply to a large fraction of invitation

messages that violate their stated preferences.

• User behavior changes over time. We investigate the fraction of reply messages

that violate user stated preferences as a function of time (in units of weeks) and

15

find that this fraction increases each week. Most work on recommender systems

assumes that user preferences are unchanged. This assumption is unsuitable in

our scenario where users are observed to change their behavior. To adapt to this

scenario, these systems need to frequently update their models with new data.

However, updates of these models require time-consuming training processes.

• Our data is imbalanced. A user looks through profiles of other users before

sending out invitations. We are unable to obtain information on the fraction of

users who do not receive invitations but whose profiles were examined. Clas-

sification methods, such as logistic regression or random forest, need positive

and negative instances during training. They are unable to learn and predict

sender behavior in this dataset because there are no negative instances. Col-

laborative filtering methods for a recommendation system, such as K-nearest

neighbor method, deal with imbalanced data using user ratings of items to learn

user preferences. However, it is difficult to convert a sender behavior to receiver

ratings.

• There is bias in user reply behavior. A large fraction of invitations are from

senders to receivers where the sender profiles do not match receiver preferences.

A receiver may choose to reply to invitations that are close to his/her true

preference. In fact, invitation reply rate is low. The average reply rate of

invitations fully matched to preferences is 10.82% for females and 20.17% for

males.

• There is a considerable amount of missing data and inaccurate data in user

profiles. For example, more than 50% of users provide no information on their

city of residence and about 75% of females provide no information on their jobs.

Moreover, some users set their ages below 10 or above 100. Some features in

a user profile, such as age and Chinese zodiac, contain redundant information

16

for edge prediction. This increases the computational complexity of a model,

provides little improvement in prediction accuracy or even causes bias.

To handle these issues, we propose a latent Dirichlet allocation (LDA) method

to explicitly model and learn T unique user preferences by using Gibbs sampling to

cluster user behaviors. For each cluster of user behaviors, a categorical distribution

is generated from these behaviors as a preference. We model each user as a mixture

of T unique preferences. This mixture is considered as a user’s “personal preference”

and can differ from those of other users. A user’s “personal preference” is learned

by the probabilities of his/her past behaviors given the T preferences. Similar to

collaborative filtering, our model can also deal with imbalanced data where users

only send/reply to a small fraction of invitations. In summary, we make the following

contribution in this chapter.

• We propose a latent Dirichlet allocation (LDA) model that learns user prefer-

ences that are unobservable in the datasets. Experiments with synthetic dataset

show that user preferences learned from our model, measured by KL-divergence,

is close to the ground truth user preferences.

• Our model updates evolving user preferences over time with new data. Exper-

iments with real-world online dating dataset show that our model adapts to

changes in user behavior and outperform baseline methods such as K-nearest

neighbor method in predicting future user interactions with new data.

The rest of this chapter is organized as follows. We review related work in link

prediction techniques for recommendation systems in Section 3.2. We then formulate

recommendation for online dating as a link prediction problem in a bi-partite network

in Section 3.3 and present a latent Dirichlet allocation model (LDA) to learn user

preferences for link prediction in Section 3.4. We use both synthetic and real-world

17

datasets to evaluate our model and compare it to baseline methods in Section 3.5 and

then conclude this chapter in Section 3.6.

3.2 Related Work

Link prediction in a bipartite network can be formulated as a classification prob-

lem and conventional machine learning methods such as logistic regression [17] and

random forest [13] have been applied to predict the existence of an edge based on

observable node attributes. Although these models are fast and straightforward to

implement, observed node attributes may not be directly correlated with the existence

of an edge. This results in poor performances of these models. In order to improve the

prediction performance, some models include new node attributes or hidden variables

constructed from the observed attributes [100]. In recommendation systems, hidden

variables called “user preferences” have been proposed to predict interactions between

users and products [6, 15, 28, 51, 67, 81]. “Collaborative filtering” [90] assumes that

users can be grouped according to the similarities in their behaviors and compute

their preferences using linear regression [35]. However, these methods assume that

user preferences remain unchanged. As a result, their predictions on user behaviors

become less accurate as users change their preference over time.

It is worth noting that there is a large amount of work [106, 10, 63] using latent

Dirichlet models (LDA) to predict links between nodes within a community in message

exchange network, such as co-author network [59], Twitter [83], based on the content

of the messages. However, these models rely on community detection [10] and estimate

the probabilities of links between nodes within or across communities. As a result,

they do not apply to applications in e-commerce (consumer-product) or two-sided

matching problem (online dating) in bipartite networks, where nodes linked by an edge

may be incomparable and the relations between nodes are irrelevant to communities

(it is less likely that a consumer belongs to the same community as a product).

18

Our model differs from previously introduced LDA models in the following re-

spects: First, our model focuses on bipartite networks. It is different from community-

based link prediction methods using LDA. We do not predict links between nodes in

the same community. More specifically, the two nodes linked by an edge in our prob-

lem belong to two disjoint sets and are allowed to be incomparable. Our LDA model

learns user preferences from behaviors to make recommendations instead of learning

topics from text messages to detect communities. Second, unlike previous recom-

mender systems that assume that a cluster of users have the same preference, our

model allows each user to have his/her own mixture of preferences, potentially result-

ing in a unique preference for each user. Third, previous methods model the similarity

between users based on user profile features. This is inappropriate in our case because

of the large fraction of missing data and inaccurate profiles in the dataset. Moreover,

it is difficult to define a universal similarity function based on user profiles to fit in

different user preferences. For example, many users have similar features in their

profile, but they behave quite differently. To solve this issue, our model measures and

learns the similarity between users based on their behaviors. For example, receivers

who obtain invitations from the same group of senders are considered similar. We

provide details on how to decide the group of senders in the next section.

3.3 Problem Formulation

In an online data website, there are D users interacting with each other by send-

ing/replying dating invitations. Each user d has his/her profile, denoted by a feature

vector ~fd = [f1, · · · , fK], where K is the number of features in a user profile, fk is

a categorical variable and nk is the number of possible values for fi for 1 ≤ i ≤ K.

Note that ~fd is in a n1 × n2 × · · · × nK feature space. This feature space contains

W = n1n2 · · ·nK unique profiles. For simplicity, we use wd = k to represent that user

d’s profile ~fd is the k-th profile, where k ∈ {1, . . . ,W}.

19

We define user preference as a categorical distribution φt = [φ1|t, φ2|t, · · · , φW |t],

where φk|t is the probability of sending/accepting an invitation to/from a user of

profile k, for k = 1, . . . ,W . We assume that there are T unique user preferences in

the dataset and denote them as Φ = [φ1, · · · , φT]. A user d is a mixture of the T

preferences, denoted by a categorical distribution θd = [θ1|d, · · · , θT |d], where θt|d =

P (φt|d,G). We assume D users in the dataset and use Θ = [θ1, . . . , θD] to model user

mixture preferences

We refer to a user who sends an invitation as a sender. A user who receives

the invitation is a receiver. User d chooses preference φt with probability θt|d. He

then sends/accepts an invitation to/from a user (denoted as v) of the k-th profile

with probability φk|t. Thus the probability that sender d interact with receiver v is

computed as
T∑
t=1

φk|tθt|d (3.1)

We model user interactions as a directed bipartite network, where nodes in the

network represent users and directed edges represent that a user wants to date with

another and send/accept an invitation (user interaction also called user behavior in

recommendation systems). We want to predict a directed edge between existing nodes

or new nodes in a growing directed bipartite network, denoted by G(V1, V2, E), where

V1 and V2 are two disjoint sets of nodes. E ⊆ (V1×V2)∪ (V2×V1) is a set of directed

edges connecting the nodes between V1 and V 2. Let edv = 1 if a directed edge exists

from d to v and edv = 0 otherwise. We formulate link prediction as a problem of

learning a probability model, denoted by L = {Φ,Θ, that maximize the probability

of observed edges in G.

max
L

∏
euv∈E

P (euv|~fu, ~fv, G,L) = max
L

∏
euv∈E

T∑
t=1

φk|tP (φt|u = d, wv = k,G,L)

= max
L

∏
euv∈E

T∑
t=1

φk|tθt|d (3.2)

20

Since preference φt and receiver profile wv are independent, P (φt|u = d, wv = k,G,L) =

P (φt|u = d,G,L) = θt|d. In the rest of the chapter, we learn the probability model

given observation from a specific bipartite network G, thus we remove G from the

probability function for simplicity.

In the next section, we introduce a latent Dirichlet allocation (LDA) and apply

Gibbs sampling to learn user preferences.

3.4 Latent Dirichlet Allocation for Link Prediction

In this section, we first introduce latent Dirichlet allocation (LDA) to model user

prefernces and explain how to learn the preferences using Bayesian method. We then

provide a formula for link prediction in the dataset.

3.4.1 Learning the Model

To learn Φ and Θ in the model, we assume that there are D users in the dataset.

For simplicity, we only explain how LDA learns a sender’s preference to send an

invitation because the process is the same for modeling a receiver’s preference to

accept an invitation.

Figure 3.1 shows the graphical model of LDA for the online dataing dataset. There

are N invitations from D senders in the dataset. W = [w1, . . . , wN] in the shaded

circle represents the identities of receiver profiles, where wi = k represents that the

i-th invitation is sent to a receiver of profile k. Let z = [z1, · · · , zN], where random

variables zi and zj are independent for i 6= j. zi = t means that wi = k is generated

with probability φk|t. In another words, a user chooses preference φzi = φt to send an

invitation. The prior of θd follows a Dirichilet distribution in (3.3). Φ = [φ1, · · · , φT]

are the T preferences. The prior of φt is also a Dirichlet distribution, defined in (3.4).

α and β are parameters of the two Dirichlet distributions in (3.3) and (3.4).

21

D

α θ z

β

w

N

T

Φ

Figure 3.1: LDA Graphical Model.

P (θd) = Dir(θd;α~m) =
Γ(α)∏T

t=1 Γ(αmt)

T∏
t=1

θamt−1
t|d , (3.3)

P (φt) = Dir(φt; β~n) =
Γ(β)∏W

k=1 Γ(βnk)

W∏
k=1

φβnk−1
k|t . (3.4)

where α > 0, β > 0, ~m = [m1, . . . ,mT], ~n = [n1, . . . , nW],
∑

imi = 1,
∑

j nj = 1.

Prior Function. In LDA, φd and θt are independent for d = 1, . . . , D and t =

1, . . . , T . Thus we have the prior of Φ and θ:

P (φ1, . . . , φT , θ1, . . . , θD) =
T∏
t=1

Dir(φt; β~n)
D∏
d=1

Dir(θd;α~n). (3.5)

Likelihood Function. In the rest of the chapter, we use w ∼ θ to represent that a

random variable, denoted as w, follows a probability distribution, denoted as θ. Let

Nk|t =
∑N

i=1 1(wi = k, wi ∼ φt) be the number of receivers of profile k that are chosen

according to preference φt, where 1(D) = 1 if D is true, otherwise 1(D) = 0. The

likelihood of W given z,Φ is

P (W|z,Φ) =
N∏
i=1

P (wi|zi,Φ) =
T∏
t=1

W∏
k=1

φ
Nk|t
k|t . (3.6)

Let Nt|d =
∑N

i=1 1(zi = t, zi ∼ θd) be the number of invitations that user d use

preference φt to generate. The likelyhood of z given θ is:

22

P (z|θ) =
N∏
i=1

P (zi|θ) =
D∏
d=1

T∏
t=1

θ
Nt|d
t|d . (3.7)

Evidence. Our LDA considersW and z as evidence. According to (3.3)- (3.7), their

joint probabilities are:

P (W , z) =

∫
· · ·
∫
P (W|z)P (z|φ1, . . . , φT , θ1, . . . , θD)P (φ1, . . . , φT , θ1, . . . , θD)dφ1 · · · dθN ,

=
T∏
t=1

[∫ W∏
k=1

φ
Nk|t
k|t Dir(φt; β~n)dφt

]
D∏
d=1

[∫ T∏
t=1

θ
Nt|d
t|d Dir(θd;α~m)dθd

]
,

=
T∏
t=1

Γ(β)
∏W

k=1 Γ(Nk|t + βnk)

Γ(Nt + β)
∏W

k=1 Γ(βnk)

D∏
d=1

Γ(α)
∏D

d=1 Γ(Nt|d + αmt)

Γ(Nd + α)
∏T

t=1 Γ(αmt)
. (3.8)

where Nt =
∑W

k=1Nk|t is the number of receivers chosen by preference φt. Nd =∑T
t=1Nt|d is the number of invitations sent by sender d.

Note that z is unobservable in the data, we will explain how to use Gibbs sampling

to obtain P (z|W) at the end of this section.

Posterior Function. According to (3.6) - (3.8), the posterior of Φ and θ given

evidence W and z is obtained using Bayes rule:

P (Φ, θ|W , z) =
P (W|Φ, z)P (z|θ)P (Φ, θ)

P (W , z)
, (3.9)

=
T∏
t=1

Dir

(
φt;

[
βn1 +N1|t

β +Nt

, · · · ,
βnW +NW |t

β +Nt

]) D∏
d=1

Dir

(
θd;

[
αm1 +N1|d

α +Nd

, · · · ,
αmT +NT |d

α +Nd

])
.

The posterior function can be use to calculate E(φk|t|W , z) and E(θt|d|W , z):

E(φk|t|W , z) =
Nk|t + βnk
Nt + β

, (3.10)

E(θt|d|W , z) =
Nt|d + αmt

Nd + α
. (3.11)

23

Note that E(φk|t|W , z) only depends on Nk|t, suppose we observe new data W ′, z′

where N ′k|t invitations are generated with φt to user of profile k, user d choose φt to

send N ′t|d invitations, then (3.10) and (3.11) can be updated as:

E(φk|t|W , z) =
Nk|t +N ′k|t + βnk

Nt +N ′t + β
, (3.12)

E(θt|d|W , z) =
Nt|d +N ′t|d + αmt

Nd +N ′d + α
. (3.13)

where N ′t =
∑W

k=1N
′
k|t, N

′
d =

∑T
t=1N

′
t|d.

Learning z Through Gibbs Sampling. When we compute the evidence function

P (W , z), we want to estimate P (z|W). With Bayesian rule, P (z|W) = P (W,z)∑
z P (W,z)

.

However, vector z has TN possible values, causing the computation intractable. As

a result, we use Gibbs sampling to obtain an approximated value of z.

Gibbs sampling is a Markov chain Monte Carlo method that obtains a sequence

of observation from a multivariate probability distribution. In our case, instead of

sampling z = [z1, . . . , zN] directly from P (z|W), we sample zi from P (zi|z(−zi)) iter-

atively for i = 1, . . . , N , where z(−zi) = z1, . . . , zi−1, zi+1, . . . , zN . The process is as

follow:

• initialize z = [z
(0)
1 , . . . , z

(0)
N] with random values.

• For iteration a + 1, sample z
(a+1)
i from P (zi|z(a)1 , . . . , z

(a)
i−1, z

(a)
i+1, . . . , z

(a)
N) for i =

1, . . . , N .

• repeat until P (zi|z(−zi)) converges or iteration step reaches a predefined thresh-

old A.

With Gibbs sampling, z is approximated by ẑ = [ẑ1, . . . , ˆzi−1] = [z
(A)
1 , . . . , z

(A)
N]. We

can count the approximate values of Nk|t, Nt and Nt|d in (3.6) - (3.8), denoted as

N̂k|t, N̂t and N̂t|d.

24

As for the distribution P (zi|z(−zi)) to sample z, we have

P (zi|z(−zi)) =
P (wi, zi|W(−wi), z(−zi))∑
zi
P (wi, zi|W(−wi), z(−zi))

∝ P (wi, zi|W(−wi), z(−zi)) (3.14)

where W(−wi) = [w1, . . . , wi−1, wi+1, . . . , wN]. We have:

P (wi = k, zi = t|W(−wi), z(−zi)) = P (wi = k|zi = t,W(−wi), z(−zi))P (zi = t|W(−wi), z(−zi))

(3.15)

To calculate right hand side of (3.15), let N
(−i)
k|t =

∑
j 6=i 1(wj = k, wj ∼ φt), N

(−i)
t =∑W

k=1N
(−i)
k|t and N

(−i)
t|d =

∑
j 6=i 1(zj = t, zj ∼ θd). Consider (3.10) and (3.11), we can

compute P (wi = k, zi = t|W(−wi), z(−zi)) :

P (wi = k|zi = t,W(−wi), z(−zi)) =

∫
· · ·
∫
φk|t

T∏
t=1

P (φk|t|W(−wi), z(−zi))dφ1 · · · dφT ,

= E(φk|t|W(−wi), z(−zi)),

=
N

(−i)
k|t + βnk

N
(−i)
t + β

. (3.16)

P (zi = t|W(−wi), z(−zi)) =

∫
· · ·
∫
θt|d

D∏
d=1

P (θt|d|W(−wi), z(−zi))dθ1 · · · dθD,

= E(θt|d|W(−wi), z(−zi)),

=
N

(−i)
t|d + αmt

N
(−i)
d + α

. (3.17)

3.4.2 Prediction

After Gibbs sampling, we can approximate E(φk|t|W , z) and E(θt|d|W , z) by up-

dating Nk|t, Nt and Nt|d in (3.10) and (3.11)

E(θt|d|W , ẑ) =
N̂t|d + αmt

Nd + α
(3.18)

E(φk|t|W , ẑ) =
N̂k|t + βnk

N̂t + β
(3.19)

25

Suppose we want to predict a new invitation from user u to v with profile k given

data W , ẑ, the probability of a link between u and v in (3.1) can be computed as

P (euv|~fu, ~fv, G) =
T∏
t=1

N̂k|t + βnk

N̂t + β

N̂t|u + αmt

Nu + α
(3.20)

(3.20) shows that, to predict an edge euv from u to v, we only need to know Nu

(the total number of invitations u sends/accept), N̂t|u (number of times u chose φt

previously), N̂t (number of invitations sent with preference φt) and N̂k|t (number of

invitations sent to users of profile k with preference φt), which can be computed using

Gibbs sampling method introduced previously.

3.5 Experiment

3.5.1 Experiment Setup, Metrics and Baseline Methods

Since an edge predicted by our model can be viewed as an online dating rec-

ommendation, we follow approaches that are widely used for offline evaluation of

recommendation systems [91]: an online process is simulated for a model to learn

user preferences and make prediction or recommendations to users. In this process, a

subset of items from each user is chosen as training data and the rest are hidden for a

recommendation system to predict. The simulated process is useful for testing models

on a dataset where users tend to have unique preferences. This process suits our data

because most stated preferences are different. We apply the so-called “all but n”

protocol, where a fixed number of hidden items per user are chosen for testing. Since

the fraction of reply behaviors that violate stated preferences increases with time, we

also create another dataset by selecting users that have been active for at least two

month to test if our methods can effectively update the user preferences. Baseline

methods include logistic regression (LR), random forest (RF), K-nearest neighbor

(KNN) and a model using stated preferences.

26

Baseline Methods Logistic regression and random forest learn user preferences

only through their reply behaviors because we are unable to observe users that an

invitation sender does not like. In other words, there are no negative instances to

learn a sender’s preferences for these two methods. In these two methods, the variable

“reply” is set as a binary label and other variables such as user profiles are set as

features. We use R packages for the two methods [13, 23] that deals with imbalance

data with “out-of-bag” estimation. For random forest algorithm, we increase the

number of trees from default value 100 to 400.

A stated preference of user d in our data is represented as Sd = [sd1, . . . , s
d
K], where

sdk is an interval(for numeric feature) or a set of integers(for categorical feature) that

indicates the preferred value of the k-th user feature, for k = 1, . . . , K, where K is

the total number of features in a user profile. Let user v’s profile be ~fv = [f v1 , · · · , f vK]

as defined in Section 3.3. The distance between a feature f vk value to the preference

of sdk is defined as

a(f vk , s
d
k) =


0, if f vk ∈ sdk,

1, if f vk /∈ sdk and sdk is categorical,√
(f vk −

bk+ck
2

)2, if f vk /∈ sdk and interval sdk = [bk, ck].

For an invitation i, we obtain a vector xi = [a(fd1 , s
v
1), · · · , a(fdK , s

v
K)] and a binary

label representing reply behavior. we assume each feature in a profile affects a user’s

decision differently and assign a weight wk to a(f vk , s
d
k). The probability that receiver

d replies to sender v in invitation i is modeled as a logistic function:

g(xi) =
1

1 + e−Wxi+w0
(3.21)

where W = [w1, · · · , wK], w0 is a constant. We learn W and w0 via logistic regression

on the data, and decide a user d is interested in user v if g(x) >= 0.5.

27

Metrics In Section 3.5.2, we apply our model to synthetic data to learn ground

truth user preferences and test the performance of our model using the number of

retrieved ground truth preferences and the KL-divergence between the retrieved pref-

erence and the true preferences.

Section 3.5.4 evaluates the accuracy of our model in predicting edges that rep-

resent user behaviors. We use logistic regression (LR), random forests (RF) and

collaborative filtering based on K-nearest neighbor (KNN) as baseline methods for

comparison. A recommendation system usually faces the so-called “cold start” users

whose behaviors have never been observed before. It is difficult to provide them with

accurate recommendations in this case. A common approach is to recommend most

popular items to users. Once the behaviors of these “cold start” users are observed,

a recommendation system updates their preferences and provides better recommen-

dations. A useful metric is to evaluate the improvement on prediction accuracy.

3.5.2 Evaluation of User Preferences with Synthetic Data

To understand how different datasets affect the performance of our LDA model,

we simulate an online dating market and generate 20,000 male and female users with

profiles, respectively. This data also helps us understand how our model performs

when parameters, such as number of preferences T , change. Each simulated user has

a profile of five categorical features representing the range of age, number of children,

range of weight, range of income, and range of height. These five features consist of

a feature vector v in a 6× 3× 6× 4× 6 vector space, denoted as V .

Our simulator uses 40 distinct ground truth preferences per gender (and a total

of 80 preferences for both genders). Each preference is a unique distribution over all

possible feature vectors, denoted as φt = (φ1|t, . . . , φ|V ||t), where t = 1, . . . , T} and

V is the feature space. We then randomly select 0.2% of the feature vectors in V

that belong to the opposite gender as preference φt’s favorite feature vectors, denoted

28

as F . Then for each v ∈ F we set φv|t with a value drawn uniformly from interval

(400, 500). For the remaining feature vectors, v ∈ V \F , φv|t is sampled uniformly

from the interval [1, 2]. This insures that favorite feature vectors will be chosen with

a probability more than 60%. Finally, we normalize φt such that
∑

v∈V φv|t = 1.

Each user d has a unique mixture of the 40 ground truth user preferences of his/her

gender, denoted as pd =
∑40

t=1 θt|dφt, such that he/she behaves differently from other

users, where
∑40

t=1 θt|d = 1. We refer to pd as d’s “personal preference” and distinguish

it from user preference φt.

To simulate dating dynamics, each invitation sender d selects a feature vector v

according to his/her own preference φv|d. Then a user of the opposite gender with

feature vector v is chosen without replacement as a receiver. If no such receiver

matches v, a sender selects another feature vector v′ until a total of kd receivers are

chosen, where kd is uniformly sampled from interval [100, 400]. We also simulate a

receiver r who receives K invitations. An invitation from sender d with feature vector

vd is assigned a weight φvd|r from r’s preference φd. Receiver r chooses an invitation

to reply with probability proportional to its weight. This process is repeated until kr

invitations have been replied, where kr is sampled uniformly from [0, K].

Performance of LDA Given Different Datasets and Parameter Settings

We investigate how different dataset and parameter setting of LDA model affect the

performance. We first consider whether it is easy to distinguish a ground truth user

preference from another and how differences between ground truth preferences affect

the performance of our LDA model.

The difference between two preferences φt and φt′ can be measured with KL-

divergence, defined as

DKL(φt||φt′) =
V∑
v=1

log

(
φv|t
φv|t′

)
φv|t

29

When DKL(φt||φt′) = 0, the distribution φt and φt′ can be considered to be nearly

the same.

Considering that DKL(φt||φt′) is asymmetric, the average difference of all true

preferences in our data is measured by the mean of KL-divergence between all ground

truth preference pairs, denoted as

D̄KL(φt||φk) =
1

T (T − 1)

∑
t6=k;t,k=1,...,T

DKL(φt||φk), (3.22)

where T is the number of total ground truth preferences per gender. Small values

of D̄KL(φt||φk) indicate that the ground truth preferences are similar, potentially

causing LDA model to retrieve a preference that is a mixture of several ground truth

preferences. When D̄KL(φt||φk) = 0, all ground truth user preferences are identical.

When D̄KL(φt||φk) is large (e.g., D̄KL(φt||φk) > 0.5,) user preferences are considered

to be different and easy to distinguish from each other.

We select different preferences to generate six datasets, where the average D̄KL(φt||φk)

of both genders are equal to 0.0019, 0.0047, 0.012, 0.053, 0.13, 0.56.

We also investigate how the number of unique preferences for both genders, T ,

affects the performance of our model. We set T = 10, 20, 30, 40, 50 in our model and

run it 10 times on each setting.

We implement 10-fold cross validation to generate ten training sets and ten test

sets: invitation senders are randomly split into 10 groups. We choose behaviors

of one sender group as a test set and the rest as a training set. We repeat this

process ten times. Note that when a sender is chosen for training/testing, all his/her

behaviors are used only as training/testing data. This setting is called “leave-one-

batch-out” (LOBO), where all behaviors of a sender is called a “batch”. LOBO is

reported to avoid upward biases in accuracy[52]. On the other hand, a recommender

system usually focuses on personalized recommendation and requires training data

for each user to obtain better results. LOBO results in a so-called “cold start”, where

30

10
-3

10
-2

10
-1

10
0

0

20

40

60

80

100

N
u

m
b

e
r

o
f

D
e

te
c
te

d
 P

re
fe

re
n

c
e

s

T=10

T=20

T=30

T=40

T=50

Figure 3.2: Number of Retrieved Ground Truth Preferences. X-axis is the log scale
average D̄KL(φt||φk) of both gender. The total number of user preferences in a dataset
is 80(, 40 for each gender). We set T = 10, 20, 30, 40, 50 for each gender in our model.
Small D̄KL(φt||φk) indicates that ground truth preferences are similar and causes
LDA model to retrieve less ground truth preferences.

users have no observed behaviors and the recommendation for them are less accurate.

To study the effect of LOBO and how well our model improves recommendation

performance with new data, we first learn user preference φt with LOBO for t =

1, . . . , 40 in each gender and evaluate the results with KL-divergence. We then choose

a fraction of behaviors of users from the test set to train our model to evaluate the

improvement on “cold start”.

Figure 3.2 illustrates how the average D̄KL(φt||φk) affects the number of ground

truth preferences retrieved by our model. When D̄KL(φt||φk) is small and equal to

0.0019, users in the dataset have similar behaviors. It is difficult to distinguish one

preference from another. Our LDA model, on average, retrieved less than 3 unique

preferences for all genders even when T is large. As D̄KL(φt||φk) increases, ground

truth preferences are more distinguishable from one another, and our model retrievs

more user preferences. All ground truth preferences are detected in our model when

D̄KL(φt||φk) = 0.56.

31

We then evaluate how similar retrieved preferences and ground truth preferences

are. A one-to-one mapping from a retrieved preference φ̂t to a ground truth preference

φt (mapping learned distribution in LDA model) is a well-defined “label switching”

problem that can be solved by choosing pairs of preferences with the smallest KL-

divergence DKL(φ̂k||φt) [16], where k = 1, . . . , T ; t = 1, . . . , 40. When T is larger than

the number of ground truth preferences, the retrieved preferences that fail to match a

ground truth preference usually contain few samples during Gibbs sampling and will

be ignored. We simply follow an up-to-date approach in R package [86] and obtain

K matched preference pairs for both genders from LDA model. For simplicity, we

reorder the preferences and use DKL(φ̂t||φt) to represent the KL-divergence of the t-th

matched preference pair, where t = 1, . . . , K. A small value of DKL(φ̂t||φt) indicates

that a retrieved preference is close to a ground truth preference.

Figure 3.3 shows the mean, maximum and minimum of DKL(φ̂t||φt), where t =

1, . . . , K and K ≤ T is the number of matched preferences from LDA model with

T = 40.

Figure 3.4 shows the average difference between retrieved preferences and ground

truth preferences, D̄KL(φ̂t||φt), as a function of T given D̄KL(φt||φk), the average

difference between ground truth preferences. When ground truth preferences are

similar (D̄KL(φt||φk) = 0.0019), the retrieved preferences are similar to the ground

truth preferences and D̄KL(φ̂t||φt) is less sensitive to the change in T , the number of

preferences per gender in our model. On the other hand, if ground truth preferences

are different (D̄KL(φt||φk) = 0.56), T significantly affects the difference between a

matched preference-pair: a small T results in a large value in D̄KL(φ̂t||φt); if T is

greater or equal to the number of ground truth preferences, D̄KL(φ̂t||φt) is small,

indicating a good approximation of the ground truth.

A recommender system needs to update a users’ mixture preference based on his

new behaviors to provide better recommendations. Let p̂
(i)
d be d’s retrieved preference

32

Figure 3.3: Y axis: errors in retrieving user preferences, measured by D̄KL(φ̂t||φt)
(average KL-divergence between retrieved preferences and ground truth preferences).
X axis: diversity of ground truth user preferences, measured by average D̄KL(φt||φk)
(average KL-divergence between ground truth preferences). Retrieved preferences
are obtained by LDA model with T = 40. Small D̄KL(φt||φk) indicates ground truth
preferences are similar with one another, resulting in larger preference retrieving
error, D̄KL(φ̂t||φt). As D̄KL(φt||φk) increases, ground truth preferences are easier to
distinguish, and LDA obtains the ground truth preferences with less error.

10 20 30 40 50

T, Num of Preference Per Gender in LDA Model

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.4: Y axis: error in retrieving user preferences, denoted as D̄KL(φ̂t||φt) (KL-
divergence measures the difference between retrieved prefererence φ̂t and ground truth
prefererence φt). X axis: number of user preferences in LDA model, denoted by
T . Our model was tested on synthetic datasets with different D̄KL(φt||φk). Small
D̄KL(φt||φk) indicates that ground truth preferences are similar and difficult to be
distinguished from one another. The results suggest that increasing T in our model
can more significantly improve the approximation of ground truth preferences when
D̄KL(φt||φk) is larger.

33

Num of Training Behavior
0 50 100 150 200 250 300

D̄
(i
)

K
L
(p̂
||
p
)

10
-4

10
-3

10
-2

10
-1

10
0

D̄KL(φt||φk) =0.56
D̄KL(φt||φk) =0.13
D̄KL(φt||φk) =0.012
D̄KL(φt||φk) =0.0019

Figure 3.5: Log scale of D̄
(i)
KL(p̂||p), the averge KL-divergence between retrieved

personal preferences and ground truth preferences as a function of i, the number
of training behavior per user for four synthetic datasets. Personal preferences for
senders and receivers are retrieved with our LDA model for four datasets that dif-
fer in D̄KL(φt||φk), the average difference between user preferences. The accuracy is

measured with D̄
(i)
KL(p̂||p). As the number of training behaviors for a user increases,

D̄
(i)
KL(p̂||p) decreases, implying that personal preferences are closer to ground truth.

learned from i of his behaviors, where i = 1, 2, . . . and DKL(p̂
(i)
d ||pd) is the KL-

divergence between p
(i)
d and d’s ground truth preference pd. We use D̄

(i)
KL(p̂||p) =

1
D(i)

∑D(i)

d=1 DKL(p̂
(i)
d ||pd) to measure the performance of our model on learning users’

mixture preferences, where D(i) is the number of users that send out more than i

messages. Figure 3.5 shows D̄
(i)
KL(p̂||p) as a function of i, the number of training

behaviors per user. As i increases, D̄
(i)
KL(p̂||p) decreases, indicating that the retrieved

personal preference becomes more accurate. When ground truth user preferences

are easy to distinguish (larger value of D̄
(i)
KL(p̂||p)), the approximation of personal

preference is better if i is large enough. On the other hand, if ground truth preferences

are almost identical (D̄
(i)
KL(φt||φk) = 0.0019), all users behave in the same way. LDA

model considers that those user behaviors come from the same preference and retrieves

fewer preferences. Since the learned preferences are also similar to the ground truth,

D̄
(i)
KL(p̂||p) is small.

34

Next, we compare our LDA model to baseline methods for recommendation re-

sults using ROC curves. For sender behaviors, we use K-nearest neighbor (KNN)

algorithm for comparison (logistic regression and random forest are unable to learn

sender preferences because the lack of negative instances). Then we compare the

performance of our model to all baseline methods on predicting receiver behaviors.

Our LDA model first retrieves user preferences φt from the training set for t =

1, . . . , 40. To predict behaviors of a user d in the test set, Both LDA and KNN require

that a fraction of d’s behaviors be observed. Let i be the number of user d’s behaviors

that are randomly selected from the test set to update his personal preference. When

i = 0, we begin a “cold start” prediction and the personal preference is an average

of retrieved user preferences φt for t = 1, . . . , T (This means the training setup is

LOBO). The i behaviors are used to obtain user d’s K nearest neighbors in the

training set.

Note that our problem is to predict whether a sender sends an invitation to a user.

This problem refers to a binary recommendation [91]. Howover, we do not observe

users whose profiles are examined by a sender but do not receive an invitation. That

is, there is no negative instances for our classification problem. As a result, we follow

a common evaluation approach [91] suitable for our case: let d be a sender sending

out invitations to I > i receivers. A recommendation method generates “ranking

scores” for all other users of the opposite gender (except for those i receivers in the

training data) then ranks users in descending order.

Evaluation metric An ROC curve for the prediction of d’s behavior is generated

from the user ranking: Let P = I−i be the number of receivers that receive invitations

from d in the dataset, N is the number of users that do not receive invitations. J is

the number of unique ranking scores, Rj is the j-th largest ranking score. Consider

the users whose ranking scores are larger or equal to Rj, Pj ≤ P is the number of

invitation receivers, Nj is the number of the rest users. A true positive rate (TPR)

35

is calculated by
Pj

P
and the corresponding false positive rate (FPR) is calculated by

Nj

N
. Each TPR-FPR pair is considered as a point in a 2D space. By repeating the

above process for j = 1, . . . , J , we obtain J points {(Pj

P
,
Nj

N
)}Jj=1. An ROC curve is

obtained by connecting (0, 0) to (P1

P
, N1

N
), and (

Pj

P
,
Nj

N
) to (

Pj+1

P
,
Nj+1

N
).

After obtaining a ROC curve for a sender sending I > i invitations, we want

to evaluate the overall performance of a method on all those senders in the ten

test datasets. Fawcett [30] proposed a vertical averaging of ROC curves to obtain

average TPR for each corresponding FPR: (1) choose a set of FPRs. In our case,

we choose 20 FPR values: FPRj =
Nj

N
= 0.05, 0.1, 0.15, . . . , 1. (2) For each ROC

curve for a user d, denoted as ROCd, obtain the TPR values TPRd
j =

P d
j

P
for j =

1, . . . , 20 by interpolation on ROCd. (3) calculate the average TPR for all users

TPRj = 1
D

∑D
d=1

P d
j

P
so that for each j we obtain a TPR-FPR pair (TPRj,FPRj),

where D is the number users sending more than i invitations. (4) connect (0, 0) and

(TPRj,FPRj) and plot the ROC curve.

Figure 3.6 shows the ROC curves for our LDA model and KNN given senders’

i observed behaviors on datasets with different average similarities in ground truth

preferences (denoted by D̄KL(φt||φk)). Figure 3.6(a) corresponds to a data set that

contains different user preferences (D̄KL(φt||φk) = 0.56). Figure 3.6(b) corresponds

to a dataset with similar user preference (D̄KL(φt||φk) = 0.13). We select these two

datasets to show that when preferences are easy to distinguish, all models performs

better. However, we do not show the extreme case where D̄KL(φt||φk) = 0.0019 and

all users have similar behaviors because this is not expected to occur in the real-

world (In this case, all models have similar performances). When there is no training

behavior for user d (i = 0), KNN is known to be equivalent to a random prediction.

Our model assume user d’s personal preference as 1
40

∑40
t=1 φt according to (3.13).

A user’s personal preference can be learned by his sending behaviors or replying

behaviors. A receiver r’s personal preference is difficult to learn because his behaviors

36

FPR

0 0.2 0.4 0.6 0.8 1

T
P

R

0

0.2

0.4

0.6

0.8

1

Random
GroundTruth
LDA w/ i = 0
LDA w/ i = 50
LDA w/ i = 100
LDA w/ i = 200
KNN i = 50,K = 20
KNN i = 100,K = 40
KNN i = 200,K = 20
KNN i = 200,K = 40

(a) D̄KL(φt||φk) = 0.56

FPR

0 0.2 0.4 0.6 0.8 1

T
P

R

0

0.2

0.4

0.6

0.8

1

Random
GroundTruth
LDA w/ i = 0
LDA w/ i = 50
LDA w/ i = 100
KNN i = 50,K = 20
KNN i = 100,K = 40
KNN i = 200,K = 40

(b) D̄KL(φt||φk) = 0.13

Figure 3.6: Average ROC curves of behavior prediction for invitation senders. (a)
ROC curves for LDA model and KNN on a dataset with D̄KL(φt||φk) = 0.56, (b)
ROC curves for LDA model and KNN on a dataset with D̄KL(φt||φk) = 0.13 where
ground truth user preference φt is more difficult to distinguish than in (a). Senders’
personal preferences are easier to learn in dataset in (a) than (b). For each sender d
in test data, i of his/her behaviors are selected as observed data to train d’s personal
preference for our LDA model and to calculate his/her similarities to other sender to
obtain K near neighbor for KNN. For both methods, performance improves with the
increase in i, the number of training data for each sender. However, when i reaches
200 from 100, the improvement becomes less significant. Comparing the two figures
(a) and (b), the improvement is more significant when D̄KL(φt||φk) is larger, as shown
in (a). Given the same i, LDA performs better than KNN, especially when i is small.

37

FPR

0 0.2 0.4 0.6 0.8 1

T
P

R

0

0.2

0.4

0.6

0.8

1
Random
GroundTruth
LDA Sender w/ i = 0
LDA Sender w/ i = 150
LDA Receiver w/ i = 0
LDA Receiver w/ i = 150
KNN i = 150,K = 40

Figure 3.7: ROC curve for prediction of receivers’ behaviors on dataset with
D̄KL(φt||φk) = 0.56. Receivers’ behaviors are more difficult to predict than senders’
behavior. ROC curve for prediction shows that even ground truth preferences are
unable to obtain high accuracy. Since a user uses the same personal preferences to
send and respond to invitations. User preferences learned from senders behaviors
have better performance than those learned from receiver behaviors.

are limited to replies to invitations. However, there is no guarantee that each of r’s

favorite type of user will be among those senders. As a result, we may not obtain all

r’s favorite types and r’s personal preference may be biased.

In the following experiments, We test if personal preferences learned from sending

behaviors have the same performance on prediction as those from replying behaviors.

We choose the dataset with D̄KL(φt||φk) = 0.56 for evaluation because user per-

sonal preferences are relatively easy to learn. Figure 3.7 shows the average ROC

curve for predictions of receiver behaviors using sender personal preferences, receiver

personal preferences and KNN. We also use the ground truth preferences for the pre-

diction. The prediction for receiver behaviors is more difficult than that for sender

behaviors: even ground truth preferences do not produce high accuracy. For “cold

start” prediction (LOBO setting with i = 0), both sender and receiver preferences are

just a little better than random binary classification. When i = 150, predictions using

both type of preferences improves. Also note that prediction by receiver preferences

are less accurate than prediction by sender preferences.

38

3.5.3 Real-world Dataset

We test our method on an online dating dataset collected from baihe.com. It

consists of two million invitations between November 2011 and January 31st 2012.

The invitations are sent/received by 200, 000 users registered in November 2011. The

dataset contains 293, 804 user profiles (including users who did not register in Novem-

ber 2011), with each gender making up 69.7% and 30.3% of the users, respectively.

Users come from all over China and also abroad [98]. When they register, they filled

in requirements expected for their potential partner, such as age and income. These

requirements are usually called “stated preferences”. For each user, we obtain all

invitations from the date that his/her account was created until January 31st, 2012.

We also obtain the profile information of all users involved in these invitation, to-

taling 2 million unique pairs of users invitations during our observation period. The

content of each invitation is removed for privacy concerns but other relevant informa-

tion remains, such as the invitation timestamp, the sender’s and receiver’s profiles,

which consists of 21 features including: gender, age, registration timestamp, blood

type, weight, height, education, occupation, annual income level, housing situation

(renting, home owner), body type, Western zodiac sign, Chinese zodiac sign, number

of profile photos, whether the user owns a car, city of residence, and the whether user

has a child and lives with the child, among other characteristics.

3.5.4 Experiment Setup

Setup for LDA model In our previous study [99], we discovered that some

features in a user profile are redundant, some features may be irrelevant to a user’s

decision to send/reply an invitation. This increases computational complexity and

provides little improvement in accuracy of prediction in our model. We apply feature

selection with the importance scores of features generated from the gain ratio of

decision trees in random forest [13].

39

Feature Selection in User Profiles The large number of features in user profiles

and their values results in a huge feature space, making our LDA model infeasible

to compute. Moreover, the large percentage of missing data and errors in some

feature variables introduce biases in the data. To ameliorate these problems for our

LDA model, we apply feature selection to choose the most relevant features to user

behaviors and feature discretization to reduce feature space. We identify the five most

relevant features to predicting sending/replying invitations using gain ratio obtained

from decision trees and variable importance from in random forest: age, weight,

income difference, children information and height difference.

Feature Discretization We apply the ChiMerge algorithm, a bottom-up Chi-

square quantization algorithm [58] to discretize the feature values. Missing data is

represented by a special categorical value “0”. After the feature discretization, we

have a 7× 9× 8× 5× 21 feature space that represents W = 52, 920 unique profiles.

Initial Mixture of “Cold Start” Users with Profile for LDA Model We

assume that user profiles are related to user personal preferences. To test whether

user profiles can improve prediction for “cold start” users, we also design a model to

learn relations between user profiles and the personal preferences. We refer to this

model as “LDA model with feature in user profile”.

The process of designing this model is as follows: We define φt as a user preferences,

where t = 1, . . . , T . User r’s personal preference is denoted as pr =
∑T

t=1 a
(r)
t φt, where∑T

t=1 a
(r)
t = 1 and A(r) = [a

(r)
1 , . . . , a

(r)
T] represent a mixture. Given “cold start” user

r’s profile as a 1×K feature vector ~fr in the test set, his mixture is initilized as

Â(r) =
~frM

||~frM ||

where M is a K × T matrix and ||·|| represent an L2 norm. M can be easily learned

as follows:

40

arg min
M

D∑
d=1

||A(d) − Â(d)||

where d represents a user in the training sets and A(d) is d’s mixture return by our

LDA model.

Setup for baseline methods The baseline methods includes K-nearest-neighbor

(KNN), logistic regression (LR) and random forest (RF). They are the most widely

used methods applied in recommendation in industry, such as Netflix movie rating,

online shopping recommendation and targeted advertisement. For all baseline meth-

ods, we did not perform feature selection or feature discretization on the data because

of the methods themselves can decide the relations between features and class label.

We also propose a baseline model using user stated preferences. Recall, from the

discussion at the beginning of Section 3.3, that each user has a profile and the profile

contains a feature vector of K user features, denoted as ~f = [f1, . . . , fK]. In user

d’s stated preference, d specifies his preferred range of the value of fk in a partner’s

profile, for k = 1, . . . , K. However, it is unclear how a feature fk affects a user’s

decision to send/reply an invitation. Our baseline model add a weight wk to a feature

fk, where wk = 0 represents that fk is irrelevant to a user’s decision. Suppose the

range of value for fk in d’s stated preference is Rk, we define feature distance to a

stated preference as:

gk(fk, Rk) =

 0, if fk ∈ Rk

min((fk − ak)2), if fk /∈ Rk,∀ak ∈ Rk

where ak ∈ Rk is one of d’s preferred values for feature fk. The feature distance to a

stated preference is 0 if the value of fk is within the preference range Rk, otherwise,

the distance is the minimum L2 norm of fk and a value ak ∈ Rk. The distance of a

user r’s profile ~fr to d’s preference pd can be calculated as

41

d(~fr, pd) =
1

K

K∑
k=1

wkgk(f̂k, Rk) (3.23)

We use a logistic function to compute the probability that user d is interested in r:

P (edr = 1) =
1

1 + ed(~fr,pd)+w0

(3.24)

We consider that user d sends/replies an invitation to/from r if P (edr = 1) ≥ 0.5 and

label this behavior as yd,r = 1, otherwise, yd,r = 0. To obtain wk, for k = 1, . . . , K,

we train the baseline model to minimize square error:

∑
d

∑
r(d)

(yd,r(d) − P (edr = 1))2

where r(d) is a user that is observed to interact with d. We further rank all users for

d in ascending order of d(~fr, pd) for r = 1, 2, . . . , and generate a ranked list to obtain

an ROC curve for comparison.

We applied the same evaluation process as on the synthetic dataset. The average

KL-divergence for user preferences returned by our LDA model is D̄KL(φt||φk) =

0.7544, indicating that user preferences are easy to distinguish. Figure 3.8 shows the

ROC curve for offline prediction of sender behaviors by KNN, a model with stated

preference, LDA models with/without features in user profile to initilize personal

preferences. From the ROC curve, we observe that stated preference is good for “cold

start” users and have good performance in LOBO evaluation. For recommender

systems such as KNN and our model, historical personal behaviors are important for

prediction. Meanwhile features in user profiles can be applied to estimate personal

preferences for “cold start” users and help to improve prediction.

We then investigate a receiver’s behavior in replying/rejecting an invitation. Fig-

ure 3.9 shows the ROC for predictions on receiver behaviors by models with stated

42

FPR

0 0.2 0.4 0.6 0.8 1

T
P

R

0

0.2

0.4

0.6

0.8

1

Random
StatedPref
LDA w/ i = 0
LDA w/ i = 6
LDA Feature w/ i = 0
LDA Feature w/ i = 6
KNN i = 6,K = 68

Figure 3.8: ROC Curve for Prediction of Sender Behaviors in Baihe Online Dating
website. Model with stated Preferences has higher TPR compare to most of other
models when FPR is low. An LDA model without features for personal preference
estimation for “cold start” users (LDA w/ i = 0) performs poorly, just a little better
than a random classification (small dot line). With observation of personal behaviors,
our LDA model greatly improves its performance (LDA w/ i = 6). If features in
user profiles are used to initialize user personal preferences, our model improves on
predictions for “cold start” user (according to ROC curves for LDA feature w/i = 0).
We also test KNN and plot the ROC curve for a KNN (The number of neighbors
K ranges from 10 to 100, it has its best overall performance on the test sets when
K = 68.)

43

preferences, LDA, KNN, logistic regression and random forest. Similar to the results

obtained when examine the synthetic data, it is more difficult to predict receiver

behaviors than sender behaviors when comparing ROC in figure 3.7 and 3.9. LDA

models and KNN require observed behaviors of tested users to obtain ther personal

preferences, we choose the number of observation i = 1, . . . , 6, and only show the

best result from i = 6 because users on average receive a small number of invitations.

The LDA model using both user features and personal behaviors to learn personal

preference has overall the best performance. The TPR in the LDA model using only

personal behaviors is lower than in a model with stated preferences when FPR is low

(below about 0.25), but becomes higher as FPR increases. Methods such as, logistic

regression and random forest, use user features in profile without personal behavior

for prediction have the lowest performances. This suggest that personalizing user

preference can improve prediction.

3.5.5 Change of Stated Preferences

We discover that some users change their behaviors over time in our previous

study [99]: on average in each week, there is an increase in the fraction of both sender

and receiver behaviors that do not match stated preferences. To study the effect

of this discrepancy between behaviors and preferences on prediction by the models,

we investigate users who have been active as senders and receivers for at least two

months. Those users provide enough behaviors representing changed preferences to

test if models adapt to these changes.

Experiment setup and Metric We simulate an online process to compare our

model to other methods with newly arriving data: We first adjust the time of some

invitations such that all targeted users register in the first week. At the end of each

week, we use all observed user behaviors to re-train each model and use it to predict

user behavior for the next week. We generate ROC curve for prediction result by

44

FPR

0 0.2 0.4 0.6 0.8 1

T
P

R

0

0.2

0.4

0.6

0.8

1

Random
StatedPref
LDA w/ i = 6
LDA Feature w/ i = 6
KNN i = 6,K = 47
Logistic Regression
RandomForrest

Figure 3.9: ROC Curve for Predictions of Receiver Behaviors. All ROC curves sug-
gest that receiver behaviors are difficult to predict. The LDA model using both user
features and observed behaviors (LDA feature w/ i = 6) has the best overall perfor-
mance. A model with stated preferences (red dash line) has TPR a little higher than
all other methods when FPR is low (below 0.1). This suggests that the model, on
average, captures a receiver’s the most preferred type of partner. However, its TPR
is lower than LDA models using observed personal behaviors as FPR increases. This
is because a receiver’s stated preferences do not cover all his favorite type. KNN has
its best performance when K = 47. Logistic regression and random forest use user
features for classification without personalizing each receiver’s own preference and
have poor performances than others.

45

each model in each week. To better show the comparison of all models over time, we

use the area under curve (AUC) as evaluation metric. AUC is computed as the area

under ROC curve, ranging from 0 to 1. An AUC value of 1 means that a classifier

makes a perfect classification. Random selection classifier has 0.5 AUC value.

Figure 3.10: AUC for Sender Behavior Prediction by All Models. We adjust the time
of some invitations such that all senders register in the first week. At the end of each
week, models are trained with all previous data and predict sender behaviors for the
next week.

Figure 3.11: AUC for Receiver Behavior Prediction by All Models. We adjust the
time of some invitations such that all receivers register in the first week. At the end
of each week, models are trained with all previous data and predict receiver behaviors
for the next week.

Figures 3.10 and 3.11 show AUCs for prediction results of both sender and receiver

behavior. The model using stated preferences has the largest AUC for the first three

weeks. This suggests that stated preferences are suitable for prediction for newly

46

registered users. However, as users remain a customer of the website for a longer

period, their preferences are likely to change, and the stated preference is less adaptive

to these changes. On the other hand, other models exhibit robust performance as

time increases.

3.6 Conclusion

In this Chapter, we propose an LDA model to predict edges in a bipartite network,

where the node attributes can be observed and new edges emerge over time. We test

our model by predicting users’ behavior of sending/replying invitation in an online

dating website.

In our experiments on multiple synthetic datasets, we show the performance of

our model can be improved if the number of user preferences in our model is greater

or equal to the ground truth. Our model also obtains a better approximation of

ground truth user preferences if those preferences are easily distinguished using KL-

divergence.

When applied to real-world online dating datasets where user behaviors change

over time, we discovered that stated preferences have better performance in predicting

newly registered users. However, as time increases, users change their behaviors, and

stated preference is less effective in prediction. On the other hand, our model can

capture the change in a user’s personal behavior and has better performance than

state-of-the-art methods such as KNN.

47

CHAPTER 4

TEMPORAL CLUSTERING IN DYNAMIC NETWORKS

4.1 Introduction

A dynamic network is a useful tool to study interactions between individuals in

complex systems over time. Researchers usually represent it as a series of static net-

work snapshots in discrete time. In each network snapshot, nodes represent individ-

uals and edges represent relations or interactions between individuals in a time step.

In practice, groups of nodes are observed to be densely connected with each other

over time. These groups are called network communities. Clustering (community

detection) in dynamic networks is an important task for understanding the dynam-

ics of interactions within groups of individuals in complex systems. This is because

clusters, with a correctly defined similarity metric for nodes, suggest “meaningful”

network communities where nodes share common attributes in real world datasets. In

social networks or communication networks, for example, clusters usually represent

groups of close friends or frequent contacts. Tracking these clusters in a dynamic net-

work helps us to understand not only the lifespan of friendships in a group of people

but the dynamics of their formation and dissolution.

Current work mainly focuses on two different approaches to detect and track clus-

ters. The first approach focuses on identifying clusters within each network snapshot

and obtain their lifetimes based on the time steps when they are detected. Since there

could be many clusters generated from all snapshots, previous work such as [20] only

maintains the most frequently appearing clusters. Evolutionary clustering (EC) [18]

applies K-means clustering on a similarity matrix generated from the current network

48

snapshot and the clustering results of previous snapshots. Researchers have replaced

the K-means clustering with different clustering methods [95, 56, 4, 45] for tracking

the evolution of communities. However, these methods have a drawback: they use

local information (more specifically, a similarity matrix generated from a subset of

snapshots) to identify clusters. In practice, when dynamic networks are analyzed

at small time granularities, their network snapshots are sparse and contain too few

edges, the similarity matrices provide little information for clustering, and detected

clusters are too small to provide enough information to understand relations between

individuals in a group.

The other approach designs a model of a dynamic network with evolving latent

structures and uses global information (all of the network snapshots) to learn those

structures. It is proposed [32, 104] that a dynamic network consists of multiple

stochastic block models (SBM) and each node has a mixed membership in those

models. A Bayesian model is then applied to learn the mixture of memberships

as well as the SMBs. However, since these methods assume network communities

exist throughout time, they do not track community lifetimes. Tensor decomposition

based methods such as [33, 60, 78] model a network as a three-mode tensor and apply

low-rank tensor decomposition on it to obtain R components. Each component is

considered as one of the latent structures and consists of three vectors termed “loading

vectors”. The loading vector related to nodes is used to generate communities and

the loading vector related to time is used to track community lifetimes. However,

previous analysis with tensor decomposition does not provide a well-defined physical

interpretation of the vectors. More specifically, the meaning of the i-th element in the

vector, considered to relate to a node or a time step i, is unclear. As a result, when

analyzing at a very small granularity of time that causes snapshots to be sparse, they

are unable to decide and verify the lifetime of a community because no snapshots

contain a sufficient number of edges to indicate the time of existence of a community

49

structure. The lack of physical interpretation of the vectors also makes it difficult to

accurately calculate the lifetime. Previous methods present the plot of loading vector

related to time, suggesting that the time steps of highest value are important but fail

to provide a threshold for choosing those important time steps. Moreover, methods

with latent structures require specifying the number of clusters. Current methods are

not robust to changes in the community number and thus perform poorly.

To solve the problem that arises with sparse network snapshots, we propose a

temporal clustering framework based on a set of latent network generative models,

each of them consisting of several clusters. Given a time interval, edges between

nodes in a cluster are generated at a specific rate. The time interval for the rate is

independent of the time granularity of a dynamic network, so that the rate remains

fixed with changes in time granularity. Nodes with higher edge-generation rates are

considered more likely as a group. This enable our model to obtain the same clusters

even when the time granularity of a network changes. We assume the rate changes

at a speed slower than the network structure and use it to detect the formation,

dissolution and lifetime of the clusters.

4.2 Contribution

The major contributions of this chapter include:

• We represent a temporal network as a three-way tensor with the similarity of

nodes defined as a function of time base on the edge generation rate learned from

tensor decomposition. K-means clustering and silhouette criterion are applied

to detect network communities. Experimental results show that our method,

compared with baseline methods, is more robust to change in the number of

clusters.

50

• We propose a similarity ordering score to improve temporal clustering methods

on a precision-recall metric for community detection and community member

detection.

• We also apply filtering methods for smoothing the rate of edge generation in a

cluster and propose a bottom-up segmentation algorithm for detecting commu-

nity formation, dissolution and lifetime. We provide evidence that the perfor-

mance of our model is robust to changes in time granularity and the density of

network snapshots.

4.3 Model Description and Problem Fomulation

We analyze a dyanmic network in discrete time and represent it as a series of

static network snapshots, denoted by G = {Gt(V,Et)|t = 1, · · · , T}, where Gt is the

network snapshot at time t, V is a fixed set of nodes and Et is the set of edges at

time t, and T is the total number of network snapshots at the finest time granularity.

We use w = 1 to represent the finest time granularity and w = T for the coarsest

time granularity (in which case, the network is represented as a static network). For

simplicity, we explain our model at the finest time scale in the following sections and

investigate the effect of time granularity on community detection in Section 4.5.

We propose a temporal clustering method (TC) such that edges in G are gen-

erated by R generative models, denoted by {X(r)}Rr=1 = {Ar, λ(r)(t)}, where Ar =

[a1r, . . . , a|V |r] and air is the probability that node i belongs to a community whose

members and lifetime can be modeled in {X(r)}, for r = 1, · · · , R. λ(r)(t) is defined

as edge-generation rate and represents the rate at which edges are generated between

two nodes within a community from X(r). It can vary over time and can be repre-

sented as a time series or a function of time t (details are provided in Section 4.4.4).

At time step t , the r-th generative model X(r) generates edges between two nodes

i, j with rate

51

airajrλ
(r)(t) (4.1)

(In one time step, airajrλ
(r)(t) can be interpreted as the expected number edges

generated from X(r)). The total expected number of edges between node i and j at

time t in G is then computed as

R∑
r=1

airajrλ
(r)(t). (4.2)

Since a community is a group of nodes that are densely connected, we assume that

a generative model X(r) tends to generate more edges within a community. We use

airajr as the similarity between node i and j in X(r) to apply to a clustering algorithm

for community detection. λ(r)(t) also affects the number of edges between nodes and

can be used to detect the lifetime of a community: A small λ(r)(t) result in less edges

in a group of nodes, suggesting that a community has dissolved (We provide more

details in Section 4.4.4.)

Note that communities from different generative models can contain the same

node. This allow a node to have multi-membership in different communities at the

same time step.

4.3.1 Problem Formulation

We use a three-mode tensor X to represent a dynamic graph G, where Xijt rep-

resents the number of edges observed between nodes i and j at time t. The prob-

lem of tracking evolving communities in a dynamic network can be formulated as

learning R generative models, {X(r)}Rr=1, such that Xijt can be approximated as∑R
r=1 airajrλ

(r)(t) with minimum square error:

min
∑

i,j∈V,i 6=j
∑

t(Xijt −
∑R

r=1 airajrλ
(r)(t))2 (4.3)

s.t 0 ≤ air ≤ 1; for i = 1, . . . , |V |, r = 1, . . . , R

λ(r)(t) ≥ 0

52

Figure 4.1: Learning temporal clustering model using PARAFAC decomposition. A
dynamic network is represented as a three-mode I × I × T tensor X . PARAFAC
decomposition decomposes X into R components that represents generative models
{X(r)}Rr=1

We assume no self-loop in a dynamic network and add a constraint that i 6= j. If

self-loops are allowed, we can extend the model by removing the constraint i 6= j

from the objective (4.3).

4.4 Temporal Clustering

Our approach of temporal clustering to detect evolving communities in a dynamic

network consists of the following steps: (1) learning R generative models, (2) cluster-

ing in generativ models, (3) ranking cluster, and (4) identifying community lifetimes.

We provide details on each step in this section.

4.4.1 Learning Generative Model with PARAFAC Decomposition

We apply parallel factorization (PARAFAC) decomposition to an I×I×T tensor

X that represents a dynamic network. Generative models that satisfy (4.3) can

be obtained directly from the decomposition result (Figure 4.1). Alternative least

squares (ALS) algorithm is applied to perform PARAFAC. We provide details about

PARAFAC decompostion in Appendix A.

In the rest of the chapter, we use X̂(r) = {Ar, ~λr} to denote the r-th generative

model learned from PARAFAC, where air ∈ Ar is the probability that node i belongs

to X̂(r), ~λr = [λ1,r, . . . , λT,r] is a sequence of T samples for the edge-generation rate

53

λ(r)(t). Note that all current methods for learning latent structures require setting the

number of structures either manually or via criteria such as the elbow rule[44] and

modularity gain[70]. For PARAFAC decomposition, we select R according to core

consistency [14]. However, the rank R produced this way is not necessarily consis-

tent with the data. Moreover, PARAFAC decomposition requires large computation

power, so that R has to be small for large datasets. As a result, errors may occur in

the components, making them unsuitable for analysis. For example, in an experiment

by Gauvin et al. [33], one of the components from PARAFAC actually contains two

independent communities, but the methods group the two communities as one. We

deal with this issue by performing clustering on X(r) and propose a ranking score to

retain the significant clusters.

4.4.2 Dynamic Community Detection with Generative Models

We allow X(r) to contain one or more clusters. The similarity between two nodes,

i and j in X(r), is defined as:

s
(r)
i,j = airajr (4.4)

Clustering methods such as K-means clustering and spectral clustering return disjoint

clusters. Let C
(r)
m be the m-th cluster obtained from generative model X(r). When

our model applies one of these methods, |C(r)
m ∩ C(r)

n |= 0. However, clusters across

different generative models may overlap: |C(r)
m ∩ C(s)

n |≥ 0, for r 6= s. As a result, a

node may have multi-membership in our temporal clustering method.

After obtaining R latent generative models, we perform clustering on each model

X̂(r) using the similarity defined in (4.4). There are many clustering algorithms such

as K-means and spectral clustering[74], as well as community detection algorithm

such as Girvan−Newman algorithm [71]. We choose K-means clustering with sil-

houette criterion to determine the best number of clusters. There are mainly two

reasons for this. First, K-means clustering is fast, simple and easy to implement.

54

With silhouette score, we can automatically decide K and obtain a good clustering

result. Second,other clustering algorithms do not improve performance over K-means

clustering in our experiments.

Silhouette Clustering Criterion The silhouette score measures how well a

point lies within its cluster [87]. Assume that we have K clusters {Ck}, (k = 1, · · · , K)

and a similarity function s(i, j) for data points i and j. The similarity of a node i to

a cluster Ck is defined as

d(i, Ck) =
∑
j∈Ck

s(i, j)/|Ck| .

d(i, Ck) represents the average similarity of node i to all other nodes in cluster Ck.

Suppose node i is in cluster Ck, then the silhouette score of i is

S(i) =
d(i, Ck)−maxl 6=k d(i, Cl)

maxm d(i, Cm)
,

which lies in the interval [−1, 1] Here, S(i) measures how well i belongs to its own

cluster, with positive values indicating good clustering.

Finally, the average silhouette score over all data points is a measure of the quality

of the K clusters, computed as

s̄ =

|V |∑
i=1

S(i)/|V |.

The silhouette criterion is to choose K with the highest average silhouette score s̄.

Note that in a generative model X(r), a set of nodes with low probability belonging

to a community in X(r) are grouped into a cluster, denoted by C = {i|air ≈ 0}. These

nodes generate almost no edges in our model and do not form a network community.

We introduce a ranking score to filter these clusters in the next section.

55

4.4.3 Cluster Ranking

Clusters detected from our methods may include groups that have few edges, these

groups are not network communities and should be filtered. Suppose K clusters are

detected from generative model X(r) and denoted by {C(r)
m }Km=1, we rank this clusters

by their average similarity ordering (SO) score, which we define as:

SO(r)
m =

∑
i,j∈C(r)

m
airajr

|C(r)
m |2

∫ T

0

λ(r)(z)dz, (4.5)

≈
∑

i,j∈C(r)
m
airajr

|C(r)
m |2

(
T∑
t=1

λ̂t,r), (4.6)

where λ̂t,r is the edge-generation rate obtained from X̂(r), as introduced in Section

4.4.1. The SO score represents, on average, the number of edges generated from a

node-pair in a cluster over time. We generate a ranked list of clusters with SO score

in decreasing order. Clusters at the top of the list are considered to be significant

and provide useful information for analysis.

Moreover, the elbow rule [44] can be applied to the SO score to filter out insignif-

icant clusters: clusters are ranked in a descending order of SO score, and we choose

the rank at which the SO score drops significantly and remove clusters below it.

4.4.4 Lifetime Detection

We use ~λr from PARAFAC as an estimate for the edge-generation rate λ(r)(t) for

generative model X(r) for r = 1, . . . , R. In this section, we first provide an adaptive

threshold to determine if a time step is in the lifetime of a community. We then

model λ(r)(t) as a piecewise linear function computed by a time series segmentation

algorithm. The formation or dissolution of a cluster can be defined as a time segment

when λ(r)(t) increases or decreases.

56

4.4.4.1 Lifetime Threshold

We determine that a time step t belongs to the lifetime of a network community

if the nodes within the community are densely connected . We first provide measures

for the edge density in a network community.

Definition 7. An Average Edge-generation Rate for cluster C
(r)
m at time t is the

averge number of expected edges generated between two nodes in a cluster, denoted by

C
(r)
m , at time t:

λ(r)m (t) =
1

|C(r)
m |2

∑
i,j∈C(r)

m

airajrλ
(r)(t) (4.7)

Definition 8. An Average Edge-generation Rate for Network G at time t is the

average of expected number of edges generated between nodes in a dynamic network

G at time t:

λ(t) =
1

|V |2
R∑
r=1

∑
i,j∈V

airajrλ
(r)(t) (4.8)

Our model decides that a cluster C
(r)
m exists at time t if a node pair in C

(r)
m , on

average, generates more edges than a randomly selected node pair from the network.

The average edge-generation rate of node pairs in the network, λ(t) (4.8), serves as a

threshold to determine the lifetime of a cluster. We define the lifetime of C
(r)
m as:

L(r)
m = {t|λ(r)m (t) > λ(t)} (4.9)

where λ
(r)
m (t) is the edge-generation rate of C

(r)
m defined in (4.7), λ(t) can be easily

obtained by applying Sliding Window Filtering on the sequence [
∑|V |

i,j=1 Xijt

|V 2|] for t =

1, · · · , T .

4.4.4.2 Formation and Dissolution of a Community

Let C
(r)
m be the m-th community detected from the r-th generative model, we

define the formation of C
(r)
m as a time period when its edge-generation function, de-

noted by λ
(r)
m (t), is increasing. During the formation period, the expected number of

57

edges between nodes increases according to (4.1). Similarly, the dissolution of C
(r)
m is

defined as a time period when λ
(r)
m (t) decreases.

We learn λ
(r)
m (t) by constructing a piecewise linear function, denoted by fD(t),

from ~λr obtained from PARAFAC decomposition. A piecewise linear function with

D segments is defined as:

fD(t) =



b1t+ c1, t ∈ Q1,

b2t+ c2, t ∈ Q2,

...
...,

bDt+ cD, t ∈ QD.

(4.10)

where bi, ci are constants, Qi = [qi, qi+1] is an interval between time qi and qi+1 and

qi < qi+1 for i = 1, . . . , D. We can determine that a time interval Qi is a community

formation period if the constant bi > 0 for 1 ≤ i ≤ D.

Constructing a piecewise linear function from a time series is a popular problem

in time series study. Models for this problem requires setting hyper-parameters such

as number of segments and maximum approximation error to obtain the best result.

We design a bottom up algorithm for this problem without the requirement of setting

hyper-parameters. Details are provided in Appendix B.

4.5 Evaluation

In this section, we evaluate our temporal clustering (TC) method on both synthetic

and real-world datasets and compare it with baseline methods. We first use synthetic

data to study the effect of R (the number of generative models in TC) on the result of

PARAFAC decomposition. Then we compare the performance of TC to those of two

baseline methods, evolutionary clustering (EC) and tensor decomposition with binary

clustering (BC), in detecting network communities in both synthetic and real-world

datasets.

58

4.5.1 Clustering Error Caused by Low Rank Decomposition

Previous work with PARAFAC decomposition, such as [33, 60], uses a component

to represent a community. However, PARAFAC decomposition is NP-hard and cur-

rent algorithms only provide approximate solutions. This causes error in a generative

model X(r), especially when the number of components, R, is improperly chosen.

However, little is known on how that error affects clustering result.

We begin by applying our method to a synthetic dataset to understand how R,

the number of generative models causes errors in X(r) and affects the community

detection result. The synthetic dataset is a dynamic graph with 100 nodes. For the

first 50 time steps, nodes 1-10, 11-30, 31-60 and 61-100 form four disjoint cliques

(denoted by C∗1 − C∗4). Then for the next 50 steps, nodes 1-20, 21-40, 41-80 and

81-100 form another set of disjoint cliques (denoted C∗5 − C∗8). Xijk = 1 if node vi, vj

belongs to the same clique at time step k, otherwise Xijk = 0.

We apply our method on the dataset with R = 2, . . . , 8. Generative models

are learned from the components of the PARAFAC decompostion results. Figure 4.2

shows loading vectors Ar from selective decomposition rank R = 4, 8, for r = 1, . . . , R.

When R = 4 (Fig 4.2(a)), PARAFAC has a large approximation error in objective

(A.1). It causes a generative model to include multiple cliques. For example, loading

vector from component 4 plotted with “x” represents a mixture of C∗1 , C
∗
2 , C

∗
5 andC∗6 .

Applying BC in [33] results in a cluster consisting of nodes 1-30, which do not map

to any ground truth clique in the data. When R = 8, PARAFAC has no error as

is shown in Fig 4.2(b) where the value of Ar is normalized to [0, 1 − 0.04r] for clear

illustration, for r = 1, . . . , R. It is clear that a cluster generated from nodes with high

value in Ar can be mapped to a ground truth clique Cr, for r = 1, . . . , 8.

In summary, the effects of R on clustering on TD components are:

• If R is less than the number of ground truth clusters, a component from

PARAFAC may include multiple different clusters of nodes that are densely

59

(a) R=4 (b) R=8

Figure 4.2: Plot of loading vector Ar: (a) PARAFAC with small R generates loading
vectors Ar that fail to represent ground truth communities; (b) PARAFAC with
proper R provides loading vectors that represent ground truth communities.

connected. However, the elements air in Ar for the nodes vi that belong to

the union of those cluster, have similar values. In this case, those clusters are

difficult to distinguish and it is not suitable to use models (such as BC) that

consider a component as a single community.

• As R increases, a component tends to contain fewer clusters of nodes that are

densely connected and may map to ground truth communities.

4.5.2 Baseline and Metrics

4.5.2.1 Baseline methods

EC is a commonly used method to cluster nodes in dynamic networks. Researchers

have proposed multiple methods to improve its performance [95, 56, 4, 45, 101]. It

operates as follows: Let Xt = X(:,:,t) be a similarity matrix for graph Gt of N nodes.

EC cluster nodes based on the similarity matrix Rt = (1 − β)Xt + βXt−1 at time t

to obtain a set of clusters Ct = [C1,t, . . . , CN,t], where β ∈ [0, 1] and Ci,t is the index

of the cluster that node i belongs to at time t. Since Rt differs from the current

similarity matrix Xt, Ct is not necessarily the best set of clusters for Xt, a snapshot

60

quality function sq(Ct,Xt) is used to evaluate the clusters. EC includes a historical

cost function hc(Ct,Xt−1) to calculate the difference between the current and previous

clustering results. The objective is to minimize

T∑
t=1

sq(Ct,Xt)− c
T∑
t=2

hc(Ct,Xt−1)

where c is a scalar.

BC is another method to detect network structures in dynamic networks. Its

applications include anomaly network event detection [60], community detection in

networks from sensor data[33] and social networks [78]. It considers each component

X(r) as a community. It chooses a threshold for binary classification: For a node i,

if air from the loading vector Ar is larger than the threshold, then i belongs to that

community.

4.5.2.2 Metrics for Clustering and Lifetime Detection

In this subsection, we introduce multiple metrics for the performance in commu-

nity detection, community member detection and community lifetime detection in

dynamic networks. These metric includes precision, recall, F1 score, and precision-

recall (PR) curve.

Community detection metric For community detection, we map a detected

community to a ground truth community using the Jaccard index (refer to detailed

steps in Appendix C).

If a method detects P out of N ground truth communities, the community recall

is R = P
N

. Suppose M communities are identified as meaningful by the method, then

the community precision is P = P
M

.

Community member detection metric Suppose a detected community Ĉk is

mapped to ground truth community C∗n, the community member precision is P =

|Ĉk∩C∗n|
|Ĉk|

, the member recall is R = |Ĉk∩C∗n|
|C∗n|

.

61

Community lifetime detection metric For community lifetime detection, we

consider the finest time granularity. Let L∗n be a set of time steps that represents the

lifetime of a ground truth community C∗n and L̂k (computed from (4.9)) is the lifetime

of a detected community mapped to C∗n. the lifetime precision of C∗n is P = |L̂k∩L∗n|
|L̂k|

,

the lifetime recall is R = |L̂k∩L∗n|
|L∗n|

F1 score If some methods have high precision but low recall in their results

while other methods have high recall but low precision, the F1 score is used in this

situation to give an overall evaluation. It is defined as the harmonic mean of R and

P : F1 = 2PR
P+R .

PR curve A PR curve is usually applied when the compared methods have similar

recall values. We mainly use PR curve to evaluate community member detection. A

PR curve requires a clustering method to return a ranked list of clusters. Suppose the

ranked list has K clusters, {Ĉi}ki=1 are top k clusters in the list and are mapped to

k out of N ground truth clusters {C∗ni
}ki=1, 1 ≤ ni ≤ N . For k = 1, · · · , K, we define

precision of the top k clusters as Pk =
∑k

i=1|Ĉi∩C∗ni
|∑k

i=1|Ĉi|
and recall as Rk =

∑k
i=1|Ĉi∩C∗ni

|∑N
j=1|C∗j |

.

We generate a PR curve by plotting (Pk, Rk) in the precision-recall space. RK is

defined as the community member recall for a dynamic network.

Our method can return a ranked list of communities using SO score. To generate

a ranked list from BC, let Ar = [a1r, . . . , a|V |r] denote the loading vector in the rth

component X(r). BC classifies a node i as a member in a community of interest, Ĉ
(r)
1 ,

if air is larger than a threshold. Otherwise i is put in another community Ĉ
(r)
2 that

can be ignored. Components X(r) are placed in descending order of their Frobenius

norm, for r = 1, . . . , R. Ĉ
(r)
1 is believed to have stronger structures than Ĉ

(r′)
1 if r < r′

[33]. A ranked list from BC can be generated as: [Ĉ
(1)
1 , . . . , Ĉ

(R)
1 , Ĉ

(1)
2 , . . . , Ĉ

(R)
2]

62

4.5.3 Evaluation Results

We use randomly generated dynamic networks with multiple clusters to show that

TC is more robust to changes in R, sparsity of network and time granularities when

compared to baselines such as EC and BC. We also test our method in a mobility

network generated from the Lakehurst mobility trace dataset from [20]. Experimental

results show that our SO score improve precision of a method given the same recall

when detecting community members. Finally, we applied TC to a dynamic network

generated from Enron email dataset[82] and discover differences in email-exchange

behavior between communities.

4.5.3.1 Synthetic networks

We generate 5040 synthetic dynamic networks with sizes ranging from 100 to 500,

and with number of snapshots T ∈ [1000, 4000]. Clusters in a network may have

common nodes and their sizes vary from 8 to 80. The number of clusters in a network

is between 10 and 40.

For each cluster, we split a time interval [1, T] into multiple segments and choose a

fraction of those segments as the lifetime of the cluster. During each lifetime segment,

we set the edge-generation rate as either a constant or a linear function, with its value

varying from 0.0015 to 1. We set the lifetime of a cluster to be at least 0.3T time

steps such that there are enough edges generated from the cluster for clustering. We

also set up periodic lifetimes for some clusters. The periods range from 20 time steps

to T
2
.

We also add noise to each network: each node pair in a network generates an

edge with rate e during a period of one time step, where e is sampled uniformly from

[0, 0.01].

To examine the effect of time granularity on the performance of TC, we represent

those dynamic networks under different time granularities. In particular, we consider

63

networks where w consecutive snapshots are aggregated together. In such case, an

original network consisting of T snapshots is transformed into one consisting of T/w

snapshots. At the smallest granularity, let Xijt be the weight or number of edges

between node i, and j at time step t. At time granularity w, the weight of an edge

between node i and j is defined as:

Xijt′(w) =
t′w∑

t=(t′−1)w

Xijt

.

We define the density of a community Ck at t as dk(t) =
2
∑

i,j∈Ck
(airajrλ

(r)(t))

|Ck|2
,

and use dk to denote the average density throughout lifetime. Average community

densities in our synthetic data vary from 0.0008 to 0.9341. We split networks into

10 groups according to their average community density. Networks in the i-th group

have average community density within [(i− 1)× 0.1, i× 0.1].

Experiment Setup. Let K denote the number of ground truth clusters in a

synthetic network, we set the rank R = 0.3K, 0.4K, . . . ,K for BC and our temporal

clustering method. For time granularity, we set w = 2q for q = 0, . . . , 7.

We run EC algorithm using publicly available software [101], and use the tensor

toolbox [9] for PARAFAC decompositon on a cluster of 32 Intel Xeon E5-2670@2.60GHz

CPUs with 256Gb RAM.

Community Detection. We first use F1 score to evaluate the performance of

methods that retrieve communities in networks given different granularity w. Figure

4.3 shows the change in F1 score of clusters as a function of time granularity. In Figure

4.3(a), the three methods identify clusters in networks whose average community

densities falls in interval [0.3, 0.4]. The F1 scores for both BC and our temporal

lustering method (TC) change little with the increase of granularity. EC retrieves

no ground truth clusters when the granularity is small, but begin to identify clusters

as granularity increases. BC and TC perform better when the rank R is set to K.

64

Granularity w

10
0

10
1

10
2

10
3

F
-1

 M
e

a
s
u

re

0

0.2

0.4

0.6

0.8

1

TC.R1

TC.R2

TC.R3

BC.R1

BC.R2

BC.R3

EC

(a) Average Community Density in (0.3, 0.4)

Granularity w

10
0

10
1

10
2

10
3

F
-1

 M
e

a
s
u

re

0.4

0.6

0.8

1

TC.R1

TC.R2

TC.R3

BC.R1

BC.R2

BC.R3

EC

(b) Average Community Density in (0.7, 0.8)

Figure 4.3: F1 Score for Community Detection. K is the number of ground truth
communities in a network, BC and TC apply PARAFAC with rank R1 = K, R2 =
0.8K, and R3 = 0.6K. Both BC and TC are robust to the changes in w. TC is more
robust to the change in R when compared to BC.

As R decreases to 0.6K and 0.8K, the F1 scores of both methods drop significantly.

BC is more sensitive to change in R. Figure 4.3(b) illustrates the result on networks

whose average community density ranges from 0.7 to 0.8. Compared to Figure 4.3(a),

the performances of BC and TC are similar, but the F1 score for EC improves as

community densities increase. Figure 4.3 suggests that EC is sensitive to the change

in granularity and the community density when detecting communities in dynamic

network, while both BC and TC are more robust than EC. TC performance similar

to that of BC when R is chosen properly, and is more robust in performance than BC

when R decreases.

Community Member Detection. Figure 4.4 illustrates the F1 scores for com-

munity member detection by EC, BC and TC. TC and BC both have F1 scores larger

than that of EC. TC has better F1 score than BC and is more robust to the changes

in R. In Figure 4.4(a), F1 scores are computed for communities with community den-

sity dk ∈ [0.3, 0.4] across all synthetic networks. Figure 4.4(b) shows the results for

communities with densities within [0.9, 1]. EC performs much better on communities

65

Granularity w

10
0

10
1

10
2

10
3

F
-1

 M
e

a
s
u

re

0

0.2

0.4

0.6

0.8

1

TC.R1

TC.R2

TC.R3

BC.R1

BC.R2

BC.R3

EC

(a) Average Community Density in (0.7, 0.8)

Granularity w

10
0

10
1

10
2

10
3

F
-1

 M
e

a
s
u

re

0.2

0.4

0.6

0.8

1

TC.R1

TC.R2

TC.R3

BC.R1

BC.R2

BC.R3

EC

(b) Average Community Density in (0.9, 1)

Figure 4.4: F1 Measure for Community Member Identification. BC and TC apply
PARAFAC with rank R1 = K, R2 = 0.8K, and R3 = 0.6K

with high densities than at low densities. Since we allow clusters to share common

nodes in the network, EC only retrieves disjoint clusters, its F1 score is lower than

that of TC and BC.

Lifetime Detection

Figure 4.5 shows the F1 score of lifetime detection for clusters with densities within

[0.7, 0.8] and [0.9, 1]. The F1 score of both BC and TC decreases as granularity

increases from 1 to about 10, suggesting that lifetime detection by TC and BC is

sensitive to changes in time granularity. When granularity continues to increase,

the performances of all methods remain stable. Lifetime detection by EC benefits

from the increase in time granularity, but accuracy stops improving when granularity

becomes large.

In order to understand why time granularity affects the performance in community

lifetime detection, we compare clusters with high lifetime detection accuracies to

those with low accuracies at coarse granularities. Figure 4.6 shows the detection

of periodicity in lifetime for two ground truth communities C∗1 and C∗2 from the

same dynamic network under granularities w = 1 and w = 128. Both communities

66

Granularity w

10
0

10
1

10
2

10
3

F
-1

 M
e

a
s
u

re

0

0.2

0.4

0.6

0.8

1

TC.R1

TC.R2

TC.R3

BC.R1

BC.R2

BC.R3

EC

(a) Average Community Density in (0.7, 0.8)

Granularity w

10
0

10
1

10
2

10
3

F
-1

 M
e

a
s
u

re

0

0.2

0.4

0.6

0.8

1

TC.R1

TC.R2

TC.R3

BC.R1

BC.R2

BC.R3

EC

(b) Average Community Density in (0.9, 1)

Figure 4.5: F1 Measure for Lifetime Detection. BC and TC apply PARAFAC with
rank R1 = K, R2 = 0.8K, and R3 = 0.6K

have the same edge-generation rates. C∗1 forms and dissolves frequently throughout

time (Figure 4.6(a)). The ground truth edge-generation rate is denoted as λ∗1(1, t).

The time series obtained from TC at granularity w is λ1,t(w), for w = 1, 128. At

granularity w, we reconstruct the edge-generation rate as λ1(w, t) using λ1,t(w). λ(t)

in Eq(4.8) is denoted as λ(w, t). The lifetime of C∗1 , denoted as L1(w), is obtained

with Eq(4.9). Note that the period of the lifetime of C∗1 is small and we can maintain

the periodicity at w = 1. At w = 128, however, lifetime L1(128) is not accurate

and the periodicity is lost. Figure 4.6(b) illustrates the lifetime of community C∗2 ,

which forms and dissolves less frequently (with period larger than that of C∗1). The

periodicity at both granularities w = 1 and 128 can be maintained.

4.5.3.2 Lakehurst Data

The Lakehurst dataset from the US Army Research Lab contains a three hour

(10800 seconds) trace of 70 vehicles (ground and airborne) [20]. 64 vehicles are split

into 9 platoons and the other six move separately. The platoons moves from one

checkpoint to another. All vehicles start from the same origin and reach the same

destination at the end. There are two paths from the start location to the destination

67

×10
-3

0

2

4
λ

t,1

(4)
(1)

λ
t,1

(4)
(128)

λ
*

1
(1,t)

E
d

g
e

-g
e

n
e

ra
ti
n

g
 R

a
te

0

0.8

1.6 λ
(4)

1
(1,t)

λ(1,t)

L
(4)

1
(1)

Time Step
0 500 1000 1500 2000 2500 3000

0

0.8

1.6 λ
(4)

1
(128,t)

λ(128,t)

L
(4)

1
(128)

(a) Lifetime Detection of C∗
1 at w = 1, 128

×10
-3

0

2

4
λ

t,1

(6)
(1)

λ
t,1

(6)
(128)

λ
*

3
(1,t)

E
d
g
e
-g

e
n
e
ra

ti
n
g
 R

a
te

0

0.8

1.6 λ
(6)

1
(1,t)

λ(1,t)

L
(6)

1
(1)

Time Step
0 500 1000 1500 2000 2500 3000

0

0.8

1.6 λ
(6)

1
(128,t)

λ(128,t)

L
(6)

1
(128)

(b) Lifetime Detection of C∗
2 at w = 1, 128

Figure 4.6: Periodic Lifetime Detection for Two Clusters C∗1 and C∗2 at Granularity
w = 1, 128. (a) Periodic lifetime with short period loses periodicsity at large time
granularity w = 128. (b) Lifetime with long period maintains its periodicity at
w = 128.

and each path has five checkpoints. A platoon chooses one path and stops for a while

at each checkpoint until it reaches the destination. The other six vehicles sometimes

intersect with one of those platoons.

The dataset contains the location of each vehicle at every second. Vehicles in a

platoon move together and two vehicles in the same platoon are within 150 meters

68

of each other for 99% of the time. We create a dynamic graph by adding an edge

between two vehicles if they are within 150 meters of each other at each time step.

In each snapshot of the graph, nodes in the same platoon tend to have an edge. The

average density of the adjacency matrix of a snapshot is 0.235 and the maximum is

0.688. The network structure changes slowly, sometimes it remains unchanged for 3

minutes. We construct a 70 × 70 × 10800 tensor. Some platoons meet one another

and periodically form a larger community for a period of time. There are 10 such

clusters. As a result, there are 19 ground truth clusters appearing in the dynamic

network. The size of clusters ranges from 5 to 25.

Since platoons have intersecting paths and sometimes forms larger clusters only

for seconds, we are interested in the number of ground truth clusters that a method

obtains. We use community recall and community member recall to evaluate the

performance of EC, BC and TC. We applied PARAFAC decomposition with R =

10, 15, 20, 25 and 30. The recall of ground truth clusters and nodes are illustrated in

Table 4.1.

The snapshots in this dataset are dense. EC detects clusters and community

members even at the smallest time granularity. However, it only retrieves the nine

ground truth platoons and fails to obtain the larger clusters formed by multiple

platoons.

Table 4.1: Clusters Recall and Member Recall for Lakehurst Data

Temporal Clustering PARAFAC w/ BC EC
R 10 15 20 25 30 10 15 20 25 30 N/A

Cluster Recall 0.368 0.421 0.579 0.895 1.0 0.319 0.421 0.579 0.895 1.0 0.474
Member Recall 0.430 0.541 0.841 0.875 0.904 0.403 0.532 0.841 0.862 0.904 0.275

Since both TC and PARAFAC with BC have similar community recall and mem-

ber recall, we use PR curves to compare their performance. We also want to test how

SO score affects performances. Fig 4.7 illustrates the PR curves generated from the

results of TC with SO ranking and BC with rank R = 15, 30. Both sub-figures show

69

that SO ranking in TC has better precision than BC when the recall is less than 0.5,

suggesting the ordered list from TC is more accurate than BC. By applying SO score

with BC, the performance of BC also improves significantly. The reason is that in

a component with larger norm, some nodes i do not belong to any community, but

have positive values air larger than the threshold in BC. BC simply considers that

a component only contains one meaningful community and mistakenly classifies i as

a community member. Our method separates nodes into multiple communities and

gives low rankings to communities with small SO scores.

(a) R = 15 (b) R = 30

Figure 4.7: PR Curves for BC and SO Ranking Performance. SO score improves the
performance of BC.

4.5.4 Application to Enron Email Data

We apply our method to a dynamic network constructed from the Enron email

dataset by Priebe et al. [82]. The Enron dataset contains 184 unique email addresses

and 125,409 messages dated from November 1998 to June 2002. We represents the

data as a time varying undirected graph with time granularity of one second, resulting

in a total of 113, 733, 036 time steps. This produces a tensor that exceeds the capacity

of our computational resource. Hence we construct a 184× 184× 31, 592 tensor with

a time granularity of one hour w = 3600. We denote the tensor as X , where Xijt is

70

the number of emails exchanged between person i and person j at the t-th hour. The

average density of a matrix of a snapshot is 3.22× 10−5 and the maximum density is

0.0019. The edge-generation rate here corresponds to the email-exchanging rate.

We apply PARAFAC with rank R = 60 to X and generate a ranked list of 120

clusters using SO score. There is a large gap between the SO score of the 60-th

community and 61-th cluster; hence we apply the elbow rule to decide that the first

60 clusters are worth investigating.

Since the ground truth is not known for the Enron dataset, we refer to results

stated in [29, 97] to validate our results. We also check if our method provides new

insights into behaviors produced by email exchanges.

One interesting discovery from our method is the difference in the email exchange

behavior of different communities. Figure 4.8 shows the average weekly email ex-

change rate of two groups. The first community in our ranked list consists of two

CEOs, three presidents and one employee. These people exchange emails even on

weekends. According to Diesner et. al [29], people in this community are “key play-

ers” with respect to “centrality measure”. On the other hand, the fifth community

detected in our model consists of a president and other employees. They only com-

municate during working hours on weekdays.

We discover that some people belong to several different communities. For exam-

ple, Richard Shapiro, the vice president of regulatory affair, and Jeff Dasovich appear

together in different groups. All identified communities exhibit weekly periodic life-

time and their edge-generation rates have similar patterns every weekday. Some

communities have lifetimes across a three-year period (e.g., a community including

presidents (Kevin Presto, Richard Shapiro, Shelley Corman) and several employees

(Jeff Dasovich, Kay Mann, Susan Scott)), while some last for less than a year (e.g.,

a community including a manager(Philip Allen) and employees(Daron Giron, phillip

Love, and Eric Bass)).

71

Mon Tue Wed Thu Fri Sat Sun

×10
-3

0

1

2

3

Threshold
Email-Generating Rate

(a) Average Weekly Email exchange Rate of Community 1

Mon Tue Wed Thu Fri Sat Sun

×10
-3

0

0.5

1

1.5

Threshold
Email-Generating Rate

(b) Average Weekly Email exchange Rate of Community 5

Figure 4.8: Different Email Exchanging Behavior between Identified Clusters.(a)
Email exchange rate of a community consisting of two CEOs (David Delainey and
John Lavorato), three vice presidents(James Steffs, Richard Sanders and Richard
Shapiro) and an Employee (Jeff Dasovich) (b) Email exchange rate of a commu-
nity consisting of a president (Louise Kitchen), director(Jonathon Mckay), Employees
(Cara, Kate) and traders (Diana, Ryan). The first community exchanges emails even
on weekends while the second only exchange emails on weekdays. Time steps belong
to a community lifetime when email-generatig rate is larger than theshold.

4.6 Conclusion

We proposed a temporal clustering method based on a network generative model

to detect clusters and obtain their temporal information in a sparse dynamic network.

PARAFAC decomposition is applied to learn our model and K-mean algorithm with

silhouette criterion is used to obtain clusters. We propose a time series segmentation

algorithm to analyze the change in clusters and provide a way to obtain community

lifetimes. The experiments show that our method has advantages over snapshot-

clustering based methods such as evolutionary clustering and other PARAFAC de-

composition methods when snapshots are too sparse to provide community structures

or lifetime information.

Several discoveries in our experiments and analysis could be helpful to the research

on community detection in dynamic networks:

72

• A snapshot-based clustering model uses local information from limited number

of network snapshots. According to experiments on the Lakehurst dataset, it

can be applied only if a snapshot contains enough edges to construct a similarity

matrix that is consistent with the ground truth information. Models with latent

structures takes advantage of global information of all snapshots and usually

obtain better clustering results.

• Processing data at coarse scale of time granularity helps snapshot-based clus-

tering, but is relatively less effective for models like PARAFAC decomposition

that use global information. However, the temporal information such as the

periodicity of a community could be lost at large granularity.

• When determining the lifespan of a community with its average edge-generation

rate, it is better to use a possibly different threshold at each time step.

73

CHAPTER 5

CHARACTERIZING NETWORKS WITH NETWORK
MOTIFS

5.1 Introduction

Networks, where interacting elements are denoted as nodes and interactions are

denoted as edges, are fundamental to the study of complex systems [5, 69], including

social, communication, biological, and economic networks. Analysis of such networks

includes network classification, community detection and so on. There exists a rich lit-

erature applying machine learning techniques to solve these problems, which requires

the network to be represented as a feature vector. However, representing a network

is usually difficult to do due to the high dimensionality and network structure.

Various ways of learning feature representations of nodes in networks have been

recently proposed to exploit their relationships to vector representations [92, 36, 84, 3,

66]. However, most have been applied to node and edge predictions and fail to capture

network topological structures. It is unclear if network classification using such node

embedding methods can be improved since network structure also plays a significant

role. Furthermore, typical analyses usually model these systems as static undirected

graphs when describing relations between nodes. However, in many applications,

relations are directional and evolve over time [39, 48, 79]. Modeling these directed and

temporal properties is of additional interest as it can provide a richer characterization

of relations between nodes in the network.

In this chapter, we address the aforementioned issues by proposing a novel and

flexible network embedding methodology, gl2vec, for network classification in both

74

static and temporal directed networks. gl2vec constructs vectors for feature repre-

sentations by comparing static or temporal network graphlet statistics in a network

to random graphs generated from different null models. Graphlets are small non-

isomorphic induced subgraphs representing connected patterns in a network and their

statistics measure network structures. Null models generate random graphs with spe-

cific structural features to decide the significance of graphlets. We show that subgraph

ratio profiles (SRP), measures of the ratios for occurrences of graphlets in a network

to those in random graphs, can be used as a fixed length feature representation to

classify and compare dynamic networks of varying sizes and periods of time with

high accuracy. We apply various well-known machine learning models along with our

graph feature representation for network classifications, and make a comparison with

state-of-the-art methods, such as different graph kernels [92], node2vec [36], struc2vec

[84], sub2vec [3], graph2vec [66].

In particular, we consider two classification problems. First, we study how static

and temporal network graphlets can be used to classify network domain. A network

domain [79] (or superfamily [62]) represents the type of relation or interaction between

nodes that a network describes, e.g., email networks, social networks such as Google+

or Twitter, question answering networks, or even networks that represent switching

between mobile apps. Graphs or subgraphs from the same network domain tend

to exhibit similar structures [62]. Identifying their network domains further allows

us to study interactions between nodes, and predict unobserved network structures.

Second, we consider the problem of identifying a particular (sub)network within the

same network domain from its static or temporal topological structure. For example,

we predict community ID for (sub)graphs within a network, such as identifying a de-

partment based on the temporal email-exchange pattern or detecting a mobile phone

user given his app switching behaviors represented as static or temporal networks.

75

Given a network topological structure, identifying the network domain or a net-

work community ID in a network can be viewed as a (sub)graph classification problem.

Many existing methods use different graph embedding techniques to represent graphs

in a vector space and apply machine learning methods for classification. Yet, little

work has applied network graphlets to real-world application in directed (temporal)

network classifications. In this chapter, we find that there exists a strong relation

between a network domain, graphlet distribution, and subgraph ratio profile (SRP).

Here SRP is a measure used to determine if a graphlet is a significant pattern in a

network by comparing graphlet counts between an empirical network and random

graphs.

Highlights of our contributions include:

1. We propose gl2vec, a novel, flexible and scalable feature representation method

for network classification in both static and temporal directed networks.

2. We empirically evaluate gl2vec against state-of-the-art methods on tasks such

as network domain classification and subgraph identification in several real-

world static and temporal datasets. We find that gl2vec is competitive with

state-of-the-art methods in these two tasks.

3. We further show that when gl2vec is concatenated with state-of-the-art meth-

ods, it significantly improve classification accuracy in real-world applications

from several domains. This indicates that gl2vec provides important features

not captured by state-of-the-art methods.

4. We numerically characterize the impact of different null models on the perfor-

mance of network classification in static directed networks and results show that

all models achieve equally good performance.

The rest of the chapter is organized as follows. First, we present explicit formu-

lation of the problem in Section 5.2. From this, we present gl2vec in Section 5.3 and

76

evaluate it in Section 5.4, followed by a discussion on related work in Section 5.5. We

conclude in Section 5.6.

5.2 Problem Formulation

In this chapter, we represent a temporal directed network G(V,E, T) as a temporal

edge set (refer to Definition 2 in Chapter 2). To strictly order the temporal directed

edges, denoted by {(ui, vi, ti)}|T |i=1, we assume timestamps ti are unique and ti−1 <

ti, where ui, vi are nodes and ti ∈ T is a timestamp . This assumption is easily

extended to cases where temporal directed edges are not unique at the cost of complex

notation.

5.2.1 Problem Formulation

Next, we formulate our problem, which applies to the tasks of network domain

classification and subgraph identification.

Denote {Gi(Vi, Ei, Li)}Ni=1 as (sub)graphs in different static or temporal networks,

where Vi is a set of nodes and Ei is a set of edges in Gi. If Gi is a temporal network,

Ei is then a temporal edge with a timestamp as defined in Definition 2, otherwise,

Ei is a directed edge. We assume that a graph belongs to one of D classes of graphs,

where D < N . We associate each graph Gi with a class label Li ∈ {1, · · · , D}.

Let f : {Gi} → Rm be a mapping function (also called graph embedding function)

from Gi to a 1 × m feature representation vector defined using SRPs of static or

temporal graphlets. We formally define SRP in Section 5.3.

Let g : Rm → P ∈ RD be a classifier that maps a feature representation to a

categorical distribution P for D labels. We represent probability distribution of Gi’s

label as Pi = [pi,1, . . . , pi,D] = g(f(Gi)).

Our goal is to solve this classification problem by designing an embedding function

f and selecting a machine learning model g that minimizes the sum of cross entropy

77

[25] for all graphs

arg min
g,f

(
−
∑
i

D∑
j=1

1Li=j log(pi,j)

)
= arg min

g,f

(
−
∑
i

log(pi,Li
)

)
. (5.1)

We obtain g by training machine learning models. In the next section, we discuss how

to design an embedding function f for static and temporal networks using graphlets.

5.3 Network Embedding Using Graphlets

Network embedding has received considerable attention due to its effect on the

performance of network classification, see Section 5.5. However, previous works have

primarily focused on undirected static networks [41, 37, 3, 65, 66]. Applying these

techniques directly to directed static networks may lose network structure information

while applying them to temporal networks loses temporal information and both may

result in poor accuracy. Therefore, we introduce a new directed network embedding

technique based on static (temporal) network graphlets.

Graph embeddings need to be independent of network size and if temporal, the

time period the network covers. While previous works have shown that the graphlet

counts and the probability distribution of graphlets are strongly related to network

domains [79], graphlet counts may differ across networks. Instead, we use subgraph

ratio profiles (SRPs) for network embedding, which are computed using graphlet

counts from both the network in question and random graphs produced using null

models (refer to Section 2.2 in Chapter 2).

For static networks, we consider three different null models, NE (random graphs

with the same number of nodes and edges), MAN (random graphs with the same

number of reciprocal edges) and BDS (random graphs with the same in/out degree

sequence). NE has been widely used in previous studies since it is easy to gener-

ate random graphs [50] from this model. The node degree distribution is accurately

78

approximated by a Poisson distribution for large graphs [73]. Thus network features

and graphlet statistics can be easily modeled. Recent studies [7, 73] show that node

degrees in a wide range of real-world networks do not necessarily follow a Poisson

distribution and suggested a null model with controlled node degree sequence for

network study. We extend this to BDS for our study. One study [40] discovered

that reciprocity between nodes in different social networks tends to reach maximal

reciprocity constraint given in/out degree sequence. Since reciprocities can be com-

puted by the numbers of mutual, asymmetric and null edges, the effect of graphlets

statistics in MAN on network classification is worth investigating. We numerically

characterize the impact of null models on the performance of network classification

in Section 5.4.

For temporal networks, since there is no equivalent null model, we consider en-

sembles of randomized time-shuffled data as a temporal null model [61]. To be more

specific, we randomly permute the timestamps on the edges while keep the node pairs

fixed. This model breaks the temporal dependences between edges but preserves the

network structure.

Definition 9. Subgraph ratio profile (SRP) [62] for a graphlet i is defined as

SRPi =
∆i√∑

∆2
i

, (5.2)

where ∆i is a normalization term that measures the difference between the count of

graphlet i observed in an empirical network (denoted as Nobi) and the average count

in random networks in a null model (denoted as 〈Nrandi〉):

∆i =
Nobi − 〈Nrandi〉

Nobi + 〈Nrandi〉+ ε
, (5.3)

where ε (usually set to four) is an error term to make sure that ∆i is not too large

when a graphlet i rarely appears in both the empirical and random graphs.

79

In statistics, SRPs are used to identify significant graphlets as network motifs. A

large positive value of an SRP indicates that a graphlet occurs much more frequently

in a network than would be expected by random chance. Since an SRP for a graphlet

is a normalized term, it can be used to compare different size networks. The net-

work embedding is a vector containing 16 SRPs for static triads. For null models of

temporal directed networks, we further randomize the order of temporal edges. The

embedding contains the SRPs for 36 temporal graphlets illustrated in Figure 2.3.

5.3.1 Algorithm

Our algorithm gl2vec works as follows: given the topological structure of a directed

static or temporal network, we first compute its graphlet counts. For static networks,

we applied JMotif [96] to compute the triad counts for networks and random graphs in

different null models. We refer interested readers to [96] for more details. For temporal

networks, we use SNAP package [79] to compute 3-edge, δ−temporal graphlet counts.

Then we compute the average graphlet count for different null models. For static

networks, there are two approaches: simulation based and probability based. The

simulation based approach generates a large set of random graphs with the same

structure as the given network and graphlet counts are computed for each random

graph. The probability based approach computes the probability of occurance for

each type of graphlet given the in/out degree of the nodes involved. We apply the

probability based approach to NE and MAN null models due to their fast com-

putation speed and high accuracy. We apply the simulation based approach to the

BDS null model because it has lower computational complexity. It also avoids ap-

proximation error that occurs when the network size is small (less than 1000 nodes).

For temporal networks, we generate random graphs by shuffling timestamps on edges

and then compute their average temporal graphlet counts. Finally, we compute SRPs

80

for corresponding graphlets using (5.2). The complete pseudocode is presented in

Algorithm 1.

Algorithm 1: gl2vec

Data: Static or temporal graph edges list E,
Null model M

Result: Graph feature vector ~f
1 ~Nob = getGraphletCounts(E) ;

2 ~Nrand = getAvgGraphletCountsInNullModel(E,M)

3 for i = 1 : | ~Nobs| do

4 ~fi = getSRP(~Nobsi ,
~Nrandi)

5 return ~f

5.4 Experiments

In this section, we conduct network classification test on several real-world static

and temporal directed networks that contain only topological structure information.

Experiments focus on two tasks: network domain classification and subgraph iden-

tification. In network domain classification, we use gl2vec to predict the most likely

relation and interaction between nodes, e.g., email communication, question answer-

ing or friendship in social networks. In subgraph identification, we predict the com-

munity ID for (sub)graphs within the same network. Examples include identifying a

department based on email-exchange patterns or a mobile phone user based on his

app switching behavior represented as static or temporal networks.

We compare gl2vec with state-of-the-art methods on the aforementioned tasks.

We also characterize the impact of different null models on the performance of gl2vec

in network classification. Highlights of our experimental findings include:

1. gl2vec, constructing vectors for feature representations using static or temporal

graphlet SRPs, is competitive with state-of-the-art methods in network domain

classification.

81

2. For static directed networks, we find that all three null models (NE , MAN

and NE) achieves similar performance in network classification in most cases.

Compared to other two null models, BDS and MAN , NE has the least control

on the network structure and requires less time complexity.

3. Adding graphlet features from gl2vec to state-of-the-art-methods significantly

improves their performance. This suggests that graphlet patterns from SRPs

provide substantial information about network domains that do not exist in

state-of-the-art-methods.

4. Both static and temporal graphlets play important roles in temporal network

classification.

5.4.1 Datasets

We use a wide range of real-world network datasets, which only contain topological

structure. Attributes of nodes and edges are unknown, except for labels for classifica-

tion and timestamps of edges in temporal networks. These datasets challenge some

current state-of-the-art methods that require attributes of nodes or edges.

5.4.1.1 Static directed network datasets

We use static directed networks in different domain and perform network classifi-

cation using their topological structures in our experiments.

SNAP datasets [55]: For social Networks, Twitter dataset contains 1000 ego-

networks with 81, 306 nodes and 1, 768, 149 edges. Google+ dataset contains 133

ego-networks with 106, 674 nodes and 13, 673, 453 edges. A directed edge from u to

v represents that user u follows v. The size of ego-networks range from 10 to 4, 964

nodes.

Askubuntu and Mathoverflow datasets are question-answering networks that store

interactions between users. The interactions include posting answers to question

82

(a2q), comments to questions (c2q) and comments to answers (c2a). Both datasets

contain four directed networks: an a2q network, a c2q network, a c2a network and a

network containing all interactions. Askubuntu contains 159, 316 nodes and 596, 933

static edges. Mathoverflow contains 24, 818 nodes and 239, 978 static edges.

p2p-Gnutella dataset contains 9 directed peer-to-peer file sharing networks with

6, 301 to 62, 586 nodes and 20, 777 to 147, 892 edges. Nodes represent hosts and edges

represent topological connections between hosts.

Cit-HepPh and Cit-HepTh are two physics paper citation networks. The former

contains 34, 546 nodes and 421, 578 edges, while the later contains 27, 770 nodes and

352, 807 edges.

Slashdot is a friendship network with 77, 360 nodes and 905, 468 edges, where users

tag each other as friends. WikiVote dataset contains votes from users in Wikipedia

to promote other users to become administrators. There are a total of 7, 115 nodes

and 103, 689 edges. Bitcoin OTC trust weighted signed network contains ratings from

Bitcoin users to other users and contains 5881 nodes and 35, 592 edges.

Other Network Types: Epinion social network [85] is a who-trust-whom network

from a consumer review site Epinions.com containing 75, 879 nodes and 508, 837 edges.

A directed edge represents a user “trusting” another user. Advice dataset contains

advice-seeking between employees in four different companies [54, 49, 22]. Network

sizes ranges from 30 to 60 with edge number ranging from 200 to 500. Co-sponsorship

networks [31] contains US Senate co-sponsorship patterns during the 1995, 2000, 2005,

and 2010 congressional terms. Nodes represent senators and a directed edge from u

to v represents that senator u cosponsored at least one piece of legislation for which

senator v was the primary sponsor.

83

5.4.1.2 Temporal directed network datasets

We also collect temporal directed networks to test feature representation using

temporal graphlets.

Email Networks: EmailEU [105] is a directed temporal network constructed from

email exchanges in a large European research institution over a 803-day period. It

contains 986 email addresses as nodes and 332, 334 emails as edges with timestamps.

There are 42 ground truth departments in the dataset and we choose 26 departments

containing more than ten users. EmailTraffic [77] is a temporal directed network

storing email interactions of 819 staff in 23 different departments in BBN for about 7

months. Edges with integer timestamps represent emails sent out at a certain time.

We apply 10-fold cross validation to construct temporal subgraphs: the 803-day

period is split into 10 consecutive time periods, each containing about 80 days. We

construct temporal subgraphs in one 80-day period as a test set. Each subgraph last-

ing 12 weeks for departments in EmailEU networks. This insures that each subgraph

is connected when represented as to a static graph. Temporal subgraphs constructed

from the other time periods are used as training sets. We create these graphs at the

beginning of every four weeks to avoid too much overlap of edges between graphs.

Each department has up to 28 subgraphs as a result. For departments in EmailTraf-

fic, we create subgraphs at the beginning of every week and each subgraph covers

four weeks.

SwitchApp: (from the Tymer project [76]) contains application switching data for

53 Android users over a 42-day period. We construct a directed temporal network

for each user on each day, where a directed edge (denoted as euv) with an integer

timestamp t represents a user switching from an app u to another v at time t.

84

5.4.2 Experiment Setup

We compute SRPs for static and temporal graphlets for corresponding static and

temporal networks in our datasets. In order to get the best classification results, we

consider three widely used machine learning models that provide good performance

using small amounts of training data in multi-class classification: XGBoosting [19],

SVM [21], random forest [93]. XGBoosting is usually superior to other classifiers

when the dataset is of medium size. SVM is suitable for a small amount of training

data. Random forest not only works well for imbalanced data, but also performs

feature selection during training which can help us investigate the usefulness of our

feature representation, especially when used in conjunction with other approaches by

concatenating the feature vectors.

We use a grid search method to search the best hyper-parameters for these models.

For XGBoosting algorithm, the learning rate ranges from 0.001 to 1, maximal tree

depth ranges from 4 to 32, minimal child weight is 1 and the subsample ratio of

training instances ranges from 0.4 to 1. The regularization weight in SVM ranges

from 1 to 8. In random forest, the number of trees ranges from 50 to 400 and the

minimal number of samples required to split a tree node is 2 to 10. 10-fold cross-

validation is adopted to split the data for select the best parameters. All experiments

are conducted using a cluster with 32 Xeon CPUs, 256Gb RAM and one Tesla K40

GPU.

We compare the network classification accuracy of gl2vec to state-of-the-art meth-

ods, including graphlet and Weisfeiler-Lehman kernels [92], and recently developed

node and graph embedding methods node2vec [36], struc2vec [84], sub2vec [3], graph2vec

[66].

For node embedding methods such as node2vec and struc2vec, we apply the sum-

based approach [24] to aggregate node embedding vectors to construct a graph em-

bedding. We refer the interested reader to [38] for more detail. The length of the

85

network embedding (ranging from 50 to 500) is decided using grid search and 10-

fold cross-validation. We modify state-of-the-art methods to apply them to directed

graphs: we run a random walk on directed graphs in sub2vec instead of undirected

graphs. Some state-of-the-art methods also require node attributes for network em-

beddings and node degree are suggested for computing undirected graph embedding

[38]. For directed network in our case, we use NetworkX [27] to compute the in/out

degree and centralities such as betweenness, closeness and in/out degree centrality

for each node.

5.4.3 Network Domain Classification

In network domain classification, we are given the topological structure of a sub-

graph in a network. Our goal is to predict the type of interaction that an edge

represents, e.g. email exchange or question answering.

Among all datasets introduced in Section 5.4.1, EmailEU, EmailTraffic and SwitchApp

datasets have ground truth labels (department ID or user ID) available for each sub-

graph, which is created from email exchanges in a department or app switch behaviors

of a user within a period of time. Hence, we can obtain all subgraphs for these com-

munities in these three networks. For the other datasets, there is no ground truth

information on network communities; we detect network communities using modular-

ity [71] to obtain subgraphs. These subgraphs are converted into feature vectors using

the previously introduced embedding methods and assigned with labels according to

network domains. Finally, we collect about 10, 000 (sub)graphs from 2, 355 real-world

networks taken from 15 network domains introduced above, which include Google+

and Twitter in social networks, high energy physics theory citation networks, Gnutella

P2P networks, SwichApp and so on.

86

5.4.3.1 Static Directed Network

We use all datasets to evaluate embedding methods on static networks. Note that

we convert temporal networks into unweighted static networks by removing the times-

tamps on the edges. Baseline methods include graphlet graph kernel (GK graphlet),

Weisfeiler-Lehman graph kernel (GK WL), feature vector with triad distribution (Mo-

tifDist), node2vec, graph2vec, sub2Vec and struc2vec. Our proposed graph represen-

tation approach gl2vec include SRPs computed using three different null models, i.e.,

(i) gl2vec(BDS): random graphs with the same bidegree sequence; (ii) gl2vec(MAN):

random graphs with the same number of mutual, asymetric and null edges; and (iii)

gl2vec(NE): random graphs with the same number of nodes and edges.

The accuracies of different embedding methods for network domain classification

are presented in Table 5.1. We make the following observations:

1. The graph-based network embedding methods, GK Graphlet, sub2vec and gl2vec

are on average more accurate than other node based network embedding meth-

ods. This further validates the importance of characterizing network structure

into feature representations for tasks like network classification in which network

structure plays a significant role.

2. The machine learning methods also impact of the results. For this task, XG-

Boost provides the best performance on average in network domain classifi-

cation. Although sub2vec is robust across all three machine learning models,

gl2vec achieve the highest accuracy and we can always choose the trained model

with the highest accuracy for prediction.

3. All null models to compute SRP have similar impact on classification, with NE

performing slightly better than the others. NE is thus preferable among the

three because of it lower computational complexity.

87

XGBoost (%) SVM (%) RF (%)
GK Graphlet 78.94 ± 3.18 72.66 ±2.79 78.72 ±3.01
+gl2vec(BDS) 81.62 ± 3.05 68.38 ± 2.78 81.16 ± 3.33
+gl2vec(MAN) 81.92 ± 2.87 67.29 ± 3.14 81.01 ± 3.29
+gl2vec(NE) 82.18 ± 2.86 69.01 ± 2.27 81.39 ± 3.36

GK WL 78.26 ±2.65 72.81 ± 2.74 78.41 ±3.02
+gl2vec(BDS) 81.87 ± 2.48 68.08 ± 3.51 81.66 ± 2.86
+gl2vec(MAN) 81.71 ± 2.82 66.87 ± 4.13 81.88 ± 3.14
+gl2vec(NE) 82.54 ± 2.85 68.59 ± 2.75 82.26 ± 3.43

MotifDist 78.08 ± 3.34 71.40 ±2.29 78.01 ± 3.56
+gl2vec(BDS) 81.44 ± 3.13 67.93 ± 2.98 80.57 ± 3.71
+gl2vec(MAN) 81.90 ± 3.33 67.60 ± 2.85 80.73 ± 3.12
+gl2vec(NE) 81.75 ± 3.48 69.70 ± 3.64 80.95 ± 3.63

node2vec 74.25 ±3.07 69.03 ±1.23 72.24 ±1.67
+gl2vec(BDS) 88.62 ± 0.89 70.18 ± 3.60 85.77 ± 2.03
+gl2vec(MAN) 89.04 ± 1.17 68.62 ± 3.90 86.54 ± 1.88
+gl2vec(NE) 88.76 ± 1.26 73.24 ± 2.92 86.14 ± 1.71

graph2vec 72.48 ± 3.99 70.81 ± 3.84 72.61 ±3.36
+gl2vec(BDS) 79.81 ± 4.02 66.23 ± 3.91 80.17 ± 4.58
+gl2vec(MAN) 80.09 ± 4.87 66.20 ± 3.83 80.34 ± 4.60
+gl2vec(NE) 79.83 ± 4.59 66.70 ± 4.04 80.03 ± 4.38

sub2vec 81.39 ± 1.70 79.69± 1.41 78.44 ±2.26
+gl2vec(BDS) 92.38 ± 2.38 83.23 ± 2.27 90.46 ± 2.45
+gl2vec(MAN) 92.57 ± 2.40 81.53 ± 2.56 90.57 ± 1.90
+gl2vec(NE) 92.30 ± 2.29 83.16 ± 2.62 90.01 ± 2.16

struc2vec 79.15 ± 3.42 78.22 ±3.15 78.94 ±3.31
+gl2vec(BDS) 92.99 ± 1.56 84.37 ± 1.46 93.10 ± 1.78
+gl2vec(MAN) 93.38 ± 1.50 82.97 ± 2.40 93.22 ± 1.75
+gl2vec(NE) 93.38 ± 1.51 84.25 ± 0.82 93.48 ± 1.42
gl2vec(BDS) 80.92 ± 3.20 72.69 ±3.38 80.17 ±4.07
gl2vec(MAN) 81.49 ± 3.33 71.39 ± 3.98 79.78 ±3.46
gl2vec(NE) 81.58 ±3.07 71.64 ±2.13 79.42 ±3.69

Table 5.1: Network type classification accuracy. We use “+” to denote an embedding
generated by combining two embedding methods. Bold indicated best performance
machine learning model for each embedding.

88

4. We also combine gl2vec with state-of-the-art methods by directly concatenat-

ing their feature representation vectors. We observe a significant improvement

over state-of-the-art methods, especially for sub2vec and struc2vec. This sug-

gests that both our approach and state-of-the-art methods capture important

but different features for network domain classification. The best approach for

the problem is to combine those features. Furthermore, there are also improve-

ments on MotifDist and GK Graphlet. This indicates that adding null models to

construct feature representation does help to improve performance. Since rep-

resentations from gl2vec, MotifDist and GK Graphlet construct features from

graphlets, the improvement is not as significant as other methods.

5.4.3.2 Temporal directed network

We consider the temporal datasets discussed in Section 5.4.1. We explore if tem-

poral graphlets provide more information for classification than static graphlets in

temporal networks. We investigate their effect on predicting whether a temporal

(sub)graph is an email exchange network or the app switching behavior of a mo-

bile user. Since the-state-of-the-art methods work only on static networks, we choose

gl2vec(NE) as a baseline for comparison due to its good performance in static network

domain classification. The results are shown in Figure 5.1. From Figure 5.1, we ob-

serve that temporal information improves network domain classification in all models

considered here. Therefore, it is critical to use temporal graphlets for constructing

vectors for feature representations of temporal networks, since temporal graphlets

provide more network structure information than static graphlets.

5.4.4 Subgraph Identification

In subgraph identification, we are interested in classifying subgraphs within the

same network given their topological structure. For example, we would like to identify

89

Figure 5.1: Classifying email datasets and SwitchApp Temporal Networks.

which department an email exchange subgraph belongs to or detect a mobile phone

user given his app switching behaviors in a day.

We use EmailEU, EmailTraffic and SwitchApp datasets since ground truth labels

(department ID or user ID) are available for each subgraph, which is created from

email exchanges in a department or app switch behavior of a user over a period of

time. We first solve this problem using static graph embedding methods. Then we in-

vestigate whether the timestamp information of edges can help improve identification

accuracy.

5.4.4.1 Static directed networks

Results on the accuracy of department identification in emailEu, emailTraffic net-

works and user ID in app switch network using different methods are illustrated in

Tables 5.2, 5.3 and 5.4, respectively. We cannot obtain results from graph2vec due

to the insufficient memory in GPU. We also consider a combination of feature vector

90

embedding between the state-of-the-art methods and our proposed gl2vec. We use

“+” to denote the combination of features from two methods. For example, Mo-

tifDistr +graphlet2vec(BDS) means a combination of feature vectors from MotifDistr

and gl2vec(BDS) for feature representation.

We observe that the addition of graphlet SRP features to the state-of-the-art

network embeddings can significantly improve their performances. This indicates

that gl2vec provides new information not present in state-of-the-art methods.

5.4.4.2 Algorithm performance with graphlet features

One observes from Table 5.2, 5.3 and 5.4 that random forest (RF) is usually more

accurate for graph embeddings that include our SRP feature vectors in baselines. This

is because RF automatically performs feature selection during training and adapts to

the change in number of features. As a result, it is easier for RF to achieve better

results given similar amount of efforts for fine-tuning the hyper-parameters. Finally,

the improvements on all machine learning models confirm that it is worth combining

our graph embedding with other methods to achieve better performance.

5.4.4.3 Temporal directed networks

In temporal networks from EmailEU and EmailTraffic, we attempt to identify

which department emails belong to. For the SwitchApp dataset, we attempt to

identify a particular user based on his daily app switching behavior represented as a

temporal network.

For the EmailEU and EmailTraffic dataset, multiple temporal and static networks

are constructed for each department from email exchanges as described in Section

5.4.1.2. For the SwitchApp dataset, 42 temporal and static networks are generated

for each person from his app switching behaviors every day. XGBoosting, SVM

and random forest are implemented using different network feature representations:

subgraph ratio profile (SRP) with temporal (“Temporal”) and with static (“Static”)

91

XGBoost (%) SVM (%) RF (%)
MotifDistr 56.59 ± 6.63 46.03 ± 7.45 61.13 ± 9.77

+gl2vec(BDS) 63.86 ± 5.83 54.11 ± 8.13 63.45 ± 5.04
+gl2vec(MAN) 62.33 ± 6.42 49.24 ± 8.07 61.98 ± 7.67
+gl2vec(NE) 64.18 ± 6.72 51.96 ± 4.54 63.66 ± 8.04

GK WL 51.54 ± 8.05 48.11 ± 6.56 56.86 ± 6.45
+gl2vec(BDS) 65.85 ± 5.10 52.48 ± 6.40 67.34 ± 5.82
+gl2vec(MAN) 64.75± 5.30 50.33 ± 7.32 65.30 ± 4.14
+gl2vec(NE) 64.12 ± 4.73 50.97 ± 4.84 64.89 ± 7.99
GK Graphlet 60.99 ± 4.01 52.32 ± 4.94 61.70 ± 3.91

+gl2vec(BDS) 63.92 ± 6.33 53.63 ± 7.04 66.01 ± 6.85
+gl2vec(MAN) 63.64 ± 7.04 49.20 ± 9.13 61.71 ± 6.99
+gl2vec(NE) 63.13 ± 6.09 53.37 ± 5.81 63.79 ± 7.82

node2vec 56.28 ± 3.38 55.84 ± 4.04 57.92 ± 3.05
+gl2vec(BDS) 63.84 ± 3.01 60.42 ± 6.06 63.93 ± 4.27
+gl2vec(MAN) 63.94 ± 2.91 58.13 ± 6.70 61.19 ± 4.13
+gl2vec(NE) 62.32 ± 3.48 58.29 ± 5.48 62.32 ± 2.42

sub2vec 54.34 ± 3.74 51.32 ± 3.82 58.37 ± 3.32
+gl2vec(BDS) 72.65 ± 10.92 63.38 ± 9.48 78.75 ± 11.88
+gl2vec(MAN) 73.76 ± 8.77 54.99 ± 8.30 78.33 ± 9.47
+gl2vec(NE) 72.31 ± 8.33 59.84 ± 8.25 77.91 ± 7.31

struc2vec 60.14 ± 8.84 55.38 ± 10.23 63.78 ± 12.93
+gl2vec(BDS) 68.23 ± 4.99 53.84 ± 6.42 71.48 ± 6.93
+gl2vec(MAN) 69.42 ± 5.87 52.83 ± 6.67 70.86 ± 6.05
+gl2vec(NE) 68.43 ± 5.97 52.94 ± 8.04 68.66 ± 7.74
gl2vec(BDS) 61.66 ± 3.44 52.92 ± 3.62 60.01 ± 3.02
gl2vec(MAN) 57.84 ± 3.83 45.49 ± 3.23 59.24 ± 3.48
gl2vec(NE) 60.01 ± 2.92 52.43 ± 3.19 61.22 ± 3.21

Table 5.2: Accuracy in correctly identifying 26 EmailEU department in static directed
networks.

92

XGBoost (%) SVM(%) RF (%)
MotifDistr 67.18 ± 6.60 59.77 ± 7.23 69.43 ± 6.11

+gl2vec(BDS) 78.10 ± 10.22 68.22 ± 6.55 82.17 ± 7.04
+gl2vec(MAN) 77.32 ± 9.55 68.74 ± 6.74 80.99 ± 6.48
+gl2vec(NE) 76.81 ± 8.42 69.54 ± 6.33 78.43 ± 8.25

GK WL 70.18 ± 5.43 66.23 ± 6.47 72.03 ± 6.09
+gl2vec(BDS) 78.21 ± 8.93 67.21 ± 7.10 79.84 ± 7.26
+gl2vec(MAN) 77.99 ± 6.98 64.91 ± 6.11 78.37 ± 6.36
+gl2vec(NE) 76.34 ± 7.31 70.88 ± 6.33 79.64 ± 6.32
GK graphlet 70.66 ± 10.71 66.12 ± 11.21 74.43 ± 7.11

+gl2vec(BDS) 74.30 ± 10.23 67.04 ± 7.43 79.11 ± 6.28
+gl2vec(MAN) 75.01 ± 9.34 68.88 ± 6.23 78.05 ± 7.01
+gl2vec(NE) 74.67 ± 10.77 68.52 ± 7.01 79.22 ± 7.34

node2vec 72.03 ± 8.13 67.93 ± 12.64 74.06 ± 7.80
+gl2vec(BDS) 82.30 ± 6.77 69.12 ± 6.99 85.06 ± 4.12
+gl2vec(MAN) 82.77 ± 6.90 70.32 ± 6.65 84.72 ± 3.99
+gl2vec(NE) 82.38 ± 6.42 72.44 ± 7.17 84.64 ± 4.09

sub2vec 73.23 ± 3.11 73.12 ± 3.09 73.22 ± 3.83
+gl2vec(BDS) 81.52 ± 5.13 81.33 ± 6.48 85.05 ± 3.93
+gl2vec(MAN) 80.61 ± 5.29 81.49 ± 5.98 84.27 ± 3.53
+gl2vec(NE) 81.94 ± 4.97 82.02 ± 5.25 84.93 ± 4.00

struc2vec 70.78 ± 8.83 65.14 ± 8.43 68.16 ± 8.38
+gl2vec(BDS) 77.11 ± 11.33 54.23 ± 12.39 80.96 ± 13.32
+gl2vec(MAN) 77.84 ± 10.48 54.34 ± 11.43 79.43 ± 10.48
+gl2vec(NE) 76.15 ± 10.46 54.98 ± 13.39 76.43 ± 12.66
gl2vec(BDS) 74.32 ± 5.98 67.13 ± 6.35 74.99 ± 7.02
gl2vec(MAN) 73.84 ± 5.93 68.82 ± 6.10 74.22 ± 6.10
gl2vec(NE) 73.32 ± 6.04 67.51 ± 6.41 75.74 ± 6.43

Table 5.3: Accuracy in correctly identifying EmailTraffic department in static directed
networks.

93

XGBoost (%) SVM (%) RF (%)
MotifDistr 11.82 ± 2.03 11.62 ± 2.02 12.33 ± 2.28

+gl2vec(BDS) 16.31 ± 2.71 13.43 ± 2.05 8.06 ± 2.43
+gl2vec(MAN) 16.53 ± 1.97 12.80 ± 1.64 15.87 ± 2.08
+gl2vec(NE) 16.16 ± 1.85 12.95 ± 2.31 15.34 ± 1.45

GK WL 11.50 ± 1.65 14.59 ± 0.97 13.43 ± 2.26
+gl2vec(BDS) 16.42 ± 2.22 13.56 ± 1.98 17.30 ± 2.66
+gl2vec(MAN) 16.16 ± 1.86 13.00 ± 2.02 16.51 ± 2.32
+gl2vec(NE) 16.01 ± 2.43 13.15 ± 1.44 17.31 ± 1.81
GK graphlet 13.89 ± 1.26 15.24 ± 1.67 15.29 ± 2.28

+gl2vec(BDS) 17.26 ± 2.53 13.43 ± 2.43 18.13 ± 1.72
+gl2vec(MAN) 16.67 ± 1.65 13.15 ± 2.08 16.25 ± 1.78
+gl2vec(NE) 16.52 ± 1.77 13.98 ± 2.51 15.95 ± 1.61

node2vec 10.15 ± 1.50 7.91 ± 1.32 9.98 ± 1.66
+gl2vec(BDS) 17.33 ± 2.62 13.10 ± 2.31 16.93 ± 3.42
+gl2vec(MAN) 15.93 ± 3.04 13.06 ± 2.63 17.21 ± 2.61
+gl2vec(NE) 16.33 ± 2.04 12.94 ± 2.71 16.21 ± 1.97

sub2vec 16.27 ± 2.20 16.19 ± 4.37 16.54 ± 1.64
+gl2vec(BDS) 33.21 ± 3.91 22.73 ± 2.61 33.09 ± 4.24
+gl2vec(MAN) 32.52 ± 3.78 22.18 ± 2.46 32.26 ± 3.57
+gl2vec(NE) 31.74 ± 3.58 23.43 ± 2.33 33.94 ± 4.58

struc2vec 14.18 ± 2.21 9.75 ± 2.49 12.17 ± 2.64
+gl2vec(BDS) 21.77 ± 3.47 10.05 ± 3.14 20.95 ± 2.49
+gl2vec(MAN) 20.58 ± 2.29 9.91 ± 2.29 19.03 ± 2.43
+gl2vec(NE) 19.53 ± 3.13 9.30 ± 1.60 20.70 ± 3.07
gl2vec(BDS) 15.94 ± 2.52 13.36 ± 2.60 16.80 ± 2.16
gl2vec(MAN) 15.58 ± 1.85 12.27 ± 2.75 14.54 ± 1.96
gl2vec(NE) 16.17 ± 1.80 13.56 ± 1.60 16.82 ± 1.31

Table 5.4: Accuracy in correctly identifying 53 SwitchApp user in static directed
networks.

94

Figure 5.2: (Left): Department identification in EmailEU dataset. Five graph em-
bedding methods (with Sub2Vec, SRPs of temporal graphlets, static graphlets, both
temporal and static graphlets, and concatenation of Sub2vec and all SRPs) are ap-
plied in three machine learning models (XGBoost, SVM and random forest) (Mid-
dle): BBN department identification in EmailTraffic; (Right): User identification in
SwitchApp. Dash line represents the accuracy of a random selection model.

graphlets, combined SRPs with both temporal and static graphlet (“Temp+Static”).

We illustrate the result from sub2vec representation (“Sub2Vec”) because it performs

best among the baseline methods. Finally, we create a combination of all three

representations (“CombineAll”).

The results for EmailEU, EmailTraffic and SwitchApp are shown in Figure 5.2.

The dashed line is the accuracy of a random selection model. Accuracy achieved by

temporal graphlet embedding is slightly better than that of static graphlet embedding

in both emailEU and SwitchApp datasets. However, static graphlet embedding per-

forms better than temporal graphlets in EmailTraffic dataset. This shows that static

graphlets are still useful for temporal network classification and can capture useful

features even better than temporal graphlets in some datasets. Hence, we combine

both static and temporal graphlet features (“Temp+Static”) and observe that this

achieves significant improvements in accuracy, which suggests that both temporal

and static graphlets are useful for network identification (of departments or personal

app switching behavior). Furthermore, our graphlet-based network embeddings are

competitive with the state-of-the-art method, sub2vec. Finally, combining all three

graph embedding vectors for classification yield the best accuracy. This suggests that

95

both our static and temporal embedding approaches capture useful features to boost

the performances of state-of-the-art methods.

5.5 Related Work

The primary focus of related work in classifying networks involves examining the

topological structure of the graph. Most related work to our method is graph ker-

nel based, which has been used to calculate similarities between static undirected

graphs [34, 41, 103]. However, the corresponding computational complexity grows

significantly with the increase in network size. Moreover, studies in graph kernel do

not consider features generated by comparing graphlet count between an empirical

network and random graphs from different null models, which turn out to lead to a

significant improvement in network classification in our experiments.

Different node embedding techniques have been proposed in the past years, such

as node2Vec [37], DeepWalk [80], Line [94] and Local Linear Embedding [88] that

use feature vectors to embed nodes into high-dimensional space and empirically per-

form well. However, these methods can only be applied to node classification but

not networks. Graph neural network (GCN) [46, 26, 8] recently obtain competitive

results against kernel-based methods and graph-based regularization techniques, but

are computationally expensive and useful for small scale tasks.

Additionally, several approaches have been proposed to aggregate node embedding

to a feature vector for networks. For example, the graph-coarsening approach [26]

computes a hierarchical structure containing multiple layers, nodes in lower layers

are clustered and combined as node in upper layers using element-wise max-pooling.

However, this has high computational complexity. Some approaches [75, 42] define an

order of nodes and concatenate their feature vectors for a convolutional neural network

for classification, however, this can only be applied to undirected static networks.

Recently, some subgraph embedding based approaches were proposed. struc2vec [84]

96

applied sum-based approach such as mean-field [24] and loopy belief propagation

[64] to aggregate node embedding to graph representation. sub2vec [3] embedded

subgraphs with arbitrary structure, while graph2vec [66] was proposed based on a

doc2vec framework to learn data-driven distributed representations of arbitrary sized

graphs. But these embedding do not fully capture network structures to acheive the

best performance.

5.6 Conclusion

We proposed gl2vec to classify static and temporal directed networks based on

their topological structure. Experiments with real-world datasets showed that both

temporal and static graphlets are important for network type classification and sub-

graph identification. Furthermore, we illustrated that concatenating these two em-

bedding with many state-of-the-art methods yield the best accuracy for real-world

applications such as identifying network types, predicting community ID for sub-

graphs and detecting mobile phone users based on their app-switching behaviors.

Going further, we will investigate if graphlet census information can serve as features

for nodes in a network. Specifically, we will check if embedding nodes with the num-

bers of graphlets that it belongs to in a network, can improve node classification and

network classification.

97

CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis studies various aspects of dynamic network structure and their ap-

plication, with focuses on link prediction, community detection, network embedding

and network classification.

Chapter 3 investigates relation between node attributes and existence of edges in

a growing bipartite network. We model a link prediction problem using a Bayesian

method and apply it to recommendation on an online dating website. We use latent

Dirichlet allocation model to learn latent variables and interpret them as “user prefer-

ences”. We show with experiments that our model adapts to changes in user behavior

and outperform baseline methods when users change their behavior over time.

There is one possible future direction related to Chapter 2. One popular topic in

network science is node embedding in a network [37], which requires attributes of a

node as input and produces an embedding vector that is more predictive for existence

of edges. Given that latent variables learn in our LDA model can be used for link

prediction. It is worthy of investigate if the latent variables can be used as input of

the node embedding methods to gain improvement in link prediction.

Chapter 4 proposes a temporal clustering (TC) framework for time-varying net-

work with PARAFAC decomposition, where the time-varying network is represented

as a series of static symmetric networks. TC can be applied to track evolving commu-

nities. Experiments show that TC is more robust to changes in its hyper-parameters

than another tensor decomposition based method and outperform an evolutionary

clustering in detecting communities, community members and community lifetimes.

98

Future study is needed for the application of TC to directed and asymmetric

network. This is because many real-world networks can be represented as directed

networks. Understanding the

Chapter 5 study graphlets to understand the connectivity patterns of nodes in

both static and temporal directed networks. For static network, we compute SRPs

for graphlets using three different null models to measure the significances of graphlet

occurrences in a network. We propose gl2vec, a network embedding method using

graphlet SRPs, for network classification given only topological structures. We show

with experiments that network embeddings by gl2vec can be combined to state-of-

the-art methods to improve the classification performance. For temporal network, we

compute SRPs using a null model that breaks the dependence of edges and discover

that both static and temporal graphlets are important to identify a (sub)network.

We also show that there is no significant differences in network classification when

using SRPs computed by different null models. As a result, we recommend a null

model with the same number of nodes and edges to embed a network because of the

low time complexity in computing SRPs.

For future work, it is of interest to characterize nodes with the SRPs of graphlets.

Structural information such as node degree has proven to be useful in node embedding

for classification tasks in real-wold practice [84]. However, it is unclear whether

graphlets can be used as node attribute to improve accuracy in link prediction, node

classification and network classification.

99

APPENDIX A

PARAFAC DECOMPOSITION

Tensor decomposition is a useful tool to analyze high dimension matrices. In

this section, we introduce a tensor decomposition method: parallel factorization de-

compostion (PARAFAC decomposition). A PARAFAC model decomposes an tensor

into multiple components via a high-order singular value decomposition (HOSVD).

It has been applied in many fields and a good reference is the survey from [9]. For

simplicity, we describe a PARAFAC decomposition on a three-mode tensor X . A

rank-R PARAFAC decomposes X into R components, each of which consists of a

scalar λr and a rank-1 tensor produced by the outer product of three column vectors

Ar ⊗ Br ⊗ Tr(Fig A.1), with the objective of minimizing the Frobenius norm of the

error:

f({λr, Ar, Br, Tr}Rr=1) = | X − X̂ | F =

√∑
i,j,k

(Xijk − X̂ijk)2 (A.1)

where X̂ =
∑R

r=1 λrAr ⊗ Br ⊗ Tr, A = [A1, · · · , AR], B = [B1, · · · , BR] and T =

[T1, · · · , TR] are call loading matrices. The PARAFAC decomposition model can be

written as:

Xijk ≈
R∑
r=1

λrairbjrtkr (A.2)

Figure A.1: PARAFAC decomposition of a 3 mode tensor X

100

where air is the i-th element of Ar, bjr is the j-th element of Br and tkr is the k-th

element of Tr.

There are many approximate algorithms for PARAFAC decomposition [2, 1, 102,

89]. We apply the alternating least squares algorithm (ALS) [89] because of its

good performance and fast computation speed on average. It applies a gradient

descent method to optimize (A.1) iteratively. At each iteration, each loading matrix

is updated while other matrices are fixed.

In Chapter 4, since the objective (4.3) of temporal clustering is similar to that

of PARAFAC (please refer to (A.1)), we add two constraints to (A.1) and ap-

ply PARAFAC decomposition to learn our generative models: (1) the non-negative

constraint λr, air, bjr, tkr ≥ 0 and (2) the symmetric constraint Ar = Br since net-

work snapshots are symmetric. We also normalize air in the interval [0, 1], so that

maxi(air) = 1, then represent the edge-generation rate λ(r)(k) as a piecewise linear

segmentation on the sequence of T samples ~λr = [λrtkr] for k = 1, · · · , T .

101

APPENDIX B

MODEL TIME SERIES WITH A PIECEWISE LINEAR
FUNCTION

A piecewise linear function is a simple and useful tool to study the trend of the

time series. Its application includes learning a time period when time series increases

or decrease so as to make predictions on the values of the time series. In this thesis,

we represent edge-generation rate, denoted by λ(r)(t), between nodes in a network

community as a time series and use a piecewise linear function to detect periods of

formation or dissolution of the community.

A piecewise linear function with D segments is defined as:

fD(t) =



b1t+ c1, t ∈ Q1,

b2t+ c2, t ∈ Q2,

...
...,

bDt+ cD, t ∈ QD.

(B.1)

where bi, ci are constants, Qi = [qi, qi+1] is an interval between time qi and qi+1 and

qi < qi+1 for i = 1, . . . , D.

Let ~λ = [λ1r, · · · , λTr] be a time series, fD(t) be a piecewise linear function, the

problem of constructing fD(t) from ~λ can formalized as: given integer D, find a

segmentation, denoted by πD = {Qi}Di=1, and a piecewise linear function fD(t) to

minimize the squared error

e(~λ, {πD, fD(t)}) =
T∑
j=1

(λjr − fD(j))2 (B.2)

102

This problem requires manually determining D,the number of segments, and is

not suitable for applications where D is unknown.

Note that e(~λ, {πD, fD(t)}) is sensitive toD: in the extreme case, e(~λ, {πD, fD(t)}) =

0 if D = T − 1 where each time step is a segment; at the other extreme, when D = 1,

e(~λ, {πD, fD(t)}) equals to the error of a linear regression on the entire time series.

To automatically determine D, Keogh et.al [43] re-formalize the problem as

minD (B.3)

s.t. max1≤d≤D(Ed) ≤ Emax for d = 1, . . . , D,

where Ed is the squared error of using fD(t) to approximate ~λ in time segment Qd,

for d = 1, . . . , D, and Emax is a constant hyper-parameter that need to determine

manually .

To solve this problem, previous work [43] propose a bottom up algorithm with : the

algorithm begins with T−1 segments and obtains a solution M∗
T−1 = {πT−1, fT−1(t)}.

At each iteration, the algorithm merges two neighboring segments so as to minimize

the increase in cost (denoted as ∆C(D) = e(~λ,M∗
D−1) − e(~λ,M∗

D)). The algorithm

stops when max1≤d≤D(Ed) ≤ Emax. However, it is difficult to choose a threshold Emax

for a given time series.

To automatically determine the threshold Emax, we assume ~λr contains noise, δ,

that comes from a normal distributionN(δ̄, σ), where δ̄ is the mean of the distribution,

and σ is the standard deviation. The error Ed is caused by δ. We use δ̄ + 3σ as

threshold for Emax because 99.7% of δ’s values lie within three standard deviations

of δ̄. To learn the distribution N(δ̄, σ), we apply a Sliding Window Filter to ~λr to

compute λ̂r(t), then obtain noise samples δj = λ̂r(j) − λjr for j = 1, · · · , T , and

calculate the mean δ̄ = 1
T

∑T
j=1 δj and standard error σ =

√
1

T−1
∑T

j=1(δj − δ̄)2.

Finally, the time series segmentation problem can be formalized as:

103

minD (B.4)

s.t. Ed ≤ (δ̄ + 3σ)2 for d = 1, . . . , D

Algorithm 2: Time Mode Segmentation Algorithm

Data: Time Series Y = [y1, · · · , yT]
Result: Segmentation Q = [Q(1), · · · , Q(D)], fD(x)

1 Q = [[1], [2], · · · , [T]]; Ŷ = SlideWindowFilter(Y);

2 ∆ = Y − Ŷ ; δ̄ = mean(∆); σ̂ = standardError(∆);
3 for i = 1 : T − 1 do
4 merge cost(i) = LinearRegressionError(Y[i:i+1]);

5 while min(merge cost)≤ (δ̄ + 3σ̂)2 do
6 i = indexOf(min(merger cost));
7 Q(i) = merge(Q(i),Q(i+1));
8 delete(Q(i+1);
9 merge cost(i) = LinearRegressionError(merge(Q(i), Q(i+1));

10 merge cost(i-1) = LinearRegressionError(merge(Q(i-1), Q(i));

Algorithm 2 is a bottom-up algorithm for segmentation of time series and use a

piecewise linear function to approximate the time series. Unlike other segmentation

algorithm such as [43], our algorithm automatically obtains a piecewise linear func-

tion without any hyper-parameters. The function LinearRegressionError(Y [i : j])

calculates the linear regression fD(x) for a segment Qd = Y [i : j] and returns the

error. The edge-generation rate λ(r)(t) can be constructed as fD(x) from Algorithm

2 for d = 1, . . . , D.

104

APPENDIX C

MAPPING CLUSTERS TO GROUND TRUTH CLUSTERS

We need to map the retrieved clusters to ground truth clusters before evaluation.

A distance function between two clusters is required for the mapping. For evolving

clulsters, the distance function should consider the dynamics of clusters.

Suppose that a method retrieves a ranked list of K clusters {Ĉi}Ki=1, where Ĉi has

higher rank than Ĉj if i < j. {C∗n}Nn=1 is the set of ground truth clusters. We use x∗ijt

to denote the number of edges generated between i, j ∈ C∗n at t. x∗ijt = 0 if i, j belong

to different ground truth clusters. We define the distance function between Ĉi and

C∗n as the approximation error:

E(Ĉi, C
∗
n) =

∑T
t=1

∑
m,o∈Ĉk∪C∗n

(bmrborλ̂
(r)(t)− x∗mot)2∑T

t=1

∑
j,p∈C∗n

(x∗jpt)
2

where bmi = ami if node m ∈ Ĉi and bmi = 0 otherwise. Note that E(Ĉk, C
∗
n) = 0 if

Ĉi = C∗n and E(Ĉi, C
∗
n) = 1 if Ĉi is the empty set. We map Ĉi to the empty set φ if

E(Ĉi, C
∗
n) ≥ 1 for any C∗n. The mapping is performed via the following steps:

(1) Begin with i = 1 and map Ĉi to C∗n = arg minC∗j E(Ĉi, C
∗
j) for j = 1, . . . , N .

(2) Increase i by 1 and repeat the previous step. Note that two clusters, Ĉi and

Ĉj, may be mapped to the same ground truth cluster C∗n, for i < j. We allow these

two mappings only if Ĉi and Ĉj are generated from the same generative model X(r).

In this case, Ĉi and Ĉj are likely to be sub-clusters of C∗n. Otherwise, we consider

E(Ĉj, C
∗
n) = 1 and choose another C∗n′ for Cj.

105

BIBLIOGRAPHY

[1] Acar, Evrim, Dunlavy, Daniel M., and Kolda, Tamara G. A scalable optimiza-
tion approach for fitting canonical tensor decompositions. Journal of Chemo-
metrics 25, 2 (February 2011), 67–86.

[2] Acar, Evrim, Dunlavy, Daniel M, Kolda, Tamara G, and Mørup, Morten. Scal-
able tensor factorizations with missing data. In SDM (2010), SIAM, pp. 701–
712.

[3] Adhikari, Bijaya, Zhang, Yao, Ramakrishnan, Naren, and Prakash, B Aditya.
Sub2vec: Feature Learning for Subgraphs. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining (2018), Springer, pp. 170–182.

[4] Ahmed, Amr, and Xing, Eric P. Dynamic non-parametric mixture models
and the recurrent chinese restaurant process: with applications to evolutionary
clustering. In SDM (2008), SIAM, pp. 219–230.

[5] Albert, Réka, and Barabási, Albert-László. Statistical Mechanics of Complex
Networks. Reviews of modern physics 74, 1 (2002), 47.

[6] Alsaleh, Slah, Nayak, Richi, Xu, Yue, and Chen, Lin. Improving Matching
Process in Social Network Using Implicit and Explicit User Information. In
APWeb (2011).

[7] Amaral, L. A. N., Scala, A., Barthélémy, M., and Stanley, H. E. Classes of
small-world networks. Proceedings of the National Academy of Sciences 97, 21
(2000), 11149–11152.

[8] Atwood, James, and Towsley, Don. Diffusion-convolutional neural net-
works. In Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Asso-
ciates, Inc., 2016, pp. 1993–2001.

[9] Bader, Brett W., and Kolda, Tamara G. Matlab tensor toolbox version 2.6.
http://www.sandia.gov/~tgkolda/TensorToolbox/, February 2015.

[10] Balasubramanyan, Ramnath, and Cohen, William W. Block-lda: Jointly mod-
eling entity-annotated text and entity-entity links. In Proceedings of the 2011
SIAM International Conference on Data Mining (2011), SIAM, pp. 450–461.

[11] Biswas, Anupam, and Biswas, Bhaskar. Community-based link prediction. Mul-
timedia Tools and Applications (2017), 1–21.

106

[12] Blei, David M, Ng, Andrew Y, and Jordan, Michael I. Latent dirichlet alloca-
tion. JMLR 3 (2003), 993–1022.

[13] Breiman, Leo. Random forests. Machine learning 45, 1 (2001), 5–32.

[14] Bro, Rasmus, and Kiers, Henk AL. A new efficient method for determining
the number of components in parafac models. Journal of chemometrics 17, 5
(2003), 274–286.

[15] Brozovsky, Lukas, and Petricek, Vaclav. Recommender system for online dating
service. arXiv preprint cs/0703042 (2007).

[16] Celeux, Gilles. Bayesian inference for mixture: The label switching problem.
In Compstat (1998), Springer, pp. 227–232.

[17] Cen, Hao, Koedinger, Kenneth, and Junker, Brian. Learning factors analysis–a
general method for cognitive model evaluation and improvement. In Interna-
tional Conference on Intelligent Tutoring Systems (2006), Springer, pp. 164–
175.

[18] Chakrabarti, Deepayan, Kumar, Ravi, and Tomkins, Andrew. Evolutionary
clustering. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining (2006), ACM, pp. 554–560.

[19] Chen, Tianqi, and Guestrin, Carlos. Xgboost: A Scalable Tree Boosting Sys-
tem. In ACM SIGKDD (2016), pp. 785–794.

[20] Chen, Yung-Chih, Rosensweig, Elisha, Kurose, Jim, and Towsley, Don. Group
detection in mobility traces. In Proceedings of the 6th international wireless
communications and mobile computing conference (2010), ACM, pp. 875–879.

[21] Cortes, Corinna, and Vapnik, Vladimir. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[22] Cross, Robert Lee, Cross, Robert L, and Parker, Andrew. The hidden power
of social networks: Understanding how work really gets done in organizations.
Harvard Business Press, 2004.

[23] Culp, Mark, Johnson, Kjell, and Michailidis, George. ada: An r package for
stochastic boosting. Journal of Statistical Software 17, 2 (2006), 9.

[24] Dai, Hanjun, Dai, Bo, and Song, Le. Discriminative embeddings of latent
variable models for structured data. In International Conference on Machine
Learning (2016), pp. 2702–2711.

[25] De Boer, Pieter-Tjerk, Kroese, Dirk P, Mannor, Shie, and Rubinstein,
Reuven Y. A Tutorial on the Cross-Entropy Method. Annals of operations
research 134, 1 (2005), 19–67.

107

[26] Defferrard, Michaël, Bresson, Xavier, and Vandergheynst, Pierre. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering. In NIPS
(2016), pp. 3844–3852.

[27] Developers, NetworkX. Networkx. networkx. lanl. gov (2010).

[28] Diaz, Fernando, Metzler, Donald, and Amer-Yahia, Sihem. Relevance and rank-
ing in online dating systems. In SIGIR (2010).

[29] Diesner, Jana, and Carley, Kathleen M. Exploration of communication net-
works from the enron email corpus. In SIAM International Conference on Data
Mining: Workshop on Link Analysis, Counterterrorism and Security, Newport
Beach, CA (2005).

[30] Fawcett, Tom. Roc graphs: Notes and practical considerations for researchers.
Machine learning 31, 1 (2004), 1–38.

[31] Fowler, James H. Connecting the congress: A study of cosponsorship networks.
Political Analysis 14, 4 (2006), 456–487.

[32] Fu, Wenjie, Song, Le, and Xing, Eric P. Dynamic mixed membership block-
model for evolving networks. In Proceedings of the 26th Annual International
Conference on Machine Learning (New York, NY, USA, 2009), ICML ’09,
ACM, pp. 329–336.

[33] Gauvin, Laetitia, Panisson, André, and Cattuto, Ciro. Detecting the commu-
nity structure and activity patterns of temporal networks: a non-negative tensor
factorization approach. PloS one 9, 1 (2014), e86028.

[34] Gaüzère, Benoit and Grenier, Pierre-Anthony and Brun, Luc and Villemin, Di-
dier. Treelet Kernel Incorporating Cyclic, Stereo and Inter Pattern Information
in Chemoinformatics. Pattern Recognition 48, 2 (2015), 356–367.

[35] Ge, Xinyang, Liu, Jia, Qi, Qi, and Chen, Zhenyu. A new prediction approach
based on linear regression for collaborative filtering. In Fuzzy Systems and
Knowledge Discovery (FSKD), 2011 Eighth International Conference on (2011),
vol. 4, IEEE, pp. 2586–2590.

[36] Grover, Aditya, and Leskovec, Jure. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining (2016), ACM, pp. 855–864.

[37] Grover, Aditya, and Leskovec, Jure. node2vec: Scalable Feature Learning for
Networks. In ACM SIGKDD (2016), pp. 855–864.

[38] Hamilton, William L, Ying, Rex, and Leskovec, Jure. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

108

[39] Holme, Petter, and Saramäki, Jari. Temporal Networks. Physics reports 519,
3 (2012), 97–125.

[40] Jiang, Bo, Zhang, Zhi-Li, and Towsley, Don. Reciprocity in social networks with
capacity constraints. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2015), ACM, pp. 457–
466.

[41] Kaspar, Riesen, and Horst, Bunke. Graph Classification and Clustering based
on Vector Space Embedding, vol. 77. World Scientific, 2010.

[42] Kearnes, Steven, McCloskey, Kevin, Berndl, Marc, Pande, Vijay, and Riley,
Patrick. Molecular Graph Convolutions: Moving beyond Fingerprints. Journal
of computer-aided molecular design 30, 8 (2016), 595–608.

[43] Keogh, Eamonn, Chu, Selina, Hart, David, and Pazzani, Michael. Segmenting
time series: A survey and novel approach. Data mining in time series databases
57 (2004), 1–22.

[44] Ketchen, David J, and Shook, Christopher L. The application of cluster analysis
in strategic management research: an analysis and critique. Strategic manage-
ment journal 17, 6 (1996), 441–458.

[45] Kim, Min-Soo, and Han, Jiawei. A particle-and-density based evolutionary
clustering method for dynamic networks. Proceedings of the VLDB Endowment
2, 1 (2009), 622–633.

[46] Kipf, Thomas N, and Welling, Max. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[47] Kovanen, Lauri, Karsai, Márton, Kaski, Kimmo, Kertész, János, and Saramäki,
Jari. Temporal motifs in time-dependent networks. Journal of Statistical Me-
chanics: Theory and Experiment 2011, 11 (2011), P11005.

[48] Kovanen, Lauri, Karsai, Márton, Kaski, Kimmo, Kertész, János, and Saramäki,
Jari. Temporal Motifs in Time-Dependent Networks. Journal of Statistical
Mechanics: Theory and Experiment 2011, 11 (2011), P11005.

[49] Krackhardt, David. Cognitive social structures. Social networks 9, 2 (1987),
109–134.

[50] Kretzschmar, Mirjam, and Morris, Martina. Measures of concurrency in net-
works and the spread of infectious disease. Mathematical biosciences 133, 2
(1996), 165–195.

[51] Krzywicki, Alfred, Wobcke, Wayne, Cai, Xiongcai, Mahidadia, Ashesh, Bain,
Michael, Compton, Paul, and Kim, Yang Sok. Interaction-based collaborative
filtering methods for recommendation in online dating. In WISE. 2010.

109

[52] Kubat, Miroslav, Holte, Robert C, and Matwin, Stan. Machine learning for the
detection of oil spills in satellite radar images. Machine learning 30, 2-3 (1998),
195–215.

[53] Kunegis, Jérôme, Gröner, Gerd, and Gottron, Thomas. Online dating rec-
ommender systems: The split-complex number approach. In Proceedings of
the 4th ACM RecSys Workshop on Recommender Systems and the Social Web
(New York, NY, USA, 2012), RSWeb ’12, ACM, pp. 37–44.

[54] Lazega, Emmanuel, et al. The collegial phenomenon: The social mechanisms
of cooperation among peers in a corporate law partnership. Oxford University
Press on Demand, 2001.

[55] Leskovec, Jure, and Krevl, Andrej. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[56] Lin, Yu-Ru, Chi, Yun, Zhu, Shenghuo, Sundaram, Hari, and Tseng, Belle L.
Facetnet: a framework for analyzing communities and their evolutions in dy-
namic networks. In Proceedings of the 17th international conference on World
Wide Web (2008), ACM, pp. 685–694.

[57] Linden, Greg, Smith, Brent, and York, Jeremy. Amazon. com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing 7, 1 (2003), 76–
80.

[58] Liu, Huan, and Setiono, Rudy. Chi2: Feature selection and discretization of
numeric attributes. In ICTAI (1995).

[59] Liu, Yan, Niculescu-Mizil, Alexandru, and Gryc, Wojciech. Topic-link lda:
Joint models of topic and author community. In Proceedings of the 26th Annual
International Conference on Machine Learning (New York, NY, USA, 2009),
ICML ’09, ACM, pp. 665–672.

[60] Mao, Hing-Hao, Wu, Chung-Jung, Papalexakis, Evangelos E, Faloutsos, Chris-
tos, Lee, Kuo-Chen, and Kao, Tien-Cheu. Malspot: Multi2 malicious network
behavior patterns analysis. In Advances in Knowledge Discovery and Data Min-
ing. Springer, 2014, pp. 1–14.

[61] Mellor, A. Classifying Conversation in Digital Communication. Arxiv preprint
arXiv:1801.10527 (2018).

[62] Milo, Ron, Itzkovitz, Shalev, Kashtan, Nadav, Levitt, Reuven, Shen-Orr, Shai,
Ayzenshtat, Inbal, Sheffer, Michal, and Alon, Uri. Superfamilies of Evolved and
Designed Networks. Science 303, 5663 (2004), 1538–1542.

[63] Mimno, David, Wallach, Hanna M, and McCallum, Andrew. Community-based
link prediction with text.

110

[64] Murphy, Kevin P, Weiss, Yair, and Jordan, Michael I. Loopy Belief Propagation
for Approximate Inference: An Empirical Study. In UAI (1999), pp. 467–475.

[65] Narayanan, Annamalai, Chandramohan, Mahinthan, Chen, Lihui, Liu, Yang,
and Saminathan, Santhoshkumar. subgraph2vec: Learning Distributed Rep-
resentations of Rooted Sub-graphs from Large Graphs. arXiv preprint
arXiv:1606.08928 (2016).

[66] Narayanan, Annamalai, Chandramohan, Mahinthan, Venkatesan, Rajasekar,
Chen, Lihui, Liu, Yang, and Jaiswal, Shantanu. graph2vec: Learning Dis-
tributed Representations of Graphs. Arxiv preprint arXiv:1707.05005 (2018).

[67] Nayak, Richi, Zhang, Meng, and Chen, Lin. A Social Matching System for an
Online Dating Network: A Preliminary Study. In ICDMW (2010).

[68] Neville, Jennifer, and Jensen, David. Leveraging relational autocorrelation with
latent group models. In Proceedings of the 4th international workshop on Multi-
relational mining (2005), ACM, pp. 49–55.

[69] Newman, Mark. Networks: an Introduction. Oxford university press, 2010.

[70] Newman, Mark EJ. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences 103, 23 (2006), 8577–8582.

[71] Newman, Mark EJ. Modularity and community structure in networks. Pro-
ceedings of the national academy of sciences 103, 23 (2006), 8577–8582.

[72] Newman, Mark EJ, and Girvan, Michelle. Finding and Evaluating Community
Structure in Networks. Physical review E 69, 2 (2004), 026113.

[73] Newman, Mark EJ, Strogatz, Steven H, and Watts, Duncan J. Random graphs
with arbitrary degree distributions and their applications. Physical review E
64, 2 (2001), 026118.

[74] Ng, Andrew Y, Jordan, Michael I, Weiss, Yair, et al. On spectral clustering:
Analysis and an algorithm. In NIPS (2001), vol. 14, pp. 849–856.

[75] Niepert, Mathias, Ahmed, Mohamed, and Kutzkov, Konstantin. Learning Con-
volutional Neural Networks for Graphs. In ICML (2016), pp. 2014–2023.

[76] Noë, Beryl, Turner, Liam D, Linden, David EJ, Allen, Stuart M, Maio, Gre-
gory R, and Whitaker, Roger M. Timing Rather than User Traits Mediates
Mood Sampling on Smartphones. BMC research notes 10, 1 (2017), 481.

[77] Olsson, Catherine, Petrov, Plamen, Sherman, Jeff, and Perez-Lopez, Andrew.
Finding and explaining similarities in linked data. In STIDS (2011), pp. 52–59.

111

[78] Papalexakis, Evangelos E, Pelechrinis, Konstantinos, and Faloutsos, Christos.
Location based social network analysis using tensors and signal processing tools.
In Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
2015 IEEE 6th International Workshop on (2015), IEEE, pp. 93–96.

[79] Paranjape, Ashwin, Benson, Austin R, and Leskovec, Jure. Motifs in temporal
networks. In ACM WSDM (2017), pp. 601–610.

[80] Perozzi, Bryan, Al-Rfou, Rami, and Skiena, Steven. Deepwalk: Online Learning
of Social Representations. In ACM SIGKDD (2014), pp. 701–710.

[81] Pizzato, Luiz, Rej, Tomek, Chung, Thomas, Koprinska, Irena, and Kay, Judy.
RECON: A reciprocal recommender for online dating. In RecSys (2010).

[82] Priebe, Carey E, Conroy, John M, Marchette, David J, and Park, Youngser.
Scan statistics on enron graphs. Computational and Mathematical Organization
Theory 11, 3 (2005), 229–247.

[83] Quercia, Daniele, Askham, Harry, and Crowcroft, Jon. Tweetlda: supervised
topic classification and link prediction in twitter. In Proceedings of the 4th
Annual ACM Web Science Conference (2012), ACM, pp. 247–250.

[84] Ribeiro, Leonardo FR, Saverese, Pedro HP, and Figueiredo, Daniel R. struc2vec:
Learning Node Representations from Structural Identity. In ACM SIGKDD
(2017), pp. 385–394.

[85] Richardson, Matthew, Agrawal, Rakesh, and Domingos, Pedro. Trust manage-
ment for the semantic web. In International semantic Web conference (2003),
Springer, pp. 351–368.

[86] Rodŕıguez, Carlos E, and Walker, Stephen G. Label switching in bayesian
mixture models: Deterministic relabeling strategies. Journal of Computational
and Graphical Statistics 23, 1 (2014), 25–45.

[87] Rousseeuw, Peter J. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

[88] Roweis, Sam T, and Saul, Lawrence K. Nonlinear Dimensionality Reduction
by Locally Linear Embedding. Science 290, 5500 (2000), 2323–2326.

[89] Sands, Richard, and Young, Forrest W. Component models for three-way data:
An alternating least squares algorithm with optimal scaling features. Psychome-
trika 45, 1 (1980), 39–67.

[90] Schafer, J Ben, Frankowski, Dan, Herlocker, Jon, and Sen, Shilad. Collaborative
filtering recommender systems. Springer, 2007, pp. 291–324.

112

[91] Shani, Guy, and Gunawardana, Asela. Evaluating recommendation systems.
Springer, 2011, pp. 257–297.

[92] Shervashidze, Nino, Schweitzer, Pascal, Leeuwen, Erik Jan van, Mehlhorn,
Kurt, and Borgwardt, Karsten M. Weisfeiler-lehman graph kernels. Journal
of Machine Learning Research 12, Sep (2011), 2539–2561.

[93] Svetnik, Vladimir, Liaw, Andy, Tong, Christopher, Culberson, J Christopher,
Sheridan, Robert P, and Feuston, Bradley P. Random Forest: a Classification
and Regression Tool for Compound Classification and QSAR Modeling. Journal
of chemical information and computer sciences 43, 6 (2003), 1947–1958.

[94] Tang, Jian, Qu, Meng, Wang, Mingzhe, Zhang, Ming, Yan, Jun, and Mei,
Qiaozhu. Line: Large-Scale Information Network Embedding. In WWW (2015),
pp. 1067–1077.

[95] Tang, Lei, Liu, Huan, Zhang, Jianping, and Nazeri, Zohreh. Community evolu-
tion in dynamic multi-mode networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining (2008), ACM,
pp. 677–685.

[96] Tu, Kun. Jmotif, 2018.

[97] URC, PC. Network analysis with the enron email corpus. Journal of Statistics
Education 23, 2 (2015).

[98] Xia, Peng, Ribeiro, Bruno, Chen, Cindy, Liu, Benyuan, and Towsley, Don. A
study of user behavior on an online dating site. In ASONAM (2013).

[99] Xia, Peng, Tu, Kun, Ribeiro, Bruno, Jiang, Hua, Wang, Xiaodong, Chen,
Cindy, Liu, Benyuan, and Towsley, Don. Who is dating whom: Characterizing
user behaviors of a large online dating site. arXiv preprint arXiv:1401.5710
(2014).

[100] Xiang, Rongjing, Neville, Jennifer, and Rogati, Monica. Modeling relationship
strength in online social networks. In Proceedings of the 19th international
conference on World wide web (2010), ACM, pp. 981–990.

[101] Xu, Kevin S, Kliger, Mark, and Hero, Alfred O. Evolutionary spectral cluster-
ing with adaptive forgetting factor. In Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on (2010), IEEE, pp. 2174–
2177.

[102] Xu, Yangyang, and Yin, Wotao. A block coordinate descent method for regu-
larized multiconvex optimization with applications to nonnegative tensor fac-
torization and completion. SIAM Journal on imaging sciences 6, 3 (2013),
1758–1789.

113

[103] Yanardag, Pinar, and Vishwanathan, SVN. Deep Graph kernels. In ACM
SIGKDD (2015), pp. 1365–1374.

[104] Yang, Tianbao, Chi, Yun, Zhu, Shenghuo, Gong, Yihong, and Jin, Rong. De-
tecting communities and their evolutions in dynamic social networks: a bayesian
approach. Machine learning 82, 2 (2011), 157–189.

[105] Yin, Hao, Benson, Austin R, Leskovec, Jure, and Gleich, David F. Local Higher-
Order Graph Clustering. In ACM SIGKDD (2017), pp. 555–564.

[106] Zhou, Ding, Manavoglu, Eren, Li, Jia, Giles, C Lee, and Zha, Hongyuan. Prob-
abilistic models for discovering e-communities. In Proceedings of the 15th in-
ternational conference on World Wide Web (2006), ACM, pp. 173–182.

114

