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ABSTRACT

TOWARDS PRACTICAL DIFFERENTIALLY PRIVATE
MECHANISM DESIGN AND DEPLOYMENT

MAY 2021

DAN ZHANG

B.Eng., HARBIN INSTITUTE OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Gerome Miklau

As the collection of personal data has increased, many institutions face an urgent need

for reliable protection of sensitive data. Among the emerging privacy protection mecha-

nisms, differential privacy offers a persuasive and provable assurance to individuals and

has become the dominant model in the research community. However, despite growing

adoption, the complexity of designing differentially private algorithms and effectively de-

ploying them in real-world applications remains high.

In this thesis, we address two main questions: 1) how can we aid programmers in

developing private programs with high utility? and 2) how can we deploy differentially

private algorithms to visual analytics systems? We first propose a programming frame-

work and system εKTELO which can be used to author programs for a variety of statistical

tasks that involve answering counting queries. In the framework, programs are described

as compositions of reusable modules and automatically satisfy differential privacy. Mov-

ing on to the second question, we investigate the challenges of deploying differentially

vii



private algorithms in visualization tasks. Specifically, we conduct a study to better un-

derstand the relationship between noise introduced for privacy protection, visual analytics

tasks, visualization, and accuracy. We also look at the influence of uncertainty in differ-

entially private visualization and propose an approach to effectively represent uncertainty

in two-dimensional location data. Third, we demonstrate how direct deployment of dif-

ferentially private algorithms causes both efficiency and accuracy issues in an interactive

visualization dashboard. To address these challenges, we propose a DashGuard, a private

dashboard where a smart middle layer processes front-end queries issued to the back-end

εKTELO private engine. Through reuse and pre-computation of measurement, the middle

layer provides benefits in accuracy, efficiency, and privacy budget consumption.

viii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 DP Algorithm Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Deployment in Visual Analytics Systems . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2.1 Static Private Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2.2 Private interactive dashboards . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. εKTELO: A PROGRAMMING FRAMEWORK FOR EASIER DP
ALGORITHM DESIGN AND IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . 15

3.1 Overview and Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 An example plan: CDF estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 εKTELO design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Execution Framework And Privacy Enforcement . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Protected Kernel and Client Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



3.2.2 Operator types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Privacy Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Privacy Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Operators and Operator Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Transformation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Query Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Query Selection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Partition Selection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.5 Inference Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Expressing known algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Re-implementing existing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Re-implementation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Implementation: efficient matrix support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Matrix types and their operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Matrix representations: dense, sparse and implicit . . . . . . . . . . . . . . . . 41
3.5.3 Computing with implicit matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.4 Generalized matrix construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.5 Matrix constructions for εKTELO operators . . . . . . . . . . . . . . . . . . . . . . 50
3.5.6 Implementing inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Workload-based partition selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 The workload-based partition and its properties . . . . . . . . . . . . . . . . . . . 55
3.6.2 Computing the partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Case studies: εKTELO in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.1 Recombination of operators to improve MWEM . . . . . . . . . . . . . . . . . . 59
3.7.2 Census case-study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.3 Naive Bayes case-study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Performance improvements of implicit matrices . . . . . . . . . . . . . . . . . . 65

3.8.1.1 Scalability and efficiency of plans . . . . . . . . . . . . . . . . . . . . . 65
3.8.1.2 Scalability of inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



3.8.2.1 MWEM: improved query selection & inference . . . . . . . . . . 69
3.8.2.2 Census data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.2.3 Naive Bayes classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8.3 Workload-driven data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8.4 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.10 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10.1 More complex queries and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.10.2 Scaling to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.10.3 Automated optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4. INVESTIGATING STATIC VISUAL ANALYSIS OF DIFFERENTIALLY
PRIVATE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Private Visualizations in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Privacy-preserving Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 Privacy-utility Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 RQ1: Investigating the Utility of Private Visualizations . . . . . . . . . . . . . . . . . . . 83

4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Private Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 Privacy Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.5 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.6 Visualization Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.7 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.8 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.8.1 Dichotomous Assessment of Task Success under DP . . . . . 90

4.2.9 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 RQ2: Tailoring Noise Injection to Analysis Task . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 Distribution Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xi



5. UNCERTAINTY IN STATIC DIFFERENTIALLY PRIVATE
VISUALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Visualization Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.2 Visual Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.3 Specifying and Achieving “Visual Utility” . . . . . . . . . . . . . . . . . . . . . . 104

5.2 An Attempt: Plotting under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Statistical Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.2 Achieving the Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 User Study on Correlation Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3 Results and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Communicating Uncertainty under DP . . . . . . . . . . . . . . . . . . . . . . . . . 118

6. DASHGUARD: INTERACTIVE PRIVATE DASHBOARD . . . . . . . . . . . . . . . . 119

6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 DashGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Visual Front-end and Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.2 Backend Privacy Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Smart Middle Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.4 Example Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 Dataset and Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.2 Per-step Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.3 Comparing Inference Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



LIST OF TABLES

Table Page

3.1 Types of matrix objects in εKTELO (workload, measurement, partition)
and the key computations performed in plans, along with the primitive
methods required to support each computation. . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Comparison of core implicit matrices to their corresponding sparse and
dense representations, in terms of space usage and time complexity of
a matrix-vector product. For sparse and dense matrices, the time
complexity is the same as the space complexity. . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Space and time complexity of composed matrices, in terms of the
complexity of sub-matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 For three new algorithms, (b), (c), and (d), the multiplicative factors by
which error is improved, presented as (min, mean, max) over datasets.
For runtime, the mean is shown, normalized to the runtime of standard
MWEM. (1D, n=4096, W=RandomRange(1000), ε = 0.1) . . . . . . . . . . . . . 69

3.5 Results on Census data; domain size 1,400,000; scale of error is indicated
under each workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Runtime (sec) and error improvements resulting from workload-based
domain reduction. (W=RandomRange, small ranges. Original domain
size: AHP (128,128), DAWA 4096, Identity (256,256), HB 4096) . . . . . . . 72

4.1 Response time comparison for each task showing visualization types that
are significantly faster or slower than others. . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Perceptual accuracy comparison for each task showing visualization types
that are significantly better or worse than others. . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Detail of example workload. Three types of actions (Plot, Link and Brush)
are supported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xiii



LIST OF FIGURES

Figure Page

1.1 On the right-hand side, histogram B (bottom) is the private counterpart of
the histogram A (top). Data perturbation caused by the injection of
noise has resulted in noticeable alterations in visual patterns and data
values. Consequently, the utility of histogram B for supporting several
visual analysis tasks is compromised. For instance, for the task,
“identify the group with smallest value” using histogram B, even if the
user correctly identifies the bar with the red border as the smallest,
still, his finding is erroneous based on the non-private histogram, A. . . . . . . 5

3.1 The operators currently implemented in εKTELO. Private operators are
red, Private→Public operators are orange, and Public operators are
green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The high-level signatures of plans implemented in εKTELO (referenced by
ID). All plans begin with a vectorize transformation, omitted for
readability. We also omit parameters of operators, including ε budget
shares. I(subplan) refers to iteration of a subplan and TP[subplan]
means that subplan is executed on each partition produced by TP. . . . . . . 35

3.3 Plan execution time with different implementations of measurement
matrices with Identity workload. Implicit represents plans
implemented with the implicit matrices. Dense and sparse represent
direct matrix implementations, and basic sparse is an alternative to
Kronecker product (a type of implicit matrices) materialized as sparse
matrices. Results show the new implicit representation can increase
scalability by a factor up to 1000x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 For a given computation time, the proposed iterative and implicit inference
methods permit scaling to data vector sizes as much as 1000× larger
than previous techniques using direct approaches and dense matrices.
Dense and sparse implementations are from [105] and tree-based is
from [40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



3.5 New εKTELO plans WORKLOADLS and SELECTLS result in NaiveBayes
classifiers with lower error than plans that correspond to algorithms
from prior work, and approach the accuracy of a non-private classifier
for various ε values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Perturbation accuracy of different tasks for the non-private case (ε=inf), a
low privacy level (privacy parameter ε = 0.01) and a high privacy level
(privacy parameter ε = 0.001). Accuracy decreases as we spend less
privacy budget. But the accuracy drop is more severe for tasks
involving numerical value retrieval or estimation (e.g. Retrieve Value,
Compute Derived Value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Perceptual accuracy for different analysis tasks, visualization types using
different privacy budget. As the privacy level gets stricter (less privacy
budget), the perceptual accuracy changes for some configurations. The
noise added for privacy protection needs influences people’s ability to
perform visual tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 This figure shows our proposed model for tuning noise injection to tasks
using our suggested distribution metrics. First, sensitive data is
privatized using alternative DP algorithms (e.g. Algorithms 1, 2 & 3).
All the privatized data meet a certain required level of privacy (similar
ε). Next, based on the task at hand (e.g., Find the group with
maximum value), the related distribution metric (e.g., Peakedness
Score) is utilized to calculate a score for each set of privatized data.
The privatized dataset with the highest score offers a data distribution
shape that will better support the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 For the three summary tasks considered, the upper row shows distribution
metrics for different algorithms and the lower row shows task success
rate from data perturbation at the corresponding privacy level. . . . . . . . . . 96

5.1 Outputs with equal query-based error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Illustration of uncertainty due to the Laplace mechanism, on taxi
frequency data from northeast Beijing (Sec. 5.1.1). (A) Original data.
(B) Noisy output, which preserves some structures but introduces
spurious phenomena. (C) For three selected cells, original data values
(red triangles), noisy versions (blue dots), and 95% confidence
intervals (vertical lines). Cell (2) has a negative valued output, and the
comparison between cells (2) and (3) has a sign error. . . . . . . . . . . . . . . . 105

5.3 An example step of the user study, with the baseline private heatmap . . . . . . 110

5.4 JND-r plots, moderate privacy level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xv



5.5 JND-r plots, high privacy level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 JND-r plots, low privacy level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Naive private interactive dashboard where every request from the front end
will be queried on the sensitive data directly . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Example of inconsistent brushing and linking. When brushed on the
source attribute (selected bars are shown in a lighter shade), the linked
distributed changed and causing inconsistencies: 1) the sum of male
and female becomes larger, 2) the filtered count of male is larger than
the original count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Overall structure of DashGuard. The middle layer acts as a proxy of any
query to the back-end engine and automatically decides on which
measurements to take based on the input query. . . . . . . . . . . . . . . . . . . . . . 124

6.4 Overall comparison of DashGuard vs. the naive baseline shows that using
the DashGuard (with bounded inference engine) provides better
accuracy, faster responses with lower privacy budget
consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Per-step accuracy, response time and cumulative budget consumption
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Accuracy and efficiency trade-off between variations of DashGuard
(marked with prefix DG) for two example workloads. . . . . . . . . . . . . . . . . 131

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivation

As the world gets more and more data-driven, the collection of personal data has in-

creased. This creates an urgent need for reliable privacy protection mechanisms for institu-

tions that collect and share sensitive personal data. They must balance the need to protect

individuals with demands to use the collected data for new applications or modeling their

users’ behavior.

Privacy technology has emerged as a response to the dire need to protect individuals’

sensitive information (e.g., [86, 60, 55]). In particular, Differential Privacy (DP) is becom-

ing the dominant model for data privacy protection [26]. It is a rigorous privacy definition

that offers a persuasive assurance to individuals, provable guarantees, and the ability to

analyze the impact of combined releases of data. Informally, an algorithm satisfies differ-

ential privacy if its output does not change too much when any record in the input database

is added or removed. To preserve privacy, a typical DP algorithm adds carefully calibrated

noise that blurs information about individuals while preserving overall statistics about the

population.

The research community has actively investigated differential privacy and algorithms

are known for a variety of tasks ranging from data exploration to query answering to ma-

chine learning. However, the adoption of differentially private techniques in real-world

applications (e.g., visual exploration systems and machine learning applications that use

sensitive data) remains rare until very recent years. In fact, despite the rising popularity,

the real-world deployments of differential privacy—like OnTheMap [2, 34] (a U.S. Census
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Bureau data product), RAPPOR [29] (a Google Chrome extension), and Apple’s private

collection of emoji’s and HealthKit data—have required teams of privacy experts to ensure

that implementations meet the privacy standard and that they deliver acceptable utility.

We believe adoption is impeded by major challenges in both designing and implement-

ing differentially private algorithms and deploying them in real applications. We’ll go over

detailed problems from both aspects and propose solutions in later sections.

1.1.1 DP Algorithm Design and Implementation

Implementing programs that provably satisfy privacy and ensure sufficient utility for a

given task is extremely difficult for non-experts in differential privacy. Here we identify

three important challenges.

Challenge 1: Designing utility-optimal algorithms The first and foremost challenge is

the difficulty of designing utility-optimal algorithms: i.e., algorithms that can extract the

maximal accuracy given a fixed “privacy budget.” While there are several general-purpose

differentially private algorithms, such as the Laplace Mechanism [26] (which adds noise

to queries posed on the private data), they typically offer suboptimal accuracy if applied

directly. A carefully designed algorithm can improve on general-purpose methods by an

order of magnitude or more—without weakening privacy: accuracy is improved by careful

engineering and sophisticated algorithm design.

One might hope for a single dominant algorithm for each task, but a recent empirical

study [38] showed that the accuracy of existing algorithms is complex: no single algorithm

delivers the best accuracy across the range of settings in which it may be deployed. The

choice of the best algorithm may depend on the particular task, the available privacy bud-

get, and properties of the input data such as its size and distribution. Therefore, to achieve

state-of-the-art accuracy, a practitioner currently has to make a host of complex algorithm

choices, which may include choosing a low-level representation for the input data, translat-
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ing their queries into that representation, choosing among available algorithms, and setting

parameters. The best choices will vary for different input data and different analysis tasks.

Challenge 2: Diverse tasks The second challenge is that the tasks in which practitioners

are interested are diverse and may differ from those considered in the literature. Hence,

existing algorithms need to be adapted to new application settings, a non-trivial task. For

instance, techniques used by modern privacy algorithms include optimizing error over mul-

tiple queries by identifying common sub-expressions, obtaining noisy counts from the data

at different resolutions, and using complex inference techniques to reconstruct answers to

target queries from noisy, inconsistent and incomplete measurement queries. But different

algorithms use different specialized operators for these sub-tasks, and it can be challeng-

ing to adapt them to new situations. Thus, designing utility-optimal algorithms requires

significant expertise in the complex and rapidly-evolving research literature.

In addition to diverse workloads of range queries, there has been an increasing need

in preserving individual privacy for much more complex tasks like visual analysis and

machine learning algorithms. We discuss the specific challenges of deploying differentially

private algorithms in visual analytics systems in Sec. 1.1.2.

Challenge 3: Privacy proof A third equally important challenge is that correctly imple-

menting differentially private algorithms can be difficult. There are known examples of

algorithm pseudocode in research papers not satisfying differential privacy as claimed. For

instance, Zhang et al [110] showed that many variants of privacy primitive called the Sparse

Vector Technique do not satisfy differential privacy. Differential privacy can also be bro-

ken through incorrect implementations of sound algorithms. For example, Mironov [66]

showed that standard implementations of basic algorithms like the Laplace Mechanism [26]

can violate differential privacy because of their use of floating-point arithmetic. Privacy-

oriented programming frameworks such as PINQ [64, 27, 77], Fuzz [31], PrivInfer [9] and

LightDP [108] help users implement programs whose privacy can be verified with rela-

tively little human intervention. While they help to ensure the privacy criterion is met, they
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may impose their own restrictions and offer little or no support for designing utility-optimal

programs.

1.1.2 Deployment in Visual Analytics Systems

Even with well-designed and carefully-implemented differentially private algorithms,

deploying them in real-world applications remains nontrivial. Among other applications,

we focus on visual analytics systems (both static and interactive) in this thesis. Visual

data analysis is widely used across several application domains such as health care and

civic decision making for analyzing data about people. Such applications introduce risks

of harm to individuals due to possible leakage of sensitive information and calls for reliable

privacy protection.

Despite the rising popularity of DP, prior research in the confluence of privacy and

visual data analysis has been mainly focused on the use of syntactic privacy models such

as k-anonymity and l-diversity (e.g.,[96, 15, 14]). We still know little about the effective

use of DP in the context of visual data analysis. More specifically, we look at two typical

scenarios

1.1.2.1 Static Private Visualization

To generate static visualization for sensitive data using DP techniques, we need to

learn about and manage the effects of noise injection on the utility of private

visualizations created using the output of DP algorithms. Injection of noise by DP

algorithm results in data perturbation which in turn causes alteration of visual patterns.

Figure 1.1 shows an example of such effects. Histogram B (at the bottom) is the dif-

ferentially private counterpart of histogram A (at the top). Data perturbation has resulted

in noticeable differences between the histograms. Though privacy-preserving, using his-

togram B for visual analysis may result in erroneous findings (e.g., finding the group with

the minimum value), improper conclusions, and wrong decisions. Hence, noise injection

can compromise the utility of private visualizations as well as the reliability of insights
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gained through visual analysis. This work is a first step towards gaining a deeper understat-

ing of the utility of private visualizations. In particular, we focus on two research questions:

• (RQ1) What is the relationship between noise-injection level, visualization type, vi-

sual analysis tasks, and user performance?

• (RQ2) How can we measure the influence of noise injection to downstream percep-

tual accuracy and choose proper DP algorithms?

Perceptual	accuracy	

Perturbation	accuracy	
+	

Success:	degrees	of	pass/fail	

Perceptual	accuracy	

User		

Success:	pass/fail	

Task:	what	is	the	value	of	the	smallest	group?	

A

Non-private	Histogram	

B

Private	Histogram	

Figure 1.1: On the right-hand side, histogram B (bottom) is the private counterpart of
the histogram A (top). Data perturbation caused by the injection of noise has resulted
in noticeable alterations in visual patterns and data values. Consequently, the utility of
histogram B for supporting several visual analysis tasks is compromised. For instance,
for the task, “identify the group with smallest value” using histogram B, even if the user
correctly identifies the bar with the red border as the smallest, still, his finding is erroneous
based on the non-private histogram, A.

Uncertainty Due to the privacy requirements, differentially private algorithms are inher-

ently randomized. This introduces unavoidable uncertainties into the output. With the

standard private visualization approaches, only one random output has been shown to the

user and uncertainty is not presented. Appropriate visualization of uncertainty is a key

challenge in visualizing differentially private data. This is similar to the challenge of vi-

sualizing statistical uncertainty, in which a practitioner is encouraged to not directly trust
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data (since there is uncertainty in statistical inference), or forecasts from a computational

model like climate simulations (since there’s uncertainty in the model’s accuracy).

1.1.2.2 Private interactive dashboards

Static visualizations are effective tools to tell specific data stories when included in pa-

pers, printed in magazines or posted on web pages. However, users can’t go beyond the

predefined view to get additional stories or further explore the data. To tackle the limita-

tions, interactive visual dashboards have been widely used in exploratory data analysis and

complex data storytelling. Those dashboards visually organize, analyze and display impor-

tant statistics about the underlying data. For differentially private frameworks like εKTELO,

supporting interactive exploration also greatly extends their application scenarios.

A typical interactive dashboard usually includes several small panels showing views

of the underlying data using visualization techniques like scatterplots, linecharts or geo-

graphical distributions over maps. The corresponding views and visualization types usually

customizable by the user to meet special data exploration needs. Then the user can inter-

act with the data by zooming in and out interesting regions or drill down by filtering with

certain conditions. Besides interacting with a single visualization view, they can also link

multiple panels such that zooming and filtering interactions on one view will be reflected

on all linked panels. This powerful functionality allows users to compare and explore re-

lationships between different data aspects. In this work, we limit the set of interactions to

independent browsing, brushing, and linking (linked filtering) of univariate histograms.

In order to perform the exploration in a private-preserving manner, a naive model could

privatize the query requested by the user. A user interacts with the front-end visualization

dashboard where every interaction request is converted to a query on the underlying data.

To protect privacy, every knowledge learned about sensitive data needs to be conducted in

a privacy-preserving way. However, this simple model raises certain challenges in practical

deployments.
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Challenge 1: potential waste of privacy budget A lot of times, queries in the sequence

are correlated or even duplicated. Therefore, there are chances that the answer to a cer-

tain query could be constructed from earlier results (or even from reusing previous results).

Since differential privacy is safe under post-processing, any previous result generated con-

suming privacy budget can be reused without paying additional budget. For example, any

brushing and linking results between attributes A and B can be re-constructed using the

histogram on the cross-domain of A and B.

Challenge 2: inconsistent brushing and linking Common differentially private algorithms

achieve the guarantee by adding noise or resampling the data. This introduces errors and

corresponding inconsistency within interactions which could confuse the users. When a

user performs brushing on the source visualization, the linked target should change to the

filtered view based on the brushing attribute. Thus, the new target visualization should only

contain a subset of data points, leading to strictly lower counts in a histogram. However,

with independent noise injected at each step of the interaction sequence, there are chances

that the filtered results get higher noise counts than the original data.

Challenge 3: slow response time Computing every query on-the-fly as shown in Fig. 6.1

can be slow and might break the interactivity of the user’s workflow, especially when using

the more complex and time-consuming mechanisms. One possible alternative is to pre-

compute everything, generating a synthetic version of the full joint distribution over all the

attributes. However, this is not practical since the size of the full joint grows exponen-

tially with respect to the domain size and may go beyond the limit of machines’ physical

memory.

1.2 Thesis Outline

Chapter 2 provides the necessary background knowledge on differential privacy.

To address the aforementioned challenges, in Chapter 3, we propose εKTELO, a pro-

gramming framework and system that aids programmers in developing differentially pri-
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vate programs with high utility. Programmers can use εKTELO to solve a core class of

statistical tasks that involve answering linear counting queries. (This class of queries is

defined in Chapter 2.) Tasks supported by εKTELO include releasing contingency tables,

multi-dimensional histograms, answering OLAP and range queries, and implementing pri-

vate machine learning algorithms.

Next, we start to look at the application of differentially private techniques into visu-

alization applications. Chapter 4, we investigate issues in static private visualization, try-

ing to answer the two proposed research questions. To investigate RQ1, we performed

a crowd-sourced user study and examined the effects of three noise-levels (none, low,

high) on participants’ ability to successfully carry out fundamental visual analysis tasks

(eight) on four common four visualizations ( bar chart, pie chart, line chart, scatterplot).

We measured the task success rate and response time for 204 participants. In order to

answer RQ2, we investigate the influence of data distribution on users’ ability to accu-

rately perceive visualizations and identify certain that data with certain characteristics are

“easier” for visual tasks. Prior research (e.g., [49, 35] )in differential privacy has ex-

plored different approaches and mechanisms to achieve a certain level of privacy. These

variations can result in different distributions of privatized data. Grounded in this phe-

nomenon and inspired by prior work on Scagnostics (e.g., [98, 99, 20], we designed three

simple distribution metrics to quantify the shape of data distribution in uni-

variate histograms. Peakedness score, Anomaly score, and Clusteredness

score respectively measure to what extent there exists a single peak, an anomaly data

point or clear cluster boundaries. Based on the combined results of RQ1 and RQ2 investi-

gations, in Chapter 4, we suggest a set of preliminary guidelines for algorithm choice and

noise injection configuration to achieve better utility with respect to specific tasks and vi-

sualizations. The outcomes of this work will serve as a foundation for static differentially

private visualization which can aid practitioners as well as provide insights for researchers

who specialize in either privacy or visualization.
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Then in Chapter 5, we take a deeper look at the uncertainty issues in private visual-

izations. We use two-dimensional location data as an example domain, and consider the

proper way to present known uncertainty about private output. Then we propose the indis-

tinguishability principle as an attempt to address the challenge. We present a solution to

achieve the principle and conduct an online user study on correlation perception, which is

a well-studied visual task. Results of the user study show our solution is better than the

naive baseline visualizer.

Next, we move on and look at privacy protection in interactive cases. To address the

three challenges of the naive model, in Chapter 6, we propose DashGuard, a framework

using a smart middle layer that acts as a proxy of any front-end interactions and back-end

queries. DashGuard is fully supported by εKTELO as the backend.

The sensitive data source is encapsulated in the secure kernel space of εKTELO and

any access to the data is done privately by εKTELO client. The middle layer takes care of

optimizations regarding the utility of visual interactions. Motivated by the fact that some

queries in an interaction sequence can benefit from reusing partial or full information from

previous results, the middle layer automatically caches all previous interaction results and

only issues new back-end queries when necessary. Before returning the results, it performs

inference to resolve potential inconsistencies. The use of the smart middle layer provides

substantial improvements on the accuracy, response time, and privacy budget consumption.

Finally, we conclude the thesis in Chapter 7.

1.3 Outcomes

We proposed and implemented a programming framework εKTELO to help program-

mers write privacy-preserving range query answering algorithms with good utility. The

work was published at SIGMOD ([106]) and TODS ([104]). The conference version was

selected as a 2018 SIGMOD Research Highlight. The open-source code has been incorpo-

rated into PSynDB[43] which is a web-based synthetic table generator.
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To better understand the issues in introducing noise into the visual analytics process, we

conducted a crowd-sourced study[107] on univariate visualizations published at VIS 2020.

[103] summarized challenges with a focus on two-dimensional location data. Moving on to

the interactive scenario, we introduced DashGuard to deal with the challenges in privacy-

preserving interactions in visual dashboards. The final piece of work has not been published

yet by the time this thesis is submitted.
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CHAPTER 2

BACKGROUND

The input to the differentially private mechanisms studied in this thesis is a database

instance of a single-relation schema T (A1, A2, . . . , A`). Each attribute Ai is assumed to be

discrete (or suitably discretized). Let D and D′ denote two tables of the same schema, and

let D⊕D′ = (D−D′)∪ (D′−D) denote the symmetric difference between them. We say

that D and D′ are neighbors if |D ⊕D′| = 1. The formal definition of differential privacy

is as follows:

Definition 1 (Differential Privacy [26]) a randomized algorithmA satisfies ε-differential

privacy [26] if for all databases D and D′ that differ on one record, and for any subset of

outputs S ⊆ Range(A),

Pr(A(D) ∈ S) ≤ eε × Pr(A(D′) ∈ S)

Differentially private algorithms are randomized. We can think of the output of the al-

gorithm, on a given input, as a probability distribution over possible outputs. The definition

requires that, if the algorithm runs on any two databases that differ on the details of any

individual’s record, the output distributions will be “close”, where close is formalized by

the eε term. As a consequence, seeing the output of the algorithm cannot reveal much about

any one contributor’s data. The privacy loss parameter ε therefore controls the level of pri-

vacy protection: smaller ε means a stricter limit on privacy loss and, in general, this means

the algorithm output will be able to communicate less information about the underlying

data.
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The data owner must choose an ε value to grant to a user of sensitive data. This param-

eter can be thought of as a privacy loss “budget”. Granting a higher ε to a user generally

means they can receive more accurate results from the private algorithm. In the research

literature, a common value for ε is 0.1, in which case eε ≈ 1.1 and the likelihood of any

output cannot differ by more than about 10% on inputs that differ by one record. In practi-

cal deployments, higher ε values have been used and may still provide reasonable privacy

protection.

Laplace Mechanism A standard method for achieving differential privacy is the Laplace

Mechanism [26] (although there are many other mechanisms). When the Laplace Mecha-

nism is used to answer a query over a sensitive database (e.g., how many people have the

marital status of “divorced”) the true query result is computed on the data and then care-

fully calibrated noise is added to the answer before it is returned to the user. In particular, a

sample is drawn from the Laplace distribution with mean zero and a specified scale factor

determined by the ε parameter and property of the query. The process is ε-differentially

private and the resulting “noisy” query answer may be shared with the user.

Formally:

Definition 2 (Laplace Mechanism [26]) Let f(D) denote a function on D that outputs a

vector in Rd. The Laplace Mechanism is:

ALM(D) = f(D) + (Z1, ..., Zd)

where Zi are i.i.d random variables from Laplace(∆f/ε).

Above, Laplace(b) denotes the Laplace probability distribution centered at 0 with scale b,

and ∆f is called the sensitivity of f and is the maximum difference in f between any two

databases D and D′ that differ only by a single record: ∆f = maxD,D′ ‖f(D)− f(D′)‖1.

The most important case for our use of the Laplace Mechanism is when f is a histogram-

generating function, which counts the number of records in a set of disjoint ranges or cat-
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egories. In this case, adding or removing a single record to the input will only affect the

counts in one of the histogram bins by exactly 1. Thus the sensitivity of f is 1 and the

Laplace Mechanism adds random noise sampled from Laplace(1/ε) to each histogram bin

and releases the noisy histogram.

Definition 3 (Stability) Let g be a transformation function that takes a data source (table

or vector) as input and returns a new data source (of the same type) as output. For any pair

of sources, S and S ′ let |S ⊕ S ′| denote the distance between sources. If the sources are

both tables, then this distance is the size of the symmetric difference; if the sources are both

vectors, then this distance is the L1 norm; if the sources are of mixed type, it’s undefined.

Then the stability of g is: maxS,S′:|S⊕S′|=1 |g(S)⊕ g(S ′)|. When the stability of g is at most

c for some constant c, we say that g is c-stable.

Composition of differential privacy A key property of differentially private algorithms

is composition. The sequential execution of multiple differentially private algorithms is

still differentially private, but the parameter measuring privacy loss grows. The resulting

privacy loss is equal to the sum of all the privacy losses in the subroutines [65]. This

property implies that one cannot simply repeatedly run the Laplace Mechanism to get many

noisy results: the use of the privacy loss budget will accumulate with repeated runs and

eventually it will be exhausted. In other words, for n algorithms A1 through An, each

satisfying εi-differential privacy, the combined algorithm is εtotal-differential private where

εtotal =
∑n

i=1 εi[65]. Note that, assuming a user is granted a specified ε privacy loss budget,

this property implies that one cannot simply repeatedly run the Laplace Mechanism to get

many noisy results: the use of the privacy loss budget will accumulate with repeated runs

and eventually it will be exhausted.

Post-processing of differential privacy The differential guarantee is also invariant under

post-processing. This means that the result of a computation carried out in a differentially
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private manner remains differentially private, even if we use it in additional computations

that does not involve the input data.

Next, we define linear counting queries, the class of statistical queries supported in this

work. A condition formula, φ, is a Boolean condition that can be evaluated on any tuple

of the schema T . We use φ(T ) to denote the number of tuples in T for which φ is true. A

number of operators in εKTELO answer linear queries over the table. A linear query is the

linear combination of any finite set of condition counts:

Definition 4 (Linear counting query (declarative)) A linear query q on T is defined by

conditions φ1 . . . φk and coefficients c1 . . . ck ∈ R and returns q(T ) = c1φ1(T ) + · · · +

ckφk(T ).

It is common to consider a vector representation of the database, denoted x = [x1 . . . xn],

where xi is equal to the number of tuples of type i for each possible tuple type in the

relational domain of T . The size of this vector, n, is the product of the attribute domains.

Then it follows that any linear counting query has an equivalent representation as a vector

of n coefficients, and can be evaluated by taking a dot product with x. Abusing notation

slightly, let φ(i) = 1 if φ evaluates to true for the tuple type i and 0 otherwise.

Definition 5 (Linear counting query (vector)) For a linear query q defined by φ1 . . . φk

and c1 . . . ck, its equivalent vector form is ~q = [q1 . . . qn] where qi = c1φ1(i)+ · · ·+ckφk(i).

The evaluation of the linear query is ~q · x, where x is vector representation of T .

We will use vectorized representations of the data frequently. We refer to the domain as the

size of x, the vectorized table. This vector is sometimes large and a number of methods for

avoiding its materialization are discussed later.
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CHAPTER 3

εKTELO: A PROGRAMMING FRAMEWORK FOR EASIER DP
ALGORITHM DESIGN AND IMPLEMENTATION

To address the challenges for practitioners to design accurate and private algorithm, we

propose εKTELO, a programming framework and system that programmers can use to solve

statistical tasks that involve answering linear counting queries.

In εKTELO, differentially private programs are described as plans over a high level li-

brary of operators. Each operator is an abstraction of a key subroutine from a state-of-the-

art algorithm. Within εKTELO, these operators are organized based on their functionality

into a small set of classes: transformation, querying, inference, query selection, and parti-

tion selection.

3.1 Overview and Design Principles

In this section we provide an overview of εKTELO by presenting an example algorithm

written in the framework. Then we discuss the principles guiding the design of εKTELO.

3.1.1 An example plan: CDF estimation

In εKTELO, differentially private algorithms are described using plans composed over a

rich library of operators. Most of the plans we consider are linear sequences of operators,

but εKTELO also supports plans with iteration, recursion, and branching. Operators sup-

ported by εKTELO perform a well defined task and typically capture a key algorithm design

idea from the state-of-the-art. Each operator belongs to one of five operator classes based

on its input-output specification. These are: (a) transformation, (b) query, (c) inference, (d)
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Algorithm 1 εKTELO CDF Estimator
1: D ← PROTECTED(source uri) . Init
2: D ←WHERE(D, sex == ‘M’ AND age ∈ [30, 39]) . Transform
3: D ← SELECT(salary) . Transform
4: x← T-VECTORIZE(D) . Transform
5: P← AHPPARTITION (x, ε/2) . Partition Select
6: x̄← V-REDUCEBYPARTITION (x, P) . Transform
7: M← IDENTITY(|x̄|) . Query Select
8: y← VECLAPLACE(x̄, M, ε/2) . Query
9: x̂← NNLS(P, y) . Inference

10: Wpre ← PREFIX(|x|) . Query Select
11: return Wpre · x̂ . Output

query selection, and (e) partition selection. Operators are fully described in Sec. 3.3 and

listed in Fig. 3.1.

First, we describe an example εKTELO plan and use it to introduce the different operator

classes. Algorithm 1 shows the pseudocode for a plan authored in εKTELO, which takes

as input a table D with schema [Age, Gender, Salary] and returns the differentially private

estimate of the empirical cumulative distribution function (CDF) of the Salary attribute,

for males in their 30’s. The plan is fairly sophisticated and works in multiple steps. First

the plan uses transformation operators on the input table D to filter out records that do not

correspond to males in their 30’s (Line 2), selecting only the salary attribute (Line 3). Then

it uses another transformation operator to construct a vector of counts x that contains one

entry for each value of salary. xi represents the number of rows in the input (in this case

males in their 30’s) with salary equal to i.

Before adding noise to this histogram, the plan uses a partition selection operator, AH-

PPARTITION (Line 5). Operators in this class choose a partition of the data vector which

is later used in a transformation. AHPPARTITION uses the sensitive data to identify a

partition P of the counts in x such that counts within a partition group are close. Since

AHPPARTITION uses the input data, it expends part of the privacy budget (in this case

ε/2). AHPPARTITION is a key subroutine in AHP [111], which was shown to have state-

of-the-art performance for histogram estimation [38].
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Next the plan uses V-REDUCEBYPARTITION (Line 6), another transformation operator

on x, to apply the partition P computed by AHPPARTITION. This results in a new reduced

vector x̄ that contains one entry for each partition group in P and the entry is computed by

adding up counts within each group.

The plan now specifies a set of measurement queries M on x̄ using the IDENTITY query

selection operator (Line 7). The identity matrix corresponds to querying all the entries in

x̄ (since Mx̄ = x̄). Query selection operators do not answer any query, but rather specify

which queries should be estimated. (This is analogous to how partition selection operators

only select a partition but do not apply it.) Next, VECTOR LAPLACE returns differentially

private answers to all the queries in M. It does so by automatically calculating the sensi-

tivity of the vectorized queries – which depends on all upstream data transformations – and

then using the standard Laplace mechanism (Line 8) to add noise. This operator consumes

the remainder of the privacy budget (again ε/2).

So far the plan has computed an estimated histogram of partition group counts y, while

our goal is to return the empirical CDF on the original salary domain. Hence, the plan uses

the noisy counts on the reduced domain y to infer non-negative counts in the original vector

space of x by invoking an inference operator NNLS (short for non-negative least squares)

(Line 9). NNLS(P,y) finds a solution, x̂, to the problem Px̂ = y, such that all entries of

x̂ are non-negative. Lastly, the plan constructs the set of queries, Wpre, needed to compute

the empirical CDF (a lower triangular n × n matrix representing prefix sums) by calling

the query selection operator PREFIX(n) (Line 10), and returns the output (Line 11).

3.1.2 εKTELO design principles

The design of εKTELO is guided by the following principles.

Expressiveness εKTELO is designed to be expressive, meaning that a wide variety of state-

of-the-art algorithms can be written succinctly as εKTELO plans. To ensure expres-

siveness, we carefully designed a foundational set of operator classes that cover fea-
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tures commonly used by leading differentially private algorithms. We demonstrate

the expressiveness of our operators by showing in Sec. 3.4 that the algorithms from

the recent DPBench benchmark [38] can be readily re-implemented in εKTELO.

Privacy “for free” εKTELO is designed so that any plan written in εKTELO automatically

satisfies differential privacy. The formal statement of this privacy property is in

Sec. 3.2.3. This means that plan authors are not burdened with writing privacy proofs

for each algorithm they write. Furthermore, when invoking privacy-critical operators

that take noisy measurements of the data, the magnitude of the noise is automatically

calibrated. As described in Sec. 3.2, this requires tracking all data transformations

and measurements and using this information to handle each new measurement re-

quest.

Reduced privacy verification effort Ensuring that an algorithm implementation satisfies

differential privacy requires verifying that it matches the algorithm specification. The

design of εKTELO reduces the amount of code that must be vetted each time an al-

gorithm is crafted. First, since an algorithm is expressed as a plan and all plans au-

tomatically satisfy differential privacy, the code to be vetted is solely the individual

operators. Second, operators need to be vetted only once but may be reused across

multiple algorithms. Finally, it is not necessary to vet every operator, but only the

privacy-critical ones (as discussed in Sec. 3.2, εKTELO mandates a clear distinction

between privacy-critical and non-private operators). This means that verifying the

privacy of an algorithm requires checking fewer lines of code. In Sec. 3.4, we com-

pare the verification effort to vet the DPBench codebase1 against the effort required

to vet these algorithms when expressed as plans in εKTELO.

1Available at: https://github.com/dpcomp-org/dpcomp_core

18

https://github.com/dpcomp-org/dpcomp_core


Transparency In εKTELO, all algorithms are expressed in the same form: each is a plan,

consisting a sequence of operators where each operator is selected from a class of

operators based on common functionality. This facilitates algorithm comparison and

makes differences between algorithms more apparent. In Sec. 3.4, we summarize

the plan signatures of a number of state-of-the-art algorithms (pictured in Fig. 3.2).

These plan signatures reveal similarities and common idioms in existing algorithms.

These are difficult to discover from the research literature or through code inspection.

Efficiency and Scalability Many εKTELO plans compute on data vectors formed from

projections of an input table. The current implementation of εKTELO relies on stor-

ing these vectors in memory on a single machine. Even under this restriction, it is

challenging to get all εKTELO operators to run efficiently. Our specialized matrix

representation techniques, presented in Sec. 3.5, allow many of the key operators to

scale to large data vectors without imposing undue restrictions on plan authors.

We believe that εKTELO, by supporting the design principles described above, provides

an improved platform for designing and deploying differentially private algorithms.

3.2 Execution Framework And Privacy Enforcement

This section describes the execution environment and then formalizes the claim that

any program executed in εKTELO satisfies differential privacy.

3.2.1 Protected Kernel and Client Space

The execution framework consists of an untrusted client space and a protected kernel

that encloses the private data. An εKTELO program, which we call a plan, runs in the unpro-

tected client space. When the plan needs to interact with the private data, it does so through

privileged operators that can issue requests to the protected kernel. Such operators may,

for example, request that protected kernel apply a data transformation or perhaps return a

noisy measurement. The protected kernel services requests from privileged operators, only
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executing them if their cost is within the available privacy budget. The distinction between

the client space and the protected kernel is a fundamental one in εKTELO. It allows authors

to write plans that consist of operator calls embedded in otherwise arbitrary code (which

may freely include conditionals, loops, recursion, etc.).

The protected kernel is initialized by specifying a single protected data object—an in-

put table D—and a global privacy budget, which we denote as εtot. Note that requests

for data transformations may cause the protected kernel to derive additional data sources.

Thus, the protected kernel maintains a data source environment, which consists of a map-

ping between data source variables, which are exposed to the client, and the protected data

objects, which are kept private. In addition, the data source environment tracks the trans-

formation lineage of each data source. It also maintains the stability of each transformation

(defined in Chapter 2). Note that in describing operators (Sec. 3.3), we speak informally

of operators having data sources as inputs and outputs rather than data source variables.

A layer of indirection is always maintained in the implementation but sometimes elided in

our descriptions to simplify the presentation.

3.2.2 Operator types

Operators have one of three types, based on their interaction with the protected kernel.

The first type is a Private operator, which requests that the protected kernel perform some

action on the private data (e.g., a transformation) but receives only an acknowledgement

that the operation has been performed. The second type is a Private→Public operator,

which receives information about the private data (e.g., a measurement) and thus consumes

privacy budget. The last type is a Public operator, which does not interact with the pro-

tected kernel at all and can be executed entirely in client space. An example of a public

operator would operators that perform inference on the noisy measurements received from

the protected kernel. When describing operators in Sec. 3.3, we color code them based on

their type.
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3.2.3 Privacy Guarantee

In this section, we state the privacy guarantee offered by εKTELO. Informally, εKTELO

ensures that if the protected kernel is initialized with a source databaseD and a privacy bud-

get εtot, then any plan (chosen by the client) will satisfy εtot-differential privacy with respect

toD. Note that if the client exhausts the privacy budget, subsequent calls to Private→Public

operators will return an exception, indicating that they are not permitted. Importantly, an

exception itself does not leak sensitive information – i.e., the decision to return an exception

does not depend on the private state.

A transcript is a sequence of operator calls and their responses. Formally, let rk =

〈op1, a1, . . . , opk, ak〉 denote a length k sequence where opi is an operator call and ai the

response. We assume that the value of opi is a deterministic function of a1, . . . , ai−1. We

use Rk = rk to denote the event that the first k operations result in transcript rk. LetRk be

the set of all possible transcripts of length k. We assume that all Private→Public operators

output values from an arbitrary, but finite set. Thus, the set of possible transcripts is finite.

Let P (Rk = rk | Init(D, εtot)) be the conditional probability of event Rk = rk given that

the system was initialized with input D and a privacy budget of εtot.

Theorem 3.2.1 (Privacy of εKTELO plans) LetD,D′ be any two instances such that |D⊕
D′| = 1. For all k ∈ N+ and rk ∈ Rk,

P (Rk = rk | Init(D, εtot)) ≤ exp(εtot)× P (Rk = rk | Init(D′, εtot)).

The proof of Theorem 3.2.1, which appears in the sequel, extends the proof in [27] to

support the V-SPLITBYPARTITION operator.

While εKTELO ensures differential privacy, private information could be leaked via

side-channel attacks (e.g., timing attacks). Privacy engineers who design operators are

responsible for protecting against such attacks; an analysis of this issue is beyond the scope

of this dissertation.
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3.2.4 Privacy Proof

This section presents a proof of Theorem 3.2.1. We start by introducing some support-

ing concepts and notation. (Some notation is adapted from [27].)

Information tracked by the protected kernel The protected kernel maintains the following

state, which we denote as Skernel:

• A set of source variables SV .

• A data source environment E maps each source variable sv ∈ SV to an actual data

source S, as in E(sv) = S. (Recall that sources can be tables or vectors.)

• A transformation graph: the nodes are SV and there is an edge from sv to sv′ if sv′ was

derived via transformation from sv. (Note: a partition transformation introduces a spe-

cial dummy data source variable whose parent is the source variable being partitioned

and whose children are the variables associated with each partition.)

• A stability tracker St maps each source variable sv ∈ SV to a non-negative number:

St(sv) represents the stability of the transformation that derived data source sv from

the initial source, or 1 if sv is the initial source.

• A budget consumption tracker B that maps each source variable sv ∈ SV to a non-

negative number: B(sv) represents the total budget consumption made by queries to sv

or to any source derived from sv.

• A query history Q that maps each source variable to information about the state of

queries asked about sv or any of its descendants. Specifically, for sv inSV , Q(sv)

returns of a set of tuples (q, s, σ, v) where the meaning of the tuple is that query q was

executed on data source s (which is sv or one of its descendants) with σ noise, the

result was v. In the context of the proof a query is any Private→Public operator. Such

an operator is assumed to satisfy ε-differential privacy with respect to the data source

on which it is applied.

• The global privacy budget, denoted εtot.
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When the protected kernel is initialized, as in Init(T, εtot), it sets global budget to εtot,

creates new source variable svroot, setsE(svroot) = T , sets St(svroot) = 1, andB(svroot) =

0, and adds svroot to the transformation graph.

Budget Management When a query request is issued to the protected kernel, the protected

kernel uses Algorithm 2 to check whether the query can be answered given the available

privacy budget.

Algorithm 2 An algorithm for budget requests
1: procedure REQUEST(sv, σ)
2: if sv is the root then
3: If B(sv) + σ > εtot, return FALSE. Otherwise B(sv) += σ and return TRUE.
4: else if sv is a partition variable then
5: Let svchild be the child from which the request came..
6: Let r = max {B(svchild) + σ −B(sv), 0 }
7: Let ans = REQUEST(parent(sv), r).
8: If ans = FALSE, return FALSE. Otherwise, B(sv) += r and return TRUE.
9: else

10: ans = REQUEST(parent(sv), s · σ) . s is stability factor of sv wrt its parent
11: if ans = FALSE, return FALSE.
12: B(sv) += σ. Return TRUE.
13: end if
14: end procedure

Configurations A configuration, denoted C = 〈Sclient, Skernel〉, captures the state of the

client, denoted Sclient, and the state of the protected kernel, denoted Skernel. The client

state can be arbitrary, but state updates are assumed to be deterministic.

We can define the similarity of two configurations C and C′ as follows. (Notation: we

useX ′ to refer to componentX of configuration C′.) We say that C ∼ C′ iff Sclient = S ′client

and S ′kernel ∼ S ′kernel where Skernel ∼ S ′kernel iff SV = SV ′ and the transformation graphs

are identical and for each sv ∈ SV the following conditions hold:

• St(sv) = St′(sv), B(sv) = B′(sv), Q(sv) = Q′(sv), and εtot = ε′tot.

• |E(sv)⊕ E ′(sv)| ≤ St(sv) = St′(sv) where |x⊕ y| is measured as symmetric differ-

ence when the sources x and y are tables and L1 distance for vectors.)
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We introduce a lemma that bounds the difference probability between query answers.

Let P (q(E(s), σ) = v) denote the probability that query operator q when applied to data

source E(s) with noise σ returns answer v.

Lemma 3.2.2 Let C ∼ C′. For any sv ∈ SV with non-empty Q(sv), the following holds:∏
(q,s,σ,v)∈Q(sv)

P (q(E(s), σ) = v) (3.1)

≤ exp(B(sv)× |E(sv)⊕ E′(sv)|)×
∏

(q,s,σ,v)∈Q′(sv)

P (q(E′(s), σ) = v)

Proof 3.2.3 Proof by induction on a reverse topological order of the transformation graph.

Base case: Consider a single sv at the end of the topological order (therefore it has

no children). If Q(sv) is empty, it holds trivially. Assume non-empty. Consider any

(q, s, σ, v) ∈ Q(sv). Since sv has no children, then s = sv. Furthermore, because the

only budget requests that apply to sv are from direct queries, we have (according to Al-

gorithm 2), B(sv) =
∑

(q,s,σ,v)∈Q(sv) σ. Since we assume that any query operator satis-

fies ε-differential privacy with respect to its source input, we have P (q(E(s), σ) = v) ≤

P (q(E ′(s), σ) = v)×exp(σ×|E(s)⊕E ′(s)|). Substituting sv for s and taking the product

over all terms in Q(sv), we get Eq. (3.1).
Inductive case: Assume Eq. (3.1) holds for all nodes later in the topological order.

Therefore it holds for any child c of sv. We can combine the inequalities for each child into
the following inequality over all children,∏

c∈children(sv)

∏
(q,s,σ,v)∈Q(c)

P (q(E(s), σ) = v)

≤
∏

c∈children(sv)

exp(B(c)× |E(c)⊕ E′(c)|)×
∏

(q,s,σ,v)∈Q(c)

P (q(E′(s), σ) = v)

= exp

 ∑
c∈children(sv)

B(c)× |E(c)⊕ E′(c)|


×

∏
c∈children(sv)

∏
(q,s,σ,v)∈Q(c)

P (q(E′(s), σ) = v)

There are two cases, depending what type of table variable sv is.
First, consider the case when sv is not a special partition variable. We know by trans-

formation stability that |E(c) ⊕ E ′(c)| ≤ s × |E(sv) ⊕ E ′(sv)| where s is the stability
factor for the transformation. In addition,

∑
cB(c) × s ≤ B(sv) because, according to
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Algorithm 2, every time a request of σ is made to child c, a request of s× σ is made to sv.
Therefore, ∑

c∈children(sv)

B(c)× |E(c)⊕ E′(c)| ≤
∑

c∈children(sv)

B(c)× s× |E(sv)⊕ E′(sv)|

≤ B(sv)× |E(sv)⊕ E′(sv)|

Furthermore, observe that each term in (q, s, σ, v) ∈ Q(c) also appears in Q(sv). In

addition,Q(sv) includes any queries on sv directly (and we know from an argument similar

to the base case that Eq. (3.1) holds for these queries). Therefore Eq. (3.1) holds on sv.

Now, consider the case where sv is the special partition variable. Let m = maxcB(c).

We get the following

∑
c∈children(sv)

B(c)× |E(c)⊕ E ′(c)| ≤
∑

c∈children(sv)

m× |E(c)⊕ E ′(c)|

= m×
∑

c∈children(sv)

|E(c)⊕ E ′(c)| = m× |E(sv)⊕ E ′(sv)|

= B(sv)× |E(sv)⊕ E ′(sv)|

The second to last line follows from the fact that sv is partition transformation. The last

line follows from how B(sv) is updated according Algorithm 2.

Main Proof We use C0(T, εtot, P0) to denote the initial configuration in which the protected

kernel has been initialized with Init(T, εtot) and the client state is initialized to P0. We

use the notation C0(T, εtot, P0)
t⇒p C to mean that starting in C0 after t operations, the

probability of being in configuration C is p.

Theorem 3.2.4 If T ∼1 T
′ and C0(T, εtot, P0)

t⇒p C such that B(svroot) = ε in C, then

ε ≤ εtot and there exists C′ such that C0(T
′, εtot, P0)

t⇒q C′ where C ∼ C′ and p ≤

q · exp(ε).

Theorem 3.2.1 follows as a corollary from Theorem 3.2.4.
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Proof 3.2.5 Proof by induction on t.

Base case: t = 0. This implies that p = q = 1, ε = 0, and C = C0(T, εtot, P0) and

C′ = C0(T
′, εtot, P0). It follows that C ∼ C′ because we are given that T ∼1 T

′ and the

rest of the claim follows.

Inductive case: Assume the claim holds for t, we will show it holds for t+ 1. Let C1 be

any configuration such that C0(T, εtot, P0)
t⇒p1 C1 where in C1, we have B(svroot) = ε1.

The inductive hypothesis tells us that ε1 ≤ εtot and that there exists a C′1 such that

C0(T
′, εtot, P0)

t⇒q1 C′1 and C1 ∼ C′1 and p1 ≤ q1 × exp(ε1).

Because C1 ∼ C′1, it follows that the client is in the same state and so the next operation

request from the client will be the same in C1 and C′1. The proof requires a case analysis

based on the nature of the operator. We omit analysis of transformation operators or op-

erators that are purely on the client side as those cases are straightforward: essentially

we must show that the appropriate bookkeeping is performed by the protected kernel. We

focus on the case where the operator is a query operator.

For a query operator, there are two cases: (a) running out of budget, and (b) executing

a query. For the first case, by the inductive hypothesis C1 ∼ C′1 and therefore if executing

Algorithm 2 yields False on the protected kernel state in C1, it will also do so on the

protected kernel state in C′1. For the second case, suppose query q is executed on source sv

with noise σ and answer v is obtained. The protected kernel adds the correpsonding entry

to the query historyQ. Let C denote the resulting state. Let C′ correspond to extending C′1

in a similar way. Thus C ∼ C′.

It remains to show two things. First, letting B(svroot) = ε, we must show that ε ≤ εtot.

This follows from Algorithm 2 which does not permit B(svroot) to exceed εtot. Second, we

must bound the probabilities. Suppose that the probability of this query answer in C is p2

and the probability of this answer on C′ is q2. It remains to show that p1 ·p2 ≤ exp(ε)·q1 ·q2.

For this we rely on Lemma 3.2.2 applied to svroot with the observations that the product of
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Note: journal version with all plans

ID Cite Algorithm name Plan signature Transform Partition selection Query selection

1 Dwork et al. 2006 Identity SI LM TV T-Vectorize PA AHPpartition SI Identity

2 Xiao et al. 2010 Privelet SP LM LS TW T-Where PG Grid ST Total

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS TPR T-Project PD Dawa SP Privelet

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS TP V-SplitByPartition PW Workload-based SH2 H2

5 Li et al. 2014 Greedy-H SG LM LS TR V-ReduceByPartition PS Stripe(attr) SHB HB

6 - Uniform ST LM LS PM Marginal(attr) SG Greedy-H

7 Hardt et al. 2012 MWEM I:( SW LM MW ) Inference PU UniformPartition SU UniformGrid

8 Zhang et al. 2014 AHP PA TR SI LM LS LS Least squares SA AdaptiveGrids

9 Li et al. 2014 DAWA PD TR SG LM LS NLS Nneg Least squares Query SQ Quadtree

10 Cormode et al. 2012 Quadtree SQ LM LS MW Mult Weights LM Vector Laplace SHD HDMM

11 Qardaji et al. 2013 UniformGrid SU LM LS HR Thresholding SS Stripe(attr)

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS SW Worst-approx

13 McKenna et al. 2018 HDMM SHD LM LS SPB PrivBayes select

14 NEW DAWA-Striped PS TP[ PD TR SG LM] LS

15 NEW HB-Striped PS TP[ SHB LM] LS

16 NEW HB-Striped_kron SS LM LS

17 NEW PrivBayesLS SPB LM LS

18 NEW MWEM variant b I:( SW SH2 LM MW )

19 NEW MWEM variant c I:( SW LM NLS )

20 NEW MWEM variant d I:( SW SH2 LM NLS )

Note: Research highlight version with a subset of plans

ID Cite Algorithm name Plan signature Transformation Partition selection Query selection

1 Dwork et al. 2006 Identity SI LM TV T-Vectorize PA AHPpartition SI Identity

2 Xiao et al. 2010 Privelet SP LM LS TP V-SplitByPartition PG Grid ST Total

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS TR V-ReduceByPartition PD Dawa SP Privelet

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS PW Workload-based SH2 H2

5 Li et al. 2014 Greedy-H SG LM LS Inference PS Stripe(attr) SHB HB

6 - Uniform ST LM LS LS Least squares PM Marginal(attr) SG Greedy-H

7 Hardt et al. 2012 MWEM I:( SW LM MW ) NLS Nneg Least squares PU UniformPartition SU UniformGrid

8 Zhang et al. 2014 AHP PA TR SI LM LS MW Mult Weights SA AdaptiveGrids

9 Li et al. 2014 DAWA PD TR SG LM LS HR Thresholding Query SQ Quadtree

10 Cormode et al. 2012 Quadtree SQ LM LS LM Vector Laplace SW Worst-approx

11 Qardaji et al. 2013 UniformGrid SU LM LS SPB PrivBayes select

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS

13 NEW MWEM variant b I:( SW SH2 LM MW )

14 NEW MWEM variant c I:( SW LM NLS )

15 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 3.1: The operators currently implemented in εKTELO. Private operators are red,
Private→Public operators are orange, and Public operators are green.

probabilities bounded in Lemma 3.2.2 corresponds to the probabilities in p1 ·p2 that do not

trivially equal 1 and that |E(svroot)⊕ E ′(svroot)| = 1.

3.3 Operators and Operator Classes

We now describe in detail the operators and operator classes in εKTELO. A full list of

operators is shown in Fig. 3.1 where they are arranged into classes and color-coded by type

(Private, Private→Public, or Public). Along with descriptions of the operator classes we

explain their role in plans and prove supporting properties.

3.3.1 Transformation Operators

Transformation operators take as input a data source variable (either a table or a vector)

and output a transformed data source (again, either a table or vector). Transformation

operators modify the data held in the kernel, without returning answers. So while they

do not expend privacy budget, they can affect the privacy analysis through their stability

(Chapter 2). Every transformation in εKTELO has a well-established stability.

Table Transformations
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εKTELO supports table transformations PROJECT and WHERE, each with stability 1.

The definitions of the operators are nearly identical to those described in PINQ [64] and

are not repeated here. As εKTELO currently handles programs that use linear queries on

single tables, the JOIN operator is not yet supported.

Vectorization

All of the plans in εKTELO start with table transformations and typically transform

the resulting table into a vector using T-VECTORIZE (and all later operations happen on

vectors). The T-VECTORIZE operator is a transformation operator that takes as input a

table T and outputs a vector x that has as many cells as the number of elements in the

table’s domain (recall the discussion of domain Chapter 2). Each cell in x represents the

number of records in the table that correspond to the domain element encoded by the cell.

T-VECTORIZE is a 1-stable transformation.

The vectorize operation can significantly impact the performance of the code, especially

in high-dimensional cases, as we represent one cell per element in the domain. For this

reason we allow table transformations (WHERE and PROJECT) to reduce the domain size

before running T-VECTORIZE. One of the primary reasons for working with the vector

representation is to allow for inference operators downstream. Once in vector form, data

can be further transformed as described next.

Vector Transformations

εKTELO supports transformations on vector data sources. Each vector transformation

takes as input a vector x and a matrix M and produces a vector x′ = Mx. The linearity of

vector transformations is an important feature that is leveraged by downstream inference

operators. The stability of vector transformations is equal to the largest L1 column norm of

M.

The V-REDUCEBYPARTITION operator is a 1-stable vector transformation operator

that reduces the dimensionality of the data vector x by eliminating cells from x or grouping

28



together cells in x. Such transformations are useful to (a) filter out parts of the domain

that are uninteresting for the analyst, (b) reduce the size of the x vector so that algorithm

performance can be improved, and (c) reduce the number of cells in x so that the amount

of noise added by measurement operators is reduced.

V-REDUCEBYPARTITION takes as input a partition defining a grouping of the cells in

the x. It can be carried out by representing the partition as a (p × n) matrix P where n is

the number of cells in x, p is the number of groups in the partition, and Pij = 1 if cell j in

x is mapped to group i, and 0 otherwise.

The V-SPLITBYPARTITION operator is the vector analogue of the tabular SPLITBY-

PARTITION operator. It takes as input a partition and splits the data vector x into k vectors,

x(1), . . . ,x(k), each representing a disjoint subset of the original domain. This operator

allows us to create different subplans for disjoint parts of the domain. This is a 1-stable

vector transform. (Note: V-SPLITBYPARTITION can be expressed as k linear transforms

with matrices that select the appropriate elements of the domain for each partition.)

3.3.2 Query Operators

Query operators are responsible for computing noisy answers to queries on a data

source. Since answers are returned, query operators necessarily expend privacy budget.

Query operators take a data source variable and ε as input.

For tables, the NOISYCOUNT operator takes as input a tableD and ε and returns |D|+η,

where η is drawn from the Laplace distribution with scale 1/ε. For vectors, the VECTOR

LAPLACE operator takes as input a vector x, epsilon, and a set of linear counting queries M

represented in matrix form. Let M be a matrix of size (m×n). VECTOR LAPLACE returns

Mx+ σ(M)
ε

b where b is a vector ofm independently drawn Laplace random variables with

scale 1 and σ(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy ε-differential privacy with

respect to their data source input [64, 53]. Note, however, in the case the source is derived
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from other data sources through transformation operators, the total privacy loss could be

higher. The cumulative privacy loss depends on the stability of the transformations and is

tracked by the protected kernel.

3.3.3 Query Selection Operators

Since each query operation consumes privacy budget, the plan author must be judicious

about what queries are being asked. Recent privacy work has shown that if the plan author’s

goal is to answer a workload of queries, simply asking these queries directly can lead

to sub-optimal accuracy (e.g., when workload queries ask about overlapping regions of

the domain). Instead, higher accuracy can be achieved by designing a query strategy, a

collection of queries whose answers can be used to reconstruct answers to the workload.

This approach was formalized by the matrix mechanism [53], and has been a key idea in

many algorithms [52, 49, 79, 40, 101, 19, 61]. Among these the recent HDMM algorithm

is notable because it uses an optimization-based approach to find the query strategy that

most-effectively answers the workload. HDMM effectively scales to multi-dimensional

domains, and offers state-of-the-art utility on many workloads [61].

A query selection operator is distinguished by its output type: a set of linear counting

queries M represented in matrix form (i.e., the matrix input to the VECTOR LAPLACE

operator described above). As Fig. 3.1 indicates, εKTELO supports a large number of query

selection operators, most of which are extracted from algorithms proposed in the literature.

While these operators agree in terms of their output, they vary in terms of their input: some

employ fixed strategies that depend only on the size of x (e.g., IDENTITY and PREFIX

in Algorithm 1), some adapt to the workload (e.g., GREEDY-H), some depend on prior

measurements (e.g., ADAPTIVEGRIDS), etc.

Most query selection operators only rely on non-private information (domain size,

workload) and therefore are of Public type. But there are a few that consult the private

data, and thus have the Private→Public type. For example, WORST-APPROX is an operator
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that picks the query from a workload that is the worst approximated by a current estimate

of the data. Such an operator is used by iterative algorithms like MWEM [36]. Another is

PRIVBAYES SELECT, an operator that privately constructs a Bayes net over the attributes

of the data source, and then returns a matrix corresponding to the sufficient statistics for

fitting the parameters of the Bayes net. This was used as a subroutine in PrivBayes [109].

3.3.4 Partition Selection Operators

Partition selection operators compute a matrix P which can serve as the input to the

V-REDUCEBYPARTITION and V-SPLITBYPARTITION operators described earlier. Of

course the matrix P must be appropriately structured to be a valid partition of x.

This is an important operator class since much of recent innovation into state-of-the-art

algorithms for answering histograms and range queries has used partitions to either reduce

the domain size of the data vector by grouping together cells with similar counts, or split

the data vector into smaller vectors and leverage the parallel composition of differential pri-

vacy to process each subset of the domain independently. εKTELO includes partition selec-

tion operators AHPPARTITION and DAWA which are subroutines from the AHP [111] and

DAWA [49] algorithms, respectively. Both of these operators are data adaptive, and hence

are Private→Public. We also introduce new partition selection operators, WORKLOAD-

BASED and STRIPE, described in Secs. 3.6.1 and 3.7.2 respectively.

3.3.5 Inference Operators

An inference operator derives new estimates to queries based on the history of transfor-

mations and query answers. Inference operators never use the input data directly and hence

are Public. Plans typically terminate with a call to an inference operator to estimate a final

set of query answers reflecting all available information computed during execution of the

plan. Some plans may also perform inference as the plan executes.

Ideally, an inference method should: (i) properly account for measurements with un-

equal noise; (ii) support inference over incomplete measurements (in which derived an-
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swers are not completely determined by available measurements); (iii) should incorporate

all available information (including a prior or constraint on the input dataset); and lastly,

(iv) inference should efficiently scale to large domains. Many versions of inference have

been considered in the literature [40, 51, 48, 36, 3, 111, 79, 76, 100] but none meet all

of the objectives above. εKTELO currently supports multiple inference methods, in part

to support algorithms from past work and in part to offer necessary tradeoffs among the

properties above.

All the inference operators supported in εKTELO take as input a set of queries, rep-

resented as a matrix M, and noisy answers to these queries, denoted y. The output of

inference is a data vector x̂ that best fits the noisy answers—i.e., an x̂ such that Mx̂ ≈ y.

The estimated x̂ can then be used to derive an estimate of any linear query q by computing

q · x̂. The inference operator may optionally take as input a set of weights, one per query

(row) in M to account for queries with different noise scales.

εKTELO supports two variants of least squares inference, the most widely used form

of inference in the current literature [40, 51, 79]. εKTELO extends these methods and

formulates them as general operators, allowing us to replicate past algorithms, and consider

new forms of inference that support constraints. The first variant solves a classical least

squares problem:

Definition 6 (Ordinary least squares (LS))

x̂ = arg min
x∈Rn

‖Mx− y‖2 (3.2)

Our second variant imposes a non-negativity constraint on x̂:

Definition 7 (Non-negative least squares (NNLS)) Given scaled query matrix M and an-

swer vector y, the non-negative least squares estimate of x is:

x̂ = arg min
x�0

‖Mx− y‖2 (3.3)
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These inference methods can also support some forms of prior information, particularly

if it can be represented as a linear query. For example, if the total number of records in the

input table is publicly known, or other special queries have publicly available answers,

they can be added as “noisy” answers with negligible noise scale and they will naturally

incorporated into the inference process and the derivation of new query estimates.

We also support an inference method based on a multiplicative weights update rule,

which is used in the MWEM [36] algorithm. This inference algorithm is closely related to

the principle of maximum entropy, and is especially effective when one has measured an

incomplete set of queries.

Defining inference under vector transformations

Recall that in the discussion above we describe inference as operating on a single vector

x with a corresponding query matrix M. However, plans can include an arbitrary combi-

nation of vector transformations, followed by query operators, resulting in a collection of

query answers defined over various vector representations of the data. εKTELO handles this

by taking advantage of the structure of vector transformations and query operators, both

of which perform linear transformations, therefore making it possible to map measured

queries back on to the original domain (i.e., a vector produced by the VECTORIZE opera-

tion) and perform inference there. This allows for the most complete form of inference but

other alternatives are conceivable, for example by performing inference locally on trans-

formed vectors and combining inferred queries. This might have efficiency advantages, but

would likely sacrifice accuracy, and is left for future investigation.

Inference: impact on accuracy

Because inference is an operator in εKTELO algorithm authors are encouraged to use

inference consistently, using all available measurements, even if they are measured in dif-

ferent parts of a plan. In contrast, some existing algorithms use inference in an ad-hoc

manner, performing inference on one set of measurements separately from another set of
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measurements. As we show below, for unbiased plans, this is always sub-optimal and

εKTELO helps to relieves the algorithm designer of the complexity of integrating measured

information properly. The following theorem follows the intuition that any unbiased noisy

measurement provides information about the true data that can lower error, in expectation:

Theorem 3.3.1 Given any (full rank) matrix M of linear measurements and any linear

query q, the expected error of q is never higher if we include additional linear measure-

ments using least squares inference.

Proof 3.3.2 Assuming all measurments have variance 1, the expected error on a query q is

ErrorM(q) = q(MTM)−1qT [51]. In general, the variance of the measurements depends

on the privacy budget and the sensitivity of M, but they can always be scaled to have

variance 1. If we augment M with a new linear query b, it becomes M′ =

M
b

. We

can write M′TM′ = MTM + bTb where bTb is the outer product. Using the Sherman-

Morrison formula [91], we see that

(M′TM′)−1 = (MTM)−1 − 1

1 + b(MTM)−1bT
(MTM)−1bTb(MTM)−1

Since (MTM)−1 is positive-definite, b(MTM)−1bT ≥ 0 and the fraction is just some pos-

itive constant c. With some algebraic manipulation, we arrive at the following expression:

ErrorM′(q) = ErrorM(q)− cq(MTM)−1bTb(MTM)−1qT

Letting v = q(MTM)−1bT , we can write that as ErrorM′(q) = ErrorM(q) − cv2 since

(MTM)−1 is symmetric. Clearly cv2 is non-negative, so ErrorM′(q) ≤ ErrorM(q). This

completes the proof.
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3.4 Expressing known algorithms

As stated in Sec. 3.1, εKTELO represents differentially private algorithms as plans com-

posed over a rich library of operators, and supports not only simple linear sequences but

also plans with iteration, recursion and branching. To highlight the expressiveness of

εKTELO, we re-implemented state-of-the-art algorithms as εKTELO plans. Once the nec-

essary operators are implemented, the plan definition for an existing algorithm is typically

a few lines of code for combining operators and managing parameters. We performed ex-

tensive testing to confirm that reimplementations in εKTELO of existing algorithms provide

statistically equivalent outputs.

ID Cite Algorithm name Plan signature

1 Dwork et al. 2006 Identity SI LM

2 Xiao et al. 2010 Privelet SP LM LS

3 Hay et al. 2010 Hierarchical (H2) SH2 LM LS

4 Qardaji et al. 2013 Hierarchical Opt (HB) SHB LM LS

5 Li et al. 2014 Greedy-H SG LM LS

6 - Uniform ST LM LS

7 Hardt et al. 2012 MWEM I:( SW LM MW )

8 Zhang et al. 2014 AHP PA TR SI LM LS

9 Li et al. 2014 DAWA PD TR SG LM LS

10 Cormode et al. 2012 Quadtree SQ LM LS

11 Qardaji et al. 2013 UniformGrid SU LM LS

12 Qardaji et al. 2013 AdaptiveGrid SU LM LS PU TP[ SA LM] LS

13 McKenna et al. 2018 HDMM SHD LM LS

14 NEW DAWA-Striped PS TP[ PD TR SG LM] LS

15 NEW HB-Striped PS TP[ SHB LM] LS

16 NEW HB-Striped_kron SS LM LS

17 NEW PrivBayesLS SPB LM LS

18 NEW MWEM variant b I:( SW SH2 LM MW )

19 NEW MWEM variant c I:( SW LM NLS )

20 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 3.2: The high-level signatures of plans implemented in εKTELO (referenced by ID).
All plans begin with a vectorize transformation, omitted for readability. We also omit pa-
rameters of operators, including ε budget shares. I(subplan) refers to iteration of a subplan
and TP[subplan] means that subplan is executed on each partition produced by TP.
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We examined 12 differentially private algorithms for answering low dimensional count-

ing queries that were deemed competitive2 in a recent benchmark study [38], and one new

algorithm published after the benchmark study [61]. PLAN #1-13 in Fig. 3.2 abstract their

εKTELO implementations as plan signatures where operators are represented using colored

abbreviations.

3.4.1 Re-implementing existing algorithms

The algorithms are listed roughly in the order in which they were proposed in the litera-

ture and reflect the evolution of increasingly complex algorithmic techniques. The simplest

Algorithm, IDENTITY [26], is a natural application of the Laplace mechanism. It simply

measures each component of the data vector. Algorithms 2 through 5 reflect the evolution

of more sophisticated measurements selection, targeted toward specific workloads. Many

of these techniques were originally designed to support range queries (a small subclass of

linear queries) over one- or two-dimensional data. PRIVELET [101] uses a Haar wavelet as

its measurements, which allows for sensitivity that grows logarithmically with the domain

size, yet allows accurate reconstruction of any range query. The HIERARCHICAL (H2)

technique uses measurements that form a binary tree over the domain, achieving effects

similar to the wavelet measurements. QUADTREE [19] is the 2-dimensional realization of

the hierarchical structures. All the algorithms above follow similar design idioms, allow-

ing us to implement them using operator sequences of the same pattern: Query selection,

Query, and Inference.

All of the algorithms above are data-independent, with constant error rates for any

input dataset. More recent algorithms are data-dependent, displaying different error rates

on different inputs, often because the algorithmic techniques are adapting to features of

the data to lower error. The simplest data-dependent algorithm is UNIFORM which simply

2This is the subset of algorithms that offered the best accuracy for at least one of the input settings of the
benchmark.
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estimates the total number of records in the input and assumes uniformity across the data

vector. This simple algorithm also follows the simple pattern.

A more complex example is the Multiplicative-Weights Exponential Mechanism (MWEM)

[36] which takes a workload of linear queries as input and runs several rounds of estima-

tion, measuring one workload query in each round, and using the multiplicative update rule

to revise its estimate of the data vector. In each round, the Exponential Mechanism is used

to select the workload query that is most poorly approximated using the current data vector

estimate.

Algorithm 3 MWEM
1: D ← PROTECTED(source uri) . Init
2: x̂← T-VECTORIZE(D) . Transform
3: for i = 1 : T do
4: M←WORSTAPPROX(x̂, ε/2T ) . Query Selection
5: y← VECTORLAPLACE(M, ε/2T ) . Query
6: x̂← MULTWEIGHTS(M, y) . Inference
7: end for
8: return x̂ . Output

In Algorithm 3, we rewrite the algorithm with abstracted subroutines and find out that

this algorithm can be represented as several iterations of the Query selection, Query, and

Inference sequence. In Fig. 3.2, the iteration inherent to PLAN #7 (MWEM) is shown with

I : (..).

Other data-dependent algorithms exploit partitioning, in which components of the data

vector are merged and estimated only in their entirety, which uniformity assumption im-

posed within the regions. The DAWA [49] and AHP [111] algorithms have custom parti-

tion selection methods which consume part of the privacy budget to identify approximately

uniform partition blocks. The partition selection methods work by finding a grouping of

the bins in a vector and are the key innovations of the algorithms. We encapsulate these

subroutines as new operators in our framework (in the cases above, we added a partition se-

lection operators DAWAPARTITION (PD) in PLAN #9 and AHPPARTITION (PA) in PLAN

#8).
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UNIFORMGRID and ADAPTIVEGRID [78] focus on 2D data and both end up with par-

titioned sets of measurements forming a grid over a 2D domain. UNIFORMGRID imposes

a static grid, while ADAPTIVEGRID uses an initial round of measurements to adjust the

coarseness of the grid, avoiding estimation of small sparse regions.

3.4.2 Re-implementation strategies

The process of re-implementing in εKTELO this seemingly diverse set of algorithms

consisted of breaking the algorithms down into key subroutines and translating them into

operators. To summarize, the translation strategy typically falls into one of three categories.

The first translation strategy was to identify specific implementations of common differ-

entially private operations and replace them with a single unified general-purpose operator

in εKTELO. For instance, the Laplace mechanism (LM), which adds noise drawn from

the Laplace distribution, appears in every one of the 13 algorithms. Noise addition can be

implemented in a number of ways (e.g. calling a function in the numpy.random package,

taking the difference of exponential random variables, etc.). In εKTELO, all these plans call

the same VECTOR LAPLACE operator with a single unified sensitivity calculation.

Another less obvious example of this translation is for subroutines that infer an estimate

of x using noisy query answers. With the exception of IDENTITY and MWEM, each of the

algorithms uses instances of least squares inference, often customized to the structure of

the noisy query answers. For instance, PRIVELET uses Haar wavelet reconstruction, hier-

archical strategies like HB and DAWA use a tree-based implementation of inference, and

others like UNIFORM and AHP use uniform expansion. We replaced each of these custom

inference methods with a single general-purpose least squares inference operator (LS oper-

ators in Fig. 3.2). It would still be possible to implement a specialized inference operator in

εKTELO that exploited particular properties of a query set, but, given the efficient inference

methods described in Sec. 3.5.6, we did not find this to be beneficial.
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Our second translation strategy was to identify higher-level patterns that reflect design

idioms that exist across multiple algorithms. In these cases, we replace one or more subrou-

tines in the original code with a sequence of operators that capture this idiom. As shown

earlier, PLAN #2, 3, 4, 5, 6, 10, and 11, 13 all consist of the operator sequence: Query

selection, Query (LM), and Inference (LS), differing only in Query selection method. For

other algorithms, this idiom reappears as a subroutine, as in PLAN #8 (AHP) and PLAN #9

(DAWA).

Finally, we were left with distinct subroutines of algorithms that represented key intel-

lectual advances in the differential privacy literature. We encapsulate such subroutines as

new operators (e.g. PA in PLAN #8 (AHP) and PD in PLAN #9 (DAWA) ) in the framework.

3.4.3 Benefits

We highlight the benefits of re-implementing known algorithms in εKTELO.

Code reuse Once reformulated in εKTELO, nearly all algorithms use the VECTOR LAPLACE

operator and least squares inference. This means that any improvements to either of these

operators will be inherited by all the plans. We show such an example in Sec. 3.5.6.

Reduced privacy verification effort Code reuse also reduces the number of critical oper-

ators that must be carefully vetted. The operators that require careful vetting are ones that

consume the privacy budget, which are the Private→Public operators in Fig. 3.1. These are:

VECTOR LAPLACE, the partition selection operators for both DAWA [49] and AHP [111],

a query selection operator used by PrivBayes [109], and a query selection operator used by

the MWEM [36] algorithm that privately derives the worst-currently-approximated work-

load query. In contrast, for the DPBench code base, the entire code has to be vetted to

audit the use and management of the privacy budget. The end result is that verifying the

privacy of an algorithm requires checking fewer lines of code. For example, to verify

the QuadTree algorithm in the DPBench codebase requires checking 163 lines of code.

However, with εKTELO, this only requires vetting the 30-line VECTOR LAPLACE opera-
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tor. (Furthermore, by vetting just this one operator, we have effectively vetted 10 of the

18 algorithms in Fig. 3.2, since the only privacy sensitive operator these algorithms use is

VECTOR LAPLACE.). When we consider all of the DPBench algorithms in Fig. 3.2, algo-

rithms 1-12, verifying the DPBench implementation requires checking a total of 1837 lines

of code while vetting all the privacy-critical operators in εKTELO requires checking 517

lines of code.

Transparency As noted above, εKTELO plans make explicit the typical patterns that result

in accurate differentially private algorithms. Moreover, εKTELO plans help clarify the dis-

tinctive ingredients of state-of-the-art algorithms. For instance, DAWA and AHP (PLAN

#9 and PLAN #8 respectively in Fig. 3.2) have the same structure but differ only in two

operators: partition selection and query selection.

3.5 Implementation: efficient matrix support

Matrices and operations on matrices are central to the implementation of εKTELO op-

erators but can become a performance bottleneck. In this section we describe a set of

specialized matrix representation techniques, based on the implicit definition of matrices,

which allows for greater scalability as the size of the data vector grows.

We review next the types of matrix objects in εKTELO and then, in Sec. 3.5.2, the dif-

ferent ways matrices can be represented including implicit matrices. In Sec. 3.5.3, we de-

compose the common matrix operations in εKTELO into a small set of primitive operations

which every implicit matrix should support. We then describe in Sec. 3.5.4 a general ma-

trix type from which implicit matrices can be built, and use that matrix type, in Sec. 3.5.5,

to implement common query selection operators in εKTELO. We conclude with Sec. 3.5.6

describing the implementation of inference using implicit matrices.
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3.5.1 Matrix types and their operations

Recall that matrices are used to represent three different objects in εKTELO: sets of

workload queries, sets of measurement queries, and partitions of the domain. In all cases,

the matrices contain one column for each element of a corresponding data vector. In the

case of both workload and measurement matrices, rows represent linear queries. A par-

tition matrix describes a linear transformation that can be applied to a data vector or to a

workload; one row describes a set of elements of the domain that will be combined after

the transformation.

The key computations on each matrix type are shown in Table 3.1 (in the left two

columns). Workload matrices and measurement matrices both represent sets of queries and

so they share similar computations (such as query evaluation on a data vector and calcu-

lation of sensitivity) however we only do inference on measurement matrices. Partition

matrices are used to reduce and expand both workload matrices and data vectors.

In common plans, the number of rows in a workload or measurement measurement

matrix can be as large or larger than n, the number of elements in the data vector. Partitions

have at most n rows, but may still be large. For plans operating on large data vectors,

where n approaches the size of memory, these matrices, in standard form, are infeasible

to represent in memory and operate on. To address this, εKTELO provides flexible and

efficient matrix capabilities that can be used for the efficient implementation of operators.

3.5.2 Matrix representations: dense, sparse and implicit

The matrix class in εKTELO supports matrices using a combination of the dense, sparse,

and implicit matrices. These representations differ in their space utilization, their general-

ity, and the efficiency of the matrix operations they support.

A dense m× n matrix is the standard representation that stores mn values. Obviously,

any matrix can be represented in this manner and all operations in Table 3.1 are supported.

A sparse matrix stores only non-zero elements of a matrix. Any matrix can be represented
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in sparse form, but its efficiency depends on the number of nonzero entries. Where nnz(A)

denotes the number of nonzero elements in matrix A, if nnz(A) ≈ mn then sparse matri-

ces do not offer any benefit, and may even be more expensive to represent than the dense

representation. However, if nnz(A) << mn there may be significant improvements to

performance in using this representation.

An implicit matrix is a virtual representation of a matrix that may not explicitly store

all (or even any) of the elements of the matrix. Because it is a virtual object, it must

define appropriate methods so that computations with the implicit matrix produce correct

results. While not all matrices allow for efficient implicit representations, we have found

that many of the matrices used in εKTELO operators have a structure that can be exploited

for efficient implicit representation. Note that implicit matrix representations are lossless:

they do not approximate some dense matrix but represent it exactly. Therefore an implicit

matrix can always be materialized in sparse or dense form, although the goal is to perform

computations without materialization.

As an example of an implicit matrix, recall the Prefix workload, an encoding of an

empirical CDF, which was used in the example plan (Algorithm 1) of Sec. 3.1:

Example 1 (The Prefix workload: dense, sparse, and implicit) In dense form, the prefix

workload is defined as a lower-triangular matrix containing 1’s. If n = 5 we have:

Wpre =



1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1


A sparse representation of Wpre would store (a list of) only the nonzero elements of this

matrix, but the space complexity of both dense and sparse representations remains O(n2).

In addition, the time complexity of computing matrix-vector products using the dense or
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Table 3.1: Types of matrix objects in εKTELO (workload, measurement, partition) and the
key computations performed in plans, along with the primitive methods required to support
each computation.

Key computations by matrix type Primitive methods

Workload matrix, W
Query evaluation Wx̂ Matrix-vector product
L1 Sensitivity ‖W‖1 Abs, Transpose, Matrix-vector product
L2 Sensitivity ‖W‖2 Sqr, Transpose, Matrix-vector product
Gram Matrix WTW Transpose, Matrix multiplication
Row indexing wi Transpose, Matrix-vector product

Measurement matrix, M
Query evaluation Mx Matrix-vector product
L1 Sensitivity ‖M‖1 Abs, Transpose, Matrix-vector product
L2 Sensitivity ‖M‖2 Sqr, Transpose, Matrix-vector product
Inference (LS) arg minx ‖Mx− y‖2 Transpose, Matrix-vector product
Inference (NNLS) arg minx≥0 ‖Mx− y‖2 Transpose, Matrix-vector product
Inference (MW) x̂(k+1) ∝ x̂(k) � exp (g/N) Transpose, Matrix-vector product

g = 0.5MT (Mx̂(k) − y)

Partition matrix, P
Reduce workload W′ = WP+ Transpose, Matrix multiplication
Reduce data vector x′ = Px Matrix-vector product
Expand workload W = W′P Matrix multiplication
Expand data vector x = P+x′ Transpose, Matrix-vector product

sparse representation isO(n2). However, the Prefix matrix can be completely specified by a

single parameter, n, which is the only state stored for the implicit version of Wpre. Further,

we can evaluate the matrix-vector product y = Wprex using a simple one-pass algorithm

over x: first compute y1 = x1. Then, for k = 2 . . . n, compute yk = yk−1 + xk. Therefore,

by representing the Prefix workload implicitly we can achieve O(1) space complexity and

O(n) time complexity for computing matrix-vector products.

3.5.3 Computing with implicit matrices

Most implicit matrices require very little internal state to be stored. The main challenge

is therefore to insure that all necessary computations involving an implicit matrix can be

carried out efficiently, hopefully without falling back to materialization of the dense form
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of the matrix. Before defining additional implicit matrix constructions, we review the key

computations εKTELO matrix objects must support.

A careful examination of the operators currently implemented in εKTELO resulted in the

list of key computations in Table 3.1, where the left two columns describe operations on

matrices that commonly occur in plans. Importantly, these plan-level matrix computations

can be decomposed into just five fundamental matrix methods, which we call primitive

methods: matrix-vector product, transpose, matrix multiplication, element-wise absolute

value (abs), and element-wise square (sqr). Matrix-vector product takes as input a vector

and returns a vector. The multiplication of two implicit matrices returns a new implicit ma-

trix, as does transpose, which returns another implicit matrix that represents the transpose

linear transformation. Element-wise sqr and abs both return new implicit matrices.

Below we review the key computations on εKTELO matrix objects in Table 3.1, how

they can be decomposed into primitive methods, and implementation considerations. Our

goal will then be to construct implicit matrices that efficiently support the primitive meth-

ods.

Query evaluation and data reduction In εKTELO plans, matrix-vector multiplication is

used by workload and measurement matrices for query evaluation, and by partition

matrices for reduction of the data vector.

Sensitivity The sensitivity of measurement and workload matrices can be computed using

a combination of primitive methods (abs, sqr, transpose, and matrix-vector prod-

uct). For a matrix M, we compute the maximum column sum of abs(M) (for L1

sensitivity) or sqr(M) (for L2 sensitivity) which can be done by doing a transpose-

matrix-vector product with 1 – the vector of all 1’s:

‖M‖1 = max(abs(M)T1) ‖M‖2 =
√
max(sqr(M)T1)
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Inference The most common form of inference in εKTELO plans is based on least squares.

While classical solutions to the least squares problem involve matrix decomposi-

tions and computation of the pseudo-inverse, we will show that iterative methods

lead to much greater scalability in combination with our implicit matrix representa-

tions. Least squares, non-negative least squares, and multiplicative-weights inference

can all be implemented using just the matrix-vector product and transpose primitive

methods. We will discuss iterative inference in Sec. 3.5.6.

Gram Matrix Some workload-adaptive mechanisms like GreedyH and HDMM require

the (materialized) gram matrix of the workload. For a workload W, the gram matrix

is WTW. This computation can be implemented in terms of transpose, matrix mul-

tiplication, and materialize. For extremely large workloads with special structure,

where WTW is much smaller than W (like the set of all range queries), a more ef-

ficient version can be implemented directly that avoids using the primitive methods.

Partition reduction and expansion Partition matrices need to be able to reduce the data

vector and workload. They also have to be able to do the reverse expansion opera-

tions. As we show in the proof of Prop. 3.6.1, because of the special structure of

partition matrices, the pseudo-inverse of any matrix P can be computed as the prod-

uct of PT and a diagonal matrix D. Thus, partition matrices simply need the three

primitive methods: matrix-vector product, transpose, and matrix-multiplication.

Row Indexing The MWEM algorithm and its variants (described in Sec. 3.7.1) use the

worst-approximated query selection operator, which requires row indexing, or ma-

terialization of the ith row of a matrix. This can be implemented in terms of the

primitive methods transpose and matrix-vector product as follows: wi = WTei,

where ei is the ith column of an identity matrix.

Materialize If a plan requires working with matrices in a manner not supported by the in-

terface of our implicit matrices, the matrix can always be materialized, at which point
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standard implementations of matrix methods can be employed. As in row indexing,

materialization can be performed by a sequence of matrix vector products with the

columns of an identity matrix, i.e., Aei for i = 1, . . . n.

3.5.4 Generalized matrix construction

εKTELO contains a matrix class, denoted EMatrix, that generalizes dense, sparse, and

implicit matrices, supporting flexible matrix construction using a small set of specially

designed core matrices which may then be combined with combining operations (union,

product, and Kronecker product). This provides a flexible and extensible mechanism for

constructing a wide range of matrices. The following grammar describes the construction

of EMatrix instances:

CoreMatrix = Identity | Ones | Prefix | Suffix | Wavelet

EMatrix = DenseMatrix | SparseMatrix | CoreMatrix

EMatrix = Union(EMatrix, EMatrix)

EMatrix = Product(EMatrix, EMatrix)

EMatrix = Kronecker(EMatrix, EMatrix)

Unless an EMatrix is defined as a single SparseMatrix or DenseMatrix, we con-

sider it implicit, since it is not fully materialized.

Core matrices

The CoreMatrix type forms the basic building block for EMatrix and each is de-

fined implicitly. The following are custom core matrices we designed to support εKTELO

operators:
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• Identity: Identity is the simplest building block. It is defined as the matrix I having

the property that Iv = v for all vectors v. Thus, the implementation of matrix-vector

product is trivial. Similarly, transpose, abs, and sqr are simple no-ops.

• Ones: Ones is them×nmatrix of all ones. Matrix-vector products can be efficiently

computed by summing up the entries of the input vector, and constructing am-length

vector with that value. The transpose is a n × m Ones matrix, and abs and sqr are

simple no-ops. Total is a special case of the Ones matrix where m = 1.

• Prefix and Suffix: The description of prefix and the algorithm for efficiently comput-

ing matrix-vector products is given in Example 1. The transpose of Prefix is Suffix,

and abs and sqr are simple no-ops.

• Wavelet: Wavelet is the Haar wavelet transform. Efficient algorithms exist for eval-

uating matrix-vector products implicitly with the Haar wavelet [101]. The transpose

has a similar form, but abs and sqr, if needed, must materialize the matrix. However,

for this matrix sensitivity may be computed directly, without going through abs and

sqr.

The primitive methods described above have very simple and efficient implementations

for the core matrices. In Table 3.2 we report the space utilization for each core matrix, along

with the time complexity for one of the most important primitive methods (matrix-vector

product). We compare the complexity of the core implicit matrices with their standard

dense and sparse representations, showing significant reductions in space usage – up to a

factor n2. We observe a similar reduction in time complexity of matrix-vector products by

up to a factor of n.
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Table 3.2: Comparison of core implicit matrices to their corresponding sparse and dense
representations, in terms of space usage and time complexity of a matrix-vector product.
For sparse and dense matrices, the time complexity is the same as the space complexity.

Implicit Dense Sparse
Core Matrix Space Usage Time (mat-vec) Space/Time Space/Time
Identity O(1) O(n) O(n2) O(n)
Ones O(1) O(m+ n) O(mn) O(mn)
Prefix O(1) O(n) O(n2) O(n2)
Suffix O(1) O(n) O(n2) O(n2)
Wavelet O(1) O(n log n) O(n2) O(n log n)

Composing matrices

Core matrices and arbitrary sparse or dense matrices can be combined using a Union,

Product (including with a constant), and Kronecker Product to form new matrices that are

implicit (or partially implicit).

If matrix M1 and M2 each represent queries, then Union(M1,M2) is a matrix that rep-

resents the union of the queries of M1 and M2. It is useful for building complex workloads

and measurement matrices, and it also important in plans to bring together all measured

queries for global inference. Product is less frequently needed, but is used for multiplying

partition matrices with workload and measurement matrices.

Kronecker product is especially useful for constructing workload and measurement ma-

trices over multi-dimensional domains. Suppose our input is a relationR(A,B), we vector-

ize its projection of πA(R) to get data vector xA, and we define a set of queries of interest as

matrix MA. If we similarly form a matrix of queries MB over the vectorization of πB(R)

then Kronecker(MA,MB) (denoted MA ⊗MB in matrix equations) is a matrix that en-

codes a new set of queries over both attributes A and B and it contains qai ∧ qbj for each

qai in MA and each qbj in MB, i.e. it contains the conjunctive combination of all pairs of

queries drawn from MA and MB.

The formal definition of the Kronecker product is:
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Definition 8 The Kronecker product A⊗B between a mA×nA matrix A and a mB×nB

matrix B is a mAmB × nAnB matrix defined as:

A⊗B =


a11B . . . a1nA

B

... . . . ...

amA1B . . . amAnA
B


Kronecker products were first used within the context of a privacy mechanism by

McKenna et al. [61].

We present these as binary operations on implicit matrices, but because they are asso-

ciative, they can also be applied to a collection of k sub-matrices. For example for k = 3

we may write Union(A,B,C) as shorthand notation for Union(A, Union(B,C)).

Example 2 Suppose our input relation isR(age, income,marital-status), where age and

income are discretized into a 100 bins, and marital-status is a categorical attribute with

7 possible values, resulting in a data vector of size 70000. We want to accurately answer

range queries on age and income, broken down by various marital statuses. Thus, we may

construct the following workload using tools from above:

W = Kronecker(Prefix,

Prefix,

Union(Total, Identity,Dense)

whereDense is a 2×7 query matrix with two queries that aggregate over the marital status

attribute into two groups: “married” and “unmarried”. Using Table 3.3, we see that the

only storage required to represent W is the 2 × 7 Dense matrix, and metadata for the

Prefix, Total, and Identity matrices. In contrast, the sparse and dense representation of

W would require about 8 GB and 56 GB respectively.
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Table 3.3: Space and time complexity of composed matrices, in terms of the complexity of
sub-matrices.

Matrix Operation Space Usage Time (mat-vec)

Union(A,B)

[
A
B

]
Space(A) + Space(B) Time(A) + Time(B)

Product(A,B) AB Space(A) + Space(B) Time(A) + Time(B)
Kronecker(A,B) A⊗B Space(A) + Space(B) nB Time(A) + mA Time(B)

Supporting the primitive methods

Core, sparse, and dense matrices have native support for the primitive methods dis-

cussed previously. When a primitive method is invoked for an EMatrix that results from

one or more of the combining operations, the work is delegated to the constituent sub-

matrices, and thus the matrices formed by composition inherit the performance character-

istics of the sub-matrices. In particular, the key primitive methods can be implemented

efficiently on matrices formed from unions, products, and Kronecker products.

The key performance characteristics of composed matrices are summarized in Table 3.3.

3.5.5 Matrix constructions for εKTELO operators

Using the generalized matrix construction described above, we can re-implement many

of the existing query selection and partition operators currently in εKTELO. We will show

in Sec. 3.8 that the use of implicit matrices leads to significant improvements in efficiency

and scalability, as well as the reduction of space consumption.

Query selection operators based on range queries

A notable class of query matrices that we can efficiently represent using the tools from

above is an arbitrary collection of range queries. This type of workload has been exten-

sively studied in the literature and many of the query selection operators in εKTELO are

specially-designed sets of range queries including H2, Hb, QuadTree, UniformGrid, and

AdaptiveGrid.
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Recall that a single range query over a 1-dimensional domain can be specified by a

pair of indices (i, j), and a workload of range queries can be represented as a list of these

pairs. This suggests we can store any range query workload using only O(m) space where

m is the number of queries. Furthermore, one way to evaluate matrix-vector products is

by iterating through each query one-by-one and evaluating
∑j

k=i xk. The time complexity

of this approach is O(mn) in the worst case, which is equivalent to the sparse and dense

representations.

Our general matrix construction allows us to do even better by exploiting the fact that

any range query can be expressed as the difference of two prefix queries. Thus the matrix

can be represented as Product(Sparse, Prefix) where Sparse is a m × n sparse matrix

with two non-zero entries per row. An illustrating example is shown below:

Example 3 (Range Queries) A collection of four range queries over a domain of size five,

represented implicitly as the product of a Sparse matrix and the Prefix matrix (displayed

here in dense form for illustration purposes):



0 1 1 1 0

0 0 0 1 1

1 1 1 1 0

0 1 0 0 0


=



−1 0 0 1 0

0 0 −1 0 1

0 0 0 1 0

−1 1 0 0 0





1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1


Using this construction, we can evaluate matrix-vector products in O(n + m) time, which

is a substantial improvement over the other representations. The range query construc-

tion can be naturally extended to multi-dimensional domains by replacing Prefix with

Kronecker(Prefix, . . . , P refix) and replacing Sparse with a sparse matrix with up to

2d nonzero entries per row, where d is the number of dimensions of the domain.

A special case of this range query construction is hierarchical and grid-based matrices

used by H2, Hb, and QuadTree. These matrices always have an Identity matrix, and while
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they can be represented using the above construction, it is more efficient to represent them

in a slightly different way as Union(Identity, Product(Sparse, Prefix)), which is the

representation used in our empirical evaluation.

Note that even though Product does not natively support abs and sqr, for the case of

range queries, or more generally any matrix with binary values, abs and sqr are simple

no-ops.

Representing marginals

A common task for multi-dimensional data analysis is computing the marginals of a

dataset. Marginals may be used both as part of workloads and measurement matrices. They

can be efficiently represented using the tools from above, as demonstrated in Example 4.

Example 4 (Marginals) Any marginal can be represented as a Kronecker product of Identity

and Total building blocks. For example, the two-way marginal that sums out the second

attribute can be encoded as:

W13 = Kronecker(Identity, Total, Identity)

Further, an arbitrary collection of marginals can be encoded as Union of these Kronecker

products. All 2-way marginals is:

W2way = Union(Kronecker(Identity, Identity, Total),

Kronecker(Identity, Total, Identity),

Kronecker(Total, Identity, Identity))

Partition operators

The matrices used by partition operators are represented simply as Sparse matrices.

While an implicit definition is possible, it would not offer any improvement in space or

time over the sparse representation.
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3.5.6 Implementing inference

Inference is a fundamental operator that can improve error with no cost to privacy

and, accordingly, we saw that it appeared in virtually every algorithm re-implemented in

εKTELO (as shown in Fig. 3.2). But inference can be a costly operation. Recall that the in-

put to inference is a measurement matrix, denoted by M, containingm queries defined over

a data vector of size n, and the list of noisy answers y. The least squares solution (Eq. (3.2))

is given by the solution to the normal equations MTMx̂ = MTy. Assuming MTM is in-

vertible, then the solution is unique and can be expressed as x̂ = (MTM)−1MTy. Often

explicit matrix inversion is avoided, in favor of suitable factorizations of M (e.g., QR or

SVD). However, the time complexity of such “direct” methods is still generally cubic in

the domain size when m = O(n). In practice we have found that the runtime of such direct

methods is unacceptable when n is greater than about 5000.

Algorithms in prior work [101, 40, 79, 78] have used least squares inference on large

domains by restricting the selection of queries, namely to those representing a set of hier-

archical queries. This allows for inference in time linear in the domain size, avoiding the

explicit matrix representation of the queries. We avoid this approach in εKTELO because

it means that a custom inference method may be required for each query selection opera-

tion, and because it limits the measurement sets that can be used. In addition, hierarchical

methods only work for least squares but not least squares with non-negativity constraints.

An alternative approach to least squares inference is to use an iterative gradient-based

method, which solves the normal equations by repeatedly computing matrix-vector prod-

ucts Mv and MTv until convergence. The time complexity of these methods isO(kn2) for

dense matrix representations where k is the number of iterations. In experiments we use a

well-known iterative method, LSMR [30]. Empirically, we observe LMSR to converge in

far fewer than n iterations when M is well-conditioned, which is the case as long as the

queries are not taken with vastly different noise scales, and thus we expect k << n.

53



Iterative approaches, using implicit matrices, are well-suited to the other inference

methods in εKTELO: least squares with non-negativity constraints (Eq. (3.3)) and multi-

plicative weights. For the former, we use the limited memory BFGS algorithm with bound

constraints [13]. The time complexity of this algorithm is the same as LSMR, although

the number of iterations needed for convergence may be different, and there is a constant

factor overhead for storing the low-rank approximation to the inverse Hessian matrix. The

multiplicative weights inference algorithm is defined in an iterative manner and requires

the same primitive methods as ordinary least squares and non-negative least squares.

The combination of our general matrix construction techniques with iterative inference

result in flexible inference capabilities for plan authors. With relative freedom, they can

construct measurement matrices, or combine measurements from parts of a plan, and apply

a single generic inference operator, which will run efficiently. In Sec. 3.8 we show that

using iterative least squares on implicitly represented matrices, we can scale inference to

domains consisting of hundreds of millions of cells while staying within modest runtime

bounds, well beyond what is possible with sparse or dense representations.

3.6 Workload-based partition selection

In many cases, the goal of a differentially private algorithm (and its corresponding

εKTELO plan) is to answer a given workload of queries, W, defined in terms of a data

vector x. We describe next a method for reducing the representation of the x vector to

precisely the elements required to correctly answer the workload queries. This is a new

partition selection operator, called workload-based partition selection, which can be used

as input to a V-REDUCEBYPARTITION transformation.

We define the partition below and prove that, under reasonable assumptions, using such

domain reduction can never hurt accuracy. We provide an algorithm for computing the par-

tition, which can be executed using implicit workload representations. Later, in Sec. 3.8.3,
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we will show empirically that using this partition in plans can offer significant improvement

in both runtime and error.

3.6.1 The workload-based partition and its properties

For a workload W of linear queries described on data vector x, it is often possible to

define a reduction of x, to a smaller x′, and appropriately transform the workload to W′,

so that all workload query answers are preserved, i.e. Wx = W′x′. Intuitively, such a

reduction is possible when a set of elements of x is not distinguished by the workload:

each linear query in the workload either ignores it, or treats it in precisely the same way. In

that case, that portion of the domain need not be represented by multiple cells, but instead

by a single cell in a reduced data vector. It is in this sense that the reduction is lossless with

respect to the workload. Following this intuition, the domain reduction can be computed

from the matrix representation W of the workload by finding groups of identical columns:

elements of these groups will be merged in W to get W′ while the corresponding cells in

x are summed.

Example 5 Consider a table with schema Census(age, sex, salary). If the workload con-

sists of queries Q1(salary ≤ 100K, sex = M) and Q2(salary > 100K, sex = F ) the

workload only requires a data vector consisting of 2 cells. If the workload consists of all

1-way marginals then no workload-based data reduction is possible.

Note that calculating this partition only requires knowledge of the workload and is there-

fore done in the unprotected client space (and does not consume the privacy budget). The

partition is then input to a V-REDUCEBYPARTITION transformation operator carried out

by the protected kernel and its stability is one.

The new workload-based partition selection operator can be formalized in terms of a

linear matrix operator, as follows:

Definition 9 (Workload-based partition selection) Let w1, . . . ,wn denote the columns

of W and let u1, . . . ,up denote those that are unique. For h(u) = {j | wj = u}, define
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the transformation matrix P ∈ Rp×n to have Pij = 1 if j ∈ h(ui) and Pij = 0 otherwise.

The reverse transformation is the pseudo-inverse P+ ∈ Rn×p.

The matrix P defines a partition of the data, which can be passed to V-REDUCEBYPARTITION

to transform the data vector, and P+ can be used to transform the workload accordingly.

When P is passed to V-REDUCEBYPARTITION , the operator produces a new data vector

x′ = Px where x′i is the sum of entries in x that belong to ith group of P. When viewed

as an operation on the workload, P+ merges duplicate columns by taking the row-wise

average for each group. This is formalized as follows:

Proposition 3.6.1 (properties: workload-based reduction) Given transform matrix P and

its pseudo-inverse P+, the following hold:

• x′ = Px is the reduced data vector;

• W′ = WP+ is the workload matrix, represented over x′;

• The transformation is lossless: Wx = W′x′

Proof 3.6.2 First note that P+ = PTD−1 where D is the p×p diagonal matrix withDii =

|h(ui)| for h defined in Def. 9. Since P has linearly independent rows, P+ = PT (PPT )−1

and PPT = D because h(ui) and h(uj) are disjoint for i 6= j. By definition of P, we

see that x′i =
∑

j∈h(ui)
xj for 1 ≤ i ≤ p. Similarly, the ith column of W′ is given by

w′i = 1
|h(ui)|

∑
j∈h(ui)

wj . Since wj = ui when j ∈ h(ui), we have w′i = ui, which shows

that W′ is just W with the duplicate columns removed. Using these definitions, we show

that the transformation is lossless:

Wx =
n∑
i=1

wixi =

p∑
i=1

ui
∑

j∈h(ui)

xj =

p∑
i=1

w′ix
′
i = W′x′

As noted in Example 5, not all workloads allow for reduction (in some cases, the P ma-

trix computed above is the identity). But others may allow a significant reduction, which
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improves the efficiency of subsequent operators. Less obvious is that workload-based data

reduction would impact accuracy. In fact, many query selection methods from existing

work depend implicitly on the representation of the data in vector form, and these ap-

proaches may be improved by domain reduction. In Sec. 3.6.3 we measure the impact of

this transform on accuracy and efficiency.

We show next that this reduction does not hurt accuracy: for any selected set of mea-

surement queries, their reduction will provide lower error after transformation.

Theorem 3.6.3 Given a workload W and data vector x, let M be any query matrix that

answers W. Then if q′ = qP+ is a reduced query and M′ = MP+ is the query matrix on

the reduced domain, Errorq′(M′) ≤ Errorq(M) for all q ∈W.

Proof 3.6.4 We use the definition of squared error from [53] which shows that ∀q ∈ W,

Errorq(M) ∝ ‖M‖21 ‖qM+‖22 as long as M supports W. Let m̂j and mj denote the jth

column of M̂ and M respectively. First we show that
∥∥∥M̂∥∥∥

1
≤ ‖M‖1:

∥∥∥M̂∥∥∥
1

= max
1≤i≤p

‖m̂j‖ (3.4)

= max
1≤i≤p

∥∥∥∥∥∥ 1

|h(uj)|
∑

j∈h(ui)

mj

∥∥∥∥∥∥ (3.5)

≤ max
1≤i≤p

1

|h(ui)|
∑

j∈h(ui)

‖mj‖1 (3.6)

≤ max
1≤i≤p

max
j∈h(ui)

‖mj‖1 = (3.7)

= max
1≤i≤n

‖mi‖1 (3.8)

= ‖M‖1 (3.9)

where h(u) and ui are defined in definition 9. Now we show that ‖qM+‖2 ≤
∥∥∥q̂M̂+

∥∥∥
2
.

Observe that it is possible to to write q as a linear combination of the rows of M since M
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supports W. That is, there exists a z satisfying zM = q. In general, there may be infinitely

many solutions to this linear system, but z = qM+ is the minimum-norm solution [74].

On the reduced domain, we also know there exists a ẑ satisfying ẑM̂ = q̂, or equivalently

ẑMP+ = qP+. By making the substitution zM = q, it’s easy to see that ẑ = z is

one solution to this linear system. The minimum norm solution to this linear system is

ẑ = q̂M̂+, which implies ‖ẑ‖2 ≤ ‖z‖2. This shows that
∥∥∥q̂M̂+

∥∥∥
2
≤ ‖qM+‖2, and it

immediately follows that Errorq̂(M̂) ≤ Errorq(M) as desired.

3.6.2 Computing the partition

The computation of the partition P in Def. 9 is conceptually straightforward: it simply

requires finding the unique columns of W and grouping them. Finding the unique columns

of W exactly by inspecting the entries of W requires an explicit matrix in dense form,

or materializing an implicit matrix. Algorithm 4 provides an efficient method for finding

the column groupings that does not require a explicit matrix representation, relying instead

only on the primitive methods of transpose and matrix-vector product. This approach is

highly scalable and is compatible with the implicit matrix representations of the workload

discussed in section 3.5.

Algorithm 4 An algorithm for workload-based data reduction
1: procedure COMPUTE REDUCTION MATRIX(W )
2: Input: m× n matrix W
3: Output: p× n matrix P where p ≤ n
4: set v = vector of m samples from Uniform(0, 1) . 1×m
5: compute h = WTv . 1× n
6: let G = g1, . . . , gp be groups of common values in h
7: initialize matrix P with zeros . p× n
8: for gi in G do
9: set row i of P to 1 in each position of gi

10: end for
11: return P
12: end procedure
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By grouping the elements of h (line 6) we recover the column groupings of W, because

if wi = wj then hi = hj and if wi 6= wj then P (hi = hj) = 0 since hi and hj are

continuous random variables. While algorithm Algorithm 4 is a randomized algorithm,

it returns the correct result almost surely. The probability of incorrectly grouping two

different columns is approximately 10−16 with a 64-bit floating point representation, but if

needed we can repeat the procedure k times until the probability of failure (∼ 10−16k) is

vanishingly small.

3.7 Case studies: εKTELO in action

In this section we put εKTELO into action by developing new algorithms. First, we

show that it is easy to re-design and improve existing algorithms by combining operators in

new ways. In particular, we develop a variant of the MWEM algorithm with significantly

improved accuracy. Then we use εKTELO to tackle two practical use-cases, constructing

new plans which offer state-of-the-art accuracy. We evaluate all of the proposed plan in

Sec. 3.8.

3.7.1 Recombination of operators to improve MWEM

Using εKTELO, we design new variants of the well-known Multiplicative Weights Ex-

ponential Mechanism (MWEM) [36] algorithm. MWEM repeatedly derives the worst-

approximated workload query with respect to its current estimate of the data, then measures

the selected query, and uses the multiplicative weights update rule to refine its estimate, of-

ten along with any past measurements taken. This repeats a number of times, determined

by an input parameter.

When viewed as a plan in εKTELO, a deficiency of MWEM becomes apparent. Its

query selection operator selects a single query to measure whereas most query selection

operators select a set of queries such that the queries in the set measure disjoint partitions

of the data. By the parallel composition property of differential privacy, measuring the
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entire set has the same privacy cost as asking any single query from the set. This means

that MWEM could be measuring more than a single query per round (with no additional

consumption of the privacy budget). To exploit this opportunity, we designed an augmented

query selection operator that adds to the worst-approximated query by attempting to build

a binary hierarchical set of queries over the rounds of the algorithm. In round one, it adds

any unit length queries that do not intersect with the selected query. In round two, it adds

length two queries, and so on.

Adding more measurements to MWEM has an undesirable side effect on runtime, how-

ever. Because it measures a much larger number of queries across rounds of the algorithm

and the runtime of multiplicative weights inference scales with the number of measured

queries, inference can be considerably slower. Thus, we also use replace it with a version

of least-squares with a non-negativity constraint (NNLS) and incorporate a high-confidence

estimate of the total which is assumed by MWEM.

In total, we consider three MWEM variants: an alternative query selection operator

(PLAN #18), an alternative inference operator (PLAN #19), and the addition of both alter-

native operators (PLAN #20). These are shown in Fig. 3.2 and evaluated in Sec. 3.8.

3.7.2 Census case-study

The U.S. Census Bureau collects data about U.S. citizens and releases a wide variety of

tabulations describing the demographic properties of individuals. We consider a subset of

the (publicly released) March 2000 Current Population Survey. The data report on 49,436

heads-of-household describing their income, age (in years), race, marital status, and gender.

We divide Income into 5000 uniform ranges from (0, 750000), age in 5 uniform ranges from

(0, 100), and there are 7, 4 and 2 possible values for status, race and gender.

We author differentially private plans for answering a workload of queries similar to

Census tabulations. This is challenging because the data domain is large and involves

multiple dimensions. The workloads we consider are: (a) the Identity workload (or counts
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on the full domain of 1.4M cells), (b) a workload of all 2-way marginals (age × gender,

race × status, and so on), and (c) a workload suggested by U.S. Census Bureau staff:

Prefix(Income) which consists of all counting queries of the form (income ∈ (0, ihigh),

age=a, marital=m, race=r, gender=g) where (0, ihigh) is an income range, and a,m, r, g

may be values from their resp. domains, or <any>.

There are few existing algorithms suitable for this task. We were unable to run the

DAWA [49] algorithm directly on such a large domain. In addition, it was designed for 1d-

and 2d- inputs. One of the few algorithms designed to scale to high dimensions is PrivBayes

[109]. While not a workload-adaptive algorithm, PrivBayes generates synthetic data which

can support the census workloads above. We use PrivBayes as a baseline and we use

εKTELO to construct three new plans composed of operators in our library. The proposed

plans are: HB-STRIPED (PLAN #15), DAWA-STRIPED (PLAN #14), and PRIVBAYESLS

(PLAN #17). The first two “striped” plans showcase the ability to adapt lower dimensional

techniques to a higher dimensional problem avoiding scalability issues. The third plan

considers improving on PrivBayes by changing its inference step.

Both HB-STRIPED and DAWA-STRIPED use the same plan structure: first they parti-

tion the full domain, then they execute subplans to select measurements for each partition,

and lastly, given the measurement answers, they perform inference on the full domain and

answer the workload queries. The partitioning of the initial step is done as follows: given a

high dimensional dataset with N attributes and an attribute A of that domain, our partitions

are parallel “stripes” of that domain for each fixed value of the rest of the N − 1 attributes,

so that the measurements are essentially the one-dimensional histograms resulting from

each stripe. In the case of HB-STRIPED (fully described in Algorithm 5), the subplan ex-

ecuted on each partition is the HB algorithm [79], which builds an optimized hierarchical

set of queries, while in the case of the DAWA-STRIPED the subplan is DAWA algorithm

[49]. Note that while the data-independent nature of the HB subplan means that all the

measurements from each stripe are the same, that is not the case with DAWA, which poten-
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tially selects different measurement queries for each stripe, depending on the local vector

it sees. For our experiments, the attribute chosen was Income, and for DAWA-STRIPED we

set the DAWA parameter ρ to 0.25.

Algorithm 5 HB-STRIPED

1: D ← PROTECTED(source uri) . Init
2: x← T-VECTORIZE(D) . Transform
3: R← StripePartition(Attr) . Partition Selection
4: xR ← V-SPLITBYPARTITION (x, R)
5: M← ∅
6: y← ∅
7: for x′ ∈ xR do
8: M←M∪ HB(x′) . Query Selection
9: y← y∪ VECLAPLACE(x′, M, ε) . Query

10: end for
11: x̂← LS(M,y)
12: return x̂ . Output

Selection in HB-STRIPED’s subplans are data-independent, unlike in DAWA-STRIPED,

so the exact same set of measurements will be selected on each partition. As introduced in

Sec. 3.5.4, this set of measurements can be represented compactly as a Kronecker product.

So we introduce a new selection operator STRIPE(ATTR) where a global measurement is

composed by constructing the Kronecker product of HB measurements on the stripe di-

mension and Identity matrices on other dimensions. HB-STRIPED KRON (PLAN #16) is

a sequence starting with the new SS selection operator, followed by Laplace measurement

and LS inference. The complete plan is shown in Algorithm 6. This non-iterative alterna-

tive implementation is more efficient and we compare the efficiency and scalability of the

two implementations in Sec. 3.8.1.1.

Algorithm 6 HB-STRIPED KRON

1: D ← PROTECTED(source uri) . Init
2: x← T-VECTORIZE(D) . Transform
3: M← STRIPESELECT(Attr) . Query Selection
4: y← VECLAPLACE(x, M, ε3) . Query
5: x̂← LS(M,y)
6: return x̂ . Output
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Our final plan is a variant of PRIVBAYES in which we replace the original inference

method with least squares, retaining the original PRIVBAYES query selection and query

steps. We call this algorithm PRIVBAYESLS and it’s fully described in Algorithm 7.

Algorithm 7 PRIVBAYESLS
1: D ← PROTECTED(source uri) . Init
2: x← T-VECTORIZE(D) . Transform
3: M← PBSELECT(x, ε2) . Query Selection
4: y← VECLAPLACE(x, M, ε3) . Query
5: x̂← LS(M, y) . Inference
6: return W · x̂ . Output

We evaluate the error incurred by these plans in Sec. 3.8.2.2, and show that the best of

our plans outperforms the state-of-the-art PRIVBAYES by at least 10× in terms of error.

3.7.3 Naive Bayes case-study

We also demonstrate how εKTELO can be used for constructing a Naive Bayes classi-

fier. To learn a NaiveBayes classifier that predicts a binary label attribute Y using predictor

variables (X1, . . . , Xk) requires computing 2k+1 1d histograms: a histogram on Y , his-

togram on each Xi conditioned on each value on Y . We design εKTELO plans to compute

this workload of 2k+1 histograms, and use them to fit the classifier under the Multinomial

statistical model [47].

We develop two new plans and compare them to two plans that correspond to algorithms

considered in prior work. WORKLOAD represents the 2k+1 histograms as a matrix, and

uses VECTOR LAPLACE to estimate the histogram counts. This corresponds to a technique

proposed in the literature [18]. The other baseline is IDENTITY (Plan 1): it estimates

all point queries in the contingency table defined by the attributes, adds noise to it, and

marginalizes the noisy contingency table to compute the histograms.

The first new plan is WORKLOADLS which runs WORKLOAD followed by a least

squares inference operator, which for this specific workload would make all histograms

have consistent totals. Our second plan is called SELECTLS (fully described in Algo-
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rithm 8) and selects a different algorithm (subplan) for estimating each of the histograms.

SELECTLS first runs 2k+1 domain reductions to compute 2k+1 vectors, one for each his-

Algorithm 8 SELECTLS
1: D ← PROTECTED(source uri) . Init
2: x← T-VECTORIZE(D) . Transform
3: R← MARGREDUCTION(x, Att) . Partition Selection
4: M← ∅, y← ∅
5: for i = 1 : k do . Iterate over Dimensions
6: x′ ← V-REDUCEBYPARTITION (x,Ri)
7: if DomainSizei > 80 then
8: R′ ← RDAWA (x′, ε1/k) . Partition Selection
9: x′R ← V-REDUCEBYPARTITION (x, R′)

10: M← GREEDYH(x′R) . Query Selection
11: y← y∪ VECLAPLACE(x′R, M, ε2/k) . Query
12: else
13: M←M∪ IDENTITY(x′) . Query Selection
14: y← y∪ VECLAPLACE(x′, M , ε/k) . Query
15: end if
16: x← V-REDUCEBYPARTITION (x′, Ri) . Domain Expansion
17: end for
18: x̂← LS(M,y)
19: return x̂ . Output

togram. Then, for each vector, SELECTLS uses a conditional statement to select between

two subplans: if the vector size is less than 80, IDENTITY is chosen, else a subplan that

runs DAWA partition selection followed by IDENTITY is chosen. We combine the answers

from all subplans and use least squares inference jointly on all measurements. The inputs

to the inference operator are the noisy answers and the workload of effective queries on

the full domain. In Sec. 3.8.2.3 we show that our new plans not only outperform existing

plans, but also approach the accuracy of the non-private classifier in some cases.

3.8 Experimental evaluation

Our prototype implementation of εKTELO, including all algorithms and variants used

below, consists of 7.9k lines of code: 25% is the framework itself, 46% consist of opera-

tor implementations, 14% consist of definitions of plans used in our experiments and the
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remaining 15% are tests and examples provided for the users. We conduct experimental

evaluation an Amazon EC2 2xLarge instance with 32GB of RAM running Ubuntu 14.04.

3.8.1 Performance improvements of implicit matrices

As discussed in Sec. 3.5, most εKTELO operators involve performing operations on

matrices. All of them are lossless representations of the underlying matrix, so the choice of

implementation does not influence plan accuracy. However, it could impact the efficiency

and scalability.

In this section, we compare these alternative implementations. We first evaluate how

the choice of matrix implemenation impacts scalability and efficiency of plans. Then we

have a focused experiment on a key matrix operation: inference.

3.8.1.1 Scalability and efficiency of plans

To understand the impact of different physical implementations for plans in Fig. 3.2,

we compare the runtime of plans using implicit measurement matrices with direct matrix

implementations, which can use either dense or sparse matrices. For the plans HDMM and

HB-STRIPED KRON, which contain operators that were not supported in the previous im-

plementation, we make the comparison by converting implicit matrices to their sparse and

dense representations. We measure the average end-to-end execution time over 5 random

trials for three implementations of each plan along increasing domain sizes. We stop any

execution when it runs for more than 1000s.

Fig. 3.3a shows runtime for low-dimensional plans. All plans are applied on two-

dimensional domain square domains, except for DAWA and GREEDY-H, which are de-

signed for one-dimensional domains. PLAN #19 MWEM VARIANT B is omitted because

it timed out even at the smallest domain we tested here. The results show that for most

plans, the implicit implementation has the best scalability. Also, looking at a fixed domain

size, the implicit representation usually leads to faster runtime than its dense and sparse

counterparts.
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Figure 3.3: Plan execution time with different implementations of measurement matrices
with Identity workload. Implicit represents plans implemented with the implicit matrices.
Dense and sparse represent direct matrix implementations, and basic sparse is an alternative
to Kronecker product (a type of implicit matrices) materialized as sparse matrices. Results
show the new implicit representation can increase scalability by a factor up to 1000x.
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The performance improvement is most pronounced with plans HB, QUADTREE and

UNIFORMGRID where implicit representation can scale to domains larger by a factor of

1000x. These algorithms construct hierarchical/grid-based measurement matrices and can

be represented as Range Queries, a special instance of the implicit matrices. As discussed

in Sec. 3.5.5, this representation is compact and supports faster matrix-vector products.

There are few cases where the difference between implementations is less pronounced.

DAWA and GREEDY-H share the same special selection subroutine which needs to mate-

rialize the matrix. ADAPTIVEGRID has a plan that requires iterating through a potentially

large number of partitions, and this step appears to dominate the runtime.

Results for high-dimensional plans are shown in Fig. 3.3b.

For the first three plans, sparse and implicit representations exhibit similar perfor-

mance and scale to domains at least 10x larger than using dense. For the last plan, HB-

STRIPED KRON, recall from Sec. 3.7.2 that this plan is an alternative way of expressing

the same algorithm as the HB-STRIPED plan, but instead of partitioning the data, it uses

Kronecker products to express queries compactly in terms of submatrices. By comparing

adjacent figures, we can see the approach based on Kronecker products allows plans to

scale to at least 10x larger domains across implementations of the submatrices. As an-

other comparison point that illustrates the benefits of Kronecker products, in the last figure,

we include “Basic sparse”, an alternative implementation of the HB-STRIPED KRON plan

where the query Kronecker product matrix is replaced with a materialized sparse matrix

over the full domain.

3.8.1.2 Scalability of inference

Inference is one of the most computation-intensive operators in εKTELO especially

for large domains resulting from multidimensional data. Next, we show the impact of

implementation choices on the scalability of inference. Fig. 3.4 shows the computation
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time for running our main inference operators (LS and NNLS) as a function of data vector

size.

Recall that the methods described in Sec. 3.5.6 provide efficiency improvements by

using iterative solution strategies (iterative instead of direct in the figure) and exploiting

sparsity in the measurement matrix (sparse or implicit as opposed to dense in the figure).

For this experiment, we fix the measured query set to consist of binary hierarchical mea-

surements [40]. Fig. 3.4 shows that using sparse matrices and iterative methods allow

inference to scale to data vectors consisting of millions of counts on a single machine

in less than a minute. The use of implicit matrices permits additional scale-up for both

LEASTSQUARES and NNLS. We also compare against the inference method introduced

by Hay et al., denoted ‘Tree-based’ in the figure. It is an algorithm that is logically equiv-

alent to LEASTSQUARES but specialized for hierarchically structured measurements. The

general-purpose LEASTSQUARES implementation is able to scale to much larger domains.
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Figure 3.4: For a given computation time, the proposed iterative and implicit inference
methods permit scaling to data vector sizes as much as 1000× larger than previous tech-
niques using direct approaches and dense matrices. Dense and sparse implementations are
from [105] and tree-based is from [40].
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3.8.2 Case studies

3.8.2.1 MWEM: improved query selection & inference

We evaluate the three new plans described in Sec. 3.7.1 which were variants of εKTELO

plan for the MWEM [36] algorithm. Recall that the variants were achieved by replacing

key operators in the MWEM plan. These algorithms are data-dependent algorithms so we

evaluate them over a diverse collection of 10 datasets taken from DPBench [38]. The results

are shown in Table 3.4.

Table 3.4: For three new algorithms, (b), (c), and (d), the multiplicative factors
by which error is improved, presented as (min, mean, max) over datasets. For run-
time, the mean is shown, normalized to the runtime of standard MWEM. (1D, n=4096,
W=RandomRange(1000), ε = 0.1)

MWEM Variants ERROR IMPROVEMENT RUNTIME
Query Selection Inference min mean max mean

(a) worst-approx MW 1 1 1 1
(b) worst-approx + H2 MW 1.03 2.80 7.93 354.9
(c) worst-approx NNLS, known total 0.78 1.08 1.54 1.0
(d) worst-approx + H2 NNLS, known total 0.89 2.64 8.13 9.0

The performance of the first variant, line (b), shows that the augementing query selec-

tion with H2 can significantly improve error: by a factor of 2.8 on average (over various

input datasets) and by as much as a factor of 7.9. (Error and runtime measures are normal-

ized to the values for the original MWEM; min/mean/max error values represent variation

across datasets.) Unfortunately, this operator substitution has a considerable impact on

performance: the added queries slow down by a factor of more than 300. But combining

augmented query selection with NNLS inference, line (d), reduces runtime significantly:

it is still slower than the original MWEM algorithm, but by only a factor of 9. Using the

original MWEM query selection with NNLS inference, line (c), has largely equivalent error

and runtime to the original MWEM. Thus, the performance gains of NNLS inference over

MW appear to be most pronounced when the number of measured queries is large.
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Table 3.5: Results on Census data; domain size 1,400,000; scale of error is indicated under
each workload.

Workload

Algorithm
Identity
(1e−9)

2-way Marg.
(1e−7)

Prefix (Income)
(1e−7)

IDENTITY 24.18 12.04 18.97
PRIVBAYES 76.93 65.31 28.70
PRIVBAYESLS 5.86 13.29 36.81
HB-STRIPED 70.31 21.91 4.13
DAWA-STRIPED 3.43 1.96 2.50

3.8.2.2 Census data analysis

In this section we compare the εKTELO plans proposed in Sec. 3.7.2, measuring their

effectiveness in computing workloads inspired by Census tabulations. We compare our

three new plans PRIVBAYESLS, HB-STRIPED, and DAWA-STRIPED with baseline algo-

rithms IDENTITY (PLAN #1 in Fig. 3.2) and PRIVBAYES, our εKTELO reimplementation

of a state-of-the-art algorithm for high dimensional data [109].

Table 3.5 presents the results for each workload. We use scaled, per-query L2 error to

measure accuracy. First, we find that PRIVBAYES performs worse than IDENTITY on all

workloads. Interestingly, on Identity and 2-way marginal workloads, it is improved by our

new plan PRIVBAYESLS that replaces its inference step with least squares. PRIVBAYES

may be more suitable to input data with higher correlations between the attributes. Sec-

ond, our striped plans HB-STRIPED and DAWA-STRIPED offer significant improvements

in error. DAWA-STRIPED is the best performer: the data-dependent nature of DAWA ex-

ploits uniform regions in the partitioned data vectors. This shows the benefit from εKTELO

in allowing algorithm idioms designed for lower-dimensional data to be adapted to high

dimensional problems.

3.8.2.3 Naive Bayes classification

We evaluate the performance of the Naive Bayes classifier on Credit Default [102], a

credit card clients dataset which we use to predict whether a client will default on their
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Figure 3.5: New εKTELO plans WORKLOADLS and SELECTLS result in NaiveBayes
classifiers with lower error than plans that correspond to algorithms from prior work, and
approach the accuracy of a non-private classifier for various ε values.

payment or not. The data consists of 30k tuples and 24 attributes from which one is the

target binary variable “Default” and the rest are the predictive variables. We used the

predictive variables X3 −X6 for a total combined domain size of 17, 248.

In our experiments we measure the average area under the curve (AUC) of the receiver

operating characteristic curve across a 10-fold cross validation test. The AUC measures the

probability that a randomly chosen positive instance will be ranked higher than a randomly

chosen negative instance. We repeat this process 10 times (for a total of 100 unique test-

ing/training splits) to account for the randomness of the differentially private algorithms

and report the {25, 50, 75}-percentiles of the average AUC. As a baseline we show the ma-

jority classifier, which always predicts the majority class of the training data and also show

the unperturbed classifier as an upper bound for the utility of our algorithms.

In Fig. 3.5 we report our findings: each group of bars corresponds to a different ε

value and each bar shows the median value of the AUC for an algorithm. For each DP

algorithm we also plot the error bars at the 25 and 75 percentiles. The dotted line is plotted

at 0.5067 and shows the AUC of the majority classifier. The continuous red line is the

performance of the non-private classifier (Unperturbed). For larger ε values we see that our

plans significantly outperform the baseline and reach AUC levels close to the unperturbed.

As ε decreases, the quality of the private classifiers degrades and for ε = 10−3 the noise
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added to the empirical distributions drowns the signal and the AUC of the private classifiers

reach 0.5, which is the performance of a random classifier. Our plan WORKLOADLS is

essentially the algorithm of [19] with an extra inference operator. This shows that the

addition of an extra operator to a previous solution significantly increases its performance.

3.8.3 Workload-driven data reduction

Next, we evaluate the impact of workload-driven data reduction, as described in Sec-

tion 3.6.1. For selected algorithms, Table 3.6 shows that performing workload-driven data

reduction improves both error and runtime, almost universally.

Table 3.6: Runtime (sec) and error improvements resulting from workload-based domain
reduction. (W=RandomRange, small ranges. Original domain size: AHP (128,128),
DAWA 4096, Identity (256,256), HB 4096)

Algorithm
Original
Domain

Reduced
Domain

Factor
Improved

Error/Runtime Error/Runtime Error/Runtime
AHP 1.68e−5 777.10 1.30e−5 145.00 1.29 5.36
DAWA 1.06e−5 0.23 1.07e−5 0.25 0.99 0.92
IDENTITY 4.74e−5 0.66 1.64e−5 0.90 2.89 0.73
HB 3.20e−5 0.05 2.38e−5 0.08 1.34 0.62

The biggest improvement in error (a factor of 2.89) is witnessed for the IDENTITY algo-

rithm. Without workload-driven reduction, groups of elements of the domain are estimated

independently even though the workload only uses the total of the group. After reduction,

the sum of the group of elements is estimated and will have lower variance than the sum of

independent measurements.

The biggest improvement in runtime occurs for the AHP algorithm. This algorithm

has an expensive clustering step, performed on each element of the data vector. Workload-

driven reduction reduces the cost of this step, since it is performed on a smaller data vector.

It also tends to improve error because higher-quality clusters are found on the reduced data

representation.
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3.8.4 Summary of Findings

The experiments evaluate the accuracy, scalability, and efficiency of εKTELO. The study

of scalability and efficiency found that implicit matrix representation can lead to huge per-

formance gains, increasing scalability by a factor 1000x in some cases. The generalized

inference implementation scales well and outperforms specialized algorithms. The case

studies show that εKTELO can lead to more accurate algorithms with relatively little effort

from the programmer: the MWEM algorithm can be improved significantly by replacing

a few key operators; for the Census and Naive Bayes case studies, εKTELO can be used to

design novel algorithms from existing building blocks, offering state-of-the-art error rates.

Finally, the evaluation shows the workload-driven data reduction improves accuracy and

runtime, almost universally, so that it can be added to all workload-based plans with little

cost and significant potential for gains.

3.9 Related work

A number of languages and programming frameworks have been proposed to make it

easier for users to write private programs [64, 77, 27, 84]. The Privacy Integrated Queries

(PINQ) platform began this line of work and is an important foundation for εKTELO. We

use the fundamentals of PINQ to ensure that plans implemented in εKTELO are differ-

entially private. In particular, we adapt and extend a formal model of a subset of PINQ

features, called Featherweight PINQ [27], to show that plans written using εKTELO oper-

ators satisfy differential privacy. Our extension adds support for the partition operator, a

valuable operator for designing complex plans.

Additionally, there is a growing literature on formal verification tools that prove that

an algorithm satisfies differential privacy [31, 9, 108, 4]. For instance, LightDP [108] is a

simple imperative language in which differentially private programs can be written, allow-

ing verification with little manual effort. LightDP’s goal is orthogonal to that of εKTELO:
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it simplifies proofs of privacy, while εKTELO’s goal is to simplify the design of algorithms

that achieve high accuracy.

Concurrently with our work, Kellaris et al. [45] observe that algorithms for single-

dimensional histogram tasks share subroutines that perform common functions. The use of

inference appears in many differentially private algorithms [100, 40, 8, 101, 49, 53, 111,

3, 19, 76, 48]. Proserpio et al. [76] propose a general-purpose inference engine based on

MCMC that leverages properties of its operators to offset the otherwise high time/space

costs of this form of inference. Our work is complementary in that we focus on a different

kind of inference (based on least squares) in part because it is used, often implicitly, in

many published algorithms.

A full treatment of automated plan optimization is an important future goal for εKTELO,

however εKTELO could directly incorporate limited forms of automation already proposed

in the literature. The matrix mechanism [53, 62] formulates an optimization problem that

corresponds to automated query selection in εKTELO. Other recent work [47, 57] considers

the problem of data-dependent algorithm selection. These methods could be adapted to

automatically select from a set of predefined plans in εKTELO.

3.10 Discussion and limitations

In this section we discuss current limitations of εKTELO and opportunities for future

work that will extend its capabilities.

3.10.1 More complex queries and tasks

εKTELO is extensible and we hope to expand the classes of tasks that can be supported.

εKTELO is currently focused on statistical queries on a single table, or those tasks, such

as naive Bayes classification, which can be directly supported by such statistics. Answer-

ing more expressive aggregate queries, for example those expressible as SQL queries over
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multi-relational schemas, is possible using the general framework of εKTELO, but will re-

quire a number of extensions.

Another possible extension for εKTELO is adding support for aggregate functions over

continuous and numerical domains. Queries like SUM, STDDEV, and MEAN can be used as

building blocks for a wider class of algorithms (e.g., the naive Bayes classifier of [93] for

continuous variables). To support those queries, εKTELO will need to know the domain of

each attribute involved in these aggregations to correctly compute their respective sensitivi-

ties. For instance, given attributeA, with upper bound amax, εKTELO can correctly compute

the sensitivity of SUM(A) as amax. Similarly and given domain information, εKTELO can

provide upper bounds for the sensitivity of STDDEV, and MEAN. Lastly, note that support

for user-defined queries for which sensitivity computation is non-trivial is still viable, as

long as these queries are accompanied with a vetted sensitivity estimate.

3.10.2 Scaling to higher dimensions

Many of the εKTELO plans described eariler operate on a single materialized data vec-

tor, and the current version of εKTELO always keeps this data vector in memory. Recall that

a data vector can grow as large as the product of the domain sizes of the attributes in the

input table. We have proposed a number of innovations that allow even the most expensive

operators (like inference) to scale to vectors as large as 108. But it is nevertheless clear that

for high-dimensional data (or even data with a modest number of dimensions, but large

attribute domains) plans attempting to fully materialize the data vector will be infeasible.

εKTELO can still be used to define and execute plans in the high-dimensional case. The

principal difference from most plans explored in this work is that the plans will operate

on multiple data vectors, each defined over a subset of the attributes of the input table.

Specifically, such a plan would begin by applying multiple PROJECT transformations to

the input table, to perform a relational projection onto a subset of the attributes. Then each

would be followed by T-VECTORIZE, ultimately resulting in a collection of data vectors. A

75



plan could then apply Query Selection and Query operators to each vector independently,

resulting in sets of differentially private estimates, each over a projection of the original

data.

In fact, plans of precisely this form were designed in response to the recent Differential

Privacy Synthetic Data Challenge [1] created by the U.S. National Institute of Standards

and Technology (NIST). The challenge required competitors to generate differentially pri-

vate synthetic data from a source dataset with 98 attributes. The resulting data vector would

have approximately 5× 10205 elements. Not only is this infeasible to represent, but, given

that the input data contained just 660 thousand records, measurements offering reasonable

utility under differential privacy will tend to be those that aggregate over many dimensions.

Among the top four solutions to the final round of the challenge, none measured more than

a three-attribute projection. The winning solution constructed approximately 200 such low-

dimensional projections, performed query selection, and then post-processing.

The true challenge is indeed post-processing many independently-estimated noisy sets

of queries. The methods proposed in this work, while substantially expanding the efficiency

of inference, cannot support global inference over many data vectors because they rely on

full materialization to relate the measured queries to one another. Some existing techniques

have proposed methods for post-processing on extremely large domains by restricting the

structure of the noisy queries [109, 36, 81], but they are not general solutions to the problem

that can be effectively used within different types of plans. A more general solution to the

problem was recently proposed that uses graphical models as a represention tool for the

high-dimensional data distribution [63]. Such a technology could be used within εKTELO

plans, allowing them to effectively combine evidence about multiple data vectors derived

from the same data source.

In summary, while we believe εKTELO is a promising platform for plans involving

high-dimensional data, further research and development is required to fully incorporate

scalable post-processing methods, as well as to reconsider query selection operators for
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plans that involve may projections over a single dataset. We note that recent research into

(non-private) summarization of high-dimensional data may have a role to play here [71, 73].

3.10.3 Automated optimization

The εKTELO system is analogous to a query executor in a relational system: it allows

plans to be specified and executed, but it does not create plans in response to a given query

or task. Some operators perform operator-level optimization (e.g. the HDMM and Greedy-

H query selection operators both automatically adapt to a given input workload). However,

a compelling future goal for εKTELO is automatic plan-level optimization.

Much like a relational optimizer, we envision adding a component that can explore the

plan space implicitly defined by the collection of operators implemented in εKTELO. But

optimization here has dual objectives (both accuracy and efficiency must be considered)

and, in addition, it may be important to accommodate user-defined accuracy metrics. Fur-

ther, the accuracy of some plans depends on the input data and may incur a privacy cost

if it is used naively by the system during optimization. Lastly, in classical optimization,

the set of logically equivalent plans is well-defined, but for private algorithms, which are

randomized, an appropriate definition of plan equivalence requires further investigation.
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CHAPTER 4

INVESTIGATING STATIC VISUAL ANALYSIS OF
DIFFERENTIALLY PRIVATE DATA

We’ve shown how frameworks like εKTELO can provide support in designing and im-

plementing differentially private algorithms in the previous chapter. However, deploying

those well-designed and carefully-implemented algorithms in real-world applications stays

nontrivial. Among the wide range of potential applications, data visualization and visual

analysis have been proven useful in many domains like health care, civic decision making.

Yet how to generate private visualization or perform visual analysis in a private-preserving

way remains a hard question. In the rest of this dissertation, we focus on the topic of

privacy-preserving visualization topics. More specifically, in this chapter, we look deeper

into issues with static visualizations and deal with the interactive case in Chapter 6.

Theoretically, it is possible to produce robust privacy-preserving visualizations by di-

rectly plotting differentially private data. However, noise-induced data perturbations can

alter visual patterns and impact the utility of a private visualization. We still know lit-

tle about the challenges and opportunities for visual data exploration and analysis using

private visualizations.

Depending on the magnitude of data perturbation, moderate to extreme visual discrep-

ancies can happen between a private visualization and its non-private counterpart. Recall

the example in the introduction (Fig. 1.1). The notion of “success” between private and

non-private visualizations is different. A user’s success performing a task on private vi-

sualization depends not only on perceptual accuracy but also on the magnitude of data

perturbation. Even when a user achieves perceptual accuracy and correctly identifies the
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visual artifact of interest, any readings from the target will still be different from the non-

noisy data. Depending on the distance between noisy and non-noisy values, the user can

achieve degrees of success. In this case, accuracy is a fuzzy variable with degrees of a

pass or fail. This phenomenon imposes a grand challenge and raises a critical question: is

it possible to perform visual data analysis on differentially private visualizations and trust

the outcomes? For instance, do patterns in a private line chart indicating improvements

in patients’ conditions on specific treatment match similar patterns in the non-private line

chart?

Existing work in the confluence of privacy and visual data analysis has been mainly fo-

cused on the use of syntactic privacy models such as k-anonymity and l-diversity (e.g.,[96,

15, 14]) and we know little about the challenges and opportunities of supporting visual

data analysis under differential privacy. To fill this gap, we investigated the following two

research questions:

• (RQ1) What is the relationship between the noise-injection level, visualization type,

data analysis task, and users’ performance (accuracy and time to complete tasks)?

• (RQ2) Is it possible to tune noise injection to improve the utility of private visualiza-

tions?

To investigate RQ1, we performed a crowd-sourced user study and examined the effects

of three privacy levels (high, low, non-private) for combinations of eight analysis tasks and

four visualization types (bar chart, pie chart, line chart, scatter plot). A central challenge

in this phase was the assessment of a user’s accuracy and task success. Injection of noise

and consequent perturbations of data and visual patterns can result in erroneous findings,

even if a user’s answer to a task is correct based on the private visualization presented to

the user. We set forward a dichotomous assessment method that measures accuracy and

task success based on the notions of perceptual and perturbation accuracy. In our study,

we only considered univariate visualization. The main rationale behind this decision was
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to eliminate the possible interactions between two sets of noisy variables and their possible

effects on participants’ performance. We measured the task success rate and response time

for 204 participants. We found that the rate of user success dropped for all tasks as the

noise level increased. However, the rate of decline was not consistent across all tasks. In

particular, “summary tasks” (e.g., Characterize Distribution) seem to be less sensitive to

the injection of noise in comparison to “value tasks” (e.g., Compute Derived Value).

There has been prior research on designing differentially private algorithms [26, 35, 49],

and on the comparison of algorithm performance [39] for answering range queries. How-

ever, it is unclear how noise injection influences downstream visual tasks. Given a cer-

tain privacy protection level, various differentially private noise injection algorithms could

produce completely different outputs. When visualized, some outputs could contain vi-

sual artifacts that make visual tasks substantially harder for users. We investigated the

possibility of tuning noise injection through wisely choosing algorithms to improve per-

ceptual accuracy for specific visual tasks. We introduced three basic distribution metrics

to quantify the shape of noisy algorithm outputs, measuring to what extent they preserve

prominent visual features essential for a specific task. Peakedness Score, Anomaly Score,

and Clusteredness Score respectively quantify to what extent there exists a single peak, an

anomaly data point, and clear cluster boundaries. Then we performed several rounds of

simulations using three popular differentially private algorithms Laplace[26], DAWA[49],

and MWEM[35] and compared the perceptual distribution metrics of their noisy output.

The results of these simulations indicate that the Laplace mechanism works better across

different tasks compared with the more complex DAWA and MWEM algorithms.

In the rest of this chapter, we first provide a review of related literature. Next, we present

detailed descriptions of work performed to investigate both research questions. Then, we

present a comprehensive discussion of findings and a set of empirical guidelines. We con-

clude the chapter with the limitations of our work and interesting future directions.
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4.1 Private Visualizations in the Literature

4.1.1 Privacy-preserving Visualizations

The goal of a privacy-preserving visualization is to protect individuals’ identities and

sensitive information from exposure while still allowing users to make sense and gain

knowledge from it. Some prior work in this area has investigated the use of visual uncer-

tainty for preserving privacy. Dasgupta and Kosara [22] introduced a pixel-based clustering

technique for parallel coordinates called “Screen-Space Sanitization” that combines pixels

to increase visual uncertainty in areas of visualization where privacy could be breached.

Using a similar approach, Archambault et al. [7] and Oksanen et al. [69] suggest the ag-

gregation of visual components for building privacy-preserving histograms and heatmaps.

Deliberate reduction of visual accuracy increases visualization uncertainty and reduces the

possibility of guessing the exact values, but does not satisfy a rigorous definition of privacy

that can provably resist attacks.

Data sanitization techniques (e.g., k-anonymity, l-diversity, and t-closeness) have also

been investigated for building private visualizations. GraphProtector [96] supports building

privacy-preserving graphs of social networks. Users can combine multiple privacy protec-

tion schemes as a hybrid approach to fine-tune privacy protection. Chou et al. utilize data

sanitization to build private Sankey and Iceplot visualizations for representing temporal

event sequence data [15] and constructing private network visualizations [14].

Bhattacharjee et al. [10] provided a thorough and systematic analysis of state-of-the-

art approaches, methods, and techniques used in privacy-preserving data visualization, and

reflected on a wide range of challenges and research opportunities. Prior work mainly as-

sumes that the data owner designs and deploys privacy mechanisms specific to the domain

and visualization types, and the end-user consumes the private visualization product. This

approach enables building effective private visualizations for specific tasks, visualizations

types, and data domains. However, it may not work in exploratory data analysis where a

user’s questions and tasks are not known in advance. Currently, we lack a domain-agnostic
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understating of the relationship between tasks, visualizations, and privacy. The majority of

prior work has also been focusing on using syntactic privacy models based on anonymiza-

tion, which have fallen prey to a range of attacks [24, 68, 67].

To fill these gaps, we investigate the use of differential privacy in exploratory data

analysis. Wang et al. [97] developed a visualization technique that helps users to dynami-

cally gauge the loss of utility for a single task by anonymizing multi-attribute tabular data

through building matrix-based and tree-based models for utility and privacy. In this work,

we aim to better understand the relationships between noise level, task, visualization, and

participants’ performance. Instead of proposing an approach to modify a specific visual-

ization technique that meets the privacy guarantee, we investigate a more general pipeline

of private visualization where we can easily swap in different private algorithms or visual-

ization techniques.

4.1.2 Privacy-utility Trade-off

There is an inevitable privacy-utility trade-off associated with all privacy-preserving

mechanisms. Typically, a stricter guarantee of privacy results in more loss of information

and hence lowers the accuracy and reduces analysis utility. For example, in the differential

privacy model, using a smaller ε provides a stronger privacy guarantee, but reduces the

accuracy of data analysis due to larger perturbation of data.

Deploying privacy mechanisms while balancing the privacy-utility tradeoff is a non-

trivial task. It requires proper measurements and an understanding of both privacy and

utility. The data mining community has proposed several metrics for evaluating the util-

ity and quality of data after anonymization/privacy-preservation methods are applied. For

example, DPBENCH [39] is a principled framework for evaluating differential privacy al-

gorithms for answering 1-D and 2-D range queries. Dasgupta et al. [22] consider discerni-

bility as a utility metric that measures the number of records that cannot be distinguished

from one another. In the visualization field, Dasgupta et al. [21] state that utility can be re-
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garded as a function of visual uncertainty. They introduce metrics for quantifying the visual

uncertainty in cluster-based visualizations such as scatterplot and parallel coordinates.

An investigation by Zhang et al. [103] shows that the utility of performing visual tasks

does not line up well with accuracy measures commonly used for algorithms answering

range queries. In fact, the authors of [11, 56, 15] argue that the evaluation of utility should

depend on user analytical tasks and how accurately they can be performed. Prior research

(e.g., [21, 15, 14] has only investigated the impact of privacy on utility for a specific task,

data, and visualization type. Taking a domain- and data-agnostic approach, in this work,

we investigate the privacy-utility tension for basic data exploration tasks and visualization

types.

Outside the realm of privacy, Saket et al. [85] conducted a study to investigate the

effectiveness of five basic visualization types in relation to ten common data exploration

tasks. The effectiveness of visualization consists of three main metrics: the success rate

of performing the task, the performance time, and user preference. Results show that the

effectiveness of visualization varies significantly across tasks. To understand the effective-

ness of private visualizations and how conclusions might change under privacy, we use a

similar experimental design like the set of tasks and visualization.

4.2 RQ1: Investigating the Utility of Private Visualizations

To investigate RQ1, we conducted a crowd-sourced empirical study on Amazon Me-

chanical Turk1. The rest of this section provides detailed information about the design of

the study, the data analysis process, and our findings.

4.2.1 Dataset

IPUMS-CPS[89] is a collection of datasets that harmonizes microdata from the monthly

U.S. labor force survey and the Census Current Population Survey (CPS), covering the

1https://www.mturk.com
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period 1962 to the present. We used a data extract which is a subset of the Annual Social

and Economic (ASEC) data from 2010. We chose this population survey data for two main

reasons. First, it is similar to the data that could soon be protected (by the U.S. Census

Bureau) using differential privacy. Second, it contains data attributes with which many

study participants will be familiar, hence reducing the chance of failed tasks due to a user’s

unfamiliarity with the data semantics.

The data extract contains personal survey information on 159,277 individuals, each con-

tributing one row to the dataset. For our experiment, we selected a subset of numerical and

categorical attributes: Age, Sex, Race, Marital status, Education status, and Total income.

Selected data were organized in a tabular format where each row represented information

about an individual.

4.2.2 Private Algorithm

We selected the Laplace Mechanism as the privacy algorithm in our study. Although

there are several other algorithms (i.e., [49, 35]) for generating private histograms, Laplace

is relatively simple, fast, and competitive for the task of generating a single private his-

togram [39]. It offers a good compromise in terms of speed and utility and acts as a building

block for many more complex algorithms.

In a post-processing step, we modified the output of the Laplace mechanism and re-

placed all the negative counts with zeros. The rationale behind this decision was to elimi-

nate the change of producing private histograms with negative values for some of the bins

which are clearly invalid. As introduced in Chapter 2, the differential privacy guarantee

will not be compromised by this simple post-processing step. We consider the non-negative

histogram to be the final privatized data and use it in later visualization steps. Since all dif-

ferentially private algorithms are randomized, any single output is only a random sample

from a distribution. For each experimental setting, we choose five random seeds that define
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randomized trials. Visualizations and tasks are judged on the average performance over

these random trials.

4.2.3 Privacy Parameter Setting

In this study, we considered three privacy levels of privacy parameter: 1) ε = ∞, 2)

ε = 0.01, and 3) ε = 0.001. A smaller privacy parameter enforces stronger privacy. An

ε = ∞ results in a non-private visualization which offers no privacy guarantee but also

implies no noise. This non-private setting provided a baseline against which we assessed

the utility of private visualizations. The value ε = 0.001 offers a stronger privacy guarantee

and requires more distortion of the data compared to the value ε = 0.01. Both values

might be considered low ε in practice. However, we are studying the release of a single

visualization while in practice many releases would be made and a global ε bound needs

to govern all interactions. In addition, the impact of noise is dependent on the size of

the dataset thus the choice of ε is also dependent on the dataset. The selection of these ε

thresholds was based on experimentation and preliminary testing with the study dataset. In

particular, we paid careful attention that selected ε values offer strong privacy but are not

too strict that the noise added leads to completely useless private visualizations.

Our goal in this work is to understand the regime in which noise from the privacy

mechanism impacts the utility of private visualizations. As such, these carefully engineered

ε values suit our purpose.

4.2.4 Participants

We recruited a total of 204 subjects based in the U.S., with an approval rate greater or

equal to 95%. Each subject was allowed to participate in the study only once.

4.2.5 Tasks

Following prior research on task-based effectiveness of basic visualizations [85], we

used the Amar et al. [5] taxonomy of low-level data analysis tasks for selection of study
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tasks. Those tasks are real-world tasks users came up with while exploring datasets with

different visualizations tools and have been used in different studies for visual effectiveness

evaluation. We excluded two tasks Find Correlation and Order which involve two variables

and could not be performed on univariate visualizations. The 8 selected low-level tasks act

as building blocks of more complex tasks. The following is a list of selected tasks. For each

task, we also provide a concise explanation of how they were used, along with an example.

We use the term “visualization feature” in the following descriptions to refer to element(s)

in visualization such as: a bar in a bar chart, a group of points in a scatter plot, or a peak in

a line chart:

Retrieve Value We asked participants to retrieve the value of a certain visualization fea-

ture. For example, what is the number of people in the Age Range 15-20?

Filter Given a range, we asked participants to identify visualization features in that range.

For example, which Age Ranges have Group Size between 25,000 and 35,000?

Compute Derived Value We asked participants to derive a new value using the visual-

ization. For example, what is the sum of Group Sizes for Marital Status Single and

Divorced?

Find Maximum We asked participants to find the visualization feature with the largest

value. For example, which Income Range has the largest Group Size?

Determine Range For a set of visualization features, we asked participants to identify the

range of their values. For example, what is the range of Group Sizes for all Age

Ranges? Select the correct pair of minimum and maximum Group Size.

Characterize Distribution Given a condition, we asked participants to identify the dis-

tribution of values based on the condition. For example, what is the percentage of

Income Ranges that have Group Size larger than 25K?
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Find Anomalies We asked participants to find visualization features with abnormal val-

ues. We manually modified the visualizations to include easy-to-detect anomalies

like zero counts and extremely large counts. For example, which Age Range has

abnormal Group Size?

Cluster We asked participants to put visualization features of similar values into the same

cluster and report the number of clusters. For example, what is the number of clusters

based on the Group Sizes of Income groups?

4.2.6 Visualization Types

In this study, following prior empirical work [85], we examined four visualization tech-

niques that are commonly incorporated in various visualization dashboards [?]: bar chart,

pie chart, line chart, and scatterplot. To generate the visualizations, we took the private

output of the Laplace mechanism and used the Matplotlib [?] visualization library to plot

the privatized data. To maintain visual consistency, we fixed the chart size to be 500 by 350

pixels and the font size 12. We used Matplotlib’s default color palette to generate pie charts

and the same blue color for visual elements in other plots. The participants only viewed

the final visualization and were not aware of the existence (or lack thereof) of noise in the

encoded data.

4.2.7 Experimental Procedure

Instructions and warm-up tasks At the beginning of each study session, a participant was

given a brief written description of the purpose of the study, the data that would be col-

lected, and their rights, together with a consent form. Upon consenting to participate, the

participant was given information about the workflow of the study and a quick optional

tutorial explaining the visualization techniques used in the study. Next, the participant per-

formed a short warm-up session answering one sample question for each task. Warm-up

questions were similar to the actual study questions but performed on a manually synthe-
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Figure 4.1: Perturbation accuracy of different tasks for the non-private case (ε=inf), a low
privacy level (privacy parameter ε = 0.01) and a high privacy level (privacy parameter
ε = 0.001). Accuracy decreases as we spend less privacy budget. But the accuracy drop
is more severe for tasks involving numerical value retrieval or estimation (e.g. Retrieve
Value, Compute Derived Value)

sized dataset. During the warm-up practice, the participant received feedback on whether

their answer was correct along with corresponding explanations. After the successful com-

pletion of the warm-up session, the participant moved on to the actual study tasks.

Main questions For each combination of task, visualization, and privacy level, we sampled

3 univariate histograms from 3 different attributes. As introduced in Chapter 2, differen-

tially private algorithms are randomized, making every output a single sample of a probabil-

ity distribution. Thus, for each experimental configuration, we generated five differentially

private outputs using different random seeds. This results in a total of 180 different ques-

tions (4 V isualizations × 3 Histograms × 3 Privacy Levels × 5 Random Seeds) for

each task.

In the main experiment, each participant answered a sequence of 48 multiple-choice

questions, organized as 6 randomly sampled questions for each of the 8 tasks. For each

question, we showed the user a single private visualization together with a brief description

of the task and data. Given the visualization, we asked the participant to answer a single

question associated with one of the eight tasks outlined above. The participant would move
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Figure 4.2: Perceptual accuracy for different analysis tasks, visualization types using dif-
ferent privacy budget. As the privacy level gets stricter (less privacy budget), the perceptual
accuracy changes for some configurations. The noise added for privacy protection needs
influences people’s ability to perform visual tasks.

on to the next question after submitting their answer to the current question. The average

completion time for the study was around 15 minutes, and we paid each user two dollars.

Validation Low-quality responses are not rare in online crowd-sourcing studies. To have a

better sense of the overall quality of a user’s responses, we introduced validation questions

as recommended in [70]. For each worker, we randomly injected four validation questions,

which are exact replicates of the warm-up questions seen before in the instructions. We

considered the responses provided by a worker valid only if they answered three out of

the four validation questions correctly. Otherwise, all responses from the worker would

be discarded since they either failed to understand the task or perhaps made selections

randomly.

Data collection Throughout the study, we collect worker responses to the multiple-choice

questions and record the time they used to answer each question. At the end of the study,

we ask the worker to fill out a simple demographic questionnaire asking about their gender

and approximate age. Finally, we ask them to rate the overall difficulty of the question on

a ten-point scale and provide short text feedback if they choose.
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4.2.8 Data Analysis

We collected responses from a total of 204 MTurk workers and filtered out low-quality

data according to the validation criteria described in Section 4.2.7. Among these workers,

176 finished the study and provided valid responses (105 male, 69 female, 2 other). 73%

workers are in the age range from 18 to 40 years old; the rest are above the age of 40. On

a scale of 1-10 (where 10 is the most difficult), the workers reported an average difficulty

score of 4.25 (out of a maximum of 10). This shows our questions have a reasonable level

of difficulty and that most people did not find the tasks confusingly difficult or trivially

easy.

We analyzed collected data to quantify participants’ performance in terms of time and

accuracy under different experimental conditions. While the analysis of performance time

was a straightforward process, the assessment of accuracy was challenging. Typically, a

user’s success in performing a task on a non-private visualization is assessed by determin-

ing whether the user 1) correctly identifies the visual artifact(s) of interest as requested by

the task, and 2) correctly decodes the visualization to retrieve or derive values and draw

conclusions. However, a similar assessment of user success cannot be used under private

visualization. Due to the injection of noise and consequent perturbation of data, evaluat-

ing only the two aspects cannot guarantee user success in visual tasks with respect to the

underlying sensitive data. In this work, we evaluate task success in terms of perceptual

accuracy and perturbation accuracy.

4.2.8.1 Dichotomous Assessment of Task Success under DP

Perceptual accuracy To capture the information loss in human perception and cognition

while performing visual tasks, we measure the perceptual accuracy defined as the rate of

“perceptual successes”. Here we compare the participants response with the task answer

based on the encoded data, whether or not noise has been added to the visualized data.

The response is considered a perceptual success if it matches the encoded answer, although
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it could be different from the answer based on the true data. For instance, if a user task

was to “find the group with largest value” using a private bar chart, we considered the user

perceptually accurate only if they successfully found the highest bar in the noisy bar chart.

Perceptual accuracy describes a users ability to perform visual tasks, consistent with the

assessment of visual effectiveness in prior work [46, 85].

Perturbation accuracy

Continuing with the example task of finding the group with the maximum count, there

are other potential sources of task failure. Even if the user had a perceptual success, there

are chances that the highest bar in the private visualization is different from the one in

the non-private visualization due to noise injection. In such a case, the user still failed to

gain accurate information from the non-private data source. To isolate and measure the

information loss from noise injection of the private algorithms for data exploration tasks,

we introduce the notion of a perturbation failure. We compare the results of performing a

task on the non-private sensitive data and its privatized counterpart after noise injection. If

there is a mismatch, then it is considered a perturbation failure. Perturbation accuracy for

a task is defined to be the rate of perturbation success after noise injection.

Perturbation for privacy may dramatically change the overall patterns of data, causing

failures for summary tasks. It may also lead to changes in individual values, making tasks

related to value retrieval fail. Due to the injection of noise, exact retrieval of data value

is not feasible. Taking a heuristic approach, we considered an error tolerance range to

decide if the distance between the non-private and private answers was acceptable. More

specifically, we considered a range of ± 1K in which estimation errors were tolerated. For

instance, for the non-noisy value of 10K, we accepted any answer in the range of [9K-

11K] as acceptable. This error tolerance range was based on careful experimentation with

our dataset and consideration of the range and distribution of data values. The histograms

used in the study have average values of around 10K to 20K, so the tolerance range is

approximately 5% to 10% of the data values.
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We consider a visual task successful if both the perturbation and perceptual conditions

are satisfied, meaning the information needed to perform the specific task is preserved

after the perturbation and the user successfully performs the task on the noisy data. We

evaluate all the tasks in relation to perceptual accuracy and perturbation accuracy using

this dichotomous model.

In the analysis of perceptual effectiveness, we conducted a one-way repeated measures

analysis of variance (ANOVA) for each task to test the differences of effectiveness across

different visualizations and tasks. The performance time data was not normally distributed,

so it was log-transformed to meet the normality assumption. In the analysis of perturbation

error, to avoid the influence of perceptual uncertainty, we conduct the task using only the

data values without any visualization. The calculation of perturbation accuracy is done

off-line and involves no users.

4.2.9 Findings

Task Perceptual accuracy

Better Worse ANOVA

Retrieve Value pie chart - F3,44 = 2.61, p < 0.05
Filter scatterplot - F3,44 = 5.35, p < 0.01
Compute Derived Value - - F3,44 = 1.19, p > 0.05
Find Maximum - - F3,44 = 0.90, p > 0.05
Determine Range - - F3,44 = 0.28, p > 0.05
Characterize Distribution - line chart F3,44 = 12.14, p < 0.01
Find Anomalies - pie chart F3,44 = 8.86, p < 0.01
Cluster scatterplot - F3,44 = 3.74, p < 0.01

Table 4.1: Response time comparison for each task showing visualization types that are
significantly faster or slower than others.

First, we investigate the perceptual effectiveness of the four visualization types and

compare the success rate and (log-transformed) response time. Consistent with effective-

ness comparisons conducted in an earlier study [85], we found that bar chart and scatterplot

are the visualization types that are most accurate and have the best response times, while
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Task Response time

Faster Slower ANOVA

Retrieve Value bar chart line chart F3,44 = 4.71, p < 0.01
Filter scatterplot - F3,44 = 6.81, p < 0.01
Compute Derived Value - pie chart F3,44 = 4.64, p < 0.01
Find Maximum - pie chart F3,44 = 3.47, p < 0.05
Determine Range - pie chart F3,44 = 4.50, p < 0.01

Characterize Distribution
scatterplot,
barchart

pie chart,
line chart F3,44 = 15.38, p < 0.01

Find Anomalies - pie chart F3,44 = 35.57, p < 0.01
Cluster scatterplot pie chart F3,44 = 22.84, p < 0.01

Table 4.2: Perceptual accuracy comparison for each task showing visualization types that
are significantly better or worse than others.

pie chart has the worst response time but higher accuracy than line chart. Table 4.1 and 4.2

show detailed comparisons with the results of ANOVA tests.

Next, Fig. 4.1 shows the perturbation accuracy trends with varying privacy levels across

analysis tasks. For all the tasks, task success rates on perturbed data drop as we move to

higher noise levels (i.e., smaller ε). This was an expected outcome since the privacy-utility

tension is a known phenomenon under differential privacy. While the rates of accuracy

decline seem to be almost consistent within the tasks, there are noticeable differences be-

tween them. In particular, we found perceptible differences between summary tasks, in-

cluding Filter, Characterize Distribution, Find Anomalies, Find Maximum, and value tasks

including Retrieve value, Compute Derived Value, and Determine Range. At a similar level

of noise, the rates of accuracy loss for value tasks are higher than those of summary tasks.

This finding suggests that different tasks might have varying degrees of noise tolerance.

The task Cluster showed a mixed pattern where the success rate was highly preserved for a

lower level of noise but then sharply plummeted as the noise increased.

Furthermore, we want to see if noise injection influences the users’ ability to perform

visual tasks. Small multiples in Fig. 4.2 show the further breakdown of perceptual accuracy

over different privacy levels. We omit the result for performance time because there is
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no significant difference in participant response time across different noise levels. It is

interesting to see that the average perceptual accuracy drops slightly as we move to stricter

privacy levels (i.e., smaller privacy budgets) for many tasks and visualizations. For task

Characterize Distribution, the privacy budget has significant impact on the visual accuracy

of scatterplot (F2,14 = 2.99, p < 0.1). For task Determine Range, the privacy budget used

influences visual accuracy of bar chart (F2,14 = 4.94, p < 0.1). For task Cluster, visual

perception of both scatterplot (F2,14 = 5.64, p < 0.1) and bar chart (F2,14 = 7.13, p <

0.1) are influenced by the noise level. This shows that visual tasks, especially the more

complex summary tasks, can become harder for people when the underlying data is noisy.

In other words, the information loss from data perturbation could lead to a higher level of

uncertainty in visual perception. However, unlike perturbation accuracy, the influence of

noise injection isn’t always monotonic. Users’ ability to accurately perceive information

from visualizations could increase or decrease as more noise is added. To better understand

this effect, we conduct a second phase of our study in the next section.

4.3 RQ2: Tailoring Noise Injection to Analysis Task

Prior work in data visualization has shown that characteristics of underlying data such

as distribution shape impact visualization in perceptible ways [46, 90, 72, 94]. As a simple

example, it is easier to find the bin with maximum value in a unimodal histogram with

values 〈11, 10, 30, 12〉 than a flat histogram with values 〈11, 10, 13, 12〉. The same level of

privacy protection can be achieved by various DP algorithms (e.g.,[49, 35]). However, de-

pending on the specific mechanism chosen, the injection of noise can lead to entirely differ-

ent data distributions, which are consequently reflected in private visualizations. Drawing

on the findings from both fields, we investigated the possibility of tuning the noise injection

to result in a private data distribution that will facilitate performing a certain task assuming

we have the advanced knowledge of the task at hand and privacy level required.
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Figure 4.3: This figure shows our proposed model for tuning noise injection to tasks using
our suggested distribution metrics. First, sensitive data is privatized using alternative DP
algorithms (e.g. Algorithms 1, 2 & 3). All the privatized data meet a certain required level
of privacy (similar ε). Next, based on the task at hand (e.g., Find the group with maximum
value), the related distribution metric (e.g., Peakedness Score) is utilized to calculate a
score for each set of privatized data. The privatized dataset with the highest score offers a
data distribution shape that will better support the task.

In this work, we suggest a way of tuning the noise injection for summary tasks. Fig. 4.3

provides a schematic of our approach. At the core of our model lie “distribution metrics”

that quantify the distribution shape of private data. This enables us to compare the pri-

vatized output of several algorithms and select one that would best support a task. In the

following section, we provide details of our suggested metrics:

4.3.1 Distribution Metrics

Inspired by prior work on Scagnostics (e.g., [98, 99, 20]), we suggest three distribution

metrics which quantify the shape of the data distribution. Each metric is designed and cor-

responds to a specific summary task. The reason for focusing on summary tasks was that

the success of these tasks mainly relies on the user’s perceptual accuracy which in turn is

related to the shape of the data distribution [94, 95]. While for value tasks, there are no

consistent relationships between peoples ability to read a single data point and the overall

data distribution.
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Figure 4.4: For the three summary tasks considered, the upper row shows distribution
metrics for different algorithms and the lower row shows task success rate from data per-
turbation at the corresponding privacy level.

Peakedness Score: this metric is designed for the Find Maximum task. For ~x, it is calcu-

lated as:

P =
m1∑n
i=1 xi

+ 1− m2

m1

where m1, m2 are the largest and second largest value of the distribution ~x. For higher

Peakedness Scores, the max point stands out more and it is easier to perform the task Find

Maximum accurately.

Anomaly Score: this metric is designed for the Find Anomaly task. It is calculated as:

A =
max(|xi −mean(~x)|)

std(~x)

it finds the furthest point from the sample mean and normalizes the distance by the standard

deviation of the distribution. The higher the score is, the more likely the point is an outlier

and it is easier for a user to detect it visually.
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Cluster Score: this metric is designed for the task Cluster. It is calculated using weights

from soft clustering which yield soft assignments of data points to clusters. We generate the

soft clustering weights from existing clustering results. In this work, we use the Mean-shift

[16] clustering algorithm which iteratively moves data points towards the mode. Unlike

many other popular cluster algorithms, it does not require a pre-specified number of clus-

ters. More specifically, given data ~x, each data point xi is assigned to a cluster Clu(j)

using the hard mean-shift clustering. The soft assignment weight is the likelihood that a

data point i belongs to cluster j:

Li,j =
1∑c

k=1(
xi−cj
xi−ck

)2

where cj refers to the center of the jth cluster.

The Cluster Score of a distribution is the sum of likelihoods for all data points in the

assignment, L =
∑c

i=1 Li,Clu(i) where Clu(i) is the assigned cluster index for each data

point i. Similarly, the higher the clustering score, the more likely there will be coherent

clusters with clear boundaries.

4.3.2 Preliminary Evaluation

To assess the feasibility of using our suggested model to tune the injection of noise for

summary tasks, we investigate the influence of privacy mechanisms on the data distribu-

tion. More specifically, we chose three representative differentially private algorithms and

empirically compare their output at the same privacy levels over multiple runs.

With metrics to measure the visual difficulty of data distributions, we still need to un-

derstand how noise injection influences these metrics and later visual perception. Next,

we compare three widely used differentially private algorithms in terms of their impact on

different distribution metrics. Besides the Laplace algorithm, we also consider the MWEM
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[35] algorithm which iteratively updates the histogram using noisy data estimations and the

DAWA [49] algorithm which forms carefully chosen groups before noise injection.

We run these algorithms over 4 input histograms from the census data and measure the

metrics of the noisy histogram. The upper row in Fig. 4.4 shows average distribution metric

scores over all the input histograms and 10 random trials for each configuration. The lower

row shows their perturbation accuracy for the corresponding task.

A good private algorithm should push the distribution towards the easy side of the spec-

trum as much as possible while at the same time preserving the underlying task answer. In

other words, we want algorithms that produce outputs with good distribution metrics which

lead to good perceptual accuracy. But we do not want the algorithm to be exaggerating the

visual pattern too much and causing a perturbation failure. For example, for task Find

Maximum, the Peakedness Score is high using the privacy parameter 0.001. While at the

same time, the perturbation accuracy is low, showing that the noise shifted the distribution

too much and created an easy-to-perceive but incorrect peak. Thus, in this case, MWEM is

not a good algorithm choice.

4.3.3 Findings

For the three summary tasks considered, the MWEM algorithm tends to provide the

lowest perturbation accuracy and only provides better perceptual metrics for one task: Find

Maximum. For the task Find Anomalies, DAWA and Laplace have comparable perturba-

tion accuracy, and DAWA tends to produce higher perceptual metrics with a lower privacy

budget. So it is best to use DAWA as the DP mechanism for this task to gain good end-

to-end visual utility, outperforming Laplace by a small margin. For task Find Maximum

and Cluster, Laplace has noticeably higher perturbation accuracy than the other two al-

gorithms, making it a wise choice. In real-world data exploration, it is not always clear

what the downstream tasks are. Our findings show that despite its simplicity, the Laplace

mechanism is a safe general choice for DP algorithms.
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4.4 Discussion

In this section, we reflect on our findings and discuss strategies to better support visual

data analysis under differential privacy.

The findings of our study show that the rate of perturbation accuracy loss (for the same

level of noise) differs between summary and value tasks. In particular, summary tasks seem

to be more tolerant of the injection of noise while value tasks are noticeably more sensi-

tive. This finding has an important implication: it enables users to more efficiently manage

their assigned privacy budget while analyzing data. For instance, based on the knowledge

that the summary task Find Anomalies is highly resistant to high levels of noise, they can

spend a smaller fraction of their budget on this task. Considering that the amount of pri-

vacy budget assigned to a user has a limit, efficient budget management is very important.

Similarly, understanding the higher sensitivity of value tasks to the injection of noise and

their higher rate perturbation accuracy loss can benefit users. In this case, such knowledge

can inhibit performing queries that would result in futile outcomes. For example, consider

the value task Determine Range, with a severe loss of accuracy under high-levels of noise,

the user can decide to increase the privacy budget spent on the task to get more reliable

answers or avoid the task altogether. In the setting of our study, performing a task like Fil-

ter, Find Maximum or Find Anomalies with privacy parameter 0.001 only introduces less

than 10% additional error compared to using privacy parameter 0.01 but saves 90% of the

privacy budget. However, for a value task such as Retrieve value, the accuracy drop can

be as significant as 60%, and it is worth spending more privacy budget to get acceptable

accuracy.

Although various differentially private algorithms have been designed to achieve higher

query accuracy, it remains unclear which algorithms or noise injection mechanism will

better facilitate downstream visual analysis. Newer and complex algorithms like [35, 49]

apply specialized techniques to increase the accuracy of target workload queries. However,

our initial investigation shows that these techniques can produce visual artifacts that make

99



the data “harder” when used in visual analysis tasks. For example, the MWEM algorithms

can produce plateau-shaped distribution since it updates queries in groups identified by

workload queries. Our findings show that, without a specific task, the simplest Laplace

mechanism is the safe choice for private visualization.

Our work is the first in the confluence of differential privacy and visual data analysis

that enables managing the privacy budget based on analysis tasks and visualization. This

might be even more important for exploratory visual data analysis (EVDA). EVDA revolves

around the continued formulation and evaluation of questions and hypotheses by the user.

Many times, an analysis avenue does not result in any interesting insights and knowledge,

and users move on to investigating other aspects of data. Under such conditions, the effec-

tive management of the privacy budget is even more critical. In practical data exploration,

we do not always know the exact sequence of operations to perform ahead of time. So it

can be hard to generate an optimal global allocation of privacy budget. However, with the

knowledge about noise tolerance of tasks, we could go with a greedy approach trying to

avoid spending too much of the privacy budget at each step in the iterative process.
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CHAPTER 5

UNCERTAINTY IN STATIC DIFFERENTIALLY PRIVATE
VISUALIZATION

We’ve investigated the influence of configurations in the private visualization pipeline

in Chapter 4. However, the important aspect of uncertainty is missing. In this chapter, we

discuss the uncertainty in static differentially private visualizations, using two-dimensional

location data as an example. Then we propose a solution and evaluate it through an online

user study.

5.1 Challenges

In this section, we present challenges of visualizing uncertain data together with some

other main challenges faced in visualizing differentially private location data.

5.1.1 Visualization Under Uncertainty

Directly visualizing differentially private data only plot a single output of a randomized

private algorithm. Although the effects of noise are visible, the uncertainty in the output

is not presented to the user in a manner that can be properly interpreted. Appropriate vi-

sualization of uncertainty is a key challenge in visualizing differentially private data. This

is similar to the challenge of visualizing statistical uncertainty, in which a practitioner is

encouraged to not directly trust data (since there is uncertainty in statistical inference), or

forecasts from a computational model like climate simulations [88] (since there is uncer-

tainty in the model’s accuracy).

Fig. 5.2 illustrates some of these challenges with the Beijing taxi data. Part (A) shows

original data, plotted using the heat map approach described earlier, with cell color mapped

101



to the counts on a log scale. Dense road networks can be seen in the city, as well as some

less-traveled roads in less dense areas, such as those that connect to the airport. The Laplace

mechanism (ε = 0.1) is used to obtain the noisy version (B) which would be given to a data

analyst. Some of the high-frequency structures are preserved, but low-density regions are

substantially changed in a random manner. For three selected cells, plot (C) shows the

original true values (red triangles), versus noisy versions (blue dots). The fact that cell (1)

has a higher frequency than (2) is preserved in the noisy data. But cells (2) and (3) have a

sign error—their relative ordering is flipped in the data.

For 1d data, uncertainty can be summarized with error bars. Fig. 5.2(C) shows 95%

intervals as vertical lines. These are constructed from a noisy data point x̂i as [x̂i +

F−1(0.025), x̂i + F−1(0.975)], where F−1 is the inverse CDF of the Laplace (yielding

intervals of approximately x̂i ± 30 for this setting of ε); by construction, these intervals

contain the true value 95% of the time. These error bars could be presented to a user, to be

interpreted in a similar manner as confidence intervals from statistical inference; and help-

fully, unlike the case of statistical inference where modeling assumptions may not hold, in

this setting the confidence intervals are guaranteed to have correct coverage since the noise

distribution is known.

But for 2D data, uncertainty visualization is less straightforward due to limitations on

space and visual channels in a 2D setting (e.g. (A) or (B)). Researchers have explored

methods to represent uncertainty on the same 2D figure with the data, such as summary

plots [75], modifying the color to use hue or saturation to encode uncertainty [59], and

showing uncertain data out of focus [58]. Alternatively, one can use interactivity. For

example, in a linked-displays approach [12], a user could click to select one or a few cells

from the (B) map, then be shown the cells’ values in a second display (like (C)) with room

to show error bars. These approaches deserve further consideration for visualizing private

data.
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Another approach to the faithful representation of uncertainty is to match the impreci-

sion inherent to visual perception to the imprecision introduced by the privacy mechanism.

The proposed principle is that statistically indistinguishable counts should be visually in-

distinguishable. More details will be discussed in Sec. 5.2

Overall, for visualizing uncertainty, we hope to benefit from the fact that the error in

estimates is coming from a well-understood process (the privacy mechanism). Yet for

some state-of-the-art algorithms, reliable error bounds are hard to establish because these

algorithms adapt the noise distribution to the data. While it is possible to release a noisy

measure of error, this adds an additional level of uncertainty that must be reconciled.

5.1.2 Visual Artifacts

The output of a differentially private algorithm may include visual artifacts which ob-

scure true features or lead to false conclusions. For example, the noise introduced by the

algorithm may result in negative counts for grid cells (which are clearly impossible) and

can have a significant impact on a visualization if not corrected.

Negative counts can be easily corrected by rounding, but such adjustments sometimes

have their own consequences. Simply rounding all negative values to zero boosts the overall

sum across the grid cells leading to a biased output which may have its own visual impacts.

More sophisticated ways to handle negative values have been proposed [54] and some

mechanisms, like the Multiplicative Weights Exponential Mechanism [35], output non-

negative counts directly. Issues such as non-negativity can sometimes be ignored when

the private output is used to compute query answers, but are likely to become much more

important in the context of visualization.

In addition to negative counts, there are other algorithm-specific artifacts that obscure

the interpretation of the visualization. For example, the visualization in Fig. 5.1b, produced

by the DAWA algorithm, includes large blocks of uniform regions, especially on the pe-

riphery of the figure where the density is lower. The algorithm intentionally estimates these
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regions uniformly and avoids estimating sub-regions or cells internal to the region. This

feature of the algorithm is quite effective in reducing numerical measures of error that are

commonly used in the research literature but may mislead the viewer when the results are

presented visually. This is especially true for the non-expert viewer unfamiliar with the al-

gorithm’s mechanics who may mistake algorithmic artifacts for structure in the data. This

may call for re-thinking some of the advanced algorithmic techniques which are currently

used to reduce error when measured by standard error metrics.

(a) Output of MWEM (b) Output of DAWA

Figure 5.1: Outputs with equal query-based error

5.1.3 Specifying and Achieving “Visual Utility”

The above discussion shows that effective data visualization is a utility goal that is

potentially very different than the utility goals considered to-date in the literature on dif-

ferential privacy. It is not clear how to make a notion of “visual utility” precise. Here we

discuss potential ways to access the visual utility.

Similarity-based Utility The most straightforward way to measure the quality of the private

visualization is to see how similar it is to its non-private version. Without any specific use

case, we could go with the informal definition based on perceived visual similarity to the

true data.
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Figure 5.2: Illustration of uncertainty due to the Laplace mechanism, on taxi frequency data
from northeast Beijing (Sec. 5.1.1). (A) Original data. (B) Noisy output, which preserves
some structures but introduces spurious phenomena. (C) For three selected cells, original
data values (red triangles), noisy versions (blue dots), and 95% confidence intervals (verti-
cal lines). Cell (2) has a negative valued output, and the comparison between cells (2) and
(3) has a sign error.

Task-based Utility Although visual utility could be generally defined through the similarity

between the true and perceived data, a more specific task-based utility may be preferable

when there’s a well-defined visual task. The utility of visualization would then be deter-

mined by comparing the success rate for users to carry out the task on the true and private

data.

There are two main obstacles to using the task-based utility. The first one is that the task

needs to be known and well-defined. This is not often the case, especially with iterative

data exploration. One potential way is to start from some common and basic visual tasks

like density comparison, correlation estimation, and search for maximum and minimum

values/regions. If some visualization techniques perform well on these common building

blocks, we are more confident that they will perform well on some more complex tasks.

Another problem is that a large portion of the perceptual tasks can’t be easily automated.

This requires the participation of human users which can be expensive and time-consuming.

Fortunately, the emergence of online crowd-sourcing platforms has made carrying out user

studies a little bit easier.

Query-based Error
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For our setting, there are many differentially private algorithms that can be applied to

2D data. Some algorithms produce a noisy histogram targeting a general class of queries

(e.g. sums over all rectangles in the 2D domain) [26, 40, 78, 80] and some accept as input

a user-specified workload of queries and tailor the output to accuracy for the workload

queries [35, 50]. In either case, the error is commonly measured using metrics like L1 or

L2 error on some set of queries of interest. We refer to this as query-based error and want

to see if this widely used error measurement captures visual utility well.

With the similarity-based utility, the query-based error is not a reliable measure of vi-

sual utility. We show in the following example that two noisy outputs with the query-based

equal error may have very different visual utility.

For plotting 2D data, we measure query-based error as the average, per-cell L2 error

of the 256 × 256 histogram output. This seems like the most natural metric because the

user is seeing a colored representation of noisy values in each cell and we are comparing

this representation to the true heat map. Fig. 5.1a and Fig. 5.1b are noisy outputs of two

different algorithms named MWEM [35] and DAWA [50] with the same input data. We

have used different epsilons for each algorithm in order to make the query-based error of

the algorithms equal (here MWEM uses ε = 1, while DAWA uses ε = 0.0065). Clearly,

these two figures have very different visual properties, demonstrating that similarity-based

visual utility is not captured by query-based error.

However, with task-based utility, the answer is mixed. If the task could be decomposed

and expressed in terms of a set of linear queries, then the goal of achieving lower query-

based error matches well with the goal of achieving better success rate in the task. This is

also the case where recent algorithm advancements will prove beneficial to visualization.

With a proper input workload designed for the task, the effort of tailoring the output to

accurate workload answers will pay off in terms of task-based visual utility.

The problem is that it is usually hard to identify a good workload for a lot of the com-

plicated real-world tasks. The “optimal” set of linear queries might not even exist for some
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tasks. Without proper input workload, the query-based error will fail to capture task-based

visual utility.

5.2 An Attempt: Plotting under Uncertainty

In this section, we propose a principle to deal with the uncertain nature of differentially

private outputs and a solutions to achieve the principle.

As discussed in Section 5.1.1, uncertainty information could be encoded in additional

dimensions or channels in a visualization. However, this is not straightforward for 2D

data, so we go with the other approach where we match uncertainty in data to the inherent

imprecision in visual perception and propose the principle:

Indistinguishability Principle: Statistically indistinguishable counts should be visually in-

distinguishable.

5.2.1 Statistical Indistinguishability

In a 2D heat map of a noisy histogram, if we observe two cells C1 and C2 and find out

that the noisy counts y1 > y2, there are two possible reasons: a) their underlying true counts

x1 > x2 , or b) the underlying data pairs have a different relationship, but the noise injected

leads to the observation. The principle asks us to only visualize cells differently when we

are confident that their observed difference comes from the differences in underlying data

instead of from noise injected.

With this in mind, we define statistically indistinguishability using the probability of

a “Type S error” [33] (or “sign error”) which captures the relationship between observed

estimations. There’s a Type S error if the order of the two variables is flipped after noise

injection.
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Definition 10 (Statistical indistinguishability) Let yi and yj be noisy measurements of

two variables Ci and Cj , yi and yj are α-level statistical indistinguishability if

P (sign(xi − xj) 6= sign(yi − yj)|yi, yj) ≥ α

where sign(x) =


0, if x > 0

1, otherwise
, xi and xj are the true values of Ci and Cj

A high probability of a Type S error implies that underlying data points are close to-

gether, this means the observed difference is more likely to be an effect of noise. So if

the probability of a Type S error is higher than some threshold, the observations will be

considered statistically similar, and should not be shown distinguishable from each other

in the visualization.

For algorithms like the Laplace mechanism, in which independent noise is added to

each count, statistical indistinguishability could be estimated by examining the difference

of the observed noisy counts.

Claim: If the esitmations yi and yj are derived by adding i.i.d Laplace distributed noise to

xi and xj . Then for a given α and Laplace distribution, there’s a global constant D that,

∀i, j P (sign(xi − xj) 6= sign(yi − yj)|yi, yj) ≥ α =⇒ |yi − yj| < D

Proof

We know yi = xi + Lapi, yj = xj + Lapj , where Lapi and Lapj are i.i.d Laplace

vairables. Let the random variable Z = |Lapi − Lapj|.

P (sign(xi − xj) 6= sign(yi − yj)|yi, yj)

= P (sign(yi − Lapi − yj + Lapj) 6= sign(yi − yj)|yi, yj)
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= P (|Lapj − Lapi| > |yi − yj| ∧ sign(yi − yj) 6= sign(Lapj − Lapi)|yi, yj)

= P (|Lapi − Lapj| > |yi − yj| |yi, yj)

∗P (sign(yi − yj) 6= sign(Lapi − Lapj)|yi, yj)

= P (Z > |yi − yj| |yi, yj) ∗
1

2

=
1

2
(1− CDFZ(|yi − yj|)) ≥ α

, then

|yi − yj| <= CDF−1Z (1− 2α)

so there’s a constant D = CDF−1Z (1− 2α) with a given α and Laplace distribution.

�

5.2.2 Achieving the Principle

As indicated in the principle, we want the statistically indistinguishable data to be vi-

sually indistinguishable. In the setting of a heat map, this means the difference between

colors of the cells should be too small for a human to detect. In practice, this is done by

providing different colormaps which map numeric counts of each cell to proper color. The

colormap could be either continuous or discrete. For simplicity, we use a discrete colormap

which consists of several bins. The range of the noisy counts will be divided into intervals

of width D, counts within the same interval will be mapped to the same color. This ensures

that counts within the same interval won’t be distinguished from each other.

This mechanism is essentially a smoothing effort where we try to smooth out the dif-

ference which we believe results from noise. Given a specific DP algorithm, we have a

well-understood noise model which helps us detect statistically distinguishable data.

5.3 User Study on Correlation Perception

As discussed in Sec. 5.1.3, without a good general-purpose visual utility measurement,

we choose to use the task-based utility on common and basic tasks. In this section, we con-
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Figure 5.3: An example step of the user study, with the baseline private heatmap

duct multi-factor human-subject experiments to examine the effectiveness of our approach

on some specific tasks using Amazon’s crowdsourcing platform Mechanical Turk.

5.3.1 Task

The first thing to consider when measuring task-based utility is to determine a good

task. However, real data exploration tasks are highly dependent on specific use cases and

even datasets. So we go with the simpler tasks which we believe to be the common build-

ing blocks of more complicated tasks. Among the many basic visual tasks, we choose to

start with correlation perception for several reasons: a) visualizing correlation is a very

important and common task for 2D visualizations since it allows people to understand the
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(a) Non-private visualizer (b) Naive private visualizer
(c) Smoothed private visual-
izer

Figure 5.4: JND-r plots, moderate privacy level

(a) Non-private visualizer (b) Naive private visualizer
(c) Smoothed private visual-
izer

Figure 5.5: JND-r plots, high privacy level

relationship between variable pair; b) the task has been well-studied in previous works [82]

[37] with justified experimental designs.

Rensink et al. demonstrated that the perception of positive correlation in scatterplots

can be modeled using Weber’s law [82], which indicates that the human perception of

differences in correlation has a linear relationship.

To model a perceptual process using Weber’s law, we need to experimentally determine

how much a given stimulus must change before humans can notice with a reliable proba-

bility. This amount is called just noticeable difference (JND) [17]. It captures how well

stimulus properties can be discriminated and has been widely used in psychology and vi-

sion sciences. If one method produces lower JND than the other in visualizing information,

it provides better discrimination and helps people detect more subtle changes.
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(a) Non-private visualizer (b) Naive private visualizer

Figure 5.6: JND-r plots, low privacy level

The 2D location data we’ve been using as an example is good for many interesting

visual tasks but is too complicated for our correlation perception task. So from now on,

we’ll use synthetic data in the following experiments.

5.3.2 Experimental Settings

Although we don’t continue to use the taxi pickup dataset as the example, we still follow

a similar visualization pipeline. First, a dataset with a target correlation r is generated,

then the data is binned to generate a histogram, and then the histogram is the input to the

visualizers.

Three visualizers are compared in the experiment. The non-private visualizer takes the

histogram and draws a heat map; the naive private visualizer adds independent Laplace

noise to the histogram buckets and draws a heat map on the noisy histogram; the smoothed

private visualizer adds noise in the same way but draws the heat map with the smoothing

technique described in Sec. 5.2.2.

We follow the similar experimental design in [82] for each visualization technique in

an online crowd-sourcing environment like Harrison et al. did in [37]. For each visualizer

at a particular base correlation r, a user is asked to look at a sequence of side-by-side heat

maps produced by the visualizer and decide which one has a higher correlation coefficient.

Each step in the sequence is called a trial. An example trial in the experiment is shown in

Fig. 5.3. We go with the “above” approach, the two plots are generated with correlation

r and r + d. d is a dynamic distance value controlled by the system. If the user answers
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the current trial correctly, the distance will be decreased by 0.01 for the next trial while

keeping the base correlation r constant. On the other hand, if the user chooses incorrectly,

the distance will be increased by 0.03, making the distinction more obvious. In each trial,

the visualization with the base correlation and the variable correlation is randomized, so

that the base correlation plot doesn’t always appear on the left or on the right.

The staircase procedure stops when either the user’s ability to distinguish correlation

is believed to have stabilized or it reaches 50 trials. The judgment of stability of user’s

perception is determined through standard statistical tests. Three equal-sized subgroups

are formed in the moving window of the last 24 trials. Stability is reached when there’s

no significant difference between these three subgroups via an F-test (F (2, 21);α = 0.1).

After the procedure ends, the average d in these subgroups is used as the JND for the tested

base correlation r.

With the linear relationship JND(r) = k(1/b−r), the JND at any correlation could be

estimated from a small set of (r, JND) pairs. So in order to compare two visualizations,

we sample 8 base correlation values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) in the range [0, 1],

get the corresponding JND values.

For each visualizer and base correlation, we recruited 10 participants. Each participant

will answer a sequence of left/right choices with at least 24 and at most 50 trials. In order

to make sure the participants understand the task, after a general instruction, 5 example

trials with feedback are provided for each participant. The participant will know if he/she

answered the trial correctly and why, and the underlying correlation is also shown in the

example trials. Each participant was paid $0.3 for a sequence of answers.

Even with the instruction and example trials, we still got unqualified results. So we

did simple post-processing based on some simple heuristics to filter out responses of ex-

tremely low quality. The following behaviors are considered “suspicious”: a) responding

to all trials with the same answer; b) having extremely short reaction time; c) failing to

answer very obvious correlation distinctions (e.g. r = 0.5 v.s. r = 1). These behaviors
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either indicate that the participant failed to understand the concept of correlation or the

participant made their choice based on random or fixed answers no matter what they saw.

The problem of classifying responses according to quality could be an interesting machine

learning problem itself. However, it is beyond the scope of this work. So we carried out

the post-processing on manually tuned thresholds for these suspicious behaviors.

With the processed data, we were able to fit a linear JND − r relationship for each

visualizer. In terms of performance comparison, for both k and b, smaller values denote

better performance, with optimal performance as these values approach zero.

5.3.3 Results and Findings

The resulting JND-r plots are shown in Fig. 5.4. The x-axis is the true correlation in

the non-private data. Each blue dot indicates a JND value calculated from some participant

on a particular base correlation. The blue lines show the linear relationship, with 95%

confidence interval of the regression. The yellow diamonds shows the mean JND at each

base correlation with error bars reporting the standard error.

As shown in Fig. 5.4a and Fig. 5.4b, the private visualizer has higher JND values,

especially in the low correlation region. People’s ability to distinguish correlation in true

data is harmed by the noise. This is intuitive since adding random noise in histogram counts

equals adding random samples which tends to make the data less correlated, thus raises

the JND. In conclusion, the naive private visualizer performs worse than the non-private

visualizer.

Now compare Fig. 5.4c with the other two plots. The smoothed private visualizer per-

forms better than the naive private visualizer and similar to the non-private visualizer for

the privacy level tested. This shows our effort to smooth out the unnecessary distinctions in

visualization helps people better distinguish the underlying correlation information. This

is because the smoothing “restores” the perturbed correlation back to the true correlation

to some extent by removing low confident data distinctions.
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Another interesting finding is that people’s perception of correlation is more stable in

the high correlation region than in the low correlation region. For example, when the

correlation is as high as 0.8, the JND is nearly the same for the three visualizers for this

privacy level. The reason could be human’s ability to “denoise”. With independent random

noise, the injected noise itself acts as a low correlation background, and the high correlation

true data stands out for human eyes. This justifies our method in that we are doing similar

things as human eyes, but doing the smoothing in a more educated way, taking advantage

of the statistical information of the noise.

Privacy level

As we can see from the previous discussion, the noise injected will introduce perturba-

tion and thus make the data less correlated. Visualizing the perturbed data directly could

lead to a bad estimation of the underlying correlation, and our smoothing technique could

alleviate the perceptual deviation. In the following discussion, we’ll look at an important

factor which could have a huge impact on the performance of the private visualizers, the

privacy level.

In differential privacy, the level of privacy protection is controlled by the parameter ε. A

smaller ε implies stricter privacy or higher privacy level and a larger ε provides a guarantee

in a lower privacy level. Although algorithms differ in their ways to inject noise, generally

more noise is needed to achieve a higher privacy level.

Researchers in the differential privacy community have been aware of the trade-off be-

tween privacy and utility, especially in terms of statistics estimated in a privacy-preserving

manner. In order to better understand the trade-off between visual utility and privacy for

our correlation task, we conduct additional user studies in different privacy levels. We man-

ually tune the privacy parameter to find a range of “reasonable ε’s”: the minimum ε is the

largest value which leads to a naive private visualization that makes sense as a correlation

plot, and the maximum ε is the smallest value which leads to nearly unnoticeable noise in

the naive private visualization.
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Fig. 5.5 shows results at a high privacy level. The JND increment from Fig. 5.5a to

Fig. 5.5b, especially in the low correlation area, shows that noise at this level will result

in bad correlation perception if we use the naive private visualizer. Our smoothed private

visualizer (Fig. 5.5c) helps to bring the JND down a little bit in the low correlation area,

but much higher than that in non-private version. This means with this much noise added

for the required high privacy level, the smoothing technique can still help restore part of

the true correlation but not to a comparable level with the non-private visualizer.

Fig. 5.6 shows the other end of the privacy spectrum. As shown in the comparison of

Fig. 5.6a and Fig. 5.6b, when the privacy level is low enough, the noise injected barely influ-

ences the correlation perception for the naive private visualizers. The smoothing technique

is not even necessary here, so experiment for the smoothed private visualizer is omitted.

In conclusion, our smoothing technique works best with a moderate privacy level where

the smoothed visualizer could restore most of the correlation loss caused by noise injection

while the naive visualizer fails to do so. When the privacy level is too high or too low, the

smoothing is unnecessary or won’t help much. However, a very high or low privacy level

is rarely wanted in practice since it is too strict that basically no algorithm could provide

reasonable utility or too loose to be satisfiable protection.

5.4 Related work

Without privacy requirements, visualizing under uncertainty has been studied for years.

One common solution is trying to present the present uncertainty explicitly. The uncertain

statistic can be represented as an overlaying layer encoded in the formats of error bars or

summary plots[75], [87] investigated the effectiveness of different glyphs and markers in

conveying uncertainty. Another way is to encode uncertainty with some dimensions in the

color space. [59] used hue and saturation to indicate uncertain level, [42] proposed mixing

white pixels to represent high uncertainty. [58] added a layer with opacity proportional to

uncertainty, so the uncertain areas would be shown out of focus. Even though with dif-
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ferent encoding strategies, a common first step is to identify proper statistics like standard

deviation to measure the uncertain level. And in order to read the visualization, a basic

understanding of the statistic is needed.

Despite the absence of a good definition of visual utility, tasks in general data explo-

ration have been studied. [6] described a task topology for the exploratory analysis of spa-

tial and temporal data based on Jacques Bertin’s ideas. Tasks are categorized as elementary

or synoptic according to the level of data analysis. Elementary tasks include lookup and

comparison of individual elements while synoptic tasks try to find a pattern for the fact

and relationship in data considered as a whole. The correlation perception task in our user

study can be considered as a synoptic task trying to find the correlating pattern through

visualization.

Our user study is designed and carried out based on previous works. [82] was the first

work to apply classic psychophysical methods originally developed for simple properties to

the evaluation of the visual perception of correlation in scatterplots. Rensink et al. not only

demonstrated correlation perception in scatterplots follows Weber’s law, but also provided

a rigorous way to evaluate complex visualizations. Based on their work, [37] replicated the

original experiments on an online crowd-sourcing platform and extended the investigation

from scatterplots to various visualization techniques for the correlation perception task.

Their work showed that perceptual laws could be leveraged to rank different visualizers for

the same task. We built our user study on top of their experimental designs and extended

the comparison to the heat map of histograms and private-preserving visualizers.

In terms of privacy, we have been considering the private-preserving data publication.

Here the trusted data curator has access to the sensitive dataset, executes the private visual-

izer offline and only publishes the final private visualization. This is only one of the many

privacy models. Some other models include interactive model [25][83] where the curator

provides a private API which can be queried multiple times, local privacy model [44][23]
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where the curator is not trusted and privacy of the individual is protected by randomized

responses at the data collection step.

5.4.1 Communicating Uncertainty under DP

Differentially private data, like data generated from many other privacy-preserving

techniques, is inherently uncertain. DP mechanisms achieve the privacy guarantee by

adding noise to computations on the sensitive data, making any single output a random

instance of some underlying distribution. Therefore, dealing with uncertainty is an essen-

tial aspect of differentially private data visualization.

There has been a rich line of work on visualizing under uncertainty. One common so-

lution is to present the level of uncertainty explicitly. The uncertainty statistic can be rep-

resented as an overlaying layer encoded in the formats of error bars or summary plots [75].

Sanyal et al. [87] investigated the effectiveness of different glyphs and markers in convey-

ing uncertainty. However, error bars can be hard to read in multi-dimensional visualiza-

tions. An alternative is to color-code uncertainty information. Maceachren et al. [59] used

hue and saturation to indicate uncertainty levels, and Hengl et al. [42] proposed mixing

white pixels to represent high uncertainty. A critical first step towards communicating un-

certainty is selecting metrics (e.g., standard deviation) to quantify uncertainty. This can be

challenging for differentially private output. For simple algorithms like the Laplace mech-

anism [26], we could easily derive the scale and variability of the noise from the privacy

parameters. However, the computation of such uncertainty for complex algorithms can be

hard. For example, the DAWA[49] algorithm first applies grouping based on the charac-

teristics of the input data distribution to achieve better accuracy. Thus each data group has

different uncertainty levels and carefully designed approaches are needed to calculate these

local uncertainty statistics privately.
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CHAPTER 6

DASHGUARD: INTERACTIVE PRIVATE DASHBOARD

In the previous chapter, we have discussed the application of differential privacy for

static visualizations. However, with static visualizations, users can’t go beyond the pre-

defined view to get additional stories or further explore the data. To tackle these limita-

tions, interactive visual dashboards have been widely used in exploratory data analysis and

complex data storytelling. Dashboards visually organize, analyze, and display important

statistics about the underlying data.

Such applications introduce risks of harm to individuals due to possible breaches of

personal privacy and leakage of sensitive information. Prior research in the confluence of

privacy and visual data analysis has been mainly focused on the use of syntactic privacy

models such as k-anonymity and l-diversity (e.g.,[96, 15, 14]) despite the rising popularity

of DP. We still know little about the effective use of DP in the context of visual data analysis,

especially in an interactive data exploration setting. In this chapter, we investigate the

challenges of privacy-preserving interactions with sensitive data using visual dashboards

and propose a solution to those challenges.

6.1 Challenges

A typical interactive dashboard usually includes several small panels showing views of

the underlying data using visualization techniques like scatterplots, linecharts, or geograph-

ical distributions over maps. The corresponding views and visualization types are usually

customizable by the user to meet special data exploration needs. Then the user can inter-

act with the data by zooming in and out interesting regions or drill down by filtering with
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certain conditions. Besides interacting with a single visualization view, they can also link

multiple panels such that zooming and filtering interactions on one view will be reflected

on all linked panels. This powerful functionality allows users to compare and explore re-

lationships between different data aspects. In this work, we limit the set of interactions to

independent browsing, brushing, and linking (linked filtering) of univariate histograms.

Back-end
privacy engine

Front-end
visual

dashboard

User 
interactions

Queries

Noisy 
answers

Figure 6.1: Naive private interactive dashboard where every request from the front end will
be queried on the sensitive data directly

To perform the exploration in a private-preserving manner, a naive model is described in

Fig. 6.1. A user interacts with the front-end visualization dashboard where every interaction

request is converted to a query on the underlying data. To protect privacy, every knowledge

learned about sensitive data needs to be conducted in a privacy-preserving way. We use

Ektelo [106] as the back-end private engine. In the naive model, the privacy engine directly

handles all interactions with the data and manages the privacy budget. However, this simple

model raises certain challenges in practical deployments.

Challenge 1: potential waste of privacy budget Data explorations usually begin with a

vague goal and the users decide directions to drill down based on findings in earlier steps.

The process often includes constant zooming in and out, trying out different filtering con-

ditions. Thus, queries in the exploratory sequence can be correlated or even duplicated.

Directly issuing all those queries in the back-end privacy engines leads to duplicate obser-

vations of the same part of the data. As noted earlier, any observation of sensitive data
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consumes part of the privacy budget. Thus exploring data using the naive model could lead

to a serious waste of privacy budget. When the privacy budget runs out, the user can no

longer make any additional observations of the data source.

Since differentially privacy is safe under post-processing, any previous result generated

consuming privacy budget can be reused without paying additional budget. Therefore, there

are chances that the answer to a certain query could be constructed from earlier results (or

even from reusing previous results). As an example, after doing independent browsing of

distributions over two attributes Age Group and Gender, any brushing and linking between

those two attributes can be re-constructed using the histogram on the cross-domain of age

group and gender.

Challenge 2: inconsistent brushing and linking Differentially private algorithms perturb

the underlying data and introduce well-tailored noise to achieve the privacy guarantee. The

noise may cause inconsistency within interactions which could confuse the users. When

a user performs brushing and linking, the noise could break the inequality constraint be-

tween the original data and the filtered data. When a user performs brushing on the source

visualization, the linked target should change to the filtered view based on the brushing

attribute. Thus, the new target visualization should only contain a subset of data points,

leading to strictly lower counts in a histogram. However, with independent noise injected

at each step of the interaction sequence, there are chances that the filtered results get higher

noisy counts than the original data. We show a simplified example in Fig. 6.2. The left

column shows the source visualization on age group before and after brushing and the right

column shows the linked attribute gender. In the brushing operation, the right two bars are

highlighted so the linked distribution should be gender distribution within the age range

20-60. Using the naive model, a new query is issued on the linked attribute age adding

independent noise. In an unlucky case, as shown in the figure, two major inconsistencies

occur. Both the sum of male and female and the count of male is larger than the number
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in the unfiltered data. Such inconsistencies convey confusing information and may greatly

impact the flow of interaction.

(a) Orginal source (b) Original target

(c) Brushed source (d) Linked target

Figure 6.2: Example of inconsistent brushing and linking. When brushed on the source
attribute (selected bars are shown in a lighter shade), the linked distributed changed and
causing inconsistencies: 1) the sum of male and female becomes larger, 2) the filtered
count of male is larger than the original count.

Challenge 3: slow response time Computing every query on-the-fly as shown in Fig. 6.1

can be slow and might break the interactivity of the user’s workflow, especially when using

the more complex and time-consuming mechanisms. Precomputation is a natural solution.

However, with the need for privacy protection, any information retrieved from a sensitive

data source needs to be properly managed and should consume some privacy budget. Due

to the exploratory nature of these interactions, it is very hard to predict the sequence of

queries in advance. A naive approach is to generate a synthetic version of the full joint
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distribution over all the attributes. However, this is usually not practical since the size of

the full joint grows exponentially with respect to the domain size and may go beyond the

limit of machines’ physical memory.

To address these challenges with interactive private visualization, we propose the frame-

work DashGuard utilizing a smart middle layer between the front-end interface and back-

end privacy engine with the following benefits:

1. The framework can automatically ”correct” some suboptimal sequences of queries

generated by novice users through pruning unnecessary queries and reuse of mea-

surements. Such caching and reusing of measurements improves query accuracy and

performance substantially and avoids waste of privacy budget.

2. The inference component removes inconsistency in user interaction which may con-

fuse the user and interrupt the interactive workflow.

3. Through lazy precompute, sufficient statistics are prepared only when necessary.

This avoids the heavy time and memory requirement of the full precompute approach

and provides faster interaction than the pure online approach where everything is

computed on-the-fly.

4. Flexible middle layer that can be plugged in between different user frontend and

backend privacy engines with the required interface to support fast and accurate pri-

vate visual exploration.

6.2 DashGuard

To address the three challenges of the naive model, we propose DashGuard, a private

interactive visual dashboard with a smart middle layer that acts as a query proxy of any

front-end interactions and back-end queries.
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Figure 6.3: Overall structure of DashGuard. The middle layer acts as a proxy of any query
to the back-end engine and automatically decides on which measurements to take based on
the input query.

6.2.1 Visual Front-end and Interactions

The DashGuard front-end is the visual interface that interacts with end-users. It con-

verts any user’s action to queries to the back-end, collects the returned result, and then

renders the changes in the visualizations. More specifically, the user could i) create a vi-

sualization of a univariate histogram over a certain attribute by adding a new plot to the

dashboard, or ii) link two existing visualizations by adding a connecting component of cor-

responding plots in the dashboard, or iii) perform brush and linking. When a user brushes

on one plot, the underlying attribute got filtered and all linked plot gets updated.

We choose to focus on visualizations of univariate histograms since they are the founda-

tion of many more complex visualizations and their static differentially private deployment

has been investigated in Chapter 4 (also [107]). And as a popular interaction, brushing and

linking connects different views of the underlying data and can be used to discover rela-

tionships between data dimensions and attributes. All three types of interactions supported

can be well represented as a linear range query over the domain of the underlying data. The

overall user interaction trace is the sequence of interaction at each step and is restricted by

the total amount of privacy loss budget ε granted by the data owner ahead of time.

6.2.2 Backend Privacy Engine

In this work, we choose Ektelo[106] as our backend privacy engine since it provides

an executing environment with privacy guarantee and support for achieving better accu-
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racy. The back-end engine takes in linear range queries. To answer the queries, the en-

gine makes noisy measurements of the underlying sensitive data using differentially private

mechanisms. When there are multiple measurements, inference methods could be used to

combine them into a consistent estimate of the sensitive data and answer the incoming

query.

6.2.3 Smart Middle Layer

Motivated by the fact that some queries in an interaction sequence can benefit from

reusing partial or full information from previous results, the middle layer caches all pre-

vious interaction results and only issues new back-end queries when necessary. Before

returning the results, it performs inference to resolve potential inconsistencies.

The middle layer has three major components:

Measurement Manager The measurement generates takes direct requests from the front-

end, checks the cache, and decides on the back-end query to issue (if necessary). It has

three main functionalities:

1. Retrieve previous measurements. If an incoming query has been measured in earlier

steps, the manager will not issue a new request to the back-end. It retrieves the

value from the measurement cache, returns to the front-end interface, and saves the

corresponding privacy budget.

2. Combine previous measurements. If an incoming query hasn’t been directly mea-

sured before but can be constructed from noisy estimates in the measurement cache,

then no new request will be issued to the back-end engine. The measurement man-

ager will retrieve the previous estimate, feed it into the proper inference engine, and

then return the query result to the front-end.

3. Issue measurement request to the back-end. The manager only issues a new request

to the back-end when necessary.
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4. Lazy precompute. To make the interaction fast, each time a new attribute is in-

troduced into the panel, the generator issues back-end query calculating sufficient

statistics of any potential interaction involving the new attributes.

5. Manage privacy budget. The manager keeps track of the actual privacy budget con-

sumption.

Measurement cache It keeps track of all the queries issued by the measurement generator

together with the corresponding privacy budget and their noisy answer.

Inference engine Noisy results returned from the back-end privacy engine or the measure-

ment cache can have inconsistencies. The inference engine combines those results to gen-

erate an “best guess” that meets the consistency constraints and returns it to the from-end

for visualization.

6.2.4 Example Use Case

Next, we further illustrate the functionalities of DashGuard by describing a concrete

use case

Alice owns census data collected from the whole county. Bob is an analyst who wants to

explore the data with a vague goal of understanding the relationship between participants’

age, income, and gender. Bob first generates bar chart to visualize histogram over attribute

“age”, “income” and “gender”. DashGuard checks the cached measurements and found no

match, so the middle layer issues the queries to the back-end and returns the result to the

front-end when finished. After seeing the overall distribution, Bob decides to further ex-

plore the relations, so he links “income” with both “age” and “gender”. DashGuard would

now precompute all sufficient statistics for any possible brushing and linking operations. In

particular, it would be the joint distribution over (income, age) and (income, gender). Then

Bob brushes on gender to select only the female participants, the linked income distribu-

tion changes accordingly. DashGuard makes sure the filtered income frequencies will be
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smaller than its full marginals values. Bob does the same brushing for age and has a better

understanding of the impacting factors of income in the area.

6.3 Evaluation
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Figure 6.4: Overall comparison of DashGuard vs. the naive baseline shows that using the
DashGuard (with bounded inference engine) provides better accuracy, faster responses with
lower privacy budget consumption.

Next, we show some initial experimental evaluation results demonstrating the effective-

ness of DashGuard by comparing it to the naive approach from the perspective of accuracy,

privacy budget consumption, and response time.

6.3.1 Dataset and Workload

IPUMS-CPS[89] is a collection of datasets that harmonizes microdata from the monthly

U.S. labor force survey and the Census Current Population Survey (CPS), covering the

period 1962 to the present. We used a data extract which is a subset of the Annual Social

and Economic (ASEC) data from 2010. We chose this population survey data for two main

reasons.

The data extract contains personal survey information on 159,277 individuals, each con-

tributing one row to the dataset. For our experiment, we selected a subset of numerical and

categorical attributes: Age, Sex, Race, Marital status, Education status, and Total income.
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Step W1 W2

0 Plot(Income) Plot(Income)
1 Plot(Sex) Plot(Sex)
2 Link(Income, Sex) Link(Income, Sex)
3 Brush(Income, (0,30)) Brush(Income, (0,30))
4 Plot(Race) Plot(Race)
5 Link(Income, Race) Link(Income, Race)
6 Brush(Income, (0,30)) Brush(Income, (0,10))
7 Brush(Income, (0,40)) Brush(Income, (0,30))
8 Brush(Income, (0,60))
9 Brush(Income, (0,80))
10 Brush(Income, (0,90))

Table 6.1: Detail of example workload. Three types of actions (Plot, Link and Brush) are
supported.

Selected data were organized in a tabular format where each row represented information

about an individual.

The workload refers to the sequence of interactions users perform in their exploration

process. To evaluate our framework without a full-fledged user study, we adopt the gen-

erating process of IDEBench[28]. We use a synthetic query sequence generated using a

Markov chain from a pre-defined set of queries and interactions). DashGuard interface sup-

ports three types of action from the front-end. Plot generates a visualization for a univariate

histogram on the corresponding variable and adds a panel to the dashboard. Interactions

stars with users generating plots and populating the dashboard. Then when there are more

than two visualizations available, the user could choose to link any two of them. Linked

visualizations are connected and their values may change together in future interactions.

The third action brush where users could highlight some part of a view and any connected

views will be filtered to only show the highlighted data points. In the workload formatting,

the range stands for the highlighted bins in the histogram. Table 6.1 shows the steps of two

example workloads.

In the experimental evaluation, we execute the example workload using both the naive

approach and DashGuard. For each interaction step, we measure the L2 error between the
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returned noisy query results and the query result on the true data and record the response

time which is the time needed to fulfill the front-end query. Since differentially private

algorithms are randomized, we take the average over 5 random trials and report the average

for each experimental configuration. For every single step of interaction, the system is

allocated a privacy budget ε = 0.1. The naive model always consumes the budget to

get a new measurement, however, DashGuard may decide to rebuild the result from its

measurement cache and save the budget for later.

Figure 6.4 reports the average response time, L2 error, and budget consumption average

over steps for the different workload. Here for DashGuard, we use the bounded inference

engine. As shown in the figure, DashGuard outperforms the naive baseline approach in

terms of accuracy and efficiency on both workloads. And since it avoids unnecessary ε

consumption, the accumulated privacy loss budget usage is also lower than the baseline.

6.3.2 Per-step Breakdown

To better understand how DashGuard provides the benefits, we show a broken-down

comparison of each metric in Figure 6.5. First, it shows how duplicate queries like step 3

and step 6 in W1 (or step 3 and 7 in W2) can be answered with cached results in DashGuard

while still recomputed in the naive model. Linking operations like steps 3 and 5 in both

workloads are fast and do not consume any budget in the baseline model since no actual

computation is happening. At the link step, DashGuard performs lazy precompute and

prepares sufficient measurement for any future queries. Although this causes additional

time and budget consumption at the linking step, the overall average is greatly improved

especially for an interaction-heavy workload.

6.3.3 Comparing Inference Engines

Figure 6.6 shows the accuracy and efficiency trade-off between variations of DashGuard

using different inference engines. Models with prefix DG stands for DashGuard variations

and the postfix indicates the inference engine used. As demonstrated earlier, all variants
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Figure 6.5: Per-step accuracy, response time and cumulative budget consumption compar-
ison.

are in a better position in the accuracy-time space compared to the baseline. DashGuard

without any inference provides the fastest response time but suboptimal accuracy. Using

the bounded optimization inference engine, DashGuard achieves the best accuracy with

slight runtime overhead for both workloads. The standard least-squares engine provides

comparable accuracy and slower runtime compared to the bounded optimization engine.

When enforcing the non-negative constraint, both accuracy and performance decreased

compared to LS. Overall, we choose to use the bounded optimization engine as the default

inference engine but leave the flexibility to change.

6.4 Related Work

There has been a whole line of research on general visual dashboards. However,

much less attention has been allocated to making the dashboard private. Overlook [92]

is a synopsis-based visual dashboard, meaning a one-shot private data summary (i.e., the

synopsis) is generated before later interactions. With synopsis-based approaches, budget
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Figure 6.6: Accuracy and efficiency trade-off between variations of DashGuard (marked
with prefix DG) for two example workloads.

management is easier since any queries issued in the interactions perform on the synop-

sis generated with pre-defined ε. However, usually no single version of the data summary

works for all types of interactions. Without a good assumption about the later interactive

queries, it is hard to guarantee the quality of those queries. The construction of such syn-

opsis usually requires solving complex and expensive optimizations which can get very

time-consuming. Besides, Overlook is only considering interactions within plots but not

across plots like brushing and linking. PSI [32] has a visual interface to communicate the

impact of noise injection using different privacy budgets ε. It is designed for data sharing

rather than interactive data exploratory. VISDPT [41] provides an interface to privately

view two-dimensional user trajectories in a static manner.

6.5 Conclusion

We describe the design and implementation of DashGuard, a private interactive visual

analytic dashboard that makes use of a smart middle layer between the frontend visual

interface and backend privacy engine. The middle layer keeps track of all measurements

taken and automatically decides on good measurements to issue to the back-end engine,

conduct lazy precompute when necessary. After collecting measurements, it conducts in-

ference to resolve inconsistencies. We demonstrate the effectiveness of DashGuard through
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empirical comparisons on the census data for accuracy, budget consumption, and response

time.
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CHAPTER 7

CONCLUSION

In this thesis, we work towards making practical differentially private mechanism de-

sign and deployment easier. We address two main questions: 1) how can we aid pro-

grammers in developing private programs with high utility? and 2) how can we deploy

differentially private algorithms to both static and interactive visual analysis systems which

are widely used across sensitive domains such as health care and civic decision making?

We introduce εKTELO, a programming framework, and system which can be used to

author programs for a variety of statistical tasks that involve answering counting queries.

In εKTELO, programs are described as compositions of reusable modules and automati-

cally satisfy differential privacy. We demonstrate the use of εKTELO by designing new

algorithms offering state-of-the-art accuracy and runtime.

Then we move on to deploying the mechanisms into real-life applications. Specifically.

we focus on visual analytics systems and take deep looks at both static and interactive

visualization. We start by investigating the challenges of deploying differentially private

algorithms in visualization tasks. Specifically, we conduct a study to better understand the

relationship between noise introduced for privacy protection, visual analysis tasks, visu-

alization, and accuracy in static visualizations. We also look at the challenges of dealing

with the inherent uncertainty in private visualizations and propose a solution where only

differences that could be confidently distinguished will be visualized.

Next, with interactive visual analytics, we show how the direct deployment of differen-

tially private algorithms causes both efficiency and accuracy issues and propose a solution

using a middle layer proxy that delegates and processes any front-end queries. Then we
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evaluate it against the naive model of the private interactive dashboard, demonstrating im-

provements in terms of both efficiency and accuracy and privacy budget consumption.
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