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ABSTRACT

HIGHER-ORDER REPRESENTATIONS FOR VISUAL
RECOGNITION

FEBRUARY 2020

TSUNG-YU LIN

B.Sc., NATIONAL TSING HUA UNIVERSITY

M.Sc., NATIONAL TSING HUA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Subhransu Maji

In this thesis, we present a simple and effective architecture called Bilinear Convo-

lutional Neural Networks (B-CNNs). These networks represent an image as a pooled

outer product of features derived from two CNNs and capture localized feature inter-

actions in a translationally invariant manner. B-CNNs generalize classical orderless

texture-based image models such as bag-of-visual-words and Fisher vector represen-

tations. However, unlike prior work, they can be trained in an end-to-end manner. In

the experiments, we demonstrate that these representations generalize well to novel

domains by fine-tuning and achieve excellent results on fine-grained, texture and scene

recognition tasks. The visualization of fine-tuned convolutional filters shows that the

models are able to capture highly localized attributes. We present a texture synthesis

framework that allows us to visualize the pre-images of fine-grained categories and

the invariances that are captured by these models.
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In order to enhance the discriminative power of the B-CNN representations, we in-

vestigate normalization techniques for rescaling the importance of individual features

during aggregation. Spectral normalization scales the spectrum of the covariance ma-

trix obtained after bilinear pooling and offers a significant improvement. However,

the computation involves singular value decomposition, which is not computationally

efficient on modern GPUs. We present an iteration-based approximation of ma-

trix square-root along with its gradients to speed up the computation and study its

effect on fine-tuning deep neural networks. Another approach is democratic aggre-

gation, which aims to equalize the contributions of individual feature vector into the

final pooled image descriptor. This achieves a comparable improvement, and can

be approximated in a low-dimensional embedding unlike the spectral normalization.

Therefore, this approach is friendly to aggregating higher-dimensional features. We

demonstrate that the two approaches are closely related, and we discuss their trade-off

between performance and efficiency.
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CHAPTER 1

OVERVIEW

Image classification is a fundamental problem in Computer Vision research. Clas-

sical approaches involve the following two steps: building image descriptors that

extract semantic information from images and representing them as high-dimensional

vectors. The second step involves learning classifiers to separate the images accord-

ing to their categories in the feature space. When the classifier is a hyperplane in

high-dimensional space, ideally, the images belonging to different categories will lie on

different sides of the hyperplane. Traditionally these two steps are designed separately,

and most of the research works had focused on designing better image representa-

tions based on prior knowledge of the classification tasks. This has resulted in several

widely-used image representations such as deformable part models [41, 10, 39, 133],

spatial pyramid representations [79], and Fisher vector embeddings [100, 101].

Modern approaches consolidate the two steps into a single ‘learnable’ machine

learning model where image descriptors and classifiers are derived from data via

end-to-end training. Convolutional neural networks (CNNs) are the most successful

models of this kind. Krizhevsky et al. [74] demonstrated that convolutional neural net-

works trained on large-scale datasets result in significantly more accurate recognition

systems than the approaches based on a hand-designed heuristic for image classifica-

tion. A further study [131] had shown that the convolutional features learned from

data could extract highly-semantic information from images.

Given the success of feature learning, researchers have been interested in incor-

porating the designs of classical models into the feature learning framework. For

1



example, recent works [27, 51] studied deformable models for convolutional neural

networks; He et al. [53] proposed spatial pyramid pooling to aggregate convolutional

features; Several works [23, 84, 113, 102, 3] encodes convolutional features with Fisher

vector and higher-order statistics. In this thesis, we focus on learning higher-order

representations – modeling multiplicative feature interactions – based on the features

extracted from convolutional neural networks. In particular, we propose bilinear

CNNs (B-CNN) to aggregate second-order statistics of convolutional feature activa-

tions resulting in an end-to-end trainable architecture. We demonstrate that these

models are effective in fine-grained, texture, and indoor scene recognition tasks.

Our method is motivated by classical texture-based image representations such as

bag-of-visual-words and Fisher vector representations. In Chapter 2, we provide an

overview of image representations for classification. In Chapter 3, we present bilinear

CNNs (B-CNN) model to aggregate second-order statistics of convolutional feature

activations in a translationally invariant manner for image classification. We study

how orderless aggregation achieves the invariance of translation comparing against

data jittering by random cropping. In addition, we discuss the approaches to reducing

the feature dimension of outer-product features.

The bag-of-visual-words framework suffers from the burstiness of visual features

that refer to the repeated visual elements arising from large homogeneous texture

patterns. In Chapter 4, we study the approaches to enhance the robustness of bi-

linear pooling to the bursty features. We show that power normalizations [101, 19]

are effective in handling bursty features and improve recognition accuracy, especially

using matrix power functions. The approach is closely related to using matrix loga-

rithm to map the Riemannian manifold of covariance matrices to a Euclidean space

that preserves the geodesic distance between elements in the underlying manifold.

We present a technique inspired by iterative numerical methods to compute matrix

square-root to speed up the computation. In order to derive gradients for training

2



neural networks, we study techniques to compute the gradients w.r.t. matrix square-

root and their numerical stability. Apart from matrix normalization, another line

of research normalizes the image representations based on the frequency of local de-

scriptors with feature-reweighting using democratic aggregation [97]. We explore this

approach in the context of second-order representations and establish the connection

between democratic aggregation and matrix power normalization. In addition to the

analysis, we discuss the tradeoff between them regarding the computational cost and

memory usages.

In Chapter 5 we present a unified framework to visualize novel images based

on B-CNN representations. We formulate the image generation as an optimization

problem to maximize the prediction score of a given category and simultaneously

minimize the reconstruction errors under texture and image content representations.

The framework is closely related to inverting deep image representations [94], neural

style transfer [45], and texture synthesis [44]. In a particular case when we maxi-

mize the prediction scores of given categories, it allows us to analyze how categories

from several fine-grained and texture recognition benchmarks are described by their

textural content.

Since the breakthrough of CNNs on the ImageNet [108] classification performance

drew the attention of the Computer Vision community, deep neural networks have

been widely adopted by researchers. Since then, the architectures of deep networks

have been improved in several ways, resulting in even higher performance. State-

of-the-arts CNN networks [117, 54, 58, 57] increasing the depth of the networks

have shown improvement on ImageNet challenges as well as fine-grained benchmarks.

These networks are constructed by stacking multiple layers of building blocks that are

designed to enrich the representations. Inception modules [117] and dense blocks [58]

concatenate convolutional features from multiple streams. With deeper architectures

and multi-stream features, these models could implicitly capture higher-order feature
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correlation. We present the experiments and show that aggregating state-of-the-art

convolutional features with bilinear pooling can further improve recognition accuracy

on several fine-grained tasks.

Other approaches augment CNNs to localize salient features with attention mech-

anisms that allow focused reasoning on regions of an image [96, 4]. Spatial trans-

former networks [61] localize the objects and extract the features from the selected

regions and improve the backbone Inception networks on fine-grained classification.

B-CNNs can be viewed as an implicit spatial attention model since the outer product

modulates one feature based on the other, similar to the multiplicative feature interac-

tions in attention mechanisms. In addition to fine-grained recognition, this attention

mechanism has also been shown to be effective in video action recognition and visual

question answering. Recent works [21, 127] predict attention maps to localize ac-

tions in videos and aggregate the CNN activations from the selected spatio-temporal

windows for action recognition. The higher-order representations are also effective

in modeling the correlation between features from multiple modalities. Multi-modal

bilinear pooling [42, 130] model the interaction between features from natural lan-

guage and vision to locate visual features based on question representations. Recent

work [86] applies bilinear pooling to model the interactions between visual and acous-

tic features for video classification. The two-stream-networks approach [40] models

visual and motion features for video action recognition. Throughout the thesis, we

will go over the techniques for modeling higher-order feature interactions and how to

compute them efficiently.
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CHAPTER 2

IMAGE REPRESENTATIONS FOR CLASSIFICATION

The main challenge for image classification is to design image representations

that are discriminative to different categories while invariant to nuisance factors such

as background, geometry, and illumination. Classical image classification algorithms

tackle this by aggregating local feature descriptors, which are designed to be invariant

to some of these factors. Using bag-of-visual-words representations and its variants

for image classification was motivated by modeling texture and had been the state-of-

the-art approaches before convolutional neural networks were widely adopted. In this

chapter, we start with the introduction of local feature descriptors followed by the

discussion on the approaches to modeling textures based on image filter responses.

We continue the discussion with an overview of bag-of-visual-words representations

and their variants. Then we describe convolutional neural networks and its training

procedure to learn the image representations. We then discuss the techniques to

aggregate the convolutional features and motivate bilinear pooling.

2.1 Local feature descriptors

Local feature descriptors are designed to characterize image patches and represent

them by vectors. Linear filters bank has been widely used to represent local features.

It consists of a set of D linear filters that are able to extract the responses of local

patches to the selective local structures, such as edges and blobs shown in Figure 2.1.

To densely extract feature responses across pixel locations, we slide each filter over

an image and compute the response at each pixel by the sum of the element-wise
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Figure 2.1. Leung-Malik filters bank. A set of linear filters proposed by Le-
ung and Malik [80] consists of edge, blob and center-surrounding filters at multiple
scales and orientations. This figure comes from: http://www.robots.ox.ac.uk/

~vgg/research/texclass/filters.html.

products between the neighborhood of that pixel and the filter. The response to a

particular filter is high when the image patch at that location is locally similar to

the filter. For each image, this results in a set of N vectors, where N is the size

of the image, and each of the N vectors is D-dimensional, where the element of

each dimension corresponds to the filter response to one of the D filters. For image

classification, the set of local feature vectors are aggregated to construct the image

representations as described in Section 2.2.3.

Another widely used feature descriptor is SIFT [89]. Instead of calculating filter

responses, SIFT descriptor computes the histogram of oriented gradients within a

local neighborhood. The neighborhood is divided into 4 × 4 sub-regions and each

sub-region is represented with an 8-bin histogram. This results in a128-dimensional

vectors. For feature matching, the descriptor achieves the invariance to image scaling

by calibrating the blob detection scores across the radii and achieves the invariance

to image rotation by aligning histograms based on the dominating orientation. For

image classification, SIFT descriptors are densely extracted across multiple scales at
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Figure 2.2. Examples of texture. Texture arises from different sources such
as natural or man-made objects. The examples come from: https://pixabay.com/

images/search/texture/.

each pixel locations and the densely extracted SIFT descriptors are then aggregated

into image representations.

2.2 Texture representations

2.2.1 Representing texture with textons

Texture refers to the visually distinct repeated patterns arranged regularly or

irregularly that characterize the appearance of an object’s surface, as shown in Fig 2.2.

It is a strong visual clue to infer the information of objects such as the materials,

surface properties, and object categories. An early approach [80] to modeling texture

is based on the histogram over textons - prototype local structured patches represented

by feature vectors that hopefully capture the distinct patterns such as a leaf for foliage

texture or a rectangular brick for brick texture. Texton was first named by Julesz [66]
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to describe the putative units of pre-attentive human texture perception, such as line,

terminators, crossings, and intersections. The term was later used by Leung and

Malik [80] to describe the distinctive micro-structure of texture. The first step of this

approach is to construct a set of textons by clustering the local descriptors obtained

by filtering images with a linear filter bank (Fig. 2.1). Given a set of texture images,

we convolve each image with image filters to extract the vectors of filter responses for

each pixel. A universal set of K textons is obtained by clustering the filter responses

into K clusters, where the vector representations of the cluster centers are used as

textons. This leads to a quantization of the feature space into K disjoint regions based

on the nearest cluster center. Given the quantization, a texture image is modeled as a

distribution of filter responses using the histogram of K elements over textons, where

each element is the number of local patches that are in the corresponding region

normalized by the total number of patches in the image. The distance between two

histograms can be used as the similarity between texture images and facilitate the

applications in texture recognition and synthesis.

2.2.2 Region covariance matrices

Region covariance [118] is another widely-used texture representation. Given an

image represented as an array of d-dimensional vectors obtained via some local de-

scriptors, instead of modeling the distribution of feature responses, it computes the d x

d covariance matrix where each element captures the co-occurrence between features.

Unlike texton-based histogram representation, computing region covariance does not

involve the clustering step, which requires a pre-defined number of clusters. Second-

order pooling (O2P) computed the covariance matrices without mean-centering to

model region of interest for semantic segmentation. As covariance matrices are not

in Euclidean space, previous works [118, 119, 19] mapped the manifold to its tangent
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space to preserve the geometry by Log-Euclidean mapping. The distance between

two covariance matrices can be derived using the logarithm of joint eigenvalues.

2.2.3 Bag-of-visual-words representation and its variants

Image representations are obtained by aggregating the response to the local fea-

ture descriptors over locations. Similar to the construction of texton-based texture

representations, a universal vocabulary of local descriptor responses are obtained by

quantization, such as K-means clustering or Gaussian mixture models (GMM). An

image is then represented by counting the appearance of visual words or computing

the statistics on the deviation from the cluster centers. Bag-of-visual-words (BoVW)

model was the earliest approach of such aggregation. Each feature x is then assigned

to the closest cluster center (also called “hard assignment”) and the image is repre-

sented as a histogram denoting frequencies of each visual word. Given a set of local de-

scriptor responses X = {x1,x2, · · · ,xN} and k cluster centersM = {µ1,µ2, · · · ,µk},

BoVW model results in an image representation v ∈ Rk such that

vj =
1

N

∑

xi such that NN(x)=µj

1

whereNN(x) maps feature vector xi to its nearest visual word µj. The aggregation by

summation discards the order of features X resulting in an orderless representation,

which means the representation is invariant to the permutation of X .

Although BoVW is simple and effective, the representation only considers the

count statistics while ignores how the features distribute with respect to the visual

words. Vector of locally aggregated descriptors (VLAD) [62] was proposed to address

this issue by capturing the deviation of local descriptors from cluster centers in the

aggregate. For each visual word µj, VLAD representation accumulates the residual
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xi − µj for all xi such that NN(xi) = µj. Hence the component vj associated with

the visual word µj is written as:

vj =
∑

xi such that NN(x)=µj

xi − µj

Finally, all vectors vj are concatenated into a Dk-dimensional vector v followed by a

L2-normalization (v← v/||v||2).

Fisher vector (FV) representation [100] further enriches the representation by

encoding the variance of the deviation. It is also related to the approximation of

the Fisher kernel to compute the similarity for image classification. Given a GMM

distribution with k components and parameters {wj,µj,Σj, j = 1, · · · , k}, FV rep-

resentation computes the derivative of log-likelihood given X with respect to µj and

Σj resulting in the statistics:

αj =
1

N
√
wj

N∑

i=1

θj(xi)Σ
− 1

2
j (xi − µj)

βj =
1

N
√

2wj

N∑

i=1

θj(xi)Σ
−1
j (xi − µj)� (xi − µj)− 1

where µj, Σj and wj are the mean vector, covariance matrix and the mixture weight

respectively of the j-th Gaussian component. The covariance matrices are usually

assumed to be diagonal and the operation � denotes element-wise multiplication.

The statistics are computed by a weighted sum based on the GMM posteriors θj(xi).

The final FV encoding is a concatenation of αj and βj for all j and results in a 2Dk-

dimensional representation. The improved FV [101] further normalizes the represen-

tation by power normalization (v ← sign(v)|v|γ) and L2 normalization to improve

the performance.
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Figure 2.3. Architecture of AlexNet. At each layer, each block represents a
three-dimensional tensor, which is convolved with the filters shown as a small block
within it. The output from the last convolutional layer is fed into a two-layer network
generating 4096-dimensional features to predict the class labels using a k-way softmax
classifier. The network is separated into two paths each of which is processed by one
GPU to fit the overall network given GPU memory constraint. This figure comes
from [74].

2.3 Convolutional neural networks

The bag-of-visual-words and its variants were popular approaches for various im-

age recognition tasks. However, the invariance of the representations to the local

structure change relies on the design of local feature descriptors. These local descrip-

tors are handcrafted and might not be optimal for the given tasks. Instead of engineer-

ing the local descriptors, feature learning approaches aim to learn the representations

from the raw data to optimize the performance of the end tasks. Convolutional neural

networks (CNNs) have demonstrated that end-to-end learning encourages low-level

neurons to behave like feature detectors such as edge filters, while high-level neurons

capture highly-semantic information.

A convolutional neural network is a sequence of layers, each of which is connected

to the previous and the next layers. The output of the previous layer is input to the

current layer and the results of the current layer are propagated to the next layer.

As an example, the AlexNet architecture is shown in Figure. 2.3, which consists of
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five convolutional layers and two fully-connected layers. Each convolutional layer is

followed by a non-linearity and a pooling function. At the l-th layer, we consider a 3-

dimensional input tensor xl−1 ∈ Rcl−1×hl−1×wl−1
conceptualized as an image with cl−1

channels and hl−1 × wl−1 as spatial resolution. We define x0 as the input image. A

convolution slides a filter over every location of input tensor and outputs the response

for each location. At each location, the operation computes the sum of elementwise

multiplication between the filter weights and the input values at the receptive field.

This is done simultaneously with multiple filters and the responses are concatenated to

produce a multiple-channel output. A ReLU nonlinearity follows the convolution and

transforms the value z′ = max(0, z). A pooling layer reduces the spatial dimension

by aggregating the ReLU outputs over small neighborhoods.

The output of the last convolutional layer after ReLU activation is fed into a two-

layer fully-connected network. Each neuron in a fully-connected layer is connected

to all the neurons in the previous layer, i.e. the receptive field is the full image,

and activated by the ReLU function. The output of the last fully-connected layer

is fed into a k-way classification layer. The overall network is parameterized by the

weights of convolutional filters and the fully-connect layers. These parameters are

solved via optimization methods such as stochastic gradient descent to minimize the

cross-entropy loss for multi-class image classification.

By training CNNs on a large scale image dataset, AlexNet [74] outperformed the

previous state-of-the-art method using Fisher vector with handcrafted features by

more than 8% accuracy on ImageNet challenge [108]. Recently, several variants of

building block for convolutional neural networks have been proposed and improved

the model performance. VGG networks [112] factored the large convolutional kernels

into a sequence of 3× 3 kernels to reduce the number of parameters. Inception net-

work [117] deployed filters in multiple scales within an inception module and combined

the information from the context of multiple sizes. Residual network [54] inserted skip
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Figure 2.4. The procedure of computing image representations. Classical
texture-based representations encode handcrafted local descriptors using a higher-
order encoding such as Fisher vector. The representations obtained from AlexNet
can be considered as convolutional features aggregated by a two-layer fully-connected
network. Deep filter banks [23] attempted to aggregate convolutional features
with Fisher vector. The figure comes from: https://www.robots.ox.ac.uk/~vgg/

publications/2015/Cimpoi15/presentation.pdf.

connections to allow gradient flow to the bottom layers alleviating the problem of van-

ishing gradients. DenseNet [58] connected all layers within a dense block to further

improve the recognition performance. SENet [57] proposed squeeze and excitation

modules to reweight feature channels with global features. Designing better building

blocks for CNNs models is an area of research.

2.4 Aggregating convolutional features

Conceptually we can consider the fully-connected network as an aggregation func-

tion, which accumulates the convolutional features. Theoretically, a two-layer feed-

forward network given sufficient hidden units is a universal approximator of con-

tinuous functions. However, the number of hidden units required for a given task
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is unclear. Moreover, these layers usually consist of millions of parameters, which

make the learning prone to overfitting. The recent models proposed to aggregate

convolutional features in a translationally invariant manner resulting in deep tex-

ture representation, as illustrated in Fig. 2.4. State-of-the-art CNN models for im-

age classification [117, 54, 58, 57] replaced the two-layer fully-connected layer with

global average pooling to aggregate the convolutional features. Deep filter banks [23]

constructed Fisher Vector representation on top of CNN activations. NetVLAD [3]

extended the VLAD representation and used soft cluster assignments to derive an

end-to-end trainable VLAD representation.

In this thesis, We present Bilinear CNNs (B-CNNs) that generalize existing tex-

ture representations. Our key insight is that several widely-used texture represen-

tations can be written as a pooled outer product of two suitably designed features.

The output is a fixed high-dimensional representation which can be combined with a

fully-connected layer to predict class labels. The simplest bilinear layer is one where

two identical features are combined with an outer product. This is closely related to

the Second-Order Pooling approach of Carreira et al. [19] popularized for semantic

image segmentation. When these features are extracted from convolutional neural

networks, the resulting architecture can be trained in an end-to-end manner on large

datasets, or domain-specific fine-tuning for transfer learning.
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CHAPTER 3

BILINEAR CONVOLUTIONAL NEURAL NETWORKS

In this chapter, we introduce bilinear CNNs that represent an image as a pooled

outer product of features derived from two CNNs and capture localized feature inter-

actions in a translationally invariant manner. B-CNNs generalize various widely-used

bag-of-visual-words representations, but unlike prior work, they can be trained in an

end-to-end manner. We demonstrate the effectiveness of the models and report the

recognition accuracy on various fine-grained, texture, and scene recognition tasks.

The feature aggregation is orderless, and thus the representations are invariant to

image translation. We analyze the effect of orderless feature aggregation in achieving

translationally-invariant representations and compare it against the commonly-used

data augmentation approach with spatial jittering. As the feature dimension of the

outer product grows quadratically, representing the images with full bilinear features

is not memory-efficient. We study the methods of approximating outer-product fea-

tures with PCA or Tensor sketches for dimensionality reduction.

3.1 The B-CNN architecture

B-CNN for image classification consists of a quadruple B = (fA, fB,P , C). Here

fA and fB are feature functions based on CNNs, P is a pooling function, and C

is a classification function. A feature function is a mapping f : L × I → RK×D,

that takes an image I ∈ I and a location l ∈ L and outputs a feature of size

K × D. We refer to locations generally, which can include position and scale. The
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feature outputs are combined at each location using the matrix outer product, i.e.,

the bilinear combination of fA and fB at a location l is given by

bilinear(l, I, fA, fB) = fA(l, I)TfB(l, I). (3.1)

Both fA and fB must have the same feature dimension K to be compatible. The

value of K depends on the particular model. For example, K = 1 for BoVW model

and equals the number of clusters in a FV model. The pooling function P aggregates

the bilinear combination of features across all locations in the image to obtain a global

image representation Φ(I). We use sum pooling in all our experiments, i.e.,

Φ(I) =
∑

l∈L

bilinear(l, I, fA, fB) =
∑

l∈L

fA(l, I)TfB(l, I). (3.2)

Since the location of features is ignored during pooling, the bilinear feature Φ(I)

is an orderless representation. If fA and fB extract features of size K×M and K×N

respectively, then Φ(I) is of size M × N . The bilinear feature is a general-purpose

image representation that can be used with a classifier C (Figure 3.1). Intuitively,

the outer product conditions the outputs of features fA and fB on each other by

considering their pairwise interactions, similar to the feature expansion in a quadratic

kernel.

3.1.1 Feature functions

A natural candidate for the feature function f is a CNN consisting of a hierarchy

of convolutional and pooling layers. In our experiments we use CNNs pre-trained on

the ImageNet dataset truncated at an intermediate layer as feature functions. By pre-

training we benefit when domain-specific data is limited. This has been shown to be

effective for a number of tasks ranging from object detection, texture recognition, to

fine-grained classification [33, 50, 106, 22]. Another advantage of using CNNs is that
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Figure 3.1. Image classification using a B-CNN. An image is passed through
CNNs A and B, and their outputs at each location are combined using the matrix
outer product and average pooled to obtain the bilinear feature representation. This
is passed through a linear and softmax layer to obtain class predictions.

the resulting network can process images of an arbitrary size and produce outputs

indexed by image location and feature channel.

The feature functions fA and fB can be independent, partially shared, or fully

shared as shown in Figure 3.2. The independent model corresponds to the most-

general model where fA and fB are two CNNs with different parameters. Second-

order pooling which computes the outer product between the features with itself

is considered as a fully shared B-CNN models. The feature functions used to ap-

proximate classical texture representations we present in Section 3.2, as well as the

low-dimensional B-CNNs we present in Section 3.4 are considered as partially shared

B-CNN models.

3.1.2 Normalization and classification

We perform additional normalization steps where the bilinear feature x = Φ(I) is

passed through a signed square-root (y← sign(x)
√
|x|), followed by `2 normalization
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Figure 3.2. Variants of B-CNNs architecture. Feature functions in B-CNNs
can (a) share no computations (e.g., B-CNN model based on VGG-M and VGG-D),
(b) share computations partially (e.g., NetVLAD, B-CNN PCA model described in
Section 3.4), and (c) share all computations (e.g., B-CNN model based on VGG-M).

(z ← y/||y||2) inspired by [101]. This improves performance in practice (see our

earlier work [83] for an evaluation of the effect of normalization). For classification

we use logistic regression or linear SVM [109]. Although this can be replaced with

an arbitrary multi-layer network, we found that linear models are effective on top of

bilinear features.

3.1.3 End-to-end training

Since the overall architecture is a directed acyclic graph, the parameters can

be trained by back-propagating the gradients of the classification loss (e.g., cross-

entropy). The bilinear form simplifies the gradient computations. If the outputs of

the two networks are matrices A and B of size L×M and L×N respectively, then

the bilinear feature is x = ATB of size M ×N . Let d`/dx be the gradient of the loss

function ` with respect to x, then by chain rule of gradients we have:

d`

dA
= B

(
d`

dx

)T
,

d`

dB
= A

(
d`

dx

)
. (3.3)

As long as the gradients of the features A and B can be computed efficiently the

entire model can be trained in an end-to-end manner. The scheme is illustrated in

Figure 3.3.
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Figure 3.3. Flow of gradients in a B-CNN.

3.2 Relation to classical texture representations

In this section we show that various orderless texture descriptors we discussed in

Chapter 2 can be written in the bilinear form and derive variants that are end-to-end

trainable. Since the properties of texture are usually translationally invariant, most

texture representations are based on orderless aggregation of local image features, e.g.,

sum or max operation. A non-linear encoding is typically applied before aggregation

of local features to improve their representation power. Additionally, a normalization

of the aggregated feature (e.g., power and `2) is done to increase invariance. Thus,

texture representations can be defined by the choice of the local features, the encoding

function, the pooling function, and the normalization function. To simplify further

analysis, we decompose the feature function f as f(l, I) = g(h(l, I)) = g(x) to

denote the explicit dependency on the image and the location of h and additional

non-linearities g.

3.2.1 Classical texture representations as bilinear models

Bag-of-visual-words (BoVW) [25] obtains a set of visual words by clustering and

assign each feature x to the closest cluster center (also called “hard assignment”) and

the image is represented as a histogram denoting frequencies of each visual word. If

we denote η(x) as the one-hot encoding that is 1 at the index of the closest center of
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x and zero elsewhere, then BoVW can be written as a bilinear model with gA(x) = 1

and gB(x) = η(x).

The VLAD representation[62] encodes a descriptor x as (x−µk)⊗η(x), where ⊗ is

the kronecker product, µk is the closest center to x, and η(x) is the one-hot encoding of

x as before. These encodings are aggregated across the image by sum pooling. Thus

VLAD can be written as a bilinear model with gA(x) = [x−µ1; x−µ2; . . . ; x−µk].

Here, gA has k rows each corresponding to a center. And gB(x) = diag(η(x)), a

matrix with η(x) in the diagonal and 0 elsewhere. Notice that the feature functions

for VLAD output a matrix with k > 1 rows at each location.

The FV representation [101] computes both the first order αi = Σ
− 1

2
i (x−µi) and

second order βi = Σ−1
i (x − µi) � (x − µi) − 1 statistics, which are aggregated and

weighted by the Gaussian mixture model (GMM) posteriors θ(x). Here � denotes

element-wise multiplication. Thus, FV can be written as a bilinear model with gA =

[α1 β1;α2 β2; . . . ;αk βk] and gB = diag(θ(x)).

The O2P representation [19] computes the covariance statistics of SIFT features

within a region, followed by log-Euclidean mapping and power normalization. Their

approach was shown to be effective for semantic segmentation. O2P can can be

written as a bilinear model with symmetric features, i.e., fA = fB = fsift, followed by

pooling and non-linearities.

The appearance-based cluster centers learned by the encoder, η(x) or θ(x), in the

BoVW, VLAD and FV representations can be thought of as part detectors. Thus, by

modeling the joint statistics of the encoder η(x) or θ(x), and the appearance x, the

models can effectively describe appearance of parts regardless of where they appear

in the image. This is particularly useful for fine-grained recognition where objects

are not localized in the image.
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Exact formulation End-to-end trainable formulation

Model gB(x) gA(x) gB(x) gA(x)

VLAD diag(η(x)) x− µ diag(η̄(x)) x− µ

FV diag(θ(x)) [α,β] diag(η̄(x)) [x− µ, (x− µ)� (x− µ)]

BoVW η(x) 1 η̄(x) 1

O2P x x x x

Table 3.1. Texture encoders such as VLAD, FV, BoVW and O2P can be written as
outer products of the form gA

TgB. On the right are their end-to-end trainable formu-
lations that simplify gradient computations by replacing “hard assignment” η with
“soft assignment” η̄, ignoring variance normalization for FV, etc. For the symmetric
case (i.e., when fA = fB) bilinear pooling is identical to O2P. See Section 3.2.2 for
details.

3.2.2 End-to-end trainable formulations

Prior work on fine-grained recognition using texture encoders [23], [52] did not

learn the features in an end-to-end manner. Below we describe end-to-end trainable

approximation of VLAD proposed by [3] called NetVLAD, and present similar formu-

lations for all texture representations described in the earlier section. The ability to

directly fine-tune these models leads to significant improvements in accuracy across

a variety of fine-grained datasets. Table 3.1 summarizes the end-to-end trainable

approximations.

The first simplification was to replace the “hard assignment” η(x) in gB by a

differentiable “soft assignment” η̄(x). Given the k-th cluster center µk, the k-th

component of the soft assignment vector for an input x is given by,

η̄k(x) =
e−γ||x−µk||

2

∑
k′ e
−γ||x−µk′ ||2

=
ewk

Tx+bk

∑
k′ e

wk′
Tx+bk′

(3.4)

where wk = 2γµk, bk = −γ||µk||2 and γ is a parameter of the model. This is sim-

ply the softmax operation applied after a convolution layer with a bias term, and

can be implemented using standard CNN building blocks. The function gA remains

unchanged [x− µ1; x− µ2; . . . ; x− µk]. The second simplification is to decouple the
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dependence on µ of both the gA and gB during training which makes gradient com-

putation easier. Thus in NetVLAD during training the weights wk, bk and µk are

independent parameters.

We extend the NetVLAD to NetFV by appending the second order statistics to

the feature gA, i.e., gA = [x− µ1, (x− µ1)2; x− µ2, (x− µ2)2; . . . ; x− µk, (x− µk)2].

Here, the squaring is done in an element-wise manner, i.e., (x − µi)2 = (x − µi) �

(x − µi). The feature gB is kept identical to NetVLAD. This simplification discards

the covariances and priors present in the true GMM posterior used in the FV model.

Similarly, the NetBoVW approximation to BoVW replaces the hard assignments by

soft assignments η̄(x) computed in a manner similar to NetVLAD.

The O2P representation is identical to B-CNN when the feature functions fA and

fB are identical. However, the O2P representation applies a Log-Euclidean (matrix

logarithm) mapping to the pooled representation which is rather expensive to compute

since it involves an Eigenvalue decomposition and currently does not have efficient

implementation on GPUs. This significantly slows the forward and gradient compu-

tations of the entire network. In addition, back-propagating the gradients through

matrix logarithm is not straightforward and recent work on DeepO2P proposed by

Ionescu et al. [60] computing the gradients via back-propagation through SVD was

suffering from the numerical instability. We skip Log-Euclidean to efficiently fine-tune

the model right here. In Chapter 4 we will discuss an alternative normalizing O2P

representation using matrix square-root which can be approximated efficiently and

achieve better accuracy comparing to matrix logarithm.

3.3 Image Classification Experiments

We outline the models used in our experiments in Section 3.3.1. We then pro-

vide a comparison of various B-CNNs to prior work on fine-grained recognition in

Section 3.3.2, and texture and scene recognition in Section 3.3.3.
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3.3.1 Models and training setup

Below we describe various models used in our experiments:

FV with SIFT. We implemented a FV based using dense SIFT features [101]

extracted using VLFEAT [123]. The image is first resized to 448×448 and SIFT

features with a bin size of 8 pixels are computed densely across the image with a

stride of 4 pixels. The features are PCA projected to 80 dimensions before learning

a GMM with 256 components.

CNN with fully-connected (FC) layers. This is a standard baseline where

the features are extracted from the last FC layer, i.e., before the softmax layer of a

CNN. The input image is resized to 224×224 (the input size of the CNN) and mean-

subtracted before propagating it though the CNN. We consider two different repre-

sentations: 4096 dimensional relu7 layer outputs of both the VGG-M network [20]

and the 16-layer VGG-D network [112].

FV/NetFV with CNNs. This denotes the method of [23] that builds a descrip-

tor using FV pooling of CNN filter bank responses with 64 GMM components. One

modification over [23] is that we first resize the image to 448×448 pixels, i.e., twice

the resolution the CNNs were trained on, and pool features from a single-scale. We

consider two representations based on the VGG-M and VGG-D network where the

features are extracted from the relu5 and relu5 3 layers respectively.

VLAD/NetVLAD with CNNs. This approach builds VLAD descriptors on

CNN filter banks responses. We use the same setting as FV and aggregate the CNN

features with VLAD/NetVLAD pooling with 64 cluster centers.

BoVW/NetBoVW with CNNs. For BoVW we construct a vocabulary of 4096

words using k-means on top of the CNN features. For NetBoVW we use a 4096-way

softmax layer as an approximation to the hard assignment. We use the same setting

as FV and VLAD for feature extraction.
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B-CNNs. These are models presented in Section 3.1 where features from two

CNNs are pooled using an outer product. When the two CNNs are identical the model

is a extension of O2P using deep features without the log-Euclidean normalization.

We consider several B-CNNs – (i) one with two identical VGG-M networks truncated

at the relu5 layer, (ii) one with a VGG-D and VGG-M network truncated at the

relu5 3 and relu5 layer respectively, and (iii) initialized with two identical VGG-D

networks truncated at the relu5 3 layer. The input images are resized to 448×448 and

features are extracted using the two CNNs. The VGG-D network produces 28×28

output compared to 27×27 of the VGG-M network, so we downsample the VGG-D

output by ignoring a row and column when combining it with the VGG-M output.

The bilinear feature for all these models is of size 512×512. Note that the options

(i) and (iii) result in symmetric models where the two networks share all parameters

(which is also the case when they are fine-tuned due to symmetry), and hence have

the same memory overhead and speed as a single network evaluation in practice.

3.3.1.1 Fine-tuning

For fine-tuning we add k-way linear + softmax layer where k is the number of

classes in the fine-grained dataset. The parameters of the linear layer are initial-

ized randomly. We adopt a two-step training procedure of [11] where we first train

the linear layer using logistic regression followed by fine-tuning the entire model us-

ing back-propagation for several epochs (about 45 – 100 depending on the dataset

and model) at a relatively small learning rate (η = 0.001). Across the datasets we

found the hyperparameters for fine-tuning were fairly consistent. Although, the ex-

act VLAD, FV, BoVW models cannot be directly fine-tuned, we report results using

indirect fine-tuning where the local CNN features are extracted from the networks

fine-tuned with FC layers. We found this improves accuracy; however, direct fine-

tuning end-to-end trainable formulations such NetFV is significantly better.
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3.3.1.2 SVM training and evaluation

In all our experiments before and after fine-tuning, training and validation sets

are combined to train one-vs-all linear SVMs on the extracted features with hyperpa-

rameter Csvm = 1. Since our features are `2 normalized, the optimal of Csvm is likely

to be independent of the dataset. The trained classifiers are calibrated by scaling the

weight vector such that the median scores of positive and negative training examples

are at +1 and −1 respectively. For each dataset we double the training data by flip-

ping images and at test time average the predictions of the image and its flipped copy.

SVM training provides 1-3% improvement over logistic regression with the VGG-M

networks, but provides negligible improvement with the VGG-D networks. Test time

flipping improves performance by 0.5% on average for the VGG-M networks, while has

negligible impact on the accuracy for the VGG-D networks. Performance is measured

as the percentage of correctly classified images for all datasets.

3.3.2 Fine-grained recognition

We evaluate methods on following fine-grained datasets and report the per-image

accuracy in Table 3.3.2.1.

CUB-200-2011 [124] dataset contains 11,788 images of 200 bird species which

are split into roughly equal train and test sets with detail annotation of parts and

bounding boxes. Notice that in all our experiments, we only use image labels during

training without any part or bounding box annotation. In the following sections,

”birds” refers to the results on this dataset.

FGVC-aircraft dataset [95] consists of 10,000 images of 100 aircraft variants,

and was introduced as a part of the FGComp 2013 challenge. The task involves

discriminating variants such as the Boeing 737-300 from Boeing 737-400. The differ-

ences are subtle, e.g., one may be able to distinguish them by counting the number

of windows in the model. Unlike birds, airplanes tend to occupy a significantly larger
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portion of the image and appear in relatively clear background. Airplanes also have

a smaller representation in the ImageNet dataset compared to birds.

Stanford cars dataset [73] contains 16,185 images of 196 classes. Categories are

typically at the level of Make, Model, Year, e.g., “2012 Tesla Model S” or ‘2012 BMW

M3 coupe.” Compared to aircrafts, cars are smaller and appear in a more cluttered

background. Thus object and part localization may play a more significant role here.

NABirds [122] is larger than the CUB dataset consisting of 48,562 images of 555

spices of birds that include most that are found in North America. The work engaged

citizen scientists to produce high-quality annotations in a cost-effective manner. This

dataset also provides parts and bounding-box annotations, but we only use category

labels for training our models.

3.3.2.1 Bird species classification

Comparison to baselines. Table 3.3.2.1 “bird” column shows results on the

CUB-200-2011 dataset. The end-to-end approximations of texture representations

(NetBoWV, NetVLAD, NetFV) improve significantly after fine-tuning. Exact mod-

els with indirect fine-tuning (i.e., fine-tuned with FC layers) also improve, but the

improvement is smaller (shown in gray italics in Table 3.3.2.1). With fine-tuning the

single-scale FV models outperforms the multi-scale results reported in [23] – 49.9%

using VGG-M and 66.7% using VGG-D network. B-CNNs offer the best accuracy

across all models with the best performing model obtaining 84.1% accuracy (VGG-M

+ VGG-D). The next best approach is the NetVLAD with 81.9% accuracy.

We also trained the B-CNN (VGG-M + VGG-D) model on the much larger

NABirds dataset. For this model we skipped the SVM training step and report the

accuracy using softmax layer predictions. This model achieves 79.4% accuracy out-

performing a fine-tuned VGG-D network that obtains 63.7% accuracy. Van Horn et

al. [122] obtains 75% accuracy using AlexNet and part annotations at test time, while
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the “neural activation constellations” approach [111] obtains 76.3% accuracy using

a GoogLeNet architecture [117].

Comparison to other techniques. Table 3.3.2.1 shows other top-performing

methods on this dataset. The dataset also provides bounding-box and part anno-

tations and techniques differ based on what annotations are used at training and

test time (also shown in the Table). Two early methods that performed well when

bounding-boxes are not available at test time are 73.9% of the “part-based R-CNN” [133]

and 75.7% of the “pose-normalized CNN” [11]. These methods are based on AlexNet [74]

and can be improved with deeper and more accurate networks such as the VGG-D.

For example, the SPDA-CNN [132] trains better part detectors and feature repre-

sentations using the VGG-D network and report 84.6% accuracy. Krause et al. [72]

report 82.0% accuracy using a weakly-supervised method to learn part detectors, fol-

lowed by the part-based analysis of [133] using the VGG-D network. However, our

approach is simpler and faster since it does not rely on training and evaluating part

detectors. One of the top-performing approaches that does not rely on additional

annotations is the Spatial Transformer Networks [61]. It obtains 84.1% accuracy

using the batch-normalized Inception network [59].

Effect of normalization Tab. 3.3 shows the results of the B-CNN (VGG-M +

VGG-D) model without fine-tuning using various normalizations of the bilinear vec-

tor. The model with both square-root and `2 normalization achieves 80.1% accuracy.

Only square-root normalization results in small drop in accuracy to 79.4%. Only `2

normalization causes a larger drop in accuracy to 77.3%. No normalization at all is

significantly worse at 74.7% accuracy. This shows that both these normalizations are

useful and square-root has a higher effect on the performance than `2.

Common mistakes. Figure 3.4 shows the top six pairs of classes that are con-

fused by our fine-tuned B-CNN (VGG-M + VGG-D) model. The most confused pair

of classes is “American crow” and “Common raven”. The differences lie in the wing-
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birds aircrafts cars

features train test encoding w/o ft w/ ft w/o ft w/ ft w/o ft w/ ft

SIFT FV 18.8 - 61.0 - 59.2 -

FC 52.7 58.8 44.4 63.4 37.3 58.6

BoVW 41.9 43.8 56.2 60.1 54.2 58.4

NetBoVW 47.9 48.6 58.8 65.9 60.3 66.1

VGG-M VLAD 66.5 70.5 70.5 74.8 75.3 78.9

(relu5 ) n/a n/a NetVLAD 66.8 72.1 70.7 76.7 76.0 83.7

FV 61.1 64.1 64.3 71.2 70.8 77.2

NetFV 64.5 71.7 68.6 75.5 72.3 81.8

B-CNN 72.0 78.1 72.7 79.5 77.8 86.5

FC 61.0 70.4 45.0 76.6 36.5 79.8

BoVW 56.6 58.8 61.9 71.3 62.7 73.9

NetBoVW 65.9 69.7 65.1 74.0 71.0 76.7

VGG-D VLAD 78.0 79.0 75.2 80.6 81.9 85.6

(relu5 3 ) n/a n/a NetVLAD 77.9 81.9 75.3 81.8 82.1 88.6

FV 71.3 74.7 70.4 78.7 75.2 85.7

NetFV 73.9 79.9 71.5 79.0 77.9 86.2

B-CNN 80.1 84.0 77.7 86.9 82.9 90.6

VGG-M+
VGG-D

B-CNN 80.1 84.1 78.0 86.6 83.9 91.3

Inception-BN n/a n/a STNs [61] 84.1 - -

VGG-D Box n/a Krause et al. [72] 82.0 - 92.6

VGG-D Box+P Box SPDA-CNN [132] 84.6 - -

VGG-D Part n/a Zhang et al. [137] 85.9 - -

AlexNet B+P n/a Part-based RCNN [133] 73.9 - -

AlexNet B+P n/a Branson et al. [11] 75.7 - -

VGG-D Box Box BoT [126] - 88.4 92.5

FV+SIFT n/a n/a Gosselin et al. [52] - 80.7 82.7

Table 3.2. We compare various texture representations and prior work (separated by
a double line) on the birds [124], aircrafts [95], and cars [73] datasets. The first column
lists the features used in the encoding followed by the pooling strategy. FC pooling
corresponds to fully-connected layers on top these intermediate layer features such
that it corresponds to the penultimate layer of the original network. The second and
third columns show additional annotations used during training and testing. Results
are shown without and with domain-specific fine-tuning. Directly fine-tuning the
approximate models leads to better performance than indirectly fine-tuning (shown in
gray italics). B-CNN models achieve the best accuracy across texture representations.
The first, second, and third best texture models are marked with red, blue and yellow
colors respectively.
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American Crow Common Raven

Loggerhead Shrike Great Grey Shrike

Caspian Tern Elegant Tern

Acadian Flycatcher Yellow bellied Flycatcher

Brandt Cormorant Pelagic Cormorant

Glaucous winged Gull Western Gull

Figure 3.4. Top six pairs of classes that are most confused with each other on
the CUB dataset. In each row we show the images in the test set that were most
confidently classified as the class in the other column.

spans, habitat, and voice, none of which are easy to measure from the image. Other

confused classes are also similar – various Shrikes, Terns, Flycatchers, Cormorants

and Gulls. We note that the dataset has an estimated 4.4% label noise hence some

of these errors may come from incorrect labeling [122].

3.3.2.2 Aircraft variant classification

The trends among the baselines are similar to those in birds with a few exceptions.

The FV with SIFT is remarkably good (61.0%) and comparable to some of the CNN

baselines. Compared to the birds, the effect of fine-tuning is significantly larger
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normalization accuracy mAP

square-root + `2 80.1 81.3

square-root only 79.4 77.9

`2 only 77.3 79.6

none 74.7 70.9

Table 3.3. Effect of normalization on the B-CNN (VGG-M + VGG-D) model w/o
fine-tuning on the CUB-200-2011 dataset (“birds” setting).

for models based on the VGG-D network suggesting a larger domain shift from the

ImageNet dataset. As aircrafts appear mostly on the image center, cropping the

central image improves the accuracy over resizing whole image. We resize the images

into 512× 512 and then crop the central 448× 448 as input. This achieves the best

performance of 86.9% by the B-CNN (VGG-D) model.

3.3.2.3 Car model classification

FV with SIFT does well on this dataset achieving 59.2% accuracy. The effect of

fine-tuning on cars is larger in comparison to birds and airplanes. Once again the

B-CNNs outperform all the other baselines with the B-CNN (VGG-D + VGG-M)

model achieving 91.3% accuracy. The best accuracy on this dataset is by Krause et

al. [72] which obtains 92.6% accuracy. This is closely matched by 92.5% accuracy of

the discriminative patch triplets [126].

3.3.3 Texture and scene recognition

We experiment on three texture datasets – the Describable Texture Dataset (DTD) [22],

Flickr Material Dataset (FMD) [110], and KTH-TISP2-b (KTH-T2b) [18]. DTD con-

sists of 5640 images labeled with 47 describable texture attributes. FMD consists of 10

material categories, each of which contains 100 images. Unlike DTD and FMD where

images are collected from the Internet, KTH-T2b contains 4752 images of 11 mate-

rials captured under controlled scale, pose, and illumination. The KTH-T2b dataset
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FV B-CNN

dataset s = 1 s = 2 ms s = 1 s = 2 ms

DTD 67.8 70.6 73.6 69.6 71.5 72.9
±0.9 ±0.9 ±1.0 ±0.7 ±0.8 ±0.8

FMD 75.1 79.0 80.8 77.8 80.7 81.6
±2.3 ±1.4 ±1.7 ±1.9 ±1.5 ±1.7

KTH-T2b 74.8 75.9 77.9 75.1 76.4 77.9
±2.6 ±2.4 ±2.0 ±2.8 ±3.5 ±3.1

MIT indoor 70.1 78.2 78.5 72.8 77.6 79.0

Table 3.4. Mean per-class accuracy on texture and scene datasets. Results for
input images at different scales s = 1, s = 2 and ms correspond to a size of 224×224,
448×448 and multiple sizes respectively.

splits the images into four samples for each category. We follow the standard proto-

col by training on one sample and test on the remaining three. On DTD and FMD,

we randomly divide the dataset into 10 splits and report the mean accuracy across

splits. Besides these, we also evaluate our models on MIT indoor scene dataset [105].

Indoor scenes are weakly structured and orderless texture representations have been

shown to be effective here. The dataset consists of 67 indoor categories and a defined

training and test split.

We compare B-CNN to the prior state-of-the-art approach of FV pooling of CNN

features [23] using the VGG-D network. These results are without fine-tuning. On the

MIT indoor dataset fine-tuning B-CNNs leads to a small improvement 72.8%→ 73.8%

using relu5 3 at s = 1, while on the other datasets the improvements were negligible,

likely due to the relatively small size of these datasets. Table 3.4 shows the results

obtained by features from a single scale and features from multiple scales 2s, s ∈

{1.5:-0.5:-3} relative to the 224×224 image using B-CNN and FV representations. We

discard scales for which the image is smaller than the size of the receptive fields of the

filters, or larger than 10242 pixels for efficiency. Across all scales of the input image

the performance of the two approaches are identical. Multiple scales consistently lead
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to an improvement in accuracy. These results show that the B-CNNs are comparable

to the FV pooling for texture recognition. One drawback is that the FV features

with 64 GMM components has smaller in size (64×2×512) than the bilinear features

(512×512). However, bilinear features are highly redundant and their dimensionality

can be reduced by an order of magnitude without loss in performance (see Section 3.4).

3.4 Dimensionality reduction

The outer product of CNN features generates very high dimensional image descrip-

tors, e.g., 262K for the B-CNN models in Table 3.3.2.1. These features are highly

redundant and their dimensionality can be reduced by an order of magnitude without

loss in classification performance. Prior work [62] has also shown that in the context

of SIFT-based FV and VLAD, highly compact representations can be obtained.

In this section we investigate the trade-off between accuracy and feature dimension

for various texture models proposed in Section 3.2 for fine-grained recognition. For

NetVLAD and NetFV the feature dimension can be varied by changing the number

of cluster centers. For B-CNNs, consider the case where the outer product is com-

puted among features x and y. There are several strategies for reducing the feature

dimension:

(1) Projecting the outer product into a lower dimensional space, i.e., Φ(x,y) =

vec(xTy)P, where P is a projection matrix and the vec operator reshapes the

matrix into a vector.

(2) Projecting both the features into a lower-dimensional space and computing outer

product, Φ(x,y) = (xA)T (yB), where A, B are projection matrices.

(3) Projecting one of the features into a lower-dimensional space and computing the

outer product, i.e., by setting B to an identity matrix in the previous approach.

32



8 16 32 64

Number of components

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

Birds

NetVLAD-ft

NetVLAD

NetFV-ft

NetFV

8 16 32 64

Number of components

0.6

0.65

0.7

0.75

0.8

A
c
c
u

ra
c
y

Aircrafts

NetVLAD-ft

NetVLAD

NetFV-ft

NetFV

8 16 32 64

Number of components

0.65

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

Cars

NetVLAD-ft

NetVLAD

NetFV-ft

NetFV

Figure 3.5. Performance of NetVLAD and NetFV models encoding VGG-M
relu5 features with different number of cluster centers on fine-grained datasets before
(dashed lines) and after (solid lines) fine-tuning. Given the same number of cluster
centers, the feature dimension of NetFV representation is twice as large as NetVLAD.

In each case, the projection matrices can be initialized using Principal Component

Analysis (PCA). Although the first approach is straightforward, computing the PCA

is computationally expensive due to the high dimensionality of the features (the co-

variance matrix of the outer product has d4 entries for d-dimensional features). The

second approach is computationally attractive but the outer product of two PCA pro-

jected features results in a significant reduction in accuracy as shown in our earlier

work [83], and more recently in [43]. We believe this is because after the PCA rota-

tion, the features are no longer correlated across dimensions. Remarkably, reducing

the dimension of only one feature using PCA (third option) works well in practice.

While the projection can be initialized using PCA, they can be trained jointly with

the classification layers. In addition to reducing the feature dimension, It also breaks

the symmetry of the features when identical networks are used and is an example

of a partially shared feature pipeline (Figure 3.2b). It also resembles the computa-

tions of VLAD and FV representations where both fA and fB are based on the same

underlying feature.

The accuracy as a function of feature dimension shown in Figure 3.5 for NetFV

and NetVLAD. These results are obtained by varying the number of cluster centers.
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Figure 3.6. Performance of B-CNNs using VGG-M relu5 features as function of
feature dimension before (dashed lines) and after (solid lines) fine-tuning. One of the
512 dimensional feature is projected using PCA to k dimensions leading to a outer
product of size k× 512 (see Section 3.4 for details). The performance using Compact
Bilinear Pooling (CBP) [43] and the full 512×512-dimensional model is shown in red
and black respectively.

The results indicate the performance of NetVLAD and NetFV do not improve with

more cluster centers beyond 32.

Figure 3.6 shows the same for B-CNN features and compares the PCA approach to

Compact Bilinear Pooling (CBP) technique [43]. CBP approximates the outer prod-

uct using a product of sparse linear projections of features with a Tensor Sketch [103].

The performance of the full model with 512× 512 dimensions with and without fine-

tuning is shown as a straight line. On birds and aircrafts the dimensionality can be

reduced by 16× (i.e., to 32×512) with a less than 1% loss in accuracy. In comparison,

NetVLAD with the same feature size (i.e., with 32 components) is about 3-4% less ac-

curate. Overall, for a given budget of dimensions the projected B-CNNs outperform

NetVLAD and NetFV representations. The PCA approach is slightly worse than

CBP. However, one advantage is that PCA can be implemented as a dense matrix

multiplication which is empirically 1.5× faster than CBP which involves computing

Fourier transforms and their inverses.
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Bilinear pooling FC pooling

data aug. f1 f5 f25 f1 f25

error@1 38.7 37.1 36.6 46.4 39.6

error@5 17.0 16.3 16.0 22.5 17.6

Table 3.5. Accuracy on the ILSVRC 2014 validation set using bilinear and FC pool-
ing on top of relu5 layer output of a VGG-M network. Both networks are trained from
scratch on the ILSVRC 2012 training set with varying amounts of data augmentation.

3.5 Training B-CNNs on ImageNet LSVRC

We evaluate B-CNNs trained from scratch on the ImageNet LSRVC 2012 dataset [108].

In particular, we train a B-CNN with a relu5 layer output of VGG-M network and

compare it to the standard VGG-M network. This allows a direct comparison of

bilinear pooling with FC pooling since the rest of the architecture is identical in

both networks. Additionally, we compare the effect of implicit translational invari-

ance obtained in CNNs by spatially ”jittering” the data, as well a explicit translation

invariance of B-CNNs due to the orderless pooling.

We train the two networks to classify 224×224 images with different amounts of

spatial jittering – “f1” for flip, “f5” for flip + 5 translations, and “f25” for flip +

25 translations. Training is done with stochastic sampling where one of the jittered

copies is randomly selected for each example. The parameters are randomly initialized

and trained using stochastic gradient descent with momentum for a number of epochs.

We start with a high learning rate and reduce it by a factor of 10 when the validation

error stops decreasing, and continue till no further improvement is observed.

Table 3.5 shows the “top1” and “top5” validation errors for B-CNN and VGG-

M. The validation error is reported on a single center cropped image. Note that we

train all networks with neither PCA color jittering nor batch normalization and our

baseline results are within 2% of the top1 errors reported in [20]. The VGG-M model

achieves 46.4% top1 error with flip augmentation during training. The performance

35



improves significantly to 39.6% with f25 augmentation. B-CNN achieves 38.7% top1

error with f1 augmentation, outperforming VGG-M trained with f25 augmentation.

The results show that B-CNN is discriminative, robust to translation and that explicit

translation invariance is more effective.

This trend is also reflected in the design of the latest deep architectures such as

Google Inception [117], Residual Networks [54] and DenseNet [58] that replace the

fully-connected layers with global pooling layers. Although the experiment shows

the improvement using B-CNN with VGG-M model training from scratch for large-

scale image classification task, in this experiment we mainly intend to analyze the

effect of explicitly modeling the invariance of translation comparing to achieving the

invariance via data augmentation. We would like to note that the VGG models is

relatively shallower comparing to state-of-the-art CNN models [117, 54, 58]. Recent

work proposed by [81] presented the experiment and showed that training second-

order features from scratch based on latest CNN backbones can further improve the

recognition accuracy on large-scale image classification.

3.6 Discussion

One of the motivations for bilinear CNNs was to model the multiplicative feature

interactions in a way similar to part-based models [10, 135, 11, 39, 133, 134], which

were common approaches for fine-grained recognition. The multiplicative feature

interactions implicitly model the spatial attention mechanism, and together with

orderless pooling, the resultant representations are robust to object deformation. At

the time when we published the models, they outperformed the previous state-of-the-

art fine-grained recognition models by a significant margin and inspired subsequent

works in this direction [26, 43, 137, 138, 139, 49, 116]. The particular case when the

two feature streams share the same computation is related to using a second-order

polynomial as the kernel function. Kernel pooling [26] extended the idea to model
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higher-order feature interactions with compact approximation [43] and demonstrated

how to approximate Gaussian RBF up to a given order. This further improved fine-

grained recognition accuracy.

In Chapter 5, we visualize the CNN activations by showing the patches that highly

activate to selected filters. We show that it is challenging for the models to achieve

the part-appearance decomposition without supervision beyond category labels. This

has motivated several works [137, 138] in attempts to explicitly model the attention

to a pre-defined set of object parts with or without extra supervision. There were

also other recent works [139, 49, 116] exploring attention models without using extra

supervision to achieve better fine-grained recognition performance. The multiplicative

feature interactions have also been shown to be effective in other applications such

as aggregating spatio-temporal features for video action recognition [127, 21] and

modeling multi-modal data such as appearance and motion [40], video and audio [130],

and vision and language [42, 130].

In summary, we presented the B-CNN architecture that aggregates second-order

statistics of CNN activations resulting in an orderless representation of an image.

The architecture can be optimized end-to-end for the training from scratch on large

datasets or domain-specific fine-tuning for transfer learning. We also compared B-

CNNs to both exact and approximate variants of deep texture representations and

studied the accuracy and memory trade-offs they offer. Moreover, these represen-

tations are redundant, and in most cases, their dimension can be reduced by order

of magnitude without significant loss in accuracy. We also compared the effect of

translational invariance achieved by orderless aggregation against the data augmen-

tation approach with spatial jittering for general object classification on the ImageNet

dataset.
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CHAPTER 4

IMPROVING FEATURE AGGREGATION

Bursty features, as shown in Figure 4.1, refer to the visual elements that appear

many times in an image. The phenomenon happens when a homogeneous texture

occupies a large portion of the image. Bag-of-visual-words framework as image rep-

resentations suffers from feature burstiness for image classification. The framework

counts each appearance of individual features independently, ignoring the fact that

the same feature is likely to appear multiple times. Feature normalization is an

approach to mitigating this problem. In Chapter 3, we normalize the B-CNN rep-

resentation with element-wise sign square-root, which scales feature co-occurrences

by square root and reduce the values of frequent co-occurrences. In this chapter, we

explore two other normalization techniques: (1) spectral normalization with matrix

functions and (2) democratic aggregation. The first approach scales the spectrum of

covariance matrix and is related to Log-Euclidean mapping to linearize the manifold

for covariance matrices with matrix logarithm. Democratic aggregation measures the

frequency of each outer product by the similarity to the aggregated image represen-

tation. The normalization is achieved by a weighted sum of outer products with

the weighting coefficients inversely proportional to the frequency. We study the ap-

proaches to efficiently computing the two normalization techniques and discuss the

tradeoff between recognition accuracy, speed, and memory usage.
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Figure 4.1. Burstiness of visual elements. Bursty visual elements shown in
the yellow circles are extracted from the homogeneously-textured regions. The figure
comes from [63].

4.1 Spectral normalization using matrix functions

In this section we analyze the bilinear features when the two features are identical

which results in a symmetric positive semi-definite matrix. The symmetric B-CNNs

are identical to the Second-Order Pooling (O2P) [19] popularized for semantic seg-

mentation. The network architecture is illustrated in Figure 4.2. Given an image

a CNN is used to extract a set of features xi across locations i = 1, 2, . . . , n. The

bilinear pooling extracts the second-order statistics and adds a small positive value ε

to the diagonal resulting in matrix A given by:

A =
1

n

(
n∑

i=1

xixi
T

)
+ εI (4.1)

Given a feature xi of d dimensions the matrix A is of size d × d. We showed that

normalization of the matrix A is critical for good performance in Table 3.3 in. In

39



Figure 4.2. Improved B-CNN architecture with a log(A) or A1/2, signed
square-root, and `2 normalization layers added after the bilinear pooling of CNN
activations.

particular, elementwise signed square-root (x ← sign(x)
√
|x|) and `2 normalization

is applied to the matrix A before it is plugged into linear classifiers. Both the pooling

and normalization steps are efficient and piecewise differentiable and hence the entire

network can be trained in an end-to-end manner by back-propagating the gradients

of the objective function (e.g., cross-entropy loss for classification tasks).

The improved B-CNN architecture additionally applies a matrix function normal-

ization to the matrix A after pooling (Figure 4.2). In particular we consider the

matrix logarithm log(A) originally proposed in the O2P scheme [19] and the matrix

power function Ap for fractional positive values of 0 < p < 1. Of particular interest is

when p = 1/2 which corresponds to the matrix square-root defined as a matrix Z such

that ZZ = A. Unlike elementwise transformations, matrix-functions require compu-

tations that depend on the entire matrix. Approaches include variants of Newton

iterations or via a Singular Value Decomposition (SVD) (described next).

4.1.1 Matrix functions and their gradients via SVD

Ionescu et al. [60] explore matrix back-propagation for training CNNs and using

techniques for computing the derivative of matrix functions (e.g., [93]). Given matrix

A with a SVD given by A = UΣUT , where the matrix Σ = diag(σ1, σ2, . . . , σn), the

matrix function f can be written as Z = f(A) = Ug(Σ)UT , where g is applied to the
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elements in the diagonal of Σ. Given the gradient of a scalar loss L with respect to

Z, the gradient of L with respect to A can be computed as:

∂L

∂A
= U

{(
KT �

(
UT ∂L

∂U

))
+

(
∂L

∂Σ

)

diag

}
UT . (4.2)

Here� denotes element-wise matrix multiplication. The matrixK is a skew-symmetric

matrix given by Ki,j = 1/(σi − σj)I(i 6= j), where I(·) is the indicator function. The

gradients of L with respect to U and Σ are:

∂L

∂U
=

{
∂L

∂Z
+

(
∂L

∂Z

)T}
Ug(Σ),

∂L

∂Σ
= g′(Σ)UT ∂L

∂Z
U. (4.3)

Here g′(Σ) is the gradient of the g with respect to Σ. Since g is applied in an

elementwise manner the gradients can be computed easily. For example for the matrix

square-root

g′(Σ) = diag

(
1

2
√
σ1

,
1

2
√
σ2

, . . . ,
1

2
√
σn

)
. (4.4)

4.1.2 Effect of the exponent p in the matrix power normalization Ap.

Figure 4.3 shows that accuracy of non-fine-tuned B-CNNs with the VGG-D net-

work using power normalization Ap for different values of the power p. The value

p = 1 corresponds to the baseline B-CNN accuracy [83] where only elementwise

signed square-root and `2 normalization are applied. The plots show that the matrix

square-root (p = 1/2) works the best and outperforms the baseline B-CNN accuracy

by a considerable margin.

4.1.3 Effect of combining various normalization schemes.

Table 4.1 shows the accuracy of non-fine-tuned B-CNNs using various normaliza-

tion schemes. The baseline model is shown as the row with only the sgnsqrt(A) col-

umn checked. Matrix square-root or the matrix logarithm normalization alone does

not always improve over elementwise signed square-root normalization. However,
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Figure 4.3. Accuracy vs. the exponent p.

when combined, the improvements are significant suggesting that the two normal-

ization schemes are complementary. Overall the combination of matrix square-root

normalization is better than the matrix logarithm normalization.

4.2 Matrix square-root and its gradients

4.2.1 Newton’s method for computing the matrix square-root

A drawback of SVD based computations of matrix functions is that the com-

putation on GPU is currently poorly supported and sometimes slower than CPU

computations. In practice for the networks we consider the time taken for the SVD is

comparable to the rest of the network evaluation. For smaller networks this step can

become the bottleneck. Instead of computing the matrix square-root accurately, one

can instead run a few iterations of a Netwon’s method for root finding to the equation

F (Z) = Z2 − A = 0. Higham [56] describes a number of variants and analyzes their

stability and convergence properties. One such is the Denman-Beavers iterations [30].

Given Y0 = A and Z0 = I, where I is the identity matrix, the iteration is defined by

Yk+1 =
1

2
(Yk + Z−1

k ), Zk+1 =
1

2
(Zk + Y −1

k ). (4.5)
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Normalization Accuracy on dataset

Network log(A) A1/2 sgnsqrt(A) Birds Cars Aircrafts

VGG-M

X 72.0 77.8 74.7

X 70.8 77.4 77.1

X 70.3 76.8 75.0

X X 72.7 81.2 81.0

X X 76.3 83.4 80.7

VGG-D

X 80.1 82.9 77.7

X 77.9 79.8 78.7

X 80.6 82.3 78.7

X X 81.1 85.1 81.4

X X 82.8 86.7 80.9

Table 4.1. Accuracy of B-CNNs with different normalization schemes with non
fine-tuned networks. The best results are obtained with matrix-square root followed
by element-wise signed square-root normalization. Notably the matrix square-root is
better than the matrix logarithm normalization on most datasets for both networks.

The matrices Yk and Zk converge quadratically to A1/2 and A−1/2 respectively. In

practice about 20 iterations are sufficient. However, these iterations are not GPU

friendly either since they require computing matrix inverses which also lack efficient

GPU implementations. A slight modification of this equation obtained by replacing

the inverses using a single iteration of Newton’s method for computing inverses [7]

results in a different update rule called Newton-Schulz iterations given by:

Yk+1 =
1

2
Yk(3I − ZkYk), Zk+1 =

1

2
(3I − ZkYk)Zk. (4.6)

However, unlike the Denman-Beavers iterations the above iterations are only locally

convergent, i.e., they converge if ||A− I||2 < 1. In practice one can scale the matrix

A = αA to satisfy this condition [8]. These iterations only involve matrix multipli-

cations and are an order-of-magnitude faster than SVD computations on the GPU.

Moreover, one can run these iterations for a small number of iterations (even one!)

to trade-off accuracy and speed. Another advantage given by the above Newton
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iterations is that the iterations could be unrolled as layers of computations whose

derivatives could be derived ’for free’ via automatic differentiation with latest deep

learning packages.

4.2.2 Gradients of matrix-square root by solving a Lyapunov equation

We have discussed two options to compute the gradients for matrix square-root:

1) back-propagation via SVD and 2) automatic differentiation via Newton iterations.

However, there are drawbacks to both approaches. The SVD-based approach is nu-

merically unstable, as described in Section 4.2.3. Newton iterations, along with auto-

matic differentiation, provide a straightforward approach for backward computation.

However, this requires to cache the intermediate outputs from the iterations during

forward computations. When the matrices are high-dimensional with a large num-

ber of iterations, the automatic differentiation approach is memory-demanding. The

alternative approach is to derive the gradients via solving the Lyapunov equation.

Given a symmetric PSD matrix A, with Z = A1/2, and a small change dA to the

matrix A, the change dZ to the matrix Z satisfies the equation:

A1/2dZ + dZA1/2 = dA. (4.7)

This can be derived by applying the product rule of derivatives to the equation

ZZ = A. From this one can derive the corresponding chain rule for the loss L

as:

A1/2

(
∂L

∂A

)
+

(
∂L

∂A

)
A1/2 =

∂L

∂Z
. (4.8)

The above is a Lyapunov equation [90] which has a closed-form solution given by:

vec

(
∂L

∂A

)
=
(
A1/2 ⊗ I + I ⊗ A1/2

)−1
vec

(
∂L

∂Z

)
. (4.9)
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Here ⊗ is the Kronecker product and the vec(·) operator unrolls a matrix to a vector.

However, the Lyapunov equation can be solved more efficiently using the Bartels-

Stewart algorithm [5] or the iterative solver proposed by [107]. The iterative solver is

in favor due to its efficiency and simple implementation.

We can rewrite the Lyapunov equation in the following matrix form:

X =



A1/2 − ∂L

∂Z

0 −A1/2


 =



I ∂L

∂A

0 I






A1/2 0

0 −A1/2






I − ∂L

∂A

0 I


 (4.10)

from which we can derive the following equation as detailed in [56],

sign

(

A1/2 − ∂L

∂Z

0 −A1/2



)

=



I −2 ∂L

∂A

0 I


 (4.11)

where sign(X) is matrix sign function which satisfies the property that sign(X) =

X(X2)−1/2. The gradient of the loss with respect to the matrix A can be read off from

the top-right block of the right matrix in equation 4.11. Newton-Schulz iterations for

computing the matrix sign result in the following iterations for solving the Lyapunov

equation:

Yk+1 =
1

2
Yk(3I + Y 2

k ), Zk+1 =
1

2
Zk(3I − Y 2

k )− 1

2
Yk(YkZk + ZkYk)) (4.12)

where Y0 and Z0 are initialized as A1/2 and ∂L
∂Z

respectively, and Zk converges to

2 ∂L
∂A

. The iterations involve one-step Newton iteration for matrix inverse, and hence

the matrix X needs to be scaled to satisfy ||X − I||2 < 1 for the convergence. The

iterations can be solved as fast as the automatic differentiation of the iterative matrix

square-root without caching the intermediate outputs during the forward computa-

tion. One can check the stopping criterion to decide if the approximation converges

for terminating the iterations. In practical, we found that five iterations are sufficient

for the training.
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4.2.3 Numerical stability and truncated SVD gradients

While the SVD can be used to compute arbitrary matrix functions in the forward

step, computing the gradients using the Equation 4.2 is problematic when the matrix

A has eigenvalues that are close to each other. This stems from the fact that SVD is

ill-conditioned in this situation. Adding a small ε to the diagonal of A does not solve

this problem either. In practice a truncated SVD gradient where the matrices K and

Σ are set to zero for indices corresponding to eigenvalues that falls below a threshold

τ works wells. However, even with the truncated SVD we found that the gradient

computation results in numerical exceptions. Simply ignoring these cases worked

well for fine-tuning when the learning rates were small but their impact on training

networks from scratch remains unclear. Lyapunov gradients on the other hand are

numerically stable because the inverse in Equation 4.9 depends on 1/σmin where σmin

is the smallest eigenvalue of the matrix A1/2. The iterative solver is favorable as

it only involves matrix-matrix multiplication and thus it is more efficient than the

SVD-based approach.

4.2.4 Effect of network fine-tuning with matrix square-root normalization

We perform fine-tuning of the network using the matrix square-root layer in com-

bination with elementwise square-root layer. Table 4.2 shows the results with fine-

tuning B-CNNs with the VGG-M and VGG-D networks. For these experiments the

gradients were computed using the Lyapunov technique described in Section 4.1.1.

Training with SVD-based gradients led to a slightly worse performance, details of

which are described in the next section. The matrix square-root normalization re-

mains useful after fine-tuning and results in a 2-3% improvement on average across

the fine-grained datasets for both networks. The improvements are especially large

for the VGG-M network.
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Normalization Accuracy on dataset

Network A1/2 sgnsqrt(A) Birds Cars Aircrafts

VGG-M
X 72.0 78.1 77.8 86.5 74.7 81.3

X X 76.3 81.3 83.4 88.5 80.7 84.0

VGG-D
X 80.1 84.0 82.9 90.6 77.7 86.9

X X 82.8 85.8 86.7 92.0 80.9 88.5

Table 4.2. For each dataset the accuracy before and after end-to-end fine-tuning of
the networks are shown on the left and right column respectively. Matrix square-root
normalization provides consistent improvements in accuracy over the baseline across
all datasets.

4.2.5 Analysis on the precision of computations

Despite the improvement it offers a drawback of the matrix square-root is that

computing the SVD is relatively slow and lacks batch-mode implementations. For

the VGG-D network the computing the SVD of a 512x512 matrix takes about 22

milliseconds on a NVIDIA Titan X GPU, which is comparable to the rest of the net-

work evaluation. Instead of computing the matrix square-root accurately using SVD,

one can compute it approximately using a few iterations of the modified Denman-

Beavers iterations described in Section 4.1.1. Table 4.3 shows that accuracy on the

final classification task and time taken as a function of number of iterations. As few

as 5 iterations are sufficient for matching the accuracy of the SVD method while be-

ing 5× faster. Surprisingly, even a single iteration provides non-trivial improvements

over the baseline model (0 iterations) and takes less than 1 millisecond to evaluate.

Although we didn’t implement it, the method can be made faster using a batch-mode

version of these iterations. With these iterative methods matrix-normalization layers

are no longer the bottleneck in network evaluation.

Table 4.3 also shows the accuracy of fine-tuning with various gradient schemes

for the matrix square-root. The time taken for backward computations (both LYAP
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Forward Backward
Iterations 0 1 5 10 20 SVD LYAP SVD Faster

Birds 80.1 81.7 83.0 82.9 82.8 82.8 85.8 85.5 85.3
Cars 82.9 85.0 87.0 86.8 86.7 86.7 92.0 91.8 91.4

Aircrafts 77.7 79.5 81.3 81.1 80.9 80.9 88.5 87.8 86.8
Time 0 1ms 4ms 6ms 11ms 22ms - - -

Table 4.3. On the left is the effect of number of Newton iterations for computing
the matrix square-root on the speed and accuracy of the network. On the right is the
accuracy obtained using various gradient computation techniques in the backward
step. The VGG-D network is used for this comparison.

and SVD) are negligible given the SVD decomposition computed in the forward step

and hence are not shown in the table. A faster scheme where the matrix square-root

layer is ignored during fine-tuning is worse, but in most cases outperforms the fine-

tuned baseline B-CNN model (Table 4.2). Although we found that SVD gradients

are orders of magnitude less precise than Lyapunov gradients, the loss in accuracy

after fine-tuning is negligible.

Our attempts at fine-tuning the network with matrix-logarithm using SVD-based

gradients were not very successful, even with double precision arithmetic. On the

other hand, all the experiments with matrix square-root were done with single pre-

cision arithmetic. This suggests that the numerical issues are partly due to the

logarithm scaling of the eigenvalues.

4.3 Second-Order Democratic Aggregation

Although matrix function normalization provides a significant improvement on

second-order features, it does not apply to combining with dimensionality reduction

techniques mentioned in Section 3.4. In this section, we explore the technique called

democratic aggregation [64, 97] that was proposed to reweight the first-order feature

vectors prior to their aggregation [97] in order to balance their contributions to the

final image representations. The aggregate is formulated as a linear combination of lo-
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cal features, where the linear coefficients are solved efficiently by a modified Sinkhorn

algorithm [71]. In this section, we study democratic aggregation in the context of

second-order feature descriptors and show that this feature descriptor has favorable

properties when combined with the democratic aggregator, which was applied origi-

nally to the first-order descriptors.

4.3.1 Democratic aggregation

Given a sequence of features X = (x1,x2, . . . ,xn), where xi ∈ Rd, a global descrip-

tor ξ(X ) computes an orderless aggregation of the sequence. A common approach

is to encode each feature using a non-linear function φ(x) before aggregation via a

simple symmetric function such as sum or max. For example, the global descriptor

using sum pooling can be written as:

ξ(X ) =
∑

x∈X

φ(x). (4.13)

The symmetric B-CNN representation uses outer-product encoders, i.e. φ(x) =

vec(xxT ), where xT denotes the transpose and vec(·) is the vectorization operator.

Thus, if x is d dimensional then φ(x) is d2 dimensional.

The democratic aggregation approach was proposed in [97] to minimize interfer-

ence or equalize contributions of each element in the sequence. The contribution of

a feature is measured as the similarity of the feature to the overall descriptor. In the

case of sum pooling, the contribution C(x) of a feature x is given by:

C(x) = φ(x)T
∑

x′∈X

φ(x′). (4.14)

For sum pooling, the contributions C(x) may not be equal for all features x. In

particular, the contribution is affected by both the norm and frequency of the fea-

ture. Democratic aggregation is a scheme that weights each feature by a scalar α(x)
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that depends on both x and the overall set of features in X such that the weighted

aggregation ξ(X ) satisfies:

α(x)φ(x)T ξ(X ) = α(x)φ(x)T
∑

x′∈X

α(x′)φ(x′) = C, ∀x ∈ X , (4.15)

under the constraint that ∀x ∈ X , α(x) > 0. The above equation only depends on

the dot product between the elements since:

α(x)
∑

x′∈X

α(x′)φ(x)Tφ(x′) = α(x)
∑

x′∈X

α(x′)k(x,x′), (4.16)

where k(x,x′) denotes the dot product between the two vectors φ(x) and φ(x′).

Following the notation in [97], if we denote KX to be the kernel matrix of the set X ,

the above constraint is equivalent to finding a vector of weights α such that:

diag(α)Kdiag(α)1n = C1n, (4.17)

where diag is the diagonalization operator and 1n is an n dimensional vector of ones.

In practice, the aggregated features ξ(X ) are `2 normalized hence the constant C does

not matter and can be set to 1.

The authors [97] noted that the above equation can be efficiently solved by a

dampened Sinkhorn algorithm [71]. The algorithm returns a unique solution as long

as certain conditions are met, namely the entries in K are non-negative and the

matrix is not fully decomposable. In practice, these conditions are not satisfied since

the dot product between two features can be negative. A solution proposed in [97] is

to compute α by setting the negative entries in K to zero.

For completeness, the dampened Sinkhorn algorithm is included in Algorithm 1.

Given n features of d dimensions, computing the kernel matrix takes O(n2d), whereas

each Sinkhorn iteration takes O(n2) time. In practice, 10 iterations are sufficient to
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Algorithm 1 Dampened Sinkhorn Algorithm

1: procedure Sinkhorn(K, τ,T)
2: α← 1n
3: for t = 1 to T do
4: σ = diag(α)Kdiag(α)1n
5: α← α/στ

6: return α

find a good solution. The damping factor τ = 0.5 is typically used. This slows the

convergence rate but avoids oscillations and other numerical issues associated with

the undampened version (τ = 1).

4.3.2 γ-democratic aggregation.

We propose a parametrized family of democratic aggregation functions that in-

terpolate between sum pooling and fully democratic pooling. Given a parameter

0 ≤ γ ≤ 1, the γ-democratic aggregation is obtained by solving for a vector of

weights α such that:

diag(α)Kdiag(α)1n = (K1n)γ. (4.18)

When γ = 0, this corresponds to the democratic aggregation, and when γ = 1, this

corresponds to sum aggregation since α = 1n satisfies the above equation. The above

equation can be solved by modifying the update rule for computing σ in the Sinkhorn

iterations to:

σ = diag(α)Kdiag(α)1n/(K1n)γ, (4.19)

in Algorithm 1, where / denotes element-wise division. Thus, the solution can be

equally efficient for any value of γ. Intermediate values of γ allow the contributions

C(x) of each feature x within the set to vary and, in our experiments, we find this

can lead to better results than the extremes (i.e., γ = 1).
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4.3.3 Democratic aggregation on second-order features

In practice, features extracted using deep convolutional neural networks can be

high-dimensional. For example, an input image I is passed through layers of a con-

volutional neural networks to obtain a feature map Φ(I) of size W × H × D. Here

d = D corresponds to the number of filters in the convolutional layer and n = W ×H

corresponds to the spatial resolution of the feature. For state-of-the-art CNNs from

which features are typically extracted, the values of n and d are comparable and

in the range of a few hundred to a thousand. Thus, explicitly realizing the outer

products can be expensive. Below we show several properties of democratic aggre-

gation with outer-product encoders. Some of these properties allow aggregation in a

computationally and memory efficient manner.

Proposition 1. For outer-product encoders, the solution to the γ-democratic kernels

exists for all values of γ as long as ||x|| > 0, ∀x ∈ X .

Proof. For the outer-product encoder we have:

k(x,x′) = φ(x)Tφ(x′) = vec(xxT )T vec(x′x′T ) = (xTx′)2 ≥ 0.

Thus, all the entries of the kernel matrix are non-negative and the kernel matrix

is strictly positive definite when ||x|| > 0, ∀x ∈ X . This is a sufficient condition for

the solution to exist [71]. Note that the kernel matrix of the outer product encoders

is positive even when xTx′ < 0.

Proposition 2. For outer-product encoders, the solution α to the γ-democratic ker-

nels can be computed in O(n2d) time and O(n2 + nd) space.

Proof. The running time of the Sinkhorn algorithm is dominated by the time to

compute the kernel matrix K. Naively computing the kernel matrix for d2 dimensional
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features would take O(n2d2) time and O(n2 + nd2) space. However, since the kernel

entries of the outer products are just the square of the kernel entries of the features

before the encoding step, one can compute the kernel K by simply squaring the kernel

of the raw features, which can be computed in O(n2d) time and O(n2 + nd) space.

Thus the weights α for the second-order features can also be computed in O(n2d)

time and O(n2 + nd) space.

Proposition 3. For outer-product encoders, γ-democratic aggregation ξ(X ) can be

computed with low-memory overhead using Tensor Sketching.

Proof. Let θ be a low-dimensional embedding that approximates the inner product

between two outer-products, i.e.,

θ(x)T θ(x′) ∼ vec(xxT )T vec(x′x′T ), (4.20)

and θ(x) ∈ Rk with k << d2. Since the γ-democratic aggregation of X is a linear

combination of the outer-products, the overall feature ξ(X ) can be written as:

ξ(X ) =
∑

x∈X

α(x)xxT ∼
∑

x∈X

α(x)θ(x). (4.21)

Thus, instead of realizing the overall feature ξ(X ) of size d2, one can use the

embedding θ to obtain a feature of size k as a democratic aggregation of the ap-

proximate outer-products. One example of an approximate outer-product embedding

is the Tensor Sketching (TS) approach of Pham and Pagh [103]. Tensor sketching

has been used to approximate second-order sum pooling [43] resulting in an order-of-

magnitude savings in space at a marginal loss in performance on classification tasks.

Our experiments show that sketching also performs well in the context of democratic

aggregation.
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4.4 Democratic aggregation versus spectral normalization

4.4.1 Spectral normalization as equalizing contributions

In Section 4.1, we introduced the approach using matrix functions to normalize

the second-order representations obtained by sum pooling. Let the matrix A =
∑

x∈X xxT . is normalized using matrix power function Ap with 0 < p < 1. Matrix

function can be computed using the Singular Value Decomposition (SVD). Given

matrix A with a SVD given by A = UΛUT , where the matrix Λ = diag(λ1, λ2, ..., λd),

with λi ≥ λi+1, the matrix function f can be written as Z = f(A) = Ug(Λ)UT , where

g is applied to the elements in the diagonal of Λ. Thus, the matrix power can be

computed as Ap = UΛpUT = Udiag(λp1, λ
p
2, ..., λ

p
d)U

T . The following establishes a

connection between the spectral normalization techniques and democratic pooling.

Let Âp be the `2 normalized version of Ap and rmax and rmin be the maximum

and minimum squared radii of the data x ∈ X defined as:

rmax = max
x ∈X
||x||2, rmin = min

x ∈X
||x||2. (4.22)

As earlier, let C(x) be the contribution of the vector x to the aggregated repre-

sentation defined as:

C(x) = vec(xxT )T vec(Âp). (4.23)

Proposition 4. The following properties hold true:

1. The `2 norm of vec(Ap) is ρ(Ap) = || vec(Ap)|| =
(∑

i λ
2p
i

)1/2
.

2.
∑

x∈X C(x) = Trace(A1+p/||Ap||) =
(∑

i λ
1+p
i

)
/ρ(Ap).

3. The maximum value M = maxx∈X C(x) ≤ rmaxλ
p
1/ρ(Ap).

4. The minimum value m = minx∈X C(x) ≥ rminλ
p
d/ρ(Ap).

Proof. The proof is left in Appendix.
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Proposition 5. The variance σ2 of the contributions C(x) satisfies

σ2 ≤ (M − µ)(µ−m) ≤ (M −m)2

4
≤ r2

maxλ
2p
1

4ρ(Ap)2
, (4.24)

where M and m are the maximum and minimum values defined above and µ is the

mean of C(x) given by
∑

x∈X C(x)/n where n is the cardinality of X . All of the above

quantities can be computed from the spectrum of the matrix A.

Proof. The proof can be obtained by a straightforward application of Popoviciu’s

inequality on variances [104] and a tighter variant by Bhatia and Davis [9]. The last

inequality is obtained by setting m = 0.

The above shows that smaller values p reduce an upper-bound on the variance

of the contributions thereby equalizing their contributions. The upper bound is a

monotonic function of the exponent p and is minimized when p = 0 reducing all

the spectrum to an identity matrix. This corresponds to whitening of the matrix A.

However, complete whitening often leads to poor results while intermediate values

such as p = 1/2 can be significantly better than p = 1

Proposition 6. For exponents 0 < p < 1, the matrix power Ap may not lie in the

linear span of the outer-products of the features x ∈ X .

The proof of Proposition 6 is left in Appendix. A consequence of this is that the

matrix power cannot be easily computed in the low-dimensional embedding space of

outer-products encoding such as Tensor Sketch. It does however lie in the linear span

of the outer-products of the eigenvectors. However, computing eigenvectors can be

significantly slower than computing weighted aggregates. We describe the computa-

tion and memory trade-offs between computing the matrix powers and democratic

pooling in Section 4.4.5.
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4.4.2 The distribution of the spectrum and feature contributions

In this section, we analyze how democratic pooling and matrix normalization

effect the spectrum (set of eigenvalues) of the aggregated representation, as well as

how the contributions of individual features are distributed as a function of γ for the

democratic pooling and p of the matrix power normalization.

We randomly sampled 50 images from CUB and MIT indoor datasets each and

plotted the spectrum (normalized to unit length) and the feature vector contributions

C(x) (Eq. (4.23)) in Figure 4.4. In this experiment, we use the matrix power p = 0.5

and γ = 0.5. Figure 4.4(a) shows that the square root yields a flatter spectrum in

comparison to the sum aggregation. Democratic aggregation distributes the energy

away from the top eigenvalues but has considerably sharper spectrum in comparison

to the square root. The γ-democratic pooling interpolates between sum and fully

democratic pooling.

Figure 4.4(b) shows the contributions of each feature x to the aggregate for differ-

ent pooling techniques (Eq. (4.23)). The contributions are more evenly distributed for

the matrix square root in comparison to sum pooling. Democratic pooling flattens the

individual contributions the most – we note that it is explicitly designed to have this

effect. These two plots show that democratic aggregation and power normalization

both achieve equalization of feature contributions.

Figure 4.5 shows the variances of the contributions C(x) to the aggregation Âp

using the VGG-16 features for different values of the exponent p. Figure 4.5(a)

shows the true minimum, maximum, mean as well as the bounds of these quantities

expressed in Proposition 4. The upper bound on the maximum contribution, i.e.,

rmaxλ
p
1/ρ(Ap), is tight on both datasets, as can be seen in the overlapping red lines,

while the lower bound is significantly less tight.

Figure 4.5(b) shows the true deviation and two different upper bounds on the

variance of the contributions as expressed in Proposition 5 and Eq. (4.24). The tighter
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Figure 4.4. (a) The spectrum (eigenvalues) for various feature aggregators on
CUB-200 and MIT indoor datasets. (b) The individual feature vector contributions
C(x).
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Figure 4.5. (a) The upper (red solid) and lower bounds (blue solid) on the contri-
butions to the set similarity versus the exponent of matrix power normalization on
Birds and MIT indoor datasets. Maximum and minimum values are shown in dashed
lines and the the mean is shown in black solid lines. (b) The upper bounds to the
variance of feature contributions C(x).

bound shown by the dashed red line corresponds to the version with the mean µ in

Eq. (4.24). The plot shows that the matrix power normalization implicitly reduces the

variance in feature contributions similar to equalizing the feature vector contributions

C(x) in democratic aggregation. These plots are averaged over 50 examples from the

CUB-200 and MIT indoor datasets.
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Dataset

γ-democratic

ApDemocratic Optimal Sum

γ=0 γ γ = 1

Caltech UCSD Birds 84.7 84.9 (0.5) 84.0 85.9 (0.3)

Stanford Cars 89.7 90.8 (0.5) 90.6 91.7 (0.5)

FGVC Aircrafts 86.7 86.7 (0.0) 85.7 87.6 (0.3)

DTD 72.2 72.3 (0.3) 71.2 72.9 (0.6)

FMD 82.8 84.8 (0.8) 84.6 85.0 (0.7)

MIT indoor 79.6 80.4 (0.3) 79.5 80.9 (0.6)

Table 4.4. The accuracy of aggregating second-order features w.r.t. various aggre-
gators using fine-tuned VGG-16 on fine-grained recognition (top) and using ImageNet
pretrained VGG-16 on other (bottom) datasets. From left to right, we vary γ values
and compare democratic pooling, γ-democratic pooling and average pooling with the
matrix power aggregation. The optimal values of γ and p are indicated in parentheses.

4.4.3 Experiments comparing spectral normalization and democratic ag-

gregation

Table 4.4 shows the performance as a function of γ for the γ-democratic pooling

and p for the matrix normalization on the VGG-16 network. For DTD dataset, we

report results on the first split. For FMD dataset, we randomly sample half of the

data in each category for training and use the rest for testing. We use the standard

training and testing splits on remaining datasets. We augment the training set by

flipping its images and train k one-vs-all linear SVM classifiers with hyperparameter

C = 1. At the test time, we average predictions from an image and its flipped copy.

Optimal γ and the matrix power p are also reported.

The results on sum pooling correspond to the symmetric BCNN models. Fully

democratic pooling (γ=0) improves the performance over sum pooling by 0.7-1%.

However, equalizing feature contributions hurts performance on Stanford Cars and

FMD dataset. Table 4.4 shows that reducing the contributions by adjusting 0 <

γ < 1 helps outperform sum pooling and fully democratic pooling. Matrix power

normalization outperforms γ-democratic pooling by 0.2-1%.
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4.4.4 Democratic Aggregation with Tensor Sketch

One of the main advantages of the democratic pooling approaches over matrix

power normalization techniques is that the embeddings can be computed in a low-

dimensional space using tensor sketching. To demonstrate this advantage, we compute

the second-order democratic pooling combined with tensor sketching on 2048 dimen-

sional ResNet-101 features. Direct construction of second-order features yields ∼4M

dimensional features which are impractical to manipulate on GPU/CPU. Therefore,

we apply the Tensor Sketch [103] to approximate the outer product using 8192 dimen-

sional features, which is far lower than 20482 of the full outer product. The features

are aggregated using γ-democratic approach with γ = 0.5.

Table 4.5 reports the accuracy on MIT indoor. The baseline model approximat-

ing second-order features with tensor sketch followed by sum pooling achieves 82.8%

accuracy. With democratic pooling, our model achieves state-of-the-art accuracy of

84.3% which is 1.5% more than the baseline. Moreover, Table 4.4 shows that we out-

perform the matrix power normalization using VGG-16 network by 3.4%. Note that

(i) matrix power normalization is impractical for ResNet101 features, (ii) it cannot

be computed by sketching due to Proposition 6. We also outperform FASON [28] by

2.6%. FASON fuses the first- and second-order features from conv4 4 and conv5 4

layers of the VGG-19 networks given 448×448 image size and scores 81.7% accu-

racy. Recent work on Spectral Features [69] achieves the same accuracy as our best

model with democratic pooling. However, approach [69] uses more data augmenta-

tions (rotation, shifts, etc.) during training and pretrains the VGG-19 network on

the large-scale Places205 dataset. In contrast, our networks are pretrained on Ima-

geNet which arguably has a larger domain shift from the MIT indoor dataset than

Places205.
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Method accuracy
Places-205 [125] 80.9
Deep Filter Banks [23] 81.0
Spectral Features [69] 84.3
FASON [28] 81.7
ResNet101 + TS + sum pooling (baseline) 82.8
ResNet101 + TS + γ-democratic (ours) 84.3

Table 4.5. Evaluations and comparisons to the state-of-the-art on MIT indoor
dataset.

4.4.5 Discussion on efficiency

While matrix power normalization achieves marginally better performance, it re-

quires SVD which is computationally expensive and not GPU friendly e.g., the CUDA

BLAS cannot perform SVD for large matrices. Even in the case of matrix square root,

which can be approximated via Newton’s iterations, the iterations involve matrix-

matrix multiplication of O(n3) complexity. In contrast, solving democratic pooling

via the Sinkhorn algorithm (Algorithm 1) involves only matrix-vector multiplication,

which is O(n2). Empirically, we find that solving Sinkhorn iterations is an order of

magnitude faster than solving the matrix square root on an NVIDIA Titan X GPU.

Moreover, the complexity of Sinkhorn iteration depends only on the kernel matrix –

it is independent of the feature vector size. In contrast, the memory required by a

covariance matrix grows with O(n2), which becomes prohibitive for feature vectors

greater than 512 dimensions. Second-order democratic pooling with tensor sketching

yields comparable results and reduces the memory usage by two orders of magnitude

over the matrix power normalization.

4.5 Bilinear models with state-of-the-art CNNs

Bilinear pooling has been shown to be effective in aggregating the higher-order

statistics on convolutional features obtained by VGG networks and improves the

recognition performance over the vanilla VGG models by a significant margin. Since
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we published bilinear CNNs in 2015, several techniques have been proposed to stabi-

lize the training of convolutional neural networks and allowed the training of deeper

architectures with higher model capacity. For example, batch normalization [59]

reduced the internal covariate shift to regularize network training; ResNet [54] in-

troduced residual connections to facilitate the gradient propagation toward bottom

layers; DenseNet [58] densely connect convolutional layers to reuse the features ob-

tained from previous layers. With multiple interconnections between layers, feature

activations from deeper layers may implicitly model the higher-order feature statistics.

To verify if state-of-the-art CNN models can still benefit from bilinear pooling, we

compare the bilinear CNNs with DenseNet against vanilla DenseNet, which aggregate

the convolutional features with average pooling, on CUB, Cars, FGVC-Aircrafts, and

iNaturalist [2] datasets. We split the iNaturalist dataset into several classification

tasks according to the super-category labels. The details for each task are shown in

Table 4.6. For both methods, we start with ImageNet pretrained DenseNet-201 with

input size 448 x 448 and aggregate the ReLU feature activations from the penultimate

layers and fine-tune the representations on the target datasets.

The features dimension for the DenseNet penultimate layer is 1,092 for which it

is too big to compute the full outer product. We reduce the feature dimension to

128 by adding a 1x1 convolutional layers followed by the outer-product encoding.

The weights for the dimensionality reduction layer are initialized randomly and fine-

tuned end-to-end. The bilinear features are sequentially normalized by matrix square-

root, element-wise signed square-root and, `2 normalization. The normalization with

matrix square-root is computed via Newton-Schultz iterations, and its gradients are

computed via the iterative solver for the Lyapunov equation. We set the number of

iterations to 5 for both forward and backward computations.

Table 4.6 shows the results with DenseNet models. Comparing to the results

in Table 4.2, vanilla DenseNet with global average pooling outperforms B-CNN with
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Dataset #classes #images
DenseNet

Average pooling Bilinear pooling

Caltech UCSD Birds 200 5,994 84.9 87.5

Stanford Cars 196 8,144 93.2 92.9

FGVC Aircrafts 100 6,667 92.3 90.6

Plantae 2,917 118,800 69.6 66.9

Animalia 178 5,996 80.5 79.0

Reptilia 284 22,754 53.3 51.6

Amphibia 144 11,156 55.6 56.9

Aves 1,258 143,950 60.1 62.0

Mollusca 262 8,007 73.5 75.1

Fungi 321 6,864 70.5 72.8

Mammalia 234 20,104 60.1 63.3

Archanida 114 4,037 66.4 71.3

Insecta 2,031 87,192 78.2 82.0

Actinopterygii 369 7,835 76.5 82.7

iNaturalist mean acc. - - 67.7 69.4

Table 4.6. The accuracy of bilinear pooling against average pooling using DenseNet
features. The first column lists the datasets along with the number of classes and
images in the second and third columns. The bottom of the table shows the results
for the tasks created from the dataset obtained from iNaturalist 2018 fine-grained
challenges. Mean per-task accuracies for the iNaturalist dataset are reported in the
last row.

VGG models on Cars (93.2 vs. 92.0) and Aircraft (92.3 vs. 88.5) while achieving com-

parable results on CUB (84.9 vs. 85.8). This demonstrates that constructing deeper

neural networks is effective in improving recognition accuracy for fine-grained tasks.

Aggregating DenseNet features with bilinear pooling further improves the accuracy

on most datasets, while the gaps become smaller comparing to the improvement ob-

tained on VGG models. The bilinear pooling achieves lower performance on Cars,

Aircrafts, Plantae, Animalia, and Reptilia datasets. There are multiple confounding

factors such as domain shifts from ImageNet, size of training data, and the distri-

bution of size and location of objects, which could complicate the training. Deeper

neural network architectures could have sufficient model capacity to learn a better
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representation and implicitly capture higher-order feature correlations. Nevertheless,

aggregating state-of-the-art CNN features via second-order pooling is still effective.

However, more controlled experiments are needed to to understand the cases where

the higher-order features are more discriminative than their first-order counterparts.

4.6 Summary

In this chapter, we present two techniques to normalize the aggregate of second-

order features according to feature frequency. Matrix-normalization offers comple-

mentary benefits to elementwise normalization layers and leads consistent improve-

ments in accuracy over the vanilla B-CNN models. The matrix square-root normal-

ization outperforms the matrix logarithm normalization when combined with elemen-

twise square-root normalization for most of our experiments. Moreover, the matrix

square-root can be computed efficiently on a GPU using a few Newton iterations and

allows accurate gradient computations via a Lyapunov equation. The second-order ag-

gregation method referred to as γ-democratic pooling that interpolates between sum

(γ=1) and democratic pooling (γ=0) and outperforms both extremes. We demon-

strated that γ-democratic pooling enjoys low computational complexity compared to

the matrix square root approximations via Newton’s iterations; but with a smaller

improvement compared to using matrix square root. This leads to different design

choices based on the given computational budget.
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CHAPTER 5

VISUALIZING DEEP TEXTURE REPRESENTATIONS

In the previous chapter, we have introduced bilinear CNN models and their con-

nections to classical texture-based image representations and showed their effective-

ness on image recognition. In this chapter, we will focus on the techniques using

the representations to synthesize novel images. We present a parametric image syn-

thesis framework that jointly optimizes the following objectives given source images

and target attributes: 1) reconstruction of source B-CNN representations, 2) recon-

struction of source CNN representations, and 3) maximizing the prediction score of

target attributes. The framework is a generalization of the related works in texture

synthesis [44], style transfer [45], and inversion of deep representations [94, 34]. By

generating the novel images by reconstructing B-CNN representations, we are able

to visualize the invariance of the representations. We visualize the pre-images of the

categories from fine-grained and texture recognition benchmarks based on B-CNN

representations to understand the properties of the given categories.

5.1 Methodology

We describe our framework for parametric texture synthesis, inversion, and attribute-

based manipulation using CNNs. For an image I one can compute the activations

of the CNN at a given layer ri to obtain a set of features Fri = {fj} indexed by

their location j. The bilinear feature Bri(I) of Fri is obtained by computing the
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outer product of each feature fj with itself and aggregating them across locations by

averaging, i.e.,

Bri(I) =
1

N

N∑

j=1

fjf
T
j . (5.1)

This is equivalent to Gram matrix representation, the terminology used in [44, 45].

Let ri, i = 1, . . . , n, be the index of the ith layer with the bilinear feature repre-

sentation Bri . Gatys et al. [44] propose a method for texture synthesis from an input

image I by obtaining an image x ∈ RH×W×C that matches the bilinear features at

various layers by solving the following optimization:

min
x

n∑

i=1

αiL1

(
Bri , B̂ri

)
+ γΓ(x). (5.2)

Here, B̂ri = Bri(I), αi is the weight of the ith layer, Γ(x) is a natural image

prior such as the total variation norm (TV norm), and γ is the weight on the prior.

Note that we have dropped the implicit dependence of Bri on x for brevity. Using the

squared loss-function L1(x, y) =
∑

(xi−yi)2 and starting from a random image where

each pixel initialized with a i.i.d zero mean Gaussian, a local optimum is reached

through gradient descent. The authors employ L-BFGS, but any other optimization

method can be used (e.g., Mahendran and Vedaldi [94] use stochastic gradient descent

with momentum).

Prior work on minimizing the reconstruction error with respect to the “un-pooled”

features Fri has shown that the content of the image in terms of the color and spatial

structure is well-preserved even in the higher convolutional layers. Recently, Gatys et

al.in a separate work [45] synthesize images that match the style and content of two

different images I and I ′ respectively by minimizing a weighted sum of the texture

and content reconstruction errors:

min
x
λL1

(
Fs, F̂s

)
+

n∑

i=1

αiL1

(
Bri , B̂ri

)
+ γΓ(x). (5.3)
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Here F̂s = Fs(I ′) are features from a layer s from which the target content features

are computed for an image I ′.

The bilinear features can also be used for predicting attributes by first normalizing

the features (signed square-root and `2) and training a linear classifier in a supervised

manner as described in Chapter 2. Let li : i = 1, . . . ,m be the index of the ith layer

from which we obtain attribute prediction probabilities Cli . The prediction layers

may be different from those used for texture synthesis. Given a target attribute Ĉ

we can obtain an image that matches the target label and is similar to the texture of

a given image I by solving the following optimization:

min
x

n∑

i=1

αiL1

(
Bri , B̂ri

)
+ β

m∑

i=1

L2

(
Cli , Ĉ

)
+ γΓ(x). (5.4)

Here, L2 is a loss function such as the negative log-likelihood of the label Ĉ and

β is a tradeoff parameter. If multiple targets Ĉj are available then the losses can be

blended with weights βj resulting in the following optimization:

min
x

n∑

i=1

αiL1

(
Bri , B̂ri

)
+ βj

m∑

i=1,j

L2

(
Cli , Ĉj

)
+ γΓ(x). (5.5)

Synthesized images are obtained by solving the optimization. Using this frame-

work we: (i) study the role of initialization in the convergence for texture synthesis,

(ii) investigate the nature of invariances of these features by visualizing the images ob-

tained by reconstructing texture representations (iii) provide insights into the learned

models by inverting them, and (iv) show results for modifying the content of an image

with texture attributes.

Experiments setting We use the 16-layer VGG network [112] trained on Ima-

geNet for all our experiments. For the image prior Γ(x) we use the TVβ norm with

β = 2:

Γ(x) =
∑

i,j

(
(xi,j+1 − xi,j)2 + (xi+1,j − xi,j)2

)β
2 . (5.6)

66



The exponent β = 2 was empirically found to lead to better reconstructions in [?]

as it leads to fewer “spike” artifacts than β = 1. In all our experiments, given

an input image we resize it to 224×224 pixels before computing the target bilinear

features and solve for x ∈ R224×224×3. This is primarily for speed since the size of

the bilinear features are independent of the size of the image. Hence, an output of

any size can be obtained by minimizing Eqn. 5.5. We use L-BFGS for optimization

and compute the gradients of the objective with respect to x using back-propagation.

One detail we found to be critical for good reconstructions is that we `1 normalize

the gradients with respect to each of the L1 loss terms to balance the losses during

optimization. Mahendran and Vedaldi [94] suggest normalizing each L1 loss term by

the `2 norm of the target feature B̂ri . Without some form of normalization the losses

from different layers are of vastly different scales leading to numerical stability issues

during optimization.

5.2 Texture synthesis and image style transfer

Gatys et al. proposed the optimization-based texture synthesis approach formu-

lated as equation 5.3. Given a source texture image. we extract the bilinear feature

representations B̂ri . To synthesize a new texture image, we set the weight λ to 0

ignoring the reconstruction of image content. Same approach is used for image style

transfer where given a source style image and the a content image, we extract the

bilinear features for the style image and the un-pooled CNN features for the content

image. The optimization aims to find the output image such that the corresponding

content and style are preserved. Although the approach works well, it is not practical

since it requires several hundreds of CNN evaluations, which takes several minutes on

a high-end GPU. In this thesis, we explore non-parametric patch-based approaches

as initialization to speed up the process. We note that more efficient texture syn-

thesis frameworks were proposed in recent work [121, 120, 65]. They further avoid

67



iter
50 100 150 200 250

ob
je
ct
iv
e

10 13

10 14

10 15

10 16

compare init
rand
quilt

input quiltsyn(rand) syn(quilt)
input syn(rand) quilt syn(quilt) iter

50 100 150 200 250

ob
je
ct
iv
e

10 13

10 14

10 15

10 16

compare init
rand
quilt

Objective vs. iterations

Figure 5.1. Effect of initialization on texture synthesis. Given an in-
put image, the solution reached by the L-BFGS after 250 iterations starting from a
random image: syn(rand), and image quilting: syn(quilt). The results using image
quilting [35] are shown as quilt. On the right is the objective function for the opti-
mization for 5 random initializations. Quilting-based initialization starts at a lower
objective value and matches the final objective of the random initialization in far
fewer iterations. Moreover, many artifacts of quilting are removed in the final solu-
tion (e.g., the top row). Best viewed with digital zoom. Images are obtained from
http://www.textures.com.

the optimization process and synthesize new texture images by feed-forward neural

networks. This can be achieved by training neural networks with perceptual loss and

instance normalization. We refer readers to their papers for details.

In comparison, non-parametric patch-based approaches such as image quilting [35]

are orders of magnitude faster than optimization-based method. Quilting introduces

artifacts when adjacent patches do not align with each other. The original paper

proposed an approach where a one-dimensional cut is found that minimizes artifacts.

However, this can fail since local adjustments cannot remove large structural errors

in the synthesis. We instead investigate the use of quilting to initialize the gradient-

based synthesis approach.

Fig. 5.1 shows the objective through iterations of L-BFGS starting from a random

and quilting-based initialization. Quilting starts at a lower objective and reaches

the final objective of the random initialization significantly faster. Moreover, the
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content style tranf(rand)

quilt tranf(quilt)

content style tranf(rand)

quilt tranf(quilt)

Figure 5.2. Effect of initialization on style transfer. Given a content and
a style image the style transfer reached using L-BFGS after 100 iterations starting
from a random image: tranf(rand), and image quilting: tranf(quilt). The results using
image quilting [35] are shown as quilt. On the bottom right is the objective function
for the optimization for 5 random initializations.
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global adjustments of the image through gradient descent remove many artifacts that

quilting introduces (digitally zoom in to the onion image to see this). Fig. 5.2 show

the results using image quilting as initialization for style transfer [45]. Here two images

are given as input, one for content measured as the conv4 2 layer output, and one

for style measured as the bilinear features. Similar to texture synthesis, the quilting-

based initialization starts from lower objective value and the optimization converges

faster. These experiments suggest that patch-based and parametric approaches for

texture synthesis are complementary and can be combined effectively.

5.3 Visualizing invariances

In this section we aim to understand B-CNN texture representation by synthesiz-

ing invariant images, i.e. images that are nearly identical to a given image according

to the bilinear features, and inverse images for a given category. Inverse images vi-

sualize the images that maximize the probability of the target categories. This help

us gain the insights on the properties of categories that are captured by the recogni-

tion models. In addition to visualizing inverse images, we also visualize the learned

convolutional filters by showing the top activating patches.

5.3.1 Visualizing invariant images for objects

We use relu1 1, relu2 1, relu3 1, relu4 1, relu5 1 layers for texture representation.

Fig. 5.3 shows several invariant images to the image on the top left, i.e. these images

are virtually identical as far as the bilinear features for these layers are concerned.

Translational invariance manifests as shuffling of patches but important local struc-

ture is preserved within the images. These images were obtained using γ = 1e − 6

and αi = 1 ∀i in Eqn. 5.5. We found that as long as some higher and lower layers are

used together the synthesized textures look reasonable, similar to the observations of

Gatys et al..
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Figure 5.3. Invariant inputs. These six images are virtually identical when
compared using the bilinear features of layers relu1 1, relu2 1, relu3 1, relu4 1, relu5 1
of the VGG network [112].

5.3.2 Visualizing texture categories

We learn linear classifiers to predict categories using bilinear features from relu2 2,

relu3 3, relu4 3, relu5 3 layers of the CNN on various datasets and visualize images

that produce high prediction scores for each class. We achieve this by solving the

optimization described in equation 5.4 with αi equal to 0. Fig. 5.4 shows some example

inverse images for various categories for the DTD, FMD and MIT indoor datasets.

These images were obtained by setting β = 100, γ = 1e − 6, and Ĉ to various class

labels in Eqn. 5.5. These images reveal how the model represents texture and scene

categories. For instance, the dotted category of DTD contains images of various colors

and dot sizes and the inverse image is composed of multi-scale multi-colored dots.

The inverse images of water and wood from FMD are highly representative of these
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braided honeycombed cobwebbed dotted bumpy

foliage water glass wood metal

bookstore bowling classroom laundromat closet

crested auklet orchard oriole vermilion flycatcher redwinged blackbird northern flicker

western grebe pine grosbeak baltimore oriole canada warbler downy woodpecker

Figure 5.4. Visualizing various categories by inverting the B-CNN based on VGG-
D network trained on DTD [22], FMD [110], MIT Indoor dataset [105] (first three
rows from top to bottom), and the CUB dataset [124] (last two rows).
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relu2 2 + relu3 3 + relu4 3 + relu5 3

water

foliage

bowling

Figure 5.5. Effect of layers on inversion. Pre-images obtained by inverting class
labels using different layers. The leftmost column shows inverses using predictions of
relu2 2 only. In the following columns we add layers relu3 3, relu4 3, and relu5 3 one
by one.

categories. Note that these images cannot be obtained by simply averaging instances

within a category which is likely to produce a blurry image. The orderless nature of

the texture descriptor is essential to produce such sharp images. The inverse scene

images from the MIT indoor dataset reveal key properties that the model learns – a

bookstore is visualized as racks of books while a laundromat has laundry machines at

various scales and locations. In Fig. 5.5 we visualize reconstructions by incrementally

adding layers in the texture representation. Lower layers preserve color and small-

scale structure and combining all the layers leads to better reconstructions. Even

though the relu5 3 layer provides the best recognition accuracy, simply using that
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Birds

VGG-D filters VGG-M filters

Figure 5.6. Patches with the highest activation for several filters of the fine-tuned
B-CNN (VGG-D + VGG-M) model on birds dataset. These visualizations indicate
that network units activate on highly localized attributes of objects that capture
color, texture, and shape patterns.

layer did not produce good inverse images (not shown). Notably, color information is

discarded in the upper layers. Fig. 5.4 shows visualizations of some other categories

across datasets.

5.3.3 Retrieving top activations of neural units

The inverse images visualize the categories as texture images and show the in-

variances of the categories that are captured by the classification models. In this
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Aircrafts

VGG-D filters VGG-M filters

Figure 5.7. Patches with the highest activation for several filters of the fine-
tuned B-CNN (VGG-D + VGG-M) model on aircrafts dataset. These visualizations
indicate that network units activate on highly localized attributes of objects that
capture color, texture, and shape patterns.

experiments we visualize the learned convolutional filters to grain insights on the vi-

sual patterns that are discriminative for the classification. One of the motivations

for the bilinear model was the modular separation of factors that affect the overall

appearance. We are curious if the two networks specialize into different roles when

initialized asymmetrically and fine-tuned. We shows the top activations of several

filters form relu5 3 layer for the D-Net and relu5 layer for M-Net of the fine-tuned

B-CNN [D, M] model for birds (Figure 5.6), aircrafts (Figure 5.7) and cars (Fig-
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Cars

VGG-D filters VGG-M filters

Figure 5.8. Patches with the highest activation for several filters of the fine-tuned
B-CNN (VGG-D + VGG-M) model on cars dataset. These visualizations indicate
that network units activate on highly localized attributes of objects that capture
color, texture, and shape patterns.

ure 5.8) classification. Both these networks contain units that activate strongly on

highly localized features. For example, in Figure 5.6 the last row of VGG-D detects

“tufted heads”, while the fourth row in the same column detects a “red-yellow stripe”

on birds. Similarly for airplanes, the units localize different types of windows, noses,

vertical stabilizers, with some specializing in detecting particular airliner logos. For

cars, units activate on different kinds of head/tail lights, wheels, etc.. The visualiza-

tion suggests that the roles of the two networks are not clearly separated. Several
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work [136, 138] has explored interpretable models that attend to the local features

at pre-defined object parts. Ideally, the fine-tuning should be able to figure out the

optimal feature factorization given sufficient amount of training data. Whether using

the priors on pre-defined object parts leads to a better model remains unclear.

5.4 Manipulating images with texture attributes

Our framework can be used to edit images with texture attributes. For instance,

we can make a texture or the content of an image more honeycombed or swirly.

Fig. 5.9 shows some examples where we have modified images with various attributes.

The top two rows of images were obtained by setting αi = 1 ∀i, β = 1000 and

γ = 1e− 6 and varying Ĉ to represent the target class. The bottom row is obtained

by setting αi = 0 ∀i, and using the relu4 2 layer for content reconstruction with

weight λ = 5e− 8.

The difference between the two is that in the content reconstruction the over-

all structure of the image is preserved. The approach is similar to the neural style

approach [45], but instead of providing a style image we adjust the image with at-

tributes. This leads to interesting results. For instance, when the face image is

adjusted with the interlaced attribute (Fig. 5.9 bottom row) the result matches the

scale and orientation of the underlying image. No single image in the DTD dataset

has all these variations but the categorical representation does. The approach can

be used to modify an image with other high-level attributes such as artistic styles by

learning style classifiers.

We can also blend texture categories using weights βj of the targets Ĉj. Fig. 5.10

shows some examples. On the left is the first category, on the right is the second

category, and in the middle is where a transition occurs (selected manually).
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input fibrous paisley

input honeycombed swirly

input veined bumpy

freckled interlaced marbled

Figure 5.9. Manipulating images with attributes. Given an image we syn-
thesize a new image that matches its texture (top two rows) or its content (bottom
two rows) according to a given attribute (shown in the image).
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chequered β1/β2 = 2.11 interlaced

grid β1/β2 = 1.19 knitted

swirly β1/β2 = 0.75 paisley

Figure 5.10. Hybrid textures obtained by blending the texture on the left and
right according to weights β1 and β2.

5.5 Summary

In this chapter, we presented a systematic framework for synthesizing texture im-

ages and studied the invariances of B-CNN models by inverting them. The resulting

models provide a parametric approach for texture synthesis and manipulation of the

content of images using texture attributes. The critical challenge is that the approach

is computationally expensive, and we present an initialization scheme based on image

quilting that significantly speeds up the convergence and also removes many struc-
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tural artifacts that quilting introduces. A visualization of B-CNNs showed that these

models effectively represent objects as texture and their units are correlated with

localized attributes useful for fine-grained recognition.
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CHAPTER 6

OTHER CONTRIBUTIONS: MISTNET – MEASURING
HISTORICAL BIRD MIGRATION WITH CNNS

In addition to my main research topic in learning higher-order representations,

I am also interested in using computer vision techniques to analyze large-scale data

and solve real-world problems. I collaborated with Prof. Sheldon and Prof. Maji

working on Dark Ecology project [1] and developed MistNet, a deep learning model

for segmenting biological targets from radar data. The model automates the pre-

screening process that required substantial manual efforts prior to the analysis and

allows ornithologists to conduct large-scale studies on bird migration. I will divert

from higher-order representations to give a brief introduction of MistNet in this chap-

ter. More detail can be found in MistNet paper [85].

6.1 Introduction

Researchers discovered more than 70 years ago that radars, originally designed

for military purposes, can also detect bird movements [13, 76]. With the advent of

large networks of weather radars, the possibility arose to use radar as a distributed

instrument to quantify whole migration systems [46, 14, 47, 48, 32, 6, 99]. The US

WSR-88D1 weather radar network [24] stands out as one of the most comprehensive

instruments for studying migration due to its size, uniformity, and historical data

archive.

1Weather Surveillance Radar, 1988, Doppler
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Weather radar data can answer a wide range of important migration ecology

questions. Previous studies have used weather radar data to understand patterns

and determinants of nocturnal migration [48, 68, 75, 38], identify critical stopover

habitat [16, 15], locate on-the-ground roosting sites of birds [129, 17, 78, 77, 12],

and many others. However, it required substantial manual effort to enable large-scale

studies, primarily to screen radar images for precipitation and other unwanted targets

prior to analysis [47, 48]. Human interpretation of images has become a substantial

barrier to very large-scale research with WSR-88D data.

Recent advances have led to the first fully automated methods to extract biological

information from weather radar data. In 2012–2013, the WSR-88D network was up-

graded to dual polarization technology, which makes it significantly easier to separate

biology from precipitation in modern data [115], but leaves open the problem of ex-

tracting biological information from historical data. One of the work during my PhD

was to develop MistNet, a deep convolutional neural network (CNN) to separate

precipitation from biology at a fine spatial resolution in historical WSR-88D data.

Radar images contain clear visual patterns that allow humans to discriminate pre-

cipitation from biology. We trained deep learning models to automatically recognize

these patterns.

6.2 MISTNET architecture and training

Historical radar data produces 3 measurements at each spatial locations. We

collected the measurements from 5 elevations resulting in the input of dimension

15 × 600 × 600. Radar geometry is show in Fig. 6.1 and more details can be found

in [1]. The output z of MistNet has dimension 3× 5× 600× 600, which corresponds

to the class probability for each of 3 classes (precipitation, biology, background) at

each position in five 600× 600 images, one for each elevation angle. At prediction

time, the class with the highest probability is predicted. Let f(x;θ) be the function
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Figure 6.1. (a) Radar geometry. A sweep, shown here at an elevation of 0.5
degrees, traces out an approximately conical surface and is usually rendered as top-
down image or “plan-position indicator” (i.e., PPI). (b) Overview of processing
pipeline. Radar measurements are collected on a three-dimensional polar grid (3
products x 5 elevations) and rendered as a 15-channel “image” in Cartesian coordi-
nates. An adapter network maps 15 channels to 3 channels to match a conventional
RGB image. The CNN processes the image and outputs five segmentation masks,
one for each elevation. Each segmentation mask delimits areas containing biology and
weather (red: rain, orange: biology, blue: background). The inputs, intermediate ac-
tivations, and outputs of the CNN are three-dimensional arrays arranged in layers
and depicted as boxes (pink: input, light blue: intermediate, green: output). The
activations in output branches (green boxes) are functions of several earlier layers,
shown for one branch with black curved arrows.

describing the entire mapping from the CNN’s input to its output, so that z = f(x;θ),

where θ contains the parameters of all layers.

MistNet is based on the FCN8 (fully convolutional network with predictions at

a spatial granularity of 8 pixels) architecture from [87] with an ImageNet pre-trained

VGG-16 “backbone” [114]. See also Figure 6.1. We added a linear adapter network

to map the input data from 15 to 3 channels at each spatial location for compatibility

with the input dimensions of the VGG-16 network, and trained the parameters of

the linear adapter. Unlike the standard FCN8 network, which predicts one value

per spatial location, MistNet makes five predictions, one per elevation. This is

accomplished by creating five separate branches that take as input the activations
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of several preceding convolutional layers and output class probabilities (the curved

arrows in Figure 6.1 represent one of these branches).

Post-processing predictions The standard prediction rule is to classify a pixel

as precipitation if the predicted class probability for precipitation exceeds 0.5. In

preliminary experiments we observed that MistNet underpredicted precipitation at

the boundaries of rain storms and sometimes missed rain mixed with biology at low

elevations. We developed the following postprocessing rules to improve these cases:

we predict a pixel as rain if the class probability for rain exceeds 0.45 or if the average

class probability for rain across the five elevations at that spatial location exceeds 0.45.

We further compute a “fringe” of 8 pixels surrounding any rain pixel and classify the

fringe as rain, with the goal of conservatively removing as much rain as possible due

to its possible adverse impacts of biological analysis.

Weak training labels Because we do not have a large data set of radar images

with pixel-level labels, we conducted transfer learning from image classification mod-

els trained on the ImageNet dataset [29]. We initialized MistNet’s model parameters

using those models, and then adapted the parameters by training with weak anno-

tations obtained from a simple rule to discriminate precipitation from biology using

dual-pol data.

Biological scatterers tend to have a much lower correlation coefficient than hy-

drometeors because their orientation, position, and shape are much more variable in

time [115, 70]. It has become common practice among radar biology practitioners to

use a threshold of ρHV ≤ 0.95 to identify biological scatterers [31]. Although weather

events such as mixed precipitation can also produce ρHV values this low [82], this rule

is believed to have reasonable accuracy in general, and has been validated through

comparisons with a colocated bird radar [32, 98]. Little is known about the best

threshold value or pixel-level accuracy of this method.
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We used the following rules to generate training labels for MistNet. For each

pixel, if the reflectivity factor Z is reported as “no data” (below signal-to-noise thresh-

old) then we set the label to “background”. Otherwise, if ρHV > 0.95 we set the label

to “precipitation”. All remaining labels are “biology”. We included the background

class during training to avoid semantic confusion resulting from forcing the model

to predict background pixels as either weather or biology. At prediction time, it is

known whether or not a pixel belongs to the background class, and predictions are

only made on non-background pixels.

Evaluation data We collected two separate evaluation data sets of human-labeled

ground truth data: a geographically representative contemporary set, and a histor-

ically representative historical set. Detail description of the datasets can be found

in [1]. All evaluations were performed for the region within 37.5 km ground range from

the radar. To measure pixel-level performance we first computed a confusion matrix

in which each pixel was weighted by reflectivity factor on a linear scale (mm6 mm−3)

after first capping values at 35 dBZ to limit the effect of extremely high values that

are typically discarded in biological analyses. From the confusion matrix, we com-

puted the standard metrics of precision (fraction of predicted biology that is actually

biology), recall (fraction of true biology that is predicted to be biology), and F-score

(harmonic mean of precision and recall).

6.3 Results

Overall performance Figure 6.2 shows several examples of predictions made by

MistNet compared to the ground-truth human annotations. Table ?? gives the

overall performance measurements of MistNet on the historical and contemporary

evaluation sets. The overall prevalance of precipitation is higher in historical data

(81.4 % vs. 47.6 %).
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150km 37.5km
Input MistNet Human Input MistNet Human

(a) KBGM 2014/10/01 02:15:53 GMT

(b) KMOB 2007/09/01 03:10:00 GMT

Figure 6.2. MistNet Segmentation Results. Segmentation results (red: rain,
orange: biology, blue: background) predicted by MistNet are shown along with the
human annotations in the ranges of 150km and 37.5km. Each example is shown as a
stack of five rows from top to bottom corresponding to the elevation angles from 0.5
to 4.5 degrees.
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Data set Post-processing? Precision Recall F-score

Historical (all)
no 93.5 99.0 96.2

yes 98.7 95.9 97.3

Historical (weather)
no 72.6 96.1 82.7

yes 92.7 82.8 87.5

Contemporary
no 96.4 99.1 97.7

yes 99.1 96.7 97.9

Table 6.1. Performance of MistNet with and without post-processing.

6.4 Summary

MistNet provides a fully automated method for extracting biological signals from

historical WSR-88D weather radar data and opens the entirety of the more-than-25-

year archive of US weather radar data for large-scale biological studies. Our results

show that deep learning is an effective tool for discriminating rain from biology in

radar data. Key ingredients to MistNet’s success are a large enough training set,

which is enabled by gathering labels automatically from dual polarization data, and

an architecture that is able to use all available information—from all products across

multiple elevations—while making predictions. An interesting technical aspect of

MistNet’s architecture is the fact that information is compressed down from 15

to 3 channels at the first layer, but MistNet is later able to make predictions at

5 separate elevations. The exact mechanisms by which the model compresses and

retrieves information from these channels is an interesting topic of future research.

There are several promising research directions for future applications of deep

learning to radar tasks. One direction is to improve performance by tracking recent

progress in deep learning for images, for example, to adopt architectures such as

residual networks [55] instead of the VGG-16 architecture used in MistNet. A

more substantial change would be to explore novel architectures that are completely

customized for radar data, which would necessitate training models from scratch.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary of contributions

In this thesis, we explored texture-based representations in the context of aggre-

gating convolutional features for end-to-end feature learning. We demonstrated that

our B-CNN models are effective in modeling distinctive local patterns and achieve

state-of-the-art results on fine-grained and texture recognition. This is achieved by

modeling multiplicative feature interactions between two CNN activations and using

feature normalizations to handle bursty features. To address the concerns of effi-

ciency, we studied techniques to speed up the forward and backward computations

for matrix square-root normalization. To address the concerns of memory usage, we

studied techniques to reduce the feature dimension.

To understand the invariance of the bilinear models, we presented techniques to

synthesize texture images that visualize the invariances under a given B-CNN repre-

sentation or a specified target category. The visualization showed that the property

of translational invariance allows B-CNN representations to capture distinct local ap-

pearance while the spatial arrangement of patches is ignored. The visualization of

pre-images that maximize the prediction scores of given categories provided insight

into the properties that are captured by the classification models.

In future research, we suggest exploring models that allow a detailed understand-

ing of fine-grained objects beyond object categorization and can generalize to extreme

conditions such as few-shot or long-tail settings. We describe some of the challenges

in the following sections.
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7.2 Comprehensive understanding of fine-grained objects

Although B-CNN models are able to do a reasonable job in recognizing fine-grained

categories, the current recognition models still cannot provide a comprehensive un-

derstanding of deformable objects regarding their poses, viewpoints, and background.

This is challenging because state-of-the-art machine learning algorithms rely on a mas-

sive amount of human annotations for supervised training, and providing detailed

annotations beyond category labels at scale is prohibitive.

One of the research directions to achieve better fine-grained object understanding

is to learn disentangled representations. This line of research attempts to recover

underlying variables that are accountable for generating the image of objects, and

hopefully, these variables emerge in some interpretable ways; for example, a set of

variables are related to pose, a set of variables are related to appearance, and another

set of variables are related to background. Several attempts [37, 91, 92, 88, 36] have

been made in this direction, but they mainly focused on human poses for which

there is massive amount of training data, rich annotations, and strong supervision.

Without a massive amount of annotations, modeling object deformation, in general, is

challenging in 2D due to occlusion and perspective projection. Recent works [67, 140]

have shown some success in modeling object shapes and deformations in 3D via the

reconstruction of 2D images. This might be a promising direction as the occlusion

and perspective projections can be handled by camera projection.

7.3 Learning interpretable feature decomposition

We demonstrated that B-CNNs model two-factor decomposition and they are ef-

fective in fine-grained recognition; however, the decomposition is not interpretable, as

shown in the visualization provided in Section 5.3.3. A particular desired decomposi-

tion motivated by classical part-based models [134, 39] is the separation of object parts

localization and local appearance. Regularizing the training procedure to achieve the
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feature decomposition without extra annotations beyond category labels is still chal-

lenging. Recent works on part-based attention models [136, 138] attempted to model

fine-grained objects explicitly by the part-appearance decomposition. Although these

models showed marginal improvement over B-CNN, the part-appearance decomposi-

tion might be beneficial in transfer learning settings, especially when we have limited

training instances. We expect a better generalization of object part localization to

novel categories and an easier learning problem to model local appearance conditioned

on object parts.

7.4 Generalization to tail categories

Higher-order representations increase the feature dimension quadratically and are

prone to overfitting when the data are scarce. Intuitively, when training data is

not sufficient, the models are likely to pick up accidental feature correlations. Few-

shot learning is an active research topic in machine learning. Specifically, for fine-

grained recognition, the objects are naturally distributed as a long-tail distribution

rather than a few-shot setting. Recent work [128] trained prototypical networks using

B-CNN representations on heavy-tailed fine-grained classification and demonstrated

that second-order features outperform their first-order counterpart. However, in the

paper, the experiments showed that the improvement arose from head categories

while the high feature dimensionality seemed to weaken the performance on the few-

shot categories when data is limited. As fine-grained objects share similar structures

among categories, we argue that the intra-category variances may be captured on

the head categories and transferred to the tail. This requires a conditional model

that allows the manipulation of data in a structured way to help the recognition

systems learn the right invariance of categories. How to model these variances and

leverage them to improve the recognition accuracy when data is scarce is still a very

challenging problem.
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APPENDIX

PROOF FOR PROPOSITIONS

A.1 Proofs of Proposition 4

1. The `2 norm of vec(Ap) is ρ(Ap) = || vec(Ap)|| =
(∑

i λ
2p
i

)1/2
.

Proof. We have:

|| vec(Ap)||2 = vec(Ap)T vec(Ap)

= Trace((Ap)TAp)

= Trace(UΛ2pUT )

=
∑

i

λ2p
i .

Thus the `2 norm: ρ(Ap) = || vec(Ap)|| =
(∑

i λ
2p
i

)1/2

2.
∑

x∈X C(x) = Trace(A1+p/||Ap||) =
(∑

i λ
1+p
i

)
/ρ(Ap).

Proof. We have:

∑

x∈X

C(x) =
∑

x∈X

vec(xxT )T vec(Âp)

= vec(A)T vec(Âp)

= Trace(AT Âp)

= Trace(ATAp)/ρ(Ap)

=

(∑

i

λ1+p
i

)
/ρ(Ap)
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3. The maximum value M = maxx∈X C(x) ≤ rmaxλ
p
1/ρ(Ap).

Proof. We have

C(x) = vec(xxT )T vec(Âp)

= Trace((xxT )T Âp)

= Trace(xTApx)/ρ(Ap)

≤ ||x||2λp1/ρ(Ap)

≤ rmaxλ
p
1/ρ(Ap)

4. The minimum value m = minx∈X C(x) ≥ rminλ
p
d/ρ(Ap).

Proof. We have:

C(x) = Trace(xTApx)/ρ(Ap)

≥ ||x||2λpd/ρ(Ap)

≥ rminλ
p
d/ρ(Ap)

A.2 Proof of Proposition 6

Proof. Here is an example where the matrix power Ap does not lie in the linear span

of the outer-products of the features x ∈ X . Consider two vectors x1 = [1 0]T and

x2 = [1 1]T . The covariance matrix A formed by the two is
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A = x1x
T
1 + x2x

T
2

=




1 0

0 0


+




1 1

1 1




=




2 1

1 1




The square root of the matrix A is:

A1/2 =




1.3416 0.4472

0.4472 0.8944




It is easy to see that A1/2 cannot be written as a linear combination of x1x
T
1 and

x2x
T
2 since any linear combination will have all equal values for all the entries except

possibly the top left value.

A sufficient condition for Ap to be in the linear span of outer products is that the

vectors x ∈ X which are used in constructing A be orthogonal to each other. This

however, is not true in general for features extracted from convolutional layers.
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