
FEW-SHOT NATURAL LANGUAGE PROCESSING BY
META-LEARNING WITHOUT LABELED DATA

A Dissertation Presented

by

TRAPIT BANSAL

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February, 2022

Robert and Donna Manning College of Information and Computer Sciences

© Copyright by Trapit Bansal 2022

All Rights Reserved

FEW-SHOT NATURAL LANGUAGE PROCESSING BY
META-LEARNING WITHOUT LABELED DATA

A Dissertation Presented

by

TRAPIT BANSAL

Approved as to style and content by:

Andrew K. McCallum, Chair

Kyunghyun Cho, Member

Subhransu Maji, Member

Patrick Flaherty, Member

Mohit Iyyer, Member

James Allan, Chair of the Faculty
Robert and Donna Manning College of Infor-
mation and Computer Sciences

DEDICATION

To Mom, for teaching me more than she knew.

To Dad, for nurturing curiosity in me.

To Akansha, for believing in me when I didn’t.

ACKNOWLEDGMENTS

This long and winding journey wouldn’t have been possible without the help,

support, and encouragement from a number of people. First and foremost, I will

always be grateful to have Andrew McCallum as my advisor. Andrew’s patient,

loving, yet rigorous, style of advising has been a gift that made this journey truly

enjoyable. While he helped me grow as a researcher, many of the lessons I learned from

Andrew will also guide me throughout my life in my interactions with the research

community, colleagues, friends, and family. I look forward to his continued support

and mentorship in the next steps of my career.

I had the opportunity to do multiple internships throughout my Ph.D. and found

some truly inspirational mentors and colleagues during them. I am grateful to have

worked with Ilya Sutskever, whose creativity, passion, and grit have been a source

of great inspiration. I am also grateful to Tsendsuren Munkhdalai, Da-Cheng Juan,

Sujith Ravi, and Tong Wang for their support and mentorship, both during and after

internships.

I am thankful to the thesis committee members for their valuable time and feed-

back on this thesis. I have had some amazing colleagues and lab members throughout

the Ph.D. Among them, David Belanger, Arvind Neelakantan, Luke Vilnis, Pat Verga,

and Nicholas Monath deserve special mention for being very generous with their time

and help. I also want to acknowledge some people who helped me start my Ph.D.

journey. Chiranjib Bhattacharyya, Ravi Kannan, and Mrinal Das provided me an

opportunity to learn to do machine learning research that set me on this path and

for which I am very grateful.

v

Finally, I want to acknowledge my family for their never-ending support, without

which none of this was possible. My mom and dad, for loving me beyond measure and

always providing me with the best of everything, much more than they themselves

ever had. My brother, for being my support whenever I needed it. My wife, for being

there through all the ups and downs, for always believing in me, and for inspiring me

to always do better than yesterday.

vi

ABSTRACT

FEW-SHOT NATURAL LANGUAGE PROCESSING BY
META-LEARNING WITHOUT LABELED DATA

FEBRUARY, 2022

TRAPIT BANSAL

B.Sc & M.Sc., INDIAN INSTITUTE OF TECHNOLOGY KANPUR

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew K. McCallum

Humans show a remarkable capability to accurately solve a wide range of problems

efficiently – utilizing a limited amount of computation and experience. Deep learning

models, by stark contrast, can be trained to be highly accurate on a narrow task while

being highly inefficient in terms of the amount of compute and data required to reach

that accuracy. Within natural language processing (NLP), recent breakthroughs in

unsupervised pretraining have enabled reusable models that can be applied to many

NLP tasks, however, learning of new tasks is still inefficient. This has led to research

on few-shot learning, where the goal is to generalize to new tasks with very few labeled

instances. Meta-learning, or learning to learn, treats the learning process itself as a

learning problem from data with the goal of learning systems that can generalize

to new tasks efficiently. This has the potential to produce few-shot learners that

can accurately solve a wide range of new tasks. However, meta-learning requires

vii

a distribution over tasks with relevant labeled data that can be difficult to obtain,

severely limiting the practical utility of meta-learning methods. In this dissertation,

we develop methods to enable large-scale meta-learning from unlabeled text data and

improve the few-shot generalization ability of NLP models.

We contribute methods that propose tasks synthetically created from unlabeled

text, allowing for a large task distribution for meta-learning. This leads to rapid

learning of new tasks by meta-learning from millions of self-supervised tasks and

minimizes the train-test mismatch in few-shot learning by optimizing the pre-training

directly for future fine-tuning with a few examples. Since real-world applications of

NLP require learning diverse tasks with different numbers of classes, we first intro-

duce an optimization-based meta-learning method that can learn from multiple NLP

classification tasks with any number of classes. We then leverage the proposed self-

supervised approach to create meta-training tasks, with a diverse number of classes,

and meta-train models for few-shot learning using this task distribution. This leads to

better representation learning, learning key hyper-parameters like learning rates, can

be combined with supervised tasks to regularize supervised meta-learning, and leads

to accurate few-shot learning on a diverse set of NLP classification tasks. We further

explore the space of self-supervised tasks for meta-learning by considering important

aspects like task diversity, difficulty, type, domain, and curriculum, and investigate

how they affect meta-learning performance. Our analysis shows that all these factors

meaningfully alter the task distribution, some inducing significant improvements in

downstream few-shot accuracy of the meta-learned models.

Our findings yield accurate and efficient meta-learning methods that improve few-

shot generalization to diverse tasks and should enable many future applications of

meta-learning in NLP, such as hyper-parameter optimization, continual learning, ef-

ficient learning, learning in low-resource languages, and more.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation and Contributions . 1
1.2 Declaration of Published Work . 4

2. BACKGROUND . 7

2.1 Neural Models for NLP . 7

2.1.1 Input Representations . 7
2.1.2 Contextual Text Encoders . 9

2.1.2.1 Transformers . 10

2.2 Learning Neural NLP Models with Limited Labeled Data 11

2.2.1 Multi-Task Learning . 11
2.2.2 Weakly-Supervised Learning . 13
2.2.3 Semi-Supervised Learning . 14
2.2.4 Self-Supervised Learning . 15

2.3 Meta-Learning . 17

2.3.1 Notation and Meta-Learning Setup . 17
2.3.2 Meta-Learning Approaches . 20

ix

2.3.2.1 Model-based Meta-Learning . 20
2.3.2.2 Metric-based Meta-Learning . 21
2.3.2.3 Optimization-based Meta-Learning 23

2.3.3 P (T): Task Distribution for Meta-Learning 26
2.3.4 Theory on Meta-Learning . 28
2.3.5 Relation to Other Fields . 29
2.3.6 Meta-Learning for NLP . 30

3. LEARNING TO FEW-SHOT LEARN ACROSS DIVERSE
NATURAL LANGUAGE PROCESSING TASKS 33

3.1 Introduction . 33
3.2 Model . 36

3.2.1 Text Encoder . 37
3.2.2 Generating Softmax Parameters for Task-specific

Classification . 37
3.2.3 Learning to Adapt Efficiently . 39

3.3 Experiments . 41

3.3.1 Training Tasks . 41
3.3.2 Evaluation and Baselines . 42
3.3.3 Results . 44

3.3.3.1 Generalization Beyond Training Tasks 44
3.3.3.2 Few-Shot Domain Transfer . 46

3.3.4 Ablation Study . 47

3.4 Related Work . 49
3.5 Conclusions . 50

4. SELF-SUPERVISED META-LEARNING FOR FEW-SHOT
NATURAL LANGUAGE CLASSIFICATION TASKS 51

4.1 Introduction . 52
4.2 Preliminaries . 54
4.3 Self-supervised Tasks for Meta-learning . 56

4.3.1 Subset Masked Language Modeling Tasks (SMLMT) 57

4.4 Meta-learning Model . 58
4.5 Related Work . 60
4.6 Experiments . 61

x

4.6.1 Implementation Details . 62
4.6.2 Results . 64

4.6.2.1 Few-shot generalization to new tasks 64
4.6.2.2 Few-shot domain transfer . 66

4.6.3 Analysis . 67

4.7 Conclusion . 71

5. EXPLORING SELF-SUPERVISED TASK DISTRIBUTIONS
FOR META-LEARNING . 72

5.1 Introduction . 72
5.2 Background . 74
5.3 Diverse Distributions of Self-Supervised Tasks . 74

5.3.1 Frequency-based sampling . 75
5.3.2 Cluster-based sampling . 75
5.3.3 Dynamic curriculum over self-supervised tasks 76
5.3.4 Task proposal using sentence clustering . 78
5.3.5 Contrastive learning over sentence pairs . 79

5.4 Related Work . 79
5.5 Experiments . 80

5.5.1 Experimental Setup . 81
5.5.2 Analyzing task distributions . 82
5.5.3 Evaluation on diverse downstream classification tasks 85
5.5.4 Evaluation on FewRel 2.0 benchmark . 89

6. A RETROSPECTIVE COMPARISON WITH
CONTEMPORARY METHODS . 91

6.1 Discussion of Contemporary Methods (GPT-3 and T5) 91
6.2 Experimental Results . 93

7. CONCLUSION . 97

7.1 Future Directions . 98

APPENDICES

A. ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS
FOR LEOPARD . 101

xi

B. ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS
FOR SELF-SUPERVISED META-LEARNING 106

C. ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS
FOR DIVERSE DISTRIBUTIONS OF SELF-SUPERVISED
TASKS . 111

D. ADDITIONAL EXPERIMENTAL DETAILS FOR GPT-3 AND
T5 COMPARISONS . 115

BIBLIOGRAPHY . 117

xii

LIST OF TABLES

Table Page

3.1 Few-shot generalization performance across tasks not seen during
training. k is the number of examples per label for fine-tuning
and N is the number of classes for the task. On average,
LEOPARD is significantly better than other models for few-shot
transfer to new tasks. 45

3.2 Domain transfer evaluation (accuracy) on NLI and Sentiment
classification datasets. 46

3.3 Ablations: LEOPARDν does not adapt layers 0− ν (inclusive) in the
inner loop (and fine-tuning), while LEOPARD adapts all
parameters. Note that the outer loop still optimizes all
parameters. For new tasks (like entity typing) adapting all
parameters is better while for tasks seen at training time (like
NLI) adapting fewer parameters is better. LEOPARD-ZERO is a
model trained without the softmax-generator and a zero
initialized softmax classifier, which shows the importance of
softmax generator in LEOPARD. 48

4.1 k-shot accuracy on novel tasks not seen in training. Models on left of
separator don’t use supervised data. 65

4.2 k-shot domain transfer accuracy. 66

5.1 Analysis of task proposals. The columns are the different task
proposal methods and rows are models trained on unsupervised
task distributions. Low accuracy on a task distribution indicates
harder to classify tasks or missing information in the training
distribution (see Sec 5.5.2 for details). 83

5.2 Results on downstream tasks. Best performing model for each k and
each task group is in bold and the second best is underlined. 87

5.3 Ablation for training with and without contrastive sentence pair
task. 88

xiii

5.4 Ablation: static tasks and the value of mixing proportion λt used in
dynamic curriculum. 89

5.5 Results on Fewrel 2.0 validation. 89

5.6 Results on Fewrel 2.0 test set. 90

6.1 Results on the individual downstream tasks. 95

A.1 An example of an input from the MIT restaurants dataset. The first
line is the actual example with two mentions. The next two lines
are the input to the models – one for each mention. 101

A.2 Dataset statistics for all the datasets used in our analysis. ”-”
represent data that is either not available or not used in this
study. We have balanced severely unbalanced datasets(Political
Bias and Audience) as our training data is balanced. To create
training data for few shot experiments we sample 10 datasets for
each k-shot. *Sec A.1 for more details . 102

A.3 Dev-set accuracy on the set of train tasks for multi-task BERT. 104

A.4 Hyper-parameter search space and best hyper-parameters for all
models. 105

B.1 Hyper-parameters. 108

B.2 k-shot performance for three models sizes. 109

C.1 Hyper-parameters. The parameters relating to the task distributions
are in the bottom section of the table. 112

xiv

LIST OF FIGURES

Figure Page

3.1 The proposed LEOPARD model. Input is first encoded using the
Transformer. The first batch from the support set is passed
through the parameter generator which learns a per-class set
representation that is used to generate the initial softmax
parameters. Subsequently, the support batches are used for
adaptation of the generated parameters as well as the encoder
parameters. Pink box (dashed) outline shows modules that are
adapted in the inner loop, whereas blue boxes are optimized in
the outer loop. 36

3.2 Analyzing target task performance as a function of training tasks
(best viewed in color). Each column represents one held-out
training task (name on x-axis) and each row corresponds to one
target task (name on y-axis). Each cell is the relative change in
performance on the target task when the corresponding training
task is held-out, compared to training on all the train tasks. Dark
blue indicates large drop, dark red indicates large increase and
grey indicates close to no change in performance. In general,
LEOPARD’s performance is more consistent compared to
MT-BERT indicating that meta-training learns more generalized
initial parameters compared to multi-task training. 49

4.1 An example of a 2-way 2-shot task in SMLMT. The support set and
one query is shown. Any N -way k-shot task can be constructed
similarly. 56

4.2 k-shot performance with number of parameters on Scitail (left),
Amazon DVD (middle), and CoNLL (right). Larger models
generalize better and Hybrid-SMLMT provides accuracy gains for
all parameter sizes. 67

4.3 Learning rate trajectory during meta-training. LEOPARD
learning-rates converge towards 0 for many layers, indicating
meta-overfitting. 68

xv

4.4 CCA similarity for each transformer layer. Top: similarity before and
after fine-tuning for the same model. Bottom: similarity between
different pairs of models post fine-tuning. More results in
Appendix. 69

5.1 Overall average across 19 downstream tasks for the different task
distributions proposed in this work. Cluster tasks and Dynamic
curriculum lead to the best overall accuracy. 86

5.2 Changing domain of tasks from Wikipedia to CommonCrawl (ccnet)
while keeping size of data, compute and model fixed. Overall
average across 19 downstream tasks is shown. More diverse
domain (ccnet) in training leads to improved down-stream
accuracy. 86

6.1 Average accuracy across the downstream tasks vs the model size for
various contemporary approaches and the meta-learning methods
proposed in this thesis (in red). Overall, the Hybrid-SMLMT
model outperforms the 2x size T5 model and is competitive with
the largest GPT-3 model that is more than 1590x its size. 95

A.1 Analyzing target task performance as a function of training tasks,
results for all values of k. 104

B.1 Cross-model CCA similarity for each layer of the transformer after
fine-tuning. Left plot is on CoNLL and right on Scitail. 109

B.2 CCA similarity for each layer of the same model before and after
fine-tuning. Left plot is on CoNLL and right on Scitail. 110

C.1 Illustration of SentCluster approach. 111

C.2 Results across all tasks. Sentiment and Rating are average of 4
domains used in Bansal et al. (2020a).Each violin plot for a model
shows the full distribution of accuracy across multiple runs (and
domains). 114

xvi

CHAPTER 1

INTRODUCTION

1.1 Motivation and Contributions

Neural models for natural language processing (NLP) have seen consistent im-

provement in their applicability and accuracy on many tasks. However, learning

such models is still inefficient in terms of the amount of data required for good per-

formance and their ability to generalize efficiently to new tasks and new domains.

Meta-learning, or learning to learn, considers the problem of utilizing experience

from previously seen tasks in order to more efficiently learn new tasks. An example

of such an approach is to utilize a collection of tasks to learn a model initialization

that enables quick learning of new tasks with few steps of gradient descent. While

this has led to research on few-shot learning, especially in the domains of computer

vision and reinforcement learning, it’s application to NLP problems has been limited.

Moreover, meta-learning typically requires a distribution over relevant diverse tasks

with labeled data which can be difficult to obtain for many NLP applications, severely

limiting its practical utility. In this dissertation, we develop practically usable meta-

learning methods for NLP that can leverage unlabeled data for learning and improve

the generalization ability of neural NLP models to new tasks and new domains with

very few labeled examples.

We consider optimization-based meta-learning methods (Finn et al., 2017), which

learn an initialization as well as a gradient-based optimizer for efficient adaptation

to new tasks. Such methods leverage a useful inductive bias of gradient-based learn-

ing without compromising on representational capacity and are highly suitable for

1

learning of new tasks. However, since NLP tasks vary greatly in their output spaces,

existing methods are not applicable to learn from a diverse set of tasks. We first de-

velop (Bansal et al., 2020a) an optimization-based method that can learn from tasks

with diverse, potentially disjoint, output spaces and be applied to new unseen tasks

at test time. This approach learns to generate task-specific parameters for few-shot

learning, model initialization primed for few-shot learning, and key hyper-parameters

of the optimization process employed at test time, such as per-layer learning rates, for

efficient model adaptation with limited labeled data. We investigate self-supervised

learning, multi-task learning, existing meta-learning methods, and our proposed ap-

proach for few-shot generalization to new tasks and domains.

While our supervised meta-learning approach improves few-shot accuracy, it is

limited to utilizing a fixed set of supervised tasks which can be difficult to obtain

and limits its practical utility. This can also lead to overfitting to the training task

distribution further limiting generalization to new tasks. We thus consider meta-

learning from unlabeled data. Recently, unsupervised pre-training of transformers

using language modeling objectives (Devlin et al., 2019) has shown tremendous suc-

cess in learning generalizable representations. Motivated by the success of these

cloze-style objectives (Taylor, 1953), we propose an approach (Bansal et al., 2020b)

to create separate multi-class classification tasks by gathering tokens-to-be blanked

from among only a handful of vocabulary terms. This provides a large, rich, meta-

learning task distribution from unlabeled corpora, with number of tasks exponential in

the size of the vocabulary, enabling large-scale self-supervised meta-learning of NLP

models. In addition to the advantages of the supervised meta-learning approach,

self-supervised meta-learning enables better representation learning, and ameliorates

meta-overfitting when combined with supervised tasks for meta-learning. We show

that this approach improves few-shot generalization over language-model pre-training

2

(Devlin et al., 2019) or multi-task learning (Caruana, 1997; Liu et al., 2019a), while

combining this with supervised tasks also improves over supervised meta-learning.

We further extend the idea of self-supervised task distributions by exploring the

space of tasks from the prespectives of task diversity, difficulty, type of task, domain

of tasks and task curriculum during meta-learning. The previously proposed self-

supervised approach relied on random sampling of words for task generation. This

can be wasteful in terms of utilization of unlabeled text for meta-training, leads

to easy training tasks and limits diversity in the training task distribution. We

propose modifications to task sampling that further enrich this task distribution,

leading to more efficient meta-training. We also contrast the cloze-style approach with

another approach to task creation that is based on clustering sentence embeddings.

We find that the sentence clustering approach is sub-optimal compared to the cloze-

style approaches proposed in this work. Moreover, an interesting aspect of being able

to synthetically generate tasks is that we can control the order in which tasks are

presented during training. We explore curriculum-based learning (Bengio et al., 2009)

over self-supervised tasks in order to make meta-training more efficient. We compare

and contrast all these proposed self-supervised task distributions for their utility in

improving few-shot learning by meta-learning models on these task distributions. Our

analysis shows that all of these considerations meaningfully alter task distributions

and induce significant changes in downstream few-shot accuracy.

The findings presented in this thesis improve the generalization of NLP models to

new tasks and new domains with very little labeled data. The proposed self-supervised

approaches to generate meta-learning tasks remedy a long-standing problem of lack

of sufficient training data for meta-learning methods in NLP and have further impli-

cations for developing meta-learning methods for other meta-problems in NLP, such

as hyper-parameter optimization, continual learning, efficient learning, architecture

search, learning in low-resource languages, and more.

3

The thesis is organized as follows. Chapter 2 discusses relevant background and

related work for the content presented. Chapter 3 presents a meta-learning method

that enables few-shot learning across tasks with diverse number of classes and estab-

lishes the evaluation methodology used throughout the dissertation. Chapter 4 then

introduces the self-supervised approach to create task distributions and evaluates its

utility in meta-learning models for few-shot learning under different settings. Chapter

5 takes these ideas further and explores diverse distributions of self-supervised tasks

for meta-learning. Then chapter 6 takes a retrospective look at the methods presented

in the thesis to compare and contrast them with some contemporaneous models like

GPT-3 (Brown et al., 2020). Finally, chapter 7 concludes with a discussion of ideas

for future research directions.

1.2 Declaration of Published Work

The main contributions of the thesis appeared in the following papers.

• Trapit Bansal, Rishikesh Jha, and Andrew McCallum. 2020a. Learning to few-

shot learn across diverse natural language classification tasks. In Proceedings

of the 28th International Conference on Computational Linguistics (COLING),

pages 5108–5123

• Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai, and Andrew McCallum.

2020b. Self-supervised meta-learning for few-shot natural language classification

tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 522–534

• Trapit Bansal, Karthick Gunasekaran, Tong Wang, Tsendsuren Munkhdalai,

and Andrew McCallum. 2021. Diverse distributions of self-supervised tasks for

meta-learning in NLP. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 5812–5824

4

https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.38.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.38.pdf
https://aclanthology.org/2021.emnlp-main.469
https://aclanthology.org/2021.emnlp-main.469

Earlier work on other methods for learning from limited labeled data, using multi-

task and distantly supervised learning, appeared in the following papers. We don’t

provide an in-depth treatment of these methods but they are briefly discussed in the

midst of related literature, in the background section 2.2.

• Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU:

Multi-task learning for deep text recommendations. In Proceedings of the 10th

ACM Conference on Recommender Systems, pages 107–114

• Nathan Greenberg, Trapit Bansal, Patrick Verga, and Andrew McCallum. 2018.

Marginal likelihood training of BiLSTM-CRF for biomedical named entity recog-

nition from disjoint label sets. In Proceedings of the 2018 Conference on Em-

pirical Methods in Natural Language Processing, pages 2824–2829

• Trapit Bansal, Pat Verga, Neha Choudhary, and Andrew McCallum. 2020c.

Simultaneously linking entities and extracting relations from biomedical text

without mention-level supervision. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 34, pages 7407–7414

• Dung Thai, Raghuveer Thirukovalluru, Trapit Bansal, and Andrew McCallum.

2021. Simultaneously self-attending to text and entities for knowledge-informed

text representations. In Proceedings of the 6th Workshop on Representation

Learning for NLP (RepL4NLP-2021), pages 241–247, Online. Association for

Computational Linguistics

The following work was also completed during the Ph.D. While not directly related,

these helped motivate the content presented in this thesis.

• Trapit Bansal, Arvind Neelakantan, and Andrew McCallum. 2017. RelNet:

End-to-end modeling of entities & relations. NeurIPS Workshop on Automated

Knowledge Base Construction (AKBC)

5

https://dl.acm.org/doi/pdf/10.1145/2959100.2959180
https://dl.acm.org/doi/pdf/10.1145/2959100.2959180
https://www.aclweb.org/anthology/D18-1306.pdf
https://www.aclweb.org/anthology/D18-1306.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6236
https://ojs.aaai.org/index.php/AAAI/article/view/6236
https://doi.org/10.18653/v1/2021.repl4nlp-1.25
https://doi.org/10.18653/v1/2021.repl4nlp-1.25
https://arxiv.org/pdf/1706.07179.pdf
https://arxiv.org/pdf/1706.07179.pdf

• Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mor-

datch. 2018. Emergent complexity via multi-agent competition. In International

Conference on Learning Representations

• Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch,

and Pieter Abbeel. 2018a. Continuous adaptation via meta-learning in nonsta-

tionary and competitive environments. In International Conference on Learning

Representations

• Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew McCallum. 2019. A2N:

Attending to neighbors for knowledge graph inference. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, pages

4387–4392

• Vaishnavi Kommaraju, Karthick Gunasekaran, Kun Li, Trapit Bansal, Andrew

McCallum, Ivana Williams, and Ana-Maria Istrate. 2020. Unsupervised pre-

training for biomedical question answering. In Working Notes of CLEF 2020 -

Conference and Labs of the Evaluation Forum, volume 2696 of CEUR Workshop

Proceedings. CEUR-WS.org

6

https://openreview.net/forum?id=Sy0GnUxCb
https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=Sk2u1g-0-
https://www.aclweb.org/anthology/P19-1431.pdf
https://www.aclweb.org/anthology/P19-1431.pdf
http://ceur-ws.org/Vol-2696/paper_144.pdf
http://ceur-ws.org/Vol-2696/paper_144.pdf

CHAPTER 2

BACKGROUND

We start by discussing technical background relevant to the contributions made

in this thesis. This thesis develops methods for accurate and efficient learning in the

few-shot setting, that is when target tasks have very limited labelled data for efficient

supervised learning. To enable learning of Natural Language Processing (NLP) tasks,

we leverage neural network models that learn to represent words and sequences of

words as vectors. We start by discussing these models that are used for the methods

developed in this thesis. Then we provide some background and related work on the

more general problem of learning from limited data, of which few-shot learning is one

extreme case. Finally, we lay out the meta-learning problem setup, discuss various

different meta-learning methods, its connection to other fields in transfer learning and

survey existing meta-learning work in NLP.

2.1 Neural Models for NLP

2.1.1 Input Representations

The input for the methods considered in this work is text, which is a sequence of

words. The discrete nature of text poses challenges for neural models, compared to

images or audio, as neural methods are better suited for optimization techniques in the

continuous space. Thus, representing the input in a continuous representation space

is often required to learn neural networks that can operate on textual data. For this

purpose, it is common to map discrete symbols in text to distributed representations

(Bengio et al., 2003) which are subsequently processed by a neural model for learning

7

high-level features for a task. Collobert and Weston (2008) first demonstrated the

utility of such end-to-end learning for multiple NLP tasks, as well as the importance

of pre-training such word representations from unlabelled data which was explored in

more detail in subsequent works (Mikolov et al., 2013).

The first step in the NLP pipeline maps each token in text, segmented though

some tokenization method, to discrete ids. Let [x1, . . . , xL] be a sequence of L tokens,

where each xi ∈ [V] is a word type from a vocabulary of size V . The first layer in

neural NLP models is then a lookup table which maps token ids to vectors, also called

word embeddings, through a lookup operation. This sequence of word embeddings,

[x̃1, . . . , x̃L], is then mapped to contextualized token representations through multiple

layers of a neural network. Note that the word embeddings are part of the parameters

of the neural networks which can be pre-trained separately on unlabelled data to use

as initialization or fixed representations (Collobert et al., 2011; Mikolov et al., 2013),

trained or fine-tuned on the target task (Collobert and Weston, 2008), or learned

in an end-to-end manner along with other parameters on unlabelled data through

self-supervised learning to initialize task-specific learning (Howard and Ruder, 2018;

Peters et al., 2018).

Sub-word encoding. Note that classic word tokenization, along with the restric-

tion to a fixed vocabulary, leads to problems with out-of-vocabulary words. As such,

character-level modeling has been considered where neural models directly operate on

character sequence (Mikolov et al., 2012; Sutskever et al., 2011; Graves, 2013; Peters

et al., 2018, among others). An alternative to character-level models that has been

highly successful is to use sub-word tokenization, which are in-between character-level

and word-level. Examples of these are byte-pair encoding (BPE) (Sennrich et al.,

2016) and word-piece (Schuster and Nakajima, 2012). BPE methods specify a target

sub-word vocabulary size. Then beginning with each individual character in the lan-

8

guage as the vocabulary, they will iteratively combine pairs of vocabulary items to

add new units to the vocabulary based on a score, such as frequency, until the target

vocabulary size is reached. Word-piece is a type of BPE method that chooses new vo-

cabulary unit as the one that maximizes the language model likelihood of the training

data when added to the vocabulary. These method provide a trade-off between using

character-level and word-level modeling, ameliorate the out-of-vocabulary problem

have been shown to be effective for many NLP problems (Sennrich et al., 2016; Wu

et al., 2016; Vaswani et al., 2017; Devlin et al., 2019; Radford et al., 2019; Liu et al.,

2019b, among others). The methods introduced in this work will use word-piece en-

coding, unless otherwise noted, which is also used by the BERT model (discussed in

2.2.4).

2.1.2 Contextual Text Encoders

Given a sequence of word embeddings as input, neural network models are then

used to obtain context-informed token embeddings, also called as contextualized token

representations. A number of choices exist for contextual encoders, which provide dif-

ferent trade-offs for modeling sequences. Common choices include: (1) convolutional

neural networks (CNN) (Waibel et al., 1989; Kalchbrenner et al., 2014) and vari-

ants like dilated convolutions (Yu and Koltun, 2015); (2) recurrent neural networks

(RNN) like long short term memory (Graves, 2013), gated recurrent units (Cho et al.,

2014) and others; (3) transformers (Vaswani et al., 2017). Among these, recurrent

neural network variants had been the default choice for NLP with state-of-the-art

performance which changed with introduction of the transformers in Vaswani et al.

(2017). Transformers rely entirely on attention operations (Bahdanau et al., 2014)

and do away with recurrence which allows better modeling of long-range dependencies

in text. Transformers have been applied successfully to numerous NLP tasks, often

yielding state-of-the-art performance. The neural models in this thesis are based

9

on transformers, however the methods are applicable to any other contextual text

encoder like CNN and RNN. Next we discus the transformer model in more detail.

2.1.2.1 Transformers

We provide a brief overview of the transformer architecture. The reader is referred

to the original paper (Vaswani et al., 2017) as well as the guide ”the illustrated

transformer” (Alammar, 2018) for a more exhaustive background. The model takes

a sequence of L words as input which are converted into word embeddings in the first

layer, [x̃1, . . . , x̃N], as described before. Transformer has no innate notion of position

and the model relies on positional embeddings which are added to the input word

embeddings. The positional embeddings are also learned parameters of the model.

Sometimes, the input text is divided into multiple segments, for instance in natural

language inference problems, and in such cases a segment embedding is also added to

the input (Devlin et al., 2019).

Transformer (Vaswani et al., 2017) is made up of multiple layers. Each Trans-

former layer, denoted transformerk, has its own set of parameters and consists of

two components: multi-head self-attention followed by a series of feed-forward op-

erations with non-linearity. Multi-head self-attention comprises of H blocks of self-

attention in each layer. Let the input representations at the j-th layer be the matrix

R(j−1) ∈ RL×din comprising of L rows of representations for each token from the

previous layer. Each head projects this input matrix into key, query and value:

K(j), Q(j), V (j) of dimension RL×dk . The query vector at each token then attends to

every other token, by a dot product with the key vector which is called the attention

score, and the result of the attention is the aggregated value vectors based on the

attention scores.

A(j) = softmax

(
Q(j)K(j)T

√
dk

)
V (j)

10

The outputs of the individual attention heads are concatenated and projected back

to dimension dk, to give the output of multi-head attention S(j). This is followed by

layer normalization (Ba et al., 2016), and a residual connection: S̃j = LN(S(j) +

R(j−1)). This output of multi-head self-attention is then followed by two feed-forward

layers, which consist of two linear projections with a gelu non-linearity (Hendrycks and

Gimpel, 2016). Finally, this output of the feed-forward layer, P j is followed by another

residual connection with the output of multi-head attention and layer-normalization

to give the final output for the j-th transformer layer: R(j) = LN(P j + S̃j). This

contextualized token-level representation then feeds into the next layer until we get

to the final layer.

2.2 Learning Neural NLP Models with Limited Labeled Data

The focus of this thesis is on efficient few-shot learning which is an extreme case

of learning from limited human-labeled data or supervision. A variety of different

methods have been proposed throughout the history of machine learning for such

scenarios. In order to be able to effectively learn from limited supervision, all methods

will assume access to some additional resource, be it unlabelled data or task-specific

knowledge. We briefly discuss the major areas of research under this umbrella before

delving into an in-depth treatment of meta-learning, which is the matter of this thesis.

2.2.1 Multi-Task Learning

While regular supervised learning involves training on a single task, in multi-

task learning (Caruana, 1997) a model is jointly trained on a set of tasks, typically

with some shared parameters across tasks. The idea here is to share structure and

statistical strength across related tasks to benefit learning of each (or a subset) of

the tasks. This is also known as joint learning. For learning tasks with limited

data, multi-task learning helps by using other related tasks which potentially have

11

more data than the target task (Caruana, 1996). Multi-task learning often introduces

trade-off between the various tasks being learned jointly based on the size, difficulty

and relevance of the tasks as compared to the target tasks of interest.

For neural models, the joint learning often involves sharing the text encoder and

using task-specific heads (i.e. additional layers) on top of the shared representations.

Jointly learning over multiple related tasks has been used effectively in NLP. Collobert

et al. (2011) showed the benefit of such joint learning over many low-level NLP tasks.

McCann et al. (2018) framed multiple NLP tasks as question answering for multi-

task learning. Highly related tasks, such as different information extraction tasks

like entity and relation extraction, are often benefited from joint training (Miwa and

Bansal, 2016; Katiyar and Cardie, 2017; Bekoulis et al., 2018). In Bansal et al.

(2020c), we present a system that jointly extracts entities and relations in biomedical

documents without needing exhaustive mention-level supervision, enabling learning

such methods in low-resource settings. In Greenberg et al. (2018), we present a

method for jointly learning across multiple datasets with disjoint or overlapping label

sets for the task of named entity recognition, to enable learning systems that can

perform labeling in the union of labels of the different datasets.

Multi-task learning helps in better representation learning of shared representa-

tions across tasks that has implications for better generalization to new tasks (Caru-

ana, 1996), i.e. in the learning to learn setting (Thrun and Pratt, 2012). The benefit

of such representation learning has also been explored from a theoretical perspective

(Maurer et al., 2016). In Bansal et al. (2016), we demonstrated that multi-task learn-

ing of text representations by jointly predicting observed user-item interactions and

keywords associated with the text can be effective for recommending new text items

for which there is no interaction history, known as the cold-start recommendation

problem. Multi-task learning on top of pre-trained models (discussed in 2.2.4) has

12

also been helpful for adapting to new domains with limited data (Liu et al., 2019a).

Refer to Ruder (2019) for a more detailed discussion and applications in NLP.

2.2.2 Weakly-Supervised Learning

The motivation of weakly-supervised methods is to learn machine learning model

from limited supervised data by leveraging noisier or higher-level supervision that can

be more easily or cheaply obtained. Such supervision is often obtained through sub-

ject matter experts or domain-specific databases or knowledge graphs. Ratner et al.

(2016, 2017b) proposed the paradigm of data programming, where users express do-

main heuristics as labeling functions for creating a large weakly-supervised training

set for learning. Mann and McCallum (2010) proposed the generalized expectation

criterion that enables learning generative models such that the marginal label distri-

butions satisfy some pre-defined constraints that serve as domain knowledge. Refer

to Ratner et al. (2017a) for a detailed list of related methods.

Distant supervision (Mintz et al., 2009) is a type of weakly-supervised method

that has been quite useful for information extraction tasks in NLP. Here higher-level

supervision for a task is obtained through an external database, such as a knowledge

graph. Relation extraction is an example of this approach where supervision for train-

ing can be obtained by taking an entity-relation tuple from the knowledge graph and

classifying entity-pair mentions in text to have that relation. Since such annotation

is noisy, various methods like multi-instance learning are incorporated (Riedel et al.,

2010) to learn robust models. In Bansal et al. (2020c), we used such distant supervi-

sion about entities and relations at the document-level. Such annotations are readily

available in biomedical knowledge graphs, where relations between biomedical enti-

ties are annotated by humans with the source research article where that relation is

identified, without explicitly identifying where in the article the relation is mentioned.

We develop models to enable extraction of entity-relation graphs from such research

13

text using this type of distant supervision without needing exhaustive mention-level

annotations which are often unavailable and expensive to obtain.

2.2.3 Semi-Supervised Learning

In semi-supervised learning, we have a small labeled data and a much larger, often

task or domain specific, unlabeled data. Such methods utilize assumption about

smoothness, low dimensional structure, or distance metrics to leverage the unlabeled

data. Refer to Chapelle et al. (2009) for a review and Van Engelen and Hoos (2020)

for a more recent survey covering modern neural network methods. Semi-supervised

methods are often divided into inductive and transductive methods.

Inductive methods aim to construct classifiers that can generate predictions on

any point in the input space. Unlabelled data is used for training the classifier, how-

ever the predictions for new unseen examples is independent of each other once the

training is completed. Many different inductive learning methods exits. Self-training

is a type of pseudo-labeling that can be considered as a wrapper around supervised

learning. It works by training a classifier on labeled data and iteratively pseudo-

labeling unlabeled data using the trained classifier and re-training the classifier on

labeled as well as the most confident pseudo labeled data. Yarowsky (1995) pro-

posed self-training for word-sense disambiguation in documents. More recently, Du

et al. (2020b) demonstrated self-training methods on pre-trained transformers cou-

pled with a nearest-neighbor retrieval mechanism can be effective for learning from

limited data. Multi-view co-training (Blum and Mitchell, 1998) is a related method

where multiple classifiers are trained on distinct views of the data. Other methods

include generative models like variational auto-encoders (Kingma and Welling, 2013),

generative-adversarial networks Springenberg (2015), and others (Van Engelen and

Hoos, 2020).

14

Transductive methods don’t have a clear distinction between training and testing

phase. They typically define a graph over all data points, both labeled and unlabeled,

which encodes similarity between data points. The objective function then enforces

that predictions on labeled data points should match the true labels while similar data

points should get the same label. Graph-based methods (Zhu et al., 2003) have been

developed for specific NLP problems (Subramanya et al., 2010; Goldberg and Zhu,

2006). Graph convolution networks (Kipf and Welling, 2016) have been proposed for

semi-supervised learning of classification problems on network data. See Van Engelen

and Hoos (2020) for other related methods.

2.2.4 Self-Supervised Learning

Recently, self-supervised learning has gained increased popularity and success in

transfer learning scenarios. Contrastive learning aims at learning representations by

maximising similarity and dissimilarity over instances organized into groups of similar

and dissimilar instances. Many methods formulate this as a mutual information

maximization problem (Oord et al., 2018; Hjelm et al., 2018), where the idea is to

maximize mutual information between two different views if the same data. More

generally, such methods learn from unlabeled data by proposing a self-supervised

task, also called as pretext task, that enables learning general purpose representations

which are useful for a variety of downstream task. A large number of such self-

supervised methods have been proposed for computer vision (Jing and Tian, 2020).

Within this literature, recent works Su et al. (2020); Zhai et al. (2019) have explored

the question of how self-supervised learning benefits few-shot learning. The models

trained on self-supervised tasks are often used as initializations for downstream tasks

on which they are further fine-tuned using task-specific labelled data. This is related

to early methods on pre-training of deep networks which were shown to be an effective

15

prior for supervised learning (Erhan et al., 2010). Pre-training followed by fine-tuning

can also be considered as an inductive semi-supervised learning method.

In NLP, word embedding training methods like Word2Vec (Mikolov et al., 2013)

are some of the earliest examples of self-supervised learning. Logeswaran and Lee

(2018) trained sentence representation through a contrastive learning approach where

the pretext task consists of maximizing similarity of a sentence to the next sentence in

the document as compared with other random sentences. Pre-training using language

model objectives has been shown to learn useful model initialization. Language mod-

eling refers to predicting the next word conditioned on the context. Howard and Ruder

(2018) showed language model pre-training followed by fine-tuning to work remark-

ably well for text classification tasks. Peters et al. (2018) pre-train a bi-directional

language model with character embeddings and show that the contextualized token

embeddings from these models are suitable for many downstream tasks. Radford et al.

(2019) train a left to right autoregressive transformer language model and evaluate

it for zero-shot learning for many NLP tasks. Yang et al. (2019) train an autoregres-

sive transformer language model under all possible permutations of factorizing the

word-order.

Devlin et al. (2019) pre-trained a transformed model on a masked language model-

ing (MLM) task. MLM can be considered a generalized version of langauge modeling

that consists of masking out random words in a sentence which are to be predicted

by the model. The masked out words are replace by a unqiue [MASK] token. In ad-

dition, they introduce a next sentence prediction task that is similar to Logeswaran

and Lee (2018). They pre-process the input text to add [CLS] token at the start of

the sentence as well as a [SEP] token to separate multiple sentences. The [CLS] is

to learn a sentence-level embedding for sentence classification tasks. Their trained

model, BERT, showed improvements in downstream performance, by fine-tuning the

model, on a diverse range of tasks. Other recent work (Liu et al., 2019b; Clark et al.,

16

2019; Lan et al., 2019) improved on pre-training of the BERT model through various

modifications in the objective or the model architecture.

Recently, Brown et al. (2020) trained transformer language models with 175 billion

parameters on lots of common crawl data. They showed that the trained language

model are effective few-shot learners when used along with a human added prompt

to predict the label. Their model can be considered a model-based meta-learner (dis-

cussed in 2.3). Finally, recent theoretical work (Arora et al., 2019) has investigated

why such self-supervised learning helps in solving downstream tasks. In particular,

Saunshi et al. (2020) study why language modeling helps solving downstream tasks

and provide error bounds showing that low language modeling test perplexity trans-

lated to lower downstream classification error.

2.3 Meta-Learning

This thesis explores meta-learning methods to learn models for natural language

processing (NLP) tasks. This chapter surveys relevant technical background related

to meta-learning and a discussion of existing work on meta-learning for NLP. Since

the focus is on supervised learning, we restrict the discussion to this setting and don’t

discuss extensions to reinforcement learning problems.

2.3.1 Notation and Meta-Learning Setup

In supervised learning of a task T , we are given a dataset DT = {(xj, yj)} sampled

from a distribution: {(xj, yj)} ∼ P (X)PT (Y|X), where X is the input space, Y is

the output space and PT (Y|X) is the task-specific distribution over the output space

given input. The aim is then to learn a parameterized model fθ : xj → ŷj, with

parameters θ, that maps inputs xj with true label yj to a prediction ŷj. Learning is

performed by (approximately) minimizing the task-specific loss LT (θ,DT):

17

θ̂ := arg min
θ
LT (θ,DT) (2.1)

Note that the empirical loss is a function of both the parameters θ and the data

DT for the task. Global optimization is often computationally infeasible for complex

models, such as neural networks, but one typically finds an approximate solution

using an optimization procedure with some hyper-parameters such as learning-rate

and parameter initialization.

In supervised meta-learning, there is a meta goal of learning across multiple tasks

in order to enable rapid learning of new tasks. This assumes a distribution over tasks

P (T). Meta-learning methods then consider an approximate solution of equation 2.1:

θ̂ := gω(θ,DT) (2.2)

where gω is some learning algorithm, with parameters ω, that has inputs as the

model parameters and the training data. For example, gω can be a few steps of an

optimization procedure like stochastic gradient descent with a learning rate ω (Finn

et al., 2017), or a recurrent neural network with parameters ω (Younger et al., 2001).

Note that θ are parameters of the base learner, for example a neural network, that is

used to solve a task T .

Since the goal of meta-learning is to learn how to learn, the learning algorithm

is not pre-specified as in typical supervised learning and will be the outcome of the

meta-learning method. This can be formalized as optimizing the following objective:

min
ω,θ

Outer Loop︷ ︸︸ ︷
ET∼P(T)

Lmeta
gω(θ,Dtrain

T)︸ ︷︷ ︸
Inner Loop

, Dval
T

 (2.3)

where Lmeta is the meta-objective that measures the performance of task-specific

learning on task T , (Dtrain, Dval) ∼ T are training and validation sets used for task

18

specific learning and the evaluation of the meta-objective, respectively. Note that

Dtrain is also referred to as the support set and Dval as the query set. The task-

specific learning is also referred to as the inner loop, while the across task learning

using the meta-objective is referred as the outer loop.

Episodic Framework. Training a meta-learning model often takes place in episodes.

In each episode, a batch of tasks is samples from the task distribution P(T). Each

task T is accompanied by a training data Dtrain
T , a validation data Dval

T , and a task-

specific loss LT . Dtrain
T is then used for the inner-loop in equation 2.3, while Dval

T is

used to compute the meta-objective in the outer loop which evaluates the learning

outcome of the inner loop. This is also referred to as meta-training stage. After the

model is trained, it is applied on a set of new tasks from P(T) that were not part of

meta-training. Here is model can use is learned learning procedure from the meta-

training to adapt to the test task’s training data. This is referred to as meta-testing

stage. One can also hold out a set of tasks with their (Dtrain, Dval), for validation

of the meta-training and choosing hyper-parameters of the meta-learning methods.

This is referred to as meta-validation.

Few-Shot Classification. As a concrete application, that is also germane to this

work, lets consider supervised meta-learning for few-shot classification. The episodic

learning framework for few-shot classification (Vinyals et al., 2016; Finn et al., 2017)

minimizes train/test mismatch, thus meta-training tasks consist of k-shot data for

small values of k. Formally, consider N -way k-shot classification, where N is the

number of classes in the task and k is the number of examples per class. We are given

a set of M training tasks {T1, . . . , TM}. In order to simulate k-shot learning during

training, in each episode (i.e. a training step) a batch of training tasks is sampled.

Each task Ti consists a training set Dtri ∼ Ti, consisting of only k examples (per label)

19

of the task and a validation set Dvali ∼ Ti, containing q other examples of the same

task. The model is then trained on Dtri using the task loss (cross-entropy), and then

tested on Dvali . The model’s performance on Dvali , for example measured using the

classification cross-entropy loss, is then used to adjust the model parameters and the

learning algorithm in equation 2.3. Here the validation error of the sampled tasks

serves as the training error for the meta-learning process. At the end of training,

the model is then evaluated on a new task TM+1 ∼ P (T) where again the train set

of TM+1 consists of only k examples per label, and the model can use it’s learning

procedure to adapt to the task TM+1. It is then evaluated on new test examples from

this new task TM+1.

2.3.2 Meta-Learning Approaches

Meta-learning methods are often categorized into model-based, metric-based, and

optimization-based. We briefly discuss each of these categories. For a more thorough

review of various meta-learning methods and applications in domains of computer

vision or reinforcement learning, please refer to Hospedales et al. (2020) and Huisman

et al. (2020).

2.3.2.1 Model-based Meta-Learning

Model-based meta-learning methods consider directly learning models that solve

the meta-learning problem. Such methods, learn a model fθ, such as a black-box neu-

ral network, that has inputs as the entire training data DtrainT as well as a new input

x ∈ DvalT for which we will like to make predictions: p(y|x,DtrainT) = fθ(x,DtrainT).

The model f typically maintains a stateful internal representation of the task, often

in the form of an external or recurrent memory. Memory-augmented neural networks

(MANNs) (Santoro et al., 2016) use an external memory for storing representations of

instances and a neural network controller for interacting with that memory. They pro-

cess the support data and new query examples in a sequence. Recurrent meta-learners

20

(Duan et al., 2016; Wang et al., 2016) have been proposed which model f as recurrent

neural networks for reinforcement learning problems. Meta networks (Munkhdalai

and Yu, 2017) consider an architecture that is divided into a base learner, which

performs fast task-specific learning, and meta-learner, which stores meta information

useful for solving tasks. Mishra et al. (2018) model f with 1D temporal convolu-

tions and a soft attention mechanism (Vaswani et al., 2017), processing examples in

a sequence similar to Santoro et al. (2016).

In summary, model-based meta-learning methods make minimal assumption on

the training dynamics of the model and instead learn it in the model weights. How-

ever, they are often outperformed by metric-based (2.3.2.2) or optimization-based

(2.3.2.3) methods which have stronger inductive bias that enables better generaliza-

tion (see, for eg., Satorras and Estrach (2018) and Finn et al. (2017)). Moreover, since

they take the entire training data as input, they are less scalable to larger datasets

than other methods, struggle to embed larger datasets degrading performance (Finn,

2018), and are worse at generalizing to out-of-distribution tasks than optimization-

based methods (Finn, 2018).

2.3.2.2 Metric-based Meta-Learning

Metric-based methods try to learn a similarity metric that enable comparing any

two instances. Predictions for new instances of a task are made by comparing the in-

stance to all the instances in the training set using the similarity metric. Examples of

metric-based methods include: matching networks (Vinyals et al., 2016), prototypical

networks (Snell et al., 2017), siamese networks (Koch et al., 2015), relation networks

(Sung et al., 2018), and more (Satorras and Estrach, 2018; Shyam et al., 2017). We

look at matching networks and prototypical networks, which are two canonical exam-

ples of the metric-based methods.

21

Matching Networks. Matching networks (Vinyals et al., 2016) learn a parame-

terized model to embed all instances in a metric space and use a similarity weighted

combination of all task training labels to make predictions on new instances for a task.

These were proposed for classification tasks. Explicitly, it learns attention weights

a(x̂, xi) between two instances x̂ and xi which is used to make predictions for x̂ as:

ŷ =
∑m

i=1 a(x̂, xi)yi. The attention weights are computed by measuring the cosine

similarity between instances in the learned embedding space:

a(x, xi) =
exp(f(x)Th(xi))∑m
j=1 exp(f(x)Th(xj))

where f and h are neural networks with potentially shared parameters. Vinyals et al.

(2016) explore extensions where these networks are also conditioned on the entire

support set using an LSTM (Hochreiter and Schmidhuber, 1997).

Prototypical Networks. Prototypical networks (Snell et al., 2017) extends match-

ing network, where the idea is to learn embeddings of instances such that they clus-

ter around a single prototype representation for each class. They learn to embed

data-points in an embedding space and use the few-shot training data as support to

construct per class prototypes in this embedding space as the centroid representation

for each class. The classification label for any new data point is then obtained as

the class of the prototype that is closest to this data point in the embedding space.

Concretely, the training dataset in an episode is first partitioned based on the class

labels, Cn = {xj|yj = n} where n ∈ [N] and N is the number of classes in the current

task. Then fθ acts a neural encoder for data points in each Cn to generate a prototype

for the n-th class as c̃n . Now, given a query point x∗ ∈ Dvali , the probability that

x∗ belongs to class n is given by computing the distance to the class prototype and

passing the results through a softmax:

22

p(y∗|x∗,Dtri) = softmax
n∈{1,...,N}

{−d(c̃n, fθ(x
∗))}

c̃n =
1

|Cn|
∑
xj∈Cn

fθ(xj)

where d(·, ·) is the euclidean distance (Snell et al., 2017).

Summary. Metric-based methods learn embeddings of instances as well as similar-

ity metrics that enable classifying new instances through comparing it with existing

training examples. Connecting to equation 2.3, the inner-loop corresponds to only

a forward pass through the embedding network to generate per-instance embeddings

(Vinyals et al., 2016) or per-class prototypes (Snell et al., 2017). θ, ω are the parame-

ters of the embedding networks. The outer-loop consists of generating the predictions

on the validation set using the matching method and the meta-objective is then a

cross-entropy loss on the true validation labels. Such methods have a similarity-based

inductive bias, can lead to interpretable predictions and can be fast to apply when

the target tasks are very small. However, when test tasks are more distant than the

meta-training tasks, the methods do not absorb new task information and perfor-

mance can degrade. Moreover, when task size increases, these methods may become

computationally more expensive due to pairwise comparisons.

2.3.2.3 Optimization-based Meta-Learning

Optimization-based methods explicitly optimize for fast learning, using gradient-

based optimization either directly as an inductive bias (Finn et al., 2017) or as mo-

tivation to learn fast optimization methods (Andrychowicz et al., 2016; Ravi and

Larochelle, 2017; Li and Malik, 2016). These are often formulated as bi-level opti-

mization, equation 2.3, where a base learner is updated using task-specific updates in

the inner-loop (for example using SGD), and at the outer-loop the meta-parameters

which affect inner-loop optimization are optimized across tasks.

23

Andrychowicz et al. (2016) introduced an LSTM optimizer that proposes parame-

ter updates, using the gradient of a task loss, to replace the updates in regular stochas-

tic gradient descent. Ravi and Larochelle (2017) proposed LSTM meta-learners where

the parameters of the base learner are the cell state of the LSTM. Updates to the cell

state in LSMT thus update the parameters of the base learner, analogous to gradient

descent. They meta-learn an initialization for the cell state as well as the parameters

of the LSTM that enable rapid learning. Li and Malik (2016) cast optimization as a

reinforcement learning problem. We next look at model-agnostic meta-learning which

uses a simpler gradient-based approach that is more scalable than these methods and

can perform better for few-shot learning (Finn et al., 2017).

Model-Agnostic Meta-Learning (MAML). MAML (Finn et al., 2017) is an ap-

proach to optimization based meta-learning where the goal is to find a good initial

point for model parameters θ, which through few steps of gradient descent, can be

adapted to yield good performance on a new task. Learning in MAML consists of an

inner loop, which consists of gradient-based learning on the task-specific objective,

and an outer-loop which refines the initial point in order to enable fast learning across

the set of tasks. Thus, given a task Ti with training datasets Dtri sampled during an

episode, MAML’s inner loop adapts the model parameters θ as:

θ′i = θ − α∇θLi(θ,Dtri) (2.4)

Typically, more than one step of gradient update are applied sequentially. The hyper-

parameter α can also be meta-learned in the outer-loop (Li et al., 2017). The model

parameters θ are then trained by back-propagating through the inner-loop adaptation

across tasks, with the meta-objective of minimizing the error on the respective task

validation sets Dvali :

24

θ ← θ − β
∑

Ti∼P (T)

Li(θ′i,Dvali) (2.5)

More sophisticated routines for optimization, such as Adam (Kingma and Ba, 2014),

can also be used here instead of vanilla SGD. Note that even though MAML is typ-

ically trained to generate a good initialization point for fast adaptation in few-shot

setting, since the inner-loop adaptation for each task also employs gradient-descent

for learning, it’s performance can approach regular supervised learning in the limit

of large data with more number of steps.

Other Optimization-based Methods. Note that MAML differentiates through

the inner loop updates which requires computing second-order derivatives. Since this

is computationally expensive, often first-order approximation is employed which ig-

nores the second order terms (Finn et al., 2017). Rajeswaran et al. (2019) introduced

iMAML, which does not need to differentiate through the entire optimization trajec-

tory and only requires the final point for each optimization. Rusu et al. (2018) intro-

duced Latent Embedding Optimization which learns a lower-dimensional embedding

of the parameters of the base learner, which are in high dimension, to enable better

optimization of the parameters in the lower dimension. Lee et al. (2019) propose to

learn linear predictors as base learners over shared representations, in a bi-level opti-

mization framework, showing improvements on few-shot image classification. Nichol

and Schulman (2018) introduced Reptile which is a method similar to MAML but

only learns the initialization of the model parameters. Reptile samples tasks in the

inner loop to perform gradient-based optimization on the task-specific loss and then,

in the outer loop, directly moves the initial weights in the direction of the averaged

final point of the optimized task-specific weights. Bayesian extensions of MAML have

also been proposed (Finn et al., 2018; Grant et al., 2018; Yoon et al., 2018).

25

Summary. Optimization-based methods have the inductive bias of using gradients

of the task loss to make updates to the base learner such that it enables learning

new tasks rapidly. MAML does this by learning an initialization point for the base

learner that can solve new tasks with few steps of gradient descent. This closely

resembles typical supervised learning in the inner loop. They have been shown to

have the same representative power as recurrent meta-learners and can perform well

on a wider distribution of tasks than seen at training time (Finn and Levine, 2018)

(see also sec 2.3.4). MAML is agnostic to the choice of the base learner model and

has been successfully applied on many meta-learning benchmarks in computer vision

and reinforcement learning (Finn, 2018).

2.3.3 P (T): Task Distribution for Meta-Learning

Note that all of the different approaches to meta-learning, discussed so far, require

a distribution over tasks for learning. Learning typically requires a large number

of tasks during training to enable generalization to new tasks and to help avoid

overfitting to the training tasks. Moreover, the diversity of tasks in training will affect

the generalization ability of models. The most dominant approach in Computer Vision

to meta-learning is to create tasks from a fixed dataset consisting of many object

classes. This is has lead to the creation of benchmarks like miniImageNet (Vinyals

et al., 2016) which are widely used in meta-learning (Hospedales et al., 2020).

We summarize how a supervised task data-set is typically leveraged to create

meta-training tasks (Vinyals et al., 2016). Assuming access to a supervised task with

L classes, an N -way k-shot task is created by first sampling N classes, assuming

N << L. Then for each of the N sampled classes, (k + q) examples of each class is

randomly sampled from the dataset and assigned a unique label in {1, . . . , N}. The

k examples for each label serve as the support set, while the q examples constitute

the validation set described above. Note, that each task consists of a small subset of

26

classes and the class to label (1 to N) assignment is random. This is important to

ensure that the meta-learner utilizes the task-specific data for learning the task and

does not memorize the sample to label assignments in the parameters of the model. In

case the labels are assigned unique identifiable labels across tasks, then generalization

to new tasks suffers severely as the learning process falls back to standard supervised

learning (Yin et al., 2020a). Related to miniImageNet in computer vision, the FewRel

(Han et al., 2018) dataset and benchmark was proposed. Here tasks are created from

a fixed dataset of sentences annotated with 100 relation labels. The 100 relations are

split into training, validation and test splits used for meta-learning. Note that both

training and evaluation are typically performed on synthetically sampled tasks.

While utilizing a fixed task type can help meta-learning to generalize to new classes

of the task, this has severe limitations for the practical utility of meta-learning to

many problems of interest. First and foremost, this limits learning to a very specific

type of task. Such issues have been brought to front recently in the computer vision

literature (Triantafillou et al., 2019; Huang et al., 2019) and better benchmarks that

combine multiple datasets have been proposed (Triantafillou et al., 2019). Second,

this imposes limits on the size and diversity of tasks available for meta-learning for

most practical scenarios. Moreover, this approach is not feasible for tasks that have

limited number of classes to enable such sub-sampling of class labels, for example

sentiment classification. This has a stark contrast with the related field of multi-task

learning (Caruana, 1997) where it is often feasible to utilize many diverse tasks for

learning (McCann et al., 2018) which are also useful in the learning to learn setting

(Thrun and Pratt, 2012; Maurer et al., 2016). Moreover, while self-supervised learning

from unlabeled data has also been shown to be highly beneficial for representation

learning, utilizing such unlabeled data for meta-learning is still challenging.

Unsupervised meta-learning has been explored in computer vision (Hsu et al.,

2019; Khodadadeh et al., 2019) and reinforcement learning (Gupta et al., 2018; Jabri

27

et al., 2019). Hsu et al. (2019) cluster embeddings of images and subsample from the

clustering to create tasks for image classification. They show improved generalization

from such unsupervised meta-learning over other unsupervised representation learn-

ing. Khodadadeh et al. (2019) propose to use image-specific augmentations for 1-shot

learning. Gupta et al. (2018) propose tasks for meta-RL using mutual information.

Other methods (Metz et al., 2019) propose supervised learning of an unsupervised up-

date rule that can lead to better performance on a set of target tasks. These typically

require supervised data during training to evaluate the update rule and face compu-

tational challenges in learning. Among these, the approach to clustering embeddings

(Hsu et al., 2019) has direct application to NLP, although it hasn’t been explored.

Note that such an approach requires a pre-trained model whose representations are

used to generate the clustering. Thus, the tasks are only meaningful from the and

learning to predict the same clustering might not help in learning useful represen-

tations beyond the pre-trained model. Indeed, we show in chapter 5 that such an

approach is sub-optimal for NLP tasks.

2.3.4 Theory on Meta-Learning

Many recent works have studied theoretical properties of many meta-learning

methods, most prominently the optimization-based MAML algorithm. Finn and

Levine (2018) proved that deep representations combined with gradient descent can

approximate any learning algorithm, showing that there is no particular representa-

tional advantage to using a black-box meta-learner, like recurrent neural networks,

over such methods. Given similar representational capacity, they also empirically

studied the benefit of gradient-based methods over black-box methods. They show

that initializations learned by MAML are extremely resilient to over-fitting to tiny

datasets, even when taking many more gradient steps than were used during meta-

28

training, and are better suited for extrapolation beyond the distribution of tasks seen

at meta-training time.

Convergence properties of MAML have also been studied (Wang et al., 2020a;

Fallah et al., 2020; Wang et al., 2020b), characterizing the optimality gap in the

convergence point attained by MAML. Other theoretical work (Khodak et al., 2019;

Denevi et al., 2019) studied gradient-based meta-learning through the lens of online

convex optimization, for an online meta-learning setup. Collins et al. (2020) studied

why MAML outperforms empirical risk minimization, finding that MAML induces a

global optimization landscape with optimal solution closer to the optimal solutions of

the hard tasks, i.e. the tasks with loss functions that SGD traverses slowly, thereby

outperforming ERM on the hard tasks without sacrificing easy task performance,

since they can still be solved in a small number of SGD steps. Finally, there is work

on how representation learning across many tasks helps reduce sample complexity

of new tasks. Maurer et al. (2016) studied the benefit of multi-task representation

learning in the learning to learn setting, that is for solving new tasks. Du et al.

(2020b) extend their result and studied sample complexity reduction on learning new

tasks by learning on diverse source tasks with a shared representation.

2.3.5 Relation to Other Fields

A closely related field to meta-learning is multi-task learning (Caruana, 1997),

where a model is trained to jointly perform well on a fixed set of tasks. The idea here

is to share structure and statistical strength across related tasks to benefit learning of

each task. This approach can also be used for better representation learning of shared

representations across tasks that have implications for better generalization to new

tasks (Caruana, 1996), i.e. in the learning to learn setting (Thrun and Pratt, 2012).

The benefit of such representation learning has also been explored from a theoretical

perspective (Maurer et al., 2016). A key difference between multi-task learning and

29

meta-learning is that meta-learning methods directly optimize for learning of new

tasks, and thus also learn the learning process for each task in order to enable better

generalization to new tasks.

Transfer learning methods aim at transferring knowledge learned from previous

tasks in order to enable better learning of new tasks. As such it subsumes both

multi-task and meta-learning methods. Unsupervised learning methods, such as pre-

training followed by fine-tuning, are another form of transfer learning that has received

a lot of recent interest (Liu et al., 2019a). An important consideration in transfer

learning is how tasks relate to each other, which has explored in computer vision

Achille et al. (2019) as well as NLP Vu et al. (2020). Refer to Pan and Yang (2009)

for a survey of transfer learning methods and Ruder (2019) for an overview of transfer

learning methods in NLP.

2.3.6 Meta-Learning for NLP

Meta-learning methods have been applied for specific applications in NLP, to im-

prove few-shot or low-resource performance on that applications. Note that prior

work mostly uses human labelled data to create tasks for meta-learning methods.

Moreover, many works, specially on text classification, rely on synthetically generated

tasks for both training and evaluation following the popular miniImageNet approach

in computer vision. We categorize the work in this area based on the type of NLP

tasks below.

Seq2Seq Tasks. This set of NLP applications consider seq2seq (Sutskever et al.,

2014) models for tasks that involve natural language generation, such as machine

translation (Bahdanau et al., 2014). Gu et al. (2018) used MAML for low resource

machine translation, by meta-training on high resource language pairs, treating each

language pair as a new task. They showed improvements over multi-lingual and

30

transfer learning methods. Sharaf et al. (2020) apply a similar approach for domain

adaptation across domains, where meta-training consists of some domains of labelled

parallel data and meta-test contains new domains with small amounts of parallel data.

Huang et al. (2018) use MAML for generating SQL queries from natural language,

where a task is defined as a set of related examples with similar SQL type. Mi et al.

(2019) learn a MAML-based model for task-oriented dialogue systems in low-resource

settings. Madotto et al. (2019) apply MAML for personalizing dialogue agents. Kann

et al. (2020) extend the approach of Gu et al. (2018) to learn morphological inflection

for low-resource languages.

Classification Tasks. Chen et al. (2018) learn HyperLSTM (Ha et al., 2016) model

in a multi-task setting across various sentiment classification domains and show im-

provements when transferring to a new domain. Yu et al. (2018) learn multiple metrics

to handle few-shot classification. Their meta-training procedure involves first cluster-

ing source tasks followed by learning a distance metric per cluster. Geng et al. (2019)

employ capsules and dynamic routing algorithm (Sabour et al., 2017) for generating

class prototypes in a framework similar to prototypical networks. Han et al. (2018)

introduced the few-shot relation classification benchmark which was constructed sim-

ilar to the miniImageNet (Vinyals et al., 2016) benchmark in computer vision. The

dataset consists of a total of 100 relations which are split into train and test relations

for training meta-learning methods. They evaluated various meta-learning methods

on this benchmark. Gao et al. (2019a); Sun et al. (2019) developed prototypical net-

works with attention for few-shot relation classification and showed improvements on

the FewRel task. Gao et al. (2019b) introduced the FewRel 2.0 benchmark by adding

the aspect of domain transfer, where the meta-test set is of a different domain, to en-

able better evaluation of generalization. Obamuyide and Vlachos (2019) use MAML

for relation classification by learning across relational labels with large number of

31

examples to generalize to labels with fewer examples. Dou et al. (2019) explored

Reptile algorithm Nichol and Schulman (2018) for generalizing to low-resource tasks.

They train their method on a subset of high resource GLUE tasks and evaluate on

related low-resource GLUE tasks. Holla et al. (2020) study meta-learning methods

for word-sense disambiguation.

Note that all of these methods require some supervised data to enable meta-

learning. In contrast, in this thesis, we will develop methods that can meta-learn

from completely unlabeled data for classification tasks.

32

CHAPTER 3

LEARNING TO FEW-SHOT LEARN ACROSS DIVERSE
NATURAL LANGUAGE PROCESSING TASKS

Pre-trained transformer models have shown enormous success in improving per-

formance on several downstream tasks. However, fine-tuning on a new task still

requires large amounts of task-specific labeled data to achieve good performance. We

consider this problem of learning to generalize to new tasks with a few examples as

a meta-learning problem. While meta-learning has shown tremendous progress in

recent years, its application is still limited to simulated problems or problems with

limited diversity across tasks. In this chapter, we develop a novel method, LEOPARD,

which enables optimization-based meta-learning across tasks with different number of

classes, and evaluate different methods on generalization to diverse NLP classification

tasks. LEOPARD is trained with the state-of-the-art transformer architecture and

shows better generalization to tasks not seen at all during training, with as few as 4

examples per label. Across 17 NLP tasks, including diverse domains of entity typing,

natural language inference, sentiment analysis, and several other text classification

tasks, we show that LEOPARD learns better initial parameters for few-shot learning

than self-supervised pre-training or multi-task training, outperforming many strong

baselines, for example, yielding 14.6% average relative gain in accuracy on unseen

tasks with only 4 examples per label.

3.1 Introduction

Learning to learn (Schmidhuber, 1987; Bengio et al., 1992; Thrun and Pratt, 2012)

from limited supervision is an important problem with widespread application in areas

33

where obtaining labeled data for training large models can be difficult or expensive.

We consider this problem of learning in k-shots for natural language processing (NLP)

tasks, that is, given k labeled examples of a new NLP task learn to efficiently solve the

new task. Recently, self-supervised pre-training of transformer models using language

modeling objectives (Devlin et al., 2019; Radford et al., 2019; Yang et al., 2019) has

achieved tremendous success in learning general-purpose parameters which are useful

for a variety of downstream NLP tasks. While pre-training is beneficial, it is not

optimized for fine-tuning with limited supervision and such models still require large

amounts of task-specific data for fine-tuning, in order to achieve good performance

(Yogatama et al., 2019).

On the other hand, meta-learning methods have been proposed as effective solu-

tions for few-shot learning. Existing applications of such meta-learning methods have

shown improved performance in few-shot learning for vision tasks such as learning

to classify new image classes within a similar dataset. However, these applications

are often limited to simulated datasets where each classification label is considered

a task. Moreover, their application in NLP has followed a similar trend (Han et al.,

2018; Yu et al., 2018; Guo et al., 2018; Mi et al., 2019; Geng et al., 2019). Since the

input space of natural language is shared across all NLP tasks, it is possible that a

meta-learning approach generalizes to unseen tasks. We thus move beyond simulated

tasks to investigate meta-learning performance on generalization outside the training

tasks, and focus on a diverse task-set with different number of labels across tasks.

Model agnostic meta-learning (MAML) (Finn et al., 2017) is an optimization-

based approach to meta-learning which is agnostic to the model architecture and

task specification. Hence, it is an ideal candidate for learning to learn from diverse

tasks. However, it requires sharing model parameters, including softmax classification

layers across tasks and learns a single initialization point across tasks. This poses a

barrier for learning across diverse tasks, where different tasks can have potentially

34

disjoint label spaces. Contrary to this, multi-task learning (Caruana, 1997) naturally

handles disjoint label sets, while still benefiting from sharing statistical strength across

tasks. However, to solve a new task, multi-task learning would require training a new

classification layer for the task. On the other hand, metric-based approaches, such as

prototypical networks (Vinyals et al., 2016; Snell et al., 2017), being non-parametric

in nature can handle varied number of classes. However, as the number of labeled

examples increase, these methods do not adapt to leverage larger data and their

performance can lag behind optimization-based methods.

We address these concerns and make the following contributions: (1) we intro-

duce a MAML-based meta-learning method, LEOPARD1, which is coupled with

a parameter generator that learns to generate task-dependent initial softmax classi-

fication parameters for any given task and enables meta-learning across tasks with

disjoint label spaces; (2) we train LEOPARD with a transformer model, BERT (De-

vlin et al., 2019), as the underlying neural architecture, and show that it is possible to

learn better initialization parameters for few-shot learning than that obtained from

just self-supervised pre-training or pre-training followed by multi-task learning; (3) we

evaluate on generalization, with a few-examples, to NLP tasks not seen during training

or to new domains of seen tasks, including entity typing, natural language inference,

sentiment classification, and various other text classification tasks ; (4) we study how

meta-learning, multi-task learning and fine-tuning perform for few-shot learning of

completely new tasks, analyze merits/demerits of parameter efficient meta-training,

and study how various train tasks affect performance on target tasks. To the best of

our knowledge, this is the first application of meta-learning in NLP which evaluates

on test tasks which are significantly different than training tasks and goes beyond

1Learning to generate softmax parameters for diverse classification

35

simulated classification tasks or domain-adaptation tasks (where train and test tasks

are similar but from different domains).

3.2 Model

Figure 3.1. The proposed LEOPARD model. Input is first encoded using the
Transformer. The first batch from the support set is passed through the parameter
generator which learns a per-class set representation that is used to generate the initial
softmax parameters. Subsequently, the support batches are used for adaptation of the
generated parameters as well as the encoder parameters. Pink box (dashed) outline
shows modules that are adapted in the inner loop, whereas blue boxes are optimized
in the outer loop.

In this section, we describe our proposed method, LEOPARD, for learning new

NLP classification tasks with k-examples. Fig. 3.1 shows a high-level description of

the model. Our approach builds on the MAML framework and addresses some of

36

its limitations when applied to a diverse set of tasks with different number of classes

across tasks. Our model consists of three main components: (1) a shared neural input

encoder which generates feature representations useful across tasks; (2) a softmax

parameter generator conditioned on the training dataset for an N -way task, which

generates the initial softmax parameters for the task; (3) a MAML-based adaptation

method with a distinction between task-specific parameters, which are adapted per

task, and task-agnostic parameters, which are shared across tasks, that can lead to

parameter-efficient fine-tuning of large models. Full training algorithm is shown in

Alg. 1.

3.2.1 Text Encoder

The input consists of natural language sentences, thus our models take sequences

of words as input. Note that some tasks require classifying pairs of sentences (such

as natural language inference) and phrases in a sentence (such as entity typing), and

we discuss how these can also be encoded as a sequence in Section 3.3.1. We use

a Transformer model (Vaswani et al., 2017) as our text encoder which has shown

success for many NLP tasks. Concretely, we follow (Devlin et al., 2019) and use

their BERT-base model architecture. We denote the Transformer model by fθ, with

parameters θ = {θ1, . . . , θ12} where θv are the parameters of layer v. Transformer

takes a sequence of words xj = [xj1, . . . , xjs] as input (s being the sequence length),

and outputs d-dimensional contextualized representations at the final layer of multi-

head self-attention. BERT adds a special CLS token (Devlin et al., 2019) to the start

of every input, which can be used as a sentence representation. We thus use this as the

fixed-dimensional input feature representation of the sentence: x̃j = fθ([xj1, . . . , xjs]).

3.2.2 Generating Softmax Parameters for Task-specific Classification

Existing applications of MAML consider few-shot learning with a fixed N , i.e. the

number of classes. This limits applicability to multiple types of tasks, each of which

37

Algorithm 1 LEOPARD

Require: set of M training tasks and losses {(T1, L1), . . . , (TM , LM)}, model param-
eters Θ = {θ, ψ, α}, hyper-parameters ν,G, β
Initialize θ with pre-trained BERT-base;

1: while not converged do
2: # sample batch of tasks
3: for all Ti ∈ T do
4: Dtri ∼ Ti # sample a batch of train data
5: Cn

i ← {xj|yj = n} # partition data according to class labels
6: wni , b

n
i ← 1

|Cn
i |
∑

xj∈Cn
i
gψ(fθ(xj)) # generate softmax parameters

7: Wi ← [w1
i ; . . . ;w

Ni
i]; bi ← [b1i ; . . . ; b

Ni
i]

8: Φ
(0)
i ← θ>ν ∪ {ϕ,Wi,bi} # task-specific parameters

9: for s := 0 . . . G− 1 do
10: Dtri ∼ Ti # sample a batch of train data

11: Φ
(s+1)
i ← Φ

(s)
i − αs ∇ΦLi({Θ,Φi},Dtri) # adapt task-specific parame-

ters
12: end for
13: Dvali ∼ Ti # sample a batch of validation data

14: gi ← ∇ΘLi({Θ,Φ(G)
i },Dvali) # gradient of task-agnostic parameters on

validation
15: end for
16: Θ← Θ− β ·

∑
i gi # optimize task-agnostic parameters

17: end while

would require a different number of classes for classification. To remedy this, we intro-

duce a method to generate task-dependent softmax parameters (both linear weights

and bias). Given the training data, Dtri = {(xj, yj)}, for a task Ti in an episode, we

first partition the input into the Ni number of classes for the task (available in Dtri):

Cn
i = {xj|yj = n}, where n ∈ [Ni]. Now, we perform a non-linear projection on the

representations of the xj in each class partition obtained from the text-encoder, and

obtain a set representation for class n:

wni , b
n
i =

1

|Cn
i |
∑
xj∈Cn

i

gψ(fθ(xj)) (3.1)

where gψ is multi-layer perceptron (MLP) with two layers and tanh non-linearities,

wni is a l-dimensional vector and bni is a scalar. wni and bni are the softmax linear

38

weight and bias, respectively, for the class n:

Wi = [w1
i ; . . . ;w

Ni
i] bi = [b1i ; . . . ; b

Ni
i] (3.2)

Thus, the softmax classification weights Wi ∈ RNi×l and bias bi ∈ RNi for task Ti

are obtained by row-wise concatenation of the per-class weights in equation 3.1. Note

that encoder gψ(·) would be shared across tasks in different episodes.

Now, given the softmax parameters, the prediction for a new data-point x∗ is

given as:

p(y|x∗) = softmax {Wihϕ(fθ(x
∗)) + bi} (3.3)

where hϕ(·) is another MLP with parameters ϕ and output dimension l, and the

softmax is over the set of classes Ni for the task.

Note that if we use x∗ ∈ Dvali , then the model is a form of a prototypical network

(Snell et al., 2017) which uses a learned distance function. However, this would limit

the model to not adapt its parameters with increasing data. We next discuss how

we learn to adapt using the generated softmax. It is important to note that we do

not introduce any task-specific parameters, unlike multi-task learning (Caruana, 1997)

which will require new softmax layers for each task, and the existing parameters are

used to generate a good starting point for softmax parameters across tasks which can

then be adapted using stochastic gradient (SGD) based learning.

3.2.3 Learning to Adapt Efficiently

Given the task-specific classification loss computed at an episode, MAML takes

multiple steps of SGD on the same training set Dtri , as in equation 2.4. We ap-

ply MAML on the model parameters, including the generated softmax parameters.

However, the number of parameters in BERT is substantially high (∼ 110 million)

and it can be beneficial to adapt a smaller number of parameters (Houlsby et al.,

2019; Zintgraf et al., 2019). We thus separate the set of parameters into task-specific

39

and task-agnostic. For the transformer parameters for each layer {θv}, we consider a

threshold ν over layers, and consider θ≤ν = {θv|v ≤ ν} to be the parameters for first ν

layers (closest to the input) and the rest of the parameters as θ>ν . Then we consider

θ≤ν and the parameters ψ of the softmax generating function (equation 3.1) as the

set of task-agnostic parameters Θ = θ≤ν ∪ {ψ}. These task-agnostic parameters Θ

need to generalize to produce good feature representations and good initial point for

classification layer across tasks. The remaining set of parameters for the higher layers

of transformer, the input projection function in 3.3, and the softmax weights and

bias generated in equation 3.2 are considered as the set of task-specific parameters

Φi = θ>ν ∪ {ϕ,Wi,bi}.

The task-specific parameters will be adapted for each task using SGD, as in equa-

tion 2.4. Note that MAML usually does gradient descent steps on the same meta-train

batch Dtri for a task in an episode. However, since we use Dtri to generate the soft-

max parameters in equation 3.1, using the same data to also take multiple gradient

steps can lead to over-fitting. Thus, we instead sample G > 1 meta-train batches in

each episode of training, and use the subesequent batches (after the first batch) for

adaptation. Task-specific adaptation in the inner loop does G steps of the following

update, starting with Φ
(0)
i ← Φi, for s := 0, . . . , G− 1:

Φ
(s+1)
i = Φ

(s)
i − αs EDtr

i ∼Ti
[
∇ΦLi({Θ,Φi},Dtri)

]
(3.4)

Note that we only take gradient with respect to the task-specific parameters Φi, how-

ever the updated parameter is also a function of Θ. After the G steps of adaptation,

the final point (which consists of parameters Θ and ΦG) is evaluated on the valida-

tion set for the task, Dvali , and the task-agnostic parameters Θ are updated (as in

equation 2.5) to adjust the initial point across tasks. Note that optimization of the

task-agnostic parameters requires back-propagating through the inner-loop gradient

steps and requires computing higher-order gradients. (Finn et al., 2017) proposed

40

using a first-order approximation for computational efficiency. We use this approxi-

mation in this work, however we note that the distinction between task-specific and

task-agnostic parameters can allow for higher order gradients when there are few

task-specific parameters (for example, only the last layer).

Other Technical Details: For few-shot learning, learning rate can often be an

important hyper-parameter and the above approach can benefit from also learning

the learning-rate for adaptation (Li et al., 2017). Instead of scalar inner loop learning

rates, it has been shown beneficial to have per-parameter learning rates that are also

learned (Li et al., 2017; Antoniou et al., 2018). However, this doubles the number

of parameters and can be inefficient. Instead, we learn a per-layer learning rate for

the inner loop to allow different transformer layers to adapt at different rates. We

apply layer normalization across layers of transformers (Vaswani et al., 2017; Ba et al.,

2016) and also adapt their parameters in the inner loop. The number of layers to

consider as task-specific, ν, is a hyper-parameter. We initialize the meta-training of

LEOPARD from pre-trained BERT model which stabilizes training.

3.3 Experiments

Our experiments evaluate how different methods generalize to new NLP tasks with

limited supervision. We focus on sentence-level classification tasks, including natural

language inference (NLI) tasks which require classifying pairs of sentences as well as

tasks like entity typing which require classifying a phrase in a sentence. We consider

17 target tasks2. Main results are in Sec. 3.3.3.

3.3.1 Training Tasks

We use the GLUE benchmark tasks Wang et al. (2018b) for training all the models.

Such tasks are considered important for general linguistic intelligence, have lots of

2Code, trained model parameters, and datasets: https://github.com/iesl/leopard

41

https://github.com/iesl/leopard

supervised data for many tasks and have been useful for transfer learning Phang

et al. (2018); Wang et al. (2018a). We consider the following tasks for training3:

MNLI (m/mm), SST-2, QNLI, QQP, MRPC, RTE, and the SNLI dataset Bowman

et al. (2015). We use the corresponding validation sets for hyper-parameter tuning

and early stopping. For meta-learning methods, we classify between every pair of

labels (for tasks with more than 2 labels) which increases the number of tasks and

allows for more per-label examples in a batch during training. Moreover, to learn to

do phrase-level classification, we modify SST (for all models) which is a phrase-level

sentiment classification task by providing a sentence in which the phrase occurs as

part of the input. That is, the input is the sentence followed by a separator token

Devlin et al. (2019) followed by the phrase to classify. See Appendix A.1 for more

details.

3.3.2 Evaluation and Baselines

Unlike existing methods which evaluate meta-learning models on sampled tasks

from a fixed dataset Vinyals et al. (2016); Finn et al. (2017), we evaluate methods on

real NLP datasets by using the entire test sets for the target task after using a sampled

k-shot training data for fine-tuning. The models parameters are trained on the set of

training tasks and are then fine-tuned with k training examples per label for a target

test task. The fine-tuned models are then evaluated on the entire test-set for the

task. We evaluate on k ∈ {4, 8, 16}. For each task, for every k, we sample 10 training

datasets and report the mean and standard deviation, since model performance can

be sensitive to the k examples chosen for training. In the few-shot setting it can be

unreasonable to assume access to a large validation set Yu et al. (2018); Kann et al.

(2019), thus for the fine-tuning step we tuned the hyper-parameters for all baselines

on a held out validation task. We used SciTail, a scientific NLI task, and electronics

3We exclude WNLI since its training data is small and STS-B task since it is a regression task

42

domain of Amazon sentiment classification task as the validation tasks. We took

the hyper-parameters that gave best average performance on validation data of these

tasks, for each value of k. For LEOPARD, we only tune the number of epochs for fine-

tuning, use the learned per-layer learning rates and reuse remaining hyper-parameters

(see Appendix A.3).

We evaluate multiple transfer learning baselines as well as a meta-learning base-

line. Note that most existing applications of few-shot learning are tailored towards

specific tasks and don’t trivially apply to diverse tasks considered here. We evaluate

the following methods:

BERTbase: We use the cased BERT-base model Devlin et al. (2019) which is a

state-of-the-art transformer Vaswani et al. (2017) model for NLP. BERT uses lan-

guage model pre-training followed by supervised fine-tuning on a downstream task.

For fine-tuning, we tune all parameters as it performed better on the validation task.

Multi-task BERT (MT-BERT): This is the BERT-base model trained in a multi-

task learning setting on the set of training tasks. Our MT-BERT is comparable to

the MT-DNN model of Liu et al. (2019a) that is trained on the tasks considered here

and uses the cased BERT-base as the initialization. We did not use the specialized

stochastic answer network for NLI used by MT-DNN. For this model, we tune all the

parameters during fine-tuning.

MT-BERTsoftmax: This is the multi-task BERT model above, where we only tune

the softmax layer during fine-tuning.

Prototypical BERT (Proto-BERT): This is the prototypical network method

Snell et al. (2017) that uses BERT-base as the underlying neural model. Following

Snell et al. (2017), we used euclidean distance as the distance metric.

All methods are initialized with pre-trained BERT. All parameters of MT-BERT and

Proto-BERT are also tuned during training. We don’t compare with MAML Finn

et al. (2017) as it does not trivially support varying number of classes, and show

43

in ablations (3.3.4) that solutions like using zero-initialized initial softmax perform

worse.

Implementation Details: Since dataset sizes can be imbalanced, it can affect multi-

task and meta-learning performance. Wang et al. (2018a) analyze this in detail for

multi-task learning. We explored sampling tasks with uniform probability, propor-

tional to size and proportional to the square-root of the size of the task. For all

models, we found the latter to be beneficial. All methods are trained on 4 GPUs to

benefit from large batches. Best hyper-parameters, search ranges and data statistics

are in Appendix.

3.3.3 Results

We evaluate all the models on 17 target NLP tasks. None of the task data is

observed during the training of the models, and the models are fine-tuned on few

examples for the target task and then evaluated on the entire test set for the task.

For k-shot learning of tasks not seen at all during training, we observe, on average,

relative gain in accuracy of 14.60%, 10.83%, and 11.16%, for k = 4, 8, 16 respectively.

3.3.3.1 Generalization Beyond Training Tasks

We use the following datasets (more details in Appendix): (1) entity typing:

CoNLL-2003 Sang and De Meulder (2003), MIT-Restaurant Liu et al. (2013); (2)

rating classification: we use the review ratings for each domain from the Amazon

Reviews dataset Blitzer et al. (2007) and consider a 3-way classification based on the

ratings; (3) text classification: social-media datasets from crowdflower4.

Table 3.1 shows the performance. We can see that, on average, LEOPARD out-

performs all the baselines, yielding significant improvements in accuracy. This shows

LEOPARD’s robustness to varying number of labels across tasks and across differ-

4https://www.figure-eight.com/data-for-everyone/

44

Entity Typing

N k BERTbase MT-BERTsoftmax MT-BERT Proto-BERT LEOPARD

CoNLL 4
4 50.44 ± 08.57 52.28 ± 4.06 55.63 ± 4.99 32.23 ± 5.10 54.16 ± 6.32

8 50.06 ± 11.30 65.34 ± 7.12 58.32 ± 3.77 34.49 ± 5.15 67.38 ± 4.33

16 74.47 ± 03.10 71.67 ± 3.03 71.29 ± 3.30 33.75 ± 6.05 76.37 ± 3.08

MITR 8
4 49.37 ± 4.28 45.52 ± 5.90 50.49 ± 4.40 17.36 ± 2.75 49.84 ± 3.31

8 49.38 ± 7.76 58.19 ± 2.65 58.01 ± 3.54 18.70 ± 2.38 62.99 ± 3.28

16 69.24 ± 3.68 66.09 ± 2.24 66.16 ± 3.46 16.41 ± 1.87 70.44 ± 2.89

Text Classification

Airline 3
4 42.76 ± 13.50 43.73 ± 7.86 46.29 ± 12.26 40.27 ± 8.19 54.95 ± 11.81

8 38.00 ± 17.06 52.39 ± 3.97 49.81 ± 10.86 51.16 ± 7.60 61.44 ± 03.90

16 58.01 ± 08.23 58.79 ± 2.97 57.25 ± 09.90 48.73 ± 6.79 62.15 ± 05.56

Disaster 2
4 55.73 ± 10.29 52.87 ± 6.16 50.61 ± 8.33 50.87 ± 1.12 51.45 ± 4.25

8 56.31 ± 09.57 56.08 ± 7.48 54.93 ± 7.88 51.30 ± 2.30 55.96 ± 3.58

16 64.52 ± 08.93 65.83 ± 4.19 60.70 ± 6.05 52.76 ± 2.92 61.32 ± 2.83

Emotion 13
4 09.20 ± 3.22 09.41 ± 2.10 09.84 ± 2.14 09.18 ± 3.14 11.71 ± 2.16

8 08.21 ± 2.12 11.61 ± 2.34 11.21 ± 2.11 11.18 ± 2.95 12.90 ± 1.63

16 13.43 ± 2.51 13.82 ± 2.02 12.75 ± 2.04 12.32 ± 3.73 13.38 ± 2.20

Political Bias 2
4 54.57 ± 5.02 54.32 ± 3.90 54.66 ± 3.74 56.33 ± 4.37 60.49 ± 6.66

8 56.15 ± 3.75 57.36 ± 4.32 54.79 ± 4.19 58.87 ± 3.79 61.74 ± 6.73

16 60.96 ± 4.25 59.24 ± 4.25 60.30 ± 3.26 57.01 ± 4.44 65.08 ± 2.14

Political Audience 2
4 51.89 ± 1.72 51.50 ± 2.72 51.53 ± 1.80 51.47 ± 3.68 52.60 ± 3.51

8 52.80 ± 2.72 53.53 ± 2.26 54.34 ± 2.88 51.83 ± 3.77 54.31 ± 3.95

16 58.45 ± 4.98 56.37 ± 2.19 55.14 ± 4.57 53.53 ± 3.25 57.71 ± 3.52

Political Message 9
4 15.64 ± 2.73 13.71 ± 1.10 14.49 ± 1.75 14.22 ± 1.25 15.69 ± 1.57

8 13.38 ± 1.74 14.33 ± 1.32 15.24 ± 2.81 15.67 ± 1.96 18.02 ± 2.32

16 20.67 ± 3.89 18.11 ± 1.48 19.20 ± 2.20 16.49 ± 1.96 18.07 ± 2.41

Rating Books 3
4 39.42 ± 07.22 44.82 ± 9.00 38.97 ± 13.27 48.44 ± 7.43 54.92 ± 6.18

8 39.55 ± 10.01 51.14 ± 6.78 46.77 ± 14.12 52.13 ± 4.79 59.16 ± 4.13

16 43.08 ± 11.78 54.61 ± 6.79 51.68 ± 11.27 57.28 ± 4.57 61.02 ± 4.19

Rating DVD 3
4 32.22 ± 08.72 45.94 ± 7.48 41.23 ± 10.98 47.73 ± 6.20 49.76 ± 9.80

8 36.35 ± 12.50 46.23 ± 6.03 45.24 ± 9.76 47.11 ± 4.00 53.28 ± 4.66

16 42.79 ± 10.18 49.23 ± 6.68 45.19 ± 11.56 48.39 ± 3.74 53.52 ± 4.77

Rating Electronics 3
4 39.27 ± 10.15 39.89 ± 5.83 41.20 ± 10.69 37.40 ± 3.72 51.71 ± 7.20

8 28.74 ± 08.22 46.53 ± 5.44 45.41 ± 09.49 43.64 ± 7.31 54.78 ± 6.48

16 45.48 ± 06.13 48.71 ± 6.16 47.29 ± 10.55 44.83 ± 5.96 58.69 ± 2.41

Rating Kitchen 3
4 34.76 ± 11.20 40.41 ± 5.33 36.77 ± 10.62 44.72 ± 9.13 50.21 ± 09.63

8 34.49 ± 08.72 48.35 ± 7.87 47.98 ± 09.73 46.03 ± 8.57 53.72 ± 10.31

16 47.94 ± 08.28 52.94 ± 7.14 53.79 ± 09.47 49.85 ± 9.31 57.00 ± 08.69

Overall Average
4 38.13 40.13 40.10 36.29 45.99
8 36.99 45.89 44.25 39.15 50.86
16 48.55 49.93 49.07 39.85 55.50

Table 3.1. Few-shot generalization performance across tasks not seen during train-
ing. k is the number of examples per label for fine-tuning and N is the number of
classes for the task. On average, LEOPARD is significantly better than other models
for few-shot transfer to new tasks.

ent text domains. Note that LEOPARD uses the same training tasks as MT-BERT

but can adapt to new tasks with fewer examples, and improvements are highest with

45

k BERTbase MT-BERTsoftmax MT-BERT MT-BERTreuse Proto-BERT LEOPARD

Natural Language Inference

Scitail
4 58.53 ± 09.74 74.35 ± 5.86 63.97 ± 14.36 76.65 ± 2.45 76.27 ± 4.26 69.50 ± 9.56

8 57.93 ± 10.70 79.11 ± 3.11 68.24 ± 10.33 76.86 ± 2.09 78.27 ± 0.98 75.00 ± 2.42

16 65.66 ± 06.82 79.60 ± 2.31 75.35 ± 04.80 79.53 ± 2.17 78.59 ± 0.48 77.03 ± 1.82

Amazon Review Sentiment Classification

Books
4 54.81 ± 3.75 68.69 ± 5.21 64.93 ± 8.65 74.79 ± 6.91 73.15 ± 5.85 82.54 ± 1.33

8 53.54 ± 5.17 74.86 ± 2.17 67.38 ± 9.78 78.21 ± 3.49 75.46 ± 6.87 83.03 ± 1.28

16 65.56 ± 4.12 74.88 ± 4.34 69.65 ± 8.94 78.87 ± 3.32 77.26 ± 3.27 83.33 ± 0.79

Kitchen
4 56.93 ± 7.10 63.07 ± 7.80 60.53 ± 9.25 75.40 ± 6.27 62.71 ± 9.53 78.35 ± 18.36

8 57.13 ± 6.60 68.38 ± 4.47 69.66 ± 8.05 75.13 ± 7.22 70.19 ± 6.42 84.88 ± 01.12

16 68.88 ± 3.39 75.17 ± 4.57 77.37 ± 6.74 80.88 ± 1.60 71.83 ± 5.94 85.27 ± 01.31

DVD
4 54.98 ± 3.96 63.68 ± 5.03 66.36 ± 7.46 71.74 ± 8.54 74.38 ± 2.44 80.32 ± 1.02

8 55.63 ± 4.34 67.54 ± 4.06 68.37 ± 6.51 75.36 ± 4.86 75.19 ± 2.56 80.85 ± 1.23

16 58.69 ± 6.08 70.21 ± 1.94 70.29 ± 7.40 76.20 ± 2.90 75.26 ± 1.07 81.25 ± 1.41

Electronics
4 58.77 ± 6.10 61.63 ± 7.30 64.13 ± 10.34 72.82 ± 6.34 65.68 ± 6.80 74.88 ± 16.59

8 59.00 ± 5.78 66.29 ± 5.36 64.21 ± 10.49 75.07 ± 3.40 68.54 ± 5.61 81.29 ± 1.65

16 67.32 ± 4.18 69.61 ± 3.54 71.12 ± 7.29 75.40 ± 2.43 67.84 ± 7.23 81.86 ± 1.56

Table 3.2. Domain transfer evaluation (accuracy) on NLI and Sentiment classifica-
tion datasets.

only 4 examples. Performance of prototypical networks is worse than most other

fine-tuning methods on new training tasks. We hypothesize that this is because

prototypical networks do not generate good class prototypes for new tasks and adap-

tation of class prototypes is important for improving performance. We also see that

improved feature learning in MT-BERT with additional training tasks serves as a

better initialization point for held-out tasks than BERT, and only tuning the soft-

max layer of this model is slightly better than tuning all parameters. Interestingly,

on some tasks like Disaster classification, we observe BERT to perform better than

other models, indicating negative transfer from the training tasks.

3.3.3.2 Few-Shot Domain Transfer

We now evaluate performance on new domains of tasks seen at training time.

For this, we consider two tasks of Sentiment Classification and NLI. For sentiment

classification we use 4 domains of Amazon reviews Blitzer et al. (2007) and for NLI we

use a scientific entailment dataset (SciTail) Khot et al. (2018). We introduce another

46

relevant baseline here, MT-BERTreuse, which reuses the trained softmax parameters

of a related train task. Results are summarized in Table 3.2, we show two domains

of sentiment classification and more results are in Appendix A.2. Note that the

related train task, SST, only contains phrase-level sentiments and the models weren’t

trained to predict sentence-level sentiment, while the target tasks require sentence-

level sentiment. We observe that LEOPARD performs better than the baselines on

all domains of sentiment classification, while on Scitail MT-BERT models perform

better, potentially because training consisted of many related NLI datasets. Note that

prototypical networks is a competitive baseline here and its performance is better for

these tasks in comparison to those in Table 3.1 as it has learned to generate prototypes

for a similar task during training.

3.3.4 Ablation Study

For ablations we use the dev-set of 3 tasks: CoNLL-2003 entity typing, Amazon

reviews DVD domain sentiment classification and SciTail NLI.

Importance of softmax parameters: Since the softmax generation is an impor-

tant component of LEOPARD, we study how it affects performance. We remove the

softmax generator and instead add a softmax weight and bias with zero initialization

for each task. The model is trained in a similar way as LEOPARD. This method,

termed LEOPARD-ZERO, is a naive application of MAML to this problem. Table 3.3

shows that this performs worse on new tasks, highlighting the importance of softmax

generator.

Parameter efficiency: We consider three variants of LEOPARD with parameter

efficient training discussed in Sec 3.2.3. Denote LEOPARDν as the model which

does not adapt layers 0 to ν (including word embeddings) in the inner loop of meta-

47

k Model Entity Typing Sentiment Classification NLI

16

LEOPARD 10 37.62 ± 7.37 58.10 ± 5.40 78.53 ± 1.55

LEOPARD 5 62.49 ± 4.23 71.50 ± 5.93 73.27 ± 2.63

LEOPARD 69.00 ± 4.76 76.65 ± 2.47 76.10 ± 2.21

LEOPARD-ZERO 44.79 ± 9.34 74.45 ± 3.34 74.36 ± 6.67

Table 3.3. Ablations: LEOPARDν does not adapt layers 0−ν (inclusive) in the inner
loop (and fine-tuning), while LEOPARD adapts all parameters. Note that the outer
loop still optimizes all parameters. For new tasks (like entity typing) adapting all
parameters is better while for tasks seen at training time (like NLI) adapting fewer
parameters is better. LEOPARD-ZERO is a model trained without the softmax-
generator and a zero initialized softmax classifier, which shows the importance of
softmax generator in LEOPARD.

training. Note that even for ν ̸= 0, the parameters are still optimized in the outer

loop. Table 3.3 shows the results. Interestingly, for all tasks (except NLI) we find that

adapting all parameters is better. This is potentially because the per-layer learning

rate in LEOPARD also adjust the adaptation rates for each layer. On SciTail (NLI)

we observe the opposite behaviour, suggesting that adapting fewer parameters is bet-

ter for small k, potentially because training consisted of multiple NLI datasets.

Importance of training tasks: We study how target-task performance of MT-

BERT and LEOPARD is dependent on tasks used for training. For this experiment,

we held out each training task one by one and trained both models. The trained

models are then evaluated for their performance on the target tasks (using the de-

velopment set), following the same protocol as before. Fig. 3.2 shows a visualization

of the relative change in performance when each training task is held out. We see

that LEOPARD’s performance is more consistent with respect to variation in training

tasks, owing to the meta-training procedure that finds an initial point that performs

equally well across tasks. Removing a task often leads to decrease in performance

for LEOPARD as it decreases the number of meta-training tasks and leads to over-

fitting to the training task-distribution. In contrast, MT-BERT’s performance on

target tasks varies greatly depending on the held-in training tasks.

48

Figure 3.2. Analyzing target task performance as a function of training tasks (best
viewed in color). Each column represents one held-out training task (name on x-
axis) and each row corresponds to one target task (name on y-axis). Each cell is the
relative change in performance on the target task when the corresponding training
task is held-out, compared to training on all the train tasks. Dark blue indicates
large drop, dark red indicates large increase and grey indicates close to no change in
performance. In general, LEOPARD’s performance is more consistent compared to
MT-BERT indicating that meta-training learns more generalized initial parameters
compared to multi-task training.

3.4 Related Work

Meta-Learning approaches can be broadly classified as: optimization-based (Finn

et al., 2017; Al-Shedivat et al., 2018b; Nichol and Schulman, 2018; Rusu et al., 2019),

model-based (Santoro et al., 2016; Ravi and Larochelle, 2017; Munkhdalai and Yu,

2017), and metric-learning based (Vinyals et al., 2016; Snell et al., 2017; Sung et al.,

2018). Recently, related to this work, it has been shown that learning task-dependent

model parameters improves few-shot learning (Rusu et al., 2019; Zintgraf et al., 2019).

While many existing methods train and evaluate on simulated datasets with limited

diversity, there is recent interest for more realistic meta-learning applications (Tri-

antafillou et al., 2019) and our work advances this by training and evaluating on

diverse and real NLP classification tasks.

Meta-learning applications in NLP have yielded improvements on specific tasks.

Gu et al. (2018) used MAML to simulate low resource machine translation, Chen

et al. (2018) learn HyperLSTM (Ha et al., 2016) model in a multi-task setting across

various sentiment classification domains, and other recent approaches (Guo et al.,

49

2018; Yu et al., 2018; Han et al., 2018; Obamuyide and Vlachos, 2019; Geng et al.,

2019; Mi et al., 2019; Bao et al., 2020) meta-train for a specific classification task,

such as relation classification, and do not generalize beyond the training task. Dou

et al. (2019) train on a subset of GLUE tasks to generalize to other GLUE tasks

and their approach does not consider unseen tasks. Transfer learning is a closely

related research area. Self-supervised pre-training has been shown to learn general-

purpose model parameters that improve downstream performance with fine-tuning

(Peters et al., 2018; Howard and Ruder, 2018; Devlin et al., 2019; Radford et al.,

2019; Yang et al., 2019; Raffel et al., 2019). Fine-tuning, however, typically requires

large training data (Yogatama et al., 2019). Multi-task learning with BERT has been

shown to improve performance for many related tasks (Phang et al., 2018; Wang et al.,

2018a; Liu et al., 2019a). We refer the reader to Ruder (2019) for a more thorough

discussion of transfer learning and multi-task learning.

3.5 Conclusions

Learning general linguistic intelligence has been a long-term goal of NLP. While

humans, with all their prior knowledge, can quickly learn to solve new tasks with

very few examples, machine-learned models still struggle to demonstrate such intel-

ligence. To this end, we proposed LEOPARD, a meta-learning approach, and found

that it learns more general-purpose parameters that better prime the model to solve

completely new tasks with few examples. While we see improvements using meta-

learning, performance with few examples still lags behind human-level performance.

We consider bridging this gap as a lucrative goal to demonstrate general linguistic

intelligence, and meta-learning as a strong contender to achieve this goal.

50

CHAPTER 4

SELF-SUPERVISED META-LEARNING FOR FEW-SHOT
NATURAL LANGUAGE CLASSIFICATION TASKS

Self-supervised pre-training methods provide a useful initial point for parameters

that generalize well to new tasks with fine-tuning. However, as seen in the previous

chapter, fine-tuning is still data inefficient — when there are few labeled examples,

accuracy can be low. Data efficiency can be improved by optimizing pre-training

directly for future fine-tuning with few examples; this can be treated as a meta-

learning problem. However, standard meta-learning techniques require many training

tasks in order to generalize; unfortunately, finding a diverse set of such supervised

tasks is usually difficult. This chapter proposes a self-supervised approach to generate

a large, rich, meta-learning task distribution from unlabeled text. This is achieved

using a cloze-style objective, but creating separate multi-class classification tasks by

gathering tokens-to-be blanked from among only a handful of vocabulary terms. This

yields as many unique meta-training tasks as the number of subsets of vocabulary

terms. We meta-train a transformer model on this distribution of tasks using a

recent meta-learning framework. On 17 NLP tasks, we show that this meta-training

leads to better few-shot generalization than language-model pre-training followed by

finetuning. Furthermore, we show how the self-supervised tasks can be combined

with supervised tasks for meta-learning, providing substantial accuracy gains over

previous supervised meta-learning.

51

4.1 Introduction

Self-supervised learning has emerged as an important training paradigm for learn-

ing model parameters which are more generalizable and yield better representations

for many down-stream tasks. This typically involves learning through labels that

come naturally with data, for example words in natural language. Self-supervised

tasks typically pose a supervised learning problem that can benefit from lots of natu-

rally available data and enable pre-training of model parameters that act as a useful

prior for supervised fine-tuning (Erhan et al., 2010). Masked language modeling (De-

vlin et al., 2019), and other related approaches (Peters et al., 2018; Howard and

Ruder, 2018; Radford et al., 2019), is an example of such a self-supervised task that

is behind the success of transformer models like BERT.

While self-supervised pre-training is beneficial, it has been recently noted that it

is not data-efficient and typically requires large amounts of fine-tuning data for good

performance on a target task (Yogatama et al., 2019; Bansal et al., 2020a). This

can be evaluated as a few-shot learning problem, where a model is given only few

examples of a new task and is expected to perform well on that task. This chapter

focuses on this problem of few-shot learning and develops models which demonstrate

better few-shot generalization to new tasks.

Large scale pre-training suffers from a train-test mismatch as the model is not

optimized to learn an initial point that yields good performance when fine-tuned

with few examples. Moreover, fine-tuning of a pre-trained model typically introduces

new random parameters, such as softmax layers, and important hyper-parameters

such as learning rate, which are hard to estimate robustly from the few examples.

Thus, we propose to remove this train-test mismatch, and treat learning an initial

point and hyper-parameters jointly from unlabelled data, which allows data-efficient

fine-tuning, as a meta-learning problem.

52

Meta-learning, or learning to learn (Thrun and Pratt, 2012; Schmidhuber, 1987),

treats learning a parameterized algorithm, such as a neural net optimized with SGD,

that generalizes to new tasks as a learning problem. This typically assumes access to a

distribution over tasks in order to enable learning. Creating tasks which enable meta-

learning is one of the main challenges for meta-learning (Bengio et al., 1992; Santoro

et al., 2016; Vinyals et al., 2016), and typical supervised meta-learning approaches

create task distributions from a fixed task dataset with large number of labels by sub-

sampling from the set of labels (Vinyals et al., 2016; Ravi and Larochelle, 2017). While

this enables generalization to new labels, it limits generalization to unseen tasks due

to over-fitting to the training task distribution (Yin et al., 2020a). Moreover, large

supervised datasets with a large label set are not always available for meta-learning,

as is often the case in many NLP applications.

To overcome these challenges of supervised meta-learning, we propose a self-

supervised approach and create the task-distribution from unlabelled sentences. Tak-

ing inspiration from the cloze task (Taylor, 1953), we create separate multi-class

classification tasks by gathering tokens-to-be blanked from a subset of vocabulary

words, allowing for as many unique meta-training tasks as the number of subsets of

words in the language. The proposed approach, which we call Subset Masked Lan-

guage Modeling Tasks (SMLMT), enables training of meta-learning methods for NLP

at a much larger scale than was previously feasible while also ameliorating the risk

of over-fitting to the training task distribution. This opens up new possibilities for

applications of meta-learning in NLP, such as few-shot learning, continual learning,

architecture search and more.

This work focuses on few-shot learning and makes the following contributions:

(1) we introduce a self-supervised approach to create tasks for meta-learning in NLP,

Subset Masked Language Modeling Tasks (SMLMT), which enables application of

meta-learning algorithms for goals like few-shot learning; (2) utilizing SMLMT as

53

the training task distribution, we train a state-of-the-art transformer architecture,

BERT (Devlin et al., 2019), using a recent optimization-based meta-learning method

which was developed for diverse classification tasks (Bansal et al., 2020a); (3) we

show that the self-supervised SMLMT can also be combined with supervised task

data to enable better feature learning, while still allowing for better generalization by

avoiding meta-overfitting to the supervised tasks through the use of SMLMT; (4) we

rigorously evaluate the proposed approach on few-shot generalization to unseen tasks

as well as new domains of tasks seen during training and show that the proposed

approach demonstrates better generalization than self-supervised pre-training or self-

supervised pre-training followed by multi-task training; (5) we also study the effect

of number of parameters for few-shot learning and find that while bigger pre-trained

or meta-trained models generalize better than smaller models, meta-learning leads to

substantial gains even for the smaller models.

4.2 Preliminaries

In supervised meta-learning, we typically assume access to a task distribution

P(T). Practically, this translates to a fixed set of training tasks {T1, . . . , TM}, which

are referred to as meta-training tasks. For supervised classification, each task Ti is

an Ni-way classification task. While many meta-learning algorithms assume a fixed

N -way classification, we follow the more practical approach presented in the previous

chapter and allow for a diverse set of classification tasks with potentially different

number of classes.

The goal of a meta-learning algorithm is to utilize the meta-training tasks to learn

a learning procedure that generalizes to held-out tasks T ′ ∼ P(T). Model-agnostic

meta-learning (MAML) (Finn et al., 2017) is an example of such a meta-learning

algorithm. MAML learns an initial point θ for a classifier fθ : x → ŷ, that can be

optimized via gradient descent on the supervised loss Li defined for the task Ti, using

54

its support set Dtr ∼ Ti:

θ′i ← θ − α∇θLi(Dtr, θ) (4.1)

where α is the learning rate. The optimized point θ′ is then evaluated on another

validation set for the task, Dval ∼ Ti, using the loss function Li. This loss across meta-

training tasks serves as the training error to optimize the initial point and parameters

like learning-rate (Θ := {θ, α}):

Θ← Θ− β ∇ΘETi∼P(T)

[
Li(Dval, θ′i)

]
(4.2)

where β is the learning rate for the meta-training process. Training proceeds in an

episodic framework (Vinyals et al., 2016), where in each episode a mini-batch of tasks

are sampled along with their support and validation sets, and the model parameters

are optimized using equation 4.1 and equation 4.2, which are also referred to as inner

and outer loop, respectively.

Meta-training Tasks: We summarize how supervised task data-sets are typi-

cally leveraged to create meta-training tasks (Vinyals et al., 2016). Assuming access

to a supervised task with L classes, an N -way k-shot task is created by first sampling

N classes, assuming N << L. Then for each of the N sampled classes, (k+ q) exam-

ples of each class is randomly sampled from the dataset and assigned a unique label

in {1, . . . , N}. The k examples for each label serve as the support set, while the q

examples constitute the validation set described above. Note, that each task consists

of a small subset of classes and the class to label (1 to N) assignment is random.

This is crucial to avoid learning the sample to label bindings in the parameters of

the model, which will make the task-specific training (in equation 4.1) irrelevant and

the model will not generalize to new tasks. An example of this approach is Mini-

ImageNet (Ravi and Larochelle, 2017), which is a benchmark dataset for learning

few-shot image classification.

55

Figure 4.1. An example of a 2-way 2-shot task in SMLMT. The support set and
one query is shown. Any N -way k-shot task can be constructed similarly.

4.3 Self-supervised Tasks for Meta-learning

The existing approach to using a supervised dataset to create tasks, as described

above, is fraught with issues, specially for NLP applications. First, note that large

classification datasets with large label spaces are not readily available for all NLP

tasks, for example sentiment classification which has only few discrete labels. Second,

limiting to a fixed supervised dataset to create tasks limits generalization ability

and the meta-learned models might generalize to new labels for the task but fail to

generalize to new novel tasks (Metz et al., 2019). Lastly, such an approach is also not

feasible in all problems where we will like to apply meta-learning (Yin et al., 2020a).

For example, consider meta-learning a natural language inference (NLI) model across

multiple domains which can generalize to new domains. A powerful model can ignore

the training data for each task and directly learn to predict the NLI tag for the

examples in each training domain, which will lead to low training error but the model

56

will not generalize to new domains. We overcome these issues by utilizing unlabelled

data to create meta-learning tasks. See Fig. 4.1 for an example of generated task.

4.3.1 Subset Masked Language Modeling Tasks (SMLMT)

We are given a text corpus split into sentences Xi and each sentence is a se-

quence of words from a vocabulary of size V . Now, in Subset Masked Language

Modeling Tasks, each task is defined from a subset of vocabulary words. To cre-

ate an N -way classification task, we randomly select N unique vocabulary words:

{v1, . . . , vN}. Then we consider all sentences containing these N words, and for each

word randomly sample r = k + q sentences: xvi = {X1, . . . , Xr|vi ∈ Xi}. Now,

we mask the corresponding chosen word from the sentences in each of these N sets,

so x′
vi

= {Mask(X1, vi), . . . ,Mask(Xr, vi)} where Mask(X, v) replaces all occurrences

of v in X with the mask token [m]. The set {x′
v1
, . . . ,x′

vN
} is then a well-defined

N -partition of N × r sentences, that serves as input examples for the N -way clas-

sification task. We forget the original word corresponding to the masked tokens in

these sets and assign labels in {1, . . . , N} to the N sets. This gives an instance of an

SMLMT classification task: T = {(xij, i)|i ∈ {1, .., N}, xij ∈ x′
vi
}. This can be split

into support and validation for meta-training.

In an SMLMT instance, each input sentence consists of exactly one word that

is masked throughout the sentence and its label corresponds to that word. This re-

quires a similar reasoning ability as cloze tasks (Taylor, 1953). Moreover, crucially,

the SMLMT task creation ensures that a model cannot memorize the input-label

mapping as the target masked word is hidden and the label assignment is random-

ized, requiring the model to infer the labels from the support set. Note that the

SMLMT tasks are also closely related to masked language modeling (MLM) (Devlin

et al., 2019). While MLM is a word-level classification task, SMLMT is a sentence-

level classification task. Each unique subset of words from the vocabulary defines a

57

unique task in SMLMT. This allows for as many unique tasks as the number of subsets

of words in the vocabulary, enabling large-scale meta-learning from unsupervised data.

Hybrid SMLMT. Tasks from SMLMT can also be combined with supervised tasks

to encourage better feature learning (Caruana, 1997) and increase diversity in tasks

for meta-learning. We use a sampling ratio λ ∈ (0, 1) and in each episode select an

SMLMT task with probability λ or a supervised task with probability (1 − λ). The

use of SMLMT jointly with supervised tasks ameliorates meta-overfitting, as tasks

in SMLMT cannot be solved without using the task support data. λ is a hyper-

parameter. In our experiments, we found λ = 0.5 to work well.

4.4 Meta-learning Model

We now discuss the meta-learning model for learning new NLP tasks. Full meta-

training algorithm can be found in the Appendix.

Text encoder. The input to the model is natural language sentences. This is en-

coded using a transformer (Vaswani et al., 2017) text encoder. We follow the BERT

(Devlin et al., 2019) model and use the same underlying neural architecture for the

transformer as their base model. Given an input sentence, the transformer model

yields contextualized token representations for each token in the input after multiple

layers of self-attention. Following BERT, we add a special CLS token to the start

of the input that is used as a sentence representation for classification tasks. Given

an input sentence X, let fπ(X) be the CLS representation of the final layer of the

transformer with parameters π.

Meta-learning across diverse classes. Our motivation is to meta-learn an initial

point that can generalize to novel NLP tasks, thus we consider methods that apply

58

to diverse number of classes. Note that many meta-learning models only apply to

a fixed number of classes (Finn et al., 2017) and require training different models

for different number of classes. We follow the approach of Bansal et al. (2020a) that

learns to generate softmax classification parameters conditioned on a task support set

to enable training meta-learning models that can adapt to tasks with diverse classes.

This combines benefits of metric-based methods (Vinyals et al., 2016; Snell et al.,

2017) and optimization-based methods for meta-learning. The key idea is to train a

deep set encoder gψ(·), with parameters ψ, which takes as input the set of examples

of a class n and generates a (d+ 1) dimensional embedding that serves as the linear

weight and bias for class n in the softmax classification layer. Let {X1n, . . . , Xkn} be

the k examples for class n in the support set of a task t:

wnt , b
n
t = gψ({fπ(X1n), . . . , fπ(Xkn)}) (4.3)

p(y|X) = softmax {Wt hϕ(fπ(X)) + bt} (4.4)

where Wt = [w1
t ; . . . ;w

N
t] ∈ RN×d, bt = [b1t ; . . . ; b

N
t] ∈ Rd are the concatenation of

the per-class vectors in equation 4.3, and hϕ is a MLP with parameters ϕ and output

dimension d.

Using the above model to generate predictions, the parameters are meta-trained

using the MAML algorithm (Finn et al., 2017). Concretely, set θ := {π, ϕ,Wt,bt} for

the task-specific inner loop gradient updates in equation 4.1 and set Θ := {π, ψ, α}

for the outer-loop updates in equation 4.2. Note that we do multiple steps of gradient

descent in the inner loop. Bansal et al. (2020a) performed extensive ablations over

parameter-efficient versions of the model and found that adapting all parameters with

learned per-layer learning rates performs best for new tasks. We follow this approach.

Fast adaptation. Flennerhag et al. (2019) proposed an approach which mitigates

slow adaption often observed in MAML by learning to warp the task loss surface

59

to enable rapid descent to the loss minima. This is done by interleaving a neural

network’s layers with non-linear layers, called warp layers, which are not adapted for

each task but are still optimized across tasks in the outer-loop updates in equation 4.2.

Since introducing additional layers will make computation more expensive, we use

existing transformer layers as warp layers. We designate the feed-forward layers in

between self-attention layers of BERT, which project from dimension 768 to 3072

to 768, as warp-layers. Note that these parameters also constitute a large fraction

of total parameters (∼ 51%). Thus in addition to the benefit from warping, not

adapting these layers per task means significantly faster training and smaller number

of per-task parameters during fine-tuning. The warp layers are still updated in the

outer loop during meta-training.

4.5 Related Work

Language model pre-training has recently emerged as a prominent approach to

learning general purpose representations (Howard and Ruder, 2018; Peters et al.,

2018; Devlin et al., 2019; Radford et al., 2019; Yang et al., 2019; Raffel et al., 2019).

Refer to (Weng, 2019) for a review of self-supervised learning. Pre-training is usually

a two step process and fine-tuning introduces random parameters making it inefficient

when target tasks have few examples (Bansal et al., 2020a). Multi-task learning of

pre-trained models has shown improved results on many tasks (Phang et al., 2018;

Liu et al., 2019a). More recently, and parallel to this work, (Brown et al., 2020) show

that extremely large language models can act as few-shot learners. They propose a

query-based approach where few-shot task data is used as context for the language

model. In contrast, we employ a fine-tuning based meta-learning approach that en-

joys nice properties like consistency which are important for good out-of-distribution

generalization (Finn, 2018). Moreover, we show that self-supervised meta-learning

can also improve few-shot performance for smaller models.

60

Meta-Learning methods can be categorized as: optimization-based (Finn et al.,

2017; Li et al., 2017; Nichol and Schulman, 2018; Rusu et al., 2018), model-based

(Santoro et al., 2016; Ravi and Larochelle, 2017; Munkhdalai and Yu, 2017), and

metric-based (Vinyals et al., 2016; Snell et al., 2017). Refer to Finn (2018) for an

exhaustive review. Unsupervised meta-learning has been explored in vision. Hsu et al.

(2019) cluster images using pre-trained embeddings to create tasks for meta-learning.

Metz et al. (2019) meta-learn a biologically-motivated update rule from unsupervised

data in a semi-supervised framework. Compared to these, we directly utilize text data

to automatically create unsupervised tasks without relying on pre-trained embeddings

or access to target tasks.

In NLP, meta-learning approaches have followed the recipe of using supervised

task data and learning models for specific tasks. Such approaches (Yu et al., 2018;

Gu et al., 2018; Guo et al., 2018; Han et al., 2018; Mi et al., 2019) train to generalize

to new labels of a specific task like relation classification and don’t generalize to novel

tasks. Bansal et al. (2020a) proposed an approach that applies to diverse tasks to

enable practical meta-learning models and evaluate on generalization to new tasks.

However, they rely on supervised task data from multiple tasks and suffer from meta-

overfitting as we show in our empirical results. Holla et al. (2020) studied related

approaches for the task of word-sense disambiguation. To the best of our knowledge,

the method proposed here is the first self-supervised approach to meta-learning in

NLP.

4.6 Experiments

We evaluate the models on few-shot generalization to new tasks and new domains

of train tasks. Evaluation consist of a diverse set of NLP classification tasks from mul-

tiple domains: entity typing, sentiment classification, natural language inference and

61

other text classification tasks. Our results1 show that self-supervised meta-learning

using SMLMT improves performance over self-supervised pre-training. Moreover,

combining SMLMT with supervised tasks achieves the best generalization, improving

over multi-task learning by up to 21%.

4.6.1 Implementation Details

SMLMT: We use the English Wikipedia dump, as of March 2019, to create SMLMT.

This is similar to the dataset for pre-training of BERT (Devlin et al., 2019), which en-

sures that gains are not due to using more or diverse pre-training corpora (Liu et al.,

2019b). The corpus is split into sentences and word-tokenized to create SMLMT.

We run task creation offline and create about 2 Million SMLMT for meta-training,

including a combination of 2, 3 and 4-way tasks. After task creation, the data is word-

piece tokenized using the BERT-base cased model vocabulary for input to the models.

Supervised Tasks: Bansal et al. (2020a) demonstrated that better feature learn-

ing from supervised tasks helps few-shot learning. Thus, we also evaluate multi-task

learning and supervised meta-learning for few-shot generalization. We also use GLUE

tasks (Wang et al., 2018b) and SNLI (Bowman et al., 2015) as the supervised tasks.

Supervised tasks can be combined with SMLMT for meta-training (see 4.3.1). Note

that since these are only a few supervised tasks (8 in this case) with a small label

space, it is easy for meta-learning models to overfit to the supervised tasks (Yin et al.,

2020a) limiting generalization as we show in experiments.

Models: We evaluate the following models:

(1) BERT: This is transformer model trained with self-supervised learning using MLM

as the pre-training task on Wikipedia and BookCorpus. We use the cased BERT base

1Code and trained models: https://github.com/iesl/metanlp

62

https://github.com/iesl/metanlp

model (Devlin et al., 2019).

(2) MT-BERT: This is a multi-task learning model trained on the supervised tasks.

We follow Bansal et al. (2020a) in training this model.

(3) MT-BERTsoftmax: This is the same model above where only the softmax layer

is fine-tuned on downstream tasks.

(4) LEOPARD: This is the meta-learning model proposed in Bansal et al. (2020a)

which is trained on only the supervised tasks.

(5) SMLMT: This is the meta-learning model (in 4.4) which is trained on the self-

supervised SMLMT.

(6) Hybrid-SMLMT: This is the meta-learning model (in 4.4) trained on a combina-

tion of SMLMT and supervised tasks.

Note that all models share the same transformer architecture making the contribution

from each component discernible. Moreover, SMLMT and Hybrid-SMLMT models

use similar meta-learning algorithm as LEOPARD, so any improvements are due to

the self-supervised meta-training. All model are initialized with pre-trained BERT

for training.

Evaluation Methodology: We evaluate on few-shot generalization to multiple NLP

tasks using the same set of tasks2 considered in Bansal et al. (2020a). Each target

task consists of k examples per class, for k ∈ {4, 8, 16, 32}, and different tasks can

have different number of classes. Since few-shot performance is sensitive to the few

examples used in fine-tuning, each model is fine-tuned on 10 such k-shot support

sets for a task, for each k, and the average performance with standard deviation is

reported. Models are trained using their training procedures, without access to the

target tasks, and are then fine-tuned for each of the k-shot task. Results for MT-

2Data: https://github.com/iesl/leopard

63

https://github.com/iesl/leopard

BERT and LEOPARD are taken from Bansal et al. (2020a).

Hyper-parameters: We follow the approach of Bansal et al. (2020a) and use valida-

tion tasks for estimating hyper-parameters during fine-tuning for all baseline models.

Note the meta-learning approach learn the learning rates during training and only

require the number of epochs of fine-tuning to be estimated from the validation tasks.

Detailed hyper-parameters are in Appendix.

4.6.2 Results

4.6.2.1 Few-shot generalization to new tasks

We first evaluate performance on novel tasks not seen during training. The task

datasets considered are: (1) entity typing: CoNLL-2003 (Sang and De Meulder,

2003), MIT-Restaurant (Liu et al., 2013); (2) rating classification (Bansal et al.,

2020a): 4 domains of classification tasks based on ratings from the Amazon Reviews

dataset (Blitzer et al., 2007); (3) text classification: multiple social-media datasets

from figure-eight3.

Results are presented in Table 4.1. Results on 2 domains of Rating are in Supple-

mentary due to space limitation. First, comparing models which don’t use any super-

vised data, we see that on average across the 12 tasks, the meta-trained SMLMT per-

forms better than BERT specially for small k ∈ {4, 8, 16}. Interestingly, the SMLMT

model which doesn’t use any supervised data, also outperforms even MT-BERT mod-

els which use supervised data for multi-task training. Next, comparing among all the

models, we see that the Hybrid-SMLMT model performs best on average across tasks.

For instance, on average 4-shot performance across tasks, Hybrid-SMLMT provides

a relative gain in accuracy of 21.4% over the best performing MT-BERT baseline.

Compared to LEOPARD, the Hybrid-SMLMT yields consistent improvements for all

3https://www.figure-eight.com/data-for-everyone/

64

Task N k BERT SMLMT MT-BERTsoftmax MT-BERT LEOPARD Hybrid-SMLMT

CoNLL 4

4 50.4 ± 8.6 46.8 ± 4.8 52.3 ± 4.1 55.6 ± 5.0 54.2 ± 6.3 57.6 ± 7.1

8 50.1 ± 11.3 61.7 ± 3.1 65.3 ± 7.1 58.3 ± 3.8 67.4 ± 4.3 70.2 ± 3.0

16 74.5 ± 3.1 75.8 ± 4.0 71.7 ± 3.0 71.3 ± 3.3 76.4 ± 3.1 80.6 ± 2.8

32 83.3 ± 2.1 84.0 ± 1.7 73.1 ± 2.4 79.9 ± 2.5 83.6 ± 2.4 85.5 ± 1.7

MITR 8

4 49.4 ± 4.3 46.2 ± 3.90 45.5 ± 5.9 50.5 ± 4.4 49.8 ± 3.3 52.3 ± 4.3

8 49.4 ± 7.8 61.1 ± 1.9 58.2 ± 2.6 58.0 ± 3.5 63.0 ± 3.3 65.2 ± 2.3

16 69.2 ± 3.7 69.2 ± 2.8 66.1 ± 2.2 66.2 ± 3.5 70.4 ± 2.9 73.4 ± 1.9

32 78.8 ± 1.9 78.8 ± 1.3 69.3 ± 1.0 76.4 ± 1.2 78.4 ± 2.0 80.0 ± 1.5

Airline 3

4 42.8 ± 13.5 42.8 ± 6.1 43.7 ± 7.9 46.3 ± 12.3 55.0 ± 11.8 56.5 ± 10.7

8 38.0 ± 17.1 51.5 ± 7.3 52.4 ± 4.0 49.8 ± 10.9 61.4 ± 3.9 63.0 ± 8.2

16 58.0 ± 8.2 58.4 ± 3.4 58.8 ± 3.0 57.2 ± 9.9 62.1 ± 5.6 69.3 ± 2.2

32 63.7 ± 4.4 65.3 ± 3.8 61.1 ± 3.9 62.5 ± 4.5 67.4 ± 1.2 71.2 ± 3.3

Disaster 2

4 55.7 ± 10.3 62.3 ± 9.2 52.9 ± 6.2 50.6 ± 8.3 51.5 ± 4.2 55.3 ± 8.3

8 56.3 ± 9.6 67.9 ± 6.8 56.1 ± 7.5 54.9 ± 7.9 56.0 ± 3.6 63.6 ± 6.8

16 64.5 ± 8.9 72.9 ± 1.7 65.8 ± 4.2 60.7 ± 6.0 61.3 ± 2.8 70.6 ± 2.2

32 73.6 ± 1.8 73.7 ± 2.3 67.1 ± 3.1 72.5 ± 2.3 63.8 ± 2.3 71.8 ± 1.9

Emotion 13

4 9.2 ± 3.2 9.8 ± 1.1 9.4 ± 2.1 9.8 ± 2.1 11.7 ± 2.2 11.9 ± 1.7

8 8.2 ± 2.1 11.0 ± 1.0 11.6 ± 2.3 11.2 ± 2.1 12.9 ± 1.6 13.3 ± 1.0

16 13.4 ± 2.5 12.1 ± 1.2 13.8 ± 2.0 12.8 ± 2.0 13.4 ± 2.2 15.2 ± 0.9

32 16.7 ± 1.2 14.3 ± 1.1 13.8 ± 1.6 16.9 ± 1.8 14.8 ± 2.0 16.1 ± 1.2

Political
Bias 2

4 54.6 ± 5.0 57.7 ± 5.7 54.3 ± 3.9 54.7 ± 3.7 60.5 ± 6.7 61.2 ± 4.9

8 56.1 ± 3.8 63.0 ± 4.6 57.4 ± 4.3 54.8 ± 4.2 61.7 ± 6.7 64.1 ± 4.0

16 61.0 ± 4.2 66.3 ± 2.8 59.2 ± 4.2 60.3 ± 3.3 65.1 ± 2.1 66.1 ± 2.0

32 65.0 ± 2.3 67.7 ± 2.3 62.7 ± 3.2 65.0 ± 3.0 64.7 ± 3.4 67.3 ± 1.5

Political
Audience 2

4 51.9 ± 1.7 57.9 ± 4.3 51.5 ± 2.7 51.5 ± 3.7 52.6 ± 3.5 57.4 ± 7.2

8 52.8 ± 2.7 62.8 ± 4.5 53.5 ± 2.3 54.3 ± 2.9 54.3 ± 4.0 60.0 ± 4.5

16 58.5 ± 5.0 64.6 ± 5.2 56.4 ± 2.2 55.1 ± 4.6 57.7 ± 3.5 63.1 ± 4.1

32 55.3 ± 1.5 67.7 ± 3.1 53.1 ± 1.3 55.7 ± 1.9 52.5 ± 1.5 65.5 ± 3.8

Political
Message 9

4 15.6 ± 2.7 16.2 ± 1.8 13.7 ± 1.1 14.5 ± 1.8 15.7 ± 1.6 16.7 ± 2.5

8 13.4 ± 1.7 19.2 ± 2.3 14.3 ± 1.3 15.2 ± 2.8 18.0 ± 2.3 20.3 ± 1.2

16 20.7 ± 3.9 21.9 ± 0.6 18.1 ± 1.5 19.2 ± 2.2 18.1 ± 2.4 22.9 ± 1.8

32 24.6 ± 1.8 23.9 ± 1.7 18.7 ± 1.5 21.6 ± 1.8 19.9 ± 1.9 23.8 ± 0.5

Rating

Books
3

4 39.4 ± 7.2 35.0 ± 3.9 44.8 ± 9.0 39.0 ± 13.3 54.9 ± 6.2 57.8 ± 8.3

8 39.5 ± 10.0 37.2 ± 4.2 51.1 ± 6.8 46.8 ± 14.1 59.2 ± 4.1 56.9 ± 5.6

16 43.1 ± 11.8 43.6 ± 4.6 54.6 ± 6.8 51.7 ± 11.3 61.0 ± 4.2 63.3 ± 4.4

32 52.2 ± 4.0 50.5 ± 3.3 55.0 ± 6.1 55.0 ± 4.8 64.1 ± 2.0 64.5 ± 3.1

Rating

DVD
3

4 32.2 ± 8.7 38.3 ± 3.6 45.9 ± 7.5 41.2 ± 11.0 49.8 ± 9.8 52.1 ± 11.0

8 36.4 ± 12.5 37.9 ± 3.6 46.2 ± 6.0 45.2 ± 9.8 53.3 ± 4.7 53.0 ± 7.8

16 42.8 ± 10.2 41.9 ± 4.3 49.2 ± 6.7 45.2 ± 11.6 53.5 ± 4.8 56.7 ± 4.3

32 48.6 ± 3.2 46.4 ± 4.9 51.2 ± 4.3 52.8 ± 3.4 55.5 ± 4.5 57.9 ± 3.9

Rating

Electronics
3

4 39.3 ± 10.2 37.7 ± 4.8 39.9 ± 5.8 41.2 ± 10.7 51.7 ± 7.2 53.7 ± 10.2

8 28.7 ± 8.2 40.0 ± 4.0 46.5 ± 5.4 45.4 ± 9.5 54.8 ± 6.5 56.6 ± 3.0

16 45.5 ± 6.1 45.9 ± 4.7 48.7 ± 6.2 47.3 ± 10.6 58.7 ± 2.4 58.7 ± 3.7

32 51.0 ± 5.9 50.9 ± 3.4 52.6 ± 2.5 53.5 ± 3.9 58.5 ± 5.1 61.4 ± 3.9

Rating

Kitchen
3

4 34.8 ± 11.2 40.8 ± 7.3 40.4 ± 5.3 36.8 ± 10.6 50.2 ± 9.6 52.1 ± 10.2

8 34.5 ± 8.7 43.0 ± 5.2 48.4 ± 7.9 48.0 ± 9.7 53.7 ± 10.3 58.1 ± 7.3

16 47.9 ± 8.3 46.8 ± 3.9 52.9 ± 7.1 53.8 ± 9.5 57.0 ± 8.7 61.0 ± 5.5

32 50.8 ± 4.5 51.7 ± 4.6 54.3 ± 6.4 53.2 ± 5.1 61.1 ± 4.8 64.7 ± 2.4

Overall Average

4 38.13 40.95 40.13 40.10 45.99 48.71
8 36.99 46.37 45.89 44.25 50.86 53.70
16 48.55 51.61 49.93 49.07 55.50 58.41
32 55.30 56.23 52.65 55.42 57.02 60.81

Table 4.1. k-shot accuracy on novel tasks not seen in training. Models on left of
separator don’t use supervised data.

65

k ∈ {4, 8, 16, 32} and demonstrates steady improvement in performance with increas-

ing data (k). We note that on some tasks, such as Disaster, SMLMT is better than

Hybrid-SMLMT. We suspect negative transfer from multi-task training on these tasks

as also evidenced by the drop in performance of MT-BERT. These results show that

SMLMT meta-training learns a better initial point that enables few-shot generaliza-

tion.

4.6.2.2 Few-shot domain transfer

Task k BERTbase SMLMT MT-BERTsoftmax MT-BERT MT-BERTreuse LEOPARD Hybrid-SMLMT

Scitail

4 58.5 ± 9.7 50.7 ± 4.3 74.3 ± 5.9 64.0 ± 14.4 76.7 ± 2.5 69.5 ± 9.6 76.8 ± 3.4

8 57.9 ± 10.7 55.6 ± 2.4 79.1 ± 3.1 68.2 ± 10.3 76.9 ± 2.1 75.0 ± 2.4 79.1 ± 1.1

16 65.7 ± 6.8 56.5 ± 3.8 79.6 ± 2.3 75.3 ± 4.8 79.5 ± 2.2 77.0 ± 1.8 80.4 ± 1.4

32 68.8 ± 6.3 62.4 ± 3.2 82.2 ± 1.1 74.9 ± 3.6 81.8 ± 1.1 79.4 ± 2.0 82.2 ± 1.3

Amazon
Books

4 54.8 ± 3.8 55.7 ± 2.6 68.7 ± 5.2 64.9 ± 8.7 74.8 ± 6.9 82.5 ± 1.3 84.7 ± 0.4

8 53.5 ± 5.2 60.2 ± 5.3 74.9 ± 2.2 67.4 ± 9.8 78.2 ± 3.5 83.0 ± 1.3 84.8 ± 0.5

16 65.6 ± 4.1 62.9 ± 4.4 74.9 ± 4.3 69.7 ± 8.9 78.9 ± 3.3 83.3 ± 0.8 85.1 ± 0.7

32 73.5 ± 3.4 71.5 ± 4.7 77.5 ± 1.1 78.9 ± 1.7 82.2 ± 1.1 83.5 ± 0.7 85.3 ± 0.4

Amazon
Kitchen

4 56.9 ± 7.1 58.6 ± 4.7 63.1 ± 7.8 60.5 ± 9.2 75.4 ± 6.3 78.3 ± 18.4 80.7 ± 7.1

8 57.1 ± 6.6 59.8 ± 3.7 68.4 ± 4.5 69.7 ± 8.1 75.1 ± 7.2 84.9 ± 1.1 84.7 ± 1.8

16 68.9 ± 3.4 65.2 ± 5.8 75.2 ± 4.6 77.4 ± 6.7 80.9 ± 1.6 85.3 ± 1.3 85.3 ± 1.1

32 78.7 ± 3.6 71.7 ± 4.3 76.6 ± 2.0 79.7 ± 4.1 82.2 ± 0.7 85.8 ± 0.7 86.3 ± 0.7

Amazon
DVD

4 55.0 ± 4.0 53.0 ± 2.5 63.7 ± 5.0 66.4 ± 7.5 71.7 ± 8.5 80.3 ± 1.0 83.3 ± 1.9

8 55.6 ± 4.3 54.3 ± 4.2 67.5 ± 4.1 68.4 ± 6.5 75.4 ± 4.9 80.8 ± 1.2 83.9 ± 1.1

16 58.7 ± 6.1 57.9 ± 2.7 70.2 ± 1.9 70.3 ± 7.4 76.2 ± 2.9 81.2 ± 1.4 83.7 ± 1.0

32 66.2 ± 5.4 65.1 ± 4.4 70.2 ± 2.1 73.5 ± 4.4 79.2 ± 1.7 81.5 ± 1.3 84.2 ± 0.9

Amazon
Electronics

4 58.8 ± 6.1 56.4 ± 2.7 61.6 ± 7.3 64.1 ± 10.3 72.8 ± 6.3 74.9 ± 16.6 81.0 ± 1.8

8 59.0 ± 5.8 62.1 ± 3.9 66.3 ± 5.4 64.2 ± 10.5 75.1 ± 3.4 81.3 ± 1.6 82.6 ± 0.8

16 67.3 ± 4.2 64.6 ± 4.3 69.6 ± 3.5 71.1 ± 7.3 75.4 ± 2.4 81.9 ± 1.6 81.2 ± 2.4

32 72.8 ± 4.3 70.1 ± 3.8 73.2 ± 2.1 72.3 ± 3.9 80.0 ± 1.6 82.4 ± 0.8 83.2 ± 1.1

Table 4.2. k-shot domain transfer accuracy.

The tasks considered here had another domain of a similar task in the GLUE

training tasks. Datasets used are (1) 4 domains of Amazon review sentiments (Blitzer

et al., 2007), (2) Scitail, a scientific NLI dataset (Khot et al., 2018). Results on 2

domains of Amazon are in Supplementary due to space limitation. A relevant baseline

here is MT-BERTreuse which reuses the softmax layer from the related training task.

This is a prominent approach to transfer learning with pre-trained models. Comparing

Hybrid-SMLMT with variants of MT-BERT, we see that Hybrid-SMLMT performs

comparable or better. Comparing with LEOPARD, we see that Hybrid-SMLMT

66

generalizes better to new domains. LEOPARD performs worse than Hybrid-SMLMT

on Scitail even though the supervised tasks are biased towards NLI, with 5 of the

8 tasks being variants of NLI tasks. This is due to meta-overfitting to the training

domains in LEOPARD which is prevented through the regularization from SMLMT

in Hybrid-SMLMT.

Figure 4.2. k-shot performance with number of parameters on Scitail (left), Amazon
DVD (middle), and CoNLL (right). Larger models generalize better and Hybrid-
SMLMT provides accuracy gains for all parameter sizes.

4.6.3 Analysis

Meta-overfitting: We study the extent of meta-overfitting in LEOPARD and Hybrid-

SMLMT. Since these models learn the adaptation learning-rates, we can study the

learning rates trajectory during meta-training. Fig. 4.3 shows the results. We expect

the learning rates to converge towards zero if the task-adaptation become irrelevant

due to meta-overfitting. LEOPARD shows clear signs of meta-overfitting with much

smaller learning rates which converge towards zero for most of the layers. Note that

due to this, held-out validation during training is essential to enable any general-

ization (Bansal et al., 2020a). Hybrid-SMLMT doesn’t show this phenomenon for

most layers and learning rates converge towards large non-zero values even when we

continue training for much longer. This indicates that SMLMT help in ameliorating

meta-overfitting.

67

Figure 4.3. Learning rate trajectory during meta-training. LEOPARD learning-
rates converge towards 0 for many layers, indicating meta-overfitting.

Effect of the number of parameters: We study how the size of the models affect

few-shot performance. Recently, there has been increasing evidence that larger pre-

trained models tend to generalize better (Devlin et al., 2019; Radford et al., 2019;

Raffel et al., 2019). We explore whether this is true even in the few-shot regime.

68

Figure 4.4. CCA similarity for each transformer layer. Top: similarity before and
after fine-tuning for the same model. Bottom: similarity between different pairs of
models post fine-tuning. More results in Appendix.

For this analysis we use the development data for 3 tasks: Scitail, Amazon DVD

sentiment classification, and CoNLL entity typing. We consider the BERT base ar-

69

chitecture with 110M parameters, and two smaller versions made available by (Turc

et al., 2019) consisting of about 29M and 42M parameters. We train versions of

Hybrid-SMLMT as well as MT-BERT corresponding to the smaller models. Results

are presented in Fig. 4.2. Interestingly, we see that bigger models perform much

better than the smaller models even when the target task had only 4 examples per

class. Moreover, we see consistent and large performance gains from the meta-learned

Hybrid-SMLMT, even for its smaller model variants. These results indicate that meta-

training helps in data-efficient learning even with smaller models, and enables larger

models to learn more generalizable representations.

Representation analysis: To probe how the representations in the proposed models

are different from the representations in the self-supervised BERT model and multi-

task BERT models, we performed CCA analysis on their representations (Raghu

et al., 2017). We use the representations on the CoNLL and Scitail tasks for this

analysis. Results on CoNLL task are in Fig. 4.4. First, we analyze the representation

of the same model before and after fine-tuning on the target task. Interestingly, we

see that the Hybrid-SMLMT model is closer to the initial point after task-specific fine-

tuning than the BERT and MT-BERT models. Coupled with the better performance

of Hybrid-SMLMT (in 4.6.2), this indicates a better initialization point for Hybrid-

SMLMT. Note that the representations in lower layers are more similar before and

after fine-tuning, and lesser in the top few layers. Next, we look at how representations

differ across these models. We see that the models converge to different representa-

tions, where the lower layer representations are more similar and they diverge as we

move towards the upper layers. In particular, note that this indicates that multi-task

learning helps in learning different representations than self-supervised pre-training,

and meta-learning model representations are different from the other models.

70

4.7 Conclusion

We introduced an approach to leverage unlabeled data to create meta-learning

tasks for NLP. This enables better representation learning, learning key hyper-parameters

like learning rates, demonstrates data-efficient fine-tuning, and ameliorates meta-

overfitting when combined with supervised tasks. Through extensive experiments,

we evaluated the proposed approach on few-shot generalization to novel tasks and

domains and found that leveraging unlabelled data has significant benefits to en-

abling data-efficient generalization. This opens up the possibility of exploring large-

scale meta-learning in NLP for various meta problems, including neural architecture

search, continual learning, hyper-parameter learning, and more.

71

CHAPTER 5

EXPLORING SELF-SUPERVISED TASK
DISTRIBUTIONS FOR META-LEARNING

In the previous chapter, we developed an unsupervised task distribution, called

Subset Masked Language Modeling Tasks (SMLMT), which generates cloze-style

tasks from unlabeled data for meta-learning and showed improvements on a diverse

set of few-shot classification tasks. In this chapter, we design multiple distributions

of self-supervised tasks by considering important aspects of task diversity, difficulty,

type, domain, and curriculum, and investigate how they affect meta-learning perfor-

mance. Our analysis shows that all these factors meaningfully alter the task distribu-

tion, some inducing significant improvements in downstream few-shot accuracy of the

meta-learned models. Empirically, results on 20 downstream tasks show significant

improvements in few-shot learning – adding up to +4.2% absolute accuracy (on av-

erage) to the previous unsupervised meta-learning method, and perform comparably

to supervised methods on the FewRel 2.0 benchmark.

5.1 Introduction

In the supervised setting, meta-learning task distribution is often defined by sub-

sampling from the classes in a classification problem over a fixed dataset (Vinyals

et al., 2016). This not only limits the applicability of meta-learning to the underlying

classification problem, but also requires a diverse set of supervised datasets with a

large number of classes to enable learning. Self-supervised meta-learning methods,

like those developed in the last chapter, seek to propose tasks from unlabelled data

72

(Hsu et al., 2019; Bansal et al., 2020b), and have great potential to enable numerous

important applications (Hospedales et al., 2020) such as neural architecture search,

continual learning, hyper-parameter optimization, learning in low-resource settings,

etc. Existing work in meta-learning for NLP, however, defaults to task distributions

that tend to be overly simplistic, e.g. using existing supervised datasets (Han et al.,

2018; Dou et al., 2019; Bansal et al., 2020a). On the other hand, the SMLMT ap-

proach developed in the previous chapter used a uniform selection of words from the

vocabulary (Bansal et al., 2020b) for creating tasks which can be sub-optimal. Given

the lack of exploration on this critical component, we propose to devise and evaluate

diverse task distributions in the context of unsupervised meta-learning for NLP.

Specifically, we explore a diverse set of approaches to create task distributions that

are inductive to better meta-training efficacy. We provide empirical evidence that ex-

isting definitions of task distributions are prone to producing tasks that might not be

challenging enough for the underlying model to learn useful representations, which

in turn translates into poor downstream task performance. We therefore propose

several new approaches that instead consider important features of the task distri-

bution including task diversity, difficulty, resemblance to the downstream tasks, and

the curriculum or the order in which tasks are presented during training. When eval-

uated on a suite of 20 NLP classification tasks, our best unsupervised meta-learning

method leads to an absolute increase of up to +4.2% in average few-shot accuracy

over unsupervised baseline results; and it even outperforms supervised meta-learning

methods on FewRel 2.0 benchmark (Gao et al., 2019b) on 5-shot evaluation.

The chapter is organized as follows. We start by revisiting (5.2) the unsupervised

task generation approach in SMLMT. Next, we introduce (5.3) new approaches to

improve the task distribution. We then analyze (5.5.2) the different unsupervised

distributions and how they relate to each other. Finally, we evaluate (5.5.3, 5.5.4)

the different unsupervised methods on a wide range of NLP tasks including senti-

73

ment classification, entity typing, text classification, sentence-pair classification and

relation classification.

5.2 Background

Training meta-learning methods requires a distribution over tasks. Supervised

meta-learning often utilizes a fixed task dataset to create a distribution over tasks

by sub-sampling from a pool of supervised labels (Vinyals et al., 2016; Finn et al.,

2017). This limits learning to a specific type of task which has abundant supervised

datasets and doesn’t enable learning general purpose meta-learners for diverse tasks.

Bansal et al. (2020b) sought to provide an unsupervised approach that proposes

tasks from unlabelled data. They proposed Subset Masked Language Modeling Tasks

(SMLMT) which propose self-supervised tasks to enable meta-learning and showed

that it improves few-shot learning across a diverse set of classification task.

Sampling an N -way task from SMLMT requires first sampling a size-N subset of

the vocabulary, which are subsequently mapped to consecutive integer ids and serve

as labels for the task. Then to sample examples for each label, sentences containing

that word are sampled and the occurrences of the word are masked out. Note that a

task in SMLMT is a sentence classification task where each input sentence consists

of exactly one word type that is masked throughout the sentence and the label for

the sentence is the underlying word type that was masked. This enables sampling

combinatorially many classification tasks for meta-learning.

5.3 Diverse Distributions of Self-Supervised Tasks

Sampling tasks in SMLMT depends on sampling of words, which serve as labels,

and sampling of sentences containing that word. The original formulation used uni-

form sampling for both steps. This can lead to several limitations on the quality of the

resulting task distribution including task diversity and difficulty. The single-sentence

74

classification tasks also lack cross-sentence reasoning capacities, leading to a severe

train-test mismatch for downstream tasks involving sentence pairs. To remedy these

problems, we consider alternative distributions that are inductive to more diverse and

challenging tasks for meta-training. We also describe an automatic curriculum over

tasks that seeks to continuously find challenging tasks for the model during training.

5.3.1 Frequency-based sampling

Word distribution in natural language is characterized by an exponential distri-

bution with a long tail of rare words (Baayen, 2002). Uniform sampling of words in

SMLMT puts a disproportionately high weight on the long tail, leading to inefficient

use of the training corpora since the low frequency words occur in only a small pro-

portion of the sentences. On the other hand, simple frequency-based sampling can be

highly skewed towards a handful of high frequency words. We thus propose to simply

sample words in proportion to their log-frequency instead.

5.3.2 Cluster-based sampling

Given two words randomly sampled from a large vocabulary, it is likely to be rather

trivial to distinguish their corresponding contexts. This can lead to overly simple

tasks in the SMLMT task distribution. To avoid this problem, we consider clustering

words based on pre-trained word embeddings and grouping words into semantically-

related clusters. Diverse and difficult instances of tasks in SMLMT can then be

sampled by selecting all words in a task from either (1) the same cluster (intra-cluster

sampling), or (2) different clusters (inter-cluster sampling). Words co-occurring in the

same cluster are semantically or topically related and hence occur in similar contexts,

leading to harder to classify sentences as we see in our analysis (Sec 5.5.2). Moreover,

choosing different clusters to sample words across tasks provides a natural diversity

over topics in the training tasks. On the other hand, picking words from different

75

clusters (inter-cluster sampling) can still lead to tasks where the sentences are easy

to classify due to easily distinguishable contexts.

Specifically, clustering of pre-trained word embeddings using k-means has been

proven effective in generating topical clusters rivaling topic models (Sia et al., 2020).

We use the FastText (Joulin et al., 2017) embeddings as word representations. We

choose FastText as it is fast, incorporates sub-word information, can generate embed-

dings for out-of-vocabulary words, and has been found to yield topical clusters (Sia

et al., 2020).

Since cluster sizes can be imbalanced, we pick clusters proportional to the number

of words in the cluster. Thus, assuming {C1, . . . , Cm} to be the m clusters of the

word vocabulary, we replace the uniform sampling over words in SMLMT as:

pi =
|Ci|∑m
t=1 |Ct|

i ∼ Cat(p1, . . . , pm)

w|i ∼ Uniform({w|w ∈ Ci})

where Cat(p1, . . . , pm) is a categorical distribution over m categories with probabilities

{p1, . . . , pm}.

5.3.3 Dynamic curriculum over self-supervised tasks

The methods discussed so far use a static task distribution for learning with tasks

sampled i.i.d from this distribution for training. Curriculum learning (Bengio et al.,

2009; Graves et al., 2017) instead posits that choosing the order in which instances

are presented, with gradually increasing complexity, can enable faster learning and

better generalization. We explore whether a curriculum in task sampling is beneficial

for meta-learning by proposing a method to sample increasingly difficult tasks during

training. To enable this we need a method to propose difficult tasks based on the

current state of the model during training.

76

Since words act as labels in SMLMT, words that are closer in the representational

space of the neural model will be more difficult to distinguish, leading to more difficult

tasks. On the other hand, nearest-neighbors can be too difficult to induce effective

learning for a model. This is related to findings in negative sampling in metric

learning literature (Schroff et al., 2015; Suh et al., 2019) where using “too hard”

negatives typically hurts performance.

To alleviate this problem, we cluster representations computed from the model and

uniformly sample words within the same cluster to create difficult but not impossible

tasks (similar to the ”static” clustering approach). Secondly, we adopt an easy-to-

hard curriculum by controlling the ratio between the harder tasks from the dynamic

distribution Dt and the easier ones from the static distribution S, consisting of tasks

sampled i.i.d from uniform random word sampling or fixed word-clustering. At step

t, let λt be the probability of sampling a task from Dt and 1 − λt from S. Then

the dynamic curriculum is defined by sampling tasks from the following mixture

distribution with λt linearly annealed over the training epochs from 0 to 1:

T ∼ λtDt + (1− λt)S

To construct Dt, we consider the following word (i.e. label) representation for

clustering, obtained by the average representation under the model of the masked

sentences corresponding to a word:

ŵ
(t)
i = Ex∼S(wi) [fθt(x)]

where S(wi) is the set of all sentences containing the word wi with the word wi masked

out (as defined in SMLMT), fθt(.) is the representation from the neural model for

instance x that is fed into the softmax classification layer, and θt are the model

parameters at step t.

77

To make the computation of ŵ
(t)
i tractable, we first approximate the quantity by

the expectation over a subset of S(wi). Moreover, since computing the representations

{ŵ(t)
i } for all vocabulary words and clustering at every step t of the training will be

computationally infeasible, we consider doing this after m steps of meta-training.

This also allows the model to train on the current distribution for sometime before

abruptly changing the distribution. Finally, while the model is being updated between

time step t and t + m, we use the model snapshot at t to create the word clusters

asynchronously for the model at t + m, which allows the task generation to run in

parallel to the model training.

5.3.4 Task proposal using sentence clustering

SMLMT uses a data-augmentation strategy to automatically assign labels to unla-

belled sentences by consistently masking out the same word type in a set of sentences.

The masked out word then serves as the label for the sentences. This cloze-style ap-

proach to creating tasks was inspired by the success of masked language modeling

(Devlin et al., 2019) in learning useful representations. While this leads to signifi-

cant improvements in sentence-level classification on a range of real downstream tasks

(Bansal et al., 2020b), it is unclear whether a word masking approach is the most ef-

ficient to learning useful sentence representations. To probe this question further, we

explore an alternative to SMLMT that directly assigns semantic labels to sentences

without any augmentation.

Specifically, we consider pre-trained sentence representations for proposing tasks,

which have been proven useful for improving semi-supervised learning (Du et al.,

2020a). We use a pre-trained sentence embedding model (Du et al., 2020a; Wenzek

et al., 2020) to embed all sentences in a corpus and cluster them. To propose an

N -way task, we first randomly sample N cluster-ids and remap them to random

consecutive integers {1, . . . , N}. Then examples for each label are sampled from the

78

corresponding cluster, creating a classification task for classifying the sentences into

their underlying cluster labels. Note that the step of remapping the cluster-ids ensures

that the model cannot memorize the sentence to cluster mapping, which would lead

to meta over-fitting (Hsu et al., 2019).

5.3.5 Contrastive learning over sentence pairs

SMLMT proposes sentence-level tasks and thus lacks cross-sentence reasoning.

This is confirmed by the poor downstream few-shot performance of models trained

on SMLMT (see Sec. 5.5.3). Since models trained on SMLMT have never seen pairs

of sentences as input, it leads to a train-test mismatch for sentence-pair classifica-

tion tasks. To remedy this, we introduce a simple but effective contrastive learning

task over sentence-pairs that bridges this gap. Contrastive learning has been used to

learn effective sentence representations (Logeswaran and Lee, 2018). Next sentence

prediction, a sentence-pair task, was used in the training of BERT (Devlin et al.,

2019) which was later found to be not effective (Liu et al., 2019b). BERT considered

segments instead of full sentences, however the downstream tasks often require rea-

soning over complete sentences. Thus, we consider classifying whether two sentences

come from the same document as opposed to different documents, as a sentence-pair

task to enable cross-sentence reasoning. This simple objective was found to be quite

effective in our experiments. Note that during meta-training, this can be treated

as an additional task in the task distribution. Since the SMLMT task distribution

consists of an exponential number of tasks, we sample the sentence-pair task in an

episode with a fixed probability α, which is hyper-parameter.

5.4 Related Work

Meta-learning applications in NLP have yielded improvements on specific tasks

(Gu et al., 2018; Chen et al., 2018; Guo et al., 2018; Yu et al., 2018; Han et al.,

79

2018; Dou et al., 2019). Unsupervised meta-learning has been explored in computer

vision (Hsu et al., 2019; Khodadadeh et al., 2019) and reinforcement learning (Gupta

et al., 2018). Hsu et al. (2019) cluster images using pre-trained embeddings to create

tasks. Metz et al. (2019) meta-learn an unsupervised update rule in a semi-supervised

framework. Bansal et al. (2020b) developed the SMLMT approach to unsupervised

meta-learning in NLP. Contemporary work (Murty et al., 2021) explored the use

of clustering, though focused only on natural language inference tasks. Curriculum

learning (Bengio et al., 2009) in the context of meta-learning has been unexplored

in NLP, prior to this work. Jabri et al. (2019) found unsupervised curriculum to be

beneficial for meta-reinforcement learning. We refer to Hospedales et al. (2020) for a

comprehensive review of meta-learning.

Self-supervised learning has emerged as an efficient approach to representation

learning in NLP (Howard and Ruder, 2018; Peters et al., 2018; Devlin et al., 2019;

Radford et al., 2019; Yang et al., 2019). Multi-task learning of pre-trained models has

shown improved results on many tasks (Phang et al., 2018; Liu et al., 2019a), including

few-shot setting. Yin et al. (2020b) leveraged entailment tasks for few-shot learning.

Du et al. (2020a) developed self-training methods for semi-supervised few-shot learn-

ing. Recently, extremely large language models have been shown to have few-shot

capacities (Brown et al., 2020), while Schick and Schütze (2020) demonstrated few-

shot capacities for small models in the semi-supervised setting. Meanwhile, Bansal

et al. (2020a,b) showed meta-learning to be effective at improving few-shot perfor-

mance in multi-task and unsupervised settings, as well as improving performance for

small models.

5.5 Experiments

We evaluate various self-supervised task distributions for their utility in meta-

learning for few-shot classification. We first describe the experimental setting, then

80

we perform evaluations to understand how the different self-supervised tasks relate

to each other, and finally show performance on a large set of 20 real classification

datasets. These datasets cover a wide range of tasks: sentiment classification, entity

typing, text classification, sentence pair classification and relation classification. Our

proposed approach shows significant improvements over previous few-shot classifica-

tion results (Bansal et al., 2020b; Gao et al., 2019b).

5.5.1 Experimental Setup

We consider the challenging few-shot setting where models are trained on unla-

belled corpora and then evaluated on target tasks with only k examples per label

(k ≤ 32) to allow fine-tuning of the models on the target task. Since our focus is on

unsupervised meta-learning, we closely follow the experimental setup of Bansal et al.

(2020b).

Meta-learning Model: We use the same model as in Bansal et al. (2020b) for our

results to be comparable1. The model is a BERT transformer encoder coupled with a

parameter generator, a 2-layer MLP, that generates the initial point for classification

layer for a task conditioned on the support examples. The model is meta-trained

using the MAML algorithm (Finn et al., 2017), with learned per-layer learning rates,

on the self-supervised task distributions. All model hyper-parameters are kept the

same so that any change in performance can be attributed to differences in the task

distribution. See Supplementary for all hyper-parameters.

Methods Evaluated: We consider all the different approaches to self-supervised

task distributions described in Sec 5.3 and the baseline approach of SMLMT: (1)

Uniform: this is the SMLMT approach of Bansal et al. (2020b) which use uniform

1Code and datasets available at: https://github.com/thetb/meta_tasks

81

https://github.com/thetb/meta_tasks

random sampling over word-types; (2) Frequency : SMLMT with a sampling pro-

portional to log-frequency (see 5.3.2); (3) Cluster : SMLMT where labels are picked

from same word cluster (see 5.3.2); (4) Dynamic: curriculum-based task sampling

with Cluster as the static distribution (see 5.3.3); (5) Cluster-ccnet : same as Cluster

but using ccnet (Wenzek et al., 2020) as the corpora, which consists of web crawled

data; (6) SentCluster : alternative to SMLMT which proposes tasks from subsets of

sentence clustering (see 5.3.4); (7) SentPair : the sentence-pair tasks (see 5.3.5). All

methods, except SentCluster and Cluster-ccnet, have Wikipedia as the text corpora.

The sentence embeddings for SentCluster task distribution were obtained from Du

et al. (2020a), and consist of embeddings of about 1 billion sentences from ccnet

(Wenzek et al., 2020). For this reason, we also report Cluster-ccnet that uses this

same set of sentences. We found it beneficial to include 25% Frequency tasks in the

Cluster task distribution and SentPair tasks are included in all other task distribu-

tions unless otherwise noted. Note that we only consider completely unsupervised

meta-learning methods for fair evaluation. However our results improve over Bansal

et al. (2020b) which showed improvements over BERT and multi-task BERT base-

lines. As we utilize the same dataset splits released in their work, our results can be

directly compared.

5.5.2 Analyzing task distributions

We start by a quantitative exploration of the various self-supervised task propos-

als without resorting to full fine-tuning on downstream tasks. Our goal here is to

understand properties of these task distributions and how they relate to each other.

To do this, we consider models meta-trained on a specific type of task proposal (rows

in Table 5.1) and evaluate their performance in the few-shot setting on tasks sampled

from all of the other task proposal methods (columns therein). We use ri (or cj)

below to refer to row i (or column j) in the table.

82

Model
FREQ X-C I-C I-C S-C

(ccnet) (ccnet)

BERT 43.1 43.3 37.7 38.7 66.3
SMLMT (uniform) 96.2 96.5 78.4 68.5 91.7
SMLMT (frequency) 96.8 96.9 79.6 70.0 91.0
SMLMT (clustering) 96.9 97.0 96.9 75.2 94.7
Sentence Cluster 69.2 71.2 53.0 45.0 98.9

Table 5.1. Analysis of task proposals. The columns are the different task proposal
methods and rows are models trained on unsupervised task distributions. Low accu-
racy on a task distribution indicates harder to classify tasks or missing information
in the training distribution (see Sec 5.5.2 for details).

We consider the following task proposal methods: Frequency (FREQ, c1): using

the frequency-based word sampling in SMLMT; Inter-Cluster (X-C, c2): using the

word-clustering approach explained in sec 5.3.2 but sampling all labels of task from

different clusters; Intra-Cluster (I-C, c3&4): using the word-clustering approach ex-

plained in sec 5.3.2 which samples all labels of task from the same cluster; Sentence

Cluster (S-C, c5): this is the sentence clustering approach to task proposal presented

in sec 5.3.4. For evaluation, we consider 4-way tasks sampled from the above meth-

ods and evaluate average accuracy over 5000 tasks. We consider a BERT model (r1)

which is not trained on the SMLMT distribution but is trained on the related masked

language modeling (MLM) task. To enable evaluation of this model, we use it as a

prototypical network model (Snell et al., 2017). We also consider meta-trained mod-

els trained on the SMLMT distribution with uniform sampling (Bansal et al., 2020b)

(r2), frequency-based sampling (r3), and intra-cluster sampling (r4). Note that all

models are trained on Wikipedia corpus.

Results are in Table 5.1. First, since BERT wasn’t trained on any of the task

distributions, we find low accuracy on all these tasks on r1, indicating that they

contain information different than what is learned from MLM. Moreover, the highest

accuracy of this model is on Sentence Cluster tasks (r1c5; random baseline is 25%),

even though the domain of this task is quite different than the training data of BERT.

Next, lets consider the vanilla SMLMT model which uses uniformly random word

83

sampling to create the meta-learning task distribution. Interestingly, we find that it

gives high accuracy on frequency-sampled tasks (r2c1). Similarly, accuracy is high on

the inter-cluster tasks (r2c2), even though the model wasn’t meta-trained directly on

this distribution. More importantly, performance drops significantly (≈ 18%) on the

tasks sampled using the intra-cluster approach (r2c3). This performance drops even

further (≈ 10%; r2c4) when the tasks are sampled from a different domain (common

crawl) than the training domain of the model (Wiki). Accuracy on Sentence Cluster

is also very high (r2c5), without training on this distribution. Models trained on

frequency-based sampling perform similarly (r3). We also show the performance of

a model trained on tasks sampled using the intra-cluster approach. Note that this

model was trained on Wikipedia corpus, and even though it was trained on intra-

cluster tasks, we still see a significant performance drop on intra-cluster tasks on a

different domain (r4c4 vs r4c3). Finally, consider models trained on the sentence

clustering tasks. These perform poorly on all of the tasks proposed by SMLMT

(r5c1–4), indicating that this task distribution does not contain the same amount of

information as SMLMT.

In summary, these results indicate that: (1) the intra-cluster tasks are more dif-

ficult than frequency-based sampling, and inter-cluster tasks are as easy as uniform-

sampling (r2c2) (2) sentence cluster tasks are the easiest among all task proposals

(c5), and training on this task distribution leads to poor performance on the SMLMT

distributions (r5c1–4; but not vice versa), indicating lack of information in this dis-

tribution as compared to SMLMT. From this analysis we expect intra-cluster task

distribution to be richer as compared to the other alternatives and models meta-

trained on these should improve downstream performance over the others. As we

will see in the next section, the downstream performance improvements are highly

correlated with these unsupervised evaluations.

84

5.5.3 Evaluation on diverse downstream classification tasks

5.5.3.0.1 Datasets We consider all 17 downstream tasks in Bansal et al. (2020b)

and 2 additional sentence-pair tasks. We group performance on datasets by the type

of the task: (1) Sentiment classification: 4 domains (Books, DVD, Kitchen, Elec-

tronics) of Amazon review binary sentiment datasets (Blitzer et al., 2007); (2) Rating

classification: 4 domain of 3-way classification based on ratings of reviews from the

above Amazon datasets, 1 dataset on 3-way classification of tweets about sentiment

towards Airlines; (3) Entity typing : CoNLL-2003 (Sang and De Meulder, 2003) entity

mention classification into 4 coarse types, MIT-Restaurant (Liu et al., 2013) task on

classifying mentions in user queries about restaurants into 8 types; (4) Sentence-pair

classification: Scitail, a scientific natural language inference dataset (Khot et al.,

2018), RTE task on textual entailment and MRPC task on paraphrase classification

from the GLUE benchmark (Wang et al., 2018b). (5) Other text classification: mul-

tiple social-media datasets on classifying tweets into (a) 2-way: political audience,

bias or mention of a disaster, (b) 9-way: classifying based on political message, (c)

13-way: classifying emotion.

5.5.3.0.2 Evaluation Protocol We meta-train separate models on the self-supervised

task distributions, without any access to the downstream supervised tasks. The

models are then fine-tuned on the downstream task training sets which consist of

k = 8, 16, 32 examples per class. Note that tasks can have different number of

classes. Following Bansal et al. (2020b), we use the development set of Scitail and

Amazon-Electronics to select the number of steps of fine-tuning for all models, all

other hyper-parameters are kept the same as meta-training. Since few-shot perfor-

mance is sensitive to the few examples in training, each model is fine-tuned on 10 sets

for each task and the average test performance is reported with standard deviation.

85

8 16 32
40

45

50

55

60

65

A
cc

ur
ac

y

49.9

53.3

57.1

50.1

54.2

59.2

51.7

56.3

61.7

52.5

57.4

62.4

52.8

58.1

63.0

SentCluster
Uniform

Frequency
Cluster

Dynamic

Figure 5.1. Overall average across 19 downstream tasks for the different task dis-
tributions proposed in this work. Cluster tasks and Dynamic curriculum lead to the
best overall accuracy.

8 16 32
50

55

60

65

A
cc

ur
ac

y

52.5

57.4

62.4

53.7

58.5

62.8

Cluster
Cluster-ccnet

Figure 5.2. Changing domain of tasks from Wikipedia to CommonCrawl (ccnet)
while keeping size of data, compute and model fixed. Overall average across 19
downstream tasks is shown. More diverse domain (ccnet) in training leads to improved
down-stream accuracy.

86

Task Group Model
k-shot

8 16 32

Sentiment
Classification

Uniform 59.1 ± 5.2 62.6 ± 5.3 69.6 ± 5.1

Frequency 60.2 ± 4.8 65.2 ± 5.1 74.0 ± 5.4

Cluster 62.2 ± 5.3 67.3 ± 5.9 75.9 ± 4.0

Dynamic 63.6 ± 6.0 69.3 ± 6.3 77.3 ± 4.6

SentCluster 61.1 ± 5.8 64.2 ± 5.7 70.4 ± 4.7

Cluster-ccnet 64.7 ± 6.6 69.9 ± 7.1 76.2 ± 6.3

Rating

Classification

Uniform 41.9 ± 7.2 47.3 ± 7.2 52.9 ± 7.6

Frequency 42.6 ± 6.9 49.2 ± 7.2 55.1 ± 7.7

Cluster 45.2 ± 7.7 51.9 ± 6.6 56.5 ± 7.1

Dynamic 46.3 ± 8.1 53.5 ± 7.0 57.9 ± 7.3

SentCluster 45.1 ± 8.8 48.7 ± 9.2 50.9 ± 9.0

Cluster-ccnet 45.2 ± 7.5 52.1 ± 7.3 57.1 ± 7.8

Entity Typing

Uniform 61.4 ± 2.6 72.5 ± 4.8 81.4 ± 3.0

Frequency 64.0 ± 3.0 73.0 ± 2.2 82.1 ± 2.0

Cluster 64.5 ± 2.8 72.5 ± 2.6 81.3 ± 1.9

Dynamic 62.4 ± 3.5 72.3 ± 3.3 81.6 ± 2.1

SentCluster 51.7 ± 4.9 63.4 ± 4.5 73.4 ± 2.4

Cluster-ccnet 70.7 ± 2.8 78.2 ± 3.1 84.1 ± 2.5

Sentence Pair
Classification

Uniform 52.9 ± 5.2 54.1 ± 4.7 57.4 ± 5.7

Frequency 59.5 ± 7.2 61.0 ± 8.5 63.6 ± 9.1

Cluster 56.4 ± 5.3 59.5 ± 7.6 62.8 ± 8.6

Dynamic 55.0 ± 4.9 57.8 ± 5.7 62.2 ± 8.5

SentCluster 52.6 ± 4.7 52.9 ± 2.9 54.0 ± 3.8

Cluster-ccnet 55.9 ± 5.7 58.5 ± 6.9 62.9 ± 6.9

Other Text
Classification

Uniform 44.8 ± 3.9 47.5 ± 2.3 49.4 ± 2.1

Frequency 44.4 ± 3.5 47.3 ± 2.0 49.1 ± 1.9

Cluster 45.0 ± 3.7 48.1 ± 2.0 49.5 ± 1.9

Dynamic 45.5 ± 3.5 48.5 ± 2.2 49.8 ± 1.9

SentCluster 43.5 ± 4.1 45.7 ± 2.5 47.8 ± 1.7

Cluster-ccnet 46.6 ± 3.4 48.9 ± 2.2 49.9 ± 1.8

Table 5.2. Results on downstream tasks. Best performing model for each k and
each task group is in bold and the second best is underlined.

5.5.3.0.3 Results. Table 5.2 shows the performance of all methods on different

types of downstream tasks. We group datasets based on task type as described above

and report the average performance over all the datasets in each group. First, note

that the SentCluster approach is always inferior to any of the cloze-style approach,

except on sentiment and rating classification where it is slightly better than SMLMT

with Uniform sampling but worse than the other methods proposed here. Interest-

ingly, replacing Uniform sampling with the simple Frequency sampling already leads

to significant improvements throughout. Comparing the Cluster approach, we ob-

serve that this is better than Frequency on sentence-level tasks (like sentiment, rating,

87

Task Model 8 16 32

MRPC
Clustering 54.63 ± 4.69 54.00 ± 3.63 58.28 ± 4.90

+ SentPair 55.88 ± 6.68 57.13 ± 5.15 60.12 ± 3.58

Scitail
Clustering 60.63 ± 4.29 59.89 ± 4.20 67.89 ± 5.59

+ SentPair 58.86 ± 4.81 67.94 ± 2.92 73.56 ± 2.79

Table 5.3. Ablation for training with and without contrastive sentence pair task.

others), while slightly worse or comparable on sentence-pair tasks and phrase-level

classification tasks (entity typing). Overall, the word-clustering approach to sam-

pling labels for SMLMT are more preferable as they are often among the two highest

performing on any task group or close to the highest performance. Note that our

unsupervised analysis in Sec 5.5.2 also reflected that training on the Cluster task dis-

tribution should be better compared to others. Finally, note that using the Dynamic

curriculum over task sampling further improves the performance over cluster-based

approach. This overall trend is also clearly reflected in the overall average perfor-

mance across all the 19 tasks in Figure 5.1. Figure 5.2 further shows that, for the

Cluster tasks, constructing tasks from more diverse domain such as CommonCrawl

can improve downstream performance even when using the same amount of data for

training.

5.5.3.0.4 Ablation over SentPair. We introduced the sentence pair task to en-

able better learning of sentence pair tasks such as natural language inference. These

task remove the train-test mismatch in the input format as the sentence pair tasks

contain pairs of sentences as input where as SMLMT only proposes single sentence

classification tasks. To assess the efficacy of the SentPair task, we trained a word-

cluster model with and without the SentPair task and evaluated it on few-shot sen-

tence pair tasks of Scitail and MRPC. Results are in Table 5.3. We can see that the

unsupervised SentPair task improves performance under most settings, sometimes by

large margins up to 8% absolute.

88

Static Distribution λt 8-shot 16-shot 32-shot

Cluster 0.5 54.0 58.7 63.0
Cluster 0.25 55.2 59.0 64.6

Frequency Anneal 56.5 60.9 65.8
Cluster Anneal 56.8 61.7 66.4

Table 5.4. Ablation: static tasks and the value of mixing proportion λt used in
dynamic curriculum.

Model
1-shot 5-shot

N = 5 N = 10 N = 5 N = 10

SentCluster 34.2 21.2 52.3 36.3
Uniform 55.8 40.1 76.1 61.0
Frequency 57.6 41.6 78.1 61.5
Cluster 60.4 45.2 78.1 63.9
Cluster-ccnet 60.1 46.0 81.2 67.6

Table 5.5. Results on Fewrel 2.0 validation.

5.5.3.0.5 Ablation for dynamic curriculum. The dynamic curriculum over

tasks requires two crucial choices: the static distribution and the value of mixing

proportion λt. We ablate over choices for these in Fig. 5.4 which reports average per-

formance over 5 tasks, one each from the task groups considered. We find that using

the Cluster tasks, created from static pre-computer word-embeddings, works better

than using Frequency-based tasks as the static distribution. Moreover, annealing λt

from 0 to 1 over the training epochs is better than using a fixed value of λt throughout

training.

5.5.4 Evaluation on FewRel 2.0 benchmark

FewRel (Han et al., 2018; Gao et al., 2019b) is a common benchmark for few-shot

learning in NLP, which consists of many few-shot relation classification tasks created

by sub-sampling from a pool of relation labels. The resemblance to the popular few-

shot benchmarks like MiniImageNet (Vinyals et al., 2016) makes FewRel one of the

few widely used datasets for training and evaluating NLP meta-learning methods.

Before submitting to the competition site for test set results, we first use the val-

idation set to select the best model(s). Results on FewRel 2.0 validation set using

89

Model
1-shot 5-shot

N = 5 N = 10 N = 5 N = 10

Unsupervised

Cluster 60.1 44.1 78.8 65.2
Cluster-ccnet 61.3 46.1 80.4 67.7

Supervised

Proto-Adv (CNN) 42.2 28.9 58.7 44.4
Proto-Adv (BERT) 41.9 27.4 54.7 37.4
BERT-Pair 67.4 54.9 78.6 66.9
Cluster-ccnet 67.7 52.9 84.3 74.1

Table 5.6. Results on Fewrel 2.0 test set.

the different task distributions is shown in Figure 5.5. We observed that the Clus-

ter approaches performs better than the other task proposals (see validation results

in Supplementary). We then compare their test set performance with previously

published results: the BERT-Pair, Proto-Adversarial (CNN), and Proto-Adversarial

(BERT) are supervised meta-learning models trained on FewRel training data and

using BERT or CNN as the text encoder. See Gao et al. (2019b) for details. Interest-

ingly, our unsupervised meta-learned models that do not use any FewRel training data

outperform the supervised baselines in the 5-shot setting. Performance is lower than

BERT-Pair on 1-shot tasks, potentially because our models have not been trained

for 1-shot tasks like BERT-Pair. Finally, fine-tuning our best model on the FewRel

training data leads to the best overall performance.

90

CHAPTER 6

A RETROSPECTIVE COMPARISON WITH
CONTEMPORARY METHODS

In this thesis, we developed meta-learning methods that improve few-shot clas-

sification. During the course of development of these methods, other contemporary

methods for few-shot learning have been proposed. A particularly prominent ap-

proach is GPT-3 (Brown et al., 2020) that demonstrated improved few-shot learning

by scaling the size of pre-trained transformer language models. Since this method

was contemporaneous with the methods developed in this thesis, a direct comparison

was not performed. Another successful approach to pre-training has been text-to-

text pre-training, which was the approach used in developing the T5 model (Raffel

et al., 2019). While T5 was not directly evaluated for few-shot learning, it is also a

promising contender for few-shot learning owing to its generative pre-training. In this

chapter, we take a retrospective look at some of these methods and directly compare

them with the methods presented here.

6.1 Discussion of Contemporary Methods (GPT-3 and T5)

Pre-trained transformers have become widely adopted in NLP research. In the

previous chapters, we compared the meta-learning methods with a particular pre-

trained model, BERT (Devlin et al., 2019), demonstrating improvements over it in

few-shot learning. An alternative to BERT-style pre-training involves generative pre-

training (Raffel et al., 2019; Lewis et al., 2020) where a seq2seq model is trained

to generate randomly masked tokens in text. An example of such a model is T5

91

(Raffel et al., 2019) that achieved state-of-the-art results on many evaluation bench-

marks. T5 frames all downstream tasks as text generation tasks where the seq2seq

transformer model generates the expected labels as a text sequence. In addition, T5

utilized supervised tasks alongside the unsupervised objective in its text to text pre-

training, making it’s pre-training similar to the hybrid-SMLMT approach developed

in Chapter 4. While T5 demonstrated promising results for downstream classification

and generation tasks, it wasn’t evaluated specifically in the few-shot setting. We thus

compare with this approach as well, where the trained T5 model is fine-tuned on the

few-shot support set to generate the classification label.

Recently, a contemporary pre-training approach that has been highly successful for

few-shot learning is GPT-3 (Brown et al., 2020). GPT-3 is the successor to previous

pre-trained models that demonstrated the utility of language modeling for learning

general purpose representations (Howard and Ruder, 2018; Peters et al., 2018; Radford

et al., 2019). In particular, GPT-3 demonstrated that as one scales the model size

and pre-training data for language model training, then the models eventually start to

show a remarkable few-shot ability. Language modeling trains the network to predict

the next tokens conditioned on a context. Thus, GPT-3 uses a prompting approach

to few-shot learning, as opposed to a fine-tuning approach. The idea is to input the

entire few-shot training data for a task (both instances and their labels) along with

the test instance to be queried into the context, known as a prompt, and use the

next token predictions from the model to predict the label for the query. This can

be considered as an instance of model-based meta-learning (see 2.3.2.1), where the

transformer acts as the meta-learning model. This is a memory based model, related

to earlier meta-learning methods utilizing LSTMs for quickly learning the dynamics

of new sequences (Younger et al., 2001). It was shown in Brown et al. (2020) that

really large transformers, with ∼175 Billion parameters, trained as language models

92

on internet scale corpora, can show competitive few-shot performance on a range of

tasks that include classification, question-answering and generation.

We compare with GPT-3 and T5 models for few-shot classification, where GPT-3

is a prompting approach while T5 is a fine-tuning approach. Both of these methods

model classification as a text generation problem. Note that although there has been a

lot of subsequent work building on the approach of GPT-3, many other contemporary

work often requires task-specific engineering or access to additional task-specific data

(Schick and Schütze, 2020) for few-shot learning, which makes them incomparable to

the methods developed here.

6.2 Experimental Results

The experimental setup is similar to that used in the previous chapters. We com-

pare the following models: (1) GPT-3 (Ada, Babbage, Curie, DaVinci): prompt-based

GPT-3 models (Brown et al., 2020) for few-shot learning, available from OpenAI in

four different sizes; (2) T5 (Small, Base): text-to-text transformer models (Raffel

et al., 2019) that are trained on a combination of supervised tasks (like GLUE) and

an unsupervised span-denoising objective; (3) SMLMT: the completely self-supervised

meta-learning model (chapter 4) that is trained on the SMLMT-cluster task distribu-

tion presented in the chapter 5; (4) Hybrid-SMLMT: meta-learning model (presented

in chapter 4) that utilizes GLUE task during training in addition to the tasks in

SMLMT-cluster.

The GPT-3 models are available through a beta API1 which has a cost associated

with each query. Due to this, we will only evaluate on a subset of 5 downstream

tasks, chosen to be diverse and representative of the downstream classification tasks

in our full evaluation suite. The tasks evaluated are: (1) Amazon Sentiment: binary

1https://beta.openai.com/

93

https://beta.openai.com/

classification of sentiment in Amazon reviews, (2) Political Bias: classifying whether

a tweet contains political bias, (3) Scitail: natural language inference on scientific

text, (4) Airline Rating: classifying tweets about airlines into ternary sentiment, (5)

CoNLL Entity Typing: classifying phrases in sentences into 4 types. These cover a

diverse range of classification types and number of classes.

We run all the models, except GPT-3 DaVinci, on 2 different few-shot support sets

and report the average. Due to the latency and cost of using GPT-3 DaVinci, at the

time of writing, we only report its performance using one support set. OpenAI hasn’t

officially released the sizes of the four different GPT-3 models. However, based on the

performance reported in Brown et al. (2020), a reasonable estimate is available (Gao,

2021). These models input the entire training data as a context string, or prompt.

This limits the amount of training data that can be provided to these models without

necessitating very large context length. The current API only allows for sequence

lengths of upto 2048 for all the models except DaVinci. To make comparisons fair,

we restrict evaluation to only the 8-shot setting as these models will not be able

to take advantage of more examples. Moreover, the models can be sensitive to the

order in which examples are presented and how the prompt is constructed, which are

still active areas of research (Lu et al., 2021). We follow the prompt design in the

OpenAI classification API for constructing the prompts and use a random order of

the examples in each prompt to get an estimate of the average performance. The

prompts are given in Appendix D. Finally, fine-tuning hyper-parameters for T5 were

picked on the two validation tasks, following the same protocol as used for all the

fine-tuning comparisons in the previous chapters.

Figure 6.1 summarizes the overall average accuracy for all the 8 models. Com-

paring SMLMT with the GPT-3 models, we find that SMLMT is better by a large

margin than the two GPT-3 models: Ada and Babbge, which are 3× and 12×, re-

spectively, of the size of SMLMT. However, the Curie and DaVinci models, which are

94

108 109 1010 1011

Parameters (log-scale)

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

A
ve

ra
ge

 A
cc

ur
ac

y

GPT3-Ada54.3% GPT3-Babbage54.0%

GPT3-Curie69.8%

GPT3-DaVinci72.9%

T5-Small62.9%

T5-Base68.3%

SMLMT64.2%

Hybrid-SMLMT73.7%

Figure 6.1. Average accuracy across the downstream tasks vs the model size for
various contemporary approaches and the meta-learning methods proposed in this
thesis (in red). Overall, the Hybrid-SMLMT model outperforms the 2x size T5 model
and is competitive with the largest GPT-3 model that is more than 1590x its size.

Task N

GPT-3 T5
SMLMT Hybrid-SMLMT

Ada Babbage Curie DaVinci Small Base

350M 1300M 6700M 175000M 60M 220M 110M 110M

3x 12x 61x 1591x 0.6x 2x 1x 1x

Sentiment Classification 2 75.2 71.4 90.0 94.3 79.9 87.7 65.1 82.7

Political Bias 2 50.3 50.3 65.8 62.9 53.6 61.4 69.8 67.2

Scitail NLI 2 56.4 60.7 56.1 60.1 55.6 68.0 58.3 82.6

Airline Rating 3 52.5 48.2 68.9 67.1 63.2 67.7 56.5 64.9

CoNLL Entity Typing 4 36.9 39.5 68.4 80.0 62.1 56.6 71.1 71.2

Overall Average 54.3 54.0 69.8 72.9 62.9 68.3 64.2 73.7

Table 6.1. Results on the individual downstream tasks.

many orders of magnitude larger, are better than SMLMT model. Note that all the

GPT-3 and SMLMT models are completely self-supervised without any supervised

task data. However, as noted in the GPT-3 paper (Brown et al., 2020), there was

overlap in its training data with downstream supervised datasets. Next, consider the

T5 and Hybrid-SMLMT models, which also leverage GLUE task data (Wang et al.,

95

2018b) in their training in addition to self-supervised objectives, though none of the

models use any of the evaluation task data during training. Interestingly, the Hybrid-

SMLMT models performs better on average than all the other models – it is better

than T5 models of comparable or 2× the size, better than GPT-3 models up to 61×

its size, and competitive to the largest GPT-3 model, which is more than 1590× its

size. Full set of results on the tasks can be found in Table 6.1.

These results are promising as they indicate the effectiveness of the proposed

meta-learning methods and show that they still have a lot of potential to further

improve few-shot learning. On the one end, they don’t require prompt engineering,

as is required for GPT-3-like models, and also don’t require extensive task-specific

labeled data (Schick and Schütze, 2020; Du et al., 2020a) to perform competitively

with them. On the other end, the current evaluations of these models have only

considered significantly smaller model size and training data scales compared to these

contemporary methods. This indicates that scaling these models can be a lucrative

avenue to improve performance even further. Note that among the two meta-learning

models, Hybrid-SMLMT and SMLMT, the Hybrid-SMLMT model that combines

supervised tasks along with self-supervised tasks seems to be better by a significant

margin. This indicates that better self-supervised task design can still have a role to

play in the future to further bridge the gap between these two paradigms. Finally,

critically analyzing how scaling on the different dimensions of number of supervised

tasks, self-supervised tasks and model size affects performance of meta-learning can

be beneficial in future work.

96

CHAPTER 7

CONCLUSION

In this thesis, we have presented meta-learning methods to improve generalization

of NLP models. In chapter 3, we presented an approach to optimization-based meta-

learning that enables learning across tasks with a different number of classes. This

enables meta-learning over diverse tasks making it competitive with typical multi-task

learning applications. Since the availability of a diverse set of related tasks with la-

beled data is a major limitation for meta-learning in many NLP application domains,

we introduced methods for meta-learning from unlabeled text. In chapter 4 and

5, we proposed methods to create meta-learning task distributions from unlabeled

text. These methods enable meta-learning of general-purpose model initialization

that show improved few-shot generalization through representation learning, learn-

ing key hyper-parameters like learning rates, and regularizing meta-overfitting when

combined with supervised tasks. We show improvements in few-shot learning across

diverse NLP classification tasks over self-supervised learning, multi-task learning, or

supervised-only meta-learning.

While we focused on gradient-based and metric-based methods in this thesis and

considered only the few-shot learning problem, the developed methods are more

broadly applicable. In particular, the self-supervised tasks provide a source of meta-

training tasks for many possible meta-learning applications and open up the possibil-

ity of exploring large-scale meta-learning in NLP for various meta problems beyond

few-shot learning, including neural architecture search, continual learning, hyper-

parameter learning, learning in low resource languages, and more.

97

7.1 Future Directions

In this concluding section, we discuss potential improvements to the methods

presented in this thesis as well as some future applications of meta-learning that can

benefit from using self-supervised task distributions. This is not an exhaustive list

and is only intended to help motivate further applications of the methods presented.

Efficient Fine-tuning The methods developed in this thesis require fine-tuning

the models on each task of interest. This can be inefficient in terms of the amount of

compute and carbon emissions (Strubell et al., 2019) of using these models on each

downstream task. An alternative to fine-tuning methods that has been explored re-

cently is prompting (Brown et al., 2020). However, prompt-based methods lack some

of the nice properties of fine-tuning which make them overly sensitive to prompt spec-

ifications (Lu et al., 2021) and require additional engineering per task for which there

is usually no additional evaluation data, specially in the few-shot regime. Houlsby

et al. (2019) proposed adapters to make fine-tuning more efficient. Adapters are

small number of parameters added to the model that are fine-tuned per task, freez-

ing the rest of the model. Utilizing such adapters in the inner loop of meta-learning

will enable more efficient fine-tuning while also reducing the computational cost of

meta-training. Alternatively, one can consider directly optimizing for finding a sparse

subset of parameters to activate for each task. Both of these applications can be en-

abled using meta-learning on the self-supervised task distributions. Extensions to

enable learning of soft-prompts (Lester et al., 2021) that can generalize to new tasks

are also promising directions that can benefit from ideas of parameter generation

(Bansal et al., 2020a) and self-supervised task distributions presented here.

Seq2Seq Modeling While the current work focused on classification tasks, it will

be useful to extend the ideas to enable self-supervised learning of seq2seq models.

Recently, many works have formulated a wide range of NLP tasks as sequence gener-

98

ation tasks (Vinyals et al., 2015; Lewis et al., 2020; Radford et al., 2019; Raffel et al.,

2019), showing the versatility of this approach. Meta-learning can help learn better,

more adaptable seq2seq models that can also be less sensitive to prompt specifica-

tions. Extending the SMLMT ideas to create self-supervised task distributions for

meta-learning such seq2seq models will enable wider applicability of these models.

Continual Learning Most supervised machine learning methods consider learning

from a static task, whereas typical deployments of machine learning models deal with

a continuously changing distribution. Thus, we want models to continuously learn

from ever-changing, non-stationary distributions and continuously learn about new,

emerging concepts without catastrophic forgetting of previously learned concepts.

Self-supervised meta-learning can immediately offer task distributions to optimize

models directly for such continual learning scenarios, to learn both model archi-

tectures as well as update rules (learning algorithms) that enable forward transfer

while minimizing forgetting. For instance, existing meta-learning methods (Javed

and White, 2019; Beaulieu et al., 2020) for continual learning are limited by the

availability of large task distributions to enable effective meta-learning. Considering

sequences of SMLMT as task distribution should remedy this limitation, allowing

one to meta-learn models that continuously learn about new words in context. Ex-

ploring such self-supervised task distributions for continual learning can help enable

development of new methods for continual learning.

Learning Hyper-parameters The work presented in this thesis learned a crucial

hyper-parameter for few-shot learning, the learning rate for fine-tuning. Instead of

learning a single fixed learning rate, we explored alternatives like learning a per-

layer learning rate that gave further improvements for few-shot learning. It will be

interesting to explore learning of other hyper-parameters such as drop-out rates or

learning task-specific learning rates for fine-tuning. Moreover, it is possible to explore

99

hyper-parameters for improved fine-tuning of existing pre-trained models using the

meta-learning methods presented in this work.

Multi-lingual Modeling The self-supervised methods developed previously only

used text data in English language to construct task distributions. The approach

is also applicable to learning multi-lingual models, where task distributions can be

created from unlabeled text of each language and multi-lingual models can be meta-

learned across the languages. Such self-supervised task distributions across languages

can enable meta-learning of universal linguistic inductive biases, that has previously

been shown feasible in a synthetic setting (McCoy et al., 2020). Such methods should

particularly help few-shot learning in low resource languages and extensions like zero-

shot generalization (Nooralahzadeh et al., 2020) of tasks to a low resource language

from a high resource language could be of interest.

Multi-modal Learning It is well argued that in order to learn meaning, form

alone is not sufficient (Bender and Koller, 2020; Bisk et al., 2020). Ultimately, it

will be desirable to develop multi-modal task distributions that enable models to

learn from data in many modalities, including – images, videos, audio, knowledge

graphs, cross-modal tasks, embodied environments and interactive games. This will

enable meta-learning of generalizable inductive biases across modalities, much like

how humans learn from their varied experiences and leverage them to generalize to

novel scenarios.

100

APPENDIX A

ADDITIONAL EXPERIMENTAL DETAILS AND
RESULTS FOR LEOPARD

A.1 Datasets

Data Augmentation: Meta-learning benefits from training across many tasks. We

thus create multiple versions of tasks with more than 2 classes by considering classi-

fying between every pair of labels as a task. Existing methods (Vinyals et al., 2016;

Snell et al., 2017; Finn et al., 2017) treat each random sample of labels from a pool of

labels (for example in image classification) as a task. In order to create more diversity

during training, we also create multiple versions of each dataset that has more than

2 classes, by considering classifying between every possible pair of labels as a training

task. This increases the number of tasks and allows for more per-label examples in a

batch during training. In addition, since one of the goals is to learn to classify phrases

in a sentence, we modify the sentiment classification task (SST-2) in GLUE, which

contains annotations of sentiment for phrases, by providing a sentence in which the

phrase occurs as part of the input. That is, the input is the sentence followed by a

separator token (Devlin et al., 2019) followed by the phrase to classify. An example

of the input to all the models for the entity typing tasks can be found in Table A.1

Input Label
are there any [authentic mexican]1 restaurants in [the area]2 1Cuisine, 2Location

are there any authentic mexican restaurants in the area [SEP] authentic mexican Cuisine
are there any authentic mexican restaurants in the area [SEP] the area Location

Table A.1. An example of an input from the MIT restaurants dataset. The first
line is the actual example with two mentions. The next two lines are the input to the
models – one for each mention.

101

We use the standard train, dev data split for GLUE and SNLI (Wang et al., 2018b;

Bowman et al., 2015). For our ablation studies, on our target task we take 20% of

the training data as validation for early stopping and sample from the remaining 80%

to create the few-shot data for fine-tuning. For training MT-BERT we use dev data

of the training task as the validation set. For meta-learning methods, prototypical

network and LEOPARD, we use additional validation datasets as is typical in meta

learning (Finn et al., 2017; Snell et al., 2017). We use unlabelled Amazon review data

from apparel, health, software, toys, video as categorization tasks and labelled data

from music, toys, video as sentiment classification task.

Details of the datasets are present in Table A.2.

Dataset Labels Training Size Validation Size Testing Size Source
ARSC Domains 2 800 200 1000 Blitzer et al. (2007)

CoLA 2 8551 1042 — Warstadt et al. (2019)
MRPC 2 3669 409 — Dolan and Brockett (2005)
QNLI 2 104744 5464 — Rajpurkar et al. (2016); Wang et al. (2018b)
QQP 2 363847 40431 — Wang et al. (2018b)
RTE 2 2491 278 — Dagan et al. (2005); Haim et al. (2006); Giampiccolo et al. (2007, 2008)
SNLI 3 549368 9843 — Bowman et al. (2015)
SST-2 2 67350 873 — Socher et al. (2013)

MNLI (m/mm) 3 392703 19649 — Williams et al. (2017)
Scitail 2 23,596 1,304 2,126 Khot et al. (2018)
Airline 3 7320 — 7320 https://www.figure-eight.com/data-for-everyone/

Disaster 2 4887 — 4887 https://www.figure-eight.com/data-for-everyone/

Political Bias 2 2500 — 2500 https://www.figure-eight.com/data-for-everyone/

Political Audience 2 2500 — 2500 https://www.figure-eight.com/data-for-everyone/

Political Message 9 2500 — 2500 https://www.figure-eight.com/data-for-everyone/

Emotion 13 20000 — 20000 https://www.figure-eight.com/data-for-everyone/

CoNLL 4 23499 5942 5648 Sang and De Meulder (2003)
MIT-Restaurant 8 12474 — 2591 Liu et al. (2013) https://groups.csail.mit.edu/sls/downloads/restaurant/

Table A.2. Dataset statistics for all the datasets used in our analysis. ”-” represent
data that is either not available or not used in this study. We have balanced severely
unbalanced datasets(Political Bias and Audience) as our training data is balanced.
To create training data for few shot experiments we sample 10 datasets for each k-
shot. *Sec A.1 for more details

A.1.1 Test Datasets

The tasks and datasets we used for evaluating performance on few-shot learning

are as follows:

1. Entity Typing: We use the following datasets for entity typing: CoNLL-2003

(Sang and De Meulder, 2003) and MIT-Restaurant (Liu et al., 2013). Note that

102

https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
https://groups.csail.mit.edu/sls/downloads/restaurant/

we consider each mention as a separate labelled example. CoNLL dataset con-

sists of text from news articles while MIT dataset contains text from restaurant

queries.

2. Sentiment Classification: We use the sentiment annotated data from Amazon

Reviews dataset (Blitzer et al., 2007) which contains user reviews and the binary

sentiment for various domains of products. We use the Books, DVD, Electronics,

and Kitchen & Housewares domains, which are commonly used domains in the

literature (Yu et al., 2018).

3. Rating Classification: We use the ratings from the Amazon Reviews dataset

(Blitzer et al., 2007) which is not annotated with overall sentiment, and consider

classifying into 3 classes: rating ≤ 2, rating = 4 and rating = 5.

4. Text Classification: We use multiple text classification datasets from crowd-

flower1. These involve classifying sentiments of tweets towards an airline, clas-

sifying whether a tweet refers to a disaster event, classifying emotional content

of text, classifying the audience/bias/message of social media messages from

politicians. These tasks are quite different from the training tasks both in

terms of the labels as well as the input domain.

5. NLI: We use the SciTail dataset (Khot et al., 2018), which is a dataset for

entailment created from science questions.

A.2 Additional Results

Table A.3 shows the dev-set accuracy of our trained MT-BERT model on the various

training tasks.

1https://www.figure-eight.com/data-for-everyone/

103

MNLI(m/mm) QQP QNLI SST-2 CoLA MRPC RTE SNLI Average

MT-BERT 82.11 89.92 89.62 90.7 81.30 84.56 78.34 89.97 85.82

Table A.3. Dev-set accuracy on the set of train tasks for multi-task BERT.

Figure A.1 shows the target task performance as a function of training tasks for all

k. Note that the effect of training tasks starts to decrease as k increases.

Figure A.1. Analyzing target task performance as a function of training tasks
(best viewed in color). Heatmaps on the left are for LEOPARD and on the right
are for MT-BERT. Each column represents one held-out training task (name on x-
axis) and each row corresponds to one target task (name on y-axis). Each cell is the
relative change in performance on the target task when the corresponding training
task is held-out, compared to training on all the train tasks. Dark blue indicates
large drop, dark red indicates large increase and grey indicates close to no change in
performance. In general, LEOPARD’s performance is more consistent compared to
MT-BERT indicating that meta-training learns more generalized initial parameters
compared to multi-task training. Dependence on training tasks is stronger for small
k, however even for k = 16 MT-BERT shows more sensitivity to training tasks.

104

A.3 Hyperparameters

Table A.4 shows the hyper-parameter search range as well as the best hyper-

parameters for MT-BERT, Proto-BERT and LEOPARD. We use same hyperparam-

eters for prototypical networks except those not relevant to them. For fine-tuning

we separately tune number of iterations, and batch size for each k shot for all the

baselines. We also tuned warm-up (Devlin et al., 2019) in {0, 0.1} and used 0.1 for all

the methods. For MT-BERT we found 10 epochs , batch size 8 to be best for 4-shot,

5 epochs, batch size 8 to be best for 8-shot and 5 epoch with 16 batch size gave the

best performance for 16 shot. For MT-BERTsoftmax we found 125 epoch, batch size

4 to be best for 4-shot, 125 epochs, batch size 4 to be best for 8-shot and 125 epochs

with batch size 4 gave the best performance for 16-shot. For BERTbase 10 epochs,

batch size 8 for 4 shot, 5 epochs, 16 batch size for 8 shot and 10 epochs, batch size

16 for 16 shot gave the best performance. For MT-BERTreuse we found 10 epochs ,

batch size 8 to be best for 4-shot, 5 epochs, batch size 8 to be best for 8-shot and 5

epoch with 16 batch size gave the best performance for 16 shot. Note, for LEOPARD

we use learned per-layer learning rates with SGD. We use the following values: 150

epochs for 4-shot, 100 epochs for 8-shot, 100 epochs for 16-shot.

Parameter Search Space MT-BERT Proto-BERT LEOPARD

Attention dropout [0.1, 0.2, 0.3] 0.2 0.3 0.1
Batch Size [16, 32] 32 16 10

Class Embedding Size [128, 256] — 256 256
Hidden Layer Dropout [0.1, 0.2, 0.3] 0.1 0.2 0.1

Inner Loop Learning Rate — — — Meta-SGD (per-layer)
Min Adapted Layer (ν) [0, 5, 8, 10, 11] — — 0

Outer Loop Learning Rate [1e-4, 1e-5, 2e-5, 4e-5, 5e-5] 2e-05 2e-05 1e-05
Adaptation Steps (G) [1, 4, 7] — — 7

Top layer [CLS] dropout [0.45, 0.4, 0.3, 0.2, 0.1] 0.1 0.2 0.1
Train Word Embeddings(Inner Loop) [True, False] — — True

Data Sampling [Square Root, Uniform] Square Root Square Root Square Root
Lowercase text False False False False

Table A.4. Hyper-parameter search space and best hyper-parameters for all models.

105

APPENDIX B

ADDITIONAL EXPERIMENTAL DETAILS AND
RESULTS FOR SELF-SUPERVISED META-LEARNING

B.1 Training Algorithm

The meta-training algorithm is given in 2. Note that πw are the parameters

for the warp layers and π are the remaining transformer parameters. LT (·) is the

cross-entropy loss for N -way classification in task T , calculated from the following

prediction:

p(y|x) = softmax {W hϕ(fπ(x)) + b} (B.1)

gψ(·) and hϕ are a two layer MLP with tanh non-linearity Bansal et al. (2020a).

B.2 Additional Results

Fig.B.1 and Fig. B.2 show the CCA similarity on the two datasets: CoNLL and

Scitail. Table B.2 shows the accuracy for different model sizes on the three evaluation

datasets: Scitail, Amazon DVD, CoNLL.

B.3 Datasets

Supervised Training Tasks: We selected the GLUE Wang et al. (2018b) bench-

mark tasks: MRPC, SST, MNLI (m/mm), QQP, QNLI, CoLA, RTE, and SNLI Bow-

man et al. (2015) as the supervised training tasks for the meta-training phase. We

used the standard train/dev/test split.

Test Tasks: These are same as the tasks used in Bansal et al. (2020a).

106

Algorithm 2 Meta-Training

Require: SMLMT task distribution T and supervised tasks S, model parameters
{πw, π, ϕ, ψ, α}, adaptation steps G, learning-rate β, sampling ratio λ
Initialize θ with pre-trained BERT-base;

1: while not converged do
2: for task batchsize times do
3: t ∼ Bernoulli(λ)
4: T ∼ t · T + (1− t) · S
5: Dtr = {(xj, yj)} ∼ T
6: Cn ← {xj|yj = n}; N ← |Cn|
7: wn, bn ← 1

|Cn|
∑

xj∈Cn gψ(fπ(Dtr))
8: W← [w1; . . . ;wN]; b← [b1; . . . ; bN]
9: θ ← {π, ϕ,W,b}; θ(0) ← θ
10: Θ← {πw, π, ψ, α}
11: Dval ∼ T
12: qT ← 0
13: for s := 0 . . . G− 1 do
14: Dtrs ∼ T
15: θ(s+1) ← θ(s) − α∇θLT ({Θ, θ(s)},Dtrs)
16: qT ← qT +∇ΘLT ({Θ, θ(s+1)},Dval)
17: end for
18: end for
19: Θ← Θ− β ·

∑
T
qT
G

20: end while

B.4 Implementation Details

B.4.1 Training Hyper-parameters

Table B.1 lists all the hyper-parameters for the Hybrid-SMLMT and SMLMT

models. Both models use the same set of hyper-parameters, the difference being in

the training tasks. Note, some hyper-parameters such as λ are not valid for SMLMT.

We followed Devlin et al. (2019) in setting many hyper-parameters like dropouts, and

Bansal et al. (2020a) in setting hyper-parameters related to meta-learning. We use

first-order MAML. Meta-training is run for only 1 epoch, so the model always trains

on a new SMLMT in every batch. This corresponds to about 500,000 steps of updates

during training.

107

Hyper-parameter Value

Tasks per batch 4
Support samples per task 80
Query samples per task 10

Number of classes in SSLMT [2,3,4]
d 256

Attention dropout 0.1
Hidden Layer Dropout 0.1

Outer Loop Learning Rate 1e-05
Adaptation Steps (G) 7

λ 0.5
Meta-training Epochs 1

Lowercase text False
Sequence Length 128

Learning-rate Warmup 10% of steps

Table B.1. Hyper-parameters.

B.4.2 Sampling for Hybrid-SMLMT

We restrict the word vocabulary for task creation with a term frequency of at least

50 in the corpus. This is then used to create tasks in SMLMT as described. This

word vocabulary is discarded at this point and the data is word-piece tokenized using

the BERT-base cased model vocabulary for input to the models. Note that after a

supervised task is selected to be sampled based on λ, it is sampled proportional to

the square-root of the number of samples in the supervised tasks following Bansal

et al. (2020a).

B.4.3 Fine-tuning Hyper-parameter

We tune the number of fine-tuning epochs and batch-size using the development

data of Scitail and Amazon Electronics tasks following Bansal et al. (2020a). Note

that best values are determined for each k. Epochs search range is [5, 10, 50, 100,

150, 200, 300, 400] and batch-size search range is [4, 8, 16]. The selected values, for

k = (4, 8, 16, 32), are: (1) Hybrid-SMLMT: epochs = (300, 350, 400, 200), batchsize

= (8, 16, 8, 16); (2) SMLMT: epochs = (100, 200, 150, 200), batchsize = (8, 16, 8, 16).

108

k Small (29.1 M) Medium (41.7 M) Base (110.1 M)
MT-BERT Our MT-BERT Our MT-BERT Our

Scitail

4 57.55 ± 8.64 55.70 ± 9.75 54.07 ± 5.43 54.17 ± 10.34 63.58 ± 14.04 75.98 ± 2.93

8 60.13 ± 5.77 63.85 ± 3.19 55.88 ± 7.04 60.17 ± 5.86 65.77 ± 10.53 76.89 ± 2.28

16 65.00 ± 2.73 66.98 ± 1.72 63.84 ± 3.91 65.23 ± 2.23 72.50 ± 10.01 79.71 ± 1.27

32 65.40 ± 4.54 67.23 ± 2.05 67.40 ± 2.99 65.32 ± 2.76 74.04 ± 03.09 82.15 ± 1.29

Amazon DVD

4 60.99 ± 5.05 71.83 ± 6.69 63.66 ± 7.43 74.72 ± 3.74 64.04 ± 8.53 83.60 ± 1.49

8 63.38 ± 6.91 73.49 ± 1.34 67.30 ± 4.39 75.24 ± 1.17 66.37 ± 9.12 83.75 ± 0.61

16 67.99 ± 2.05 72.88 ± 0.66 70.73 ± 2.88 74.72 ± 1.58 68.52 ± 6.76 82.91 ± 1.20

32 69.50 ± 1.28 73.24 ± 1.33 71.35 ± 2.83 75.20 ± 2.44 76.38 ± 2.00 84.13 ± 0.68

CoNLL

4 31.57 ± 3.06 40.91 ± 5.72 35.00 ± 5.11 43.12 ± 2.60 59.47 ± 4.40 59.60 ± 5.82

8 35.97 ± 3.96 45.96 ± 4.58 36.40 ± 3.41 49.04 ± 2.84 64.72 ± 5.60 73.55 ± 3.44

16 38.89 ± 2.84 53.14 ± 1.70 39.41 ± 2.21 55.05 ± 2.54 70.78 ± 2.92 80.85 ± 2.15

32 44.50 ± 2.56 60.74 ± 1.96 44.57 ± 1.64 62.59 ± 1.83 81.09 ± 1.09 87.45 ± 1.12

Table B.2. k-shot performance for three models sizes.

Figure B.1. Cross-model CCA similarity for each layer of the transformer after
fine-tuning. Left plot is on CoNLL and right on Scitail.

Expected overall average validation accuracy for these hyper-parameters, for k ∈

(4, 8, 16, 32) are: (1) Hybrid-SMLMT: (0.80, 0.81, 0.83, 0.84); (2) SMLMT: (0.54,

0.56, 0.62, 0.68). Hyper-parameters for BERT, LEOPARD and MT-BERT are taken

from Bansal et al. (2020a).

B.4.4 Training Hardware and Time

We train the SMLMT and Hybrid-SMLMT models on 4 V100 GPUs, each with

16GB memory. Owing to the warp layers, our training time per step and the GPU

109

Figure B.2. CCA similarity for each layer of the same model before and after fine-
tuning. Left plot is on CoNLL and right on Scitail.

memory footprint is lower than LEOPARD (Bansal et al., 2020a). However, our

training typically runs much longer as the model doesn’t overfit unlike LEOPARD

(see learning rate trajectory in chapter 4). Meta-training takes a total of 11 days and

14hours.

110

APPENDIX C

ADDITIONAL EXPERIMENTAL DETAILS AND
RESULTS FOR DIVERSE DISTRIBUTIONS OF

SELF-SUPERVISED TASKS

C.1 Illustration of SentCluster Tasks

Example of SentCluster can be seen in Figure C.1.

Figure C.1. Illustration of SentCluster approach.

C.2 Additional Experiment Results

Full distribution of results in down-stream takss for the various self-supervised

tasks can be seen in Fig. C.2

111

Hyper-parameter Value

Tasks per batch 4
d 256

Attention dropout 0.1
Hidden Layer Dropout 0.1

Outer Loop Learning Rate 1e-05
Adaptation Steps (G) 7
Meta-training Epochs 1

Lowercase text False
Sequence Length 128

Learning-rate Warmup 10% of steps

SentPair ratio α 1
16

Number of Tasks 4 Million
Support samples per task 80
Query samples per task 10

Number of classes for tasks [2,3,4,5]
Number of Clusters M 500

Number of Clusters in SentCluster 200k
λt in Dynamic Anneal

m interval in Dynamic 5000

Table C.1. Hyper-parameters. The parameters relating to the task distributions are
in the bottom section of the table.

C.3 Fine-tuning Hyper-parameters

The meta-learning methods learn the learn rate for fine-tuning, thus we only tune

the number of steps to run fine-tuning by using development data from 2 tasks (Scitail,

Amazon Electronics), following Bansal et al. (2020a,b). We found that running fine-

tuning until the loss on the support set is small (<= 0.01) is an alternative that also

performs competitively and does not require tuning the number of steps. The reported

results followed the previous approach and the tuned number of steps of fine-tuning

for k = 8, 16, 32 respectively were: (1) Uniform: 100,75,100 (2) Frequency: 25,150,75

(3) Cluster: 75,50,75 (4) Cluster-ccnet: 150,200,75 (5) SentCluster: 100,250,25 (6)

Dynamic: 10, 100, 200. On FewRel we found 20 steps of updates on the support set

to perform well on the validation data for all settings.

112

C.4 Other Implementation Details

Since the Fewrel tasks consist of entity pair in the sentence it is important to

mark these entities which define the relation to be classified. We used unused tokens

in the BERT vocabulary to mark the positions of the entity mentions. Note the in

the unsupervised models these unsused tokens get a zero-embedding and are only

fine-tuned from the 1-shot or 5-shot support sets.

Hyper-parameters for meta-training are listed in Table C.1. Dataset statistics for

downstream classification tasks can be found in Bansal et al. (2020a) and few-shot

splits can be downloaded from https://github.com/iesl/leopard.

Training Hardware: The models were trained on 32 V100 GPU. Training takes

about 42 hours.

113

https://github.com/iesl/leopard

Figure C.2. Results across all tasks. Sentiment and Rating are average of 4 domains
used in Bansal et al. (2020a).Each violin plot for a model shows the full distribution
of accuracy across multiple runs (and domains).

114

APPENDIX D

ADDITIONAL EXPERIMENTAL DETAILS FOR GPT-3
AND T5 COMPARISONS

GPT-3 requires the few-shot training data to be concatenated into a prompt for

the model. The following are examples of the prompts used for evaluations on all the

5 tasks.

SciTail

Please classify a piece of text into categories .

Text: Skin Mesh Human skin has a layered structure consisting of the dermis and epidermis.
Question: Most skin structures originate in the dermis. True or False?
Answer: False
−−−
Text: The four basic tissue types are epithelial tissue , connective tissues , nervous tissue ,

and muscle tissue.
Question: Four types of tissue are found in animals. True or False?
Answer: True
−−−
Text: Trees produce oxygen as a byproduct through the photosynthesis process.
Question: Oxygen is made by trees and other plants during photosynthesis. True or False?
Answer:

Sentiment Electronics

Please classify a piece of text into categories .

Text: The mouse is perfect for games. I use it to play ET and is great. The software provided
by Logitech is configurable in all ways

Category: Positive
−−−
Text: I purchased this product and couldn’t get it to work on a PC, laptop, or pda (cingular

8125). Not only does it not register in any SD / MiniSD card reader, but the
craftsmanship appears to be suspect as well. I am currently pursuing a refund

Category: Negative
−−−
Text: Code length of this product is very small. I had to buy an extention cord. The sound

quality is not bad
Category:

115

Airline
Please classify a piece of text into categories .

Text: @SouthwestAir yall still fly in the cold right?
Category: Neutral
−−−
Text: @SouthwestAir Great, thank you. Best of luck dealing with this horrible winter.
Category: Positive
−−−
Text: @united I was on UA3782 and it was Cancelled Flightled. I’m waiting at customer service.
Category: Negative
−−−
Text: @SouthwestAir please reply to my DM
Category:

Political Bias
Please classify a piece of text into categories .

Text: The 1st Amendment protects # ReligiousFreedom for everyone & amp ; no American
should be compelled to violate their convictions. #HobbyLobby

Category: Political
−−−
Text: Thanks for your support! MT @ SenOrrinHatch : Today is #

NationalPediatricBrainCancerAwarenessDay. Hope you’ll join me in fighting this disease
Category: Neutral
−−−
Text: Regrettably, the House failed to approve its proposal for a new #FarmBill. Frankly, I was

shocked by the outcome.
Category:

CoNLL Entity Typing

Please classify a piece of text into categories .

Text: India. Classify : India.
Category: Location
−−−
Text: Leading rider Jason Weaver received a 21 − day ban from the disciplinary committee of the

Jockey Club on Wednesday. Classify: Jason Weaver.
Category: Person
−−−
Text: Balloting inside Bosnia is scheduled for September 14, when citizens are slated to elect

municipal and cantonal assemblies, separate Moslem − Croat and Serb parliaments, a
national House of Representatives and a three − man Presidency. Classify: House of
Representatives.

Category: Organization
−−−
Text: Leading stories in the Greek financial press :. Classify : Greek.
Category: Other
−−−
Text: HELIBOR INTEREST RATES LARGELY UNCHANGED. Classify: HELIBOR.
Category:

116

BIBLIOGRAPHY

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu
Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona. 2019. Task2vec:
Task embedding for meta-learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6430–6439.

Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and
Pieter Abbeel. 2018a. Continuous adaptation via meta-learning in nonstationary
and competitive environments. In International Conference on Learning Represen-
tations.

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and
Pieter Abbeel. 2018b. Continuous adaptation via meta-learning in nonstationary
and competitive environments. In Proceedings of the International Conference on
Learning Representations.

Jay Alammar. 2018. The illustrated transformer [blog post].
https://jalammar.github.io/illustrated-transformer/.

Marcin Andrychowicz, Misha Denil, Sergio Gómez Colmenarejo, Matthew W Hoff-
man, David Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas. 2016.
Learning to learn by gradient descent by gradient descent. In Proceedings of the
30th International Conference on Neural Information Processing Systems, pages
3988–3996.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. 2018. How to train your
maml. arXiv preprint arXiv:1810.09502.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and
Nikunj Saunshi. 2019. A theoretical analysis of contrastive unsupervised repre-
sentation learning. In 36th International Conference on Machine Learning, ICML
2019, pages 9904–9923. International Machine Learning Society (IMLS).

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.
arXiv preprint arXiv:1607.06450.

R Harald Baayen. 2002. Word frequency distributions, volume 18. Springer Science
& Business Media.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

117

https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=Sk2u1g-0-
https://jalammar.github.io/illustrated-transformer/

Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU: Multi-
task learning for deep text recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems, pages 107–114.

Trapit Bansal, Karthick Gunasekaran, Tong Wang, Tsendsuren Munkhdalai, and
Andrew McCallum. 2021. Diverse distributions of self-supervised tasks for meta-
learning in NLP. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 5812–5824.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum. 2020a. Learning to few-shot
learn across diverse natural language classification tasks. In Proceedings of the 28th
International Conference on Computational Linguistics (COLING), pages 5108–
5123.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai, and Andrew McCallum.
2020b. Self-supervised meta-learning for few-shot natural language classification
tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 522–534.

Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew McCallum. 2019. A2N:
Attending to neighbors for knowledge graph inference. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 4387–4392.

Trapit Bansal, Arvind Neelakantan, and Andrew McCallum. 2017. RelNet: End-to-
end modeling of entities & relations. NeurIPS Workshop on Automated Knowledge
Base Construction (AKBC).

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent complexity via multi-agent competition. In International Confer-
ence on Learning Representations.

Trapit Bansal, Pat Verga, Neha Choudhary, and Andrew McCallum. 2020c. Simul-
taneously linking entities and extracting relations from biomedical text without
mention-level supervision. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7407–7414.

Yujia Bao, Menghua Wu, Shiyu Chang, and Regina Barzilay. 2020. Few-shot text
classification with distributional signatures. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff
Clune, and Nick Cheney. 2020. Learning to continually learn. In ECAI 2020, pages
992–1001. IOS Press.

Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder. 2018.
Joint entity recognition and relation extraction as a multi-head selection problem.
Expert Systems with Applications, 114:34–45.

118

https://dl.acm.org/doi/pdf/10.1145/2959100.2959180
https://dl.acm.org/doi/pdf/10.1145/2959100.2959180
https://aclanthology.org/2021.emnlp-main.469
https://aclanthology.org/2021.emnlp-main.469
https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://www.aclweb.org/anthology/2020.coling-main.448.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.38.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.38.pdf
https://www.aclweb.org/anthology/P19-1431.pdf
https://www.aclweb.org/anthology/P19-1431.pdf
https://arxiv.org/pdf/1706.07179.pdf
https://arxiv.org/pdf/1706.07179.pdf
https://openreview.net/forum?id=Sy0GnUxCb
https://ojs.aaai.org/index.php/AAAI/article/view/6236
https://ojs.aaai.org/index.php/AAAI/article/view/6236
https://ojs.aaai.org/index.php/AAAI/article/view/6236
https://openreview.net/forum?id=H1emfT4twB
https://openreview.net/forum?id=H1emfT4twB

Emily M Bender and Alexander Koller. 2020. Climbing towards nlu: On meaning,
form, and understanding in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 5185–5198.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. 1992. On the op-
timization of a synaptic learning rule. In Preprints Conf. Optimality in Artificial
and Biological Neural Networks, pages 6–8. Univ. of Texas.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
neural probabilistic language model. The journal of machine learning research,
3:1137–1155.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce
Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich,
et al. 2020. Experience grounds language. arXiv preprint arXiv:2004.10151.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, bollywood,
boom-boxes and blenders: Domain adaptation for sentiment classification. In Pro-
ceedings of the 45th annual meeting of the association of computational linguistics,
pages 440–447.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on Computational
learning theory, pages 92–100.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
2015. A large annotated corpus for learning natural language inference. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 632–642.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Rich Caruana. 1996. Algorithms and applications for multitask learning. In Pro-
ceedings of the Thirteenth International Conference on International Conference
on Machine Learning, pages 87–95.

Rich Caruana. 1997. Multitask learning. Machine learning, 28(1):41–75.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural
Networks, 20(3):542–542.

119

Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing Huang. 2018. Meta multi-task
learning for sequence modeling. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2019.
Electra: Pre-training text encoders as discriminators rather than generators. In
International Conference on Learning Representations.

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. 2020. Why does maml out-
perform erm? an optimization perspective. arXiv preprint arXiv:2010.14672.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. Journal
of machine learning research, 12(ARTICLE):2493–2537.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The pascal recognising
textual entailment challenge. In Machine Learning Challenges Workshop, pages
177–190. Springer.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. 2019.
Learning-to-learn stochastic gradient descent with biased regularization. In In-
ternational Conference on Machine Learning, pages 1566–1575. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186.

William B Dolan and Chris Brockett. 2005. Automatically constructing a corpus
of sentential paraphrases. In Proceedings of the Third International Workshop on
Paraphrasing (IWP2005).

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos. 2019. Investigating meta-learning
algorithms for low-resource natural language understanding tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 1192–1197.

120

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael
Auli, Ves Stoyanov, and Alexis Conneau. 2020a. Self-training improves pre-training
for natural language understanding. arXiv preprint arXiv:2010.02194.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. 2020b. Few-shot
learning via learning the representation, provably. arXiv preprint arXiv:2002.09434.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. 2016. Rl2: Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal
Vincent, and Samy Bengio. 2010. Why does unsupervised pre-training help deep
learning? Journal of Machine Learning Research, 11(Feb):625–660.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. On the convergence
theory of gradient-based model-agnostic meta-learning algorithms. In International
Conference on Artificial Intelligence and Statistics, pages 1082–1092. PMLR.

Chelsea Finn. 2018. Learning to Learn with Gradients. Ph.D. thesis, UC Berkeley.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, pages 1126–1135.

Chelsea Finn and Sergey Levine. 2018. Meta-learning and universality: Deep rep-
resentations and gradient descent can approximate any learning algorithm. In
International Conference on Learning Representations.

Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. Probabilistic model-agnostic
meta-learning. In Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems, pages 9537–9548.

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Hujun Yin, and Raia
Hadsell. 2019. Meta-learning with warped gradient descent. arXiv preprint
arXiv:1909.00025.

Leo Gao. 2021. On the sizes of OpenAI API models. https://blog.eleuther.ai/

gpt3-model-sizes/.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. 2019a. Hybrid attention-based
prototypical networks for noisy few-shot relation classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 6407–6414.

Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
2019b. FewRel 2.0: Towards more challenging few-shot relation classification. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 6251–6256, Hong Kong, China. Association for
Computational Linguistics.

121

https://blog.eleuther.ai/gpt3-model-sizes/
https://blog.eleuther.ai/gpt3-model-sizes/
https://doi.org/10.18653/v1/D19-1649

Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu, Ping Jian, and Jian Sun. 2019.
Induction networks for few-shot text classification.

Danilo Giampiccolo, Hoa Trang Dang, Bernardo Magnini, Ido Dagan, Elena Cabrio,
and Bill Dolan. 2008. The fourth pascal recognizing textual entailment challenge.
In TAC. Citeseer.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. 2007. The
third pascal recognizing textual entailment challenge. In Proceedings of the ACL-
PASCAL workshop on textual entailment and paraphrasing, pages 1–9.

Andrew B Goldberg and Xiaojin Zhu. 2006. Seeing stars when there aren’t many stars:
Graph-based semi-supervised learning for sentiment categorization. In Proceedings
of TextGraphs: The first workshop on graph based methods for natural language
processing, pages 45–52.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. 2018.
Recasting gradient-based meta-learning as hierarchical bayes. In International Con-
ference on Learning Representations.

Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. 2017. Automated curriculum learning for neural networks. In Inter-
national Conference on Machine Learning, pages 1311–1320. PMLR.

Nathan Greenberg, Trapit Bansal, Patrick Verga, and Andrew McCallum. 2018.
Marginal likelihood training of BiLSTM-CRF for biomedical named entity recog-
nition from disjoint label sets. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2824–2829.

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, and Victor OK Li. 2018.
Meta-learning for low-resource neural machine translation. arXiv preprint
arXiv:1808.08437.

Jiang Guo, Darsh Shah, and Regina Barzilay. 2018. Multi-source domain adapta-
tion with mixture of experts. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4694–4703.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine.
2018. Unsupervised meta-learning for reinforcement learning. arXiv preprint
arXiv:1806.04640.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint
arXiv:1609.09106.

122

http://arxiv.org/abs/1902.10482
https://www.aclweb.org/anthology/D18-1306.pdf
https://www.aclweb.org/anthology/D18-1306.pdf

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. 2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong
Sun. 2018. Fewrel: A large-scale supervised few-shot relation classification dataset
with state-of-the-art evaluation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4803–4809.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging nonlinearities and stochastic reg-
ularizers with gaussian error linear units. arXiv preprint arXiv:1606.08415.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bach-
man, Adam Trischler, and Yoshua Bengio. 2018. Learning deep representations by
mutual information estimation and maximization. In International Conference on
Learning Representations.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation, 9(8):1735–1780.

Nithin Holla, Pushkar Mishra, Helen Yannakoudakis, and Ekaterina Shutova. 2020.
Learning to learn to disambiguate: Meta-learning for few-shot word sense disam-
biguation. arXiv preprint arXiv:2004.14355.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2020.
Meta-learning in neural networks: A survey. arXiv preprint arXiv:2004.05439.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In International Conference on Ma-
chine Learning.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for
text classification. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 328–339.

Kyle Hsu, Sergey Levine, and Chelsea Finn. 2019. Unsupervised learning via meta-
learning. In International Conference on Learning Representations.

Gabriel Huang, Hugo Larochelle, and Simon Lacoste-Julien. 2019. Are few-shot learn-
ing benchmarks too simple? arXiv preprint arXiv:1902.08605.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, and Xiaodong He.
2018. Natural language to structured query generation via meta-learning. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 732–738.

123

https://openreview.net/forum?id=r1My6sR9tX
https://openreview.net/forum?id=r1My6sR9tX

Mike Huisman, Jan N van Rijn, and Aske Plaat. 2020. A survey of deep meta-learning.
arXiv preprint arXiv:2010.03522.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea
Finn. 2019. Unsupervised curricula for visual meta-reinforcement learning. In Ad-
vances in Neural Information Processing Systems, volume 32, pages 10519–10531.
Curran Associates, Inc.

Khurram Javed and Martha White. 2019. Meta-learning representations for continual
learning. In Proceedings of the 33rd International Conference on Neural Informa-
tion Processing Systems, pages 1820–1830.

Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning with deep
neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov. 2017. Bag
of tricks for efficient text classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers, pages 427–431.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional
neural network for modelling sentences. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
655–665.

Katharina Kann, Samuel R Bowman, and Kyunghyun Cho. 2020. Learning to learn
morphological inflection for resource-poor languages. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 8058–8065.

Katharina Kann, Kyunghyun Cho, and Samuel R Bowman. 2019. Towards realistic
practices in low-resource natural language processing: The development set. arXiv
preprint arXiv:1909.01522.

Arzoo Katiyar and Claire Cardie. 2017. Going out on a limb: Joint extraction of
entity mentions and relations without dependency trees. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 917–928.

Siavash Khodadadeh, Ladislau Boloni, and Mubarak Shah. 2019. Unsupervised meta-
learning for few-shot image classification. Advances in neural information process-
ing systems, 32.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. 2019. Provable guar-
antees for gradient-based meta-learning. In International Conference on Machine
Learning, pages 424–433. PMLR.

124

https://proceedings.neurips.cc/paper/2019/file/d5a28f81834b6df2b6db6d3e5e2635c7-Paper.pdf

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. Scitail: A textual entailment
dataset from science question answering. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural net-
works for one-shot image recognition. In ICML deep learning workshop, volume 2.
Lille.

Vaishnavi Kommaraju, Karthick Gunasekaran, Kun Li, Trapit Bansal, Andrew Mc-
Callum, Ivana Williams, and Ana-Maria Istrate. 2020. Unsupervised pre-training
for biomedical question answering. In Working Notes of CLEF 2020 - Conference
and Labs of the Evaluation Forum, volume 2696 of CEUR Workshop Proceedings.
CEUR-WS.org.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language
representations. In International Conference on Learning Representations.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.
Meta-learning with differentiable convex optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10657–
10665.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880.

Ke Li and Jitendra Malik. 2016. Learning to optimize. arXiv preprint
arXiv:1606.01885.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to
learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835.

125

http://ceur-ws.org/Vol-2696/paper_144.pdf
http://ceur-ws.org/Vol-2696/paper_144.pdf
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and Jim Glass. 2013. Asgard: A
portable architecture for multilingual dialogue systems. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 8386–8390. IEEE.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019a. Multi-
task deep neural networks for natural language understanding. arXiv preprint
arXiv:1901.11504.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An efficient framework for learning
sentence representations. In International Conference on Learning Representations.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2021. Fantastically ordered prompts and where to find them: Overcoming few-
shot prompt order sensitivity. arXiv preprint arXiv:2104.08786.

Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, and Pascale Fung. 2019. Personal-
izing dialogue agents via meta-learning. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 5454–5459.

Gideon S Mann and Andrew McCallum. 2010. Generalized expectation criteria for
semi-supervised learning with weakly labeled data. Journal of machine learning
research, 11(2).

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. 2016. The
benefit of multitask representation learning. Journal of Machine Learning Research,
17(81):1–32.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018.
The natural language decathlon: Multitask learning as question answering. arXiv
preprint arXiv:1806.08730.

R Thomas McCoy, Erin Grant, Paul Smolensky, Thomas L Griffiths, and Tal Linzen.
2020. Universal linguistic inductive biases via meta-learning. arXiv preprint
arXiv:2006.16324.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. 2019.
Learning unsupervised learning rules. In International Conference on Learning
Representations.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings. 2019. Meta-learning for
low-resource natural language generation in task-oriented dialogue systems. arXiv
preprint arXiv:1905.05644.

126

https://openreview.net/forum?id=HkNDsiC9KQ

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems-Volume 2, pages 3111–3119.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, and Stefan Kombrink.
2012. Subword language modeling with neural networks.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP, pages 1003–1011.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2018. A simple
neural attentive meta-learner. In International Conference on Learning Represen-
tations.

Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using lstms
on sequences and tree structures. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1105–1116.

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta networks. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 2554–2563.
JMLR. org.

Shikhar Murty, Tatsunori Hashimoto, and Christopher D Manning. 2021. Dreca: A
general task augmentation strategy for few-shot natural language inference. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1113–1125.

Alex Nichol and John Schulman. 2018. Reptile: a scalable metalearning algorithm.
arXiv preprint arXiv:1803.02999, 2.

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva, and Isabelle Augen-
stein. 2020. Zero-shot cross-lingual transfer with meta learning. arXiv preprint
arXiv:2003.02739.

Abiola Obamuyide and Andreas Vlachos. 2019. Model-agnostic meta-learning for
relation classification with limited supervision. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5873–5879.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Trans-
actions on knowledge and data engineering, 22(10):1345–1359.

127

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representa-
tions. In Proceedings of NAACL-HLT, pages 2227–2237.

Jason Phang, Thibault Févry, and Samuel R Bowman. 2018. Sentence encoders on
stilts: Supplementary training on intermediate labeled-data tasks. arXiv preprint
arXiv:1811.01088.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
Svcca: Singular vector canonical correlation analysis for deep learning dynamics
and interpretability. In Advances in Neural Information Processing Systems, pages
6076–6085.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. 2019. Meta-
learning with implicit gradients. Advances in neural information processing sys-
tems.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Alex Ratner, Stephen Bach, Paroma Varma, and Chris Ré. 2017a. Weak su-
pervision: The new programming paradigm for machine learning [blog post].
https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017b. Snorkel: Rapid training data creation with weak supervi-
sion. In Proceedings of the VLDB Endowment. International Conference on Very
Large Data Bases, volume 11, page 269. NIH Public Access.

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré.
2016. Data programming: Creating large training sets, quickly. Advances in neural
information processing systems, 29:3567.

Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-shot learn-
ing. In Proceedings of the International Conference on Learning Representations.

Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations and
their mentions without labeled text. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 148–163. Springer.

128

https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/
https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/

Sebastian Ruder. 2019. Neural Transfer Learning for Natural Language Processing.
Ph.D. thesis, NATIONAL UNIVERSITY OF IRELAND, GALWAY.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. 2018. Meta-learning with latent embedding
optimization. arXiv preprint arXiv:1807.05960.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. 2019. Meta-learning with latent embedding
optimization. In International Conference on Learning Representations.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing between
capsules. In Advances in neural information processing systems, pages 3856–3866.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-
2003 shared task: Language-independent named entity recognition. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003,
pages 142–147.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-
thy Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In
International conference on machine learning, pages 1842–1850.

Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-shot learning with graph
neural networks. In International Conference on Learning Representations.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. 2020. A mathematical ex-
ploration of why language models help solve downstream tasks. arXiv preprint
arXiv:2010.03648.

Timo Schick and Hinrich Schütze. 2020. It’s not just size that matters: Small language
models are also few-shot learners. arXiv preprint arXiv:2009.07118.

Jürgen Schmidhuber. 1987. Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook. Ph.D. thesis, Technische Universität
München.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A uni-
fied embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 815–823.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search. In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5149–5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715–1725.

129

https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7

Amr Sharaf, Hany Hassan, and Hal Daumé III. 2020. Meta-learning for few-shot
NMT adaptation. In Proceedings of the Fourth Workshop on Neural Generation
and Translation, pages 43–53, Online. Association for Computational Linguistics.

Pranav Shyam, Shubham Gupta, and Ambedkar Dukkipati. 2017. Attentive recurrent
comparators. In International conference on machine learning, pages 3173–3181.
PMLR.

Suzanna Sia, Ayush Dalmia, and Sabrina J Mielke. 2020. Tired of topic models?
clusters of pretrained word embeddings make for fast and good topics too! In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1728–1736.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-
shot learning. In Advances in Neural Information Processing Systems, pages 4077–
4087.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing, pages 1631–1642.

Jost Tobias Springenberg. 2015. Unsupervised and semi-supervised learning with
categorical generative adversarial networks. arXiv preprint arXiv:1511.06390.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy
considerations for deep learning in nlp. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 3645–3650.

Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. 2020. When does self-
supervision improve few-shot learning? In European Conference on Computer
Vision, pages 645–666. Springer.

Amarnag Subramanya, Slav Petrov, and Fernando Pereira. 2010. Efficient graph-
based semi-supervised learning of structured tagging models. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing, pages
167–176.

Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu Lee. 2019. Stochastic
class-based hard example mining for deep metric learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7251–
7259.

Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao Lv. 2019. Hierarchical at-
tention prototypical networks for few-shot text classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 476–485.

130

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1199–1208.

Ilya Sutskever, James Martens, and Geoffrey Hinton. 2011. Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, pages 1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learn-
ing with neural networks. Advances in Neural Information Processing Systems,
27:3104–3112.

Wilson L Taylor. 1953. “cloze procedure”: A new tool for measuring readability.
Journalism quarterly, 30(4):415–433.

Dung Thai, Raghuveer Thirukovalluru, Trapit Bansal, and Andrew McCallum. 2021.
Simultaneously self-attending to text and entities for knowledge-informed text rep-
resentations. In Proceedings of the 6th Workshop on Representation Learning for
NLP (RepL4NLP-2021), pages 241–247, Online. Association for Computational
Linguistics.

Sebastian Thrun and Lorien Pratt. 2012. Learning to learn. Springer Science &
Business Media.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin
Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and
Hugo Larochelle. 2019. Meta-dataset: A dataset of datasets for learning to learn
from few examples.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-read
students learn better: The impact of student initialization on knowledge distilla-
tion. ArXiv, abs/1908.08962.

Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised learning.
Machine Learning, 109(2):373–440.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in neural information processing systems, pages 5998–6008.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016. Match-
ing networks for one shot learning. In Advances in neural information processing
systems, pages 3630–3638.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey
Hinton. 2015. Grammar as a foreign language. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems-Volume 2, pages
2773–2781.

131

https://doi.org/10.18653/v1/2021.repl4nlp-1.25
https://doi.org/10.18653/v1/2021.repl4nlp-1.25
http://arxiv.org/abs/1903.03096
http://arxiv.org/abs/1903.03096

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler,
Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. 2020. Exploring and
predicting transferability across nlp tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 7882–7926.

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J
Lang. 1989. Phoneme recognition using time-delay neural networks. IEEE trans-
actions on acoustics, speech, and signal processing, 37(3):328–339.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappagari, R Thomas McCoy, Roma
Patel, Najoung Kim, Ian Tenney, Yinghui Huang, Katherin Yu, et al. 2018a. Can
you tell me how to get past sesame street? sentence-level pretraining beyond lan-
guage modeling. arXiv preprint arXiv:1812.10860.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018b. Glue: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461.

Haoxiang Wang, Ruoyu Sun, and Bo Li. 2020a. Global convergence and in-
duced kernels of gradient-based meta-learning with neural nets. arXiv preprint
arXiv:2006.14606.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. 2016.
Learning to reinforcement learn. arXiv preprint arXiv:1611.05763.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. 2020b. On the global op-
timality of model-agnostic meta-learning. In International Conference on Machine
Learning, pages 9837–9846. PMLR.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. 2019. Neural network
acceptability judgments. Transactions of the Association for Computational Lin-
guistics, 7:625–641.

Lilian Weng. 2019. Self-supervised representation learning. lilianweng.github.io/lil-
log.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Fran-
cisco Guzmán, Armand Joulin, and Édouard Grave. 2020. Ccnet: Extracting high
quality monolingual datasets from web crawl data. In Proceedings of The 12th
Language Resources and Evaluation Conference, pages 4003–4012.

Adina Williams, Nikita Nangia, and Samuel R Bowman. 2017. A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426.

132

https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language un-
derstanding. arXiv preprint arXiv:1906.08237.

David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised
methods. In 33rd annual meeting of the association for computational linguistics,
pages 189–196.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn.
2020a. Meta-learning without memorization. In International Conference on Learn-
ing Representations.

Wenpeng Yin, Nazneen Fatema Rajani, Dragomir Radev, Richard Socher, and Caim-
ing Xiong. 2020b. Universal natural language processing with limited annotations:
Try few-shot textual entailment as a start. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 8229–8239.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome Connor, Tomás Kociský, Mike
Chrzanowski, Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer,
and Phil Blunsom. 2019. Learning and evaluating general linguistic intelligence.
CoRR, abs/1901.11373.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and
Sungjin Ahn. 2018. Bayesian model-agnostic meta-learning. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, pages
7343–7353.

A Steven Younger, Sepp Hochreiter, and Peter R Conwell. 2001. Meta-learning with
backpropagation. In IJCNN’01. International Joint Conference on Neural Net-
works. Proceedings (Cat. No. 01CH37222), volume 3. IEEE.

Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald
Tesauro, Haoyu Wang, and Bowen Zhou. 2018. Diverse few-shot text classification
with multiple metrics. arXiv preprint arXiv:1805.07513.

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. 2019. S4l:
Self-supervised semi-supervised learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1476–1485.

133

https://openreview.net/forum?id=BklEFpEYwS
http://arxiv.org/abs/1901.11373

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised learn-
ing using gaussian fields and harmonic functions. In Proceedings of the 20th Inter-
national conference on Machine learning (ICML-03), pages 912–919.

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon
Whiteson. 2019. Cavia: Fast context adaptation via meta-learning. In Interna-
tional Conference on Machine Learning.

134

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation and Contributions
	Declaration of Published Work

	Background
	Neural Models for NLP
	Input Representations
	Contextual Text Encoders
	Transformers

	Learning Neural NLP Models with Limited Labeled Data
	Multi-Task Learning
	Weakly-Supervised Learning
	Semi-Supervised Learning
	Self-Supervised Learning

	Meta-Learning
	Notation and Meta-Learning Setup
	Meta-Learning Approaches
	Model-based Meta-Learning
	Metric-based Meta-Learning
	Optimization-based Meta-Learning

	P(T): Task Distribution for Meta-Learning
	Theory on Meta-Learning
	Relation to Other Fields
	Meta-Learning for NLP

	Learning to Few-shot Learn across Diverse Natural Language Processing tasks
	Introduction
	Model
	Text Encoder
	Generating Softmax Parameters for Task-specific Classification
	Learning to Adapt Efficiently

	Experiments
	Training Tasks
	Evaluation and Baselines
	Results
	Generalization Beyond Training Tasks
	Few-Shot Domain Transfer

	Ablation Study

	Related Work
	Conclusions

	Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks
	Introduction
	Preliminaries
	Self-supervised Tasks for Meta-learning
	Subset Masked Language Modeling Tasks (SMLMT)

	Meta-learning Model
	Related Work
	Experiments
	Implementation Details
	Results
	Few-shot generalization to new tasks
	Few-shot domain transfer

	Analysis

	Conclusion

	Exploring Self-Supervised Task Distributions for Meta-Learning
	Introduction
	Background
	Diverse Distributions of Self-Supervised Tasks
	Frequency-based sampling
	Cluster-based sampling
	Dynamic curriculum over self-supervised tasks
	Task proposal using sentence clustering
	Contrastive learning over sentence pairs

	Related Work
	Experiments
	Experimental Setup
	Analyzing task distributions
	Evaluation on diverse downstream classification tasks
	Evaluation on FewRel 2.0 benchmark

	A retrospective comparison with contemporary methods
	Discussion of Contemporary Methods (GPT-3 and T5)
	Experimental Results

	Conclusion
	Future Directions

	Additional Experimental Details and Results for LEOPARD
	Datasets
	Test Datasets

	Additional Results
	Hyperparameters

	Additional Experimental Details and Results for Self-Supervised Meta-Learning
	Training Algorithm
	Additional Results
	Datasets
	Implementation Details
	Training Hyper-parameters
	Sampling for Hybrid-SMLMT
	Fine-tuning Hyper-parameter
	Training Hardware and Time

	Additional Experimental Details and Results for Diverse Distributions of Self-Supervised Tasks
	Illustration of SentCluster Tasks
	Additional Experiment Results
	Fine-tuning Hyper-parameters
	Other Implementation Details

	Additional Experimental Details for GPT-3 and T5 comparisons
	Bibliography

