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ABSTRACT

IMPROVING FACE CLUSTERING IN VIDEOS

FEBRUARY 2020

SOUYOUNG JIN

B.Sc., DONGGUK UNIVERSITY

M.Sc., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik Learned-Miller

Human faces represent not only a challenging recognition problem for computer vision,

but are also an important source of information about identity, intent, and state of mind.

These properties make the analysis of faces important not just as algorithmic challenges,

but as a gateway to developing computer vision methods that can better follow the intent

and goals of human beings. In this thesis, we are interested in face clustering in videos.

Given a raw video, with no caption or annotation, we want to group all detected faces

by their identity. We address three problems in the area of face clustering and propose

approaches to tackle them.

The existing link-based face-clustering system is sensitive to a false connection between

two different people. We introduce a new similarity measure that helps the verification sys-

tem to provide very few false connections at moderate recall. Further, we also introduce

a novel clustering method called Erdős and Rényi clustering, which is based on the obser-

vations from a random graph model theory, that large clusters can be fully connected by
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joining just a small fraction of their node pairs. Our results present state-of-the-art results

on multiple video data sets and also on standard face databases.

What happens if faces are not sufficiently clear for direct recognition, due to the small

scale, occlusion, or extreme pose? We observe that, when humans are uncertain about

the identity of two faces, we use clothes or other contextual cues, e.g. specific objects or

textures, to infer identity. With this observation, we propose the Face-Background Network

(FB-Net), which takes as input not only the faces but also the entire scene to enhance the

performance of face clustering. In order for the network to learn background features that

are informative about the identity, we introduce a new dataset that contains face identities

in the context of consistent scenes. We show that FB-Net outperforms the state-of-the-art

method which uses face-level features only for the task of video face clustering.

The performance of face clustering depends on a good face detector. However, improv-

ing the performance of a face detector requires expensive labeling of faces. In this work,

we propose an approach to reduce mistakes of the existing face detector by using many

hours of freely available unlabeled videos on the web. Specifically, with the observation

that false positives/negatives are often isolated in time, we demonstrate a method to mine

hard examples automatically using temporal continuity in videos. In particular, we analyze

the output of a trained detector on video sequences and mine detections that are isolated

in time, which is likely to be hard examples. Our experiments show that re-training detec-

tors on these automatically obtained examples often significantly improves performance.

We present experiments on multiple architectures and multiple data sets, including face

detection, pedestrian detection, and other object categories.
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CHAPTER 1

INTRODUCTION

Videos are good sources to get to know about something we have not experienced be-

fore. We eventually want an AI system to watch a video and learn human life through it,

and the first step to make this possible is to help the machine understand videos, i.e. video

understanding. Building a video understanding system requires many essential compo-

nents, such as object detection, tracking, recognition, and sentiment analysis. In this thesis,

we are interested in the topic of face-clustering in videos – a problem of grouping faces in a

video so that each group contains a unique individual [32, 19, 55, 125]. Specifically, given

a raw video, with no caption or annotation, we want to group all detected faces by their

identity. The topic of face-clustering is one of the important topics in video understanding,

not only because the topic has many applications but also because of the difficulty that ma-

chines have in solving this problem. On the other hand, humans are good at identifying the

faces of the same person even under severe poses and occlusions without paying too much

attention to it.

For face clustering, the link-based clustering algorithm [102] is one of popularly used

algorithms. In this chapter, we first give an overview of how the link-based clustering

algorithm works on faces (Chapter 1.1). Then, we address three important problems in the

area of face-clustering (Chapter 1.2).
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1.1 Link-Based Clustering Algorithm for Face Clustering

Suppose we have a face-detector and run the detector on every frame in a video. Each

of the detected faces is considered as a node in a graph. Our goal is to connect nodes from

the same identity while separate the nodes from two different identities.

To do that, we first compute a pairwise distance matrix between all nodes with a dis-

tance (or similarity) measure, e.g. `2-distance, which indicates how different (or similar)

two faces are. Specifically, given a face recognition network that is trained to identify mul-

tiple people, we compute the embedding for each node, by using a pre-classification layer

of features from the network. Then, we create a link between nodes only if a distance score

is below a certain threshold. Finally, connected nodes are formed as a cluster.

1.2 Problems and Contributions

In this thesis, three important problems in the area of face-clustering are addressed. We

also propose novel approaches to tackle the problems. Firstly, we propose a new link-based

clustering algorithm with a new similarity measure between faces for better face-clustering.

Secondly, we introduce a novel network architecture that takes as input both the target face

and the entire corresponding video frame in order to incorporate additional information

outside faces for person-identity clustering in videos. Finally, a new method is proposed

for pseudo-labeling that uses temporal consistency cues from unlabeled videos to mine

large amounts of hard examples without human annotation.

1.2.1 Improving Face-Clustering Using Erdős-Rényi Clustering

Existing link-based face-clustering system creates a link between two faces based on a

face verification system. However, in the link-based clustering system, just a single incor-

rect connection between two different people can lead to poor clustering results. Thus, in

Chapter 3, We introduce a novel verification method, rank-1 counts verification, that pro-

vides very few false connections at moderate recall. We then introduce a novel clustering
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method, motivated by the classic graph theory results of Erdős and Rényi [30], which is

based on the observations that large clusters can be fully connected by joining just a small

fraction of their point pairs. Finally, the rank-1 counts verification is used in the link-based

clustering scheme.

We make three contributions in this work:

• A new approach to combining high-quality face detection [54] and generic track-

ing [104] to improve both precision and recall of our video face detection.

• A new method, Erdős-Rényi clustering, for large-scale clustering of images and

video tracklets. We argue that effective large-scale face-clustering requires face veri-

fication with fewer false positives, and we introduce rank-1 counts verification, show-

ing that it indeed achieves better true positive rates in low false positive regimes.

Rank-1 counts verification, used with simple link-based clustering, achieves high

quality clustering results on three separate video data sets.

• A principled evaluation for the end-to-end problem of face detection and clustering

in videos; until now there has been no clear way to evaluate the quality of such an

end-to-end system, but only to evaluate its individual parts (detection and clustering).

1.2.2 Improving Face-Clustering Using Face-Background Network (FB-Net)

What happens if faces are not sufficiently clear for direct recognition, due to distance,

occlusion, or other factors? When faces are not clearly visible, humans may use clothes

or other contextual cues to infer identity. Inspired by this, in Chapter 4, we propose the

Face-Background Network (FB-Net), which takes as input not just faces but also the entire

scene to enhance face-clustering. In order for the network to learn background features

that are informative about identity, we introduce a new dataset that contains not just face

identities but also faces in the context of consistent scenes. These images contain views

of the same characters from different shots within the same scene, allowing the network
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to learn how consistent identities are correlated with consistent scene elements, especially

the same scene elements from different points of view. Thus, the dataset can help the

network learn not just face level features, but also parts of the background that can improve

face-clustering. Our FB-Net uses a transformer module [128] in a novel way to learn

useful scene level features that improve face verification and hence face-clustering. Our

results show that FB-Net outperforms the state-of-the-art method, which exploits face-level

features only, in video face-clustering.

This work contains the following contributions:

• We introduce the FB-Net that takes as input not just faces but also the entire scene to

enhance face-clustering.

• The FB-Net is trained with a transformer module in a novel way to learn useful

scene level features with face/background processors. The learned embeddings are

evaluated on the test videos in which the network has never seen the actors before.

FB-Net outperforms the state-of-the-art method which exploits face-level features

only.

• To make the network to learn background features that are informative about identity,

we provide a new dataset that allows the network to learn consistent scene elements

from different points of view.

1.2.3 Improving Face-Detection by Training with Hard Example Mining

The performance of face-clustering depends on a good face-detector, while an existing

face-detector also makes mistakes. However, improving the performance of a face-detector

requires expensive labeling of faces. In Chapter 5, we propose an approach to reduce mis-

takes of the existing face-detector by using many hours of freely available unlabeled videos

on the web by using temporal continuity. Specifically, important gains have recently been

obtained in object detection by using training objectives that focus on hard negative ex-

amples, i.e., negative examples that are currently rated as positive or ambiguous by the
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detector. These examples can strongly influence parameters when the network is trained

to correct them. Unfortunately, they are often sparse in the training data and are expensive

to obtain. In this work, we show how large numbers of hard negatives can be obtained

automatically by analyzing the output of a trained detector on video sequences. In particu-

lar, detections that are isolated in time, i.e., that have no associated preceding or following

detections, are likely to be hard negatives. We describe simple procedures for mining large

numbers of such hard negatives (and also hard positives) from unlabeled video data. Our

experiments show that retraining detectors on these automatically obtained examples of-

ten significantly improves performance. We present experiments on multiple architectures

and multiple data sets, including face detection, pedestrian detection, and other object cat-

egories.

In this work, we have three contributions as follows:

• We use temporal consistency cues from unlabeled videos to mine large amounts of

hard examples without human annotation.

• We show improvements using standard architectures on well-known Pedestrian and

Face detection benchmarks.

• Our hard-example mining can be easily extended to other categories, utilizing the

abundance of unlabeled videos on YouTube for almost any object category.
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CHAPTER 2

RELATED WORK

In this chapter, we first discuss face tracking and then the problem of clustering faces

in videos (Chapter 2.1). Then, we review work related to the recognition of characters in

videos and movies (Chapter 2.2). We also review previous work related to using contextual

cues in recognition of a person of interest (Chapter 2.3). Finally, we discuss object detection

(Chapter 2.4).

2.1 Face Tracking and Clustering in Videos

We can divide the face clustering work into two categories: fully unsupervised and with

some supervision. We then discuss prior work using reference images.

Recent work on robust face tracking [124, 98, 85] has gradually expanded the length of

face tracklets, starting from face detection results. Ozerov et al. [85] merge results from dif-

ferent detectors by clustering based on spatio-temporal similarity. Clusters are then merged,

interpolated, and smoothed for face tracklet creation. Similarly, Roth et al. [98] generate

low-level tracklets by merging detection results, form high-level tracklets by linking low-

level tracklets, and apply the Hungarian algorithm to form even longer tracklets. Tapaswi et

al. [124] improve on this [98] by removing false positive tracklets.

With the development of multi-face tracking techniques, the problem of clustering TV

characters has also been widely studied [123, 46, 32, 10, 139, 138, 126]. Given precom-

puted face tracklets, the goal is to assign a name or an ID to a group of face tracklets with

the same identity. Wu et al. [139, 138] iteratively cluster face tracklets and link clusters

into longer tracks in a bootstrapping manner. Tapaswi et al. [126] train classifiers to find
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thresholds for joining tracklets in two stages: within a scene and across scenes. Similarly,

in Chapter 3, we aim to generate face clusters in a fully unsupervised manner.

Though solving this problem may yield a better result for face tracking, some forms of

supervision specific to the video or characters in the test data can improve performance.

Tapaswi et al. [123] perform face recognition, clothing clustering and speaker identifica-

tion, where face models and speaker models are first trained on other videos containing

the same main characters as in the test set. In [32, 10], subtitles and transcripts are used

to obtain weak labels for face tracks. More recently, Haurilet et al. [46] solve the prob-

lem without transcripts by resolving name references only in subtitles. Our approaches

in Chapter 3 and Chapter 4 are more broadly applicable because it does not use subtitles,

transcripts, or any other supervision related to the identities in the test data, unlike these

other works [123, 46, 32, 10].

A standard procedure for face clustering is to leverage constraints in a video by learn-

ing cast-specific metrics [19, 138, 139, 140] by considering face images within tracks as

similar. The constraints can be further used to jointly fine-tune face representations [155].

Recent methods have focused on using temporal consistency to identify false positive and

missed detections and improve clustering performance [55] and using inductive biases in

the representation space [125].

As in the proposed verification system in Chapter 3, some existing work [21, 45] uses

reference images. For example, index code methods [45] map every single image to a code

based upon a set of reference images, and then compare these codes. On the other hand,

our Erdős-Rényi Clustering algorithm compares the relative distance of two images with

the distance of one of the images to the reference set, which is different. In addition, we use

the newly defined rank-1 counts, rather than traditional Euclidean or Mahalanobis distance

measures to compare images [21, 45] for similarity measures.
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2.1.1 Person Re-Identification

The person re-identification task [89, 156, 24, 63, 70, 157] is defined to match pedes-

trians from different non-overlapping cameras. While related, person re-identification is

significantly different from video face clustering in terms of camera setting and lack of di-

verse context. Specifically, in the person re-identification task, the camera is assumed to be

stationary all the time. As a result, multiple people can have the same background, which

is often not associative with their identity. Unlike the person re-identification task, the face

clustering task aims to group characters in a video/movie using faces as the primary su-

pervision. In addition, video frames do not always show the whole person body. It is not

guaranteed that a movie character does not change clothes across different scenes. Fur-

thermore, due to constantly changing camera views for the same scene and person, person

re-identification methods cannot be directly applied to the video face clustering problem.

2.2 Face Recognition in Videos

Previous works have addressed the character identification task in videos in a variety

of ways. Due to the availability of multi-modal information from videos, early efforts

focused on using the supervision from transcripts (speaker names and dialogues) [10, 32,

90, 113, 20]. Recent works have further focused on using other forms of multi-modal

context like speech [82] and temporal consistency using face tracks [86, 144]. Apart from

the in-domain context, recent work has also used supervision from web data [2, 83, 129] to

improve performance. Automatic identification methods using only visual data primarily

make use of constraints from different modalities of local context like clothing[123] and

hairstyle [83].

2.3 Context-Based Video Understanding

Contextual information has been widely studied for human and computer vision pre-

diction tasks. Visual context comes in various forms. [25] provides a taxonomy of sources
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of contextual information, and how they can benefit different stages of visual recognition.

Previous works in different sub-areas of computer vision (object detection [11, 107], scene

understanding [72]) have reported significant performance improvements by using contex-

tual information.

In Chapter 2.3.1, we first review the studies on how contexts are used for face detection

and recognition. Then, in Chapter 2.3.2, we discuss attention mechanism to study the

contextual information.

2.3.1 Context for Face Detection/Recognition

Significant improvements have been observed by simultaneously modeling context rep-

resentation for the face detection task [122, 50]. With respect to face or person recognition

in the wild, previous works have demonstrated the utility of additional information from

outside of the face region. This could be attributed to factors like occlusion, pose and illu-

mination variation that make this problem challenging. Early works incorporated multiple

forms of additional cues like clothing, timestamps, scenes, etc [4, 38, 114, 67].

With the advent of deep learning, recent work has focused on obtaining more robust

features by integrating different forms of contextual cues. By combining additional infor-

mation like full-body, pose [151] and weighted full body cues [56] with face-level features,

these methods achieve better performance than only using faces. Further recent works con-

sider social context [60, 64, 52] along with jointly learning representations for multiple

regions of interest (face, head, upper body, whole-body) in identifying the person. In con-

trast, our work focuses on adaptively learning background features (local and global scene

context) that are most informative for matching identities. Unlike the previous methods, in

the FB-Net (Chapter 4), no extra ground-truth annotation is used to learn contextual cues.

2.3.2 Attention in Neural Networks

Recently, a large amount of work has been proposed that utilizes attention, primarily in

the language-related tasks [128, 142]. In videos, attention has been primarily incorporated
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in tasks like action recognition and video classification. Attention in these tasks have been

formulated in various different ways, including self-attention [132], second-order pooling

or gating [78, 41, 141, 73], human pose [8] and graph-based architectures[133]. In our

FB-Net, we utilize self-attention to learn contextual representation conditioned on the face

region in the image. Unlike [40], we do not use self-attention for the test-time objective,

i.e. classification task. Instead, we utilize the self-attention to learn better face embeddings.

2.4 Object Detection

Convolutional neural networks (CNNs) have recently been applied to achieve state-of-

the-art results in object detection [43, 42, 47, 95, 92, 71, 14, 68]. Many of these object

detectors have been re-purposed for other tasks such as face detection [91, 61, 145, 33,

65, 155, 148, 54, 135, 50, 153] or pedestrian detection [150, 29, 14], [15, 49, 62, 152],

achieving impressive results [53, 146, 27]. In this section, we first talk about the approaches

that focus on harder examples to improve performance. We also review the semi-supervised

work for object detection.

2.4.1 Training with Hard Examples

Massive class imbalance is an issue with sliding-window-style object detectors — be-

ing densely applied over an image. Such models see far more “easy” negative samples

from background regions than positive samples from regions containing an object. Some

form of hard negative mining is used by most successful object detectors to account for

this imbalance [22, 26, 34, 43, 42, 47, 108, 150, 69, 131, 118]. Early approaches include

bootstrapping [119] for training SVM-based object detectors [22, 34], where false positive

detections were added to the set of background training samples in an incremental fash-

ion. Other methods [99, 26] apply a pre-trained detector on a larger dataset to mine false

positives and then re-train.
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Hard negative mining has also improved the performance of deep learning based mod-

els [110, 74, 42, 108, 150, 131, 69]. Shrivastava et al. [108] proposed an Online Hard

Example Mining (OHEM) procedure,training using only high-loss region proposals. This

technique, originally applied to the Fast R-CNN detector [42], yielded significant gains

on the PASCAL and MS-COCO benchmarks. Lin et al. [69] propose the focal loss to

down-weight the contribution of easy examples and train a single-stage, multi-scale net-

work [68]. The A-Fast-RCNN [134] does adversarial generation of hard examples using

occlusions and deformations. While similar to our work, our model is trained with hard

examples from real images and variations are not limited to occlusion and spatial defor-

mations. Zhang et al. [150] show that effective bootstrapping of hard negatives, using a

boosted decision forest [37, 5], significantly improves over a Faster R-CNN baseline for

pedestrian detection. Recent face detection methods, such as Wan et al. [131] and Sun et

al. [118], have also used the bootstrapping of hard negatives to improve the performance

of CNN-based detectors — a pre-trained Faster R-CNN is used to mine hard negatives;

then the model is re-trained. However, these methods require a human-annotated dataset

of suitable size. Our unsupervised approach in Chapter 5 does not rely upon bounding-box

annotations and thus can be trained upon potentially unlimited data.

2.4.2 Semi-Supervised Learning

Using mixtures of labeled and unlabeled data is known as semi-supervised learning [12,

18, 136]. Rosenberg et al. [97] ran a trained object detector on unlabeled data and then

trained on a subset of this noisy labeled data in an incremental re-training procedure. In

Kalal et al. [57], constraints based on video object trajectories are used to correct patch la-

bels of a random forest classifier; these corrected samples are used for re-training. Tang et

al. [121] adapt still-image object detectors to video by selecting training samples from un-

labeled videos, based on the consistency between detections and tracklets, and then follow

an iterative procedure that selects the easy examples from videos and hard examples from
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images to re-train the detector. Rather than adapting to the video domain, we seek to im-

prove detector performance on the source domain by selecting hard examples from videos.

Singh et al. [112] gather discriminative regions from weakly-labeled images and then refine

their bounding-boxes by incorporating tracking information from weakly-labeled videos.
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CHAPTER 3

END-TO-END FACE DETECTION AND CAST GROUPING IN
MOVIES USING ERDŐS-RÉNYI CLUSTERING

The problem of identifying face images in video and clustering them together by iden-

tity is a natural precursor to high impact applications such as video understanding and

analysis. This general problem area was popularized in the paper “Hello! My name

is...Buffy” [32], which used text captions and face analysis to name people in each frame

of a full-length video. In this work, we use only raw video (with no captions), and group

faces by identity rather than naming the characters. In addition, unlike face clustering

methods that start with detected faces, we include detection as part of the problem. This

means we must deal with false positives and false negatives, both algorithmically, and in

our evaluation method. We make three contributions:

• A new approach to combining high-quality face detection [54] and generic track-

ing [104] to improve both precision and recall of our video face detection.

• A new method, Erdős-Rényi clustering, for large-scale clustering of images and

video tracklets. We argue that effective large-scale face clustering requires face

verification with fewer false positives, and we introduce rank-1 counts verification,

showing that it indeed achieves better true positive rates in low false positive regimes.

Rank-1 counts verification, used with simple link-based clustering, achieves high

quality clustering results on three separate video data sets.

• A principled evaluation for the end-to-end problem of face detection and clustering

in videos; until now there has been no clear way to evaluate the quality of such an

end-to-end system, but only to evaluate its individual parts (detection and clustering).
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Figure 3.1: Overview of approach. Given a movie, our approach generates tracklets (Chap-
ter 3.1) and then does Erdős-Rényi Clustering and FAD verification between all tracklet
pairs. (Chapter 3.2) Our final output is detections with unique character Ids.

3.1 Detection and tracking

Our goal is to take raw videos, with no captions or annotations, and to detect all faces

and cluster them by identity. We start by describing our method for generating face track-

lets, or continuous sequences of the same face across video frames. We wish to generate

clean face tracklets that contain face detections from just a single identity. Ideally, exactly

one tracklet should be generated for an identity from the moment his/her face appears in a

shot until the moment it disappears or is completely occluded.

To achieve this, we first detect faces in each video frame using the Faster R-CNN object

detector [93], but retrained on the WIDER face data set [147], as described by Jiang et

al. [54]. Even with this advanced detector, face detection sometimes fails under challenging

illumination or pose. In videos, those faces can be detected before or after the challenging

circumstances by using a tracker that tracks both forward and backward in time. We use the

distribution field tracker [104], a general object tracker that is not trained specifically for

faces. Unlike face detectors, the tracker’s goal is to find in the next frame the object most

similar to the target in the current frame. The extra faces found by the tracker compensate

for missed detections (Fig. 3.1, bottom of block 2). Tracking helps not only to catch false

negatives, but also to link faces of equivalent identity in different frames.

One simple approach to combining a detector and tracker is to run a tracker forward

and backward in time from every single face detection for some fixed number of frames,

producing a large number of “mini-tracks”. A Viterbi-style algorithm [35, 23] can then be
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used to combine these mini-tracks into longer sequences. This approach is computationally

expensive since the tracker is run many times on overlapping subsequences, producing

heavily redundant mini-tracks. To improve performance, we developed the following novel

method for combining a detector and tracker. Happily, it also improves precision and recall,

since it takes advantage of the tracker’s ability to form long face tracks of a single identity.

The method starts by running the face detector in each frame. When a face is first

detected, a tracker is initialized with that face. In subsequent frames, faces are again de-

tected. In addition, we examine each current tracklet to see where it might be extended

by the tracking algorithm in the current frame. We then check the agreement between de-

tection and tracking results. We use the intersection over union (IoU) between detections

and tracking results with threshold 0.3, and apply the Hungarian algorithm[59] to establish

correspondences among multiple matches. If a detection matches a tracking result, the de-

tection is stored in the current face sequence such that the tracker can search in the next

frame given the detection result. For the detections that have no matched tracking result, a

new tracklet is initiated. If there are tracking results that have no associated detections, it

means that either a) the tracker could not find an appropriate area on the current frame, or b)

the tracking result is correct while the detector failed to find the face. The algorithm post-

pones its decision about the tracked region for the next α consecutive frames (α = 10). If

the face sequence has any matches with detections within α frames, the algorithm will keep

the tracking results. Otherwise, it will remove the tracking-only results. The second block

of Fig. 3.1 summarizes our proposed face tracklet generation algorithm and shows exam-

ples corrected by our joint detection-tracking strategy. Next, we describe our approach to

clustering based on low false positive verification.

3.2 Erdős-Rényi Clustering and Rank-1 Counts Verification

In this section, we describe our approach to clustering face images, or, in the case of

videos, face tracklets. We adopt the basic paradigm of linkage clustering, in which each
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Figure 3.2: Simulation of cluster connectedness as a function of cluster size, N , and the
probability p of connecting point pairs. The figure shows that for various N (different
colored lines), the probability that the cluster is fully connected (on the y-axis) goes up as
more pairs are connected. For larger graphs, a small probability of connected pairs still
leads to high probability that the graph will be fully connected.

pair of points (either images or tracklets) is evaluated for linking, and then clusters are

formed among all points connected by linked face pairs. We name our general approach to

clustering Erdős-Rényi clustering since it is inspired by classic results in graph theory due

to Erdős and Rényi [30], as described next.

Consider a graph G with n vertices and probability p of each possible edge being

present. This is the Erdős-Rényi random graph model [30]. The expected number of edges

is
(
n
2

)
p. One of the central results of this work is that, for ε > 0 and n sufficiently large, if

p >
(1 + ε) lnn

n
, (3.1)

then the graph will almost surely be connected (there exists a path from each vertex to

every other vertex). Fig. 3.2 shows this effect on different graph sizes, obtained through

simulation.

Consider a clustering system in which links are made between tracklets by a verifier

(a face verification system), whose job is to say whether a pair of tracklets is the “same”

person or two “different” people. While graphs obtained in clustering problems are not

uniformly random graphs, the results of Erdős and Rényi suggest that this verifier can have

a fairly low recall (percentage of same links that are connected) and still do a good job
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connecting large clusters. In addition, false matches may connect large clusters of different

identities, dramatically hurting clustering performance. This motivates us to build a verifier

that focuses on low false positives rather than high recall. In the next section, we present

our approach to building a verifier that is designed to have good recall at low false positive

rates, and hence is appropriate for clustering problems with large clusters, like grouping

cast members in movies.

3.2.1 Rank-1 Counts for Fewer False Positives

Our method compares images by comparing their multidimensional feature vectors.

More specifically, we count the number of feature dimensions in which the two images

are closer in value than the first image is to any of a set of reference images. We call this

number the rank-1 count similarity. Intuitively, two images whose feature values are “very

close” for many different dimensions are more likely to be the same person. Here, an image

is considered “very close” to a second image in one dimension if it is closer to the second

image in that dimension than to any of the reference images.

More formally, to compare two images IA and IB, our first step is to obtain feature

vectors A and B for these images. We extract 4096-D feature vectors from the fc7 layer of

a standard pre-trained face recognition CNN [87]. In addition to these two images, we use

a fixed reference set with G images (we typically set G = 50), and compute CNN feature

vectors for each of these reference images.1 Let the CNN feature vectors for the reference

images be R1, R2, ..., RG. We sample reference images from the TV Human Interactions

Dataset [88], since these are likely to have a similar distribution to the images we want to

cluster.

For each feature dimension i (of the 4096), we ask whether

1The reference images may overlap in identity with the clustering set, but we choose reference images so
that there is no more than one occurrence of each person in the reference set.
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|Ai −Bi| < min
j
|Ai −Rj

i |.

That is, is the value in dimension i closer between A and B than between A and all the

reference images? If so, then we say that the ith feature dimension is rank-1 between A

and B. The cumulative rank-1 counts feature R is simply the number of rank-1 counts

across all 4096 features:

R =
4096∑
i=1

I

[
|Ai −Bi| < min

j
|Ai −Rj

i |
]
,

where I[·] is an indicator function which is 1 if the expression is true and 0 otherwise.

Taking inspiration from Barlow’s notion that the brain takes special note of “suspicious

coincidences” [9], each rank-1 feature dimension can be considered a suspicious coinci-

dence. It provides some weak evidence that A and B may be two images of the same

person. On the other hand, in comparing all 4096 feature dimensions, we expect to obtain

quite a large number of rank-1 feature dimensions even if A andB are not the same person.

When two images and the reference set are selected randomly from a large distribution

of faces (in this case they are usually different people), the probability that A is closer to B

in a particular feature dimension than to any of the reference images is just

1

G+ 1
.

Repeating this process 4096 times means that the expected number of rank-1 counts is

simply

E[R] =
4096

G+ 1
,

since expectations are linear (even in the presence of statistical dependencies among the

feature dimensions). Note that this calculation is a fairly tight upper bound on the expected

number of rank-1 features conditioned on the images being of different identities, since
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most pairs of images in large clustering problems are different, and conditioning on ”dif-

ferent” will tend reduce the expected rank-1 count. Now if two images IA and IB have a

large rank-1 count, it is likely they represent the same person. The key question is how to

set the threshold on these counts to obtain the best verification performance.

Recall that our goal, as guided by the Erdős-Rényi random graph model, is to find a

threshold on the rank-1 counts R so that we obtain very few false positives (declaring two

different faces to be “same”) while still achieving good recall (a large number of same

faces declared to be “same”). Fig. 3.3 shows distributions of rank-1 counts for various

subsets of image pairs from Labeled Faces in the Wild (LFW) [51]. The red curve shows

the distribution of rank-1 counts for mismatched pairs from all possible mismatched pairs

in the entire data set (not just the test sets). Notice that the mean is exactly where we would

expect with a gallery size of 50, at 4096
51
≈ 80. The green curve shows the distribution

of rank-1 counts for the matched pairs, which is clearly much higher. The challenge for

clustering, of course, is that we don’t have access to these distributions since we don’t know

which pairs are matched and which are not. The yellow curve shows the rank-1 counts for

all pairs of images in LFW, which is nearly identical to the distribution of mismatched

rank-1 counts, since the vast majority of possible pairs in all of LFW are mismatched. This

is the distribution to which the clustering algorithm has access.

If the 4,096 CNN features were statistically independent (but not identically distributed),

then the distribution of rank-1 counts would be a binomial distribution (blue curve). In this

case, it would be easy to set a threshold on the rank-1 counts to guarantee a small num-

ber of false positives, by simply setting the threshold to be near the right end of the mis-

matched (red) distribution. However, the dependencies among the CNN features prevent

the mismatched rank-1 counts distribution from being binomial, and so this approach is not

possible.
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Figure 3.3: LFW distribution of rank-1 counts. Each distribution is normalized to sum to
1.

3.2.2 Automatic Determination of Rank-1 Count Threshold

Ideally, if we could obtain the rank-1 count distribution of mismatched pairs of a test

set, we could set the threshold such that the number of false positives becomes very low.

However, it is not clear how to get the actual distribution of rank-1 counts for mismatched

pairs at test time.

Instead, we can estimate the shape of the mismatched pair rank-1 count distribution

using one distribution (LFW), and use it to estimate the distribution of mismatched rank-1

counts for the test distribution. We do this by fitting the left half of the LFW distribution to

the left half of the clustering distribution using scale and location parameters. The reason

we use the left half to fit the distribution is that this part of the rank-1 counts distribution is

almost exclusively influence by mismatched pairs. The right side of this matched distribu-

tion then gives us an approximate way to threshold the test distribution to obtain a certain

false positive rate. It is this method that we use to report the results in the leftmost column

of Table 3.2.
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Table 3.1: Verification performance comparisons on all possible LFW pairs. The proposed
rank-1 counts gets much higher recall at fixed FPRs.
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1E-9 0.0252 0.0068 0.0016 0.0086
1E-8 0.0342 0.0094 0.0017 0.0086
1E-7 0.0614 0.0330 0.0034 0.0086
1E-6 0.1872 0.1279 0.0175 0.0086
1E-5 0.3800 0.3154 0.0767 0.0427
1E-4 0.6096 0.5600 0.2388 0.2589
1E-3 0.8222 0.7952 0.5215 0.8719
1E-2 0.9490 0.9396 0.8204 0.9656
1E-1 0.9939 0.9915 0.9776 0.9861

A key property of our rank-1 counts verifier is that it has good recall across a wide

range of the low false positive regime (FPR). Thus, our method is relatively robust to the

setting of the rank-1 counts threshold. In order to show that our rank-1 counts feature has

good performance for the types of verification problems used in clustering, we construct

a verification problem using all possible pairs of the LFW database [51]. In this case, the

number of mismatched pairs (quadratic in N ) is much greater than the number of matched

pairs. As shown in Table 3.1, we observe that our verifier has higher recall than three com-

peting methods (all of which use the same base CNN representation) at low false positive

rates.

Using rank-1 counts verification for tracklet clustering. In our face clustering ap-

plication, we consider every pair (I, J) of tracklets, calculate a value akin to the rank-1

count R, and join the tracklets if the threshold is exceeded. In order to calculate an R value

for tracklets, we sample a random subset of 10 face images from each tracklet, compute a

rank-1 count R for each pair of images, and take the maximum of the resulting R values.
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3.2.3 Averaging over Gallery Sets

While our basic algorithm uses a fixed (but randomly selected) reference gallery, the

method is susceptible to the case in which one of the gallery images happens to be similar

in appearance to a person with a large cluster, resulting in a large number of false negatives.

To mitigate this effect, we implicitly average the rank-1 counts over an exponential number

of random galleries, as follows.

The idea is to sample random galleries of size g from a larger super-gallery with G

images; we used g = 50, G = 1000. We are interested rank-1 counts, in which image A’s

feature is closer to B than to any of the gallery of size g. Suppose we know that among the

1000 super-gallery images, there are K (e.g., K = 3) that are closer to A than B is. The

probability that a random selection (with replacement) of g images from the super-gallery

would contain none of the K closer images (and hence represent a rank-1 count) is

r(A,B) =

(
1.0− K

G

)g

.

That is, r(A,B) is the probability of having a rank-1 count with a random gallery, and

using r(A,B) as the count is equivalent to averaging over all possible random galleries. In

our final algorithm, we sum these probabilities rather than the deterministic rank-1 counts.

3.2.4 Efficient Implementation

For simplicity, we discuss the computational complexity of our fixed gallery algorithm;

the complexity of the average gallery algorithm is similar. With F , G, and N indicating

the feature dimensionality, number of gallery images, and number of face tracklets to be

clustered, the time complexity of the naive rank-1 count algorithm is O(F ∗G ∗N2).

However, for each feature dimension, we can sort N test image feature values and G

gallery image feature values in time O((N + G) log(N + G)). Then, for each value in

test image A, we find the closest gallery value, and increment the rank-1 count for the test

images that are closer to A. Let Y be the average number of steps to find the closest gallery
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value. This is typically much smaller than N . The time complexity is then O(F ∗ [(N +

G) log(N +G) +N ∗ Y ]).

3.2.5 Clustering with Do-Not-Link Constraints

It is common in clustering applications to incorporate constraints such as do-not-link

or must-link, which specify that certain pairs should be in separate clusters or the same

cluster, respectively [130, 105, 76, 66, 80]. They are also often seen in the face clustering

literature [19, 138, 139, 85, 126, 155]. These constraints can be either rigid, implying they

must be enforced [130, 105, 80, 85], or soft, meaning that violations cause an increase in

the loss function, but those violations may be tolerated if other considerations are more

important in reducing the loss [76, 66, 138, 139, 155].

In this work, we assume that if two faces appear in the same frame, they must be from

different people, and hence their face images obey a do-not-link constraint. Furthermore,

we extend this hard constraint to the tracklets that contain faces. If two tracklets have any

overlap in time, then the entire tracklets represent a do-not-link constraint.

We enforce these constraints on our clustering procedure. Note that connecting all

pairs below a certain dissimilarity threshold followed by transitive closure is equivalent to

single-linkage agglomerative clustering with a joining threshold. In agglomerative cluster-

ing, a pair of closest clusters is found and joined at each iteration until there is a single

cluster left or a threshold met. A naı̈ve implementation will simply search and update

the dissimilarity matrix at each iteration, making the whole process O(n3) in time. There

are faster algorithms giving the optimal time complexity O(n2) for single-linkage cluster-

ing [109, 81]. Many of these algorithms incur a dissimilarity update at each iteration, i.e.

update d(i, k) = min(d(i, k), d(j, k)) after combining cluster i and j (and using i as the

cluster id of the resulting cluster). If the pairs with do-not-link constraints are initialized

with +∞ dissimilarity, the aforementioned update rule can be modified to incorporate the

constraints without affecting the time and space complexity:
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d(i, k) =


min(d(i, k), d(j, k)) d(i, k) 6= +∞

AND d(j, k) 6= +∞

+∞ otherwise

3.3 Experiments

We evaluate our proposed approach on three video data sets: the Big Bang Theory

(BBT) Season 1 (s01), Episodes 1-6 (e01-e06) [10], Buffy the Vampire Slayer (Buffy) Sea-

son 5 (s05), Episodes 1-6 (e01-e06) [10], and Hannah and Her Sisters (Hannah) [85].

Each episode of the BBT and Buffy data set contains 5-8 and 11-17 characters respectively,

while Hannah has annotations for 235 characters.2 Buffy and Hannah have many occlu-

sions which make the face clustering problem more challenging. In addition to the video

data sets, we also evaluate our clustering algorithm on LFW [51] which contains 5730

subjects.3

An end-to-end evaluation metric. There are many evaluation metrics used to inde-

pendently evaluate detection, tracking, and clustering. Previously, it has been difficult

to evaluate the relative performance of two end-to-end systems because of the complex

trade-offs between detection, tracking, and clustering performance. Some researchers have

attempted to overcome this problem by providing a reference set of detections with sug-

gested metrics [79], but this approach precludes optimizing complete system performance.

To support evaluation of the full video-to-identity pipeline, in which false positives, false

negatives, and clustering errors are handled in a common framework, we introduce unified

pairwise precision (UPP) and unified pairwise recall (UPR) as follows.

Given a set of annotations, {a1, a2, ..., aA} and detections, {d1, d2, ..., dD}, we consider

the union of three sets of tuples: false positives resulting from unannotated face detections

{di, ∅}; valid face detections {di, aj}; and false negatives resulting from unmatched anno-

2We removed garbage classes such as ‘unknown’ or ‘false positive’.

3All known ground truth errors are removed.
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(a) Rank-1 Count (b) Rank-Order Distance [158]

Figure 3.4: Visualization of the combined detection and clustering metric for the first few
minutes of the Hannah set.

tations {∅, aj}. Fig. 3.4 visualizes every possible pair of tuples ordered by false positives,

valid detections, and false negatives for the first few minutes of the Hannah data set. Fur-

ther, groups of tuples have been ordered by identity to show blocks of identity to aid our

understanding of the visualization, although the order is inconsequential for the numerical

analysis.

In Fig 3.4, the large blue region (and the regions it contains) represents all pairs of an-

notated detections, where we have valid detections corresponding to their best annotation.

In this region, white pairs are correctly clustered, magenta pairs are the same individual but

not clustered, cyan pairs are clustered but not the same individual, and blue pairs are not

clustered pairs from different individuals. The upper left portion of the matrix represents

false positives with no corresponding annotation. The green pairs in this region correspond

to any false positive matching with any valid detection. The lower right portion of the ma-

trix corresponds to the false negatives. The red pairs in this region correspond to any missed

clustered pairs resulting from these missed detections. The ideal result would contain blue

and white pairs, with no green, red, cyan, or magenta.
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The unified pairwise precision (UPP) is the fraction of pairs, {di, aj} within all clusters

with matching identities, i.e., the number of white pairs divided by the number of white,

cyan, and green pairs. UPP decreases if: two matched detections in a cluster do not cor-

respond to the same individual; if a matched detection is clustered with a false positive;

for each false positive regardless of its clustering; and for false positives clustered with

valid detections. Similarly, the unified pairwise recall (UPR) is the fraction of pairs within

all identities that have been properly clustered, i.e., the number of white pairs divided by

number of white, magenta, and red pairs. UPR decreases if: two matched detections of

the same identity are not clustered; a matched detection should be matched but there is no

corresponding detection; for each false negative; and for false negative pairs that should be

detected and clustered. The only way to achieve perfect UPP and UPR is to detect every

face with no false positives and cluster all faces correctly. At a glance, our visualization in

Fig. 3.4 shows that our detection produces few false negatives, many more false positives,

and is less aggressive in clustering. Using this unified metric, others can tune their own

detection, tracking, and clustering algorithms to optimize the unified performance metrics.

Note that for image matching without any detection failures, the UPP and UPR reduce to

standard pairwise precision and pairwise recall.

The UPP and UPR can be summarized with a single F-measure (the weighted harmonic

mean) providing a single, unified performance measure for the entire process. It can be α-

weighted to alter the relative value of precision and recall performance:

Fα =
1

α
UPP

+ 1−α
UPR

(3.2)

where α ∈ [0, 1]. α = 0.5 denotes a balanced F-measure.

3.3.1 Threshold for Rank-1 Counts

The leftmost column in Table 3.2 shows our clustering results when the threshold is set

automatically by the validation set. We used LFW as a validation set for BBT, Buffy and
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Table 3.2: Clustering performance comparisons on various data sets. The leftmost shows
our rank1count by setting a threshold automatically. For the rest of the columns, we show
f-scores using optimal (oracle-supplied) thresholds. (1st place,2nd place,3rd place).
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Video

BBT
s01
[10]

e01 .7145 .7225 .7386 .7170 .8064 .7278 .1707 .4137 .6884 .3776 .2166
e02 .7414 .7671 .7561 .7520 .7154 .6537 .1593 .3216 .6147 .2337 .2018
e03 .8428 .8552 .8329 .8192 .6660 .6367 .2130 .2985 .6578 .2366 .2131
e04 .7602 .7690 .7151 .7687 .6364 .7001 .2118 .2886 .6520 .2156 .1847
e05 .8217 .8250 .7420 .7858 .6330 .7035 .2335 .2444 .5980 .1812 .2120
e06 .7563 .7578 .6342 .7247 .5577 .5588 .1615 .1948 .5806 .1511 .1387

Average .7728 .7828 .7365 .7612 .6692 .6634 .1916 .2936 .6319 .2326 .1945

Buffy
s05
[10]

e01 .6634 .6938 .4950 .6902 .3819 .5935 .1711 .1755 .5762 .1439 .1285
e02 .5582 .6645 .3315 .5452 .2800 .5837 .1705 .1185 .5892 .1151 .1087
e03 .5378 .5479 .3735 .5569 .2390 .4595 .1346 .1322 .4566 .1077 .1063
e04 .4203 .4859 .3523 .4549 .3049 .5171 .1643 .1445 .5273 .1187 .1179
e05 .6235 .6952 .5064 .6739 .3073 .5640 .1435 .1740 .5540 .1390 .1251
e06 .5932 .6923 .3001 .5856 .2807 .5455 .1765 .1009 .5071 .1041 .0995

Average .5661 .6299 .3931 .5845 .2990 .5439 .1601 .1409 .5351 .1214 .1143
Hannah [85] .6436 .6813 .2581 .3620 .4123 .3955 .1886 .1230 .3344 .1240 .1052

Image LFW [51] .8532 .8943 .8498 .3735 .5989 .5812 .3197 .0117 .2538 .4520 .3133

Hannah while Hannah was used for LFW. Note that the proposed method is very competi-

tive even when the threshold is automatically set.

3.3.2 Comparisons

In this work, we have introduced a new similarity measure, rank-1 counts, which is

applied to a link-based clustering algorithm. We can divide other clustering algorithms

into two broad categories–(i) link-based clustering algorithms (like ours) that use a different

similarity/distance measure and (ii) clustering algorithms that are not link-based (such as

spectral clustering [106]).

The first part of Table 3.2 shows the comparisons to various similarity/distance func-

tions [21, 84, 158] with the link-based clustering algorithm. L2 shows competitive perfor-

mance in LFW while the performance drops dramatically when a test set has large pose
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variations. We also compare against a recent so-called “template adaptation” method [21]

which also requires a reference set. It takes 2nd and 3rd place on Buffy and BBT. In addi-

tion, we compare to the Rank-Order distance [158], which is motivated by the observation

that top neighbors of the faces of the same identity are usually shared4.

Further, we also compare against several generic clustering algorithms (Affinity Propa-

gation [36], DBSCAN [31], Spectral Clustering [106], Birch [154], KMeans [103]), where

L2 distance is used as pairwise metric. For algorithms that can take as input the similarity

matrix (Affinity Propagation, DBSCAN, Spectral Clustering), do-not-link constraints are

applied by setting the distance between the corresponding pairs to∞. Note that this is just

an approximation, and in general does not guarantee the constraints in the final cluster-

ing result (e.g. for single-linkage agglomerative clustering, a modified update rule is also

needed in Section 3.2.5).

Note that all other settings (feature encoding, tracklet generation) are common for all

methods. In Table 3.2, except for the leftmost column, we report the best F0.5 scores using

optimal (oracle-supplied) thresholds for (number of clusters, distance). The link-based

clustering algorithm with our rank-1 counts outperforms the state-of-the-art on all four

data sets in F0.5 score.

One reason that our rank-1 count outperforms is that the proposed similarity considers

“very similar” features only. When two face embeddings are compared, some features are

not activated as they are not relevant to the current faces (e.g. profile face does not show

one part of a face). Those inactivate features are likely to be very similar to each other,

even if they are not very similar. Our rank-1 count similarity measure uses a reference set

to detect active features, and it computes if the feature values from two faces are actually

very similar or not. Meanwhile, other approaches, such as L2 and Rank-Order Distance,

take consideration of all features.

4In rank-order method, since the top-N closest neighbors are considered, using a large collection of
reference faces (as in our method) will not enhance clustering performance.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.5: Clustering results from Hannah and Her Sisters. Each unique color shows
a particular cluster. It can be seen that most individuals appear with a consistent color,
indicating successful clustering.

Figures 3.5, 3.6 and 3.7 show some clustering results on Hannah, Buffy and BBT.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.6: Clustering results from Buffy the Vampire Slayer. A failure example can be
seen in frame (e), in which the main character Buffy (otherwise in a purple box) in shown
in a pink box.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.7: Clustering results from the Big Bang Theory. A failure example can be seen
in frame (d), in which the main character Howard (otherwise in a magenta box) in shown
in a gray box.
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3.4 Discussion

We have presented a system for doing end-to-end clustering in full length videos and

movies. In addition to a careful combination of detection and tracking, and a new end-to-

end evaluation metric, we have introduced a novel approach to link-based clustering that

we call Erdős-Rényi clustering. We demonstrated a method for automatically estimating a

good decision threshold for a verification method based on rank-1 counts by estimating the

underlying portion of the rank-1 counts distribution due to mismatched pairs.

This decision threshold was shown to result in good recall at a low false-positive oper-

ating point. Such operating points are critical for large clustering problems, since the vast

majority of pairs are from different clusters, and false positive links that incorrectly join

clusters can have a large negative effect on clustering performance.

There are several things that could disrupt our algorithm: a) if a high percentage of dif-

ferent pairs are highly similar (e.g. family members), b) if only a small percentage of pairs

are different (e.g., one cluster contains 90% of the images), and if same pairs lack lots of

matching features (e.g., every cluster is a pair of images of the same person under extremely

different conditions). Nevertheless, we showed excellent results on 3 popular video data

sets. Not only do we dominate other methods when thresholds are optimized for clustering,

but we outperform other methods even when our thresholds are picked automatically.
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CHAPTER 4

CONTEXT-BASED VIDEO FACE CLUSTERING VIA
FACE-BACKGROUND NETWORK (FB-NET)

A movie scene is often composed of multiple shots where each shot is taken by a dif-

ferent camera to capture different scene perspectives (e.g. different fields of view, camera

placements and angles) [137]. These different viewpoints guide human audiences and give

them a more vivid understanding of each scene. However, such camera shot switching can

easily cause failures in face verification or clustering. This is not only because there is a

large change in appearance of faces across different camera shots, but also because some

target faces may not be clearly visible (e.g. too small faces, occlusion, or extreme poses).

How do humans track identities across multiple shots of the same scene? We observe

that when faces are not clearly visible, humans often use contextual information beyond

the target face by looking at surrounding areas, such as specific objects or textures on or

around the person to gather additional identity cues. Fig. 4.1 shows two frames from the

same scene but from different shots. Unlike (a) where the target face is easy to see, the face

of the man in (b) is too small to be clearly visible. By looking at surrounding areas, e.g.,

the wet metallic photo booth, humans conclude that these two frames represent the same

scene and hence that the two marked faces are likely to be the same person. In addition,

the “door study” from Simons and Levin [111] also gives good evidence that humans use

contexts rather than just relying on faces. In the experiment, a participant is asked for

providing directions by an experimenter, while the experimenter is replaced by someone

else to purposely mislead the participant. The experiment shows around half of the people

did not notice the replacement, which indicates that humans use contexts as well as faces

to identify the person.
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(a) (b)

Figure 4.1: Unlike (a) which clearly shows who the movie character is, it is hard to recog-
nize the person in (b). Still, humans can seek for meaningful information from the entire
scenes, such as wet metallic photo booth, in order to verify whether the two green marked
people are actually the same person or not.

To capture these intuitions, we propose the Face-Background Network (FB-Net) for

face recognition, which takes as input both the target face and the entire corresponding

video frame. To train this system, we introduce a new dataset: the Scene-based Face

Dataset (SFD). This dataset is collected from publicly available on-line movie clips which

contain a single scene but often with multiple shots. That is, each clip contains a variety of

camera angles or viewpoints within the same physical scene, and typically with a consistent

set of characters.

Thus, the dataset contains strong correlations between scenes and persons but remains

challenging due to the aforementioned difficulties of face recognition across different cam-

era shots. In addition, the dataset contains many examples that are from the same scene but

with different people. This diversity of people within the same scene keeps the network

from overfitting to ‘scene similarity’, i.e., to conclude that a similar scene always implies

the same people. Thus, to perform well on this dataset, it is necessary for the network to

learn both face and background features.
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In total, we have collected 317 movie clips of 78 movies for 55 actors. With the dataset,

our network is trained to seek additional clues from the entire input frame that can provide

supporting details to represent the target face1 in the frame.

FB-Net contains two branches (see Fig. 4.2). The first branch focuses on learning face

features by using only face regions as input, and the second branch focuses on learning

background features for scene understanding. In our background feature extractor, we

incorporate a transformer network to extract useful features from a scene. By training the

FB-Net with the Scene-based Face Dataset (SFD), we show that our network performs

better than using face features alone for classification. This implies that our network is

effective in learning both face and background features together, and they both contribute

to the accuracy of our network. In addition, by investigating the attention map learnt from

the transformer module, we found that our learned features localize distinctive static objects

in the background. This is different from conventional saliency detection since the latter

would focus on the most distinctive regions, i.e. faces, while ours do not. In summary, our

paper contains the following contributions:

1. We introduce the FB-Net that takes as input not just faces but also the entire scene to

enhance face clustering.

2. The FB-Net is trained with a transformer module in a novel way to learn useful

scene level features with face/background processors. The learned embeddings are

evaluated on the test videos in which the network has never seen the actors before.

FB-Net outperforms the state-of-the-art method which exploits face-level features

only.

1Distinguishing doppelgangers or identical twins is out of our scope.
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Figure 4.2: The FB-Net takes as input a video frame and the coordinates of a target face
(pink box). The input face is processed by the Face Processor to obtain face identity
features. In the Background Processor, our model obtains additional cues from the entire
frame to improve the classification accuracy of the target person. We use the transformer
network to learn distinctive background features from the areas outside of the face. The
outputs from the Background and Face Processors are concatenated and used to compute a
total face embedding.

3. To make the network to learn background features that are informative about identity,

we provide a new dataset that allows the network to learn consistent scene elements

from different points of view.

4.1 Face-Background Network (FB-Net)

The ultimate goal of this work is to cluster faces in novel movies and videos. To do this,

we use the following standard sequence of steps:

1. Train a face classifier using labeled faces, using a standard classification loss (cross

entropy).

2. Use a pre-classification layer of features from this learned classifier as an embedding

for each face.

3. For a new movie, do a forward pass to compute the embedding for each face.

4. Using the full set of embeddings, use an off-the-shelf clustering algorithm to cluster

the faces in the new movie.

Note that we do not expect to see any of the same people or characters at test time that

we have seen at training time. That is, the set of test identities does not overlap with the set
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of training identities. Rather, we have learned to embed faces in a feature space so that we

can assess their similarity even if we have never seen those faces before.

The key contribution of this work is to have the background itself have a major influ-

ence on the embedding. This is challenging since we also have not seen these particular

backgrounds before at test time. Thus, the goal of the network is to learn what types of

features in the background are likely to be useful to help establish identity in the context of

movies. In particular, this type of information will be particularly important in cases where

the face itself is not a good source of information because it is either too small, partially

occluded, etc. (see Fig. 4.1).

In this section, we introduce the Face-Background Network (Chapter 4.1.1) that takes

as input the entire image z as well as a face bounding box x as in Fig. 4.2. FB-Net is

composed of both a face processor and a background processor, one for each different type

of input.

To train this network, we need a dataset that contains entire video frames as well as

target face coordinates, where each of the target faces is labeled by face identity and the

bounding box coordinates of the target face. In Chapter 4.1.4, we will talk about how the

dataset is constructed.

4.1.1 Face/Background Processors

FB-Net is composed of two modules: the Face Processor and the Background Proces-

sor. In the Face Processor, an input face x is passed into a CNN and a fully-connected

(FC) layer, where the output of this processor, an embedding qF , is expected to encode the

face well enough to classify x into the correct face category.

In the Background Processor, the goal is to seek additional cues from the background

image z for the classification of x. We specifically want our network to have a look at

something specific or unique with respect to the target person instead of paying attention

to what is universal to any person. For example, detecting a bottle might not provide
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much information about a person as bottles are quite common, and it can appear with any

person. On the other hand, if a person holds a green ceramic cup with special flower

patterns, humans can easily guess the identity of the person holding the cup even if the

person’s face is not clearly visible. In order to capture this attention, we use the Transformer

Network [128]. In Chapter 4.1.2, we give an overview of the Transformer Network, which

is followed by Chapter 4.1.3 to describe how we apply the Transformer in our FB-Net.

4.1.2 Overview of the Transformer Network

For machine translation (seq2seq), Ashish et al. has introduced the Transformer Net-

work [128], which includes multiple self-attention layers. Given a sentence, a self-attention

layer encodes each word in a sentence with the contextual information from all words in the

sentence. For example, in a sentence, “The Law will never be perfect, but its application

should be just.”, knowing that its indicates Law can improve the translation results.

In particular, a self-attention layer takes as input query/key/value vectors. In the pre-

vious example, each word is considered as a query, and all other words in the sentence

are used as keys or values. A query vector is first compared to each of the key vectors to

figure out which values need more attention. The query vector is finally encoded with the

corresponding value vectors.

More formally, a self-attention layer computes the dot products of the query vector

(Q) with each of the key vectors (K), which is followed by a softmax function to get an

attention map to re-scale weights in value vectors (V ) as

softmax
(
QK>√
dk

)
V. (4.1)

Finally, the attention-weighted value vectors are added to the query vector.

In [40], Girdhar et al. has applied the Transformer Network to the video action clas-

sification task to represent the target person (query) better by adding context from other

people and objects in the nearby video frames (key, value) for better action classification.
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4.1.3 Transformer in FB-Net

In the background processor of our FB-Net, we want to find additional clues from

the entire video frame z (key,value) that will provide supporting evidence to classify the

identity of the target face x (query). Thus, attention layers in the transformer learn where

to look at in addition to the target face region. A key difference in our work is that we are

using a Transformer to learn an embedding rather than to directly classify faces. Thus, we

are the first to use Transformers in the context of clustering new entities.

In particular, the background processor forwards z into a CNN and multi-layer per-

ceptron (MLP) to get a H ′xW ′xD spatial convolutional features, g(z), which are used for

key/value vectors. From g(z), a query vector is computed by first ROI pooling the region of

the target face. The pooled region is then passed into the query processor so that we can ob-

tain a D-dim query vector. The transformer module strengthens the query vector by adding

the supporting details from g(z). We adopt the architecture of the 2-head 3-layer Action

Transformer [40] with some minor modifications. More formally, each self-attention head

takes as input query/key/value vectors and maps them to Q, K, V using linear projections,

where each of the projected vectors are D
2

-dim. Then, a scaled dot-product attention, a, is

computed by comparing Q feature to K features and background features are then updated

by weight-averaging V with a as

axy =
QKT

xy√
D

;A =
∑
x,y

[Softmax(a)]xy Vxy. (4.2)

The head finally outputs Q′′ by adding A to Q with LayerNorm [7] and Dropout [116]

operations and a 2-layer FFN as

Q′ = LayerNorm(Q+ Dropout(A)) (4.3)

Q′′ = LayerNorm(Q′ + Dropout(FFNa(Q
′))). (4.4)
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The output of each head, Q′′, is concatenated and passed to each of the head in the next

layer as Q. Finally, the output of the transformer and qF are forwarded to a FFN, which

outputs a D-dim background feature, qB. Finally, we concatenate qB and qF , and compute

the D-dim feature. This feature is then passed to FC-c to get the face recognition output.

4.1.4 Scene-Based Face Dataset (SFD)

We want our model to be able to recognize a person even when the face region does

not provide enough information by detecting supporting evidence from the background.

Unlike face recognition in static images, a video shows multiple camera view of the same

scene. When we look at the two frames in Fig. 4.3 (b), we may notice these frames share

many common items such as the bright lamp and the gray undershirt, which can help to

recognize that the two persons in the frames are actually the same person.

To help our network learn to detect important clues, we collect a new dataset called

the Scene-Based Face Dataset (SFD), which contains video frames collected from online

movie clips (e.g. in YouTube). With an observation that movie clips are often cut/edited

for a particular scene, we densely collect video frames from each movie clip. Each of the

video frames2 is annotated with (i) the coordinates of a target face and the ground-truth

identity of the actor.

Data Collection. We start with a face detection model (D) and a face recognition model

(F) trained on faces of movie actors. We then run the face detector and the actor recognizer

on each frame of video clips. Since an actor can have different hair styles or cosmetics

on different movies, there is no guarantee that every face of the actor would be retrieved.

However, since the face recognition model learns the unique features of an actor, the model

could successfully recognize a few faces of the actor with high confidence even if his/her

hair style changes a lot. Since face recognition results could still include false positives,

2A frame can contain more than one face, thus it can have multiple sets of annotations.
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(a) Large variation in face size

(b) Large variation in head poses

(c) Change of clothing

(d) Same clothing styles across different scenes

Figure 4.3: Examples of our Scene-Based Face Dataset. (a-c) show the same actor in the
same scene, but in two different shots. (d) shows the same actor in two different scenes.

we check if the recognized person actually performed in the movie by using a list of lead

actor3.

That is, for each m in movie title, we collect data as follows.

3As we collect movie clips, we can easily obtain a list of lead actors for each movie.
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1. Get a list (l) of lead actors

2. Search publicly available videos with the keyword patterns such as

< m > + “movie clips”.

3. For each frame in each video clip, c,

(a) Run D and F on the detections.

(b) If a face is classified as a with confidence score higher than θ = 0.9 and a is in

the list l, we label the face with a.

Specifically, we use the MTCNN face detection model [149] for D and a ResNet-50

model that is trained on VGGFace2 dataset [16] for F.

Although we assume that human-edited movie clips are scene-level distinction, a movie

clip could be composed of multiple short scenes. Since the objective of constructing this

dataset is to provide many video frames from various camera views/angles of a scene,

having a short scene that may contain one or two shots is not actually helpful to learn

scene-based face understanding. Thus, we manually checked if each of the collected clips

are from a scene. In particular, we check if a movie clip contains an event that is happening

in the same location (e.g. in a room) and in chronological order (time).

Fig. 4.3 shows some examples of video frames in SFD. The dataset contains large

variation in the size of faces and head poses. In addition, since we collect several movie

clips from a movie, it is not guaranteed that an actor always wear the same clothes. For

example, in 4.3 (c), an actor can take off her jacket in the same scene as well4. Furthermore,

sometimes an actor wear the same outfits in the entire movie as in 4.3.

4This violates one of the big assumptions in person re-identification work that a person always appear
with the same clothes.
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Dataset Statistics. In total, we collect 55 actors from 317 movie clips of 78 movies. Each

of the valid video clips is split into 30-second chunks, and we use the last chunk for valida-

tion. The rest of video frames are used for training set. For training, we randomly choose

at maximum 20 images from every 30-sec. For validation, we randomly choose 10 images

from each chunk. We eventually obtain 59726/2979 images for train/val set respectively.

4.1.5 Implementation Details

Pre-Processing. FB-net requires of two inputs: a face image, x and the entire image z that

includes the face. For CNN-f and CNN-b in Face/Background processors, we both use the

network architecture of ResNet50 [48], which takes a 224x224x3 image. For x, we apply

the same pre-processing tricks as in typical face classification models. That is, x is first

resized into 256x256, which is followed by a random crop of 224x224.

For z, we have to think more carefully since we want a random crop always include

the target face. We first resize z such that the smallest side to be 256. Suppose the resized

width and height to be w and h. We also resize the coordinate (xmin, ymin, xmax, xmax)of

the target face accordingly. Now, we want to randomly sample a 224x224 crop, i.e. (zxmin,

zymin), (zxmin + 224, zxmin + 224), such that the crop could include the target face while

still within the range of the given frame. More formally, we want to randomly sample zxmin

and zymin from [s1, s2] and [t1, t2] respectively where s1, s2, t1, t2 are defined as

s1 = max(0, xmax − 224); s2 = min(xmax, w − 224)

t1 = max(0, ymax − 224); t2 = min(ymax, h− 224).

(4.5)

We also horizontally flip training images randomly. This random horizontal flip is

applied consistently to x and z. During training, we use center crop for both x and z. If the

center crop does not include the target face, we simply shift the crop coordinate to include

it.
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Face Processor. For CNN-f, we adopt the entire ResNet-50 [48] architecture except the

classification layer. On top of the CNN-f, we add an FC layer a feed-forward network

(FFN), which is followed by a classification layer.

Background Processor. The architecutre of CNN-b is also adopted from the first two

layers of ResNet-50. As in [128, 40], we add spatial location information to the end of he

outputs of the second layers (512x25x25). Then, the 514x25x25 convolutional features are

forwarded into an MLP which is composed of two 3x3 Conv layers, a ReLU, a Dropout,

and a LayerNorm. From the output of MLP (256x25x25), the coordinates of the target face

are ROI-pooled [94], which is followed by the query processor. We use HighRes query

processor described in [40]. The output of this query processor is used as query for the

transformer.

For FFN and concat, we modify the architecture of FFN in the original Transformer

paper [128] while ours is composed of two FCs, a ReLU, a Dropout, and LayerNorm.

The input to the modules are a 512-dim feature vector (after concatenating two 256-dim

vectors), and the output is 256-dim vector. For FFN-a in self-attention layer, we modify so

that the network takes a 128-dim vector.

4.1.6 Training Details

Pre-Training. We use pre-trained models of ResNet-50 [48] for CNN-b and CNN-f, and

do not update parameters in two models during training. For CNN-f, We use a model

which is pre-trained on MS-Celeb-1M [44] and fine-tuned on VGGFace2 [16] to recognize

face images of 8631 people. Unlike CNN-f that is supposed to understand human faces, we

hope for CNN-b to understand general objects. Thus, we use an ImageNet [100] pre-trained

model.

SGD Parameters. We train the FB-Net with a fixed learning rate of 0.001 for 35k iterations

using the SGD optimizer with 32 batch size, where the momentum is 0.9. We use dropout
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in self-attention layers with the 0.3 probability while 0.1 is used for the rest of network. We

use our validation set to pick the best model.

4.2 Experiments

4.2.1 Baselines

To show the superiority of the proposed FB-Net, we compare our FB-Net to the follow-

ing baselines.

• Face(VGGFace2). We first use the ResNet-50 [48] model pre-trained on MS-

Celeb-1M [44] and fine-tuned on VGGFace2 [16]. This model was trained to recog-

nize face images of 8631 people. We only use face regions as inputs to the network.

• Background(ImageNet). This baseline uses the ResNet-50 [48] model pre-

trained on ImageNet [100] with the entire video frame as input.

• Face+Background(entire).To show that simply using both face and back-

ground does not actually improve the performance, we provide another baseline

without including the transformer architecture. Specifically, given both a target

face and the corresponding entire video frame, we use Face(VGGFace2) and

Background(ImageNet) to compute the embedding for the target face and the

entire scene. We then concatenate the extracted features from Face(VGGFace2)

and Background(ImageNet).

Further, we also provide two stronger baselines by cropping the entire frame around

the target face so that the network can focus on the context around the target face.

In particular, Face+Background(2x) takes as background input a twice larger

region than the target face box. Similarly, Face+Background(4x) takes four

times larger region as background input.

• Face(SFD). To show that training on our dataset does not hurt the model perfor-

mance, we prepare another baseline that is trained on SFD. This baseline could be
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also used to address the effectiveness of using background information. For the net-

work architecture, we use the FB-Net without the entire background processor. The

model is trained with the cross-entropy loss to predict the identities in SFD.

A related problem to video face clusteringis person re-identification [89, 156, 24, 63,

70, 157] in which the goal is to tell whether a person of interest seen in one camera has been

observed by another camera. Unlike video face. clustering which focuses on faces but over

a longer period of time, the person re-identification methods typically use the whole body

on short time scales. Thus, person re-identification methods cannot be directly applied to

the video face clustering problem.

4.2.2 Video Face Clustering

To show how FB-Net can be generalized over the identities that the model has not be

seen before, we evaluate our model on various video face clustering benchmarks: the Big

Bang Theory (BBT) Season 1 (s01), Episodes 1-6 (e01-e06), Buffy the Vampire Slayer

(Buffy) Season 5 (s05), Episodes 1-6 (e01-e06) [123, 125]5.

We first run the MTCNN face detector [149] on every frame in videos to get target

faces. For evaluation, we use the target faces that have corresponding matches with the

ground-truth detections (IoU> 0.2). We compute a pairwise distance matrix between all

valid faces (with corresponding frames) with L2 distance. Then, we apply the linked based

clustering [102] on the distance matrix.

To evaluate clustering outputs, we use BCubed clustering evaluation metric [3], and

show f-scores using optimal (oracle-supplied) thresholds. In Table 4.1, we compare our

model to the four baselines for video face clustering. On average, our FB-Net trained on

SFD outperforms Face(VGGFace2), which exploits only face-level features, by 3.70%

and 4.28% on BBT s01 and Buffy s05 respectively. We expected that using both face and

5Recently, Tapaswi et al. [125] has extended the BBT and Buffy dataset [123] by adding annotations for
background characters. We evaluate our FB-Net on the updated datasets.
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Table 4.1: We compare our FB-Net to various baselines. We show f-scores using optimal
(oracle-supplied) thresholds. FB-Net outperforms Face(VGGFace2), which exploits face-
level features only, 3.70% and 4.28% on the Big Bang Theory Season 1 and Buffy the
Vampire Slayer Season 5 respectively. Further, we observe that simply concatenating face
and background features does not guarantee to enhance face clustering performance.

Face
(VGGFace2)

Background
(ImageNet)

Face +
Background

(entire)

Face +
Background

(4x)

Face +
Background

(2x)

Face
(SFD)

FB-Net
(ours)

train on SFD? X X
face? X X X X X X

background? X X X X X

B
B

T
s0

1
[1

25
] e01 0.9016 0.4652 0.8650 0.9043 0.9043 0.9210 0.9450

e02 0.8555 0.4738 0.8221 0.8441 0.8596 0.9395 0.9405
e03 0.9063 0.4630 0.9286 0.9264 0.9278 0.9038 0.9202
e04 0.9009 0.4356 0.9217 0.9243 0.9185 0.8628 0.9262
e05 0.9036 0.4042 0.9013 0.9316 0.9152 0.8816 0.8325
e06 0.7674 0.3950 0.7611 0.7716 0.7878 0.8486 0.8930

Average 0.8726 0.4395 0.8666 0.8837 0.8855 0.8929 0.9096

B
uf

fy
s0

5
[1

25
] e01 0.5895 0.4549 0.5818 0.5709 0.5871 0.6523 0.7263

e02 0.5580 0.3843 0.5549 0.5483 0.5465 0.5354 0.6052
e03 0.5570 0.4164 0.5526 0.5513 0.5580 0.5697 0.5616
e04 0.6271 0.4373 0.6166 0.6177 0.6195 0.6398 0.6413
e05 0.7018 0.4652 0.7158 0.7231 0.7333 0.7563 0.6886
e06 0.5656 0.4136 0.5546 0.5581 0.5612 0.5792 0.6325

Average 0.5998 0.4286 0.5961 0.5949 0.6009 0.6221 0.6426

background features should improve over face-only features. However, we notice that in

most of the episodes, Face+Background shows even worse performance than using

the face-only features. This implies that simply adding the pre-trained face/background

features does not guarantee to enhance the clustering performance. One possible reason

that simply using background features reduces performance is because the background

includes noisy information that might not be helpful to recognize the target person.

t-SNE Visualization with qB. To demonstrate that the background processor in FB-Net

actually captures meaningful features, we extract qB, the output of the background pro-

cessor, and compute two-dimensional t-SNE6 [127] features. Fig. 4.4 and Fig. 4.5 show

the visualization of these t-SNE features7 on the fourth episode of the Big Bang Theory

6t-Distributed Stochastic Neighbor Embedding (t-SNE) is a way of visualizing high-dimensional datasets
by reducing dimensionality reduction.

7We take every 50th frame.
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Season 1 and the first episode of Buffy the Vampire Slayer Season 5. Note that qB features

are discriminative to distinguish different actors. In addition, the visualization shows that

similar backgrounds tend to be grouped closely.

We want to highlight that within each of the actor clusters, frames are closer to each

other when they share background features. For example in Fig. 4.4 (b) and (c), the giant

cluster of Sheldon also shows sub-clusters depending on where he is located, while (b) and

(c) are quite close within the Sheldon cluster as the actor is wearing the same purple T-shirt

with orange patterns. We can also check this phenomenon across different actors. Fig. 4.4

(e) shows the boundary of Mary and Gablehauser clusters. At the bottom of (e), we can

see the frames from the same scene are adjacent while these frames are also close to the

corresponding identities.

4.2.3 Visualization of Attention Maps

In the background processor of FB-Net, we have a transformer module that is composed

of 2-head 3-layer self-attention layers. To understand what the network learns, we visualize

the two attentions from the last layer. To show in RGB space, we re-scale the attention

values to be [0, 255].

In Fig. 4.6, we show attention maps on several examples of the held-out set of SFD

dataset. Both Attention-A and Attention-B draw attentions to parts of background that are

informative about identity. We also observe that Attention-A mostly looks for clues on the

target person, while Attention-B is more likely to seek for other clues. For example in the

first column of Fig. 4.6, Attention-A detects her necklace while Attention-B focuses on the

golf clubs behind her. The FB-Net learns the attention without any explicit supervisions. It

also captures the other people than the target person to understand scene better.

We also show the attention maps on the fourth episode of the Big Bang Theory Season

1. in Fig. 4.7. The transformer captures not just the clothing patterns of Sheldon (Attention-

A), but also shows the phenomenon to track informative elements behind him.
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Leonard
Sheldon

Howard
Mary

Raj

Penny

(b)

(c)

(d)
Summer

(e)

(a)

(b) (c) (d) (e)

Figure 4.4: t-SNE [127] visualization of background features (qB) on the fourth episode of
the Big Bang Theory Season 1. The frames are already clustered well by actors, while it is
observed as in (b-d) that each of the actor clusters forms sub-clusters for different scenes
and/or outfits. (e) This scene-level grouping is also observed near the boundary of identity
clusters .
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Giles

Dracula

Buffy

Xander

Riley

Willow

Spike

Joyce

Dawn

Anya

Tara

(b)

(c)

(d)

(e)

(f)

(a)

(b) (c)

(d) (e)
(f)

Figure 4.5: (a) t-SNE [127] visualization of background features (qB) on the first episode of
Buffy the Vampire Slayer Season 5. (b-f) zoom in to the areas marked by the corresponding
black rectangles. The figures (b) and (c) both visualize the frames in the kitchen scene. As
shown in (c) we note that the features at the shared boundary between Giles and Xander
are representing the kitchen scene. We also observe in (d) that when a face is occluded,
the background feature is still able to recognize the same scene. In (f) we visualize that
features qB capture both clothes and backgrounds. The character Willows marked in red
and orange ellipses are in pink clothes but different background. We zoom in the red circle
in (e).
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Input Attention-A Attention-B

Figure 4.6: Visualization of the attention maps on SFD. The first row shows the original in-
put images where the target face is marked with a box. The second and third rows show two
attention maps from the last layer of the transformer module. We observe that Attention-A
tries to look for clues on the target person, while Attention-B is more likely to check the
actual scene information.
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Input Attention-A Attention-B

Figure 4.7: Visualization of the attention maps on the fourth episode of the Big Bang
Theory Season 1.

4.3 Discussion

We have presented a novel framework to improve face clustering in videos by exploiting

scene level information to address the challenges of face clustering across different camera

shots. A new network architecture, FB-Net, is proposed for face recognition that leverages

contextual information from the entire scene to learn robust identity embeddings. Further-

more, we introduced a new dataset that contains face identities in the context of consistent

scenes. We conducted experiments on standard video face clustering benchmarks, and

our experimental results demonstrate significant boost in performance by utilizing scene-

contextualized face embeddings, and it shows improved performance over the state-of-the

art that utilizes face-level features only. Through both qualitative and quantitative results,

we observe that by explicitly learning how consistent scene elements are correlated across
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different camera shots, we can learn better identity representations especially when face

regions are ambiguous.

53



CHAPTER 5

UNSUPERVISED HARD EXAMPLE MINING FROM VIDEOS FOR
IMPROVED OBJECT DETECTION

Detection is a core computer vision problem that has seen major advances in the last

few years due to larger training sets, improved architectures, end-to-end training, and im-

proved loss functions [96, 95, 28, 159]. In this work, we consider another direction for

improving detectors – by dramatically expanding the number of hard examples available

to the learner. We apply the method to several different detection problems (including face

and pedestrian), a variety of architectures, and multiple data sets, showing significant gains

in a variety of settings.

Many discriminative methods are more influenced by challenging examples near the

boundary of a classifier than easy examples that have low loss. Some classifiers, such

as support vector machines, are completely determined by examples near the classifier

boundary (the “support vectors”) [101]. More recent techniques that emphasize examples

near the boundary include general methods such as active bias [17], which re-weights

examples according to the variance of their posteriors during training. In the context of

class imbalance in training object detectors, on-line hard example mining (OHEM) [108]

and the focal loss [69] were designed to emphasize hard examples.

In this paper, we introduce simple methods for automatically mining both hard neg-

atives and hard positives from videos using a previously trained detector. To illustrate,

Figure 5.1 shows a sequence of consecutive video frames from two videos containing a

face and a pedestrian respectively. The results of the Faster R-CNN detector (trained for

each class) run on each frame are marked as rectangles, with true positives as yellow boxes
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Figure 5.1: Detector flicker in videos. Three consecutive frames from a video are shown
for face and pedestrian detection. On the top row, the boxes show face detections from the
Faster R-CNN [96] (trained on WIDER face) [146, 54]. On the bottom row are detections
from the same detector trained on the Caltech pedestrian dataset [27]. Yellow boxes show
true positives and red boxes show false positives. For the true positives, the same object
is detected in all three frames whereas for the false positives, the detection is isolated – it
occurs neither in the previous nor the subsequent frame. These detections that are “isolated
in time” frequently turn out to be false positives, and hence provide important sources of
hard negative training data for detectors.

and false positives as red boxes. Notice that false positives are neither preceded nor fol-

lowed by a detection. We refer to such isolated-in-time detections as detector flickers and

postulate that these are usually caused by false positives rather than true positives.1 This

hypothesis stems from the idea that a false positive, caused by something that usually does

not look like a face (or other target object), such as a hand, only momentarily causes a

detector network to respond positively, but that small deviations from these hard negatives

will likely not register as positives. Similar observations can be found in the literature on

adversarial examples, where many adversarial examples have been shown to be “unstable”

with respect to minute perturbations of the image [75, 77, 6]. In addition, leveraging the

1Note we are not claiming that most false positives will be isolated, but only that flickers are likely to be
false positives, a very different statement.
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continuity of labelling across space and time has a long history in computer vision. Spatial

label dependencies are widely modeled by Markov random fields [39] and conditional ran-

dom fields [120], while the smoothness of labels across time is a staple of tracking methods

and other video processing algorithms [117, 58, 143].

As our experiments show, a large percentage of detector flickers are indeed false posi-

tives, and more importantly, they are hard negatives, since they were identified incorrectly

as positives by the detector. Such an automatically generated training set of hard negatives

can be used to fine-tune a detector, often leading to improved performance. Similar benefits

are gained from fine-tuning with hard positives, which are obtained in an analogous fashion

from cases where a consistently detected object “flickers off” in an isolated frame. While

these flickers are relatively rare, it is inexpensive to run a modern detector on many hours

of unlabeled video, generating essentially unlimited numbers of hard examples. Being an

unsupervised process, training sets gathered automatically in this fashion do include some

noise. Nevertheless, our experiments show that significant improvements can be gleaned

by retraining detectors using these noisy hard examples. An alternative to gathering such

hard examples automatically is, of course, to obtain them manually. However, the rarity

of false positives for modern detectors makes this process extremely expensive. Doing this

manually requires that every positive detection be examined for validity. With typical false

positive rates around one per 1000 images, this process requires the examination of 1000

images per false positive, making it prohibitively expensive.

5.1 Mining Hard Examples from Videos

This section discusses methods for automatically mining hard examples from videos,

including data collection (Chapter 5.1.1), our hard negative mining algorithm (Chapter 5.1.2),

statistics of recovered hard negatives (Chapter 5.1.3) and extension to hard positives (Chap-

ter 5.1.4). Details of re-training the detector on these new samples are in the Experiments

section (Chapter 5.2.1).
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frame f -1 frame f frame f+1

Figure 5.2: Mining hard negatives from detector-flicker. The solid boxes denote detec-
tions, and the dashed boxes are associated with the tracking algorithm. Given all of the
high-confidence face detections in a video ( yellow boxes), the proposed algorithm gen-
erates a tracklet ( blue dashed boxes) for the current detection ( red box in frame f )
by applying template matching within the search regions of the adjacent frames ( cyan
dashed boxes). As there are no matching detections in adjacent frames for the current
detection (i.e. no yellow box matches the blue dashed boxes in frames f -1 or f+1), it is
correctly considered to be an “isolated detection” and added to the set of hard negatives.
The remaining detections in frame f , which are temporally consistent, are added to the set
of pseudo-positives.
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5.1.1 Video Collection

To mine hard examples for face detection, we used 101 videos from sitcoms, each with

a duration of 21-25 minutes and a full-length movie of 1 hour 47 minutes, “Hannah and

her sisters” [85]. Further, we performed YouTube searches with keywords based on: public

address, debate society, orchestra performance, choir practice and courtroom, download-

ing 89 videos of durations ranging from 10 to 25 minutes. We obtained videos that were

expected to feature a large number of human faces in various scenes, reflecting the everyday

settings of our face benchmarks. Similarly, for pedestrian detection, we collected videos

from YouTube by searching with the two key phrases: driving cam videos and walking

videos. We obtained 40 videos with an average duration of about 30 minutes.

5.1.2 Hard Negative Mining

Running a pre-trained face detector on every frame of a video gives us a large set

of detections with noisy labels. We crucially differ here from recent bootstrapping ap-

proaches [131, 118] by (a) using large amounts of unlabeled data available on the web in-

stead of relying only on the limited fully-supervised training data from WIDER Face [146]

or Caltech Pedestrians [27], and (b) having a novel filtering criterion on the noisy labels

obtained from the detector that retains the hard negative examples and minimizes noise in

the obtained labels.

The raw detections from a video were thresholded at a relatively high confidence score

of 0.8, based on visual inspection of a small subset of the data. For every detection in a

frame, we formed a short tracklet by performing template matching in adjacent frames,

within a window of ±5 frames — the bounding box of the current detection was enlarged

by 100 pixels and this region was searched in adjacent frames for the best match using nor-

malized cross correlation (NCC). To account for occlusions, we put a threshold on the NCC

similarity score (set as 0.5) to reject cases where there was a lot of appearance-change be-

tween frames. Now in each frame, if the maximum intersection-over-union (IoU) between
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the tracklet prediction and detections in the adjacent frames was below 0.2, we considered

it to be an isolated detection resulting from detector flicker. These isolated detections

were taken as hard negatives. The detections that were found to be consistent with adja-

cent frames were considered to have a high probability of being true predictions and were

termed pseudo-positives. For the purpose of creating the re-training set, we kept only those

frames that had at least one pseudo-positive detection in addition to one or more hard neg-

atives. Illustrative examples of this procedure are shown in Figure 5.2, where we visualize

only the previous and next frames for simplicity.

5.1.3 Results of Automatic Hard Negative Mining

Our initial mining experiments were performed using a standard Faster R-CNN detector

trained on WIDER Face [146] for faces and Caltech [27] for pedestrians. We collected

13,888 video frames for faces, where each frame contains at least one pseudo-positive

and one hard negative (detector flicker). To verify the quality of our automatically mined

hard negatives2, we randomly sampled 511 hard negatives for inspection. 453 of them

are true negatives, while 16 samples are true positives, and 42 samples are categorized as

ambiguous, which correspond extreme head pose or severe occlusions. The precision for

true negatives is 88.65% and precision for true negatives plus ambiguous is 96.87%.

For pedestrians, we collected 14,967 video frames. We manually checked 328 auto-

matically mined hard negatives, where 244 of them are true negatives and 21 belong to

ambiguous. The precision for true negatives is 74.48% and precision for true negatives

plus ambiguous is 82.18%.

To further validate our method on an existing fully-annotated video dataset, we used the

Hannah dataset [85], which has every frame annotated with face bounding boxes. Here, out

of 234 mined hard negatives, 187 were true negatives, resulting in a precision of 79.91%.

We note that the annotations on the Hannah movie are not always consistent and involve

2This verification was based on the picture viewed in isolation, separate from the video.
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frame f -2 frame f -1 frame f frame f+1 frame f+2

Figure 5.3: Hard positive samples. Given a sequence of video frames, we notice that the
face of the actor is consistently detected, except at frame f . Such isolated “off-flickers”
can be harvested in an unsupervised fashion to form a set of hard positives.

a significant domain shift from WIDER. Considering the fact no human supervision is

provided, the mined face hard negatives are consistently of high quality across various

domains.

5.1.4 Extension to Hard Positive Mining

In principle, the same concept for using detector flickers can be directly applied to

obtaining hard positives. The idea is to look for “off-flickers” of a detector in a video

tracklet – given a series of detections of an object in a video, such as a face, we can search

for single frames that have no detections but are surrounded by detections on either side.

Of course, these could be caused by short-duration occlusions, for example, but a large

percentages of these “off-flickers” are hard positives, as in Fig. 5.3. We generate tracklets

using the method from [55] and show results incorporating hard positives on pedestrian

and face detection in the experiments section. The manually calculated purity over 300

randomly sampled frames was 94.46% for faces and 83.13% for pedestrians.

5.2 Experiments

We evaluate our method on face and pedestrian detection and perform ablation studies

analyzing the effect of the hard examples.For pedestrians, we show results on the Caltech

dataset [27], while for face detection, we show results on the WIDER Face [146] dataset.
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The Caltech Pedestrian Dataset [27] consists of videos taken from a vehicle driving

through urban traffic, with about 350k annotated bounding-boxes from 250k video frames.

The WIDER dataset consists of 32,203 images having 393,703 labeled faces in chal-

lenging situations of scale, pose and occlusion. The evaluation set of WIDER is divided

into easy, medium, and hard sets according to the detection scores of object proposals from

EdgeBox [159]. From easy to hard, the faces get smaller and more crowded. We show

results on all three sets of WIDER.

5.2.1 Retraining Detectors with Mined Hard Examples

We experimented with two ways to leverage our mined hard negative samples. In our

initial experiments, a single mini-batch is formed by including one image from the original

labeled training dataset and another image sampled from our automatically-mined hard

negative video frames. In this way, positive region proposals are sampled from the original

training dataset image, based on manual annotation, while negative region proposals are

sampled from both the original dataset image and the mined hard negative video frame.

Thus, we can explicitly force the network to focus on the hard negatives from the mined

video frame. However, this method did not produce better results in our initial experiments.

An alternate approach was found to be more effective – we simply provided the pseudo-

positives in the mined video frames as true object annotations during training and implicitly

allowed the network to pick the hard-negatives. The inclusion of video frames with hard

positives is more straightforward – we can simply treat them as additional images with

object annotations at training time. The models were fine-tuned with and without OHEM,

and we consistently chose the setting that gave the best validation results. While OHEM

would increase the likelihood of hard negatives being selected in a mini-batch, it would also

place extra emphasis on any mislabels in the hard examples. This would magnify the effect

of a small amount of label noise and can in some cases decrease the overall performance.
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5.2.2 Ablation Settings

In addition to the comparisons to the baseline Faster R-CNN detectors, we conduct

various ablation studies on the Caltech Pedestrian and WIDER Face datasets to address the

effectiveness of hard example mining.

Effect of training iterations. To account for the possible situation where simply training

the baseline model longer may result in a gain in performance, we create another baseline

by fine-tuning the original model for additional iterations with a lower learning rate, match-

ing the number of training iterations used in our hard example trained models. We refer to

this model as “w/ more iterations”.

Effect of additional video frames. Unlike the baseline detector, our fine-tuned models

use additional video frames for training. Although this additional data is unlabeled, it is

possible that just using the high-confidence detection results on unlabeled video frames as

pseudo-groundtruths during training is sufficient to boost performance, without correcting

the wrong detections (hard negatives) using our detector flicker approach. Therefore we

train another detector, “Flickers as Positives”, starting from the baseline model,

that takes exactly the same training set as our hard negative model, but where all the high-

confidence detections on the video frames are used as positive labels.

Effect of automatically mined hard examples. We include the results from our proposed

method of considering detector flickers as hard negatives and hard positives separately –

“Flickers as HN” and “Flickers as HP”. Finally, we report results from fine-

tuning the detector on the union of both types of hard examples (Flickers as HN +

HP).

5.2.3 Pedestrian Detection

For our baseline model, we train the VGG16-based Faster R-CNN object detec-

tor [96] with OHEM [108] for 150K iterations on the Caltech Pedestrian training dataset [27].

We used all the frames from set00-set05 (which constitute the training set), irrespective
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of whether they are flagged as “reasonable” or not by the Caltech meta-data. Following

Zhang et al. [150], we set the IoU ratio for RPN training to 0.5, while all the other exper-

imental settings are identical to [96]. The number of labeled Caltech images is 128,419

and our mining provides 14,967 hard negative and 42,914 hard positive frames. We fine-

tune the baseline model with hard examples and the annotated examples from the Caltech

Pedestrian training dataset, with a fixed learning rate of 0.0001 for 60K iterations, using

OHEM. We evaluate our model on the Caltech Pedestrian testing dataset under the reason-

able condition.

The ROC curves of various settings of our models are shown in Fig. 5.4(a). Fine-

tuning the existing detector for more iterations gives a modest reduction in log average

miss rate, from 23.83% to 22.4%. Using all detections without correcting the hard nega-

tives (Flickers as Pos) also gives a small improvement – the extra training data, al-

though noisy, still has some positive contribution during fine-tuning. Our proposed model,

fine-tuned with the mined hard negatives (Flickers as HN), has a log average miss

rate of 18.78%, which outperforms the baseline model by 5.05%. Fine-tuning with

hard positives (Flickers as HP) also shows an improvement of 4.39% over the base-

line. Combining both hard positives and hard negatives results in the best performance of

18.72% log average miss rate.

In Figure 5.4(b) we report results using the state-of-the-art SDS-RCNN [13] pedestrian

detector 3. Every 3rd frame is sampled from the Caltech dataset for training the original

detector [13], and we keep this setting in our experiments. For SDS-RCNN, there are

42,782 labeled training images while the mining gives us 42,782 hard negative and 177,562

hard positive frames. The inclusion of hard negatives in training (Flickers as HN)

improves the performance of SDS-RCNN in the low False Positives regime compared to the

baseline – the detector learns to eliminate a number of false detections, thereby increasing

3Running the authors’ released code from https://github.com/garrickbrazil/SDS-RCNN
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precision, but it also ends up hurting the recall. Including mined hard positives (Flickers

as HP) we get the best performance of 8.71% log average miss rate, outperforming the

model using both the mined hard negative and positive samples (Flickers as HP +

HN), which gets 9.12%.

5.2.4 Face Detection

We adopt the Faster R-CNN framework, using VGG16 as the backbone network. We

first train a baseline detector starting from an ImageNet pre-trained model, with a fixed

learning rate of 0.001 for 80K iterations using the SGD optimizer, where the momentum

is 0.9 and weight decay is 0.0005. For hard negatives, the model is fine-tuned for 50k iter-

ations with learning rate 0.0001. For hard positives, and the combination of both types of

hard examples, we train longer for 150k iterations. Following the WIDER Face protocol,

we report Average Precision (AP) values in Table 5.1 on the three splits – ‘Easy’, ‘Medium’

and ‘Hard’. OHEM is not used as it was empirically observed to decrease performance.

Fine-tuning the baseline model for more iterations improves performance slightly on

the Easy and Medium splits. Naively considering all the high confidence detections as true

positives (Flickers as Positives) degrades performance substantially across all

splits. Hard negative mining, Flickers as HN, slightly outperforms the baseline Faster

R-CNN detector (w/ more iterations) on the Medium and Hard splits, retaining

the same performance of 0.907 AP on the Easy split. Using the mined hard positives,

Flickers as HP, we observe a significant gain in performance on all three splits. Us-

ing both hard positives and hard negatives jointly (Flickers as HP + HN) improves

over using hard negatives and the baseline, but the improvement is lesser than the gains

from Flickers as HP.

For faces, we additionally experimented with the recent RetinaNet [69] detector as a

second high-performance baseline model. Unfortunately, inclusion of the unlabeled data

hurt performance slightly using this model, despite the reasonably high purity of the mined
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examples. Further details on this experiment and possible explanations are discussed in

Chapter 5.3.4.

Table 5.1: Average precision (AP) on the validation set of the WIDER Face [146] bench-
mark. Including hard examples improves performance over the baseline, with HP and
HP+HN giving the best results.

Easy Medium Hard

Faster R-CNN

Baseline 0.907 0.850 0.492
w/ more iterations 0.910 0.852 0.493
Flickers as Positives 0.829 0.790 0.434
Ours: Flickers as HN 0.909 0.853 0.494
Ours: Flickers as HP 0.921 0.864 0.492
Ours: Flickers as HP + HN 0.921 0.864 0.497

5.3 Discussion

In this section, we discuss some further applications and extensions to our proposed

hard example mining method.

5.3.1 On the Entropy of the False Positive Distribution

In mining thousands of hard negatives from unlabeled video, we noticed a striking

pattern in the hard negatives of face detectors. A large percentage of false positives were

generated by a few types of objects. Specifically, a large percentage of hard negatives in

face detectors seem to stem from human hands, ears, and the torso/chest area. Since it

appears that a large percentage of the false positives in face detection are the result of a

relatively small number phenomena, this could explain the significant gains realized by

modeling hard negatives. In particular, characterizing the distribution of hard negatives,

and learning to avoid them, may involve a relatively small set of hard negatives.
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5.3.2 Effect of Domain Shift on FDDB

The FDDB dataset [53] is comprised of 5,171 annotated faces in a set of 2,845 im-

ages taken from a subset of the Face in the Wild dataset. The images and the annotation

style of FDDB have a significant domain shift from WIDER Face, which are discussed

in Jamal et al. [1]. Fig. 5.7 compares our method with the Faster R-CNN baseline on

FDDB, using the trained models from our experiments on WIDER Face (Chapter 5.2.4).

Although hard negatives reduce false positives (Fig. 5.7(b)) and hard positives increase

recall (Fig. 5.7(c)), the performance does not consistently improve over the baseline on

FDDB. We hypothesize that the advantages from our unsupervised hard examples are coun-

teracted by the effects of domain shift – the large amounts of new training data result in

shifting the original detector further away from the target FDDB domain, leading to an

overall loss in performance. This may not have hurt our performance as much on WIDER

Face because the domain shift between the relatively unconstrained WIDER images and

our videos downloaded from YouTube was not severe enough to subsume the advantages

from the hard examples.

5.3.3 Extension to Other Classes

The simplicity of our approach makes it easily extensible to other categories in a one-

versus-rest setting. YouTube is a promising source of videos for various MS-COCO or

PASCAL categories; mining hard negatives after that is fully automatic. To demonstrate

this, we selected categories from MS-COCO and ran experiments to check if inclusion

of hard negatives improves the baseline performance of a Faster R-CNN detector. We

used the training method deployed by Sonntag et al.[115], which allows for a convenient

fine-tuning of the VGG16-based Faster R-CNN model on specific object classes of the

MS-COCO dataset. The method was used to train a Faster R-CNN detector for a specific

class vs background, starting from a multi-class VGG16 classifier pre-trained on Image-Net

categories. This baseline detector was then used to mine hard negatives from downloaded
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YouTube videos of that category and then re-trained on the union of the new data and the

original labeled training data. We show results for two categories: dogs and trains. A

held out subset of the MS-COCO validation set was used for validating training hyper-

parameters and the remainder of the validation data was used for evaluation.

For the dog category, the labeled data was divided into train/val/test splits of 3041/ 177/

1521 images. We manually selected and downloaded about 22 hours of dog videos from

YouTube. The videos were primarily logs of dog racing and agility championships with

about 95% of the frames containing dogs. We used the baseline dog detector to obtain

detections on about 15 hours (1,296,000 frames at 24 fps) of dog videos. The hard negative

mining algorithm was then run at a detector confidence threshold of 0.8. This yielded 2611

frames with at least one hard negative and one positive detection. The baseline model

was then fine-tuned for 30k iterations on the union of the labeled MS-COCO data and the

hard negatives. The hyper-parameters and best model were selected using a validation set.

Similar experiments with trains were performed, with train/val/test splits of 2464/157/1281

images. The results are summarized in the Table 5.2, where inclusion of hard negatives is

observed to improve the baseline detector in both cases.

Table 5.2: Results on augmenting Faster R-CNN detectors with hard negatives for ‘dog’
and ‘train’ categories on MS-COCO.

Category Model Training
iterations

Training
hyperparams

Validation
set AP

Test
set AP

Dog Baseline 29000
LR : 1e-3 for 10k,
1e-4 for 10k-20k,
1e-5 for 20k-29k

26.9 25.3

Flickers as HN 22000
LR : 1e-4 for 15k,
1e-5 for 15k-22k 28.1 26.4

Train Baseline 26000
LR : 1e-3,
stepsize: 10k,
lr-decay: 0.1

33.9 33.2

Flickers as HN 24000
LR : 1e-3,
stepsize: 10k,
lr-decay: 0.1

35.4 33.7

67



5.3.4 Experiments on RetinaNet

In addition to the multiple versions of Faster R-CNN, we also tried retraining a Reti-

naNet [69] detector for improved face detection using our mined hard negatives. For this

single-stage architecture, we were unable to achieve any reliable improvements, despite

the majority of our hard negatives being mined using the RetinaNet detector. Since this

detector still has significant numbers of false positives, and we were able to mine these

successfully with our procedure, it was puzzling that we could not achieve better results

on this architecture. One possible explanation for this is as follows: the focal loss used in

the RetinaNet architecture puts a heavy weight on incorrect examples. While the purity

of our mined examples is high, it is not perfect, and a non-negligible percentage of our

mined hard negatives are actually true positives. Since these samples would inherit the

wrong label, they would be strongly emphasized by the focal loss. Thus, it is possible that

while RetinaNet outperforms the Faster R-CNN on standard benchmarks, it may be more

susceptible to label noise and thus not a good candidate for our method. In the future, we

will investigate different values of the focal loss parameter to see whether this can mitigate

the effects of label noise.

5.3.5 Additional Applications

Our method is particularly suited to detection problems since they are well-known for

having vast numbers of easy negative examples, which provide little benefit to training. The

introduction of large numbers of hard negatives intuitively will help. However, there is no

reason the same ideas cannot be applied to the generation of extra training data for regular

recognition problems. We intend to investigate this direction, along with more applications

of hard positives and negatives, in future work.
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(a)

(b)

Figure 5.4: Results on the Caltech Pedestrian dataset [27] in reasonable condition. (a)
Faster R-CNN results: using hard negative samples (Flickers as HN) and hard posi-
tive samples (Flickers as HP) improve the performance over the baseline in; using a
combination of both gives the best performance. (b) State-of-the-art SDS-RCNN results:
Flickers as HN improves the original SDS-RCNN results only in the low false posi-
tive regime, while Flickers as HP gives the best results.
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Figure 5.5: Examples of hard negatives. Visualization of automatically mined hard neg-
atives for faces (top row) and pedestrians (bottom row). Red boxes denote the “detection-
flicker cases” among the high confidence detections (green boxes).
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Groundtruth Baseline HN HP HP+HN

F1

F2

F3

F4

P1

P2

P3

P4

Figure 5.6: Qualitative comparison. Faster R-CNN detections for faces (F1-4) and pedes-
trians (P1-4).The detector fine-tuned with hard negatives (HN) reduces false positives com-
pared to the Baseline (F-1,3,4; P-1,2,3), but can sometimes lower the recall (P4). Hard
positives (HP) increases recall (F2, P4) but can also introduce false positives (F4). Using
both (HP+HN) the detector is usually able to achieve a good balance.
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(a)

(b)

(c)

Figure 5.7: Results on FDDB. (a) ROC curves comparing our hard example methods with
the baseline Faster R-CNN detector; (b-c) separate plots showing False Positives and True
Positive Rate with varying thresholds on detector confidence score (best seen in color and
with zoom).
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CHAPTER 6

CONCLUSION

Face-clustering in videos is a problem of grouping faces in a video so that each group

contains a unique individual [32, 19, 55, 125]. In this dissertation, three important problems

in the area of face-clustering have been studied.

First, we have observed that one false connection in a link-based clustering algorithm [102]

can result in poor clustering performance. To improve the clustering performance, in Chap-

ter 3, we have presented a system for doing end-to-end clustering in full-length videos and

movies. In addition to a careful combination of detection and tracking, and a new end-to-

end evaluation metric, we have introduced a novel approach to link-based clustering that

we call Erdős-Rényi clustering. We demonstrated a method for automatically estimating a

good decision threshold for a verification method based on rank-1 counts by estimating the

underlying portion of the rank-1 counts distribution due to mismatched pairs.

Faces might not be sufficiently clear for direct recognition. In Chapter 4, we have pre-

sented a novel framework to improve face-clustering in videos by exploiting scene level

information to address the challenges of face-clustering across different camera shots. A

new network architecture, FB-Net, is proposed for face recognition that leverages contex-

tual information from the entire scene to learn robust identity embeddings. Furthermore, we

introduced a new dataset that contains face identities in the context of consistent scenes. We

conducted experiments on standard video face-clustering benchmarks, and our experimen-

tal results demonstrate a significant boost in performance by utilizing scene-contextualized

face embeddings. It shows improved performance over the state-of-the-art that utilizes

face-level features only. Through both qualitative and quantitative results, we observe that
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by explicitly learning how consistent scene elements are correlated across different cam-

era shots, we can learn better identity representations, especially when face regions are

ambiguous.

Finally, in Chapter 5, we leverage an existing phenomenon – detector flicker in videos

– to mine hard negatives and hard positives at scale in an unsupervised manner. The

usefulness of this method for improving an object detector is demonstrated on standard

benchmarks for two well-known tasks – face and pedestrian detection, supported by sev-

eral ablation studies. The simplicity of our hard example mining approach makes it widely

applicable to a variety of practical scenarios

This thesis has addressed three challenging problems in the area of face-clustering in

videos, and proposed novel approaches to tackle the problems. Without doubts, identifying

the faces of the same person in a video would be an essential part for an AI system to

understand a video/movie. With a complete video understanding system, we believe that

the AI system would learn human life through videos.

As my future work, I want to explore various components that are required to build a

video understanding system. Especially, I want my AI system to learn empathy, which is

the ability to understand and share the feelings of another. Humans have a strong ability to

predict how people in movies/videos feel/think not only by one’s facial expression changes

but also based on their experiences so far. For example, there is a short video clip that

shows a 6-year-old girl crying after hearing the news from her parents that she will go to

Disneyland as a part of her birthday gifts1. If humans watch the video clip, we can see that

she is extremely happy even if every piece of her body gestures and facial expressions are

supporting the evidence that she is very sad. In my future research, I will make my machine

indirectly get those experiences by watching a lot of videos on the web and eventually make

my AI system to have empathy as well as a smart brain.

1A girl who is crying for the Disneyland surprise (https://youtu.be/OOpOhlGiRTM?t=115)
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