
MIXTURE MODELS IN MACHINE LEARNING

A Dissertation Presented

by

SOUMYABRATA PAL

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2022

College of Information and Computer Sciences

c� Copyright by Soumyabrata Pal 2022

All Rights Reserved

MIXTURE MODELS IN MACHINE LEARNING

A Dissertation Presented

by

SOUMYABRATA PAL

Approved as to style and content by:

Arya Mazumdar, Chair

Akshay Krishnamurthy, Member

Barna Saha, Member

Patrick Flaherty, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

DEDICATION

To my wonderful wife Raka and my parents.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my Ph.D. advisor Arya Mazumdar for

his unwavering support and immense guidance throughout the last five and a half

years. I am one of the few students lucky enough to have an advisor who not only

helped me understand how to conduct research but also genuinely cared about me.

He taught me so much during these past years including information theory and

probabilistic methods which forms the basis of this thesis. Arya always has a keen

sense of the broad perspective of the research and the best way to present it to the

general audience which I strive to develop. I wish to carry his teachings and make

him proud in the next phases of my life.

I am thankful to Wasim Huleihel who has become a very close friend of mine

during these years. He patiently helped me understand the art of writing technical

ideas in a beautiful manner. He has always been there for me to guide me and provide

a second pair of eyes whenever I needed them. His breadth of knowledge on the

different problems has always astounded me and continues to inspire me. I am also

grateful to the members of my dissertation committee especially Barna Saha and

Akshay Krishnamurthy who have collaborated with me on a number of projects and

have always tried their best to help me. Over the years, they have provided many

invaluable pieces of advice to me.

At Amherst, I found close friends in Raj, Anil and Ryan. I do miss the weekly

poker games where we had so much fun over the years. They helped me stay sane

during the first few years in a foreign country and never let me feel that I was out of

home. I am indeed indebted to them for their friendship and support. I will cherish

the wonderful memories at Lantern Court Apartments in Amherst.

v

My parents, Malabika and Debabrata were the most supportive parents that one

can wish for. They have always tried to understand the issues I faced and always

supported me in this endeavor. My mother always kept a cool head in the difficult

situations that I faced during the last few years and helped me immensely to cope

with them. Without their unwavering support and love, I could not have completed

this degree.

Finally, all of my accomplishments including the completion of this thesis would

not have been possible without my wife Raka by my side. Each day, I am more grateful

to God that she came into my life and stayed with me. The sacrifices that she had

made for me and the way she always stood by me even at the cost of her own dreams

and aspirations make me realize how lucky I am. We found our first home at Amherst

and then at San Francisco where I feel so proud to see her become the proficient Data

Scientist at Udemy that she deserves to be. She has been my best friend and the

patient listener to all my problems. These last two and a half years in San Francisco

with her have indeed been the best years of my life.

vi

ABSTRACT

MIXTURE MODELS IN MACHINE LEARNING

FEBRUARY 2022

SOUMYABRATA PAL

B.Tech, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

M.S, UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Arya Mazumdar

Modeling with mixtures is a powerful method in the statistical toolkit that can be

used for representing the presence of sub-populations within an overall population.

In many applications ranging from financial models to genetics, a mixture model

is used to fit the data. The primary difficulty in learning mixture models is that

the observed data set does not identify the sub-population to which an individual

observation belongs. Despite being studied for more than a century, the theoretical

guarantees of mixture models remain unknown for several important settings.

In this thesis, we look at three groups of problems. The first part is aimed at

estimating the parameters of a mixture of simple distributions. We ask the following

question: How many samples are necessary and sufficient to learn the latent parameters?

We propose several approaches for this problem that include complex analytic tools

to connect statistical distances between pairs of mixtures with the characteristic

vii

function. We show sufficient sample complexity guarantees for mixtures of popular

distributions (including Gaussian, Poisson and Geometric). For many distributions,

our results provide the first sample complexity guarantees for parameter estimation

in the corresponding mixture. Using these techniques, we also provide improved

lower bounds on the Total Variation distance between Gaussian mixtures with two

components and demonstrate new results in some sequence reconstruction problems.

In the second part, we study Mixtures of Sparse Linear Regressions where the goal

is to learn the best set of linear relationships between the scalar responses (i.e., labels)

and the explanatory variables (i.e., features). We focus on a scenario where a learner

is able to choose the features to get the labels. To tackle the high dimensionality of

data, we further assume that the linear maps are also "sparse", i.e., have only few

prominent features among many. For this setting, we devise algorithms with sub-linear

(as a function of the dimension) sample complexity guarantees that are also robust to

noise.

In the final part, we study Mixtures of Sparse Linear Classifiers in the same setting

as above. Given a set of features and the binary labels, the objective of this task is to

find a set of hyperplanes in the space of features such that for any (feature, label) pair,

there exists a hyperplane in the set that justifies the mapping. We devise efficient

algorithms with sub-linear sample complexity guarantees for learning the unknown

hyperplanes under similar sparsity assumptions as above. To that end, we propose

several novel techniques that include tensor decomposition methods and combinatorial

designs.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xiv

NOTATION . xv

CHAPTER

1. INTRODUCTION . 1

1.1 A Brief History of Mixture models . 4
1.2 Mixtures of Distributions . 6

1.2.1 Parameter learning in mixtures . 6
1.2.2 Support recovery in sparse mixtures . 8
1.2.3 Trace Reconstruction . 10

1.3 Sparse Mixture Models in Experimental Design setting 11

1.3.1 Mixtures of Linear Regressions . 12
1.3.2 Mixtures of Linear Classifiers . 13

1.4 Sparse Mixture models in Unsupervised setting . 15

1.4.1 Mixtures of Linear Regression . 15
1.4.2 Mixtures of Linear Classifiers . 16

2. MIXTURES OF DISTRIBUTIONS . 18

2.1 Introduction . 18
2.2 Our Techniques and Results . 21

ix

2.2.1 Learning Mixtures via Characteristic Functions 24
2.2.2 Learning Mixtures via Moments . 35

2.3 Mixtures of Gaussians with 2 components . 40

2.3.1 Overview of Proofs . 45
2.3.2 Lower Bounds on TV Distance of 1-Dimensional Mixtures 49
2.3.3 Lower Bounds on TV Distance of d -Dimensional Mixtures 54
2.3.4 Learning 1-dimensional mixture with Minimum Distance

estimator . 60
2.3.5 Learning 1-dimensional mixture with Scheffe estimator 62

2.4 Trace Reconstruction . 68

2.4.1 Reduction to Learning Binomial Mixtures . 71
2.4.2 Lower Bound on Learning Binomial Mixtures 75

3. MIXTURES OF SPARSE LINEAR REGRESSIONS 77

3.1 Introduction . 77

3.1.1 Parameter Estimation . 78
3.1.2 Support Recovery . 79

3.2 Parameter Estimation under Grid Assumption . 80

3.2.1 Exact sparse vectors and noiseless samples . 80
3.2.2 Noisy Samples and Sparse Approximation . 86

3.3 Parameter Estimation for two unknown vectors . 96

3.3.1 Our Techniques and Results . 96
3.3.2 Overview of Our Algorithm . 99
3.3.3 Recovering Unknown Means from a Batch 100
3.3.4 Alignment . 107
3.3.5 Proof of Theorem 3.6 . 111
3.3.6 Discussion on Noiseless Setting (� = 0) . 118
3.3.7 ‘Proof of Concept’ Simulations . 119

3.4 Support Recovery . 119

3.4.1 Our Techniques and Results . 119
3.4.2 Detailed Proofs and Algorithms . 132
3.4.3 Computing occ(C, a) . 137
3.4.4 Missing Proofs and Algorithms in computing occ(C, a) 140
3.4.5 Estimating nzcount . 145

x

4. MIXTURES OF SPARSE LINEAR CLASSIFIERS 149

4.1 Introduction . 149
4.2 Our contributions . 154

4.2.1 Support Recovery . 154
4.2.2 Approximate Recovery in Noiseless Setting 156

4.3 Preliminaries . 159
4.4 Detailed Proofs and Algorithms (Support Recovery) 163
4.5 Two-stage Approximate Recovery . 166
4.6 Single stage process for Approximate recovery . 171
4.7 Relaxing Separability Assumption for two unknown vectors 175

4.7.1 Case 1: Different Support . 177
4.7.2 Case 2: Same Support . 178

4.8 Experiments . 184

4.8.1 Simulations . 185
4.8.2 Movie Lens . 186

5. SUPPORT RECOVERY IN SPARSE MIXTURE MODELS 188

5.1 Introduction . 188

5.1.1 Notations . 189
5.1.2 Formal Problem Statements . 190
5.1.3 Discussion on Our Results and Other Related Works 193

5.2 Preliminaries: Useful Results in Subset Identification 197
5.3 Our Results and Techniques . 202

5.3.1 Mixtures of Distributions . 202
5.3.2 Mixtures of Linear Classifiers . 209
5.3.3 Mixtures of Linear Regression . 211

5.4 Detailed Algorithms and Proofs . 215

5.4.1 Mixtures of Distributions . 215
5.4.2 Mixtures of Linear Classifiers . 225
5.4.3 Mixtures of Linear Regression . 227

6. CONCLUSION . 234

xi

APPENDICES

A. MISSING PROOFS IN CHAPTER 2 . 237
B. MISSING PROOFS IN CHAPTER 3 . 250
C. MISSING PROOFS IN CHAPTER 5 . 270
D. USEFUL THEORETICAL TOOLS . 280

BIBLIOGRAPHY . 286

xii

LIST OF TABLES

Table Page

2.1 Overview of our results. Results are given for uniform mixtures of k
different components but some can be extended to non-uniform
mixtures. Note that for rows 2, 4, 7, and 8, k does not appear.
This is because k  N and other terms dominate. 23

xiii

LIST OF FIGURES

Figure Page

1.1 Plot of forehead to body length data on 1000 crabs and of the fitted one
component normal distribution (dashed line) and two-component (solid
line) normal mixture models (Image taken from [115]). 5

2.1 Layout of the means for Theorem 2.9. The means can be ordered in
different ways, which affects the analysis of lower bounding
|eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1 | in Lemma 2.9. For a fixed t, the order

affects (i) whether the real or imaginary part of
eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1 has large modulus and (ii) whether the

terms from µ
0

and µ
1

or µ0
0

and µ0
1

dominate. 50

3.1 Simulation results of our techniques. 120

4.1 Recover the two classifiers given red and blue dots. How many such points
do we require in order to recover both �

1 and �

2? 152

4.2 Support Recovery for ` = 2, k = 5 and n = 1000, 2000, 3000. 185

xiv

NOTATION

The following notations are used throughout the proposal unless otherwise specified.

• Z is used to denote the set of integers.

• R denotes the set of real numbers.

• N denotes the natural numbers (positive integers).

• [n] is used to denote the set {1, 2, . . . , n} for any n 2 N unless otherwise specified.

• A denotes a matrix with rows Ai and entries Ai,j.

• O denotes an oracle function.

• G = (V , E) denotes a graph G with vertex set V and edge set E .

• v denotes a vector with entries vi.

• N (µ, �2

) is the normal distribution with mean µ and variance �2.

• Ber(p) is the Bernoulli distribution with parameter p.

• , reads “is defined to be equal to.”

• |S| is the cardinality of the set S.

• supp(v) is the support of v, {i : vi 6= 0}.

• M denotes a mixture of distributions

• For any positive integer p, ||x||p , (

Pn
i=1

|xp
i |)

1/p denotes the `p norm. The `
0

norm ||x||
0

denotes the number of non-zero entries in the vector x.

xv

CHAPTER 1

INTRODUCTION

In the modern world, data is ubiquitous and is becoming more easily available

each day. A vast number of applications collect data to extract important insights and

subsequently design systems that are based on such insights. Unfortunately, much of

this data is unstructured, high dimensional, corrupted, or incomplete and it seems

impossible to process such data without carefully designing rich and expressive models

that incorporate prior structural assumptions and capture inherent properties of real-

world datasets. One approach for designing efficient algorithms for high dimensional

complex datasets is by designing generative models of different forms of data and

exploiting many natural structural properties such as sparsity, presence of geometric

motifs, and underlying similarity relations. Such structures in the data either occur

naturally in many applications (for instance, image and speech signals are sparse) or

are often embedded into data via pre-processing (mapping data points into a feature

vector space induces a geometric structure). In this thesis, we model the observed

data by a mixture of finite functions from a class of “simple” functions. Canonical

examples of such models can be mixtures of some well-known distribution, mixtures

of linear regressions, and mixture of linear classifiers. Such models are extremely rich

and expressive albeit having a small number of parameters and allow for rigorous

theoretical treatment. Finite mixture models have provided a sound mathematically

rigorous approach to the statistical modeling of a wide variety of random phenomena.

As finite mixture models are quite flexible and can be used to model complex data,

they have been proved to be extremely useful and have continued to receive significant

1

attention over the last few years from both a theoretical and practical point of view.

Finite mixture models have been successfully used for modeling data in many different

fields including astrology, genetics, medicine, psychiatry, economics, marketing, and

engineering among many others in the biological, physical, and social sciences. Finite

mixture models are especially successful in modeling datasets having a group structure

or the presence of a sub-population within the overall population. In this scenario,

finite mixture models are useful in assessing the error rates (sensitivity and specificity)

of diagnostic and screening procedures in the absence of a gold standard (see [115],

Chapter 1). Furthermore, any continuous distribution can be approximated arbitrarily

well by a finite mixture of normal densities with common variance (or co-variance

matrix in the multivariate setting); mixture models provide a convenient framework

for modeling datasets with unknown distributional shapes. A mixture model can

model quite complex distributions through an appropriate choice of its components

to represent accurately the local areas of support of the true distribution. Often, it

can handle situations where a single parametric family cannot provide a satisfactory

model for local variations in the observed data. Such flexibility of mixture models is

useful for theoretical analysis of neural networks as well [20]. As an example, consider

neural networks formed by using radial basis functions. In this setting, the input data

can be modeled by a normal mixture. Subsequently, the second layer weights of the

neural network can be estimated from the input data and their known outputs using

maximum likelihood. In this thesis, we study many different statistical reconstruction

problems under the big umbrella of mixture models in machine learning that can be

categorized into two distinct frameworks. First, in the experimental design setting,

we study the framework when we can carefully choose the data (design the covariates)

or obtain side information by querying from an oracle. The presence of the oracle

is justified in the recent surge of interest in crowdsourcing where it is possible to

make queries to the crowd-worker and extract relevant responses. This framework is

2

extremely useful since it is very difficult to incorporate human analysis in an algorithm

otherwise. The oracle can also be inherently present in a recommendation system or

in an advertisement engine where the query corresponds to the recommended item or

advertisement and the response corresponds to whether the user consumed the item

or not. This framework, which is similar to the well-known active learning setting

(see [126]), designs a model by utilizing responses from a small amount of carefully

chosen data. For regression or classification problems, we can query for the label of a

carefully designed feature vector. However, these queries are expensive since they cost

time and money and therefore a natural objective is to minimize the number of queries

to the oracle and still fulfill the objective. Secondly, in the unsupervised setting, we

study the framework where we use a parameterized family of mixture models to fit

the dataset under the assumption that each data point in the dataset is generated

independently according to some distribution belonging to the parameterized family.

This framework includes mixtures of simple distributions where, given a latent random

variable denoting a particular component, each data point is sampled from a simple

distribution. Furthermore, this framework also includes mixtures of linear regression

and mixtures of linear classifiers where each data point consists of a (feature, label)

pair; the feature is sampled from some multivariate distribution while the response

given the feature is a mixture of simple functions of the feature. Finally, we also

mention the supervised setting although it is not studied in this thesis. In this setting,

the goal is to design efficient algorithms that minimize some loss function while fitting

a parameterized family of mixture models to some dataset that is not necessarily

generated according to some member of the family. The objective is to understand

the performance of the fitted model to unseen data. We believe that the supervised

setting for mixture models is an important direction to study in the future and can

have many far-reaching practical applications.

3

1.1 A Brief History of Mixture models

It is believed that the first use and analysis of mixture models to fit a dataset

was over a century ago by Karl Pearson, a luminary biometrician. In the now-classic

paper [118], Pearson fitted a mixture of two normal probability density functions

with different means, variances, and component weights to a dataset provided by

his friend Weldon [143, 144]. The latter paper might have been the first-ever to

advocate statistical analysis as a primary method for studying biological problems;

see Stigler [132], Chapter 8 and Tarter and Lock [136] for a more detailed description.

The data analyzed by Pearson [118] consisted of measurements on the ratio of the

forehead to the body length of 1000 crabs sampled from the Bay of Naples. These

measurements recorded in the form of 29 intervals are displayed in Figure 1.1 along

with the plot of the density of a single normal distribution fitted to that dataset.

Waldon [143] speculated that the asymmetry in the histogram of this dataset is an

indicator of the fact that the Naples crab population contains two sub-populations.

Subsequently, Weldon asked his friend Pearson for help as Pearson was trained more

in statistics. Pearson’s [118] mixture model approach suggested as well that there

were two subspecies present. Figure 1.1 also plots the density of the two-component

normal mixture as obtained by using maximum likelihood to fit this model to the

data in their original interval form. Pearson [118] used the method of moments to

fit the mixture model to the mid-points of the intervals which gives a fit very similar

to the maximum likelihood approach. It can be seen from Figure 1.1 that a mixture

of two normal distributions with components having unequal variances can be used

to model the skewness of the data; on the other hand, a single normal distribution

was inadequate for modeling such a dataset. Pearson [118] obtained his parameter

estimates as the solution of ninth-degree polynomial which was truly a heroic task a

century ago. Not surprisingly, various attempts were made over the ensuing years to

4

simplify Pearson’s [118] moments-based approach to the fitting of a normal mixture

model.

Figure 1.1: Plot of forehead to body length data on 1000 crabs and of the fitted one
component normal distribution (dashed line) and two-component (solid line) normal mixture
models (Image taken from [115]).

Although mixture models were first studied more than a century ago, considerable

advances have been made only in the last couple of decades. Even with the advent of

high-speed computers, there was significant reluctance in fitting mixture models to

datasets comprising more than one dimension due to a lack of understanding of issues

that arise with such fitting namely the presence of multiple maxima in the likelihood

function and the likelihood function being unbounded (for example in a mixture of

normals with unequal covariance matrices). However, an increased understanding

over the years of these issues led to significantly higher adoption of mixture models in

practice. In the 1960s, the fitting of mixture models by maximum likelihood have been

studied in several papers including the seminal papers by Day [44] and Wolfe [145].

In 1977, the seminal paper of Dempster, Laird and Rubin [50] on the EM algorithm

highly stimulated interest in the application of mixture models to fit heterogeneous

5

data. Since then, as Aitkin [5] noted, most applications of mixture models in practice

were using the EM algorithm. Despite such a widescale adoption of the EM algorithm,

very little was known about theoretical guarantees of fitting a mixture model until

recently. Starting with the seminal work of [38], computational and statistical aspects of

learning mixture models have been the subject of intense investigation in the theoretical

computer science and statistics communities [3, 88, 18, 9, 114, 63, 34, 2, 81, 55, 95, 72].

Recently in [6, 107, 125, 32, 155], several papers used tensors to provide theoretical

guarantees on parameter estimation in several latent variable models. Even more

recently, in a parallel line of work, several papers [13, 40, 150, 101, 100] have sought

to provide theoretical guarantees for the EM algorithm including local and global

convergence results. Despite such advances, many theoretical questions on mixture

models remain unanswered. Finally, in the statistical literature, for more details, we

refer the reader to several well-written books on mixture models such as Everitt [61],

Titterington et al. [137], McLachlan & Basford [111], Lindsay [105], Bohning [23]

and McLachlan & Peel [115] among many others. In addition, mixture models are

addressed in several books involving classification, machine learning, and other fields

in multivariate analysis.

1.2 Mixtures of Distributions

1.2.1 Parameter learning in mixtures

In Chapter 2, we study sample complexity guarantees to reconstruct a mixture

of simple canonical distributions. In this literature, there are two flavors of result:

(1) parameter estimation, where the goal is to identify the mixing weights and the

parameters of each component from samples, and (2) density estimation or PAC-

learning, where the goal is simply to find a distribution that is close in some distance

(e.g., TV distance) to the data-generating mechanism. Density estimation can be

further subdivided into proper and improper learning approaches depending on whether

6

the algorithm outputs a distribution from the given mixture family or not. These

three guarantees are quite different. Apart from Gaussian mixtures, where all types of

results exist, prior work for other mixture families largely focuses on density estimation,

and very little is known for parameter estimation outside of Gaussian mixture models.

In the first part of this chapter, we focus on parameter estimation and provide two

new approaches, both of which apply to several mixture families. We provide results

on the exact estimation of the parameters under the assumption that the unknown

parameters lie on an integer lattice. In the second part of this chapter, we specifically

focus on mixtures of Gaussians with two components and shared component variance.

Note that tight bounds are known for the total variation distance between single

Gaussians; however, they have only recently been derived as closed-form functions of

the distribution parameters [16, 52]. The functional form of the TV distance bound is

often much more useful in practice because it can be directly evaluated based on only

the means and covariances of the distribution. This has opened up the door for new

applications to a variety of areas, such as analyzing ReLU networks [146], distribution

learning [10, 12], private distribution testing [28, 31], and average-case reductions [27].

Inspired by the wealth of applications for single Gaussian total variation bounds,

we investigate the possibility of deriving analogous results for mixtures with two

components. As our next contribution, we complement the single Gaussian results

and derive tight lower bounds for pairs of mixtures containing two equally weighted

Gaussians with shared variance. We also present our results in a closed form in terms

of the gap between the component means and certain statistics of the covariance

matrix. The total variation distance between two distributions can be upper bounded

by other distances/divergences (e.g., KL divergence, Hellinger distance) that are easier

to analyze. In contrast, it is a key challenge to develop ways to lower bound the

total variation distance. The shared variance case is important because it presents

some of the key difficulties in parameter estimation and is widely studied [41, 147].

7

For example, mean estimation with shared variance serves as a model for the sensor

location estimation problem in wireless or physical networks [94, 106, 138]. As a

consequence of these new bounds, we study estimating the means of the underlying

components with minimal samples in one dimension. We also design and analyze a

new, polynomial-time estimation algorithm. Our sample complexity results match

the guarantees provided by the spectral estimator [149] and is also robust to the

assumption that the samples are generated from a member of the mixture model

family. Finally, the literature on theoretical guarantees on mixtures of distributions is

quite large, and we have just referred to a sample of the most relevant chapters here.

A bigger overview on learning distributions can be found in the recent monographs

such as [113, 53].

1.2.2 Support recovery in sparse mixtures

In Chapter 5, we study the sample complexity of learning the support of a mixture

of distributions having sparse latent parameters. Most high dimensional datasets have

sparse parameters and sparsity is a natural constraint on the set of parameters to

reduce the effective dimension of the space of solutions to devise efficient algorithms.

In such a setting, support recovery of the latent parameter vectors is often the first step

towards parameter estimation. Sparsity has been considered in the context of mixtures

in [139, 7, 11], where it is assumed only a few dimensions of the component means are

relevant for de-mixing. In this paper, we considered a slightly different model. We

assume the means themselves are sparse. The former problem can be reduced to our

setting if one of the component means is known. Based on the method of moments,

we provide a general framework to learn the supports of the latent parameter vectors

in mixture of simple distributions that satisfies the following assumption: moments of

the distribution of each coordinate can be described as a polynomial in the component

parameters. The authors in [18] showed (see Table 2 in [18]) that most common

8

distributions including Gaussians, Uniform distribution, Poisson, Laplace satisfy this

assumption. Therefore our results in this section are not only applicable to many

canonical settings but also makes progress towards quantifying the sufficient number

of moments in the following general problem:

Consider L random vectors v1,v2, . . . ,vL 2 Rd such that each of them are k-sparse

i.e. ||vi||
0

 k for all i 2 [L]. Suppose we obtain samples of a random vector x 2 Rd

such that given a random variable t sampled uniformly from the set {1, 2, . . . , L},

each of its d co-ordinates (xi | t = j) are independently distributed according to a

distribution D(✓) with parameter ✓ = v

j
i . Our objective is to use minimum number of

samples to recover the support of all the unknown vectors. Below, we provide a few

examples of the distribution D and the corresponding unknown parameter:

1. D(✓) can be a Gaussian distribution with mean ✓. This setting corresponds

to a mixture of high-dimensional Gaussians with sparse means and identity

covariance.

2. D(✓) can be a uniform distribution with range [✓, b] for a fixed and known b.

3. D(✓) can be a Poisson distribution with mean ✓.

An alternate approach to the support recovery problem is to first recover the union

of support of the unknown parameters and then apply known parameter estimation

guarantees to identify the support of each of the unknown vectors after reducing

the dimension of the problem. Note that this approach crucially requires parameter

estimation guarantees for the corresponding family of mixtures which is a significantly

more difficult objective. To the best of our knowledge, most constructive sample

complexity guarantees for parameter estimation in mixture models without separability

assumptions correspond to mixtures of Gaussians [88, 18, 114, 72, 64, 77, 108, 76].

However, most known results correspond to mixtures of Gaussians with two components.

The only known results for parameter estimation in mixtures of Gaussians with more

9

than 2 components is [114] but as we describe later, using the alternate approach

with the guarantees in [114] results in a logarithmic dependence on the latent space

dimension and polynomial dependence on the sparsity which is undesirable in this

setting. On the contrary, our sample complexity guarantees only scale logarithmically

with the dimension and is essentially independent of the sparsity (for constant L) which

is a significant improvement over the alternate approach. For other distributions,

[18, 99] studied parameter estimation under the same moment-based assumption

that we use. However, [18] uses non-constructive arguments from algebraic geometry

because of which, their results did not include bounds on the sufficient number of

moments for learning the parameters in a mixture model. In [99], the authors resolve

this question to a certain extent for these aforementioned families of mixture models

as they quantify the sufficient number of moments for parameter estimation under the

restrictive assumption that the latent parameters lie on an integer lattice. Therefore,

our results for these distributions form the first guarantees for support recovery.

1.2.3 Trace Reconstruction

We study the sparse trace reconstruction problem in Chapter 2. The trace re-

construction problem was first proposed by Batu et al. [17] where the goal is to

reconstruct an unknown string x 2 {0, 1}n given a set of random subsequences of x.

Each subsequence, or “trace", is generated by passing x through the deletion channel

in which each entry of x is deleted independently with probability p. The locations of

the deletions are not known; if they were, the channel would be an erasure channel.

The central question is to find how many traces are required to exactly reconstruct

x with high probability. This intriguing problem has attracted significant attention

from a large number of researchers [89, 141, 17, 80, 79, 119, 75, 116, 45, 110, 43, 36].

In a recent breakthrough, De et al. [45] and Nazarov and Peres [116] independently

showed that for the general problem i.e. when k = n, exp(O((n/q)1/3)) traces suffice

10

where q = 1 � p. This bound is achieved by a mean-based algorithm, which means

that the only information used is the fraction of traces that have a 1 in each position.

While exp(O((n/q)1/3)) is known to be optimal amongst mean-based algorithms, the

best algorithm-independent lower bound is the much weaker ⌦(n5/4/ log n) [78]. Many

variants of the problem have also been considered including: (1) larger alphabets and

(2) an average case analysis where x is drawn uniformly from {0, 1}n. Larger alphabets

are only easier than the binary case since we can encode the alphabet in binary, e.g.,

by mapping a single character to 1 and the rest to 0 and repeating for all characters.

In the average case analysis, the state-of-the-art result is that exp(O(log

1/3
(n))) traces

suffice⇤, whereas ⌦(log9/4 n/
p
log log n) traces are necessary [75, 79, 78]. Very recently,

and concurrent with our work, other variants have been studied including a) where

the bits of x are associated with nodes of a tree whose topology determines the

distribution of traces generated [43] and b) where x is a codeword from a code with

o(n) redundancy [36].

1.3 Sparse Mixture Models in Experimental Design setting

As discussed previously, in the experimental design setting, the learning algorithm

has access to an oracle and can specify the covariates or the features for which the

response is obtained from the oracle. The objective of this framework is to learn

the latent parameters of the problem by using the minimum number of designed

features (also called sensing vectors) and their corresponding responses (also called

samples). Such a setting can arise naturally in recommendation systems where the

recommending engine represents the learning algorithm and the tastes of any user

can be modeled by an unknown parameter vector. The task of the recommendation

engine is to learn the parameters representing the user’s tastes with minimum number

⇤p is assumed to be constant in that work.

11

of recommendations so that it can provide personalized recommendations to the user.

When the same account is used by a family or a group of users, the recommendation

engine cannot tag the purchase history/ reviews to a particular user; subsequently, we

can model this setting by a mixture model. Finally, we also impose the constraint

of sparsity on the latent parameters as most high dimensional parameter vectors are

naturally sparse. In a movie recommendation system, for example, it is expected that

each user only likes a few particular genres among many available. It is interesting

that Städler et al. [131] argued to impose sparsity on the solutions, implying that each

linear function depends on only a small number of variables. In this paper we are

concerned with exactly this same problem.

1.3.1 Mixtures of Linear Regressions

Learning mixtures of linear regressions is a natural generalization of the basic linear

regression problem. In the first part of Chapter 3, the goal is to learn the best linear

relationship between the scalar responses (i.e., labels) and the explanatory variables

(i.e., features). In the generalization, each scalar response is stochastically generated

by picking a function uniformly from a set of L unknown linear functions, evaluating

this function on the explanatory variables, and possibly adding noise; the goal is to

learn the set of L unknown linear functions. In the second part of Chapter 3, we study

the problem of support recovery where the goal is to recover the support (positions of

the non-zero coordinates) of the L unknown linear functions from minimum number of

linear measurements. The problem was introduced by De Veaux [47] over thirty years

ago and has recently attracted growing interest [32, 62, 131, 140, 151, 153]. Recent

work focuses on a query-based scenario in which the input to the randomly chosen

linear function can be specified by the learner. The sparse setting, in which each linear

function depends on only a small number of variables, was recently considered by Yin et

al. [153], and can be viewed as a generalization of the well-studied compressed sensing

12

problem [30, 57]. The problem has numerous applications in modeling heterogeneous

data arising in medical applications, behavioral health, and music perception [153].

1.3.2 Mixtures of Linear Classifiers

One of the first and most basic tasks of machine learning is to train a binary

linear classifier. Given a set of explanatory variables (features) and binary responses

(labels), the objective of this task is to find the hyperplane in the space of features

that best separates the variables according to their responses. In Chapter 4, we

consider a natural generalization of this problem and model a classification task as

a mixture of L components. In this generalization, each response is stochastically

generated by picking a hyperplane uniformly from the set of L unknown hyperplanes

and then returning the side of that hyperplane the feature vector lies. The goal is to

learn all of these L hyperplanes as accurately as possible, using the least number of

responses. As in Chapter 3, we also study the setting where the goal is to learn the

supports of all the normals to these hyperplanes. This can be termed as a mixture of

binary linear classifiers [134]. A similar mixture of simple machine learning models has

been around for at least the last thirty years [47] with a mixture of linear regression

models being the most studied ones [35, 83, 91, 127, 130, 142, 152, 157]. Models

of this type are pretty good function approximators [19, 86] and have numerous

applications in modeling heterogeneous settings such as machine translation [104],

behavioral health [49], medicine [21], object recognition [121] etc. While algorithms

for learning the parameters of a mixture of linear regressions are solidly grounded

(such as tensor decomposition based learning algorithms of [32]), in many of the

above applications the labels are discrete categorical data, and therefore a mixture

of classifiers is a better model than a mixture of regressions. To the best of our

knowledge, [134] first rigorously studied a mixture of linear classifiers and provided

polynomial time algorithm to approximate the subspace spanned by the component

13

classifiers (hyperplane-normals) as well as a prediction algorithm that gives a feature

and label, correctly predicts the component used. In this chapter we study a related but

different problem: the sample complexity of learning all the component hyperplanes.

Our model also differs from [134] where the component responses are ‘smoothened

out’. Here the term sample complexity is used with a slightly generalized meaning than

traditional learning theory - as we explain next and then switch to the term query

complexity instead. We assume while queried with a point (vector), an oracle randomly

chooses one of the L binary classifiers and then returns an answer according to what

was chosen. For most of this chapter, we concentrate on recovering ‘sparse’ linear

classifiers, which implies that each of the classifiers uses only a few of the explanatory

variables. This setting is in the spirit of the well-studied 1-bit compressed sensing

(1bCS) problem. In 1-bit compressed sensing, linear measurements of a sparse vector

are quantized to only 1 bit, e.g. indicating whether the measurement outcome is

positive or not, and the task is to recover the vector up to a prescribed Euclidean

error with a minimum number of measurements. An overwhelming majority of the

literature focuses on the nonadaptive setting for the problem [1, 4, 65, 71, 85, 120].

Also, a large portion of the literature concentrates on learning only the support of the

sparse vector from the 1-bit measurements [1, 71].

It was shown in [85] that O(

k
✏
log(

n
✏
)) Gaussian queries† suffice to approximately

(to the Euclidean precision ✏) recover an unknown k-sparse vector � using 1-bit

measurements. Given the labels of the query vectors, one recovers � by finding a

k-sparse vector that is consistent with all the labels. If we consider enough queries,

then the obtained solution is guaranteed to be close to the actual underlying vector.

[1] studied a two-step recovery process, where in the first step, they use queries

corresponding to the rows of a special matrix, known as Robust Union Free Family

†
all coordinates of the query vector are sampled independently from the standard Gaussian

distribution

14

(RUFF), to recover the support of the unknown vector � and then use this support

information to approximately recover � using an additional ˜O(

k
✏
) Gaussian queries.

Although the recovery algorithm works in two steps, the queries are non-adaptive.

1.4 Sparse Mixture models in Unsupervised setting

In Chapter 5, we investigate the support recovery problem in the setting when

the latent parameters of a mixture model are sparse. In the unsupervised setting,

we assume that we obtain samples in the form of (feature, label) tuples where the

features are generated according to a high dimensional Gaussian with zero mean and

identity covariance, and the response given the feature is modeled by a mixture of

simple functions with unknown sparse parameters. In this setting, we provide several

techniques for obtaining support recovery guarantees including a general framework

using low-rank tensor decomposition of integral tensors in different mixture models.

While low-rank tensor decomposition is a popular method [6, 125, 32] for providing

parameter estimation guarantees in mixture models, the theoretical results depend

on the minimum eigenvalue of the set of the latent parameters; in other words, if

the latent parameters are linearly dependent, vanilla low rank tensor decomposition

fail to recover the parameters. For the support recovery problem, our tensor-based

approach does not suffer from this approach as we can crucially use the property that

the tensors have integral entries for low-rank decomposition. We believe that this

framework is quite general and powerful and can be extended to many other mixture

models as well.

1.4.1 Mixtures of Linear Regression

In the mixture of sparse linear regression (MLR) problem, the response given

the feature is modeled by a mixture of linear functions of the feature with sparse

parameters. For the support recovery problem in the sparse MLR setting, we provide a

15

suite of results under different assumptions namely 1) the unknown sparse parameters

are binary 2) the unknown sparse parameters have the same sign 3) the unknown

sparse parameters are distributed according to a Gaussian. MLR is a popular mixture

model and has many applications due to its effectiveness in capturing non-linearity

and its model simplicity [47, 62]. It has been a recent theoretical topic for analyzing

benchmark algorithms for non-convex optimization [32, 92, 35]. There has been a

large body of work studying the theoretical guarantees in this setting in recent years

[6, 125, 152, 156, 13, 92] culminating with [103] where the authors proved sample

complexity guarantees for parameter estimation which is linear is the dimension and

is optimal in its dependence on the dimension. For the support recovery problem, one

alternative approach is to first find the union of support of the unknown parameters

and then apply the parameter estimation guarantees to recovery the support of each

of the unknown linear functions. Compared to the alternate approach outlined above,

we obtain sample complexity guarantees that have significantly better dependencies

on many parameters.

1.4.2 Mixtures of Linear Classifiers

Unlike the MLR and MD (mixtures of distributions) setting, mixture of linear

classifiers (MLC) is far less studied. In the sparse MLC setting, the response given the

feature is modeled by the mixture of the sign of the linear functions of the feature where

the unknown linear functions have sparse parameters. MLC is suitable for modeling

datasets where the response is binary and the dataset contains sub-groups exhibiting

different behavior. MLC is significantly more difficult to analyze than MLR since only

the sign of the linear function of the feature is revealed. We study the support recovery

problem in sparse MLC under the setting that all the parameters of the unknown

vectors are either non-negative or they are non-positive. Although this assumption

might seem restrictive, note that theoretical work in the MLC setting is extremely

16

limited. To the best of our knowledge, there are only two relevant papers [134, 125]

that have studied this problem theoretically in our setting. [134] does not make any

assumptions on sparsity and provides an algorithm for recovering the subspace in

which the parameter vectors corresponding to the unknown linear functions lie. In

contrast, support recovery is a different objective and hence is incomparable to the

subspace recovery guarantees. The second work, [125] uses tensors to resolve this

issue and provides sample complexity guarantees for learning the parameter vectors

but their sample complexity is inversely proportional to the square of the minimum

eigenvalue of the matrix comprising the unknown parameter vectors as columns. This

is an unwanted dependence as it implies that if the parameter vectors are linearly

dependent, then the algorithm will require infinite samples to recover the parameter

vectors. Note that our support recovery guarantees do not have any such assumption on

the parameters. Moreover, unlike the MD and MLR setting, it is not evident in MLC

how to recover the union of support of the unknown sparse vectors. Hence the sample

complexity obtained by applying the results in [125] directly will lead to a polynomial

dependence on the dimension of the latent space which is undesirable (ideally, we

require a logarithmic dependence on the latent space dimension). Our results exhibit

such dependence on the dimension and also do not assume linear independence of the

parameter vectors. Therefore, our results make important progress towards further

understanding of theoretical properties of mixtures where the response is a mixture of

non-linear functions of the feature.

17

CHAPTER 2

MIXTURES OF DISTRIBUTIONS

2.1 Introduction

In this chapter, we study sample complexity guarantees of mixtures of simple

canonical distributions. Mixtures of distributions are a very rich and powerful model to

fit the data. This content of this chapter is divided into two parts. In the first part, we

demonstrate two different approaches to obtain our main results. Our first approach is

analytic in nature and yields new sample complexity guarantees for univariate mixture

models including Gaussian, Binomial, and Poisson. The variational distance (a.k.a.,

the total variation (TV) distance) between two distributions f, f 0 with same sample

space ⌦ and sigma algebra S is defined as follows:

||f � f 0||TV , sup

A2S

⇣

f(A)� f 0
(A)

⌘

.

The minimum pairwise TV distance of a class of distribution appears naturally in

the expressions of statistical error rates related to the class, most notably in the

Neyman-Pearson approach to hypothesis testing [102, 117], as well as in the sample

complexity results in density estimation [51]. In particular, in these applications, a

lower bound on the total variation distance between two candidate distributions is

an essential part of the algorithm design and analysis. Our key technical insight is

that we can relate the total variation distance between two candidate mixtures to a

certain Littlewood polynomial, and then use complex analytic techniques to establish

separation in TV-distance. With this separation result, we can use density estimation

18

techniques (specifically proper learning techniques) to find a candidate mixture that

is close in TV-distance to the data generating mechanism. The results we obtain via

this approach are labeled as “analytic" in Table 2.1. This approach has recently led to

important advances in the trace reconstruction and population recovery problems; see

work by [45], [116], and [46].

Our second approach for parameter estimation in general mixtures is based on the

method of moments, a popular approach for learning Gaussian mixtures, and is more

algebraic. Roughly, these algorithms are based on expressing moments of the mixture

model as polynomials of the component parameters, and then solving a polynomial

system using estimated moments. This approach has been studied in some generality

by [18] who show that it can succeed for a large class of mixture models. However, as

their method uses non-constructive arguments from algebraic geometry it cannot be

used to bound how many moments are required, which is essential in determining the

sample complexity; see a discussion in [113, Section 7.6]. In contrast, our approach

does yield bounds on how many moments suffice and can be seen as a quantified

version of the results in [18]. The results we obtain via this approach are labeled as

“algebraic” in Table 2.1. The first set of results of this chapter can be found in more

details in [99].

In the second part of this chapter, we specifically focus on mixtures of Gaussians

with two components and shared component variance. Again, our main approach

considers obtaining lower bounds on the total variation distance by examining the

characteristic function of the mixture. Although this connection has been shown in the

first set of results in this chapter, it required strict assumptions on the mixtures having

discrete parameter values, i.e., Gaussians with means that belong to a scaled integer

lattice. The drawback here is that the results present in Table 2.1 only applies to a very

restricted set of Gaussian mixtures, and it is not clear how to generalize the previous

techniques to non-integer means. As a first step towards that generalization, we analyze

19

unrestricted two-component one-dimensional mixtures by applying a novel and more

direct analysis of the characteristic function. Then, in the high-dimensional setting,

we obtain a new total variation distance lower bound by projecting and then using

our one-dimensional result. By carefully choosing and analyzing the one-dimensional

projection (which depends on the mixtures), we exhibit nearly-tight bounds on the

TV distance of d-dimensional mixtures for any d � 1. In one dimension, we also our

lower bounds on total variation distance to provide sample complexity guarantees for

parameter estimation.

In the third part of this chapter, we study the sparse trace reconstruction problem

where the goal is to reconstruct a sparse unknown string x 2 {0, 1}n given a set of

random subsequences of x. Each subsequence, or “trace", is generated by passing x

through the deletion channel in which each entry of x is deleted independently with

probability p. The locations of the deletions are not known; if they were, the channel

would be an erasure channel. The central question is to find how many traces are

required to exactly reconstruct x with high probability. Using results for parameter

estimation in binomial mixtures proved in the first part of this chapter, we show new

guarantees in this problem. The results in this chapter can be found in [99], [42] and

[98].

Organization: The rest of the chapter is organized as follows: In Section 2.2, we

provide an overview of the two different general frameworks that we propose namely

1) using complex analysis (Section 2.2.1) and 2) method of moments (Section 2.2.2)

for estimating parameters for many different mixtures of canonical distributions. In

Section 2.3, we focus on mixtures of Gaussians with two components and shared

component co-variance. In particular, in Section 2.3.1, we provide an overview of

the proofs. In Section 2.3.2 and 2.3.3, we provide detailed proofs of lower bounds on

the total variation distance between two mixtures in the one-dimensional and high-

dimensional setting respectively. In Section 2.3.4, we provide details on parameter

20

estimation using our TV distance lower bounds via the minimum distance estimator

and in Section 2.3.5, we provide efficient algorithms for parameter estimation via the

Scheffe estimator. Finally, in Section 2.4, we introduce and provide results for the

problem of sparse trace reconstruction. All the missing proofs in this chapter can be

found in the Appendix in Chapter A.

2.2 Our Techniques and Results

As mentioned, an overview of our sample complexity results are displayed in

Table 2.1, where in all cases we consider a uniform mixture of k distributions. Our

guarantees are for exact parameter estimation, under the assumption that the mixture

parameters are discretized to a particular resolution, given in the third column of the

table. Theorem statements are given in the sequel.

At first glance the guarantees seem weak, since they all involve exponential

dependence in problem parameters. However, except for the Gaussian case, these

results are the first guarantees for parameter estimation for these distributions. All

prior results we are aware of consider density estimation [33, 63].

For the mixtures of discrete distributions, such as binomial and negative binomial

with shared trial parameter, or Poisson/geometric/chi-squared mixtures with certain

discretizations, it seems like the dependence of sample complexity on the number of

components k is polynomial (see Table 2.1). Note that for these examples k  N , the

upper bounds on parameter values. Therefore the actual dependence on k can still be

interpreted as exponential. The results are especially interesting when k is large and

possibly growing with N .

For Gaussian mixtures, the most interesting aspect of our bound is the polynomial

dependence on the number of components k (first row of Table 2.1). In our setting

and taking � = 1, the result of [114] is applicable, and it yields ✏�O(k) sample

complexity, which is incomparable to our k3

exp(O(✏�2/3
)) bound. Note that our

21

result avoids an exponential dependence in k, trading this off for an exponential

dependence on the discretization/accuracy parameter ✏.⇤ Other results for Gaussian

mixtures either 1) consider density estimation [39, 63], which is qualitatively quite

different from parameter estimation, 2) treat k as constant [72, 88], or 3) focus on

the high dimensional setting and require separation assumptions (see for example [54]

and [113]).

As such, our results reflect a new sample complexity tradeoff for parameter estima-

tion in Gaussian mixtures.

As another note, using ideas from [116, 45], one can show that the analytic result

for Binomial mixtures is optimal. This raises the question of whether the other results

are also optimal or is learning a Binomial mixture intrinsically harder than learning,

e.g., a Poisson or Gaussian mixture?

As a final remark, our assumption that parameters are discretized is related to

separation conditions that appear in the literature on learning Gaussian mixtures.

However, our approach does not seem to yield guarantees when the parameters do

not exactly fall into the discretization. In the second part of this chapter, we resolve

this shortcoming for the specific case of Gaussian mixtures with two components and

share component co-variance matrix.

Our techniques: To establish these results, we take two loosely related approaches.

In our analytic approach, the key structural result is to lower bound the total variation

distance between two mixtures M,M0 by a certain Littlewood polynomial. For each

distribution type, if the parameter is ✓, we find a function Gt : R! C such that

E[Gt(X)] = exp(it✓).

⇤
Due to our discretization structure, our results do not contradict the lower bounds of [114, 72].

22

Distribution Pdf/Pmf f(x; ✓) Discretization Sample Complexity Approach

Gaussian

1p
2⇡�

e�
(x�µ)2

�

2 µ
i

2 ✏Z k3 exp(O((�/✏)2/3)) Analytic

Binomial

�

n

x

�

px(1� p)n�x

n
i

2 {1, 2, . . . , N} exp(O(((N/p)1/3))) Analytic

†

p
i

2 {0, ✏, . . . , 1} O(k2(n/✏)8/
p
✏

) Algebraic

Poisson

�

x

e

��

x! �
i

2 {0, 1, . . . , N} exp(O(N1/3
)) Analytic

Geometric (1� p)xp
1/p

i

2 {1, . . . , N} O(k2(
p
N)

8
p
N

) Algebraic

p
i

2 {0, ✏, . . . , 1} O(

k

2

✏

8/
p

✏+2 log
1
✏

) Algebraic

�2 x

n/2�1
e

�x/2

2n/2�(n/2)
n
i

2 {0, 1, . . . , N} exp(O(N1/3
)) Analytic

Negative Binomial

�

x+r�1
x

�

(1� p)rpx r
i

2 {1, 2, . . . , N} exp(O((N/p)1/3)) Analytic

Table 2.1: Overview of our results. Results are given for uniform mixtures of k different
components but some can be extended to non-uniform mixtures. Note that for rows 2,
4, 7, and 8, k does not appear. This is because k  N and other terms dominate.

(For Gaussians, Gt is essentially the characteristic function). Such functions can be

used to obtain Littlewood polynomials from the difference in expectation for two

different mixtures, for example if the parameters ✓ are integral and the mixture

weights are uniform. Applying complex analytic results on Littlewood polynomials,

this characterization yields a lower bound on the total variation distance between

mixtures, at which point we may use density estimation techniques for parameter

learning. Specifically we use the minimum distance estimator (see, [51, Sec. 6.8]),

which is based on the idea of Scheffe sets. Scheffe sets are building blocks of the

Scheffe estimator, commonly used in density estimation, e.g. [135].

Our algebraic approach is based on the more classical method of moments. Our key

innovation here is a combinatorial argument to bound the number of moments that we

†
We obtained this result as a byproduct of sparse trace reconstruction [98]. In fact, the present

work was motivated by the observation that the technique we were using there is much more general.

23

need to estimate in order to exactly identify the correct mixture parameters. In more

detail, when the parameters belong to a discrete set, we show that the moments reveal

various statistics about the multi-set of parameters in the mixture. Then, we adapt

and extend classical combinatorics results on sequence reconstruction to argue that

two distinct multi-sets must disagree on a low-order moment. These combinatorial

results are related to the Prouhet-Tarry-Escott problem (see, e.g., [25]) which also has

connections to Littlewood polynomials. To wrap up we use standard concentration

arguments to estimate all the necessary moments, which yields the sample complexity

guarantees.

We note that the complex analytic technique provides non-trivial result only for

those mixtures for which an appropriate function Gt exists. On the other hand, the

algebraic approach works for all mixtures whose `th moment can be described as a

polynomial of degree exactly ` in its unknown parameters. In [18], it was shown that

most distributions have this later property. In general, where both methods can be

applied, the complex analytic techniques typically provide tighter sample complexity

bounds than the algebraic ones.

2.2.1 Learning Mixtures via Characteristic Functions

In this section, we show how analysis of the characteristic function can yield sample

complexity guarantees for learning mixtures. At a high level, the recipe we adopt is

the following.

1. First, we show that, in a general sense, the total variation distance between

two separated mixtures is lower bounded by the L1 norm of their characteristic

functions.

2. Next, we use complex analytic methods and specialized arguments for each

particular distribution to lower bound the latter norm.

24

3. Finally, we use the minimum distance estimator [51] to find a mixture that

is close in total variation to the data generating distribution. Using uniform

convergence arguments this yields exact parameter learning.

The two main results we prove in this section are listed below.

Theorem 2.1 (Learning Gaussian mixtures). Let M =

1

k

Pk
i=1

N (µi, �2

) be a uniform

mixture of k univariate Gaussians, with known shared covariance �2 and with distinct

means µi 2 ✏Z. Then there exists an algorithm that requires k3

exp(O((�/✏)2/3))

samples from M and exactly identifies the parameters {µi}ki=1

with high probability.

Theorem 2.2 (Learning Poisson mixtures). Let M =

1

k

Pk
i=1

Poi(�i) where �i 2

{0, 1, . . . , N} for each i are distinct. Then there exists an algorithm that that requires

exp(O(N1/3
))) samples from M to exactly identify the parameters {�i}ki=1

with high

probability.

There are some technical differences in deriving the results for Gaussian vs Poisson

mixtures. Namely, because of finite choice of parameters we can take a union bound

over the all possible incorrect mixtures for the latter case, which is not possible

for Gaussian. For Gaussian mixtures we instead use an approach based on VC

dimension. The results for negative binomial mixtures and chi-squared mixtures

(shown in Table 2.1) follow the same route as the Poisson mixture. As reported in

Table 2.1, this approach also yields results for mixtures of binomial distributions that

we obtained in a different context in our prior work [98].

Total Variation and Characteristic Functions: Let {f✓}✓2⇥ denote a parame-

terized family of distributions over a sample space ⌦ ⇢ R, where f✓ denotes either

a pdf or pmf, depending on the context. We call M a (finite) ⇥-mixture if M

has pdf/pmf
P

✓2A ↵✓f✓ and A ⇢ ⇥, |A| = k. For a distribution with density f

(we use distribution and density interchangeably in the sequel), define the charac-

teristic function Cf(t) ⌘ EX⇠f [eitX]. For any two distribution f, f 0 defined over a

25

sample space ⌦ ✓ R the variational distance (or the TV-distance) is defined to be

kf � f 0k
TV

⌘ 1

2

R

⌦

�

�

�

df 0

df
� 1

�

�

�

df . For a function G : ⌦! C define the L1 norm to be

kGk1 = sup!2⌦ |G(!)| where | · | denotes the modulus.

As a first step, our aim is to show that the total variation distance between

M =

P

✓2A ↵✓f✓ and any other mixture M0 given by
P

✓2B �✓f✓,B ⇢ ⇥, |B| = k

is lower bounded. The following elementary lemma completes the first step of the

outlined approach.

Lemma 2.1. For any two distributions f, f 0 defined over the same sample space

⌦ ✓ R, we have

kf � f 0kTV �
1

2

sup

t2R
|Cf (t)� Cf 0

(t)|.

More generally, for any G : ⌦! C and ⌦

0 ⇢ ⌦ we have

kf � f 0kTV �
✓

2 sup

x2⌦0
|G(x)|

◆�1

⇣

|EX⇠fG(X)� EX⇠f 0G(X)|

�
Z

x2⌦\⌦0
|G(x)| · |df(x)� df 0

(x)|
⌘

.

Proof. We prove the latter statement, which implies the former since for the function

G(x) = eitx we have supx |G(x)| = 1. We have

|EX⇠fG(X)� EX⇠f 0G(X)| 
Z

x2⌦
|G(x)| · |df(x)� df 0

(x)|

 2 sup

x2⌦0
|G(x)| · kf � f 0k

TV

+

Z

x2⌦\⌦0
|G(x)| · |df(x)� df 0

(x)|.

Equipped with the lower bound in Lemma 2.1, for each type of distribution, we

set out to find a good function G to witness separation in total variation distance. As

26

we will see shortly, for a parametric family f✓, it will be convenient to find a family of

functions Gt such that

EX⇠f✓ [Gt(X)] = exp(it✓).

Of course, to apply Lemma 2.1, it will also be important to understand kGtk1. While

such functions are specific to the parametric model in question, the remaining analysis

will be unified. We derive such functions and collect the relevant properties in the

following lemma. At a high level, the calculations are based on reverse engineering

from the characteristic function, e.g., finding a choice t0(t) such that Cf (t0) = exp(it✓).

Lemma 2.2. Let z = exp(it) where t 2 [�⇡/L, ⇡/L].

• Gaussian. If X ⇠ N (µ, �) and Gt(x) = eitx then

E[Gt(X)] = exp(��2t2/2)zµ and kGtk1 = 1 .

• Poisson. If X ⇠ Poi(�) and Gt(x) = (1 + it)x then

E[Gt(X)] = z� and |Gt(x)|  (1 + t2)x/2 .

• Chi-Squared. If X ⇠ �2

(`) and Gt(x) = exp(x/2� xe�2it/2) then

E[Gt(X)] = z` and |Gt(x)|  ecxt
2

+O(xt4) .

• Negative Binomial. If X ⇠ NB(r, p) and Gt(x) = (1/p� (1/p� 1)e�it
)

x then

E[Gt(X)] = zr and |Gt(x)|  e
�cx

(1�p)t2

p2 .

27

Proof. We consider each distribution in turn:

• Poisson: For Poisson random variables, if Gt(x) = (1+ it)x then since |1+ it|2 =

1 + t2 the second claim follows. For the first:

E[Gt(X)] = exp(�((1 + it)� 1)) = z�.

• Gaussian: Observe that E[Gt(X)] is precisely the characteristic function. Clearly

we have kGtk1 = 1 and further

E[Gt(X)] = exp(itµ� �2t2/2) = exp(��2t2/2)zµ.

• Chi-Squared: Let wt = exp(1/2� e�2it/2) then

|wt|2 = |e1�e�2it | = |e1�cos 2tei sin 2t|  ect
2

+O(t4)

and

E[Gt(X)] = (1� 2 lnwt)
� `

2

= z`.

• Negative Binomial: Let wt = 1/p�(1/p�1)e�it then |wt|2 = 1+(1�p)2�2(1�p) cos t
p2

=

p2+4(1�p) sin2(t/2)
p2

 e
(1�p)t2

p2 and

E[Gt(X)] =

⇣

1� p

1� pwt

⌘r

= zr.

Next, we crucially use the following lemma.

Lemma 2.3 ([24]). Let a
0

, a
1

, a
2

, · · · 2 {0, 1,�1} be such that not all of them are zero.

For any complex number z, let A(z) ⌘
P

k akz
k. Then, for some absolute constant c,

max

�⇡/Lt⇡/L
|A(eit)| � e�cL .

28

We will also need the following ‘tail bound’ lemma.

Lemma 2.4. Suppose a > 1 is any real number and r 2 R
+

. For any discrete random

variable X with support Z and pmf f ,

X

x�r

axf(x)  E[a2X]
ar�1

.

Proof. Note that, Pr(X � x) = Pr(a2X�2x � 1)  E[a2X�2x
]. We have,

X

x�r

ax Pr(X = x) 
X

x�r

ax Pr(X � x) 
X

x�r

axE[a2X�2x
] = E[a2X]

X

x�r

a�x  E[a2X]
ar�1

.

Subsequently, we can show the following lower bound on the total variation distance:

Theorem 2.3 (TV Lower Bounds). The following bounds hold on distance between

two different mixtures assuming all k parameters are distinct for each mixture.

• Gaussian: M =

1

k

Pk
i=1

N (µi, �) and M0
=

1

k

Pk
i=1

N (µ0
i, �) where µi, µ0

i 2 ✏Z.

Then

kM0 �MkTV � k�1

exp(�⌦((�/✏)2/3)) .

• Poisson: M =

1

k

Pk
i=1

Poi(�i) and M0
=

1

k

Pk
i=1

Poi(�0
i) where �i,�0

i 2 {0, 1, . . . , N}.

Then

kM0 �MkTV � k�1

exp(�⌦(N1/3
)) .

• Chi-Squared: M =

1

k

Pk
i=1

�2

(`i) and M0
=

1

k

Pk
i=1

�2

(`0i) where `i, `0i 2 {1, . . . , N}.

Then

kM0 �MkTV � k�1

exp(�⌦(N1/3
)) .

• Negative Binomial: M =

1

k

Pk
i=1

NB(ri, p) and M0
=

1

k

Pk
i=1

NB(r0i, p) where ri, r0i 2

{1, 2, . . . , N}. Then

kM0 �MkTV � k�1

exp(�⌦((N/p)1/3)) .

29

Proof. • Poisson:

Let X ⇠M and X 0 ⇠M0. Then, for w = 1 + it, from Lemma 2.2,

E(wX
)� E(wX0

) =

1

k

k
X

j=1

(eit�j � eit�
0
j
).

Now we use Lemma 2.1 with G(x) = wx, ⌦0
= {0, 1, . . . , 2N} and t  1, to have,

|E(wX
)� E(wX0

)| =
�

�

�

X

x

(wxM(x)� wxM0
(x))

�

�

�


X

x

|w|x|M(x)�M0
(x)|

 (1 + t2)2N
X

x

|M(x)�M0
(x)|+

X

x>4N

(1 + t2)x/2e�N Nx

x!

 (1 + t2)2N
X

x

|M(x)�M0
(x)|+

X

x>4N

2

x/2e�N Nx

x!
.

Now using Lemma 2.4,

|E(wX
)� E(wX0

)|  2(1 + t2)2N kM�M0k
TV

+

E[2X]
2

2N�1/2

 2(1 + t2)N kM�M0k
TV

+ eN(

p
1+t2�1)

e�N
p
1+t2

(en
p
1 + t2)2N

(2N)

2N

 2e2t
2N kM�M0k

TV

+

eN

2

2N�1/2

= 2e2⇡
2N/L2 kM�M0k

TV

+ exp(�⌦(N)),

by taking |t|  ⇡
L
. Now using Lemma 2.3, there exist an absolute constant c

such that,

max

� ⇡
Lt ⇡

L

�

�

k
X

j=1

(eit�j � eit�
0
j
)

�

� � e�cL.

Therefore by setting L = N1/3,

kM�M0k
TV

� (2k)�1e�cL�2⇡2N/L2 � exp(�⌦(N)) � k�1

exp(�⌦(N1/3
)).

30

• Gaussian: The characteristic function of a Gaussian X ⇠ N (µ, �2

) is

CN (t) = EeitX = eitµ�
t2�2

2 .

Therefore we have that

CM(t)� CM0
(t) � e�

t2�2

2

k

k
X

j=1

(eitµj � eitµ
0
j
).

Now, using Lemma 2.3, there exist an absolute constant c such that,

max

� ⇡
✏Lt ⇡

✏L

�

�

k
X

j=1

(eitµj � eitµ
0
j
)

�

� � e�cL.

Also, for t 2 (� ⇡
✏L
, ⇡
✏L
), e�

t2�2

2 � e�
�2⇡2

2✏2L2 . And therefore,

�

�

�

CM(t)� CM0
(t)
�

�

�

� 1

k
e�

�2⇡2

2✏2L2

�cL.

By substituting L =

(⇡�)2/3

(✏2c)1/3
above we conclude that there exists t such that

�

�

�

CM(t)� CM0
(t)
�

�

�

� 1

k
e�

3

2

(c⇡�/✏)2/3 .

Now using Lemma 2.1, we have kM0 �Mk
TV

� k�1

exp(�⌦((�/✏)2/3)).

• Chi-Squared: Let X ⇠ M and X 0 ⇠ M0. Then, for w = exp(1/2 � e�2it/2),

from Lemma 2.2,

E(wX
)� E(wX0

) =

1

k

k
X

j=1

(eit`j � eit`
0
j
).

Now we use Lemma 2.1, with ⌦

0
= [0, 2N] we have,

kM�M0kTV � e�2ct2N
⇣

�

�

�

E(wX
)� E(wX0

)

�

�

�

�
Z

x>2N

exp(ct2x)f(x)dx
⌘

,

31

where f ⇠ �2

(N). We have,

Z

x>2N

exp(ct2x)f(x)dx =

1

(1� 2ct2)N/2�1

Z

y>2N(1�2ct2)

f(y)dy  e�N(1�4ct2)2/8

(1� 2ct2)N/2�1

 exp(�⌦(N)),

where we have used the pdf of chi-squared distribution and the tail bounds for

chi-squared. Now using Lemma 2.3, and taking |t|  ⇡
L
,

kM�M0kTV � k�1e�c0L�2ct2N � exp(�⌦(n))

� k�1

exp(�c0L� 2⇡2N/L2

)� exp(�⌦(N)).

Again setting, L = N1/3,

kM�M0kTV � k�1

exp(�⌦(N1/3
)).

• Negative-Binomial: Let X ⇠M and X 0 ⇠M0. Then, for w = 1/p�(1/p�1)e�it,

from Lemma 2.2, taking G(x) = wx,

E(wX
)� E(wX0

) =

1

k

k
X

j=1

(eitrj � eitr
0
j
).

Now we use Lemma 2.1, with ⌦

0
= [0, 6pN/(1� p)] we have,

kM�M0kTV � e�12ct2N/p
⇣

�

�

�

E(wX
)� E(wX0

)

�

�

�

�
X

x> 6Np
1�p

|w|xu(x)
⌘

,

where u(x) =

�

x+N�1

x

�

(1 � p)Npx. We have |w|  ec(1�p)t2/p2  ec(1�p)/p2 for

t < 1. Using Lemma 2.4, with X ⇠ NB(N, p), we have,

X

x> 6Np
1�p

exp(cx(1� p)/p2)u(x)  a1�
6Np
1�pE[a2X] = a1�

6Np
1�p

⇣

1� p

1� pa2

⌘N

= exp(�⌦(N)),

32

where, a = exp(c(1� p)/p2) > 1. Now using Lemma 2.3, and taking |t|  ⇡
L
,

kM�M0kTV � k�1e�c0L�12ct2N/p � exp(�⌦(n))

� k�1

exp(�c0L� 12⇡2N/(pL2

))� exp(�⌦(N)).

Setting L = (N/p)1/3,

kM�M0kTV � k�1

exp(�⌦((N/p)1/3)).

Parameter Learning:

Union Bound Approach for Discrete Distributions: We begin with the fol-

lowing proposition which follows from Theorem 7.1 of [51].

Lemma 2.5. Suppose F = {f⌫}⌫2⇥ is a class of distribution such that for any

⌫, ⌫ 0 2 ⇥, kf⌫ � f⌫0kTV � �. Then O(log |⇥|/�2) samples from a distribution f in F

suffice to distinguish it from all other distributions in F with high probability.

For the mixture of Poissons, M =

1

k

Pk
i=1

Poi(�i) where �i 2 {0, 1, . . . , N}, the

number of choices for parameters in the mixture is (N + 1)

k. Now using Lemmas 2.3

and 2.5, exp(O(N1/3
)) samples are sufficient to learn the parameters of the mixture.

Exactly the same argument applies to mixtures of Chi-Squared and Negative-

Binomial distributions, yielding exp(O(N1/3
)) and exp(O((N/p)1/3)) samples suffice,

respectively. However, for Gaussians we need a more intricate approach.

33

VC Approach for Gaussians: To learn the parameters of a Gaussian mixture

M =

1

k

k
X

i=1

N (µi, �) where µi 2 {. . . ,�2✏,�✏, 0, ✏, 2✏ . . .}

we use the minimum distance estimator precisely defined in [51, Section 6.8]. Let

A ⌘ {{x : M(x) � M0
(x)} : for any two mixtures M 6= M0} be a collection of

subsets. Let Pm denote the empirical probability measure induced by the m samples.

Then, choose a mixture ˆM for which the quantity supA2A |Pr⇠ ˆM(A) � Pm(A)| is

minimum (or within 1/m of the infimum). This is the minimum distance estimator,

whose performance is guaranteed by the following proposition [51, Thm. 6.4].

Proposition 2.1. Given m samples from M and with � = supA2A |Pr⇠M(A) �

Pm(A)|, we have
�

�

�

ˆM�M
�

�

�

TV
 4�+

3

m
.

We now upper bound the right-hand side of the above inequality. Via McDiarmid’s

inequality and a standard symmetrization argument, � is concentrated around its mean

which is a function of V C(A), the VC dimension of the class A, see [51, Section 4.3]:

�

�

�

ˆM�M
�

�

�

TV

 4�+O(1/m)  4E⇠M�+O(1/
p
m)  c

r

V C(A)

m
,

with high probability, for an absolute constant c. This latter term is bounded by the

following.

Lemma 2.6. For the class A defined above, the VC dimension is given by V C(A) =

O(k).

Proof. First of all we show that any element of the set A can be written as union

of at most 4k � 1 intervals in R. For this we use the fact that a linear combination

of k Gaussian pdfs f(x) =

Pk
i=1

↵ifi(x) where fis normal pdf N (µi, �2

i) and ↵i 2

34

R, 1  i  k has at most 2k � 2 zero-crossings [87]. Therefore, for any two mixtures

of interest M(x)�M0
(x) has at most 4k � 2 zero-crossings. Therefore any A 2 A

must be a union of at most 4k � 1 contiguous regions in R. It is now an easy exercise

to see that the VC dimension of such a class is ⇥(k).

As a result the error of the minimum distance estimator is O(

p

k/m) with high

probability. But from Theorem 2.3, notice that for any other mixture M0 we must

have,

kM�M0k
TV

� k�1

exp(�⌦((�/✏)2/3)).

As long as
�

�

�

ˆM�M
�

�

�

TV

 1

2

kM�M0k
TV

we will exactly identify the parameters.

Therefore m = k3

exp(O((�/✏)2/3)) samples suffice to exactly learn the parameters

with high probability.

Extension to Non-Uniform Mixtures: The above results extend to non-uniform

mixtures, where the main change is that we require a generalization of complex analytic

tools. The result, also proved by [24], states that if a
0

, a
1

, a
2

, . . . 2 [�1, 1] with poly(n)

precision then max�⇡/L✓⇡/L |A(ei✓)| � e�cL logn, for an absolute constant c. This

weaker bound yields an extra poly(n) factor in the sample complexity.

2.2.2 Learning Mixtures via Moments

There are some mixtures where the problem of learning parameters is not amenable

to the approach in the previous section. A simple motivating example is learning the

parameters pi 2 {0, ✏, 2✏, 3✏, . . . , 1} values‡ in the mixture M =

1

k

Pk
i=1

Bin(n, pi). In

this section, we present an alternative procedure for learning such mixtures. The basic

idea is as follows:

‡
Note that we are implicitly assuming 1/✏ is integral here and henceforth.

35

• We compute moments EX` exactly for ` = 0, 1, . . . , T by taking sufficiently

many samples. The number of samples will depend on T and the precision of

the parameters of the mixture.

• We argue that if T is sufficiently large, then these moments uniquely define the

parameters of the mixture. To do this we use a combinatorial result due to [96].

In this section, it will be convenient to define a function m` on multi-sets where

m`(A) :=
X

a2A
a` .

Our main result is as follows:

Theorem 2.4 (Learning Binomial mixtures). Let M =

1

k

Pk
i=1

Bin(n, pi) be a uniform

mixture of k binomials, with known shared number of trials n and unknown probabilities

p
1

, . . . , pk 2 {0, ✏, 2✏, . . . , 1}. Then, provided n � 4/
p
✏, the first 4/

p
✏ moments suffice

to learn the parameters pi and there exists an algorithm that, when given O(k2

(n/✏)8/
p
✏
)

samples from M, exactly identifies the parameters {pi}ki=1

with high probability.

Computing the Moments: We compute the `th moment as S`,t =
P

Y `
i /t where

Y
1

, . . . , Yt ⇠ X.

Lemma 2.7. Pr[|S`,t�EX`| � �]  EX2`

t�2

 (2`)!
�2t

inf↵

⇣

Ee↵X

↵2`

⌘

where the last inequality

assumes the all the moments of X are non-negative.

Proof. By the Chebyshev bound,

Pr[|S`,t � EX`| � �]  V ar(S`,t)

�2

=

V ar(X`
)

t�2

 EX2`

t�2

.

We then use the moment generating function: for all ↵ > 0, EX2`  (2`)!Ee↵X/↵2`.

36

The following corollary, tailors the above lemma for a mixture of binomial distri-

butions.

Corollary 2.1. If X ⇠
Pk

i=1

Bin(n, pi)/k then Pr[|S`,t � EX`| � �] = ��2n2`/t.

Fixing n, the `th moment of a mixture of binomial distributions

X ⇠
Pk

i=1

Bin(n, pi)/k is

EX`
=

k
X

i=1

f(pi)/k

where f is a polynomial of degree at most ` with integer coefficients [18]. If pi is an

integer multiple of ✏ then this implies k(EX`
)/✏` is integral and therefore any mixture

with a different `th moment differs by at least ✏`/k. Hence, learning the `th moment

up to �` < ✏`/(2k) implies learning the moment exactly.

Lemma 2.8. For X ⇠ Bin(n, p), EX` is a polynomial in p of degree exactly ` if

n � `.

Proof. We will prove that for X ⇠ Bin(n, p), the leading term of EX` is
Q`�1

i=0

(n� i)p`.

Since for n � `,
Q`�1

i=0

(n � i) 6= 0, this implies that EX` is a polynomial of degree

exactly `. We will prove this by induction. Since X ⇠ Bin(n, p), we know that

EX = np. This verifies the base case. Now, in the induction step, let us assume that

the leading term of EXk is
Qk�1

i=0

(n� i)pk. It is known that (see [18])

EXk+1

= npEXk
+ p(1� p)

dEXk

dp
.

Therefore it follows that the leading term of EXk+1 is

np
k�1

Y

i=0

(n� i)pk � kp2
k�1

Y

i=0

(n� i)pk�1

=

k
Y

i=0

(n� i)pk+1.

This proves the induction step and the lemma.

37

Theorem 2.5. O(k2

(n/✏)8/
p
✏
) samples are sufficient to exactly learn the first 4/

p
✏

moments of a uniform mixture of k binomial distributions
Pk

i=1

Bin(n, pi)/k with

probability at least 7/8 where each pi 2 {0, ✏, 2✏, . . . , 1}.

Proof. Let T = 4/
p
✏. From Corollary 2.1 and the preceding discussion, learning the

`th moment exactly with failure probability 1/91+T�` requires

t = ��2

` n2`
9

1+T�`
= O(k2

9

1+T�`n2`/✏2`) = O(k2

9

T
(n/3✏)2`)

samples. And hence, we can compute all `th moments exactly for 1  `  4/
p
✏ using

T
X

`=1

O(k2

9

T
(n/3✏)2`) = O(k2

(n/✏)2T)

samples with failure probability
PT

`=1

1/91+T�` <
P1

i=1

1/9i = 1/8.

How many moments determine the parameters: It remains to show the first

4/
p
✏ moments suffice to determine the pi values in the mixture X ⇠

Pk
i=1

Bin(n, pi)/k

provided n � 4

✏
. To do this suppose there exists another mixture Y ⇠

Pk
i=1

Bin(n, qi)/k

and we will argue that

EX`
= EY ` for ` = 0, 1, . . . , 4

p

1/✏

implies {pi}i2[k] = {qi}i2[k]. To argue this, define integers ↵i, �i 2 {0, 1, . . . , 1/✏} such

at that pi = ↵i✏ and qi = �i✏. Let A = {↵
1

, . . . ,↵k} and B = {�
1

, . . . , �k} . Then,

EX = EY =)
X

i

↵i =

X

i

�i =) m
1

(A) = m
1

(B)

and, after some algebraic manipulation, it can be shown that for all ` 2 {2, 3, . . .},

8`0 2 {0, 1, . . . , `� 1} ,
X

i

↵`0

i =

X

i

�`0

i

!

and EX`
= EY `

38

=)

X

i

↵`
i =

X

i

�`
i

!

=) m`(A) = m`(B) .

Hence, if the first T moments match m`(A) = m`(B) for all ` = 0, 1, . . . , T . But the

following theorem establishes that if T = 4

p

1/✏ then this implies A = B.

Theorem 2.6 ([96]). For any two subsets S, T of {0, 1, . . . , n� 1}, then

S = T iff
�

mk(S) = mk(T) for all k = 0, 1, . . . , 4
p
n
�

.

We note that the above theorem is essentially tight. Specifically, there exists S 6= T

with mk(S) = mk(T) for k = 0, 1, . . . , cn/ log n for some c. As a consequence of this,

we note that even the exact values of the c
p
n/ log n moments are insufficient to learn

the parameters of the distribution. For an example in terms of Gaussian mixtures,

even given the promise µi 2 {0, 1, . . . , n � 1} are distinct, then the first c
p
n/ log n

moments of
P

i N (µi, 1) are insufficient to uniquely determine µi whereas the first

4

p
n moments are sufficient.

Extension to Non-Uniform Distributions: We now consider extending the

framework to non-uniform distributions. In this case, the method of computing

the moments is identical to the uniform case. However, when arguing that a small

number of moments suffices we can no longer appeal to the Theorem 2.6.

To handle non-uniform distribution we introduce a precision variable q and assume

that the weights of the component distributions !
1

,!
2

, . . . ,!k are of the form:

!i =
wi

Pk
i=1

wi

where wi 2 {0, 1, . . . , q � 1}. Then, in the above framework if we are trying to learn

parameters ↵
1

, . . . ,↵k then the moments are going to define a multi-set consisting of

39

wi copies of ↵i for each i 2 [k]. We can quantify how many moments suffice in this

case by a relatively straight-forward generalization of proof by [124].

Theorem 2.7. For any two multi-sets S, T where each element is in {0, 1, . . . , n� 1}

and the multiplicity of each element is at most q � 1, then S = T if and only if

mk(S) = mk(T) for all k = 0, 1, . . . , 2
p
qn log qn.

The proof of this theorem can be found in Chapter A, Section A.1.

2.3 Mixtures of Gaussians with 2 components

Let N (µ,⌃) denote the d-dimensional Gaussian distribution with mean µ 2 Rd and

positive definite covariance matrix ⌃ 2 Rd⇥d. A k-component mixture of d-dimensional

Gaussian distributions is a distribution of the form f =

Pk
i=1

wi · N (µi,⌃i). Such

a mixture is defined by k triples {(wi,µi,⌃i)}ki=1

, where wi 2 R+ with
Pk

i=1

wi = 1

are the mixing weights, µi 2 Rd are the means, and ⌃i 2 Rd⇥d are the covariance

matrices.

Let F be the set of all d-dimensional, two-component, equally weighted Gaussian

mixtures

F =

⇢

f
µ

0

,µ
1

=

1

2

N (µ

0

,⌃) +

1

2

N (µ

1

,⌃) | µ
0

,µ
1

2 Rd,⌃ 2 Rd⇥d

�

,

where ⌃ 2 Rd⇥d is a positive definite matrix. When d = 1, we use the notation

fµ
0

,µ
1

2 F and simply denote the variance as �2 2 R. We also define the following:

Definition 2.1. For any �0 > 0 and 0 < ⌘ < 1, we define a (�0, ⌘)-estimate of the

unknown distribution f to be another mixture of two component Gaussians

N (

ˆ

µ

0

, �2

)

2

+

N (

ˆ

µ

1

, �2

)

2

40

such that for some permutation ⇡ : {0, 1}! {0, 1}, for i = 0, 1

�

�

�

�

ˆ

µi � µ⇡(i)

�

�

�

�

2

 �0

with probability 1� ⌘.

Our main result is the following nearly-tight lower bound on the TV distance

between pairs of d-dimensional two-component mixtures with shared covariance.

Theorem 2.8. For f
µ

0

,µ
1

, f
µ

0
0

,µ0
1

2 F , define sets S
1

= {µ
1

� µ

0

,µ0
1

� µ

0
0

}, S
2

=

{µ0
0

� µ

0

,µ0
1

� µ

1

}, S
3

= {µ0
0

� µ

1

,µ0
1

� µ

0

} and vectors v

1

= argmaxs2S
1

||s||
2

,

v

2

= argmaxs2S
2

||s||
2

and v

3

= argmaxs2S
3

||s||
2

. Let �
⌃,U , max

u:||u||
2

=1,u2U u

T
⌃u

with U being the span of the vectors v

1

,v
2

,v
3

. If kv
1

k
2

� min(kv
2

k
2

, kv
3

k
2

)/2 and
p

�
⌃,U = ⌦(||v

1

||
2

), then

�

�

�

�f
µ

0

,µ
1

� f
µ

0
0

,µ0
1

�

�

�

�

TV
= ⌦

⇣

min

⇣

1,
kv

1

k
2

min(kv
2

k
2

, kv
3

k
2

)

�
⌃,U

⌘⌘

,

and otherwise, we have that

�

�

�

�f
µ

0

,µ
1

� f
µ

0
0

,µ0
1

�

�

�

�

TV
= ⌦

⇣

min

⇣

1,
min(kv

2

k
2

, kv
3

k
2

)

p

�
⌃,U

⌘⌘

.

Notice from the definitions of v
1

,v
2

,v
3

that U is contained within the subspace

spanned by the unknown mean vectors µ

0

,µ
1

,µ0
0

,µ0
1

. Furthermore, �
⌃,U as defined

in Theorem 2.8 can always be bounded from above by the largest eigenvalue of the

matrix ⌃, and as we will show, this upper bound characterizes the total variation

distance between mixtures in several instances.

In the special case of one component Gaussians, i.e., µ

0

= µ

1

and µ

0
0

= µ

0
1

,

we recover a result by Devroye et al. (see the lower bound in [52, Theorem 1.2],

setting ⌃

1

= ⌃

2

). In the one-dimensional setting, our next theorem shows a novel

41

lower bound on the total variation distance between any two distinct two-component

one-dimensional Gaussian mixtures from F .

Theorem 2.9. Without loss of generality, for fµ
0

,µ
1

, fµ0
0

,µ0
1

2 F , suppose µ
0



min(µ
1

, µ0
0

, µ0
1

) and µ0
0

 µ0
1

. Further, let �
1

= max{|µ
0

� µ
1

|, |µ0
0

� µ0
1

|} and

�
2

= max{|µ0
0

� µ
0

|, |µ
1

� µ0
1

|}. If [µ0
0

, µ0
1

] ✓ [µ
0

, µ
1

] and � = ⌦(�
1

), then we have that

||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � ⌦(min(1, �
1

�
2

/�2

))

and otherwise, ||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � ⌦(min(1, �
2

/�)).

Subsequently, we show the sufficient number of samples to estimate the parameters

of an unknown two component one-dimensional mixture fµ
0

,µ
1

up to a specified

precision with high probability. We use our results on lower bounds of total variation

distance between mixtures in conjunction with well known theoretical tools such as the

Minimum Distance estimator and Scheffe Estimator (we refer the reader to Chapter

D for detailed introduction on these tools). First, we characterize the statistical

properties of the Minimum Distance Estimator in the following theorem:

Theorem 2.10. Fix 0 < �0 and 0 < ⌘ < C, for C a small absolute constant. For

fµ
0

,µ
1

2 F with separation �, if � � �0, then we can (�0, ⌘)-learn fµ
0

,µ
1

from the

minimum distance estimator over F using s(�0, ⌘) = O(max(1, �4/(�2�02)) log2 ⌘�1

)

samples. If �0 � �, then we only need s(�0, ⌘) = O(max(1, �2/�02) log2 ⌘�1

) samples.

Next, we demonstrate a polynomial time algorithm that uses the Scheffe estimator

to achieve the same sample complexity guarantee upto log factors.

Theorem 2.11. Let �0 > 0 and 0 < ⌘ < C be fixed, for C a small absolute constant.

For fµ
0

,µ
1

2 F with separation �, if � � �0, then we can (�0, ⌘)-learn fµ
0

,µ
1

using

s(�0, ⌘) = O(max(1, �4

log(�/�0)/(�2�02)) log3 ⌘�1

)

42

samples with an algorithm that uses the Scheffe estimator and runs in time

O
⇣ �6

�02�4
log

�

�0
log

3 ⌘�1

⌘

.

If �0 � �, then we only need s(�0, ⌘) = O(max(1, �2/�02) log(�/�) log3 ⌘�1

) samples.

Prior Work: Let I denote the d-dimensional identity matrix. Statistical distances

between a pair of k-component d-dimensional Gaussian mixtures f =

Pk
i=1

k�1N (µi, I)

and f 0
=

Pk
i=1

k�1N (µ

0
i, I) with shared and known component covariance I have been

studied in [58, 147]. For a k-component Gaussian mixture f =

Pk
i=1

k�1N (µi, I),

let M`(f) =
P`

i=1

k�1

µ

⌦`
i where x

⌦` is the `-wise tensor product of x. We denote

the Kullback-Leibler divergence, Squared Hellinger divergence and �2-divergence of

f, f 0 by ||f � f 0||KL , ||f � f 0||H2

and ||f � f 0||�2

respectively. We will write ||M ||F to

denote the Frobenius norm of the matrix M . Prior work shows the following bounds.

Theorem 2.12 (Theorem 4.2 in [58]). Consider a pair of k-component mixtures

f =

Pk
i=1

k�1N (µi, I) and f 0
=

Pk
i=1

k�1N (µ

0
i, I) where ||µi||

2

 R, ||µ0
i||

2

 R,

for all i 2 [k] and constant R � 0. For any distance D 2 {H2,KL,�2}, we have

kf � f 0kD = ⇥

⇣

max`2k�1

kM`(f)�M`(f 0
)k2F

⌘

.

This bound is does not give a guarantee for the TV distance. However it is well-known

that,

�

�

�

�f
µ

0

,µ
1

� f
µ

0
0

,µ0
1

�

�

�

�

TV
�
�

�

�

�f
µ

0

,µ
1

� f
µ

0
0

,µ0
1

�

�

�

�

H2 . (2.1)

We can use this in conjunction with Theorem 2.12 to get a lower bound on TV distance.

That bound turns out to be suboptimal for many canonical instances. As a simple

example, consider a pair of one-dimensional Gaussian mixtures

f = 0.5N (u, 1) + 0.5N (�u, 1) and f 0
= 0.5N (2u, 1) + 0.5N (�2u, 1). (2.2)

43

Using Eq. (2.1) and Theorem 2.12, we have that ||f � f 0||TV = ⌦(u4

). On the

other hand, by using our result (Theorem 2.9), we obtain the improved bound

||f � f 0||TV = ⌦(u2

). The improvement becomes more significant as u becomes

smaller. Also, the prior result in Theorem 2.12 assumes that the means of the two

mixtures f, f 0 are contained in a ball of constant radius, limiting its applicability.

The TV distance between Gaussian mixtures with two components for the special

case of d = 1 has been recently studied in the context of parameter estimation [64, 77,

108, 76]. The TV distance guarantees in these papers are more general in the sense

that they do not need the component covariances to be same. However, the results

(and proofs) are tailored towards the case when both the mixtures and have zero mean.

Hence, the results do not apply when we are considering the TV distance between

two mixtures with distinct means (since it is no longer possible to subtract a single

number to make both mixtures zero mean). In comparison, our results (Theorems 2.8

and 2.9) hold for all mixtures with shared component variances, and we not need any

assumptions on the means.

We also note that our bound can be tighter than these prior results, even in the

special case when the mixtures have zero mean. Consider again the pair of mixtures

f, f 0 defined in Eq. (2.2) above. In [108, 77], the authors show that ||f � f 0||TV = ⌦(u4

);

see, e.g., Eq. (2.7) in [108]. Notice that this is the same bound that can be recovered

from Theorem 2.12, and as we mentioned before, this bound is loose. Indeed, by using

Theorem 2.9, we obtain the improved bound ||f � f 0||TV = ⌦(u2

). Now consider a

more general pair of mixtures, where for u, v � 0, we define

f = 0.5N (u, 1) + 0.5N (�u, 1) and f 0
= 0.5N (v, 1) + 0.5N (�v, 1). (2.3)

In [64] (see the proof of Lemma G.1 part (b)), the authors have shown that ||f � f 0||TV =

⌦((u� v)2). Notice that for the previous example in Eq. (2.2) with v = 2u, the result

in [64] leads to the bound ||f � f 0||TV = ⌦(u2

), which is the same bound that can be

44

obtained from Theorem 2.9. However, for any small ✏ > 0, by setting v = u+ ✏, we see

that the bound in [64] reduces to ||f � f 0||TV = ⌦(✏2). On the other hand, by using

Theorem 2.9, we obtain the bound ||f � f 0||TV = ⌦(u · ✏). In particular, whenever

u� ✏, our result provides a much larger and tighter lower bound.

Tightness of the TV distance bound: Our bounds on the TV distance are tight

up to constant factors. For example, let u 2 Rd be a d-dimensional vector satisfying

||u||
2

< 1. Consider the mixtures

f = 0.5N (u, I) + 0.5N (�u, I) and f 0
= 0.5N (2u, I) + 0.5N (�2u, I)

where I is the d-dimensional identity matrix. Considering the notation of Theorem 2.8,

we have v

1

= 2u and v

2

= u, and the first bound in the theorem implies that

||f � f 0||TV � ⌦(||u||2
2

). On the other hand, we use the inequality ||f � f 0||TV 
p

2 ||f � f 0||H2

in conjunction with Theorem 2.12. In the notation of Theorem 2.12,

note that M
1

(f)�M
1

(f 0
) = 0, and we can upper bound the max over ` 2 {2, 3} by

the sum of the two terms to say that

||f � f 0||TV  O
⇣

max

`2{2,3}
kM`(f)�M`(f

0
)k2F

⌘

 O(||v ⌦ u||F + ||u⌦ u⌦ u||F) = O(||u||2
2

+ ||u||3
2

).

Since ||u||
2

< 1, we see that ||u||2
2

is the dominating term on the RHS, and

||f � f 0||TV = ⇥(||u||2
2

). As a result, our TV distance bound in Theorem 2.8 is tight

as a function of the means for this example.

2.3.1 Overview of Proofs

One dimension: In one dimension, we lower bound the TV distance as follows.

For fµ
0

,µ
1

, fµ0
0

,µ0
1

2 F , suppose µ
0

is the smallest mean. Recall that �
1

= max{|µ
0

�

45

µ
1

|, |µ0
0

� µ0
1

|} and �
2

= max{|µ0
0

� µ
0

|, |µ
1

� µ0
1

|}. If [µ0
0

, µ0
1

] ✓ [µ
0

, µ
1

], then

||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � ⌦(min(1, �
1

�
2

/�2

))

and otherwise,

||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � ⌦(min(1, �
2

/�)).

The latter case corresponds to when either both means from one mixture are smaller

than another, i.e., µ
0

 µ
1

 µ0
0

, µ0
1

, or the mixtures’ means are interlaced, i.e.,

µ
0

 µ0
0

 µ
1

 µ0
1

.

We use Lemma 2.1 to lower bound the TV distance between mixtures fµ
0

,µ
1

, fµ0
0

,µ0
1

2

F by the modulus of a complex analytic function:

4

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� sup

t
e�

�2t2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

. (2.4)

Let h(t) = eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1 . A lower bound on ||fµ

0

,µ
1

� fµ0
0

,µ0
1

||TV can be

obtained by taking t = 1/(c�) for c constant, so that e��2t2/2 is not too small. Then, it

remains to bound |h(t)| at the chosen value of t. In some cases, we will have to choose

the constant c very carefully, as terms in h(t) can cancel out due to the periodicity of

the complex exponential function. For instance, if µ
0

= 0, µ
1

= 200�, µ0
0

= �, and

µ0
1

= 201� with � = 2⇡, then |h(1)| = 0.

It is reasonable to wonder whether there is a simple, global way to lower bound

Eq. (2.4). We could reparameterize the function h(t) as the complex function g(z) =

zµ0

+ zµ1 � zµ
0
0 � zµ

0
1 , where z = eit, then study |g(z)|, for z in the disc with center

0 and radius 1 in the complex plane. However, we are unaware of a global way to

bound |g(z)| here due to the fact that (i) g(z) is not analytic at 0 when the means

are non-integral and (ii) there is not a clear, large lower bound for g(z) anywhere

inside the unit disc. These two facts obstruct the use of either the Maximum Modulus

46

Principle or tools from harmonic measure to obtain lower bounds. Instead, we use a

series of lemmas to handle the different ways that |h(t)| can behave. The techniques

include basic complex analysis and Taylor series approximations of order at most

three.

High-Dimensional Overview: Let f t

µ

0

,µ
1

be the distribution of the samples ob-

tained according to f
µ

0

,µ
1

and projected onto the direction t 2 Rd. We have (see

Lemma 2.12 for a proof)

f t

µ

0

,µ
1

⌘ N (µ

T
0

t, tT⌃t)

2

+

N (µ

T
1

t, tT⌃t)

2

f t

µ

0
0

,µ0
1

⌘ N (µ

0T
0

t, tT⌃t)

2

+

N (µ

0T
1

t, tT⌃t)

2

.

By the data processing inequality for f -divergences (see Theorem 5.2 in [51]), we have

kf
µ

0

,µ
1

� f
µ

0
0

,µ0
1

kTV � sup

t2Rd

kf t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

kTV.

Using our lower bound on the TV distance between one-dimensional mixtures (Theorem

2.9), we obtain a lower bound on kf
µ

0

,µ
1

� f
µ

0
0

,µ0
1

kTV by choosing t 2 Rd carefully.

This leads to Theorem 2.8.

Parameter estimation in one dimension: Recall that our objective is to learn

fµ
0

,µ
1

with unknown means µ
0

, µ
1

2 R using samples from fµ
0

,µ
1

. As we saw in

Theorem 2.10, the minimum distance estimator recovers µ
0

, µ
1

upto a precision of

�0 using ˜O(d�2/�2�02) samples with high probability probability where �0 = |µ
0

� µ
1

|.

The minimum distance estimator chooses the best distribution from F ⌘ {f✓
0

,✓
1

:=

0.5N (✓
0

, �2

) + 0.5N (✓
1

, �2

), ✓
0

, ✓
1

2 R} by evaluating every candidate distribution.

As |F| is infinite, the running time of the minimum distance estimator is infinite as

well. Our approach to resolve this issue is to design a finite cover of F i.e. design a

47

finite subset of candidates F 0 ⇢ F and subsequently, use the Scheffe estimator. The

running time of the Scheffe estimator is O(n|F 0|2) which is small if |F 0| is small.

In order to design a finite cover, our first step is to use a statistical test powered

by the Method of Moments with ˜O(max(1, �2

)) samples from fµ
0

,µ
1

to test if the gap

|µ
0

� µ
1

| is larger than 3�/4 + o(�) with high probability. If the gap is indeed larger

than 3�/4, then we can simply run EM Algorithm and using the results in [41], we will

obtain a (�0, ⌘)-estimate of fµ
0

,µ
1

with sample/time complexity ˜O
⇣

�2

�02 log
�
�0

⌘

. On the

other hand, if the gap is |µ
0

� µ
1

| is smaller than 3�/4 + o(�), then we first compute

an estimate ˆM of the mean (µ
0

+ µ
1

)/2 of the mixture fµ
0

,µ
1

upto a precision of ✏.

Now, we can simply substract ˆM from every sample and instead learn fµ
0

� ˆM,µ
1

� ˆM . In

order to do so, we design the following set of candidate distributions

F 0 ⌘
⇢

N (a⇢, �2

)

2

+

N (�a⇢, �2

)

2

;�5�

6⇢
 a  5�

6⇢
, a 2 Z

�

.

for the Scheffe estimator. Clearly |F|  |5�/3⇢| is finite. Notice from equation D.2

that the Scheffe estimator has similar guarantees to the Minimum distance estimator.

The main roadblock in following this approach is the fact that fµ
0

,µ
1

does not belong

to F 0 unlike the other learning settings in this work where the unknown distribution

also belongs to the set of candidates. Therefore, in this case inff2F 0 ||fµ
0

,µ
1

� f ||TV � 0

and in order to get a good theoretical guarantee for the Scheffe estimator we must

bound the quantity inff2F 0 ||fµ
0

,µ
1

� f ||TV from above. In order to do so, we can use

Moment matching techniques to show that there exists a candidate distribution in F 0

(with an appropriate choice of ⇢) whose TV distance with fµ
0

,µ
1

must be o(��0/�2

) and

further the parameters of this candidate are very close to the unknown parameters of

fµ
0

,µ
1

. On the other hand, we show that for any candidate distribution fµ0
0

,µ0
1

in F 0

such that

min

⇡:{0,1}!{0,1}
max{

�

�µ0
0

� µ⇡(0)

�

� ,
�

�µ0
1

� µ⇡(1)

�

�} � �0,

48

we must have
�

�

�

�fµ0
0

,µ0
1

� fµ
0

,µ
1

�

�

�

�

TV
� ⌦(��0/�2

). Putting everything together with an

appropriate choice of ✏, ⇢, we get that the Scheffe estimator returns a (�0, ⌘)-estimate

of fµ
0

,µ
1

and with a polynomial running time (see Theorem 2.10).

2.3.2 Lower Bounds on TV Distance of 1-Dimensional Mixtures

Consider distinct Gaussian mixtures fµ
0

,µ
1

, fµ0
0

,µ0
1

2 F . Without loss of generality

we will also let µ
0

 min(µ
1

, µ0
0

, µ0
1

) be the smallest unknown parameter, and let

µ0
1

� µ0
0

. We maintain these assumptions throughout this section, and we will prove

Theorem 2.9.

Eq. (2.4) implies that we can lower bound ||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV by the modulus of

a complex analytic function with parameter t. Then, we can optimize the bound by

choosing t = ⇥(1/�) and lower bounding the term in the absolute value signs.

We define the following parameters relative to the means to simplify some bounds:

�
1

= max(|µ
0

� µ
1

|, |µ0
0

� µ0
1

|) �
2

= max(|µ0
0

� µ
0

|, |µ
1

� µ0
1

|)

�
3

= |µ
0

+ µ
1

� µ0
0

� µ0
1

| �
4

= min(|µ0
0

� µ
0

| , |µ0
1

� µ
1

|).

We first consider t such that t(µ
1

� µ
0

), t(µ0
1

� µ
0

), t(µ0
1

� µ
0

)  ⇡
4

, which is covered in

Lemma 2.9.

Lemma 2.9. For t > 0 with t(µ
1

�µ
0

), t(µ0
1

�µ
0

), t(µ0
1

�µ
0

) 2 [0, ⇡
4

], if µ0
0

, µ0
1

2 [µ
0

, µ
1

],

then
�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

� max

✓

t2(�
1

� �
4

)�
4

2

,
t�

3

4

p
2

◆

and otherwise, when µ0
1

> µ
1

,
�

�eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

� � t�
2

/(2
p
2).

See Figure 2.1 for an illustration of the different ways that the means can be

ordered. The lemma follows from straightforward calculations that only use Taylor

series approximations, trigonometric identities, and basic facts about complex numbers.

We include the proof in Chapter A, Section A.2.

49

Figure 2.1: Layout of the means for Theorem 2.9. The means can be ordered in
different ways, which affects the analysis of lower bounding |eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1 |

in Lemma 2.9. For a fixed t, the order affects (i) whether the real or imaginary part of
eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1 has large modulus and (ii) whether the terms from µ

0

and
µ
1

or µ0
0

and µ0
1

dominate.

Recall that we will choose t = ⇥(1/�) to cancel the exponential term in Eq. (2.4).

Therefore, Lemma 2.9 handles the case when all the means are within some interval

of size ⇥(�).

Next, we prove that when the separation between the mixtures is substantially

fair apart—when either |µ
0

� µ0
0

| or |µ
1

� µ0
1

| is at least 2�—we have a constant lower

bound on the TV distance. Recall that it is without loss of generality to assume that

µ
0

is the smallest parameter and µ0
1

> µ0
0

. A similar result as the following two lemmas

has been observed previously (e.g., [72]) but we provide a simple and self-contained

proof.

Lemma 2.10. If max(|µ
0

� µ0
0

| , |µ
1

� µ0
1

|) � 2�, then it follows that ||fµ
0

,µ
1

�

fµ0
0

,µ0
1

||TV � ⌦(1).

Proof. Assume that |µ
0

� µ0
0

| � 2�, where the case |µ
1

� µ0
1

| � 2� is analogous. Recall

from the definition of TV distance that

||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV , sup

A✓⌦

⇣

fµ
0

,µ
1

(A)� f 0
µ0
0

,µ0
1

(A)

⌘

� Pr

X⇠fµ
0

,µ
1

[X  µ
0

+ �]� Pr

Y⇠fµ0
0

,µ0
1

[Y  µ
0

+ �].

50

For a random variable X ⇠ fµ
0

,µ
1

, let E denote the event that we choose the

component with mean µ
0

, i.e., if eX denotes X conditioned on E , then we have

eX ⇠ N (µ
0

, �2

). Since the mixing weights are equal, we have Pr(E) = Pr(Ec
) = 1/2,

where Ec is the complement of E . Therefore,

Pr(X � µ
0

+ �)  Pr(E) Pr(X � µ
0

+ � | E) + Pr(Ec
) =

1

2

Z 1

µ
0

+�

e�
(t�µ

0

)

2

2�2

p
2⇡�

dt+
1

2

 1

2

Z 1

µ
0

+�

⇣t� µ
0

�

⌘e�
(t�µ

0

)

2

2�2

p
2⇡�

dt+
1

2

 1

2

· e�
1

2

p
2⇡

+

1

2

. (2.5)

Recall that µ
0

 µ0
0

, µ0
0

 µ0
1

and |µ
0

� µ0
0

| � 2�. Again, for a random variable

Y ⇠ fµ0
0

,µ0
1

, let E 0 denote the event that the component with mean µ0
0

is chosen (and

E 0c denotes µ0
1

is chosen). Then,

Pr(Y  µ
0

+ �) = Pr(E 0
) Pr(Y  µ

0

+ � | E 0
) + Pr(E 0c

) Pr(Y  µ
0

+ � | E 0c
)

a
= Pr(E 0

) Pr(Y  µ0
0

� � | E 0
) + Pr(E 0c

) Pr(Y  µ0
1

� � | E 0c
)

b
= Pr(E 0

) Pr(Y � µ0
0

+ � | E 0
) + Pr(E 0c

) Pr(Y � µ0
1

+ � | E 0c
)

c

 1

2

· e�
1

2

p
2⇡

+

1

2

· e�
1

2

p
2⇡

=

e�
1

2

p
2⇡

where in step (a), we used the fact that µ0
0

� � � µ
0

+ � and µ0
1

� � � µ
0

+ �; in step

(b), we used the symmetry of Gaussian distributions; in step (c), we used the same

analysis as in (2.5). By plugging this in the definition of TV distance, we have

||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � Pr

X⇠fµ
0

,µ
1

[X  µ
0

+ �]� Pr

Y⇠fµ0
0

,µ0
1

[Y  µ
0

+ �]

� 1

2

�
r

9

8⇡e
� 0.137.

51

If Lemma 2.10 does not apply, then we case on whether max(|µ
0

� µ
1

| , |µ0
0

� µ0
1

|)

is large or not. If max(|µ
0

� µ
1

| , |µ0
0

� µ0
1

|) < 100�, we use Lemma 2.9—exactly

how will be explained later—and otherwise we use the following lemma. Recall that

�
2

= max(|µ0
0

� µ
0

|, |µ
1

� µ0
1

|).

Lemma 2.11. If max(|µ
0

� µ
1

| , |µ0
0

� µ0
1

|) � 100� and max(|µ
0

� µ0
0

| , |µ
1

� µ0
1

|) 

2�, then

sup

t
e�

�2t2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

� ⇡2�
2

240e�
.

We defer the proof of Lemma 2.11 to Chapter A, Section A.2. Using Lemmas 2.9,

2.10, and 2.11, we prove Theorem 2.9.

Proof of Theorem 2.9. Using Lemma 2.1, we see that

2

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� sup

t

e�
�2t2

2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

.

Case 1: Consider the case when µ
0

, µ
1

, µ0
0

, µ0
1

are in an interval of size at most 100�,

i.e.,

max

⇣

|µ0
1

� µ
0

| , |µ
1

� µ
0

| , |µ0
0

� µ
0

|
⌘

 100�. (2.6)

Recall that �
1

= max{|µ
0

� µ
1

|, |µ0
0

� µ0
1

|}, �
2

= max(|µ0
0

� µ
0

|, |µ
1

� µ0
1

|),

�
3

= |µ
0

+ µ
1

� µ0
0

� µ0
1

|, �
4

= min(|µ0
0

� µ
0

| , |µ0
1

� µ
1

|). For t = ⇡/400�, 0 

tmax

⇣

|µ0
1

� µ
0

| , |µ
1

� µ
0

| , |µ0
0

� µ
0

|
⌘

 ⇡
4

. We have assumed that

µ
0

 min(µ
1

, µ0
0

, µ0
1

) and µ0
0

 µ0
1

. This implies that µ
0

 µ0
0

 µ0
1

 µ
1

in the subcase

when µ0
0

, µ0
1

2 [µ
0

, µ
1

]. This also implies that �
1

= |µ
1

� µ
0

| � 2�
4

, a fact we will use

later. The inequality in Eq. (2.6) implies that the above value of t = ⇡/400� satisfies

52

the conditions of Lemma 2.9. Then, when µ0
0

, µ0
1

2 [µ
0

, µ
1

], the first part of the lemma

implies that

2

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� max

⇣⇡2

(�
1

� �
4

)�
4

640000e�2

,
⇡�

3

3200

p
2e�

⌘

Now we observe that �
3

� �
2

� �
4

. To see this, assume without loss of generality

that �
2

= |µ0
0

� µ
0

| and �
4

= |µ0
1

� µ
1

|. By the triangle inequality, we have that

�
3

= |µ
0

+ µ
1

� µ0
0

� µ0
1

| � |µ0
0

�µ
0

|� |µ0
1

� µ
1

| = �
2

��
4

. We split up the calculations

based on the value of �
3

. If �
3

� �
2

2

, then ||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � ⇡�
2

/(12800
p
2e�). On

the other hand, if �
3

 �
2

2

, then since �
3

� �
2

� �
4

, we have that �
4

� �
2

2

. Coupled

with the fact that �
1

� 2�
4

(hence �
4

 �
1

/2 implying �
1

� �
4

� �
1

/2), we have that

||fµ
0

,µ
1

� fµ0
0

,µ0
1

||TV � ⇡2�
1

�
2

/(5120000e�2

). Putting these together, we have

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� min

⇣ ⇡2�
1

�
2

5120000e�2

,
⇡�

2

12800

p
2e�

⌘

=

⇡2�
1

�
2

5120000e�2

For the case when both of µ0
0

, µ0
1

are not in [µ
0

, µ
1

], we have µ0
1

> µ
1

(recall that

µ
0

is the smallest mean and µ0
0

 µ0
1

), and we can use the second part of Lemma 2.9

to conclude that

2

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� sup

t

e�
�2t2

2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

� ⇡�
2

1600

p
2e�

.

Case 2: Next, consider when �
2

= max(|µ0
0

� µ
0

|, |µ
1

� µ0
1

|) � 2�. Lemma 2.10

implies that

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� ⌦(1).

53

Case 3: Now, we consider the only remaining case, when

�
1

= max(|µ
0

� µ
1

| , |µ0
0

� µ0
1

|) � 100�

and �
2

 max(|µ
0

� µ0
0

| , |µ
1

� µ0
1

|)  2�. This case satisfies the conditions of Lemma

2.11, and therefore, we have that

2

�

�

�

�fµ
0

,µ
1

� fµ0
0

,µ0
1

�

�

�

�

TV
� sup

t

e�
�2t2

2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

� ⇡2�
2

240e�
,

thus proving the theorem.

2.3.3 Lower Bounds on TV Distance of d-Dimensional Mixtures

We lower bound the TV distance of high-dimensional mixtures in F and prove

Theorem 2.8. For any direction t 2 Rd, we denote the projection of the distributions

f
µ

0

,µ
1

and f
µ

0
0

,µ0
1

on t by f t

µ

0

,µ
1

and f t

µ

0
0

,µ0
1

, respectively. The next lemma allows us to

precisely define the projected mixtures.

Lemma 2.12. For a random variable x ⇠ 1

2

N (µ

0

,⌃) +

1

2

N (µ

1

,⌃), for any t 2 Rd,

t

T
x ⇠ N (hµ

0

, ti, tT⌃t)

2

+

N (hµ
1

, ti, tT⌃t)

2

.

Proof. A linear transformation of a multivariate Gaussian is also a Gaussian. For

x ⇠ N (µ

0

,⌃), we see that ht,xi ⇠ N (hµ
0

, ti, tT⌃t) by a computation of the mean

and variance. Similarly, for x ⇠ N (µ

1

,⌃), we have ht,xi ⇠ N (hµ
1

, ti, tT⌃t). Putting

these together, the claim follows.

From Lemma 2.12, we can exactly define the one-dimensional mixtures

f t

µ

0

,µ
1

=

N (hµ
0

, ti, tT⌃t)

2

+

N (hµ
1

, ti, tT⌃t)

2

54

f t

µ

0
0

,µ0
1

=

N (hµ0
0

, ti, tT⌃t)

2

+

N (hµ0
1

, ti, tT⌃t)

2

.

By using the data processing inequality, or the fact that variational distance is non-

increasing under all mappings (see, for instance, Theorem 5.2 in [51]), it follows

that

�

�

�

�f
µ

0

,µ
1

� f
µ

0
0

,µ0
1

�

�

�

�

TV
� sup

t2Rd

�

�

�

�

�

�

f t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

�

�

�

�

�

�

TV
.

Let H be the set of permutations on {0, 1}. The following lemma has two cases

based on whether the interval defined by one pair of mean’s projections is contained

in the interval defined by the other pair’s projections.

Lemma 2.13. Let t 2 Rd be any vector. If

p

t

T
⌃t = ⌦

⇣

max (|ht,µ
0

� µ

1

i|, |ht,µ0
0

� µ

0
1

i|)
⌘

,

and either hµ0
0

, ti, hµ0
1

, ti 2 [hµ
0

, ti, hµ
1

, ti] or hµ
0

, ti, hµ
1

, ti 2 [hµ0
0

, ti, hµ0
1

, ti], then

||f t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

||TV is at least

⌦

⇣

min

⇣

1,
max (|ht,µ

0

� µ

1

i|, |ht,µ0
0

� µ

0
1

i|)
t

T
⌃t

⇥min

�2H
max

�

|ht, (µ
0

� µ

0
�(0))i|, |ht, (µ1

� µ

0
�(1))i|

�

⌘⌘

.

Otherwise, we have that ||f t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

||TV is at least

⌦

⇣

min

⇣

1,min

�2H

max(|ht, (µ
0

� µ

0
�(0))i|, |tT (µ1

� µ

0
�(1))|)p

t

T
⌃t

⌘⌘

.

Proof. The proof follows directly from Theorem 2.9. Note that in Theorem 2.9, we

assumed the ordering of the means without loss of generality, i.e., µ
0

 min(µ
1

, µ0
0

, µ0
1

)

55

and µ0
0

< µ0
1

. However, taking a minimum over the set of permutations in H allows us

to restate the theorem in its full generality.

Now we are ready to provide the proof of Theorem 2.8.

Proof of Theorem 2.8. Let

S
1

= {µ
1

� µ

0

,µ0
1

� µ

0
0

}, S
2

= {µ0
0

� µ

0

,µ0
1

� µ

1

}, S
3

= {µ0
0

� µ

1

,µ0
1

� µ

0

},

and

v

1

= argmaxs2S
1

||s||
2

, v

2

= argmaxs2S
2

||s||
2

, v

3

= argmaxs2S
3

||s||
2

.

We consider two cases below. Depending on the norm of v
1

, we modify our choice

of projection direction. In the first case, we do not have a guarantee on the ordering of

the means, so we use the first part of Lemma 2.13. In the second case, we can use the

better bound in the second part of the lemma after arguing about the arrangement of

the means.

Case 1 (2 ||v
1

||
2

� min(||v
2

||
2

, ||v
3

||
2

) and
p

�
⌃,U = ⌦(||v

1

||
2

)): We start with a

lemma that shows the existence of a vector z that is correlated with {v
1

,v
2

,v
3

}. We

use z to define the direction t to project the means on, while roughly preserving their

pairwise distances.

Lemma 2.14. For v

1

,v
2

,v
3

defined above, there exists a vector z 2 Rd such that

||z||
2

 10, z belongs to the subspace spanned by v

1

,v
2

,v
3

, and |hz,vi| � ||v||
2

6

for all

v 2 {v
1

,v
2

,v
3

}.

Proof. We use the probabilistic method. Let u
1

,u
2

,u
3

be orthonormal vectors forming

a basis of the subspace spanned by v

1

,v
2

and v

3

; hence, we can write the vectors

v

1

,v
2

and v

3

as a linear combination of u
1

,u
2

,u
3

. Let us define a vector z randomly

56

generated from the subspace spanned by v

1

,v
2

,v
3

as follows. Let p, q, r be indepen-

dently sampled according to N (0, 1). Then, define z = pu
1

+ qu
2

+ ru
3

. By this

construction, we have that hz,vi ⇠ N (0, ||v||2
2

) for all vectors v 2 {v
1

,v
2

,v
3

}, and

further, ||z||2
2

= p2 + q2 + r2. Hence, for any v 2 {v
1

,v
2

,v
3

}, we have

Pr (|hz,vi|  ||v||
2

/6) 
Z

||v||
2

6

� ||v||
2

6

e�x2/2||v||2
2

p

2⇡||v||2
2

dx


Z

||v||
2

6

� ||v||
2

6

1

p

2⇡||v||2
2

dx  ||v||
2

3

p

2⇡||v||2
2

 1

3

p
2⇡

.

Also, we can bound the norm of z by bounding p, q, r. We see that

Pr(p > 5) 
Z 1

5

e�x2/2

p
2⇡

dx  1

5

Z 1

5

xe�x2/2

p
2⇡

dx  e�12.5

5

.

Similarly, Pr(p < �5)  e�12.5/5. Applying the same calculations to q and r and taking

a union bound, we must have that with positive probability ||z||
2


p

p2 + q2 + r2 
p
75  10 and |hz,vi| � ||v||

2

/6 for all v 2 {v
1

,v
2

,v
3

}, implying there exists a vector

z that satisfies the claim.

For this case, we will use the first part of Lemma 2.13. Let z be the vector

guaranteed by Lemma 2.14. Setting t =

zp
z

T⌃z

, then Lemma 2.14 implies that

|ht,vi| = |hz,vi|p
z

T
⌃z

� ||v||
2

6

p
z

T
⌃z

for all v 2 {v
1

,v
2

,v
3

}.

Recall that we defined �
⌃,U , max ||u||

2

=1

u2span(v
1

,v
2

,v
3

)

u

T
⌃u to be the maximum amount

a unit norm vector u belonging to the span of the vectors v

1

,v
2

,v
3

is stretched by

the matrix ⌃. Note that �
⌃,U is also upper bounded by the maximum eigenvalue of

⌃. Now, using the fact that ||z||
2

 10 and
p
z

T
⌃z 

p

�
⌃,U ||z||

2

 10

p

�
⌃,U , we

obtain

|ht,vi| � ||v||
2

60

p

�
⌃,U

for all v 2 {v
1

,v
2

,v
3

}. (2.7)

57

The part of Lemma 2.13 that we use depends on whether
p
t

T
⌃t = ⌦

⇣

max (|ht,v
1

i|)
⌘

or not. However, the second part of the lemma is stronger and implies the first part.

Therefore, we simply use the lower bound in the first part of the lemma, and we see

that

�

�

�

�

�

�

f t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

�

�

�

�

�

�

TV

= ⌦

⇣

min

⇣

1,max (|ht,µ
0

� µ

1

i|, |ht,µ0
0

� µ

0
1

i|)

⇥min

�2H
max

�

|ht, (µ
0

� µ

0
�(0))i|, |ht, (µ1

� µ

0
�(1))i|

�

⌘⌘

(a)
= ⌦

⇣

min

⇣

1, |ht,v
1

i|min(|ht,v
2

i| , |ht,v
3

i|)
⌘⌘

(b)
= ⌦

⇣

min

⇣

1,
kv

1

k
2

min(kv
2

k
2

, kv
3

k
2

)

�
⌃,U

⌘⌘

,

wherein step (a), we used the following facts (from definitions):

max (|ht,µ
0

� µ

1

i|, |ht,µ0
0

� µ

0
1

i|) � |ht,v
1

i| (2.8)

max (|ht, (µ
0

� µ

0
0

)i|, |ht, (µ
1

� µ

0
1

)i|) � |ht,v
2

i| (2.9)

max (|ht, (µ
0

� µ

0
1

)i|, |ht, (µ
1

� µ

0
0

)i|) � |ht,v
3

i| (2.10)

and in step (b), we used Eq. (2.7) for each v 2 {v
1

,v
2

,v
3

}.

Case 2 (2 ||v
1

||
2

 min(||v
2

||
2

, ||v
3

||
2

) or
p

�
⌃,U = O(||v

1

||
2

)): For this case, we will

use the second part of Lemma 2.13. The random choice of t in Case 1 would have been

sufficient for using the second part of Lemma 2.13 when c ||v
1

||
2

 min(||v
2

||
2

, ||v
3

||
2

)

or
p

�
⌃,U = O(||v

1

||
2

) for some large constant c but with a deterministic choice of t

that is described below, we can show that c = 2 is sufficient. Let t =

vp
v

T⌃v

, where

v =

v

2

||v
2

||
2

+

sv
3

||v
3

||
2

with s = argmaxu2{�1,+1}hv2

, uv
3

i.

58

Notice that we must have shv
2

,v
3

i > 0 from the definition of s. Then we see that

|hv,v
1

i| =
�

�

�

�

hv
2

,v
1

i
||v

2

||
2

+

shv
3

,v
1

i
||v

3

||
2

�

�

�

�

 2 ||v
1

||
2

 min(||v
2

||
2

, ||v
3

||
3

)

|hv,v
2

i| =
�

�

�

�

||v
2

||
2

+

shv
2

,v
3

i
||v

3

||
2

�

�

�

�

� ||v
2

||
2

(2.11)

|hv,v
3

i| =
�

�

�

�

hv
2

,v
3

i
||v

2

||
2

+ s ||v
3

||
2

�

�

�

�

=

�

�

�

�

shv
2

,v
3

i
||v

2

||
2

+ ||v
3

||
2

�

�

�

�

� ||v
3

||
2

. (2.12)

The first inequality follows the norm bound on v

1

for this case, the second inequality

uses that the definition of v and s imply that the second term in the sum is non-

negative, and the third inequality uses the same logic and the fact that s 2 {�1, 1}.

We just showed that |hv,v
1

i|  min(|hv,v
2

i| , |hv,v
3

i|), and hence ht,v
1

i 

min(ht,v
2

i, ht,v
3

i). This implies that the interval defined by one pair of projected

means is not contained within the interval defined by the other pair of projected

means. This means we can use the second part of Lemma 2.13. Furthermore, we also

have t

T
⌃t = 1. Finally, since ||v||

2

 2, note that
p
v

T
⌃v  2

p

�
⌃,U . Using Lemma

2.13 with our choice of t, we see that

�

�

�

�

�

�

f t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

�

�

�

�

�

�

TV

= ⌦

⇣

min

⇣

1,min

�2H
max(|ht, (µ

0

� µ

0
�(0))i|, |ht, (µ1

� µ

0
�(1)i)|)

⌘⌘

(a)
= ⌦

⇣

min

⇣

1,min

⇣

|ht,v
2

i| , |ht,v
3

i|
⌘⌘⌘

(b)
= ⌦

⇣

min

⇣

1,
min(||v

2

||
2

, ||v
3

||
2

)

p

�
⌃,U

⌘⌘

.

In step (a), we used Eq. (2.9) and (2.10), while in step (b), we used Eq. (2.11) and (2.12).

The remaining case is when
p

�
⌃,U = O(||v

1

||
2

). The second part of Lemma 2.13

applies because we observe that
p
t

T
⌃t = O

⇣

max (|ht,µ
0

� µ

1

i|, |ht,µ0
0

� µ

0
1

i|)
⌘

.

To see this, recall that tT⌃t = 1, and hence,

max (|ht,µ
0

� µ

1

i|, |ht,µ0
0

� µ

0
1

i|)

59

� |ht,v
1

i| =
�

�

�

�

z

T
v

1p
z

T
⌃z

�

�

�

�

� ||v
1

||
2

6

p
z

T
⌃z

� ||v
1

||
2

6

p

�
⌃,U

= ⌦(1) = ⌦

⇣

p

t

T
⌃t

⌘

.

Next, recall that Lemma 2.14 implies that |ht,v
2

i| � ||v
2

||/6 and |ht,v
3

i| � ||v
3

||/6.

Then, using the second part of Lemma 2.13, we have that

�

�

�

�

�

�

f t

µ

0

,µ
1

� f t

µ

0
0

,µ0
1

�

�

�

�

�

�

TV

= ⌦

⇣

min

⇣

1,min

�2H
max(|ht, (µ

0

� µ

0
�(0))i|, |tT (µ1

� µ

0
�(1))|)

⌘⌘

(a)
= ⌦

⇣

min

⇣

1,min

⇣

|ht,v
2

i| , |ht,v
3

i|
⌘⌘⌘

(b)
= ⌦

⇣

min

⇣

1,
min(||v

2

||
2

, ||v
3

||
2

)

p

�
⌃,U

⌘⌘

.

Again in step (a), we used Eq. (2.9) and (2.10) while in step (b), we used Eq. (2.11)

and (2.12). This completes the proof of Theorem 2.8.

2.3.4 Learning 1-dimensional mixture with Minimum Distance estimator

Here, we will prove Theorem 2.10 assuming Theorem 2.9, where the theorem lower

bounds the TV distance of the difference between a candidate distribution and the

true distribution.

Proof of Theorem 2.10. We will use the minimum distance estimator on the class

of distributions F = {fµ
0

,µ
1

:= 0.5N (µ
0

, �2

) + 0.5N (µ
1

, �2

) : µ
0

, µ
1

2 R}. Suppose

for sake of deriving a contradiction that the minimum distance estimator returns a

candidate mixture fbµ
0

,bµ
1

2 F such bµ
0

, bµ
1

is not a �0�estimate of fµ
0

,µ
1

with probability

at least 1� ⌘. From Theorem 2.9, for any such fbµ
0

,bµ
1

, if � > �0, then

||fµ
0

,µ
1

� fbµ
0

,bµ
1

||TV � ⌦

⇣

min

⇣

1,
��0

�2

⌘⌘

,

and if �0 � �, then

||fµ
0

,µ
1

� fbµ
0

,bµ
1

||TV � ⌦

⇣

min

⇣

1,
�0

�

⌘⌘

.

60

Recall that A = {{x : f(x) > g(x)}|f, g 2 F , f 6= g} is the union of sets of

intervals in the sample space where one of the distribution has larger density than the

other. From a result of Moitra and Valiant, VC(A) = O(1) [114, 99]. Consider the

case when � > �0 and n � C ·max

⇣

1, �4

�2�02

⌘

log

2 ⌘�1, for C a sufficiently large universal

constant. We have the following guarantee for the minimum distance estimator (see

Chapter D for details).

Proposition 2.2. Let V C(A) denote the Vapnik-Chervonenkis dimension of A. Given

n samples x1, x2, . . . , xn distributed according to f 2 F , with probability at least 1� ⌘,

the minimum distance estimator returns f✓? 2 F satisfying

||f✓? � f ||TV  3 inf

✓2⇥
||f✓ � f ||TV + 2

r

2V C(A) + log ⌘�1

2n
+

3

2n
. (2.13)

By substituting into the above proposition, where we use inff2F ||f � fµ
0

,µ
1

|| = 0,

with probability at least 1� ⌘, we have that

||fbµ
0

,bµ
1

� fµ
0

,µ
1

||TV  O
⇣

min

⇣

1,
��0

�2

⌘⌘

.

Similarly, when � < �0 and n � C 0 · max

⇣

1, �2

�02

⌘

log

2 ⌘�1, for C 0 a sufficiently large

universal constant, with probability at least 1� ⌘

||fbµ
0

,bµ
1

� fµ
0

,µ
1

||TV  O
⇣

min

⇣

1,
�0

�

⌘⌘

.

In both cases, this leads to a contradiction when we take ⌘ sufficiently small.

We can extend this result to the setting when the distribution according to

which the samples are generated is not a mixture of Gaussians but is close in Total

Variation distance to one of them. More formally, suppose that we obtain samples

from a distribution D such that inff2F ||D � f ||TV  � and further let fµ
0

,µ
1

=

61

argminf2F ||D � f ||TV. As usual, we will denote by � the separation of fµ
0

,µ
1

. Now,

we have the following result:

Lemma 2.15. Let �0 and 0 < ⌘ < C be fixed, for C a small absolute constant. If

� > �0 > ��2/�, then we can (�0, ⌘)-learn fµ
0

,µ
1

from the minimum distance estimator

over F using s(�0, ⌘) = O(max(1, �4/(�2�02)) log2 ⌘�1

) samples. If �0 � min(�, ��),

then we only need s(�0, ⌘) = O(max(1, �2/�02) log2 ⌘�1

) samples.

Proof. The proof is very similar to the proof of Theorem 2.10 except in the use of

Proposition 6, we need to substitute inff2F ||D � f ||TV  O(��0/�2

) when � > �0 and

inff2F ||D � f ||TV  O(�0/�) when � < �0.

2.3.5 Learning 1-dimensional mixture with Scheffe estimator

In this section, we analyze the running time and the sample complexity of Algo-

rithm 2.1 (stated below), a polynomial time algorithm that learns fµ
0

,µ
1

and prove

Theorem 2.11.

Algorithm 2.1 Estimate the means µ
0

, µ
1

of fµ
0

,µ
1

in polynomial time
Require: �0, ⌘, C > 0 such that |µ

0

� µ
1

| � C. Access to samples from fµ
0

,µ
1

2 F .
1: Set ⇢ = min{�0/ log ⌘�1, �/12} and ✏ = 2⇢C/�
2: Compute b�

0

, b�
1

(mean estimates) using Method of

Moments(�, O(log ⌘�1

), 36 log ⌘�1); Algorithm 3.6.
3: if |b�

0

� b�
1

| � 3�/4 then
4: Compute bµ

0

, bµ
1

using EM(�); Algorithm 3.4. Return bµ
0

, bµ
1

.
5: else
6: Compute cM using Fit a Single Gaussian(O(�2

log ⌘�1/✏2)); Algorithm 3.7.
7: Set eF =

n

N (a⇢,�2

)

2

+

N (�a⇢,�2

)

2

; |a|  5�
6⇢
, a 2 Z

o

,

T = O(max(1, �4

�2�02 log
�
�0) log

3 ⌘�1

).
8: for i = 1, 2, . . . , T do
9: Obtain sample yi from fµ

0

,µ
1

.
10: end for
11: Compute the Scheffe estimate fbµ

0

,bµ
1

from eF using y1, . . . , yT .
12: Return bµ

0

, bµ
1

.
13: end if

62

Estimate the separation of fµ
0

,µ
1

using the Method of Moments: We use

the Method of Moments (see Step 3 in Algorithm 2.1) to compute course mean

estimates b�
0

, b�
1

of µ
0

, µ
1

. For ✏ a small constant, which we will choose soon, suppose

we use O(d✏�4e log ⌘�1

) samples to recover b�
0

and b�
1

using the Method of Moments.

According to the guarantee provided in Theorem 3.8 for �0 = 2✏
p

�2

+ (µ
1

� µ
2

)

2,

with probability at least 1� ⌘,

�

�

�

b�i � µi

�

�

�

 2✏
p

�2

+ (µ
1

� µ
2

)

2 for i = 0, 1.

Therefore, we have

|µ
0

� µ
1

|�
�

�

�

µ
0

� b�
0

�

�

�

�
�

�

�

µ
1

� b�
1

�

�

�


�

�

�

b�
0

� b�
1

�

�

�

 |µ
0

� µ
1

|+
�

�

�

µ
0

� b�
0

�

�

�

+

�

�

�

µ
1

� b�
1

�

�

�

�

�

�

�

�

�

b�
0

� b�
1

�

�

�

� |µ
0

� µ
1

|
�

�

�

 4✏
p

�2

+ (µ
0

� µ
1

)

2.

We choose ✏ = 1/256, in which case the number of samples is O(log ⌘�1

) and

�

�

�

�

�

�

b�
0

� b�
1

�

�

�

� |µ
0

� µ
1

|
�

�

�

 1

64

p

�2

+ (µ
0

� µ
1

)

2  �

64

+

|µ
0

� µ
1

|
64

.

Therefore, if |b�
0

� b�
1

| � 3�
4

, then we must have that |µ
0

� µ
1

| � 47�
65

. On the other

hand, if |b�
0

� b�
1

|  3�
4

, then |µ
0

� µ
1

|  7�
9

.

If the separation is large, i.e. |b�
0

� b�
1

| � 3�/4, run EM: If the test using

Method of Moments returns |b�
0

� b�
1

| � 3�/4, then we use the EM algorithm to

compute bµ
0

, bµ
1

, estimates of µ
0

, µ
1

. From the guarantees of Theorem 3.7, we can

conclude that O((�2/�02) log ⌘�1

) samples are sufficient to (�0, ⌘)-learn fµ
0

,µ
1

when

|µ
0

� µ
1

| � 47�/65. Further, from Theorem 3.7, the run-time of the EM algorithm is

eO(

�2

�02 log
�
�0), where the eO(·) notation hides logarithmic factors in ⌘.

63

Estimate the mean of fµ
0

,µ
1

up to precision ✏: In Step 2 of Algorithm 2.1,

we compute cM , an estimate of the mean, (µ
0

+ µ
1

)/2, of the mixture fµ
0

,µ
1

. Using

Theorem 3.5 directly with �0 = ✏/�, we can conclude that O(max(1, �2

log ⌘�1/✏2)

samples are sufficient to compute cM such that with probability at least 1� ⌘

�

�

�

cM � (µ
0

+ µ
1

)/2
�

�

�

 ✏.

Further, the run-time of Step 2 in Algorithm 2.1 is O(�2

log ⌘�1/✏2).

If the estimated separation is small, i.e. |b�
0

� b�
1

| < 3�/4, use the Scheffe

estimator: In this case, we obtain samples from fµ
0

,µ
1

and subtract cM from each

of them. The modified—or rather, approximately centered—samples are distributed

according to

fµ
0

�cM,µ
1

�cM =

1

2

N (µ
0

� cM, �2

) +

1

2

N (µ
1

� cM, �2

).

The mean of the modified distribution fµ
0

�cM,µ
1

�cM has magnitude at most ✏. Next,

we design the following set of candidate distributions:

eF =

⇢

1

2

N (a⇢, �2

) +

1

2

N (�a⇢, �2

);�5�

6⇢
 a  5�

6⇢
, a 2 Z

�

.

| eF|  5�/3⇢ and thus, we have a finite set of candidate distributions. Let f ? 2 eF be

the distribution f ?
=

1

2

(N (a?⇢, �2

) +N (�a?⇢, �2

)) , such that a? = argmina|a⇢�µ
0

�
cM |+ |a⇢+µ

1

+

cM |. The following lemma says that f ⇤ is not too far from fµ
0

�cM,µ
1

�cM

in TV distance.

Lemma 2.16. Let �0 > 0, 0 < ⌘ < 1, 0 < ⇢ < �/12, and ✏ = 2⇢�
�

be fixed. Further,

let fµ
0

,µ
1

2 F with separation � and let cM be such that |cM � (µ
0

+ µ
1

)/2|  ✏. For

64

f ? 2 eF the distribution f ?
=

1

2

(N (a?⇢, �2

) +N (�a?⇢, �2

)) with a? = argmina|a⇢ �

µ
0

� cM |+ |a⇢+ µ
1

+

cM | satisfies

�

�

�

�

�

�

fµ
0

�cM,µ
1

�cM � f ?
�

�

�

�

�

�

TV
 16⇢�

�2

.

Proof. We will use the invariance property of TV distance (see [51]), which says that

for any pair of random variables X and Y on a sample space ⌦ with densities f and

g, respectively, for any bijection T : R! R

||f � g|||TV = sup

B2⌦
|Pr(X 2 B)� Pr(X 2 B)|

= sup

B2⌦
|Pr(T (X) 2 T (B))� Pr(T (X) 2 T (B))| .

For simplicity of calculations, we consider the bijective mapping T (x) = x/� and

subsequently divide the samples by �, after subtracting cM . Again for simplicity of

notation, we denote b = max(|µ
0

�cM |, |µ
1

�cM |) and b+ ⇣ = min(|µ
0

�cM |, |µ
1

�cM |).

Because of our guarantees on cM , we have 0 � ⇣ � �2✏ and 2b+ ⇣ = �. Now, consider

U,U? to be two random variables as defined below,

U =

8

>

>

<

>

>

:

b
�

with probability1

2

� b+⇣
�

with probability1

2

.

U?
=

8

>

>

<

>

>

:

a?⇢
�

with probability1

2

�a?⇢
�

with probability1

2

.

We now use the moment matching results on the TV distance between two Gaussian

mixtures (see Chapter 3, [148]) to say that

�

�

�

�

�

�

fµ
0

�cM,µ
1

�cM � f ?
�

�

�

�

�

�

TV

 1
X

m=0

|E[Um
]� E[U? m

]|2
m!

!

1/2

.

65

For odd m, we have E[U? m
] = 0. We also have that

E[Um
] =

1

2

⇣⇣ b

�

⌘m

�
⇣b+ ⇣

�

⌘m⌘

=

bm

2�m

⇣

1�
⇣

1 +

⇣

b

⌘m⌘

.

As ✏  �/6, we must have that |⇣|  2✏  �/3 < b. Therefore, we can invoke

Bernoulli’s inequality ((1 + x)r � 1 + rx for any x � �1 and any integer r � 0) and

conclude that E[Um
]  |⇣|m

2b

⇣

b
�

⌘m

. For odd m, it follows that

|E[Um
]� E[U? m

]|  |⇣|m
2b

⇣ b

�

⌘m

 ✏m

b

⇣ b

�

⌘m

For even m > 0, E[U? m
] no longer cancels out to 0. We use that max(|a?⇢ �

b|, |a?⇢� b� ⇣|)  ⇢+ |⇣| and Bernoulli’s inequality to see the following:

|E[Um
]� E[U? m

]| = 1

2

�

�

�

�

⇣⇣ b

�

⌘m

+

⇣b+ ⇣

�

⌘m

� 2

⇣a?⇢

�

⌘m⌘
�

�

�

�


�

�

�

�

⇣ b

�

⌘m

�
⇣b� ⇢� |⇣|

�

⌘m
�

�

�

�

 (|⇣|+ ⇢)m

b

⇣ b

�

⌘m

 (2✏+ ⇢)m

b

⇣ b

�

⌘m

.

Combining the cases of odd and even m, we see that

�

�

�

�

�

�

fµ
0

�cM,µ
1

�cM � f ?
�

�

�

�

�

�

2

TV


X

m>0 odd

⇣✏m

b

⌘

2

⇣

b
�

⌘

2m

m!

+

X

m>0 even

⇣

(2✏+ ⇢)m

b

⌘

2

⇣

b
�

⌘

2m

m!

.

As m2 grows much slower than m! and b < � < �, we can upper bound the sums by

constant factors times their first terms to see that

�

�

�

�

�

�

fµ
0

�cM,µ
1

�cM � f ?
�

�

�

�

�

�

2

TV

⇣⇣✏

b

⌘

2

⇣ b

�

⌘

2

+ 2 ·
⇣

(2✏+ ⇢)

b

⌘

2

⇣ b

�

⌘

4

⌘

(1 + o(1)).

Since we chose ✏ = 2⇢�
�

and ⇢  �/12

⇣✏

b

⌘

2

⇣ b

�

⌘

2

= ✏2/�2

= 4⇢2�2/�4  16⇢�/�2.

66

From Theorem 2.9, for any candidate distribution fc⌘,�c⌘ 2 eF with max(|c⌘� µ
0

+

cM |, |c⌘ + µ
1

+

cM |) � �0, it holds that ||fµ
0

,µ
1

� fc⌘,�c⌘||TV � ⌦

⇣

min

⇣

1, ��
0

�2

⌘⌘

.

Now, we provide the proof of Theorem 2.11.

Proof of Theorem 2.11. We assume that some lower bound C on � is known i.e.

� > C. In Algorithm 2.1, we choose ⇢ = min{�0/ log ⌘�1, �/12} and ✏ = 2⇢C/�.

By using Theorem 3.5, the number of samples sufficient to compute cM such that

|cM � (µ
0

+ µ
1

)/2|  ✏ is at most

O(�2

log ⌘�1/✏2) = O

✓

�4

log

3 ⌘�1

�2�02

◆

when ⇢ = �0/ log ⌘�1 and at most

O(�2

log ⌘�1/✏2) = O
�

�2

log ⌘�1/�2
�

when ⇢ = �/12; so overall we can use the former bound. Let A = {{x : f(x) >

g(x)}|f, g 2 eF , f 6= g} and µn,A =

1

n

Pn
i=1

1[xi 2 A]. Given n samples x1, x2, . . . , xn

from a distribution fµ
0

,µ
1

2 F , the Scheffe estimator returns a distribution fa⌘,�a⌘ 2 eF

such that

||fa⌘,�a⌘ � fµ
0

,µ
1

||TV  9min

f2F
||f � fµ

0

,µ
1

||TV + 8

s

2 log | eF |+ log ⌘�1

2n

From Lemma 2.16, there exists a? such that fa?⌘,�a?⌘ 2 eF and

||fµ
0

,µ
1

� fa?⌘,�a?⌘||TV 
4⇢�
�2

. Using this and the fact that | eF |  5�/3⇢, the distribution

fa⌘,�a⌘ 2 eF returned by the Scheffe estimator satisfies

||fa⌘,�a⌘ � fµ
0

,µ
1

||TV 
36⇢�

�2

+ 8

r

2 log(5�/(3⇢)) + log ⌘�1

2n
.

67

If ⇢ = �0/ log ⌘�1, then 36⇢�
�2

= O(��0/�2

), and similarly if ⇢ = �/12, then 36⇢�
�2

=

O(��0/�2

). Since we want the TV distance ||fa⌘,�a⌘ � fµ
0

,µ
1

||TV to be sufficiently small

so that the first term 36⇢�/�2 dominates, we note that for any n such that (recall

that � > C for known C)

n = ⌦

⇣

max

⇣

1,
�4

log

3 ⌘�1

C2�02
log

�

�0

⌘⌘

the Scheffe estimator is close to the unknown mixture, ||fa⌘,�a⌘ � fµ
0

,µ
1

||TV  O(��0/�2

).

The mixture fa⌘,�a⌘ 2 eF satisfies max(|a⌘�µ
0

+

cM |, |a⌘+µ
1

+

cM |) < �0, as if it did not

satisfy this property, then by Theorem 2.9, ||fµ
0

,µ
1

� fa⌘,�a⌘||TV � ⌦

⇣

min

⇣

1, ��
0

�2

⌘⌘

,

contradicting our upper bound on the TV distance for ⌘ sufficiently small. Finally,

using that | eF|  5�/3⇢, the running time of the Scheffe estimator (see Chapter 6,

[51]) is at most

n| eF|2 = O
⇣

min

⇣

1,
�6

log

3 ⌘�1

C2�04
log

�

�0

⌘⌘

.

2.4 Trace Reconstruction

In this section, we study the sparse trace reconstruction problem, where we assume

that the unknown string x 2 {0, 1}n has at most k 1s. Our analysis for this setting

is based on a simple reduction from trace reconstruction to learning a mixture of

binomial distributions, followed by a new sample complexity guarantee for the latter

problem. We introduce additional notations to study this problem:

Notation: Throughout, n is the length of the binary string being reconstructed, n
0

is the number of 0s, k is the number of 1s, i.e., the sparsity or weight. For matrices,

n is the total number of entries, and we focus on square
p
n⇥pn matrices. For most

of our results, we assume that n, n
0

, k are known since, if not, they can easily be

estimated using a polynomial number of traces. Let p denote the deletion probability

68

when the 1s and 0s are deleted with the same probability. We also study a channel

where the 1s and 0s are deleted with different probabilities; in this case, p
0

is the

deletion probability of a 0 and p
1

is the deletion probability of a 1. We refer to the

corresponding channel as the (p
0

, p
1

)-Deletion Channel or the asymmetric deletion

channel. It will also be convenient to define q = 1 � p, q
0

= 1 � p
0

and q
1

= 1 � p
1

as the corresponding retention probabilities. Throughout, m denotes the number of

traces. For a natural number w we use the notation [w] = {1, . . . , w}.

Our main result in this section is the following:

Theorem 2.13. Let q ⌘ 1 � p be the retention probability and assume that q =

⌦(k�1/2
log

1/2 n). If x 2 {0, 1}n has at most k non-zeros, exp(O((k/q)1/3 log2/3 n))

traces suffice to recover x exactly, with high probability.

As some points of comparison, note that there is a trivial exp(O(k/q + log n))

upper bound, which our result improves on with a polynomially better dependence

on k/q in the exponent. The trivial bound is obtained by getting enough samples so

that it is possible to obtain poly(n) samples where none of the 1s are deleted. The

best known result for the general case is exp(O((n/q)1/3)) [116, 45] and our result is

a strict improvement when k = o(n/ log2 n). Note that since we have no restrictions

on k in the statement, improving upon exp(O((k/q)1/3)) would imply an improved

bound in the general setting.

Somewhat surprisingly, our actual result is considerably stronger (See 2.2 for a

precise statement). We also obtain exp(O((k/q)1/3 log2/3 n)) sample complexity in an

asymmetric deletion channel, where each 0 is deleted with probability extremely close

to 1, but each 1 is deleted with probability p = 1� q. With such a channel, all but a

vanishingly small fraction of the traces contain only 1s, yet we are still able to exactly

identify the location of every 0. Since we can accommodate k = ⇥(n) this result also

applies to the general case with an asymmetric channel, yielding improvements over

De et al. [45] and Nazarov and Peres [116].

69

Our approach yields two new results: first, we obtain an exp(O((k/q
1

)

1/3
log

2/3 n))

sample complexity bound for sparse trace reconstruction, and second, we show that

this guarantee applies even if the deletion probability for 0s is very close to 1.

To establish our results, we introduce a slightly more challenging channel which we

refer to as the Austere Deletion Channel. The bulk of the proof analyzes this channel,

and we obtain results for the (p
0

, p
1

) channel via a simple reduction.

Theorem 2.14 (Austere Deletion Channel Trace Reconstruction). In the Austere

Deletion Channel, all but exactly one 0 are deleted (the choice of which 0 to retain

is made uniformly at random) and each 1 is deleted with probability p
1

. For such a

channel,

m = exp(O((k/q
1

)

1/3
log

2/3 n))

traces suffice for sparse trace reconstruction with high probability where q
1

= 1� p
1

,

provided q
1

= ⌦(

p

k�1

log n).

We will prove this result shortly, but we first derive our main result for this section

as a simple corollary.

Corollary 2.2 (Deletion Channel Trace Reconstruction). For the (p
0

, p
1

)-deletion

channel,

m = q�1

0

exp(O((k/q
1

)

1/3
log

2/3 n))

traces suffice for sparse trace reconstruction with high probability where q
0

= 1� p
0

and q
1

= 1� p
1

= ⌦(

p

k�1

log n).

Proof. This follows from Theorem 2.14. By focusing on just a single 0, it is clear that

the probability that a trace from the (p
0

, p
1

)-deletion channel contains at least one 0

is at least q
0

. If among the retained 0s we keep one at random and remove the rest, we

generate a sample from the austere deletion channel. Thus, with m samples from the

(p
0

, p
1

) deletion channel, we obtain at least mq
0

samples from the austere channel and

the result follows. Note that Theorem 2.13 is a special case where p
0

= p
1

= p.

70

Remark 2.1. Note that the case where q
1

is constant (a typical setting for the problem)

and k = o(log n) is not covered by the corollary. However, in this case a simpler

approach applies to argue that poly(n) traces suffice: with probability qk
1

� 1/ poly(n)

no 1s are deleted in the generation of the trace and given poly(n) such traces, we can

infer the original position of each 1 based on the average position of each 1 in each

trace.

Remark 2.2. Note that the weak dependence on q
0

ensures that as long as q
0

=

1/ exp(O((k/q
1

)

1/3
log

2/3 n)), we still have the exp(O((k/q
1

)

1/3
log

2/3 n)) bound. Thus,

our result shows that sparse trace reconstruction is possible even when zeros are retained

with super-polynomially small probability.

2.4.1 Reduction to Learning Binomial Mixtures

We prove Theorem 2.14 via a reduction from austere deletion channel trace

reconstruction to learning binomial mixtures. Given a string x of length n, let ri

be the number of ones before the ith zero in x. For example, if x = 1001100 then

r
1

= 1, r
2

= 1, r
3

= 3, r
4

= 3. Note that the multi-set {r
1

, r
2

, . . . , } uniquely determines

x, that each ri  k, and that the multi-set has size n
0

. The reduction from trace

reconstruction to learning binomial mixtures is appealingly simple:

1. Given traces t
1

, . . . , tm from the austere channel, let si be the number of leading

ones in ti.

2. Observe that each si is generated by a uniform§ mixture of

Bin(r
1

, q
1

), . . . ,Bin(rn
0

, q
1

) where q
1

= 1 � p
1

. Hence, learning r
1

, r
2

, . . . , rn
0

from s
1

, s
2

, . . . , sm allows us to reconstruct x.

§
Note that since the r

i

are not necessarily distinct some of the binomial distributions are the

same.

71

We will say that a number x has t-precision if 10y ⇥ x 2 Z where y 2 Z and

y = O(log t). To obtain Theorem 2.14, we establish the following new guarantee for

learning binomial mixtures.

Theorem 2.15 (Learning Binomial Mixtures). Let M be a mixture of d = poly(n)

binomials:

Draw sample from Bin(at, q) with probability ↵t

where 0  a
1

, . . . , ad  a are distinct integers, the values ↵t have poly(n) precision,

and q = ⌦(

p

a�1

log n). Then exp(O((a/q)1/3 log2/3 n)) samples suffice to learn the

parameters exactly with high probability.

Proof. Let M0 be a mixture where the samples are drawn from
Pd

t=1

�tBin(bt, q),

where 0  b
1

, . . . , bd  a are distinct and the probabilities �t 2 {0, �, 2�, . . . , 1} where

1/� = poly(n). Consider the variational distance
P

t |At � Bt| between M and M0

where

At = Psample from M is t =
d
X

j=1

↵j

✓

aj
t

◆

qt(1� q)aj�t

Bt = Psample from M0 is t =
d
X

j=1

�j

✓

bj
t

◆

qt(1� q)bj�t .

We will show that the variational distance between M and M0 is at least

✏ = exp(�O((a/q)1/3(log 1/�)2/3)) .

Since there are at most ((a+ 1) · (1/� + 1))

d possible choices for the parameters of

M0, standard union bound arguments show that

O(log(((a+ 1) · (1/� + 1))

d
)/✏2) = exp(O((a/q)1/3(log 1/�)2/3))

72

samples are sufficient to distinguish M from all other mixtures.

To prove the total variation bound, observe that by applying the binomial formula,

for any complex number w, we have

X

t�0

(At � Bt)w
t
=

X

t�0

wt
⇣

X

j�0

↵j

✓

aj
t

◆

qi(1� q)aj�t � �j

✓

bj
t

◆

qi(1� q)bj�t
⌘

=

X

j�0

(↵jz
aj � �jz

bj
)

where z = qw + (1 � q). Let G(z) =

P

j�0

(↵jzaj � �jzbj) and apply the triangle

inequality to obtain:
X

t�0

|At � Bt||wt| � |G(z)| .

Note that G(z) is a non-zero degree d polynomial with coefficients in the set

{�1, . . . ,�2�,��, 0, �, 2�, . . . , 1}.

We would like to find a z such that G(z) has large modulus but |wt| is small, since this

will yield a total variation lower bound. We proceed along similar lines to Nazarov and

Peres [116] and De et al. [45]. It follows from Corollary 3.2 in Borwein and Erdélyi [24]

that there exists z 2 {ei✓ : �⇡/L  ✓  ⇡/L} such that

|G(z)| � � exp(�c
1

L log(1/�))

for some constant c
1

> 0. For such a value of z, Nazarov and Peres [116] show that

|w|  exp(c
2

/(qL)2)

for some constant c
2

> 0. Therefore,

X

t�0

|At � Bt| exp(tc2/(qL)2) �
X

t�0

|At � Bt||wt| � |G(z)| � � exp(�c
1

L log(1/�))

73

For t > ⌧ = 6qa, by an application of the Chernoff bound, At, Bt  2

�t, so we

obtain

X

t>⌧

2

�t
exp(tc

2

/(qL)2)

| {z }

=T⌧

+

⌧
X

t=0

|At � Bt| exp(⌧c2/(qL)2) � � exp(�c
1

L log(1/�)) .

⌧
X

t=0

|At � Bt| �
� exp(�c

1

L log(1/�))

exp(⌧c
2

/(qL)2)
� T⌧

exp(⌧c
2

/(qL)2)
(2.14)

� � exp(�c
1

L log(1/�))

exp(⌧c
2

/(qL)2)
�O(2

�⌧
) (2.15)

where the second equality follows from the assumption that c
2

/(qL2

)  (ln 2)/2 (which

we will ensure when we set L) since,

T⌧

exp(⌧c
2

/(qL)2)
=

O(1) · 2�⌧
exp(⌧c

2

/(qL)2)

exp(⌧c
2

/(qL)2)
= O(2

�⌧
) .

Set

L = c 3

p

⌧/(q2 log(1/�)) = c 3

p

6a/(q log(1/�))

for some sufficiently large constant c. This ensures that the first term of Eqn. 2.14 is

exp(�O((a/q)1/3 log2/3(1/�))).

Note that

c
2

qL2

<
c
2

qc2(a/(q log(1/�)))2/3
 c

2

c2
·
✓

log(1/�)

aq1/2

◆

2/3

 c
2

c2
·
✓

log(1/�)

aq2

◆

2/3

and so by the assumption that q = ⌦(

p

log(1/�)/a) we may set the constant c large

enough such that c
2

/(qL2

)  (ln 2)/2 as required. The second term of Eqn. 2.14 is a

74

lower order term given the assumption on q and thus we obtain the required lower

bound on the total variation distance.

Theorem 2.14 now follows from Theorem 2.15, since in the reduction, we have

d = O(n) binomials, one per 0 in x, ↵i is a multiple of 1/n
0

and importantly, we have

a = k. The key is that we have a polynomial with degree a = k rather than a degree

n polynomial as in the previous analysis.

Remark If all ↵t are equal, Theorem 2.15 can be improved to

poly(n)·exp(O((a/p)1/3)) by using a more refined bound from Borwein and Erdélyi [24]

in our proof. This follows by observing that if ↵t = �t = 1/d, then
P

j�0

(↵jzaj��jzsj)

is a multiple of a Littlewood polynomial and we may use the stronger bound |G(z)| �

exp(�c
1

L)/d, see Borwein and Erdélyi [24].

2.4.2 Lower Bound on Learning Binomial Mixtures

We now show that the exponential dependence on a1/3 in Theorem 2.15 is necessary.

Theorem 2.16 (Binomial Mixtures Lower Bound). There exists subsets

{a
1

, . . . , ak} 6= {b
1

, . . . , bk} ⇢ {0, . . . , a}

such that if M =

Pk
i=1

Bin(ai, 1/2)/k and M0
=

Pk
i=1

Bin(bi, 1/2)/k, then kM �

M0kTV = exp(�⌦(a1/3)). Thus, exp(⌦(a1/3)) samples are required to distinguish M

from M0 with constant probability.

Proof. Previous work [116, 45] shows the existence of two strings x,y 2 {0, 1}n such

that
P

i |txi � t

y

i | = exp(�⌦(n1/3
)) where t

z

i is the expected value of the ith element

(element at ith position counted from beginning) of a string formed by applying the

75

(1/2, 1/2)-deletion channel to the string z. We may assume
P

i2[n] xi =
P

i2[n] yi ⌘ k

since otherwise

X

i

|txi � t

y

i | �
�

�

�

�

�

X

i

t

x

i �
X

i

t

y

i

�

�

�

�

�

=

�

�

�

�

�

�

X

i2[n]
xi/2�

X

i2[n]
yi/2

�

�

�

�

�

�

� 1/2

which would contradict the assumption
P

i |txi � t

y

i | = exp(�⌦(n1/3
)).

Consider M =

Pk
i=1

Bin(ai, 1/2)/k and M0
=

Pk
i=1

Bin(bi, 1/2)/k, where ai (bi)

is the number of coordinates preceding the ith 1 in x (y). Note that

t

x

i =

k
X

r=1

✓

ar
i

◆

/2ar+1 and t

y

i =

k
X

r=1

✓

br
i

◆

/2br+1 ,

and so

kM�M0kTV =

X

i

|PM = i� PM0
= i|

=

X

i

1

k

�

�

�

�

�

k
X

r=1

✓

ar
i

◆

/2ar �
k
X

r=1

✓

br
i

◆

/2br

�

�

�

�

�

=

2

k

X

i

|txi � t

y

i | = exp(�⌦(n1/3
)) ,

which proves the result.

76

CHAPTER 3

MIXTURES OF SPARSE LINEAR REGRESSIONS

3.1 Introduction

In this chapter and the next, we propose a mixture of simple canonical hypotheses

functions in order to model the data. We start by modeling numerical data where we

assume that the dependent variable is a mixture of L linear functions of the features.

We study this rich and expressive model in the setting where the unknown weight

vectors corresponding to each linear function is sparse and further, we can query

the label for a particular feature from an oracle as described in Chapter 1. This

setting is a generalization of the very well-known Compressed Sensing setting but

significantly more difficult since the information of which linear function the oracle

response corresponds to is unknown. This problem was first introduced by [153]

who showed sufficient conditions on the query complexity under several constraints

only for the special case of L = 2. We study two objectives namely 1) Parameter

estimation where we estimate the unknown weight vectors upto a certain desired error

and 2) Support Recovery where our goal is to recover the non-zero indices of every

unknown weight vector. We demonstrate algorithms with provable sample complexity

guarantees for both the parameter estimation and support recovery problems under

extremely mild conditions on the latent parameters for any general value of L. For the

special case of L = 2, we provide efficient algorithms for parameter recovery without

any assumptions. The results of this chapter can be found in [97], [109] and [69].

77

3.1.1 Parameter Estimation

Consider L unknown distinct vectors �

1,�2, . . . ,�L 2 Rn such that each is k-

sparse, i.e., the number of non-zero entries in each �

i is at most k where k is some

known parameter. We define an oracle O which, when queried with a vector x 2 Rn,

returns the noisy output y 2 R:

y = hx,�i+ ⌘ (3.1)

where ⌘ ⇠ N (0, �2

) is a zero-mean Gaussian random variable with variance �2

that represents the measurement noise and � is chosen uniformly⇤ from the set

B = {�1,�2, . . . ,�L}. The goal is to recover all vectors in B by making a set of

queries x

1

,x
2

, . . . ,xm to the oracle. We refer to the values returned by the oracle

given these queries as samples. Note that the case of L = 1 corresponds to the problem

of compressed sensing. Our primary focus is on the sample complexity of the problem,

i.e., minimizing the number of queries that suffices to recover the sparse vectors up

to some tolerable error. Recall that the most relevant previous work is by Yin et al.

[153]. For the noiseless case, i.e., ⌘ = 0, they show that O(kL log(kL)) queries are

sufficient to recover all vectors in B exactly with high probability. However, their

result requires a restrictive assumption on the set of vectors and do not hold for an

arbitrary set of sparse vectors. Specifically, they require that for any �,�0 2 B,

�j 6= �

0
j for each j 2 supp(�) \ supp(�

0
) . (3.2)

Their approach depends crucially on this assumption and this limits the applicability

of their approach. Note that our results will not depend on such an assumption. For

the noisy case, the approach taken by Yin et al. only handles the L = 2 case and they

⇤
Many of our results can be generalized to non-uniform distributions but we will assume a uniform

distribution throughout for the sake of clarity.

78

state the case of L > 2 as an important open problem. Resolving this open problem

will be another one of our contributions. Furthermore, we also improve the sample

complexity guarantees for the L = 2 significantly and also design algorithms for this

specific case without any assumptions.

3.1.2 Support Recovery

Our objective in this setting is to recover the support of all unknown vectors

�

1,�2, . . . ,�L 2 Rn while minimizing the number of queries for a fixed SNR. For our

results to hold we further assume that the minimum magnitude of any non-zero entry

of any unknown vector in B is known to be at least �, i.e., mini2[L] minj2[n]:�i
j 6=0

|�i
j| � �.

While approximate recovery guarantees of vectors can also be translated into support

recovery, the parameter estimation results proved in this chapter for any general L are

valid only under the restrictive assumption that the sparse vectors all belong to some

scaled integer lattice. The result for L = 2 does not have any restriction, but it holds

only for the case of two components. Here we provide results for support recovery

of L � 2 unknown vectors that does not have any of the aforementioned restrictions

and also have a polynomial dependence on the noise variance, sparsity and a near

polynomial dependence on the number of unknown vectors.

The major building block of our algorithms for support recovery is low-rank

tensor decomposition also known as Canonical Polyadic (CP) decomposition. Tensor

decomposition has been widely used in parameter estimation in mixture models and

latent variable models. We refer to the reader to [122] and the references therein for

a detailed survey. We also crucially make use of combinatorial structures such as a

general class of Union Free Families (UFF), see, [133], to recover the support. UFFs

have been previously used in [1] and [68] for support recovery in linear classifiers.

Organization: The rest of the chapter is organized as follows: in Section 3.2, we

present our results on parameter estimation for any number of unknown vectors under

79

certain assumptions; in particular, in Section 3.2.1 and Section 3.2.2, we present

our results for the noiseless and noisy cases respectively. In Section 3.3, we provide

efficient algorithms along with sample complexity guarantees for parameter estimation

of two unknown vectors without any assumptions. In Section 3.4, we provide a

general framework for support recovery for number of unknown vectors without any

assumptions. All missing proofs in this chapter can be found in the Appendix in

Chapter B.

Notation Let 1n denote a length n vector of all 1’s. We will write [n] to denote

the set {1, . . . , n} and let P([n]) be the power set of [n]. For a vector � 2 Rn, let �i

denote its i-th coordinate. We will use supp(�) ⇢ [n] to denote the support of the

vector �, i.e, the set of indices with non-zero entries in �. We will abuse notations a

bit, and also sometimes use supp(�) to denote the binary indicator vector of length n

that takes 1 at index i if and only if �i 6= 0. For a vector � 2 Rn and subset S ⇢ [n]

of indices, let �|S 2 R|S| denote the vector � restricted to the indices in S. Finally,

let f : P([n])⇥ {0, 1}n ! {0, 1}n be a function that takes a binary vector � 2 {0, 1}n

and a subset S ✓ [n] as input and returns another binary vector �

0 such that the

indices of � corresponding to the the set S is flipped i.e. �

0
i = �i � 1 if i 2 S and

�

0
i = �i otherwise.

3.2 Parameter Estimation under Grid Assumption

3.2.1 Exact sparse vectors and noiseless samples

We first consider the easier case when there is no noise and all unknown vectors

are k-sparse. In this case, we show that O(kL log(kL)) queries suffice and that ⌦(kL)

queries are necessary. The approach we take is as follows: In compressed sensing,

exact recovery of k-sparse vectors is possible by taking samples with an m⇥ n matrix

with any 2k columns linearly independent. Such matrices exists with m = 2k (such as

Vandermonde matrices) and are called MDS matrices. We use rows of such a matrix

80

repeatedly to generate samples. Since there are L different vectors in the mixture, with

O(L logL) measurements with a row we will be able to see the samples corresponding

to each of the L vectors with that row. However, even if this is true for measurements

with each rows, we will still not be able to align measurements across the rows. For

example, even though we will obtain hx,�`i for all ` 2 [L] and for all x that are rows

of an MDS matrix, we will be unable to identify the samples corresponding to �

1. To

tackle this problem, we propose using a special type of MDS matrix that allows us to

align measurements corresponding to the same �s. After that, we just use the sparse

recovery property of the MDS matrix to individually recover each of the vectors. The

main result for this section is the following.

Theorem 3.1. For a collection of L vectors �

1,�2, . . . ,�L 2 Rn such that k�ik
0



k 8i 2 [L], one can recover all of them exactly with probability at least 1� 3/k with a

total of 2kL logLk2 oracle queries. See Algorithm 3.1.

Algorithm 3.1 Noiseless Recovery The algorithm for extracting recovering vectors
via queries to oracle in noiseless setting.
Require: Number of unknown sparse vectors L, dimension n, sparsity k.
1: Let t ⇠Uniform {0, 1, 2, . . . , k2L2 � 1} and define ↵

1

,↵
2

, . . . ,↵
2k where ↵j =

2kt+j
2k3L2

.
2: for i = 1, 2, . . . , 2k do
3: Make L log(Lk2

) oracle queries with vector [1 ↵i ↵2

i . . . ↵n�1

i]. Refer to these
as a batch.

4: end for
5: for i = 1, 2, . . . , 2k do
6: For each batch of query responses corresponding to the same query vector,

retain unique values and sort them in ascending order. Refer to this as the
processed batch.

7: end for
8: Set matrix Q of dimension 2k ⇥ L such that its jth row is the processed batch

corresponding to the query vector [1 ↵j ↵2

j . . . ↵n�1

j]

9: for i = 1, 2, . . . , L do
10: Decode the ith column of the matrix Q to recover �

i.
11: end for
12: Return �

1,�2, . . . ,�L.

81

A Vandermonde matrix is a matrix such that the entries in each row of the matrix

are in geometric progression i.e., for an m⇥ n dimensional Vandermonde matrix the

entry in the (i, j)th entry is ↵j
i where ↵

1

,↵
2

, . . . ,↵m 2 R are distinct values. We will

use the following useful property of the Vandermonde matrices; see, e.g., [70, Section

XIII.8] for the proof. For the sake of completeness, we provide an alternative proof

below:

Lemma 3.1. The rank of any m⇥m square submatrix of a Vandermonde matrix is

m assuming ↵
1

,↵
2

, . . . ,↵m are distinct and positive.

This implies that, with the samples from a 2k⇥n Vandermonde matrix, a k-sparse

vector can be exactly recovered. This is because for any two unknown vectors � and

ˆ�, the same set of responses for all the 2k rows of the Vandermonde matrix implies

that a 2k ⇥ 2k square submatrix of the Vandermonde matrix is not full rank which is

a contradiction to Lemma 3.1.

Proof. Consider any m⇥m square submatrix Q of a m⇥ n Vandermonde matrix

Q =

2

6

6

6

6

6

6

6

4

↵⇣
1

1

↵⇣
2

1

. . . ↵⇣m
1

↵⇣
1

2

↵⇣
2

2

. . . ↵⇣m
2

...
...

...
...

↵⇣
1

m ↵⇣
2

m . . . ↵⇣m
m

3

7

7

7

7

7

7

7

5

where ⇣
1

, ⇣
2

, . . . , ⇣m are distinct positive integers less than n� 1. The determinant of

the square matrix Q is:

det(Q) =

X

⌧2Sm

sgn(⌧)
m
Y

i=1

Qi,⌧(i)

where Sm is the permutation group of order m, sgn(⌧) is the parity of a permutation

and Qi,⌧(i) denotes the entry in the ith row and ⌧(i)th column of Q. If we consider

82

↵
1

,↵
2

, . . . ,↵m�1

to be fixed, then det(Q) is a polynomial in ↵m of degree at most n

but has at most m coefficients. Since there are at most m coefficients, there are at

most m� 1 sign changes and therefore by using Descartes’ theorem [37], the number

of positive roots of the polynomial det(Q) is at most m � 1. On the other hand,

if we replace ↵m by any value in {↵
1

,↵
2

, . . . ,↵m�1

}, then the determinant becomes

zero and therefore ↵
1

,↵
2

, . . . ,↵m�1

are roots of the polynomial det(Q). Therefore, if

↵
1

,↵
2

, . . . ,↵m�1

are all positive and distinct, then it must imply that

det(Q) = P
m�1

Y

i=1

(↵m � ↵i)

where P does not have any positive root. Hence if ↵m is positive and different from

↵
1

,↵
2

, . . . ,↵m�1

it must imply that det(Q) 6= 0 and therefore the m ⇥ m square

submatrix Q is full rank.

We are now ready to prove Theorem 3.1.

Proof. For the case of L = 1, note that the setting is the same as the well-known

compressed sensing problem. Furthermore, suppose a 2k ⇥ n matrix has the property

that any 2k ⇥ 2k submatrix is full rank, then using the rows of this matrix as queries

is sufficient to recover any k-sparse vector. By Lemma 3.1, any 2k ⇥ n Vandemonde

matrix has the necessary property.

Let �1,�2, . . . ,�L be the set of unknown k-sparse vectors. Notice that a particular

row of the Vandermonde matrix looks like [1 z z2 z3 . . . zn�1

] for some value of z 2 R.

Therefore, for some vector �

i and a particular row of the Vandermonde matrix, the

inner product of the two can be interpreted as a degree n polynomial evaluated at

z such that the coefficients of the polynomial form the vector �

i. More formally,

the inner product can be written as f i
(z) =

Pn�1

j=0

�

i
jz

j where f i is the polynomial

corresponding to the vector �i. For any value z 2 Rn, we can define an ordering over

the L polynomials f 1, f 2, . . . , fL such that f i > f j iff f i
(z) > f j

(z).

83

For two distinct indices i, j 2 [L], we will call the polynomial f i � f j a difference

polynomial. Each difference polynomial has at most 2k non-zero coefficients and

therefore has at most 2k positive roots by Descartes’ Rule of Signs [37]. Since there

are at most L(L� 1)/2 distinct difference polynomials, the total number of distinct

values that are roots of at least one difference polynomial is less than kL2. Note

that if an interval does not include any of these roots, then the ordering of f 1, . . . , fL

remains consistent for any point in that interval. In particular, consider the intervals

(0, �], (�, 2�], . . . , (1��, 1] where � = 1/(k2L2

). At most kL2 of these intervals include

a root of a difference polynomial and hence if we pick a random interval then with

probability at least 1 � 1/k, the ordering of f 1, . . . , fL are consistent throughout

the interval. If the interval chosen is (t�, (t + 1)�] then set ↵j = t� + j�/(2k) for

j = 1, . . . , 2k.

Now for each value of ↵i, define the vector xi ⌘ [1 ↵i ↵2

i ↵
3

i . . . ↵n�1

i]. For each

i 2 [2k], the vector xi will be used as query to the oracle repeatedly for L logLk2

times. We will call the set of query responses from the oracle for a fixed query vector

xi a batch. For a fixed batch and �

j,

Pr(�

j is not sampled by the oracle in the batch) 
⇣

1� 1

L

⌘L logLk2

 e� logLk2
=

1

Lk2

.

Taking a union bound over all the vectors (L of them) and all the batches (2k of them),

we get that in every batch every vector �j for j 2 [L] is sampled with probability at

least 1� 2/k. Now, for each batch, we will retain the unique values (there should be

exactly L of them with high probability) and sort the values in each batch. Since the

ordering of the polynomial remains same, after sorting, all the values in a particular

position in each batch correspond to the same vector �

j for some unknown index

j 2 [L]. We can aggregate the query responses of all the batches in each position

84

and since there are 2k linear measurements corresponding to the same vector, we can

recover all the unknown vectors �

j using Lemma 3.1. The failure probability of this

algorithm is at most 3/k.

The following theorem establishes that our method is almost optimal in terms of

sample complexity.

Theorem 3.2. At least 2Lk oracle queries are necessary to recover an arbitrary set

of L vectors that are k-sparse.

Proof. It is known that for any particular vector �, at least 2k queries to the oracle

are necessary in order to recover the vector exactly. Suppose the random variable

X denotes the number of queries until the oracle has sampled the vector � at least

2k times. Notice that X =

P

2k
i=1

Xi can be written as a sum of independent and

identical random variables Xi distributed according to the geometric distribution with

parameter 1/L where Xi denotes the number of attempts required to obtain the ith

sample after the (i� 1)

th sample has been made by the oracle. Since X is a sum of

independent random variables, we must have

EX = 2Lk and Var(X) = 2k(L2 � L)

Therefore by using Chebychev’s inequality [26], we must have

Pr

⇣

X  2Lk � k
1

4

p

2k(L2 � L)
⌘

 1p
k

and therefore X > 2Lk(1� o(1)) with high probability which proves the statement of

the theorem.

85

3.2.2 Noisy Samples and Sparse Approximation

Going forward, we will no longer assume vectors in B are sparse. From the noisy

samples, our objective is to recover an estimate ˆ

� for each � 2 B such that

k� � ˆ

�k  ck� � �

⇤k, (3.3)

where c is an absolute constant and �

⇤ is the best k-sparse approximation of �, i.e.,

all except the largest (by absolute value) k coordinates set to 0. The norms in the

above equation can be arbitrary defining the strength of the guarantee, e.g., when we

refer to an `
1

/`
1

guarantee both norms are k · k
1

. Our results should be contrasted

with [153], where results not only hold for only L = 2 and under assumption (3.2),

but the vectors are also strictly k-sparse. However, like [153], we assume ✏-precision

of the unknown vectors, i.e., the value in each coordinate of each � 2 B is an integer

multiple of ✏.†

Notice that in this model the noise is additive and not multiplicative. Hence, it is

possible to increase the `
2

norm of the queries arbitrarily so that the noise becomes

inconsequential. However, in a real setting, this cannot be allowed since increasing the

strength (norm) of the queries has a cost and it is in our interest to minimize the cost.

Suppose the algorithm designs the ith query vector by first choosing a distribution Qi

and subsequently sampling a query vector xi ⇠ Qi. Let us now define the signal to

noise ratio as follows:

SNR = max

i
min

`2[L]
E

xi⇠Qi |hxi,�
`i|2

E⌘2
. (3.4)

Our objective in the noisy setting is to recover the unknown vectors �

1,�2, . . . ,�L 2

Rn while minimizing the number of queries and the SNR at the same time. In

†
Note that we do not assume ✏-precision in the noiseless case.

86

this setting, assuming that all the unknown vectors have unit norm, we show that

O(k log3 n exp((�/✏)2/3)) queries with SNR = O(1/�2

) suffice to reconstruct the L =

O(1) vectors in B with the approximation guarantees given in Eq. (3.3) with high

probability if the noise ⌘ is a zero mean gaussian with a variance of �2. This is

equivalent to stating that O(k log3 n exp(1/(✏
p
SNR)2/3)) queries suffice to recover the

L unknown vectors with high probability.

Note that in the previous work ✏
p
SNR is assumed to be at least constant and, if this is

the case, our result is optimal up to polynomial factors since ⌦(k) queries are required

even if L = 1. More generally, the dependence upon ✏
p
SNR in our result improves

upon the dependence in the result by Yin et al. Note that we assumed L = O(1) in

our result because the dependence of sample complexity on L is complicated as it is

implicit in the signal-to-noise ratio.

As in noiseless case, our approach is to use a compressed sensing matrix and use its

rows multiple time as queries to the oracle. At the first step, we would like to separate

out the different �s from their samples with the same rows. Unlike the noiseless

case, even this turns out to be a difficult task. Under the assumption of Gaussian

noise, however, we are able to show that this is equivalent to learning a mixture of

Gaussians with different means. In this case, the means of the Gaussians belong to

an “✏-grid", because of the assumption on the precision of �s. This is not a standard

setting in the literature of learning Gaussian mixtures, e.g., [9, 72, 114]. Note that,

this is possible if the vector that we are sampling with has integer entries. As we

will see a binary-valued compressed sensing matrix will do the job for us. We will

rely on a novel complex-analytic technique to exactly learn the means of a mixture

of Gaussians, with means belonging to an ✏-grid. This technique is paralleled by the

recent developments in trace reconstructions where similar methods were used for

learning a mixture of binomials [98, 116].

87

Once for each query, the samples are separated, we are still tasked with aligning

them so that we know the samples produced by the same � across different queries.

The method for the noiseless case fails to work here. Instead, we use a new method

motivated by error-correcting codes. In particular, we perform several redundant

queries, that help us to do this alignment. For example, in addition to the pair of

queries xi,xj, we also perform the queries defined by xi + xj and xi � xj.

After the alignment, we use the compressed sensing recovery to estimate the

unknown vectors. For this, we must start with a matrix that with minimal number of

rows, will allow us to recover any vector with a guarantee such as (3.3). On top of

this, we also need the matrix to have integer entries so that we can use our method

of learning a mixture of Gaussians with means on an ✏-grid. Fortunately, a random

binary ±1 matrix satisfies all the requirements [15]. Putting now these three steps of

learning mixtures, aligning and compressed sensing, lets us arrive at our results.

While we concentrate on sample complexity in this paper, our algorithm for the

noiseless case is computationally efficient, and the only computationally inefficient

step in the general noisy case is that of learning Gaussian mixtures. However, in

practice one can perform a simple clustering (such as Lloyd’s algorithm) to learn the

means of the mixture. Our main result of this section is the following.

Theorem 3.3. It is possible to recover approximations with the `
1

/`
1

guarantee

in Eq. (3.3) with probability at least 1 � 2/n of all the unknown vectors �

` 2

{0,±✏,±2✏,±3✏, . . . }n, ` = 1, . . . , L with O(k(log3 n) exp((�/✏)2/3) oracle queries where

SNR = O(1/�2

).

Before we proceed with the ideas of proof, it would be useful to recall the restricted

isometry property (RIP) of matrices in the context of recovery guarantees of (3.3). A

matrix � 2 Rm⇥n satisfies the (k, �)-RIP if for any vector z 2 Rn with kzk
0

 k,

(1� �)kzk2
2

 k�zk2
2

 (1 + �)kzk2
2

. (3.5)

88

It is known that if a matrix is (2k, �)-RIP with � <
p
2 � 1, then the guarantee of

(3.3) (in particular, `
1

/`
1

-guarantee and also an `
2

/`
1

-guarantee) is possible [29] with

the the basis pursuit algorithm, an efficient algorithm based on linear programming.

It is also known that a random ±1 matrix (with normalized columns) satisfies the

property with csk log n rows, where cs is an absolute constant [15].

There are several key ideas of the proof. Since the case of L = 2 is simpler to

handle, we start with that and then provide the extra steps necessary for the general

case subsequently.

Algorithm 3.2 Noisy Recovery for L = 2 The algorithm for recovering best k-
sparse approximation of vectors via queries to oracle in noisy setting.
Require: SNR = 1/�2, Precision of unknown vectors ✏, and the constant cs where

csk log n rows are sufficient for RIP in binary matrices.
1: for i = 1, 2, . . . , csk log(n/k) do
2: Call SampleAndRecover(vi) where vi ⇠Uniform {+1,�1}n.
3: end for
4: for i 2 [log n] and j 2 [csk log(n/k)] with j 6= i do
5: Call SampleAndRecover((vi

+ v

j
)/2) and SampleAndRecover((vi � v

j
)/2)

6: end for
7: Choose vector v from {v1,v2, . . . ,vlogn} such that hv,�1i 6= hv,�2i.
8: for i = 1, 2, . . . , k log(n/k) and v

i 6= v do
9: Label one of hvi,�1i,hvi,�2i to be hv,�1i if their sum is in the pair

hvi
+v
2

,�1i,hvi
+v
2

,�2i and their difference is in the pair hv�vi

2

,�1i,hv�vi

2

,�2i.
Label the other hv,�2i.

10: end for
11: Aggregate all (query, denoised query response pairs) labelled hv,�1i and
hv,�2i separately and multiply all denoised query responses by a factor of
1/(

p

csk log(n/k)).
12: Return best k-sparse approximation of �1 and �

2 by using Basis Pursuit algorithm
on each aggregated cluster of (query, denoised query response) pairs.

13: function SampleAndRecover (v)
14: Issue T = c

2

exp

�

(�/✏)2/3
�

queries to oracle with v.
15: Return hv,�1i, hv,�2i via min-distance estimator (Gaussian mixture learning,

lemma 3.2).
16: end function

89

Gaussian Noise: Two vectors Algorithm 3.2 addresses the setting with only two

unknown vectors. We will assume k�1k
2

= k�2k
2

= 1, so that we can subsequently

show that the SNR is simply 1/�2. This assumption is not necessary but we make

this for the ease of presentation. The assumption of ✏-precision for �

1,�2 was made

in Yin et al. [153], and we stick to the same assumption. On the other hand, Yin et

al. requires further assumptions that we do not need to make. Furthermore, the result

of Yin et al. is restricted to exactly sparse vectors, whereas our result holds for general

sparse approximation.

For the two-vector case the result we aim to show is following.

Theorem 3.4. Algorithm 3.2 uses O(k log3 n exp((�/✏)2/3)) queries to recover both

the vectors �

1 and �

2 with an `
1

/`
1

guarantee in Eq. (3.3) with probability at least

1� 2/n.

This result is directly comparable with [153]. On the statistical side, we improve

their result in several ways: (1) we improve the dependence on �/✏ in the sample

complexity from exp(�/✏) to exp((�/✏)2/3),‡ (2) our result applies for dense vectors,

recovering the best k-sparse approximations, and (3) we do not need the overlap

assumption (eq. (3.2)) used in their work.

Once we show SNR = 1/�2, Theorem 3.4 trivially implies Theorem 3.3 in the

case L = 2. Indeed, from Algorithm 3.2, notice that we have used vectors v sampled

uniformly at random from {+1,�1}n and use them as query vectors. We must have

Ev|hv,�`i|2/E⌘2 = k�`k2
2

/�2

= 1/�2 for ` = 1, 2. Further, we have used the sum and

difference query vectors which have the form (v

1
+ v

2
)/2 and (v

1 � v

2
)/2 respectively

where v
1

, v
2

are sampled uniformly and independently from {+1,�1}n. Therefore,

we must have for ` = 1, 2, Ev1,v2 |h(v1 ± v

2
)/2,�`i|2/E⌘2 = 1/2�2. According to our

definition of SNR, we have that SNR = 1/�2.

‡
Note that [153] treat �/✏ as constant in their theorem statement, but the dependence can be

extracted from their proof.

90

A description of Algorithm 3.2 that lead to proof of Theorem 3.4 can be found

in Chapter B, Section B.1. We provide a short sketch here and state an important

lemma that we will use in the more general case.

The main insight is that for a fixed sensing vector v, if we repeatedly query with

v, we obtain samples from a mixture of Gaussians 1

2

N (hv,�1i, �2

) +

1

2

N (hv,�2i, �2

).

If we can exactly recover the means of these Gaussians, we essentially reduce to the

noiseless case from the previous section. The first key step upper bounds the sample

complexity for exactly learning the parameters of a mixture of Gaussians.

Lemma 3.2 (Learning Gaussian mixtures). Let M =

1

L

PL
i=1

N (µi, �2

) be a uniform

mixture of L univariate Gaussians, with known shared variance �2 and with means

µi 2 ✏Z. Then, for some constant c > 0 and some t = !(L), there exists an algorithm

that requires ctL2

exp((�/✏)2/3) samples from M and exactly identifies the parameters

{µi}Li=1

with probability at least 1� 2e�2t.

If we sense with v 2 {�1,+1}n then hv,�1i, hv,�2i 2 ✏Z, so appealing to the above

lemma, we can proceed assuming we know these two values exactly. Unfortunately,

the sensing vectors here are more restricted — we must maintain bounded SNR and

our technique of mixture learning requires that the means have finite precision — so

we cannot simply appeal to our noiseless results for the alignment step. Instead we

design a new alignment strategy, inspired by error correcting codes. Given two query

vectors v1,v2 and the exact means hvi,�ji, i, j 2 {1, 2}, we must identify which values

correspond to �

1 and �

2. In addition to sensing with any pair v

1 and v

2 we sense

with v

1±v

2

2

, and we use these two additional measurements to identify which recovered

means correspond to �

1 and which correspond to �

2. Intuitively, we can check if our

alignment is correct via these reference measurements.

Therefore, we can obtain aligned, denoised inner products with each of the two

parameter vectors. At this point we can apply a standard compressed sensing result as

mentioned at the start of this section to obtain the sparse approximations of vectors.

91

General value of L In this setting, we will have L > 2 unknown vectors

�

1,�2, . . . ,�L 2 Rn

of unit norm each from which the oracle can sample from with equal probability.

We assume that L does not grow with n or k and as before, all the elements in the

unknown vectors lie on a ✏-grid. Here, we will build on the ideas for the special case

of L = 2.

The main result of this section is the following.

Theorem 3.5. Algorithm 3.3 uses O
⇣

k(log n)3 exp
⇣

(

�
✏
)

2/3
⌘⌘

queries with SNR =

O(1/�2

) to recover all the vectors �

1, . . . ,�L with `
1

/`
1

guarantees in Eq. (3.3) with

probability at least 1� 2/n.

Theorem 3.3 follows as a corollary of this result.

The analysis of Algorithm 3.3 and the proofs of Theorems 3.3 and 3.5 are provided

in detail in Chapter B, Section B.2. Below we sketch some of the main points of the

proof.

There are two main hurdles in extending the steps explained for L = 2. For

a query vector v, we define the denoised query means to be the set of elements

{hv,�ii}Li=1

. Recall that a query vector v is defined to be good if all the elements

in the set of denoised query means {hv,�1i, hv,�2i, . . . , hv,�Li} are distinct. For

L = 2, the probability of a query vector v being good for L = 2 is at least 1/2 but

for a value of L larger than 2, it is not possible to obtain such guarantees without

further assumptions. For a more concrete example, consider L � 4 and the unknown

vectors �1,�2, . . . ,�L to be such that �i has 1 in the ith position and zero everywhere

else. If v is sampled from {+1,�1}n as before, then hv,�ii can take values only in

{�1, 0,+1} and therefore it is not possible that all the values hv,�ii are distinct.

Secondly, even if we have a good query vector, it is no longer trivial to extend the

92

Algorithm 3.3 Noisy Recovery for any constant L The algorithm for recovering
best k-sparse approximation of vectors via queries to oracle in noisy setting.
Require: c0,↵?, z? as defined in equations (A), (B) and (C) respectively, Variance of

noise E⌘2 = �2 and precision of unknown vectors as ✏.
1: for i = 1, 2, . . . ,

p
↵?

log n+ c0↵?k log(n/k) do
2: Let vi 2R {+1,�1}n, ri 2R {�2z?,�2z?+1, . . . , 2z?}n, qi 2R {1, 2, . . . , 4z?+1}

3: Make c
2

exp((�/✏)2/3) queries to the oracle using each of the vectors (qi �
1)ri,vi + qiri and vi + ri.

4: Recover h{(qi � 1)ri,�
ti}Lt=1

,{hvi + ri,�
ti}Lt=1

,{hvi
+ qiri,�

ti}Lt=1

by using min-
distance estimator (Gaussian mixture learning, lemma 3.2).

5: end for
6: for i 2 [

p
↵?

log n] and j 2 [↵?k log(nk)] do
7: Make c

2

exp((�/✏)2/3) queries to the oracle using the vector ri+j + ri.
8: Recover {hri+j + ri,�

ti}Lt=1

, by using the min-distance estimator (Gaussian
mixture learning, Lemma 3.2).

9: end for
10: Choose vector (v?, r?, q?) from {(vt, rt, qt)}

p
↵?

logn
t=1

such that (v?
+r

?, (q�1)r?,v?
+

q?r?) is good. Call a triplet (v + r, (q � 1)r,v + qr) to be good if no element in
{hv + qr,�ii}Li=1

can be written in two possible ways as sum of two elements, one
each from {hv,�ii}Li=1

and {hv + (q � 1)r,�ii}Li=1

.
11: Initialize Sj = � for j = 1, . . . , L
12: for i =

p
↵?

log n+ 1, 2, . . . ,
p
↵?

log n+ c0↵?k log n
k

do
13: if (v

i
+ ri, (qi � 1)ri,vi

+ qri) is matching good with respect to (v

?
+ r

?, (q �
1)r

?,v?
+ q?r?) (Call a triplet (v

0
+ r

0, (q0 � 1)r

0,v0
+ q0r0) to be matching good

w.r.t a good triplet (v?
+ r

?, (q? � 1)r

?,v?
+ q?r?) if (v0

+ r

0, (q0 � 1)r

0,v0
+ q0r0)

and (r

0, r?, r0 + r

?
) are good.) then

14: Label the elements in {hvi,�ti}Lt=1

as described in Lemma B.8
15: for j = 1, 2, . . . , L do
16: Sj = Sj [{hvi,�ti} if label of hvi,�ti is hr?,�ji
17: end for
18: end if
19: end for
20: for j = 1, 2, . . . , L do
21: Aggregate the elements of Sj and scale them by a factor of 1/c0k log(n/k).
22: Recover the vector �

j by using basis pursuit algorithms (compressed sensing
decoding).

23: end for
24: Return �

1,�2, . . . ,�L.

93

clustering or alignment step. Hence a number of new ideas are necessary to solve the

problem for any general value of L.

We need to define a few constants which are used in the algorithm. Let � <
p
2� 1

be a constant (we need a � that allow k-sparse approximation given a (2k, �)-RIP

matrix). Let c0 be a large positive constant such that

�2

16

� �3

48

� 1

c0
> 0. (A)

Secondly, let ↵? be another positive constant that satisfies the following for a given

value of c0,

↵?
= max

n

↵ :

↵↵

(↵� 1)

↵�1

< exp

⇣ �2

16

� �3

48

� 1

c0

⌘o

. (B)

Finally, for a given value of ↵? and L, let z? be the smallest integer that satisfies the

following:

z? = min

n

z 2 Z : 1� L3

⇣

3

4z + 1

� 1

4z2 + 1

⌘

� 1p
↵?

o

. (C)

The Denoising Step. In each step of the algorithm, we sample a vector v uni-

formly at random from {+1,�1}n, another vector r uniformly at random from

G ⌘ {�2z?,�2z? + 1, . . . , 2z? � 1, 2z?}n and a number q uniformly at random from

{1, 2, . . . , 4z? + 1}. Now, we will use a batch of queries corresponding to the vectors

v + r, (q � 1)r and v + qr. We define a triplet of query vectors (v

1,v2,v3

) to be good

if for all triplets of indices i, j, k 2 [L] such that i, j, k are not identical,

hv1,�ii+ hv2,�ji 6= hv3,�ki.

We show that the query vector triplet (v + r, (q � 1)r,v + qr) is good with at least

some probability. This implies if we choose O(log n) triplets of such query vectors,

94

then at least one of the triplets are good with probability 1� 1/n. It turns out that,

for a good triplet of vectors (v + r, (q � 1)r,v + qr), we can obtain hv,�ii for all

i 2 [L].

Furthermore, it follows from Lemma 3.2 that for a query vector v with integral

entries, a batch size of T > c
3

log n exp((�/✏)2/3) , for some constant c
3

> 0, is sufficient

to recover the denoised query responses hv,�1i, hv,�2i, . . . , hv,�Li for all the queries

with probability at least 1� 1/poly(n).

The Alignment Step. Let a particular good query vector triplet be (v

?
+ r

?, (q?�

1)r

?,v?
+ q?r?). From now, we will consider the L elements {hr?,�ii}Li=1

to be labels

and for a vector u, we will associate a label with every element in {hu, �ii}Li=1

. The

labelling is correct if, for all i 2 [L], the element labelled as hr?,�ii also corresponds

to the same unknown vector �

i. Notice that we can label the elements {hv?, �ii}Li=1

correctly because the triplet (v

?
+ r

?, (q? � 1)r?,v?
+ q?r?) is good. Consider another

good query vector triplet (v0
+ r

0, (q0 � 1)r

0,v0
+ q0r0). This matches with the earlier

query triplet if additionally, the vector triplet (r

0, r?, r0 + r

?
) is also good.

Such matching pair of good triplets exists, and can be found by random choice

with some probability. We show that, the matching good triplets allow us to do the

alignment in the case of general L > 2.

At this point we would again like to appeal to the standard compressed sensing

results. However we need to show that the matching good vectors themselves form a

matrix that has the required RIP property. As our final step, we establish this fact.

Remark 3.1 (Refinement and adaptive queries). It is possible to have a sample

complexity of O
⇣

k(log n)2 log k exp
⇣

(✏
p
SNR)�2/3

⌘⌘

in Theorem 3.3, but with a proba-

bility of 1� poly(k�1

). Also it is possible to shave-off another log n factor from sample

complexity if we can make the queries adaptive.

95

3.3 Parameter Estimation for two unknown vectors

3.3.1 Our Techniques and Results

In this section, we provide generic sample complexity results for the special case of

two unknown vectors i.e. for B ⌘ {�1,�2} without making any assumptions on the

unknown vectors. To make the problem well-posed, let us make a slightly different

definition of Signal-to-Noise Ratio (SNR) for a query x:

SNR(x) , E|hx,�1 � �

2i|2
E⌘2

where the expectation is over the randomness of the query. Furthermore define the

overall SNR to be SNR := max

x

SNR(x), where the maximization is over all the queries

used in the recovery process. For a vector � 2 Rn, the best k-sparse approximation

�

(k) is defined to be the vector obtained from � where all except the k-largest (by

absolute value) coordinates are set to 0. For each � 2 {�1,�2}, our objective in this

setting is to return a sparse approximation of ˆ

� using minimum number of queries

such that

||ˆ� � �||  c||� � �

(k)||+ �

Our main result is following:

Theorem 3.6. [Main Result] Let NF :=

�
�

(the noise factor) where � > 0 is a

parameter representing the desired recovery precision and � > 0 is the standard

deviation of ⌘ in Eq. (3.1).

Case 1. For any � <
�

�

�

�

�

1 � �

2

�

�

�

�

2

/2, there exists an algorithm that makes

O

k log n log k
l

log k

log(

p
SNR/NF)

ml

1

NF4

p
SNR

+

1

NF2

m

!

96

queries to recover ˆ

�

1

, ˆ�
2

, estimates of �

1,�2, with high probability such that , for

i = 1, 2,

||ˆ�⇡(i) � �

i||
2


c||�i � �

i
(k)||1p

k
+O(�)

where ⇡ : {1, 2}! {1, 2} is some permutation of {1, 2} and c is a universal constant.

Case 2. For any � = ⌦(

�

�

�

�

�

1 � �

2

�

�

�

�

2

), there exists an algorithm that makes

O
⇣

k log n
l

log k
SNR

m⌘

queries to recover ˆ

�, estimates of both �

1,�2, with high probability

such that , for both i = 1, 2,

||ˆ� � �

i||
2


c||�i � �

i
(k)||1p

k
+O(�)

where c is a universal constant.

For a � = ⇥(

�

�

�

�

�

1 � �

2

�

�

�

�

2

) the first case of the Theorem holds but using the second

case may give better result in that regime of precision. The second case of the theorem

shows that if we allow a rather large precision error, then the number of queries is

similar to the required number for recovering a single vector. This is expected, because

in this case we can find just one line approximating both regressions.

The recovery guarantee that we are providing (an `
2

-`
1

guarantee) is in line with

the standard guarantees of the compressed sensing literature. In this paper, we are

interested in the regime log n  k ⌧ n as in compressed sensing. Note that, our

number of required samples scales linearly with k and has only poly-logarithmic scaling

with n, and polynomial scaling with the noise �. In the previous works as well as the

general result in the previous section, the complexities scaled exponentially with noise.

Furthermore, the query complexity of our algorithm decreases with the Euclidean

distance between the vectors (or the ‘gap’) - which makes sense intuitively. Consider

the case when when we want a precise recovery (� very small). It turns out that when

97

the gap is large, the query complexity varies as O((log gap)

�1

) and when the gap is

small the query complexity scale as O((gap log gap)

�1

).

Remark 3.2 (The zero noise case). When � = 0, i.e., the samples are not noisy,

the problem is still nontrivial, and is not covered by the statement of Theorem 3.6.

However this case is strictly simpler to handle as it will involve only the alignment

step (as will be discussed later), and not the mixture learning step. Recovery with

� = 0 is possible with only O(k log n log k) queries.

If the responses to the queries were to contain tags of the models they are coming

from, then we could use rows of any standard compressed sensing matrix as queries

and just segregate the responses using the tags. Then by running a compressed sensing

recovery on the groups with same tags, we would be done. In what follows, we try to

infer this ‘tag’ information by making redundant queries.

If we repeat just the same query multiple time, the noisy responses are going to

come from a mixture of Gaussians, with the the actual responses being the component

means. To learn the actual responses we rely on methods for parameter learning in

Gaussian mixtures. It turns out that for different parameter regimes, different methods

are best-suited for our purpose - and it is not known in advance what regime we would

be in. The method of moments is a well-known procedure for parameter learning in

Gaussian mixtures and rigorous theoretical guarantees on sample complexity exist [72].

However we are in a specialized regime of scalar uniform mixtures with known variance;

and we leverage these information to get better sample complexity guarantee for exact

parameter learning. In particular we show that, in this case the mean and variance

of the mixture are sufficient statistics to recover the unknown means, as opposed to

the first six moments of the general case [72]. While recovery using other methods

are straight forward adaption of known literature, we show that only a small set of

samples are needed to determine what method to use.

98

It turns out that method of moments still needs significantly more samples than

the other methods. However we can avoid using method of moments and use a less

intensive method (such as EM, Algorithms), provided we are in a regime when the

gap between the component means is high. The only fact that the Euclidean distance

between �

1 and �

2 are far does not guarantee that. However, if we choose the queries

to be Gaussians, then the gap is indeed high with certain probability. If the queries

were to be generated by any other distribution, then such fact will require strong

anti-concentration inequalities that in general do not hold. Therefore, we cannot really

work with any standard compressed sensing matrix, but have to choose Gaussian

matrices (which are incidentally also good standard compressed sensing matrices).

The main technical challenge comes in the next step, alignment. For any two queries

x,x0, even if we know y
1

= h�1,xi, y
2

= h�2,xi and y0
1

= h�1,x0i, y0
2

= h�2,x0i, we

do not know how to club y
1

and y0
1

together as their order could be different. And

this is an issue with all pairs of queries which leaves us with exponential number of

possibilities to choose form. We form a simple error-correcting code to tackle this

problem.

For two queries, x,x0, we deal with this issue by designing two additional queries

x+x

0and x�x

0. Now even if we mis-align, we can cross-verify with the samples from

‘sum’ query and the ‘difference’ query, and at least one of these will show inconsistency.

We subsequently extend this idea to align all the samples. Once the samples are all

aligned, we can just use some any recovery algorithm for compressed sensing to deduce

the sparse vectors.

3.3.2 Overview of Our Algorithm

Our scheme to recover the unknown vectors is described below. We will carefully

chose the numbers m,m0 so that the overall query complexity meets the promise of

Theorem 3.6.

99

• We pick m query vectors x

1,x2, . . . ,xm independently, each according to N (0, In)

where 0 is the n-dimensional all zero vector and In is the n⇥ n identity matrix.

• (Mixture) We repeatedly query the oracle with x

i for Ti times for all i 2 [m] in

order to offset the noise. The samples obtained from the repeated querying of

x

i is referred to as a batch corresponding to x

i. Ti is referred to as the batchsize

of xi. Our objective is to return µ̂i,1 and µ̂i,2, estimates of hxi,�1i and hxi,�2i

respectively from the batch of samples. However, it will not be possible to label

which estimated mean corresponds to �

1 and which one corresponds to �

2.

• (Alignment) For some m0 < m and for each i 2 [m], j 2 [m0
] such that i 6= j, we

also query the oracle with the vectors x

i
+ x

j (sum query) and x

i � x

j (difference

query) repeatedly for T sum
i,j and T di↵

i,j times respectively. Our objective is to cluster

the set of estimated means {µ̂i,1, µ̂i,2}mi=1

into two equally sized clusters such that

all the elements in a particular cluster are good estimates of querying the same

unknown vector.

• Since the queries {xi}mi=1

has the property of being a good compressed sensing

matrix (they satisfy �-RIP condition, a sufficient condition for `
2

-`
1

recovery in

compressed sensing, with high probability), we can formulate a convex optimization

problem using the estimates present in each cluster to recover the unknown vectors

�

1 and �

2.

3.3.3 Recovering Unknown Means from a Batch

For a query x 2 {x1,x2, . . . ,xm}, notice that the samples from the batch corre-

sponding to x is distributed according to a Gaussian mixture M,

M , 1

2

N (hx,�1i, �2

) +

1

2

N (hx,�2i, �2

),

an equally weighted mixture of two Gaussian distributions having means hx,�1i, hx,�2i

with known variance �2. For brevity, let us denote hx,�1i by µ
1

and hx,�2i by µ
2

100

from here on in this sub-section. In essence, our objective is to find the sufficient

batchsize of x so that it is possible to estimate hx,�1i and hx,�2i upto an additive

error of �. Below, we go over some methods providing theoretical guarantees on the

sufficient sample complexity for approximating the means that will be suitable for

different parameter regimes.

Algorithm 3.4 EM(x, �, T) Estimate the means hx,�1i, hx,�2i for a query x using
EM algorithm
Require: An oracle O which when queried with a vector x 2 Rn returns hx,�i +

N (0, �2

) where � is sampled uniformly from {�1,�2}.
1: for i = 1, 2, . . . , T do
2: Query the oracle O with x and obtain a response yi.
3: end for
4: Set the function w : R3 ! R as w(y, µ

1

, µ
2

) = e�(y�µ
1

)

2/2�2

⇣

e�(y�µ
1

)

2/2�2

+

e�(y�µ
2

)

2/2�2

⌘�1

.

5: Initialize µ̂0

1

, µ̂0

2

randomly and t = 0.
6: while Until Convergence do
7: µ̂t+1

1

=

PT
i=1

yiw(yi, µ̂t
1

, µ̂t
2

)/
PT

i=1

w(yi, µ̂t
1

, µ̂t
2

).
8: µ̂t+1

2

=

PT
i=1

yiw(yi, µ̂t
2

, µ̂t
1

)/
PT

i=1

w(yi, µ̂t
2

, µ̂t
1

).
9: t t+ 1.

10: end while
11: Return µ̂t

1

, µ̂t
2

Recovery using EM algorithm The Expectation Maximization (EM) algorithm

is widely known, and used for the purpose of parameter learning of Gaussian mixtures,

cf. [13] and [150]. The EM algorithm tailored towards recovering the parameters of

the mixture M is described in Algorithm 3.4. The following result can be derived

from [41] (with our terminology) that gives a sample complexity guarantee of using

EM algorithm.

Theorem 3.7 (Finite sample EM analysis [41]). From an equally weighted two compo-

nent Gaussian mixture with unknown component means µ
1

, µ
2

and known and shared

101

variance �2, a total O
⇣l

�6/(✏2(µ
1

� µ
2

)

4

) log 1/⌘
m⌘

samples suffice to return µ̂
1

, µ̂
2

,

such that for some permutation ⇡ : {1, 2}! {1, 2}, for i = 1, 2,

�

�µ̂i � µ⇡(i)

�

�  ✏

using the EM algorithm with probability at least 1� ⌘.

This theorem implies that EM algorithm requires smaller number of samples as

the separation between the means |µ
1

� µ
2

| grows larger. However, it is possible to

have a better dependence on |µ
1

� µ
2

|, especially when it is small compared to �2.

Method of Moments Consider any Gaussian mixture with two components,

G , p
1

N (µ
1

, �2

1

) + p
2

N (µ
2

, �2

2

),

where 0 < p
1

, p
2

< 1 and p
1

+ p
2

= 1. Define the variance of a random variable

distributed according to G to be

�2

G , p
1

p
2

((µ
1

� µ
2

)

2

+ p
1

�2

1

+ p
2

�2

2

.

It was shown in [72] that ⇥(�12

G /✏12) samples are both necessary and sufficient to

recover the unknown parameters µ
1

, µ
2

, �2

1

, �2

2

upto an additive error of ✏. However, in

our setting the components of the mixture M have the same known variance �2 and

further the mixture is equally weighted. Our first contribution is to show significantly

better results for this special case.

Theorem 3.8. With O
⇣l

�2

M/✏2
1

, �4

M/✏2
2

m

log 1/⌘
⌘

samples, Algorithm 3.6 returns

µ̂
1

, µ̂
2

, such that for some permutation ⇡ : {1, 2} ! {1, 2}, we have, for i = 1, 2,
�

�µ̂i � µ⇡(i)

�

�  2✏
1

+ 2

p
✏
2

with probability at least 1� ⌘.

102

This theorem states that O(�4

M) samples are sufficient to recover the unknown

means of M (as compared to the O(�12

G) result for the general case). This is because

the mean and variance are sufficient statistics for this special case (as compared to

first six excess moments in the general case). We first show two technical lemmas

providing guarantees on recovering the mean and the variance of a random variable

X distributed according to M. The procedure to return ˆM
1

and ˆM
2

(estimates of

EX and varX respectively) is described in Algorithm 3.5.

Lemma 3.3. O
⇣l

�2

M/✏2
1

m

log ⌘�1

⌘

samples divided into B = 36 log ⌘�1 equally sized

batches are sufficient to compute ˆM
1

(see Algorithm 3.5) such that
�

�

�

ˆM
1

� EX
�

�

�

 ✏
1

with probability at least 1� 2⌘.

Lemma 3.4. O
⇣l

�4

M/✏2
2

m

log ⌘�1

⌘

samples divided into B = 36 log ⌘�1 equally sized

batches is sufficient to compute ˆM
2

(see Algorithm 3.5) such that
�

�

�

ˆM
2

� varX
�

�

�

 ✏
2

with probability at least 1� 2⌘.

Algorithm 3.5 Estimate(x, T, B) Estimating EX and varX for X ⇠M
Require: I.i.d samples y1, y2, . . . , yT ⇠ M where M =

1

2

N (hx,�1i, �2

) +

1

2

N (hx,�2i, �2

).
1: Set t = T/B
2: for i = 1, 2, . . . , B do
3: Set Batch i to be the samples yj for j 2 {it+ 1, it+ 2, . . . , (i+ 1)t}.
4: Set Si

1

=

P

j2 Batch i
yi

t
, Si

2

=

P

j2 Batch i
(yi�Si

1

)

2

t�1

.
5: end for
6:

ˆM
1

= median({Si
1

}Bi=1

), ˆM
2

= median({Si
2

}Bi=1

).
7: Return ˆM

1

, ˆM
2

.

The detailed proofs of Lemma 3.3 and 3.4 can be found in Chapter B, Section B.4.

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. We will set up the following system of equations in the variables

µ̂
1

and µ̂
2

:

µ̂
1

+ µ̂
2

= 2

ˆM
1

and (µ̂
1

� µ̂
2

)

2

= 4

ˆM
2

� 4�2

103

Recall that from Lemma 3.3 and Lemma 3.4, we have computed ˆM
1

and ˆM
2

with

the following guarantees:
�

�

�

ˆM
1

� EX
�

�

�

 ✏
1

and
�

�

�

ˆM
2

� varX
�

�

�

 ✏
2

. Therefore, we must

have |µ̂
1

+ µ̂
2

� µ
1

� µ
2

|  2✏
1

, |(µ̂
1

� µ̂
2

)

2 � (µ
1

� µ
2

)

2|  4✏
2

. We can factorize the

left hand side of the second equation in the following way:

|µ̂
1

� µ̂
2

� µ
1

+ µ
2

| |µ̂
1

� µ̂
2

+ µ
1

� µ
2

|  4✏
2

.

Notice that one of the factors must be less than 2

p
✏
2

. Without loss of gener-

ality, let us assume that |µ̂
1

� µ̂
2

� µ
1

+ µ
2

|  2

p
✏
2

. This, along with the fact

|µ̂
1

+ µ̂
2

� µ
1

� µ
2

|  2✏
1

implies that (by adding and subtracting) |µ̂i � µi| 

2✏
1

+ 2

p
✏
2

8i = 1, 2.

Algorithm 3.6 Method of moments(x, �, T, B) Estimate the means hx,�1i,
hx,�2i for a query x

Require: An oracle O which when queried with a vector x 2 Rn returns hx,�i +
N (0, �2

) where � is sampled uniformly from {�1,�2}.
1: for i = 1, 2, . . . , T do
2: Query the oracle O with x and obtain a response yi.
3: end for
4: Compute ˆM

1

, ˆM
2

(estimates of EX⇠MX, varX⇠MX respectively) using Algorithm
Estimate(x, T, B).

5: Solve for µ̂
1

, µ̂
2

in the system of equations µ̂
1

+ µ̂
2

= 2

ˆM
1

, (µ̂
1

� µ̂
2

)

2

= 4

ˆM
2

�4�2.

6: Return µ̂
1

, µ̂
2

.

Fitting a single Gaussian In the situation when both the variance �2 of each

component in M and the separation between the means |µ
1

� µ
2

| are very small,

fitting a single Gaussian N (µ̂, �2

) to the samples obtained from M works better

than the aforementioned techniques. The procedure to compute ˆM
1

, an estimate

of EX⇠MX = (µ
1

+ µ
2

)/2 is adapted from [41] and is described in Algorithm 3.7.

Notice that Algorithm 3.7 is different from the naive procedure (averaging all samples)

described in Algorithm 3.5 for estimating the mean of the mixture. The sample

104

complexity for the naive procedure (see Lemma 3.3) scales with the gap |µ
1

�µ
2

| even

when the variance �2 is small which is undesirable. In stead we have the following

lemma.

Lemma 3.5 (Lemma 5 in [41]). With Algorithm 3.7, O
⇣l

�2

log ⌘�1/✏2
m⌘

samples

are sufficient to compute ˆM
1

such that
�

�

�

ˆM
1

� (µ
1

+ µ
2

)/2
�

�

�

 ✏ with probability at least

1� ⌘.

In this case, we will return ˆM
1

to be estimates of both the means µ
1

, µ
2

.

Algorithm 3.7 Fit a single gaussian(x, T) Estimate the means hx,�1i, hx,�2i
for a query x

Require: An oracle O which when queried with a vector x 2 Rn returns hx,�i +
N (0, �2

) where � is sampled uniformly from {�1,�2}.
1: for i = 1, 2, . . . , T do
2: Query the oracle O with x and obtain a response yi.
3: end for
4: Set ˆQ

1

and ˆQ
3

to be the first and third quartiles of the samples y1, y2, . . . , yt

respectively.
5: Return (

ˆQ
1

+

ˆQ
3

)/2.

Choosing appropriate methods Among the above three methods to learn mix-

tures, the appropriate algorithm to apply for each parameter regime is listed below.

Case 1 (|µ
1

� µ
2

| = ⌦(�)): We use the EM algorithm for this regime to recover

µ
1

, µ
2

. Notice that in this regime, by using Theorem 3.7 with ✏ = �, we obtain that

O
⇣l

(�2/�2

) log 1/⌘
m⌘

samples are sufficient to recover µ
1

, µ
2

up to an additive error

of � with probability at least 1� ⌘.

Case 2 (� � �, |µ
1

� µ
2

| = O(�)): We use the method of moments to recover

µ
1

, µ
2

. In this regime, we must have �2

M = O(�2

). Therefore, by using Theorem

3.8 with ✏
1

= �/4, ✏
2

= �2/16, it is evident that O
⇣l

(�/�)4
m

log 1/⌘
⌘

samples are

sufficient to recover µ
1

, µ
2

upto an additive error of � with probability at least 1� ⌘.

105

Case 3 (�  �, |µ
1

� µ
2

|  �): In this setting, we fit a single Gaussian. Using

Theorem 3.5 with ✏ = �/2, we will be able to estimate (µ
1

+ µ
2

)/2 up to an additive

error of �/2 using O
⇣l

(�2/�2

) log 1/⌘
m⌘

samples. This, in turn implies

|µi � ˆM
1

|  |µ
1

� µ
2

|
2

+

�

�

�

�

µ
1

+ µ
2

2

� ˆM
1

�

�

�

�

 �.

for i 2 {1, 2} and therefore both the means µ
1

, µ
2

are recovered up to an additive

error of �. Note that these three cases covers all possibilities.

Test for appropriate method Now, we describe a test to infer which parameter

regime we are in and therefore which algorithm to use. The final algorithm to recover

the means µ
1

, µ
2

from M including the test is described in Algorithm 3.8. We have

the following result, the proof of which is delegated to appendix B.5.

Algorithm 3.8 Test and estimate(x, �, �, ⌘) Test for the correct parameter regime
and apply the parameter estimation algorithm accordingly for a query x

Require: An oracle O which when queried with a vector x 2 Rn returns hx,�i +
N (0, �2

) where � is sampled uniformly from {�1,�2}.
1: Set T = O

⇣l

log ⌘�1

m⌘

.
2: for i = 1, 2, . . . , T do
3: Query the oracle O with x and obtain a response yi.
4: end for
5: Compute µ̃

1

, µ̃
2

by running Algorithm Method of moments (x, �, T, 72 log n).
6: if � > � and |µ̃

1

� µ̃
2

|  15�/32 then
7: Compute µ̂

1

, µ̂
2

by running Algorithm Method of moments

(x, �, O
⇣l

(�/�)4
m

log 1/⌘, 72 log n
⌘

.
8: else if �  � and |µ̃

1

� µ̃
2

|  15�/32 then
9: Compute µ̂

1

, µ̂
2

by running Algorithm Fit a single gaussian

(x, O
⇣l

(�2/�2

) log 1/⌘
m⌘

.
10: else
11: Compute µ̂

1

, µ̂
2

by running Algorithm EM(x, �, O
⇣l

(�2/�2

) log 1/⌘
m⌘

.
12: end if
13: Return µ̂

1

, µ̂
2

.

106

Lemma 3.6. The number of samples required for Algorithm 3.8 to infer the parameter

regime correctly with probability at least 1� ⌘ is atmost O(log ⌘�1

).

The proof of this lemma can be found in Chapter B, Section B.5.

3.3.4 Alignment

For a query x

i, i 2 [m], let us introduce the following notations for brevity:

µi,1 := hxi,�1i µi,2 := hxi,�2i.

Now, using Algorithm 3.8, we can compute (µ̂i,1, µ̂i,2) (estimates of µi,1, µi,2) using a

batchsize of Ti such that
�

�µ̂i,j � µi,⇡i(j)

�

�  � 8 i 2 [m], j 2 {1, 2}, where ⇡i : {1, 2}!

{1, 2} is a permutation on {1, 2}.

Algorithm 3.9 Align pair(x

i,xj, {µ̂s,t}s=i,j t=1,2, �, �, ⌘) Align the mean estimates
for x

i and x

j.
1: Recover µ̂sum,i, µ̂sum,j using Algorithm Test and estimate (xi

+ x

j, �, �, ⌘).
2: Recover µ̂di↵,i, µ̂di↵,j using Algorithm Test and estimate (xi � x

j, �, �, ⌘).
3: if |µ̂sum,i � µ̂i,p � µ̂j,q|  3� such that p, q 2 {1, 2} is unique then
4: if p == q then Return TRUE else Return FALSE end if
5: else
6: Find p, q such that |µ̂di↵,i � µ̂i,p + µ̂j,q|  3� for p, q 2 {1, 2}.
7: if p == q then Return TRUE else Return FALSE end if
8: end if

The most important step in our process is to separate the estimates of the means

according to the generative unknown sparse vectors (�

1 and �

2

) (i.e., alignment).

Formally, we construct two m-dimensional vectors u and v such that, for all i 2 [m]

the following hold:

• The ith elements of u and v, i.e., ui and vi, are µ̂i,1 and µ̂i,2 (but may not be

respectively).

• Moreover, we must have the ui and vi to be good estimates of hxi,�⇡i(1)i and

hxi,�⇡i(2)i respectively i.e.
�

�

�

ui � hxi,�⇡i(1)i
�

�

�

 10� ;
�

�

�

vi � hxi,�⇡i(2)i
�

�

�

 10� for

all i 2 [m] where ⇡i : {1, 2}! {1, 2} is some permutation of {1, 2}.

107

In essence, for the alignment step, we want to find out all permutations ⇡i, i 2 [m].

First, note that the aforementioned objective is trivial when |µi,1 � µi,2|  9�. To see

this, suppose ⇡i is the identity permutation without loss of generality. In that case,

we have for µ̂i,1, |µ̂i,1 � µi,1|  � and |µ̂i,1 � µi,2|  |µ̂i,1 � µi,1| + |µi,1 � µi,2|  10�.

Similar guarantees also hold for µ̂i,2 and therefore the choice of the ith element of u,�

is trivial. This conclusion implies that the interesting case is only for those queries x

i

when |µi,1 � µi,2| � 9�. In other words, this objective is equivalent to separate out

the permutations {⇡i}mi=1

for i : |µi,1 � µi,2| � 9� into two groups such that all the

permutations in each group are the same.

Alignment for two queries Consider two queries x1,x2 such that |µi,1 � µi,2| � 9�

for i = 1, 2. In this section, we will show how we can infer if ⇡
1

is same as ⇡
2

. Our

strategy is to make two additional batches of queries corresponding to x

1

+ x

2

and x

1 � x

2 (of size T sum
1,2 and T di↵

1,2 respectively) which we shall call the sum and

difference queries. Again, let us introduce the following notations: µsum,1 = hx1

+

x

2,�1i µsum,2 = hx1

+x

2,�2i, µdi↵,1 = hx1�x2,�1i µdi↵,2 = hx1�x2,�2i. As before,

using Algorithm 3.8, we can compute (µ̂sum,1, µ̂sum,2) (estimates of µsum,1, µsum,2) and

(µ̂di↵,1, µ̂di↵,2) (estimates of µdi↵,1, µdi↵,2) using a batchsize of T sum
1,2 and T di↵

1,2 for the sum

and difference query respectively such that
�

�µ̂sum,j � µsum,⇡sum(j)

�

�  � for j 2 {1, 2}

and
�

�µ̂di↵,j � µdi↵,⇡di↵(j)

�

�  � for j 2 {1, 2} where ⇡sum, ⇡di↵ : {1, 2} ! {1, 2} are

again unknown permutations of {1, 2}. We show the following lemma.

Lemma 3.7. We can infer, using Algorithm 3.9, if ⇡
1

and ⇡
2

are same using the

estimates µ̂sum,i, µ̂di↵,i provided |µi,1 � µi,2| � 9�, i = 1, 2.

We provide an outline of the proof over here. In Algorithm 3.9, we first choose one

value from {µ̂sum,1, µ̂sum,2} (say z) and we check if we can choose one element (say a)

from the set {µ̂
1,1, µ̂1,2} and one element {µ̂

2,1, µ̂2,2} (say b) in exactly one way such

that |z � a� b|  3�. If that is true, then we infer that the tuple {a, b} are estimates

108

of the same unknown vector and accordingly return if ⇡
1

is same as ⇡
2

. If not possible,

then we choose one value from {µ̂di↵,1, µ̂di↵,2} (say z0) and again we check if we can

choose one element (say c) from the set {µ̂
1,1, µ̂1,2} and one element from {µ̂

2,1, µ̂2,1}

(say d) in exactly one way such that |z0 � c� d|  3�. If that is true, then we infer

that {c, d} are estimates of the same unknown vector and accordingly return if ⇡
1

is

same as ⇡
2

. It can be shown that we will succeed in this step using at least one of the

sum or difference queries.

Alignment for all queries We will align the mean estimates for all the queries

x

1,x2, . . . ,xm by aligning one pair at a time. This routine is summarized in Algo-

rithm 3.10, which works when �  13

p
2p

⇡
k�1��

2k
2

⇡ 0.096k�1��

2k
2

. To understand

the routine, we start with the following technical lemma:

Lemma 3.8. Let, �  13

p
2p

⇡
k�1 � �

2k
2

. For m0
=

l

log ⌘�1/ log
p
⇡||�1��

2||
2

13

p
2�

m

, there

exists a query x

i? among {xi}m0
i=1

such that |µi?,1�µi?,2| � 13� with probability at least

1� ⌘.

Proof of Lemma 3.8. Notice that for a particular query x

i, i 2 [m], the difference of

the means µi,1 � µi,2 is distributed according to

µi,1 � µi,2 ⇠ N (0, ||�1 � �

2||2
2

).

Therefore, we have

Pr(|µi,1 � µi,2|  13�) =

Z

13�

�13�

e�x2/2||�1��

2||2
2

q

2⇡||�1 � �

2||2
2

dx  13

p
2�p

⇡||�1 � �

2||
2

. (3.6)

109

Algorithm 3.10 Align all({xi}i2[m]

, {µ̂s,t}s2[m] t=1,2, �, �, ⌘) Align mean estimates
for all queries {xi}mi=1

.
1: Initialize: u,� to be m-dimensional all zero vector.
2: Set m0

=

l

log ⌘�1/ log
p
⇡||�1��

2||
2

13

p
2�

m

3: for i = 1, 2, . . . ,m do
4: for j = 1, 2, . . . ,m0, j 6= i do
5: Run Algorithm Align pair (xi,xj, {µ̂s,t}s=i,j

t=1,2
, �, �, ⌘) and store the output.

6: end for
7: end for
8: Identify x

p from p 2 [m0
] such that |µ̂p,1 � µ̂p,2| � 11�.

9: Set up := u[p] = µ̂p,1 and vp := �[p] = µ̂p,2

10: for i = 1, 2, . . . ,m, i 6= p do
11: if Output of Algorithm 3.9 for x

i and x

p is TRUE then
12: Set u[i] = µ̂i,1 and �[i] = µ̂i,2.
13: else
14: Set u[i] = µ̂i,2 and �[i] = µ̂i,1.
15: end if
16: end for
17: Return u,�.

where the upper bound is obtained by using e�x2/2||�1��

2||2
2  1. Therefore the

probability that for all the m0 queries {xi}mi=1

, the difference between the means is

less than 13� must be

Pr(

m0
[

i=1

µi,1 � µi,2  13�)

=

m0
Y

i=1

Pr(µi,1 � µi,2  13�)


⇣

13

p
2�p

⇡||�1 � �

2||
2

⌘m0

= e
�m0

log

p
⇡||�1��2||

2

13

p
2�

Therefore for m0
=

l

log ⌘�1/ log
p
⇡||�1��

2||
2

13

p
2�

m

, we have that Pr(

Sm0

i=1

µi,1 � µi,2 

13�)  ⌘.

Now, for i 2 [m0
], j 2 [m] such that i 6= j, we will align x

i and x

j using Algorithm

3.9 and according to Lemma 3.7, this alignment procedure will succeed for all such pairs

110

where |µi,1 � µi,2|, |µj,1 � µj,2| � 9� with probability at least 1�mm0⌘ (using a union

bound). Note that according to Lemma 3.8, there must exist a query x

i? 2 {xi}m0
i=1

for which |µi?,1 � µi?,2| � 13�. This implies that for some i? 2 [m0
], we must have

|µ̂i?,1 � µ̂i?,2| � |µi?,1 � µi?,2|� |µ̂i?,1 � µi?,1|� |µ̂i?,2 � µi?,2| � 11�. Therefore, we can

identify at least one query x

˜i for ˜i 2 [m0
] such that |µ̂

˜i,1 � µ̂
˜i,2| � 11�. However, this

implies that |µ
˜i,1 � µ

˜i,2| � |µ̂
˜i,1 � µ̂

˜i,2|� |µ
˜i,1 � µ̂

˜i,1|� |µ
˜i,2 � µ̂

˜i,2| � 9�. Therefore we

will be able to infer for every query x

i, i 2 [m] for which |µi,1� µi,2| � 9� if ⇡i is same

as ⇡
˜i. Now, we are ready to put everything together and provide the proof for the

main result (Thm. 3.6).

3.3.5 Proof of Theorem 3.6

Case 1(� <
�

�

�

�

�

1 � �

2

�

�

�

�

2

/2): The overall recovery procedure is described as Algo-

rithm 3.11. Since this algorithm crucially uses Algorithm 3.10, it works only when

�  0.096
�

�

�

�

�

1 � �

2

�

�

�

�

2

; so assume that to hold for now. We will start by showing

that for any two Gaussian queries, the samples are far enough (a simple instance of

Gaussian anti-concentration).

Algorithm 3.11 Recover unknown vectors(�, �) Recover the unknown vectors
�

1 and �

2

1: Set m = csk log n.
2: Sample x

1,x2, . . . ,xm ⇠ N (0, In) independently.
3: for i = 1, 2, . . . ,m do
4: Compute µ̂i,1, µ̂i,2 by running Algorithm Test and estimate(xi, �, �, n�2).
5: end for
6: Construct u,� by running Algorithm Align all({xi}i2[m]

, {µ̂s,t}s2[m]

t=1,2

, �, �, ⌘).

7: Set A to be the m⇥n matrix such that its ith row is xi, with each entry normalized
by
p
m.

8: Set ˆ

�

1

to be the solution of the optimization problem min

z2Rn ||z||
1

s.t. ||Az �
1p
m
u||

2

 10�

9: Set ˆ

�

2

to be the solution of the optimization problem min

z2Rn ||z||
1

s.t. ||Az �
1p
m
�||

2

 10�

10: Return ˆ

�

1

, ˆ�
2

.

111

Lemma 3.9. For all queries x designed in Algorithm 3.11, for any constant c
1

> 0,

and some c
2

which is a function of c
1

,

Pr(

�

�hx,�1i � hx,�2i
�

�  c
1

�))  c
2

�

||�1 � �

2||
2

.

Proof of Lemma 3.9. The proof of Lemma 3.9 is very similar to the proof of Lemma

3.8. Again for a particular query x

i, i 2 [m], the difference of the means µi,1 � µi,2 is

distributed according to

µi,1 � µi,2 ⇠ N (0, ||�1 � �

2||2
2

).

Therefore, we have for any constant c
1

> 0,

Pr(|µi,1 � µi,2|  c
1

�) =

Z c
1

�

�c
1

�

e�x2/2||�1��

2||2
2

q

2⇡||�1 � �

2||2
2

dx 
p
2c

1

�p
⇡||�1 � �

2||
2

.

where the upper bound is obtained by using e�x2/2||�1��

2||2
2  1. Hence the lemma is

proved by substituting c
2

=

p
2c

1

/
p
⇡.

Now the theorem is proved via a series of claims.

Claim 3.1. The expected batchsize for any query designed in Algorithm 3.11 is

O
⇣l

�5

�4||�1��

2||
2

+

�2

�2

m

log ⌘�1

⌘

.

Proof. In Algorithm 3.11, we make m batches of queries corresponding to {xi}mi=1

and

mm0 batches of queries corresponding to {xi
+ x

j}i=m,j=m0

i=1,j=1,i 6=j and {xi � x

j}i=m,j=m0

i=1,j=1,i 6=j.

Recall that the batchsize corresponding to x

i,xi
+ x

j,xi � x

j is denoted by Ti,T sum
i,j

and T di↵
i,j respectively. Recall from Section 3.3.3, we will use method of moments or or

fit a single Gaussian (Case 2 and 3 in Section 3.3.3) to estimate the means when the

difference between the means is O(�). By Lemma 3.9, this happens with probability

112

O(�/||�1��2||
2

). Otherwise we will use the EM algorithm (Case 1 in Section 3.3.3). or

fit a single gaussian, both of which require a batchsize of at most O
⇣l

�2/�2

m

log ⌘�1

⌘

.

We can conclude that the expected size of any of the aforementioned batchsize is

bounded from above as the following: ET  O
⇣l

�5

�4||�1��

2||
2

+

�2

�2

m

log ⌘�1

⌘

where

T 2 {Ti} [{T sum
i,j } [{T di↵

i,j } so that we can recover all the mean estimates upto an an

additive error of � with probability at least 1�O(mm0⌘).

Claim 3.2. Algorithm 3.10 returns two vectors u and v of length m each such that

�

�

�

u[i]� hxi,�⇡(1)i
�

�

�

 10�;
�

�

�

�[i]� hxi,�⇡(2)i
�

�

�

 10�

for some permutation ⇡ : {1, 2}! {1, 2} for all i 2 [m] with probability at least 1� ⌘.

The proof of this claim directly follows from the discussion in Section 3.3.4.

The matrix A is size m ⇥ n whose ith row is the query vector x

i normalized by
p
m. .

Claim 3.3. We must have

||A�

L(1) � up
m
||
2

 10� & ||A�

L(2) � �p
m
||
2

 10�.

Proof. The proof of this claim follows from the fact that after normalization by
p
m,

the error in each entry is also normalized by
p
m and is therefore at most 10�/

p
m.

Hence the `
2

difference is at most 10�.

It is known that for m � csk log n where cs > 0 is some appropriate constant, the

matrix A satisfy restricted isometric property of order 2k, which means for any exactly

2k-sparse vector x and a constant �, we have |kAxk2
2

� kxk2
2

|  �kxk2
2

cf.[15].

We now solve the following convex optimization problems, standard recovery

method called basis pursuit:

ˆ

�

⇡(1)
= min

z2Rn
||z||

1

s.t. ||Az � up
m
||
2

 10�

113

ˆ

�

⇡(2)
= min

z2Rn
||z||

1

s.t. ||Az � �p
m
||
2

 10�

to recover ˆ

�

⇡(1)
, ˆ�

⇡(2)
, estimates of �1,�2 having the guarantees given in Theorem 3.6

(see, Thm. 1.6 in [22]). The expected query complexity is O
⇣

mm0
log ⌘�1

l

�5

�4||�1��

2||
2

+

�2

�2

m⌘

Substituting m = O(k log n), m0
= O

⇣l

log ⌘�1

log

||�1��2||
2

�

m⌘

and ⌘ = (mm0
log n)�1,

we obtain the total query complexity

O

k log n log k
l

log k

log(k�1 � �

2k
2

/�)

m

⇥
l �5

�4||�1 � �

2||
2

+

�2

�2

m

!

and the error probability to be o(1). We can just substitute the definition of NF

and notice that SNR = k�1 � �

2k2
2

/�2 to obtain the query complexity promised in

Theorem 3.6. Note that, we have assumed k = ⌦(log n) above.

It remains to be proved that the same (orderwise) number of samples is sufficient

to recover both unknown vectors with high probability. For each query x designed in

Algorithm 3.11, consider the indicator random variable Yi = 1[|µi,1 � µi,2| = ⌦(�)].

The total number of queries for which this event is true (given by
P

i Yi) is sampled

according to the binomial distribution Bin(mm0, O(�/||�1 � �

2||
2

)) and therefore

concentrates tightly around its mean. A simple use of Chernoff bound leads to the

desired result.

While we have proved the theorem for any �  0.096
�

�

�

�

�

1 � �

2

�

�

�

�

2

, it indeed holds

for any � = c0
�

�

�

�

�

1 � �

2

�

�

�

�

2

, where c0 is a constant strictly less than 1. If the desired

� > 0.096
�

�

�

�

�

1 � �

2

�

�

�

�

2

, then one can just define �0
= 0.096

�

�

�

�

�

1 � �

2

�

�

�

�

2

and obtain a

precision �0 which is a constant factor within �. Since the quantity NF defined with

�0 is also within a constant factor of the original NF, the sample complexity can also

change by at most a constant factor.

114

Algorithm 3.12 Recover unknown vectors 2(�, �) Recover the unknown vectors
�

1 and �

2

1: Set m = csk log n and T = O
⇣l

�2

log k/(� � 0.8
�

�

�

�

�

1 � �

2

�

�

�

�

2

)

2

m⌘

.
2: Sample x

1,x2, . . . ,xm ⇠ N (0, In) independently.
3: for i = 1, 2, . . . ,m do
4: Compute µ̂i by running Algorithm Fit a single gaussian (xi, T).
5: end for
6: Set u to be the m-dimensional vector whose ith element is µ̂i.
7: Set A to be the m⇥n matrix such that its ith row is xi, with each entry normalized

by
p
m.

8: Set ˆ

� to be the solution of the optimization problem min

z2Rn ||z||
1

s.t. ||Az �
1p
m
u||

2

 �

9: Return ˆ

�.

Case 2 (� = ⌦(

�

�

�

�

�

1 � �

2

�

�

�

�

2

)): We will first assume � > 0.8
�

�

�

�

�

1 � �

2

�

�

�

�

2

to prove

the claim, and later extend this to any � = ⌦(

�

�

�

�

�

1 � �

2

�

�

�

�

2

). The recovery procedure

in the setting when � > 0.8
�

�

�

�

�

1 � �

2

�

�

�

�

2

is described in Algorithm 3.12. We will start

by proving the following claim

Claim 3.4. Algorithm 3.12 returns a vector u of length m using O
⇣

m
l

�2

log ⌘�1/✏2
m⌘

queries such that

�

�

u[i]� hxi,�1i
�

�  ✏+

�

�hxi,�1 � �

2i
�

�

2

�

�

u[i]� hxi,�2i
�

�  ✏+

�

�hxi,�1 � �

2i
�

�

2

for all i 2 [m] with probability at least 1�m⌘.

Proof. In Algorithm 3.12, for each query x

i ⇠ N (0, In), we can use a batchsize of

O
⇣l

�2

log ⌘�1/✏2
m⌘

to recover µ̂i such that

�

�

�

�

µ̂i �
hxi,�1i+ hxi,�2i

2

�

�

�

�

 ✏

115

with probability at least 1�⌘ according to the guarantees of Lemma 3.5. We therefore

have

�

�µ̂i � hxi,�1i
�

� 
�

�

�

�

µ̂i � hx
i,�1i+ hxi,�2i

2

�

�

�

�

+

�

�hxi,�1 � �

2i
�

�

2

 ✏+

�

�hxi,�1 � �

2i
�

�

2

.

where the last inequality follows by using the guarantees on µ̂i. We can show a similar

chain of inequalities for
�

�µ̂i � hxi,�2i
�

� and finally take a union bound over all i 2 [m]

to conclude the proof of the claim.

Next, let us define the random variable !i ,
�

�hxi,�1 � �

2i
�

� where the randomness

is over x

i. Subsequently let us define the m-dimensional vector b whose ith element

is ✏ + !i/2. Again, for m � csk log n, let A denote the matrix whose ith row is x

i

normalized by
p
m.

Claim 3.5. We must have

�

�

�

�

�

�

�

�

A�

1 � up
m

�

�

�

�

�

�

�

�

2

 ||b||
2p

m
&

�

�

�

�

�

�

�

�

A�

2 � up
m

�

�

�

�

�

�

�

�

2

 ||b||
2p

m
.

Proof. The proof of the claim is immediate from definition of A and b.

Next, we show high probability bounds on `
2

-norm of the vector b in the following

claim.

Claim 3.6. We must have ||b||2
2

m
 2✏2 + 0.64

�

�

�

�

�

1 � �

2

�

�

�

�

2

2

with probability at least

1�O(e�m
).

Proof. Notice that

||b||2
2

m
 1

m

m
X

i=1

⇣

✏+
!i

2

⌘

2

 2

m

m
X

i=1

⇣

✏2 +
!2

i

4

⌘

.

116

Using the fact that xi ⇠ N (0, In) and by definition, we must have that !i is a random

variable distributed according to N (0,
�

�

�

�

�

1 � �

2

�

�

�

�

2

). Therefore, we have (see Lemma

1.2 [22])

Pr

�

�

�

�

�

m
X

i=1

!2

i �m
�

�

�

�

�

1 � �

2

�

�

�

�

2

2

�

�

�

�

�

� m⇢
�

�

�

�

�

1 � �

2

�

�

�

�

2

2

!

 2 exp

⇣

� m

2

⇣⇢2

2

� ⇢3

3

⌘⌘

for 0 < ⇢ < 1. Therefore, by substituting ⇢ = 0.28, we get that

2

m

m
X

i=1

⇣

✏2 +
!2

i

4

⌘

 2✏2 + 0.64
�

�

�

�

�

1 � �

2

�

�

�

�

2

2

with probability at least 1�O(e�m
).

From Claim 3.6, we get

||b||
2p

m

p
2✏+ 0.8

�

�

�

�

�

1 � �

2

�

�

�

�

2

.

where we use the inequality
p
a+ b  pa+

p
b for a, b > 0. Subsequently we solve

the following convex optimization problem

min

z2Rn
||z||

1

s.t. ||Az � up
m
||
2

 �

where � =

p
2✏ + 0.8

�

�

�

�

�

1 � �

2

�

�

�

�

2

in order to recover ˆ� and return it as estimate of

both �

1,�2. For m = O(k log n), ⌘ = (m log n)�1 and
p
2✏ = � � 0.8

�

�

�

�

�

1 � �

2

�

�

�

�

2

, the

number of queries required is O
⇣

k log n
l

�2

log k/(� � 0.8
�

�

�

�

�

1 � �

2

�

�

�

�

2

)

2

m⌘

. Further,

by using the theoretical guarantees provided in Theorem 1.6 in [22], we obtain

the guarantees of the main theorem with error probability atmost o(1). Again, by

117

substituting the definition of the Noise Factor NF = �/� and the Signal to Noise ratio

SNR = O(

�

�

�

�

�

1 � �

2

�

�

�

�

2

2

/�2

), we obtain the query complexity to be

O
⇣

k log n
l

log k

(NF� 0.8
p
SNR)2

m⌘

.

Now let us assume any � = ⌦(

�

�

�

�

�

1 � �

2

�

�

�

�

2

). If the desired � <
�

�

�

�

�

1 � �

2

�

�

�

�

2

, then

one can just define �0
=

�

�

�

�

�

1 � �

2

�

�

�

�

2

and obtain a precision �0 which is a constant

factor within �. Further, the query complexity also becomes independent of the noise

factor since NF =

p
SNR for this choice of �0 and thus we obtain the promised query

complexity in Theorem 3.6.

3.3.6 Discussion on Noiseless Setting (� = 0)

Step 1: In the noiseless setting, we obtain m = O(k log n) query vectors x1, . . . ,xm

sampled i.i.d according to N (0, In) and repeat each of them for 2 logm times. For a

particular query xi, the probability that we do not obtain any samples from �

1 or �2

is at most (1/2)2 logm. We can take a union bound to conclude that for all queries, we

obtain samples from both �

1 and �

2 with probability at least 1�O(m�1

). Further

note that for each query x

i, hxi,�1��

2i is distributed according to N (0,
�

�

�

�

�

1 � �

2

�

�

�

�

2

2

)

and therefore, it must happen with probability 1 that hxi,�1i 6= hxi,�1i. Thus for

each query xi, we can recover the tuple (hxi,�1i, hxi,�2i) but we cannot recover the

ordering i.e. we do not know which element of the tuple corresponds to �

1 and which

one to �

2.

Step 2: Note that we are still left with the alignment step where we need to cluster

the 2m recovered parameters {(hxi,�1i, hxi,�2i)}mi=1

into two clusters of size m each

so that there exists exactly one element from each tuple in each of the two clusters

and all the elements in the same cluster correspond to the same unknown vector.

In order to complete this step, we query x

1

+ xi and x

1

� xi for all i 6= 1 each for

118

2 logm times to the oracle and recover the tuples (hx1

+ x

i,�1i, hx1

+ x

i,�2i) and

(hx1�x

i,�1i, hx1�x

i,�2i) for all i 6= 1. For a particular i 2 [m]\{1}, we will choose

two elements (say a and b) from the pairs (hx
1

,�1i, hx
1

,�2i) and (hxi,�
1i, hxi,�

2i)

(one element from each pair) such that their sum belongs to the pair hx
1

+xi,�
1i, hx

1

+

xi,�
2i and their difference belongs to the pair hx

1

� xi,�
1i, hx

1

� xi,�
2i. In our

algorithm, we will put a, b into the same cluster and the other two elements into the

other cluster. From construction, we must put (hx
1

,�1i, hxi,�
1i) in one cluster and

(hx
1

,�2i, hxi,�
2i) in other. Note that a failure in this step is not possible because the

2m recovered parameters are different from each other with probability 1.

Step 3: Once we have clustered the samples, we have reduced our problem to the

usual compressed sensing setting (with only 1 unknown vector) and therefore we can

run the well known convex optimization routine in order to recover the unknown

vectors �

1 and �

2. The total query complexity is O(k log n log k).

3.3.7 ‘Proof of Concept’ Simulations

The methods of parameter recovery in Gaussian mixtures are compared in Fig 3.1a.

As claimed in Sec. 3.3.3, the EM starts performing better than the method of moments

when the gap between the parameters is large.

We have also run Algorithm 3.11 for different set of pairs of sparse vectors and

example recovery results for visualization are shown in Figures 3.1b and 3.1c. Note

that, while quite accurate reconstruction is possible the vectors are not reconstructed

in order, as to be expected.

3.4 Support Recovery

3.4.1 Our Techniques and Results

Tensor Decomposition: Consider a tensor A of order w 2 N, w > 2 on Rn which

is denoted by A 2 Rn ⌦ Rn ⌦ · · ·⌦ Rn
(w times). Let us denote by Ai

1

,i
2

,...,iw where

119

(a) Comparison of the three techniques for recovery of parameters of a Gaussian mixture with
1000 samples (see Algorithms 3.4,3.6 and 3.7). The error in parameter recovery is plotted
with separation between µ

1

and µ
2

(by keeping µ
1

fixed at 0 and varying µ
2

).

(b) The 100-dimensional ground truth vectors
�1 and �2 with sparsity k = 5 plotted in
green (left) and the recovered vectors (using
Algorithm 3.11) ˆ�1 and ˆ�2 plotted in orange
(right) using a batch-size ⇠ 100 for each of
150 random gaussian queries. The order of
the recovered vectors and the ground truth
vectors is reversed.

(c) The 100-dimensional ground truth vectors
�1 and �2 with sparsity k = 5 plotted in
green (left) and the recovered vectors (using
Algorithm 3.11) ˆ�1 and ˆ�2 plotted in orange
(right) using a batch-size ⇠ 600 for each of
150 random gaussian queries. The order of
the recovered vectors and the ground truth
vectors is reversed.

Figure 3.1: Simulation results of our techniques.

120

i
1

, i
2

, . . . , iw 2 [n], the element in A whose location along the jth dimension is ij i.e.

there are ij � 1 elements along the jth dimension before Ai
1

,i
2

,...,iw . Notice that this

indexing protocol uniquely determines the element within the tensor. For a detailed

review of tensors, we defer the reader to [93]. In this work, we are interested in low

rank decomposition of tensors. A tensor A can be described as a rank-1 symmetric

tensor if it can be expressed as

A = z ⌦ z ⌦ · · ·⌦ z

| {z }

w times

for some z 2 Rn i.e. Ai
1

,i
2

,...,iw =

Qw
j=1

zij . A tensor A that can be expressed as a

sum of R rank-1 symmetric tensors is defined as a rank R symmetric tensor. For such

a rank R tensor A provided as input, we are concerned with the problem of unique

decomposition of A into a sum of R rank-1 symmetric tensors; such a decomposition

is also known as a Canonical Polyadic (CP) decomposition. Below, we show a result

due to [128] describing the sufficient conditions (Kruskal’s result) for the unique CP

decomposition of a rank R tensor A:

Lemma 3.10 (Unique CP decomposition [128]). Suppose A is the sum of R rank-one

tensors i.e.

A =

R
X

r=1

z

r ⌦ z

r ⌦ · · ·⌦ z

r

| {z }

w times

.

and further, the Kruskal Rank of the n ⇥ R matrix whose columns are formed by

z

1, z2, . . . , zR is J . Then, if wJ � 2R+ (w� 1), then the CP decomposition is unique

and we can recover the vectors z

1, z2, . . . , zR up to permutations.

There exist many different techniques for CP decomposition of a tensor but the most

well-studied ones are Jennrich’s Algorithm (see Section 3.3, [112]) and the Alternating

Least Squares (ALS) algorithm [93]. Among these, Jennrich’s algorithm (see Section

D.2 for more details) is efficient and recovers the latent rank-1 tensors uniquely

121

but it works only for tensors of order 3 when the underlying vectors z

1, z2, . . . , zR

are linearly independent (See Theorem 3.3.2, [112]); this is a stronger condition

than what we obtain from Lemma 3.10 for w = 3. On the other hand, the ALS

algorithm is an iterative algorithm which is easy to implement for tensors of any

order but unfortunately, it takes many iterations to converge and furthermore, it is

not guaranteed to converge to the correct solution. Jennrich’s algorithm also has the

additional advantage that it will throw an error if its sufficient condition for unique

CP decomposition is not satisfied. This property will turn out to be useful for the

problem that we study in this work. Finally, notice that if A is the weighted sum of

R rank-1 tensors i.e.,

A =

R
X

r=1

�r z
r ⌦ z

r ⌦ · · ·⌦ z

r

| {z }

w times

.

then we can rewrite A =

PR
r=1

y

r ⌦ y

r ⌦ · · · ⌦ y

r where y

r
= �1/w

r z

r. If {yr}Rr=1

satisfies the conditions of Lemma 3.10 and if it is known that {zr}Rr=1

are binary

vectors, then we can still recover zr by first computing y

r and then taking its support

for all r 2 [R]. Subsequently, notice that we can also recover {�r}Rr=1

. As we discussed,

for tensors of order w > 3, there is no known efficient algorithm that can recover the

correct solution even if its existence and uniqueness is known. Due to this limitation,

it was necessary in prior works using low rank decomposition of tensors that the

unknown parameter vectors are linearly independent [32, 6] since tensors of order > 3

could not be used. However, if it is known apriori that the vectors {zr}Rr=1

are binary

and the coefficients {�r}Rr=1

are positive integers bounded from above by some C > 0,

then we can exhaustively search over all possibilities (O(C2

n
) of them) to find the

unique decomposition even in higher order tensors. The set of possible solutions can

be reduced significantly if the unknown vectors are known to be sparse as is true in

our setting.

122

Family of sets: We now review literature on some important families of sets

called union free families [60] and cover free families [90] that found applications in

cryptography, group testing and 1-bit compressed sensing. These special families of

sets are used crucially in this work.

Definition 3.1 (Robust Union Free Family (d, t,↵)- RUFF [1]). Let d, t be integers

and 0  ↵  1. A family of sets F = {H
1

,H
2

, . . . ,Hn} with each Hi ✓ [m] and

|H| = d is a (d, t,↵)-RUFF if for any set of t indices T ⇢ [n], |T | = t, and any index

j /2 T ,
�

�Hj \
�

S

i2T Hi

�

�

� > (1� ↵)d.

We refer to n as the size of the family of sets, and m to be the alphabet over which

the sets are defined. RUFFs were studied earlier in the context of support recovery of

1bCS [1], and a simple randomized construction of (d, t,↵)-RUFF with m = O(t2 log n)

was proposed by De Wolf [48].

Lemma 3.11. [1, 48] Given n, t and ↵ > 0, there exists an (d, t,↵)-RUFF, F with

m = O
�

(t2 log n)/↵2

) and d = O((t log n)/↵).

RUFF is a generalization of the family of sets known as the Union Free Familes

(UFF) - which are essentially (d, t, 1)-RUFF. We require yet another generalization

of UFF known as Cover Free Families (CFF) that are also sometimes referred to as

superimposed codes [59].

Definition 3.2 (Cover Free Family (r, t)-CFF). A family of sets F = {H
1

,H
2

, . . . ,Hn}

where each Hi ✓ [m] is an (r, t)-CFF if for any pair of disjoint sets of indices T
1

, T
2

⇢

[n] such that |T
1

| = r, |T
2

| = t, T
1

\ T
2

= ;,
�

�

T

i2T
1

Hi \
S

i2T
2

Hi

�

� > 0.

Several constructions and bounds on existence of CFFs are known in literature.

We state the following lemma regarding the existence of CFF which can be found in

[123, 66].

Lemma 3.12. For any given integers r, t, there exists an (r, t)-CFF, F of size n with

m = O(tr+1

log n).

123

Proof. We give a non-constructive proof for the existence of (r, t)� CFF of size n and

alphabet m = O(tr+1

log n). Recall that a family of sets F = {H
1

,H
2

, . . . ,Hn} where

each Hi ✓ [m] is an (r, t)�CFF if the following holds: for all distinct j
0

, j
1

, . . . , jt+r�1

2

[n], it is the case that

\

p2{0,1,...,r�1}
Hjp 6✓

[

q2{r,r+1,...,t+r�1}
Hjq .

Since PUFF is a special case of (r, t) � CFF for r = 2, this result holds for PUFF as

well.

Consider a matrix G of size m⇥ n where each entry is generated independently

from a Bernoulli(p) distribution with p as a parameter. Consider a distinct set of t+ r

indices j
0

, j
1

, . . . , jt+r�1

2 [n]. For a particular row of the matrix G, the event that

there exists a 1 in the indices j
0

, j
1

, . . . , jr�1

and 0 in the indices jr, jr+1

, . . . , jt+r�1

holds with probability pr(1� p)t. Therefore, for a fixed row, this event does not hold

with probability 1� pr(1� p)t and the probability that for all the rows the event does

not hold is (1� pr(1� p)t)m. Notice that the number of such possible sets of t+ r

columns is
�

n
t+r

��

t+r
r

�

. By taking a union bound, the probability (Pe) that the event

does not hold for all the rows for at least one set of t+ r indices is

Pe 
✓

n

t+ r

◆✓

t+ r

r

◆

�

1� pr(1� p)t
�m

Since we want to minimize the upper bound, we want to maximize pr(1� p)t. Substi-

tuting p =

1

t+1

, we get that

pr(1� p)t =
⇣ t

t+ 1

⌘t

· 1

(t+ 1)

r
>

1

e(t+ 1)

r
.

124

Further, using the fact that
�

n
t

�


⇣

en
t

⌘t

, we obtain

Pe 
(en)t+r

(t+ r)t

⇣

1� 1

e(t+ 1)

r

⌘m

 (en)t+r

(t+ r)t
exp

⇣

� m

e(t+ 1)

r

⌘

< ↵

for some very small number ⌘. Taking log on both sides and after some rearrangement,

we obtain

m > e(t+ 1)

r
⇣

(t+ r) log
en

t+ r
+ r log(t+ r) + log

1

⌘

⌘

.

Hence, using m = O(tr+1

log n), the event holds for at least one row for every set of

t+ r indices with high probability. Therefore, with high probability, the family of sets

F = {H
1

,H
2

, . . . ,Hn} corresponding to the rows of G is a (r, t)� CFF.

Recall that the set of unknown vectors is denoted by B ⌘ {�1,�2, . . . ,�L}. Let

A 2 {0, 1}n⇥L denote the support matrix corresponding to B where each column

vector Ai 2 {0, 1}n represents the support of the ith unknown vector �

i. For any

ordered tuple C ⇢ [n] of indices, and any binary string a 2 {0, 1}|C|, define occ(C, a)

to be the set of unknown vectors whose corresponding supports have the substring a

at positions indexed by C, i.e.,

occ(C,a) := {�i 2 B | supp�i|C = a}.

In order to describe our techniques and our results, we need to introduce three

different properties of matrices and extend them to a set of vectors by using their

corresponding support matrix. The proofs of our main results follow from the guaran-

tees of algorithms (Algorithm 3.13, Algorithm 3.14 and Algorithm 3.15) each of which

leverage the aforementioned key properties of the unknown support matrix A. While

explaining the intuition behind the introduced matrix properties, we will assume that

125

all the unknown vectors in B have distinct supports to keep things simple. However,

this assumption is not necessary and all our algorithms work even when the supports

are not distinct.

Definition 3.3 (p-identifiable). The ith column Ai of a binary matrix A 2 {0, 1}n⇥L

with all distinct columns is called p-identifiable if there exists a set S ⇢ [n] of at most

p-indices and a binary string a 2 {0, 1}p such that Ai|S = a, and Aj|S 6= a for all

j 6= i.

A binary matrix A 2 {0, 1}n⇥L with all distinct columns is called p-identifiable if

there exists a permutation � : [L] ! [L] such that for all i 2 [L], the sub-matrix A

i

formed by deleting the columns indexed by the set {�(1), �(2), . . . , �(i � 1)} has at

least one p-identifiable column.

Let B be set of L unknown vectors in Rn, and A 2 {0, 1}n⇥L be its support matrix.

Let B be the matrix obtained by deleting duplicate columns of A. The set B is called

p-identifiable if B is p-identifiable.

Support matrix A is p-identifiable: Algorithm 3.13 uses the property that the

support matrix A is p-identifiable for some known p  logL (See Theorem 3.10)

to recover the supports of all the unknown vectors. First, we briefly describe the

support recovery algorithm where we assume that the support of each unknown

vector contains a unique identifying index, i.e., for each unknown vector � 2 B, there

exists a unique index i 2 [n] such that occ((i), 1) = {�}, and hence |occ((i), 1)| = 1.

Observe that if |occ((i), 1)| = 1, and |occ((i, j), (1, 1))| = 1 for some i 6= j, then it

follows that both the indices i, j belong to the support of the same unknown vector.

Therefore, we are able to recover the supports of all the unknown vectors by computing

|occ((i), 1)| and |occ((i, j), (1, 1))| for all i, j 2 [n]. Hence, the crux of this algorithm

lies in computing all the n values of |occ((i), 1)|, and O(n2

) values of |occ((i, j), (1, 1))|

using just poly(L, k) queries. We can generalize this aforementioned support recovery

126

technique by observing that if A is p-identifiable, then there exists an unknown vector

� 2 B with a distinct support, a unique set C ✓ [n] and string a 2 {0, 1}|C| satisfying

|C|  p such that occ(C [{j}, (a, 1)) = {�}. By a similar observation as before, if

|occ(C [{j}, (a, 1))| = 1 for some j 2 [n] \ C, we can certify that j 2 supp(�). The

main technical challenge then lies in computing all the O(2

pnp
) values |occ(C,a)|

for every p and, p+ 1-sized ordered tuples of indices and all a 2 {0, 1}p [{0, 1}p+1

(Lemma 3.13) using few queries.

Definition 3.4 (flip-independent). A binary matrix A with all distinct columns is

called flip-independent if there exists a subset of rows that if complemented (changing

0 to 1 and 1 to 0) make all columns of A linearly independent.

Let B be a set of L unknown vectors in Rn, and A 2 {0, 1}n⇥L be its support

matrix. Let B be the matrix obtained by deleting duplicate columns of A. The set B

has flip-independent supports if B is flip-independent.

Support matrix is flip-independent: Algorithm 3.14 uses the property that the

support matrix A is flip-independent in order to recover the supports of the unknown

vectors uniquely. As a pre-processing step, we identify the set U , [i2[L]supp(�i
) that

represents the union of support of the unknown vectors. Let us define U 0 , U [{t}

where t is any index that does not belong to U . This initial pre-processing step allows

us to significantly reduce the computational complexity of this algorithm. Next, for

each a 2 {0, 1}3, Algorithm 3.14 recovers |occ((i
1

, i
2

, i
3

),a)| for every ordered tuple

(i
1

, i
2

, i
3

) 2 U3. Using these recovered quantities, it is possible to construct the tensors

AF
=

X

i2[L]
f(F , supp(�i

))⌦ f(F , supp(�i
))⌦ f(F , supp(�i

))

for every subset F ✓ U 0. Since the matrix A is flip-independent, we know that there

exists at least one subset F? ✓ U 0 such that the vectors {f(F?, supp(�i
))}Li=1

are

linearly independent. From Lemma 3.10, we know that by a CP decomposition of AF? ,

127

we can uniquely recover the vectors {f(F?, supp(�i
))}Li=1

; since the set F? is known,

we can recover all the vectors {supp(�i
))}Li=1

by flipping all indices corresponding to

F?. However, a remaining challenge is to correctly identify a set F?. Interestingly,

Jennrich’s algorithm (see Algorithm D.1 in Appendix D.2) throws an error if the

tensor AF under consideration does not satisfy the uniqueness conditions for CP

decomposition i.e. the underlying unknown vectors {f(F , supp(�i
))}Li=1

are not linearly

independent. Therefore Algorithm 3.14 is guaranteed to uniquely recover the supports

of the unknown vectors.

Definition 3.5 (Kruskal rank). The Kruskal rank of a matrix A is defined as the

maximum number r such that any r columns of A are linearly independent.

Definition 3.6 (r-Kruskal rank support). Let B be a set of L unknown vectors in Rn,

and A 2 {0, 1}n⇥L be its support matrix. Let B be the matrix obtained by deleting

duplicate columns of A. The set B has r-Kruskal rank support if B has Kruskal rank

r.

Support matrix has Kruskal rank r: Algorithm 3.15 partially generalizes the

flip-independence property by constructing higher order tensors. Again, as a pre-

processing step, we identify the set U , [i2[L]supp(�i
) that represents the union of

support of the unknown vectors. Note that |U|  Lk since each unknown vector

is k-sparse. Since Jennrich’s algorithm is not applicable for tensors of order more

than 3, we will simply search over all O((Lk)Lk) possibilities in order to compute the

unique CP decomposition of an input tensor. Unfortunately though, if the sufficiency

conditions (Lemma 3.10) for unique CP decomposition is not met, there can be

multiple solutions and we will not be able to detect the correct one. This is the

reason why it is not possible to completely generalize Algorithm 3.14 by constructing

multiple tensors of higher order. To circumvent this issue, Algorithm 3.15 constructs

only a single tensor A of rank L and order w = d2L�1

r�1

e by setting its (i
1

, . . . , iw)-th

128

entry to |occ((i
1

, . . . , iw),1w)| for every ordered tuple (i
1

, . . . , iw) 2 [n]w. By using

Theorem 3.10, the recovery of the supports of the unknown vectors via brute force CP

decomposition of the constructed tensor is unique if the support matrix has Kruskal

rank r.

All the above described algorithms require Lemma 3.13 that for any s > 1 computes

|occ(C,a)| for every s-sized ordered tuple of indices C, and any a 2 {0, 1}s using few

label queries. The key technical ingredient in Lemma 3.13 is to estimate nzcount(x) -

the number of unknown vectors that have a non-zero inner product with x. Note that

even this simple task is non-trivial in the mixture model and more so with noisy label

queries.

All the query complexity results below are valid with

SNR = O(L2

max

i2[L]

�

�

�

�

�

i
�

�

�

�

2

2

/�2)

where � is the minimum magnitude of any non-zero entry of any unknown vector in B.

In our first result, we recover the support of the unknown vectors with small number

of label queries provided the support matrix of B is p-identifiable.

Theorem 3.9. Let B be a set of L unknown vectors in Rn such that B is p-indentifiable.

Then, Algorithm 3.13 recovers the support of all the unknown vectors in B with

probability at least 1�O (1/n) using O(L3

(Lk)p+2

log(Lkn) log n) queries.

In fact, all binary matrices with distinct columns are p-identifiable for some

sufficiently large p.

Theorem 3.10. Any n⇥ L, (with n > L) binary matrix with all distinct columns is

p-identifiable for some p  logL.

Proof. Suppose A is the said matrix. Since all the columns of A are distinct, there

must exist an index i 2 [n] which is not the same for all columns in A. We must have

129

|occ((i), a)|  L/2 for some a 2 {0, 1}. Subsequently, we consider the columns of A

indexed by the set occ((i), a) and can repeat the same step. Evidently, there must

exist an index j 2 [n] such that |occ((i),a)|  L/4 for some a 2 {0, 1}2. Clearly, we

can repeat this step at most logL times to find C ⇢ [n] and a 2 {0, 1}logL such that

|occ(C,a)| = 1 and therefore the column in occ(C,a) is p-identifiable. We denote the

index of this column as �(1) and form the sub-matrix A

1 by deleting the column.

Again, A1 has L� 1 distinct columns and by repeating similar steps, A1 has a column

that is log(L � 1) identifiable. More generally, Ai formed by deleting the columns

indexed in the set {�(1), �(2), . . . , �(i�1)}, has a column that is log(L� i) identifiable

with the index (in A) of the column having the unique sub-string (in A

i) denoted by

�(i). Thus the lemma is proved.

Thus, we have the following corollary characterizing the unconditional worst-case

guarantees for support recovery:

Corollary 3.1. Let B be a set of L unknown vectors in Rn. Then, Algorithm 3.13

recovers the support of all the unknown vectors in B with probability at least 1�O (1/n)

using O(L3

(Lk)logL+2

log(Lkn) log n) queries.

Proof. The proof follows from the fact that any set B of L unknown vectors in Rn

must have p-identifiable supports for p  logL.

Under some assumptions on the unknown support, e.g.flip-independence, we have

better results.

Theorem 3.11. Let B be a set of L unknown vectors in Rn such that B is flip-

independent. Then, Algorithm 3.14 recovers the support of all the unknown vectors in

B with probability at least 1�O (1/n) using O(L3

(Lk)4 log(Lkn) log n) queries.

We can also leverage the property of small Kruskal rank of the support matrix to

show:

130

Theorem 3.12. Let B be a set of L unknown vectors in Rn that has r-Kruskal

rank support with r � 2. Let w = d2L�1

r�1

e. Then, Algorithm 3.15 recovers the

support of all the unknown vectors in B with probability at least 1 � O (1/n) using

O(L3

(Lk)w+1

log(Lkn) log n) queries.

Discussion on Matrix Properties: Note that p-identifiability (Definition 3.3)

property allows us to recover the supports of all the unknown vectors in the worst-case

without any assumptions (Corollary 3.1). The flip-independence (Definition 3.4) and r-

Kruskal rank support (Definition 3.6) properties are used for the tensor-decomposition

based support recovery algorithms and follow naturally from Lemma 3.10. The flip-

independence assumption is quite weak, however there do exist binary matrices that

are not flip independent. For example

M =

2

6

6

6

6

6

6

6

4

0 1 0 1

0 0 1 1

1 1 1 1

1 1 1 1

3

7

7

7

7

7

7

7

5

is not flip independent. The r-Kruskal rank support condition generalizes linear

independence conditions considered in previous mixture model studies such as [152].

Note that this condition is always satisfied by the support vectors for some r � 2.

Essentially, we 1) provide algorithms for support recovery without any assumptions,

2) and also provide significantly better guarantees under extremely mild assumptions

that we conjecture to be always true.

Although we have not optimized the run-time of our algorithms in this work, we

report the relevant computational complexities below:

Remark 3.3 (Computational Complexity). Note that Algorithm 3.13 has a computa-

tional complexity that is polynomial in the sparsity k, dimension n and scales as O(Lp
)

131

where p  logL. On the other hand Algorithms 3.14, 3.15 has a computational com-

plexity that scales exponentially with k, L while remaining polynomial in the dimension

n. For the special case when the support matrix is known to be full rank, Algorithm

3.15 with w = 3 is polynomial in all parameters (by using Algorithm D.1 for the CP

decomposition.)

3.4.2 Detailed Proofs and Algorithms

Recall the definition of occ(C,a) - the set of unknown vectors having a 2 {0, 1}|C|

as a substring in coordinates C ⇢ [n]. First, we observe that for any set T ✓ {0, 1}s,

we can compute |occ(C,a)| for all O(ns
) subsets of s indices C ⇢ [n] and a 2 T using

queries.

Lemma 3.13. Let T ✓ {0, 1}s be any set of binary vectors of length s. There exists

an algorithm to compute |occ(C,a)| for all C ⇢ [n] of size s, and all a 2 T with

probability at least 1� 1/n using

O(L3

(Lk)s+1

log(Lkn) log n)

queries.

Lemma 3.13 (proved in Section 3.4.3) is an integral and non-trivial component of

the proofs of all our main Theorems. In each of the sub-sections below, we go through

each of them.

Recovery of p-identifiable support matrix In this section we present an algo-

rithm for support recovery of all the L unknown vectors B ⌘ {�1, . . . ,�L} when B

is p-identifiable. In particular, we show that if B is p-identifiable, then computing

|occ(C,a)| for every subset of p and p+ 1 indices is sufficient to recover the supports.

Proof of Theorem 3.9. The proof follows from the observation that for any subset of p

indices C ⇢ [n], index j 2 [n]\C and a 2 {0, 1}p, |occ(C,a)| = |occ(C [{j}, (a, 1))|+

132

|occ(C [{j}, (a, 0))|. Therefore if one of the terms in the RHS is 0 for all j 2 [n] \ C,

then all the vectors in occ(C,a) share the same support.

Also, if some two vectors u,v 2 occ(C,a) do not have the same support, then

there will exist at least one index j 2 [n] \ C such that u 2 occ(C [{j}, (a, 1))| and

v 2 occ(C [{j}, (a, 0)) or the other way round, and therefore |occ(C [{j}, (a, 1))| 62

{0, |occ(C,a)|}. Algorithm 3.13 precisely checks for this condition. The existence of

some vector v 2 V (p-identifiable column), a subset of indices C ⇢ [n] of size p, and a

binary sub-string b 2 {0, 1}p follows from the fact that V is p-identifiable. Let us

denote the subset of unknown vectors with distinct support in V by V1.

Once we recover the p-identifiable column of V1, we mark it as u

1 and remove it

from the set (if there are multiple p-identifiable columns, we arbitrarily choose one of

them). Subsequently, we can modify the |occ(·)| values for all S ✓ [n], |S| 2 {p, p+ 1}

and t 2 {0, 1}p [{0, 1}p+1 as follows:

�

�occ2(S, t)
�

� , |occ(S, t)|� |occ(C, b)|⇥ 1[suppu1|S = t]. (3.7)

Notice that, Equation 3.7 computes |occ2(S, t)| = |{vi 2 V2 | suppvi|S = t}| where

V2 is formed by deleting all copies of u1 from V . Since V1 is p-identifiable, there exists

a p-identifiable column in V1 \ {u1} as well which we can recover. More generally

for q > 2, if uq�1 is the p-identifiable column with the unique binary sub-string b

q�1

corresponding to the set of indices Cq�1, we will have for all S ✓ [n], |S| 2 {p, p+ 1}

and t 2 {0, 1}p [{0, 1}p+1

|occq(S, t)| ,
�

�occq�1

(S, t)
�

��
�

�occq�1

(Cq�1, bq�1

)

�

�⇥ 1[suppuq�1|S = t]

implying |occq(S, t)| = |{vi 2 Vq | suppvi|S = t}| where Vq is formed deleting all

copies of u1,u2, . . . ,uq�1 from V. Applying these steps recursively and repeatedly

using the property that V is p-identifiable, we can recover all the vectors present in V .

133

Algorithm 3.13 requires the values of |occ(C,a)|, and |occ(˜C, ˜a)| for every p and

p+ 1 sized subset of indices C, ˜C ⇢ [n], and every a 2 {0, 1}p, ˜a 2 {0, 1}p+1. Using

Lemma 3.13, we can compute all these values using O(`3(`k)p+2

log(`kn) log n/(1�2⌘)2)

MLC queries or O(`3(`k)p+2

log(`kn) log n) MLR queries with probability at least

1�O(n�1

).

Algorithm 3.13 Recover p-identifiable Supports

Require: |occ(C,a)| for every C ⇢ [n], |C| = t 8 t  p+1, and every a 2 {0, 1}p+1.

1: Set count = 1, i = 1.
2: while count  L do
3: if |occ(C,a)| = w, and |occ(C [{j}, (a, 1))| 2 {0, w} for all j 2 [n] \ C then
4: Set suppu

i|C = a

5: For every j 2 [n] \ C, set suppu

i|j = b, where |occ(C [{j}, (a, b))| = w.
6: Set Multiplicityi = w.
7: For all t 2 {0, 1}p [{0, 1}p+1, S ✓ [n] such that |S| 2 {p, p+ 1}, update

|occ(S, t)| |occ(S, t)|� |occ(C,a)|⇥ 1[suppui|S = t]

8: count = count + w.
9: i = i+ 1.

10: end if
11: end while
12: Return Multiplicityj copies of suppuj for all j < i.

Recovery of flip-independent support matrix In this section, we present an

algorithm that recovers the support of all the L unknown vectors in B provided B is

flip-independent .

Proof of Theorem 3.11. The query complexity of the algorithm follows from Lemma 3.13.

For any subset C of 3 indices, with probability 1�O(1/n), we can compute |occ(C, ·)|

using O(L3

(Lk)4 log(Lkn) log n) queries.

For every subset F ✓ [n], we construct the tensor AF as follows:

AF
(i

1

,i
2

,i
3

)

= |occ((i
1

, i
2

, i
3

), (ai1, ai2, ai3))|,

134

Algorithm 3.14 Recover flip-independent Supports

Require: |occ(C,a)| for every C ⇢ [n], such that |C| = 3, and all a 2 {0, 1}3.
|occ(i, 1)| for all i 2 [n].

1: Set U = {i 2 [n] : |occ(i, 1)| 6= 0} and U 0
= U [{t} where t 2 [n] \ U .

2: for each F ⇢ U 0 do
3: Construct tensor AF as follows:
4: for every (i

1

, i
2

, i
3

) 2 [n]3 do
5: Set AF

(i
1

,i
2

,i
3

)

= |occ((i
1

, i
2

, i
3

), (ai1, ai2, ai3))|,
where aij = 0 if ij 2 F and 1 otherwise.

6: end for
7: if Jenerich(AF

) (Algorithm D.1 with input AF) succeeds: then
8: Let AF

=

PR
i=1

�ia
i ⌦ a

i ⌦ a

i be the tensor decomposition of A such that
a

i 2 {0, 1}n.
9: For all i 2 [R], modify a

i by flipping entries in F .
10: Return �i columns with modified a

i, 8i 2 [R].
11: break
12: end if
13: end for

for all (i
1

, i
2

, i
3

) 2 [n]3 where aij = 0 if ij 2 F and 1 otherwise. We then run Jennrich’s

algorithm on each AF . Observe that for any binary vector b 2 {0, 1}n, the (i
1

, i
2

, i
3

)-

th entry of the rank-1 tensor b ⌦ b ⌦ b is 1 if bi
1

= bi
2

= bi
3

= 1, and 0 otherwise.

Therefore, the tensor AF can be decomposed as AF
=

PR
i=1

�ia
i ⌦ a

i ⌦ a

i, where the

vectors a

i 2 {0, 1}n, i 2 R are the support vectors of the unknown vectors that are

flipped at indices in F with multiplicity �i.

Now if the support matrix of the unknown vectors is flip-independent, then there

exists a subset of rows indexed by some F? ✓ [n] such that flipping the entries of those

rows results in a modified support matrix with all its distinct columns being linearly

independent. Since the all zero rows of the support matrix A are linearly independent

(flipped or not), we can search for F? as a subset of U 0. Since, |U 0|  Lk+ 1, this step

improves the search space for F? from O(2

n
) to O(2

Lk
).

Therefore, Jennrich’s algorithm on input AF? is guaranteed to succeed and returns

the decomposition AF?
=

PR
i=1

�ia
i⌦a

i⌦a

i as the sum of R rank-one tensors, where,

a

i 2 {0, 1}n, i 2 [R] are modified support vectors with multiplicity �i. Subsequently,

135

we can again flip the entries of the recovered vectors indexed by F? to return the

original support vectors.

Algorithm 3.15 Recover r-Kruskal rank Supports

1: Let w be smallest integer such that w · (r � 1) � 2L� 1.
Require: |occ(C,1w)| for every C ⇢ [n] with |C| = w. |occ((i), 1)| for all i 2 [n].
2: Set U , {i 2 [n] : |occ((i), 1)| 6= 0}.
3: Construct tensor A as follows:
4: for every (i

1

, . . . , iw) 2 [n]w do
5: Set A

(i
1

,...,iw)

= |occ((i
1

, . . . , iw),1w)|.
6: end for
7: for every (b

1, b2 . . . , bL) 2 {0, 1}n satisfying supp(bi) ✓ U do
8: if A =

PL
i=1

b

i ⌦ b

i · · ·⌦ b

i (w times) then
9: Set (b

1, b2 . . . , bL) to be the CP decomposition of A and Break
10: end if
11: end for
12: Return CP decomposition of A

Recovery of r-Kruskal rank supports In this section, we present an algorithm

that recovers the support of all the L unknown vectors provided they have r-Kruskal

rank supports. Recall that for any set of w indices C ⇢ [n], occ(C,1w) denotes the

set of unknown vectors that are supported on all indices in C.

Proof of Theorem 3.12. To recover the supports we first construct the following order

w tensor: A
(i

1

,...,iw)

= |occ((i
1

, . . . , iw),1w)|, for (i
1

, . . . , iw) 2 [n]w. Observe that the

tensor A can be written as the sum of L0 (L0 < L) rank one tensors

A =

L0
X

i=1

�i
supp�

i ⌦ . . .⌦ supp�

i

| {z }

w-times

. (3.8)

where �1,�2, . . . ,�L0
are the unknown vectors with distinct supports in B with �i being

the multiplicity of supp�i. Since the support matrix A of B has r-Kruskal rank, for any

w such that w ·(r�1) � 2L�1, the decomposition of Eq. (3.8) is unique (Lemma 3.10).

Notice that by a pre-processing step, we compute U , {i 2 [n] : |occ((i), 1)| 6= 0} to be

136

the union of the supports of the unknown vectors. Since we know that the underlying

vectors of the tensor that we construct are binary, we can simply search exhaustively

over all the possibilities (O((Lk)Lk) of them (Steps 7-10) to find the unique CP

decomposition of the tensor A. For the special case when w = 3, Jennrich’s algorithm

(Algorithm D.1) can be used to efficiently compute the unique CP decomposition of

the tensor A.

Algorithm 3.15 needs to know the values of |occ(C,1w)| for every C ⇢ [n], such that

|C| = w. Using Lemma 3.13, these can be computed using O(L3

(Lk)w+1

log(Lkn) log n)

queries with probability at least 1�O(1/n).

3.4.3 Computing occ(C, a)

In this section, we provide the proof of Lemma 3.13 that follows from the cor-

rectness and performance guarantees of the subroutines that for any s < n, compute

|
S

i2S occ((i), 1)| for every subset of indices S of size s.

Let s < n, then using queries constructed from CFFs of appropriate parameters we

compute |
S

i2S occ((i), 1)| for all subsets S ⇢ [n] of size s.

Lemma 3.14. For any 1 < s < n, there exists an algorithm to compute
�

�

S

i2S occ((i), 1)
�

� for all S ✓ [n], |S| = s with probability at least 1�O(n�2

) using

O(L3

(Lk)s+1

log(Lkn) log n)

queries.

The proof of Lemma 3.14 follows from the guarantees of Algorithm 3.16 provided

in Section 3.4.4.

For the special case of s = 1, we use queries given by a RUFF of appropriate

parameters to compute |occ((i), 1)| for all i 2 [n] using Algorithm 3.17 in Section 3.4.4.

137

Lemma 3.15. There exists an algorithm to compute |occ((i), 1)| 8 i 2 [n] with

probability at least 1�O(n�2

) using O(L4k2

log(Lkn) log n) queries.

Both the above mentioned algorithms crucially use a subroutine that counts the

number of unknown vectors in B that have a non-zero inner product with a given

query vector x. For any x 2 Rn, define nzcount(x) :=
PL

i=1

1[h�i,xi 6= 0].

The problem of estimating nzcount(x) in the mixed linear regression model is

challenging due to the presence of additive noise. Note that one can scale the queries

with some large positive constant to minimize the effect of the additive noise. However,

we also aim to minimize the SNR, and hence need more sophisticated techniques to

estimate nzcount(x). We restrict our attention to only binary vectors x to estimate

nzcount in our model which is sufficient for support recovery.

Lemma 3.16. There exists an algorithm to compute nzcount(x) for any vector x 2

{0, 1}n, with probability at least 1� 2 exp(�T/36⇡L2

) using only T queries. Moreover,

SNR = O(L2

maxi2[L]
�

�

�

�

�

i
�

�

�

�

2

2

/�2).

Proof of Lemma 3.13. Using Algorithm 3.16 (s � 1) times and Algorithm 3.17, we

can compute
�

�

S

i2S occ((i), 1)
�

� for all S ✓ [n] such that |S|  s.

From Lemma 3.14, we know that each call to Algorithm 3.16 with any t  s

uses O(L3

(Lk)t+1

log(Lkn) log n) queries, and each succeeds with probability at least

1 � O(1/n2

). Therefore, taking a union bound over all t < s, we can compute
�

�

S

i2S occ((i), 1)
�

� for all S ✓ [n], |S|  s using O(L3

(Lk)s+1

log(Lkn) log n) queries

with probability 1�O(1/n).

We now show using by induction on s that the quantities

(

�

�

�

�

�

[

i2S
occ((i), 1)

�

�

�

�

�

8 S ✓ [n], |S|  s

)

are sufficient to compute |occ(C,a)| for all subsets C of indices of size at most s, and

any binary vector a 2 {0, 1}s.

138

Base case (t = 1): The base case follows since we can infer both |occ((i), 1)|

and |occ((i), 0)| = L� |occ((i), 1)| from |occ((i), 1)| computed using Algorithm 3.17

8i 2 [n].

Inductive Step: Let us assume that the statement is true for r < s i.e. we

can compute |occ(C,a)| for all subsets C satisfying |C|  r and any binary vector

a 2 {0, 1}r from the quantities
�

�

�

S

i2S occ((i), 1)
�

� 8 S ✓ [n], |S|  r

provided as

input. Now, we claim that the statement is true for r + 1. For simplicity of notation

we will denote by Si , occ(i, 1) the set of unknown vectors which have a 1 in the ith

entry. Note that we can also rewrite occ(C,a) for any set C ✓ [n],a 2 {0, 1}|C| as

occ(C,a) =
\

j2C0

Sj

\

j2C\C0

Sc
j

where C 0 ✓ C corresponds to the indices in C for which the entries in a is 1. Fix any

set i
1

, i
2

, . . . , ir+1

2 [n]. Then we can compute
�

�

Tr+1

b=1

Sib

�

� using the following equation:

(�1)r+2

�

�

�

�

�

r+1

\

b=1

Sib

�

�

�

�

�

=

r
X

u=1

(�1)u+1

X

j
1

,j
2

,...,ju2{i
1

,i
2

,...,ir+1

}
j
1

<j
2

<···<ju

�

�

�

�

�

u
\

b=1

Sjb

�

�

�

�

�

�
�

�

�

�

�

r+1

[

b=1

Sib

�

�

�

�

�

.

Finally for any subset Y ✓ {i
1

, i
2

, . . . , ir+1

}, we can compute
�

�

�

T

ib 62Y Sib

T

ib2Y Sc
ib

�

�

�

using the following set of equations:

�

�

�

�

�

\

ib 62Y
Sib

\

ib2Y
Sc
ib

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
Sib

\

⇣

[

ib2Y
Sib

⌘c

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
Sib

�

�

�

�

�

�
�

�

�

�

�

\

ib 62Y
Sib

\

⇣

[

ib2Y
Sib

⌘

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
Sib

�

�

�

�

�

�
�

�

�

�

�

[

ib2Y

⇣

\

ib 62Y
Sib

\

Sib

⌘

�

�

�

�

�

.

139

The first term is already pre-computed and the second term is again a union of

intersection of sets. For any ib 2 Y , let us define Qib :=
T

ib 62Y Sib

T

Sib . Therefore we

have

�

�

�

�

�

[

ib2Y
Qib

�

�

�

�

�

=

|Y|
X

u=1

(�1)u+1

X

j
1

,j
2

,...,ju2Y
j
1

<j
2

<···<ju

�

�

�

�

�

u
\

b=1

Qjb

�

�

�

�

�

.

We can compute
�

�

S

ib2Y Qib

�

� because the quantities on the right hand side of the

equation have already been pre-computed (using our induction hypothesis). Therefore,

the lemma is proved.

Therefore, for any subset T ⇢ {0, 1}s, we can compute

{|occ(C,a)| | 8a 2 T , C ⇢ [n], |C| = s}

by computing
�

�

�

S

i2S occ((i), 1)
�

� 8 S ✓ [n], |S|  s

just once.

3.4.4 Missing Proofs and Algorithms in computing occ(C, a)

Compute
�

�

S

i2S occ((i), 1)
�

� using Algorithm 3.16. In this section we present an

algorithm to compute
�

�

S

i2S occ((i), 1)
�

�, for every S ✓ [n] of size |S| = s, using

|occ((i), 1)| computed in the Section 3.4.4.

We will need an (s, Lk)-CFF for this purpose. Let G ⌘ {H
1

,H
2

, . . . ,Hn} be the

required (s, Lk)-CFF of size n over alphabet m = O((Lk)s+1

log n). We construct a

set of L+ 1 matrices B = {B(1), . . . ,B(L+1)} where, each B

(w) 2 Rm⇥n, w 2 [L+ 1],

is obtained from the (s, Lk)-CFF G. The construction of these matrices varies slightly

for the model in question.

For the mixture of linear regressions, we avoid the scaling of non-zero entries by

a uniform scalar. We set B

(w)

i,j to be 1 if i 2 Hj, and 0 otherwise. Note that in this

case each B

(w) is identical. We see that the scaling by uniform scalar is not necessary

140

for the mixtures of linear regressions since the procedure to compute nzcount in this

model (see Algorithm 3.18) scales the query vectors by a Gaussian scalar which is

sufficient for our purposes.

Let U := [i2[L]supp(�i
) denote the union of supports of all the unknown vectors.

Since each unknown vector is k-sparse, it follows that |U|  Lk. From the properties

of (s, Lk)-CFF, we know that for any tuple of s indices (i
1

, i
2

, . . . , is) ⇢ U , the set

(

Ts
t=1

Hii) \
S

q2U\{i
1

,i
2

,...,is} Hq is non-empty. This implies that for every w 2 [L+ 1],

there exists at least one row of B(w) that has a non-zero entry in the ith
1

, ith
2

, . . . , iths

index, and 0 in all other indices p 2 U \ {i
1

, i
2

, . . . , is}. In Algorithm 3.16 we use these

rows as queries to estimate their nzcount. In Lemma 3.14, we show that this estimated

quantity is exactly |
Ss

j=1

occ((i), 1)| for that particular tuple (i
1

, i
2

, . . . , is) ⇢ U .

Algorithm 3.16 Recover Union-

�

�

S

i2S occ((i), 1)
�

� for all S ✓ [n], |S| = s, s � 2.

Require: |occ((i), 1)| for every i 2 [n]. s � 2.
Require: Construct B 2 Rm⇥n from (s, Lk)-CFF of size n over alphabet m =

c
3

(Lk)s+1

log n.
1: Let U := {i 2 [n] | |occ((i), 1)| > 0}
2: Let batchsize TR = 10 · (36⇡)L2

log(nm).
3: for every p 2 [m] do
4: Let count(p) := maxw2[L+1]

{nzcount(B(w)
[p])}

(obtained using Algorithm 3.18 with batchsize TR).
5: end for
6: for every set S ✓ [n] with |S| = s do
7: Let p 2 [m] such that B

p,t

6= 0 for all t 2 S, and B

p,t

0
= 0 for all q 2 U \ S.

8: Set
�

�

S

i2S occ((i), 1)
�

�

= count(p).
9: end for

Proof of Lemma 3.14. Computing each count (see Algorithm 3.16, line 8) requires

O(TL) queries, where T = TR. Therefore, the total number of queries made by

Algorithm 3.16 is at most

O(mTRL) = O((Lk)s+1L3

log(Lkn) log n)

141

for m = O((Lk)s+1

log n) and TR = O(L2

log(nm)). Also, observe that each nzcount

is estimated correctly with probability at least 1�O (1/Lmn2

). Therefore from union

bound it follows that all the (L+1)m estimations of count are correct with probability

at least 1�O (1/n2

).

Recall that the set U denotes the union of supports of all the unknown vectors.

This set is equivalent to {i 2 [n] | |occ((i), 1)| > 0}.

Since for every w 2 [L+ 1], the support of the columns of B(w) are the indicators

of sets in G, the (s, Lk)-CFF property implies that there exists at least one row (say,

with index p 2 [m]) of every B

(w) which has a non-zero entry in the ith
1

, ith
2

, . . . , iths

index, and 0 in all other indices q 2 U \ {i
1

, i
2

, . . . , is}, i.e.,

B

(w)
p,t

6= 0 for all t 2 {i
1

, i
2

, . . . , is}, and

B

(w)
p,t

0 = 0 for all t0 2 U \ {i
1

, i
2

, . . . , is}.

To prove the correctness of the algorithm, we need to show the following:

�

�

�

�

�

�

[

p2{i
1

,i
2

,...,is}
occ(p, 1)

�

�

�

�

�

�

= max

w2[L+1]

{nzcount(B(w)
[p])}

First observe that using the row B

(w)
[p] as query will produce non-zero value for

only those unknown vectors � 2
S

p2{i
1

,i
2

,...,is} occ(p, 1). This establishes the fact that

|
S

p2{i
1

,i
2

,...,is} occ(p, 1)| � nzcount(B(w)
[p]).

To show the other side of the inequality, consider the set of (L+ 1) s-dimensional

vectors obtained by the restriction of rows B

(w)
[p] to the coordinates (i

1

, i
2

, . . . , is),

{(B(w)
p,i1

,B(w)
p,i2

, . . . ,B(w)
p,is

) | w 2 [L+ 1]}.

Since the nzcount scales the non-zero entries of the query vector B

(w)
[p] by

a Gaussian, the pairwise linear independence still holds. Therefore, each � 2

142

S

p2{i
1

,i
2

,...,is} occ(p, 1) can have hB(w)
[p],�i = 0 for at most 1 of the w queries.

So by pigeonhole principle, at least one of the query vectors B

(w)
[p] will have

hB(w)
[p],�i 6= 0 for all � 2

S

p2{i
1

,i
2

,...,is} occ(p, 1). Hence, |
S

p2{i
1

,i
2

,...,is} occ(p, 1)| 

maxw{nzcount(B(w)
[p])}.

Computing |occ((i), 1)| In this section, we show how to compute |occ(i, 1)| for

every index i 2 [n].

Let F = {H
1

,H
2

, . . . ,Hn} be a (d, Lk, 0.5)-RUFF of size n over alphabet [m].

Construct the binary matrix A 2 {0, 1}m⇥n from F , as Ai,j = 1 if and only if i 2 Hj .

Each column j 2 [n] of A is essentially the indicator vector of the set Hj.

We use the rows of matrix A as query vectors to compute |occ((i), 1)| for each

i 2 [n]. For each such query vector x, we compute the nzcount(x) using Algorithm 3.18

with batchsize TR. We choose TR to be sufficiently large to ensure that nzcount is

correct for all the queries with very high probability.

For every h 2 {0, . . . , L}, let b

h 2 {0, 1}m be the indicator of the queries that

have nzcount at least h. We show in Lemma 3.15 that the set of columns of A that

have large intersection with b

h, exactly correspond to the indices i 2 [n] that satisfy

|occ((i), 1)| � h. This allows us to recover |occ((i), 1)| exactly for each i 2 [n].

Proof of Lemma 3.15. Since A has m = O(L2k2

log n) distinct rows, and each row is

queried TR = O(L2

log(mn)) times, the total query complexity of Algorithm 3.17 is

O(L4k2

log(Lkn) log n) for our model.

To prove the correctness, we first see that the nzcount for each query is estimated

correctly using Algorithm 4.1 with overwhelmingly high probability. From Lemma

3.16 with TR = 4 · (36⇡) ·L2

logmn, it follows that each nzcount is estimated correctly

with probability at least 1� 1

mn2

. Therefore, by taking a union bound over all rows of

A, we estimate all the counts accurately with probability at least 1� 1

n2

.

143

Algorithm 3.17 Compute–|occ((i), 1)|
Require: Construct binary matrix A 2 {0, 1}m⇥n from (d, Lk, 0.5)� RUFF of size n

over alphabet [m], with m = c
1

L2k2

log n and d = c
2

Lk log n.
1: Initialize b

0, b1, b2, . . . , bL to all zero vectors of dimension m.
2: Let batchsize TR = 4 · (36⇡) · L2

logmn.
3: for i = 1, . . . ,m do
4: Set w := nzcount(A[i])

(obtained using Algorithm 3.18 with batchsize TR.)
5: for h = 0, 1, . . . , w do
6: Set b

h
i = 1.

7: end for
8: end for
9: for h = 0, 1, . . . , L do

10: Set Ch = {i 2 [n] | |supp(bh) \ supp(Ai)| � 0.5d}.
11: end for
12: for i = 1, 2, . . . , n do
13: Set |occ((i), 1)| = h if i 2 {Ch \ Ch+1

} for some h 2 {0, 1, . . . , L� 1}.
14: Set |occ((i), 1)| = L if i 2 CL
15: end for

We now show, using the properties of RUFF, that |supp(bh) \ supp(Ai)| � 0.5d if

and only if |occ((i), 1)| � h, for any 0  h  L. Let i 2 [n] be an index such that

|occ((i), 1)| � h, i.e., there exist at least h unknown vectors that have a non-zero entry

in their ith coordinate. Also, let U := [i2[L]supp(�i
) denote the union of supports

of all the unknown vectors. Since each unknown vector is k-sparse, it follows that

|U |  Lk. To show that |supp(bh) \ supp(Ai)| � 0.5d, consider the set of rows of A

indexed by W := {supp(Ai) \[j2U\{i}supp(Aj)}. Since A is a (d, Lk, 0.5)�RUFF, we

know that |W | � 0.5d. We now show that bht = 1 for every t 2 W . This follows from

the observation that for t 2 W , and each unknown vector � 2 occ((i), 1), the query

hA[t],�i = �i 6= 0. Since |occ((i), 1)| � h, we conclude that nzcount(A[t]) � h, and

therefore, bht = 1.

To prove the converse, consider an index i 2 [n] such that |occ((i), 1)| < h. Using a

similar argument as above, we now show that |supp(bh) \ supp(Ai)| < 0.5d. Consider

the set of rows of A indexed by W := {supp(Ai) \ [j2U\{i}supp(Aj)}. Now observe

that for each t 2 W , and any unknown vector � /2 occ((i), 1), hA[t],�i = 0. Therefore

144

nzcount(A[t])  |occ((i), 1)| < h, and b

h
t = 0 for all t 2 W . Since |W | � 0.5d,

it follows that |supp(bh) \ supp(Ai)| < 0.5d. For any 0  h  L, Algorithm 3.17.

therefore correctly identifies the set of indices i 2 [n] such that |occ((i), 1)| � h. In

particular, the set Ch := {i 2 [n] | |occ((i), 1)| � h}. Therefore, the set Ch \ Ch+1

is

exactly the set of indices i 2 [n] such that |occ((i), 1)| = h.

3.4.5 Estimating nzcount

The main subroutine used to compute both |occ((i), 1)| and | [j occ((j), 1)| is to

estimate nzcount(x) - the number of unknown vectors that have a non-zero inner

product with x 2 Rn. We now provide an algorithm to estimate nzcount(x) using few

queries.

We restrict our attention to only binary queries in this section which is sufficient

for support recovery. Algorithm 3.18 queries repeatedly with a carefully crafted

transformation Tr

�

(x) of the input vector x, and counts the number of responses that

lie within a fixed range [�a, a]. This estimates count the number of unknown vectors

that have a zero inner product with x, and thereby estimates nzcount(x).

For any binary vector x 2 {0, 1}n, define as follows: Tr

�

: {0, 1}n ! Rn

Tr

�

(x)i =

8

>

>

<

>

>

:

0 if xi = 0

N (0, �2

) if xi 6= 0.

For any a, � 2 R, let us also define

�
1

(a, �) := Pr

W⇠N (0,�2

)

(W 2 [�a, a]) and

�
2

(a, �, �) := Pr

W⇠N (0,�2

+�2

)

(W 2 [�a, a]).

From standard Gaussian concentration bounds, we know that

�
1

(a, �) = erf
⇣

ap
2�

⌘

�
p
2p
⇡

⇣

a
�
� a3

6�3

⌘

. (3.9)

145

�
2

(a, �, �) = erf
⇣

ap
2(�2

+�2

)

⌘

 a
q

2

⇡(�2

+�2

)

. (3.10)

Algorithm 3.18 Query(x 2 {0, 1}n, T, a, �)
Require: Query access to O and known �, L.
1: for i = 1, 2, . . . , T do
2: Query with vector Tr

�

(x) and obtain response yi 2 R.
3: end for
4: Let ˆz = round

⇣

L
PT

i=1

1[yi2[�a,a]]

T�
1

(a,�)

⌘

.

5: Return ˆnz = L� ˆz(x).

Proof of Lemma 3.16. Similar to the proof of Lemma 4.1 define zcount(x) denote

the number of unknown vectors that have a zero inner product with x. We show

that Algorithm 3.18 estimates this quantity accurately, and hence nzcount(x) =

L� zcount(x) can be inferred from it.

For the set of T responses y
1

, . . . , yT obtained from O, define U :=

P
i 1[y

i2[�a,a]
]

T
.

Then,

E
V,Tr� ,Z

[U] = Pr

V,Tr� ,Z

⇣

hTr
�

(x),�i+ Z 2 [�a, a]
⌘

. (3.11)

Note that for any a 2 R and x 2 {0, 1}n, we have

Pr

V,Tr� ,Z

⇣

hTr
�

(x),�i+ Z 2 [�a, a]
⌘

=

1

L

X

i:hx,�ii=0

Pr

Tr� ,Z

⇣

hTr
�

(x),�ii+ Z 2 [�a, a]
⌘

+

X

i:hx,�ii6=0

Pr

Tr� ,Z

⇣

hTr
�

(x),�ii+ Z 2 [�a, a]
⌘

!

146

Observe that if hx,�ii = 0, then hTr
�

(x),�ii+ Z ⇠ N (0, �2

), and if hx,�ii 6= 0,

then hTr
�

(x),�ii ⇠ N (0, �2

�

�

�

�

x� �

i
�

�

�

�

2

2

+ �2

), where u � � denotes the entry-wise

product of u,�. It then follows that

zcount(x)

L
· �

1

(a, �)  Pr

V,Tr� ,Z

⇣

hTr
�

(x),�i+ Z 2 [�a, a]
⌘

 zcount(x)

L
· �

1

(a, �) + �
2

(a, �, ��). (3.12)

Setting the parameters a = �/2 and � = 2

p
2L�/�, from Equation 3.9, we get that

�
1

(a, �) � 23

p
2

48

p
⇡

and �
2

(a, �, ��) 
p
2

4L
p
⇡
.

and therefore, 4L�
2

(a, �, ��)  �
1

(a, �).

Combining this observation with Equation 3.11 and Equation 3.12, we then get

that

zcount(x)

L
· �

1

(a, �)  E
V,Tr� ,Z

[U]

 zcount(x)

L
· �

1

(a, �) +
1

4L
· �

1

(a, �). (3.13)

From Equation 3.13, we observe that if |U�E[U]|  1

4L
·�

1

(a, �), then zcount(x)�
1

4

 LU
�
1

(a,�)
 zcount(x)+ 1

2

. Since zcount(x) is integral, it follows that if |U �E[U]| 
1

4L
·�

1

(a, �), the estimate ẑ = round
�

LU
�
1

(a,�)

�

computed in Algorithm 3.18 will correctly

estimate zcount(x).

The correctness of the algorithm then follows from Chernoff bound[26]

Pr

⇣

|U � EU | � �
1

(a, �)

4L

⌘

 2 exp

⇣

� T�
1

(a, �)2

8L2

⌘

 2 exp

⇣

� T

36⇡L2

⌘

.

147

Moreover, From the definition of SNR, and the fact that EZ2

= �2, we have

SNR  1

�2

· max

x2{0,1}n
max

i2[L]
EhTr

�

(x),�ii2

 1

�2

· �2

max

i2[L]

�

�

�

�

�

i
�

�

�

�

2

2

= O(L2

max

i2[L]

�

�

�

�

�

i
�

�

�

�

2

2

/�2) for � = 2

p
2L�/�.

148

CHAPTER 4

MIXTURES OF SPARSE LINEAR CLASSIFIERS

4.1 Introduction

Continuing the work presented in chapter 3, we study the similar problem of

modeling the separating hyperplane corresponding to a binary output variable by a

mixture of linear function of the explanatory features. Again, as in chapter 3, we

study the setting where the weight vectors characterizing the linear functions are

sparse, and further, we can query the label of a particular feature from an oracle.

Our setting generalizes the well-known 1-bit compressed sensing setting but it is

significantly more difficult since the tag of which linear function the oracle response

corresponds to is latent. Quite interestingly, we find subtle similarities in this problem

and semi-supervised clustering with overlapping clusters [84]; namely, the prima facie

assumptions required for recovery of the latent clusters in the adversarial setting in

[84] is exactly the same as the assumptions required for recovery of the sparse weight

vectors in the setting. This algorithms and results of this chapter can be used for

designing recommendation systems or advertisement engines where there are multiple

users sharing the same account and the objective is to recommend items to every user

based on their consumption history without compromising their privacy. The results

of this chapter can be found in [67] and [69].

Let B ⌘ {�1,�2, . . . ,�` 2 Rn} be a set of ` unknown k-sparse vectors. Let

sign : R ! {�1,+1} be the sign function that takes a real number and returns its

149

sign. We consider an oracle O : Rn ! {�1,+1} that takes as input a query vector

x 2 Rn and returns

sign(hx,�i) · (1� 2Z)

where � is sampled uniformly at random from B and Z ⇠ Ber(⌘), the noise, is a

Bernoulli random variable that is 1 with probability ⌘ and 0 with probability 1� ⌘.

As described above, our work focuses on recovering the unknown classifiers in the

query model that was used in [154] and in Chapter 3 to study the mixtures of sparse

linear regressions. In the query model, we assume the existence of an oracle O which

when queried with a vector v 2 Rn, samples one of the classifiers � 2 {�1,�2, . . . ,�`}

uniformly at random and returns the label of v assigned by the sampled classifier

�. The response of the oracle might be altered with a probability of ⌘ due to the

presence of Bernoulli Noise. The goal of approximate recovery is to reconstruct each

of the unknown classifiers using small number of oracle queries. The problem can be

formalized as follows:

Problem 4.1 (✏-recovery). Given ✏ > 0, and query access to oracle O, find k-sparse

vectors { ˆ

�

1, ˆ�2, . . . , ˆ�`} such that for some permutation � : [`]! [`]

�

�

�

�

�

�

i

k�ik
2

�
ˆ

�

�(i)

kˆ��(i)k
2

�

�

�

�

�

2

 ✏ 8 i 2 [`].

Since from the classification labels, we lose the magnitude information of the

unknown vectors, we assume each �

i and the estimates ˆ

�

i to have a unit norm.

Similar to the literature on one-bit compressed sensing, one of our proposed

solutions employs a two-stage algorithm to recover the unknown vectors. In the first

stage the algorithm recovers the support of every vector, and then in the second stage,

approximately recovers the vectors using the support information.

150

For any vector v 2 Rn, let supp(v) := {i 2 [n] | vi 6= 0} denote the support of v.

The problem of support recovery is then defined as follows:

Problem 4.2 (Support Recovery). Given query access to oracle O, construct

{ ˆ

�

1, ˆ�2, . . . , ˆ�`}

such that for some permutation � : [`]! [`]

supp(ˆ��(i)
) = supp(�i

) 8 i 2 [`]

For both these problems, we primarily focus on minimizing the query complexity

of the problem, i.e., minimizing the number of queries that suffice to approximately

recover all the sparse unknown vectors or their supports. However, all the algorithms

proposed in this work also run in time O(poly(q)), where q is the query complexity of

the algorithm.

Mixture of sparse linear classifiers. The main technical difficulty that arises in

recovering multiple sparse hyperplanes using 1-bit measurements (labels) is to align the

responses of different queries concerning a fixed unknown hyperplane. To understand

this better, let us consider the case when ` = 2 (see Figure 4.1). Let �

1,�2 be two

unknown k-sparse vectors corresponding to two sparse linear classifiers. On each query,

the oracle samples a �

i, for i 2 {1, 2}, uniformly at random and returns the binary

label corresponding to it (+ or �). One can query the oracle repeatedly with the

same query vector to ensure a response from both the classifiers with overwhelmingly

high probability.

For any query vector if the responses corresponding to the two classifiers are the

same (i.e., (+,+) or (�,�)), then we do not gain any information separating the two

classifiers. We might still be able to reconstruct some sparse hyperplanes, but the

151

Figure 4.1: Recover the two classifiers given red and blue dots. How many such points do
we require in order to recover both �

1 and �

2?

recovery guarantees of such an algorithm will be poor. On the other hand, if both the

responses are different (i.e., (+,�)), then we do not know which labels correspond

to a particular classifier. For example, if the responses are (+,�) and (+,�) for two

distinct query vectors, then we do not know if the ‘plusses’ correspond to the same

classifier. This issue of alignment makes the problem challenging. Such alignment

issues are less damning in the case of mixture of linear regressions even in the presence

of noise (see [154] and the approximate recovery guarantees presented in Chapter 3)

since we can utilize the magnitude information of the inner products (labels) to our

advantage.

One of the challenges in our study is to recover the supports of the two unknown

vectors. The support recovery results in Mixture of Linear Classifiers follow from the

techniques presented in Chapter 3. Once we obtain the supports, we use an additional

O(

k
✏
log nk) Gaussian queries (with a slight modification) to approximately recover

the individual vectors.

We then extend this two-step process (using more general classes of UFFs) to

recover a mixture of ` different sparse vectors under the assumption that the support of

no vector is contained in the union of supports of the remaining ones (Assumption 4.1).

152

The assumption implies that if the sparse vectors are arranged as columns of a matrix,

then the matrix contains the identity matrix as a permutation of the rows. This

separability condition appears before in [8, 56, 129] in the context of nonnegative

integer matrix factorization, which is a key tool that we will subsequently use to

prove our results. To quote [8] in the context of matrix factorization, “an approximate

separability condition is regarded as a fairly benign assumption and is believed to

hold in many practical contexts in machine learning.” We believe this observation

holds for our context as well (each classifier uses some unique feature).

We show that with this support separability condition, ˜O(`6k3

) queries suffice for

support recovery of ` different k-sparse vectors. Further, using ˜O((`3k/✏)) queries, we

can recover each of the �

i’s, for i 2 {1, . . . , `} up to ✏ precision (see Theorem 4.2 and

Theorem 4.5). The two-stage procedure described above, can be made completely

non-adaptive using queries from union free families (see Theorem 4.6). Note that

for the problem of support recovery, we do not need this assumption of support

separability; our results provide worst case guarantees and significantly improved

results under extremely mild conditions.

Furthermore, for ` = 2, we see that the support condition (Assumption 4.1) is not

necessary. We can approximately recover the two unknown vectors provided a) they

are not extremely sparse and, b) each �

i 2 �Zn for some � > 0. To prove this, we

borrow the tools from [4] who give guarantees for 1-bit compressed sensing using sub-

Gaussian vectors. In particular, we use queries with independent Bernoulli coordinates

which are sub-Gaussian. These discrete random queries (as opposed to continuous

Gaussians) along with condition (b), enables us to align the labels corresponding to

the two unknown vectors. (see Theorem 4.7 for more details). Note that condition (a)

is due to the result by [4] and is necessary for recovery using sub-Gaussian queries

and (b) is a mild assumption on the precision of the unknown vectors, which was also

necessary [97, 154] for learning the mixture of sparse linear regressions.

153

We leave the problem of designing a query scheme that works for approximate

recovery for any general ` without any assumptions as an open problem. For large `,

finding out the dependence of query complexity on ` is also a natural question. Overall,

this study leads to an interesting set of questions that are technically demanding as

well as quite relevant to practical modeling of heterogeneous data that are ubiquitous

in applications. For instance, in recommendation systems, where the goal is to

identify the factors governing the preferences of individual members of a group via

crowdsourcing while preserving the anonymity of their responses.

Organization: The rest of the chapter is organizes as follows: in Section 4.2, we

describe our contributions in this chapter namely our results for support recovery

and approximate recovery in mixtures of linear classifiers. In Section 4.3, we provide

details on estimating different counts and on family of sets. In Section 4.4, we

prove our results on support recovery without any assumptions. In Section 4.5

and Section 4.6, we outline the details of our two-stage algorithm and single-stage

algorithm for approximate recovery for any number of unknown vectors under the

separability assumption. In Section 4.7, we relax the separability assumption and

provide guarantees for approximate recovery under extremely mild assumptions.

Finally, in Section 4.8, we provide simulations and experiments on real world data to

complete our theoretical results.

4.2 Our contributions

4.2.1 Support Recovery

Recall that the set of unknown vectors is denoted by B ⌘ {�1,�2, . . . ,�`}. Let

A 2 {0, 1}n⇥` denote the support matrix corresponding to B where each column vector

Ai 2 {0, 1}n represents the support of the ith unknown vector �

i. Our results for

the support recovery in Mixtures of Linear Classifiers are very similar to the support

recovery guarantees presented in Mixtures of Linear Regressions (see Chapter 3). For

154

the necessary definitions of p-identifiability, flip-independence and r-Kruskal rank

support, we ask the reader to refer to Chapter 3. Below, we describe our results (note

that they explicitly show the scaling with noise):

In our first result, we recover the support of the unknown vectors with small

number of oracle queries provided the support matrix of B is p-identifiable.

Theorem 4.1. Let B be a set of ` unknown vectors in Rn such that B is p-identifiable.

Then, Algorithm 3.13 recovers the support of all the unknown vectors in B with

probability at least 1�O (1/n) using O
⇣

`3(`k)p+2

log(`kn) logn
(1�2⌘)2

⌘

queries.

Recall that in fact, all binary matrices with distinct columns are p-identifiable for

some sufficiently large p.

Theorem 4.2 (Restatement of Theorem 3.10). Any n⇥ `, (with n > `) binary matrix

with all distinct columns is p-identifiable for some p  log `.

Thus, we have the following corollary characterizing the unconditional worst-case

guarantees for support recovery:

Corollary 4.1. Let B be a set of ` unknown vectors in Rn. Then, Algorithm 3.13

recovers the support of all the unknown vectors in B with probability at least 1�O (1/n)

using O
⇣

`3(`k)log `+2

log(`kn) logn
(1�2⌘)2

⌘

queries.

Proof. The proof follows from the fact that any set B of ` unknown vectors in Rn

must have p-identifiable supports for p  log `.

As in Chapter 3, under some assumptions on the unknown support, e.g.flip-

independence, we have better results.

Theorem 4.3. Let B be a set of ` unknown vectors in Rn such that B is flip-

independent. Then, Algorithm 3.14 recovers the support of all the unknown vectors in

B with probability at least 1�O (1/n) using O
⇣

`3(`k)4 log(`kn) logn
(1�2⌘)2

⌘

queries.

155

We also leverage the property of small Kruskal rank of the support matrix to show:

Theorem 4.4. Let B be a set of ` unknown vectors in Rn that has r-Kruskal rank sup-

port with r � 2. Let w = d2`�1

r�1

e. Then, Algorithm 3.15 recovers the support of all the

unknown vectors in B with probability at least 1�O (1/n) using O
⇣

`3(`k)w+1

log(`kn) logn
(1�2⌘)2

⌘

queries

From our discussion on these aforementioned matrix properties in Chapter 3,

essentially, we 1) provide algorithms for support recovery without any assumptions, 2)

and also provide significantly better guarantees under extremely mild assumptions that

we conjecture to be always true.

4.2.2 Approximate Recovery in Noiseless Setting

For simplicity, we provide the results for approximate recovery in the noiseless

setting i.e. when ⌘ = 0. However this assumption is not necessary as our results can

be easily extended to the noisy case. In order to present our first set of results, we

need certain assumption regarding the separability of supports of the unknown vectors.

In particular, we want each component of the mixture to have a unique identifying

coordinate. More formally, it can be stated as follows:

Assumption 4.1. For every i 2 [`], supp(�i
) 6✓

S

j:j 6=i supp(�
j
), i.e. the support of

any unknown vector is not contained in the union of the support of the other unknown

vectors.

Two-stage algorithm: First, we propose a two-stage algorithm for ✏-recovery of

the unknown vectors. In the first stage of the algorithm, we recover the support of the

unknown vectors (Theorem 4.2), followed by ✏-recovery using the deduced supports

(Theorem 4.5) in the second stage. Each stage in itself is non-adaptive, i.e., the queries

do not depend on the responses of previously made queries.

156

Corollary 4.2. Let B be a set of ` unknown k-sparse vectors in Rn that satisfy

Assumption 4.1. There exists an algorithm to recover the support of every unknown

vector in B with probability at least 1 � O(1/n2

), using O(`6k3

log

2 n) non-adaptive

queries to oracle O.

Proof. The separability assumption 4.1 implies that the support matrix A of the set

of unknown vectors B is 1-identifiable.

Now using this support information, we can approximately recover the unknown

vectors using an additional ˜O(`3k) non-adaptive queries.

Theorem 4.5. Let B be a set of ` unknown k-sparse vectors in Rn that satisfy

Assumption 4.1. There exists a two-stage algorithm that uses

O
⇣

`6k3

log

2 n+ (`3k/✏) log(nk/✏) log(k/✏)
⌘

oracle queries for the ✏-recovery of all the unknown vectors in B with probability at

least 1�O(1/n).

Remark 4.1. We note that for the two-stage recovery algorithm to be efficient, we

require the magnitude of non-zero entries of the unknown vectors to be non-negligible

(at least 1/poly(n)). This assumption however is not required to bound the query

complexity of the algorithm which is the main focus of this work.

Completely non-adaptive algorithm: Next, we show that the entire ✏-recovery

algorithm can be made non-adaptive (single-stage) at the cost of increased query

complexity.

Theorem 4.6. Let B be a set of ` unknown k-sparse vectors in Rn that satisfy Assump-

tion 4.1. There exists an algorithm that uses O
⇣

(``+3k`+2/✏) log n log(n/✏) log(k/✏)
⌘

non-adaptive oracle queries for the ✏-recovery of all the unknown vectors in B with

probability at least 1�O(1/n).

157

Note that even though the one-stage algorithm uses many more queries than the

two-stage algorithm, a completely non-adaptive is highly parallelizable as one can

choose all the query vectors in advance. Also, in the ` = O(1) regime, the query

complexity is comparable to its two-stage analogue.

While we mainly focus on minimizing the query complexity, all the algorithms

proposed in this work run in poly(n) time assuming every oracle query takes poly(n)

time and ` = o(log n).

Non-adaptive algorithm for ` = 2 without Assumption 4.1: We observe that

for ` = 2, we do not need the separability condition (Assumption 4.1) required earlier.

Instead we just need a mild assumption on the precision �, and the sparsity of the

unknown vectors. In particular, we propose an algorithm for the ✏-recovery of the two

unknown vectors using ˜O(k3

+ k/✏) queries provided the unknown vectors have some

finite precision and are not extremely sparse.

Assumption 4.2. For � 2 B, k�k1 = o(1).

Assumption 4.2 ensures that we can safely invoke the result of [4] who use the

exact same assumption in the context of 1-bit compressed sensing using sub-Gaussian

queries.

Theorem 4.7. Let �1,�2 be two k-sparse vectors in Rn that satisfy Assumption 4.2.

Let � > 0 be the largest real such that �1,�2 2 �Zn. There exists an algorithm that

uses O(k3

log

2 n+ (k2/✏4�2) log2(n/k�2)) (adaptive) oracle queries for the ✏-recovery

of �1,�2 with probability at least 1�O(1/n).

Moreover, if supp(�1
) 6= supp(�2

), then there exists a two-stage algorithm for

the ✏-recovery of the two vectors using only O(k3

log

2 n + (k/✏) log(nk/✏) log(k/✏))

non-adaptive oracle queries.

Also, the ✏-recovery algorithm proposed for Theorem 4.7 runs in time poly(n, 1/�).

158

No sparsity constraint: We can infact avoid the sparsity constraint altogether for

the case of ` = 2. Since in this setting, we consider the support of both unknown

vectors to include all coordinates, we do not need a support recovery stage. We then

get a single stage and therefore completely non-adaptive algorithm for ✏-recovery of

the two unknown vectors.

Corollary 4.3. Let �1,�2 be two unknown vectors in Rn that satisfy Assumption 4.2.

Let � > 0 be the largest real such that �1,�2 2 �Zn. There exists an algorithm that

uses O((n2/✏4�2) log(1/�)) non-adaptive oracle queries for the ✏-recovery of �

1,�2

with probability at least 1�O(1/n).

4.3 Preliminaries

Let [n] to denote the set {1, 2, . . . , n}. For any vector v 2 Rn, supp(v) denotes the

support and vi denote the ith entry (coordinate) of the vector v. We will use e

i

to

denote a vector which has 1 only in the ith position and is 0 everywhere else. We will

use the notation ha, bi to denote the inner product between two vectors a and b of

the same dimension. For a matrix A 2 Rm⇥n, let A
i

2 Rn be its ith column and A[j]

denote its jth row. and let Ai,j be the (i, j)-th entry of A. We will denote by Inf a

very large positive number. Also, let N (0, 1) denote the standard normal distribution.

We will use Pn to denote a the set of all n⇥n permutation matrices, i.e., the set of all

n⇥ n binary matrices that are obtained by permuting the rows of an n⇥ n identity

matrix (denoted by In). Let round : R! Z denote a function that returns the closest

integer to a given real input.

Let us further introduce a few definitions that will be used throughout the paper.

Definition 4.1. For a particular entry i 2 [n], define S(i) to be the set of all unknown

vectors whose ith entry is non-zero.

S(i) := {�j , j 2 [`] | �j

i 6= 0}

159

Definition 4.2. For a particular query vector v, define poscount(v), negcount(v) and

nzcount(v) to be the number of unknown vectors that assign a positive, negative, and

non-zero label to v respectively.

poscount(v) := |{�j | hv,�ji > 0, j 2 [`]}|

negcount(v) := |{�j | hv,�ji < 0, j 2 [`]}|

nzcount(v) := poscount(v) + negcount(v)

= |{�j | hv,�ji 6= 0, j 2 [`]}|.

Definition 4.3 (Gaussian query). A vector v 2 Rn is called a Gaussian query vector

if each entry vi of v is sampled independently from the standard Normal distribution,

N (0, 1).

Estimating the counts Now, we show how to accurately estimate each of the

counts i.e., poscount(v), negcount(v) and nzcount(v) with respect to any query vector

v, with high probability (see Algorithm 4.1).

The idea is to simply query the oracle with v and �v repeatedly and estimate

the counts empirically using the responses of the oracle. Let T denote the number

of times a fixed query vector v is repeatedly queried. We refer to this quantity as

the batchsize. We now design estimators of each of the counts which equals the real

counts with high probability. Let E
�

(·) and Pr

�

(·) denote the expectation and the

probability respectively when � is chosen uniformly from the set of unknown vectors

{�1,�2, . . . ,�`}.

We must have

E
�

[sign(hv,�i)] = E
�

[1[hv,�i � 0]]� E
�

[1[hv,�i < 0]]

= Pr

�

⇣

hv,�i � 0

⌘

� Pr

�

⇣

hv,�i < 0

⌘

160

=

1

`
·
X̀

i=1

1[hv,�ii � 0]� 1

`
·
X̀

i=1

1[hv,�ii < 0].

Notice that

1[hv,�ii � 0]� 1[hv,�ii < 0] = 1[h�v,�ii � 0]� 1[h�v,�ii < 0] if hv,�ii = 0

and

1[hv,�ii � 0]� 1[hv,�ii < 0] = 1[h�v,�ii < 0]� 1[h�v,�ii � 0] if hv,�ii 6= 0.

Therefore, we must have

E
�

[sign(hv,�i) + sign(h�v,�i)]
2

=

1

`
·
X̀

i=1

1[hv,�ii = 0]

Suppose we query the oracle with the pair of query vectors v,�v repeatedly for

T times. Let us denote the the T responses from the oracle O by y
1

, y
2

, . . . , yT and

z
1

, z
2

, . . . , zT corresponding to the query vectors v and �v respectively. Hence, we

design the following estimator (denoted by ˆz) to estimate the number of unknown

vectors that have zero projection on the query vector v i.e.
P`

i=1

1[hv,�ii = 0]:

ˆz , round
⇣`

PT
i=1

yi + zi
2T

⌘

where round : R ! Z denotes a function that returns the closest integer to a given

real input. Again, we have

E
�

[1[sign(hv,�i) = �1]] = Pr

�

[sign(hv,�i < 0] =

1

`
·
X̀

i=1

1[hv,�ii < 0]

161

and therefore we design the estimator

ˆneg , round
⇣`

PT
i=1

1[yi = �1]
T

⌘

of negcount(v). Subsequently, let ˆnz , `� ˆz and ˆpos , ˆnz� ˆneg be the estimators of

nzcount(v) and poscount(v) respectively.

Lemma 4.1. For any query vector v, Algorithm 4.1 with batchsize T provides the

correct estimates of poscount(v), negcount(v) and nzcount(v) with probability at least

1� 4e�T/2`2.

Proof. The proof of the lemma follows from a simple application of Chernoff bound.

Let Z =

P

i 1[y
i
= �1], and therefore EZ =

T⇥negcount
`

.

Note that Algorithm 4.1 makes a mistake in estimating negcount only if

|Z � T ⇥ negcount

`
| � T

2`
.

Since the responses in each batch are independent, using Chernoff bound [26], we get

an upper bound on the probability that Algorithm 4.1 makes a mistake in estimating

negcount as

Pr

⇣

|Z � EZ| � T

2`

⌘

 2e�
T
2`2 .

Similarly, let Z 0
=

P
i y

i
+zi

2

, and therefore

EZ 0
=

T

`
·
X̀

i=1

1[hx,vii = 0].

Again, Algorithm 4.1 makes a mistake in estimating
P`

i=1

1[hx,vii = 0] only if

|Z 0 � EZ 0|
T

� 1

2`
.

162

Using Chernoff bound [26] as before, the probability of making a mistake is bounded

from above as

Pr

⇣

|Z 0 � EZ 0| � T

2`

⌘

 2e�
T
2`2 .

By taking a union bound, both ˆz, ˆneg are computed correctly with probability

at least 1 � 2e�
T
2`2 . Finally, computing ˆz, ˆneg correctly implies that ˆnz, ˆpos are also

correct thus proving our claim.

Algorithm 4.1 Query(v, T)

Require: Query access to oracle O.
1: for i = 1, 2, . . . , T do
2: Query the oracle with vector v and obtain response yi 2 {�1,+1}.
3: Query the oracle with vector �v and obtain response zi 2 {�1,+1}.
4: end for
5: Let ˆz := round

⇣

`
PT

i=1

yi+zi
2T

⌘

.

6: Let ˆneg := round
⇣

`
P

i 1[y
i
=�1]

T

⌘

7: Let ˆnz = `� ˆz and ˆpos = ˆnz� ˆneg
8: Return ˆpos, ˆneg, ˆnz.

Family of sets: We will also use the families of sets introduced in Chapter 3 namely

(d, t,↵) � RUFF and (r, t)-CFF. The (2, t)-CFF is of particular interest to us in this

chapter and will henceforth be referred to as the pairwise union free family (PUFF).

From Lemma 3.12 we know the existence of PUFF of size n with m = O(t3 log n).

Corollary 4.4. For any given integer t, there exists a (2, t)-CFF, F of size n with

m = O(t3 log n).

4.4 Detailed Proofs and Algorithms (Support Recovery)

Recall the definition of occ(C,a) - the set of unknown vectors having a 2 {0, 1}|C|

as a substring in coordinates C ⇢ [n]. First, we observe that for any set T ✓ {0, 1}s,

163

we can compute |occ(C,a)| for all O(ns
) subsets of s indices C ⇢ [n] and a 2 T using

queries.

Lemma 4.2. Let T ✓ {0, 1}s be any set of binary vectors of length s. There exists

an algorithm to compute |occ(C,a)| for all C ⇢ [n] of size s, and all a 2 T with

probability at least 1� 1/n using O(`3(`k)s+1

log(`kn) log n(1� 2⌘)2) queries.

Given Lemma 4.2, the proofs of Theorems 4.1, 4.4 and 4.3 are identical to the

proofs of Theorem 3.9, 3.12 and 3.11 presented in Chapter 3 respectively. Moreover,

the proof of Lemma 4.2 is identical to the proof of Lemma 3.13.

Let s < n, then using queries constructed from CFFs of appropriate parameters we

compute |
S

i2S occ((i), 1)| for all subsets S ⇢ [n] of size s.

Lemma 4.3. For any 1 < s < n, there exists an algorithm to compute
�

�

S

i2S occ((i), 1)
�

�

for all S ✓ [n], |S| = s with probability at least 1�O(n�2

) using

O(`3(`k)s+1

log(`kn) log n/(1� 2⌘)2)

queries.

The proof of Lemma 4.3 follows from the guarantees of Algorithm 4.2. For the

special case of s = 1, we use queries given by a RUFF of appropriate parameters to

compute |occ((i), 1)| for all i 2 [n] using Algorithm 3.17 in Section 3.4.4.

Lemma 4.4. There exists an algorithm to compute |occ((i), 1)| 8 i 2 [n] with proba-

bility at least 1�O(n�2

) using O(`4k2

log(`kn) log n/(1� 2⌘)2) queries.

Both the above mentioned algorithms crucially use a subroutine that counts the

number of unknown vectors in B that have a non-zero inner product with a given

query vector x. For any x 2 Rn, define nzcount(x) :=
PL

i=1

1[h�i,xi 6= 0].

Note that Lemma 4.1 (see Algorithm 4.1) provides the sufficient query complexity

for computing nzcount(x) for any vector x 2 {0, 1}n.

164

Compute
�

�

S

i2S occ((i), 1)
�

� using Algorithm 4.2. In this section we present an

algorithm to compute
�

�

S

i2S occ((i), 1)
�

�, for every S ✓ [n] of size |S| = s, using

|occ((i), 1)| computed in the Section 3.4.4.

We will need an (s, Lk)-CFF for this purpose. Let G ⌘ {H
1

,H
2

, . . . ,Hn} be the

required (s, Lk)-CFF of size n over alphabet m = O((Lk)s+1

log n). We construct a

set of L+ 1 matrices B = {B(1), . . . ,B(L+1)} where, each B

(w) 2 Rm⇥n, w 2 [L+ 1],

is obtained from the (s, Lk)-CFF G.

For the mixture of linear classifiers, we construct the sequence of matrices as follows:

For every (i, j) 2 [m]⇥ [n], set B(w)

i,j to be a random number sampled uniformly from

[0, 1] if i 2 Hj, and 0 otherwise. We remark that the choice of uniform distribution

in [0, 1] is arbitrary, and any continuous distribution works. Since every B

(w) is

generated identically, they have the exact same support, though the non-zero entries

are different. Also, by definition, the support of the columns of every B

(w) corresponds

to the sets in G.

Let U := [i2[L]supp(�i
) denote the union of supports of all the unknown vectors.

Since each unknown vector is k-sparse, it follows that |U|  Lk. From the properties

of (s, Lk)-CFF, we know that for any tuple of s indices (i
1

, i
2

, . . . , is) ⇢ U , the set

(

Ts
t=1

Hii) \
S

q2U\{i
1

,i
2

,...,is} Hq is non-empty. This implies that for every w 2 [L+ 1],

there exists at least one row of B(w) that has a non-zero entry in the ith
1

, ith
2

, . . . , iths

index, and 0 in all other indices p 2 U \ {i
1

, i
2

, . . . , is}. In Algorithm 4.2 we use these

rows as queries to estimate their nzcount. In Lemma 4.3, we show that this estimated

quantity is exactly |
Ss

j=1

occ((i), 1)| for that particular tuple (i
1

, i
2

, . . . , is) ⇢ U .

The rest of the proofs of Lemma 4.3 and Lemma 4.4 is identical to the proof of

Lemma 3.14 and Lemma 3.15 respectively with TR replaced by TC .

Computing |occ((i), 1)| In this section, we show how to compute |occ(i, 1)| for

every index i 2 [n].

165

Algorithm 4.2 Recover Union-

�

�

S

i2S occ((i), 1)
�

� for all S ✓ [n], |S| = s, s � 2.

Require: |occ((i), 1)| for every i 2 [n]. s � 2.
Require: Construct B 2 Rm⇥n from (s, Lk)-CFF of size n over alphabet m =

c
3

(Lk)s+1

log n.
1: Let U := {i 2 [n] | |occ((i), 1)| > 0}
2: Let batchsize TC = 10L2

log(nm)/(1� 2⌘)2,
3: for every p 2 [m] do
4: Let count(p) := maxw2[L+1]

{nzcount(B(w)
[p])}

(obtained using Algorithm 4.1 with batchsize TC).
5: end for
6: for every set S ✓ [n] with |S| = s do
7: Let p 2 [m] such that B

p,t

6= 0 for all t 2 S, and B

p,t

0
= 0 for all q 2 U \ S.

8: Set
�

�

S

i2S occ((i), 1)
�

�

= count(p).
9: end for

Let F = {H
1

,H
2

, . . . ,Hn} be a (d, Lk, 0.5)-RUFF of size n over alphabet [m].

Construct the binary matrix A 2 {0, 1}m⇥n from F , as Ai,j = 1 if and only if i 2 Hj .

Each column j 2 [n] of A is essentially the indicator vector of the set Hj.

We use the rows of matrix A as query vectors to compute |occ((i), 1)| for each

i 2 [n]. For each such query vector x, we compute the nzcount(x) using Algorithm 4.1

with batchsize TC . We choose TC to be sufficiently large to ensure that nzcount is

correct for all the queries with very high probability.

For every h 2 {0, . . . , L}, let b

h 2 {0, 1}m be the indicator of the queries that

have nzcount at least h. We show in Lemma 3.15 that the set of columns of A that

have large intersection with b

h, exactly correspond to the indices i 2 [n] that satisfy

|occ((i), 1)| � h. This allows us to recover |occ((i), 1)| exactly for each i 2 [n].

4.5 Two-stage Approximate Recovery

In this section, we present the proof of Theorem 4.5. The two stage approximate

recovery algorithm, as the name suggests, proceeds in two sequential steps. In the first

stage, we recover the support of all the ` unknown vectors. In the second stage, we use

166

Algorithm 4.3 Compute–|occ((i), 1)|
Require: Construct binary matrix A 2 {0, 1}m⇥n from (d, Lk, 0.5)� RUFF of size n

over alphabet [m], with m = c
1

L2k2

log n and d = c
2

Lk log n.
1: Initialize b

0, b1, b2, . . . , bL to all zero vectors of dimension m.
2: Let batchsize TC = 4`2 logmn/(1� 2⌘)2.
3: for i = 1, . . . ,m do
4: Set w := nzcount(A[i])

(obtained using Algorithm 4.1 with batchsize TC .)
5: for h = 0, 1, . . . , w do
6: Set b

h
i = 1.

7: end for
8: end for
9: for h = 0, 1, . . . , L do

10: Set Ch = {i 2 [n] | |supp(bh) \ supp(Ai)| � 0.5d}.
11: end for
12: for i = 1, 2, . . . , n do
13: Set |occ((i), 1)| = h if i 2 {Ch \ Ch+1

} for some h 2 {0, 1, . . . , L� 1}.
14: Set |occ((i), 1)| = L if i 2 CL
15: end for

these deduced supports to approximately recover the unknown vectors (Algorithm 4.4

described below.

Once we have the obtained the support of all unknown vectors, the task of

approximate recovery can be achieved using a set of Gaussian queries. Recall from

Definition 4.3, a Gaussian query refers to an oracle query with vector v = (v

1

, . . . ,vn) 2

Rn where each vi is sampled independently from the standard Normal distribution,

vi ⇠ N (0, 1). The use of Gaussian queries in the context of 1-bit compressed sensing

(` = 1) was studied by [85].

Lemma 4.5 ([85]). For any ✏ > 0, there exists an ✏-recovery algorithm to efficiently

recover an unknown vector in Rn using O
�

n
✏
log

n
✏

�

Gaussian queries.

In the current query model however, the approximate recovery is a bit intricate

since we do not possess the knowledge of the particular unknown vector that was

sampled by the oracle. To circumvent this problem, we will leverage the special

support structure of the unknown vectors. From Assumption 4.1, we know that every

167

unknown vector �

t, t 2 [`], has at least one coordinate which is not contained in the

support of the other unknown vectors. We will denote the first such coordinate by

rep(�t
). Define,

rep(�t
) := minp{ p 2 supp(�t

) \
[

q2[`]\{t}
supp(�q

)} 2 [n].

For ✏-recovery of a fixed unknown vector �

t, we will use the set of representative

coordinates {rep(�t0
)}t0 6=t, to correctly identify its responses with respect to a set of

Gaussian queries. In order to achieve this, we first have to recover the sign of �t
rep(�t

)

for every t 2 [`], using an RUFF, which is described in Algorithm 4.5.

Lemma 4.6. Algorithm 4.5 recovers sign(�t
rep(�t

)

) for all t 2 [`].

With the knowledge of all the supports, and the sign of every representative

coordinate, we are now ready to prove Theorem 4.5. The details are presented in the

Algorithm 4.4.

Proof of Theorem 4.5. For the ✏-recovery of a fixed unknown vector �t, t 2 [`], we will

generate its correct response with respect to a set of ˜O(k/✏) Gaussian queries using

modified Gaussian queries. A modified Gaussian query v

t for the t-th unknown vector,

is a Gaussian query with a large positive entry in the coordinates indexed by rep(�t0
),

for every t0 6= t.

Consider a fixed unknown vector �

t. Let v 2 Rn be a Gaussian query, i.e., every

entry of v is sampled independently from N (0, 1). Algorithm 4.4 constructs a modified

Gaussian query v

t from v as follows:

v

t
j =

8

>

>

<

>

>

:

Inf if j = rep(�t0
) for some t0 6= t

vj otherwise
.

168

Algorithm 4.4 ✏-Recovery, Two Stage

Require: Query access to oracle O.
Require: Assumption 4.1 to be true.
1: Estimate supp(�t

) for all t 2 [`].
2: Estimate sign(�t

rep(�t
)

) for all t 2 [`] using Algorithm 4.5.
3: Let Inf be a large positive number.
4: Let batchsize T = 4`2 log(nk/✏).
5: for t = 1, . . . , ` do
6: for i = 1, . . . , ˜O(k/✏) do

7: Define v

t
j :=

⇢

Inf if j = rep(�t0
), for some t0 6= t

N (0, 1) otherwise
8: Obtain poscount(vt

) using Algorithm 4.1 with batchsize T .
9: Let pt := |{t0 6= t | sign(�t0

rep(�t0
)

) = +1}|
10: if poscount(vt

) 6= pt then
11: Set yti = +1.
12: else
13: Set yti = �1.
14: end if
15: end for
16: From {yt

1

, yt
2

, . . . , yt
˜O(k/✏)

}, and supp(�t
) recover ˆ

�

t by using Lemma 4.5.
17: end for
18: Return { ˆ

�

t, t 2 [`]}.

From construction, we know that v

t
j = vj for all j 2 supp(�t

). Therefore,

hvt,�ti = hv,�ti and therefore sign(hvt,�ti) = sign(hv,�ti).

On the other hand, if Inf is chosen to be large enough,

sign(hvt,�t0i) = sign(�t0

rep(�t0
)

) 8t0 6= t,

since Inf · �t0

rep(�t0
)

dominates the sign of the inner product. Note that in order to

obtain an upper bound on the value of Inf, we have to assume that the non-zero entries

of every unknown vector have some non-negligible magnitude (at least 1/poly(n)).

Note that the sign(�t0

rep(�t0
)

) was already computed using Algorithm 4.5, and there-

fore, the response of the modified Gaussian query with each �

t0 , t0 6= t is known. Now if

169

poscount(vt
) is different from the number of positive instances of sign(�t0

rep(�t0
)

), t0 6= t,

then it follows that sign(hvt,�ti) = +1. From this we can successfully obtain the

response of �t corresponding to a Gaussian query v.

Algorithm 4.4 simulates O(k/✏ · log(k/✏)) Gaussian queries for every �

t, t 2 [`]

using the modified Gaussian queries v

t. Approximate recovery is then possible using

Lemma 4.5 (restricted to the k-non zero coordinates in the supp(�t
)).

We now argue about the query complexity and the success probability of Algo-

rithm 4.4.

For every unknown vector �

t, t 2 [`], we simulate O(k/✏ · log(k/✏)) Gaussian

queries. Simulating each Gaussian query involves T = O(`2 log(nk/✏)) oracle queries

to estimate the poscount. Note that Algorithm 4.5 can be run simultaneously with

Algorithm 3.17 since they use the same set of queries. The sign recovery algorithm,

therefore, does not increase the query complexity of approximate recovery. The total

query complexity of Algorithm 4.4 after the support recovery procedure is at most

O ((`3k/✏) log(nk/✏) log(k/✏)).

From Lemma 4.1, each poscount is correct with probability at least 1�O(✏/(n2k2

))

and therefore by a union bound over all the O(`k/✏ · log(k/✏)) poscount estimates, the

algorithm succeeds with probability at least 1�O(1/n).

Proof of Lemma 4.6. Consider the (d, `k, 0.5)� RUFF, F = {H
1

,H
2

, . . . ,Hn}, of size

n over alphabet m = O(`2k2

log n) used in Algorithm 3.17. Let A 2 {0, 1}m⇥n be the

binary matrix constructed from the RUFF in a similar manner, i.e., Ai,j = 1 if and

only if i 2 Hj. From the properties of RUFF, we know that for every t 2 [`], there

exists a row (indexed by i 2 [m]) of A such that Ai,u(�t
)

6= 0, and Ai,j = 0 for all

j 2 U \ {u(�t
)}, where, U = [i2[`]supp(�i

). Therefore, the query with A[i] yields

non-zero sign with only �

t. Since,

sign(hA[i],�ti) = sign(heu(�t
)

,�ti) = sign(�t
u(�t

)

)

170

sign(�t
u(�t

)

) can be deduced.

Algorithm 4.5 Compute–sign(�t
rep(�t

)

)

Require: Binary matrix A 2 {0, 1}m⇥n from (d, `k, 0.5)�RUFF of size n over alphabet
[m], with m = O(`2k2

log n) and d = O(`k log n).
Require: rep(�t

) 2 [n] for all t 2 [`].
1: Let batchsize T = 4`2 logmn.
2: Let U := [i2[`]supp(�i

).
3: for t = 1, . . . , ` do
4: Let i 2 {supp(Arep(�t

)

) \ [j2U\{rep(�t
)}supp(Aj)}

5: if poscount(A[i]) > 0 (obtained using Algorithm 4.1 with batchsize T .) then
6: sign(�t

rep(�t
)

) = +1.
7: else
8: sign(�t

rep(�t
)

) = �1.
9: end if

10: end for

4.6 Single stage process for Approximate recovery

In this section, we present the proof of Theorem 4.6. Note that the approximate

recovery procedure (Algorithm 4.4), described in Section 4.5, crucially utilizes the

support information of every unknown vector to design its queries. This requirement

forces the algorithm to proceed in two sequential stages.

In particular, Algorithm 4.4, with the knowledge of the support and the represen-

tative coordinates of all the unknown vectors, designed modified Gaussian queries

that in turn simulated Gaussian queries for a fixed unknown vector. In this section,

we achieve this by using the rows of a matrix obtained from an (`, `k) � CFF. The

property of the CFF allows us to simulate enough Gaussian queries for every unknown

vector without the knowledge of their supports. This observation gives us a completely

non-adaptive algorithm for approximate recovery of all the unknown vectors.

Consider a matrix A of dimension m ⇥ n constructed from an (`, `k) � CFF,

F = {H
1

,H
2

, . . . ,Hn} of size n over alphabet m, as follows:

171

Ai,j =

8

>

>

<

>

>

:

Inf if i 2 Hj

v ⇠ N (0, 1) otherwise
.

In Lemma 4.7, we show that for every unknown vector �

t, there exists a row of A

that simulates the Gaussian query for it. Therefore, using ˜O(k/✏) independent blocks

of such queries will ensure sufficient Gaussian queries for every unknown vector which

then allows us to approximately recover these vectors.

Recall the definition of a representative coordinate of an unknown vector �

t,

rep(�t
) := minp{ p 2 supp(�t

) \
[

q2[`]\{t}
supp(�q

)} 2 [n].

Lemma 4.7. For every t 2 [`], there exists at least one row v

t in A that simulates a

Gaussian query for �

t, and sign(hvt,�t0i) = sign(�t0

rep(�t0
)

) for all t0 6= t.

Proof of Lemma 4.7. For any fixed t 2 [`], consider the set of indices

X = {rep(�t0
) | t0 2 [`] \ {t}}.

Recall that from the property of (`, `k)� CFF, we must have

\

j2X
supp(Aj) 6✓

[

j2[q2[`]supp(�
q
)\X

supp(Aj).

Therefore, there must exist at least one row v

t in A which has a large positive entry,

Inf, in all the coordinates indexed by X . Moreover, vt has a random Gaussian entry

in all the other coordinates indexed by the union of support of all unknown vectors.

Since �

t is 0 for all coordinates in X , the query sign(hvt,�ti) simulates a Gaussian

query. Also,

sign(hv,�t0i) = sign(rep(�t0
)) 8t0 6= t

172

since Inf ⇥ �

t0

rep(�t0
)

dominates the inner product.

We are now ready to present the completely non-adaptive algorithm for the

approximate recovery of all the unknown vectors.

Algorithm 4.6 ✏-Recovery, Single Stage

Require: Assumption 4.1 to be true.
Require: Binary matrix ˜

A 2 {0, 1}m⇥n from (`, `k) � CFF of size n over alphabet
m = O((`k)`+1

log n).
1: Estimate supp(�t

) and sign(�t
rep(�t

)

) for all t 2 [`] using Support Recovery Algo-
rithm and Algorithm 4.5 respectively.

2: Set Inf to be a large positive number.
3: Set D = O(k/✏ · log(k/✏)).
4: Set batchsize T = 4`2 log(mnk/✏).
5: for i = 1, . . . ,m do
6: for w = 1, 2, . . . ,D do

7: Construct query vector v, where vj =

(

Inf if ˜

Ai,j = 1

N (0, 1) otherwise
.

8: Query
⇣

v, T
⌘

and set P i,w = poscount(v).
9: end for

10: end for
11: for t = 1, . . . , ` do
12: Let X := {rep(�t0

) | t0 2 [`] \ t} and U := [qsupp(�q
)

13: Let i 2 {\j2X supp(˜Aj) \
S

j2U\X supp(˜Aj)} ⇢ [m].
14: Let p := |{t0 6= t | sign(�t

rep(�t
)

) = +1}|
15: for w = 1, . . . ,D do
16: if P i,w 6= p then
17: Set ytw = +1

18: else
19: Set ytw = �1
20: end if
21: end for
22: From {ytw | w 2 [D]} and supp(�t

) recover ˆ

�

t
by using Lemma 4.5.

23: end for
24: Return {ˆ�t | t 2 [`]}.

Proof of Theorem 4.6. The proof of Theorem 4.6 follows from the guarantees of Algo-

rithm 4.6. The query vectors of Algorithm 4.6 can be represented by the rows of the

following matrix:

173

R =

2

6

6

6

6

6

6

6

6

6

6

4

A

˜

A+B

(1)

˜

A+B

(2)

...

˜

A+B

(D)

3

7

7

7

7

7

7

7

7

7

7

5

where, D = O(k/✏ · log k/✏) and A is the matrix obtained from the (d, `k, 0.5)�RUFF

required by the Support Recovery Algorithm and Algorithm 4.5. The matrix ˜

A is

obtained from an (`, `k)� CFF, F = {H
1

,H
2

, . . . ,Hn} by setting ˜

Ai,j = Inf if i 2 Hj

and 0 otherwise, and each matrix B

(w) for w 2 [D] is a Gaussian matrix with every

entry B

(w)

i,j drawn uniformly at random from standard Normal distribution.

Algorithm 4.6 decides all its query vectors at the start and hence is completely

non-adaptive. It first invokes the Support Recovery Algorithm and Algorithm 4.5 to

recover the support and the sign of the representative coordinate of every unknown

vector �

t. Now using the queries from the rows of the matrix R, the algorithm

generates at least D =

˜O(k/✏) Gaussian queries for each unknown vector.

It follows from Lemma 4.7 that each matrix ˜

A +B

(w), for w 2 [D], contains at

least one Gaussian query for every unknown vector. Therefore, in total, R contains

at least D = O(k/✏ · log k/✏) Gaussian queries for every unknown vector �

t. Using

the responses of these Gaussian queries, we can then approximately recover every �

t

using Lemma 4.5.

The total query complexity is therefore the sum of query complexities of support re-

covery process (which from Theorem 4.2 we know to be at most O(`6k3

log(n) log(`kn))),

and the total number of queries needed to generate O(k/✏ · log(k/✏)) Gaussian queries

(which is mTD) for each unknown vector. Therefore the net query complexity is

O
⇣

(``+3k`+2/✏) log n log(k/✏) log(n/✏))
⌘

. Each of the algorithms namely 4.5 and the

174

Gaussian query generation succeed with probability at least 1 � O(1/n), therefore

from union bound, Algorithm 4.6 succeeds with probability at least 1�O(1/n).

4.7 Relaxing Separability Assumption for two unknown vec-

tors

In this section, we will circumvent the necessity for Assumption 4.1 when there

are only two unknown vectors - {�1,�2}. We present a two-stage algorithm to

approximately recover both the unknown vectors and present the proof of Theorem 4.7.

In the first stage, the algorithm recovers the support of both the vectors, and then

using the support information it approximately recovers the two vectors.

We would like to mention that if supp(�1

) 6= supp(�2

), we do not need any further

assumptions on the unknown vectors for their approximate recovery. However, if

the two vectors have the exact same support, then we need to impose some mild

assumptions in order to approximately recover the vectors.

We show that supports of both the unknown vectors can be inferred directly from

{|S(i)|}i2[n] and {|S(i) \ S(j)|}i,j2[n].

Lemma 4.8. There exists an algorithm to recover the support of any two k-sparse

unknown vectors using O(k3

log

2 n) oracle queries with probability at least 1�O(1/n2

).

Proof of Lemma 4.8. Consider Algorithm 4.7. The proof follows directly from Theo-

rem 4.1 since the support matrix for two vectors must be 1-identifiable.

Now, we present the approximate recovery algorithm. The queries are designed

based on the supports of the two vectors.

We split the analysis in two parts. First, we consider the case when the two vectors

have different supports, i.e. supp(�1

) 6= supp(�2

). In this case, we use Lemma 4.9 to

approximately recover the two vectors.

175

Algorithm 4.7 Recover–Support ` = 2

Require: Access to oracle O
1: Estimate |S(i)| for every i 2 [n] using Algorithm 3.17.
2: Estimate |S(i) \ S(j)| for every i, j 2 [n] using Algorithm 3.13.
3: if |S(i)| 2 {0, 2} for all i 2 [n] then
4: supp(�1

) = supp(�2

) = {i 2 [n]||S(i)| 6= 0}.
5: else
6: Let i

0

= min{i||S(i)| = 1}, and let i
0

2 supp(�1

)

7: for j 2 [n] \ {i
0

} do
8: if |S(j)| = 2 then
9: Add j to supp(�1

), and supp(�2

).
10: else if |S(j)| = 1 and |S(i

0

) \ S(j)| = 0 then
11: Add j to supp(�2

).
12: else if |S(j)| = 1 and |S(i

0

) \ S(j)| = 1 then
13: Add j to supp(�1

).
14: end if
15: end for
16: end if

Lemma 4.9. If supp(�1

) 6= supp(�2

), then there exists an algorithm for ✏-approximate

recovery of any two k-sparse unknown vectors using O
⇣

k
✏
· log(nk

✏
)

⌘

oracle queries with

probability at least 1�O(1/n).

When the two vectors have the exact same support, we use a set of sub-Gaussian

queries to recover the two vectors. This is slightly tricky, and our algorithms succeeds

under some mild assumption on the two unknown vectors (Assumption 4.2).

Lemma 4.10. If supp(�1

) = supp(�2

), then there exists an algorithm for ✏-approximate

recovery of any two k-sparse unknown vectors using O(

k2

✏4�2
log

2

(

nk
�
)) oracle queries

with probability at least 1�O(1/n).

Algorithm 4.8 ✏-Approximate-Recovery

1: Estimate supp(�1

), supp(�2

) using Algorithm 4.7.
2: if supp(�1

) 6= supp(�2

) then
3: Return ˆ

�

1, ˆ�2 using Algorithm 4.9.
4: else
5: Return ˆ

�

1, ˆ�2 using Algorithm 4.10.
6: end if

176

Proof of Theorem 4.7. The guarantees of Algorithm 4.8 prove Theorem 4.7. The total

query complexity after support recovery is the maximum of the query complexities of

Algorithm 4.9 and Algorithm 4.10, which is O(

k2

✏�2
log

2

(

nk
�
)).

Moreover from Lemma 4.9 and Lemma 4.10, we know that both these algorithms

succeed with a probability at least 1 � O(1/n), therefore, Algorithm 4.8 is also

guaranteed to succeed with probability at least 1�O(1/n).

We now prove Lemma 4.9 and Lemma 4.10.

4.7.1 Case 1: Different Support

In this subsection, we assume that supp(�1

) 6= supp(�2

).

Proof of Lemma 4.9. Consider a coordinate p 2 supp(�1

) � supp(�2

), where � de-

notes the symmetric difference of the two support sets. Without loss of generality we

can assume p 2 supp(�1

). We first identify the sign(�1

p) simply using the query vector

ep. For the sake of simplicity let us assume sign(�1

p) = +1.

We use two types of queries to recover the two unknown vectors. The Type 1

queries are modified Gaussian queries, of the form v + Inf · ep, where v is a Gaussian

query vector. Type 2 query is the plain Gaussian query v.

Since p 2 supp(�1

) \ supp(�2

), the Type 1 queries will always have a positive

response with the unknown vector �1. Moreover, they will simulate a Gaussian query

with �

2. Therefore from the responses of the oracle, we can correctly identify the

response of �2 with a set of O(k/✏ · log(k/✏)) Gaussian queries. Now, using Lemma 4.5,

we can approximately recover it.

Now since the response of �2 with the Type 1 query v+Inf ·ep and the corresponding

Type 2 query v, remains the same, we can also obtain correct responses of �1 with

a set of O(k/✏ · log(k/✏)) Gaussian queries. By invoking Lemma 4.5 again, we can

approximately recover �

1.

177

Algorithm 4.9 ✏-Approximate-Recovery: Case 1

Require: supp(�1

) 6= supp(�2

)

1: Set m = O(k/✏ · log(k/✏))
2: Set batchsize T = 10 logmn.
3: Let Inf be a large positive number.
4: Let p 2 supp(�1

) \ supp(�2

), and s := sign(�1

p).
5: for i = 1, . . . ,m do
6: Construct query vector v, where vj = N (0, 1) for all j 2 [n].
7: Construct query vector ˜

v := v + s · Inf · ep

8: Query
⇣

v, T
⌘

, and Query
⇣

˜

v, T
⌘

.

9: Set yi =

8

>

<

>

:

+1 if poscount(˜v) == 2

�1 if negcount(˜v) == 1

0 otherwise

10: Set zi =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

+1 if yi = +1 and poscount(v) == 2

�1 if yi = +1 and negcount(v) == 1

+1 if yi = �1 and poscount(v) == 1

�1 if yi = �1 and negcount(v) == 2

+1 if yi = 0 and poscount(v) == 1

�1 if yi = 0 and negcount(v) == 1

0 otherwise
11: end for
12: From {yi | i 2 [m]} and supp(�2

) recover ˆ

�

2

by using Lemma 4.5.
13: From {zi | i 2 [m]} and supp(�1

) recover ˆ

�

1

by using Lemma 4.5.

The total query complexity of the algorithm is O(kT/✏ · log(k/✏)) = O(k/✏ ·

log(nk/✏) · log(k/✏)). Also, from Lemma 4.1, it follows that each oracle query succeeds

with probability at least 1�O(1/mn). Therefore by union bound over all 2m queries,

the algorithm succeeds with probability at least 1�O(1/n).

4.7.2 Case 2: Same Support

We now propose an algorithm for approximate recovery of the two unknown vectors

when their supports are exactly the same i.e. supp(�1

) = supp(�2

). Until now for

✏-recovery, we were using a representative coordinate to generate enough responses to

Gaussian queries. However, when the supports are exactly the same, the same trick

does not work.

178

For the approximate recovery in this case, we use sub-Gaussian queries instead

of Gaussian queries. In particular, we consider queries whose entries are sampled

uniformly from {�1, 1}. The equivalent of Lemma 4.5 proved by [4] for sub-Gaussian

queries enables us to achieve similar bounds.

Lemma 4.11 (Corollary of Theorem 1.1 of [4]). Let x 2 Sn�1 be a k-sparse unknown

vector of unit norm. Let v1, . . . ,vm

be independent random vectors in Rn whose

coordinates are drawn uniformly from {�1, 1}. There exists an algorithm that recov-

ers ˆ

x 2 Sn�1 using the 1-bit sign measurements {sign(hv
i

,xi)}i2[m]

, such that with

probability at least 1� 4e�↵2 (for any ↵ > 0), it satisfies

kx� ˆ

xk2
2

 O

✓

kxk
1

21 +

1

2

p
m
(

p

k log(2n/k) + ↵)

◆

.

In particular, for m = O(

k
✏4
log n), we get O(✏+kxk

1

21) - approximate recovery with

probability at least 1�O(1/n). Therefore, if the unknown vectors are not extremely

sparse (Assumption 4.2), we can get good guarantees on their approximate recovery

with sufficient number of sub-Gaussian queries.

The central idea of ✏-recovery algorithm (Algorithm 4.10) is therefore to identify

the responses of a particular unknown vector � with respect to a set of sub-Gaussian

queries v ⇠ {�1, 1}n. Then using Lemma 4.11, we can approximately reconstruct �.

Let us denote by response(v), the set of distinct responses of the oracle with a

query vector v. Since there are only two unknown vectors, |response(v)|  2. If both

unknown vectors have the same response with respect to a given query vector v, i.e.,

|response(v)| = 1 then we can trivially identify the correct responses with respect both

the unknown vectors by setting sign(hv,�2i) = sign(hv,�2i) = response(v).

However if |response(v)| = 2, we need to identify the correct response with respect

to a fixed unknown vector. This alignment constitutes the main technical challenge in

approximate recovery. To achieve this, Algorithm 4.10 fixes a pivot query say v

0

with

179

|response(v
0

)| = 2, and aligns all the other queries with respect to it by making some

additional oracle queries.

Let W denote the set of queries such that |response(v)| = 2. Also, for any pair

of query vectors, v
1

,v
2

2 W , we denote by align
�

(v

1

,v
2

) to be an ordered tuple of

responses with respect to the unknown vector �.

align
�

(v

1

,v
2

) = (sign(hv
1

,�i), sign(hv
2

,�i)).

We fix a pivot query v

0

2 W to be one that satisfies response(v
0

) = {�1, 1}.

We can assume without loss of generality that there always exists one such query,

otherwise all queries v 2 W have 0 2 response(v), and Proposition 4.1 aligns all such

responses using O(log n) additional oracle queries.

Proposition 4.1. Suppose for all queries v 2 W , 0 2 response(v). There exists an

algorithm that estimates align
�

1

(v

0

,v) and align
�

2

(v

0

,v) for any v,v
0

2 W using

O(log n) oracle queries with probability at least 1�O(1/n).

For a fixed pivot query v

0

2 W such that response(v
0

) = {�1, 1}, Proposition 4.2

and Proposition 4.3 compute align
�

(v

0

,v) for all queries v 2 W such that 0 2

response(v) and 0 /2 response(v) respectively.

Proposition 4.2. Let v

0

2 W such that response(v
0

) = {�1, 1}. For any query

vector v 2 W such that 0 2 response(v), there exists an algorithm that computes

align
�

1

(v

0

,v) and align
�

2

(v

0

,v) using O(log n) oracle queries with probability at least

1�O(1/n).

Proposition 4.3. Let � > 0, be the largest real number such that �1,�2 2 �Zn. Let

v

0

2 W such that response(v
0

) = {�1, 1}. For any query vector v 2 W such that

response(v) = {�1, 1}, there exists an algorithm that computes align
�

1

(v

0

,v) and

align
�

2

(v

0

,v) using O(

k
�2
log(

nk
�
)) oracle queries with probability at least 1�O(1/n).

180

Using the alignment process and Lemma 4.11, we can now approximately recover

both the unknown vectors.

Proof of Lemma 4.10. Consider Algorithm 4.10, which basically collects enough re-

sponses of an unknown vector for a set of sub-Gaussian queries by aligning all responses.

Without loss of generality, we fix v

0

such that response(v
0

) = {+1,�1}, and

also enforce that sign(v
0

,�1

) = +1. Now, we align all other responses with respect

to v

0

. The proof of Lemma 4.10 then follows from the guarantees of Lemma 4.11.

For m = O(

k
✏4
log n), along with the assumptions that k�1k1, k�2k1 = o(1), the

algorithm approximately recovers �

1,�2.

Algorithm 4.10 ✏-Approximate Recovery: Case 2

Require: supp(�1

) = supp(�2

), Assumption 4.2.
1: Set m = O(

k
✏4
log(n))

2: Set batchsize T = O(logmn)
3: for i = 1, . . . ,m do

4: Sample query vector v as: vj =

(

+1 w.p. 1/2

�1 w.p. 1/2
5: Query(v, T), and store response(v).
6: if |response(v)| == 1 then
7: Set yv = response(v).
8: Set zv = response(v).
9: else

10: Add v to W .
11: end if
12: Let v

0

be an arbitrary v 2 W .
13: for every v 2 W do
14: Set (yv0 , yv) = align

�

1

(v

0

,v).
15: Set (zv0 , zv) = align

�

2

(v

0

,v).
16: end for
17: end for
18: Using {yv}

v

, estimate ˆ

�

1.
19: Using {zv}

v

, estimate ˆ

�

2.

The number of queries made by Algorithm 4.10 is at most mT to generate responses

and O(m k
�2
log(

nk
�
)) to align all the m responses with respect to a fixed pivot query

v

0

. Therefore the total query complexity of Algorithm 4.10 is O(

k2

✏4�2
log

2

(

nk
�
)).

181

All parts of the algorithm succeed with probability at least 1 � O(1/n), and

therefore the algorithm succeeds with probability at least 1�O(1/n).

Finally, we prove Proposition 4.1, Proposition 4.2 and Proposition 4.3.

Proof of Proposition 4.1. For the proof of Proposition 4.1, we simply use the query

vector v

0

+ v to reveal whether the 0’s in the two response sets correspond to the

same unknown vector or different ones. The correctness of Algorithm 4.11 follows

from the fact that there will be a 0 in the response set of v
0

+ v if and only if both

the 0’s correspond to the same unknown vector.

To obtain the complete response set for the query v

0

+ v with probability at least

1� 1/n, Algorithm 4.11 makes at most O(log n) queries.

Algorithm 4.11 Align Queries, Case 1

Require: v

0

,v 2 {�1, 1}n, 0 2 response(v
0

) \ response(v).
1: Set batchsize T = O(log n).
2: Query(v

0

+ v, T).
3: if 0 2 response(v

0

+ v) then
4: align

�

1

(v

0

,v) = (0, 0)
5: align

�

2

(v

0

,v) = (response(v
0

) \ {0}, response(v) \ {0})
6: else
7: align

�

1

(v

0

,v) = (0, response(v) \ {0})
8: align

�

2

(v

0

,v) = (response(v
0

) \ {0}, 0)
9: end if

Proof of Proposition 4.2. In this case, we observe that the response set corresponding

to the query Inf · v + v

0

can reveal the correct alignment. To see this, let the response

of v
0

and v be {+1,�1} and {s, 0} respectively for some s 2 {±1}. The response set

corresponding to Inf · v + v

0

will be the set (or multi-set) of the form {s, t}. Since

we know s = response(v) \ {0}, we can deduce t from the poscount(Inf · v + v

0

), and

negcount(Inf · v + v

0

).

182

Now, if t = +1, then (+1, 0) are aligned together (response of the same unknown

vector) and (s,�1) are aligned together. Similarly, if t = �1, then (�1, 0) and (+1, s)

are aligned together respectively.

The alignment algorithm is presented in Algorithm 4.12. It makes O(log n) queries

and succeeds with probability at least 1� 1/n.

Algorithm 4.12 Align Queries, Case 2

Require: v

0

,v 2 {�1, 1}n, 0 2 response(v), response(v
0

) = {±1}.
1: Set batchsize T = O(log n).
2: Set Inf to be a large positive number.
3: Query(v

0

+ Inf · v, T).
4: if response(v

0

+ Inf · v) = {response(v) \ {0},+1} then
5: align

�

1

(v

0

,v) = (+1, 0)
6: align

�

2

(v

0

,v) = (�1, response(v) \ {0})
7: else
8: align

�

1

(v

0

,v) = (+1, response(v) \ {0})
9: align

�

2

(v

0

,v) = (�1, 0)
10: end if

Proof of Proposition 4.3. The objective of Proposition 4.3 is to align the responses of

queries v

0

and v by identifying which among the following two hypotheses is true:

• H
1

: The response of the unknown vectors with both the query vectors v

0

and

v is same. Since we fixed the sign(hv
0

,�1i) = 1, this corresponds to the case

when align
�

1

(v

0

,v) = (+1,+1) and align
�

1

(v

0

,v) = (�1,�1).

In this case, we observe that for any query of the form ⌘v
0

+ ⇣v with ⌘, ⇣ > 0,

the response set will remain {+1,�1}.

• H
2

: The response of each unknown vector with both the query vectors v

0

and

v is different, i.e., align
�

1

(v

0

,v) = (+1,�1) and align
�

1

(v

0

,v) = (�1,+1).

In this case, we note that the response for the queries of the form ⌘v
0

+ ⇣v

changes from {�1, 1} to either {+1}, {�1}, or {0} for an appropriate choice of

183

⌘, ⇣ > 0. In particular, the cardinality of the response set for queries of the form

⌘v
0

+ ⇣v changes from 2 to 1 if ⌘
⇣
2
h

� h�1,vi
h�1,v

0

i ,�
h�2,vi
h�2,v

0

i

i

[
h

� h�2,vi
h�2,v

0

i ,�
h�1,vi
h�1,v

0

i

i

.

Algorithm 4.13 Align Queries, Case 3

Require: v

0

,v 2 {0,�1, 1}n, response(v) = response(v
0

) = {±1}.
1: Set batchsize T = O(log nk/�).
2: for ⌘ 2 { c

d
| c, d 2 Z \ {0}, |c|, |d| 

p
k
�
} do

3: Query(⌘v
0

+ v, T).
4: if |response(⌘v

0

+ v)| == 1 then
5: Return align

�

1

(v

0

,v) = (+1,�1), align
�

2

(v

0

,v) = (�1,+1)

6: end if
7: end for
8: Return align

�

1

(v

0

,v) = (+1,+1), align
�

2

(v

0

,v) = (�1,�1)

In order to distinguish between these two hypotheses, Algorithm 4.13 makes

sufficient queries of the form ⌘v
0

+ ⇣v for varying values of ⌘, ⇣ > 0. If for some ⌘, ⇣

the cardinality of the response set changes from 2 to 1, then we claim that H
2

holds,

otherwise H
1

is true. Algorithm 4.13 then returns the appropriate alignment.

Note that for any query vector v 2 {�1, 1}n, and any k-sparse unknown vector

� 2 Sn�1 the inner product h�,vi 2 [�
p
k,
p
k]. Moreover, if we assume that the

unknown vectors have precision �, the ratio h�2,vi
h�2,v

0

i can assume at most 4k/�2 distinct

values. Algorithm 4.13 therefore iterates through all such possible values of ⌘/⇣ in

order to decide which among the two hypothesis is true.

The total number of queries made by Algorithm 4.13 is therefore 4kT/�2 =

O(

k
�2
log(

nk
�
)). From Lemma 4.1, all the responses are recovered correctly with proba-

bility 1�O(1/n).

4.8 Experiments

Similar to the mixed regression model, the problem of learning mixed linear

classifiers can be used to model heterogenous data with categorical labels. We provide

184

some simulation results to show the efficacy of our proposed algorithms to reconstruct

the component classifiers in the mixture.

Moreover, the algorithm suggested in this work can be used to learn the set of

discriminative features of a group of people in a crowd sourcing model using simple

queries with binary responses. Each person’s preferences represents a sparse linear

classifier, and the oracle queries here correspond to the crowdsourcing model. To

exemplify this, we provide experimental results using the MovieLens [74] dataset to

recover the movie genre preferences of two different users (that may use the same

account, thus generating mixed responses) using small number of queries.

4.8.1 Simulations

We perform simulations that recover the support of ` = 2, k-sparse vectors in Rn

using Algorithm 4.7. We use random sparse matrices with sufficient number of rows to

construct an RUFF. Error is measured in terms of relative hamming distance between

the actual and the reconstructed support vectors.

The simulations show an improvement in the accuracy with increasing number

of rows allocated to construct the RUFF for different values of n = 1000, 2000, 3000

with fixed k = 5. This is evident since the increasing number of rows improve the

probability of getting an RUFF.

Figure 4.2: Support Recovery for ` = 2, k = 5 and n = 1000, 2000, 3000.

185

4.8.2 Movie Lens

The MovieLens [74] database contains the user ratings for movies across various

genres. Our goal in this set of experiments is to learn the movie genre preferences of

two (` = 2) unknown users using a small set of commonly rated movies.

We first preprocess the set of all movies from the dataset to obtain a subset that

have an average rating between 2.5 to 3.5. This is done to avoid biased data points

that correspond to movies that are liked (or not liked at all) by almost everyone. For

the rest of the experiment, we work with this pre-processed set of movies.

We consider n = 20 movie genres in some arbitrary, but predetermined order.

The genre preference of each user i is depicted as an (unknown) indicator vector

�

i 2 {0, 1}n, i.e., �i
j = 1 if and only if user i likes the movies in genre j. We assume

that a user likes a particular movie if they rate it 3 or above. Also, we assume that

the user likes a genre if they like at least half the movies they rated in a particular

genre.

We consider two users, say U
1

, U
2

who have commonly rated at least 500 movies.

The preference vectors for both the users is obtained using Algorithm 4.7. We query

the oracle with a movie, and obtain its rating from one of the two users at random.

For the algorithm, we consider each query to correspond to the indicator of genres

that the queried movie belongs to. Using small number of such randomly chosen

movie queries, we show that Algorithm 4.7 approximately recovers the movie genre

preference of both the users.

First, we pick a random subset of m movies that were rated by both the users,

and partition them into two subsets of size m
1

, and m
2

respectively. The first set

of m
1

movies are used to partition the list of genres into three classes - genres liked

by exactly one of the users, genres liked by both the users, and the genres liked by

neither user. These set of m
1

randomly chosen movies essentially correspond to the

rows of a RUFF used in Algorithm 4.7.

186

We then align the genres liked by exactly one of the users, we use the other set of

m
2

randomly chosen movies and obtain two genre preference vectors s1, s2. Since we

do not know whether s1 corresponds the preference vector of U
1

or U
2

, we validate it

against both, i.e., we validate s1 with U
1

, s2 with U
2

and vice versa and select the

permutation with higher average accuracy.

Validation: In order to validate our results, we use our recovered preference vectors

to predict the movies that U
1

and U
2

will like. For each user Ui, we select the set of

movies that were rated by Ui, but were not selected in the set of m movies used to

recover their preference vector. The accuracy of our recovered preference vectors are

measured by correctly predicting whether a user will like a particular movie from the

test set.

Results: We obtain the accuracy, precision and recall for three random user pairs

who have together rated at least 500 movies. The results show that our algorithm

predicts the movie genre preferences of the user pair with high accuracy even with

small m. Each of the quantities are obtained by averaging over 100 runs.

id: (U
1

, U
2

) m
1

m
2

A(U
1

) P(U
1

) R(U
1

) A(U
2

) P(U
2

) R(U
2

)

0 0 0.300 0.000 0.000 0.435 0.000 0.000

(68, 448) 10 20 0.670 0.704 0.916 0.528 0.550 0.706

30 60 0.678 0.700 0.944 0.533 0.548 0.791

0 0 0.269 0.000 0.000 0.107 0.000 0.000

(274, 380) 10 20 0.686 0.733 0.902 0.851 0.893 0.946

30 60 0.729 0.737 0.982 0.872 0.891 0.976

0 0 0.250 0.000 0.000 0.197 0.000 0.000

(474, 606) 10 20 0.665 0.752 0.827 0.762 0.804 0.930

30 60 0.703 0.750 0.910 0.787 0.806 0.970

187

CHAPTER 5

SUPPORT RECOVERY IN SPARSE MIXTURE MODELS

5.1 Introduction

Mixture models, that correspond to probabilistic modeling of subpopulations in

data/observations, are widely used in practice to model heterogeneous data and have

been studied theoretically for more than a century. Mixture models with a finite

number of components have provided a mathematically rigorous approach to the

statistical modeling of a wide variety of random phenomena. As finite mixture models

are quite flexible and can be used to model complex data, they have been proved to be

extremely useful for modeling data in many different fields including astrology, genetics,

medicine, psychiatry, economics, marketing and engineering among many others [115].

Finite mixture models are especially successful in modeling data-sets having a group

structure or the presence of a sub-population within the overall population. Often,

finite mixture models can handle situations where a single parametric family cannot

provide a satisfactory model for local variations in the observed data.

In this work, we investigate the support recovery problem in finite mixture models

when the latent parameters of a mixture model are known to be sparse. Note that

although sparsity is a very natural constraint on model parameters to design efficient

algorithms for learning via reducing the effective dimension of the latent space, it has

been relatively unexplored in mixture models. In particular, we study the support

recovery problem in three different canonical mixture models namely mixtures of

distributions (MD), mixtures of linear regressions (MLR) and mixtures of linear

classifiers (MLC). We provide two flavors of results for support recovery namely 1)

188

Exact support recovery where we recover the support of all unknown sparse latent

parameter corresponding to each component of the mixture 2) Deduplicated Support

recovery where we recover the support of a crucial subset of latent parameters.

For exact support recovery, we use a general framework that was proposed in

Chapter 3 for support recovery in MLR and MLC in the experimental design setting.

A crucial difference between the setting in this chapter and the one studied in Chapter

3 is that in Chapter 3, the learning algorithm is able to design the covariates and

assumes access to an oracle which can provide a noisy response corresponding to the

designed oracle; on the other hand, for MLR and MLC, we assume that the covariates

are sampled according to an isotropic Gaussian. Nevertheless, in Chapter 3, we showed

that to recover the support exactly, it is sufficient to obtain correct estimates of the

number of unknown vectors having non-zero entries at least one index in sets of small

size. In this work, we extend this framework and provide non-trivial approaches to

use this connection and compute the aforementioned sufficient statistic for MD, MLR

and MLC settings. Similar to Chapter 3, we also introduce a general framework for

Deduplicated Support recovery that we use to provide sample complexity guarantees in

the MD and MLR settings.

5.1.1 Notations

We write [n] to denote the set {1, 2, . . . , n}. We will use 1n,0n to denote an all one

vector and all zero vector of dimension n respectively. We will use Q([n]) to denote

the power set of [n] i.e. Q([n]) = {C | C ✓ [n]}.

For any vector v 2 Rn, we use vi to denote the ith coordinate of v and for any

ordered set S ✓ [n], we will use the notation v|S 2 R|S| to denote the vector v

restricted to the indices in S. Furthermore, we will use supp(v) , {i 2 [n] : vi 6= 0}

to denote the support of v and ||v||
0

, |supp(v)| to denote the size of the support.

Let sign : R! {�1,+1} be a function that returns the sign of a real number i.e. for

189

any input x 2 R,

sign(x) =

8

>

>

<

>

>

:

1 if x � 0

�1 if x < 0

.

Consider a multi-set of n-dimensional vectors U ⌘ {u(1),u(2), . . . ,u(L)}. We will write

SU(i) , {u 2 U : ui 6= 0} to denote the multi-set of vectors in U that has a non-zero

entry at the ith index. Furthermore, for an ordered set C ✓ [n] and vector a 2 {0, 1}|C|,

we will also write occU(C,a) ,
P

u2U 1[u|C = a] to denote the number of vectors in U

that equal a when restricted to the indices in C. For a matrix M 2 Rm⇥n, we will use

M i to denote the ith column of M . Let AU 2 {0, 1}n⇥L denote the support matrix of

U where each column vector Ai 2 {0, 1}n represents the support of the vector ui 2 U .

For ease of notation, we will omit the subscript U when the set of vectors is clear from

the context.

We write N (µ, �2

) to denote a Gaussian distribution with mean µ and variance �2.

We will denote the cumulative distribution function of a random variable Z ⇠ N (0, 1)

by � : R ! [0, 1] i.e. �(a) =

R a

�1 p(z)dz where p(·) is the density function of Z.

Also, we will denote erf : R ! R to be the error function defined by erf(z) =

2p
⇡

R z

0

exp(�t2)dt. Since the error function erf is bijective, we define erf�1

(·) to be the

inverse of the erf(·) function. Finally, for a fixed set B we will write X ⇠Unif B to

denote a random variable X that is uniformly sampled from the elements in B.

5.1.2 Formal Problem Statements

Let V be a multi-set of L unknown k-sparse vectors v

(1),v(2), . . . ,v(L) 2 Rn such

that
�

�

�

�

v

(i)
�

�

�

�

0

 k for all i 2 [L]. We consider the following problems described below:

Mixtures of Distributions with Sparse Latent Parameters (MD): Consider

a class of distributions P ⌘ {P (✓)}✓2⇥ parameterized by some ✓ 2 ⇥ where ⇥ ✓ R.

190

We assume that all distributions in P satisfy the following property: Ex⇠P (✓)xL can

be written as a polynomial in ✓ of degree exactly L, From Table 2 in [18], we know

that many well-known distributions satisfy this property (further discussion later). A

sample x ⇠ Pd is generated as follows:

t ⇠Unif [L] and xi | t ⇠ P (v

(t)
i) independently for all i 2 [n].

In other words, x is generated according to a uniform mixture of distributions each

having a sparse unknown parameter vector. Consider x(1),x(2), . . . ,x(m) 2 Rn, m i.i.d.

copies of x, that we can use to recover V .

Here are some examples of this setting:

1. P (✓) can be a Gaussian distribution with mean ✓. This setting corresponds to a

mixture of high-dimensional isotropic Gaussian distributions with sparse means.

2. P (✓) can be a uniform distribution with range [✓, b] for a fixed and known b.

3. P (✓) can be a Poisson distribution with mean ✓.

Mixtures of Sparse Linear Regressions (MLR). Consider m samples

(x

(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)

) 2 Rn ⇥ R

which are generated independently according to a distribution Pr defined as follows:

for (x, y) ⇠ Pr, we have

xi ⇠ N (0, 1) independently for all i 2 [n]

v ⇠Unif V and y | x,v ⇠ N (hv,xi, �2

).

191

In other words, each entry of x is sampled independently from N (0, 1) and for a fixed

x, the conditional distribution of y given x is a Gaussian with mean hv,xi and known

variance �2 where v is uniformly sampled from the multi-set V .

Mixtures of Sparse Linear Classifiers (MLC). Consider m samples

(x

(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)

) 2 Rn ⇥ {�1,+1}

which are generated independently according to a distribution Pc defined as follows:

for (x, y) ⇠ Pc, we have

xi ⇠ N (0, 1) independently for all i 2 [n]

v ⇠Unif V and z ⇠ N (0, �2

) and y = sign(hv,xi+ z).

In other words, each entry of x is sampled independently from N (0, 1) and for a fixed

x, the conditional distribution of y given x is +1 if hv,xi � �z and �1 otherwise;

here, v is uniformly sampled from the multi-set of unknown vectors V and z denotes

zero mean Gaussian noise with variance �2.

Our goal in all the three problems described above is to recover the support of

unknown vectors v

(1),v(2), . . . ,v(L) 2 V with minimum number of samples m. More

formally, we look at two distinct notions of support recovery:

Definition 5.1 (Exact Support Recovery). We will say that an algorithm achieves

Exact Support Recovery in the MLC/MLR/MD setting if it can recover the support of

all the unknown vectors in V exactly.

Definition 5.2 (Deduplicated set). A deduplicated set V 0 is a subset of V such that

1) supp(v(1)

) 6✓ supp(v(2)

) for any distinct v(1),v(2) 2 V 0 and 2) v 62 V 0 if there exists

v

0 2 V satisfying supp(v) ✓ supp(v0
). Now,

Trimmed(V) , argmaxV 0✓V |V 0| (5.1)

192

where the maximization is over all deduplicated sets.

We can show that the set Trimmed(V) is unique (see Lemma C.1 in Appendix C.1).

Definition 5.3 (Deduplicated Support Recovery). We will say that an algorithm

achieves Deduplicated support recovery in the MLR/MLC/MD setting if it can recover

the support of all the unknown vectors in Trimmed(V) exactly.

Note that in Definition 5.3, the objective is to recover supports of the largest set

of vectors in V, where no support is included completely in another support. This

goal is easier than exact support recovery (Definition 5.1).

Remark 5.1. If every unknown vector v 2 V had a unique non-zero index i 2 [n]

i.e. vi 6= 0 and v

0
i = 0 for all v0 2 V \ {v}, then Deduplicated support recovery is

equivalent to Exact Support Recovery. This condition, also known as the separability

condition, has been commonly used in the literature for example in unique non-negative

matrix factorization [8, 56, 129] and approximate parameter recovery in MLC in the

query-based setting [68].

5.1.3 Discussion on Our Results and Other Related Works

Mixtures of Distributions: Our technique of learning the supports of the latent

parameter vectors in mixture of simple distributions is based on the method of

moments [82, 72]. This method works in general, as long as moments of the distribution

of each coordinate can be described as a polynomial in the component parameters. The

authors in [18] showed (see Table 2 in [18]) that most common distributions, including

Gaussian, Uniform, Poisson, and Laplace distributions, satisfy this assumption. Our

results in this part that include sample complexity guarantees for both exact support

recovery (see Theorem 5.1) and Deduplicated support recovery (see Theorem 5.2)

are not only applicable to many canonical distributions but also makes progress

towards quantifying the sufficient number of moments in the general problem defined

in Sec. 5.1.2.

193

An alternate approach to the support recovery problem is to first recover the union

of supports of the unknown parameters and then apply known parameter estimation

guarantees to identify the support of each of the unknown vectors after reducing

the dimension of the problem. Note that this approach crucially requires parameter

estimation results for the corresponding family of mixtures which may be unavailable.

To the best of our knowledge, most constructive sample complexity guarantees for

parameter estimation in mixture models without separability assumptions correspond

to mixtures of Gaussians [88, 18, 114, 72, 64, 77, 108, 76]. Moreover, most known

results correspond to mixtures of Gaussians with two components. The only known

results for parameter estimation in mixtures of Gaussians with more than 2 components

is [114] but as we describe later, using the alternate approach with the guarantees

in [114] results in a polynomial dependence on the sparsity. On the contrary, our

sample complexity guarantees scales logarithmically with the sparsity or dimension (for

constant L), see Corollary 5.3, which is a significant improvement over the alternate

approach.

For other than Gaussian distributions, [18, 99] studied parameter estimation

under the same moment-based assumption that we use. However, [18] uses non-

constructive arguments from algebraic geometry because of which, their results did

not include bounds on the sufficient number of moments for learning the parameters

in a mixture model. In [99], the authors resolve this question to a certain extent for

these aforementioned families of mixture models as they quantify the sufficient number

of moments for parameter estimation under the restrictive assumption that the latent

parameters lie on an integer lattice. Therefore, our results for these distributions form

the first guarantees for support recovery.

Mixtures of Linear Regression For the support recovery problem in the sparse

mixtures of linear regressions (MLR) setting, we provide a suite of results under different

assumptions. In particular, we study the exact support recovery problem when the

194

unknown sparse parameters are binary (see Theorem 5.4) and the deduplicated support

recovery problem when 1) the unknown sparse parameters have non-negative values

(see Corollary 5.4), or 2) the unknown sparse parameters are distributed according

to a Gaussian (see Corollary 5.5). As in the MD setting, an alternate approach for

the support recovery problem is to first find the union of support of the unknown

parameters and then apply existing parameter estimation guarantees to recovery the

support of each of the unknown linear functions. The state of the art guarantees

in MLR for parameter estimation is given by [103] providing a sample complexity

guarantee which is linear in the dimension (linear in sparsity when restricted to the

union of support). Our results for support recovery are polynomial in sparsity and are

therefore worse than the parameter estimation guarantees of [103] applied to our sparse

setting (see Theorem 5.5) when the sparsity is large. On the other hand, the sample

complexity guarantees of [103] scales exponentially with L2 and polynomially with

the inverse of the failure probability. In contrast, our sample complexity guarantees

are polynomial in L and logarithmic in the inverse of the failure probability.

Mixtures of Linear Classifiers Unlike the MLR and MD setting, mixture of linear

classifiers (MLC) is far less studied. It is understandably more difficult to analyze

than MLR since only the sign of the linear function of the covariates is retained. We

study the exact support recovery problem in sparse MLC (see Theorem 5.3) under

the setting that all the parameters of the unknown vectors are either nonnegative or

they are all nonpositive. Although this assumption might seem restrictive, note that

theoretical work in the MLC setting is extremely limited. To the best of our knowledge,

there are only two relevant papers [134, 125] that have studied this problem. In [134],

the authors do not make any assumptions on sparsity and provide an algorithm for

recovering the subspace in which the parameter vectors corresponding to the unknown

linear functions lie. In contrast, support recovery is a different objective and hence

is incomparable to the subspace recovery guarantees. The second work, [125] uses

195

tensor decomposition based methods to provide sample complexity guarantees for

learning the parameter vectors; but their sample complexity is inversely proportional

to the square of the minimum eigenvalue of the matrix comprising the unknown

parameter vectors as columns. This is an unwanted dependence as it implies that if

the parameter vectors are linearly dependent, then the algorithm will require infinite

samples to recover the parameter vectors. On the other hand, our support recovery

guarantees do not have any such assumption on the parameters. Moreover, unlike

the MD setting, it is not evident in MLC how to recover the union of support of

the unknown sparse vectors. Hence the sample complexity obtained by applying the

results in [125] directly will lead to a polynomial dependence on the dimension of the

latent space which is undesirable (ideally, we require a logarithmic dependence on the

latent space dimension). Our results exhibit such dependence on the dimension and

also does not assume linear independence of the parameter vectors. We believe this to

be an important progress towards further understanding of theoretical properties of

mixtures where the response is a mixture of nonlinear functions of the covariates.

Main Technical Contribution beyond Chapter 3. As discussed earlier, our

unsupervised setting is different from the query-based setting of Chapter 3, where

the focus is also support recovery. However, we crucially use a general technique

introduced in Chapter 3 (see Lemma 5.1) for exact support recovery. Namely, support

recovery is possible if we can estimate some subset statistics.

But computing estimates of these subset statistics to invoke the guarantees given

in Lemma 5.1 is a difficult problem. For the three settings, namely MD/MLR/MLC,

we provide distinct and novel techniques to compute these quantities. Our approach

to compute the sufficient statistics in MD setting involve a two-step approach with

polynomial identities : 1) first, using the method of moments, we compute estimates

of the power sum polynomial of degree p in the variables {
Q

i2C v
2

i }v2V for all subsets

C ⇢ [n] up to a certain size; 2) secondly, we use an elegant connection via Newton’s

196

identities to compute estimates on the elementary symmetric polynomial in the

variables {
Q

i2C v
2

i }v2V which in turn allows us to compute the sufficient statistics. In

MLR, for a set C ✓ [n], we again analyze an interesting quantity namely y|C| ·
⇣

Q

i2C xi

⌘

that reveals the sufficient statistic for invoking Lemma 5.1. In MLC, our method is

quite different and it involves conditioning on the event that certain coordinates of the

covariate have large values. If this event is true, then analyzing the response variables

reveals the sufficient statistics for invoking Lemma 5.1.

Organization: The rest of the paper is organized as follows: in Section 5.2, we

provide the necessary preliminary lemmas for support recovery. In Section 5.3, we

provide our main results and discuss our core approaches in each of the settings namely

MD/MLR/MLC at a high level. For example, see Corollary 5.3, Theorem 5.5, and

Theorem 5.3 for representative results in the three settings respectively. In Sections

5.4.1, 5.4.2 and 5.4.3, we provide the detailed proofs of all our results in the MD,

MLC and MLR setting respectively. In Appendix C.1, we provide the missing proofs

of lemmas in Section 5.2. In Appendix C.2, we provide some technical lemmas that

are used in the main proofs.

5.2 Preliminaries: Useful Results in Subset Identification

The missing proofs of this section can be found in Appendix C.1.

To derive our support recovery results, we will crucially use the result of Lemma

5.1 below which has been proved in Chapter 3. Recall the definition of occ(C,a) in

Sec. 5.1.1. Lemma 5.1 states that if occ(C,a) is known for all sets C ✓ [n] up to a

cardinality of logL+ 1, then it is possible to recover the support of all the unknown

vectors in V . We restate the result according to our terminology.

Lemma 5.1. [Corollary 3.1 in Chapter 3] Let V be a set of L unknown vectors in Rn.

Then, if occ(C,a) is provided as input for all sets C ⇢ [n], |C|  logL+ 1 and for all

197

a 2 {0, 1}|C|, then there exists an algorithm (see Algorithm 3.13) that can recover the

support of the unknown vectors in V.

Remark 5.2. Lemma 5.1 provides an unconditional guarantee for recovering the

support of the unknown vectors in V. In other words, in the worst case, we only need

to know occ(C,a) for all sets of size |C|  logL+ 1. However, in Chapter 3[Theorems

3.9, 3.10 and 3.11], significantly relaxed sufficient conditions for recovering the support

of V under different structural assumptions were also provided. As noted in Chapter

3, these additional conditions are mild and in particular, the authors in Chapter 3

conjecture that if occ(C,a) is known for all sets C ✓ [n] up to a cardinality of 3, then

it is possible to recover the support of all the unknown vectors in V.

Next, we describe another result, Lemma 5.2, proved in Chapter 3 that is also

going to be useful for us. The main takeaway from Lemma 5.2 is that computing

|[i2CS(i)| (which represents the number of unknown vectors in V having non-zero

values in at least one entry corresponding to C) for all sets smaller than a fixed size

(say t) is sufficient to compute occ(C,a) for all subsets C ✓ [n], |C|  t and all vectors

a 2 {0, 1}|C|. However, we provide an additional result in Lemma 5.2 where we

show that it is also possible to compute occ(C,a) if the quantities |\i2CS(i)| (which

represents the number of unknown vectors in V having non-zero values in all entries

corresponding to C) are provided for all subsets C ✓ [n] satisfying |C|  t.

Lemma 5.2 (Partially proved in Chapter 3). Let V be a set of L unknown vectors

in Rn. If |
S

i2C S(i)| is provided as input for all sets C ⇢ [n], |C|  t or alternatively

|
T

i2C S(i)| is provided as input for all sets C ⇢ [n], |C|  t, then we can compute

occ(C,a) for all sets C ✓ [n], |C|  t,a 2 {0, 1}|C|.

Corollary 5.1. Let V be a set of L unknown k-sparse vectors in Rn. Suppose, for

each C ✓ [n], |C|  logL+ 1, we can compute |[i2CS(i)| (or alternatively |
T

i2C S(i)|)

with probability 1 � � using T log ��1 samples where T is independent of �. Then,

198

there exists an algorithm (see Algorithm 5.1) that can achieve Exact Support Recovery

with probability at least 1� � using O(T log(��1

(n+ (Lk)logL+1

))) samples.

Proof. We know that all vectors v 2 V satisfy kvk
0

 k as they are k-sparse. Therefore,

in the first stage, by computing |S(i)| for all i 2 [n], we can recover the union of support

of all the unknown vectors [
v2Vsupp(v) by computing T = {i 2 [n] | S(i) > 0}. The

probability of failure in finding the union of support exactly is at most n�. Once

we recover T , we compute |[i2CS(i)| for all C ✓ T , |C|  logL+ 1 (or alternatively

| \i2C S(i)| for all C ✓ T , |C|  logL + 1). The probability of failure for this this

event (Lk)logL+1�. From Lemma 5.1, we know that computing |[i2CS(i)| for all

C ✓ [n], |C|  logL + 1 (or alternatively | \i2C S(i)| for all C ✓ T , |C|  logL + 1)

exactly will allow us to recover the support of all the unknown vectors in V . However

|[i2CS(i)| = 0 for all C ✓ [n] \ T provided T is computed correctly. Therefore, we

can recover the support of all the unknown vectors in V with T log ��1 samples with

probability at least 1� ((Lk)logL+1

+ n)�. Rewriting the previous statement so that

the failure probability is � leads to the statement of the lemma.

Algorithm 5.1 Exact Support recovery using access to estimates of

|\i2CS(i)| (or alternatively |[i2CS(i)|) that are correct with high prob-

ability

Require: For C ✓ [n], access to estimates of |\i2CS(i)| (or alternatively |[i2CS(i)|)
that are correct with high probability.

1: For each i 2 [n], compute an estimate of |S(i)|.
2: Compute T = {i 2 [n] | estimate(S(i)) > 0}.
3: Compute estimates of |\i2CS(i)| (or alternatively |[i2CS(i)|) for all subsets C ✓

T , |C|  logL+ 1.
4: Compute occ(C,a) for all subsets C ✓ T , |C|  logL + 1,a 2 {0, 1}|C| using the

computed estimates of |\i2CS(i)| (or alternatively |[i2CS(i)|).
5: Use Algorithm 3.13 to recover the support of all unknown vectors in V .

In the next few lemmas, we characterize the set Trimmed(V) and show some useful

properties. We start with the following definition:

199

Definition 5.4 (t-good). For a binary matrix A 2 {0, 1}n⇥L with all distinct columns

is called t-good if for every column Ai, there exists a set S ⇢ [n] of at most t-indices

such that Ai|S = 1t, and Aj|S 6= 1t for all j 6= i.

Let V be set of L unknown vectors in Rn, and A 2 {0, 1}n⇥L be its support matrix.

Let B be the sub-matrix obtained by deleting duplicate columns of A. The set V is

called t-good if B is t-good.

Notice that if any set V is t-good then it must be r-good for all r � t. In Lemma

5.3, we show that Trimmed(V) is (L� 1)-good and in Lemma 5.5, we provide sufficient

conditions for deduplicated support recovery of the set of unknown vectors V .

Lemma 5.3. for all sets of L unknown vectors V, Trimmed(V) must be (L� 1)-good.

Lemma 5.4. If it is known whether |\i2CS(i)| > 0 or not for all sets C ✓ [n], |C| 

s+1, then there exists an algorithm that achieves Deduplicated support recovery of the

set of unknown vectors V provided Trimmed(V) is known to be s-good for s  L� 1

and |Trimmed(V)| � 2.

Algorithm 5.2 Partial Support recovery using the quantities

1[|\i2CS(i)| > 0]

Require: For every C ✓ [n], |C|  L, the quantities 1[|\i2CS(i)| > 0] are provided as
input

1: Set T = �
2: while There exists a set C ✓ [n], |C|  L�1 such that v|C 6= 1|C| and 1[|\i2CS(i)| >

0] = 1. do
3: Set U = C.
4: for j 2 [n] \ C do
5: if 1[

�

�\i2C[{j}S(i)
�

� > 0] = 1 then
6: Set U U [{j}
7: end if
8: end for
9: Set T T [{v} where v 2 {0, 1}n and supp(v) = U .

10: end while
11: Return T .

200

Algorithm 5.3 Partial Support recovery using access to estimates of

1[|\i2CS(i)| > 0] that are correct with high probability

Require: For C ✓ [n], access to estimates of 1[|\i2CS(i)| > 0] that are correct with
high probability.

1: For each i 2 [n], compute an estimate of 1[|\i2CS(i)| > 0].
2: Compute T = {i 2 [n] | estimate(1[|S(i)| > 0])) = True}.
3: Compute estimates of 1[|\i2CS(i)| > 0] for all subsets C ✓ T , |C|  L.
4: Use Algorithm 5.2 to recover the support of all unknown vectors in V .

Lemma 5.5. If it is known whether |\i2CS(i)| > 0 or not for all sets C ✓ [n], |C| = L,

then there exists an algorithm (see Algorithm 5.2) that achieves Deduplicated support

recovery of the set of unknown vectors V.

Corollary 5.2. Let V be a set of L unknown k-sparse vectors in Rn. Suppose with

probability 1� �, for each C ✓ [n], |C|  L, we can compute if |\i2CS(i)| > 0 correctly

with T log ��1 samples where T is independent of �. Then, there exists an algorithm

(see Algorithm 5.3) that can achieve Deduplicated support recovery with probability at

least 1� � using

O(T log(��1

(n+ (Lk)L)))

samples.

Proof. Again, we know that all vectors v 2 V satisfy kvk
0

 k as they are k-sparse.

Therefore, in the first stage, by computing if |S(i)| > 0 for all i 2 [n], we can

recover the union of support of all the unknown vectors [
v2Vsupp(v) by computing

T = {i 2 [n] | S(i) > 0}. The probability of failure in finding the union of support

correctly is at most n�. Once we recover T correctly, we compute |\i2CS(i)| for all

C ✓ T , |C|  L. The probability of failure for this event (Lk)L�. From Lemma 5.5,

we know that computing |\i2CS(i)| for all C ✓ [n], |C|  L exactly will allow us to

recover the support of all the unknown vectors in V . On the other hand, we will have

|\i2CS(i)| = 0 for all C ✓ [n] \ T provided T is computed correctly. Therefore, we can

201

achieve deduplicated support recovery of all the unknown vectors in V with T log ��1

samples with probability at least 1 � ((Lk)L + n)�. Rewriting, so that the failure

probability is � leads to the statement of the lemma.

Remark 5.3. Corollary 5.2 describes the sample complexity for deduplicated support

recovery using Lemma 5.5 which provides the worst-case guarantees as Trimmed(V) is

(L� 1)�good for all sets V. We can also provide improved guarantees for deduplicated

support recovery provided Trimmed(V) is known to be s�good by using Lemma 5.4.

However, for the sake of simplicity of exposition, we have only provided results for

deduplicated support recovery in mixture models using Corollary 5.2.

5.3 Our Results and Techniques

5.3.1 Mixtures of Distributions

In this section, we will present our main results and high level techniques in the

MD setting. The detailed proofs of all results in this section can be found in Section

5.4.1. We will start by introducing some additional notations specifically for this

setting.

Additional Notations for MD: Recall that Ex⇠P (✓)xt can be written as a poly-

nomial in ✓ of degree t. We will write

qt(✓) , Ex⇠P (✓)x
t
=

X

i2[t+1]

�t,i✓
i�1

to denote this aforementioned polynomial where we use {�t,i}i2[t+1]

to denote its

coefficients. For all sets A ✓ [n], we will write Qi(A) to denote all subsets of A

of size at most i i.e. Qi(A) = {C | C ✓ A, |C|  i}. Let us define the function

⇡ : Q([n])⇥ [n] ! [n] denote a function that takes as input a set C ✓ [n], an index

r 2 C and returns as output the position of r among all indices in C sorted in ascending

202

order. In other words, for a fixed set C and all j 2 [|C|], ⇡(C, ·) maps the jth smallest

index in C to j; for example, if C = {3, 5, 9}, then ⇡(C, 3) = 1, ⇡(C, 5) = 2 and

⇡(C, 9) = 3.

We will write Z+ to denote the set of non-negative integers and (Z+

)

n to denote

the set of all n-dimensional vectors having entries which are non-negative integers.

For two vectors u, t 2 (Z+

)

n, we will write u  t if ui  ti for all i 2 [n]; similarly, we

will write u < t if ui < ti for some i 2 [n]. For any fixed subset C ✓ [n] and vectors

u, t 2 (Z+

)

|C|, we will write ⇣
t,u to denote the quantity

⇣
t,u ,

Y

i2C
�
t⇡(C,i),u⇡(C,i)+1

.

For any u, z 2 (Z+

)

|C| satisfying u < z, we will define a path M to be a sequence

of vectors z

1

> z

2

> · · · > zm such that z

1

, z
2

, . . . , zm 2 (Z+

)

n, z

1

= z and

zm = u. Let M(z,u) be the set of all paths starting from z and ending at u.

We will also write a path M 2 M(z,u) uniquely as a set of m � 1 ordered tuples

{(z
1

, z
2

), (z
2

, z
3

), . . . , (zm�1

, zm)} where each tuple consists of adjacent vectors in

the path sequence. We will also use T (M) ⌘ {z
1

, z
2

, . . . , zm} to denote the set of

elements in the path.

We start with the following assumption which states that every unknown vector is

bounded within an euclidean ball and furthermore, the magnitude of every non-zero

co-ordinate of all unknown vectors is bounded from below:

Assumption 5.1. We will assume that all unknown vectors in the set V are bounded

within a ball of known radius R i.e.
�

�

�

�

v

(i)
�

�

�

�

2

 R for all i 2 [L]. Furthermore, the

magnitude of all non-zero entries of all unknown vectors in V is bounded from below

by � i.e. min

v2V mini:vi 6=0

|vi| � �.

203

Now, we show our main lemma in this setting where we characterize the sufficient

number of samples to compute
�

�

T

i2C S(i)
�

� for each set C ✓ [n] with high probability

in terms of the coefficients of the polynomials {qt(✓)}t:

Lemma 5.6. Suppose Assumption 5.1 is true. Let

� , �2L|C|

2

⇣

3max(LR2L|C|, 2LRL+|C|
)

⌘

(L�1)

L!

⇥

max

z2L1|C|

L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

!�1

gL,V ,
max

z2L1|C| E
Q

i2C x
2z⇡(C,i)
i

�

2

where gL,V is a constant that is independent of k and n but depends on L. There exists

an algorithm (see Algorithm 5.4) that can compute
�

�

T

i2C S(i)
�

� exactly for each set

C ✓ [n] with probability at least 1� � using O
⇣

log(��1

(2L)|C|)gL,V
⌘

samples generated

according to Pd.

In order to prove Lemma 5.6, we first show that (see Lemma 5.10) for each fixed

ordered set C ✓ [n] and each vector t 2 (Z+

)

|C|, we must have

E
Y

i2C
x

t⇡(C,i)
i =

1

L

X

ut

⇣
t,u ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

u⇡(C,i)
⌘

. (5.2)

Note that each summand in equation 5.2 is a product of the powers of the co-

ordinates of the same unknown vector. In Lemma 5.11, we show that for each

set C ✓ [n] and any vector t 2 (Z+

)

|C|, we can compute
P

j2[L]
Q

i2C(v
(j)
i)

t⇡(C,i) via

a recursive procedure provided for all u 2 (Z+

)

|C| satisfying u  t, the quantity

E
Q

i2C x
u⇡(C,i)
i is pre-computed. This implies that we can compute

P

j2[L]
Q

i2C(v
(j)
i)

2p

for all p 2 [L] from the quantities E
Q

i2C x
u⇡(C,i)
i for all u  2p1|C|. It is easy to

recognize
P

v2V
⇣

Q

i2C v
2

i

⌘p

as the power sum polynomial of degree p in the variables

204

{
Q

i2C v
2

i }v2V . Now, let us define the quantity AC,t for a fixed ordered set C and

parameter t 2 [L] as follows:

AC,t ,
X

C0✓[L]
|C0|=t

Y

i2C
j2C0

(v

(j)
i)

2

Notice that AC,t > 0 if and only if there exists a subset C 0 ✓ [L], |C 0| = t such that

v

(j)
i 6= 0 for all i 2 C, j 2 C 0. Hence, the maximum value of t such that AC,t > 0 is

the number of unknown vectors in V having non-zero value in all the indices in C. In

other words, we have that

�

�

�

�

�

\

i2C
S(i)

�

�

�

�

�

= max

t2[L]
t · 1[AC,t > 0].

Notice that AC,t is the elementary symmetric polynomial of degree t in the variables

{
Q

i2C v
2

i }v2V . We can use Newton’s identities to state that for all t 2 [L],

tAC,t =
t

X

p=1

(�1)p+1AC,t�p

⇣

X

v2V

⇣

Y

i2C
v

2

i

⌘p⌘

using which, we can recursively compute AC,t for all t 2 [L] (AC,0 = 1) and hence
�

�

T

i2C S(i)
�

� if we were given
P

v2V
⇣

Q

i2C v
2

i

⌘p

as input for all p 2 [L] (see Lemma

5.12). Lemma 5.6 follows from making these set of computations robust. We next

show Theorem 5.1 which follows from applying Lemma 5.6 and Corollary 5.1.

Theorem 5.1. Let V be a set of L unknown vectors in Rn satisfying Assumption 5.1.

Let Fm = Q
1

([n]) [Qm([v2Vsupp(v)) and

�m , �2Lm

2

⇣

3Lmax(R2Lm, 2LRL+m
)

⌘

(L�1)

L!

max

z2L1m

L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

!�1

205

fL,V , max

z2L1
logL+1

C2F
logL+1

E
Q

i2C x
2z⇡(C,i)
i

�

2

logL+1

.

Here fL,V is a constant that is independent of k and n but depends on L. Then, there

exists an algorithm (see Algorithm 5.4 and 5.1) that achieves Exact Support Recovery

with probability at least 1�� using O
⇣

log(��1

(2L)logL+1

(n+(Lk)logL+1

))fL,V
⌘

samples

generated according to Pd.

Now, we provide a corollary of Theorem 5.1 specifically for mean-estimation in

a mixture of distributions with constant number of components i.e. L = O(1) . In

particular, consider the setting where

t ⇠Unif [L] and xi | t ⇠ P (v

(t)
i) independently for all i 2 [n]

E
x⇠Pd

[xi | t = j] = v

(j)
i

i.e. the mean of the ith co-ordinate of the random vector x distributed according to

Pd is v

(j)
i .

Corollary 5.3. Consider the mean estimation problem described above. Let V be

a set of L = O(1) unknown vectors in Rn satisfying Assumption 5.1 and fL,V be

as defined in Theorem 5.1. Then, there exists an algorithm (see Algorithm 5.4

and 5.1) that with probability at least 1 � �, achieves Exact Support Recovery us-

ing O
⇣

log(n��1

)poly(�R�1

)fL,V
⌘

samples generated according to Pd.

We can compare the sample complexity presented in Corollary 5.3 with the

alternate approach for support recovery namely the two stage process of recovering

the union of support followed by parameter estimation restricted to the union of

support. Most known results (other than [114]) for parameter estimation in Gaussian

mixtures without separability assumptions hold for two mixtures and are therefore

206

not applicable for L > 2. For general value of L, the only known sample complexity

guarantees for parameter estimation in mixture of Gaussians is provided in [114].

Note that computing the union of support is not difficult in the MD setting. In

particular, in Lemma 5.6, the guarantees include the sample complexity of testing

whether a particular index belongs to the union of support; this can be used to

compute the union of support itself after taking a union bound over all indices leading

to a multiplicative log n factor.

However, for one dimensional Gaussian mixture models (1D GMM), the parameter

estimation guarantees in [114] (See Corollary 5) are polynomial in the inverse of the

failure probability. Since parameter estimation in 1D GMM is used as a framework for

solving the high dimensional problem, it can be extracted that the sample complexity

in n dimensions must be polynomial in n with degree at least 1 to achieve a per

coordinate error (error in L1 norm). If restricted to the union of support of the

unknown vectors in V, then using the guarantees in [114] directly will lead to a

polynomial dependence on Lk. In essence, the sample complexity of the alternate

approach has a logarithmic dependence on the latent space dimension and a polynomial

dependence on sparsity k (for constant L). Note that our sample complexity only has

a logarithmic dependence on the dimension n (and is independent of k for constant L)

and is therefore essentially dimension-free.

For other distributions, to the best of our knowledge, the only known parameter

estimation results that exist in literature are [18, 99]. In both of these works, the

authors use the same assumption that Ex⇠P (✓)xL can be written as a polynomial in ✓

of degree exactly L. While the guarantees in [18] are non-constructive, the results in

[99] need the restrictive assumption that the means must be multiple of some ✏ > 0

and moreover, they have an exponential dependence on the noise variance and ✏�1.

Our results do not have these limitations and are therefore widely applicable.

207

In the next part we provide results on deduplicated support recovery in this setting.

Note that from Lemma 5.5, for partial recovery, we only need to estimate correctly

if
�

�

T

i2C S(i)
�

� > 0 for ordered sets C ✓ [n]. Notice that
�

�

T

i2C S(i)
�

� > 0 if and only if
P

v2V
Q

i2C v
2

i > 0. From our previous arguments,
P

v2V
Q

i2C v
2

i can be computed if

the quantities E
Q

i2C x
u⇡(C,i)
i for all u  21|C| are pre-computed. The following lemma

stems from making this computation robust to the randomness in the dataset:

Lemma 5.7. Suppose Assumption 5.1 is true. Let

� , max

z21|C|

�2|C|

2

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘�1

hL,V ,
max

z21|C| E
Q

i2C x
2z⇡(C,i)
i

�

2

where hL,V is a constant independent of k and n but depends on L. There exists an

algorithm (see Algorithm 5.5) that can compute if
�

�

T

i2C S(i)
�

� > 0 correctly for each

set C ✓ [n] with probability at least 1 � � using O(hL,V log ��1

) samples generated

according to Pd.

The subsequent theorem follows from Lemma 5.7 and Corollary 5.2. Note that,

compared to exact support recovery (Theorem 5.2) the sample complexity for dedupli-

cated support recovery has significantly improved dependency on � and furthermore,

it is also independent of R.

Theorem 5.2. Let V be a set of unknown vectors in Rn satisfying Assumption 5.1.

Let Fm = Q
1

([n]) [Qm([v2Vsupp(v)) and

�m = max

z21|C|

�2|C|

2

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘�1

h0
L,V , max

z21LC2FL

E
Q

i2C x
2z⇡(C,i)
i

�

2

L

208

where h0
L,V is a constant independent of k and n but depends on L. Accordingly, there

exists an algorithm (see Algorithm 5.5 and 5.3) that achieves Deduplicated support

recovery with probability at least 1 � � using O
⇣

h0
L,V log(�

�1

(n + (Lk)L))
⌘

samples

generated from Pd.

5.3.2 Mixtures of Linear Classifiers

In this section, we will present our main results and high level techniques in the

MLC setting. The detailed proofs of all results in this section can be found in Section

5.4.2. We solve the sparse recovery problem when the observed samples are generated

according to Pc under the following assumption which states that the unknown vectors

in V either all have non-negative entries or they all have non-positive entries.

Assumption 5.2. The non-zero entries of unknown vectors in V are all either positive

(vi � 0 for all i 2 [n],v 2 V) or they are all negative (vi  0 for all i 2 [n],v 2 V).

Next, if Assumption 5.2 is satisfied, we show the sample complexity of computing
�

�

S

i2C S(i)
�

� for each set C ✓ [n].

Lemma 5.8. Suppose Assumptions 5.1 and 5.2 are true. Let a =

p
2(R2

+�2

)

�
erf�1

⇣

1�
1

2L

⌘

. There exists an algorithm (see Algorithm 5.6) that can compute
�

�

S

i2C S(i)
�

� for

each set C ✓ [n] with probability at least 1� � using O
⇣

(1� �(a))�|C|L2

log ��1

⌘

i.i.d

samples from Pc.

Let us present a high level proof of Lemma 5.8. Without loss of generality, let

us assume that all unknown vectors in V have positive non-zero entries. For a fixed

set C ✓ [n], suppose we condition on the event EC which is true when for all j 2 C,

xj > a for some suitably chosen a > 0. Furthermore, let E
v

be the event that the

particular vector v 2 V is used to generate the sample (x, y). Notice that if vi = 0

for all i 2 C, then conditioning on the event EC does not change the distribution of

the response y | E
v

; hence the probability of y = 1 is exactly 1/2 in this case. On

209

the other hand, if vi 6= 0 for some i 2 C, then conditioning on the event EC does

change the distribution of the response y | E
v

. In particular, if vi 6= 0, note that

hv|C,x|Ci � a� and therefore Pr(y = 1 | EC, Ev) must be larger than 1/2 and is an

increasing function of a. Of course, if a is chosen to +1, then Pr(y = 1 | EC, Ev) = 1

and therefore 2Pr(y = 1 | EC) = 1 + L�1 |[i2CS(i)|. Thus, if a = +1, we can use the

fact that |[i2CS(i)| is integral to compute |[i2CS(i)| correctly from an estimate of

Pr(y = 1 | EC) that is within an additive error of 1/4L. Of course, we cannot choose

a = +1 since no samples will satisfy the event EC in that case. However, we can

choose a, (a > 0) carefully so that it is small enough to make Pr(EC) reasonably large

and at the same time, a is large enough to allow us to correctly compute |[i2CS(i)|

from a reasonably good estimate of Pr(y = 1 | EC). Next, we can again use Lemma

5.8 and Corollary 5.1 to arrive at the main theorem for Mixtures of Linear Classifiers:

Theorem 5.3. Let V be a set of L unknown vectors in Rn satisfying Assumptions

5.1 and 5.2. Let a =

p
2(R2

+�2

)

�
erf�1

⇣

1 � 1

2L

⌘

. Then, there exists an algorithm (see

Algorithm 5.6 and 5.1) that achieves Exact Support Recovery with probability at least

1 � � using O
⇣

(1 � �(a))�(logL+1)L2

log(��1

(n + (Lk)logL+1

))

⌘

samples generated

according to Pc.

The only comparable result is provided in [125] who provide parameter estimation

guarantees in the MLC setting. However, since it is not evident how to recover the

union of support in the sparse MLC setting; directly applying the result in [125] will

lead to polynomial dependence on n which is undesirable. Moreover, the guarantees in

[125] also require the latent parameter vectors to be linearly independent. In contrast,

our sample complexity guarantees for support recovery scale logarithmically with n

and also does not need the latent parameter vectors to be linearly independent (in

fact they are not even required to be distinct).

210

5.3.3 Mixtures of Linear Regression

Finally, we move on to the mixtures of linear regression or MLR setting. Note that

the sample complexity guarantees for MLC (Theorem 5.3) is also valid in the MLR

setting as we can simulate MLR responses by simply taking the sign of the response

in the MLR dataset. However, note that the sample complexity presented in Theorem

5.3 has a poor dependence on R, � and L. Here we solve the support recovery problem

provided the unknown vectors in V are all binary and demonstrate significantly better

sample complexity guarantees under this assumption. The detailed proofs of all results

in this section can be found in Section 5.4.3. As usual, we start with a lemma where

we characterize the sample complexity of estimating
�

�

T

i2C S(i)
�

� correctly:

Lemma 5.9. If the unknown vectors in the set V are all binary i.e. v

(1),v(2), . . . ,v(L) 2

{0, 1}n, then, with probability at least 1 � �, for each set C ✓ [n], there exists an

algorithm (see Algorithm 5.7) that can compute
�

�

T

i2C S(i)
�

� using

O(L2

(k + �2

)

|C|/2
(log n)2|C|

log ��1

)

i.i.d samples from Pr.

We provide a high level proof of Lemma 5.9 here. We consider the random variable

y|C| ·
⇣

Q

i2C xi

⌘

where (x, y) ⇠ Pr. Clearly, we can write y = hv,xi + ⇣ where

⇣ ⇠ N (0, �2

) and v is uniformly sampled from the set of unknown vectors V . We can

show that

E
(x,y)⇠Pry

|C| ·
⇣

Y

i2C
xi

⌘

= E
x,⇣`

�1

X

v2V

⇣

Y

i2C
xi

⌘

·
⇣

hv,xi+ ⇣
⌘|C|

Ey|C| ·
⇣

Y

i2C
xi

⌘

=

1

`

X

v2V

⇣

Y

i2C
Ex2

i · vi

⌘

=

�

�

T

i2C S(i)
�

�

`
.

211

E
(x,y)⇠Pry

|C| ·
⇣

Y

i2C
xi

⌘

= E
x,⇣`

�1

X

v2V

⇣

Y

i2C
xi

⌘

·
⇣

hv,xi+ ⇣
⌘|C|

Ey|C| ·
⇣

Y

i2C
xi

⌘

=

1

L

X

v2V

⇣

Y

i2C
Ex2

i · vi

⌘

=

�

�

T

i2C S(i)
�

�

L
.

Hence, by using the fact that
�

�

T

i2C S(i)
�

� is integral, we can estimate the quantity

correctly from a reasonably good estimate of Ey|C|·
⇣

Q

i2C xi

⌘

. Again, by an application

of Corollary 5.1, we arrive at the following theorem:

Theorem 5.4. Let V be a set of L unknown binary vectors in {0, 1}n. Then, with

probability at least 1� �, there exists an algorithm (see Algorithm 5.7 and 5.1) that

achieves Exact Support Recovery with

O
�

L2

(k + �2

)

(logL+1)/2
(log n)2(logL+1)

log((n+ (Lk)logL+1

)��1

)

�

samples generated according to Pr.

As in mixtures of distributions, it is possible to recover the union of support of

the unknown vectors in V in the MLR setting with a small number of samples (see

Lemma C.5 in Appendix C.2). Therefore an alternate approach that can be used for

support recovery is to recover the union of support followed by parameter estimation

with the features being restricted to the union of the support. Note that if the set

of unknown vectors satisfy Assumption 5.1, then estimating each vector up to an L
2

norm of � will suffice for support recovery. Hence, by using Lemma C.5 followed by

Theorem 1 in [103], we arrive at the following result for support recovery:

Theorem 5.5. Let V be a set of L unknown vectors satisfying Assumption 5.1.

Further, assume that any two distinct vectors v,v0 2 V satisfies kv� v

0k
2

� �. Then,

212

with high probability, there exists an algorithm that achieves Exact Support Recovery

with

O

✓

Lk log
⇣Lk

�

⌘

poly
⇣L�

�

⌘

+

⇣�L

�

⌘O(L2

)

+ L2

(R2

+ �2

)(log n)3/�2
◆

samples generated according to Pr.

If the unknown vectors in V are restricted to being binary, then the sample

complexity in Theorem 5.5 has a linear dependence on the sparsity but on the other

hand, its dependence on �, L is very poor; note that Theorem 5.5 uses parameter

estimation framework in mixtures of Gaussians ([114]) as a black-box leading to the

polynomial in L, � with a possibly high degree. Moreover, the sample complexity in

Theorem 5.5 has an exp(L2

) dependence on the number of unknown vectors which is

undesirable when the number of unknown vectors L is large. In contrast, the sample

complexity of Theorem 5.4 has a polynomial dependence on L, k, � whose degree

can be precisely extracted from the expression. In particular, in the regime where

� or L is large, Theorem 5.4 provides significant improvements over the guarantees

in Theorem 5.5. Finally, although not mentioned explicitly in Theorem 1 in [103],

it can be extracted that the sample complexity is polynomial in ��1 where � is the

failure probability; this leads to a similar dependence on the failure probability in

Theorem 5.5. On the other hand, the sample complexity in Theorem 5.4 depends

logarithmically on ��1.

Our final results are for deduplicated support recovery in the MLR setting under

different assumptions. Below, we state Assumption 5.3 which is a generic condition

and if satisfied by the set of unknown vectors V allows for deduplicated support

recovery of V .

213

Assumption 5.3. We assume that there exists positive numbers ↵
1

,↵
2

, . . . ,↵L > 0

such that for all sets C ✓ [n], |C|  L the following condition is satisfied by the set of

L unknown vectors v

(1),v(2), . . . ,v(L) 2 V:

If there exists v 2 V such that
Y

j2C
vj 6= 0 then

�

�

�

�

�

X

v2V

⇣

Y

j2C
vj

⌘

�

�

�

�

�

� ↵|C|.

Theorem 5.6. Suppose the following conditions are satisfied:

1. All unknown vectors in V are bounded within a ball of radius R i.e.
�

�

�

�

v

(i)
�

�

�

�

2



R for all i 2 [L].

2. Assumption 5.3 is satisfied by the set of unknown vectors V.

Accordingly, there exists an algorithm (see Algorithms 5.8 and 5.3) that achieves

Deduplicated support recovery with probability at least 1� � using

O(L2

(R2

+ �2

)

L/2
(log n)2L log((n+ (Lk)L)��1

)/↵2

L)

samples from Pr.

Next, using Theorem 5.6, we provide deduplicated support recovery guarantees

in two cases: 1) The set of unknown vectors in V satisfies Assumptions 5.1 and all

unknown parameters are non-negative 2) The non-zero entries in the unknown vectors

in V are distributed according to a zero mean Gaussian N (0, ⌫2

).

Corollary 5.4. Consider a set of L unknown vectors V that satisfies Assumptions 5.1

and furthermore, every non-zero entry in all the unknown vectors is positive (vi � 0

for all i 2 [n],v 2 V). In that case, Assumption 5.3 is satisfied with ↵|C| � �|C|.

Accordingly, there exists an algorithm that achieves Deduplicated support recovery with

probability at least 1� � using

O(L2

(R2

+ �2

)

L/2
(log n/�)2L log((n+ (Lk)L)��1

))

214

samples from Pr.

Corollary 5.5. If all non-zero entries in the set of unknown vectors V are sampled

i.i.d according to N (0, ⌫2

), then with probability 1 � ⌘, Assumption 5.3 is satisfied

with ↵|C| � �|C||C| where

�|C| =
⇣

r

⇡

8

⌫⌘

L|C|(Lk)|C|
⌘

.

Conditioned on this event, there exists an Algorithm that achieves Deduplicated support

recovery with probability at least 1� � using

O(L2

(R2

+ �2

)

L/2
(log n)2L log((n+ (Lk)L)��1

)/�2L)

samples from Pr.

5.4 Detailed Algorithms and Proofs

5.4.1 Mixtures of Distributions

Lemma 5.10. For each fixed set C ✓ [n] and each vector t 2 (Z+

)

|C|, we must have

E
Y

i2C
x

t⇡(C,i)
i =

1

L

X

ut

⇣
t,u ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

u⇡(C,i)
⌘

.

Proof. We will have

E
Y

i2C
x

t⇡(C,i)
i =

1

L

X

j2[L]

⇣

Y

i2C
q
t⇡(C,i)(v

(j)
i)

⌘

.

From the above equations, note that each summand is a product of polynomials

in v

(j)
i for a fixed j. Expanding the polynomial and using the fact that ⇣

t,u =

215

Algorithm 5.4 Recover |
T

i2C S(i)| in MD setting

Require: Samples x

(1),x(2), . . . ,x(m) ⇠ Pd. Set C ✓ [n].
1: For every z  2L1|C|, compute estimate bUz of E

Q

i2C x
z⇡(C,i)
i using Algorithm C.1

on the set of samples {(xj
i)

z⇡(C,i)}mj=1

.
2: For every z  2L1|C|, compute an estimate bV z of

P

j2[L]
Q

i2C(v
(j)
i)

z⇡(C,i) recursively
using the following equation:

LbUz �
X

u<z

⇣
z,u · bV u

= ⇣
z,z · bV z.

3: For every t 2 [L], compute an estimate bAC,t of
P

C0✓[L]
|C0|=t

Q

i2C
j2C0

(v

(j)
i)

2 recursively

using Newton’s identities

tbAC,t =
t

X

p=1

(�1)p+1

bAC,t�p
bV 2p1|C| .

4: Return maxt2[L] t.1[bAC,t > 0].

Q

i2C �t⇡(C,i),u⇡(C,i)+1

is the coefficient of the monomial
Q

i2C(v
(j)
i)

u⇡(C,i) for all j 2 [L],

we obtain the proof of the lemma.

Lemma 5.11. For each fixed set C ✓ [n] and each vector t 2 (Z+

)

|C|, we can compute
P

j2[L]
Q

i2C(v
(j)
i)

t⇡(C,i) provided for all u 2 (Z+

)

|C| satisfying u  t, the quantities

E
Q

i2C x
u⇡(C,i)
i are pre-computed.

Proof. We will prove this lemma by induction. For the base case, we have from Lemma

5.10 that LExi = �
1,2

P

j2[L] v
(j)
i + �

1,1. Hence
P

j2[L] v
(j)
i can be computed from Exi

by using the following equation:

X

j2[L]
v

(j)
i =

1

�
1,2

⇣

LExi � �
1,1

⌘

.

Now suppose for all vectors u 2 (Z+

)

|C| satisfying u  t, the lemma statement is

true. Consider another vector z 2 (Z+

)

|C| such that there exists an index j 2 |C| for

216

which zj = tj + 1 and zi = ti for all i 6= j. From the statement of Lemma 5.10, we

know that

E
Y

i2C
x

z⇡(C,i)
i =

1

L

X

uz

⇣
z,u ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

u⇡(C,i)
⌘

where ⇣
z,u =

Q

i2C �z⇡(C,i),u⇡(C,i)+1

. From our induction hypothesis, we have already

computed
P

j2[L]
Q

i2C(v
(j)
i)

u⇡(C,i) for all u < z (the set {u 2 (Z+

)

|C| | u < z} is

equivalent to the set {u 2 (Z+

)

|C| | u  t}). Since E
Q

i2C x
z⇡(C,i)
i is already pre-

computed, we can compute
P

j2[L]
Q

i2C(v
(j)
i)

z⇡(C,i) as follows:

LE
Y

i2C
x

z⇡(C,i)
i �

X

u<z

⇣
z,u ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

u⇡(C,i)
⌘

= ⇣
z,z ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

z⇡(C,i)
⌘

.

This completes the proof of the lemma.

Lemma 5.12. For each fixed set C ✓ [n], we can compute
�

�

T

i2C S(i)
�

� provided for all

p 2 [L], the quantity
P

v2V
⇣

Q

i2C v
2

i

⌘p

is pre-computed.

Proof. Let us fix a particular subset C ✓ [n]. Now, let us define the quantity

AC,t =
X

C0✓[L]
|C0|=t

Y

i2C
j2C0

(v

(j)
i)

2

Notice that AC,t > 0 if and only if there exists a subset C 0 ✓ [L], |C 0| = t such that

v

(j)
i 6= 0 for all i 2 C, j 2 C 0. Hence, the maximum value of t such that AC,t > 0 is

the number of unknown vectors in V having non-zero value in all the indices in C. In

other words, we have that

�

�

�

�

�

\

i2C
S(i)

�

�

�

�

�

= max

t2[L]
t · 1[AC,t > 0].

217

Let t? be the maximum value of t for which AC,t > 0. We will have AC,t? � �2L|C|.

It is easy to recognize
P

v2V
⇣

Q

i2C v
2

i

⌘p

as the power sum polynomial of degree p

in the variables {
Q

i2C v
2

i }v2V . On the other hand, AC,t is the elementary symmetric

polynomial of degree t in the variables {
Q

i2C v
2

i }v2V . We can use Newton’s identities

to state that for all t 2 [L],

tAC,t =
t

X

p=1

(�1)p+1AC,t�p

⇣

X

v2V

⇣

Y

i2C
v

2

i

⌘p⌘

using which, we can recursively compute AC,t for all t 2 [L] if we were given
P

v2V
⇣

Q

i2C v
2

i

⌘p

as input for all p 2 [L].

We are now ready to prove Lemma 5.6.

Lemma (Restatement of Lemma 5.6). Suppose Assumption 5.1 is true. Let

� , �2L|C|

2

⇣

3max(LR2L|C|, 2LRL+|C|
)

⌘

(L�1)

L!

⇥

max

z2L1|C|

L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

!�1

gL,V ,
max

z2L1|C| E
Q

i2C x
2z⇡(C,i)
i

�

2

where gL,V is a constant that is independent of k and n but depends on L. There exists

an algorithm (see Algorithm 5.4) that can compute
�

�

T

i2C S(i)
�

� exactly for each set

C ✓ [n] with probability at least 1� � using O
⇣

log(��1

(2L)|C|)fL,V
⌘

samples generated

according to Pd.

218

Proof. Suppose, for every vector z 2 (Z+

)

|C| satisfying z  2L1|C|, we compute an

estimate bUz of E
Q

i2C x
z⇡(C,i)
i such that

�

�

�

bUz � E
Q

i2C x
z⇡(C,i)
i

�

�

�

 �

z

where �

z

is going

to be determined later. Recall that in Lemma 5.12, we showed

LE
Y

i2C
x

z⇡(C,i)
i �

X

u<z

⇣
z,u ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

u⇡(C,i)
⌘

= ⇣
z,z ·

⇣

X

j2[L]

Y

i2C
(v

(j)
i)

z⇡(C,i)
⌘

. (5.3)

Using the computed bUz’s , we can compute an estimate bV z of
P

j2[L]
Q

i2C(v
(j)
i)

z⇡(C,i)

for all z 2 (Z+

)

|C| satisfying z  2L1|C|. Let us denote the error in estimation by ✏
z

i.e. we have
�

�

�

bV z �
P

j2[L]
Q

i2C(v
(j)
i)

z⇡(C,i)

�

�

�

 ✏
z

. Now, we prove the following claim.

Claim 5.1. We must have

✏
z

 L�
z

⇣
z,z

+

X

u<z

X

M2M(z,u)

L�
u

Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

Proof. We will prove this lemma by induction. Let ei be the standard basis vector

having a non-zero entry at the ith index and is zero everywhere else. For the base case,

we have from Lemma 5.10 that LExi = �
1,2

P

j2[L] v
j
i + �

1,1. Therefore, we must have

LExi � LbUei
= �

1,2(

X

j2[L]
v

j
i � bUei

)

=) L�
ei = �

1,2✏ei .

From definition, (recall that ⇣
z,u =

Q

i2C �z⇡(i),u⇡(i)+1

), we have ⇣
ei,ei = �

1,2 which

completes the proof of the base case. Now suppose for all vectors u 2 (Z+

)

|C| satisfying

u  t, the lemma statement is true. Consider another vector z 2 (Z+

)

|C| such that

there exists an index j 2 |C| for which zj = tj + 1 and zi = ti for all i 6= j. From the

statement of Lemma 5.10, we know that

219

LE
Y

i2C
x

z⇡(i)

i �
X

u<z

⇣
z,u ·

⇣

X

j2[L]

Y

i2C
(v

j
i)

u⇡(i)

⌘

= ⇣
z,z ·

⇣

X

j2[L]

Y

i2C
(v

j
i)

z⇡(i)

⌘

.

Hence, we must have

⇣

LE
Y

i2C
x

z⇡(i)

i � LbUz

⌘

�
⇣

X

u<z

⇣
z,u ·

⇣

X

j2[L]

Y

i2C
(v

j
i)

u⇡(i) � bV u

⌘⌘

= ⇣
z,z ·

⇣

X

j2[L]

Y

i2C
(v

j
i)

z⇡(i) � bV z

⌘

=) ⇣
z,z✏z  L�

z

+

X

u<z

⇣
z,u✏u.

Now, by using our induction hypothesis, we must have

⇣
z,z✏z  L�

z

+

X

u<z

⇣
z,u

L�
u

⇣
u,u

+

X

v<u

X

M2M(u,v)

L�
v

Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

!

=) ✏
z

 L�
z

⇣
z,z

+

X

u<z

⇣
z,u

L�
u

⇣
z,z⇣u,u

+

X

v<u

X

M2M(u,v)

L�
v

Q

(r,s)2M ⇣
r,s

⇣
z,z

Q

r2T (M)

⇣
r,r

!

=) ✏
z

 L�
z

⇣
z,z

+

X

u<z

X

M2M(z,u)

L�
u

Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

.

This completes the proof of the claim.

Hence, for fixed �

z

= � for all z  2L1|C|, we get

✏
z

 �

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘

.

For a fixed �, let us write ✏ to denote the following quantity:

✏ , max

z2L1|C|
�

⇣ L

⇣
z,z

+

X

u<z

X

Q2Q(z,u)

L
Q

(r,s)2Q ⇣
r,s

Q

r2T (Q)

⇣
r,r

⌘

220

Consider a fixed subset of indices C ✓ [n] and a fixed vector t 2 (Z+

)

|C|. Using the

fact max

v2V,i2[n] v2

i  R2, we have that

1

L

X

v2V

⇣

Y

i2C
v

2

i

⌘p

 R2p|C| and AC,t =
X

C0✓[L]
|C0|=t

Y

i2C
j2C0

(v

(j)
i)

2 
✓

L

t

◆

R2(t+|C|)  2

LR2(t+|C|).

We can compute an estimate bAC,t of AC,t by using bV 2p1|C| in the following set of

recursive equations

tbAC,t =
t

X

p=1

(�1)p+1

bAC,t�p
bV 2p1|C| .

Claim 5.2.

�

�

�

bAC,t � AC,t
�

�

�

 ✏
⇣

3max(LR2L|C|, 2LRL+|C|
)

⌘

(t�1)

t! for all t 2 [L].

Proof. We will prove this claim by induction. For the base case i.e. t = 1, notice that

�

�

�

bAC,1 � AC,1
�

�

�


�

�

�

�

�

bV 21|C| �
X

v2V

Y

i2C
v

2

i

�

�

�

�

�

 ✏.

Now, suppose for all t  k, the following holds true:

�

�

�

bAC,t � AC,t
�

�

�

 ✏
⇣

3max(LR2L|C|, 2LRL+|C|
)

⌘t�1

t!.

For ease of notation, let us denote a = 3max(LR2L|C|, 2LRL+|C|
). In that case, for

t = k + 1, we must have

t
�

�

�

bAC,t � AC,t
�

�

�


X

pt

�

�

�

�

�

bAC,t�p
bV 2p1|C| � AC,t�p ·

X

v2V

⇣

Y

i2C
v

2

i

⌘p

�

�

�

�

�

221


�

�

�

�

�

bV 21|C| �
X

v2V

⇣

Y

i2C
v

2

i

⌘

(k+1)

�

�

�

�

�

+

X

pt�1

�

�

�

�

�

✏at�2

(t� 1)! ·
X

v2V

⇣

Y

i2C
v

2

i

⌘p

+ ✏ · AC,t�p + ✏2at�2

(t� 1)!

�

�

�

�

�

 ✏+
X

pt�1

�

�✏at�2

(t� 1)!LR2L|C|
+ ✏ · 2LR2(L+|C|)

+ ✏2at�2

(t� 1)!

�

�

 ✏+
X

pt�1

✏at�1

(t� 1)!  ✏a(t�1)t!.

Hence,
�

�

�

bAC,t � AC,t
�

�

�

 ✏at�1t! thus proving our claim.

Hence, to identify t? correctly, we must have

✏
⇣

3max(LR2L|C|, 2LRL+|C|
)

⌘

(L�1)

L!  �2L|C|

2

=) �  �2L|C|

2

⇣

3max(LR2L|C|, 2LRL+|C|
)

⌘

(L�1)

L!

⇥

max

z2p1|C|

1

⇣
z,z

+

X

u<z

X

M2M(z,u)

Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

!�1

where we inserted the definition of �. Therefore, for every vector z 2 (Z+

)

|C| satisfying

z  2L1|C|, in order to compute bUz of E
Q

i2C x
z⇡(C,i)
i such that

�

�

�

bUz � E
Q

i2C x
z⇡(C,i)
i

�

�

�



�, the number of samples that is sufficient with probability 1� � is going to be

O
⇣

log(��1

(2L)|C|)
max

z2L1|C| E
Q

i2C x
2z⇡(C,i)
i

�

2

⌘

.

Theorem (Restatement of Theorem 5.1). Let V be a set of L unknown vectors in Rn

satisfying Assumption 5.1. Let Fm = Q
1

([n]) [Qm([v2Vsupp(v)) and

�m =

�2Lm

2

⇣

3Lmax(R2Lm, 2LRL+m
)

⌘

(L�1)

L!

222

⇥

max

z2L1m

L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

!�1

fL,V = max

z2L1
logL+1

C2F
logL+1

E
Q

i2C x
2z⇡(C,i)
i

�

2

logL+1

where fL,V is a constant that is independent of k and n but depends on L. Then, there

exists an algorithm (see Algorithm 5.4 and 5.1) that achieves Exact Support Recovery

with probability at least 1�� using O
⇣

log(��1

(2L)logL+1

(n+(Lk)logL+1

))fL,V
⌘

samples

generated according to Pd.

Proof. The proof follows directly from Corollary 5.1 and Lemma 5.6.

Corollary (Restatement of Corollary 5.3). Consider the mean estimation problem

where E
x⇠Pd

[xi | t = j] = v

(j)
i . Let V be a set of L = O(1) unknown vectors in Rn

satisfying Assumption 5.1 and fL,V be as defined in Theorem 5.2. Then, there exists an

algorithm (see Algorithm 5.4 and 5.1) that with probability at least 1��, achieves Exact

Support Recovery using O
⇣

log(n��1

)poly(�R�1

)fL,V
⌘

samples generated according to

Pd.

Proof. We can re-scale the samples (dividing them by R) so that Assumption 5.1 will

be satisfied with �0 = �/R and R0  1. Since L is a constant, �
logL = O(poly(�R�1

)).

Therefore, the corollary follows from Theorem 5.1.

Lemma (Restatement of Lemma 5.7). Suppose Assumption 5.1 is true. Let

� , max

z21|C|

�2|C|

2

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘�1

hL,V ,
max

z21|C| E
Q

i2C x
2z⇡(C,i)
i

�

2

where hL,V is a constant independent of k and n but depends on L. There exists an

algorithm (see Algorithm 5.5) that can compute if
�

�

T

i2C S(i)
�

� > 0 correctly for each

223

Algorithm 5.5 Estimate if |
T

i2C S(i)| > 0 in MD setting

Require: Samples x

(1),x(2), . . . ,x(m) ⇠ Pd. Set C ✓ [n].
1: For every z  21|C|, compute estimate bUz of E

Q

i2C x
z⇡(C,i)
i using Algorithm C.1

on the set of samples {(xj
i)

z⇡(C,i)}mj=1

.
2: For every z  21|C|, compute an estimate bV z of

P

j2[L]
Q

i2C(v
(j)
i)

z⇡C,i recursively
using the following equation:

LbUz �
X

u<z

⇣
z,u · bV u

= ⇣
z,z · bV z.

3: If bV 21|C| � �2|C|/2, return True and otherwise return False.

set C ✓ [n] with probability at least 1 � � using O(hL,V log ��1

) samples generated

according to Pd.

Proof. For a fixed ordered set C ✓ [n], consider the statistic
P

v2V
Q

i2C v
2

i . If
P

v2V
Q

i2C v
2

i > 0, then |\i2CS(i)| > 0 and otherwise, if
P

v2V
Q

i2C v
2

i = 0, then

|\i2CS(i)| = 0. Hence it suffices to estimate correctly if
P

v2V
Q

i2C v
2

i > 0 or not. From

Lemma 5.11, we know that for each set C ✓ [n], we can compute
P

j2[L]
Q

i2C(v
(j)
i)

2

provided for all u 2 (Z+

)

|C| satisfying u  21|C|, the quantity E
Q

i2C x
u⇡(C,i)
i is

pre-computed.

Suppose, for every vector z 2 (Z+

)

|C| satisfying z  21|C|, we compute an estimate

bUz of E
Q

i2C x
z⇡(C,i)
i such that

�

�

�

bUz � E
Q

i2C x
z⇡(C,i)
i

�

�

�

 � where � is going to be

determined later. Using the computed bUz’s , we can compute an estimate bV z of
P

j2[L]
Q

i2C(v
(j)
i)

z⇡(C,i) for all z 2 (Z+

)

|C| satisfying z  21|C|. As before, let us denote

the error in estimation by ✏
z

i.e. we have
�

�

�

bV z �
P

j2[L]
Q

i2C(v
(j)
i)

z⇡(C,i)

�

�

�

 ✏
z

. Note

that we showed in Lemma 5.12 that for fixed �, we get for all z  21|C|,

✏
z

 �

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘

.

Note that the minimum value of
P

v2V
Q

i2C v
2

i is at least �2|C| and therefore, it suffices

✏
z

to be less than �2|C|/2. Hence, it is sufficient if

224

�  max

z21|C|

�2|C|

2

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘�1

.

Now, we use Lemma C.6 to complete the proof of the lemma (similar to Lemma 5.12)

Theorem (Restatement of Theorem 5.2). Let V be a set of unknown vectors in Rn

satisfying Assumption 5.1. Let Fm = Q
1

([n]) [Qm([v2Vsupp(v)) and

�m = max

z21|C|

�2|C|

2

⇣ L

⇣
z,z

+

X

u<z

X

M2M(z,u)

L
Q

(r,s)2M ⇣
r,s

Q

r2T (M)

⇣
r,r

⌘�1

h0
L,V , max

z21LC2FL

E
Q

i2C x
2z⇡(C,i)
i

�

2

L

where h0
L,V is a constant independent of k and n but depends on L. Accordingly, there

exists an algorithm (see Algorithm 5.5 and 5.3) that achieves Deduplicated support

recovery with probability at least 1 � � using O
⇣

h0
L,V log(�

�1

(n + (Lk)L))
⌘

samples

generated from Pd.

Proof. The proof follows from Lemma 5.7 and Corollary 5.2.

5.4.2 Mixtures of Linear Classifiers

Recall that in this section, we solve the sparse recovery problem when the observed

samples are generated according to Pc under Assumption 5.2.

Lemma (Restatement of Lemma 5.8). Suppose Assumptions 5.1 and 5.2 are true.

Let a =

p
2(R2

+�2

)

�
erf�1

⇣

1� 1

2L

⌘

. There exists an algorithm (see Algorithm 5.6) that

can compute
�

�

S

i2C S(i)
�

� for each set C ✓ [n] with probability at least 1 � � using

O
⇣

(1� �(a))�|C|L2

log ��1

⌘

i.i.d samples from Pc.

Proof. Without loss of generality, let us assume that all unknown vectors in V have

positive non-zero entries. for each fixed set C ✓ [n], we will condition on event EC

225

Algorithm 5.6 Recover |
S

i2C S(i)| in MLC setting

Require: Samples (x

(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)

) ⇠ Pc. Set C ✓ [n]. Parame-
ter a > 0.

1: Find the subset of samples T = {(x(i), y(i)) | x(i)
j > a for all i 2 [m]}.

2: Compute an estimate bP of Pr(y = 1 | EC) as

bP =

1

|T |
X

(x,y)2T
1 [y = 1]

3: Find t 2 [L] such that

1

2

⇣

1 +

t

L

⌘

� t

4L2

 bP  1

2

⇣

1 +

t

L

⌘

4: Return t

defined as follows: for all j 2 C, the data-point x satisfies xj > a for some suitably

chosen a > 0. Recall that the minimum magnitude of any non-zero entry in an

unknown vector in V is at least �. Further condition on the event E
v

which is true

when a particular unknown vector v is being sampled from V . In that case, we show

the following claim:

Claim 5.3.

Pr(y = 1 | E
v

, EC) =
1

2

if v|C = 0

1 � Pr(y = 1 | E
v

, EC) �
1

2

+

1

2

· erf
⇣ a�
p

2(R2

+ �2

)

⌘

if v|C 6= 0.

Proof. In order to see the above equation, note that if v|C = 0, then hv,xi + z ⇠

N (0, ||v||2
2

+ �2

) or in other words, conditioning on the event EC has no effect on

the distribution of y. On the other hand, if v|C 6= 0, conditioning on the event EC

modifies the distribution of y. Consider an index j 2 supp(v) \ C. Since vjxj � a�,

we must have hv|C,x|Ci � a� using Assumption 5.2. Therefore, the probability

that y = 1 must be at least Pr(hv|[n]\C,x|[n]\Ci + z � �a�). Using the fact that

226

hv|[n]\C,x|[n]\Ci+ z ⇠ N (0, ⌫2

+ �2

) (where ⌫  R) and the property of error function

(Pru⇠N (0,�2

)

(|u|  a) = erf(a/
p
2�)), we prove the claim.

Hence we must have

1

2

+

|[i2CS(i)|
2L

� Pr(y = 1 | EC) �
1

2

+

|[i2CS(i)|
2L

erf
⇣ a�
p

2(R2

+ �2

)

⌘

We choose a such that erf
⇣

a�p
2(R2

+�2

)

⌘

� 1� 1

2L
in which case, we must have

1

2

⇣

1 +

1

L

�

�

�

�

�

[

i2C
S(i)

�

�

�

�

�

⌘

� 1

4L2

·
�

�

�

�

�

[

i2C
S(i)

�

�

�

�

�

 Pr(y = 1 | EC) 
1

2

⇣

1 +

1

L

�

�

�

�

�

[

i2C
S(i)

�

�

�

�

�

⌘

Clearly, for each value of
�

�

S

i2C S(i)
�

� 2 {0, 1, . . . , L}, the interval in which Pr(y =

1 | EC) lies are disjoint and each interval is separated by at least 1/4L. Hence, if we

are able to estimate Pr(y = 1 | EC) up to an additive factor of 1/8L, then we can

uniquely (and correctly) decode the value of
�

�

S

i2C S(i)
�

�. By using Chernoff bound,

with O(L2

log ��1

) samples satisfying the event EC, we can estimate Pr(y = 1 | EC)

(See Step 2 in Algorithm 5.6 for the estimator) with probability at least 1� �/2. From

our previous analysis, we chose a =

p
2(R2

+�2

)

�
erf�1

⇣

1� 1

2L

⌘

. The probability that for

a sample (x, y) ⇠ Pc, the event EC is true is exactly O
⇣

(1� �(a))|C|
⌘

. Therefore, with

(1 � �(a))�|C|L2

log ��1

⌘

samples, we will have O(L2

log ��1

) samples satisfying the

event EC with probability at least 1� �/2. Hence, this allows us to recover
�

�

S

i2C S(i)
�

�

with probability at least 1� �.

Theorem (Restatement of Theorem 5.3). Let V be a set of L unknown vectors in

Rn satisfying Assumptions 5.1 and 5.2. Let a =

p
2(R2

+�2

)

�
erf�1

⇣

1� 1

2L

⌘

. Then, there

exists an algorithm (see Algorithm 5.6 and 5.1) that achieves Exact Support Recovery

227

with probability at least 1� � using O
⇣

(1��(a))�(logL+1)L2

log(��1

(n+(Lk)logL+1

))

⌘

samples generated according to Pc.

Proof. The proof follows directly from Lemma 5.8 and Corollary 5.1.

5.4.3 Mixtures of Linear Regression

Algorithm 5.7 Recover |
T

i2C S(i)| in MLR setting

Require: Samples (x

(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)

) ⇠ Pr. Set C ✓ [n].

1: Return round
⇣

L
m
·
Pm

j=1

⇣

y(j)
⌘|C|⇣

Q

i2C x
(j)
i

⌘⌘

Unknown binary Vectors

Lemma (Restatement of Lemma 5.9). If the unknown vectors in the set V are all

binary i.e. v

(1),v(2), . . . ,v(L) 2 {0, 1}n, then, with probability at least 1� �, for each

set C ✓ [n], there exists an algorithm (see Algorithm 5.7) that can compute
�

�

T

i2C S(i)
�

�

using O(L2

(k + �2

)

|C|/2
(log n)2|C|

log ��1

) i.i.d samples from Pr.

Proof. Consider the random variable y|C| ·
⇣

Q

i2C xi

⌘

where (x, y) ⇠ Pr. Clearly, we

can write y = hv,xi+ ⇣ where ⇣ ⇠ N (0, �2

) and v is uniformly sampled from the set

of unknown vectors V . Therefore, we must have

E
(x,y)⇠Pry

|C| ·
⇣

Y

i2C
xi

⌘

= E
x,⇣`

�1

X

v2V

⇣

Y

i2C
xi

⌘

·
⇣

hv,xi+ ⇣
⌘|C|

Ey|C| ·
⇣

Y

i2C
xi

⌘

=

1

L

X

v2V

⇣

Y

i2C
Ex2

i · vi

⌘

=

�

�

T

i2C S(i)
�

�

L
.

This is because in the expansion of (hv,xi+ ⇣)|C|, the only monomial containing xi for

all i 2 C is
Q

i2C vixi. For any other monomial, the product with
Q

i2C xi will contain

some xj, j 2 C such that the degree of xj in the monomial is 1; the expectation of

this monomial goes to zero as all the xi’s are independent. Since Ex2

i = 1 for all

228

i 2 [n] and
Q

i2C vi is 1 iff vi = 1 for all i 2 C (and 0 otherwise), we obtain the desired

equations. We estimate
�

�

T

i2C S(i)
�

� by computing the following sample average

L

m
·

m
X

j=1

⇣

y(j)
⌘|C|⇣Y

i2C
x

(j)
i

⌘

.

From definition for (x, y) ⇠ Pr, we must have y ⇠ L�1

P

v2V N (0, ||v||2
0

+ �2

). There-

fore, we must have Ey2  k + �2 since v 2 {0, 1}n, ||v||
0

 k for all v 2 V . By using

Gaussian concentration inequalities, we must have Pr(|y| > t)  exp(�t2/2(k + �2

)).

Therefore, with probability 1� n�10, we have |y| < 20

p
k + �2

log n. Similarly, with

probability 1� n�10, |xi| is bounded from above by 20 log n. We take a union bound

over all |C|+ 1 random variables and all m samples to infer that
⇣

y(j)
⌘|C|⇣

Q

i2C x
(j)
i

⌘

is bounded within a ball of radius O((k + �2

)

|C|/2
(log n)2|C|

) with probability at least

1 � O(m|C|n�10

). Subsequently, we use Hoeffding’s inequality (see Lemma C.2) to

say that

Pr

⇣

�

�

�

�

�

1

m
·

m
X

j=1

⇣

y(j)
⌘|C|⇣Y

i2C
x

(j)
i

⌘

�
�

�

T

i2C S(i)
�

�

L

�

�

�

�

�

� 1

2L

⌘

 exp

⇣

� ⌦

⇣ m

L2

(k + �2

)

|C|/2
(log n)2|C|

⌘⌘

.

Hence, with m = O(L2

(k + �2

)

|C|/2
(log n)2|C|

log ��1

) samples, we can estimate
�

�

T

i2C S(i)
�

� exactly with probability at least 1� �.

We can now show the following result:

Theorem (Restatement of Theorem 5.4). Let V be a set of L unknown binary vectors

in {0, 1}n. Then, with probability at least 1 � �, there exists an algorithm (see

Algorithms 5.7 and 5.3) that achieves Exact Support Recovery with

O
�

L2

(k + �2

)

(logL+1)/2
(log n)2(logL+1)

log((n+ (Lk)logL)��1

)

�

229

samples generated according to Pr.

Proof. The proof follows directly from Lemma 5.9 and Corollary 5.1.

Separability Assumption on Parameters Below, we show that if Assumption

5.3 is satisfied, then we can recover the support of the unknown vectors. We start

with the following theorem:

Algorithm 5.8 Estimate if |
T

i2C S(i) > 0| in MLR setting

Require: Samples (x

(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)

) ⇠ Pr. Set C ✓ [n].

1: If 2L
m

·
Pm

j=1

⇣

y(j)
⌘|C|⇣

Q

i2C x
(j)
i

⌘

� ↵|C|, return True else return False.

Theorem (Restatement of Theorem 5.6). Suppose the following conditions are satis-

fied:

1. All unknown vectors in V are bounded within a ball of radius R i.e.
�

�

�

�

v

(i)
�

�

�

�

2



R for all i 2 [L].

2. Assumption 5.3 is satisfied by the set of unknown vectors V.

Accordingly, with probability at least 1� �, there exists an algorithm (see Algorithms

5.8 and 5.3) that achieves Deduplicated support recovery using

O(L2

(R2

+ �2

)

L/2
(log n)2L log((n+ (Lk)L)��1

)/↵2

L)

samples from Pr.

Proof. Again, we look at the random variable y|C| ·
⇣

Q

i2C xi

⌘

where (x, y) ⇠ Pr and

therefore, we must have

E
(x,y)⇠Pry

|C| ·
⇣

Y

i2C
xi

⌘

= E
x,⇣`

�1

X

v2V

⇣

Y

i2C
xi

⌘

·
⇣

hv,xi+ ⇣
⌘|C|

230

Ey|C| ·
⇣

Y

i2C
xi

⌘

=

1

L

X

v2V

⇣

Y

i2C
Ex2

i · vi

⌘

=

1

L

X

v2V

⇣

Y

j2C
vj

⌘

.

Notice that Ey|C| ·
⇣

Q

i2C xi

⌘

= 0 if
�

�

T

i2C S(i)
�

�

= 0 and
�

�

�

Ey|C| ·
⇣

Q

i2C xi

⌘

�

�

�

�

↵|C|/L otherwise (by using Assumption 5.3). We estimate Ey|C| ·
⇣

Q

i2C xi

⌘

by com-

puting the following sample average

L

m
·

m
X

j=1

⇣

y(j)
⌘|C|⇣Y

i2C
x

(j)
i

⌘

.

From the definition of Pr, we must have y ⇠ L�1

P

v2V N (0, ||v||2
2

+ �2

). Therefore,

we have that Ey2  R2

+ �2 since ||v||
2

 R for all v 2 V from the statement of

the Theorem. By using Gaussian concentration inequalities, we must have Pr(|y| >

t)  exp(�t2/2(R2

+ �2

)). Therefore, with probability 1 � n�10, we have |y| <

20

p
R2

+ �2

log n. Similarly, with probability 1 � n�10, |xi| is bounded from above

by 20 log n. We take a union bound over all |C| + 1 random variables and all

m samples to infer that
⇣

y(j)
⌘|C|⇣

Q

i2C x
(j)
i

⌘

is bounded within a ball of radius

O((R2

+ �2

)

|C|/2
(log n)2|C|

) with probability at least 1�O(m|C|n�10

). Subsequently,

we use Hoeffding’s inequality (see Lemma C.2) to say that

Pr

⇣

�

�

�

�

�

1

m
·

m
X

j=1

y(j) |C|
⇣

Y

i2C
x

(j)
i

⌘

� 1

L

X

v2V

⇣

Y

j2C
vj

⌘

�

�

�

�

�

� ↵|C|
2L

⌘

 exp

⇣

� ⌦

⇣ m↵2

|C|
L2

(R2

+ �2

)

|C|/2
(log n)2|C|

⌘⌘

.

Hence, with m = O(L2

(R2

+ �2

)

|C|/2
(log n)2|C|

log ��1/↵2

|C|) samples, we can estimate

if
�

�

T

i2C S(i)
�

� > 0 or not correctly with probability at least 1 � �. The proof now

follows directly from using Corollary 5.2.

Corollary (Restatement of Corollary 5.4). Consider a set of L unknown vectors

V that satisfies Assumptions 5.1 and furthermore, every non-zero entry in all the

231

unknown vectors is positive (vi � 0 for all i 2 [n],v 2 V). In that case, Assumption

5.3 is satisfied with ↵|C| � �|C|. Accordingly, there exists an algorithm that achieves

Deduplicated support recovery with probability at least 1� � using

O(L2

(R2

+ �2

)

L/2
(log n/�)2L log((n+ (Lk)L)��1

))

samples from Pr.

Proof. Note that when all the unknown vectors in set V are non-negative, it must

happen that for each set C ✓ [n],
�

�

�

P

v2V
⇣

Q

j2C vj

⌘

�

�

�

� ↵|C| is a sum of positive terms

(provided is it non-zero) each of which is at least �|C|. Therefore, it must happen that

↵|C| � �|C|. The above argument also holds true when all the unknown vectors in set

V are non-positive. We can directly use Theorem 5.6 to arrive at the statement of the

corollary.

Corollary (Restatement of Corollary 5.5). If all non-zero entries in the set of un-

known vectors V are sampled i.i.d according to N (0, ⌫2

), then with probability 1� ⌘,

Assumption 5.3 is satisfied with ↵|C| � �|C||C| where

�|C| =
⇣

r

⇡

8

⌫⌘

L|C|(Lk)|C|
⌘

.

Conditioned on this event, there exists an Algorithm that achieves Deduplicated support

recovery with probability at least 1� � using

O(L2

(R2

+ �2

)

L/2
(log n)2L log((n+ (Lk)L)��1

)/�2L)

samples from Pr.

Proof. For a fixed set C ✓ [n], consider the random variable
P

v2V
⇣

Q

j2C vj

⌘

. For

each vector v 2 V such that
Q

j2C vj 6= 0, we denote the minimum index i 2 C such

232

that vi 6= 0 by i? and therefore vi? ⇠ N (0, ⌫2

). Now, for each v 2 V , let us condition

on a fixed realization of non-zero indices of v in C other than i?. Let VC ✓ V be the

set of vectors such that
Q

j2C vj 6= 0. Therefore, we must have

X

v2V

⇣

Y

j2C
vj

⌘

| vj for all j 2 C \ i?,v 2 VC ⇠ N
⇣

0, ⌫2

X

v2VC

Y

j2C\i?
v

2

j

⌘

. (5.4)

Therefore, conditioned on vj for all j 2 C \ i?,v 2 VC, by standard Gaussian anti-

concentration inequality (see Lemma C.4), we must have with probability 1� ⇢,

�

�

�

�

�

X

v2V

⇣

Y

j2C
vj

⌘

�

�

�

�

�

�
r

⇡

8

⇢⌫

s

X

v2VC

Y

j2C\i?
v

2

j . (5.5)

for each vector v 2 VC, we must have with probability at least 1� (|C|� 1)⇢ that

�

�

�

�

�

�

Y

j2C\i?
vj

�

�

�

�

�

�

�
⇣

r

⇡

8

⇢⌫
⌘

(|C|�1)

. (5.6)

By taking a union bound, we can conclude that with probability at least 1� L⇢, we

must have

�

�

�

�

�

X

v2V

⇣

Y

j2C
vj

⌘

�

�

�

�

�

�
⇣

r

⇡

8

⇢⌫
⌘|C|

since there exists at least one vector v 2 VC such that equation 5.6 holds true for

v. Next, after taking another union bound over all subsets of size |C| restricted

to the union of support (at most (Lk)|C| of them), we have that with probability

1� |C|(Lk)|C|⇢,

�

�

�

�

�

X

v2V

⇣

Y

j2C
vj

⌘

�

�

�

�

�

�
⇣

r

⇡

8

⇢⌫
⌘|C|

.

233

Subsequently, we have with probability at least 1� ⌘/L

�

�

�

�

�

X

v2V

⇣

Y

j2C
vj

⌘

�

�

�

�

�

�
⇣

r

⇡

8

⌫⌘

L|C|(Lk)|C|
⌘|C|

.

After taking a final union bound over |C|  L and subsequently using Theorem 5.6,

we complete the proof of the corollary.

234

CHAPTER 6

CONCLUSION

In this thesis, we studied a number of problems under the big umbrella of mixture

models or latent variable models and experimentally validated some of our algorithms

on real world data-sets. We provided a variety of technical tools to study latent

variable models for both parameter estimation in different mixture models and for

support recovery in mixture models with sparse parameters. In particular, we studied

three different mixture models namely 1) Mixtures of Linear Regression 2) Mixtures of

Linear Classifiers and 3) Mixtures of Distributions. We studied two different settings

for these aforementioned mixture models namely 1) the experimental design setting or

the query based setting where we can design the covariates and query the corresponding

response from an oracle 2) unsupervised setting where the data is sampled from a

distribution.

We provide two general frameworks for theoretically studying mixtures that are

quite powerful and can be extended to other statistical reconstruction problems as

well. First, we demonstrated the use of complex analytic tools to prove lower bounds

on the total variation distance between any two mixtures corresponding to many

different families of distributions. As an example, for a pair of Gaussian mixtures with

shared component variance, we provide guarantees on the total variation distance as a

function of the largest gap (among the two mixtures) between the component means.

Although intuitive, such a characterization was missing despite a vast literature on

the total variation distance between mixtures of Gaussians. The complex analytic

tools in this work are quite elementary, and there is significant room for development.

235

These tools may be helpful in proving bounds on statistical distance between more

diverse distributions. We utilized these lower bounds on the total variation distance to

convert them into sample complexity guarantees via the minimum distance estimator

or the Scheffe estimator. We also used this framework for the Trace Reconstruction

problem and for parameter estimation in Mixtures of Linear Regression. It would also

be useful and interesting to provide matching upper bounds on the total variation

distance between mixtures of different families of distributions to complement our

lower bounds. Extending our results to more general mixtures with minimal restrictive

assumptions will be of significant interest to both the statistics and machine learning

communities.

Secondly, we described several novel techniques for support recovery including

low rank tensor decomposition that can be used for other applications as well with

significant advantages. Note that low rank tensor decomposition [6] is already a very

well known and widely used technique for parameter estimation in latent variable

models (that include mixture models as a special case). However the techniques

in [6] are only able to design and use tensors of order 3 because, for higher order

tensors there does not exist any algorithm that can recover the low rank decomposition

uniquely even if it is known to exist. For the problem of support recovery, we design a

completely new tensor that has many advantages compared to the techniques of [6]:

1. The tensors that we design are integral (i.e. all its entries are integers) and

therefore, it is possible to recover the tensor exactly by correcting a small amount

of estimation error stemming from sample estimates.

2. For tensors of order w > 3, there is no known efficient algorithm that can recover

the correct solution even if its existence and uniqueness is known. On the other

hand, since the tensor is recovered exactly, we can exhaustively search over all

possibilities (i.e. do a brute force algorithm) to recover the unknown parameters.

236

In conjunction with these techniques for support recovery, we also use a plethora

of different techniques in the many settings that we study to compute the sufficient

statistics for support recovery efficiently. Some of these include polynomial identities

and combinatorial designs. We believe that these new ideas for support recovery will

be applicable for support recovery in other sparse latent generative models as well.

While there is still much to be explored regarding mixture models in machine

learning both theoretically and practically, we hope the results in this thesis have

made a compelling case for this paradigm. We look forward to future advances in this

direction and a deeper understanding of this framework.

237

APPENDIX A

MISSING PROOFS IN CHAPTER 2

A.1 Proof of Theorem 2.7

Let a be the characteristic vector of a subset S ⇢ U . Let s` = m`(S) on this set

and let s = (s
0

, s
1

, . . . , sk�1

). We need to prove a is uniquely determined by s.

Let us define

ni,p(a) :=

X

r⌘pi

ar (mod p) .

Claim A.1. For a prime number p and i 6⌘p 0, we have

ni,p(a) ⌘p s0 �
X

j

✓

p� 1

j

◆

sj(�i)p�1�j.

Proof.

ni,p(a) =

X

r⌘pi

ar (mod p)

Recall that Fermat’s theorem ([73]) says that for any prime p and any number ↵ 6⌘p 0,

we must have that ↵p�1 ⌘p 1. Hence, for a prime number p and some number i 6⌘p 0,

we have

s
0

(a)�
X

j

✓

p� 1

j

◆

sj(�i)p�1�j ⌘p

X

r

ar �
X

j

✓

p� 1

j

◆

X

r

arr
j
(�i)p�1�j

238

⌘p

X

r

ar �
X

r

ar
X

j

✓

p� 1

j

◆

rj(�i)p�1�j

⌘p

X

r

ar �
X

r

ar(r � i)p�1

⌘p

X

r⌘pi

ar ⌘p ni,p(a) .

Since the value of ni,p is at most dqn/pe, we can obtain the value of ni,p exactly if

p is chosen to be greater than pqn. Now, let us denote the vector vi,p 2 Fn
q where the

`th entry is

vi,p[`] =

8

>

>

<

>

>

:

1 if ` ⌘p i

0 otherwise
.

Therefore, consider two different subsets S, S 0 ⇢ U and assume that their characteristic

vectors are a and b respectively. Therefore, if a and b both give rise to the same

value of s, then a.vi,p = b.vi,p. Hence, if the set of vectors

S = {vi,p |
p
qn  p  k, 0  i  p� 1, p prime}

spans Fn
q , then it must imply that a = b and our proof will be complete. Consider a

subset T ⇢ S defined by

T = {vi,p |
p
qn  p  k, 1  i  p� 1, p prime}

Now, there are two possible cases. First, let us assume that the vectors in T are

not all linearly independent in Fq. In that case, we must have a set of tuples

(i
1

, p
1

), (i
2

, p
2

), . . . , (im, pm) such that

239

m
X

j=1

↵jv(ij ,pj) ⌘q 0 (A.1)

where 0 6= ↵j 2 Fq for all j. Now, by the Chinese Remainder Theorem, we can find an

integer r such that r ⌘p
1

i
1

and r ⌘pj 0 for all pj 6= p
1

. Define an infinite dimensional

vector ˜

v where the `th entry is

˜

v[`] =
m
X

j=1

↵j1
h

` ⌘pj ij
i

Since, ij 6⌘pj 0, it is evident that ˜

v[r] 6⌘q 0 Now, let s be the smallest number such

that ˜

v[s] 6= 0 and s > n because of our assumption in Eq. A.1. Now consider the

vector vt where

vt =

m
X

j=1

↵jvij�s+t,pj

Now, vi
t = 0 for all i < t and v

t
t 6= 0. Hence, the set {vt}nt=1

are in the span of S and

also span Fn
q .

For the second case, let us assume that the vectors in T are linearly independent.

We require the size of T > n so that the vectors in T span Fn
q . From the prime number

theorem we know that

X

p prime:p<x

p ⇠ x2

2 log x

and hence we simply need that

k2

2 log k
� qn

log n
> n .

Therefore, k > (1 + o(1))
p
qn log qn is sufficient.

240

A.2 Proof of Lemma 2.9

We use case analysis on different orderings of the means and their separations.

Claim A.2. For any t > 0 such that t(µ
1

� µ
0

), t(µ0
1

� µ
0

), t(µ0
1

� µ
0

) 2 [0, ⇡
4

], when

µ0
1

> µ
1

,

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

� t�
2

2

p
2

.

Proof. Assume that µ0
1

� µ
1

� µ0
0

� µ
0

, and recall that �
2

= max(|µ0
0

� µ
0

|, |µ
1

� µ0
1

|).

First, we factor out the lowest common exponent to see that

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

=

�

�

�

1 + eit(µ1

�µ
0

) � eit(µ
0
0

�µ
0

) � eit(µ
0
1

�µ
0

)

�

�

�

.

Let us denote �
1

= µ
1

�µ
0

, �0
0

= µ0
0

�µ
0

and �0
1

= µ0
1

�µ
0

. The following inequalities

hold:

�

�

�

1 + eit�1 � eit�
0
0 � eit�

0
1

�

�

�

� |sin(t�
1

)� sin(t�0
0

)� sin(t�0
1

)| [|z| � |Im(z)|]

� � sin(t�
1

) + sin(t�0
0

) + sin(t�0
1

) [Remove | · |]

� � sin(t�
1

) + sin(t(�
1

+ (�0
1

� �
1

))) [sin(t�0
0

) � 0]

= 2 sin

✓

t
�0
1

� �
1

2

◆

cos

✓

t

✓

�
1

+

�0
1

� �
1

2

◆◆

� 1

2

p
2

t�
2

.

In the last line, we use that cos

⇣

t
⇣

�
1

+

�0
1

��
1

2

⌘⌘

� 1/
p
2 and sin

⇣

t�
0
1

��
1

2

⌘

� t�
2

4

,

where the former follows from the fact that

0  t

✓

�
1

+

�0
1

� �
1

2

◆

=

t(�
1

+ �0
1

)

2

=

1

2

⇣

t(µ
1

� µ
0

) + t(µ0
1

� µ
0

)

⌘

 ⇡

4

and the latter follows from sin(x) � x/2 for x 2 R.

241

If µ0
0

� µ
0

> µ0
1

� µ
1

, then we can use a similar string of inequalities by using the

fact that

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

=

�

�

�

1 + eit(µ0

�µ
1

) � eit(µ
0
0

�µ
1

) � eit(µ
0
1

�µ
1

)

�

�

�

.

We denote �
0

= µ
0

� µ
1

, �0
0

= µ0
0

� µ
1

and �0
1

= µ0
1

� µ
1

. Note that all the � are

negative and �
0

> �0
0

> �0
1

. The following holds:

�

�

�

eit�0

+ 1� eit�
0
0 � eit�

0
1

�

�

�

� |sin(t�
0

)� sin(t�0
0

)� sin(t�0
1

)| [|z| � |Re(z)|]

= |� sin(t|�
0

|) + sin(t|�0
0

|) + sin(t|�0
1

|)| [sin(·) odd]

= � sin(t|�
0

|) + sin(t|�0
0

|) + sin(t|�0
1

|) [Remove | · |]

� � sin(t|�
0

|) + sin(t(|�
0

|+ (|�0
0

|� |�
0

|))) [sin(t|�0
0

|) � 0]

= 2 sin

✓

t(|�0
0

|� |�
0

|)
2

◆

cos

✓

t

✓

|�
0

|+ |�0
0

|� |�
0

|
2

◆◆

� 1

2

p
2

t�
2

.

In the last line, we use that sin

⇣

t(|�0
0

|�|�
0

|)
2

⌘

� t�
2

4

and cos

⇣

t
⇣

|�
0

|+ |�0
0

|�|�
0

|
2

⌘⌘

�
p
2

2

.

Claim A.3. For t > 0 such that t(µ
1

� µ
0

), t(µ0
1

� µ
0

), t(µ0
1

� µ
0

) 2 [0, ⇡
4

], if both

µ0
0

, µ0
1

2 [µ
0

, µ
1

], then

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

� max

✓

t2(�
1

� �
4

)�
4

2

,
t�

3

4

p
2

◆

.

Proof. First, we show the left hand side of the inequality in the claim statement is at

least t�
3

/(4
p
2).

242

Assume that µ0
0

� µ
0

= �
2

, recalling that �
2

= max(|µ0
0

� µ
0

|, |µ
1

� µ0
1

|). We factor

out the lowest common exponent to see that

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

=

�

�

�

1 + eit(µ1

�µ
0

) � eit(µ
0
0

�µ
0

) � eit(µ
0
1

�µ
0

)

�

�

�

.

Let us denote �
1

= µ
1

� µ
0

, �0
0

= µ0
0

� µ
0

and �0
1

= µ0
1

� µ
0

. To prove following

inequalities, we need two facts. We use Fact I that @
@x
(sin(x � y) � sin(x)) =

cos(x�y)�cos(x) � 0 for ⇡
4

� x � y � 0. In particular, taking x = �
1

and y = µ
1

�µ0
1

,

the inequality is increasing with respect to �
1

, so so we can lower bound the function

at �
1

= µ
1

� µ0
1

+ �0
0

. Additionally, we use Fact II that � sin(x + y) + 2 sin(x) �

sin((x� y)/2) cos(y/2) for 0  y  x  ⇡/4, for the choice of x = �0
0

and y = µ
1

� µ0
1

.

Then, we have that

�

�

�

1 + eit�1 � eit�
0
0 � eit�

0
1

�

�

�

� |sin(t�
1

)� sin(t�0
0

)� sin(t�0
1

)| [|z| � |Im(z)|]

� � sin(t�
1

) + sin(t�0
0

) + sin(t�0
1

) [Remove | · |]

� � sin(t�
1

) + sin(t�0
0

) + sin(t(�
1

� (µ
1

� µ0
1

)))

� � sin(t(µ
1

� µ0
1

+ �0
0

)) + 2 sin(t�0
0

) [Fact I above]

� sin

⇣t(�µ
1

+ µ0
1

+ µ0
0

� µ
0

)

2

⌘

cos

⇣t(µ
1

� µ0
1

)

2

⌘

[Fact II above]

� t�
3

4

p
2

[sin(x) � x/2;

cos(·) �
p
2/2]

Now, we assume that µ0
0

� µ
0

< µ
1

� µ0
1

and factor out eitµ1 :

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

=

�

�

�

eit(µ0

�µ
1

)

+ 1� eit(µ
0
0

�µ
1

) � eit(µ
0
1

�µ
1

)

�

�

�

.

As in the proofs of other claims, we let �
0

= µ
0

� µ
1

, �0
0

= µ0
0

� µ
1

and �0
1

= µ0
1

� µ
1

.

Then, we have

243

�

�

�

eit�0

+ 1� eit�
0
0 � eit�

0
1

�

�

�

� |sin(t�
0

)� sin(t�0
0

)� sin(t�0
1

)| [|z| � |Im(z)|]

� |� sin(t|�
0

|) + sin(t|�0
0

|) + sin(t|�0
1

|)| [sin(·) odd]

� � sin(t|�
0

|) + sin(t|�0
0

|) + sin(t|�0
1

|) [Remove | · |]

� � sin(t|�
0

|) + sin(t|�
0

|� |µ
0

� µ0
0

|) + sin(t|�0
1

|)

� � sin(t(|�0
1

|+ |µ
0

� µ0
0

|)) + 2 sin(t|�0
1

|) [Fact I above]

� sin

⇣t(|�0
1

|� |µ
0

� µ0
0

|)
2

⌘

cos

⇣t|µ
0

� µ0
0

|
2

⌘

[Fact II above]

� t

4

p
2

· (|�0
1

|� |µ
0

� µ0
0

|) = t

4

p
2

· �
3

[sin(x) � x/2;

cos(·) �
p
2/2]

In the application of Fact I, we let |�
0

| be as small as possible, choosing |�
0

| =

|�0
1

|+ |µ
0

� µ0
0

|.

Next, we show the left hand side of the inequality in the claim statement is at

least t2(�
1

� �
4

)�
4

/2. Assume that µ0
0

� µ
0

 µ
1

� µ0
1

. First, we factor out the lowest

common exponent to see

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

=

�

�

�

1 + eit(µ1

�µ
0

) � eit(µ
0
0

�µ
0

) � eit(µ
0
1

�µ
0

)

�

�

�

.

Again, we denote �
1

= µ
1

� µ
0

, �0
0

= µ0
0

� µ
0

and �0
1

= µ0
1

� µ
0

. The following holds:

�

�

�

1 + eit�1 � eit�
0
0 � eit�

0
1

�

�

�

� |Re(1 + eit�1 � eit�
0
0 � eit�

0
1

)|

= |1 + cos(t�
1

)� cos(t�0
0

)� cos(t�0
1

)| [|z| � |Re(z)|]

244

� �1� cos(t�
1

) + cos(t�0
0

)

+ cos(t(�
1

� (µ
1

� µ0
1

))) [Remove | · |]

� �1� cos(t�
1

) + cos(t�0
0

) + cos(t(�
1

� �0
0

)) [µ
1

� µ0
1

� �0
0

]

� t2(�
1

� �0
0

)�0
0

2

� t2(�
1

� �
4

)�
4

2

[Fact III below]

Recall that �
1

= max(|µ
0

� µ
1

|, |µ0
0

� µ0
1

|),and �
4

= min(|µ0
0

� µ
0

| , |µ0
1

� µ
1

|), so in

the above, �
4

= µ0
0

� µ
0

= �0
0

. The last line uses Fact III that �1� cos(x) + cos(y) +

cos(x� y) � (x� y)y/2 for 0  y  x  ⇡/4.

When µ0
0

�µ
0

> µ
1

�µ0
1

we use the same trick as in the previous claims and factor

out eitµ1 instead of eitµ0 . In particular the following holds:

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

=

�

�

�

eitµ0

�µ
1

+ 1� eit(µ
0
0

�µ
1

) � eit(µ
0
1

�µ
1

)

�

�

�

.

Again, we denote �
0

= µ
0

� µ
1

, �0
0

= µ0
0

� µ
1

and �0
1

= µ0
1

� µ
1

. Note that all the �

are negative and �
0

> �0
0

> �0
1

. The following holds:

�

�

�

eit�0

+ 1� eit�
0
0 � eit�

0
1

�

�

�

� |Re(eit�0

+ 1� eit�
0
0 � eit�

0
1

)|

= |cos(t�
0

) + 1� cos(t�0
0

)� cos(t�0
1

)| [|z| � |Re(z)|]

= |cos(t|�
0

|) + 1� cos(t|�0
0

|)� cos(t|�0
1

|)| [cos(·) even]

� � cos(t|�
0

|)� 1 + cos(t(|�
0

|� |µ0
0

� µ
0

|)) [Remove | · |]

+ cos(t(|�0
1

|))

� � cos(t|�
0

|)� 1 + cos(t(|�
0

|� |�0
1

|))

+ cos(t|�0
1

|) [µ0
0

� µ
0

� |�0
1

|]

245

� t2(|�
0

|� |�0
1

|)|�0
1

|
2

� t2(�
1

� �
4

)�
4

2

. [Fact III above]

Proof of Lemma 2.11

Proof of Lemma 2.11. Define ↵ and � such that µ0
0

� µ
0

= ↵� and |µ
1

� µ0
1

| = ��;

note that by assumption ↵, �  2. For x 2 R, we use the notation ex to denote the

unique value such that x = 2⇡kc� + ex�, where k 2 Z is a integer and 0  ex < 2⇡c.

We prove this lemma with two cases, when µ0
1

> µ
1

and when µ0
1

 µ
1

. Without loss

of generality, we assume that |µ
0

� µ
1

| � 100�. Also, recall our assumption on the

ordering of the unknown parameters that µ
0

 min(µ
1

, µ0
0

, µ0
1

) and µ0
0

 µ0
1

.

Case 1 (µ0
1

> µ
1

): Here, we will choose t = c�, where

c =
µ
1

� µ
0

2⇡�bµ1

�µ
0

80�/⇡
c
.

Then substituting in t = 1/c�, we see that

eitx = eit2⇡kc�eitex� = ei2⇡keiex/c = eiex/c.

From the choice of c and the fact that bxc  x and x/2  bxc for x � 1, we see

40/⇡2  c  80/⇡2.

As before, let �
1

= µ
1

� µ
0

,�0
0

= µ0
0

� µ
0

and �0
1

= µ0
1

� µ
0

. We prove that the

following hold:

e�
1

= 0

⇡2↵

80


e�0
0

c
=

↵

c
 ⇡2↵

40

 ⇡2

20

⇡2�

80


e�0
1

c
=

�

c
 ⇡2�

40

 ⇡2

20

.

246

We prove these statements in order. To see that e�
1

= 0, the definitions of c and e�
1

imply that �
1

= 2⇡�k �
1

2⇡�b�
1

⇡/(80�)c +
e�
1

�, for k = b�
1

⇡/(80�)c and e�
1

= 0.

Next, since ↵� = �0
0

, we can write ↵/c = 2⇡k +

e�0
0

/c, and it would follow that

↵/c = e�0
0

/c if �0
0

< 2⇡�c = �
1

/b�
1

⇡/(80�)c. Indeed this is the case, since

�
1

/b�
1

⇡/(80�)c � 80�/⇡ > 2� > �0
0

.

Using the fact that e�
1

= 0, we will show e�0
1

/c = �/c. We break up �0
1

into

�
1

+ µ0
1

� µ
1

, writing

�0
1

= �� + �
1

= �� + k
�
1

b�
1

⇡/(80�)c +
e�
1

� = �� + k
�
1

b�
1

⇡/(80�)c ,

for k = b�
1

⇡/(80�)c. If � < 2⇡c, then this choice of k is correct for the definition of e�0
1

,

and it follows that e�0
1

= �. This is indeed the case as 2⇡c = �
1

�b�
1

⇡/(80�)c � 80/⇡ > �.

We use our lower bounds on e�0
0

/c and e�0
1

/c and the fact that e�
1

= 0 in the following:

e�
�2t2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

= e�
�2t2

2

�

�

�

1 + eit�1 � eit�
0
0 � eit�

0
1

�

�

�

� e�
1

2c2

�

�

�

Im(1 + ei
e�
1

/c � ei
e�0
0

/c � ei
e�0
1

/c
)

�

�

�

= e�
1

2c2

�

�

�

sin(

e�
1

/c)� sin(

e�0
0

/c)� sin(

e�0
1

/c)
�

�

�

= e�
1

2c2
(sin(

e�0
0

/c) + sin(

e�0
1

/c))

� e�1

max(sin(

e�0
0

/c), sin(e�0
1

/c))

� e�1

max(sin(⇡2↵/80), sin(⇡2�/80))

� ⇡2�
2

160e
.

Case 2 (µ0
1

 µ
1

): First we consider the case when �  ↵. Since µ
1

� µ
0

� 100�,

we must have µ
1

�µ
0

� µ
1

�µ
0

� (µ
1

�µ0
1

) � 100�� 2� = 98�. We choose t = c� for

c =
µ0
1

� µ
0

3⇡�/2 + 2⇡�bµ
0
1

�µ
0

80�/⇡
c
.

247

As before, for any x 2 R we write x = 2⇡kc� + ex� where k 2 Z is a positive integer

and 0 < ex < 2⇡c. From the choice of c and the fact that µ0
1

� µ
0

� 98�, 25

⇡2

 c  80

⇡2

.

Here we denote �
1

= µ
1

� µ0
1

,�0
0

= µ0
0

� µ
0

and �0
1

= µ0
1

� µ
0

; note this is different

than our previous � definitions. We will show the following set of inequalities and

equalities:

e�0
1

c
=

3⇡

2

⇡2↵

80


e�0
0

c
=

↵

c
 ⇡2↵

25

 ⇡2

12

⇡2�

80


e�
1

c
=

�

c
 ⇡2�

25

 ⇡2

12

.

To see that e�0
1

= 3⇡/2, observe first that �0
1

/(c�) = 2⇡k +

e�0
1

/c; then we can simplify

�0
1

/(c�) and write �0
1

/(c�) = 3⇡/2 + 2⇡ b�0
1

⇡/(80�)c . Together these imply that

3⇡/2 + 2⇡ b�0
1

⇡/(80�)c = 2⇡k +

e�0
1

/c. Taking k = b�0
1

⇡/(80�)c, it follows that

e�0
1

= 3⇡/2.

Additionally, since ↵� = �0
0

, we can write ↵/c = 2⇡k +

˜�0
0

/c. It follows that

↵/c = ˜�0
0

/c if

�0
0

< 2⇡�c = 2⇡�
�0
1

3⇡�/2 + 2⇡�b�0
1

⇡/(80�)c =
�0
1

3/4 + b�0
1

⇡/(80�)c .

Indeed this is the case, since if b�0
1

⇡/(80�)c < 1/4,

�0
1

3/4 + b�0
1

⇡/(80�)c > �0
1

> �0
0

and if b�0
1

⇡/(80�)c � 1/4,

�0
1

3/4 + b�0
1

⇡/(80�)c >
�0
1

4b�0
1

⇡/(80�)c > 80�/(4⇡) > 6� > �0
0

.

248

A similar line of reasoning shows that e�
1

/c = �/c. Here �/c = 2⇡k +

e�
1

/c, so it

remains to show

�
1

< 2⇡�c =
�0
1

3/4 + b�0
1

⇡/(80�)c .

Indeed this is the case, since if b�0
1

⇡/(80�)c < 1/4,

�0
1

3/4 + b�0
1

⇡/(80�)c > �0
1

> 98� > 2� > µ
1

� µ0
1

= �
1

,

and if b�0
1

⇡/(80�)c � 1/4, then

�0
1

3/4 + b�0
1

⇡/(80�)c >
�0
1

4b�0
1

⇡/(80�)c > 80�/(4⇡) > 6� > �
1

.

Setting t = 1/c�, the following calculation holds if �  ↵:

e�
�2t2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

= e�
�2t2

2

�

�

�

1 + eit(�1

+�0
1

) � eit�
0
0 � eit�

0
1

�

�

�

= e�
1

2c2

�

�

�

�

1 + ei
e�
1

c ei
e�0
1

c � ei
e�0
0

c � ei
e�0
1

c

�

�

�

�

� e�
1

2c2

�

�

�

�

Im(1 + ei
e�
1

c ei
e�0
1

c � ei
e�0
0

c � ei
e�0
1

c
)

�

�

�

�

� e�
1

c2
(�1 + cos

˜�
1

c
+ sin

˜�0
0

c
)

= e�
1

2c2
(�1 + cos

�

c
+ sin

↵

c
)

� e�
1

2c2
(↵/c� (↵/c)3/6� (�/c)2/2)

� e�
1

2c2
(↵/c� (↵/c)3/6� (↵/c)2/2)

� e�
1

2c2
↵

3c
� ⇡2�

2

240e

The fourth to last inequality follows because sin x � x� x3

6

and cos x � 1� x2

2

. The

third to last inequality follows because �  ↵ and ↵/c < 1. In the final step, we

re-used the fact that 25

⇡2

 c  80

⇡2

.

249

If ↵ < �, then we can do a very similar proof by choosing t = c� for

c =
µ
1

� µ0
0

3⇡�/2 + 2⇡�bµ1

�µ0
0

80�/⇡
c
.

From the choice of c and the fact that µ
1

� µ0
0

� 98�, 25

⇡2

 c  80

⇡2

. Here we denote

�0
1

= µ0
1

� µ
1

,�0
0

= µ0
0

� µ
1

and �
0

= µ
0

� µ0
0

. From the same explanations as in the

case when �  ↵, we see that

|e�0
0

|
c

=

3⇡

2

⇡2�

80

 |e�0
1

|
c

=

�

c
 ⇡2�

25

 ⇡2

12

⇡2↵

80

 |e�
0

|
c

=

↵

c
 ⇡2↵

25

 ⇡2

12

.

We obtain the same bound as in the case of �  ↵ by factoring out eitµ1 and using

a similar calculation:

e�
�2t2

2

�

�

�

eitµ0

+ eitµ1 � eitµ
0
0 � eitµ

0
1

�

�

�

= e�
�2t2

2

�

�

�

eit(µ0

�µ
1

)

+ 1� eit(µ
0
0

�µ
1

) � eit(µ
0
1

�µ
1

)

�

�

�

= e�
�2t2

2

�

�

�

eit(�0

+�0
0

)

+ 1� eit�
0
0 � eit�

0
1

�

�

�

= e�
1

2c2

�

�

�

�

1 + ei
e�
0

c ei
e�0
0

c � ei
e�0
0

c � ei
e�0
1

c

�

�

�

�

� e�
1

2c2

�

�

�

�

Im
✓

1 + ei
�|e�

0

|
c ei

�|e�0
0

|
c � ei

�|e�0
0

|
c � ei

�|e�0
1

|
c

◆

�

�

�

�

� e�
1

c2

�1 + cos

|˜�
0

|
c

+ sin

|˜�0
1

|
c

!

= e�
1

c2

✓

�1 + cos

↵

c
+ sin

�

c

◆

,

and the rest of the proof follows as before, just swapping ↵ and �.

250

APPENDIX B

MISSING PROOFS IN CHAPTER 3

B.1 Description of Algorithm 3.2 and Proof of Theorem 3.4

Algorithm 3.2 (Design of queries and denoising): Let m be the total number

of queries that we will make. In the first step of the algorithm, for a particular query

vector v 2 Rn, our objective is to recover hv,�1i and hv,�2i which we will denote

as the denoised query responses corresponding to the vector v. It is intuitive, that

in order to do this, we need to use the same query vector v repeatedly a number of

times and aggregate the noisy query responses to recover the denoised counterparts.

Therefore, at every iteration in Step 1 of Algorithm 3.2, we sample a vector v

uniformly at random from {+1,�1}n. Once the vector v is sampled, we use v as

query vector repeatedly for T times. We will say that the query responses to the same

vector as query to be a batch of size T . It can be seen that since v is fixed, the query

responses in a batch is sampled from a Gaussian mixture distribution M with means

hv,�1i and hv,�2i and variance �2, in short,

M =

1

2

N (hv,�1i, �2

) +

1

2

N (hv,�2i, �2

).

Therefore the problem reduces to recovering the mean parameters from a mixture of

Gaussian distribution with at most two mixture constituents (since the means can be

same) and having the same variance. We will use the following important lemma for

this problem.

251

Lemma B.1 (Lemma 3.2: Learning Gaussian mixtures). Let M =

1

L

PL
i=1

N (µi, �2

)

be a uniform mixture of L univariate Gaussians, with known shared variance �2 and

with means µi 2 ✏Z. Then, for some constant c > 0 and some t = !(L), there exists

an algorithm that requires ctL2

exp((�/✏)2/3) samples from M and exactly identifies

the parameters {µi}Li=1

with probability at least 1� 2e�2t.

The proof of this lemma can be found in Chapter 2. We now have the following

lemma to characterize the size of each batch T .

Lemma B.2. For any query vector v 2 {+1, 0,�1}n, a batchsize of

T = c
1

log n exp((�/✏)2/3)

, for a constant c
1

> 0, is sufficient to recover the denoised query responses hv,�1i

and hv,�2i with probability at least 1� 1/poly(n).

Proof. Since v 2 {+1, 0,�1}n, hv,�1i, hv,�2i 2 ✏Z. Using Lemma 3.2, the claim

follows.

Corollary B.1. For any O
⇣

k log n log(n/k)
⌘

query vectors sampled uniformly at

random from {+1,�1}n, a batch size of T > c
2

log n exp((

�
✏
)

2/3
), for some constant

c
2

> 0, is sufficient to recover the denoised query responses corresponding to every

query vector with probability at least 1� 1/poly(n).

Proof. This statement is proved by taking a union bound over O
⇣

k log n log(n/k)
⌘

batches corresponding to that many query vectors.

Algorithm 3.2 (Alignment step): Notice from the previous discussion, for each

batch corresponding to a query vector v, we obtain the pair of values (hv,�1i, hv,�2i).

However, we still need to cluster these values (by taking one value from each pair and

assigning it to one of the clusters) into two clusters corresponding to �
1

and �
2

. We

252

will first explain the clustering process for two particular query vectors v

1 and v

2 for

which we have already obtained the pairs (hv1,�1i, hv1,�2i) and (hv2,�1i, hv2,�2i).

The objective is to cluster the four samples into two groups of two samples each so

that the samples in each cluster correspond to the same unknown sensed vector. Now,

we have two cases to consider:

Case 1: (hv1,�1i = hv1,�2i or hv2,�1i = hv2,�2i) In this scenario, the values in at

least one of the pairs are same and any grouping works.

Case 2: (hv1,�1i 6= hv1

�

2i and hv2,�1i 6= hv2,�2i). We use two more batches

corresponding to the vectors v1

+v2

2

and v1�v2

2

which belong to {�1, 0,+1}n. We will call

the vector v1

+v2

2

the sum query and the vector v1�v2

2

the difference query corresponding

to v

1,v2 respectively. Hence using Lemma B.2 again, we will be able to obtain the

pairs (hv1

+v2

2

,�1i, hv1

+v2

2

,�2i) and (hv1�v2

2

,�1i, hv1�v2

2

,�2i). Now, we will choose

two elements from the pairs (hv1,�1i, hv1

�

2i) and (hv2,�1i, hv2

�

2i) (one element

from each pair) such that their sum belongs to the pair 2hv1

+v2

2

,�1i, 2hv1

+v2

2

,�2i

and their difference belongs to the pair 2hv1�v2

2

,�1i, 2hv1�v2

2

,�2i. In our algorithm,

we will put these two elements into one cluster and the other two elements into the

other cluster. From construction, we must put (hv1,�1i, hv2,�1i) in one cluster and

(hv1,�2i, hv2,�2i) in other.

Putting it all together, in Algorithm 3.2, we uniformly and randomly choose

csk log
n
k

query vectors from {+1,�1}n and for each of them, we use it repeatedly for

c
2

log n exp

⇣

�
✏

⌘

2/3

times. From each batch, we recover the denoised query responses

for the query vector associated with that batch. For a particular query vector v, we

call the query vector good if hv,�1i 6= hv,�2i. For a v chosen uniformly at randomly

from {+1,�1}n, the probability that hv,�1 � �

2i = 0 is at most 1

2

. Therefore, if one

chooses log n query vectors uniformly and independently at random from {+1,�1}n,

at least one is good with probability 1 � 1

n
. We are now ready to prove the main

theorem.

253

Proof of Theorem 3.4. For each vector v belonging to the set of first log n query

vectors and for each query vector b (b is among the initial csk log n
k

query vectors)

different from v, we make two additional batches of queries corresponding to query

vectors v+b
2

and v�b
2

. Consider the first log n query vectors. We know that one of

them, say g, is a good query vector. Let us denote the denoised means obtained from

the batch of queries corresponding to g to be (x, y). We can think of x and y as labels

for the clustering of the denoised means from the other query vectors. Now, from

the alignment step, we know that for every query vector b different from g and the

denoised query responses (p, q) corresponding to b, by using the additional sum and

difference queries, we can label one of the element in (p, q) as x and the other one as

y. Since the vector g is good, therefore x 6= y and hence we will be able to aggregate

the denoised query responses corresponding to �

1 and the denoised query responses

corresponding to �

2 separately. Since we have csk log n query responses for each of �1

and �

2, we can scale the query responses by a factor of 1/
p
csk log n and subsequently,

we can run basis pursuit [29] to recover the best k-sparse approximations of both �

1

and �

2. Notice that the total number of queries in this scheme is O(k log2 n) and

since the size of each batch corresponding to each query is O(log n exp((

�
✏
)

2/3
)), the

total sample complexity required is O
⇣

k(log n)3 exp
⇣

�
✏

⌘

2/3⌘

.

B.2 Analysis of Algorithm 3.3 for General L and Proof of The-

orem 3.3 and Theorem 3.5

Algorithm 3.3 (Design of queries): In every iteration in Step 1 of Algorithm 3.3,

we will sample a vector v uniformly at random from {+1,�1}n, another vector r

uniformly at random from G ⌘ {�2z?,�2z? + 1, . . . , 2z? � 1, 2z?}n and a number q

uniformly at random from {1, 2, . . . , 4z? + 1}. Now, we will use a batch of queries

corresponding to the vectors v + r, (q� 1)r and v+ qr. We have the following lemmas

describing several necessary properties of such queries.

254

We will define a triplet of query vectors (v

1,v2,v3

) to be good if for all triplets of

indices i, j, k 2 [L] such that i, j, k are not identical, it must happen that

hv1,�ii+ hv2,�ji 6= hv3,�ki

Lemma B.3. The query vector triplet (v + r, (q� 1)r,v+ qr) is good with probability

at least 1p
↵? .

Proof. Notice that for a fixed triplet i, j, k 2 [L] such that i, j, k are not identical, we

must have

Pr(hv + r,�ii+ h(q � 1)r,�ji = hv + qr,�ki)

= Pr(hr,�i
+ (q � 1)�

j � q�ki = hv,�k � �

ii)

 Pr(�

i
+ (q � 1)�

j � q�k
= 0) + Pr(�

i
+ (q � 1)�

j � q�k 6= 0)

· Pr(hr,�i
+ (q � 1)�

j � q�ki = hv,�k � �

ii | �i
+ (q � 1)�

j � q�k 6= 0)


⇣

1� 1

4z? + 1

⌘

1

4z? + 1

+

1

4z? + 1

=

2

4z? + 1

� 1

(4z? + 1)

2

.

Notice that �i
+ (q � 1)�

j � q�k
= 0 cannot hold for two values of q : q

1

and q
2

. We

will show this fact by contradiction. Suppose it happens that �i
+(q

1

�1)�

j�q
1

�

k
= 0

and �

i
+ (q

2

� 1)�

j � q
2

�

k
= 0 in which case we must have �

j
= �

k which is a

contradiction to the fact that all the unknown vectors are distinct. We can take a

union over all possible triplets (at most L3 of them) and therefore we must have that

Pr(The vector triplet (v + r, (q � 1)r,v + qr) is good)

� 1� L3

⇣

2

4z? + 1

� 1

(4z? + 1)

2

⌘

� 1p
↵?

.

255

We will now generalize Lemma B.2 in order to characterize the batch size required

to recover the denoised query responses when there are L unknown vectors that the

oracle can sample from.

Lemma B.4 (Generalization of Lemma B.2). For a particular query vector v such that

each entry of v is integral, a batch size of T > c
3

log n exp((�/✏)2/3), for some constant

c
3

> 0, is sufficient to recover the denoised query responses hv,�1i, hv,�2i, . . . , hv,�Li

with probability at least 1� 1/poly(n).

Proof. The proof follows in exactly the same manner as the proof in Lemma B.2 but

in this case, we invoke Lemma 3.2 with any general value of L. Since we have assumed

that L is a constant, the term L2 is subsumed within the constant c
3

.

Corollary B.2. For O
⇣

k log2 n
⌘

query vectors such that every entry of every query

vector is integral, a batch size of T > c
4

log n exp((�/✏)2/3), for some constant c
4

> 0,

is sufficient to recover the denoised query responses corresponding to every query vector

with probability at least 1� 1/poly(n).

Proof. Again, we can take a union bound over all O
⇣

k log2 n
⌘

query vectors to obtain

the result.

Lemma B.5. If we draw
p
↵?

log n triplets of query vectors (v + r, (q � 1)r,v + qr)

randomly as described, then at least one of the triplets is good with probability at least

1� 1/n.

Proof. Now, the probability of a triplet of vectors (v + r, (q � 1)r, r) being not good

is less than 1� 1p
↵? and therefore the probability of all the

p
↵?

log n triplets being

not good is less than

⇣

1� 1p
↵?

⌘

logn
p
↵?

 e� logn  n�1

which proves the statement of the lemma.

256

Lemma B.6. For a good triplet of vectors (v + r, (q � 1)r,v + qr), we can obtain

hv,�ii for all i 2 [L].

Proof. Recall that since we queried the vector v + qr, we can simply check which

element (say x) from the set {hv + r,�ii}Li=1

and which element (say y) from the

set {h(q � 1)r,�ii}Li=1

adds up to an element in {hv + qr,�ii}Li=1

. It must happen

that the elements x and y must correspond to the same unknown vector �i for some

i 2 [L] because the triplet of vectors (v + r, (q � 1)r, qr) is good. Hence computing

x� (y/(q� 1)) allows us to obtain hv,�ii and this step can be done for all i 2 [L].

Algorithm 3.3 (Alignment step): Let a particular good query vector triplet be

(v

?
+ r

?, (q?�1)r

?,v?
+q?r?). From now, we will consider the L elements {hr?,�ii}Li=1

(necessarily distinct) to be labels and for a vector u, we will associate a label with every

element in {hu, �ii}Li=1

. The labelling is correct if, for all i 2 [L], the element labelled

as hr?,�ii also corresponds to the same unknown vector �i. Notice that we can label

the elements {hv?, �ii}Li=1

correctly because the triplet (v

?
+ r

?, (q? � 1)r?,v?
+ q?r?)

is good and by applying the reasoning in Lemma B.6. Consider another good query

vector triplet (v0
+ r

0, (q0�1)r

0,v0
+q0r0) which we will call matching good with respect

to (v

?
+ r

?, (q? � 1)r?,v?
+ q?r?) if it is good and additionally, the vector triplet

(r

0, r?, r0 + r

?
) is also good.

Lemma B.7. For a fixed known good query vector triplet (v?
+ r

?, (q?�1)r?,v?
+q?r?),

the probability that any randomly drawn query vector triplet (v0
+ r

0, (q� 1)r

0,v0
+ q0r0)

is matching good with respect to (v

?
+ r

?, (q? � 1)r?,v?
+ q?r?) is at least 1p

↵? .

Proof. From Lemma B.3, we know that the probability that a randomly drawn query

vector triplet (v

0
+ r

0, (q � 1)r

0,v0
+ q0r0) is not good is at most L3

⇣

2

4z?+1

� 1

(4z?+1)

2

⌘

.

Again, we must have for a fixed triplet of indices i, j, k 2 [L] such that they are not

identical

Pr(hr0,�ii+ hr?,�ji = hr0 + r

?,�ki)

257

= Pr(hr0,�i � �

ki = hr?,�k � �

ji)  1

4z? + 1

Taking a union bound over all non-identical triplets (at most L3 of them), we get that

Pr((r

0, r?, r0 + r

? is not good)  L3

4z? + 1

Taking a union bound over both the failure events, we get that

Pr((v

0
+ r

0, (q � 1)r

0,v0
+ q0r0) is not matching good)

 L3

⇣

3

4z? + 1

� 1

(4z? + 1)

2

⌘

 1� 1p
↵?

which proves the lemma.

Lemma B.8. For a matching good query vector triplet (v0
+ r

0, (q� 1)r

0,v0
+ qr0), we

can label the elements in {hv0, �ii}Li=1

correctly by querying the vector r

0
+ r

?.

Proof. Since (v

0
+ r

0, (q � 1)r

0,v0
+ qr0) is good and we have also queried v

0
+ qr0, we

can partition the set of elements {hv0
+ r

0, �ii}Li=1

[{h(q � 1)r

0, �ii}Li=1

into groups

of two elements each such that the elements in each group correspond to the same

unknown vector �i as in the reasoning presented in proof of Lemma B.6. Again, since

(r

0, r?, r0 + r

?
) is good and we have queried r

0
+ r

?, we can create a similar partition of

the set of elements {hr0, �ii}Li=1

[{hr?, �ii}Li=1

and multiply every element by a factor

of q � 1. For each of the two partitions described above we can align two groups

together (one from each partition) if both groups contain h(q � 1)r

0, �ii for the same

i 2 L (the values hr0, �ii are necessarily distinct and therefore this is possible). Hence,

for every i 2 [L], we can compute hv0, �ii correctly and also label it correctly because

of the alignment.

258

Algorithm 3.3 (Putting it all together) First, we condition on the event that

for all batches of queries (number of batches will be polynomial in k and log n) we

make, the denoised means are extracted correctly which happens with probability

at least 1� 1

n
by Corollary B.2. As described in Algorithm 3.3, in the first step we

sample a pair of vectors (v, r) such that v is uniformly drawn from {�1,+1}n and

r is uniformly drawn from {�2z?,�2z? + 1, . . . , 2z? � 1, 2z?}n. We also sample a

random number q uniformly and independently from the set {1, 2, . . . , 4z? + 1} and

subsequently, we use batches of queries of size c
4

L2

log n exp((�/✏)2/3) corresponding

to the three vectors v + r, (q � 1)r and v + qr respectively. We will repeat this step

for
p
↵?

log n + c0↵?k log(n/k) iterations. Additionally, for each query vector pair

((v1, r1) among the first
p
↵?

log n iterations and for each vector pair ((v2, r2) among

the latter c0↵?k log(n/k) iterations, we also make the batch of queries corresponding

to the vector r1 + r2. From Lemma B.5, we know that with probability at least 1� 1

n
,

one of the query vector triplets among the first
p
↵?

log n triplets is good. Moreover,

it is also easy to check if a query vector triplet is good or not and therefore it is easy

to identify one. Once a good query vector triplet (v

?
+ r

?, (q? � 1)r

?,v?
+ q?r?) is

identified, it is also possible to correctly identify matching good query vectors among

the latter c0↵?k log(n/k) query vector triplets with respect to the good vector triplet.

We now have the following lemma characterizing the number of matching good query

vector triplets:

Lemma B.9. The number of matching good query vector triplets from ↵?c0k log(n/k)

randomly chosen triplets is at least c0k log(n/k) with probability at least 1�
⇣

k
n

⌘c̃k

for

some constant c̃ > 0.

Proof. For a randomly drawn query vector triplet, we know that it is matching good

with probability at least 1p
↵? from Lemma B.7. Since there are ↵?c0k log(n/k) query

vector triplets drawn at random independently, the expected number of matching-good

259

triplets is at least
p
↵?c0k log(n/k). Further, by using Chernoff bound [26], we can

show that

Pr(Number of matching good triplets < c0k log(n/k))

= Pr(Number of matching good triplets <
p
↵?c0k log(n/k)

✓

1�
p
↵? � 1p
↵?

◆

 exp

✓

�(

p
↵? � 1)

2c0k log(n/k)

2

p
↵?

◆

.

From Lemma B.8, we know that for every matching good query vector triplet

(v

0
+ r

0, (q � 1)r

0,v0
+ qr0), we can label the elements in {hv0, �ii}Li=1

correctly and

from Lemma B.9, we know that we have aggregated de-noised query measurements

corresponding to c0k log(n/k) vectors randomly sampled from {+1,�1}n. However,

since we have specifically picked c0k log(n/k) matching good vectors after the entire

scheme, we do not know which query vectors will be matching good apriori and

therefore we need to have the following guarantee:

Lemma B.10. From ↵?c0k log(n/k) vectors randomly chosen from {+1,�1}n, any

c0k log(n/k) vectors scaled by a factor of 1/
p

c0k log(n/k) will satisfy the � � RIP

property with high probability.

The proof of this lemma is delegated to Section B.3. Now we are ready to proof

the main theorem in this setting.

Proof of Theorem 3.5. The total number of batches of queries made is at most

3c0↵?k log(n/k) log n. Further, recall that size of each batch that is sufficient to

recover the denoised means accurately is c
4

log n log(�/✏)2/3. Hence the total num-

ber of queries is O
⇣

k(log n)3 exp(�/✏)2/3
⌘

as mentioned in the theorem statement.

From Lemma B.8 and Lemma B.10, we know that for every vector {�i}Li=1

, we have

260

c0k log(n/k) linear query measurements such that the measurement matrix scaled by

1/
p

c0k log(n/k) has the � � RIP property. Therefore, it is possible to obtain the best

k-sparse approximation of all the vectors �

1,�2, . . . ,�L by using efficient algorithms

such as Basis Pursuit.

Now Theorem 3.3 follows as a corollary.

Proof of Theorem 3.3 for general L. Notice that the query with the largest magnitude

of query response that we will make is v+(4z?+1)r where v is sampled from {+1,�1}n

and r is sampled from {�2z?,�2z? + 1, . . . , 2z? � 1, 2z?}. Therefore, we must have

E|hv + (4z? + 1)r,�ii|2

= E|hv,�ii|2 + (4z? + 1)

2E|hr,�ii|2

= 1 + (4z? + 1)

2z?
X

i=1

i2

= 1 +

z?(2z? + 1)(4z? + 1)

2

3

.

since ||�i||
2

= 1. Since the variance of the noise E⌘2 is �2, we must have that

SNR =

1

�2

⇣

1 +

z?(2z? + 1)(4z? + 1)

2

3

⌘

.

Substituting the above expression in the statement of Theorem 3.5 and using the fact

that z? is a constant, we get the statement of the corollary.

B.3 Proof of Lemma B.10

First, let us introduce a few notations. For a given any set of indices T ⇢ [n],

denote by XT the set of all vectors in Rn that are zero outside of T . We start by

stating the Johnson-Linderstrauss Lemma proved in [14].

261

Lemma B.11. [Lemma 5.1 in [14]] Let A be a m⇥n matrix such that every element

in A is sampled independently and uniformly at random from {1/pm,�1/pm}. For

any set T ⇢ [n] such that |T | = k and any 0 < � < 1, we have

(1� �)||x||
2

 ||Ax||
2

 (1 + �)||x||
2

for all x 2 XT

with probability at least 1� 2(12/�)ke�
m
2

(�2/8��3/24).

We are now ready to prove Lemma B.10. Since there are
�

n
k

�

distinct subsets of

[n] that are of size k, we take a union bound over all the subsets and therefore the

failure probability of Lemma B.11 for all sets of indices of size k (definition of �-RIP)

is at most

2(12/�)k
✓

n

k

◆

e�
m
2

(�2/8��3/24).

We need that from ↵m(↵ > 1) vectors randomly sampled from { 1p
m
, �1p

m
}n any m

vectors satisfy the �-RIP property for some value of m. Therefore, the probability of

failure is at most

2

✓

12

�

◆k ✓n

k

◆✓

↵m

m

◆

e�
m
2

(�2/8��3/24).

By Stirling’s approximation and the fact that both ↵m and m is large, we get that

✓

↵m

m

◆

⇡
r

↵

2⇡m(↵� 1)

⇣ ↵↵

(↵� 1)

↵�1

⌘m

Further we can also upper bound the binomial coefficients
�

n
k

�

by
⇣

en
k

⌘k

. Hence we

can upper bound the failure probability as

exp

⇣

�m(�2/16� �3/48) +m log

⇣ ↵↵

(↵� 1)

↵�1

⌘

+ k log(en/k) + log(12/�) + log 2

⌘

262

Therefore, if we substitute m = c0k log(en/k) for some constant c0 > 0, we must have

the failure probability to be upper bounded as e�c00m(1+o(1)) for some c00 > 0 as long as

we have

c0(
�2

16

� �3

48

) > c0 log
⇣ ↵↵

(↵� 1)

↵�1

⌘

+ 1

implying that

↵↵

(↵� 1)

↵�1

< exp

⇣ �2

16

� �3

48

� 1

c0

⌘

.

Hence, by choosing the constant c0 appropriately large, the term in the exponent on

the right hand side can be made positive. Since the left hand side of the equation is

always greater than 1, there will exist an ↵ satisfying the equation.

B.4 Proofs of Lemma 3.3 and 3.4

Let X be a random variable which is distributed according to M and suppose we

obtain T samples y
1

, y
2

, . . . , yT ⇠M. We will divide these T samples into B :=

l

T/t
m

batches each of size t. In that case let us denote Sj
1,t and Sj

2,t to be the sample mean

and the sample variance of the jth batch i.e.

Sj
1,t =

X

i2Batch j

yi
t

and Sj
2,t =

1

t� 1

X

i2Batch j

(yi � (Sj
1,t))

2.

We will estimate the true mean EX and the true variance varX by computing ˆM
1

and ˆM
2

respectively (See Algorithm 3.5) where

ˆM
1

, median({Sj
1,t}Bj=1

) and ˆM
2

, median({Sj
2,t}Bj=1

).

263

Proof of Lemma 3.3. For a fixed batch j, we can use Chebychev’s inequality to say

that

Pr

⇣

�

�Sj
1,t � EX

�

� � ✏
1

⌘

 varX

t✏2
1

We have

varX = EX2 � (EX)

2

=

1

2

⇣

2�2

+ µ2

1

+ µ2

2

⌘

� 1

4

(µ
1

+ µ
2

)

2

= �2

+

(µ
1

� µ
2

)

2

4

Noting that we must have t � 1 as well, we obtain

Pr

⇣

�

�Sj
1,t � EX

�

� � ✏
1

⌘

 �2

+ (µ
1

� µ
2

)

2/4

t✏2
1

 1

3

for t = O(

l

(�2

+ (µ
1

� µ
2

)

2

)/✏2
1

m

). Therefore for each batch j, we define an indicator

random variable Zj = 1[
�

�Sj
1,t � EX

�

� � ✏
1

] and from our previous analysis we know

that the probability of Zj being 1 is less than 1/3. It is clear that E
PB

j=1

Zj  B/3

and on the other hand | ˆM
1

� EX| � ✏
1

iff
PB

j=1

Zj � B/2. Therefore, using the

Chernoff bound, we have

Pr

⇣

�

�

�

ˆM
1

� EX
�

�

�

� ✏
1

⌘

 Pr
⇣

�

�

�

�

�

B
X

j=1

Zj � E
B
X

j=1

Zj

�

�

�

�

�

�
E
PB

j=1

Zj

2

⌘

 2e�B/36.

Hence, for B = 36 log ⌘�1, the estimate ˆM
1

is atmost ✏
1

away from the true mean ˆM
1

with probability at least 1 � 2⌘. Therefore the total sample complexity required is

T = O(log ⌘�1

l

(�2

+ (µ
1

� µ
2

)

2

)/✏2
1

m

) proving the lemma.

Proof of Lemma 3.4. We have

ESj
2,t = E

1

t� 1

X

i2Batch j

(yi � (Sj
1,t))

2

264

= E
1

t(t� 1)

X

i
1

,i
2

2Batch j
i
1

<i
2

(yi
1

� yi
2

)

2

=

1

t(t� 1)

X

i
1

,i
2

2Batch j
i
1

<i
2

E(yi
1

� yi
2

)

2

=

1

t(t� 1)

X

i
1

,i
2

2Batch j
i
1

<i
2

Ey2i
1

+ Ey2i
2

� 2E [yi
1

yi
2

]

=

1

t(t� 1)

X

i
1

,i
2

2Batch j
i
1

<i
2

2�2

+ µ2

1

+ µ2

2

� (µ
1

+ µ
2

)

2

2

= �2

+

(µ
1

� µ
2

)

2

4

= varX.

Hence the estimator Sj
2,t is an unbiased estimator since it’s expected value is the true

variance of X. Again, we must have

E(Sj
2,t)

2

= E
1

t2(t� 1)

2

⇣

X

i
1

,i
2

2Batch j
i
1

<i
2

(yi
1

� yi
2

)

2

⌘

2

.

Claim B.1. We have

E
⇥

(yi
1

� yi
2

)

2

(yi
3

� yi
4

)

2

⇤

 48

⇣

�2

+

(µ
1

� µ
2

)

2

4

⌘

2

for any i
1

, i
2

, i
3

, i
4

such that i
1

< i
2

and i
3

< i
4

.

Proof. In order to prove this claim consider three cases:

Case 1 (i
1

, i
2

, i
3

, i
4

are distinct): In this case, we have that yi
1

� yi
2

and yi
3

� yi
4

are independent and therefore,

E
⇥

(yi
1

� yi
2

)

2

(yi
3

� yi
4

)

2

⇤

= E
⇥

(yi
1

� yi
2

)

2

⇤

E
⇥

(yi
3

� yi
4

)

2

⇤

 4

⇣

�2

+

(µ
1

� µ
2

)

2

4

⌘

2

.

265

Case 2 (i
1

= i
3

, i
2

= i
4

): In this case, we have

E
⇥

(yi
1

� yi
2

)

2

(yi
3

� yi
4

)

2

⇤

= E
⇥

(yi
1

� yi
2

)

4

⇤

.

Notice that

yi
1

� yi
2

⇠ 1

2

N (0, 2�2

) +

1

4

N (µ
1

� µ
2

, 2�2

) +

1

4

N (µ
2

� µ
1

, 2�2

)

and therefore we get

E
⇥

(yi
1

� yi
2

)

4

⇤

= 48�4

+ 12�2

(µ
1

� µ
2

)

2

+

(µ
1

� µ
2

)

4

2

 48

⇣

�2

+

(µ
1

� µ
2

)

2

4

⌘

2

.

Case 3 ({i
1

, i
2

, i
3

, i
4

} has 3 unique elements): Without loss of generality let us

assume that i
1

= i
3

. In that case we have

E
⇥

(yi
1

� yi
2

)

2

(yi
1

� yi
4

)

2

⇤

= Eyi
1

E
⇥

(yi
2

� yi
1

)

2

(yi
4

� yi
1

)

2 | yi
1

⇤

Notice that for a fixed value of yi
1

, we must have yi
2

� yi
1

, yi
4

� yi
1

to be independent

and identically distributed i.e.

yi
2

� yi
1

, yi
4

� yi
1

⇠ 1

2

N (µ
1

� yi
1

, �2

) +

1

2

N (µ
2

� yi
1

, �2

).

Therefore,

E
⇥

(yi
2

� yi
1

)

2

(yi
4

� yi
1

)

2 | yi
1

⇤

= E
⇥

(yi
2

� yi
1

)

2 | yi
1

⇤

E
⇥

(yi
2

� yi
1

)

2 | yi
1

⇤

=

1

4

⇣

2�2

+ (µ
1

� yi
1

)

2

+ (µ
2

� yi
1

)

2

⌘

2

.

Again, we have

yi
1

� µ
1

⇠ 1

2

N (0, �2

) +

1

2

N (µ
2

� µ
1

, �2

)

266

yi
1

� µ
2

⇠ 1

2

N (0, �2

) +

1

2

N (µ
1

� µ
2

, �2

).

Hence,

E
⇣

2�2

+ (µ
1

� yi
1

)

2

+ (µ
2

� yi
1

)

2

⌘

2

= 4�4

+ E(µ
1

� yi
1

)

4

+ E(µ
1

� yi
2

)

4

+ 4�2

(E(µ
1

� yi
1

)

2

+ E(µ
1

� yi
2

)

2

) + E((µ
1

� yi
1

)

2

(µ
2

� yi
1

)

2

).

We have

E(µ
1

� yi
1

)

4

= E(µ
2

� yi
1

)

4

= 3�4

+

(µ
1

� µ
2

)

4

2

+ 3�2

(µ
1

� µ
2

)

2

E(µ
1

� yi
1

)

2

= E(µ
2

� yi
1

)

2

= �2

+

(µ
1

� µ
2

)

2

2

E((µ
1

� yi
1

)

2

(µ
2

� yi
1

)

2

) = E((µ
1

� yi
1

)

2

(µ
2

� µ
1

+ µ
1

� yi
1

)

2

)

= E[(µ
1

� yi
1

)

4

+ (µ
1

� µ
2

)

2

(µ
1

� yi
1

)

2

+ 2(µ
2

� µ
1

)(µ
1

� yi
1

)

3

]

= 3�4

+

(µ
1

� µ
2

)

4

2

+ 5�2

(µ
1

� µ
2

)

2.

Plugging in, we get

E
⇣

2�2

+ (µ
1

� yi
1

)

2

+ (µ
2

� yi
1

)

2

⌘

2

= 17�4

+

3(µ
1

� µ
2

)

4

2

+ 13�2

(µ
1

� µ
2

)

2.

Hence, we obtain

E
⇥

(yi
1

� yi
2

)

2

(yi
1

� yi
4

)

2

⇤

 7

⇣

�2

+

(µ
1

� µ
2

)

2

2

⌘

2

.

which proves the claim.

From Claim B.1, we can conclude that

E(Sj
2,t)

2  12

⇣

�2

+

(µ
1

� µ
2

)

2

4

⌘

2

.

267

From this point onwards, the analysis in this lemma is very similar to Lemma 3.3. We

can use Chebychev’s inequality to say that

Pr

⇣

�

�Sj
2,t � varX

�

� � ✏
2

⌘


varSj

2,t

t✏2
2


E(Sj

2,t)
2

t✏2
2

.

Therefore, we obtain by noting that t � 1 as well,

Pr

⇣

�

�Sj
2,t � varX

�

� � ✏
2

⌘

 12(�2

+ (µ
1

� µ
2

)

2/4)2

t✏2
2

 1

3

for t = O(

l

(�2

+ (µ
1

� µ
2

)

2

)

2/✏2
2

m

). At this point, doing the same analysis as in

Lemma 3.3 shows that B = 36 log ⌘�1 batches of batchsize t is sufficient to estimate

the variance within an additive error of ✏
2

with probability at least 1� 2⌘. Therefore

the total sample complexity required is T = O(log ⌘�1

l

(�2

+ (µ
1

� µ
2

)

2

)

2/✏2
2

m

) thus

proving the lemma.

B.5 Proof of Lemma 3.6

We use O
⇣

log ⌘�1

✏2

⌘

samples to recover µ̂
1

and µ̂
2

using the method of moments.

According to the guarantee provided in Theorem 3.8, we must have with probability

at least 1� 1/⌘,

|µ̂i � µ|  2(✏+
p
✏)
p

�2

+ (µ
1

� µ
2

)

2 for i = 1, 2.

Therefore, we have

|µ
1

� µ
2

|� |µ
1

� µ̂
1

|� |µ
2

� µ̂
2

|  |µ̂
1

� µ̂
2

|  |µ
1

� µ
2

|+ |µ
1

� µ̂
1

|+ |µ
2

� µ̂
2

|

||µ̂
1

� µ̂
2

|� |µ
1

� µ
2

||  4(✏+
p
✏)
p

�2

+ (µ
1

� µ
2

)

2.

268

Case 1 (� � 1): We will substitute ✏ = 1/256�. In that case, we must have

||µ̂
1

� µ̂
2

|� |µ
1

� µ
2

||  1

2

r

� +

(µ
1

� µ
2

)

2

�

p
�

2

+

|µ
1

� µ
2

|
2

.

and therefore,

�
p
�

2

+

|µ
1

� µ
2

|
2

 |µ̂
1

� µ̂
2

| 
p
�

2

+

3 |µ
1

� µ
2

|
2

.

Therefore, if |µ
1

� µ
2

| = ⌦(�), we will have |µ̂
1

� µ̂
2

| = ⌦(�) and on the other hand

if, |µ
1

� µ
2

| = O(�), we will have |µ̂
1

� µ̂
2

| = O(�) as well. The sample complexity

required for the test is going to be O(�2

log ⌘�1

).

Case 2 (�  �  1): We will substitute ✏ = �/256. Now, we must have

||µ̂
1

� µ̂
2

|� |µ
1

� µ
2

|| 
p
�

2

p

�2

+ (µ
1

� µ
2

)

2  o(�) +

p
� |µ

1

� µ
2

|
2

.

and therefore,

�o(�) + (1�
p
�

2

) |µ
1

� µ
2

|  |µ̂
1

� µ̂
2

|  o(�) + (1 +

p
�

2

) |µ
1

� µ
2

| .

Therefore, if |µ
1

� µ
2

| = ⌦(�), we will have |µ̂
1

� µ̂
2

| = ⌦(�) and on the other hand

if, |µ
1

� µ
2

| = O(�), we will have |µ̂
1

� µ̂
2

| = O(�) as well. The sample complexity

required for the test is going to be O(log ⌘�1/�2

).

Case 3 (�  �): We will substitute ✏ = 1/256. In that case we have

||µ̂
1

� µ̂
2

|� |µ
1

� µ
2

||  17

64

p

�2

+ (µ
1

� µ
2

)

2  17�

64

+

17 |µ
1

� µ
2

|
64

.

and therefore

�17�

64

+

47 |µ
1

� µ
2

|
64

 |µ̂
1

� µ̂
2

|  17�

64

+

81 |µ
1

� µ
2

|
64

.

269

Hence, we have

�17�

81

+

64 |µ̂
1

� µ̂
2

|
81

 |µ
1

� µ
2

|  17�

47

+

64 |µ̂
1

� µ̂
2

|
47

.

This implies that if |µ̂
1

� µ̂
2

|  15�/32, then |µ
1

� µ
2

|  � and we will fit a

single gaussian to recover the means. On the other hand, if |µ̂
1

� µ̂
2

| � 15�/32, then

|µ
1

� µ
2

|  13�/81 and we will use EM algorithm. The sample complexity required is

O(log ⌘�1

) samples.

270

APPENDIX C

MISSING PROOFS IN CHAPTER 5

C.1 Missing Proofs from Section 5.2

Proof of Lemma 5.2 when | [i2C S(i)| is provided. Suppose we are given | [i2C S(i)|

for all sets C ✓ [n] satisfying |C|  s. Notice that the set \i2CS(i) is equivalent to

the set occ(C,1|C|) or the number of unknown vectors in V whose restriction to the

indices in C is the all one vector and in particular, occ((i), 1) = S(i). Note that for

each family of t sets A
1

,A
2

, . . . ,At, we must have

�

�

�

�

�

t
[

i=1

Ai

�

�

�

�

�

=

t
X

u=1

(�1)u+1

X

1i
1

<i
2

<···<iut

�

�

�

�

�

u
\

b=1

Aib

�

�

�

�

�

.

We now show using induction on s that the quantities

(

�

�

�

�

�

[

i2S
occ((i), 1)

�

�

�

�

�

8 T ✓ [n], |T |  s

)

are sufficient to compute |occ(C,a)| for all subsets C of indices of size at most s, and

any binary vector a 2 {0, 1}s.

Base case (t = 1):

The base case follows since we can infer |occ((i), 0)| = ` � |occ((i), 1)| from

|occ((i), 1)| for all i 2 [n].

Inductive Step: Let us assume that the statement is true for r < s i.e., we

can compute |occ(C,a)| for all subsets C satisfying |C|  r and any binary vector

a 2 {0, 1}r from the quantities
�

�

�

S

i2S occ((i), 1)
�

� 8 T ✓ [n], |T |  r

provided as

271

input. Now, we prove that the statement is true for r + 1 under the induction

hypothesis. Note that we can also rewrite occ(C,a) for each set C ✓ [n],a 2 {0, 1}|C|

as

occ(C,a) =
\

j2C0

S(j)
\

j2C\C0

S(j)c

where C 0 ✓ C corresponds to the indices in C for which the entries in a is 1. Fix

any set i
1

, i
2

, . . . , ir+1

2 [n]. Then we can compute
�

�

Tr+1

b=1

S(ib)
�

� using the following

equation:

(�1)r+3

�

�

�

�

�

r+1

\

b=1

S(ib)
�

�

�

�

�

=

r
X

u=1

(�1)u+1

X

j
1

,j
2

,...,ju2{i
1

,i
2

,...,ir+1

}
j
1

<j
2

<···<ju

�

�

�

�

�

u
\

b=1

S(jb)
�

�

�

�

�

�
�

�

�

�

�

r+1

[

b=1

S(ib)
�

�

�

�

�

.

Finally for each proper subset Y ⇢ {i
1

, i
2

, . . . , ir+1

}, we can compute

�

�

�

�

�

\

ib 62Y
S(ib)

\

ib2Y
S(ib)c

�

�

�

�

�

using the following set of equations:

�

�

�

�

�

\

ib 62Y
S(ib)

\

ib2Y
S(ib)c

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
S(ib)

\

⇣

[

ib2Y
S(ib)

⌘c

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
S(ib)

�

�

�

�

�

�
�

�

�

�

�

\

ib 62Y
S(ib)

\

⇣

[

ib2Y
S(ib)

⌘

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
S(ib)

�

�

�

�

�

�
�

�

�

�

�

[

ib2Y

⇣

\

ib 62Y
S(ib)

\

S(ib)
⌘

�

�

�

�

�

.

272

The first term is already pre-computed and the second term is again a union of

intersection of sets. for each jb 2 Y, let us define H(jb) :=

T

ib 62Y S(ib)
T

S(jb).

Therefore we have

�

�

�

�

�

[

jb2Y
H(jb)

�

�

�

�

�

=

|Y|
X

u=1

(�1)u+1

X

j
1

,j
2

,...,ju2Y
j
1

<j
2

<···<ju

�

�

�

�

�

u
\

b=1

H(jb)

�

�

�

�

�

.

We can compute
�

�

�

S

jb2Y H(jb)
�

�

�

because the quantities on the right hand side of the

equation have already been pre-computed (using our induction hypothesis). Therefore,

the lemma is proved.

Proof of Lemma 5.2 when | \i2C S(i)| is provided. Suppose we are given | \i2C S(i)|

for all sets V ✓ [n] satisfying |V|  s. We will omit the subscript V from hereon for

simplicity. As in Lemma 5.2, the set \i2CS(i) is equivalent to the set occ(C,1|C|) or

the number of unknown vectors in V whose restriction to the indices in C is the all

one vector and in particular, occ((i), 1) = S(i). We will re-use the equation that for t

sets A
1

,A
2

, . . . ,At, we must have

�

�

�

�

�

t
[

i=1

Ai

�

�

�

�

�

=

t
X

u=1

(�1)u+1

X

1i
1

<i
2

<···<iut

�

�

�

�

�

u
\

b=1

Aib

�

�

�

�

�

.

We now show using induction on s that the quantities

(

�

�

�

�

�

\

i2S
occ((i), 1)

�

�

�

�

�

8 T ✓ [n], |T |  s

)

are sufficient to compute |occ(C,a)| for all subsets C of indices of size at most s, and

any binary vector a 2 {0, 1}s.

Base case (t = 1):

273

The base case follows since we can infer |occ((i), 0)| = ` � |occ((i), 1)| from

|occ((i), 1)| for all i 2 [n].

Inductive Step: Let us assume that the statement is true for r < s i.e., we

can compute |occ(C,a)| for all subsets C satisfying |C|  r and any binary vector

a 2 {0, 1}r from the quantities
�

�

�

T

i2S occ((i), 1)
�

� 8 T ✓ [n], |T |  r

provided as

input. Now, we prove that the statement is true for r + 1 under the induction

hypothesis. Note that we can also rewrite occ(C,a) for any set C ✓ [n],a 2 {0, 1}|C| as

occ(C,a) =
\

j2C0

S(j)
\

j2C\C0

S(j)c

where C 0 ✓ C corresponds to the indices in C for which the entries in a is 1. Fix

any set i
1

, i
2

, . . . , ir+1

2 [n]. Then we can compute
�

�

Sr+1

b=1

S(ib)
�

� using the following

equation:

�

�

�

�

�

r+1

[

b=1

S(ib)
�

�

�

�

�

=

r+1

X

u=1

(�1)u+1

X

j
1

,j
2

,...,ju2{i
1

,i
2

,...,ir+1

}
j
1

<j
2

<···<ju

�

�

�

�

�

u
\

b=1

S(jb)
�

�

�

�

�

.

Finally for any proper subset Y ⇢ {i
1

, i
2

, . . . , ir+1

}, we can compute

�

�

�

�

�

\

ib 62Y
S(ib)

\

ib2Y
S(ib)c

�

�

�

�

�

using the following set of equations:

�

�

�

�

�

\

ib 62Y
S(ib)

\

ib2Y
S(ib)c

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
S(ib)

\

⇣

[

ib2Y
S(ib)

⌘c

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
S(ib)

�

�

�

�

�

�
�

�

�

�

�

\

ib 62Y
S(ib)

\

⇣

[

ib2Y
S(ib)

⌘

�

�

�

�

�

=

�

�

�

�

�

\

ib 62Y
S(ib)

�

�

�

�

�

�
�

�

�

�

�

[

ib2Y

⇣

\

ib 62Y
S(ib)

\

S(ib)
⌘

�

�

�

�

�

.

274

The first term is already pre-computed and the second term is again a union of

intersection of sets. For any ib 2 Y, let us define H(jb) :=

T

ib 62Y S(ib)
T

S(jb).

Therefore we have

�

�

�

�

�

[

jb2Y
H(jb)

�

�

�

�

�

=

|Y|
X

u=1

(�1)u+1

X

j
1

,j
2

,...,ju2Y
j
1

<j
2

<···<ju

�

�

�

�

�

u
\

b=1

H(jb)

�

�

�

�

�

.

We can compute
�

�

�

S

jb2Y H(jb)
�

�

�

because the quantities on the right hand side of the

equation have already been pre-computed (using our induction hypothesis). Therefore,

the lemma is proved.

Proof of Lemma 5.3. Note that Trimmed(V) is the largest subset of vectors in V ⌘

{v(1),v(2), . . . ,v(`)} such that the support of any vector in Trimmed(V) is not contained

within the support of any other vector in Trimmed(V). Let us fix a vector v 2

Trimmed(V). For any other vector v0 2 Trimmed(V) there must exist an index i
v,v0 2

supp(v) such that i
v,v0 62 supp(v0

). Clearly the vector v constrained to the set of indices

C , [
v

02Trimmed(V),v0 6=v

{i
v,v0} is an all-one vector but v

0
|C 6= 1 for all v0 2 V ,v0 6= v.

This is true for all vectors in Trimmed(V) and since |Trimmed(V) \ {v}|  `� 1, we

must have Trimmed(V) to be (`� 1)�good.

Proof of Lemma 5.4. As stated in the Lemma, suppose it is known if |\i2CS(i)| > 0

or not for all sets C ✓ [n] satisfying |C|  s + 1. Further assume that the set of

unknown vectors V is s-good. Consider any vector v 2 Trimmed(V). Since V is s-good,

there must exist an ordered set C ✓ [n] such that v|C is the all 1 vector but v

0
|C is

not the all 1 vector for any other vector v

0 2 Trimmed(V). Therefore, we must have

|\i2CS(i)| > 0. But, on the other hand, notice that if |Trimmed(V)| � 2, there must

exist an index j 2 [
v2Trimmed(V)supp(v) such that

�

�\i2C[{j}S(i)
�

�

= 0 since the support

275

of v does not contain the support of all other vectors. Algorithm 5.2 precisely checks

for this condition and therefore this completes the proof.

Proof of Lemma 5.5. Consider the special case when |Trimmed(V)| = 1 i.e. there

exists a particular vector v in V whose support subsumes the support of all the other

unknown vectors in V . In that case, for each set C ✓ [
v2Trimmed(V)supp(v), |C|  `, we

must have that
�

�

S

i2C S(i)
�

� > 0 (as there is only a single vector in Trimmed(V)). On

the other hand, if |Trimmed(V)| � 2, then we know that Trimmed(V) is (`� 1)-good

and therefore, for each vector v 2 Trimmed(V), there exists an ordered set and an

index C, {j} ✓ [
v2Trimmed(V)supp(v), |C|  `� 1 such that C belongs to the support of

v but does not belong to the support of any other vector; hence
�

�

T

i2C S(i)
�

� > 0 but
�

�

�

T

i2C[{j} S(i)
�

�

�

= 0. In other words, there exists a set of size ` that is a subset of the

union of support of vectors in Trimmed(V) but there does not exist any unknown vector

that has 1 in all the indices indexed by the aforementioned set. Again, Algorithm 5.2

precisely checks this conditions and therefore this completes the proof.

Algorithm C.1 Estimate(m,B) Estimating EX for X ⇠ P
Require: I.i.d samples x(1), x(2), . . . , x(m) ⇠ P
1: Set t = m/B
2: for i = 1, 2, . . . , B do
3: Set Batch i to be the samples x(j) for j 2 {it+ 1, it+ 2, . . . , (i+ 1)t}.
4: Set Si

1

=

P

j2 Batch i
x(j)

t

5: end for
6: Return median({Si

1

}Bi=1

)

Lemma C.1. The set Trimmed(V) is unique.

Proof. We will prove this lemma by contradiction. Suppose there exists two distinct

sets T
1

, T
2

⇢ V such that |T
1

| = |T
2

| = |Trimmed(V)|. Since T
1

, T
2

are distinct, there

must exist a vector v 2 T
2

\ T
1

. If supp(v) is not contained with the support of some

276

vector in T
1

and there is no other vector in V whose support contains v, then clearly,

v can be added to T
1

implying that T
1

cannot be the largest deduplicated set. On the

other hand, suppose supp(v) is contained within the support of some vector v

0 in T
1

.

However, this implies that T
2

cannot be a valid deduplicated set as the support of v

is contained with the support of v0 and therefore, v cannot belong to a deduplicated

set. This implies that the vector v cannot exist without violating some constrained of

Trimmed(V) and therefore, the set Trimmed(V) is unique.

C.2 Technical Lemmas

Lemma C.2 (Hoeffding’s inequality for bounded random variables). Let X
1

, . . . , Xm

be independent random variables strictly bounded in the interval [a, b]. Let µ =

m�1

P

i EXi. In that case, we must have

Pr

⇣

�

�

�

�

�

1

m

m
X

i=1

Xi � µ

�

�

�

�

�

� t
⌘

 2 exp

⇣

� 2mt2

(b� a)2

⌘

.

Lemma C.3 (Gaussian concentration inequality). Consider a random variable Z dis-

tributed according to N (0, �2

). In that case, we must have Pr(|Z| � t)  2 exp(�t2/2)

for any t > 0.

Lemma C.4 (Gaussian anti-concentration inequality). Consider a random variable

Z distributed according to N (0, �2

). In that case, we must have Pr(|Z|  t) 
q

2

⇡
· t
�

for any t < �
p
⇡/
p
2.

Proof. By simple calculations, we can have

Pr(|Z| < t) 
Z t

�t

e�x2/2�2

p
2⇡�

dx 
r

2

⇡
· t
�
.

277

Lemma C.5. Suppose |[
v2Vsupp(v)|  n/2. In that case, we can compute [

v2Vsupp(v)

correctly using O(`2(R2

+�2

)(log n)3/�2) samples with probability at least 1�1/poly(n).

Proof. For each i 2 [n], suppose we want to test whether i 2 [
v2Vsupp(v) or not.

Consider the random variable y2x2

i when (x, y) ⇠ Pr. Notice that

Ey2x2

i =
1

`

X

v2V
Ey2x2

i | v

=

1

`

X

v2V

⇣

X

j2[n]
v

2

j + 2v

2

i

⌘

8

>

>

<

>

>

:

=

1

`

P

v2V ||v||
2

2

if |SV(i)| = 0

� 1

`

P

v2V ||v||
2

2

+

2�2

`
if |SV(i)| 6= 0

where the final inequality follows from the fact that the magnitude of any non-zero

entry of any unknown vector must be at least �. For simplicity of notation, we will

denote A =

1

`

P

v2V ||v||
2

2

to be average norm of the unknown vectors. We will estimate

Ey2x2

i by computing the following sample average

`

m
·

m
X

j=1

⇣

y(j)x(j)
i

⌘

2

.

From the definition of Pr, we must have y ⇠ N (0, ⇣2 + �2

), |⇣|  R since v 2

{0, 1}n, ||v||
2

 R for all v 2 V . By using Gaussian concentration inequalities, we

must have Pr(|y| > t)  exp(�t2/2(R2

+ �2

)). Therefore, with probability 1� n�10,

we have |y| < 20

p
R2

+ �2

log n. Similarly, with probability 1� n�10, |xi| is bounded

from above by 20 log n. a Subsequently, we use Hoeffding’s inequality to say that

Pr

⇣

�

�

�

�

�

`

m
·

m
X

j=1

⇣

y(j)x(j)
i

⌘

2

� Ey2x2

i

�

�

�

�

�

� �22

2`

⌘

 exp

⇣

� ⌦

⇣ m�2

`2(R2

+ �2

)(log n)2

⌘⌘

.

Hence, with m = O(`2(R2

+�2

)(log n)3/�2) samples, we can estimate if
�

�

T

i2C SV(i)
�

� > 0

or not correctly with probability at least 1� 1/poly(n). We can take a union bound

278

over all the n indices to estimate Ey2x2

i correctly within an additive error of �2/2` for

all i 2 [n]. We will cluster all the indices such that a pair of distinct indices u, v 2 [n]

are in the same group if

�

�

�

�

�

`

m
·

m
X

j=1

⇣

y(j)x(j)
u

⌘

2

� `

m
·

m
X

j=1

⇣

y(j)x(j)
v

⌘

2

�

�

�

�

�

 �2

`
.

Clearly, any two indices u, v 2 [n] that satisfy |SV(u)| = |SV(v)| = 0 must belong to

the same cluster. Since the size of the union of the support is at most n/2, the largest

cluster must correspond to the indices where the entry is zero in all the unknown

vectors. Subsequently, all those indices that do not belong to the largest cluster (after

the clustering step) must belong to \
v2Vsupp(v). Furthermore, no index i 2 [n] such

that |SV(i)| 6= 0 can belong to the largest cluster. This complete the proof of the

lemma.

Finally, we will also use the following well-known lemma stating that we can

compute estimates of the expectation of any one-dimensional random variable with

only a few samples similar to sub-gaussian random variables.

Lemma C.6. For a random variable x ⇠ P, there exists an algorithm (see Algorithm

C.1 in Appendix C.1) that can compute an estimate u of Ex such that |u� Ex|  ✏

with O(log ��1Ex2/✏2) with probability at least 1� �.

Proof of Lemma C.6. Suppose we obtain m independent samples x(1), x(2), . . . , x(m) ⇠

P. We use the median of means trick to compute u, an estimate of Ex. We will

partition m samples obtained from P into B = dm/m0e batches each containing m0

samples each. In that case let us denote Sj to be the sample mean of the jth batch i.e.

Sj
=

X

s2Batch j

x(s)

m0 .

279

We will estimate the true mean Ex by computing u where u , median({Sj}Bj=1

). For

a fixed batch j, we can use Chebychev’s inequality to say that

Pr

⇣

�

�Sj � Ex
�

� � ✏
⌘

 Ex2

t✏2
 1

3

for t = O(Ex2/✏2). Therefore for each batch j, we define an indicator random variable

Zj = 1[|Sj � Ex| � ✏] and from our previous analysis we know that the probability of

Zj being 1 is less than 1/3. It is clear that E
PB

j=1

Zj  B/3 and on the other hand

|u� Ex| � ✏ iff
PB

j=1

Zj � B/2. Therefore, due to the fact that Zj ’s are independent,

we can use Chernoff bound to conclude the following:

Pr

⇣

|u� Ex| � ✏
⌘

 Pr

⇣

�

�

�

�

�

B
X

j=1

Zj � E
B
X

j=1

Zj

�

�

�

�

�

�
E
PB

j=1

Zj

2

⌘

 2e�B/36.

Hence, for B = 36 log ��1, the estimate u is at most ✏ away from the true mean

Ex with probability at least 1 � �. Therefore the sufficient sample complexity is

m = O(log ��1Ex2/✏2).

280

APPENDIX D

USEFUL THEORETICAL TOOLS

D.1 Minimum Distance Estimator and Scheffe Estimator

Minimum Distance Estimator: We next review the minimum distance estimator

from [51], which is a general method to determine the sample complexity of a learning

problem. We start with the following definition that characterizes a widely used

combinatorial property of

Definition D.1. The Vapnik-Chervonenkis (VC) dimension of a family of sets H,

denoted by VC(H), is defined as the cardinality of the largest set C such that |H \ C| =

2

|C| i.e. H \ C contains all the subsets of C.

Suppose we are given a set of n samples x1, x2, . . . , xn distributed according to some

unknown distribution f and we are estimating f from an infinite class of distributions

F parameterized by ✓ 2 ⇥. Let us define the family of sets A to be

A = {{f✓ > f✓0} : ✓, ✓0 2 ⇥, ✓ 6= ✓0}.

the union of set of intervals in the sample space where one of the distribution has

larger density than the other. For some set A 2 A, let µn,A = (1/n)
Pn

i=1

1 [xi 2 A] be

the empirical mass of the distribution f to the set A using n samples. For a particular

distribution f✓, define �✓

�✓ = sup

A2A

�

�

�

�

Z

A

f✓ � µn,A

�

�

�

�

281

to be the distance of f✓ to the empirical distribution. We choose the best estimate f✓?

such that �✓? satisfies the following:

�✓?  inf

✓2⇥
�✓ +

1

n
.

In Chapter 6, [51], the following theoretical guarantee on the candidate distribution

f✓? 2 F returned by the minimum distance estimator is proved:

||f✓? � f ||TV  3 inf

✓2⇥
||f✓ � f ||TV + 2�+

3

2n

where � = supA2A
�

�

R

A
f � µn,A

�

�. Further, Chapter 4, [51] shows that E� is related

to the VC-Dimension of the family of sets A in the following way:

E� 
r

VC(A)

n
.

In order to bound the deviation of � from its expected value, we can use McDiarmid’s

inequality (Chapter 2, [51]) to conclude that with probability at least 1� 2⌘

�  E⇠f�+

r

log ⌘�1

2n

r

2V C(A) + log ⌘�1

2n
.

Putting everything together, we get that the following statement holds

||f✓? � f ||TV  3 inf

✓2⇥
||f✓ � f ||TV + 2

r

2V C(A) + log ⌘�1

2n
+

3

2n
(D.1)

with probability at least 1� ⌘.

Although the minimum distance estimator returns a distribution from an infinite

class of candidate distributions such that the returned distribution is close in total

282

variation distance, equation D.1 does not provide any guarantee on parameter esti-

mation when the unknown distribution f 2 F . In order to convert the TV-distance

guarantee to a parameter estimation guarantee, we also need to show that the candi-

date distributions that have parameters far apart from the parameters of the unknown

distribution f also have sufficiently large total variation distance from f . Now, since

f 2 F , we must have inf✓2⇥ ||f✓ � f ||TV = 0. Therefore, for sufficiently large n, we

can prove that with high probability ||f✓? � f ||TV is small and thus, the minimum

distance estimator will not select a candidate distribution having parameters far apart

from that of f . Finally, we want to point out over here that the minimum distance

estimator has an unbounded time complexity as the class of candidate distributions is

infinite. In the following sub-section, we will review a different estimator called the

Scheffe estimator that takes a finite set of candidate distributions and therefore runs

in time that is polynomial in the size of the candidate set.

Scheffe Estimator: Suppose we are given a set of n samples x1, x2, . . . , xn dis-

tributed according to some unknown distribution f and we are estimating f from a

finite class of distributions F ⌘ {f 1, f 2, . . . , fk}. As before, let us define the family of

sets A to be

A = {{x : f(x) > g(x)} : f, g 2 F , f 6= g}.

the union of set of intervals in the sample space where one of the distributions in F

has larger density than the other. The Scheffe estimator runs a tournament such that

for any pair of distinct f i, f j 2 F such that i < j, for Aij = {x : f i
(x) > f j

(x)}, f i

wins against f j if

�

�

�

�

�

Z

Aij

f i � µn,Aij

�

�

�

�

�

<

�

�

�

�

�

Z

Aij

f j � µn,Aij

�

�

�

�

�

283

and f j wins otherwise. Finally, the winner of the Scheffe tournament (the distribution

returned by the Scheffe estimator) is the candidate distibution having most number

of wins with ties broken arbitrarily. In Chapter 6, [51], the following theoretical

guarantee on the candidate distribution f✓? 2 F returned by the Scheffe estimator is

proved:

||f✓? � f ||TV  9 inf

✓2⇥
||f✓ � f ||TV + 8�

where � = supA2A
�

�

R

A
f � µn,A

�

�. Again, from Theorem 2.1 and Theorem 2.2 [51], we

can directly show that

E� 
p

log |F|n.

As before, we use McDiarmid’s inequality to conclude that with probability at least

1� 2⌘

�  E⇠f�+

r

log ⌘�1

2n

r

2 log |F|+ log ⌘�1

2n
.

Putting everything together, we get that the following statement holds

||f✓? � f ||TV  9 inf

✓2⇥
||f✓ � f ||TV + 8

r

2 log |F|+ log ⌘�1

2n
(D.2)

with probability at least 1� ⌘.

The Scheffe estimator returns a distribution close in total variation distance from

the unknown distribution f from a finite set of candidate distributions F . As such,

the running time of the Scheffe estimator is O(n |F|2). As our goal is to estimate

the parameters of f , we will consider F to be the same class of distributions as f i.e.

284

we will construct a well-designed cover of the infinite class of candidate distributions

considered for the minimum distance estimator. However as F is finite in this case, f

might not belong to F . Therefore, converting the total variation guarantee for the

Scheffe estimator is trickier and is a two step process. We need to show that the

candidate distribution in F with parameters close to the parameters in f must be

close in TV distance as well (by showing an upper bound on the TV distance). On

the other hand, the candidate distribution in F whose parameters are far away from

the parameters in f must be far away in TV distance as well (by showing a lower

bound in TV distance). As such, for sufficiently large number of samples, the TV

distance between the Scheffe estimator and f must be small implying that the Scheffe

estimator could not have been a candidate distribution with parameters far away from

the ground truth.

D.2 Jennrich’s Algorithm for Unique Canonical Polyadic (CP)

Decomposition

In this section, we state Jennrich’s Algorithm for CP decomposition (see Sec 3.3,

[112]) that we use in this paper. Recall that we are provided a symmetric tensor A of

order 3 and rank R as input i.e. a tensor A that can be expressed in the form below:

A =

R
X

r=1

z

r ⌦ z

r ⌦ z

r

| {z }

.

Our goal is to uniquely recover the latent vectors z

1, z2, . . . , zR from the input tensor

A provided that the vectors z

1, z2, . . . , zR are linearly independent. Let A·,·,i denote

the ith matrix slice through A.

For the sake of completeness, we describe in brief why Algorithm D.1 works. Note

that
P

i2[n] aiA·,·,i is the weighted sum of matrix slices through A each weighted by

ai. Therefore, it is easy to see that

285

Algorithm D.1 Jennrich’s Algorithm(A)

Require: A symmetric rank-R tensor A 2 Rn ⌦ Rn ⌦ Rn of order 3.
1: Choose a, b 2 Rn uniformly at random such that it satisfies ||a||

2

= ||b||
2

= 1.
2: Compute T

(1) , P

i2[n] aiA·,·,i,T (2) , P

i2[n] biA·,·,i.
3: if rank(T 1

) < R then
4: Return Error
5: end if
6: Solve the general eigen-value problem T

(1)

v = �vT
(2)

v.
7: Return the eigen-vectors v corresponding to the non-zero eigen-values.

T

(1) ,
X

i2[n]
aiA·,·,i =

R
X

r=1

hzr,aizr ⌦ z

r
= ZD

(1)

Z

T

T

(2) ,
X

i2[n]
biA·,·,i =

R
X

r=1

hzr, bizr ⌦ z

r
= ZD

(2)

Z

T

where Z is a n⇥R matrix whose columns form the vectors z

1, z2, . . . , zR; D(1),D(2)

are R⇥R diagonal matrices whose entry at the ith position in the diagonal is hzr,ai

and hzr, bi respectively. Clearly, the matrices T

(1),T (2) are of rank R if and only if

the vectors z1, z2, . . . , zR are linearly independent and therefore, this condition is easy

to verify in Steps 3-5. Now if the sufficiency condition is met, then the generalized

eigenvalue decomposition will reveal the unknown latent vectors since the eigenvalues

are going to be distinct with probability 1.

286

BIBLIOGRAPHY

[1] Acharya, Jayadev, Bhattacharyya, Arnab, and Kamath, Pritish. Improved
bounds for universal one-bit compressive sensing. In 2017 IEEE International
Symposium on Information Theory (ISIT) (2017), IEEE, pp. 2353–2357.

[2] Acharya, Jayadev, Diakonikolas, Ilias, Li, Jerry, and Schmidt, Ludwig. Sample-
optimal density estimation in nearly-linear time. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (2017), SIAM,
pp. 1278–1289.

[3] Achlioptas, Dimitris, and McSherry, Frank. On spectral learning of mixtures of
distributions. In Conference on Learning Theory (2005).

[4] Ai, Albert, Lapanowski, Alex, Plan, Yaniv, and Vershynin, Roman. One-bit
compressed sensing with non-gaussian measurements. Linear Algebra and its
Applications 441 (2014), 222–239.

[5] Aitkin, M. Mixture applications of the em algorithm in glim. COMPSTAT 1980
(1980), 537–541.

[6] Anandkumar, Animashree, Ge, Rong, Hsu, Daniel, Kakade, Sham M, and
Telgarsky, Matus. Tensor decompositions for learning latent variable models.
Journal of machine learning research 15 (2014), 2773–2832.

[7] Arias-Castro, Ery, and Pu, Xiao. A simple approach to sparse clustering.
Computational Statistics & Data Analysis 105 (2017), 217–228.

[8] Arora, Sanjeev, Ge, Rong, Kannan, Ravi, and Moitra, Ankur. Computing a
nonnegative matrix factorization—provably. SIAM Journal on Computing 45, 4
(2016), 1582–1611.

[9] Arora, Sanjeev, and Kannan, Ravi. Learning mixtures of arbitrary gaussians.
In Symposium on Theory of Computing (2001).

[10] Ashtiani, Hassan, Ben-David, Shai, Harvey, Nicholas JA, Liaw, Christopher,
Mehrabian, Abbas, and Plan, Yaniv. Near-optimal sample complexity bounds
for robust learning of Gaussian mixtures via compression schemes. Journal of
the ACM 67, 6 (2020), 1–42.

[11] Azizyan, Martin, Singh, Aarti, and Wasserman, Larry. Minimax theory for
high-dimensional gaussian mixtures with sparse mean separation. Advances in
Neural Information Processing Systems 26 (2013), 2139–2147.

287

[12] Bakshi, Ainesh, Diakonikolas, Ilias, Hopkins, Samuel B., Kane, Daniel, Kar-
malkar, Sushrut, and Kothari, Pravesh K. Outlier-robust clustering of gaussians
and other non-spherical mixtures. In 61st IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020 (2020), IEEE, pp. 149–159.

[13] Balakrishnan, Sivaraman, Wainwright, Martin J, and Yu, Bin. Statistical
guarantees for the em algorithm: From population to sample-based analysis.
The Annals of Statistics 45, 1 (2017), 77–120.

[14] Baraniuk, Richard, Davenport, Mark, DeVore, Ronald, and Wakin, Michael.
The johnson-lindenstrauss lemma meets compressed sensing. preprint 100, 1
(2006), 0.

[15] Baraniuk, Richard, Davenport, Mark, DeVore, Ronald, and Wakin, Michael. A
simple proof of the restricted isometry property for random matrices. Construc-
tive Approximation 28, 3 (2008), 253–263.

[16] Barsov, SS, and Ul’yanov, Vladimir V. Estimates of the proximity of gaussian
measures. In Sov. Math., Dokl (1987), vol. 34, pp. 462–466.

[17] Batu, Tugkan, Kannan, Sampath, Khanna, Sanjeev, and McGregor, Andrew.
Reconstructing strings from random traces. In Symposium on Discrete Algorithms
(2004).

[18] Belkin, Mikhail, and Sinha, Kaushik. Polynomial learning of distribution families.
In Foundations of Computer Science (2010).

[19] Bishop, Christopher M. Latent variable models. In Learning in graphical models.
Springer, 1998, pp. 371–403.

[20] Bishop, Christopher M, et al. Neural networks for pattern recognition. Oxford
university press, 1995.

[21] Blackwell, Ekin, De Leon, Carlos F Mendes, and Miller, Gregory E. Applying
mixed regression models to the analysis of repeated-measures data in psychoso-
matic medicine. Psychosomatic medicine 68, 6 (2006), 870–878.

[22] Boche, Holger, Calderbank, Robert, Kutyniok, Gitta, and Vybíral, Jan. A survey
of compressed sensing. In Compressed Sensing and its Applications. Springer,
2015, pp. 1–39.

[23] Böhning, Dankmar, Seidel, Wilfried, Alfó, Macro, Garel, Bernard, Patilea,
Valentin, and Walther, Günther. Advances in mixture models. Computational
Statistics & Data Analysis 51, 11 (2007), 5205–5210.

[24] Borwein, P., and Erdélyi, T. Littlewood-type problems on subarcs of the unit
circle. Indiana University Mathematics Journal (1997).

288

[25] Borwein, Peter. The Prouhet—Tarry—Escott Problem. Springer New York, New
York, NY, 2002, pp. 85–95.

[26] Boucheron, Stéphane, Lugosi, Gábor, and Massart, Pascal. Concentration
inequalities: A nonasymptotic theory of independence. Oxford university press,
2013.

[27] Brennan, Matthew, and Bresler, Guy. Optimal average-case reductions to sparse
pca: From weak assumptions to strong hardness. In Conference on Learning
Theory (2019), PMLR, pp. 469–470.

[28] Bun, Mark, Kamath, Gautam, Steinke, Thomas, and Wu, Zhiwei Steven. Private
hypothesis selection. arXiv preprint arXiv:1905.13229 (2019).

[29] Candes, Emmanuel J. The restricted isometry property and its implications for
compressed sensing. Comptes rendus mathematique 346, 9-10 (2008), 589–592.

[30] Candès, Emmanuel J, Romberg, Justin, and Tao, Terence. Robust uncertainty
principles: exact signal reconstruction from highly incomplete frequency infor-
mation. IEEE Transactions on Information Theory 52, 2 (2006), 489–509.

[31] Canonne, Clément L, Kamath, Gautam, McMillan, Audra, Ullman, Jonathan,
and Zakynthinou, Lydia. Private identity testing for high-dimensional distribu-
tions. arXiv preprint arXiv:1905.11947 (2019).

[32] Chaganty, Arun Tejasvi, and Liang, Percy. Spectral experts for estimating
mixtures of linear regressions. In International Conference on Machine Learning
(2013), PMLR, pp. 1040–1048.

[33] Chan, Siu-On, Diakonikolas, Ilias, Servedio, Rocco A, and Sun, Xiaorui. Learning
mixtures of structured distributions over discrete domains. In Symposium on
Discrete Algorithms (2013).

[34] Chan, Siu-On, Diakonikolas, Ilias, Servedio, Rocco A, and Sun, Xiaorui. Efficient
density estimation via piecewise polynomial approximation. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing (2014), ACM,
pp. 604–613.

[35] Chen, Yudong, Yi, Xinyang, and Caramanis, Constantine. A convex formulation
for mixed regression with two components: Minimax optimal rates. In Conference
on Learning Theory (2014), PMLR, pp. 560–604.

[36] Cheraghchi, Mahdi, Gabrys, Ryan, Milenkovic, Olgica, and Ribeiro, João. Coded
trace reconstruction. arXiv e-prints (Mar 2019), arXiv:1903.09992.

[37] Curtiss, DR. Recent extentions of descartes’ rule of signs. Annals of Mathematics
(1918), 251–278.

289

[38] Dasgupta, Sanjoy. Learning mixtures of gaussians. In Foundations of Computer
Science (1999), pp. 634–644.

[39] Daskalakis, Constantinos, and Kamath, Gautam. Faster and sample near-optimal
algorithms for proper learning mixtures of gaussians. In Conference on Learning
Theory (2014).

[40] Daskalakis, Constantinos, Tzamos, Christos, and Zampetakis, Manolis. Ten
steps of em suffice for mixtures of two gaussians. In Conference on Learning
Theory (2017), PMLR, pp. 704–710.

[41] Daskalakis, Constantinos, Tzamos, Christos, and Zampetakis, Manolis. Ten
steps of em suffice for mixtures of two Gaussians. In Conference on Learning
Theory (2017), pp. 704–710.

[42] Davies, Sami, Mazumdar, Arya, Pal, Soumyabrata, and Rashtchian, Cyrus.
Lower bounds on the total variation distance between mixtures of two gaussians.
arXiv preprint arXiv:2109.01064 (2021).

[43] Davies, Sami, Racz, Miklos Z., and Rashtchian, Cyrus. Reconstructing Trees
from Traces. arXiv e-prints (Feb 2019), arXiv:1902.05101.

[44] Day, Neil E. Estimating the components of a mixture of normal distributions.
Biometrika 56, 3 (1969), 463–474.

[45] De, Anindya, O’Donnell, Ryan, and Servedio, Rocco A. Optimal mean-based
algorithms for trace reconstruction. In Symposium on Theory of Computing
(2017).

[46] De, Anindya, O’Donnell, Ryan, and Servedio, Rocco A. Sharp bounds for
population recovery. CoRR abs/1703.01474 (2017).

[47] De Veaux, Richard D. Mixtures of linear regressions. Computational Statistics
& Data Analysis 8, 3 (1989), 227–245.

[48] De Wolf, Ronald. Efficient data structures from unionfree families of sets, 2012.

[49] Deb, Partha, and Holmes, Ann M. Estimates of use and costs of behavioural
health care: a comparison of standard and finite mixture models. Health
economics 9, 6 (2000), 475–489.

[50] Dempster, AP, Laird, NM, and Rubin, DB. Maximum likelihood from incomplete
data. J .

[51] Devroye, Luc, and Lugosi, Gábor. Combinatorial methods in density estimation.
Springer Science & Business Media, 2012.

[52] Devroye, Luc, Mehrabian, Abbas, and Reddad, Tommy. The total variation
distance between high-dimensional gaussians. arXiv preprint arXiv:1810.08693
(2018).

290

[53] Diakonikolas, Ilias. Learning structured distributions. Handbook of Big Data
267 (2016).

[54] Diakonikolas, Ilias, Kane, Daniel M, and Stewart, Alistair. Statistical query
lower bounds for robust estimation of high-dimensional gaussians and gaussian
mixtures. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS) (2017), IEEE, pp. 73–84.

[55] Diakonikolas, Ilias, Kane, Daniel M, and Stewart, Alistair. List-decodable robust
mean estimation and learning mixtures of spherical gaussians. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (2018),
ACM, pp. 1047–1060.

[56] Donoho, David, and Stodden, Victoria. When does non-negative matrix fac-
torization give a correct decomposition into parts? In Advances in neural
information processing systems (2004), pp. 1141–1148.

[57] Donoho, DL. Compressed sensing. IEEE Transactions on Information Theory
52, 4 (2006), 1289–1306.

[58] Doss, Natalie, Wu, Yihong, Yang, Pengkun, and Zhou, Harrison H. Optimal esti-
mation of high-dimensional Gaussian mixtures. arXiv preprint arXiv:2002.05818
(2020).

[59] D’yachkov, Arkadii G, Vorobyev, IV, Polyanskii, NA, and Shchukin, V Yu.
Bounds on the rate of superimposed codes. In 2014 IEEE International Sympo-
sium on Information Theory (2014), IEEE, pp. 2341–2345.

[60] Erdös, Paul, Frankl, Peter, and Füredi, Zoltán. Families of finite sets in which
no set is covered by the union ofr others. Israel Journal of Mathematics 51, 1-2
(1985), 79–89.

[61] Everitt, Brian. Finite mixture distributions. Springer Science & Business Media,
2013.

[62] Faria, Susana, and Soromenho, Gilda. Fitting mixtures of linear regressions.
Journal of Statistical Computation and Simulation 80, 2 (2010), 201–225.

[63] Feldman, Jon, O’Donnell, Ryan, and Servedio, Rocco A. Learning mixtures
of product distributions over discrete domains. SIAM Journal on Computing
(2008).

[64] Feller, Avi, Greif, Evan, Ho, Nhat, Miratrix, Luke, and Pillai, Natesh. Weak
separation in mixture models and implications for principal stratification. arXiv
preprint arXiv:1602.06595 (2016).

[65] Flodin, Larkin, Gandikota, Venkata, and Mazumdar, Arya. Superset technique
for approximate recovery in one-bit compressed sensing. In Advances in Neural
Information Processing Systems (2019), pp. 10387–10396.

291

[66] Füredi, Zoltán. On r-cover-free families. Journal of Combinatorial Theory,
Series A 73, 1 (1996), 172–173.

[67] Gandikota, Venkata, Mazumdar, Arya, and Pal, Soumyabrata. Recovery of
sparse linear classifiers from mixture of responses.

[68] Gandikota, Venkata, Mazumdar, Arya, and Pal, Soumyabrata. Recovery of sparse
linear classifiers from mixture of responses. In Advances in Neural Information
Processing Systems 33: NeurIPS 2020, December 6-12, 2020, virtual (2020).

[69] Gandikota, Venkata, Mazumdar, Arya, and Pal, Soumyabrata. Support recov-
ery of sparse signals from a mixture of linear measurements. arXiv preprint
arXiv:2106.05951 (2021).

[70] Gantmakher, Feliks Ruvimovich. The theory of matrices, vol. 131. American
Mathematical Soc., 1959.

[71] Gopi, Sivakant, Netrapalli, Praneeth, Jain, Prateek, and Nori, Aditya. One-bit
compressed sensing: Provable support and vector recovery. In International
Conference on Machine Learning (2013), pp. 154–162.

[72] Hardt, Moritz, and Price, Eric. Tight bounds for learning a mixture of two
gaussians. In Symposium on Theory of Computing (2015).

[73] Hardy, Godfrey Harold, Wright, Edward Maitland, et al. An introduction to the
theory of numbers. Oxford university press, 1979.

[74] Harper, F Maxwell, and Konstan, Joseph A. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4
(2015), 1–19.

[75] Hartung, Lisa, Holden, Nina, and Peres, Yuval. Trace reconstruction with varying
deletion probabilities. In Workshop on Analytic Algorithmics and Combinatorics
(2018).

[76] Heinrich, Philippe, and Kahn, Jonas. Strong identifiability and optimal minimax
rates for finite mixture estimation. The Annals of Statistics 46, 6A (2018),
2844–2870.

[77] Ho, Nhat, and Nguyen, XuanLong. Convergence rates of parameter estimation
for some weakly identifiable finite mixtures. The Annals of Statistics 44, 6
(2016), 2726–2755.

[78] Holden, Nina, and Lyons, Russell. Lower bounds for trace reconstruction.
arXiv:1808.02336 (2018).

[79] Holden, Nina, Pemantle, Robin, and Peres, Yuval. Subpolynomial trace recon-
struction for random strings and arbitrary deletion probability. arXiv:1801.04783
(2018).

292

[80] Holenstein, Thomas, Mitzenmacher, Michael, Panigrahy, Rina, and Wieder, Udi.
Trace reconstruction with constant deletion probability and related results. In
Symposium on Discrete Algorithms (2008).

[81] Hopkins, Samuel B, and Li, Jerry. Mixture models, robustness, and sum of
squares proofs. In Symposium on Theory of Computing (2018).

[82] Hsu, Daniel, and Kakade, Sham M. Learning mixtures of spherical gaussians:
moment methods and spectral decompositions. In Innovations in Theoretical
Computer Science (2013).

[83] Huang, Mian, Li, Runze, and Wang, Shaoli. Nonparametric mixture of regression
models. Journal of the American Statistical Association 108, 503 (2013), 929–941.

[84] Huleihel, Wasim, Mazumdar, Arya, Médard, Muriel, and Pal, Soumyabrata.
Same-cluster querying for overlapping clusters. In Advances in Neural Informa-
tion Processing Systems (2019), pp. 10485–10495.

[85] Jacques, Laurent, Laska, Jason N, Boufounos, Petros T, and Baraniuk, Richard G.
Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors.
IEEE Transactions on Information Theory 59, 4 (2013), 2082–2102.

[86] Jordan, Michael I, and Jacobs, Robert A. Hierarchical mixtures of experts and
the em algorithm. Neural computation 6, 2 (1994), 181–214.

[87] Kalai, Adam, Moitra, Ankur, and Valiant, Gregory. Disentangling Gaussians.
Communications of the ACM 55, 2 (2012), 113–120.

[88] Kalai, Adam Tauman, Moitra, Ankur, and Valiant, Gregory. Efficiently learning
mixtures of two gaussians. In Proceedings of the forty-second ACM symposium
on Theory of computing (2010), ACM, pp. 553–562.

[89] Kannan, Sampath, and McGregor, Andrew. More on reconstructing strings
from random traces: Insertions and deletions. In International Symposium on
Information Theory (2005).

[90] Kautz, William, and Singleton, Roy. Nonrandom binary superimposed codes.
IEEE Transactions on Information Theory 10, 4 (1964), 363–377.

[91] Khalili, Abbas, and Chen, Jiahua. Variable selection in finite mixture of regres-
sion models. Journal of the american Statistical association 102, 479 (2007),
1025–1038.

[92] Klusowski, Jason M, Yang, Dana, and Brinda, WD. Estimating the coefficients
of a mixture of two linear regressions by expectation maximization. IEEE
Transactions on Information Theory 65, 6 (2019), 3515–3524.

[93] Kolda, Tamara G, and Bader, Brett W. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455–500.

293

[94] Kontkanen, Petri, Myllymaki, Petri, Roos, Teemu, Tirri, Henry, Valtonen,
Kimmo, and Wettig, Hannes. Topics in probabilistic location estimation in
wireless networks. In 2004 IEEE 15th International Symposium on Personal,
Indoor and Mobile Radio Communications (2004), vol. 2, IEEE, pp. 1052–1056.

[95] Kothari, Pravesh K, Steinhardt, Jacob, and Steurer, David. Robust moment
estimation and improved clustering via sum of squares. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing (2018), ACM,
pp. 1035–1046.

[96] Krasikov, I., and Roditty, Y. On a reconstruction problem for sequences. Journal
of Combinatorial Theory, Series A (1997).

[97] Krishnamurthy, Akshay, Mazumdar, Arya, McGregor, Andrew, and Pal,
Soumyabrata. Sample complexity of learning mixture of sparse linear regressions.
In Advances in Neural Information Processing Systems (NeurIPS) (2019).

[98] Krishnamurthy, Akshay, Mazumdar, Arya, McGregor, Andrew, and Pal,
Soumyabrata. Trace reconstruction: Generalized and parameterized. arXiv
preprint arXiv:1904.09618 (2019).

[99] Krishnamurthy, Akshay, Mazumdar, Arya, McGregor, Andrew, and Pal,
Soumyabrata. Algebraic and analytic approaches for parameter learning in
mixture models. In Proc. 31st International Conference on Algorithmic Learning
Theory (ALT) (2020), vol. 117, pp. 468–489.

[100] Kwon, Jeongyeol, and Caramanis, Constantine. Em converges for a mixture of
many linear regressions. In International Conference on Artificial Intelligence
and Statistics (2020), PMLR, pp. 1727–1736.

[101] Kwon, Jeongyeol, Qian, Wei, Caramanis, Constantine, Chen, Yudong, and
Davis, Damek. Global convergence of the em algorithm for mixtures of two
component linear regression. In Conference on Learning Theory (2019), PMLR,
pp. 2055–2110.

[102] Lehmann, Erich L, and Romano, Joseph P. Testing statistical hypotheses.
Springer Science & Business Media, 2006.

[103] Li, Yuanzhi, and Liang, Yingyu. Learning mixtures of linear regressions with
nearly optimal complexity. In Conference On Learning Theory (2018), PMLR,
pp. 1125–1144.

[104] Liang, Percy, Bouchard-Côté, Alexandre, Klein, Dan, and Taskar, Ben. An
end-to-end discriminative approach to machine translation. In Proceedings of the
21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics (2006), Association
for Computational Linguistics, pp. 761–768.

294

[105] Lindsay, Bruce G, and Lesperance, Mary L. A review of semiparametric mixture
models. Journal of statistical planning and inference 47, 1-2 (1995), 29–39.

[106] Liu, Hui, Darabi, Houshang, Banerjee, Pat, and Liu, Jing. Survey of wireless
indoor positioning techniques and systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 37, 6 (2007), 1067–1080.

[107] Lu, Yu, and Zhou, Harrison H. Statistical and computational guarantees of
lloyd’s algorithm and its variants. arXiv preprint arXiv:1612.02099 (2016).

[108] Manole, Tudor, and Ho, Nhat. Uniform convergence rates for maximum likelihood
estimation under two-component gaussian mixture models. arXiv preprint
arXiv:2006.00704 (2020).

[109] Mazumdar, Arya, and Pal, Soumyabrata. Recovery of sparse signals from a
mixture of linear samples. In International Conference on Machine Learning
(ICML) (2020).

[110] McGregor, Andrew, Price, Eric, and Vorotnikova, Sofya. Trace reconstruction
revisited. In European Symposium on Algorithms (2014).

[111] McLachlan, Geoffrey J, and Basford, Kaye E. Mixture models: Inference and
applications to clustering, vol. 38. M. Dekker New York, 1988.

[112] Moitra, Ankur. Algorithmic aspects of machine learning. Lecture notes (2014).

[113] Moitra, Ankur. Algorithmic aspects of machine learning. Cambridge University
Press, 2018.

[114] Moitra, Ankur, and Valiant, Gregory. Settling the polynomial learnability of
mixtures of gaussians. In Foundations of Computer Science (2010).

[115] Moosman, F, and Peel, D. Finite mixture models. Wiley 3 (2000), 4.

[116] Nazarov, Fedor, and Peres, Yuval. Trace reconstruction with exp(O(n1/3
) sam-

ples. In Symposium on Theory of Computing (2017).

[117] Neyman, Jerzy, and Pearson, Egon Sharpe. Contributions to the theory of testing
statistical hypotheses. University of California Press, 2020.

[118] Pearson, Karl. Contributions to the mathematical theory of evolution. Philo-
sophical Transactions of the Royal Society of London. A 185 (1894), 71–110.

[119] Peres, Yuval, and Zhai, Alex. Average-case reconstruction for the deletion
channel: Subpolynomially many traces suffice. In Symposium on Foundations
of Computer Science (2017).

[120] Plan, Yaniv, and Vershynin, Roman. One-bit compressed sensing by linear
programming. Communications on Pure and Applied Mathematics 66, 8 (2013),
1275–1297.

295

[121] Quattoni, Ariadna, Collins, Michael, and Darrell, Trevor. Conditional random
fields for object recognition. In Advances in neural information processing
systems (2005), pp. 1097–1104.

[122] Rabanser, Stephan, Shchur, Oleksandr, and Günnemann, Stephan. Introduction
to tensor decompositions and their applications in machine learning. arXiv
preprint arXiv:1711.10781 (2017).

[123] Ruszinkó, Miklós. On the upper bound of the size of the r-cover-free families.
Journal of Combinatorial Theory, Series A 66, 2 (1994), 302–310.

[124] Scott, Alex D. Reconstructing sequences. Discrete Mathematics (1997).

[125] Sedghi, Hanie, Janzamin, Majid, and Anandkumar, Anima. Provable ten-
sor methods for learning mixtures of generalized linear models. In Artificial
Intelligence and Statistics (2016), PMLR, pp. 1223–1231.

[126] Settles, Burr. Active learning literature survey.

[127] Shen, Yanyao, and Sanghavi, Sujay. Iterative least trimmed squares for mixed
linear regression. arXiv preprint arXiv:1902.03653 (2019).

[128] Sidiropoulos, Nicholas D, and Bro, Rasmus. On the uniqueness of multilinear
decomposition of n-way arrays. Journal of Chemometrics: A Journal of the
Chemometrics Society 14, 3 (2000), 229–239.

[129] Slawski, Martin, Hein, Matthias, and Lutsik, Pavlo. Matrix factorization with
binary components. In Advances in Neural Information Processing Systems
(2013), pp. 3210–3218.

[130] Song, Weixing, Yao, Weixin, and Xing, Yanru. Robust mixture regression model
fitting by laplace distribution. Computational Statistics & Data Analysis 71
(2014), 128–137.

[131] Städler, Nicolas, Bühlmann, Peter, and Van De Geer, Sara. l1-penalization for
mixture regression models. Test 19, 2 (2010), 209–256.

[132] Stigler, Stephen M. The history of statistics: The measurement of uncertainty
before 1900. Harvard University Press, 1986.

[133] Stinson, Douglas R, and Wei, Ruizhong. Generalized cover-free families. Discrete
Mathematics 279, 1-3 (2004), 463–477.

[134] Sun, Yuekai, Ioannidis, Stratis, and Montanari, Andrea. Learning mixtures of
linear classifiers. In ICML (2014), pp. 721–729.

[135] Suresh, Ananda Theertha, Orlitsky, Alon, Acharya, Jayadev, and Jafarpour,
Ashkan. Near-optimal-sample estimators for spherical gaussian mixtures. In
Advances in Neural Information Processing Systems (2014), pp. 1395–1403.

296

[136] Tarter, Michael E, and Lock, Michael D. Model-free curve estimation, vol. 56.
CRC Press, 1993.

[137] Titterington, D Michael, Smith, Adrian FM, and Makov, Udi E. Statistical
analysis of finite mixture distributions. Wiley, 1985.

[138] Van der Vaart, Aad W. Asymptotic statistics, vol. 3. Cambridge university
press, 2000.

[139] Verzelen, Nicolas, and Arias-Castro, Ery. Detection and feature selection in
sparse mixture models. The Annals of Statistics 45, 5 (2017), 1920–1950.

[140] Viele, Kert, and Tong, Barbara. Modeling with mixtures of linear regressions.
Statistics and Computing 12, 4 (2002), 315–330.

[141] Viswanathan, Krishnamurthy, and Swaminathan, Ram. Improved string recon-
struction over insertion-deletion channels. In Symposium on Discrete Algorithms
(2008).

[142] Wang, Taiyao, and Paschalidis, Ioannis Ch. Convergence of parameter estimates
for regularized mixed linear regression models. arXiv preprint arXiv:1903.09235
(2019).

[143] Weldon, Walter Frank Raphael. I. certain correlated variations in crangon
vulgaris. Proceedings of the Royal Society of London 51, 308-314 (1892), 1–21.

[144] Weldon, Walter Frank Raphael. Ii. on certain correlated variations in carcinus
mænas. Proceedings of the Royal Society of London 54, 326-330 (1894), 318–329.

[145] Wolfe, John H. Normix: Computational methods for estimating the parameters of
multivariate normal mixtures of distributions. Tech. rep., NAVAL PERSONNEL
RESEARCH ACTIVITY SAN DIEGO CALIF, 1967.

[146] Wu, Shanshan, Dimakis, Alexandros G, and Sanghavi, Sujay. Learning distri-
butions generated by one-layer relu networks. Advances in neural information
processing systems 32 (2019), 8107–8117.

[147] Wu, Yihong, and Yang, Pengkun. Optimal estimation of gaussian mixtures via
denoised method of moments. Annals of Statistics 48, 4 (2020), 1981–2007.

[148] Wu, Yihong, and Yang, Pengkun. Polynomial methods in statistical infer-
ence: Theory and practice. Foundations and Trends R� in Communications and
Information Theory 17, 4 (2020), 402–586.

[149] Wu, Yihong, and Zhou, Harrison H. Randomly initialized EM algorithm for
two-component Gaussian mixture achieves near optimality in O(

p
n) iterations.

arXiv preprint arXiv:1908.10935 (2019).

[150] Xu, Ji, Hsu, Daniel, and Maleki, Arian. Global analysis of expectation maxi-
mization for mixtures of two gaussians. arXiv preprint arXiv:1608.07630 (2016).

297

[151] Yi, Xinyang, Caramanis, Constantine, and Sanghavi, Sujay. Alternating mini-
mization for mixed linear regression. In International Conference on Machine
Learning (2014), pp. 613–621.

[152] Yi, Xinyang, Caramanis, Constantine, and Sanghavi, Sujay. Solving a mixture
of many random linear equations by tensor decomposition and alternating
minimization. arXiv preprint arXiv:1608.05749 (2016).

[153] Yin, Dong, Pedarsani, Ramtin, Chen, Yudong, and Ramchandran, Kannan.
Learning mixtures of sparse linear regressions using sparse graph codes. IEEE
Transactions on Information Theory 65, 3 (2019), 1430–1451.

[154] Yin, Dong, Pedarsani, Ramtin, Chen, Yudong, and Ramchandran, Kannan.
Learning mixtures of sparse linear regressions using sparse graph codes. IEEE
Transactions on Information Theory 65, 3 (2019), 1430–1451.

[155] Zhang, Yuchen, Chen, Xi, Zhou, Dengyong, and Jordan, Michael I. Spectral
methods meet em: A provably optimal algorithm for crowdsourcing. Advances
in neural information processing systems 27 (2014), 1260–1268.

[156] Zhong, Kai, Jain, Prateek, and Dhillon, Inderjit S. Mixed linear regression with
multiple components. In NIPS (2016), pp. 2190–2198.

[157] Zhu, Hong-Tu, and Zhang, Heping. Hypothesis testing in mixture regression mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
66, 1 (2004), 3–16.

298

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Notation
	Introduction
	A Brief History of Mixture models
	Mixtures of Distributions
	Parameter learning in mixtures
	Support recovery in sparse mixtures
	Trace Reconstruction

	Sparse Mixture Models in Experimental Design setting
	Mixtures of Linear Regressions
	Mixtures of Linear Classifiers

	Sparse Mixture models in Unsupervised setting
	Mixtures of Linear Regression
	Mixtures of Linear Classifiers

	Mixtures of Distributions
	Introduction
	Our Techniques and Results
	Learning Mixtures via Characteristic Functions
	Learning Mixtures via Moments

	Mixtures of Gaussians with 2 components
	Overview of Proofs
	Lower Bounds on TV Distance of 1-Dimensional Mixtures
	Lower Bounds on TV Distance of d-Dimensional Mixtures
	Learning 1-dimensional mixture with Minimum Distance estimator
	Learning 1-dimensional mixture with Scheffe estimator

	Trace Reconstruction
	Reduction to Learning Binomial Mixtures
	Lower Bound on Learning Binomial Mixtures

	Mixtures of Sparse Linear Regressions
	Introduction
	Parameter Estimation
	Support Recovery

	Parameter Estimation under Grid Assumption
	Exact sparse vectors and noiseless samples
	Noisy Samples and Sparse Approximation

	Parameter Estimation for two unknown vectors
	Our Techniques and Results
	Overview of Our Algorithm
	Recovering Unknown Means from a Batch
	Alignment
	Proof of Theorem 3.6
	Discussion on Noiseless Setting (=0)
	`Proof of Concept' Simulations

	Support Recovery
	Our Techniques and Results
	Detailed Proofs and Algorithms
	Computing occ(C, a)
	Missing Proofs and Algorithms in computing occ(C, a)
	Estimating nzcount

	Mixtures of Sparse Linear Classifiers
	Introduction
	Our contributions
	Support Recovery
	Approximate Recovery in Noiseless Setting

	Preliminaries
	Detailed Proofs and Algorithms (Support Recovery)
	Two-stage Approximate Recovery
	Single stage process for Approximate recovery
	Relaxing Separability Assumption for two unknown vectors
	Case 1: Different Support
	Case 2: Same Support

	Experiments
	Simulations
	Movie Lens

	Support Recovery in Sparse Mixture Models
	Introduction
	Notations
	Formal Problem Statements
	Discussion on Our Results and Other Related Works

	Preliminaries: Useful Results in Subset Identification
	Our Results and Techniques
	Mixtures of Distributions
	Mixtures of Linear Classifiers
	Mixtures of Linear Regression

	Detailed Algorithms and Proofs
	Mixtures of Distributions
	Mixtures of Linear Classifiers
	Mixtures of Linear Regression

	Conclusion
	Missing Proofs in Chapter 2
	Proof of Theorem 2.7
	Proof of Lemma 2.9

	Missing Proofs in Chapter 3
	Description of Algorithm 3.2 and Proof of Theorem 3.4
	Analysis of Algorithm 3.3 for General L and Proof of Theorem 3.3 and Theorem 3.5
	Proof of Lemma B.10
	Proofs of Lemma 3.3 and 3.4
	Proof of Lemma 3.6

	Missing Proofs in Chapter 5
	Missing Proofs from Section 5.2
	Technical Lemmas

	Useful Theoretical Tools
	Minimum Distance Estimator and Scheffe Estimator
	Jennrich's Algorithm for Unique Canonical Polyadic (CP) Decomposition

	Bibliography

