
PERFORMANCE EVALUATION OF CLASSICAL AND
QUANTUM COMMUNICATION SYSTEMS

A Dissertation Presented

by

GAYANE VARDOYAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2020

College of Information and Computer Sciences

c© Copyright by Gayane Vardoyan 2020

All Rights Reserved

PERFORMANCE EVALUATION OF CLASSICAL AND
QUANTUM COMMUNICATION SYSTEMS

A Dissertation Presented

by

GAYANE VARDOYAN

Approved as to style and content by:

Don Towsley, Chair

Kris Hollot, Member

James Kurose, Member

Arya Mazumdar, Member

Saikat Guha, Member

James Allan, Chair
College of Information and Computer Sciences

DEDICATION

To my grandmother, Rima.

ACKNOWLEDGMENTS

Thanks to all those who have contributed to my incredible journey of graduate

school, by providing support, friendship, academic advice, and various other forms of

enrichment – without you, this experience would not have been nearly as gratifying.

I am deeply indebted to my advisor, Don Towsley – I could not have imagined

a better person to guide me through graduate school and continuously present me

with so many wonderful opportunities. I would be content to someday become just a

fraction of the kind of advisor, mentor, lecturer, and researcher that he is.

I am very grateful to my thesis committee members Jim Kurose, Saikat Guha,

Kris Hollot, and Arya Mazumdar. Thank you for the immense amount of support

you have given me. It has been a great pleasure to collaborate with Kris and Saikat,

and to revel in Jim and Arya’s teaching and lecturing skills; thanks to all of you for

investing your time in my education – both as a student and a researcher.

I would like to thank my labmates throughout the years for their support at every

important milestone during grad school. Fabricio Murai, Kun Tu, James Atwood, Bo

Jiang, Jian Li, Chang Liu, Nitish Panigrahy, Amir Reza Ramtin, Stefan Dernbach,

Arman Mohseni-Kabir, Albert Williams, Thirupathaiah Vasantam, and Janice Chen

– they came to all my practice talks, whether for a conference, job talk, or thesis-

related, and truly helped me become a better speaker. I feel very lucky to have had

this thoughtful team of people come to my aid when I needed it most.

I would like to thank all my research collaborators for their patience and time.

Thanks to Nagi Rao for many hours spent collecting measurement data. Special

thanks to Philippe Nain – I have learned, and continue to learn so much from him.

v

His mathematical and analytical skills are truly impressive, and just when I think

I’ve seen it all, he continues to amaze me.

I thank my family for being patient with me as I spent many years away pursuing

an academic career. Thanks to my parents Irina and Sargis who started all from

scratch, twice, to give us better opportunities. Thanks especially to my mother and

my sister, Anaid, for being an inspiration. Thanks to my grandmother Rima for her

unconditional love. Her story is an inspiration to all of us, and I dedicate this thesis

to her. Thanks to my partner Subhransu for being there in the toughest and happiest

of times, and for nourishing me with amazing home-made meals when I had no time

to worry about food. He is not only my best friend but also a role model. I thank

the people who built the volleyball court next to Soda Hall in Berkeley where I met

him. Thanks also to Subhransu’s parents, Nilima and Proshanto, for cheering me on

in my academic pursuits. Last but not least, thanks to Kitty for being the lovable,

furry, affectionate, and comical animal that has brought us so much joy.

Finally, I thank the many others – colleagues and friends – who gave me the

encouragement and confidence that I needed. Special thanks to Barna Saha, Erik

Learned-Miller, Laura Haas, Joydeep Biswas, Eleanor Avrunin, Yuriy Brun, Alexan-

dra Meliou, Akshay Krishnamurthy, Justin Domke, Adam O’Neill, Walter Krawec,

Jay Taneja, Emily Kumpel, Colin Gleason, Binglei Gong, Phil Thomas, Sarah Bourbeau,

Rui Wang, and Rajesh Bhatt for believing in me and in general for being the won-

derful human beings that you are. Thanks also to the heroic staff members of CICS –

Laurie Connors, Barbara Sutherland, Joyce Mazeski, and Vickie Rupp – for tirelessly

supporting us all.

vi

ABSTRACT

PERFORMANCE EVALUATION OF CLASSICAL AND
QUANTUM COMMUNICATION SYSTEMS

AUGUST 2020

GAYANE VARDOYAN

B.Sc., UNIVERSITY OF CALIFORNIA, BERKELEY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

The Transmission Control Protocol (TCP) is a robust and reliable method used

to transport data across a network. Many variants of TCP exist, e.g., Scalable TCP,

CUBIC, and H-TCP. While some of them have been studied from empirical and

theoretical perspectives, others have been less amenable to a thorough mathematical

analysis. Moreover, some of the more popular variants had not been analyzed in the

context of the high-speed environments for which they were designed. To address this

issue, we develop a generalized modeling technique for TCP congestion control under

the assumption of high bandwidth-delay product. In a separate contribution, we

develop a versatile fluid model for congestion-window-based and rate-based congestion

controllers that can be used to analyze a protocol’s stability. We apply this model to

CUBIC – the default implementation of TCP in Linux systems – and discover that

under a certain loss probability model, CUBIC is locally asymptotically stable. The

vii

contribution of this work is twofold: (i) the first formal stability analysis of CUBIC,

and (ii) the fluid model can be easily adapted to other protocols whose window or rate

functions are difficult to model. We demonstrate another application of this model

by analyzing the stability of H-TCP, another popular variant used in data science

networks.

On a different front, a wide range of quantum distributed applications, which ei-

ther promise to improve on existing classical applications or offer functionality that

is entirely unobtainable via classical means, are helping to fuel rapid technological

advances in the area of quantum communication. In view of this, it is prudent to

model and analyze quantum networks, whose applications range from quantum cryp-

tography to quantum sensing. Several types of quantum distributed applications,

such as the E91 protocol for quantum key distribution, make use of entanglement to

meet their objectives. Thus, being able to distribute entanglement efficiently is one

of the most important and fundamental tasks that must be performed in a quantum

network – without this functionality, many quantum distributed applications would

be rendered infeasible. Modeling such systems is vital in order to better conceptualize

their operation, and more importantly, to discover and address the challenges involved

in actualizing them. To this end, we explore the limits of star-topology entanglement

switching networks and introduce methods to model the process of entanglement

generation, a set of switching policies, memory constraints, link heterogeneity, and

quantum state decoherence for a switch that can serve bipartite (and in a specific

case, tripartite) entangled states. In one part of this work, we compare two model-

ing techniques: discrete time Markov chains (DTMCs) and continuous-time Markov

chains (CTMCs). We find that while DTMCs are a more accurate way to model the

operation of an entanglement distribution switch, they quickly become intractable

when one introduces link heterogeneity or state decoherence into the model. In terms

of accuracy, we show that not much is lost for the case of homogeneous links, infi-

viii

nite buffer and no decoherence when CTMCs are employed. We then use CTMCs

to model more complex systems. In another part of this work, we analyze a switch

that can store one or two qubits per link and can serve both bipartite and tripartite

entangled states. Through analysis, we discover that randomized policies allow the

switch to achieve a better capacity than time-division multiplexing between bipartite

and tripartite entangling measurements, but the advantage decreases as the number

of links grows.

ix

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTER

INTRODUCTION . 1

1. PERFORMANCE EVALUATION OF TCP . 3

1.1 Introduction . 3
1.2 Background . 6

1.2.1 TCP Variants . 6
1.2.2 Related Work . 8

1.3 Measurements . 9

1.3.1 Emulation Testbed . 9
1.3.2 Measurement Collection . 10
1.3.3 Empirical Observations . 12

1.4 Analysis . 12

1.4.1 Slow-Start . 13
1.4.2 Congestion Avoidance . 15

1.4.2.1 ACK-Based CA . 17
1.4.2.2 TSL-Based CA . 18

1.4.3 Examples . 20

x

1.4.3.1 STCP . 20
1.4.3.2 CUBIC . 21
1.4.3.3 H-TCP . 23

1.4.4 Parallel Flows . 25

1.5 Model Performance . 26
1.6 Conclusion . 28

2. TOWARDS STABILITY ANALYSIS OF DATA TRANSPORT
MECHANISMS: A FLUID MODEL AND ITS
APPLICATIONS . 30

2.1 Introduction . 30
2.2 Background . 34
2.3 The Model . 35

2.3.1 The MWLI Model . 36
2.3.2 Model Equivalence for TCP Reno . 38

2.4 Analysis of TCP CUBIC . 39

2.4.1 TCP CUBIC Fluid Model . 40
2.4.2 Fixed Point Analysis . 41
2.4.3 Change of Variables . 45
2.4.4 Existence and Uniqueness of Solution . 47
2.4.5 Stability Analysis . 48
2.4.6 Convergence . 61
2.4.7 Summary . 63

2.5 Analysis of H-TCP . 64

2.5.1 Fixed Point Analysis . 66
2.5.2 Stability Analysis . 68

2.6 A Note on the Loss Model . 73
2.7 Simulations . 74

2.7.1 TCP CUBIC . 76
2.7.2 H-TCP . 79

2.8 Conclusion . 82

3. ON THE STOCHASTIC ANALYSIS OF A QUANTUM
ENTANGLEMENT DISTRIBUTION SWITCH 83

3.1 Introduction . 83

xi

3.2 Background . 86
3.3 Related Work . 88
3.4 Model and Objectives . 90
3.5 Continuous Time Markov Chain for Bipartite Switching 93

3.5.1 The Heterogeneous Case . 93

3.5.1.1 Infinite Buffer . 94
3.5.1.2 Finite Buffer . 96

3.5.2 The Homogeneous Case . 98

3.5.2.1 Infinite Buffer . 99
3.5.2.2 Finite Buffer . 100

3.5.3 Decoherence . 101

3.6 Numerical Observations . 102

3.6.1 Effect of Buffer Size: Homogeneous Links . 103
3.6.2 Effect of Buffer Size: Heterogeneous Links 104
3.6.3 Effect of Decoherence . 106

3.7 Conclusion . 109

4. ON THE EXACT ANALYSIS OF AN IDEALIZED QUANTUM
SWITCH . 110

4.1 Introduction . 110
4.2 Background and Related Work . 112
4.3 Switch Description and Objectives . 114
4.4 Analysis . 117

4.4.1 Model Description . 117
4.4.2 Analysis . 119

4.4.2.1 Transition Probabilities . 119
4.4.2.2 Stationary Distribution . 123
4.4.2.3 Capacity and Qubits in Memory 125

4.5 Comparison of DTMC Model with a CTMC Model 127
4.6 Conclusion . 130

5. ON THE CAPACITY REGION OF BIPARTITE AND
TRIPARTITE ENTANGLEMENT SWITCHING 132

5.1 Introduction . 132

xii

5.2 Background and Related Work . 133
5.3 System Description and Assumptions . 134
5.4 System with Per-Link Buffer Size One . 136

5.4.1 Description . 136
5.4.2 Numerical Results . 137
5.4.3 Analysis . 139

5.5 System with Per-Link Buffer Size Two. 144
5.6 Modeling Decoherence . 146
5.7 Conclusion . 149

APPENDICES

A. ON THE STABILITY ANALYSIS OF TCP . 150
B. ON THE STOCHASTIC ANALYSIS OF A QUANTUM

ENTANGLEMENT DISTRIBUTION SWITCH 163
C. ON THE EXACT ANALYSIS OF AN IDEALIZED QUANTUM

SWITCH . 167

BIBLIOGRAPHY . 180

xiii

LIST OF TABLES

Table Page

1.1 Variable definitions used in analysis. 14

2.1 Term definitions. 36

4.1 Notation for the DTMC model. 118

xiv

LIST OF FIGURES

Figure Page

1.1 Two testbed configurations for dedicated 10 Gbps connections. 9

1.2 Comparisons between 10 GigE and SONET measurements. TCP
variant: STCP. (a) and (b) show tcpprobe. (c) and (d) show both
iperf and tcpprobe. 11

1.3 Comparison of STCP, CUBIC, and H-TCP average throughputs on
the 10 GigE testbed. 11

1.4 Buffer size β on a network. This includes buffers at sender and
receiver network interfaces, and routers. 13

1.5 Example cwnd curves for one congestion avoidance epoch, with (a)
and without (b) a Wmax constraint. Shaded areas are the size of
the buffer. 15

1.6 Measurement averages and medians vs multiple-stream model
predictions for H-TCP. 27

1.7 Measurement averages and medians vs multiple-stream model
predictions for STCP. 28

1.8 Measurement averages and medians vs multiple-stream model
predictions for CUBIC. 29

2.1 W (t), Wmax(t), and s(t) for TCP Reno. 37

2.2 CUBIC’s saddle point causes dW (t)/dt to evaluate to zero at the
fixed point of the system. 40

2.3 Effect of RTT scaling on H-TCP’s cwnd . Curves produced by the DE
model with C = 1 Gbps, τ = 40 ms, b = 0.8, and scaling factor
γ = τ/τref . In all three cases, the protocol operates in the
high-speed regime and is unstable. Decreasing γ reduces the
magnitude of the oscillations. 73

xv

2.4 Comparison of average cwnd (computed post-transient phase)
generated by NHPL simulations against steady-state cwnd
generated by model (2.17) for TCP CUBIC. Also shown is the
fixed-point value of cwnd . Per-flow capacity C = 1 Gbps. 77

2.5 The impact of initial conditions on stability. For both (a) and (b),
C = 1 Gbps, τ = 100 ms. In (a), there is one flow whose initial
conditions W (0) and s(0) are very close to the fixed point values
Ŵ and ŝ, respectively. Both the NHPL simulation and the model
exhibit stability. In (b), there is one flow whose initial conditions
are set too far from the fixed point value, destabilizing the flow in
both the NHPL simulation and the DE system. 78

2.6 Convergence for CUBIC. At the top is the cwnd generated by DEs as
it converges to the fixed point value of cwnd . Below these two
curves is a comparison of the instantaneous norm ||x||2 against the
analytical bound in (2.29). Here, C = 100 Mbps, τ = 10 ms. 78

2.7 Validation of H-TCP’s DE model using ns-3. Red curves represent
average cwnd over all ns-3 flows. ns-3 uses PI as the AQM
scheme and DE models use Eqs. (2.36) and (2.37). Aggregate
capacity is given by CA := NC. qref and qmax have units of
packets, while MSS is in bytes. Each red curve is an average of
five runs of the experiment. 80

2.8 Validation of H-TCP’s DE model using ns-3. Aggregate capacity
CA = 4 Gbps, τ = 30 ms, qref = 100 packets, qmax = 1000 packets,
N = 25 flows, and MSS = 1158 bytes. The red curve is an average
of five runs of ns-3. 81

3.1 Long-distance entanglement generation using quantum repeaters.
The two nodes at the edges are communicating parties, and the
nodes between them are quantum repeaters. Dashed lines
represent lack of entangled links, while solid lines represent
presence of entanglement. The gray and red circles are
unoccupied and occupied quantum memories, respectively. 84

3.2 Example of quantum switch operation. No Bell pairs are present in
(a). When enough Bell pairs are successfully generated (solid
lines in (b) and (c)), the switch performs a BSM (d), entangling
the two users’ qubits (e). 90

xvi

3.3 A CTMC for a k-user, infinite buffer, heterogeneous-link switch. µl is
the entanglement generation rate of link l, while γ is the
aggregate entanglement generation rate of all links. el is a vector
of all zeros except for the lth position, which is equal to one. 95

3.4 A CTMC model with k users, infinite buffer, and homogeneous links.
µ is the entanglement generation rate. 99

3.5 A CTMC model with k users, finite buffer of size B, and
homogeneous links. µ is the entanglement generation rate. 100

3.6 The effect of buffer size on capacity (left) and on the expected
number of stored entanglements (right) in systems with
homogeneous links. Capacity is in Mega-ebits/sec. 104

3.7 Capacity (Mega-ebits/sec) and expected number of qubits in memory
E[Q] for heterogeneous systems with varied number of links and
buffer sizes. Links are divided into two classes: one class
generates entanglements approximately twice as quickly as the
other class. 105

3.8 Effect of decoherence on capacity (Mega-ebits/sec) and expected
number of stored qubits E[Q], for varying number of users k. For
all experiments, the entanglement generation rate is µ = 1 for all
links. 106

3.9 Effect of decoherence on capacity (Mega-ebits/sec) and expected
number of stored qubits E[Q], for varying number of users k. In
all experiments, the links are heterogeneous. 107

3.10 Effect of decoherence on capacity (Mega-ebits/sec) and expected
number of stored qubits E[Q] for k = 5 links and varying buffer
sizes B. In (a), µl are (35 15 15 3 3), and in (b), µ is the average
of µl, l = 1, . . . , 5, i.e. 14.2. For all plots above, B = 100 curves
behave equivalently to B =∞. 108

4.1 Example switch operation for a single time slot. At the beginning of
the slot, (a), all links have successfully generated Bell pairs. In
(b), the switch performs a BSM to entangle the two users on the
left, see (c). Next, still within the same time slot, the switch
performs another BSM to entangle the two users on the right,
shown in (d), (e). 114

xvii

4.2 A DTMC model with k users, infinite buffer, and identical links.
Here, i ≥ k + 1, Pf is the probability of advancing forward in the
Markov chain, Ps is the probability of remaining in the current
state, and P(j) is the probability of going back j states. 118

4.3 Transition probability matrix P for the DTMC model. 119

4.4 Comparison of the expected number of qubits in memory E[Q] for
the DTMC and CTMC models, as the number of links is varied
∈ {3, 5, 10, 20, 50, 100} and for entanglement generation
probabilities p ∈ (0, 1). maxRelErr is the maximum relative error
between the discrete and continuous expressions for E[Q]. 129

5.1 CTMC for a system with at least three links and buffer size one for
each link. k is the number of links, µ is the rate of entanglement
generation, and r1, r2, and r3 are parameters that specify the
scheduling policy. 136

5.2 Capacity region for a system of buffer size one and three links. The
red line represents the set of TDM policies. 138

5.3 Capacity region for a system of buffer size one and varying number of
links. The red line represents the set of TDM policies. 139

5.4 CTMC for a system with at least three links and buffer size two for
each link. k is the number of links, µ is the rate of entanglement
generation, and r2 and r3 are parameters that specify the
scheduling policy. 145

5.5 Capacity region for per-link buffer size B = 2, for k = 3, 10 links.
The red line represents the set of TDM policies. 145

5.6 Comparison of capacity regions for systems of buffer sizes one and
two with varying number of links k, and entanglement generation
rate µ = 1. 146

5.7 CTMC for a system with at least three links and buffer size one. k is
the number of links, µ is the rate of entanglement generation, α is
the decoherence rate, and r1, r2, r3 are parameters that specify
the scheduling policy. 146

5.8 Capacity region for a system of buffer size one and varying number of
links k, decoherence rates α, and entanglement generation rate
µ = 1. The solid lines are the upper boundaries of the capacity
region, and the dashed are TDM lines. 148

xviii

5.9 Capacity region for a system of buffer size two and varying number of
links k, decoherence rates α, and entanglement generation rate
µ = 1. The solid lines are the upper boundaries of the capacity
region, and the dashed are TDM lines. 148

A.1 Example trajectory of Reno’s congestion window. li is the time when
loss occurs at the congestion point (e.g. router). Ti is the time of
the ith loss indication. 153

xix

INTRODUCTION

This thesis covers two main topics: the first concerns TCP and its performance

evaluation, and the second concerns entanglement switching in a star-topology quan-

tum network. Congestion control serves a vital function in the efficient operation of

computer networks. Several congestion control variants have been developed, but de-

tailed analytical models for some of the newer variants are scarce. A notable example

is TCP CUBIC, which is currently the default variant used in Linux kernels. While

there are empirical and comparative studies of several TCP variants, they are not

enough to make careful statements about a protocol’s performance and stability. To

address this problem, we develop a novel generalized framework for TCP throughput

prediction. Among other factors, our model takes into account buffer constraints, file

size, multiple parallel flows, and maximum congestion window constraints imposed

by the receiver. The latter is a novel and important component of the framework,

as maximum window constraints come into play in high bandwidth-delay product

environments and can make the difference between a good throughput prediction and

an inaccurate one.

Stability is another important property of congestion control algorithms. Two of

the most popular TCP variants, CUBIC and H-TCP, had not been formally analyzed

from a stability perspective. This is partly due to the lack of a suitable modeling

framework within which complex congestion controllers can be analyzed. For CUBIC,

there exists an additional difficulty in that its fixed point lies at the saddle point of

its congestion window function, rendering linearization of the model useless. To

overcome these challenges, we develop a new model consisting of a system of two

time-delayed differential equations, which we call the MWLI model. The novelty of

1

this model is that it describes the evolution of two essential components of any loss-

based congestion controller: the time since last loss, and the size of the congestion

window immediately before a loss occurs. This is in contrast to traditional methods,

which model the evolution of the congestion window directly. For complex congestion

controllers, the MWLI model succeeds where the traditional methods fail.

The area of quantum communication is relatively new, and certain aspects have

not been subjected to mathematical analysis. A vital resource in a quantum network is

end-to-end entanglement between sets of users, which can be used to support a number

of applications, including quantum key distribution. We consider a single quantum

entanglement distribution switch and model it as a Markov process to determine

its achievable capacity and quantum memory occupancy for bipartite and tripartite

entanglement distribution. One of the first questions posed in this work is model

choice: i.e., whether to use discrete- or continuous-time Markov chains to represent

and analyze the device. We compare the two model types for a simple scenario

and find that while the discrete-time model yields more accurate results, it cannot

easily be extended to more complex settings. For instance, attempting to model a

system with heterogeneous links or quantum state decoherence quickly proved to be

intractable with the discrete model. On the other hand, such extensions are easy

to incorporate into a continuous-time Markov chain, and in the simple scenario of

identical links, infinite quantum memories, and no state decoherence, not much is

lost in terms of accuracy when compared to the discrete model. Our continuous-

time model takes into account link heterogeneity, memory constraints, measurement

success probability, and decoherence. The results may be used to guide the design of

quantum switches or similar devices (e.g., in determining how much quantum memory

is a reasonable amount) or they may serve as a useful benchmark for choosing efficient

switching policies.

2

CHAPTER 1

PERFORMANCE EVALUATION OF TCP

1.1 Introduction

The congestion collapse in the ARPANET during the late 1980s prompted the

adoption of what is now referred to as legacy Transmission Control Protocol (TCP).

Later, the advent of high-BDP (Bandwidth-Delay Product) networks stimulated the

development of several TCP variants to overcome the inefficiencies of legacy TCP.

These include HSTCP (HighSpeed TCP) [18], FAST (FAST AQM Scalable TCP)

[74], BIC (Binary Increase Congestion control) TCP [75], STCP (Scalable TCP) [41],

CUBIC TCP [30], and H-TCP (Hamilton TCP) [47]. To an extent, all of these Con-

gestion Avoidance (CA) algorithms are successful in improving bandwidth utilization,

although some exhibit better fairness, friendliness, and convergence properties than

others. Several empirical studies of these algorithms exist ([38, 48, 28, 49, 9], among

others), and although CUBIC is currently the default in Linux kernels, as of yet, there

is no definitive consensus on which CA algorithm is best.

Adding to this uncertainty, many other studies rely either on simulations or exper-

iments on networks with relatively low bandwidths compared to current High-Speed

Network (HSN) environments. Today, 10 Gbps Wide Area Network (WAN) links are

not uncommon between large-scale datacenters and computing facilities. An exam-

ple is the Extreme Science and Engineering Discovery Environment (XSEDE) [71],

a collection of supercomputing resources spanning several universities, national labs,

and other research institutions, all interconnected by 10 Gbps (and sometimes faster)

links. XSEDE offers tools like Globus GridFTP [1] and sftp for data transfers (note

3

that FTP relies on TCP for reliable data movement), and such bulk data transfer

mechanisms are becoming increasingly popular in HSNs.

Since BDPs have grown significantly and new bulk data transfer protocols that

use parallel TCP streams have been introduced, it is important to reevaluate TCP

both analytically and empirically. In this work, we present a framework within which

we derive analytical models for TCP variants. Unlike prior work, where models are

studied in isolation for each TCP variant, our framework is not variant-specific and

can be used to model a range of loss-based TCP variants. We use measurements on

an experimental testbed to motivate and validate these models.

In some environments, researchers share WAN links for data transfers. The draw-

back is that TCP streams belonging to different users may compete for bandwidth

and other resources. An alternate method of transferring data is through the use of

virtual circuits (VCs) dedicated to a single user or application. One example is the

On-Demand Secure Circuits and Advance Reservation System (OSCARS) [27], which

allows users to reserve high-bandwidth VCs for guaranteed performance. According

to the Energy Sciences Network, more than 50 research networks deploy OSCARS,

including the US LHC Network; and OSCARS VCs carry half of the Department of

Energy’s (DOE) science traffic. The increasing popularity of VC-based data transfer

options serves as excellent motivation to study TCP behavior in a controlled setting.

Moreover, it provides an incentive to examine scenarios with only a fixed, rather than

a dynamically changing, number of TCP connections.

Most protocols that strive to achieve efficient bulk data transfers do so by pro-

viding features that allow users to tune them as they see fit. For example, GridFTP

supports both parallelism and concurrency (parallel streams use one socket and con-

current streams use separate sockets; henceforth, we use these terms interchangeably).

It has become clear that the reason for the emergence of tools like GridFTP is the fact

that TCP is not able to keep up with the demands of today’s high-BDP networks.

4

In this work, we develop a framework that enables us to study the performance of

protocols like GridFTP in dedicated high-BDP networks. To do so, we concentrate

on a possible underlying root cause of poor bandwidth utilization: the congestion

control (CC) algorithms used by all TCP-based data transfer tools.

We take two approaches in an attempt to understand the dynamics of TCP in

modern environments: (i) first-principled modeling and (ii) measurement-based. We

create robust, detailed analytical models of variants of the protocol. At the same

time, we evaluate these variants on a dedicated network link, in a controlled setting

that allows us to emulate diverse experimental configurations while removing any in-

terference (e.g., I/O, background traffic) that could obscure TCP’s intended behavior.

We collect detailed measurements of memory-to-memory transfers on two different

testbed configurations using iperf and tcpprobe, for three different TCP variants.

The main contributions of this work are:

– A general and comprehensive framework for modeling a diverse set of congestion

control algorithms. The framework encompasses not only congestion avoidance,

but also the slow-start mechanism. The latter takes into consideration the

heuristic guidelines imposed by Hybrid slow-start (HyStart) [29], which is the

implementation of slow-start used in current Linux kernels.

– A validation of these models using an extensive set of measurements.

– Last, we observe from our measurements that (i) CUBIC and H-TCP are compara-

ble in terms of average throughput, while they both outperform STCP, and (ii)

TCP performance benefits from the presence of a well-designed physical layer

(e.g., SONET).

We use only first principles to model the performance of each TCP variant in terms

of its average throughput as a function of round trip time (RTT). The models also

accept link capacity, buffer size, transfer size, number of parallel streams, and maxi-

5

mum congestion window (cwnd) size as parameters. Using measurements, we validate

the models and compare the performance of the TCP variants. To our knowledge,

this work constitutes the first careful measurement-based modeling study of TCP con-

gestion control algorithms in a high-BDP/HSN setting.

The remainder of this chapter is organized as follows. We describe the three

variants and related work in Section 1.2. In Section 1.3, we describe the testbed,

measurement collection, and first-hand observations from the collected data. In Sec-

tion 1.4, we delve into the analytical framework for slow-start, congestion avoidance,

and each of the variants separately, presenting closed-form expressions for sending

rate where possible. In Section 1.5, we present and validate our results. Finally, we

conclude the chapter in Section 1.6.

1.2 Background

1.2.1 TCP Variants

We study CUBIC because it is the most commonly used variant in current HSN

networks and the default CA algorithm in the Linux kernel. Unlike most TCP vari-

ants, CUBIC is not an acknowledgement (ACK)-based algorithm. Instead, CUBIC’s

cwnd is a cubic function of time since the last congestion event such that the inflection

point is the maximum window size immediately before the most recent loss occurred.

We also study STCP because it was developed within the optimization-based

framework proposed in [40]. STCP is a multiplicative increase, multiplicative decrease

(MIMD) 1 algorithm with the following response functions:

cwnd← cwnd + a

1Note that although the per-ACK update rule for STCP is additive, this CA algorithm is MIMD
at the RTT level.

6

for every ACK received, where the increase factor a is usually set to 0.01. Upon loss

detection,

cwnd← b× cwnd.

Usually, b = 0.875 for STCP.

Finally, we study H-TCP because of its favorable fairness and convergence prop-

erties [48]. H-TCP is an ACK-based generalized additive increase multiplicative de-

crease (AIMD) algorithm whose additive increase factor a is a function of the time t

since the last congestion event. Specifically, a is defined as:

a← 2(1− b)a(t)

where a(t) is

a(t) =


1 t ≤ ∆L (1.1a)

1 + 10(t−∆L) +

(
t−∆L

2

)2

t > ∆L (1.1b)

∆L is usually set to one second so that for small congestion epochs, H-TCP behaves

like standard TCP. H-TCP’s decrease factor b is defined as

b← RTTmin
RTTmax

, b ∈ [0.5, 0.8]

where RTTmin and RTTmax are the minimum and maximum measured RTTs of a

flow. Upon loss detection, cwnd is updated as follows:

cwnd← b× cwnd.

7

1.2.2 Related Work

There exist a number of analytical studies for modelling TCP. Kelly proposed

an optimization-based framework for studying and designing CA algorithms in [40],

where STCP was an output. In [69], Srikant presented a simple analysis of Jacobson’s

TCP CC algorithm. The derivation sets the maximum window constraint to the sum

of the BDP and the size of the buffer. Our analysis is more refined in that it takes into

consideration two different maximum window constraints, as discussed in Section 1.4.

A model for slow-start is also presented in [69]. We extend this model by considering

the latest version of slow-start currently in use by Linux kernels.

In [50], Misra et al. model TCP throughput using stochastic differential equa-

tions. El Khoury et al. [14] present a model for STCP that includes buffer size as

a parameter, but only in the case of a very small buffer. In addition, they rely only

on ns-2 simulations for validation. Bao et al. propose Markov chain models for av-

erage CUBIC throughput, but for a wireless environment [2]. Moreover, they do not

directly account for buffer constraints. Leith et al. present empirical evidence that

H-TCP fares well in bandwidth utilization compared to other TCP variants [46], but

the protocol’s CC dynamics have not been analyzed in-depth.

There are some empirical studies that explore the behavior of TCP with multiple

concurrent flows. Morris looks at a number of performance metrics using simulations

and real packet traces, but does not explore different TCP variants [52]. Yu et al.

compare the performance of three open-source big data transfer protocols in [76]

using memory-to-memory transfers on a 10 Gbps international HSN. Bateman et al.

compare different TCP variants for fairness at high speeds using ns-2 and Linux [3].

As far as we know, no previous work attempts to model TCP with multiple flows

using first principles.

8

1.3 Measurements

1.3.1 Emulation Testbed

Our testbed consists of two types of Linux hosts: 32-core and 48-core HP Pro-

Liant servers, each with Broadcom 10 GigE NICs, running Linux 2.6 kernel (CentOS

release 6.6). It also consists of ANUE OC192 and IXIA 10 GigE hardware connection

emulators, and a 10 Gbps Force10 E300 WAN-LAN switch. Two separate configura-

tions are utilized for 10 GigE and SONET measurements. These hardware connection

emulators transport the physical packets between hosts, delaying them during transit

by an amount specified at configuration. This process closely matches the effects of

physical connections, particularly, the TCP dynamics of hosts connected to them,

which in turn determine the throughput rates achieved. They more closely capture

the real-time TCP dynamics compared to packet-level simulators (such as ns-3 and

OPnet) that are typically driven by discrete “packet delivery events”.

iperf

tcpprobe

feynman 1

iperf

tcpprobe

feynman 2

IXIA
10 GigE

10 GigE LAN

10 GigE LAN

(a) 10 GigE

iperf

tcpprobe

feynman 1

iperf

tcpprobe

feynman 2

ANUE
OC192

10 GigE
 LAN

E300
10GE

LAN-WAN

10 GigE
WAN-PHY

 OC192

10 GigE
 LAN

(b) OC192

Figure 1.1: Two testbed configurations for dedicated 10 Gbps connections.

We consider two configurations that use OC192 and 10 GigE physical layer modal-

ities. In the first configuration, 10 GigE NICs of host systems are directly connected

to two IXIA emulator ports as shown in Figure 1.1a. Long range 1250 nm opti-

cal transceivers are used on host NICs to communicate directly with the emulator.

The SONET configuration shown in Figure 1.1b is more complicated compared to

the 10 GigE case, since hosts are equipped with 10 GigE NICs and do not support

SONET. In this case, the 10 GigE NICs are connected to a Force10 E300 switch

9

using multi-mode 850 nm optical transceivers in LAN-PHY mode. The E300 switch

converts between 10 GigE LAN-PHY and WAN-PHY frames that are inter-operable

with OC192 frames; the latter are sent through its WAN ports, which are directly

connected to OC192 ANUE emulator ports as shown in Figure 1.1b. We note that

the peak capacity of an OC192 connection is 9.6 Gbps. We utilize these emulators

to collect TCP measurements for a suite of dedicated connections where we set the

RTT to 11.8, 22.6. 45.6, 91.6, 183 and 366 ms. RTTs in the mid-range represent US

cross-country connections, for example, ones between DOE sites provisioned using

the OSCARS system. Higher RTTs represent transcontinental connections.

1.3.2 Measurement Collection

We collect TCP measurements for three TCP CC modules: CUBIC, STCP, and

H-TCP (all available as loadable modules under the Linux 2.6 distribution). Two

types of measurements are collected in each case.

(a) Throughput measurements for memory-to-memory transfers are collected using

iperf. In addition, intermediate throughput values from iperf at one-second

intervals are collected for a more detailed analysis.

(b) Kernel traces: Certain TCP variables including cwnd , are collected using the

tcpprobe kernel module to support a more detailed analysis and parameter es-

timates for analytical models. In this case, tcpprobe is configured to collect

tcp info variables each time a TCP segment is processed.

The iperf and tcpprobe traces are collected concurrently to facilitate the correlation

of TCP parameters with throughput. Each test regimen is executed using a bash

script that coordinates the setup of parameters for emulators, invocation of iperf and

tcpprobe codes and collection of their outputs.

10

0 100 200 300
0

2000

4000

6000

8000

10000

12000

14000

Time (sec)

c
w

n
d
 (

s
e
g
m

e
n
ts

)

(a) RTT=91.6 ms, 10 GigE

0 100 200 300
0

2000

4000

6000

8000

10000

12000

14000

Time (sec)

c
w

n
d
 (

s
e
g
m

e
n
ts

)

(b) RTT=91.6 ms, SONET

0 50 100 150 200 250
0

2

4

6

8

10

Time (sec)

T
h
ro

u
g
h
p
u
t
(G

b
it
s
/s

e
c
)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 10

4

c
w

n
d
 (

s
e
g
m

e
n
ts

)

(c) RTT=183 ms, 10 GigE

0 50 100 150 200 250 300
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t
(G

b
it
s
/s

e
c
)

Time (sec)
0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5
x 10

4

c
w

n
d
 (

s
e
g
m

e
n
ts

)

(d) RTT=183 ms, SONET

Figure 1.2: Comparisons between 10 GigE and SONET measurements. TCP variant:
STCP. (a) and (b) show tcpprobe. (c) and (d) show both iperf and tcpprobe.

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

STCP
CUBIC
H−TCP

(a) three streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

STCP
CUBIC
H−TCP

(b) seven streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

STCP
CUBIC
H−TCP

(c) ten streams

Figure 1.3: Comparison of STCP, CUBIC, and H-TCP average throughputs on the
10 GigE testbed.

11

1.3.3 Empirical Observations

It is interesting to note the differences in measurements produced by the SONET

and 10 GigE links. In general, we observe that the data obtained from SONET is

well-behaved and more deterministic than that collected from 10 GigE. Figure 1.2

illustrates the stark contrast in TCP behavior between these two testbeds. The evo-

lution of cwnd over time exhibits a consistent sawtooth pattern for SONET, whereas

the 10 GigE transfer experiences non-uniformly-spaced losses and seemingly flat re-

gions for smaller RTTs. The data shown is for STCP, for RTTs of 91.6 ms and 183

ms, although the results are consistent across different variants and other RTT values.

These differences are important: they mean that for accurate predictions, the models

must account for both the frequency of losses and the shapes of the cwnd curves.

Section 1.4 goes into specifics on how this can be accomplished.

Figures 1.2c and 1.2d reveal another difference between these two modalities:

10 GigE has more aggregate buffer space than SONET. Visually, buffering occurs

when cwnd grows as throughput remains relatively constant. The size of the buffer

corresponds to the white space between the two curves, and since it is more prevalent

in 10 GigE data, we know that this configuration has the larger buffer size. Figure

1.3 presents a comparison of the three variants in terms of their average throughput.

The dataset was collected over the 10 GigE link. Each memory-to-memory flow was

active until it transferred 10 GB of data. It is evident that for a small number of

streams, the three variants perform almost equally well. However, as the number

of flows grows, the differences in performance become more notable: CUBIC and

H-TCP significantly outperform STCP with ten parallel flows.

1.4 Analysis

In this section, we first present a model for slow-start and discuss how it can

accommodate an important component of HyStart. Then, we present single-stream

12

Sender

Routers

Receiver

Figure 1.4: Buffer size β on a network. This includes buffers at sender and receiver
network interfaces, and routers.

analytical models for two different types of loss-based congestion avoidance mecha-

nisms: (i) those that are ACK-based and (ii) those that grow cwnd as a function

of time since last loss (referred to as TSL-based variants). STCP and H-TCP are

ACK-based, while BIC and CUBIC are examples of TSL-based algorithms. Finally,

we demonstrate how single-stream models can be easily extended to incorporate mul-

tiple parallel TCP streams.

Table 2.1 contains definitions of variables used in this section. We assume that

we know the link capacity C, aggregate buffer size β, round-trip time τ , size of the

transfer F , and increase or decrease parameters. The minimum RTT, τ , is the delay

measured before the buffer of size β begins to fill up. This can be measured by running

a simple ping command between the source and receiver. β represents the aggregate

size of all buffers present on the link (e.g., on routers and NICs). An illustration is

shown in Figure 1.4. Wmax is a constraint on cwnd typically imposed by the receiver

(receive-window).

1.4.1 Slow-Start

In traditional slow-start, cwnd approximately doubles every round trip time of

length τ in which loss is not detected:

w(t) = 2t/τ .

Slow-start ends at time Ts, when w(t) reaches ssthresh and CA begins.

13

Table 1.1: Variable definitions used in analysis.

Variable Definition Unit
C link capacity bits/sec
τ minimum round trip time sec
w(t) cwnd as function of time bits
Wmax maximum window constraint bits
Wm size of cwnd immediately before loss bits
β aggregate buffer size bits
S sending rate bits/sec
Θ throughput bits/sec
ssthresh slow-start threshold bits
a additive or multiplicative increase factor N/A
b multiplicative decrease factor N/A
F file size bits
k number of CA epochs for a transfer N/A
n number of parallel TCP flows N/A

Ts = τ log2(ssthresh). (1.2)

The amount of data transferred during time Ts is Ns:

Ns =
1

τ

∫ Ts

0

2t/τdt =
2t/τ

ln(2)

∣∣∣Ts
0

=
ssthresh− 1

ln(2)
. (1.3)

These expressions are accurate when Cτ (the BDP) is greater than or equal to

ssthresh. In HSN environments, this is a reasonable assumption that is validated

by the measurements (see Figure 1.2 for examples).

At the time of writing, HyStart is the default slow-start algorithm used in Linux.

This algorithm uses the same cwnd growth function as traditional slow-start. Ac-

cording to [29], HyStart sets an upper bound on cwnd equal to Caτ/2 + βa, where

Ca is the available bandwidth and βa is the available buffer space. There is also a

lower bound on cwnd equal to (Caτ)/2. In real scenarios (especially where packet

loss is highly prevalent), it is likely that the value of ssthresh will change several

times during the lifetime of a TCP flow. However, for highly-reliable, dedicated con-

14

time

W(t)

Phase IIPhase I

(a)

time

W(t)

Phase I
Phase II

sub-phase I
Phase II

sub-phase II

(b)

Figure 1.5: Example cwnd curves for one congestion avoidance epoch, with (a) and
without (b) a Wmax constraint. Shaded areas are the size of the buffer.

nections, such as ones encountered in HSN settings, it is safe to assume that a flow

will enter slow-start only once (at the beginning of a transfer), and afterward will

likely remain in CA state. This assumption is further validated by our tcpprobe mea-

surements. In this case, only one estimate of ssthresh is required. At the beginning

of a connection, most of the link capacity and buffer space are unused. Hence, we

let ssthresh = Cτ/2 + β, which proves to work quite well in practice; in fact, we

find it much better to model ssthresh as a function of τ , rather than leaving it as a

constant.

1.4.2 Congestion Avoidance

For all TCP variants, CA consists of two phases. Figure 1.5 illustrates them

using generic cwnd curves (not specific to any TCP variant). The goal is to derive

expressions for Na, the amount of data transferred during one such CA epoch, and

Ta, the duration of one CA epoch. The number of CA epochs for a given transfer is

approximately

k =
F −Ns

Na

.

15

The sending rate S can be approximated as

S =
Ns + kNa

Ts + kTa
.

Then, throughput Θ can be estimated as

Θ = S(1− p)

where p is the packet loss probability for a TCP flow. For small values of p,

Θ ≈ S.

Next, we discuss how to obtain Na and Ta for various cases.

Case 1: Wmax ≤ Cτ . In Phase I, cwnd grows until either the link capacity or Wmax

is reached (if Wmax ≤ Cτ). In the latter case, cwnd remains flat until the transfer

ends, buffer overflow never occurs, and there is no second phase. The amount of

data transferred in this case is Na = F − Ns (file size minus the amount of data

transferred in slow-start), and since the sending rate is capped at Wmax/τ , it takes

Ta = Naτ/Wmax time until the transfer ends.

Case 2: Wmax > Cτ . In this case, each congestion epoch will have two phases.

Phase I: The methodology for obtaining N0 and T0 for Phase I is the same for

ACK-based and TSL-based variants. Given a congestion window function w(t), we

know that:

w(T0) = Cτ.

16

Using this relation, we can solve for T0: either directly (if Cτ < Wmax < Wm as

in Figure 1.5b) or in terms of Wm (if Wmax ≥ Wm as in Figure 1.5a). In order to

distinguish between 1.5b and 1.5a, we must first solve for Wm (discussed below). The

amount of data transferred in Phase I is:

N0 =
1

τ

∫ T0

0

w(t)dt.

Phase II: In Phase II, the sending rate is capped at C, and the buffer begins to fill

up. We first solve for Wm with the hypothesis that 1.5a is the correct representation

of our congestion epoch. Once a value for Wm is obtained, this hypothesis can be

rejected or accepted by comparing Wm with Wmax. However, how we solve for Wm

depends on the type of CA mechanism.

1.4.2.1 ACK-Based CA

The following ordinary differential equation (ODE) describes the behavior for

ACK-based TCP variants:

dw

dt
=
dw

dA

dA

dt
(1.4)

where A represents an acknowledgement. Since the sending rate is C, this is also the

rate at which ACKs are being received:

dA

dt
= C.

For every ACK, cwnd increases by a, so

dw

dA
= a.

17

Hence,

dw

dt
= Ca. (1.5)

The initial condition for this ODE is w(0) = Cτ . The ODE can now be solved to

obtain a window function for Phase II, w2(t).

1.4.2.2 TSL-Based CA

In a TSL-Based variant, cwnd grows identically in Phase II as it does in Phase I.

Hence, w2(t) = w(t).

Now that we have w2(t), we make the following useful observations:

w2(Tm) = Wm, (1.6)

Nm =
1

τ

∫ Tm

0

w2(t)dt, (1.7)

Nm − CTm − β = 0. (1.8)

Using (1.6), we can solve for the duration of Phase II, Tm, in terms of Wm. The

amount of data transferred in Phase II, Nm, is given by (1.7), also in terms of Wm.

Finally, we obtain a value for Wm by finding the roots of (1.8) and selecting the

appropriate root (subject to the constraints that Wm ∈ R and Wm ≥ Cτ).

Subcase 1: Wm ≤ Wmax. In this case, we simply substitute the value of Wm into

the expressions for Tm, Nm, T0 and N0. Then,

Na = N0 +Nm,

Ta = T0 + Tm.

18

Subcase 2: Wm > Wmax. In this case, Figure 1.5b correctly depicts the shape of

the congestion epoch. Since Wmax is known, we can solve for Tmax, the duration of

sub-phase I of Phase II, directly:

w2(Tmax) = Wmax.

The amount of data transferred during this sub-phase is

Nmax =
1

τ

∫ Tmax

0

w2(t)dt.

The only unknown left is Tβ, the duration of sub-phase II, and Nβ, the amount of

data transferred during that interval. However, we know that during sub-phase II,

the sending rate is capped at Wmax/τ , so

Nβ =
Wmax

τ
Tβ.

We can solve the following equation for Tβ:

Nmax +Nβ − C(Tmax + Tβ)− β = 0.

Then,

Na = N0 +Nmax +Nβ,

Ta = T0 + Tmax + Tβ.

19

1.4.3 Examples

We demonstrate the versatility of the generalized modelling framework described

in previous sections through three examples: STCP and H-TCP (both ACK-based

variants) and CUBIC (a TSL-based variant).

1.4.3.1 STCP

Since the additive increase factor for STCP is a constant, the solution to the ODE

in (1.5) is simply

w2(t) = C(at+ τ). (1.9)

Using this equation, we obtain:

Tm =
Wm − Cτ

Ca
,

Nm =
W 2
m − (Cτ)2

2Caτ
,

Wm = Cτ +
√

2Caτβ.

If Wm ≤ Wmax, we have everything we need for Phase II. Otherwise, we use Wmax

instead of Wm in the expressions for Tm and Nm; this gives us Tmax and Nmax:

Tmax =
Wmax − Cτ

Ca
,

Nmax =
W 2
max − (Cτ)2

2Caτ
.

Further,

Tβ =
βτ

Wmax − Cτ
− Wmax − Cτ

2Ca
.

20

This completes the analysis for Phase II. We now analyze Phase I by first constructing

an ODE that describes cwnd growth before the BDP is reached:

dw

dA
= a as in Phase II, but since S is below C,

dA

dt
=
w

τ
.

The final ODE and its solution are:

dw

dt
=
w

τ
a,

w(t) = geat/τ where g is a constant,

w(0) = bWm = g,

w(t) = bWme
at/τ . (1.10)

Next, we can solve for T0 and N0:

T0 =
τ

a
ln

(
Cτ

bWs

)
,

N0 =
Cτ − bWs

a

where

Ws = min (Wm,Wmax). (1.11)

This completes the analysis for STCP.

1.4.3.2 CUBIC

Because CUBIC is not ACK-based, there is no need to derive two different window

functions for its analysis: w(t) grows as follows for both phases:

w(t) = c

(
t− 3

√
bWs

c

)3

+Ws (1.12)

21

where Ws is defined in (1.11), t is the time since the last congestion event in unit of

RTT, c is a scaling factor (usually equal to 0.4), and b is a multiplicative decrease

factor usually equal to 0.2.

We present the closed-form solutions for the necessary variables. Since CUBIC is

TSL-based, it helps to think of T0 and Tm as points in time that delimit the phases,

rather than durations of phases (let Tβ remain as the duration of sub-phase II of

Phase II).

Tm =
3

√
bWm

c
,

Nm =
Wm

τ
3

√
bWm

c

(
1− b

4

)
,

T0 =
3

√
Cτ −Wm

c
+

3

√
bWm

c
.

Above, Nm is the amount of data transferred in the interval [0, Tm]. Let N1 be the

amount of data transferred in the interval [T0, Tm].

N1 =
1

τ

∫ Tm

T0

w(t)dt = −1

τ
3

√
Cτ −Wm

c

(
Cτ + 3Wm

4

)
,

N1 − C(Tm − T0)− β = 0.

The last equation above can be solved for Wm:

Wm = Cτ − 4

√
c

(
4βτ

3

)3

.

Since we know that Wm > Cτ , we must take the negative root of the fourth-root

term above. If Wm is indeed less than or equal to Wmax, then the sending rate is

S =
Ns + kNm

Ts + kTm
.

22

Otherwise, we use Wmax in the expressions for Tm and Nm above to obtain Tmax and

Nmax, respectively. Also,

Tβ =
β −Nmax − C 3

√
Cτ−Wmax

c

Wmax

τ
− C

.

Finally, S is

S =
Ns + k (Nmax +Nβ)

Ts + k(Tmax + Tβ)
.

1.4.3.3 H-TCP

We do not present closed-form solutions for H-TCP, since they are too complex;

the majority of the computations for this variant were performed using Matlab. Since

∆L is usually set to one second, for simplicity we use it in the derivations below. We

present the non-trivial case, in which the transfer lasts for Ts+1 seconds. For H-TCP,

let T0, Tm, Tmax, and Tβ be points in time, rather than phase durations. For the first

second of CA, H-TCP uses the increase function shown in (1.1a). The cwnd function

is then

w1(t) = bWm +
2(1− b)t

τ
.

The amount of data transferred during this time is N∆L ,

N∆L =
1

τ

∫ T
∆L

0

w1(t)dt

where

T∆L = min

(
1s,

τ(Cτ − bWm)

2(1− b)

)
.

This constraint on T∆L is required because it may take less than one second for w1(t)

to reach Cτ .

23

After the first second of CA, if w1(1) < Cτ , H-TCP’s increase function changes

as shown in (1.1b). The cwnd function changes to

w2(t) = w1(1) +
2(1− b)t

τ

(
1 + 10(t− 1) +

(
t− 1

2

)2
)

until cwnd reaches Cτ at time T0. N0, the amount of data transferred in the interval

[0, T0], is:

N0 =


N∆L , if T∆L ≤ 1s,

N∆L +
1

τ

∫ T0

1

w2(t)dt, otherwise.

T0 can be isolated from the relation w2(T0) = Cτ . After T0 seconds have passed, the

cwnd function changes again because the transfer transitions into Phase II. This new

function is described by the ODE in (1.5), which uses the increase function shown in

(1.1a) or (1.1b) depending on the value of T∆L :

dw = aCdt,

w3(t) = 2(1− b)C
∫
a(t)dt,

w3(T0) = Cτ is the initial condition.

H-TCP then uses w3(t) for the rest of the congestion epoch, which ends at time Tm.

It is possible to solve for Tm in terms of Wm using the relation w3(Tm) = Wm. The

amount of data transferred during Phase II is Nm:

Nm =
1

τ

∫ Tm

T0

w3(t)dt.

It is now possible to solve for Wm using the following equation:

Nm − C(Tm − T0) = β.

24

If Wmax ≥ Wm, then S is:

S =
Ns + k(N0 +Nm)

Ts + kTm
.

Otherwise, Tβ must be determined using a similar technique used for STCP and S

changed to:

S =
Ns + k

(
N0 + 1

τ

∫ Tmax
T0

w3(t)dt+ Wmax

τ
(Tβ − Tmax)

)
Ts + kTβ

.

1.4.4 Parallel Flows

We now present a simple, yet effective modification to the single-stream modelling

framework presented above to accommodate multiple flows. The main idea is to model

n parallel flows as a single, more aggressive flow. The modifications are as follows:

1. For any single-flow TSL-based CA cwnd function w(t), the multiple-flow cwnd

function is w(nt), where n is the number of flows. For any single-flow ACK-based

CA cwnd function, the multiple-flow cwnd function is obtained by multiplying the

increase factor (as in the case of STCP) or the increase function (as in the case of

H-TCP) by n. The only exception to this rule are cwnd functions in Phase II of

ACK-based CA variants, which must be left unchanged. For example, STCP’s (1.10)

becomes

w(t) = bWme
ant/τ

while (1.9) remains the same. The reason for this is that once an ACK-based variant

transitions into Phase II, ACKs continue to arrive at a constant rate, so that there

25

is no added advantage of using multiple flows past the point where cwnd > BDP .

TSL-based variants, on the other hand, continue to grow the aggregate cwnd at a

rate approximately n times faster than with a single flow, for as long as congestion is

not detected.

2. Wmax gets scaled up by a factor of n. However, there must be a hard constraint,

WmaxH , on the aggregate cwnd , imposed by memory and buffer limitations. There-

fore,

Wmax = min (nWmax,WmaxH).

3. In slow-start, we keep the duration (Ts) the same as for single flows, but multiply

Ns by n. In addition, instead of ssthresh, we use

thresh = min (ssthresh, Cτ/n,Wmax).

Interestingly, Crowcroft et al. have previously explored a related idea, but as a

means of delegating some flows a higher fraction of the bandwidth on a network [11].

They propose a controller, MulTCP, that attempts to increase the throughput of a

single flow by a factor of n by scaling the flow’s additive increase parameter by the

same amount . Simulations showed that MulTCP does indeed achieve a sending rate

of approximately nS as long as n is not too large.

1.5 Model Performance

Figure 1.6 shows throughput predictions for one, two, four, six, eight, and ten

H-TCP streams (we also did this for three, five, seven, and nine streams, not shown

here). Measurement data obtained from the 10 GigE testbed is also presented in the

figure and serves as validation for the models. The predictions were obtained using

26

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(a) one stream

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(b) two streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(c) four streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(d) six streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(e) eight streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(f) ten streams

Figure 1.6: Measurement averages and medians vs multiple-stream model predictions
for H-TCP.

models presented in Section 1.4. Figure 1.7 shows the result of using the multiple-

stream models to predict the throughput of one, two, four, six, eight, and ten parallel

STCP flows (we also did this for three, five, seven, and nine streams, not shown here).

Figure 1.8 shows the same for CUBIC.

Due to testbed configuration changes between the experiments, we use different β

and Wmax parameter values for prediction in each dataset (although β and Wmax are

kept constant within a dataset). A dataset refers to all data collected for a particular

protocol, so there are a total of three. Note the odd ‘dip’ in throughput in Figure

1.7a for RTTs 11.8 ms and 22.6 ms: this is believed to be an anomaly. Define the

average error as follows:

E :=
100

|RTTs|
∑

r∈RTTs

|Mr − Pr|
Mr

27

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(a) one stream

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(b) two streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(c) four streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(d) six streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(e) eight streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(f) ten streams

Figure 1.7: Measurement averages and medians vs multiple-stream model predictions
for STCP.

where Mr and Pr are the measured and predicted throughputs, respectively, for RTT

= r. The mean errors (averaged across all RTTs and n ∈ {1, . . . , 10}) for multiple-

stream predictions are as follows: 5.2% for H-TCP, 9.3% for STCP, and 4.5% for

CUBIC.

1.6 Conclusion

In this work, we have derived a unifying scheme for analyzing single-stream and

multiple-stream memory-to-memory TCP transfers. We performed a detailed anal-

ysis for a diverse set of TCP variants: STCP – a MIMD algorithm; CUBIC – a

non-ACK-based algorithm; and H-TCP – an adaptive AIMD algorithm. The models

that emerged from this analysis were validated using an extensive set of measure-

ments. The results show that our models can be used to achieve accurate and reliable

28

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(a) one stream

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(b) two streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(c) four streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(d) six streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(e) eight streams

0 100 200 300 400
0

2

4

6

8

10

RTT (msec)

T
hr

ou
gh

pu
t (

G
bi

ts
/s

ec
)

Measurement Avg
Measurement Median
Prediction

(f) ten streams

Figure 1.8: Measurement averages and medians vs multiple-stream model predictions
for CUBIC.

throughput predictions. The measurements independently show that CUBIC and

H-TCP consistently outperform STCP, and the difference in performance becomes

more pronounced as the number of parallel flows grows. Interesting future directions

are to expand the analysis to include (a) exogenous and time-variant loss, (b) I/O

constraints, and (d) considerations of fairness and convergence.

29

CHAPTER 2

TOWARDS STABILITY ANALYSIS OF DATA
TRANSPORT MECHANISMS: A FLUID MODEL AND

ITS APPLICATIONS

2.1 Introduction

TCP carries most of the traffic on the Internet. One of its important functions

is to perform end-to-end congestion control to alleviate congestion in the Internet

and to provide fair bandwidth sharing among different flows. To date, many different

congestion control algorithms (variants) have been developed, among which are Reno,

Vegas, STCP [41], CUBIC [30], H-TCP [47], and BBR [10]. Stability is an imperative

property for any dynamical system. The stability of several of these variants including

Reno, Vegas, and STCP has been extensively and carefully studied, however, little

is known about the stability properties of more recent variants such as CUBIC and

H-TCP. These latter variants have typically been studied through simulation and

experimentation, neither of which are adequate to make careful statements about

stability. As we will observe, for some variants this deficiency is due to the lack of a

modeling framework with which to develop appropriate models that are amenable to

a formal stability analysis. The goals of this work are to point out deficiencies in the

previous framework used to study variants such as Reno that make it unsuitable to

study a variant such as CUBIC, and then to present a new framework and apply it to

the analyses of CUBIC and H-TCP. Our choice of CUBIC is because it is a popular

variant that is the default in the Linux distribution, and our choice of H-TCP is

because it has been recommended by the Energy Sciences Network [16] and has been

used within the Department of Energy’s data transfer network [63].

30

The traditional approach for modeling a congestion control algorithm’s behavior

is to derive a differential equation (DE) for its congestion window (cwnd) or sending

rate as a function of time. Such DEs typically account for the algorithm’s increase

and decrease rules, as well as loss probability functions, for example, to incorporate an

active queue management (AQM) policy. This method is highly effective for modeling

certain types of controllers, such as TCP Reno and STCP, whose cwnd update rules

are very simple (e.g., Reno’s cwnd grows by one every round trip and decreases

by half upon congestion detection). However, this approach reaches its limitations

when presented with a controller whose cwnd update functions are complex, thereby

making it difficult or impossible to directly write a DE for the cwnd or sending rate.

For example, CUBIC’s increase update rule is a function of time since last loss and of

the congestion window size immediately before loss. Moreover, in the case of CUBIC,

the steady-state value of cwnd lies at the saddle point of the window function, which

obstructs the stability analysis of the protocol.

To overcome the impediments of the traditional approach, we develop a novel

framework that exploits the fact that all cwnd - and rate-based controllers that utilize

packet loss information1 to make changes to the cwnd or rate have two variables in

common: the value of cwnd (rate) immediately before loss and the time elapsed since

last loss. As a consequence, one can derive a set of two DEs: the first describing the

maximum cwnd (rate) as a function of time, and the second describing the duration

of congestion epochs. This is a relatively easy task, compared to deriving a DE for

cwnd (rate) of a complex algorithm directly. The advantage of such a model is that

it offers tremendous versatility since it does not define cwnd or rate functions within

the set of DEs, with the latter being identical for many controllers. Note that the

1Note that this includes not only ACK-based algorithms, but also packet marking schemes as
in ECN (Explicit Congestion Notification). From this point forward, we refer to such schemes as
“loss-based”.

31

proposed model is applicable not only to TCP-based congestion controllers, but also

to UDT [25] and QCN [58].

In this work, we use both event- and packet-based simulations to validate our

analytical models. To validate the analytical stability results for CUBIC, we introduce

a lightweight simulation framework that can easily be adapted to other congestion

control variants. The simulation treats loss as a non-homogenous Poisson process

and generates new loss events based on a user-defined loss model. We refer to this

framework as the non-homogeneous Poisson loss (NHPL) simulation. The reason for

its development is that it enables us to fully control every aspect of a model, such as

changing link capacity throughout a flow’s lifetime or using custom loss probability

models. Perhaps the most important capability of this framework is the ease of

specifying initial conditions for flows at the start of the congestion avoidance phase,

since having control of these conditions is critical for testing the regions of stability

for algorithms that are locally stable (as most congestion controllers in practice are).

A description of the NHPL simulation framework is provided in Appendix A.1.

Further, at the time of writing, ns-3 [56] – a popular discrete-event network

simulator – did not yet natively support CUBIC, and existing implementations have

scalability problems: as more flows are introduced, the simulation becomes quite

slow. Hence, we use the NHPL framework to validate the DE model for CUBIC

and observe that the average cwnds predicted by both are in close agreement. As

system parameters are varied, the simulation and CUBIC’s DE model also agree on

whether the system is stable. For TCP CUBIC, we observe that instability can be

introduced by setting the initial conditions too far from their fixed-point values. While

our analysis states that CUBIC is locally asymptotically stable, these simulations

complement the theory by demonstrating that CUBIC is not globally stable.

We use ns-3, which unlike the NHPL framework is a packet-based simulation,

to validate the DE model for H-TCP. We observe that ns-3 is in close agreement

32

with the DE model in terms of average cwnd and average congestion epoch duration.

We also note that when H-TCP operates in its high-speed regime, its cwnd tends to

exhibit large oscillations that last indefinitely, as evidenced by both the DE model

and numerical evaluation of H-TCP’s stability condition. In contrast, CUBIC’s cwnd

exhibits convergence to its fixed point, and fewer oscillations.

A summary of the contributions of this work is as follows:

– a new modeling framework applicable to a diverse set of congestion control algo-

rithms,

– applications of this model to CUBIC and H-TCP, and stability analyses of these

algorithms,

– validation of this model with two different simulation frameworks.

We call the new modeling framework the MWLI (Max Window Loss Interval)

model.

The rest of this chapter is organized as follows: we discuss related work in Section

2.2. We introduce the modeling framework in Section 2.3.1 and apply it to TCP

Reno. In Section 2.3.2, we show that the new framework is equivalent to the one

presented in [51]. In Section 2.4, we apply the MWLI model to TCP CUBIC, perform

a careful stability analysis of the congestion controller, and present a convergence

result. We also present a detailed analysis of CUBIC’s fixed point and observe its

limiting behavior in terms of link capacity and delay. In Section 2.5, we apply the

model to H-TCP and present a sufficient condition for stability. Similar to the CUBIC

analysis, we also perform a detailed analysis of H-TCP’s fixed-point and derive its

limiting behavior. In Section 2.6, we discuss the specific choice of a loss probability

model used throughout our work. In Section 2.7, we validate the new model and the

stability result for CUBIC and H-TCP using two different types of simulations and

loss models. We draw conclusions in Section 2.8.

33

2.2 Background

There exist a number of analytical studies of TCP and its stability. In [51], Misra

et al. derive a fluid model for a set of TCP Reno flows and show an application to a

networked setting where RED (Random Early Detection) is the AQM policy. Kelly

proposed an optimization-based framework for studying and designing congestion

control algorithms in [40], where STCP was an output. In [69], Srikant presented a

simple analysis of Jacobson’s TCP congestion control algorithm. In [35], Hollot et al.

analyze the stability of TCP with an AQM system implementing RED.

Huang et al. develop and analyze the stability of a general nonlinear model of

TCP in [37], focusing on HighSpeed, Scalable, and Standard TCP for comparisons of

relative stability. The authors rely on functions f(w) and g(w), which are additive

and multiplicative parameters, respectively, and are both functions of the current

congestion window size. Our model differs from these examples in that rather than

modeling the congestion window directly, we instead model two interdependent vari-

ables (maximum cwnd and time between losses) that in turn determine the evolution

of the window. This new method presents a window of opportunity for modeling

complex, nonlinear transport algorithms for which it is not possible to write a DE for

cwnd directly or whose f(w) and g(w) functions cannot be written in closed form.

Theoretical analyses of TCP CUBIC are rare, possibly due to the protocol’s behav-

ior around the fixed point, which significantly complicates the analysis of its stability.

In one study, Bao et al. propose Markov chain models for average steady-state TCP

CUBIC throughput, in a wireless environment [2]. In [61], Poojary et al. derive an

expression for average cwnd of a single CUBIC flow under random losses. In contrast

to [2] and [61], the model we present in this work for CUBIC provides insight into

both the transient and steady-state behavior of the algorithm. Moreover, we utilize

Lyapunov stability theory to prove that CUBIC is locally asymptotically stable in-

34

dependent of link delay and other system parameters (the parameters only affect the

region of attraction). This result is one of the main contributions of this work.

Some studies attempt to gain insight into the stability of high-speed TCP variants

using an empirical perspective. These usually involve characterizing stability (or

instability) by the coefficient of variation (CoV) or stability index, as in [28] and

[74], or even by simply using the standard deviation of the throughput as in [73].

While these observation-based and comparative studies are extremely valuable in

assessing protocol behavior in deployment, they do not present a complete picture:

to understand inherent protocol properties, modeling and performance analysis are

required.

2.3 The Model

In this section, we present the new model, which is the focus of this work. As a

proof of concept, we apply this model to TCP Reno and show that it is mathematically

equivalent to the well-known DE model originally presented in [51]. We note that

while the two models are equivalent, they make use of different types of information,

which is essential for developing a fluid model for TCP CUBIC presented in Section

2.4 and for H-TCP presented in Section 2.5.

In the analysis that follows, we will use the notation f ≡ f(t) to represent a

function or variable that is not time-delayed. Similarly, we will use fT ≡ f(t − T)

to represent a function or variable that is delayed by an amount of time T . We will

also use ḟ = df(t)/dt to represent the derivative of f with respect to time. The

notation ∂f(x)/∂x denotes the partial derivative of f with respect to the variable x,

and ∂f(x)
∂x
|x=x∗ is the partial evaluated at x = x∗.

35

Table 2.1: Term definitions.

Term Definition
C per-flow capacity
τ link delay in signaling a loss to the source
Wmax(t) the size of the cwnd immediately before loss
s(t) the time elapsed since loss
W (t) the cwnd as a function of time
p(t) a probability of loss function

2.3.1 The MWLI Model

Table 2.1 presents some useful definitions. The main idea behind the model is

the following: instead of deriving a DE for the cwnd function W (t) directly, which

is specific to a data transport algorithm, we instead derive DEs for Wmax(t) – the

size of the cwnd immediately before the most recent loss, and s(t) – the amount of

time elapsed since last loss, which are variables common to all loss-based algorithms.

Since W (t) is a function of Wmax(t) and s(t), it is completely determined by their

DEs. The result is the following model2:

dWmax(t)

dt
= −(Wmax(t)−W (t))

W (t− τ)

τ
p(t− τ)

ds(t)

dt
= 1− s(t)W (t− τ)

τ
p(t− τ)

(2.1)

Here, p(t − τ) is a loss probability function. The expression W (t − τ)p(t − τ)/τ

describes the packet loss rate, delayed by τ . Here, τ represents the delay in signaling

a loss to the source. The first DE describes the behavior of Wmax, which takes the

value of W (t) right before a loss. At the time of loss, if Wmax(t) > W (t), then Wmax

decreases by the amount Wmax(t)−W (t); otherwise, it increases by the same amount.

The second DE describes the evolution of the time since last loss s(t), which grows

by one unit and is reset to zero upon loss. This system can be adapted to a rate-

2Note that W (t) must be either derived explicitly, for example as in (2.2) for TCP Reno or given
in the definition of the controller, as in (2.7) for CUBIC.

36

 t

W(t) W(t)

Wmax(t)

Wmax(t)

s(t)s(t)

Figure 2.1: W (t), Wmax(t), and s(t) for TCP Reno.

based scheme in terms of maximum rate and time since last rate decrease, simply by

dividing each DE by τ . Since we will be describing applications of this model to TCP

Reno, CUBIC, and H-TCP, which are all cwnd -based congestion controllers, we use

(2.1) in the interest of this work.

Figure 2.1 illustrates Wmax(t), s(t), and W (t) for TCP Reno. To adapt model

(2.1) to TCP Reno, we define Reno’s cwnd as a function of Wmax(t) and s(t). At the

time of loss, W (t) = Wmax(t) is halved. This becomes the initial value of W (t) in the

new congestion epoch. W (t) then increases by one segment for every round-trip time,

so the total increase is s(t)/τ after s(t) time has elapsed since the last loss. Hence,

W (t) =
Wmax(t)

2
+
s(t)

τ
. (2.2)

Then the fluid model for Reno is (2.1) combined with (2.2).

The loss probability function can be customized according to the specific charac-

teristics of a given system, such as queue size and AQM policy. For simplicity, when

performing a formal stability analysis of a model, we use the following function:

p(t) = max

(
1− Cτ

W (t)
, 0

)
. (2.3)

This function is presented in [69] as an approximation of the M/M/1/B drop prob-

ability when the buffer size B → ∞. We will explore an alternate loss probability

37

model – one that incorporates more realistic queueing dynamics – when validating

H-TCP using ns-3.

Note that model (2.1) does not specify W (t), and therein lies the versatility of

this scheme. For a given cwnd -based transport algorithm, the modeler need only

substitute a function describing the evolution of cwnd over time, as we did for Reno.

We demonstrate this technique again with CUBIC in Section 2.4. This property of

the model is useful both for analyzing existing algorithms and examining the stability

of new ones. Moreover, the MWLI model can be used to help design and fine tune

new congestion control algorithms, as their behavior may be simulated efficiently and

easily using (2.1) and any loss probability function.

2.3.2 Model Equivalence for TCP Reno

Consider the well-established model for TCP Reno’s cwnd from [51] (equation (4)

to be precise):

dW (t)

dt
=

1

τ
− W (t)

2

W (t− τ)

τ
p(t− τ). (2.4)

We assume τ to be constant for simplicity, even though the round-trip time in [51]

varies in time as a function of both the propagation and queueing delays.

We now show that the two models (i.e., the model represented by (2.1), (2.2) and

the model represented by (2.4)) are mathematically equivalent. Differentiating (2.2)

with respect to t, we have:

Ẇ =
Ẇmax

2
+
ṡ

τ
. (2.5)

Substituting (2.1) into (2.5) yields

Ẇ =
1

τ

(
1− sWτ

τ
pτ

)
+

1

2

(
(W −Wmax)

Wτ

τ
pτ

)
. (2.6)

38

From (2.2), we know that Wmax = 2(W − s/τ). Substituting this expression for

Wmax into (2.6) and simplifying yields

Ẇ =
1

τ

(
1− sWτ

τ
pτ

)
+

1

2

((
W − 2

(
W − s

τ

))Wτ

τ
pτ

)
=

1

τ
− sWτ

τ 2
pτ −

W

2

Wτ

τ
pτ + s

Wτ

τ 2
pτ

=
1

τ
− W

2

Wτ

τ
pτ .

The last line corresponds to equation (2.4) and completes our proof of the equivalence

of the models. When used with Reno, model (2.1) can be linearized and used to derive

a transfer function. The latter can be analyzed to yield system parameter-dependent

conditions for Reno’s stability. This analysis is similar to the one presented in [69].

2.4 Analysis of TCP CUBIC

In this section, we perform a local stability analysis of TCP CUBIC. To do so, we

first create a fluid model for this congestion control algorithm using the framework

introduced in the previous section. Then, we show that the system has a unique

fixed point and prove the existence and uniqueness of a solution. Next, we show

that the linearization method yields inconclusive results when applied to the model,

and are thus motivated to use Lyapunov’s direct method to prove the stability of the

system. First, we introduce a Lyapunov function candidate and since the system is

time-delayed, use Razumikhin’s Theorem to show that the candidate is suitable and

that stability holds in a neighborhood of the fixed point of the system. A consequence

of the failed linearization is that we will not prove exponential stability for CUBIC,

but we can still show asymptotic and Lyapunov stability. In this section, we also

analyze the limiting behavior of CUBIC’s fixed point in terms of capacity and delay.

Finally, we derive convergence results on the system’s solution.

39

 t

Figure 2.2: CUBIC’s saddle point causes dW (t)/dt to evaluate to zero at the fixed
point of the system.

2.4.1 TCP CUBIC Fluid Model

TCP CUBIC’s congestion window function is defined in terms of the time since

last loss s(t) and maximum value of cwnd immediately before the last loss Wmax(t)

[30]:

W (t) = c

(
s(t)− 3

√
Wmax(t)b

c

)3

+Wmax(t) (2.7)

where b is a multiplicative decrease factor and c is a scaling factor. Figure 2.2 illus-

trates the evolution of CUBIC’s cwnd over time. The opaque red curves represent

behavior in steady state: the window is concave until a loss occurs at CUBIC’s fixed-

point value of cwnd , Ŵ . The light red curves describe cwnd behavior if a loss does

not occur: the window becomes convex, also known as CUBIC’s probing phase. The

fluid model for CUBIC is then simply (2.1) coupled with (2.7), with (2.3) as the loss

probability function. More specifically, (2.1), (2.3), and (2.7) represent the dynamical

interaction of CUBIC with a congested network. Prior to the development of (2.1),

we attempted to develop a fluid model by first computing the equilibrium point for

CUBIC, but this exercise gave a value of s at (2.7)’s saddle point and consequently, a

confounding linearization of dW/dt = 0. Further attempts at deriving dW/dt, taking

40

into account the time-dependencies s(t) and Wmax(t), resulted in a highly complex DE

involving both Wmax(t), s(t), and their derivatives. Even obtaining the fixed points

of this DE would be highly cumbersome, compared to obtaining the fixed point of

(2.1).

2.4.2 Fixed Point Analysis

Let Ŵmax, ŝ, Ŵ , and p̂ represent the fixed point values of Wmax(t), s(t), W (t),

and p(t), respectively. Using the fact that in steady state, W (t) = W (t − τ) = Ŵ

and p(t) = p(t− τ) = p̂, system (2.1) becomes

−(Ŵmax − Ŵ)
Ŵ

τ
p̂ = 0, (2.8)

1− ŝŴ
τ
p̂ = 0. (2.9)

From (2.9), we see that

ŝ =
τ

Ŵ p̂
. (2.10)

It is clear that Ŵ and p̂ do not equal zero in steady state. Using this information,

along with (2.8), we conclude that Ŵmax = Ŵ . In steady state, (2.7) becomes

Ŵ = c

ŝ− 3

√
Ŵ b

c

3

+ Ŵ .

This equation yields

ŝ =
3

√
Ŵ b

c
. (2.11)

41

Combining (2.10) and (2.11), we have

τ

Ŵ p̂
=

3

√
Ŵ b

c

where p̂ = 1− Cτ/Ŵ (since p̂ > 0 in steady state). Substitution yields

Ŵ (Ŵ − Cτ)3 =
τ 3c

b
,

which can be solved for Ŵ as a function of solely the system parameters c, b, C, and

τ . This value can be used either with (2.10) or (2.11) to obtain a value for ŝ solely

as a function of the system parameters. This concludes the fixed point analysis. An

interesting comparison is Ŵ as a function of p̂ for Reno and CUBIC. Model (2.4)

yields

ŴReno =

√
2

p̂
, while ŴCUBIC = 4

√
τ 3c

p̂3b
.

In other words, whereas throughput under Reno depends on loss probability as

O(p̂−1/2), CUBIC exhibits a p̂−3/4 dependence.

Next, we obtain the limiting behavior of ŝ.

Claim 2.4.1. ŝ = O((Cτ)1/3).

Proof. Above, we showed that

ŝ =
τ

Ŵ p̂
=

τ

Ŵ − Cτ
. (2.12)

Since ŝ = (bŴ/c)1/3, we also have that Ŵ = ŝ3c/b. Substituting this expression for

Ŵ into Eq. (2.12) and rearranging yields

ŝ4 − b

c
Cτ ŝ− b

c
τ = 0.

42

Given a quartic equation

c4x
4 + c3x

3 + c2x
2 + c1x+ c0 = 0,

the roots are

x1,2 = − c3

4c4

− S ± 1

2

√
−4S2 − 2p+

q

S
,

x3,4 = − c3

4c4

+ S ± 1

2

√
−4S2 − 2p− q

S
,

where,

p =
8c4c2 − 3c2

3

8c2
4

, q =
c3

3 − 4c4c3c2 + 8c2
4c1

8c3
4

,

S =
1

2

√
−2

3
p+

1

3c4

(
Q+

∆0

Q

)
, (2.13)

Q =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, (2.14)

∆0 = c2
2 − 3c3c1 + 12c4c0, and

∆1 = 2c3
2 − 9c3c2c1 + 27c2

3c0 + 27c4c
2
1 − 72c4c2c0.

For CUBIC, c3 = 0, c4 = 1, p = 0, q = −Cτ b
c
, ∆0 = −12bτ/c, and ∆1 = 27C2(bτ/c)2,

so that

Q =
3

√√√√27

2

(
b

c
Cτ

)2

+
1

2

√
272

(
b

c
Cτ

)4

+ 4

(
12
b

c
τ

)3

= O((Cτ)2/3),

43

and S =
1

2

√
1

3

(
Q− 12bτ

c

1

Q

)
= O((Cτ)1/3).

Finally, to obtain ŝ, we choose the root x3,4 with the plus sign and show later on that

this root is indeed valid (i.e., positive for any large Cτ). Thus,

ŝ = S +
1

2

√
−4S2 − q

S
= O((Cτ)1/3). (2.15)

In contrast, for TCP Reno it can be shown that ŝ = O(Cτ 2).

Claim 2.4.2. for large Cτ , the quantity inside the square root in Eq. (2.15) is

positive.

Proof. Substituting the value for q above, we check if

Cτb

c

1

S
− 4S2 > 0. (2.16)

When Eq. (2.16) holds, substituting for S and rearranging yield

2Cτb

c
>

(
1

3

(
Q− 12bτ

c

1

Q

))3/2

.

Note that Q is always positive. Hence, it suffices to show

33/22Cτb

c
> Q3/2.

Substituting for Q and dividing by
√

27 yields

2Cτb

c
>

1√
2

√√√√(b
c
Cτ

)2

+

√(
τ
b

c

)3(
C4τ

b

c
+

256

27

)

44

For large Cτ ,

C4τ
b

c
+

256

27
< 2C4τ

b

c
,

so it suffices to show

2Cτb

c
>

1√
2

√
b2

c2
C2τ 2(1 +

√
2).

Noting that 1 +
√

2 < 4, it suffices to show that

2Cτb

c
>

√
2
b2

c2
C2τ 2 =

√
2
b

c
Cτ,

2 >
√

2 X

Hence, for large Cτ , we have selected the correct root for computing ŝ.

2.4.3 Change of Variables

To simplify stability analysis, we perform a change of variables so that the fixed

point of the system is located at the origin. To accomplish this, define x as follows:

x(t) =

x1(t)

x2(t)

 =

Wmax(t)− Ŵmax

s(t)− ŝ

 =

Wmax(t)− Ŵ

s(t)− ŝ



where the last equality follows because Ŵmax = Ŵ . Also, define Ψ(t) and p̃(t) as

follows:

Ψ(t) = c

x2(t) + ŝ−
3

√
b(x1(t) + Ŵ)

c

3

+ x1(t) + Ŵ ,

p̃(t) = max

(
1− Cτ

Ψ(t)
, 0

)
.

45

Then the new system is:

ẋ1 =
(

Ψ− x1 − Ŵ
) Ψτ

τ
p̃τ ,

ẋ2 = 1− (x2 + ŝ)
Ψτ

τ
p̃τ .

(2.17)

Note that Ψτ and p̃τ are functions of x1(t− τ) ≡ x1τ and x2(t− τ) ≡ x2τ . It is easy

to verify that x∗ = [x1 x2 x1τ x2τ]
T = 0 is a fixed point of the new system.

Claim 2.4.3. x∗ = 0 is a fixed point of the new system.

Proof. At x∗, we have:

Ψ̂ = c

ŝ− 3

√
bŴ

c

3

+ Ŵ

ẋ1 =
(

Ψ− Ŵ
) Ψτ

τ
p̃τ (2.18)

ẋ2 = 1− ŝΨτ

τ
p̃τ (2.19)

From the fixed point analysis of the original system, recall that ŝ = 3

√
bŴ/c, which

yields Ψ̂ = Ŵ . Plugging this into equation (2.18), we get ẋ1 = 0. Similarly, plugging

in Ψ̂ = Ŵ into (2.19), we have:

ẋ2 = 1− ŝŴ
τ
p̂.

From the fixed point analysis of the original system, recall that ŝ = τ/(Ŵ p̂). There-

fore, ẋ2 = 0 as well, and the proof is complete.

We can analyze the stability of the system (2.17) at the origin, which is equiva-

lent to analyzing the stability of the original system (2.1) at the equilibrium values

Ŵmax and ŝ. The CUBIC representation in (2.17) forms the basis for our subsequent

analyses.

46

2.4.4 Existence and Uniqueness of Solution

We state the existence and uniqueness theorem as it appears in [24]:

Theorem 2.4.1 (Theorem 1.2 from Stability of Time-Delay Systems). Suppose that

Ω is an open set in R × C (where C is the set of Rn-valued continuous functions on

[−τ, 0]), f : Ω → Rn is continuous, and f(t, φ) is Lipschitzian in φ in each compact

set in Ω, that is, for each given compact set Ω0 ⊂ Ω, there exists a constant L such

that

||f(t, φ1)− f(t, φ2)|| ≤ L||φ1 − φ2||

for any (t, φ1) ∈ Ω0 and (t, φ2) ∈ Ω0. If (t0, φ) ∈ Ω, then there exists a unique solution

of ẋ(t) = f(t, xt) through (t0, φ).

To prove existence and uniqueness for our system, it is sufficient to show that ẋ1

and ẋ2 are continuously differentiable functions in some neighborhood of the fixed

point. We assume that this neighborhood is small enough so that p̃τ > 0. Then the

system becomes:

ẋ1 =
(

Ψ− x1 − Ŵ
) (Ψτ − Cτ)

τ
,

ẋ2 = 1− (x2 + ŝ)
(Ψτ − Cτ)

τ
.

Let

F :=
b(x1 + Ŵ)

c
and Φ := x2 + ŝ− 3

√
F .

Following our usual convention,

Φ ≡ Φ(t), and Φτ ≡ Φ(t− τ).

47

Following are the partial derivatives of ẋ1:

∂ẋ1

∂x1

= − b
τ

Φ2F−2/3(Ψτ − Cτ),

∂ẋ1

∂x2

=
3c

τ
Φ2(Ψτ − Cτ),

∂ẋ1

∂x1τ

=
(Ψ− x1 − Ŵ)

τ

(
−bΦ2

τF
−2/3
τ + 1

)
,

∂ẋ1

∂x2τ

=
3c

τ
(Ψ− x1 − Ŵ)Φ2

τ .

These partials provide the first restriction to the region where stability is being ana-

lyzed. Specifically, the term F−2/3 indicates that x1 and x1τ should be restricted to

an interval [−ρŴ , ρŴ], 0 < ρ < 1. Next, we look at the partial derivatives of ẋ2:

∂ẋ2

∂x1

= 0,
∂ẋ2

∂x2

= −(Ψτ − Cτ)

τ
,

∂ẋ2

∂x1τ

= −(x2 + ŝ)

τ

(
−bΦ2

τF
−2/3
τ + 1

)
,

∂ẋ2

∂x2τ

= −3c

τ
(x2 + ŝ)Φ2

τ .

Under the restriction stated above, these partials are also continuous, and hence, we

have local Lipschitz continuity – the requirement for existence and uniqueness.

2.4.5 Stability Analysis

In general, the linearization of (2.17) and (2.3) about x = x∗ = 0 is

ẋ1

ẋ2

 =
1

ŝ
A0

x1

x2

− ŝ

τ
A1

x1τ

x2τ

 ,
where

A0 =

 ∂Ψ
∂x1
− 1 ∂Ψ

∂x2

0 −1

 ∣∣∣∣∣
x=x∗

and A1 =

 0 0

∂Ψτ
∂x1τ

∂Ψτ
∂x2τ

 ∣∣∣∣∣
x=x∗

.

48

For CUBIC, ∂Ψ/∂x1|x=x∗ = 1 and ∂Ψ/∂x2|x=x∗ = 0, so that ẋ1 = 0. This means that

the linearized system cannot be used to deduce the local stability of the nonlinear

system. The key cause of this problem is the fact that the fixed point value of x2 = 0,

is the saddle point of the function Ψ (or equivalently, ŝ is the saddle point of W (t)).

Figure 2.2 illustrates this phenomenon. This causes all first-order partial derivatives

of ẋ1 to evaluate to zero at x∗ = 0. Hence, in order to incorporate a local contribution

from ẋ1 in the analysis, it is necessary to expand ẋ1 further. Specifically, a third-order

Taylor Series expansion is necessary, since all second-order terms also evaluate to zero

at the origin. The expanded system looks as follows:

ẋ1 = −αx3
1 + βx2

1x2 − γx1x
2
2 + δx3

2 + h1

ẋ2 = −1

ŝ
x2 −

ŝ

τ
x1τ + h2

(2.20)

where α =
b3

27c2ŝ7
, β =

b2

3cŝ5
, γ =

b

ŝ3
, and δ =

c

ŝ

and h1 and h2 are higher-order terms of ẋ1 and ẋ2, respectively. To analyze the

stability of (2.20), we use the Lyapunov-Razumikhin Theorem, the statement of which

is given below as it appears in [24]. For the purpose of this theorem, we introduce

some notation. Let C = C([−τ, 0],Rn) be the set of continuous functions mapping the

interval [−τ, 0] to Rn, where τ is the maximum delay of a system. For any A > 0 and

any continuous function of time ψ ∈ C([t0 − τ, t0 + A],Rn), and t0 ≤ t ≤ t0 + A, let

ψt ∈ C be a segment of the function ψ defined as ψt(θ) = ψ(t+ θ), −τ ≤ θ ≤ 0. The

general form of a retarded functional differential equation is

ẋ(t) = f(t, xt). (2.21)

Below, R+ is the set of positive real numbers, and S̄ is the closure of the set S.

49

Theorem 2.4.2 (Lyapunov-Razumikhin Theorem). Suppose f : R × C → Rn takes

R×(bounded sets of C) into bounded sets of Rn, and u, v, w : R̄+ → R̄+ are continuous

nondecreasing functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0, v

strictly increasing. If there exists a continuously differentiable function V : R×Rn →

R such that

u(||x||) ≤ V (t, x) ≤ v(||x||), for t ∈ R and x ∈ Rn, (2.22)

w(s) > 0 for s > 0, and there exists a continuous nondecreasing function p(s) > s for

s > 0 such that

V̇ (t, x(t)) ≤ −w(||x(t)||) (2.23)

if V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))) (2.24)

for θ ∈ [−τ, 0], then the system (2.21) is uniformly asymptotically stable. If in ad-

dition lims→∞ u(s) = ∞, then the system (2.21) is globally uniformly asymptotically

stable.

The continuous nondecreasing function p(s) defined in the theorem above is not

to be confused with the loss probability function defined for the MWLI model earlier

in the text. Note that in this work, we will only prove local stability for CUBIC.

Therefore, our goal is to show that we can find a function V for which all conditions

specified in the theorem are valid locally, i.e., in a sufficiently small neighborhood

around the fixed point.

A typical choice of Lyapunov candidate is the quadratic form, i.e., a function of

the form

Z(x) = xTPx, where P =

p1 p2

p2 p4

 (2.25)

50

is positive definite. Not surprisingly, the quadratic form Z, which is a sufficient

form in working with linear dynamic systems, proves unsuitable. To understand why,

consider the time derivative of (2.25) along solutions to (2.20):

Ż = 2ẋ1(p1x1 + p2x2) + 2ẋ2(p2x1 + p4x2). (2.26)

The first term above is quartic in x1 and x2 (because ẋ1 in (2.20) is cubic in x1, x2),

but the second term is quadratic in x1, x2, and x1τ . In a small neighborhood of x∗,

the quadratic terms dominate; i.e., (2.26) becomes

Ż = 2

(
−1

ŝ
x2 −

ŝ

τ
x1τ

)
(p2x1 + p4x2) + h.o.t.,

where h.o.t. denotes higher-order terms. We cannot guarantee negativity of these

terms, even locally. The main problem with Ż is that p2 must be non-zero for Ż to

be negative definite, yet this is the same coefficient responsible for the cross term of

x1 and x2 in (2.25), which prevents us from effectively bounding x1τ using condition

(2.24) of Theorem 2.4.2. However, the failure of this quadratic Lyapunov function

serves as an instructive example. Namely, we would like a Lyapunov candidate to

have the following two properties: (i) it must prevent ẋ2’s terms from dominating the

Lyapunov derivative, and (ii) the cross terms of x1 and x2 in the Lyapunov function

should be absent so that delayed terms (like x1τ) can be easily bounded with non-

delayed versions (like x1) using (2.24). With these motivations, consider the following

Lyapunov-Razumikhin candidate:

V (x) =
d1

2
x2

1 +
d4

4
x4

2 (2.27)

where d1 and d4 are positive. In a subsequent discussion, we will specify the values of

d1 and d4 in terms of system parameters. We will also show that V can be bounded by

51

functions v(||x||) = ε0||x||22 and u(||x||) = ε1||x||42, for appropriate choices of constants

ε0 and ε1, and that these functions satisfy all conditions specified in Theorem 2.4.2.

V satisfies (ii), as necessary, and allows us to choose a convenient function p(V (x(t)))

for (2.24) (note: we can write V (x(t)) instead of V (t,x(t)) because V is autonomous,

i.e., it is not explicitly a function of time). Let p > 1 be a constant, which can be

arbitrarily close to one. Then for (2.24), we can use p(V (x(t))) = pV (x(t)):

V (x(t− θ)) ≤ pV (x(t)), for θ ∈ [0, τ].

Since there are no cross terms of x1θ and x2θ on the left-hand side of the above

inequality, bounding the absolute values of these delayed variables individually is

straightforward (and instrumental in the proofs that follow).

Now, consider the Lyapunov derivative:

V̇ = d1x1ẋ1 + d4x
3
2ẋ2.

Note that both of the terms above are now quartic in either x1, x2, or both. However,

ẋ2 still contributes a term with x1τ , which poses a challenge in proving local stability.

Indeed, at the core of the proof for V̇ ’s negativity is managing the x1τ term, as well

as proving that h1 and h2 in (2.20), which are higher-order in both the delayed and

non-delayed variables, are also higher-order in only the non-delayed variables x1 and

x2.

The focus of the following discussion is the term that contains x1τ . Substituting

the expanded system (2.20) into V̇ and rearranging terms, we have

52

V̇ = d1x1

(
−αx3

1 + βx2
1x2 − γx1x

2
2 + δx3

2

)
+ d4x

3
2

(
−1

ŝ
x2 −

ŝ

τ
x1τ

)
+ d1x1h1 + d4x

3
2h2

= d1

(
−αx4

1 + βx3
1x2 − γx2

1x
2
2 + δx1x

3
2

)
− d4

ŝ
x4

2 − d4
ŝ

τ
x3

2x1τ + d1x1h1 + d4x
3
2h2

= d1

(
−αx4

1 + βx3
1x2 − γx2

1x
2
2

)
− d4

ŝ
x4

2 + d1δx1x
3
2 − d4

ŝ

τ
x3

2x1τ + d1x1h1 + d4x
3
2h2

= yTQy + d1δx1x
3
2 − d4

ŝ

τ
x3

2x1τ + d1x1h1 + d4x
3
2h2

where y =


x2

1

x1x2

x2
2

 and Q =


−d1α d1β/2 0

d1β/2 −d1γ 0

0 0 −d4/ŝ

 .

For the following, we will make use of the Mean Value Theorem (MVT), stated below.

Theorem 2.4.3 (Mean Value Theorem). Let f : [a, b]→ R be a continuous function

on the closed interval [a, b], and differentiable on the open interval (a, b), where a < b.

Then there exists some c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Let I be the interval [t − τ, t]. Then by the MVT, there exists some θ ∈ (0, τ)

such that

ẋ1(t− θ) =
x1(t)− x1(t− τ)

t− (t− τ)
=
x1(t)− x1(t− τ)

τ
,

x1(t− τ) = x1(t)− ẋ1(t− θ)τ, θ ∈ (0, τ),

or x1τ = x1 − ẋ1θτ,

where ẋ1θ = ẋ1(t − θ). We would like to combine the terms d1δx1x
3
2 and −d4

ŝ
τ
x3

2x1τ

in V̇ using the MVT. To do so, let d1 = 1/δ = ŝ/c and d4 = τ/ŝ.

53

V̇ = yTQy + x1x
3
2 − x3

2x1τ + d1x1h1 + d4x
3
2h2

= yTQy + x3
2(x1 − x1τ) + d1x1h1 + d4x

3
2h2

= yTQy + x3
2ẋ1θτ + d1x1h1 + d4x

3
2h2.

Note that the last three terms above all have dependencies on x1τ and x2τ . Our goal

is to show that these terms are of higher order than yTQy in variables x1 and x2

alone. Consider ẋ1θ :

ẋ1θ = Φ3
θ

Ψθ+τ

τ
p̃θ+τ ,

where Φθ is the delayed version of Φ defined in Section 2.4.4. We would like to find

an upper bound for |ẋ1θ | only in terms of x1θ and x2θ . Since θ ∈ (0, τ), we can expand

Φ3
θ about v = [x1θ x2θ] = [0 0] (in other words, the fixed point implicitly includes

all x1(t − ξ), x2(t − ξ), 0 ≤ ξ ≤ τ , not just x1(t), x2(t), x1(t − τ), and x2(t − τ)).

Note also that by performing this expansion, we are applying a two-variable Taylor

series expansion to a four-variable function. Specifically, we can use a second-order

expansion and bound |ẋ1θ | using only the remainder, which consists of third-order

partial derivatives.

In the expressions that follow, we use F and Φ as defined in Section 2.4.4. Also,

let Γ := Ψθ+τ p̃θ+τ/τ . The zero-, first-, and second-order terms in the expansion of

ẋ1θ are zero when evaluated at v = 0. The third-order partial derivatives are:

∂ẋ1θ(v = 0)

∂x3
1θ

=
−2b3

9c2
Γ
[
F−2
θ + 6ΦθF

−7/3
θ + 5Φ2

θF
−8/3
θ

]
,

∂ẋ1θ(v = 0)

∂x2
1θ
x2θ

=
2b2

3c
Γ
[
F
−4/3
θ + 2ΦθF

−5/3
θ

]
,

∂ẋ1θ(v = 0)

∂x1θx
2
2θ

= −2bΓF
−2/3
θ , and

∂ẋ1θ(v = 0)

∂x3
2θ

= 6cΓ.

54

We will bound the absolute values of these partial derivatives and use the following

proposition [19].

Proposition 2.4.1. If a function f is of class Ck+1 on an open convex set S and

|∂αf(x)| ≤ M for x ∈ S and |α| = k + 1, then the absolute value of the remainder

Ra,k(h) of the kth-order Taylor series expansion of f about the point a can be bounded

as follows:

|Ra,k(h)| ≤ M

(k + 1)!
‖h‖k+1, where

‖h‖ = |h1|+ |h2|+ · · ·+ |hn|.

Above, ∂fα is the generic (k + 1)th-order partial derivative of f , and |α| = α1 +

α2 + · · ·+ αn. In our case, a = 0, and h = [x1θ x2θ].

In three of these partial derivatives, there are terms of the form
(
b(x1θ

+Ŵ)

c

)−l
,

where l is a positive rational number. Hence, we must bound x1θ in a region [−ρŴ , ρŴ],

where 0 < ρ < 1. Assuming that x1θ , x2θ , x1θ+τ , and x2θ+τ are constrained in an

appropriately-chosen local region [−r, r] around 0, there exists a constant M such

that |∂3f | ≤M . Then, using the proposition,

|ẋ1θ | ≤
M

3!
(|x1θ |+ |x2θ |)3. (2.28)

By Razumikhin’s Theorem, we require that V̇ (x) ≤ −w(‖x‖) whenever pV (x(t)) ≥

V (x(t − θ)), θ ∈ (0, τ), for an ε > 0 and some constant p > 1. When pV (x(t)) ≥

V (x(t− θ)),

55

p

(
d1

2
x2

1 +
d4

4
x4

2

)
≥ d1

2
x2

1θ
+
d4

4
x4

2θ
,

p

(
d1x

2
1 +

d4

2
x4

2

)
≥ d1x

2
1θ
,

|x1θ | ≤
√

p

d1

√(
d1x2

1 +
d4

2
x4

2

)
≤
√

p

d1

(√
d1x2

1 +

√
d4

2
x4

2

)

≤
√

p

d1

(√
d1|x1|+

√
d4

2
x2

2

)
.

Similarly,

p

(
d1x

2
1 +

d4

2
x4

2

)
≥ d4

2
x4

2θ
,

x4
2θ
≤ 2p

d4

(
d1x

2
1 +

d4

2
x4

2

)
,

|x2θ | ≤
4

√
2p

d4

4

√(
d1x2

1 +
d4

2
x4

2

)
≤ 4

√
2p

d4

(
4

√
d1x2

1 +
4

√
d4

2
x4

2

)

≤ 4

√
2p

d4

(
4
√
d1|x1|1/2 +

4

√
d4

2
|x2|

)
.

Substituting these results into (2.28), we have:

|ẋ1θ | ≤
M

6

(√
p

d1

(√
d1|x1|+

√
d4

2
x2

2

)
+ 4

√
2p

d4

(
4
√
d1|x1|1/2 +

4

√
d4

2
|x2|

))3

=
M

6

(
√
p|x1|+

√
pd4

2d1

x2
2 + 4

√
2pd1

d4

|x1|1/2 + 4
√
p|x2|

)3

.

The lowest-order term in the equation above is (|x1|1/2)3 = |x1|3/2. Hence, we see

that the term |x3
2ẋ1θτ | can be bounded by a function of order at least 4.5. We can use

a similar procedure to bound the remainders of ẋ1 and ẋ2, as we will demonstrate.

First, consider the higher-order terms in ẋ1. Since x2θ depends on
√
|x1|, we

cannot simply use a third-order expansion of ẋ1 and bound the remainder of fourth-

order partials, because a consequence of this is that the remainder will have a term

56

(
|x1|1/2

)4
= |x1|2. Recall that in the Lyapunov derivative, ẋ1 is being multiplied by

x1, so the resulting term will have an order of merely three. Using this logic, it is clear

that we need an expansion of at least order six; this way, the lowest-order term in the

remainder will be (|x1|1/2)7 = |x1|7/2, and x1|x1|7/2 is order 4.5, which is sufficient.

However, it is not enough to simply do a sixth-order expansion of ẋ1: we must also

ensure that any fourth-, fifth-, and sixth-order partial derivatives in the expansion in

terms of x1, x2, x1τ , and x2τ , are of order 3.5 or more in terms of only x1 and x2 (so

that when multiplied by x1 in the Lyapunov derivative, we have terms of order at

least 4.5).

Claim 2.4.4. Except for the third-order terms, the sixth-order expansion of ẋ1 in

[x1 x2 x1τ x2τ] is of combined power at least 3.5 in [x1 x2].

The proof for this claim is very similar to the above procedure for bounding |ẋ1θ |.

See Appendix A.2.1 for a full proof of Claim 2.4.4.

Next, we analyze the higher-order terms and remainder of ẋ2. Recall that in the

Lyapunov derivative, ẋ2 is being multiplied by x3
2. Hence, we require a second-order

expansion of ẋ2 about [x1 x2 x1τ x2τ] = 0, and we must ensure that the second-order

terms are of combined power greater than one.

Claim 2.4.5. Except for the first-order terms, the second-order expansion of ẋ2 in

[x1 x2 x1τ x2τ] is of combined power at least 1.5 in [x1 x2].

The proof for this claim is very similar to that of Claim 2.4.4. See Appendix A.2.2

for a full proof of Claim 2.4.5.

Finally, we show that the sum of the terms of order four is negative by proving

that Q in yTQy is negative definite.

57

yTQy =

[
x2

1 x1x2 x2
2

]

−d1α d1β/2 0

d1β/2 −d1γ 0

0 0 −d4/ŝ




x2

1

x1x2

x2
2

 .

This first leading principal minor of Q, −d1α, is always negative, as needed. The

second leading principal minor should be positive:

d2
1αγ − d2

1

β2

4

?
> 0

αγ − β2

4

?
> 0(

b3

27c2ŝ7

)(
b

ŝ3

)
− 1

4

(
b2

3cŝ5

)2
?
> 0

b4

27c2ŝ10
− 1

4

(
b4

9c2ŝ10

)
?
> 0

1

27
− 1

36

?
> 0 X

The third leading principal minor should be negative:

−d1α
(
d1d4

γ

ŝ

)
− d1

β

2

(
d1
β

2

(
−d4

ŝ

))
?
< 0

−α
(γ
ŝ

)
− β

2

(
β

2

(
−1

ŝ

))
?
< 0

−αγ +
β2

4

?
< 0

αγ − β2

4

?
> 0

We see that this condition is equivalent to the previous one (for the second leading

principal minor), and hence it is satisfied.

So far, we have shown that for a sufficiently small neighborhood of x∗ = 0, the

Lyapunov-Razumikhin candidate in (2.27) has a negative definite derivative, i.e.,

V̇ (x) < 0 for all x 6= 0 in this neighborhood and V̇ (x) = 0 if x = 0. Finally, it remains

58

to bound V and V̇ with functions u, v, and w that satisfy all conditions specified in

Theorem 2.4.2. We note that the arguments above are valid for |x1|, |x2| < r, where

0 < r < 1. We keep this in mind for the following bounds. Recall that previously,

we let d1 = ŝ/c and d4 = τ/ŝ. Then the exact form of the Lyapunov-Razumikhin

function is

V (x) =
ŝ

2c
x2

1 +
τ

4ŝ
x4

2.

For all bounds, we can use any norm on x, as long as we are being consistent. We

choose the l2−norm. Let

v(||x||) = ε0||x||22 = ε0(x2
1 + x2

2),

where ε0 = max
(
ŝ
2c
, τ

4ŝ

)
. Then V (x) ≤ v(||x||). Also, v(||x||) is strictly increasing,

v(||0||) = 0, and v(||x||) is positive for ||x|| > 0. Next, let

u(||x||) = ε1||x||42 = ε1(x2
1 + x2

2)2 = ε1(x4
1 + 2x2

1x
2
2 + x4

2),

where ε1 is a positive constant of our choice. We will show that V (x) ≥ u(||x||), or

equivalently, V (x)− u(||x||) ≥ 0 for some choice of ε1.

V (x)− u(||x||) =
ŝ

2c
x2

1 +
τ

4ŝ
x4

2 − ε1(x4
1 + 2x2

1x
2
2 + x4

2)

≥ ŝ

2c
x2

1 +
τ

4ŝ
x4

2 − ε1(x2
1 + 2x2

1 + x4
2)

=

(
ŝ

2c
− 3ε1

)
x2

1 +
(τ

4ŝ
− ε1

)
x4

2

≥ 0 for ε1 < min

(
ŝ

6c
,
τ

4ŝ

)
.

Also, u(||x||) is positive for ||x|| > 0 and u(||0||) = 0. Hence, condition (2.22) is

satisfied.

59

Next, we show that V̇ is bounded by a suitable function w as specified in Theorem

2.4.2. Recall that we have shown that

V̇ = d1

(
−αx4

1 + βx3
1x2 − γx2

1x
2
2

)
− d4

ŝ
x4

2 + h.o.t.

We can express the lower-order terms in matrix form, as follows:

V̇ = −
[
x2

1

√
2x1x2 x2

2

]

d1α − d1β

2
√

2
0

− d1β

2
√

2

d1γ
2

0

0 0 d4/ŝ




x2

1

√
2x1x2

x2
2

+ h.o.t.

Let’s call the matrix above Q̃. Since we have previously shown that the sum of the

lower-order terms in V̇ is a negative definite function, it follows that Q̃ is positive

definite, so all of its eigenvalues are strictly positive. Since Q̃ is a real and symmetric

matrix, its Rayleigh quotient is bounded below by λmin[Q̃]. Hence,

V̇ ≤ −λmin[Q̃]

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣


x2

1

√
2x1x2

x2
2



∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

2

2

+ h.o.t.

= −λmin[Q̃](x4
1 + 2x2

1x
2
2 + x4

2) + h.o.t.

= −λmin[Q̃]||x||42 + h.o.t.

Previously, we showed that the higher-order terms have orders of at least 4.5. Then

for |x1|, |x2| small enough, there exists a positive constant K such that

h.o.t. ≤ K||x||42.

60

Claim 2.4.6.

Let f(x1, x2) =
h.o.t.

||x||42
. Then lim

(x1,x2)→(0,0)

h.o.t.

||x||42
= 0.

A simple ε− δ proof can be used for this claim. See Appendix A.2.3 for the proof

of Claim 2.4.6.

By Claim 2.4.6, we can always find a K small enough by restricting x1 and x2 into

a smaller neighborhood around 0. Hence, we can find a K < λmin[Q̃], which would

give us

V̇ ≤ −(λmin[Q̃]−K)||x||42

where λmin[Q̃]−K > 0. By inspection, we have found a w(||x||) that satisfies condition

(2.23) under (2.24). In addition, w(||x||)) > 0 when ||x|| > 0, as necessary. Finally,

lim||x||→∞ u(||x||) = ∞. By Theorem 2.4.2, we have shown that the function that

drives CUBIC’s cwnd , (2.7), is locally uniformly asymptotically stable.

2.4.6 Convergence

Using the Lyapunov-Razumikhin function and its derivative, it is possible to ex-

plicitly demonstrate the convergence of trajectories to the fixed point. In the analysis

below, we assume that t0 = 0. Recall that

V (x) ≤ ε0||x||22

→ V 2(x) ≤ ε20||x||42.

This gives us

61

V̇ ≤ −(λmin[Q̃]−K)

ε20
V 2

→ V̇

V 2
≤ −(λmin[Q̃]−K)

ε20
.

We note that

d

dt

(
− 1

V

)
=

V̇

V 2
≤ −(λmin[Q̃]−K)

ε20
, so

d

dt

(
1

V

)
≥ (λmin[Q̃]−K)

ε20
.

Then, solving the differential inequality,

∫ t

0

d

ds

(
1

V

)
ds =

1

V (t)
− 1

V (0)
≥
∫ t

0

(λmin[Q̃]−K)

ε20
ds =

(λmin[Q̃]−K)

ε20
t,

1

V (t)
≥ (λmin[Q̃]−K)

ε20
t+

1

V (0)
,

V (t) ≤ 1
(λmin[Q̃]−K)

ε20
t+ 1

V (0)

.

Since V (t) ≥ ε1||x||42,

||x||42 ≤
1

ε1(λmin[Q̃]−K)

ε20
t+ ε1

V (0)

. (2.29)

We can simplify this bound using the definition of uniform stability:

Definition 2.4.1 (Definition 1.1 from Stability of Time-Delay Systems [24]). For the

system described by ẋ = f(t, xt), the trivial solution x(t) = 0 is said to be stable if

for any t0 ∈ R and any ε > 0, there exists a δ(t0, ε) > 0 such that ||xt0||c < δ implies

||x(t)|| < ε for t > t0. It is said to be uniformly stable if it is stable and δ(t0, ε) can

be chosen independently of t0. It is uniformly asymptotically stable if it is uniformly

stable and there exists a δa > 0 such that for any η > 0, there exists a T (δa, η), such

that ||xt0||c < δa implies ||x(t)|| < η for t ≥ t0 + T and t0 ∈ R.

62

Above, ||φ||c = maxa≤ξ≤b ||φ(ξ)|| for φ ∈ C[a, b] and xt0 = φ or x(t0 + θ) = φ(θ),

−τ ≤ θ ≤ 0. From (2.29), we have that

||x||42 ≤
1

ε1(λmin[Q̃]−K)

ε20
t+ ε1

V (0)

≤ 1
ε1
V (0)

=
V (0)

ε1
≤ ε0||x(t0)||22

ε1
<
ε0δ

2

ε1
.

We would like

||x||2 < ε, or

||x||42 < ε4.

So let

ε0δ
2

ε1
< ε4

→ δ < ε2
√
ε1
ε0
.

This bound on δ provides a measure on the basin of attraction of the fixed point

of a system using the system’s parameters. I.e., it indicates how close the initial

conditions must be to the fixed point in order to guarantee stability. One possible

way to apply this bound is in the implementation of TCP: one could specify the initial

slow start threshold to be close to Ŵ , so that when CUBIC’s congestion avoidance

phase begins, the systems is more likely to settle into its stable state.

2.4.7 Summary

For the system described by (2.17), the following properties hold:

(a) The system has a unique fixed point x∗ = 0.

(b) The system has a unique solution in a neighborhood of this fixed point.

63

(c) The fixed point is locally uniformly asymptotically stable for x small enough and

in addition,

(i) x1 and x1τ are constrained to [−ρŴ , ρŴ], for 0 < ρ < 1,

(ii) |x1|, |x2| < 1.

(d) The solution is bounded according to (2.29) for |x1| and |x2| small enough.

2.5 Analysis of H-TCP

In this section, we use the MWLI model to analyze the stability of H-TCP. As

with CUBIC, we use (2.3) as the loss model. Unlike CUBIC, whose cwnd is given

explicitly as a function of time, H-TCP’s cwnd behavior is stated in terms of increase

and decrease response functions, so we must derive its W (t) in closed form. H-TCP

behaves as follows [46]: on each acknowledgement, set

cwnd← cwnd + α(∆)/cwnd (2.30)

and on each congestion event, set

cwnd← β(t)cwnd, (2.31)

where ∆ is the time since the last congestion event and α(∆) and β(t) are described

in detail below. α(∆) is constructed so that after a congestion event, H-TCP’s cwnd

increases linearly for a period of ∆L seconds; this is known as the low-speed regime of

the protocol. After ∆L seconds have passed, as long as there are no new congestion

events, H-TCP transitions into its high-speed regime and evolves the cwnd according

to a function of ∆. When a congestion event occurs, H-TCP uses a backoff factor

β(t) ∈ [0.5, 0.8], depending on current estimated maximum and minimum round-trip

times. The full operation is as follows:

64

(a) On each acknowledgement, set

α(∆) =


1, if ∆ ≤ ∆L,

1 + 10(∆−∆L) +
(

∆−∆L

2

)2

, if ∆ > ∆L,

and then let α(∆) = max (2(1− β(t))α(∆), 1). (Note: the original definitions,

e.g., in [47], [46], simply state α(∆) = 2(1 − β(t))α(∆). However, if ∆ ≤ ∆L,

then 2(1−β(t))α(∆) = 2(1−β(t)), which will be less than one for any value of

β(t) ∈ [0.5, 0.8] that is not 0.5. Since the increase factor must be at least one,

we assume that α(∆) = 1 in this case, hence the use of max above (also used

in [45]).) Then, use Eq. (2.30) to adjust the cwnd .

(b) On each congestion event, set

β(t) =
τmin

τmax

, β(t) ∈ [0.5, 0.8].

Then, use Eq. (2.31) to adjust the cwnd .

Above, τmin/τmax is the ratio of minimum to maximum round-trip times experienced

by the source. ∆L is usually set to one second [46]. The authors in [46] also suggest

scaling α(∆) with round-trip time to make the increase rate and convergence time

invariant with RTT, as well as to potentially reduce unfairness. We first derive W (t)

without RTT scaling and later on introduce a scaling factor γ to discuss its effects on

stability (γ = τ/τref , where τref is a reference RTT value as discussed in [45] and [44]).

To simplify our analysis, we make the assumption that β(t) = b, for b ∈ [0.5, 0.8].

Note that this assumption is reasonable, since in steady state, τmin = τmax so that the

decrease factor is a constant.

Note that in the case where ∆ > ∆L, 2(1 − b)α(∆) can also be less than one,

so that α(∆) = 1. This means that until some time tL, H-TCP will operate in the

65

low-speed regime (i.e., it will behave like TCP Reno even though ∆ > ∆L). We

compute tL to simplify future analysis. To do so, we solve the following equation for

tL:

2(1− b)

(
1 + 10(tL −∆L) +

(
tL −∆L

2

)2
)

= 1.

The result is

tL = ∆L − 20 +

√
400− 4 +

2

(1− b)
.

Note that for b ∈ [0.5, 0.8], tL ≥ ∆L. We are now ready to write down the cwnd

function for H-TCP:

W (t) = bWmax(t) +
1

τ
min (tL, s(t)) +

1{s(t) > tL}
τ

∫ s(t)

tL

α(∆)d∆. (2.32)

Note that the indicator function above is required since the integral can evaluate to

a positive value in some cases where s(t) < tL.

2.5.1 Fixed Point Analysis

If tL ≥ ŝ, then the fixed point of the system and its stability analysis reduces to

that of TCP Reno. From now on, we assume that tL < ŝ; in other words, we analyze

H-TCP in environments where the congestion epochs in steady state are sufficiently

long for the cwnd to transition to the high-speed regime after the linear growth stage.

This is common in high-BDP environments for which H-TCP was designed. Note that

this causes the indicator function in (2.32) to evaluate to 1. In steady state, we know

that W (t) = Wmax(t) = Ŵ and s(t) = ŝ. Applying this to (2.32), we have

Ŵ =
tL

(1− b)τ
+

2

τ

(
(ŝ−∆L)3

12
+ 5(ŝ−∆L)2 + ŝ− tL −

(tL −∆L)3

12
− 5(tL −∆L)2

)
.

66

We now eliminate Ŵ from the equation above. From the second equation in (2.1),

we obtain

ŝŴ p̂

τ
= 1,

ŝŴ (1− Cτ/Ŵ)

τ
= 1,

Ŵ =
τ

ŝ
+ Cτ. (2.33)

Substituting this into the fixed point equation above, we obtain

τ

ŝ
+ Cτ =

tL
(1− b)τ

+
2

τ

(
(ŝ−∆L)3

12
+ 5(ŝ−∆L)2 + ŝ− tL −

(tL −∆L)3

12
− 5(tL −∆L)2

)
.

(2.34)

Note that (2.34) is quartic in ŝ. We can use it to analyze the limiting behavior

of ŝ in terms of C and τ (specifically, we assume large Cτ and C � τ). To simplify

notation, let x ≡ ŝ. Recall that in steady state, τmin = τmax, which means that the

decrease factor is b = 0.8. From now on, to simplify subsequent analysis, we assume

∆L = 1 s, which is the usual default value in H-TCP implementations. Using this,

along with the steady-state value of b, we may now evaluate the steady-state value

of tL, which is given by
√

406 − 19. Substituting this into (2.34), expanding and

grouping by x yields

x4 + 57x3 − 105x2 +
(

812
√

406− 16283− 6Cτ 2
)
x−6τ 2 = 0.

Recall the form of the roots of a quartic equation from Section 2.4.2. For H-TCP,

letting Γ = 812
√

406− 16283, we have

67

∆0 = 1052 − 171
(
Γ− 6Cτ 2

)
− 72τ 2 = O(Cτ 2),

∆1 = −2(1053) + 53865
(
Γ− 6Cτ 2

)
− 162(572)τ 2 + 27

(
Γ− 6Cτ 2

)2 − 432(105)τ 2

= O(C2τ 4),

q =
1

8

(
573 + 228(105)

)
+
(
Γ− 6Cτ 2

)
= O(Cτ 2),

and p is a negative constant (no dependence on C or τ). From above and from Eq.

(2.14), we obtain

∆2
1 = O(C4τ 8), ∆3

0 = O(C3τ 6), and Q = O((C2τ 4)1/3).

Further (see Appendix A.3 for derivation details),

∆0

Q
= O((C2τ 4)1/3), Q+

∆0

Q
= O((C2τ 4)1/3), and

S =
1

2

√
2

3
p′ +

1

3

(
Q+

∆0

Q

)
= O((Cτ 2)1/3),

where p′ ≡ −p is positive. Finally, letting q′ ≡ −q and noting that for large Cτ ,

q′ > 0, we use the plus-sign version of x3,4 to obtain

x = −57

4
+ S +

1

2

√
2p′ +

q′

S
− 4S2 (2.35)

and further noting that q′/S and S2 are bothO((C2τ 4)1/3), we obtain ŝ = O((Cτ 2)1/3).

See Appendix A.3 for a proof of the limiting behavior of q′/S, as well as for a proof

that the root in (2.35) is positive and real for large Cτ and C � τ .

2.5.2 Stability Analysis

We perform a change of variables similar to Section 2.4.3. Letting δ ≡ ŝ − ∆L,

ξ ≡ tL −∆L and rewriting the cwnd function in terms of x1(t) and x2(t), yields

68

Ψ(t) = b(x1(t) + Ŵ) +
tL
τ

+
2(1− b)

τ

(
(x2(t) + δ)3

12
+ 5(x2(t) + δ)2 + x2(t) + ŝ− tL −

ξ3

12
− 5ξ2

)
.

For the stability analysis, we need the partial derivatives of Ψ(t) with respect to x1

and x2 evaluated at the fixed point. They are

∂Ψ

∂x1

= b,

∂Ψ

∂x2

=
2(1− b)

τ

(
(x2(t) + δ)2

4
+ 10(x2(t) + δ) + 1

)
,

∂Ψ

∂x2

∣∣∣∣∣
0

=
2(1− b)

τ

(
(ŝ−∆L)2

4
+ 10(ŝ−∆L) + 1

)
.

Let the quantity above (the partial with respect to x2 evaluated at the fixed point)

be denoted as F∆L . Note that F∆L is always positive: recall that tL ≥ ∆L for all

b ∈ [0.5, 0.8] and by our assumption, ŝ > tL, so it follows that ŝ > ∆L. The linearized

system is

ẋ1

ẋ2

 =
1

ŝ

b− 1 F∆L

0 −1


x1

x2

− ŝ

τ

0 0

b F∆L


x1τ

x2τ

 .

Then, calling the first matrix (multiplied by 1/ŝ) above A0 and the second matrix

(multiplied by −ŝ/τ) A1, note that the linearized system has the form

ẋ = A0x + A1xτ .

Its Laplace transform is

sX(s)− x(0) = A0X(s) + A1X(s)e−sτ .

69

Solving for X(s) yields

X(s) = (sI − A0 − A1e
−sτ)x(0).

We compute

sI − A0 − A1e
−sτ =

s+ 1−b
ŝ

−F
∆L

ŝ

bŝ
τ
e−sτ s+ 1

ŝ
+ ŝ

τ
F∆Le−sτ

 ,
and the determinant of this matrix is

∆ =

(
s+

1− b
ŝ

)(
s+

1

ŝ

)(
1 +

ŝ

τ

F∆L(
s+ 1−b

ŝ

)e−sτ) .
Note that the first two components of ∆, s + (1 − b)/ŝ and s + 1/ŝ, are stable. For

the third component, we can apply the Nyquist stability criterion. Let

H(s) :=
ŝ

τ

F∆L(
s+ 1−b

ŝ

)e−sτ =
ŝF∆L(

sτ + (1−b)τ
ŝ

)e−sτ
and let ρ := (1− b)τ/ŝ and θ := tan−1(ωτ/ρ). Then

H(jω) =
ŝF∆L√
ω2τ 2 + ρ2

e−j(ωτ+θ).

Decomposing H(jω) into real and imaginary components yields

I(H(jω)) = − ŝF∆L sin(ωτ + θ)√
ω2τ 2 + ρ2

,

R(H(jω)) =
ŝF∆L cos(ωτ + θ)√

ω2τ 2 + ρ2
.

The Nyquist stability criterion states the following: The rational function 1 + H(s)

has poles in the open left-half s-plane if and only if the Nyquist contour ΓH in the

70

H(s)-plane does not encircle the (−1, 0) point when the number of poles of H(s) in

the right-hand s-plane is zero [12]. Clearly, H(s) does not have any poles in the

right-hand s-plane. It remains to check whether the point (−1, 0) is encircled in the

H(s)-plane or to derive conditions to ensure that it is not encircled. We can find the

point where the contour intersects the real axis by setting I(H(jω)) = 0, yielding

sin(ωτ + θ) = 0.

This equation is satisfied when ωτ + θ = ±nπ, for n = 0, 1, 2, Next, we analyze

the real component. For n = 0 and n even, the numerator of the real part is equal to

ŝF∆L , which is always greater than zero. Hence, when n = 0 or even, I(H(jω)) > 0.

To analyze the case of n odd, we use the following:

ωτ = ±nπ − θ,

|ωτ | = |±nπ − θ|.

Further, note that |θ| = |arctan(ωτ/ρ)| < π/2. Therefore, |ωτ | > π/2, so for n odd,

R(H(jω)) =
−ŝF∆L

(> π/2)
>
−2ŝF∆L

π
.

For stability, we require that R(H(jω)) ≥ −1. This yields the following (sufficient)

stability condition:

ŝF∆L ≤ π

2
,

ŝ

(
(ŝ−∆L)2

4
+ 10(ŝ−∆L) + 1

)
≤ πτ

4(1− b)
.

Recall that ŝ is a function of C, τ , and tL, and the latter is a function of ∆L. We

have not been able to find values of C, τ , and ∆L that satisfy the stability condition

71

above. In addition, we have not been able to find a set of parameters for which the

simulation of DEs show a stable system. Recall that in the cwnd function definition

(2.32), no RTT scaling is employed. RTT scaling can reduce unfairness, as well as

enable congestion epoch duration and convergence time to be independent of RTT.

When implemented in H-TCP, RTT scaling is only enabled in high-speed regimes

(i.e., when ∆ > tL), and works by scaling α(∆) in this regime by τ/τref , where the

recommended value of τref = 100 ms [45]. With this change, the stability condition

becomes

ŝ

τref

(
(ŝ−∆L)2

4
+ 10(ŝ−∆L) + 1

)
≤ π

4(1− b)
,

where tL is redefined as

tL =


∆L − 20 +

√
400− 4 +

2τref
(1−b)τ if 2(1−b)τ

τref
≤ 1,

∆L otherwise.

Numerical analysis shows that in practical settings (i.e., for realistic values of C,

τ , and b), H-TCP with RTT scaling (with scaling parameter γ := τ/τref) is still

unstable when it operates in the high-speed regime. In fact, we find that the only

way to stabilize the systems is to use values of b and τref that force the protocol

to operate exclusively in the low-speed regime (i.e., to behave as standard TCP).

However, we note that certain values of γ tend to dampen the oscillation amplitudes

of H-TCP’s cwnd , albeit without affecting the convergence behavior of the protocol.

One example of this phenomenon is illustrated in Figure 2.3. The cwnd curves are a

result of the DE model with C = 1 Gbps, τ = 40 ms, and b = 0.8. γ = 1 corresponds

to no RTT scaling, while γ = 0.4 corresponds to using the recommended τref = 100

ms. Recall the fixed point expression for cwnd from Eq. (2.33): Ŵ = τ/ŝ + Cτ .

Note from this equation that in high-BDP settings, Ŵ is dominated by the BDP,

72

0 10 20 30 40 50

Time (s)

0

1

2

3

4

5

6

C
w

n
d

 (
b

y
te

s
)

10
6

=1

=0.4

=0.08

Figure 2.3: Effect of RTT scaling on H-TCP’s cwnd . Curves produced by the DE
model with C = 1 Gbps, τ = 40 ms, b = 0.8, and scaling factor γ = τ/τref . In all three
cases, the protocol operates in the high-speed regime and is unstable. Decreasing γ
reduces the magnitude of the oscillations.

Cτ , while varying γ only changes ŝ. Hence, Ŵ does not change much with γ. This

is reflected in Figure 2.3, as all three flows reach approximately the same maximum

value of cwnd , ≈ Cτ = 5× 106 bytes. On the other hand, the flow that corresponds

to γ = 0.08 deviates significantly less from the fixed point than do the other flows,

with larger γ’s. Interestingly, decreasing γ further precludes H-TCP from operating

in the high-speed regime, and the protocol’s behavior approaches that of standard

TCP while not necessarily stabilizing it (i.e., the cwnd retains its sawtooth profile

and there is no convergence to the fixed point).

2.6 A Note on the Loss Model

We chose the probability of loss model given by Eq. (2.3) for its simplicity and

dependence on few system parameters. However, it is worthwhile to note that this loss

model is used often in fluid approximation models, especially under the assumption

that the packet arrival process is a Poisson process [69]. Such an assumption is

reasonable in certain scenarios, e.g., with sufficiently long-lived data transfers and

large buffer sizes at congestion points. However, in scenarios where traffic may be

73

bursty, the arrival process no longer behaves as a Poisson process, and using the loss

model given by (2.3), or even its finite-version for M/M/1/B queues with queue size

B, may cause inaccuracies for throughput prediction [20].

Note that the MWLI model can accommodate different loss models, and as long

as a model p(t) can be written in closed form in steady state (e.g., (2.3) simply

becomes p(t) = 1−Cτ/Ŵ in steady state), one can perform fixed point and stability

analyses. A consequence of using a particular p(t) is that the analysis is valid under

the same assumptions for which p(t) is a reasonable model. Hence, while H-TCP

seems unstable under (2.3), it may behave very differently under a less harsh p(t). In

Section 2.7, we explore another loss model for H-TCP that incorporates queue size.

2.7 Simulations

We use simulation to validate model (2.17) and the stability analyses of TCP

CUBIC and H-TCP. For H-TCP, we use ns-3 and for CUBIC, we develop a simulation

framework that treats loss as a non-homogenous Poisson process and generates new

loss events based on a user-defined probability of loss model. Because of the loss

generation method, we call this simulation framework the Non-Homogeneous Poisson

Loss, or NHPL simulation. A detailed description of the framework is provided in

Appendix A.1. An advantage of using this framework for validating the DEs over, for

example, ns-3, is that we can observe the behavior of solely the congestion avoidance

phase of an algorithm, which allows us to more easily verify the theoretical analysis

of the controller’s stability. Moreover, as we observe from simulations of the DEs, an

algorithm’s stability can be highly sensitive to the initial conditions specified at the

beginning of the congestion avoidance phase (note that this observed sensitivity to

initial conditions is consistent with our demonstration of local-only stability). The

initial conditions are values of Wmax(0) and s(0) for all flows, and we can control them

more easily with our simulation framework. This can be especially useful when testing

74

the region of stability for a given system. Another reason for using NHPL simulations

for CUBIC is that at the time of writing, CUBIC is not natively supported in ns-3.

As a result, certain experiments of CUBIC in ns-3 take an exceedingly long time to

complete (especially systems with high BDPs, which are of interest in this work).

Note that the NHPL simulation framework is event-based, rather than packet-

based. To diversify our experiments, we use ns-3 – a packet-based simulation frame-

work – to validate the H-TCP model. For the experimental setup, we use a PointToPoint

channel between two net devices. We choose the PI (Proportional Integral controller)

AQM scheme [33] for H-TCP in ns-3. We choose PI because it is simple to implement

within the MWLI model. Since ns-3 does not natively support PI, we modify the

similar AQM protocol PIE [57] implementation, which is available in ns-3.

In order to compare the DE model against ns-3, we alter the DEs’ previous loss

model (that of Eq. (2.3)) to incorporate some of the major components of PI, with the

objective of implementing a simplified version of the AQM scheme that reasonably

approximates PI. Specifically, every T UPDATE seconds (we use 5 ms in all our

experiments – similar to the value used in the experiments of [33]), we compute

∆p = α̂(q − qref) + β̂(qref − qold) and set

p← p+ ∆p

(2.36)

as PI’s new drop probability. Above, α̂ and β̂ are parameters, q is the current length

of the queue, qold is the length of the queue in the previous iteration, and qref is

the desired queue length. Note that this value of qref is a reference for an average

flow within our DE model, as opposed to a reference for all flows in aggregate, and

similarly for the values of q and qold, so that the loss probability is computed for a

single flow. In all our experiments, we set α̂ = 1.822× 10−5 and β̂ = 1.816× 10−5, as

in [33]. The value of p is then used to update s and Wmax in the DE model.

75

For the DE model, we use the following queue model (based on a model from

[34]):

dq(t)

dt
=
W (t)

τ
− C, (2.37)

where q(t) is the number of packets in the bottleneck queue. Then the queueing

delay is given by qdel(t) = q(t)/C. Hence, the total delay is the sum of queueing and

propagation delays, given by qdel(t) + τ ; this is the value we use instead of τ in (2.1).

Note that for the experiment descriptions in this section, we only state the (constant)

propagation delay τ .

It remains to choose a queue size for ns-3 experiments: i.e., the MaxSize variable

for PI’s queue, which we will call qmax from now on. LetN be the number of ns-3 flows.

For each ns-3 experiment, we choose a value of N large enough so that bandwidth on

the link is fully utilized. To choose a suitable value for qmax, we multiply qref by N

and choose a larger value, keeping in mind that choosing too large a qmax may cause

instability.

For convenience, denote the aggregate (or link) capacity CA := NC. Note that the

DE model takes C as a parameter, while ns-3 sets the link bandwidth using CA and

divides it by N to set the sending rate of each flow. Note that in all calculations above,

C may have to be scaled by a maximum segment size (MSS) and other constants: in

all our simulations, we use the unit of segments/sec for C.

2.7.1 TCP CUBIC

Figure 2.4 compares the average cwnd generated by the NHPL simulations against

the average value of cwnd generated by the DEs. The fixed-point value of cwnd , Ŵ ,

is also shown (albeit sometimes entirely hidden by the DE curve because of fast

convergence). All flows in this figure have a per-flow capacity of 1 Gbps, while the

round-trip time is varied (these combinations of C and τ are sufficient to generate a

76

0 10 20 30 40 50

Time (s)

0

20

40

60

80

100

120

C
w

n
d

 (
s
e

g
m

e
n

ts
)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 125

NHPL Sim avg cwnd 117

DE Sim avg cwnd 123

(a) τ = 1 ms, 1 flow

0 10 20 30 40 50

Time (s)

0

20

40

60

80

100

120

C
w

n
d

 (
s
e

g
m

e
n

ts
)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 125

NHPL Sim avg cwnd 122

DE Sim avg cwnd 123

(b) τ = 1 ms, 20 flows

0 50 100 150 200

Time (s)

0

200

400

600

800

1000

1200

C
w

n
d

 (
s
e

g
m

e
n

ts
)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 1250

NHPL Sim avg cwnd 1073

DE Sim avg cwnd 1242

(c) τ = 10 ms, 1 flow

0 50 100 150 200

Time (s)

0

200

400

600

800

1000

1200

C
w

n
d

 (
s
e

g
m

e
n

ts
)

Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 1250

NHPL Sim avg cwnd 1189

DE Sim avg cwnd 1242

(d) τ = 10 ms, 20 flows

Figure 2.4: Comparison of average cwnd (computed post-transient phase) generated
by NHPL simulations against steady-state cwnd generated by model (2.17) for TCP
CUBIC. Also shown is the fixed-point value of cwnd . Per-flow capacity C = 1 Gbps.

diverse set of behaviors). All flows have b = 0.2 and c = 0.4 (the default values used

in Linux implementations of CUBIC).

Figure 2.4a shows a single stable flow with τ = 1 ms. The transient response

of both simulations is clearly visible, and we observe that they reach steady-state

within a similar period. Not shown in this panel is the value of ŝ ≈ 4 seconds. By

observing the time between losses in the NHPL simulation, we see that there is a close

agreement. Figure 2.4b shows the same experiment, but with 20 flows. As expected,

the average value of cwnd from the NHPL simulation approaches Ŵ as the number of

flows increases. Figures 2.4c and 2.4d show one and 20 flows, respectively, for τ = 10

ms. The initial conditions (values of s(0) and Wmax(0)) are deliberately far enough

77

0 50 100 150 200

Time (s)

0

2000

4000

6000

8000

10000

12000

C
w

n
d
 (

s
e
g
m

e
n
ts

)
Fixed Point Value

NHPL Sim

DE Model

Fixed Point cwnd 12500

NHPL Sim avg cwnd 11867

DE Sim avg cwnd 12500

(a) τ = 100 ms, stable (b) τ = 100 ms, unstable

Figure 2.5: The impact of initial conditions on stability. For both (a) and (b), C = 1
Gbps, τ = 100 ms. In (a), there is one flow whose initial conditions W (0) and s(0) are
very close to the fixed point values Ŵ and ŝ, respectively. Both the NHPL simulation
and the model exhibit stability. In (b), there is one flow whose initial conditions
are set too far from the fixed point value, destabilizing the flow in both the NHPL
simulation and the DE system.

0 20 40 60 80 100

Time (s)

0

20

40

60

80

100

120

140

C
w

n
d
 (

s
e
g
m

e
n
ts

)

Fixed Point Value

Convergence Bound

DE Model

Instantaneous norm

Fixed Point cwnd 125.0025

DE Sim avg cwnd 120.5252

Figure 2.6: Convergence for CUBIC. At the top is the cwnd generated by DEs as it
converges to the fixed point value of cwnd . Below these two curves is a comparison of
the instantaneous norm ||x||2 against the analytical bound in (2.29). Here, C = 100
Mbps, τ = 10 ms.

from the fixed point to demonstrate a more dramatic transient response. Figure 2.5

shows two examples of 100 ms flows: in (a), there is a single flow that is stable, while

the initial conditions in (b) cause instability for one flow in both the DEs and NHPL

simulation.

78

Figure 2.6 illustrates the transient and steady-state responses of a flow with C =

100 Mbps and τ = 10 ms, as well as ||x||2 as it compares to the convergence bound

(2.29). Observe that ||x||2 always lies below the bound and approaches zero as the

flow reaches steady state. The bound appears flat in this example because for this

system, V (t0) dominates in the denominator. We observe this phenomenon for many

systems; this implies that the initial conditions are crucial for a flow’s stability.

2.7.2 H-TCP

We present experiments with varying BDPs, ranging from low – wherein H-TCP

operates exclusively in the linear regime, to high – where H-TCP’s average congestion

epoch is larger than ∆L seconds. Since ns-3 does not use RTT scaling, we set γ = 1

in all DE simulations. All ns-3 curves are averages of five runs. Figure 2.7 presents

comparisons of the MWLI DE model for H-TCP, using Eqs. (2.36) and (2.37) as loss

probability function and queue model, respectively, against ns-3 with PI as the AQM

scheme. The experiment in Figure 2.7a uses a link capacity CA of 500 Mbps with 15

flows in ns-3. This corresponds to C = 33 Mbps for the DE model. Packet size is set

to 1000 bytes and MSS is 958 bytes. For this experiment, τ = 10 ms, which causes

the BDP to be low enough that on average, H-TCP operates in the low-speed regime.

This is evidenced by the average time between losses, s, defined as follows:

s :=
1

R

R∑
r=1

1

N

N∑
f=1

1

Lf,r

Lf∑
i=1

sf,ri ,

where R is the number of ns-3 experiment runs, Lf,r is the number of losses suffered

by flow f during the duration of the experiment in the rth run, and sf,ri is the time

between the (i− 1)th and ith loss of flow f in the rth run (for i = 1, we compute the

time until the first loss). For Figure 2.7a, s = 0.29 s, which is below the low-speed

regime threshold ∆L = 1 s. The DE model outputs a value of 0.27 s for ŝ.

79

0 10 20 30 40 50

Time (s)

0

5

10
C

w
n

d
 (

b
y
te

s
)

10
4

Model

NS-3

DE Sim avg cwnd 74636

NS3 avg cwnd 77573

(a) CA = 500 Mbps, τ = 10 ms, qref = 500,
qmax = 1000, N = 15, MSS = 958

0 10 20 30 40 50

Time (s)

0

5

10

15

C
w

n
d

 (
b

y
te

s
)

10
4

Model

NS-3
DE Sim avg cwnd 81441

NS3 avg cwnd 79812

(b) CA = 1 Gbps, τ = 10 ms, qref = 800,
qmax = 3500, N = 25, MSS = 958

0 10 20 30 40 50

Time (s)

0

2

4

6

8

10

12

C
w

n
d

 (
b

y
te

s
)

10
4

Model

NS-3
DE Sim avg cwnd 77386

NS3 avg cwnd 75025

(c) CA = 1 Gbps, τ = 20 ms, qref = 1000,
qmax = 4000, N = 45, MSS=958

0 50 100 150

Time (s)

0

1

2

3

4

5

C
w

n
d

 (
b

y
te

s
)

10
5

Model

NS-3

DE Sim avg cwnd 496327

NS3 avg cwnd 487226

(d) CA = 2 Gbps, τ = 40 ms, qref = 800,
qmax = 2500, N = 20, MSS = 958

Figure 2.7: Validation of H-TCP’s DE model using ns-3. Red curves represent average
cwnd over all ns-3 flows. ns-3 uses PI as the AQM scheme and DE models use Eqs.
(2.36) and (2.37). Aggregate capacity is given by CA := NC. qref and qmax have
units of packets, while MSS is in bytes. Each red curve is an average of five runs of
the experiment.

For the experiment in Figure 2.7b, we increase the link capacity to one Gbps

and the number of flows to 25. Here, ns-3 yields s = 0.25 s and the DE model

yields ŝ = 0.27 s. For the experiment in Figure 2.7c, we use CA = 1 Gbps and a

propagation delay of 20 ms. The number of flows is set to 45 in ns-3. Here, s = 0.38 s

and ŝ = 0.44 s. In Figure 2.7d, CA = 2 Gbps and τ = 40 ms, which allows H-TCP to

be able to spend time in the high-speed regime, with s = 2.19 s and ŝ = 2.2 s. Finally,

80

0 20 40 60 80 100

Time (s)

0

1

2

3

4

5

6

C
w

n
d
 (

b
y
te

s
)

10
5

Model

NS-3
DE Sim avg cwnd 586797

NS3 avg cwnd 575324

Figure 2.8: Validation of H-TCP’s DE model using ns-3. Aggregate capacity CA = 4
Gbps, τ = 30 ms, qref = 100 packets, qmax = 1000 packets, N = 25 flows, and
MSS = 1158 bytes. The red curve is an average of five runs of ns-3.

Figure 2.8 presents an experiment with a relatively larger BDP compared to those of

Figure 2.7: here, CA = 4 Gbps and τ = 30 ms. There are 25 ns-3 flows and as with

experiments in Figure 2.7, the average is plotted over five runs. In this plot, s = 1.7

s and ŝ = 1.8 s. Note that for this larger BDP, the ns-3 curve is slower to converge

to the DE curve, compared to some of the experiments in Figure 2.7. Further, note

that as the BDP increases (e.g., Figure 2.7d and Figure 2.8), the DE model predicts a

lack of convergence (which may be interpreted as a type of instability in the context

of TCP) for H-TCP’s cwnd . Similarly, the average ns-3 flow experiences greater

variation compared to cwnds in lower-BDP settings. We observe this in general for

larger BDPs, but predictably, the cwnd can be stabilized by introducing more flows,

albeit at the cost of decreasing each flow’s throughput and often forcing the protocol

to operate in the low-speed regime. These observations are consistent with those of

the numerical analysis discussion in Section 2.5.2. Note that in all our experiments,

the average cwnds match closely between ns-3 and the DE model, and similarly,

there is close agreement between s and ŝ. Hence, Figures 2.7 and 2.8 demonstrate

the MWLI model’s ability to effectively predict H-TCP’s behavior.

81

2.8 Conclusion

The main contribution of this work is a novel and versatile fluid model, which

we call the MWLI model, for cwnd - and rate-based data transport algorithms. The

model is structured so that the differential equations do not depend on the specific

window or rate function of a congestion controller. As a result, this framework offers

opportunities to model and analyze the stability of a diverse set of controllers whose

window or rate functions may not be linear and whose increase and decrease rules may

not be given in explicit form. We applied this model to three different algorithms:

TCP Reno, CUBIC and H-TCP. For the former, we prove that the new model is

equivalent to a well-established model for Reno. For CUBIC, the new model succeeds

where traditional methods of modeling cwnd are ineffective. We analyzed the fluid

model for CUBIC and discovered that for a given probability of loss model, its window

is locally uniformly asymptotically stable. We also derived a convergence bound on

the solution of the system as a function of the system parameters. Further, we

developed an event-based simulation framework to validate the model and related

theoretical results for CUBIC.

For H-TCP, we performed a linear stability analysis of the congestion controller

under certain assumptions. We find that H-TCP is unstable in most cases under

a particular loss model, but that it can be stabilized under a more realistic loss

model, e.g., such as one whose operation is closer to that of the PI AQM scheme.

We validated H-TCP’s model using ns-3 and find that the MWLI model is able to

predict average cwnd and average time between losses well.

82

CHAPTER 3

ON THE STOCHASTIC ANALYSIS OF A QUANTUM
ENTANGLEMENT DISTRIBUTION SWITCH

3.1 Introduction

Protocols that exploit quantum communication technology offer two main types of

advantages: they can either extend or render feasible the capabilities of their classical

counterparts, or they exhibit functionality that is entirely unachievable through clas-

sical means alone. For an example of the former, quantum key distribution (QKD)

protocols such as E91 [13] and BBM92 [4] can in principle yield information-theoretic

security by using entanglement to generate secure key bits. These raw secret key

bits can then be distilled into a one-time pad to encode messages sent between two

parties. For an example of the latter, distributed quantum sensing frameworks such

as [15] and [77] employ entanglement to overcome the standard quantum limit [21].

While these applications hold a tremendous amount of potential for distributed

quantum communication (and even computation, see, e.g., [39]), a substantial chal-

lenge is reliable generation of entanglement – an essential component for many of these

tasks – especially over a large distance. This is due to the fact that there is an expo-

nential rate-versus-distance decay for quantum state propagation both through ter-

restrial free-space and optical fiber channels [60, 70]. Quantum repeaters positioned

between communicating nodes can overcome this fundamental rate-versus-distance

tradeoff [26, 53]. The process of quantum repeater-assisted entanglement generation

is illustrated at a high level in Figure 3.1 and can be divided into two main steps. In

step one, each segment connecting two adjacent nodes attempts to generate an entan-

gled link. Qubits from a successfully-generated entanglement are stored in quantum

83

…

(a) no entanglement present

…

(b) all links successfully generate entangle-
ment

…

(c) repeater nodes perform entangling mea-
surements

…

(d) end nodes share an entangled state

Figure 3.1: Long-distance entanglement generation using quantum repeaters. The
two nodes at the edges are communicating parties, and the nodes between them are
quantum repeaters. Dashed lines represent lack of entangled links, while solid lines
represent presence of entanglement. The gray and red circles are unoccupied and
occupied quantum memories, respectively.

memories, one in each node (Figure 3.1b). Once entangled links are present on all

segments, the quantum repeaters perform entanglement swapping [78] on their two

locally-held qubits (Figure 3.1c). The result, if all swapping operations succeed, is an

end-to-end entangled link between the communicating parties (Figure 3.1d).

In this work, we use the term “quantum switch” instead of “repeater” because in

a more complex network than that of Figure 3.1, the device will likely be connected to

several nodes or users, hence it is reasonable to assume that it will be equipped with

entanglement switching logic. Quantum repeaters, switches, and similar devices (e.g.,

trusted nodes) will serve as building blocks of large-scale quantum networks. It is

natural, therefore, to ask questions about their fundamental limits from a mathemat-

ical perspective, in order to gain insight into what constitutes efficient operation for

such a device, as well as to create a performance comparison basis for future protocols

and algorithms that rely on these devices. To this end, we study a quantum switch

that serves entangled states to pairs of users in a star topology, with the objectives

of determining the capacity of the switch, as well as the quantum memory occupancy

distribution and expected number of stored qubits in memory at the switch when it

operates at capacity.

84

We accomplish these objectives by constructing a simple, yet descriptive model

of a quantum switch: we determine a small number of important model parameters

and abstract away the specifics of implementation. For instance, we do not focus

on a specific method of entanglement generation on a link, and we do not analyze a

specific quantum memory implementation; rather, we include the rate of entanglement

generation and memory coherence times as configurable system parameters. This

way, our model is agnostic to hardware architecture and protocol specifics, and is

kept general. Subsequently, when we analyze the model, we obtain results that are

often interpretable and intuitive.

In the most general case, the switch serves n-partite entangled states to sets

of users according to incoming requests, where n ≤ k. To achieve this, link-level

entangled states are generated at a constant rate across each link, resulting in two-

qubit maximally-entangled states (i.e., Bell pairs or EPR states). These qubits are

stored at local quantum memories: one from each Bell pair at the user and the

other one at the switch. When enough of these entanglements are accrued (at least

n of them), the switch performs multi-qubit measurements to provide end-to-end

entanglement to user groups of size n. When n = 2, the switch uses Bell-state

measurements (BSMs) and when n ≥ 3, it uses n-qubit Greenberger-Horne-Zeilinger

(GHZ) basis measurements [55]. In this work, we focus on the case of n = 2 – i.e.,

the case of bipartite-only switching, although some prior work on n ≥ 3, as well as n

being allowed to switch between 2 or 3 will be discussed.

We consider systems in which links may generate entanglement at different rates

and where the switch can store one or more qubits (each entangled with another

qubit held by a user) per link. Throughout this chapter, we refer to these pairs of

stored qubits as stored entanglements. Another factor that impacts performance is

decoherence of quantum states; we model it and study its effect. The main metric of

interest for this network is its capacity C, i.e., the maximum possible number of end-

85

to-end entanglements served by the switch per time unit. Another metric of interest

is the expected number of qubits Q in memory at the switch, E[Q]. Where possible,

we also derive in closed-form the distribution of the number of stored qubits at the

switch. Both C and E[Q] depend on the values of k, n, entanglement generation

and decoherence rates, number of quantum memories (often referred to as buffer size

throughout this chapter), and the switching mechanism, including the scheduling

policy used by the switch.

Contributions of this work are as follows: by modeling the switch as a continuous-

time Markov chain (CTMC), we derive C and E[Q] for n = 2 for a particular schedul-

ing policy and study how they vary as functions of k, buffer size, and decoherence

rate. From our analysis, we gain valuable insight into which factors influence capacity

the most, and which ones are of lesser consequence. For instance, we find that when

n = 2 and links are identical, the number of links and their entanglement generation

rate are the most impactful, while decoherence and buffer size have little effect. How-

ever, the same is not true in the case of non-identical links, where the distribution of

entanglement generation rates, combined with finite coherence time, can drastically

affect both C and E[Q].

The remainder of this chapter is organized as follows: in Section 3.2, we briefly

cover relevant background for quantum communication. In Section 3.3, we discuss

related work. In Section 3.4, we cover modeling techniques, assumptions, and objec-

tives. In Section 3.5, we introduce our CTMC models for n = 2 and present their

analyses. Numerical observations are discussed in Section 3.6. We conclude in Section

3.7.

3.2 Background

A qubit is the quantum analogue of a bit and can be described by a two-level

quantum-mechanical system, e.g., the polarization of a photon. Two qubits are said

86

to be entangled if the state of one cannot be described independently from the state

of the other. One of the most essential resources for quantum communication is a

maximally entangled two-qubit state known as a Bell state or Bell pair. The four

Bell pairs are given by

|Φ±〉 =
|00〉 ± |11〉√

2
and |Ψ±〉 =

|01〉 ± |10〉√
2

and can be used as an expendable resource in a number of distributed quantum tasks,

such as teleportation [5], or to generate a raw secret key bit in entanglement-based

QKD protocols. Another way to use these states is for long-distance entanglement

generation as depicted in Figure 3.1, where each solid line is a Bell state. In the spe-

cial case of long-distance Bell pair generation via connection of two shorter-distance

Bell pairs, the switch performs the swapping operation via a Bell state measurement

(BSM). In linear optics, this is a probabilistic but heralded operation, with the success

probability dependent on the exact implementation of the BSM as well as gate opera-

tion efficiencies [64, 17, 23]. We address this phenomenon in our model by introducing

a parameter that represents the BSM success probability.

In [32], Herbauts et al. implement an entanglement distribution network intended

for quantum communication applications. The fidelities of entanglement generated

in this network were 93% post-distribution, and fidelities of 99% were shown to be

achievable. The demonstration entails distributing bipartite entanglements to any

pair of users wishing to share entanglement in a multi-user network (there were eight

users in the experimental setup). Delivering multiple bipartite entanglements was

shown to be possible virtually simultaneously. The authors specifically cite a possible

application of the network in a scenario where a single central switch dynamically

allocates two-party entanglements to any pair of users in a static network. In this

work, we study variants of this system, where we assume that the switch has the ability

to store entangled qubits for future use, and that successfully-generated entanglement

87

– both at the link and end-to-end levels – has fidelity one. This latter assumption

allows us to obtain an upper bound on the entanglement switching rate and is a good

starting point for quantum switch analysis; the incorporation of non-unit state fidelity

(and the possible need for some form of entanglement purification, e.g., [6]) is left as

an open question and a subject of future work.

In recent years, there have been other promising experimental demonstrations

for realizing the fundamental components of quantum repeater architectures. For

instance, in [8], Bhaskar et al. implement quantum-memory-enhanced quantum com-

munication to overcome the fundamental limit of repeaterless communication [60]. At

the same time, new architectures and protocols, which promise to yield higher-fidelity

states and quicker end-to-end entanglement generation rates, have been proposed –

e.g., the quantum router proposal in [43] achieves both of these objectives. Such

advances further emphasize the importance of analysis and theoretical studies to help

guide hardware specifications and protocol design for quantum communication archi-

tectures.

3.3 Related Work

In [66], the authors use Markovian models to compute the expected waiting time

in quantum repeaters with probabilistic entanglement swapping. Specifically, they

consider entanglement distribution over a distance subdivided by repeater segments,

and while they propose a method of computing the average waiting time for an arbi-

trary number of links, explicit expressions are provided for only up to four segments.

In contrast, we consider a single quantum repeater-like device, but one that services

an arbitrary number of links.

In Chapter 5, we analyze the capacity region of a quantum entanglement switch

that serves users in a star topology and is constrained to store one or two qubits per

link. The problem setup is quite similar to that of this work, with the exception that

88

the switch has the ability to serve bipartite and tripartite end-to-end entanglements,

and all links are assumed to be identical. There, we examine a set of randomized

switching policies and find policies that perform better than time-division multi-

plexing between bipartite and tripartite entanglement switching. Note that while in

Chapter 5, we allow the switch to choose between two types of entanglement to serve

at every time step, in this work we fix n and analyze it in more detail: for instance,

in Chapter 5 all links are assumed to be identical, while in this work links may be

heterogeneous and buffer sizes can be larger than one or two per link.

In [54], we study a quantum switch serving n-partite end-to-end entangled states

to k ≥ n users and for n ≥ 2. The setup is identical to that of this work, but limited

to only the case of a homogeneous-link, infinite-buffer system with no quantum state

decoherence. For the case of n = 2, the results are consistent with those of this

work, and we build on them to explore more complex bipartite switching systems.

Last, in Chapter 4, we model the n = 2 case for an identical-link, infinite buffer

switch using a discrete-time Markov chain (DTMC). In Section 4.5, we compare the

results of this logically more accurate model with those of this work and find that the

differences in predictions of the performance metrics are small. On the other hand,

as it will become evident in the following sections of this chapter, CTMCs are far

easier to use in this context and therefore may be considered a more powerful tool for

modeling quantum switches. As new quantum architectures and technologies emerge,

we expect quantum networks to become more prevalent and suitable for practical use.

With link-level and especially end-to-end entanglements being a valuable commodity

in these networks, proper resource management will be imperative for reliable and

efficient operation.

89

(a) (b) (c) (d) (e)

Figure 3.2: Example of quantum switch operation. No Bell pairs are present in (a).
When enough Bell pairs are successfully generated (solid lines in (b) and (c)), the
switch performs a BSM (d), entangling the two users’ qubits (e).

3.4 Model and Objectives

Consider first a fairly general setting of the proposed problem: k users are at-

tached to a quantum entanglement distribution switch via k dedicated links. At any

given time step, any set of n users (with n ≤ k) may wish to share an end-to-end en-

tangled state. The creation of an end-to-end entanglement involves two steps. First,

users generate pairwise entanglements with the switch, which we call link-level entan-

glements. Each of these results in a two-qubit entangled (Bell) state, with one qubit

stored at the switch and the other stored at a user. Once there are n link-level Bell

pairs available to fulfill a request between n users, the process enters step two: the

creation of an end-to-end entanglement. The switch chooses the set of n locally-held

qubits (that are entangled with n qubits held by the n distinct users) corresponding to

the request and performs an entangling measurement. If such a measurement is suc-

cessful, the result is an n-qubit maximally-entangled state between the corresponding

n users. If after this step more link-level entanglements are available and can be used

to fulfill another request, the switch repeats the second step until either there are

fewer than n local qubits left or until no more requests can be fulfilled. Figure 3.2

illustrates an example with k = 4 and n = 2.

In this chapter, our objective is to derive a tight upper bound on the entangle-

ment switching rate when n = 2, i.e., the maximum possible rate at which the switch

may serve bipartite end-to-end entangled states – we call this quantity the bipartite

90

switching capacity of the system. Since this upper bound should hold for any work-

load, it is necessary for us to assume that any two users wish to share an entangled

state; in fact, removing this assumption would necessarily decrease the rate at which

the switch is allowed to serve end-to-end entanglement. With this request policy, the

switch has no restrictions on which measurements to perform whenever two distinct

link-level entanglements are available. Hence, in step two of entanglement distribu-

tion, the switch simply chooses a set of two qubits corresponding to Bell pairs on two

distinct links, and uses them in the entangling measurement. Step two is repeated

until there are no more two distinct links with available Bell pairs. The results of our

analysis on the capacity of the switch can be used as a comparison basis for other

types of scenarios, in which, for example, each pair of users may specify a desired

rate of communication with each other through the switch. Another utility of this

analysis is that by examining a switch that operates at or near maximum capacity,

one may gain insight on the practical memory requirements of a switch.

Both link-level entanglement generation and entangling measurements can be

modeled as probabilistic phenomena [26]. In this work, we model the former as a Pois-

son process: each link attempts entanglements at rate λ, and for link l ∈ {1, . . . , k},

each attempt succeeds with probability pl ≈ e−βLl , where Ll is the length of the

lth link (e.g., optical fiber) and β its attenuation coefficient. Hence, link l gener-

ates successful entanglements with rate µl := λpl. We refer to the special case of

µl = µm, ∀l,m ∈ {1, . . . , k} as a homogeneous system, and when they are not nec-

essarily equal, as a heterogeneous system. We assume that whenever a link-level

entanglement is successfully generated, it always has fidelity one, but in certain cases

we will consider decoherence post-generation. In such cases, we model coherence time

as an exponential random variable (r.v.) with mean 1/α. Under this assumption, an

entanglement’s fidelity goes from one directly to zero upon decoherence, i.e., the fi-

91

delity does not degrade while the entanglement is in storage. We also assume that

measurements performed by the switch succeed with probability q1.

If at any time there are fewer than n = 2 link-level entanglements, the switch may

choose to store the available entangled qubits and wait until there are enough new

ones generated to create an end-to-end entanglement. We assume that the switch

can store B ≥ 1 qubits in its buffer, per link. If on the other hand, there are more

than n link-level entanglements, the switch must decide which set(s) of them to use in

measurement(s). Such decisions can be made according to a pre-specified scheduling

policy: for example, a user or a set of users may be given higher priority for being

involved in an end-to-end entanglement. Other scheduling policies may be adaptive,

random, or any number of hybrid policies. In Chapter 4, we assume that the switch

uses the Oldest Link Entanglement First (OLEF) rule, wherein the oldest link-level

entanglements have priority to be used in entangling measurements. A practical

reason for this rule is that quantum states are subject to decoherence, which is a

function of time; hence, our goal is to make use of link-level entanglements as soon

as possible.2 Note that when it comes to choosing Bell pairs to be used in entangling

measurements, the OLEF rule is only applicable if the system is operating in discrete

time: if we model the system in continuous time, there is never ambiguity about

which link-level Bell pair should be used first, since there are no “time slots” and

the switch performs a BSM as soon as two pairs are successfully generated3. On the

other hand, when we model systems with a finite number of quantum memories, then

1With a linear optical circuit, four unentangled ancilla single photons and photon number resolv-
ing detectors, with all the devices being lossless, q = 25/32 = 0.78 can be achieved for BSMs [17].
With other technologies q close to 1 can be achieved [23].

2If the system is operating in discrete time, there may arise instances in which two or more links
are tied for having the oldest entanglements. In such cases, as long as the switch follows the OLEF
rule, sets of link-level entanglements are chosen at random for measurements, provided that each set
consists of n entanglements belonging to n distinct links.

3Another way to think about the OLEF rule is that it always applies, but its decisions are trivial
in continuous time.

92

(even in continuous time) there may occur scenarios in which a link has used up all

its available memories and must decide whether to discard an older Bell pair in order

to store a newly-generated one. In such a case, the OLEF rule does apply, and we

discard the qubit associated with the oldest stored entanglement to make space for

the qubit from the newly-generated Bell pair.

The state space of this system can be represented by a vector Q(t) ∈ {0, 1, . . . , B}k,

where the lth element corresponds to the number of stored entanglements at link l

at time t. One consequence of the assumption that any set of n users always wish to

share an entangled state is that at most n− 1 distinct users will store entanglements

at any time. Hence, throughout this chapter, up to one link may have a stored Bell

pair after step two of entanglement distribution. Our goal is to derive expressions for

system capacity C (i.e., the number of end-to-end entanglements produced per time

unit) and the expected number of stored qubits E[Q]. Throughout the chapter, we

use the result that if the balance equations of an irreducible CTMC have a unique

and strictly positive solution, then this solution represents the stationary distribution

of the chain.

3.5 Continuous Time Markov Chain for Bipartite Switching

In this section, we introduce and analyze a CTMC model of a bipartite entan-

glement switch serving k users. We first assume that memories do not decohere

and obtain expressions for capacity and the expected number of qubits stored at the

switch. We then modify the model to incorporate decoherence and analyze it. Last,

we derive an upper bound for the capacity of the switch.

3.5.1 The Heterogeneous Case

Assume µl depends on l, i.e., the links are heterogeneous. For subsequent analysis,

it is useful to define

93

γ :=
k∑
l=1

µl,

the aggregate entanglement generation rate over all links. Also, let el be a size k

vector with all zeros except for the lth component, which is 1, and let 0 be a vector

of size k with all entries equal to 0.

We are interested in the stationary distribution and stability conditions for a

heterogeneous system with infinite and finite buffers. As discussed in Section 3.4, in

bipartite entanglement switching, only one link stores entanglements at a time, but

since links generate entanglements at different rates, we must keep track of which

link is associated with the stored entanglement(s). Let Q(t) = (Q1(t), . . . , Qk(t)) ∈

{0, 1, 2, . . . }k represent the state of the system at time t, where Ql(t) is the number

of entanglements stored at link l, l ∈ {1, . . . , k}, at time t. As a consequence of the

scheduling policy described in Section 3.4, if Qi(t) > 0 for some i, then Qj(t) = 0,

j 6= i. In other words, Q(t) only takes on values 0 or jel, l ∈ {1, . . . , k}, j ∈ {1, 2, . . . }.

Here, 0 represents the state where no entanglements are stored, and jel represents

the state where the lth link has j stored entanglements.

Define the following limits when they exist:

π0 = lim
t→∞

P (Q(t) = 0),

π
(j)
l = lim

t→∞
P (Q(t) = jel).

Once we obtain expressions for π0 and π
(j)
l , we can derive expressions for capacity

and the expected number of stored qubits E[Q].

3.5.1.1 Infinite Buffer

Figure 3.3 presents the CTMC for a switch with an infinite buffer. Consider state

0 (no stored entanglements). From there, a transition along one of the k “arms” of the

94

Figure 3.3: A CTMC for a k-user, infinite buffer, heterogeneous-link switch. µl is
the entanglement generation rate of link l, while γ is the aggregate entanglement
generation rate of all links. el is a vector of all zeros except for the lth position,
which is equal to one.

CTMC occurs with rate µl, when the lth link successfully generates an entanglement.

For a BSM to occur, any of the k − 1 other links must successfully generate an

entanglement: this occurs with rate γ − µl. The balance equations are

π0µl = π
(1)
l (γ − µl), l ∈ {1, . . . , k},

π
(j−1)
l µl = π

(j)
l (γ − µl), l ∈ {1, . . . , k}, j ∈ {2, 3, . . . },

π0 +
k∑
l=1

∞∑
j=1

π
(j)
l = 1.

From above, we see that for j = 1, 2, . . . ,

π
(j)
l = ρjlπ0, where ρl ≡

µl
γ − µl

,∀ l.

It remains to obtain π0; we can use the normalizing condition:

π0 + π0

k∑
l=1

∞∑
j=1

ρjl = π0

(
1 +

k∑
l=1

(
∞∑
j=0

ρjl − 1

))
= 1.

95

Now, assume that for all l ∈ {1, . . . , k}, ρl < 1. This implies that for all l, µl < γ/2.

This is the stability condition for this chain. Then,

π0 =

(
1 +

k∑
l=1

ρl
1− ρl

)−1

and the capacity is

C = q
k∑
l=1

∞∑
j=1

π
(j)
l (γ − µl) =

q
k∑
l=1

µl
1−ρl

1 +
k∑
l=1

ρl
1−ρl

=
qγ

2
. (3.1)

See Appendix B.1 for a proof of the last equality. The distribution of the number of

stored entanglements is

P (Q = j) =


π0, if j = 0,

k∑
l=1

π
(j)
l = π0

k∑
l=1

ρjl , if j > 0.

The expected number of stored entanglements is

E[Q] =
∞∑
j=1

jP (Q = j) =
∞∑
j=1

jπ0

k∑
l=1

ρjl =

k∑
l=1

ρl
(1−ρl)2

1 +
k∑
l=1

ρl
1−ρl

.

3.5.1.2 Finite Buffer

In the case of heterogeneous links and a finite buffer of size B, the CTMC has the

same structure as in Figure 3.3, except that each “arm” of the chain terminates at

Bel, ∀l ∈ {1, . . . , k}. The balance equations are

96

π0µl = π
(1)
l (γ − µl), l ∈ {1, . . . , k},

π
(j−1)
l µl = π

(j)
l (γ − µl), l ∈ {1, . . . , k}, j ∈ {2, . . . , B},

π0 +
k∑
l=1

B∑
j=1

π
(j)
l = 1

and have solution

π
(j)
l = ρjlπ0, l ∈ {1, . . . , k}, j ∈ {1, . . . , B},

where ρl is defined as in the infinite buffer case. Then,

π0

(
1 +

k∑
l=1

B∑
j=1

ρjl

)
= 1, hence π0 =

(
1 +

k∑
l=1

B∑
j=1

ρjl

)−1

,

and the capacity is

C = q
k∑
l=1

B∑
j=1

(γ − µl)π(j)
l =

q
k∑
l=1

µl(1−ρBl)

1−ρl

1 +
k∑
l=1

ρl(1−ρBl)

1−ρl

. (3.2)

The distribution of the number of stored qubits is given by

P (Q = j) =


π0, if j = 0,

k∑
l=1

π
(j)
l = π0

k∑
l=1

ρjl , if 0 < j ≤ B.

The expected number of stored qubits is

E[Q] =
B∑
j=1

jP (Q = j) =

k∑
l=1

ρl(BρB+1
l −(B+1)ρBl +1)

(1−ρl)2

1 +
k∑
l=1

ρl(1−ρBl)

1−ρl

.

97

The rate received by user l (connected to link l) is given by

Cl = q

(γ − µl)
B∑
j=1

π
(j)
l + µl

k∑
m=1,
m6=l

B∑
j=1

π(j)
m

 , (3.3)

where the first term represents the production of entanglements by link l (which

get consumed by other links at rate γ − µl) and the second term represents the

consumption by link l of stored entanglements at other links. Note then, that if we

were to sum all Cl, each end-to-end entanglement would be double-counted. Hence,∑
Cl = 2C. (Note: in the infinite-buffer case, Cl = qµl, l ∈ {1, . . . , k}; see Appendix

B.1 for a proof. Then,
∑
Cl = qγ = 2C, another proof of the last equality in Eq.

(3.1).) The expected number of stored qubits at link l, E[Ql] can be obtained by

taking the lth component of the sum in the numerator of the expression for E[Q]. In

other words, when B =∞,

E[Ql] =

ρl
(1−ρl)2

1 +
k∑
l=1

ρl
1−ρl

.

For a homogeneous system, E[Ql] = E[Q]/k.

3.5.2 The Homogeneous Case

Suppose all links (or users) have the same entanglement generation rates, i.e.

µl = µ, ∀ l ∈ {1, . . . , k}. We can take advantage of this homogeneity as follows: since

only one link can be associated with stored qubits at the switch at any given time, and

all links have equal rates, it is only necessary to keep track of the number of stored

entanglements, and not the identity of the link (or user). Hence, the state space of the

CTMC can be represented by a single variable taking values in {0, 1, . . . , B} where

B =∞ corresponds to the infinite buffer case, and B <∞ the finite buffer case. We

discuss each of these in detail next.

98

0 1 2

kμ μ μ

(k − 1)μ (k − 1)μ (k − 1)μ

Figure 3.4: A CTMC model with k users, infinite buffer, and homogeneous links. µ
is the entanglement generation rate.

3.5.2.1 Infinite Buffer

Figure 3.4 depicts the CTMC for k homogeneous links and B = ∞. When no

entanglements are stored (system is in state 0), any of the k links can generate a new

entanglement, so the transition to state 1 occurs with rate kµ. Let S represent the

link associated with one or more stored entanglements. From states 1 and above,

transitioning “forward” (or gaining another entanglement in storage) occurs when-

ever link S generates a new entanglement. This event occurs with rate µ. Finally,

moving “backward” through the chain (corresponding to using a stored entanglement,

when the switch performs a BSM) occurs whenever any of the k− 1 links other than

S successfully generates an entanglement; this event occurs with rate (k − 1)µ. It

is easy to show that when there are two links, the system is not stable (and a sta-

tionary distribution does not exist). Take, for instance, the stability condition for a

heterogeneous system with infinite buffer from Section 3.5.1.1:

µl <
γ

2
=

k∑
l=1

µl

2
.

Setting all µl’s equal yields the stability condition k > 2 for the homogeneous system

with infinite buffer. Henceforth, we only consider k ≥ 3.

Note that the CTMC in Figure 3.4 is a birth-death process whose stationary

distribution can be obtained using standard techniques found in literature (e.g. [42]).

99

0 1 2

kμ μ μ

(k − 1)μ (k − 1)μ (k − 1)μ

μ

(k − 1)μ

B-1

μ

(k − 1)μ

B

Figure 3.5: A CTMC model with k users, finite buffer of size B, and homogeneous
links. µ is the entanglement generation rate.

The steady-state probability of being in state 0 is π0 = (k−2)/(2(k−1)) and of being

in state j is πj = k(k − 2)/(2(k − 1)j+1). The capacity is

C = q
∞∑
i=1

πi(k − 1)µ = q(k − 1)µ(1− π0) =
qµk

2
.

The expected number of stored entangled pairs is given by

E[Q] =
∞∑
i=0

iπi = kπ0

∞∑
i=1

i

(
1

k − 1

)i
=

k

2(k − 2)
.

Note that the more general case of multipartite entanglement switching (i.e., n ≥ 2)

for homogeneous-link systems with infinite buffer and no quantum state decoherence

is covered in [54].

3.5.2.2 Finite Buffer

Figure 3.5 illustrates the CTMC for a system with k homogeneous links being

served by a switch with finite buffer space B. When there are B stored entanglements

and a new one is generated on link S, we assume that the switch drops the oldest

stored entanglement, adhering to the OLEF policy. This CTMC is also a standard

birth-death process whose solution can be found in literature (e.g. [42]) and has

π0 =
(k − 2)(k − 1)B

2(k − 1)B+1 − k
.

100

Using the fact that
∑B

i=1 πi = 1− π0, the capacity is

C = q
B∑
i=1

µ(k − 1)πi =
qµk

(
1−

(
1

k−1

)B)
2− k

(
1

k−1

)B+1
.

Note that as B →∞, C for the finite buffer case approaches C for the infinite buffer

case. The expected number of stored qubits is

E[Q] =
B∑
i=1

iπi =
k
(
B + (k − 1)B+1 − (B + 1)(k − 1)

)
(2(k − 1)B+1 − k)(k − 2)

.

3.5.3 Decoherence

Assume now that quantum states in our system are subject to decoherence. Fur-

ther, assume that all states decohere at the same rate α, even in the case of hetero-

geneous links, since coherence time is dependent on the quantum memories at the

switch and not on the links themselves. Under the assumption that coherence time is

exponentially distributed with rate 1/α, incorporating decoherence does not change

the structure of the CTMC; it merely increases “backward” transition rates. Specif-

ically, in the homogeneous case, the transition from any state j ≥ 1 to state j − 1

now has rate (k− 1)µ+ jα, where jα represents the aggregate decoherence rate of all

j stored qubits. In the heterogeneous case, the transitions are modified in a similar

manner for any state jel, l ∈ {1, . . . , k}, j ≥ 1. The derivations of stationary distri-

butions, capacities, and expected number of qubits stored are very similar to those

for models without decoherence; we present the final relevant expressions here and

leave details to Appendix B.2. All expressions below can be computed numerically.

Heterogeneous Links: For finite buffer size B <∞,

101

π0 =

(
1 +

k∑
l=1

B∑
j=1

j∏
i=1

µl
γ − µl + iα

)−1

,

C = qπ0

k∑
l=1

B∑
j=1

(γ − µl)
j∏
i=1

µl
γ − µl + iα

,

E[Q] = π0

B∑
j=1

j

k∑
l=1

j∏
i=1

µl
γ − µl + iα

.

For infinite-size buffer, let B →∞ in all expressions above.

Homogeneous Links: For finite buffer size B <∞,

π0 =

(
1 + k

B∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)

)−1

,

C = q(k − 1)µ(1− π0),

E[Q] = π0k
B∑
i=1

i
i∏

j=1

µ

((k − 1)µ+ jα)
.

For infinite-size buffer, let B →∞ in all expressions above.

3.6 Numerical Observations

In this section, we investigate the capacity and buffer requirements of a bipartite

entanglement switch based on our model. In particular, we are interested in how

buffer capacity B and number of users k affect capacity and E[Q]. We then examine

the effect of decoherence on homogeneous and heterogeneous switches with finite as

well as infinite buffer capacities.

Throughout this section, we denote the distance of user l from the switch as Ll

(measured in km). We assume that each user is connected to the switch with single

mode optical fiber of loss coefficient β = 0.2 dB/km. We also assume that the switch

is equipped with a photonic entanglement source with a raw (local) entanglement

102

generation rate of 1 Giga-ebits4 per second. So, in every (1 ns long) time slot, one

photon of a Bell state is loaded into a memory local to the switch, and the other

photon is transmitted (over a lossy optical fiber) to a user, who loads the received

photon into a memory (held by the user), which has a trigger which lets the user know

the time slots in which their memory successfully loads a photon. Let us denote τ = 1

ns as the time duration of one qubit of each entangled pair, and the entanglement

generation rate between the switch and the user l, µl = cηl/τ ebits per second. Here,

we take c = 0.1 to account for various losses other than the transmission loss in fiber,

for example inefficiencies in loading the entangled photon pair in the two memories

(at the switch and at the user), and any inefficiency in a detector in the memory at

the user used for heralding the arrival of a photon (e.g., by doing a Bell measurement

over the received photon pulse and one photon of a locally-generated two-photon

entangled state produced by the user). Here, ηl, the transmissivity of the optical

fiber connecting user l and the switch is given by ηl = 10−0.1βLl . Channel loss to user

l, measured in dB, is 10 log10(1/ηl). Unless otherwise stated, all µl discussed in this

section have units of Mega-ebits/sec.

3.6.1 Effect of Buffer Size: Homogeneous Links

In homogeneous-link systems, all users are equidistant from the switch (i.e. Ll =

Lm, ∀l,m ∈ {1, . . . , k}). In Figure 3.6, we compare models with infinite and finite

buffer sizes as the number of links k is varied. Note that when links are homogeneous,

qµ is simply a multiplicative factor in the expressions for C, and does not factor into

formulas for E[Q]. Hence, we set qµ = 1 for Figure 3.6 (left), and with µ = 1, the links

are 100 km long. For the finite buffer models, B is varied from one to five. Recall from

Section 3.5.2.2 that as B → ∞, the capacity of the finite-buffer model approaches

4An ebit is one unit of bipartite entanglement corresponding to the state of two maximally
entangled qubits, the so-called Bell or EPR state.

103

1 2 3 4 5

Buffer Size (B)

1

2

3

4

5

C
a

p
a

c
it
y

k=3, B=
k=3, B finite

k=5, B=
k=5, B finite

k=10, B=
k=10, B finite

2 4 6 8 10

Buffer Size (B)

0.6

0.8

1

1.2

1.4

A
v
g
.
#
 o

f
Q

u
b
it
s
 (

E
[Q

])

k=3, B=
k=3, B finite

k=5, B=
k=5, B finite

k=10, B=
k=10, B finite

Figure 3.6: The effect of buffer size on capacity (left) and on the expected number
of stored entanglements (right) in systems with homogeneous links. Capacity is in
Mega-ebits/sec.

that of the infinite-buffer model, as expected, and note that the same is true when

k →∞. Interestingly, this convergence occurs rapidly, even for the smallest value of

k (3), and the maximum relative difference between the two capacities is 0.25 (even

as µ increases). From this, we conclude that buffer does not play a major role in the

capacity of a homogeneous system under the switching policy described in Section

3.4 and only a small quantum memory is required.

Figure 3.6 (right) shows the behavior of E[Q] for infinite and finite buffer sizes and

different values of k. As with capacity, the effect of buffer capacity on E[Q] diminishes

as k grows, and the largest relative difference occurs for k = 3 and B = 1, and equals

1.5 – less than two qubits. Note from the expressions for E[Q] in Sections 3.5.2.1 and

3.5.2.2 that as k → ∞, E[Q] → 1/2. Numerically, we observe that convergence to

this value occurs quickly: even for k = 25, E[Q] is already 0.54 for both the infinite

and finite models.

3.6.2 Effect of Buffer Size: Heterogeneous Links

Figure 3.7 illustrates how buffer size and number of users affect C and E[Q] for

a set of heterogeneous systems. We vary the number of links from three to nine. For

104

20 40 60 80

Buffer Size (B)

1.4

1.6

1.8

2

C
a

p
a

c
it
y

Infinite Buffer

Finite Buffer

k=3

2 4 6 8 10

Buffer Size (B)

3.4

3.5

3.6

3.7

3.8

3.9

C
a

p
a

c
it
y

Infinite Buffer

Finite Buffer

k=6

1 2 3 4 5 6

Buffer Size (B)

5.4

5.5

5.6

5.7

5.8

5.9

C
a
p

a
c
it
y

Infinite Buffer

Finite Buffer

k=9

50 100 150

Buffer Size (B)

0

5

10

15

20

A
v
g

.
#

 o
f

Q
u

b
it
s
 (

E
[Q

])

Infinite Buffer

Finite Buffer

k=3

2 4 6 8 10

Buffer Size (B)

0.6

0.7

0.8

A
v
g

.
#

 o
f

Q
u

b
it
s
 (

E
[Q

])

Infinite Buffer

Finite Buffer

k=6

1 2 3 4 5 6

Buffer Size (B)

0.5

0.55

0.6

0.65

0.7

A
v
g
.
#
 o

f
Q

u
b
it
s
 (

E
[Q

])

Infinite Buffer

Finite Buffer

k=9

Figure 3.7: Capacity (Mega-ebits/sec) and expected number of qubits in memory
E[Q] for heterogeneous systems with varied number of links and buffer sizes. Links
are divided into two classes: one class generates entanglements approximately twice
as quickly as the other class.

each value of k, the links are split into two classes: links in the first class successfully

generate entanglements at rate µ1 and those in the second class at rate µ2. We set

µ1 = 1.9µ2 and µ2 = 1. This setting corresponds to links in class one having lengths

86 km and links in class two having lengths 100 km. Values of µ1 and µ2 are chosen

in a manner that satisfies the stability condition for heterogeneous systems: recall

from Section 3.5.1.1 that for all l ∈ {1, . . . , k}, µl must be strictly less than half the

aggregate entanglement generation rate. For all experiments, q = 1 since it only

scales capacity.

For each value of k, the ratio of class 1 to class 2 links is 1:2 (so k = 3, 6, 9

have one, two, and three class 1 links, respectively). As with the homogeneous-link

systems, we observe that the slowest convergence of the finite-buffer metrics C and

E[Q] to corresponding infinite-buffer metrics is for smaller values of k and the largest

relative difference is for smaller values of B. However, the rate of convergence speeds

up quickly as k increases from 3 to 6: with the latter, convergence is already observed

105

0 0.2 0.4 0.6 0.8 1

Decoherence rate ()

0

1

2

3

4

5

C
a

p
a

c
it
y
/E

[Q
]

k=3 C

k=3 E[Q]

k=5 C

k=5 E[Q]

k=10 C

k=10 E[Q]

Figure 3.8: Effect of decoherence on capacity (Mega-ebits/sec) and expected num-
ber of stored qubits E[Q], for varying number of users k. For all experiments, the
entanglement generation rate is µ = 1 for all links.

for B < 10. Meanwhile, when k = 9, there is little benefit in having storage for more

than two qubits. Another interesting observation is that quantum memory usage is

large when k = 3 but not for larger values of k. This is due to the system operating

closer to the stability constraints for k = 3 than larger values of k. In the next

section, we will see another example of a system that operates near the boundary of

its stability region. In such cases, C and E[Q] can be affected significantly as B is

varied.

3.6.3 Effect of Decoherence

In this section, we study the effect of decoherence on capacity and expected num-

ber of stored qubits E[Q]. We set q = 1 for all experiments since it only scales

capacity. Figure 3.8 presents C and E[Q] for a homogeneous system with µ = 1

(corresponding to 100 km long links), B = ∞ and different values of k, as decoher-

ence rate α varies from 0 (the equivalent of previous models that did not incorporate

decoherence) to µ = 1. Note that in practice, α is expected to be much smaller than

µ. We observe that even as α approaches µ decoherence does not cause major degra-

106

0 0.5 1

Decoherence rate ()

0

2

4

6

8

10

C
a
p
a
c
it
y

k=3

k=6

k=9

k=18

k=30

0 0.5 1

Decoherence rate ()

0

20

40

60

80

100

A
v
g
.

#
 o

f
Q

u
b
it
s
 E

[Q
] k=3

k=6

k=9

k=18

k=30

0 0.05 0.1
0

5

10

Figure 3.9: Effect of decoherence on capacity (Mega-ebits/sec) and expected number
of stored qubits E[Q], for varying number of users k. In all experiments, the links are
heterogeneous.

dation in capacity for homogeneous systems, and likewise does not introduce drastic

variations in E[Q].

Figure 3.9 presents the effect of α on the performance of a heterogeneous system

with infinite-size buffer. In these experiments, entanglement generation rates are set

in a similar manner to that of Section 3.6.2, with two classes of links configured so

that the first class generates entanglements almost twice as fast as the second class

(here, µ1 = 0.99 and µ2 = 0.5, corresponding to 100.2 km and 115 km long links

for class one and two, respectively), and the number of links in class one to those in

class two is 1:2. In these experiments, for each value of k, capacity behaves much

as it would in a homogeneous system with µ set as the average of the µl from the

heterogeneous system. Note that for k = 3, E[Q] is very large when α = 0; similar

to the experiment in Figure 3.7 (see panel with k = 3) this is because the system is

operating near the boundary of its stability region. In all other cases, E[Q] is close

to 0.

In Figure 3.10(a), we focus on a heterogeneous system that operates near the

boundary of its stability region and observe the effects of both decoherence and

buffer size on C and E[Q]. There are five links, with entanglement generation rates

107

0 5 10 15

Decoherence rate ()

24

26

28

30

32

34

36

C
a
p
a
c
it
y

B=1

B=2

B=5

B=10

B=100

0 5 10 15

Decoherence rate ()

0

10

20

30

A
v
g
.
#
 o

f
Q

u
b
it
s
 E

[Q
] B=1

B=2

B=5

B=10

B=100

0 1 2

2

4

6

(a) Heterogeneous-link system

0 5 10 15

Decoherence rate ()

28

30

32

34

36

C
a
p
a
c
it
y

B=1

B=2

B=5

B=10

B=100

0 5 10 15

Decoherence rate ()

0.5

0.6

0.7

0.8

0.9

A
v
g
.
#
 o

f
Q

u
b
it
s
 E

[Q
] B=1

B=2

B=5

B=10

B=100

(b) Homogeneous-link system

Figure 3.10: Effect of decoherence on capacity (Mega-ebits/sec) and expected number
of stored qubits E[Q] for k = 5 links and varying buffer sizes B. In (a), µl are
(35 15 15 3 3), and in (b), µ is the average of µl, l = 1, . . . , 5, i.e. 14.2. For all plots
above, B = 100 curves behave equivalently to B =∞.

(35 15 15 3 3) Mega-ebits/sec, corresponding to link lengths of 22.8, 41.2, 41.2, 76,

and 76 km, respectively. For this system, γ/2 = 35.5, so the fastest link is just below

the constraint when α = 0. The average of the µl is 14.2, so α is varied from 0 to

this value. B is varied from 1 to 100, with the latter being close enough to mimic

infinite buffer behavior for C and E[Q]. Figure 3.10(b) presents the performance of

a homogeneous system with k = 5 and µ = 14.2 for a comparison. We observe that

the homogeneous system achieves higher capacity for all values of B, even though

the average entanglement generation rate is the same for both systems. Further, the

108

homogeneous system is more robust to changes in buffer size than the heterogeneous

system: for the former, B = 5, 10 are equivalent to B = 100. Further, note that

for B = 100 and α = 0 the heterogeneous system performs almost as well as the

homogeneous system in terms of capacity, but the memory usage is much higher for

the former. Finally, for this buffer size, as α increases, the homogeneous system is

more robust to the effects of decoherence: capacity degrades by 7.35 Mega-ebits/sec

for the heterogeneous system between α = 0 and α = 14, while it degrades by 4.54

Mega-ebits/sec for the homogeneous system.

3.7 Conclusion

In this work, we examined variants of a system with k users who are being served

bipartite entangled states by a quantum entanglement distribution switch in a star

topology. Each user is connected to the switch via a dedicated link; we considered both

the case of homogeneous and heterogeneous links. We also analyzed cases in which

the switch has finite or infinite buffer space for storing entangled qubits. We obtained

simple and intuitive expressions for switch capacity, as well as for the expected number

of qubits in memory when the switch operates at or near capacity.

We made numerical comparisons of these two metrics while varying the number of

users k and buffer sizes B. We observed that in most cases, little memory is required

to achieve the performance of an infinite-memory system. We also made numerical

observations for models that incorporate decoherence and concluded that the degra-

dation of quantum states in homogeneous systems has little effect on performance

metrics, while it can have more significant consequences in heterogeneous systems

that operate near the boundaries of their stability regions.

109

CHAPTER 4

ON THE EXACT ANALYSIS OF AN IDEALIZED
QUANTUM SWITCH

4.1 Introduction

In this chapter, we continue our study of the most basic and fundamental compo-

nent of a quantum network – a single quantum switch. As in Chapter 3, we assume

that the switch serves k users in a star topology and that each user has a dedicated

link connected to the switch. Recall that in Chapter 3, the objective was to char-

acterize the performance of such a device, for example by determining its capacity

(defined as the maximum achievable rate of entanglement switching), and deriving

expressions for the expected quantum memory occupancy under various assumptions

– e.g., while assuming a particular quantum memory coherence time or limitations

on the available number of memories. In this chapter, we also construct a model that

abstracts away various architecture and physical implementation details about the

system, e.g., the method used for entanglement generation or how quantum memo-

ries are realized, but in contrast to Chapter 3, here we use a discrete-time Markov

chain (DTMC) instead of a continuous-time Markov chain (CTMC).

In Chapter 3, we demonstrated that certain physical phenomena, such as state

decoherence, link heterogeneity, and finite quantum storage, are fairly easy to in-

corporate into a CTMC. An unfortunate property of our DTMC model is that it is

difficult to extend to include the aforementioned system characteristics. Thus, we

focus here on the simplest variant of the problem, wherein the links connecting the

users to the switch are identical, there is no quantum state decoherence, and the

110

switch has infinite capacity to store qubits (as in Chapter 3, we often use the term

buffer in reference to the quantum storage at the switch). Nevertheless, there is

value in studying a quantum switch using a DTMC, as the system is inherently a

discrete-time system. Hence, while CTMCs have been shown to be more expressive

as a modeling technique, there will undoubtedly be some differences in the resulting

performance metrics. To quantify these differences, and determine whether CTMCs

are a reasonable approximation to the original system, we compare the performance

metrics obtained from both models.

Following is a summary of the results:

– the capacity of the switch is given by

C =
qkp

2
,

where k is the number of users or links, p is the probability of successfully

generating entanglement at the link level, and q is the probability of a successful

swapping operation;

– when the switch operates at capacity, the expected number of stored qubits is

given by

E[Q] =
1 + β

2(1− β)
,

where Q is the number of qubits stored at the switch in steady state, across all

links, and β is in the interval (0, 1) and is the solution to the following equation:

(βp+ p)k−1(p+ βp)− β = 0;

– the DTMC is stable if and only if k ≥ 3;

111

– the expression for the capacity of the switch obtained using the DTMC matches

exactly that of the CTMC model from Chapter 3. On the other hand, the

CTMC overestimates the expected number of qubits in memory in steady state,

but since the discrepancy is not significant, we conclude that the CTMC model

is a reasonable approximation to the behavior of the system considered in this

work.

The rest of this chapter is organized as follows: in Section 4.2, we introduce the

relevant background and discuss related work on quantum switch modeling. In Section

4.3, we formally introduce the DTMC model and state the objectives. The analysis

is performed in Section 4.4. In Section 4.5, we compare the DTMC introduced in this

chapter with the CTMC model from Chapter 3. We conclude in Section 4.6.

4.2 Background and Related Work

In general, all quantum states are subject to decoherence, which can be thought of

as leakage of information from the quantum system into the environment. Fidelity, a

number in [0, 1], is a measure of closeness of a possibly mixed state to the desired pure

state, with unit fidelity implying that the two states have equivalent representations.

In this work, we assume that each successfully-generated quantum state has unit

fidelity and that the quantum memories used for storing qubits are capable of noiseless

storage and have infinite coherence times. While these assumptions create a highly

idealized scenario, it is nevertheless valuable to study as the analysis will yield an

upper bound on the entanglement switching rate of a quantum switch operating

under more realistic conditions.

In Chapter 3, we introduce a CTMC to analyze a quantum switch that serves only

bipartite end-to-end entangled states to pairs of users. While it is easier to extend

this model to represent systems that are more complex than that of this work, an

important question that arises is whether the CTMC model is a fair approximation

112

to a more realistic DTMC model. We answer this question in Section 4.5, from

the perspective of the chains’ stability condition and expressions for switch capacity

and expected number of qubits in memory at the switch in steady state. In [54],

we use a CTMC to analyze a multipartite entanglement distribution switch for a

similarly idealized scenario as studied in our work: identical links, no quantum state

decoherence, unit fidelities, and infinite quantum storage. While this switch serves

n-partite Greenberger-Horne-Zeilinger (GHZ) states [55], note that setting n = 2

yields precisely the model presented in Chapter 3 (and thus, the analytical results are

equivalent for the two CTMCs).

Some analyses focus on specific quantum repeater architectures or protocols; e.g.,

in [26] the authors perform a rigorous and detailed analysis of the repeater architec-

ture proposed in [67], accounting for various non-idealities at the channel, detectors,

and quantum memories. In contrast, our take on analysis is from a rather opposite

perspective in that we use mathematical tools to abstract away as many details of

the physical platform as possible, while keeping only a few relevant and important

parameters in order to complete a high-level analysis and gain a clear understanding

of how they relate to the performance metrics of interest.

Note that the applications of the problem we have formulated in this work extend

far beyond entanglement switching. In general, one may view the system as a stochas-

tic assembly-like queue, or a “kitting” process, e.g., as in [68, 62, 36], since in a sense,

the switch “assembles” longer-distance entangled states using shorter-distance ones,

whose “arrival” into the system is driven by a stochastic process. Interestingly, none

of these similar problem formulations found in literature have a direct correspondence

to our problem, as in our case, the number of users being serviced by the central node

is allowed to be, in theory, infinite, and our goal is to derive exact results, as opposed

to approximate ones, or bounds. Hence, the problem studied here is a novel one, and

the results derived in this work are of independent interest to queueing theory.

113

(a) (b) (c) (d) (e)

Figure 4.1: Example switch operation for a single time slot. At the beginning of the
slot, (a), all links have successfully generated Bell pairs. In (b), the switch performs
a BSM to entangle the two users on the left, see (c). Next, still within the same time
slot, the switch performs another BSM to entangle the two users on the right, shown
in (d), (e).

4.3 Switch Description and Objectives

For completeness, we first restate the assumptions regarding switch operation

from Chapter 3, but in the context of bipartite entanglement distribution performed

in discrete time. We then introduce new modeling assumptions, as discrete-time

switch operation causes some ambiguity with regard to which Bell pairs should be

used in a measurement, and we must specify a switching policy that resolves this

ambiguity.

Figure 3.2a illustrates the initial problem setup: k ≥ 2 users are connected to

the quantum switch via dedicated, identical links. Assume that time is slotted; the

rest of Figure 3.2 presents an example of a sequence of events that may take place

in subsequent time slots. The purpose of the switch is to facilitate end-to-end entan-

glement generation for pairs of users that request it. The creation of an end-to-end

entanglement involves two steps. First, in each time slot users attempt to generate

pairwise entanglements with the switch, which we call link-level entanglements. A

successful link-level entanglement results in a two-qubit Bell state, with one qubit

stored at the switch and the other stored at a user. In step two, the switch chooses

two locally-held qubits, each entangled with a qubit held in a user’s quantum memory,

and such that the two users wish to share an entangled state, and performs a BSM.

114

If the measurement is successful, the result is a two-qubit maximally-entangled state

between the corresponding pair of users. The switch continues to fulfill entanglement

requests as long as there are available link-level entanglements for users who wish to

communicate. If, at the end of the time slot, there are available link-level Bell pairs,

but the switch cannot use them to fulfill requests based on current user demands,

then the switch may choose to store the available entangled qubits in local quantum

memories until these qubits can be used in entangling measurements. This two-step

process is then repeated in the next time slot. Figure 4.1 illustrates a sequence of

events within a single time slot.

One of our objectives is to derive the capacity of a quantum switch that operates

as described above. This quantity serves as a useful benchmark against which to

compare the performance of future entanglement switching protocols. In this work,

we will also compute the expected number of qubits stored in memory at the switch,

while the device operates at or near capacity. With this expression, we may obtain

insight on the practical memory requirements of a switch. The capacity of the switch

is defined as the maximum achievable entanglement switching rate of the device. This

rate cannot be achieved with an arbitrary switching policy, or for an arbitrary set of

user demands – if the switch is constrained to fulfill specific user requests, then the

resulting rate would likely fall below the capacity. One way to ensure that the switch

operates at capacity is to allow it to perform a BSM as soon as there are at least

two Bell pairs available on two distinct links, during a given time slot. This amounts

to the assumption that any pair of users wish to communicate within each time slot.

The BSMs are assumed to take up a negligible amount of time, and the switch may

perform as many of them as necessary in a single time slot, until there are no longer

two distinct links with available Bell pairs.

Further, in this work we assume that the switch uses the Oldest Link Entangle-

ment First (OLEF) rule when deciding which two users to pair up for an entangling

115

measurement. As the name suggests, when using this rule the switch prioritizes the

oldest link-level Bell pairs for a BSM, as long as they belong to two different links.

When there is more than one possible choice for such a pairing (e.g., if there are three

link-level Bell pairs of identical age and they are the oldest in the system), then the

switch may choose any two at random. Note that the OLEF rule does not affect

the switch capacity, but it does happen to minimize the number of stored Bell pairs

at the end of each time slot and thus this rule affects the qubit occupancy distri-

bution. Finally, to ensure that the end users being serviced by the switch do not

limit switch performance, we allow end nodes to have infinite and noiseless quantum

storage capability.

Recall from Section 4.2 that we study a somewhat idealized version of a quantum

switch in this work in that the device has an infinite number of noiseless quantum

memories, and quantum states that are successfully generated (either at the link or

end-to-end level) have unit fidelities and are not subject to decoherence. Studying

this simplified scenario is both valuable and prudent: the analysis performed here

helps to lay out the foundation for – and possibly inspire – future work in quantum

switch modeling, and our model serves as an easily-applicable comparison basis for

alternate quantum switch models, such as that of Chapter 3. Finally, note that the

capacity of this “idealized” quantum switch can also serve as an upper bound on

the capacity of more “limited” systems, such as those with finite quantum memories,

non-unit quantum state fidelities, and explicit user requests. Note also that one may

obtain an upper bound on the capacity of a system with non-identical links, simply by

converting that system into one with identical links, where each link behaves as the

most efficient link – in terms of successful entanglement generation – of the original

system.

116

4.4 Analysis

In this section, we describe the DTMC model and present its analysis. Our goal

is to derive the switch capacity C (i.e., the number of end-to-end entanglements

produced per time unit), the expected number of stored qubits E[Q] in steady state,

and system stability conditions. A note on mathematical notation: in this chapter,

we will use the convention that for any y > x, the term
(
x
y

)
= 0.

4.4.1 Model Description

We model a switch serving k users, each of whom has a separate, dedicated link

to the switch, as a slotted system where each slot is of length τ seconds. Both

link-level entanglement generation and entangling measurements can be modeled as

probabilistic phenomena [26]. In this work, we model the former as follows: at each

time step of length τ seconds, all k users attempt to generate link-level entanglements.

In general, link l successfully generates an entanglement with probability pl ≈ e−αL,

where L is the length of the link (e.g., optical fiber) and α its attenuation coefficient.

Since in this chapter, we assume that all links are identical, i.e., they are of equal

lengths and have the same attenuation coefficient, the success probabilities of all

entanglement are equal. Hence, let p denote the probability that an entangled pair is

successfully established on any link, and define p ≡ 1− p. Then the expected time to

successfully create a link entanglement is given by τ/p (this will be useful in Section

4.5, when we make a comparison to a CTMC model). We assume that whenever a

link-level entanglement or an end-to-end entanglement is successfully generated, it

always has fidelity one to the corresponding ideal Bell state. We also assume that

measurements performed by the switch succeed with probability q. As discussed in

the previous section, we assume that any pair of users wishes to “communicate” (i.e.,

share an entangled state) as long as link-level entanglements are available, and that

the switch serves BSMs based on the OLEF policy described in detail in Section 4.3.

117

Table 4.1: Notation for the DTMC model.

Notation Description

p probability of a successful link entanglement
S link with stored entanglements
Pf probability of gaining an entanglement in memory
Ps probability of remaining in current state
P(j) probability of using j of the stored entanglements
Pj,0 probability of going from state j ∈ {0, . . . , k − 1} to 0
Pj,1 probability of going from state j ∈ {0, . . . , k} to 1

Note that because of our switching policy, only one link will have stored entan-

glements, since whenever a distinct pair of users has link-level entanglements, they

are immediately paired up for a BSM. As a consequence of this and the identical-link

assumption, it is not necessary to keep track of which link has stored entanglements:

one need only keep track of how many are stored. Hence, the state space is given by

Ω = {0, 1, 2, . . . }. Let S denote the link that has at least one stored entanglement.

Figure 4.2 illustrates the possible transitions from a state i ≥ k + 1 (as we will see

later, transitions for states i ∈ {0, 1, . . . , k} require special consideration). Table 4.1

provides a notation reference that is used in the analysis.

i+1 i-1 i-2 i-k+1

Ps

P(1)

Pf

i

P(k−1)
P(2)

Figure 4.2: A DTMC model with k users, infinite buffer, and identical links. Here,
i ≥ k + 1, Pf is the probability of advancing forward in the Markov chain, Ps is the
probability of remaining in the current state, and P(j) is the probability of going back
j states.

118



P0,0 P0,1 0 · · ·
P1,0 P1,1 Pf 0 · · ·
P2,0 P2,1 Ps Pf 0 · · ·

.

.

.

.

.

.
Pi−1,0 Pi−1,1 P(i−3) · · · P(3) P(2) P(1) Ps Pf 0 · · ·
Pi,0 Pi,1 P(i−2) P(i−3) · · · P(3) P(2) P(1) Ps Pf 0 · · ·
Pi+1,0 Pi+1,1 P(i−1) P(i−2) P(i−3) · · · P(3) P(2) P(1) Ps Pf 0 · · ·

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

Pk−1,0 Pk−1,1 P(k−3) · · · · · · P(1) Ps Pf 0 · · ·
0 Pk,1 P(k−2) P(k−3) · · · · · · P(2) P(1) Ps Pf 0 · · ·
0 0 P(k−1) P(k−2) P(k−3) · · · · · · P(3) P(2) P(1) Ps Pf 0 · · ·
0 0 0 P(k−1) P(k−2) P(k−3) · · · · · · P(4) P(3) P(2) P(1) Ps Pf 0 · · ·
.
.
.

.

.

.

.

.

.
.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
.
.

.
.
.

.
.
.



Figure 4.3: Transition probability matrix P for the DTMC model.

4.4.2 Analysis

First, we fully define the transition probabilities for this chain. We expect the

stationary distribution to have a geometric form and show this to be true. However,

a closed-form solution is not obtainable for large k, as it requires solving a polynomial

of degree k−1 for an unknown factor, β. On the other hand, not having a closed-form

solution for the stationary probability vector does not preclude us from deriving a

simple expression for the capacity of the switch – it is qkp/2. We will also show that

this system is stable if and only if k ≥ 3. Finally, we also obtain a simple expression

for the expected number of qubits in memory at the switch, but are constrained to

compute it numerically due to its dependence on β.

4.4.2.1 Transition Probabilities

Figure 4.3 presents the transition probability matrix P for this DTMC. Note

that repetition begins after the kth row of the matrix. We derive expressions for all

non-zero transition probabilities. In the discussion that follows, we say that a link

“succeeds” or “fails” for brevity, when referring to a link that successfully generates

an entanglement or fails to do so, respectively. Throughout the following, we will also

often refer to link S, which has at least one stored entanglement. First, consider any

state i > 1. The transitions for this state are described as follows:

119

i→ i+ 1: the only way to advance forward in the chain is if S successfully generates

a new entanglement, but all other links fail to do so. This probability is given by

Pf = ppk−1.

i → i: there are two ways to remain in the current state: (a) all links fail or (b) S

succeeds and only one of the k−1 other links succeeds. This occurs with probability

Ps = pk + (k − 1)p2pk−2.

i→ i− j , for j ∈ {1, . . . ,M}, where M = k−1 if i ≥ k+1 and M = i−2 otherwise.

Here, M signifies the maximum number of stored entanglements that can be used

up when starting from state i. Note that even in the case all k links succeed and

i ≥ k, only k− 1 of the stored entanglements get used: the entanglement that was

generated by S cannot be paired with another entanglement from S. As stated

above, we compute transition probabilities to states 0 or 1 separately, since they

require special consideration. This is why M = i− 2 for states i < k+ 1. Keeping

these constraints in mind, the transition from i to i − j occurs in two types of

events:

(a) S fails and exactly j of the k − 1 other links succeed,

(b) S succeeds and exactly j + 1 of the k − 1 other links succeed.

These events occur with probability

P(j) = p

(
k − 1

j

)
pjpk−1−j + p

(
k − 1

j + 1

)
pj+1pk−1−(j+1)

=

(
k − 1

j

)
pjpk−j +

(
k − 1

j + 1

)
pj+2pk−j−2.

120

Next, we discuss transitions to states 0 and 1, which, unlike the probabilities above,

depend on the value i of the state from which the transitions occur. To help with this

task, we will first need to be able to compute two types of probabilities: the first is

the probability that out of k link-level entanglement events, j ≥ i succeed, where j is

either zero or an even number, and we call this probability Pe(i, k); and the second is

the probability that out of k events, j ≥ i succeed, where j is an odd number, and we

call this Po(i, k). To compute these, we will use the following two indicator functions:

1{j is 0 or even} :=
1 + (−1)j

2
, 1{j is odd} :=

1− (−1)j

2
.

Then,

Pe(i, k) =
k∑
j=i

(
1 + (−1)j

2

)(
k

j

)
pjpk−j,

Po(i, k) =
k∑
j=i

(
1− (−1)j

2

)(
k

j

)
pjpk−j.

Now, for any state i, 1 ≤ i ≤ k, the transition to state 1 occurs under the following

conditions:

If i is even:

1. S fails and j ≥ i− 1 others succeed, j odd.

2. S succeeds and j ≥ i others succeed, j even.

Pi,1 = pPo(i− 1, k − 1) + pPe(i, k − 1).

If i is odd:

1. S fails and j ≥ i− 1 others succeed, j even.

121

2. S succeeds and j ≥ i others succeed, j odd.

Pi,1 = pPe(i− 1, k − 1) + pPo(i, k − 1).

Similarly, for any state i ∈ {1, . . . , k − 1}, transitioning to state 0 occurs under the

following conditions:

If i is even:

1. S fails and j ≥ i others succeed, j even.

2. S succeeds and j ≥ i+ 1 others succeed, j odd.

Pi,0 = pPe(i, k − 1) + pPo(i+ 1, k − 1).

If i is odd:

1. S fails and j ≥ i others succeed, j odd.

2. S succeeds and j ≥ i+ 1 others succeed, j even.

Pi,0 = pPo(i, k − 1) + pPe(i+ 1, k − 1).

In the special case of 0→ 0, either all must fail or there must be an even number of

entanglements. Hence, P0,0 = Pe(0, k). Finally, in the special case of 0 → 1, there

must be an odd number of entanglements, given by P0,1 = Po(1, k).

122

4.4.2.2 Stationary Distribution

We will show that a stationary distribution exists for k ≥ 3. The balance equations

for the DTMC are as follows:

k−1∑
i=0

πiPi,0 = π0, (4.1)

k∑
i=0

πiPi,1 = π1. (4.2)

For any state i ≥ 2, the balance equations have the form:

πi−1Pf + πiPs + πi+1P(1) + · · ·+ πi+k−1P(k−1) = πi, (4.3)

and finally, the normalizing condition is

∞∑
i=0

πi = 1. (4.4)

We postulate that πi = βi−1π1 for i ≥ 2, with β ∈ (0, 1). Introducing this value of π1

in Eq. (4.3) yields f(β) = 0, with

f(β) := (βp+ p)k−1(p+ βp)− β, (4.5)

see Appendix C.1.1 for a proof. To show that πi = βi−1π1 for i ≥ 2 is indeed the

solution to this system, we must prove that:

1. There exists β ∈ (0, 1) satisfying Eq. (4.5), and that this β is unique.

2. Given the solution above, note that both Eqs (4.1) and (4.2) can be written

in terms of only π1 and π0. Hence, for the proposed solution to be valid, one

of these equations must be redundant, i.e., we must show that Eq. (4.1) is

equivalent to Eq. (4.2).

123

In Appendix C.1.2, we prove that the first statement above holds for k ≥ 3 and that

it does not hold for k = 2, implying that the DTMC is stable if and only if k ≥ 3.

The second statement is proven in Appendix C.1.3. We conclude that the proposed

form for πi, i ≥ 2 is valid. Moreover, we can derive expressions for π0 and π1 in terms

of β. From the normalizing condition (4.4), we have

π0 = 1− π1

1− β
. (4.6)

In Appendix C.1.3, we rearranged (4.1) to look as follows:

k−1∑
i=1

βiPi,0 =
βπ0

π1

P0,1 (4.7)

and also showed that the left side of Eq. (4.7) equals

1

2

[
β

1− β
− 2β

1− β2
(pβ + p)k−1(p+ pβ)− (p− p)k β

1 + β

]
=

1

2

[
β

1− β
− 2β2

1− β2
− (p− p)k β

1 + β

]
by Eq. (4.5),

=
1

2

[
β

1 + β
− (p− p)k β

1 + β

]
.

Therefore, Eq. (4.7) becomes

βπ0

π1

P0,1 =
1

2

[
β

1 + β
− (p− p)k β

1 + β

]
, or

π0

π1

P0,1 =
1− (p− p)k

2(1 + β)
. (4.8)

Next, we compute

P0,1 = Po(1, k) =
k∑
i=1

1− (−1)i

2

(
k

i

)
pipk−i

=
k∑
i=0

1− (−1)i

2

(
k

i

)
pipk−i =

1

2
− 1

2
(p− p)k.

124

Substituting this into Eq. (4.8),

π0

π1

(
1− (p− p)k

2

)
=

1− (p− p)k

2(1 + β)
,

π0

π1

=
1

1 + β
,

1− π1

1− β
=

π1

1 + β
by Eq. (4.6),

π1 =
1− β2

2
. (4.9)

Now, we can compute π0 in terms of only β:

π0 = 1− π1

1− β
= 1−

(
1

1− β

)
1− β2

2
=

1− β
2

.

4.4.2.3 Capacity and Qubits in Memory

Let Q represent the number of stored qubits at the switch. Let N denote the

number of end-to-end entangled pairs generated in one time step of the DTMC. Then

the capacity is defined as follows:

C = q
∞∑
i=0

πiE[N |Q = i].

To compute this expression, we consider two separate cases: case 1 is when i ≥ k− 1

and case 2 is when i < k − 1. In case 1, there can be at most k − 1 entanglements;

the expected number is given by

E[N |Q = i ≥ k − 1] =
k−1∑
j=0

j

(
k − 1

j

)
pjpk−1−j = (k − 1)p.

For case 2, we can have up to i + m entanglements, where m = b
(
k−i

2

)+c. The

expected number is then given by

E[N |Q = i < k − 1] =
i+m∑
j=0

jP (N = j|Q = i ≤ k − 2).

125

For the sum above, consider first j ∈ {0, . . . , i}. Here, we are looking for the probabil-

ity that there are fewer new entanglements than the number stored, so the probability

that we generate j pairs is given by

P (N = j|Q = i, i ≤ k − 2) =

(
k − 1

j

)
pjpk−1−j.

However, note that the case j = i is a special one: another way we can generate i

entanglements is if there are a total of i+ 1 successes from the k − 1 links that have

nothing stored, while S fails. Then, the extra entanglement has no pair, and the total

number of pairs generated is still i. This is given by

i

(
k − 1

i+ 1

)
pi+1pk−i−1.

Next, we focus on the case where j ∈ {i + 1, . . . , i + m}. After the first i successes,

there need to be anywhere from 2 to at most k− i “extra” successes to generate new

pairs. Denote the number of these extra successes by the variable l ∈ {2, . . . , k − i},

and the number of new pairs (or BSMs) generated from them is
⌊
l
2

⌋
. Then we can

write the second sum as follows:

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l.

Combining everything we have learned, we obtain

C = q
k−2∑
i=0

πi

(
i∑

j=0

j

(
k − 1

j

)
pjpk−1−j + i

(
k − 1

i+ 1

)
pi+1pk−i−1

+
k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

)
+ q(k − 1)p

∞∑
i=k−1

πi. (4.10)

In Appendix C.2, we show that the above evaluates to

C =
qkp

2
. (4.11)

126

Next, we derive the expected number of qubits stored at the switch, E[Q]. This is

given by

E[Q] =
∞∑
i=1

iπi = π1

∞∑
i=1

iβi−1 =
π1

β

∞∑
i=1

iβi

=
π1

β

β

(1− β)2
=

1− β2

2(1− β)2
=

1 + β

2(1− β)
. (4.12)

4.5 Comparison of DTMC Model with a CTMC Model

In this section, we compare the DTMC model from this work to a CTMC model

studied in Chapter 3 and validate the latter for the case of a system with identical

links, no quantum state decoherence, and infinite quantum memories at the switch.

Let us first review the CTMC model and the analytical results from Chapter 3.

There, we model entanglement generation at the link level as a Poisson process with

parameter µ representing the rate of successful Bell pair creation on any link. For

the identical-link, bipartite-only switching case, the CTMC is a simple birth-death

process, with each state representing the number of stored qubits corresponding to a

single link (note that the assumption that any pair of users wish to communicate is

also required for the capacity computation). The resulting capacity of the switch is

CCTMC =
qkµ

2
.

Recall that in the discrete model, the amount of time it takes to successfully

generate a link entanglement is given by τ/p. In the continuous model, the rate of

successful entanglement generation is µ, so the time to generate an entanglement

is 1/µ. Hence, τ/p = 1/µ or equivalently, µ = p/τ . Then, note that the DTMC

capacity that we derived in Section 4.4.2.3 is the capacity per time slot of length τ

seconds. Therefore, in order to make a comparison against the CTMC capacity, we

127

must perform a unit conversion: divide the discrete capacity by τ in order to obtain

the number of entanglement pairs per second, as opposed to per time slot. This yields

CDTMC =
qkp

2τ
=
qkµ

2
= CCTMC.

We conclude that the capacities produced by the DTMC and CTMC models match

exactly.

Next, we compare the expected number of qubits in memory in steady state at

the switch, E[Q] as predicted by the DTMC and the CTMC models. The CTMC

analysis yields the following expression:

E[Q]CTMC =
k

2(k − 2)
.

Note that this expression has no dependence on µ, the link-level successful entan-

glement generation rate, implying that according to the CTMC model, the expected

number of stored qubits in steady state does not depend on the probability p of suc-

cessfully generating a Bell pair on a link. On the other hand, we can see from Eq.

(4.12) that E[Q] resulting from the DTMC analysis does depend on p, as it is a func-

tion of β. Hence, the DTMC is more accurately able to describe the buffer occupancy

in steady state, at the cost of not being able to produce a closed-form expression for

E[Q].

Figure 4.4 compares numerically the discrete and continuous E[Q]’s as the number

of users k and probability p vary. For each value of p and k, we use Eq. (4.5) to

numerically solve for β. For each value of k, we report the maximum relative error,

defined as

maxRelErr(k) = max
p∈(0,1)

|E[Q]DTMC(k, p)− E[Q]CTMC(k, p)|
E[Q]DTMC(k, p)

,

128

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.5

1

1.5

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

3 links

discrete

continuousmaxRelErr 2.00

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.2

0.4

0.6

0.8

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

5 links

discrete

continuous
maxRelErr 0.67

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

10 links

discrete

continuousmaxRelErr 0.25

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

20 links

discrete

continuousmaxRelErr 0.11

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

50 links

discrete

continuousmaxRelErr 0.04

0 0.2 0.4 0.6 0.8 1

Probability (p)

0

0.1

0.2

0.3

0.4

0.5

Q
u

b
it
s
 i
n

 M
e

m
o

ry
 (

E
[Q

])

100 links

discrete

continuous
maxRelErr 0.02

Figure 4.4: Comparison of the expected number of qubits in memory E[Q] for the
DTMC and CTMC models, as the number of links is varied ∈ {3, 5, 10, 20, 50, 100}
and for entanglement generation probabilities p ∈ (0, 1). maxRelErr is the maximum
relative error between the discrete and continuous expressions for E[Q].

where E[Q]DTMC and E[Q]CTMC are the discrete and continuous functions for E[Q],

respectively. We observe that the error is largest when p is close to 1. Note that

lim
p→1

f(β) = lim
p→1

(βp+ p)k−1(p+ βp)− β = βk−1 − β.

Since f(β) = 0, we conclude that as p → 1 and k → ∞, β → 0 (note: β = 1 is

always a root of f(β), but we always discard this root because it is not in (0, 1)). As

β → 0, E[Q] → 1/2 according to Eq. (4.12), which is consistent with the numerical

observations. Meanwhile, as k → ∞, the continuous E[Q] also approaches 1/2. We

conclude that as k → ∞, maxRelErr → 0, which can be observed in Figure 4.4.

Also, the largest maxRelErr occurs for the lowest value of k = 3, when p→ 1. But

even in this (worst case), although the error is maxRelErr(3) = 2, it corresponds

to discrete and continuous versions of E[Q] differing by a prediction of only a single

qubit.

129

Finally, both the continuous- and discrete-time Markov chains have stationary

distributions if and only if k ≥ 3. From these analytic and numerical observations,

we conclude that the CTMC model is sufficiently accurate so as to be used to explore

issues such as decoherence, link heterogeneity, and switch buffer constraints.

In Chapter 3, we introduce CTMCs for systems where the switch has buffer con-

straints, the links are not necessarily identical, and quantum memory coherence time

is finite. The construction and analyses of these models is relatively simple com-

pared to the DTMC model of this work. Even if one were to introduce a finite buffer

into this model, several changes would be required to state transitions and balance

equations, resulting in even more complex expressions for the stationary distribu-

tion (recall that even in the infinite-buffer case, we must solve for it numerically).

Attempting to model decoherence in discrete time would require one to consider all

possible combinatorial settings of stored qubit decoherence, further complicating the

transition probabilities, but also increasing the number of possible transitions from

each state. Consider, for instance, state i in Figure 4.2: each of the existing “back-

ward” transitions P(j), j ∈ {1, . . . , k − 1} would have to be modified based on the

number of ways that l qubits can decohere and m new entanglements can be gener-

ated such that l+m = j, and in addition, extra transitions must be added from state

i to states {0, 1, . . . , i−k+ 2} because any number of the stored qubits can decohere.

This process can become highly cumbersome and prone to mistakes, while CTMCs

seem to offer much more in modeling power, albeit incurring an accuracy cost that

so far has only been quantified for the simplest variant of the entanglement switching

problem.

4.6 Conclusion

We study an entanglement distribution switch that serves bipartite entangled

states to pairs of users connected to the device via dedicated links. Using a DTMC,

130

we study a simple variant of the problem, wherein the links are identical, the switch

has an infinite number of quantum memories, and quantum states do not decohere,

although entanglement generation may fail both at the link level and at the end-to-

end level. By studying this basic system, we learn that the DTMC model exhibits

limitations such that introducing additional constraints to this model, such as finite

buffers or quantum state decoherence, makes the resulting model exceedingly difficult

to analyze, and therefore may not be the most attractive option for modeling more

complex entanglement switching mechanisms.

We derive the capacity of the switch, the expected number of stored qubits at the

switch in steady state, and the stability conditions for the system. We also derive

the stationary distribution of the DTMC, albeit not in closed form. The results of

our analysis are then compared to a different model, based on a CTMC. We conclude

that while the CTMC model is more easily analyzed, it is less accurate than the

DTMC model. For the expected number of stored qubits, the discrepancies between

the two models are quantified, and we find that in the worst case, the predictions

differ by less than one qubit. Hence, we conclude that the CTMC is a suitable

model for this particular variant of the problem, but more work will be required in

order to completely assess the accuracy of CTMC models for more complex switching

scenarios. Our work is the first attempt at quantum switch analysis via a DTMC,

and while the problem formulation is relatively simple, the analysis of the system is

non-trivial. Moreover, the expression for switch capacity derived in this work can

be used as an upper bound on the capacity of more complex systems, such as those

with non-identical links and where quantum states may decohere. Finally, while our

work was initially inspired by entanglement switching, the problem is independently

interesting from a queueing-theoretic perspective, and the results can be applied to

any stochastic assembly-like queueing system that services two customers/jobs at a

time.

131

CHAPTER 5

ON THE CAPACITY REGION OF BIPARTITE AND
TRIPARTITE ENTANGLEMENT SWITCHING

5.1 Introduction

Multi-qubit entangled states are fundamental building blocks for quantum com-

putation, sensing, and security. Consequently there is a need for a quantum net-

work that can generate such entanglement on demand between pairs and groups of

users [59, 65, 72]. In this chapter, we study the performance of the simplest multi-user

network, a star-topology quantum switch connecting k users, where each user is con-

nected to the switch via a separate link. Bipartite, two-qubit maximally-entangled

states, i.e., Bell pairs (or EPR states) are generated at a constant rate across each

link, with the qubits stored at local quantum memories at each end of the links. As

these link entanglements start appearing, the switch uses two-qubit Bell-state mea-

surement (BSM) between pairs of locally-held qubits and three-qubit Greenberger-

Horne-Zeilinger (GHZ) basis measurements between triples of locally-held qubits to

provide two-qubit and three-qubit entanglements to pairs and triples of users, respec-

tively [55]. The capacity of such a switch to provide these two types of entanglements

to the users depends on the switching mechanism, the number of quantum memories

and their decoherence rates, and the number of links.

In this chapter, we study the capacity region when the switch can store either

B = 1 or B = 2 qubits for each link at any given time. The number of quantum

memories available to a link is referred to as its buffer size. We consider a simple time

division multiplexing (TDM) policy between the two types of entanglements, along

132

with a class of randomized policies. When properly configured, the latter provide

higher capacities than TDM. However the relative difference between the two policies

goes to zero as k → ∞. We also observe that increasing the number of memories

from one to two increases capacity but that the increase diminishes as k increases.

We also explore the effect that decoherence—the locally stored qubits at each end of

the link being subject to a noise process that reduces the entanglement between the

two qubits—has on capacity. In the cases of B = 1 with and without decoherence,

we have simple closed form expressions for capacity whereas for the case of B = 2,

our results are numerical.

The remainder of this chapter is organized as follows: in Section 5.2, we provide

relevant background and related work. In Section 5.3, we formulate the problem and

propose a method for solving it. In Section 5.4, we present the case where the system

has a per-link buffer of size one, and provide analytical and numerical results. In

Section 5.5, we present numerical results for the case where the system has a per-link

buffer of size two and observe similar behavior to the buffer size one case. In Section

5.6, we introduce a simple technique for modeling quantum state decoherence and use

it to examine the effect of decoherence on the bipartite-tripartite capacity region for

systems with per-link buffer sizes one and two. For the former, we also have analytical

results. We make concluding remarks in Section 5.7.

5.2 Background and Related Work

As pointed out in previous chapters, Bell states are an integral part of a diverse

set of distributed quantum applications, including Quantum Key Distribution (QKD)

[4, 13], superdense coding [7], teleportation [5], and distributed quantum computation

[39]. Similarly, GHZ states can be used to implement a variety of quantum protocols,

such as cryptographic conferencing [22], quantum sensing [15], and multipartite gen-

eralization of superdense coding [31]. The advantage of these applications is that they

133

offer functionality that cannot be achieved classically, e.g., information-theoretic se-

curity. Future quantum networks will likely support a diverse set of applications, thus

it is likely that quantum devices (such as switches and repeaters) may be equipped

with the ability to perform different types of projective measurements.

In Chapter 3, we studied a switch that serves only BSMs, but state decoherence,

link heterogeneity, and arbitrary buffer sizes (including infinite) are considered. In

[54], we studied a multipartite entanglement distribution switch that serves n-partite

GHZ states to users, for n ≥ 3. In this work, links are assumed to be identical and

the effects of state decoherence negligible. In contrast to this prior work, we no longer

assume that the switch serves only one type of entangled state, i.e., we allow n to

be either two or three, and our goal is to design and evaluate a suitable switching

policy. Another contrast to [54] is that there, the quantum switch is modeled to have

an infinite number of quantum memories, while in this work we consider finite buffer

sizes that scale with the number of links.

5.3 System Description and Assumptions

We consider a switch that connects k users over k separate links. The creation

of an end-to-end entanglement requires two steps. First two-qubit Bell states are

generated pairwise between a qubit stored locally at the switch and a qubit owned

by a user. Once such link-level two-qubit entangled states have been created, the

switch performs joint (entangling) measurements (over j ≥ 2 locally-held qubits that

are entangled with qubits held by j distinct users), which, if successful, produces

a j-qubit maximally-entangled state between the corresponding j users. Link-level

entanglement generation, as well as entangling measurements, when realized with

practical systems, are inherently probabilistic [26]. We assume that only two-user

(two-qubit) and three-user (three-qubit) entanglements are created, i.e., BSMs and

3-qubit GHZ basis measurements are done at the switch. For simplicity, we will

134

assume that these j = 2 or 3 qubit measurements at the switch take negligible time

and always succeed.

For completeness of this chapter, we restate some of the modeling assumptions

from Chapters 4 and 3. Each link attempts two-qubit entanglements in each time slot

of length τ seconds, and with probability p, establishes one entangled pair successfully.

For simplicity, we model the time to successfully create a link entanglement as an

exponential random variable with mean 1/µ = τ/p. We assume that each link can

store B = 1, 2, . . . qubits. We also assume that qubits at the switch can decohere

and model decoherence time as an exponential r.v. with mean 1/α. We assume

a step-function decoherence model where the two-qubit entanglement goes from a

maximally-entangled qubit pair (one ebit) to zero entanglement. In this work, we

only consider B = 1, 2. Last, when a qubit is stored at the switch, with its entangled

pair stored at a user, we refer to this as a stored link entanglement.

We assume that all possible bipartite and tripartite user entanglements are of in-

terest and consider two classes of probabilistic policies, one for B = 1 and the second

for B = 2, that provide the flexibility to generate both types of entanglements with

arbitrary rates. Policies in both classes incorporate the oldest link entanglement first

(OLEF) rule whereby when a link entanglement is created it is always matched up

with stored link entanglements when possible rather than be stored. This has the nice

consequence, when coupled with the assumption that links are homogeneous but sta-

tistically independent, that the system can be modeled by a continuous time Markov

chain (CTMC) where the state simply tracks the number of stored entanglements for

two users. The next section describes the class of policies for B = 1 and Section 5.5

for the class of B = 2 policies.

135

Figure 5.1: CTMC for a system with at least three links and buffer size one for each
link. k is the number of links, µ is the rate of entanglement generation, and r1, r2,
and r3 are parameters that specify the scheduling policy.

5.4 System with Per-Link Buffer Size One

In this section, we assume that each link can store one qubit in the buffer, so

that the per-link buffer size B = 1. We model this system using a CTMC, and by

obtaining its stationary distribution, we are able to compute the capacity region of

the switch. We discover that it is always possible to configure a randomized policy

that outperforms TDM, although as the number of links grows, the advantage of

using such a policy diminishes.

5.4.1 Description

In a system where the switch can make tripartite measurements, we must keep

track of two variables for each state of the CTMC: each representing a link with a

stored qubit. Hence, (1, 1) represents the state where two of the k links have a qubit

stored, one each. Note that we do not need to keep track of all links individually due

to the OLEF rule and link homogeneity assumption. States (1, 0) and (0, 0) represent

cases where only one link has a stored qubit or no link has a qubit, respectively.

The system is fully described in Figure 5.1. For a variable x ∈ [0, 1], we use

the notation x̄ ≡ 1 − x. When the system is in state (0, 0), new entanglements are

136

generated with rate kµ; this is the rate of transitioning from (0, 0) to (1, 0). When the

system is in state (1, 0), any new entanglements generated on the link that already

has one stored qubit causes the switch to drop one of the qubits. New entanglements

on other links are generated with rate (k − 1)µ, and the switch must decide whether

to immediately use the two qubits for a BSM or keep both and wait for a new

link entanglement. To generalize the policy as much as possible, we add a policy

parameter, r1 ∈ [0, 1], that specifies the fraction of time the switch performs a BSM.

Note that r1 = 1 corresponds to the policy of always using qubits for BSMs. While

this maximizes C2, it also means that C3 = 0.

Now, suppose that the system is in state (1, 1) and a third link generates an

entanglement. This event occurs with rate (k − 2)µ. The switch has two choices:

either use all three qubits for a tripartite measurement, or choose two of them for

a BSM. We add another policy parameter, r2 ∈ [0, 1], that specifies fractions of

times the switch performs a BSM and tripartite measurements in the event of three

qubits on three different links. Another event that can occur in the (1, 1) state is

the generation of an entanglement on either of the two links that already have stored

entanglements. This event occurs with rate 2µ. Since B = 1, the switch cannot store

the new entanglement. A decision must be made: to either discard one of the link

entanglements (and remain in state (1, 1)) or perform a BSM on two of them and keep

the third (and transition to state (1, 0)). Since it is not clear which policy is most

advantageous, we add another parameter, r3 ∈ [0, 1], which specifies the fraction of

time that the switch performs a BSM when it resides in this state.

5.4.2 Numerical Results

We plot the capacity region for the switch with B = 1 for all values of r1, r2,

r3 ∈ [0, 1] and compare it against TDM. The entanglement generation rate µ simply

scales the capacities, so we set it equal to one. In Figure 5.2, the number of links is

137

Figure 5.2: Capacity region for a system of buffer size one and three links. The red
line represents the set of TDM policies.

three, and the TDM line is shown in red. Clearly, it is possible to design a policy

that yields better performance than TDM: the triangular blue region above TDM

represents the maximum capacities of the set of such policies.

Recall that TDM connects points (0, C∗2) and (C∗3 , 0), where C∗2 and C∗3 are the

maximum achievable capacities for bi- and tripartite measurements, respectively. The

point farthest from and above TDM (the vertex of the triangular region above the

line, shown in green in Figure 5.2) is achieved by setting r1 = 0 and r2 = r3 = 1.

In other words, the most “efficient” policy in terms of being the farthest from the

TDM line is the following: (i) never perform BSMs in state (1, 0); and (ii) when in

state (1, 1) and a third entanglement is generated on a different link, always use it in

a tripartite measurement, but when a third entanglement is generated on one of the

links that already has a stored qubit, always perform a BSM. Note that the latter

rule directs the switch to not waste an entanglement whenever it is possible to use it

in a measurement.

The capacity regions for k = 10 and 50 are shown in Figure 5.3. Note that as

the number of links increases, the differences between TDM and the more efficient

138

(a) k = 10 (b) k = 50

Figure 5.3: Capacity region for a system of buffer size one and varying number of
links. The red line represents the set of TDM policies.

random policies diminish. In the next section, we provide an analytical proof of this

phenomenon.

5.4.3 Analysis

Let π(0, 0), π(1, 0), and π(1, 1) represent the stationary distribution of the CTMC

in Figure 5.1. The balance equations (excluding µ, as it cancels out due to every

transition rate being its multiple), are:

π(0, 0)k = π(1, 0)(k − 1)r1 + π(1, 1)(k − 2)r2,

π(1, 1)((k − 2)r2 + (k − 2)r̄2 + 2r3) = π(1, 0)(k − 1)r̄1,

π(0, 0) + π(1, 0) + π(1, 1) = 1.

Solving these equations yields

π(1, 1) =
k(k − 1)r̄1

D
,

π(1, 0) =
k(k − 2 + 2r3)

D
, where

D = (k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k).

139

Then the bipartite and tripartite capacities for this system, C2 ≡ C2(r1, r2, r3) and

C3 ≡ C3(r1, r2, r3), are

C2 = π(1, 0)(k − 1)µr1 + π(1, 1)((k − 2)µr̄2 + 2µr3)

=
k(k − 1)µ(k − 2 + 2r3 − (k − 2)r2r̄1)

(k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)
,

C3 = π(1, 1)(k − 2)µr2

=
k(k − 1)(k − 2)µr2r̄1

(k − 2 + 2r3)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)
.

Claim 5.4.1. The maximum value of C2 is given by C∗2 = C2(r1, 0, 1) = C2(1, 0, r3),

where r1 and r3 are arbitrary values in [0, 1]. The maximum value of C3 is given by

C∗3 = C3(0, 1, 0).

Proof. We start by proving this for C2. First, note that to maximize C2’s numerator

and minimize its denominator, r2 must be set to 0. This yields

C2(r1, 0, r3) =
k(k − 1)µ(k − 2 + 2r3)

(k − 2 + 2r3)((k − 1)r1 + k) + k(k − 1)r̄1

=
k(k − 1)µ

(k − 1)r1 + k + k(k−1)r̄1
k−2+2r3

.

Now, r3 = 1 maximizes C2(r1, 0, r3), which yields

C2(r1, 0, 1) =
k(k − 1)µ

(k − 1)r1 + k + (k − 1)r̄1

=
k(k − 1)µ

2k − 1
.

Note that C2(1, 0, r3) yields the same expression as C2(r1, 0, 1). Next, consider the

expression for C3. To minimize the denominator, we should set r3 = 0. This yields

C3(r1, r2, 0) =
k(k − 1)(k − 2)µr2r̄1

(k − 2)((k − 1)r1 + k) + (k − 1)r̄1((k − 2)r2 + k)

=
k(k − 1)(k − 2)µr2r̄1

(k − 1)r1((k − 2)r̄2 − k) + k(k − 2) + (k − 1)((k − 2)r2 + k)
.

140

It is clear that r1 must be 0, which yields

C3(0, r2, 0) =
k(k − 1)(k − 2)µr2

k(k − 2) + (k − 1)((k − 2)r2 + k)

=
k(k − 1)(k − 2)µr2

k(2k − 3) + (k − 1)(k − 2)r2

=
k(k − 1)(k − 2)µ

k(2k−3)
r2

+ (k − 1)(k − 2)
.

From above, we can see that r2 must be 1, so the maximum is at C∗3 = C3(0, 1, 0).

For brevity, let (C3(0, 1, 1), C2(0, 1, 1)) ≡ (Ĉ3, Ĉ2); this is the point farthest above

the TDM line within the achievable capacity region (e.g., the green point in Figure

5.2). We prove this as part of the proof of the claim below.

Claim 5.4.2. Any point (C3, C2) in the achievable capacity region satisfies the fol-

lowing constraints:

C2 ≤ −
3k − 2

2k − 1
C3 +

µk(k − 1)

2k − 1
and (5.1)

C2 ≤ −
k(k − 2) + 2(k − 1)2

k(k − 2)
C3 + µ(k − 1), (5.2)

C2, C3 ≥ 0. (5.3)

Moreover (5.1) and (5.2) define a tight upper bound on the achievable capacity region.

Proof. First, we must show that the point (Ĉ3, Ĉ2) is indeed the farthest from the

TDM line. To do so, let us find a point (C3, C2) on the plane such that the (negative)

slope of the line that passes through it and (0, C∗2) is maximized. This is equivalent

to minimizing the quantity

C∗2 − Ĉ2

Ĉ3

=
(3k − 2)(k − 2)r2 + 2(k − 1)(1− r3)

r2(2k − 1)(k − 2)
.

To do so, we must set r3 = 1. Next, note that the TDM line is given by the

equation f(x, y) = y − C∗2(1 − x/C∗3), and the distance between it and any point

141

(C3, C2) is given by |f(C3, C2)|/
√

1 + (C∗2/C
∗
3)2. Hence, it is sufficient to maximize

|f(C3(r1, r2, 1), C2(r1, r2, 1))|, given by

2µk(k − 1)

(2k − 1)
(
k − 2 + 2k2−k

(k−1)r2(1−r1)

) .
It is clear that we must set r2 = 1 and r1 = 0, yielding (Ĉ3, Ĉ2) as the point farthest

from the TDM line, as expected.

Next, consider the line passing through (0, C∗2) and (Ĉ3, Ĉ2):

y1 = −3k − 2

2k − 1
x1 +

µk(k − 1)

2k − 1
, (5.4)

and the line passing through (Ĉ3, Ĉ2) and (C∗3 , 0):

y2 = −k(k − 2) + 2(k − 1)2

k(k − 2)
x2 + µ(k − 1). (5.5)

It is not hard to show that for any point (C3, C2), (5.1) and (5.2) are satisfied. In

other words, all points in the achievable capacity region fall on or below these two

lines. To prove that this upper bound is tight, it remains to show that all points on

lines (5.4) and (5.5) are achievable. To see this, let r1 = 0 and r3 = 1:

C2(0, r2, 1) =
(k − (k − 2)r2)k(k − 1)µ

k2 + (k − 1)(k + (k − 2)r2)
,

C3(0, r2, 1) =
(k − 2)r2k(k − 1)µ

k2 + (k − 1)(k + (k − 2)r2)
.

Note that any point (C3(0, r2, 1), C2(0, r2, 1)) is on line (5.4), and these two functions

are continuous in r2 ∈ [0, 1]. Similarly, letting r1 = 0 and r2 = 1, we have

C2(0, 1, r3) =
2r3k(k − 1)µ

k(k − 2 + 2r3) + 2(k − 1)2
,

C3(0, 1, r3) =
k(k − 1)(k − 2)µ

k(k − 2 + 2r3) + 2(k − 1)2
.

142

Any point (C3(0, 1, r3), C2(0, 1, r3)) is on line (5.5), and these two functions are con-

tinuous in r3 ∈ [0, 1]. Using these facts, we conclude that all points on (5.4) and (5.5)

are achievable.

Claim 5.4.3. As k →∞, the benefit of using an alternate policy (one that lies above

TDM) diminishes.

Proof. We prove this by showing that as k → ∞, the ratio of the achievable area

above the TDM line, which we call A4 (because this area has the shape of a triangle)

to the total area below the capacity region, which we call AT , goes to zero. For A4,

the length of the base of the triangle is simply the distance between the points (0, C∗2)

and (C∗3 , 0), or
√

(C∗2)2 + (C∗3)2. The height is given by |f(Ĉ3, Ĉ2)|/
√

1 + (C∗2/C
∗
3)2.

Then

A4 =
|f(Ĉ3, Ĉ2)|C∗3

2
.

Then, the area below the TDM line is given by

ATDM =
(C∗2)2 + (C∗3)2

4
, so the total area is

AT = A4 + ATDM =
2|f(Ĉ3, Ĉ2)|C∗3 + (C∗2)2 + (C∗3)2

4
.

Then the ratio of the area above the TDM to the total area is

A4
AT

=
2|f(Ĉ3, Ĉ2)|C∗3

2|f(Ĉ3, Ĉ2)|C∗3 + (C∗2)2 + (C∗3)2
=

1

1 +
(C∗

2)2+(C∗
3)2

2|f(Ĉ3,Ĉ2)|C∗
3

.

To prove that this ratio goes to zero with k, it suffices to show that the second term

in the denominator goes to ∞. It can be shown that ((C∗2)2 + (C∗3)2)/2|f(Ĉ3, Ĉ2)|C∗3

simplifies to

39k6 − 220k5 + 493k4 − 568k3 + 362k2 − 120k + 16

4(6k5 − 33k4 + 67k3 − 62k2 + 26k − 4)

k→∞−→ ∞.

143

5.5 System with Per-Link Buffer Size Two

In a system with per-link buffer size two, there are three additional states, as shown

in Figure 5.4. Our goal in this section is to show the existence of better policies than

TDM, rather than to find the optimal policy. Hence, the design in Figure 5.4 does not

encapsulate all possible policies: for instance, there is no r1 parameter here, since our

exhaustive search over the entire parameter space for the system with B = 1 revealed

that r1 is best set to zero. In addition, note that if the system is in state (1, 1) and

another entanglement is generated on one of the links that already has a stored qubit,

the system is not allowed to use two of the qubits for a BSM. The reasoning is that

since B = 2, there is enough space to keep the new qubit. Similarly, when the system

is in state (2, 1) a BSM is only allowed if (i) another entanglement is generated on

one of the k− 2 links that does not have a stored qubit, or (ii) another entanglement

is generated on the link that already has two qubits stored. In the latter scenario,

not performing a BSM would cause a qubit to be discarded. While this design does

not grant the switch access to the full range of policies, it does enable us to find a

class of policies that are more efficient than TDM.

Figure 5.5 shows capacity regions for B = 2 with number of links k = 3 and

10. We observe that policies more efficient than TDM can be found, but as the

number of links grows, the advantage of such policies relative to TDM diminishes.

This phenomenon mimics that of the B = 1 switch. Figure 5.6 shows a comparison

of B = 1 and B = 2 switches for three and ten links. We observe that while there is a

clear benefit to extra buffer space for a small number of users, the advantage becomes

less apparent as the number of users grows. In addition, it appears that C3 benefits

more from the extra buffer space than C2.

144

0,0 1,0 2,0

kμ μ

2μ

(k − 1)μ

μ

(k − 1)μ

1,1

(k − 2)μr2

2,2

2,1

(k − 2)μr2

(k − 2)μr2

(k − 2)μr̄2

(k − 2)μ + μr̄2 r3

(k − 2)μ + 2μr̄2 r3

Figure 5.4: CTMC for a system with at least three links and buffer size two for each
link. k is the number of links, µ is the rate of entanglement generation, and r2 and
r3 are parameters that specify the scheduling policy.

(a) k = 3 (b) k = 10

Figure 5.5: Capacity region for per-link buffer size B = 2, for k = 3, 10 links. The
red line represents the set of TDM policies.

145

0 0.2 0.4 0.6 0.8

C
3

0

0.2

0.4

0.6

0.8

1

1.2

C
2

B=1

B=2

(a) k = 3

0 1 2 3 4

C
3

0

1

2

3

4

5

C
2

B=1

B=2

(b) k = 10

Figure 5.6: Comparison of capacity regions for systems of buffer sizes one and two
with varying number of links k, and entanglement generation rate µ = 1.

0,0 1,0

kμ

(k − 1)μ + αr1

(k − 1)μr̄1

1,1
(k − 2)μr2

(k − 2)μ + 2μ + 2αr̄2 r3

Figure 5.7: CTMC for a system with at least three links and buffer size one. k is the
number of links, µ is the rate of entanglement generation, α is the decoherence rate,
and r1, r2, r3 are parameters that specify the scheduling policy.

5.6 Modeling Decoherence

In this section, we present a simple way to augment the model from Section 5.4 to

account for the decoherence of quantum states. For switches with B = 1, we present

both analytic and numerical results. We also augment the model from Section 5.5

to incorporate decoherence, but for switches with B = 2, we present only numerical

results. Our decoherence model is described in Section 5.3. For B = 1, the resulting

CTMC is illustrated in Figure 5.7.

146

The analysis of this model is almost identical to that of the B = 1 system without

decoherence. As with the latter, the capacity region is bounded above by two lines:

y1 = −µ(3k − 2)(α + (k − 2)µ) + 2α2

µ(k − 2)((2k − 1)µ+ α)
x1 +

k(k − 1)µ2

(2k − 1)µ+ α
,

y2 = −2(k − 1)2µ2 + (kµ+ α)((k − 2)µ+ 2α)

µ(k − 2)(kµ+ α)
x2 +

k(k − 1)µ2

kµ+ α
.

To avoid ambiguity, let C ′2 and C ′3 denote the bi- and tripartite capacities of a system

with decoherence. As with the previous model, C ′2 is maximized at r1 = 1, r2 =

r3 = 0; C ′3 is maximized at r1 = r3 = 0, r2 = 1, and the point farthest from TDM is

obtained by setting r1 = 0, r2 = r3 = 1. The first bounding line passes through the

points (0, C ′2(1, 0, 0)) and (C ′3(0, 1, 1), C ′2(0, 1, 1)); and the second line passes through

(C ′3(0, 1, 1), C ′2(0, 1, 1)) and (C ′3(0, 1, 0), 0). Moreover, all points on the bounding lines

are achievable, indicating that the bound is tight.

The capacities are given by

C ′2 = (k(k − 1)µ2 (2(αr1 + µr3) + (k − 2)µ(1− r2r̄1)))/D,

C ′3 = (kµ3(k − 1)(k − 2)r̄1r2)/D, where

D = (k − 1)µr̄1((k − 2)µr2 + kµ) + (kµ+ (k − 1)µr1 + α)((k − 2 + 2r3)µ+ 2α).

Note that the denominator is quadratic in α. This causes both C ′2 and C ′3 to tend to

zero as α→∞.

Figure 5.8 shows a comparison of the capacity regions for systems with B = 1,

for three and ten links and different decoherence rates. For all cases, µ is set to one:

for qualitative results, we only need to concern ourselves with the value of α relative

to µ. In real scenarios, we expect α to be at least one order of magnitude less than

µ. From numerical results, we observe that the effect of decoherence on the capacity

147

(a) k = 3 (b) k = 10

Figure 5.8: Capacity region for a system of buffer size one and varying number of
links k, decoherence rates α, and entanglement generation rate µ = 1. The solid lines
are the upper boundaries of the capacity region, and the dashed are TDM lines.

region is not significant, especially as the number of links grows. Analysis supports

this observation, since we can show that

lim
k→∞

C ′2
C2

= 1 and lim
k→∞

C ′3
C3

= 1.

Figure 5.9 shows a comparison for systems with B = 2 and varying number of links

0 0.2 0.4 0.6 0.8

C
3

0

0.5

1

1.5

C
2

=0

=0.1

=0.5

(a) k = 3

0 1 2 3 4

C
3

0

1

2

3

4

5

C
2

=0

=0.1

=0.5

(b) k = 10

Figure 5.9: Capacity region for a system of buffer size two and varying number of
links k, decoherence rates α, and entanglement generation rate µ = 1. The solid lines
are the upper boundaries of the capacity region, and the dashed are TDM lines.

148

and decoherence rates. Results are consistent with that of the case B = 1: the effects

of decoherence on capacity are less apparent for larger k values.

5.7 Conclusion

In this work, we explored a set of policies for a quantum switch that can store

up to two qubits per link and whose objective is to perform bipartite and tripartite

projective measurements to distribute two and three qubit entanglement to pairs and

triples of users. We presented analytical results for the case where the per-link buffer

has size one. By comparing against TDM policies, we discovered that better policies

in terms of achievable bipartite and tripartite capacities exist, but that as the number

of links grows, the advantage of using such policies diminishes. We also compared

the capacity regions for systems with different per-link buffer sizes and observed that

systems with fewer links benefit more from the extra storage space than systems

with a larger number of links. Finally, we modeled decoherence for both types of

systems and presented analytical results for the case with per-link buffer size one.

Observations and analysis showed that as the number of links increases, the effects

of decoherence become less apparent on systems.

149

APPENDIX A

ON THE STABILITY ANALYSIS OF TCP

A.1 Non-Homogeneous Poisson Loss Simulation Framework

We introduce a method of simulating the evolution of a congestion window given

W (t) – cwnd as a function of time, and λ(t) – loss rate as a function of time. We

first describe the procedure for generating loss events given arbitrary W (t) and λ(t).

We then consider a specific loss model and discuss the workarounds necessary when

dealing with capacity constraints and time delays. The final result is an algorithm

whose pseudocode we present in detail. Finally, we illustrate the operation of the

algorithm using an example cwnd trajectory.

A.1.1 Generating Loss Events

We would like to generate inter-loss times given a loss rate function λ(t). In

order to do so, we apply the Inverse Transform Method on the Poisson distribution,

described in the following proposition.

Proposition A.1.1. Suppose a loss event occurs at time t0. The time to the next

loss is given by T where ∫ t0+T

t0

λ(t)dt = − lnu,

where u is randomly generated from the uniform distribution U(0, 1).

150

Proof. Note that λ(t) denotes a Non-Homogeneous Poisson Process, where the num-

ber of events between s and t, Ns(t) has a Poisson distribution with parameter

ms(t) =
∫ t
s
λ(τ)dτ ,

P (Ns(t) = k) =
ms(t)

k

k!
e−ms(t).

We can then write the CDF of the time from t0 to the next loss as

FXt0 (T) = 1− P (Nt0(T) = 0) = P (Nt0(T) > 0)

= 1− exp
(
−
∫ t0+T

t0

λ(t)dt
)
.

Note that a CDF can be seen as a random variable with uniform distribution

U(0, 1), and can be sampled by generating uniform random numbers (this is known

as Inverse Transform Sampling). Therefore, inter-loss time samples can be generated

as T = F−1
Xt0

(u). From the above equation we obtain

∫ t0+T

t0

λ(t)dt = − ln (1− u) ≡ − lnu,

where the last equivalence follows from the fact that if u is uniformly distributed

between 0 and 1, so is 1− u.

A.1.2 Delays and Capacity Constraints

In TCP (and most other data transport protocols), the loss rate is a function of

the sending rate W (t)/τ and of a probability of loss model p(t):

λ(t) =
W (t)p(t)

τ
. (A.1)

Therefore, in order to obtain a sample of the time until next loss, the following

equation can be solved for T :

1

τ

∫ t0+T

t0

W (t)p(t)dt = − ln(u). (A.2)

151

Note that W (t) and p(t) are viewed from the perspective of the congestion point

(e.g. a router) where the loss is being generated. Therefore, whenever a loss occurs,

the subsequent reduction in the window size (multiplicative decrease) is not reflected

in W (t) until after a delay of approximately τ seconds. This is illustrated in Figure

A.1, which shows an example trajectory of the cwnd function. Each time a loss i

occurs at time li at a congestion point, a corresponding loss indication is reflected

in W (t) at time Ti = li + τ . The caveat of using (A.2) to compute T is that W (t)

may have changed sometime in the time interval [t0, t0 + T] (which can happen if

a loss indication is scheduled in this interval; we call this a pending loss indication

(PLI)). In such a case, the solution is to project the current W (t) until the next loss

indication, update W (t) to a new function, and use this new function to generate a

new loss event. Once a new loss event is generated, the process may need to repeat

until we either produce a loss event that takes place before the next PLI or until we

run out of PLIs.

Another complication may arise with certain probability of loss models. For ex-

ample, in this work we consider the following model:

p(t) =

(
1− Cτ

W (t)

)+

.

As a consequence, λ(t) = 0 whenever W (t) < Cτ . This is depicted in Figure A.1,

where losses only occur when W (t) ≥ Cτ . In order to obtain an analytical solution for

T during the ith loss event, we can first compute TBDP , the time at whichW (t) reaches

Cτ , or the bandwidth-delay product (BDP). Then, let t0 = max (TBDP , li) − Ti−1,

where Ti−1 is the time of the most recent loss indication and li is the time of the most

recent loss event at the congestion point.

Another feature of the simulation framework is the ability to generate multiple

parallel flows. This feature is especially important for validating models that use

a system of differential equations to characterize the behavior of congestion control

152

Time

W(t)

T3T2T1

W1(t)

W2(t)
W3(t)

l1

l6

l5

l4

l3

l2

T6T4 T5T0= ᷠ

BDP=Cᷠ

ᷠ
ᷠ

ᷠ

ᷠ

ᷠ

ᷠ

Figure A.1: Example trajectory of Reno’s congestion window. li is the time when loss
occurs at the congestion point (e.g. router). Ti is the time of the ith loss indication.

algorithms. The output of such models (e.g. cwnd) usually describes the behavior

of the average flow in a large population of flows. Indeed, in Section 2.7, we note

that the average cwnd size from simulation results matches closer to the steady-state

value of the DE models as we increase the number of flows in the simulation.

When multiple flows are involved, TBDP is the time at which the sum of their

congestion windows reaches the BDP, and li is the time at which the most recent loss

(across all flows) occurred. We must compute t0 for each flow, which is given by

t0,f = max (TBDP , li)− Ti−1,f ,

where Ti−1,f is the most recent loss indication of flow f . T is then computed using

the following equation:

1

τ

N∑
f=1

∫ t0,f+T

t0,f

Wf (t)pf (t)dt = − ln(u). (A.3)

153

Any time a new loss event is generated, we must also choose a flow that will suffer

the loss. The flow is picked based on its congestion window size at the time the loss is

scheduled to occur (flows with larger windows are more susceptible to suffer a loss).

A.1.3 Pseudocode

Loss generation can be described by the pseudocode in GeneratePoiLoss. This

function is called from the main procedure each time a loss is occurring at the conges-

tion point in a given interval. (So, for the example in Figure A.1, GeneratePoiLoss

would be called in the intervals containing the events li, i ∈ {1, . . . , 6}.) The argu-

ments of the function are as follows: pendingLITs is a two-dimensional matrix whose

first row is a list of pending loss indication times, and whose second row contains the

corresponding flows that will suffer the losses. LLIs is an array that keeps record of

the last loss indication times of all flows. GLLI is the most recent loss indication. Tl

is the time of the most recent loss event. Wloss is an array containing the cwnd sizes

of all flows immediately before their most recent loss events. p(t) is a probability of

loss function and τ is the round-trip time. For the example in Figure A.1, where there

is only one flow, the procedure outlined in the pseudocode would do the following:

1. At time t = 0, a loss occurred at the congestion point (not shown in the figure),

so a pending loss indication was scheduled for T0 = τ .

2. Also at the time of the loss (at t = 0), a new loss time was generated using

GeneratePoiLoss. This loss time is l1. Since l1 occurs after the next pending

loss indication (which is at T0), the while loop in GeneratePoiLoss is triggered.

We integrate the cwnd function from t = 0 to T0 = τ , compute a new Wloss

(which is the size of the window right before T0), and feed these values as

parameters to computeT. The latter function computes the next loss arrival

time; this is a new value of l1. We compare this new l1 to the next pending loss

indication time (which in this case is ∞ since no other pending loss indications

154

function GeneratePoiLoss(pendingLITs, LLIs, GLLI, Tl, Wloss, p(t), τ)
. LLT : last loss time at congestion point
. pendingLITs: a list of pending loss indication times and corresponding flows
Initialization:
GNPLI ← pendingLITs.nextLossT ime . next (global) pending loss indication time
LF ← pendingLITs.nextF low . the corresponding flow of the next loss event
TBDP ← time when sum of cwnd ’s reaches BDP
t0 ← max (TBDP , Tl)

lossT ime← computeT(LLIs,GLLI,Wloss, t0, τ, p(t))

while lossT ime ≥ GNPLI do
. next loss occurs after GNPLI, so:
. (1) determine duration of current congestion epoch for flow LF :
I ← GNPLI − LLIs(f)
. (2) the window function is changed at GNPLI, and we are looking at a new congestion

epoch, so update relevant variables
Wloss ←WLF (I) . get the Wloss value of the next congestion epoch for flow LF
GLLI ← GNPLI
LLIs(LF)← GLLI
if NPLI.isEmpty then

NPLI ←∞
else

GNPLI ← pendingLITs.nextLossT ime
LF ← pendingLITs.nextF low

end if
. (3) generate a new loss event at congestion point
Recompute TBDP

t0 ← max(TBDP , GLLI)
lossT ime← computeT(LLIs,GLLI,Wloss, t0, τ, p(t))

end while

. schedule the next loss indication event
pendingLITs.add(lossT ime+ τ)
return (lossT ime, pendingLITs)

end function

function computeT(LLIs, GLLI, Wloss, t0, τ , p(t))
u← rand() . generate a number from uniform distr.
construct Wf (t), ∀f ∈ {1, . . . , N} using Wloss

t0,f ← t0 − LLIs(f), ∀f ∈ {1, . . . , N}
. to generate the next loss interval:
Use Equation (A.3) to compute T , keep only real, positive roots
lossT ime← GLLI + t0 + T

end function

155

have been scheduled after T0). Since l1 < ∞, we exit the loop and have a new

loss time of l1 and pending loss indication T1 = l1 + τ .

3. The main procedure iterates until it reaches the interval containing l1, at which

point GeneratePoiLoss is called. The latter function generates l2, and since l2

occurs after the next pending loss indication time (T1), we re-generate l2 using

the same procedure as for l1.

4. The main procedure continues until it reaches the interval containing T1, at

which point the loss indication is processed (the cwnd is halved and there is a

new Wloss).

5. Loss events l2 and l3 and pending loss indications T2 and T3 are processed

similarly.

6. At loss event l4, a new loss time l5 is generated. Since it appears before T4, we

simply schedule a pending loss at T5 (no need to go through the while loop in

GeneratePoiLoss as we did for the other losses).

7. At loss event l5, l6 is generated, but it occurs after the pending loss indication

at T4, which has not been processed yet. Hence, the while loop is triggered.

A.2 Stability Analysis of TCP CUBIC

A.2.1 Proof of Claim 2.4.4

Proof. Consider the un-expanded ẋ1 and assume that p̃τ > 0 in the region where we

are considering this function:

ẋ1 =
(

Ψ− x1 − Ŵ
) Ψτ

τ
p̃τ

=
c

τ

x2 + ŝ−
3

√
b(x1 + Ŵ)

c

3
c
x2τ + ŝ−

3

√
b(x1τ + Ŵ)

c

3

+ x1τ + Ŵ − Cτ

 .

156

Recall that when expanding this function about [x1 x2 x1τ x2τ] = 0, the zero-, first-,

and second-order terms are zero. The fourth-order terms are:

b4x4
1

27c3ŝ10
+
cx3

2x1τ

τ
− 2b3x3

1x2

9c2ŝ8
+
b2x2

1x
2
2

3cŝ6
− bx1x

2
2x1τ

ŝ2τ
− b3x3

1x1τ

27c2ŝ6τ
+
b2x2

1x2x1τ

3cŝ4τ
.

We see that there are no terms that depend on x2τ above. The terms that contain

x1τ are not problematic: we can take their absolute values and replace |x1τ | by an

expression that depends on |x1| and x2
2 using Razumikhin’s Theorem, to obtain an

upper-bound for these terms. We conclude that these terms have power at least four

in [x1 x2].

Next, consider the fifth-order terms in the expansion:

13b4x4
1x2

81c3ŝ11
− 8b5x5

1

243c4ŝ13
− 5b3x3

1x
2
2

27c2ŝ9
+
b4x4

1x1τ

27c3ŝ9τ
− 2b3x3

1x2x1τ

9c2ŝ7τ
+
b2x2

1x
2
2x1τ

3cŝ5τ
.

Again, there are no terms that depend on x2τ . Terms that contain x2τ only begin to

show up in the sixth-order partial derivatives evaluated at 0. However, these terms

contain at most x3
2τ , since taking the derivative of ẋ1 with respect to x2τ four times

yields zero. The rest of the variables in such a term is any cubic combination of x1,

x2, and x1τ . Hence, the minimum combined power of such a term (after taking the

absolute value and bounding using Razumikhin’s Theorem) is 3 + 3(1/2) = 3 + 1.5 =

4.5 > 4 in [x1 x2].

Finally, we can use Proposition 2.4.1 to bound the remainder. For some positive

constant M1,

|R0,6| ≤
M1

7!
(|x1|+ |x2|+ |x1τ |+ |x2τ |)7.

After substituting the expressions for the upper-bounds of |x1τ | and |x2τ | using Razu-

mikhin’s Theorem, the lowest-order term will have |x1|7/2 = |x1|3.5.

157

A.2.2 Proof of Claim 2.4.5

Proof. Consider the un-expanded ẋ2 and assume that p̃τ > 0 in the region where we

are considering this function:

ẋ2 = 1− (x2 + ŝ)
Ψτ

τ
p̃τ

= 1− (x2 + ŝ)

τ

c
x2τ + ŝ−

3

√
b(x1τ + Ŵ)

c

3

+ x1τ + Ŵ − Cτ

 .

Recall that when expanding this function about [x1 x2 x1τ x2τ] = 0, the zero-order

term is zero. The second-order terms do not depend on x2τ . To see this, let g = ẋ2

and consider all second-order partial derivatives of g with respect to x2τ :

gx2τ x2τ
= −(x2 + ŝ)

τ
(6c)

x2τ + ŝ−
3

√
b(x1τ + Ŵ)

c

 =⇒ gx2τ x2τ
(0) = 0,

gx2x2τ
= −3c

τ

x2τ + ŝ−
3

√
b(x1τ + Ŵ)

c

2

=⇒ gx2x2τ
(0) = 0,

gx1τ x2τ
=

(x2 + ŝ)

τ
(2b)

x2τ + ŝ−
3

√
b(x1τ + Ŵ)

c

(b(x1τ + Ŵ)

c

)−2/3

=⇒ gx1τ x2τ
(0) = 0,

gx1x2τ
= 0.

Therefore, the second-order terms have combined powers of at least two in [x1 x2].

Next, using Proposition 2.4.1, we can bound the remainder: for some positive constant

M2,

|R0,2| ≤
M2

3!
(|x1|+ |x2|+ |x1τ |+ |x2τ |)3.

The lowest-order term above is |x1|3/2 = |x1|1.5.

158

A.2.3 Proof of Claim 2.4.6

Proof. To prove our claim, we will show that for every ε > 0, there exists a δ > 0 so

that whenever 0 <
√
x2

1 + x2
2 < δ, |f(x1, x2)| < ε. The higher-order terms are a sum

of terms that have format c0x
c1
1 x

c2
2 , where c0 is either a constant or a function of x1θ+τ

and x2θ+τ , as in the case of the higher-order terms that arise from the x3
2ẋ1θτ term

of V̇ . We showed that in all cases, |c0| is bounded above by a positive constant. In

addition, we showed that c1 + c2 ≥ 4.5. Let n be the number of higher-order terms

(note: n is finite). Then we can write |f(x1, x2)| as follows:

|f(x1, x2)| = 1

||x||42

∣∣∣∣∣
n∑
i=1

c
(i)
0 x

c
(i)
1

1 x
c
(i)
2

2

∣∣∣∣∣ ,
where the superscript (i) corresponds to the ith higher-order term. Clearly,

|f(x1, x2)| ≤ 1

||x||42

n∑
i=1

∣∣∣∣c(i)
0 x

c
(i)
1

1 x
c
(i)
2

2

∣∣∣∣ .
Consider any term |c0x

c1
1 x

c2
2 |. Factor out any combination |x1|a|x2|b such that a+ b =

4. We know that

|x1|, |x2| ≤
√
x2

1 + x2
2.

Then

|x1|a|x2|b ≤
(√

x2
1 + x2

2

)4

= ||x||42,

|c0x
c1
1 x

c2
2 | ≤ |c0g(x1, x2)|||x||42

where g(x1, x2) is defined s.t. g(x1, x2)xa1x
b
2 = xc11 x

c2
2 . Hence,

|f(x1, x2)| ≤ 1

||x||42

n∑
i=1

∣∣∣c(i)
0 g

(i)(x1, x2)
∣∣∣ ||x||42 =

n∑
i=1

∣∣∣c(i)
0 g

(i)(x1, x2)
∣∣∣ .

159

Each function g(x1, x2) necessarily has the form

g(x1, x2) = xl11 x
l2
2 , l1, l2 ≥ 0, l1 + l2 ≥

1

2
.

Hence, we can bound the absolute value of each of these functions by a function of δ.

|x1/2| ≤
√
x2

1 + x2
2 < δ,

|x1/2|l1/2 ≤
(√

x2
1 + x2

2

)l1/2
< δl1/2 ,

|g(x1, x2)| ≤
(√

x2
1 + x2

2

)l1+l2

< δl1+l2 .

This gives us

|f(x1, x2)| ≤
n∑
i=1

∣∣∣c(i)
0

∣∣∣ δl(i)1 +l
(i)
2 .

We would like the sum above to be less than a given ε > 0. We can always find a

δ > 0 small enough to make this happen.

A.3 Limiting behavior of H-TCP’s fixed point

First, let us show that for H-TCP, ∆0/Q = O((C2τ 4)1/3). This is because

∆0

Q
=

21/3∆0

(∆1 +
√

∆2
1 − 4∆3

0)1/3
=

(∆1 −
√

∆2
1 − 4∆3

0)1/3

21/3
< ∆

1/3
1 = O(C2/3τ 4/3).

Next,

∆0

Q
+Q =

(∆1 −
√

∆2
1 − 4∆3

0)1/3 + (∆1 +
√

∆2
1 − 4∆3

0)1/3

21/3

<
2(∆1 +

√
∆2

1 − 4∆3
0)1/3

21/3
= O((C2τ 4)1/3).

160

We now examine the limiting behavior of q′/S. Letting c0 = Γ + (573 + 228(105))/8,

q′

S
=

6Cτ 2 − c0

1
2

√
2
3
p′ + 1

3

(
Q+ ∆0

Q

) < 12
√

3Cτ 2(
Q+ ∆0

Q

)1/2

=
12
√

3 6
√

2Cτ 2(
(∆1 −

√
∆2

1 − 4∆3
0)1/3 + (∆1 +

√
∆2

1 − 4∆3
0)1/3

)1/2

<
12
√

3 6
√

2Cτ 2

∆
1/6
1

<
25Cτ 2

(C2τ 4)1/6
,

where the last inequality holds for large C since the coefficient of C2τ 4 in ∆1 is 972. It

is now easy to see that q′/S = O((C2τ 4)1/3). Finally, it remains to show that (2.35) is

real and positive for large C and C � τ . Clearly, under these assumptions, S > 57/4.

It then remains to show that the quantity inside the square root is positive, or

2p′ + q′/S > 4S2 =
2

3
p′ +

1

3

(
Q+

∆0

Q

)
.

Defining y := Q+ ∆0/Q, multiplying both sides by S and simplifying yields

6
√

3q′ > (y − 4p′)(2p′ + y)1/2.

Both sides of the inequality are positive for large C, so we may square them to obtain,

after simplifying,

108(q′)2 > y3 − 6p′y2 + 32(p′)3.

For large C, it is easy to see that y3 − 6p′y2 + 32(p′)3 < y3, so it is sufficient to prove

that 108(q′)2 > y3, or

216(q′)2 >

[
(∆1 −

√
∆2

1 − 4∆3
0)1/3 + (∆1 +

√
∆2

1 − 4∆3
0)1/3

]3

.

161

We first focus on the right-hand side of this inequality. It is easy to see that

∆1 +
√

∆2
1 − 4∆3

0 < 2∆1.

For large C and C � τ , it is also true that ∆1 −
√

∆2
1 − 4∆3

0 < ∆1/8. To see that

this is true, note that this claim is equivalent to that of

7∆1/8 <
√

∆2
1 − 4∆3

0, or 15∆2
1/64 > 4∆3

0,

and recall that ∆1 grows with (Cτ 2)2 while ∆0 grows with Cτ 2. Hence, it is sufficient

for us to prove that

216(q′)2 >
[
(∆1/8)1/3 + (2∆1)1/3

]3
= ∆1(21/3 + 1/2)3.

Noting that (21/3 + 1/2)3 < 6, it is sufficient to show that 36(q′)2 > ∆1, or, after

expanding both sides,

1296(Cτ 2)2 − 432c0Cτ
2 + 36c2

0 > 972(Cτ 2)2 − 348574.3Cτ 2 − 571698τ 2 + 2070623.3,

which easily holds for large C and C � τ .

162

APPENDIX B

ON THE STOCHASTIC ANALYSIS OF A QUANTUM
ENTANGLEMENT DISTRIBUTION SWITCH

B.1 Capacity for Heterogeneous Systems with B =∞
B.1.1 Proof of the last equality in Eq. (3.1)

From the first part of this equation, we have

C = q
k∑
l=1

∞∑
j=1

π
(j)
l (γ − µl) = q

k∑
l=1

∞∑
j=1

π0ρ
j
l (γ − µl)

= qπ0

k∑
l=1

(γ − µl)ρl
1− ρl

= qπ0

k∑
l=1

(
γ

2

ρl
1− ρl

+
(γ

2
− µl

) ρl
1− ρl

)

= qπ0

k∑
l=1

(
γ

2

ρl
1− ρl

+

(
γ − 2µl

2

)
µl(γ − µl)

(γ − µl)(γ − 2µl)

)

= qπ0

k∑
l=1

(
γ

2

ρl
1− ρl

+
µl
2

)
= qπ0

γ

2

(
k∑
l=1

ρl
1− ρl

+ 1

)
=
qγ

2
.

B.1.2 Proof that Cl = qµl

Letting B →∞ in Eq. (3.3),

Cl = qπ0

(γ − µl)
ρl

1− ρl
+ µl

k∑
m=1,
m 6=l

ρm
1− ρm



= qπ0µl

 1

1− ρl
+

k∑
m=1,
m6=l

ρm
1− ρm

+
ρl

1− ρl
− ρl

1− ρl


= qπ0µl

(
1 +

k∑
m=1

ρm
1− ρm

)
= qµl.

163

B.2 Decoherence

B.2.1 Homogeneous, Infinite Buffer

For this system, the balance equations are as follows:

π0kµ = π1(α + (k − 1)µ),

πi−1µ = πi(iα + (k − 1)µ), i = 2, 3, . . . ,

∞∑
i=0

πi = 1.

Solving for the stationary distribution, we have:

π1 =
kµ

(k − 1)µ+ α
π0,

π2 =
µπ1

(k − 1)µ+ 2α
=

kµ2π0

((k − 1)µ+ 2α)((k − 1)µ+ α)
,

and so on. In general, for i = 1, 2, . . . we can write

πi =
π0kµ

i

i∏
j=1

((k − 1)µ+ jα)

= π0k
i∏

j=1

µ

((k − 1)µ+ jα)
.

Using the normalizing condition, we have

π0 + kπ0

∞∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)
= 1, so that

π0 =

(
1 + k

∞∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)

)−1

.

The capacity and E[Q] can be computed numerically using the following formulas:

C =
∞∑
i=1

πi(k − 1)µ = (k − 1)µ(1− π0),

E[Q] =
∞∑
i=1

iπi = π0k
∞∑
i=1

i
i∏

j=1

µ

((k − 1)µ+ jα)
.

164

B.2.2 Homogeneous, Finite Buffer

The derivations are very similar to the previous case, with the only difference being

that the balance equations are truncated at state i = B. The resulting expressions are

almost identical to those above, with the exception of i being in {1, . . . , B} instead

of {1, 2, . . . }:

π0 =

(
1 + k

B∑
i=1

i∏
j=1

µ

((k − 1)µ+ jα)

)−1

,

C =
B∑
i=1

πi(k − 1)µ = (k − 1)µ(1− π0),

E[Q] =
B∑
i=1

iπi = π0k
B∑
i=1

i
i∏

j=1

µ

((k − 1)µ+ jα)
.

B.2.3 Heterogeneous, Infinite Buffer

The balance equations are:

π0µl = π
(1)
l (γ − µl + α), l ∈ {1, . . . , k},

π
(j−1)
l µl = π

(j)
l (γ − µl + jα), l ∈ {1, . . . , k}, j ∈ {2, 3, . . . },

π0 +
k∑
l=1

∞∑
j=1

π
(j)
l = 1.

For j = 1, 2, . . . , we can write

π
(j)
l = π0

j∏
i=1

µl
γ − µl + iα

.

Using the normalizing condition, we obtain

π0 =

(
1 +

k∑
l=1

∞∑
j=1

j∏
i=1

µl
γ − µl + iα

)−1

.

165

The capacity and E[Q] can be computed numerically using

C=
k∑
l=1

∞∑
j=1

π
(j)
l (γ − µl) = π0

k∑
l=1

∞∑
j=1

(γ − µl)
j∏
i=1

µl
γ − µl + iα

,

E[Q] =
∞∑
j=1

jP (Q = j) =
∞∑
j=1

j

k∑
l=1

π
(j)
l

= π0

∞∑
j=1

j

k∑
l=1

j∏
i=1

µl
γ − µl + iα

.

B.2.4 Heterogeneous, Finite Buffer

The derivations are similar to the previous case, with the only difference being

that j is now in {1, . . . , B} instead of in {1, 2, . . . }. The resulting relevant expressions

are:

π0 =

(
1 +

k∑
l=1

B∑
j=1

j∏
i=1

µl
γ − µl + iα

)−1

,

C = π0

k∑
l=1

B∑
j=1

(γ − µl)
j∏
i=1

µl
γ − µl + iα

,

E[Q] = π0

B∑
j=1

j
k∑
l=1

j∏
i=1

µl
γ − µl + iα

.

166

APPENDIX C

ON THE EXACT ANALYSIS OF AN IDEALIZED
QUANTUM SWITCH

C.1 Stationary Distribution

C.1.1 Proof of Eq. (4.5)

Introducing the value of πi = βk−1π1 into Eq. (4.3) yields

βi−1π1 = βi−2π1Pf + βi−1π1Ps + βi−1π1

k−1∑
j=1

βjP(j)

or equivalently

β = Pf + βPs + β
k−1∑
j=1

βjP(j)

= β(pk + (k − 1)p2pk−2) + β
k−1∑
j=1

(
k − 1

j

)
(βp)jpk−j

+
1

β

k−2∑
j=1

(
k − 1

j + 1

)
(βp)j+2pk−j−2 + ppk−1. (C.1)

With
k−1∑
j=1

(
k − 1

j

)
(βp)jpk−j = p

(
(βp+ p)k−1 − pk−1

)
and

167

k−2∑
j=1

(
k − 1

j + 1

)
(βp)j+2pk−j−2 =

k−1∑
i=2

(
k − 1

i

)
(βp)i+1pk−1−i

= βp
(
(βp+ p)k−1 − (k − 1)βppk−2 − pk−1

)
,

Eq. (C.1) becomes

β = β(pk + (k − 1)p2pk−2) + βp
(
(βp+ p)k−1 − pk−1

)
+ p

(
(βp+ p)k−1 − (k − 1)βppk−2 − pk−1

)
+ ppk−1

= ppk−1 + βpk + β(k − 1)p2pk−2 + βp(βp+ p)k−1

− βpk + p(βp+ p)k−1 − β(k − 1)p2pk−2 − ppk−1

= (βp+ p)k−1(p+ βp).

Hence, β satisfies the equation f(β) = 0 with

f(β) := (βp+ p)k−1(p+ βp)− β.

C.1.2 Proof that Eq. (4.5) has a unique solution in (0, 1)

Let us first consider the case k = 2. We have

f(β) = (βp+ p)(p+ βp)− β

= βp2 + β2pp+ pp+ βp2 − β

= β2pp− 2βpp+ pp.

Setting this expression equal to zero yields

β2 − 2β + 1 = 0,

168

which has a unique solution β = 1. Since this is outside the interval (0, 1), we conclude

that the DTMC is not stable when k = 2. Now, consider the case k ≥ 3. We have

f ′(β) = (k − 1)p(βp+ p)k−2(p+ βp) + p(βp+ p)k−1 − 1

and f ′′(β) is given by

(k − 1)(k − 2)p2(βp+ p)k−3(p+ βp) + 2(k − 1)pp(βp+ p)k−2

= (k − 1)p(βp+ p)k−3 [(k − 2)p+ 2(k − 1)p(βp+ p)] > 0.

This shows that the mapping β → f ′(β) is strictly increasing in [0, 1]. On the other

hand,

f ′(0) = (k − 1)p2pk−2 + pk − 1

and f ′(1) = (k − 1)p + p − 1 = (k − 2)p > 0. Let us show that f ′(0) < 0. Define

g(p) = (k − 1)p2pk−2 + pk − 1 = f ′(0). We find

g′(p) = −pk−3(p2k2 + 2p(1− 2k) + k).

Define h(p) = p2k2 + 2p(1 − 2k) + k so that g′(p) = −pk−3h(p). We have h′(p) =

2(pk2 + 1 − 2k), which vanishes for p = p0 := (2k − 1)/k2. Also, h′′(p) = 2k2 > 0.

We deduce from this that h(p) decreases in [0, p0) and increases in (p0, 1]. Therefore,

h(p) is minimized in [0, 1] for p = p0. We have h(p0) = (−(2k− 1)2 + k3)/k2 which is

easily seen to be strictly positive for all k ≥ 3. This shows that h(p) > 0 for p ∈ [0, 1],

which implies that g′(p) < 0 for p ∈ [0, 1], so that g(p) < g(0) = 0 for p ∈ (0, 1] and,

finally, f ′(0) < 0.

From f ′(0) < 0, f ′(1) > 0 and the fact that the continuous mapping β → f ′(β) is

strictly increasing in [0, 1], we deduce that there exists β0 ∈ (0, 1) such that f ′(β) < 0

169

for β ∈ [0, β0), f ′(β0) = 0 and f ′(β) > 0 for β ∈ (β0, 1]. This in turn shows that

β → f(β) is strictly decreasing in [0, β0) and strictly increasing in (β0, 1]. But since

f(0) > 0 and f(1) = 0, this implies that f has a unique zero in (0, 1). This zero is

actually located in (0, β0).

C.1.3 Equivalence of Eqs (4.1) and (4.2)

We start by rearranging (4.1):

k−1∑
i=0

πiPi,0 = π0,

k−1∑
i=1

πiPi,0 = π0(1− P0,0),

π1

k−1∑
i=1

βi−1Pi,0 = π0P0,1,

k−1∑
i=1

βiPi,0 =
βπ0

π1

P0,1.

Then, we rearrange (4.2) in a similar fashion:

k∑
i=0

πiPi,1 = π1,

π0P0,1 + π1

k∑
i=1

βi−1Pi,1 = π1,

π0P0,1 = π1

(
1− 1

β

k∑
i=1

βiPi,1

)
,

βπ0

π1

P0,1 = β −
k∑
i=1

βiPi,1.

Hence, to show that one of (4.1) and (4.2) is redundant, it suffices to show that

k−1∑
i=1

βiPi,0 = β −
k∑
i=1

βiPi,1, (C.2)

170

or equivalently,

k−1∑
i=1

βi(Pi,0 + Pi,1) + βkPk,1 = β. (C.3)

Before we continue, we derive a few useful expressions. The first is as follows:

Pe(i, k − 1) + Po(i, k − 1) =
k−1∑
j=i

(
k − 1

j

)
pjpk−1−j.

Next, we have

Pe(i, k − 1)− Po(i, k − 1) =
k−1∑
j=i

(
k − 1

j

)
pjpk−1−j(−1)j.

Finally,

Po(i, k − 1)− Pe(i, k − 1) = −
k−1∑
j=i

(
k − 1

j

)
pjpk−1−j(−1)j.

Now, consider the left side of Eq. (C.2):
k−1∑
i=1

βiPi,0 is equal to

171

k−1∑
i=1

βi
[(

1 + (−1)i

2

)
(pPe(i, k − 1) + pPo(i+ 1, k − 1))

+

(
1− (−1)i

2

)
(pPo(i, k − 1) + pPe(i+ 1, k − 1))

]
=
p

2

k−1∑
i=1

βi

[
k−1∑
j=i

(
k − 1

j

)
pjpk−1−j(1 + (−1)i(−1)j)

]

+
p

2

k−2∑
i=1

βi

[
k−1∑
j=i+1

(
k − 1

j

)
pjpk−1−j(1− (−1)i(−1)j)

]

=
p

2

k−1∑
j=1

(
k − 1

j

)
pjpk−1−j

j∑
i=1

βi(1 + (−1)i(−1)j)

+
p

2

k−1∑
j=2

(
k − 1

j

)
pjpk−1−j

j−1∑
i=1

βi(1− (−1)i(−1)j)

=
1

2

[
β

1− β
− 2β

1− β2
(pβ + p)k−1(p+ pβ)− (p− p)k β

1 + β

]
.

Next, we look at
k−1∑
i=1

βiPi,1, which is equal to

k−1∑
i=1

βi
[(

1 + (−1)i

2

)
(pPo(i− 1, k − 1) + pPe(i, k − 1))

+

(
1− (−1)i

2

)
(pPe(i− 1, k − 1) + pPo(i, k − 1))

]
=
p

2

k−1∑
i=1

βi

[
k−1∑
j=i−1

(
k − 1

j

)
pjpk−1−j (1− (−1)i(−1)j

)]

+
p

2

k−1∑
i=1

βi

[
k−1∑
j=i

(
k − 1

j

)
pjpk−1−j (1 + (−1)i(−1)j

)]

= βp((βp+ p)k−1 − (βp)k−1)

+
1

2

(
β

1− β
− 2β

1− β2
(pβ + p)k +

β

1 + β
(p− p)k

)
.

Summing these two expressions, we obtain
k−1∑
i=1

βi(Pi,0 + Pi,1),

β

1− β
− β

1− β
(pβ + p)k−1(p+ pβ)− βp(βp)k−1.

172

Next, we compute

Pk,1 =

(
1 + (−1)k

2

)
pPo(k − 1, k − 1) +

(
1− (−1)k

2

)
pPe(k − 1, k − 1)

= p

((
1 + (−1)k

2

)(
1− (−1)k−1

2

)
pk−1

+

(
1− (−1)k

2

)(
1 + (−1)k−1

2

)
pk−1

)
= ppk−1.

Finally, the left side of Eq. (C.3) becomes

k−1∑
i=1

βi(Pi,0 + Pi,1) + βkPk,1

=
β

1− β
− β

1− β
(pβ + p)k−1(p+ pβ)− pβkpk−1 + βkppk−1

=
β

1− β
− β

1− β
(pβ + p)k−1(p+ pβ).

Recall from (C.3) that the expression above must equal to β. Using Eq. (4.5), we

know that

(pβ + p)k−1(p+ pβ) = β,

and therefore,

k−1∑
i=1

βi(Pi,0 + Pi,1) + βkPk,1 =
β

1− β
− β2

1− β
= β.

C.2 Proof of Capacity

For simplicity, let us first derive C with the assumption that q = 1. Since q simply

scales the capacity, we will multiply the resulting expression by q at the end. Consider

173

the first term of Eq. (4.10):

k−2∑
i=0

πi

i∑
j=0

j

(
k − 1

j

)
pjpk−1−j =

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

k−2∑
i=j

πi

=
k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−jπ1

k−2∑
i=j

βi−1

=
π1

β

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
k−2∑
i=0

βi −
j−1∑
i=0

βi

)

=
π1

β

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
1− βk−1

1− β
− 1− βj

1− β

)

=
π1

β

k−2∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
βj − βk−1

1− β

)

=
π1

β

k−1∑
j=1

j

(
k − 1

j

)
pjpk−1−j

(
βj − βk−1

1− β

)
=

π1

β(1− β)

(
(k − 1)(βp+ p)k−2βp− βk−1(k − 1)p

)
=
π1(k − 1)p

β(1− β)

(
(βp+ p)k−2β − βk−1

)
.

Next, keeping in mind that k − 1 ≥ 2, the last term of Eq. (4.10) is

(k − 1)p
∞∑

i=k−1

πi =
(k − 1)pπ1

β

∞∑
i=k−1

βi

=
(k − 1)pπ1

β

(
∞∑
i=0

βi −
k−2∑
i=0

βi

)

=
(k − 1)pπ1

β

(
1

1− β
− 1− βk−1

1− β

)
=

(k − 1)pπ1

β

βk−1

1− β
.

Hence, so far,

174

C =
k−2∑
i=0

πi

(
i

(
k − 1

i+ 1

)
pi+1pk−i−1 +

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

)

+
π1(k − 1)p

β(1− β)

(
(βp+ p)k−2β − βk−1

)
+

(k − 1)pπ1

β

βk−1

1− β

=
π1(k − 1)p

(1− β)
(βp+ p)k−2

+
k−2∑
i=0

πi

(
i

(
k − 1

i+ 1

)
pi+1pk−i−1 +

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

)
. (C.4)

Next in Eq. (C.4) we have the term

k−2∑
i=0

πii

(
k − 1

i+ 1

)
pi+1pk−i−1 = π1

k−2∑
i=1

βi−1i

(
k − 1

i+ 1

)
pi+1pk−i−1

= π1

k−1∑
j=2

βj−2(j − 1)

(
k − 1

j

)
pjpk−j

=
pπ1

β2

(
(k − 1)(βp+ p)k−2βp− (βp+ p)k−1 + pk−1

)
.

Substituting this into Eq. (C.4), we have

C =
k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l +

π1(k − 1)p

(1− β)
(βp+ p)k−2

+
pπ1

β2

(
(k − 1)(βp+ p)k−2βp− (βp+ p)k−1 + pk−1

)
=

k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

+
pπ1

β2

(
pk−1 − (βp+ p)k−1

)
+ π1(k − 1)p(βp+ p)k−2 (βp+ p)

β(1− β)

=
k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l

+
pπ1

β2

(
pk−1 − (βp+ p)k−1

)
+ π1(k − 1)p

(βp+ p)k−1

β(1− β)
. (C.5)

Consider the remaining sum above. Let m = i+ l. Then

175

k−2∑
i=0

πi

k−i∑
l=2

(⌊
l

2

⌋
+ i

)(
k

i+ l

)
pi+lpk−i−l =

k∑
m=2

(
k

m

)
pmpk−m

(
m−2∑
i=0

πi

(⌊
m− i

2

⌋
+ i

))

=
k∑

m=2

(
k

m

)
pmpk−m

(
m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
− (m− 1)πm−1 −mπm

)
:= S. (C.6)

The inner sum above can be rewritten as follows:

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)

=
m∑
i=0

πi

(
i+

(
m− i

2

)
1 + (−1)m−i

2
+

(
m− i− 1

2

)
1− (−1)m−i

2

)

=
m∑
i=0

πi

(
i+

m− i
2
− 1

2

(1− (−1)m−i)

2

)
=

m∑
i=0

πi

(
2m− 1

4
+
i

2
+

(−1)m−i

4

)
=
π1

β

m∑
i=1

βi
(

2m− 1

4
+
i

2
+

(−1)m−i

4

)
+ π0

(
2m− 1 + (−1)m

4

)

=
π1

β

(
2m− 1

4

(
1− βm+1

1− β
− 1

)
+

1

2

m∑
i=1

iβi +
(−1)m

4

(
1− (−β)m+1

1 + β
− 1

))

+ π0

(
2m− 1 + (−1)m

4

)
= π1

(
2m− 1

4

(
1− βm

1− β

)
+

1

2

(mβm+1 − (m+ 1)βm + 1)

(1− β)2
+
βm − (−1)m

4(1 + β)

)
+ π0

(
2m− 1 + (−1)m

4

)
.

Now, we can use the fact that π0 + π1/(1− β) = 1 to obtain

π1
2m− 1

4

1

1− β
+

2m− 1

4
π0 =

2m− 1

4
.

Using the same relation, we have

(−1)m

4

(
π0 −

π1

1 + β

)
=

(−1)m

4

(
1− 2π1

1− β2

)
.

176

Therefore,

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
= π1

(
2m− 1

4

(
−βm

1− β

)
+
mβm+1 − (m+ 1)βm + 1

2(1− β)2
+

βm

4(1 + β)

)
+

2m− 1

4
+

(−1)m

4

(
1− 2π1

1− β2

)
= −π1β

m β

(1− β)2(1 + β)
− π1

mβm

1− β
+
m

2
+

(−1)m

4

(
1− 2π1

1− β2

)
+

π1

2(1− β)2
− 1

4
.

From Eq. (4.9), we know that π1 = (1− β2)/2. Using this,

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
= −π1β

m β

(1− β)2(1 + β)
− π1

mβm

1− β
+
m

2
+

π1

2(1− β)2
− 1

4
.

Next, we can write

m∑
i=0

πi

(⌊
m− i

2

⌋
+ i

)
− (m− 1)πm−1 −mπm

=
−π1β

mβ

(1− β)2(1 + β)
− π1

mβm

1− β
+
m

2
+

π1

2(1− β)2
− 1

4
− π1

β
mβm

(
1

β
+ 1

)
+
π1

β2
βm

=
m

2
+

π1

2(1− β)2
− 1

4
+ π1β

m

(
1

β2
− β

(1− β)2(1 + β)

)
− π1mβ

m

β2(1− β)
.

Hence, Eq. (C.6) becomes

177

S =
k∑

m=2

(
k

m

)
pmpk−m

(
π1β

m

(
1

β2
− β

(1− β)2(1 + β)

)
− π1mβ

m

β2(1− β)
+
m

2
+

π1

2(1− β)2
− 1

4

)
= π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k − π1kpβ(pβ + p)k−1

β2(1− β)

− pk
(
π1

(
1

β2
− β

(1− β)2(1 + β)

)
+

π1

2(1− β)2
− 1

4

)
− kppk−1

(
π1β

(
1

β2
− β

(1− β)2(1 + β)

)
− π1β

β2(1− β)
+

1

2
+

π1

2(1− β)2
− 1

4

)
+
kp

2
+

π1

2(1− β)2
− 1

4

= π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k − π1kp(pβ + p)k−1

β(1− β)

− pk
(
π1

β2
+

π1

2(1− β2)
− 1

4

)
− kppk−1

(
−π1

2(1− β2)
+

1

4

)
+
kp

2
+

π1

2(1− β)2
− 1

4
.

Substituting π1 = (1− β2)/2 above and simplifying yields

S = π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k

− π1kp

β(1− β)
(pβ + p)k−1 +

kp

2
+

π1

2(1− β)2
− 1

4
− pk π1

β2
.

Finally, substituting this result into Eq. (C.5), C becomes

C =
pπ1

β2

(
pk−1 − (βp+ p)k−1

)
+ π1(k − 1)p

(βp+ p)k−1

β(1− β)

+ π1

(
1

β2
− β

(1− β)2(1 + β)

)
(pβ + p)k

− π1kp

β(1− β)
(pβ + p)k−1 +

kp

2
+

π1

2(1− β)2
− 1

4
− pk π1

β2

=
−π1(βp+ p)k−1 (pβ + p)

(1− β)2(1 + β)
+
kp

2
+

π1

2(1− β)2
− 1

4
.

We know from Eq. (4.5) that

(βp+ p)k−1(p+ βp)− β = 0.

178

Using this above, we obtain

C = − π1β

(1− β)2(1 + β)
+
kp

2
+

π1

2(1− β)2
− 1

4

=
π1

2(1− β2)
− 1

4
+
kp

2
.

Recall that π1 = (1− β2)/2. Hence,

C =
1− β2

2

1

2(1− β2)
− 1

4
+
kp

2
,

C =
kp

2
.

Finally, recall that we earlier assumed q = 1. Removing this assumption, we obtain

C =
qkp

2
.

179

BIBLIOGRAPHY

[1] Allcock, William, Bresnahan, John, Kettimuthu, Rajkumar, Link, Michael, Du-
mitrescu, Catalin, Raicu, Ioan, and Foster, Ian. The Globus Striped GridFTP
Framework and Server. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (Washington, DC, USA, 2005), SC ’05, IEEE Computer Society,
pp. 54–.

[2] Bao, Wei, Wong, V.W.S., and Leung, V.C.M. A Model for Steady State Through-
put of TCP CUBIC. In GLOBECOM 2010.

[3] Bateman, Martin, Bhatti, Saleem, Bigwood, Greg, Rehunathan, Devan, Alli-
son, Colin, Henderson, Tristan, and Miras, Dimitrios. A comparison of TCP
behaviour at high speeds using ns-2 and Linux. In Proceedings of the 11th com-
munications and networking simulation symposium (2008), ACM, pp. 30–37.

[4] Bennett, C. H., Brassard, G., and Mermin, N. D. Quantum cryptography without
Bell’s theorem. Physical review letters 68, 5 (1992), 557.

[5] Bennett, Charles H, Brassard, Gilles, Crépeau, Claude, Jozsa, Richard, Peres,
Asher, and Wootters, William K. Teleporting an Unknown Quantum State Via
Dual Classical and Einstein-Podolsky-Rosen Channels. Physical review letters
70, 13 (1993), 1895.

[6] Bennett, Charles H, Brassard, Gilles, Popescu, Sandu, Schumacher, Benjamin,
Smolin, John A, and Wootters, William K. Purification of noisy entanglement
and faithful teleportation via noisy channels. Physical review letters 76, 5 (1996),
722.

[7] Bennett, Charles H, and Wiesner, Stephen J. Communication via one-and two-
particle operators on Einstein-Podolsky-Rosen states. Physical review letters 69,
20 (1992), 2881.

[8] Bhaskar, Mihir K, Riedinger, Ralf, Machielse, Bartholomeus, Levonian, David S,
Nguyen, Christian T, Knall, Erik N, Park, Hongkun, Englund, Dirk, Lončar,
Marko, Sukachev, Denis D, et al. Experimental demonstration of memory-
enhanced quantum communication. Nature 580, 7801 (2020), 60–64.

[9] Callegari, Christian, Giordano, Stefano, Pagano, Michele, and Pepe, Teresa.
Behavior analysis of TCP Linux variants. Computer Networks 56, 1 (2012),
462–476.

180

[10] Cardwell, Neal, Cheng, Yuchung, Gunn, C Stephen, Yeganeh, Soheil Hassas, and
Jacobson, Van. BBR: Congestion-based congestion control. Queue (2016).

[11] Crowcroft, Jon, and Oechslin, Philippe. Differentiated end-to-end Internet ser-
vices using a weighted proportional fair sharing TCP. ACM SIGCOMM Com-
puter Communication Review 28, 3 (1998), 53–69.

[12] Dorf, Richard C, and Bishop, Robert H. Modern Control Systems. Pearson,
2011.

[13] Ekert, Artur K. Quantum Cryptography Based on Bell’s Theorem. Physical
review letters 67, 6 (1991), 661.

[14] El Khoury, R, Altman, E, and El Azouzi, R. Analysis of scalable TCP congestion
control algorithm. Computer Communications (2010).

[15] Eldredge, Z., Foss-Feig, M., Gross, J. A., Rolston, S. L., and Gorshkov, A. V. Op-
timal and secure measurement protocols for quantum sensor networks. Physical
Review A 97, 4 (2018), 042337.

[16] ESnet. ESnet Fasterdata Knowledge Base. http://fasterdata.es.net/. Ac-
cessed: 2018-10-31.

[17] Ewert, F., and van Loock, P. 3/4-Efficient Bell Measurement with Passive Linear
Optics and Unentangled Ancillae. Physical review letters (2014).

[18] Floyd, Sally. HighSpeed TCP for large congestion windows.

[19] Folland, GB. Higher-Order Derivatives and Taylor’s Formula in Several Vari-
ables. https://sites.math.washington.edu/~folland/Math425/taylor2.

pdf, 2005. Accessed: 2018-01-10.

[20] Genin, Daniel, and Marbukh, Vladimir. Bursty fluid approximation of TCP
for modeling Internet congestion at the flow level. In 2009 47th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton) (2009),
IEEE, pp. 1300–1306.

[21] Giovannetti, Vittorio, Lloyd, Seth, and Maccone, Lorenzo. Quantum-enhanced
measurements: beating the standard quantum limit. Science 306, 5700 (2004),
1330–1336.

[22] Grasselli, Federico, Kampermann, Hermann, and Bruß, Dagmar. Finite-key ef-
fects in multipartite quantum key distribution protocols. New Journal of Physics
20, 11 (2018), 113014.

[23] Grice, W. P. Arbitrarily Complete Bell-State Measurement Using Only Linear
Optical Elements. Physical Review A (2011).

[24] Gu, Keqin, Chen, Jie, and Kharitonov, Vladimir L. Stability of Time-Delay
Systems. Springer Science & Business Media, 2003.

181

[25] Gu, Yunhong, and Grossman, Robert L. UDT: UDP-based Data Transfer for
High-speed Wide Area Networks. Computer Networks (2007).

[26] Guha, S., Krovi, H., Fuchs, C. A., Dutton, Z., Slater, J. A., Simon, C., and Tittel,
W. Rate-loss analysis of an efficient quantum repeater architecture. Physical
Review A 92, 2 (2015), 022357.

[27] Guok, Chin, Engineer, EN, and Robertson, David. ESnet On-Demand Secure
Circuits and Advance Reservation System (OSCARS). Internet2 Joint 92 (2006).

[28] Ha, Sangtae, Kim, Yusung, Le, Long, Rhee, Injong, and Xu, Lisong. A step
toward realistic performance evaluation of high-speed TCP variants. In Fourth
International Workshop on Protocols for Fast Long-Distance Networks (2006).

[29] Ha, Sangtae, and Rhee, Injong. Taming the elephants: New TCP slow start.
Computer Networks 55, 9 (2011), 2092–2110.

[30] Ha, Sangtae, Rhee, Injong, and Xu, Lisong. CUBIC: a New TCP-Friendly High-
Speed TCP Variant. ACM SIGOPS Operating Systems Review (2008).

[31] Hao, Jiu-Cang, Li, Chuan-Feng, and Guo, Guang-Can. Controlled dense coding
using the Greenberger-Horne-Zeilinger state. Physical Review A 63, 5 (2001),
054301.

[32] Herbauts, Isabelle, Blauensteiner, B, Poppe, A, Jennewein, T, and Huebel,
Hannes. Demonstration of Active Routing of Entanglement in a Multi-User
Network. Optics express 21, 23 (2013), 29013–29024.

[33] Hollot, Chris V, Misra, Vishal, Towsley, Don, and Gong, Wei-Bo. On Designing
Improved Controllers for AQM Routers Supporting TCP Flows. In Proceedings
IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and Communications Society
(Cat. No. 01CH37213) (2001), vol. 3, IEEE, pp. 1726–1734.

[34] Hollot, CV, and Chait, Yossi. Nonlinear stability analysis for a class of
TCP/AQM networks. In Proceedings of the 40th IEEE Conference on Decision
and Control (Cat. No. 01CH37228) (2001), vol. 3, IEEE, pp. 2309–2314.

[35] Hollot, CV, Misra, Vishal, Towsley, Don, and Gong, Wei-Bo. A Control Theoretic
Analysis of RED. In INFOCOM 2001. (2001).

[36] Hopp, W. J., and Simon, J. T. Bounds and heuristics for assembly-like queues.
Queueing systems 4, 2 (1989), 137–155.

[37] Huang, Xiaomeng, Chuang, LIN, and Fengyuan, REN. Generalized Modeling
and Stability Analysis of Highspeed TCP and Scalable TCP. IEICE transactions
on communications (2006).

182

[38] Jamal, Habibullah, and Sultan, Kiran. Performance analysis of TCP congestion
control algorithms. International journal of computers and communications 2, 1
(2008), 18–24.

[39] Jiang, L., Taylor, J. M., Sørensen, A. S., and Lukin, M. D. Distributed quantum
computation based on small quantum registers. Physical Review A 76, 6 (2007),
062323.

[40] Kelly, Frank P, Maulloo, Aman K, and Tan, David KH. Rate Control for Commu-
nication Networks: Shadow Prices, Proportional Fairness and Stability. Journal
of the Operational Research society (1998).

[41] Kelly, Tom. Scalable TCP: Improving performance in highspeed wide area net-
works. ACM SIGCOMM computer communication Review (2003).

[42] Kleinrock, Leonard. Queueing Systems, Volume I: Theory. Wiley New York,
1975.

[43] Lee, Yuan, Bersin, Eric, Dahlberg, Axel, Wehner, Stephanie, and Englund, Dirk.
A quantum router architecture for high-fidelity entanglement flows in multi-user
quantum networks. arXiv preprint arXiv:2005.01852 (2020).

[44] Leith, D. H-TCP: TCP Congestion Control for High Bandwidth-Delay Product
Paths. Tech. rep., April 2008.

[45] Leith, DJ, and Shorten, RN. On RTT Scaling in H-TCP. Discussion note,
Hamilton Institute.

[46] Leith, Douglas, Shorten, R, and Lee, Y. H-TCP: A framework for congestion
control in high-speed and long-distance networks. In PFLDnet Workshop (2005).

[47] Leith, Douglas, and Shorten, Robert. H-TCP: TCP for high-speed and long-
distance networks. In Proceedings of PFLDnet (2004).

[48] Li, Yee-Ting, Leith, Douglas, and Shorten, Robert N. Experimental evaluation of
TCP protocols for high-speed networks. Networking, IEEE/ACM Transactions
on 15, 5 (2007), 1109–1122.

[49] Mbarek, Rachid, Othman, Mohamed Tahar Ben, and Nasri, Salem. Performance
Evaluation of Competing High-Speed TCP Protocols. IJCSNS 8, 6 (2008).

[50] Misra, Vishal, Gong, Wei-Bo, and Towsley, Don. Stochastic differential equation
modeling and analysis of TCP-windowsize behavior. In Proceedings of PERFOR-
MANCE (1999), vol. 99, Citeseer.

[51] Misra, Vishal, Gong, Wei-Bo, and Towsley, Don. Fluid-based Analysis of a
Network of AQM Routers Supporting TCP Flows with an Application to RED.
SIGCOMM Comput. Commun. Rev. (2000).

183

[52] Morris, Robert. TCP behavior with many flows. In Proceedings of International
Conference on Network Protocols (1997), IEEE.

[53] Muralidharan, Sreraman, Li, Linshu, Kim, Jungsang, Lütkenhaus, Norbert,
Lukin, Mikhail D, and Jiang, Liang. Optimal Architectures for Long Distance
Quantum Communication. Scientific reports 6 (2016), 20463.

[54] Nain, Philippe, Vardoyan, Gayane, Guha, Saikat, and Towsley, Don. On the
Analysis of a Multipartite Entanglement Distribution Switch. Proceedings of the
ACM on Measurement and Analysis of Computing Systems (2020).

[55] Nielsen, Michael A, and Chuang, Isaac. Quantum Computation and Quantum
Information, 2002.

[56] NS-3 Development Team. NS-3 Network Simulator. https://www.nsnam.org/.
Accessed: 2018-01-10.

[57] Pan, R., Natarajan, P., Baker, F., and White, G. Proportional Integral Controller
Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Prob-
lem. Tech. rep., 2017.

[58] Pan, Rong, Prabhakar, Balaji, and Laxmikantha, Ashvin. QCN: Quantized Con-
gestion Notification. IEEE802 (2007).

[59] Pant, Mihir, Krovi, Hari, Towsley, Don, Tassiulas, Leandros, Jiang, Liang, Basu,
Prithwish, Englund, Dirk, and Guha, Saikat. Routing Entanglement in the
Quantum Internet.

[60] Pirandola, S., Laurenza, R., Ottaviani, C., and Banchi, L. Fundamental limits
of repeaterless quantum communications. Nature communications 8, 1 (2017),
1–15.

[61] Poojary, Sudheer, and Sharma, Vinod. An Asymptotic Approximation of TCP
CUBIC. arXiv preprint arXiv:1510.08496 (2015).

[62] Ramachandran, S., and Delen, D. Performance analysis of a kitting process in
stochastic assembly systems. Computers & Operations Research 32, 3 (2005),
449–463.

[63] Rao, Nageswara SV, Imam, Neena, Hanley, Jessey, and Oral, Sarp. Wide-Area
Lustre File System Using LNet Routers. In 2018 Annual IEEE International
Systems Conference (SysCon) (2018), IEEE, pp. 1–6.

[64] Schmid, Christian, Kiesel, Nikolai, Weber, Ulrich K, Ursin, Rupert, Zeilinger,
Anton, and Weinfurter, Harald. Quantum teleportation and entanglement swap-
ping with linear optics logic gates. New Journal of Physics 11, 3 (2009), 033008.

[65] Schoute, Eddie, Mancinska, Laura, Islam, Tanvirul, Kerenidis, Iordanis, and
Wehner, Stephanie. Shortcuts to Quantum Network Routing.

184

[66] Shchukin, Evgeny, Schmidt, Ferdinand, and van Loock, Peter. Waiting time in
quantum repeaters with probabilistic entanglement swapping. Physical Review
A 100, 3 (2019), 032322.

[67] Sinclair, Neil, Saglamyurek, Erhan, Mallahzadeh, Hassan, Slater, Joshua A,
George, Mathew, Ricken, Raimund, Hedges, Morgan P, Oblak, Daniel, Simon,
Christoph, Sohler, Wolfgang, et al. Spectral Multiplexing for Scalable Quan-
tum Photonics Using an Atomic Frequency Comb Quantum Memory and Feed-
forward Control. Physical review letters 113, 5 (2014), 053603.

[68] Som, P., Wilhelm, W. E., and Disney, R. L. Kitting process in a stochastic
assembly system. Queueing Systems 17, 3-4 (1994), 471–490.

[69] Srikant, Rayadurgam. The Mathematics of Internet Congestion Control. Springer
Science & Business Media, 2012.

[70] Takeoka, M., Guha, S., and Wilde, M. M. Fundamental rate-loss tradeoff for
optical quantum key distribution. Nature communications 5, 1 (2014), 1–7.

[71] Towns, John, Cockerill, Timothy, Dahan, Maytal, Foster, Ian, Gaither, Kelly,
Grimshaw, Andrew, Hazlewood, Victor, Lathrop, Scott, Lifka, Dave, Peterson,
Gregory D, et al. XSEDE: accelerating scientific discovery. Computing in Science
& Engineering 16, 5 (2014), 62–74.

[72] Van Meter, Rodney. Quantum Networking. John Wiley & Sons, 2014.

[73] Wang, Guodong, Wu, Yulei, Dou, Ke, Ren, Yongmao, and Li, Jun. AppTCP:
The design and evaluation of application-based TCP for e-VLBI in fast long
distance networks. Future Generation Computer Systems 39 (2014), 67–74.

[74] Wei, David X, Jin, Cheng, Low, Steven H, and Hegde, Sanjay. FAST TCP:
motivation, architecture, algorithms, performance. IEEE/ACM transactions on
Networking 14, 6 (2006), 1246–1259.

[75] Xu, Lisong, Harfoush, K., and Rhee, Injong. Binary increase congestion con-
trol (BIC) for fast long-distance networks. In INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications Societies
(March 2004), vol. 4, pp. 2514–2524 vol.4.

[76] Yu, Se-young, Brownlee, Nevil, and Mahanti, Aniket. Comparative Analysis of
Big Data Transfer Protocols in an International High-Speed Network.

[77] Zhuang, Quntao, Zhang, Zheshen, and Shapiro, Jeffrey H. Distributed quantum
sensing using continuous-variable multipartite entanglement. Physical Review A
97, 3 (2018), 032329.

[78] Zukowski, M., Zeilinger, A., Horne, M. A., and Ekert, A. K. “Event-ready-
detectors”Bell experiment via entanglement swapping. Physical Review Letters
71 (1993), 4287–4290.

185

