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ABSTRACT

DECISION MAKING WITH LIMITED DATA

FEBRUARY 2022

KIEU MY PHAN

B.Sc., KAIST

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik Learned-Miller

This thesis studies different approaches to decision making with limited data.

First, we study the effects of approximate inference on Thompson sampling in the

k-armed bandit problems. Thompson sampling is a successful algorithm but requires

posterior inference, which often must be approximated in practice. We show that

even small constant inference error (in α-divergence) can lead to poor performance

(linear regret) due to under-exploration (for α < 1) or over-exploration (for α > 0) by

the approximation. While for α > 0 this is unavoidable, for α ≤ 0 the regret can be

improved by adding a small amount of forced exploration.

Second, we consider the problem of designing a randomized experiment on a source

population to estimate the Average Treatment Effect (ATE) on a target population.

We propose a novel approach which explicitly considers the target when designing

the experiment on the source. Under the covariate shift assumption, we design an

v



unbiased importance-weighted estimator for the target population’s ATE. To reduce

the variance of our estimator, we design a covariate balance condition (Target Balance)

between the treatment and control groups based on the target population. We show

that Target Balance achieves a higher variance reduction asymptotically than methods

that do not consider the target during the design phase. Our experiments illustrate

that Target Balance reduces the variance even for small sample sizes.

Finally, we examine confidence intervals. Historically, mean bounds for small

sample sizes fall into 2 categories: methods with unrealistic assumptions about the

unknown distribution (e.g., Gaussianity) and methods like Hoeffding’s inequality

that use weaker assumptions but produce much looser intervals. In 1969, Anderson

(1969a) proposed a mean confidence interval strictly better than or equal to Hoeffding’s

whose only assumption is that the distribution’s support is contained in an interval

[a, b]. For the first time since then, we present a new family of upper bounds that

compares favorably to Anderson’s. We prove that each bound in the family holds with

probability at least 1− α for all distributions on an interval [a, b]. Furthermore, one

of the bounds is tighter than or equal to Anderson’s for all samples.
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INTRODUCTION

In this thesis we study different approaches to decision making with limited data.

The settings for which one would want to make good decisions with limited data

occur frequently in practice. In recommendation systems, one would like to estimate

the optimal choice with a small number of user interactions. In small clinical trials

(Institute of Medicine, 2001), more data could be either expensive, difficult to obtain

or cannot be obtained due to safety reasons. For some problems such as finding mean

bounds for small samples, there are few solution existed that have both guarantees

and good performances.

There are several aspects to making decisions with limited data. The first is

to make decisions that adapt continuously as the data arrives. The multi-armed

bandit framework (Lattimore and Szepesvári, 2020) formalizes the problem as the

exploration-exploitation trade-offs. In our first project Thompson Sampling with

Approximate inference (Chapter 1), we study the performance of Thompson sampling,

a multi-armed bandit algorithm, when the posterior samples are approximated. The

chapter is based on the paper published in the Conference on Neural Information

Processing Systems 2019 (Phan et al., 2019).

The second is to estimate the causal effects among variables to use the causal

structure to guide the decisions and therefore making more accurate decisions with

fewer data. In our second project Designing Transportable Experiments Under

S-Admissablility (Chapter 2), we consider the problem of designing experiments

performed on a source population in order to estimate the effect on a target population.

The chapter is based on the paper published in the International Conference on

Artificial Intelligence and Statistics 2021 (Phan et al., 2021a).
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Finally, it is important to have tighter estimates of the value of interest with small

samples, so that the decision maker can adapt quickly as the data arrives. In our third

project Towards Practical Mean Bounds for Small Samples (Chapter 3), we consider

the problem of finding mean bounds for small sample sizes. The chapter is based on

the paper published in the International Conference on Machine Learning 2021 (Phan

et al., 2021b).
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CHAPTER 1

THOMPSON SAMPLING WITH APPROXIMATE
INFERENCE

1.1 Introduction

The chapter is based on the paper published in the Conference on Neural In-

formation Processing Systems 2019 (Phan et al., 2019). The stochastic k-armed

bandit problem is a sequential decision making problem where at each time-step t,

a learning agent chooses an action (arm) among k possible actions and observes a

random reward. Thompson sampling (Russo et al., 2018) is a popular approach in

bandit problems based on sampling from a posterior in each round. Bandit algorithms

are usually evaluated by regret, which is the difference between the best action and

the agent’s action. Linear regret implies that the agent does not learn the optimal

behaviour. Thompson sampling has been shown to have good performance both in

term of frequentist regret and Bayesian regret for the k-armed bandit problem under

certain conditions.

This chapter investigates Thompson sampling when only an approximate posterior

is available. This is motivated by the fact that in complex models, approximate

inference methods such as Markov Chain Monte Carlo or Variational Inference must

be used. Along this line, Lu and Van Roy (2017) propose a novel inference method –

Ensemble sampling – and analyze its regret for linear contextual bandits. To the best

of our knowledge this is the most closely related theoretical analysis of Thompson

sampling with approximate inference.

This chapter analyzes the regret of Thompson sampling with approximate inference.

Rather than considering a particular inference algorithm, we parameterize the error

3



using the α-divergence, a typical measure of inference accuracy. Our contributions are

as follows:

• Even small inference errors can lead to linear regret with naive Thomp-

son sampling. Given any error threshold ε > 0 and any α we show that

approximate posteriors with error at most ε in α-divergence at all times can

result in linear regret (both frequentist and Bayesian). For α > 0 and for any

reasonable prior, we show linear regret due to over-exploration by the approxi-

mation (Theorem 1, Corollary 1). For α < 1 and for priors satisfying certain

conditions, we show linear regret due to under-exploration by the approximation,

which prevents the posterior from concentrating (Theorem 2, Corollary 2).

• Forced exploration can restore sub-linear regret. For α ≤ 0 we show

that adding forced exploration to Thompson sampling can make the posterior

concentrate and restore sub-linear regret (Theorem 3) even when the error

threshold is a very large constant. We illustrate this effect by showing that

the performances of Ensemble sampling (Lu and Van Roy, 2017) and mean-

field Variation Inference (Blei et al., 2017) can be improved in this way either

theoretically (Section 1.5.1) or in simulations (Section 1.6).

1.2 Background and Notations.

1.2.1 The k-armed Bandit Problem.

We consider the k-armed bandit problem parameterized by the mean reward vector

m∗ = (m∗1, ...,m
∗
k) ∈ Rk, where m∗i denotes the mean reward of arm (action) i and Y i

t

denote the reward of choosing action i at time t1. At each round t, the learner chooses

an action At and observes the outcome Yt which, conditioned on At, is independent of

the history up to and not including time t, Ht−1 = (A1, Y1, ..., At−1, Yt−1). For a time

1We omit the superscript when the context is clear.
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horizon T , the goal of the algorithm π is to maximize the expected cumulative reward

up to time T .

Let Ω ⊆ Rk be the domain of the mean and Ωi ⊆ Ω denote the region where

the ith arm is among the arms with the largest mean. For simplicity we assume

P (Ωi ∩ Ωj) = 0 for any i 6= j, 1 ≤ i, j ≤ k. Let the function A∗ : Ω → {a1, ..., ak}

denoting the best action be defined as: A∗(m) = i if m ∈ Ωi.

In the frequentist setting we assume that there exists a true mean m∗ which is

fixed and unknown to the learner. Therefore, a policy π∗ that always chooses A∗(m∗)

will get the highest reward. The performance of policy π is measured by its expected

regret compared to an optimal policy π∗, which is defined as:

Regret(T, π,m∗) = Tm∗A∗(m∗) − E
T∑
t=1

m∗At . (1.1)

If the regret is linear, the agent chooses a sub-optimal arm for a constant number

of time-steps, which implies that the agent does not learn the optimal arm. An naive

algorithm that achieves linear regret is one that chooses an arm uniformly at random

at every time step.

On the other hand, in the Bayesian setting, an agent expresses her beliefs about

the mean vector in terms of a prior Π0, and therefore, the mean is treated as a random

variable M = (M1, ...,Mk) distributed according to the prior Π0. The Bayesian regret

is the expectation of the regret under the prior of parameter M :

BayesRegret(T, π) = EΠ0Regret(T, π,M) . (1.2)

1.2.2 Thompson Sampling with Approximate Inference

In the frequentist setting, in order to perform Thompson sampling we define a

prior which is only used in the algorithm. On the other hand, in the Bayesian setting

the prior is given.

5



Let Πt be the posterior distribution of M |Ht−1 with density function πt(m).

Thompson sampling obtains a sample m̂ from Πt and then selects arm At as fol-

low: At = i if m̂ ∈ Ωi. In each round, we assume an approximate sampling method is

available that generates sample from an approximate distribution Qt. We use qt to

denote the density function of Qt.

Popular approximate sampling methods include Markov Chain Monte Carlo

(MCMC) (Andrieu et al., 2003), Sequential Monte Carlo (Doucet and Johansen,

2009) and Variational Inference (VI) (Blei et al., 2017). There are packages that

conveniently implement VI and MCMC methods, such as Stan (Carpenter et al., 2017),

Edward (Tran et al., 2016), PyMC (Salvatier et al., 2016) and infer.NET (Minka et al.,

2018).

To provide a general analysis of approximate sampling methods, we will use the

α-divergence (Section 1.2.3) to quantify the distance between the posterior Πt and

the approximation Qt.

1.2.3 The Alpha Divergence

The α-divergence between two distributions P and Q with density functions p(x)

and q(x) is defined as:

Dα(P,Q) =
1−

∫
p(x)αq(x)1−αdx

α(1− α)
. (1.3)

α-divergence generalizes many divergences, includingKL(Q,P ) (α→ 0), KL(P,Q)

(α → 1), Hellinger distance (α = 0.5) and χ2 divergence (α = 2) and is a common

way to measure errors in inference methods. MCMC errors are measured by the

Total Variation distance, which can be upper bounded by the KL divergence using

Pinsker’s inequality (α = 0 or α = 1). Variational Inference tries to minimize the

reverse KL divergence (information projection) between the target distribution and

the approximation (α = 0). Ensemble sampling (Lu and Van Roy, 2017) provides

6



error guarantees using reverse KL divergence (α = 0). Expectation Propagation tries

to minimize the KL divergence (α = 1) and χ2 Variational Inference tries to minimize

the χ2 divergence (α = 2).

Figure 1.1: The Gaussian Q which minimizes Dα(P,Q) for different values of α where
the target distribution P is a mixture of two Gaussians. Based on Figure 1 from
(Minka, 2005)

When α is small, the approximation fits the posterior’s dominant mode. When

α is large, the approximation covers the posterior’s entire support (Minka, 2005) as

illustrated in Figure 1.1. Therefore changing α will affect the exploration-exploitation

trade-off in bandit problems.

1.2.4 Problem Statement.

Problem Statement. For the k-armed bandit problem, given α and ε > 0, if at all

time-steps t we sample from an approximate distribution Qt such that Dα(Πt, Qt) < ε,

will the regret be sub-linear in t?

1.3 Motivating Example

In this section we present a simple example to show the effects of inference errors

on the frequentist regret. We design the example to illustrate the effects of under-

exploration and over-exploration. While in practice, it is possible for the posterior to

over-explore in some dimensions and under-explore in others, the example is designed

to focus on analyzing each type of errors separately.
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Example. Consider a 2-armed bandit problem where the reward distributions

are Norm(0.6, 0.22) and Norm(0.5, 0.22) for arm 1 and 2 respectively. The prior Π0

is Norm
(
µT0 , 0.5

2I
)
where µ0 = [0.1, 0.9] is the vector of prior means of arm 1 and 2

respectively, and I denotes the identity matrix.

(a) Over-dispersed (approximation Qt)
and under-dispersed sampling (approxi-
mation Zt) yield different posteriors after
T = 100 time-steps. m1 and m2 are the
means of arms 1 and 2. Qt picks arm
2 more often than exact Thompson sam-
pling and Zt mostly picks arm 2. The
posteriors of exact Thompson sampling
and Qt concentrate mostly in the region
where m1 > m2 while Zt’s spans both
regions.

(b) The regret of sampling from the ap-
proximations Qt and Zt are both larger
than that of exact Thompson sampling
from the true posterior Πt. Shaded re-
gions show 95% confidence intervals.

Figure 1.2: Approximation Qt (with high variance) and approximation Zt (with small
variance) are defined in Section 1.3 where D1(Πt, Qt) = 2 and D0(Πt, Zt) = 1.5. Arm
1 is the true best arm.

Let Πt = Norm(µt,Σt) be the posterior at time t. Approximations Qt and Zt

are calculated such that KL(Πt, Qt) = 2 and KL(Zt,Πt) = 1.5 by multiplying the

covariance Σt by a constant: Qt = Norm(µt, 4.5
2Σt) and Zt = Norm(µt, 0.3

2Σt).

We perform the following simulations 1000 times and plot the mean cumulative

regret up to time T = 100 in Figure 1.2b using three different policies:

1. (Exact Thompson Sampling) At each time-step t, sample from the true

posterior Πt.
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2. (Approximation Qt) At each time-step t, compute Qt from Πt and sample

from Qt.

3. (Approximation Zt) At each time-step t, compute Zt from Πt and sample

from Zt.

The regrets of sampling from the approximations Qt and Zt are in both cases

larger than that of exact Thompson sampling. Intuitively, the regret of Qt is larger

because Qt explores more than the true posterior (Figure 1.2a). In Section 1.4 we

show that when α > 0 the approximation can incur this type of error, leading to linear

regret. On the other hand, the regret of Zt is larger because Zt explores less than the

exact Thompson sampling algorithm and therefore commits to the sub-optimal arm

(Figure 1.2a). In Section 1.5 we show that when α < 1 the approximation can change

the posterior concentration rate, leading to linear regret. We also show that adding a

uniform sampling step can help the posterior to concentrate when α ≤ 0, and make

the regret sub-linear.

1.4 Regret Analysis When α > 0

In this section we analyze the regret when α > 0. Our result shows that the

approximate method might pick the sub-optimal arm with constant probability in

every time-step, leading to linear regret even when the algorithm only samples from

the approximation for 0.01T time-steps (where 0.01 stands for a very small positive

constant) and use any optimal policy in the remaining 0.99T time-steps. The result

implies that α > 0 should be used for at most o(T ) time-steps if we want to achieve

sub-linear regret.

Theorem 1 (Frequentist Regret). Let α > 0, the number of arms be k = 2 and

m∗1 > m∗2. Suppose that at any time t, the posterior Πt has density πt. For any error

threshold ε > 0, there is a deterministic mapping f(Π) such that for all t ≥ 0:

1. Sampling from Qt = f(Πt) chooses arm 2 with a constant probability.
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2. Dα(Πt, Qt) < ε.

Therefore sampling from Qt for c · T time-steps for any constant c > 0 and using any

policy for the remaining time-steps will cause linear frequentist regret.

Typically, approximate inference methods minimize divergences. Broadly speaking,

this theorem shows that making a divergence a small constant, alone, is not enough

to guarantee sub-linear regret. We do not mean to imply that low regret is impossible

but simply that making an α-divergence a small constant alone is not sufficient.

At every time-step, the mapping f constructs the approximation Qt from the

posterior Πt by moving probability mass from the region Ω1 where m1 > m2 to the

region Ω2 where m2 > m1. Then Qt will choose arm 2 with a constant probability at

every time-step.

Therefore, if we sample from Qt = f(Πt) for 0.1T time steps and use any policy

in the remaining 0.9T time steps, we will still incur linear regret from the 0.1T time-

steps. On the other hand, when α ≤ 0, we show in Section 1.5.1 that sampling an

arm uniformly at random for log T time-steps and sampling from an approximate

distribution that satisfies the divergence constraint for T − log T time-steps will result

in sub-linear regret.

Agrawal and Goyal (2013) show that the frequentist regret of exact Thompson

sampling is O(
√
T ) with Gaussian or Beta priors and bounded rewards. Theorem 1

implies that when the assumptions in (Agrawal and Goyal, 2013) are satisfied but

there is a small constant inference error at every time-step, the regret is no longer

guaranteed to be sub-linear.

If the assumption m∗1 > m∗2 in Theorem 1 is satisfied with a non-zero probability

(PΠ0(M1 > M2) > 0), the Bayesian regret will also be linear:

Corollary 1 (Bayesian Regret). Let α > 0 and the number of arms be k = 2. Let Π0

be a prior where PΠ0(M1 > M2) > 0. Suppose that at any time t, the posterior Πt has
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density πt. Then for any error threshold ε > 0, there is a deterministic mapping f(Π)

such that for all t ≥ 0 the two statements in Theorem 1 hold.

Therefore sampling from Qt for cT time-steps for any constant c > 0 and using

any policy for the remaining time-steps will cause linear Bayesian regret.

Russo and Roy (2016) prove that the Bayesian regret of Thompson sampling for

k-armed bandits with sub-Gaussian rewards is O(
√
T ). Corollary 1 implies that even

when the assumptions in (Russo and Roy, 2016) are satisfied, under certain conditions

and with approximation errors, the regret is no longer guaranteed to be sub-linear.

1.5 Regret Analysis When α < 1

In this section we analyze the regret when α < 1. Our result shows that for any

error threshold, if the posterior Πt places too much probability mass on the wrong arm

then the approximation Qt is allowed to avoid the optimal arm. If the sub-optimal

arms do not provide information about the arms’ ranking, the posterior Πt+1 does not

concentrate. Therefore Qt+1 is also allowed to be close in α-divergence while avoiding

the optimal arm, leading to linear regret in the long term.

Theorem 2 (Frequentist Regret). Let α < 1, the number of arms be k = 2 and

m∗1 > m∗2. Let Π0 be a prior where M2 and M1 −M2 are independent and PΠ0(M2 ≥

M1) > 0. Suppose that at any time t, the posterior Πt has density πt. There is a

deterministic mapping f(Π) such that for all t ≥ 0:

1. Sampling from Qt = f(Πt) chooses arm 2 with probability 1.

2. For any ε > 0, there exists 0 < z < 1 such that if PΠ0(M2 ≥M1) = z and arm 2

is chosen at all times before t then Dα(Πt, Qt) < ε .

For any 0 < z < 1, there exists ε > 0 such that if PΠ0(M2 ≥M1) = z and arm 2

is chosen at all times before t then Dα(Πt, Qt) < ε.

Therefore sampling from Qt at all time-steps results in linear frequentist regret.
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We discuss why the above results are not immediately obvious. When α → 0,

the α-divergence becomes KL(Qt,Πt). We might believe that the regret should be

sub-linear in this case because the posterior Πt becomes more concentrated, and

so the total variation between Qt and Πt must decrease. For example, Ordentlich

and Weinberger (2004) show the distribution-dependent Pinsker’s inequality between

KL(Q,P ) and the total variation TV(P,Q) for discrete distributions P and Q as

follows:

KL(Q,P ) ≥ φ(P ) · TV(P,Q)2 . (1.4)

Here, φ(P ) is a quantity that will increase to infinity if P becomes more concentrated.

However, the algorithm in Theorem 2 constructs an approximation distribution that

never picks the optimal arm, so the posterior Πt can not concentrate and the regret is

linear. The error threshold ε causing linear frequentist regret is correlated with the

probability mass the prior places on the true best arm.

With some assumptions on the rewards, Gopalan et al. (2014) show that the

problem-dependent frequentist regret is O(log T ) for finitely-supported, correlated

priors with π0(m∗) > 0. Liu and Li (2016) study the prior-dependent frequentist regret

of 2-armed-and-2-models bandits, and show that with some smoothness assumptions

on the reward likelihoods, the regret is O(
√
T/PΠ0(M2 > M1) if arm 1 is the better

arm. Theorem 2 implies that when the assumptions in Gopalan et al. (2014) or

Liu and Li (2016) are satisfied, if M2 and M1 −M2 are independent and there are

approximation errors, the regret is no longer guaranteed to be sub-linear.

If the assumption m∗1 > m∗2 in Theorem 2 is satisfied with a non-zero probability

(PΠ0(M1 > M2) > 0), the Bayesian regret wil also be linear:

Corollary 2 (Bayesian Regret). Let α < 1 and the number of arms be k = 2. Let

Π0 be a prior where M2 and M1 − M2 are independent, PΠ0(M1 > M2) > 0 and
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PΠ0(M2 ≥M1) > 0. Suppose that at any time t, the posterior Πt has density πt. Then

there is a deterministic mapping f(Π) such that for all t ≥ 0 the 2 statements in

Theorem 2 hold.

Therefore sampling from Qt at all time-steps results in linear Bayesian regret.

Russo and Roy (2016) prove that the Bayesian regret of Thompson sampling for

k-armed bandits with sub-Gaussian rewards is O(
√
T ). Corollary 2 implies that even

when the assumptions in Russo and Roy (2016) are satisfied, under certain conditions

and with approximation errors, the regret is no longer guaranteed to be sub-linear.

We note that, unlike the case when α > 0, if we use another policy in o(T ) time-steps

to make the posterior concentrate and sample from Qt for the remaining time-steps,

the regret can be sub-linear. We provide a concrete algorithm in Section 1.5.1 for the

case when α ≤ 0.

1.5.1 Algorithms with Sub-linear Regret for α ≤ 0

In the previous section, we see that when α < 1, the approximation has linear

regret because the posterior does not concentrate. In this section we show that when

α ≤ 0, it is possible to achieve sub-linear regret even when ε is a very large constant

by adding a simple exploration step to force the posterior to concentrate (the case of

α > 0 cannot be improved according to Theorem 1). We first look at the necessary

and sufficient condition that will make the posterior concentrate, and then provide an

algorithm that satisfies it. Russo (2016) and Qin et al. (2017) both show the following

result under different assumptions:

Lemma 1 (Lemma 14 from (Russo, 2016)). Let m∗ ∈ Rk be the true parameter and

let a∗ = A∗(m∗) be the true best arm. If for all arms i,
∑∞

t=1 P (At = i|Ht−1) = ∞,

then

lim
t→∞

P (A∗(M) = a∗|Ht−1) = 1 with probability 1 . (1.5)
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If there exists arm i such that
∑∞

t=1 P (At = i|Ht−1) <∞, then lim inft→∞ P (A∗(M) =

i|Ht−1) > 0 with probability 1.

Russo (2016) make the following assumptions, which allow correlated priors:

Assumption 1. Let the reward distributions be in the canonical one dimensional

exponential family with the density: p(y|m) = b(y)exp {mT (y)− A(m)} where b, T and

A are known function and A(m) is assumed to be twice differentiable. The parameter

space Ω = (m,m) is a bounded open hyper-rectangle, the prior density is uniformly

bounded with 0 < infm∈Ω π0(m) < supm∈Ω π0(m) < ∞ and the log-partition function

has bounded first derivative with supθ∈[m,m] |A′(m)| <∞.

Qin et al. (2017) make the following assumptions:

Assumption 2. Let the prior be an uncorrelated multivariate Gaussian. Let the

reward distribution of arm i be Norm(mi, σ
2) with a common known variance σ2 but

unknown mean mi.

Even though we consider the error in sampling from the posterior distribution, the

regret is a result of choosing the wrong arm. We define Πt as the posterior distribution

of the best arm and Qt as the approximation of Πt with the density functions

πt(i) = P (A∗ = i|Ht−1) and qt(i) = P (At = i|Ht−1).

We now define an algorithm where each arm will be chosen infinitely often, satisfying

the condition of Lemma 1.

Theorem 3 (Bayesian and Frequentist Regret). Consider the case when Assumption 1

or 2 is satisfied. Let α ≤ 0 and pt = o(1) be such that
∑∞

t=1 pt =∞. For any number

of arms k, any prior Π0 and any error threshold ε > 0, the following algorithm has

o(T ) frequentist regret: at every time-step t,
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• with probability 1 − pt, sample from an approximate posterior Qt such that

Dα(Πt, Qt) < ε,

• with probability pt, sample an arm uniformly at random.

Since the Bayesian regret is the expectation of the frequentist regret over the prior, for

any prior if the frequentist regret is sub-linear at all points the Bayesian regret will be

sub-linear.

The following lemma shows that the error in choosing the arms is upper bounded by

the error in choosing the parameters. Therefore whenever the condition Dα(Πt, Qt) < ε

is satisfied, the condition Dα(Πt, Qt) < ε will be satisfied and Theorem 3 is applicable.

Lemma 2.

Dα(Πt, Qt) ≤ Dα(Πt, Qt) .

We also note that we can achieve sub-linear regret even when ε is a very large

constant. We revisit Eq. 1.4 to provide the intuition: KL(Q,P ) ≥ φ(P ) · TV(P,Q)2.

Here, φ(P ) is a quatity that will increase to infinity if P becomes more concentrated.

Hence, if KL(Qt,Πt) < ε for any constant ε and Πt becomes concentrated, the total

variation TV(Qt,Πt) will decrease. Therefore, Qt will become concentrated, resulting

in sub-linear regret.

Application. Lu and Van Roy (2017) propose an approximate sampling method

called Ensemble sampling where they maintain a set ofM models to approximate

the posterior and analyze its regret for the linear contextual bandits when M is

Ω(log(T )). For the k-armed bandit problem and when M is Θ(log(T )), Ensemble

sampling satisfies the condition KL(Qt,Πt) < ε in Theorem 3 with high probability.

In this case, Lu and Van Roy (2017) show a regret bound that scales linearly with T .

We can apply Theorem 3 to get sub-linear regret with Ensemble sampling whenM is

Θ(log(T )).
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1.6 Simulations

For each approximation method we repeat the following simulations for 1000 times

and plot the mean cumulative regret, using five different policies.

1. (Exact Thompson sampling) Use exact posterior sampling to choose an

action to calculate the reward and update the posterior (for reference).

2. (Approximation method) Use the approximation method to choose an action

to calculate the reward and update the posterior. We use the approximation

naively without any modification.

3. (Forced Exploration) With a probability (the exploration rate), choose an

action uniformly at random to calculate the reward and update the posterior.

Otherwise, use the approximation method to choose an action to calculate the

reward and update the posterior. This is the method suggested by Thm. 3.

4. (Approximate Reward) Use the approximation method to choose an action

to calculate the reward. Use exact posterior sampling to choose an action to

update the posterior.

5. (Approximate Update) Use exact posterior sampling to choose an action to

calculate the reward. Use the approximate method to choose an action to update

the posterior.

The last two policies are performed to understand how the approximation affects the

posterior (discussed in Section 1.6.3). We update the posterior using the closed-form

formula when both the prior and reward distribution are Gaussian.

1.6.1 Adding Forced Exploration to the Motivating Example

In this section we revisit the example in Section 1.3. We apply Qt, Zt and Ensemble

sampling withM = 2 models to the bandit problem described in the example. We set

the exploration rate at time t to be 1/t, T = 100 and show the results in Figure 1.3a

and discuss them in Section 1.6.3.
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1.6.2 Simulations of Ensemble Sampling and Variational Inference for

50-armed bandits

Now we add forced exploration to mean-field Variational Inference (VI) and

Ensemble Sampling withM = 5 models for a 50-armed bandit instance. We generate

the prior and the reward distribution as follows: the prior is Norm(0,Σ0). To generate

a positive semi-definite matrix Σ0, we generate a random matrix A of size (k, k) where

entries are uniformly sampled from [0, 1) and set Σ0 = ATA/k. The true mean m∗ is

sampled from the prior. The reward distribution of arm i is Norm(m∗i , 1).

Mean-field VI approximates the posterior by finding an uncorrelated multivari-

ate Gaussian distribution Qt that minimizes KL(Πt, Qt). If the posterior is Πt =

Norm(µt,Σt) then Qt has the closed-form solution Qt = Norm(µt,Diag(Σ−1
t )−1), which

we used to perform the simulations. We set the exploration rate at time t to be 50/t,

T = 3000, show the results in Figure 1.3b and discuss them in Section 1.6.3.

1.6.3 Discussion

We observe in Figure 1.3a that the regret of Qt and the regret of Approximate

Reward with Qt are similar, and the regret of Approximate Update with Qt and the

regret of exact Thompson sampling are similar. These two observations imply that Qt

has the same effect on the posterior as exact Thompson sampling. Therefore adding

forced exploration is not helpful.

On the other hand, in Figures 1.3a and 1.3b the regrets of Approximate Reward

with Zt, Ensemble sampling and mean-field VI decrease significantly, with the regrets

of Approximate Update with these 3 methods are high. This behaviour is likely

because the approximation causes the posterior to concentrate in the wrong region2.

2Note that in the case where there are 2 arms (Figure 1.3a), Approximate Update has slightly
lower regret than naively using the approximate method. This is only because there are only 2
regions, so exact reward sampling explores more than the approximation in the other region, which
happens to be the correct one.
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In combination, these two observations suggest that these methods do not explore

enough for the posterior to concentrate. Therefore adding forced exploration is helpful,

which is compatible with the result in Theorem 3.

1.7 Related Work

There have been many works on sub-linear Bayesian and frequentist regrets for

exact Thompson sampling. We discussed relevant works in detail in Section 1.4 and

Section 1.5.

Ensemble sampling (Lu and Van Roy, 2017) gives a theoretical analysis of Thomp-

son sampling with one particular approximate inference method. Lu and Van Roy

(2017) maintain a set ofMmodels to approximate the posterior, and analyzed its regret

for linear contextual bandits whenM is Ω(log(T )). For the k-armed bandit problem

and whenM is Θ(log(T )), Ensemble sampling satisfies the condition KL(Qt,Πt) < ε

in Theorem 3 with high probability. In this case, the regret of Ensemble sampling

scales linearly with T .

We show in Theorem 2 that when the constraint KL(Qt,Πt) < ε is satisfied, which

implies by Lemma 2 that KL(Qt,Πt) < ε is satisfied, there can exist approximation

algorithms that have linear regret in T . This result provides a linear lower bound,

which is complementary with the linear regret upper bound of Ensemble Sampling

in (Lu and Van Roy, 2017). We can apply Theorem 3 to get sub-linear regret with

Ensemble sampling with Θ(log(T )) models.

In reinforcement learning, there is a notion that certain approximations are "stochas-

tically optimistic" and that this has implications for regret (Osband et al., 2016). This

is similar in spirit to our analysis in terms of α-divergence, in that the characteristics

of inference errors are important.

There has been a number of empirical works using approximate methods to perform

Thompson sampling. Riquelme et al. (2018) implement variational inference, MCMC,
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Gaussian processes and other methods on synthetic and real world data sets and

measure the regret. Urteaga and Wiggins (2018) derive a variational method for

contextual bandits. Kawale et al. (2015) use particle filtering to implement Thompson

sampling for matrix factorization.

Finally, if exact inference is not possible, it remains an open question if it is better

to use Thompson sampling with approximate inference, or to use a different bandit

method that does not require inference with respect to the posterior. For example

Kveton et al. (2019) propose an algorithm based on the bootstrap.

1.8 Conclusion

In this chapter we analyzed the performance of approximate Thompson sampling

when at each time-step t, the algorithm obtains a sample from an approximate

distribution Qt such that the α-divergence between the true posterior and Qt remains

at most a constant ε at all time-steps.

Our results have the following implications. To achieve a sub-linear regret, we

can only use α > 0 for o(T ) time-steps. Therefore we should use α ≤ 0 with forced

exploration to make the posterior concentrate. This method theoretically guarantees

a sub-linear regret even when ε is a large constant.
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(a) Applying approximations Qt, Zt and Ensemble Sampling to the motivating example
(Section 1.6.1).

(b) Applying mean-field Variational Inference (VI) and Ensemble sampling on a 50-armed
bandit (Section 1.6.2).

Figure 1.3: Updating the posterior by exact Thompson sampling or adding forced
exploration does not help the over-explored approximation Qt, but lowers the regrets of
the under-explored approximations Zt, Ensemble sampling and mean-field VI. Shaded
regions show 95% confidence intervals.
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CHAPTER 2

DESIGNING TRANSPORTABLE EXPERIMENTS UNDER
S-ADMISSABILITY

2.1 Introduction

The chapter is based on the paper published in the International Conference

on Artificial Intelligence and Statistics 2021 (Phan et al., 2021a). The problem

of generalization is present everywhere that experiments are run. In the online

environment, tests are run with the users who show up on the product while the

experiment is running (and are therefore highly active users), while inferences about

user experience are most useful on the full set of users (both highly active and less

active) (Wang et al., 2019). In clinical research, it is an omnipresent problem to recruit

minorities into randomized trials (Fisher and Kalbaugh, 2011), thus making it difficult

to assume that the measured effects will generalize to the larger population of interest

(e.g. the United States as a whole, or people afflicted with a particular health condition).

In lab experiments, the sample is often one of convenience such as undergraduates

in rich countries or from pools of potential subjects available online (Henrich et al.,

2010). Field experiments in governance or development such as Dunning et al. (2019)

are conducted in particular countries or in particular communities, but the policy

implications of such work stretch far beyond the borders of the study population.

As in Dunning et al. (2019), the desire is not just to understand how Burkina Faso

voters respond to more information about their political leaders, but to understand

how voters across the world might respond to similar informational treatments. The

same is true for experiments in development economics, such as microfinance (Meager,

21



2019) and for studies of internet phenomena (Munger, 2018). In these cases, it isn’t a

surprise after running an experiment that generalizing the knowledge is important;

indeed, generalization of knowledge to a broader population is core to the motivation

for the experiment in the first place.

We pre-suppose that an experimenter knows ex-ante the population on which they

wish to draw broader inferences. The task we consider, therefore, is to design an

experiment that best allows the generation of causal knowledge on this inferential

target. While previous work (Hartman et al., 2015; Dehejia et al., 2019; Stuart et al.,

2011; DuGoff et al., 2014) has examined corrections on the analysis side to extrapolate

estimates from sample to target population, the novelty of this work is in doing this

through a design-based solution. That is, if you know your goal is to generalize to

a target population, we consider how that should modify experimental design. We

focus in particular on the “S-admissability” condition for transportability, in which

the outcome distribution conditional on a set of covariates is the same in both the

source and target distributions (Pearl and Bareinboim, 2011).

Contributions. Using the Mahalanobis distance and importance weighting, we

design an estimator with a balancing condition for the target distribution’s ATE that

is unbiased and has low variance.

• In Section 2.3, we introduce an importance-weighted estimator with a balance

condition called Target Balance that explicitly considers the target distribution in

the design phase.

• In Section 2.5.1 we show that using the importance-weighted estimator with Target

Balance results in an unbiased estimator of the target distribution’s ATE (Theorem 4)

• We analyze the variance assuming a linear model. In Section 2.5.2.1, we show

that when the dimension of the covariates d = 1, for a finite sample size n, Target

Balance reduces the variance (Corollary 3). Moreover, among all balance criteria

with rejection probability at most α (including balancing by only considering the
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source distribution, which we call Source Balance), Target Balance achieves the

optimal variance reduction (Theorem 5). When d ≥ 1 (Section 2.5.2.2), when the

sample size is large, Target Balance reduces the variance (Theorem 6) and achieves

a lower variance than Source Balance (Theorem 7).

• In Section 2.6 we perform experiments1 to show that Target Balance has small

mean-squared errors even for d > 1, small sample size and non-linear model.

2.2 Problem Setting

We first fix notation before proceeding to the problem setting. Upper-case letters

are used to denote random variables, lower-case letters are used to denote values taken

by them. We use bold-faced letters to denote n samples and normal letters to denote

a single sample. For example, Xi ∈ Rd is a random variable denoting the covariates of

sample i. X = (X1, ..., Xn)T ∈ Rn×d is the random variables X1, .., Xn concatenated

together. xi ∈ Rd is a value of Xi, and x = (x1, ..., xn)T ∈ Rn×d is a value of X.

Some random variables, like X, can have two different distributions, either source

distribution or target distribution. In that case, we use ESX, varSX and covSX to

denote the expectation, variance and covariance with respect to the source distribution,

and ETX, varTX and covTX to denote with respect to the target distribution. We

use no superscripts when there is no confusion. For example EAi is the expectation of

the treatment assignment Ai of sample i. For a random variable R, we use ER, varR

and covR to denote the expectation, variance and covariance over the randomness of

R. For example, ESX denote the expectation over the randomness of X = (X1, ..., Xn)T

according to the source distribution. We omit the subscripts when it’s clear.

The problem considered in this chapter is as follows. We assume that we are

presented with two populations, referred to as the source and target populations, with

1Code for this chapter is available at https://github.com/myphan9/Designing_
Transportable_Experiments

23

https://github.com/myphan9/Designing_Transportable_Experiments
https://github.com/myphan9/Designing_Transportable_Experiments


corresponding densities pS and pT , respectively. We further assume that we observe a

set of pre-treatment covariates from the source population, x1, . . . xn ∼ pS. We assume

that we are freely able to assign treatment, a1, . . . , an ∈ {0, 1} to individuals observed

in the source population and observe their outcomes, y1, . . . , yn ∈ R. The estimand of

interest is the average treatment effect for the target population (the population of

individuals which were not subject to an experiment),

τTY = ET [Y A=1 − Y A=0]. (2.1)

Where Y A=0, Y A=1 are the potential outcomes (Rubin, 2011), i.e., the values of Y

that would have been observed had treatment been observed at A = 1 or A = 0,

respectively. We use Y to denote (Y 0, Y 1) and Y ∗ to denote the observed outcome.

In order to make this problem tractable we will assume the following throughout

the remainder of the chapter:

Assumption 3. Equality of conditional densities, i.e., pS(Y |X) = pT (Y |X) (note

pS(X) 6= pT (X) in general).

This assumption places identification of the transportability of effects under the

rubric of S-admissability (Pearl and Bareinboim, 2011).

Assumption 4. Overlap between source and target distributions, i.e., pT (X) > 0 =⇒

pS(X) > 0.

Assumption 5.

Y 1 = ψ(X)Tβ1 + E1 Y 0 = ψ(X)Tβ0 + E0

where ψ is a basis function and E1, E0 are mean zero random variables.
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The linear model is a simple but fundamental model. We leave the extension to

more complex models to future works. To reduce notational clutter, and without

loss of generality, we will assume that ψ is the identity function for the remainder of

chapter so that we can write X instead of ψ(X).

Assumption 6. The ratio of the pdfs, pT (X)/pS(X), is known.

In a nested trial design (Dahabreh et al., 2019), the experimenter is given a set

of trial-eligible individuals (called the actual population), which is assumed to be

random samples from a population (the target population). In the "census of the

actual population" variant, each individual in the actual population is sampled to

be in the trial with an indicator random variable S where S = 1 indicates that the

individual is selected to be in the trial (the source population) and S = 0 indicates

that the individual is not selected. The ratio of the pdfs can be calculated as

pT (X)

pS(X)
=

p(X)

p(X|S = 1)
=

p(S = 1)

p(S = 1|X)
.

In general the assumptions, though nontrivial, are common throughout the lit-

erature on transportability (Stuart et al., 2011; Hartman et al., 2015; Pearl and

Bareinboim, 2011). We conjecture that similar results to those in this chapter will hold

in the case in which importance weights are estimated with parametric convergence

rates. We leave this extension as future work.

For a sample i, let Xi, Ai, Y a
i and Y ∗i be the covariates, treatment, outcome of

treatment a, and observed outcome. Let n0 be the size of the control group (where

Ai = 0) and n1 be the size of the treatment group (where Ai = 1). Similar to common

practice (c.f., Stuart et al. (2011); Hartman et al. (2015); Rudolph and van der Laan

(2017); Buchanan et al. (2018)), we infer τTY with importance weights,
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τ̂TY
def
=

1

n1

∑
i:Ai=1

WiY
∗
i −

1

n0

n∑
i:Ai=0

WiY
∗
i

=
1

n1

∑
i:Ai=1

WiY
1
i −

1

n0

n∑
i:Ai=0

WiY
0
i

=
1

n1

∑
i:Ai=1

WiAiY
1
i −

1

n0

n∑
i:Ai=0

Wi(1− Ai)Y 0
i

=
1

n1

n∑
i=1

WiAiY
1
i −

1

n0

n∑
i=1

Wi(1− Ai)Y 0
i (2.2)

where Wi = pT (Xi)
pS(Xi)

. While equation 2.2 is unbiased, the estimate can incur large

variance in the presence of large importance weights.

For ease of notation we define Zi = 2Ai − 1 ∈ {−1, 1} and let Z be the n × 1

vector of random variables Z1, ..., Zn and z be a value taken by Z. Yi = (Y 0
i , Y

1
i ) is a

random variable denoting all possible outcomes of sample i. Y = (Y1, ..., Yn)T ∈ Rn×2

is the random variables Y1, .., Yn concatenated together. yi ∈ R2 is a value of Yi, and

y = (y1, ..., yn)T ∈ Rn×2 is a value of Y. Let wi = pT (xi)
pS(xi)

and w be the n× n diagonal

matrix with w(i, i) = wi. For matrix a, we use ã to denote wa where each row i of a

is multiplied by wi.

2.3 Designing for Transportation

We consider n0 = n1 = n/2 throughout the chapter. The core contribution of this

work is a procedure to estimate equation 2.1 which explicitly considers the target

population when designing the experiment for the source population. We focus on

adapting re-randomization, an experimental design procedure which optimizes balance,

i.e., the difference in means of X between treatment and control groups. Specifically,

the experimenter specifies a balance criterion and then repeatedly randomly assign

individuals to treatment and control group until the balance criterion is satisfied. A

rejection threshold is the probability that the assignment is rejected. We define the

following balance criterion.
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Definition 1 (Target Balance). With a rejection threshold α, define the balance

condition:

φαT (x,Z) =


1, if M( 2

n
(wx)TZ) < a(x)

0, otherwise

where M( 2
n
(wx)TZ) is a distance (defined below in Eq. 2.3) between the covariates

associated with treatment and control given by Z and a(x) is chosen such that P(φαT =

1|x) = 1− α.

We omit α and simply write φT when α is not necessary for exposition. We omit

x and write a when there is no confusion. We also reuse the notation and use φa(x)
T

instead of φαT (recalled that a(x) is chosen such that P(φαT = 1|x) = 1− α).

The full assignment procedure is then

1. Assign A randomly for each person 1, . . . , n in the source population such that∑
i ai = n1. There are

(
n
n1

)
ways to choose this, each of which is equally likely.

2. If φT (x, z) = 0 return to step (1).

3. Conduct experiment with treatment assignments, A.

Following standard practice in rerandomization (Morgan et al., 2012), we will focus

on a criterion based on Mahalanobis distance, but incorporating a weighting term to

express our desire for balance in the target distribution rather than in the source. We

refer to this weighted Mahalanobis distance as M( 2
n
(wx)TZ), where M(·) is defined

as:

M(U)
def
= (U)T Cov(U)−1 (U)

= ‖B‖2 where B = UCov(U)−1/2. (2.3)
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Thus, the balance condition M( 2
n
(x)TZ) < a2 is equivalent to truncating the square

norm of B to be less than a. Note that this is a standardized measure of the difference

in importance-weighted covariate-means between treatment and control, since

2

n

∑
i:Zi=1

wixi −
2

n

∑
i:Zi=−1

wixi =
2

n
(wx)TZ.

Thus, rerandomization simply rejects designs with covariate imbalance larger than a

pre-specified value.

The novelty in our proposed design is to reject samples based on imbalance in

the the target distribution rather than based on imbalance in the source distribution.

The standard in the rerandomization literature is to focus on balance in the source

distribution, which in our setup implies assuming that the target distribution is equal

to the source distribution. Therefore, importance weights in this case are all equal to

one. We call this balancing condition Source Balance, which we denote by φαS(x,Z).

We explain the intuition behind using Target Balance rather than Source Balance.

An unbiased estimator for the source’s ATE is: τ̂SY
def
= 1

n1

∑
iAiY

1
i − 1

n0

∑
iAiY

0
i . There

are existing results (Li et al., 2018; Harshaw et al., 2019) that can be applied to linear

models to show variance reduction of τ̂SY with Source Balance defined by x.

By defining new variables Ỹ a
i = Wi · Y a

i for a ∈ {0, 1}, the importance weighted

estimator can now be expressed in a similar form to τ̂SY : τ̂TY = 1
n1

∑
iAiỸ

1
i − 1

n0

∑
iAiỸ

0
i .

We are no longer in a linear setting because Ỹ a
i = Wi(β

T
aXi + Ea). But by defining

X̃i = WiXi and Ẽ = WiE we have: Ỹ a
i = βTa X̃i + Ẽa, where E

[
Ỹ a|X

]
is a linear

function of X̃, which can be considered as a feature-transformed X. (Li et al., 2018;

Harshaw et al., 2019) can now be applied to estimate τ̂TY with Target Balance defined

by x̃ = wx.

2We show later in Lemma 34 and Lemma 35 that Cov(xTZ)) = n
n−1x

TQx where Q = In− 1
n11

T .
Eaton and Perlman (1973) discuss conditions for which XTQX is non-singular with probability 1.
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Let ρ(x, z) ∈ {0, 1} be a function of x and z used in the re-randomization procedure.

Note that since we re-sample Z until ρ = 1, only the distribution of Z is affected by

the balance condition. Let Zρ denote the distribution of Z after being accepted by

the balance condition ρ = 1.

2.4 Related Work

Our work relates to and ties together two distinct strands of research: (1) ex-post

generalization of experimental results to population average effects and (2) ex-ante

experimental design. We will discuss each in turn.

Generalization.

Within the literature on methods for generalization, work has generally focused on

ex-post adjustments to experiments previously run.

The foundational work of Stuart et al. (2011) provides an approach based on

propensity scores for generalizing the results of experimental interventions to target

populations. Our work will leverage this general framework, but introduce methods

for optimizing an experimental design to ensure effective generalization performance

of resulting estimates. Hartman et al. (2015) similarly uses a combination of matching

and weighting to generalize experimental results in-sample to a population average

treatment effect on the treated. Other work has also considered weighting-based

approaches to generalization (Buchanan et al., 2018).

Dehejia et al. (2019) shows how to use an outcome-modeling approach to extrapolate

effects estimated in one population to a population. In contrast to Hartman et al.

(2015) and Stuart et al. (2011), this approach relies on modeling the outcomes and then

predicting effects in different locations rather than simply reweighting data observed

in-sample.

Dahabreh et al. (2018) provides a variety of estimation methods to generalize to

a target population, including doubly-robust methods. Rudolph and van der Laan
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(2017), likewise, provides a doubly-robust targeted maximum likelihood estimator for

transporting effects.

There has also been work focused particularly on identification in this setting.

Dahabreh et al. (2019) defines a rigorous sampling framework for describing generaliz-

ability of experimental results and identifiability conditions through the g-formula.

Pearl and Bareinboim (2011) lays out a general framework for determining identifia-

bility of effects generalized to new populations through.

Miratrix et al. (2018) and Coppock et al. (2018) challenge the premise of the

necessity for generalization due to the rarity of heterogeneous treatment effects. These

studies specifically focused on survey experiments, however, and it isn’t truly up

for debate that many important objects of study have important heterogeneous

components (Allcott, 2015; Vivalt, 2015; Dehejia et al., 2019).

Experimental design.

The standard practice for experimental design is blocking (Greevy et al., 2004), in

which units are divided into clusters and then a fixed number of units within each

cluster are assigned to treatment. This ensures balance on the cluster indicators

within the sample. Higgins et al. (2016) provides a blocking scheme based on k-

nearest-neighbors that can be calculated more efficiently than the “optimal” blocking

of (Greevy et al., 2004).

Kallus (2018) takes an optimization approach to the problem of experimental

design. This work optimizes treatment allocations based on in-sample measures of

balance (particularly with respect to kernel means), showing how assumptions of

smoothness are necessary to improve on simple Bernoulli randomization.

Rerandomization approaches simply draw allocations randomly until one is located

which meets the pre-specified balance criteria. This is also the basis of our proposed

method. Morgan et al. (2012) analyzes the rerandomization procedure of discarding

randomized assignments that have more in-sample imbalance than a pre-specified
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criteria in terms of Mahalanobis distance. Li et al. (2018) provides asymptotic results

for rerandomization that does not rely on distributional assumptions on the covariates.

Harshaw et al. (2019) provides an efficient method for obtaining linear balance

using a Gram-Schmidt walk. Their algorithm includes a robustness-balance tradeoff

tuneable by a parameter in their algorithm, and provides useful tools for analyzing

experimental design which we use in our theoretical analyses in Section 2.5.

All aforementioned work on experimental design places as its objective estimation

of effects on the sample (i.e. it optimizes for the sample average treatment effect).

This work departs by considering the alternative objective of prioritizing estimation

on a target population (i.e. the population average treatment effect).

2.5 Analysis

In this section we will analyze the expectation and variance of our importance-

weighted estimator in Eq. 2.2 with Target Balance in Definition 1.

Section 2.5.1 shows that using the importance-weighted estimator with Target

Balance results in an unbiased estimator of the target’s ATE (Theorem 4).

In Section 2.5.2 we analyze the variance. In Section 2.5.2.1, Corollary 3 shows

that when the dimension of the covariates d = 1, for a finite sample size n, Target

Balance reduces the variance. Moreover, among all reasonable balance criteria with

rejection probability at most α (including Source Balance), Target Balance achieves

the optimal variance reduction (Theorem 5). Section 2.5.2.2 shows that when d ≥ 1,

when the sample size is large, Target Balance reduces the variance (Theorem 6) and

achieves a lower variance than Source Balance (Theorem 7).

2.5.1 Expectation

In this section we will show that our importance-weighted estimator in Eq. 2.2 is

an unbiased estimator of the target’s ATE with Target Balance:
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Theorem 4. Let τ̂TY be the importance-weighted estimator in Equation 2.2. When

n0 = n1 = n/2: ESX,Y,ZφT
[
τ̂TY
]

= τTY .

The proof makes use of the fact that the conditional distributions of Y given X

in both the source and the target are the same (pS(Y |X) = pT (Y |X)), and therefore
pT (X)
pS(X)

= pT (X,Y )
pS(X,Y )

.

2.5.2 Variance

In this section we analyze the variance. We use Ỹ a
i and ỹai to denote WiY

a
i and

wiy
a
i for a ∈ {0, 1}.

2.5.2.1 Finite Sample Size Variance Reduction for d = 1

In this section we will show that when X is a 1-dimensional random variable and

the sample size is finite, Target Balance reduces the variance compared to complete

randomization. Moreover, among all symmetric balance conditions (defined below)

with rejection probability at most α (including Source Balance), Target Balance

achieves the optimal variance reduction. The variance can be decomposed into 2 terms

(Lemma 5) where the second term does not depend on the balance. The first term is

the variance of a 1d symmetric random variable, and Target Balance corresponds to

truncating the tail, which results in the largest variance reduction (Theorem 5).

Let ρ(x,Z) ∈ {0, 1} denote a function that depends on only x and Z, and satisfies

the symmetric condition ρ(x,Z) = ρ(x,−Z). This definition captures all reasonable

balance conditions (including Source Balance) where ρ = 1 denotes acceptance and

ρ = 0 denotes rejection. Note that the constant function ρ(x,Z) = 1 for all x,Z also

satisfies the criteria ρ(x,Z) = ρ(x,−Z), and ρ = 1 becomes the entire sample space.

We proceed to compare Target Balance with any ρ satisfying the criteria above.

First we note that by the law of total variance:
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Lemma 3. For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) = ρ(x,−Z):

varSX,Y,Zρ(τ̂
T
Y ) = ESX

[
varSY,Zρ(τ̂

T
Y |X)

]
+ varSX(

1

n

n∑
i=1

Wi(β1 − β0)TXi) .

Note that the second term does not depend on ρ. Therefore we focus on analyzing

the variance conditioned on X = x in this section, and the result for varSX,Y,Zρ(τ̂
T
Y )

easily follows from varSY,Zρ(τ̂
T
Y |x).

Let Ci =
Y 1
i +Y 0

i

2
, ci =

y1
i+y0

i

2
, β = β1+β0

2
, E = E1+E0

2
and σ2

E = var(E). The variance

of the importance weighted estimator can be written as

Lemma 4. Let n0 = n1 = n/2. For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) =

ρ(x,−Z):

varZρ(τ̂
T
Y |x,y) =

4

n2
EZρ

( n∑
i=1

Ziwici

)2 ∣∣∣∣x,y
 .

Using the law of total variance and the fact that WiCi = WiXiβ + WiE and

E[E|x] = 0 we have:

Lemma 5. Let n0 = n1 = n/2. For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) =

ρ(x,−Z):

varSY,Zρ(τ̂
T
Y |x) =

4

n2
β2EZρ

( n∑
i=1

wixiZi

)2 ∣∣∣∣x
+

6

n2
σ2
E

n∑
i=1

w2
i .

We note that the design affects only the first term in the above decomposition. Let

V
def
= 2

n

∑
i Ziwixi = 2

n
x̃TZ and let B := V var(V )−1/2. Recall that the Malahanobis

distance M( 2
n
(wx)TZ) = ||B||2. Re-randomization procedure corresponds to truncat-

ing B where B is a mean zero random variable (as Zi’s are random variables) that is

symmetric about zero.
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It is easy to show that the best way to truncate a symmetric random variable

B to minimize the variance is to truncate the tail symmetrically ‖B‖2 < a for some

threshold a. Therefore Target Balance reduces the variance, and among all the balance

conditions with rejection probability at most α (including Source Balance), Target

Balance achieves the optimal variance reduction.

Theorem 5. Let n0 = n1 = n/2 and d = 1. Let ρ(x,Z) be a function satisfying

ρ(x,Z) = ρ(x,−Z) and P(ρ = 1|x) ≥ 1− α. Then:

varSY,Zφα
T

(τ̂TY |x) ≤ varSY,Zρ(τ̂
T
Y |x).

Applying Theorem 5 with ρ being the constant function ρ(x,Z) = 1 for all x,Z,

we have:

Corollary 3. When d = 1 and n0 = n1 = n/2, using Target Balance reduces the

variance compared to complete randomization:

varSY,ZφT (τ̂TY |x) ≤ varSY,Z(τ̂TY |x).

2.5.2.2 Asymptotic Variance Reduction for d ≥ 1

In this section we show that when the sample size is large, Target Balance reduces

the variance and achieves a lower variance than Source Balance. We discuss the case

of finite sample size in the appendix.

From Li et al. (2018), the importance weighted estimator can be decomposed into 2

components: part 1 is related to the covariates and part 2 is unrelated. Only part 1 is

reduced by rerandomization while part 2 is unaffected. The covariates can be chosen to

be the importance-weighted covariates (Target Balance) or the unweighted covariates

(Source Balance). Since the importance-weighted covariates aligns better with the
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importance-weighted outcomes, part 1 will be larger and therefore the reduction by

re-randomization will be larger.

In this section we condition on x and y so the randomness only comes from Z.

Similar to Section 2.5.2.1, first we note that by the law of total variance:

Lemma 6. For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) = ρ(x,−Z):

varSX,Y,Zρ(τ̂
T
Y ) = ESX,YvarZρ(τ̂TY |X,Y) + varSX,Y(

n∑
i=1

Wi(Y
1
i − Y 0

i )).

Since the second term does not depend on ρ, we focus on analyzing the variance

conditioned on X = x,Y = y in this subsection. The result for varSX,Y,Zρ(τ̂
T
Y ) follows

from varZρ(τ̂TY |X,Y).

Conditioning on x and y, Li et al. (2018) state that if the following conditions

(Condition 1 in Li et al. (2018)) are satisfied, finite central limit theorem implies that

(τ̂TY ,
2
n
x̃TZ) approaches a normal distribution as n goes to infinity. Let avg(ỹa), avg(x)

and avg(x̃) denote the average of the rows of ỹa for a ∈ {0, 1},x and x̃ and let

τ̃i
def
= ỹ1

i − ỹ0
i .

Assumption 7. As n→∞:

• The finite population variances and covariance cov(x)
def
=
∑n

i=1(xi − avg(x))(xi −

avg(x))T/(n − 1), cov(x̃)
def
=
∑n

i=1(x̃i − avg(x̃))(x̃i − avg(x̃))T/(n − 1), cov(τ̃ )
def
=∑n

i=1(τ̃i − avg(τ̃ ))(τ̃i − avg(τ̃ ))T/(n − 1), cov(ỹa)
def
=
∑n

i=1(ỹ
a − avg(ỹa))(ỹa −

avg(ỹa))T/(n−1), cov(ỹa,x)
def
=
∑n

i=1(ỹa−avg(ỹa))(xi−avg(x))T/(n−1), cov(ỹa, x̃)
def
=∑n

i=1(ỹa−avg(ỹa))(x̃i−avg(x̃))T/(n−1) for treatment index a ∈ {0, 1} have limiting

values, and the limit of cov(x) and cov(x̃) is non-singular.

• max1≤i≤n |ỹai − avg(ỹ)a|2/n → 0 for a ∈ {0, 1}, max1≤i≤n ‖xi − avg(x)‖2
2 /n → 0

and max1≤i≤n ‖x̃i − avg(x̃)‖2
2 /n→ 0
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We show in Lemma 35 that Assumption 7 is satisfied in our case where all variables

are sampled i.i.d from distributions when Assumption 8 is satisfied. Therefore we

assume Assumption 8 for the remaining of the section.

Assumption 8. For a random variable X ∈ Rd, let X(k) denote the k-th coordinate

of X for 1 ≤ k ≤ d. We assume that Y a, a ∈ {0, 1}, X(j), 1 ≤ j ≤ d and W =

pT (X)
pS(X)

have finite 8th moment according to the source distribution, and CovS(X̃) and

CovS(X̃) = CovS(pT (X)
pS(X)

X) is non-singular.

We apply Corollary 2 in Li et al. (2018) to give the expression for the asymptotic

variance of τ̂TY under Mahalanobis balance condition. Let as-var denote the variance

of the asymptotic sampling distribution of a sequence of random variables. Applying

Corollary 2 in Li et al. (2018) to our case with covariates x̃ and x and the weighted

outcome ỹ directly yields the following result showing both Target Balance and Source

Balance reduce the variance.

Theorem 6 (Shown in the proof of Corollary 2 in (Li et al., 2018)). Suppose n0 =

n1 = n/2. Let τx,y
def
= EZ[τ̂TY |x,y]. When Assumption 7 is satisfied, conditioning on x

and y:

as-varZφS
(√

n(τ̂TY − τx,y)|x,y
)

= as-varZ(
√
n(τ̂TY − τx,y)|x,y)(1− (1− vd,a) lim

n→∞
R2

x),

as-varZφT
(√

n(τ̂TY − τx,y)|x,y
)

= as-varZ(
√
n(τ̂TY − τx,y)|x,y)(1− (1− vd,a) lim

n→∞
R2

x̃),

where R2
x̃ = Corr(τ̂TY ,

2
n
x̃TZ), R2

x = Corr(τ̂TY ,
2
n
xTZ) and vd,a =

P (χ2
d+2≤a)

P (χ2
d≤a)

.

We now show that Target Balance has a smaller variance than Source Balance.

We use the following equivalent expressions for R2
x and R2

x̃. Let Q = n
n−1

(
Id − 1

n
11T

)
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where Id is an identity matrix of dimension d. Recall that ci =
y0
i+y1

i

2
. Let c

def
=

(c1, · · · , cn) and c̃ = wc. We will show that:

Lemma 7. When n0 = n1 = n/2:

R2
x =

√
‖Qc̃‖2 −minβ̂ ‖Qc̃−Qxβ̂‖2

‖Qc̃‖2
.

R2
x̃ =

√
‖Qc̃‖2 −minβ̂ ‖Qc̃−Qx̃β̂‖2

‖Qc̃‖2
.

Intuitively R2
x̃ and R2

x describe how well c̃ is described by a linear function of x̃

and x, respectively. Because of our model, a linear model in terms of x̃ = wx fits

c̃ = wc better than a linear model in terms of x. Therefore, R2
x̃ will be larger than

R2
x and using φT will result in a smaller variance than φS.

Therefore, asymptotically, with the same rejection probability, using Target Balance

results in a smaller variance than Source Balance .

Theorem 7. Suppose n0 = n1 = n/2 and Assumption 8 is true. Recall that P(φaS =

0|x) is the rejection probability when using threshold a in Source Balance, and P(φaT =

0|x) is the the rejection probability when using threshold a in Target Balance. With

the same rejection threshold a:

lim
n→∞

P(φaS = 0|x) = lim
n→∞

P(φaT = 0|x) for any x,

as-varZφa
T

(
τ̂TY |X,Y

)
≤ as-varZφa

S

(
τ̂TY |X,Y

)
almost surely.

2.6 Simulations

We perform simulations on the two following models:
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Figure 2.1: Bias, Variance and MSE as a function of the sample size. All unweighted
estimators are biases because they measure the ATE of the source distribution. As there
is no importance weight threshold, all weighted estimators are unbiased (Theorem 4)
but the weighted estimator with Target Balance has the lowest variance. The y axes
are in log scale.

Linear Model

Y 0 = X +Norm(0, 1);Y 1 = 3X +Norm(0, 1)

Nonlinear Model

Y 0 = XTX +Norm(0, 1);Y 1 = 2XTX +Norm(0, 1)

We use the following source and target distributions for X. In the source distribution,

X ∼ MultivariateNorm(1, I) where I is the identity matrix. In the target distribution,

X ∼ MultivariateNorm(1 + δ, I) where δ is a parameter that will be specified later.

We randomly choose an assignment such that n1 = n0 = n/2. To select the random

assignment with the top balance, instead of choosing a fixed threshold α, we select the

rejection probability α = 0.99 as in Def. 1. To implement this, we draw 100/(1− α)
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Figure 2.2: Bias, Variance and MSE as a function of the distance δ (defined in
Section 2.6) between the source and the target distribution. Because of the importance
weight threshold, the biases of the importance weighted methods increase as the δ
increase. If the distance is too large, the bias of the importance weighted estimators is
large, leading to high MSE. However when the distance is not too large, the weighted
estimator with Target Balance has the lowest MSE. The y axes are in log scale.
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assignments at random, calculate their Mahalanobis distance and pick one among the

smallest 100 uniformly at random.

If the source and the target distributions are far away, importance weighting can

induce large variance. We use the weight clipping technique, in which if the importance

weight is larger than a threshold, it will be set to that threshold. It will induce bias

but reduce variance, and therefore reduce mean square error (MSE).

We compare 6 methods (WE, CR), (WE, SB), (WE, TB), (UE, CR), (UE, SB)

and (UE, TB) by combining the following 2 properties:

Weighted and Unweighted.

• Weighted Estimator (WE). We consider the importance weighted estimator in

Eq. 2.2.

• Unweighted Estimator (UE). We consider the unweighted estimator which is equiva-

lent to Eq.2.2 with all weights set to one.

Complete Randomization, Source Balance and Target Balance.

• Complete Randomization (CR). This is the randomized assignment without balanc-

ing.

• Source Balance (SB). This is the rerandomization algorithm seeking Source Balance.

• Target Balance (TB). This is the rerandomization algorithm seeking Target Balance

as in Definition 1.

We study the MSE of our methods in relation to the 3 following parameters: the

sample size n, the importance weights threshold and the distance δ. Recall that in

the source distribution, X ∼ MultivariateNorm(1, I) where I is the identity matrix

and in the target distribution, X ∼ MultivariateNorm(1 + δ, I).

Sample Size. In this experiment for both models we vary the sample size from

500 to 9500 with step size 500 and set the number of covariates to 10. For the linear

model, δ = 0.3. For the nonlinear model, δ = 0.2. δ is chosen to be small enough so

that we do not need weight clipping. For each sample size we repeat the experiment
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500 times. There is no importance weight threshold. The results are shown and

discussed in Figure 2.1.

Threshold. In this experiment for both models we vary the importance weight

threshold from 5, then 10 to 190 with step size 10. We set the number of covariates to

10 and the sample size to be 1000 and δ = 0.6. δ is chosen to be large enough so that

weight clipping is necessary. For each threshold we repeat the experiment 500 times.

The results are shown and discussed in Figure 2.3.

Distance δ. In this experiment for both models we vary δ from 0.1 to 0.9 with

step size 0.1. We set the number of covariates to 10, the sample size to be 1000 and

the importance weight threshold to be 40. From the weight threshold experiment, we

know that if the weight threshold is too large, the variance is too high while if the

weight threshold is too small, the bias will be too high. Therefore we pick the value

40 as a reasonable weight threshold. For each threshold we repeat the experiment

500 times. The results are shown and discussed in Figure 2.2. Across all simulations,

Target Balance with the Weighted Estimator substantially reduces the MSE.

2.7 Conclusion

In this work, we’ve shown that a desire for generalizability should change the way

experiments are designed and run. In particular, we argue that balance should be

sought on the target population rather than the samples in which randomization will

actually be performed. We present a method for designing an experiment along these

lines, show theoretically that it is unbiased and more efficient than sample balancing.
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CHAPTER 3

TOWARDS PRACTICAL MEAN BOUNDS FOR SMALL
SAMPLES

3.1 Introduction

The chapter is based on the paper published in the International Conference on

Machine Learning 2021 (Phan et al., 2021b). In this work, we revisit the classic

statistical problem of defining a confidence interval on the mean µ of an unknown

distribution with CDF F from an i.i.d. sample X = X1, X2, . . . , Xn, and the closely

related problems of producing upper confidence bounds on the mean.

To produce a non-trivial UCB, one must make assumptions about F , such as finite

variance, sub-Gaussianity, or that its support is contained on a known interval [a, b].

We adopt this last assumption, working with distributions whose support is known to

fall in an interval [a, b]. For UCBs, we refer to two separate settings, the one-ended

support setting, in which the distribution is known to fall in the interval [−∞, b], and

the two-ended support setting, in which the distribution is known to fall in an interval

[a, b], where a > −∞ and b <∞.

A UCB has guaranteed coverage for a set of distributions F if, for all sample sizes

1 ≤ n ≤ ∞, for all confidence levels 1 − α ∈ (0, 1), and for all distributions F ∈ F ,

the bound µ1−α
upper satisfies

ProbF [µ ≤ µ1−α
upper(X1, X2, ..., Xn)] ≥ 1− α, (3.1)

where µ is the mean of the unknown distribution F .
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Among bounds with guaranteed coverage for distributions on an interval [a, b], our

interest is in bounds with good performance on small sample sizes. The reason is that,

for ‘large enough’ sample sizes, excellent bounds and confidence intervals already exist.

In particular, the confidence intervals based on Student’s t−statistic (Student, 1908)

are satisfactory in terms of coverage and accuracy for most practitioners, given that

the sample size is greater than some threshold.1

The validity of the Student’s t method depends upon the Gaussianity of the

sample mean, which, strictly speaking does not hold for any finite sample size unless

the original distribution itself is Gaussian. However, for many applications, the

sample mean becomes close enough to Gaussian as the sample size grows (due to

the effects described by the central limit theorem), that the resulting bounds hold

with probabilities close to the confidence level. Such results vary depending upon the

unknown distribution, but it is generally accepted that a large enough sample size

can be defined to cover any distributions that might occur in a given situation.2 The

question is what to do when the sample size is smaller than such a threshold.

Establishing good confidence intervals on the mean for small samples is an important

but often overlooked problem. The t-test is widely used in medical and social sciences.

Small clinical trials (such as Phase 1 trials), where such tests could potentially be

applied, occur frequently in practice (Institute of Medicine, 2001). In addition,

there are several machine learning applications. The sample mean distribution of an

importance-weighted estimator is skewed even when the sample size is much larger

than 30, so tighter bounds with guarantees may be beneficial. Algorithms in Safe

Reinforcement Learning (Thomas et al., 2015) use importance weights to estimate the

1An adequate sample size for the Student’s t method depends upon the setting, but a common
rule is n > 30.

2An example in which the sample mean is still visibly skewed (and hence inappropriate for use
with Student’s t) even after n = 80 samples is given for log-normal distributions in the supplementary
material.
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return of a policy and use confidence bounds to estimate the range of the mean. The

UCB multi-armed bandit algorithm is designed using the Hoeffding bound - a tighter

bound may lead to better performance with guarantees.

In the two-ended support setting, our bounds provide a new and better option for

guaranteed coverage with small sample sizes.3 At least one version of our bound is

tighter (or as tight) for every possible sample than the bound by Anderson (Anderson,

1969a), which is arguably the best existing bound with guaranteed coverage for small

sample sizes. In the limit as a→ −∞, i.e., the one-ended support setting, this version

of our bound is equivalent to Anderson.

It can be shown from Learned-Miller and Thomas (2019) that Anderson’s UCB is

less than or equal to Hoeffding’s for any sample when α ≤ 0.5, and is strictly less than

Hoeffding’s when α ≤ 0.5 and n ≥ 3. Therefore our bound is also less than or equal

to Hoeffding’s for any sample when α ≤ 0.5, and is strictly better than Hoeffding’s

inequality when α ≤ 0.5 and n ≥ 3.

Below we review bounds with coverage guarantees, those that do not exhibit

guaranteed coverage, and those for which the result is unknown.

3.1.1 Distribution free bounds with guaranteed coverage

Several bounds exist that have guaranteed coverage. These include Hoeffding’s

inequality (Hoeffding, 1963), Anderson’s bound (Anderson, 1969a), and the bound

due to Maurer and Pontil (2009).

Hoeffding’s inequality. For a distribution F on [a, b], Hoeffding’s inequality

(Hoeffding, 1963) provides a bound on the probability that the sample mean, X̄n =

1
n

∑n
i=1 Xi, will deviate from the mean by more than some amount t ≥ 0:

3Code accompanying this chapter is available at https://github.com/myphan9/small_sample_
mean_bounds.
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Pr
(
µ− X̄n ≤ t

)
≤ e

− 2nt2

(b−a)2 . (3.2)

Defining α to be the right hand side of this inequality, solving for t as a function of α,

and rewriting in terms of α rather than t, one obtains a 1− α UCB on the mean of

bα,Hoeffding(X)
def
= X̄n + (b− a)

√
ln(1/α)

2n
. (3.3)

Maurer and Pontil. One limitation of Hoeffding’s inequality is that the amount

added to the sample mean to obtain the UCB scales with the range of the random

variable over
√
n, which shrinks slowly as n increases.

Bennett’s inequality (Bennett, 1962) considers both the sample mean and the

sample variance and obtains a better dependence on the range of the random variable

when the variance is known. Maurer and Pontil (2009) derived a UCB for the variance

of a random variable, and suggest combining this with Bennet’s inequality (via the

union bound) to obtain the following 1− α UCB on the mean:

bα,M&P(X)
def
= X̄n +

7(b− a) ln(2/α)

3(n− 1)
+

√
2σ̂2 ln(2/α)

n
.

Notice that Maurer and Pontil’s UCB scales with the range (b− a), divided by n

(as opposed to the
√
n of Hoeffding’s). However, the

√
n dependence is unavoidable

to some extent: Maurer and Pontil’s UCB scales with the sample standard deviation

σ̂ divided by
√
n. As a result, Maurer and Pontil’s bound tends to be tighter than

Hoeffding’s when both n is large and the range of the random variable is large relative

to the variance. Lastly, notice that Maurer and Pontil’s bound requires n≥2 for the

sample standard deviation to be defined.
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Anderson’s bound. Anderson (1969a)4 introduces a bound by defining an

‘envelope’ of equal width that, with high probability, contains the true CDF. The

upper and lower extremes of such an envelope define the CDFs with the minimum

and maximum attainable means for distributions that fit within the envelope, and

thus bound the mean with high probability.5

In practice, Anderson’s bound tends to be significantly tighter than Maurer and

Pontil’s inequality unless the variance of the random variable is miniscule in comparison

to the range of the random variable (and n is sufficiently large). However, neither

Anderson’s inequality nor Maurer and Pontil’s inequality strictly dominates the other.

That is, neither upper bound is strictly less than or equal to the other in all cases.

However, Anderson’s bound does dominate Hoeffding’s inequality (Learned-Miller and

Thomas, 2019).

Some authors have proposed specific envelopes for use with Anderson’s technique

(Diouf and Dufour, 2005; Learned-Miller and DeStefano, 2008; Romano and Wolf,

2000). However, none of these variations are shown to dominate Anderson’s original

bound. That is, while they give tighter intervals for some samples, they are looser for

others.

Other bounds. Fienberg et al. (1977) proposed a bound for distributions on a

discrete set of support points, but nothing prevents it, in theory, from being applied

to an arbitrarily dense set of points on an interval such as [0, 1]. This bound has

a number of appealing properties, and comes with a proof of guaranteed coverage.

However, the main drawback is that it is currently computationally intractable, with a

4An easier to access and virtually equivalent version of Anderson’s work can be found in (Anderson,
1969b).

5In his original paper, Anderson also suggests a large family of envelopes, each of which produces
a distinct bound. Our simulation results in Section 3.5 are based on the equal-width envelope, but
our theoretical results in Section 3.4 hold for all possible envelopes.
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computation time that depends exponentially on the number of points in the support

set, precluding many (if not most) practical applications.

In an independent concurrent work, Waudby-Smith and Ramdas (2021) proposed

another confidence interval for the mean, which generalizes and improves upon Ho-

effding’s inequality.

3.1.2 Bounds that do not exhibit guaranteed coverage

Many bounds that are used in practice are known to violate Eq. (3.1) for certain

distributions. These include the aforementioned Student’s t method, and various

bootstrap procedures, such as the bias-corrected and accelerated (BCa) bootstrap and

the percentile bootstrap. See Efron and Tibshirani (1993) for details of these methods.

A simple explanation of the failure of bootstrap methods for certain distributions is

given by (Romano and Wolf, 2000, pages 757–758). Presumably if one wants guarantees

of Eq. (3.1), one cannot use these methods (unless one has extra information about

the unknown distribution).

3.1.3 Bounds conjectured to have guaranteed coverage

There are at least two known bounds that perform well in practice but for which

no proofs of coverage are known. One of these, used in accounting procedures, is the

so-called Stringer bound (Stringer, 1963). It is known to violate Eq. (1) for confidence

levels α > 0.5 (Pap and van Zuijlen, 1995), but its coverage for α < 0.5 is unknown.

A little known bound by Gaffke (2005) gives remarkably tight bounds on the mean,

but has eluded a proof of guaranteed coverage. This bound was recently rediscovered

by Learned-Miller and Thomas (2019), who do an empirical study of its performance

and provide a method for computing it efficiently.

We demonstrate in Section 3.4 that our bound dominates those of both Hoeffding

and Anderson. To our knowledge, this is the first bound that has been shown

to dominate Anderson’s bound.

47



3.2 A Family of Confidence Bounds

In this section we define our new upper confidence bound. Let n be the sample size.

We use bold-faced letters to denote a vector of size n and normal letters to denote

a scalar. Uppercase letters denote random variables and lowercase letters denote

values taken by them. For example, Xi ∈ R and X = (X1, ..., Xn) ∈ Rn are random

variables. xi ∈ R is a value of Xi, and x = (x1, ..., xn) ∈ Rn is a value of X. For a

sample x, we let F (x)
def
= (F (x1), · · · , F (xn)) ∈ [0, 1]n.

Order statistics play a central role in our work. We denote random variable order

statistics X(1) ≤ X(2) ≤ ... ≤ X(n) and of a specific sample as x(1) ≤ x(2) ≤ ... ≤ x(n).

Given a sample X = x of size n and a confidence level 1 − α, we would like to

calculate a UCB for the mean. Let F be the CDF of Xi, i.e., the true distribution

and D ⊂ R be the support of F . We assume that D has a finite upper bound. Given

D and any function T : Dn → R we will calculate an upper confidence bound bαD,T (x)

for the mean of F .

We show in Lemma 8 that if D+ is a superset of D with finite upper bound, then

bαD+,T (x) ≥ bαD,T (x). Therefore we only need to know a superset of the support with

finite upper bound to obtain a guaranteed bound.

Let sD
def
= sup{x : x ∈ D}. We next describe a method for pairing the sample

x with another vector ` ∈ [0, 1]n to produce a stairstep CDF function Gx,`. Let

x(n+1)
def
= sD. Consider the step function Gx,` : R → [0, 1] defined from ` and x as

follows (see Figure 3.1a):

Gx,`(x) =


0, if x < x(1)

`(i), if x(i) ≤ x < x(i+1)

1, if x ≥ sD.

(3.4)

In particular, when ` = (1/n, . . . , n/n), Gx,` becomes the empirical CDF. Also note

that when ` = F (x), ∀x,Gx,`(x) ≤ F (x), as illustrated in Figure 3.1b.
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(a) The stairstep function Gx,`, which
is a function of the sample x and a vec-
tor ` of values between 0 and 1. When
` = (1/n, . . . , n/n), Gx,` becomes the em-
pirical CDF.

(b) The CDF of a distribution F in red,
with a random sample of five order statis-
tics on the x-axis. The blue stairstep
function shows the function Gx,`(x) when
` = F (x). Notice that for all x, Gx,`(x) ≤
F (x).

Figure 3.1

Following Learned-Miller and Thomas (2019), if we consider Gx,` to be a CDF, we

can compute the mean of the resulting distribution as a function of two vectors x and

` as

mD(x, `)
def
=

n+1∑
i=1

x(i)(`(i) − `(i−1)) (3.5)

= sD −
n∑
i=1

`(i)(x(i+1) − x(i)), (3.6)

where `(0)
def
= 0, `(n+1)

def
= 1 and x(n+1)

def
= sD. When sD is finite, this is well-defined.

Notice that this function is defined in terms of the order statistics of x and `. Learned-

Miller and Thomas (2019) refer to this as the induced mean for the sample x by the

vector `. Although we borrow the above terms from Learned-Miller and Thomas

(2019), the bound we introduce below is a new class of bounds, and differs from the

bounds discussed in their work.

An ordering on Dn. Next, we introduce a scalar-valued function T which we

will use to define a total order on samples in Dn, and define a set of samples less
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than or equal to another sample. In particular, for any function T : Rn → R, let

SD,T (x) = {y ∈ Dn|T (y) ≤ T (x)}.

The greatest induced mean for a given U. Let U = U1, ..., Un be a sample

of size n from the continuous uniform distribution on [0, 1], with u
def
= (u1, · · · , un)

being a particular sample of U.

Now consider the random quantity

bD,T (x,U)
def
= sup

z∈SD,T (x)

mD(z,U), (3.7)

which depends upon a fixed sample x (non-random) and also on the random variable

U.

Our upper confidence bound. Let 0 < p < 1. Let Q(p, Y ) be the quantile

function of the scalar random variable Y , i.e.,

Q(p, Y )
def
= inf{y ∈ R : FY (y) ≥ p}, (3.8)

where FY (y) is the CDF of Y . We define bαD,T (x) to be the (1 − α)-quantile of the

random quantity bD,T (x,U).

Definition 2 (Upper confidence bound on the mean). Given a sample x and a

confidence level 1− α:

bαD,T (x)
def
= Q(1− α, bD,T (x,U)), (3.9)

where bD,T (x,U) is defined in Eq. 3.7.

To simplify notation, we drop the superscript and subscripts whenever clear. We

show in Section 3.2.1 that this UCB has guaranteed coverage for all sample sizes n, for

all confidence levels 0 < 1− α < 1 and for all distributions F and support D where

sD is finite.
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We show below that a bound computed from a superset D+ ⊇ D will be looser

than or equal to a bound computed from the support D. Therefore it is enough to

know a superset of the support D to obtain a bound with guaranteed coverage.

Lemma 8. Let D+ ⊇ D where sD+ is finite. For any sample x:

bαD(x) ≤ bαD+(x). (3.10)

Proof. Since sD+ is finite, mD+(y,u) is well-defined. Since D ⊆ D+, for any y and u,

mD(y,u) ≤ mD+(y,u). Then

sup
y∈SD(x)

mD(y,u) ≤ sup
y∈SD(x)

mD+(y,u) (3.11)

≤ sup
y∈SD+ (x)

mD+(y,u), (3.12)

where the last inequality is because SD(x) ⊆ SD+(x).

Let bD(x,U) = supz∈SD(x)mD(z,U) and bD+(x,U) = supz∈SD+ (x) mD+(z,U).

Then bαD(x) and bαD+(x) are the (1− α)-quantiles of bD(x,U) and bD+(x,U). Since

bD(x,u) ≤ bD+(x,u) for any u, bαD(x) ≤ bαD+(x).

In Section 3.2.1 we show that the bound has guaranteed coverage. In Section 3.3

we discuss how to efficiently compute the bound. In Section 3.4 we show that when

T is a certain linear function, the bound is equal to or tighter than Anderson’s for

any sample. In addition, we show that when the support is known to be {0, 1},

our bound recovers the well-known Clopper-Pearson confidence bound for binomial

distributions (Clopper and Pearson, 1934). In Section 3.5, we present simulations that

show the consistent superiority of our bounds over previous bounds.

3.2.1 Guaranteed Coverage

In this section we show that our bound has guaranteed coverage in Theorem 8.

We omit superscripts and subscripts if they are clear from context.
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3.2.1.1 Preview of proof

Figure 3.2: Illustrations of Section 3.2.1.1. Left. The yellow region shows samples
of z = [z(1), z(2)] such that bα(z) ≤ bα(xmax). Right. The same yellow region, but in
the coordinates u = F−1(z). We will show that the yellow region is a subset of the
striped, which contains u such that b(xmax,u) ≥ µ.

We explain the idea behind our bound at a high level using a special case. Note

that our proof is more general than our special case, which makes assumptions such

as the continuity of F to simplify the intuition.

Suppose that F is continuous. Then the probability integral transform FX(X) of

X is uniformly distributed on [0, 1] (Angus, 1994). Suppose there exists a sample xµ

such that bα(xµ) = µ. Then the probability that a sample Z outputs bα(Z) < µ is

equal to the probability Z outputs bα(Z) < bα(xµ) (the yellow region on the left of

Fig. 3.2). This is the region where the bound fails, and we would like to show that

the probability of this region is at most α.

Let U def
= F (Z) and u

def
= F (z). Then Ui is uniformly distributed on [0, 1]. If F is

invertible, we can transform the region {z : bα(z) < bα(xµ)} to {u : bα(F−1(u)) <

bα(xµ)} where F−1(u)
def
= (F−1(u1), . . . , F

−1(un)) (the yellow region on the right of

Fig. 3.2).
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Through some calculations using the definition of function b, we can show that

the yellow region {u : bα(F−1(u)) < bα(xµ)} is a subset of the striped region {u :

b(xµ,u) ≥ µ}.

Note that since bα(xµ) = µ, µ is equal to the 1−α quantile of b(xµ,U). Therefore,

by the definition of quantile, the probability of the striped region is at most α:

PU(b(xµ,U) ≥ µ) ≤ α, (3.13)

and thus the probability of the yellow region is at most α.

3.2.1.2 Main Result

In this section, we present some supporting lemmas and then the main result in

Theorem 8. The proofs of the simpler lemmas have been deferred to the supplementary

material.

Lemma 9. Let X be a random variable with CDF F and Y def
= F (X), known as the

probability integral transform of X. Let U be a uniform random variable on [0, 1].

Then for any 0 ≤ y ≤ 1,

P(Y ≤ y) ≤ P(U ≤ y). (3.14)

If F is continuous, then Y is uniformly distributed on [0, 1].

In the next lemma we show that the mean satisfies the following property. Let F

and G be two CDF functions such that F (x) is always larger than or equal to G(x)

for all x. Then the mean of F is smaller than the mean of G.
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Lemma 10. Let F and Gx,` be two CDF functions such that ∀x ∈ R, F (x) ≥ Gx,`(x).

Let µF and µG denote the means of F and Gx,`. Then6

µF ≤ µG. (3.15)

For use in the next lemma, we define a partial order for the samples on Dn. Note

that it is defined with respect to the order statistics of the sample, not the original

components.

Definition 3 (Partial Order). For any two samples z and y, we define z � y to

indicate that z(i) ≤ y(i), 1 ≤ i ≤ n.

Lemma 11. Let Z be a random sample of size n from F . Let U = U1, ..., Un be a

sample of size n from the continuous uniform distribution on [0, 1]. For any function

T : Dn → R and any x ∈ Dn:

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (3.16)

Proof sketch. Let ∪ denote the union of events and {} denote an event. Then for any

x ∈ Dn:

PZ(T (Z) ≤ T (x)) = PZ(Z ∈ S(x)) (3.17)

= PZ(∪y∈S(x){Z = y}) (3.18)

≤ PZ(∪y∈S(x){Z � y}) (3.19)

≤ PZ(∪y∈S(x){F (Z) � F (y)}) by monotone F (3.20)

≤ PU(∪y∈S(x){U � F (y)}). (3.21)

6This is the only property required of the mean for the subsequent lemmas and theorems. Since
quantiles of a distribution also satisfy this condition, this method could also be used to give UCBs
for various quantiles.
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The last step is by an extension of Lemma 9. Recall that mD(y,u) = sD −∑n
i=1 u(i)(y(i+1) − y(i)) where ∀i, y(i+1) − y(i) ≥ 0. Therefore if u � F (y) then

mD(y,u) ≥ mD(y, F (y)):

PU(∪y∈S(x){U � F (y)}) (3.22)

≤ PU(∪y∈S(x){mD(y,U) ≥ mD(y, F (y))}), by Lemma 10 (3.23)

≤ PU(∪y∈S(x){mD(y,U) ≥ µ}), by Lemma 10 (3.24)

≤ PU( sup
y∈S(x)

mD(y,U) ≥ µ) (3.25)

= PU(b(x,U) ≥ µ). (3.26)

We include a more detailed version of the proof for the above lemma in the

supplementary material.

Lemma 12. Let U = U1, ..., Un be a sample of size n from the continuous uniform

distribution on [0, 1]. Let X and Z denote i.i.d. samples of size n from F . For any

function T : Dn → R and any α ∈ (0, 1),

PX (PU(bD,T (X,U) ≥ µ) ≤ α) ≤ PX (PZ(T (Z) ≤ T (X)) ≤ α) .

Proof. From Lemma 11 for any sample x,

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (3.27)

Therefore,

PX (PZ(T (Z) ≤ T (X)) ≤ α) ≥ PX (PU(b(X,U) ≥ µ) ≤ α) . (3.28)
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Lemma 13. Let U = U1, ..., Un be a sample of size n from the continuous uniform

distribution on [0, 1]. Let X be a random sample of size n from F . For any function

T : Dn → R and any α ∈ (0, 1),

PX(bαD,T (X) < µ) ≤ PX (PU(bD,T (X,U) ≥ µ) ≤ α) . (3.29)

Proof. Because bα(x) is the 1 − α quantile of b(x,U), by the definition of quantile:

PU(b(x,U) ≤ bα(x)) ≥ 1− α. Therefore PU(b(x,U) ≥ bα(x)) ≤ α. If bα(x) < µ then

PU(b(x,U) ≥ µ) ≤ α. Since bα(x) < µ implies PU(b(x,U) ≥ µ) ≤ α, we have

PX(bα(X) < µ) ≤ PX (PU(b(X,U) ≥ µ) ≤ α) . (3.30)

We now show that the bound has guaranteed coverage.

Theorem 8. Let X be a random sample of size n from F . For any function T : Dn →

R and for any α ∈ (0, 1):

PX(bαD,T (X) < µ) ≤ α. (3.31)

Proof. Let Z be a random sample of size n from F .

PX(bα(X) < µ) ≤ PX (PU(b(X,U) ≥ µ) ≤ α) by Lemma 13 (3.32)

≤ PX (PZ(T (Z) ≤ T (X)) ≤ α) by Lemma 12 (3.33)

= P (W ≤ α) where W def
= PZ(T (Z) ≤ T (X)) (3.34)

≤ α by Lemma 9. (3.35)
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3.3 Computation

In this section we present a Monte Carlo algorithm to compute the bound. First

we note that since the bound only depends on x via the function T (x), we can

precompute a table of the bounds for each value of T (x). We discuss how to adjust

for the uncertainty in the Monte Carlo result in Appendix C.4.

Algorithm 1 Monte Carlo estimation of mα
D+,T (x) where D+ = [0, 1]. This pseu-

docode uses 1-based array indexing.
Input: A sample x ∈ Dn, confidence parameter 1−α < 1, a function T : [0, 1]n → R
and Monte Carlo sampling parameter l.
Output: An estimation of mα

D+,T (x)
n← length(x).
Create array ms to hold l floating point numbers, and initialize it to zero.
Create array u to hold n floating point numbers.
for i← 1 to l do
for j ← 1 to n do
u[j] ∼ Uniform(0,1).

end for
Sort(u, ascending).
Solve: M = maxy(1),··· ,y(n)

m(y,u) subject to:
1) T (y) ≤ T (x).
2) ∀i : 1 ≤ i ≤ n, 0 ≤ y(i) ≤ 1.
3) y(1) ≤ y(2) ≤ ... ≤ y(n).

ms[i] = M .
end for
Sort(ms, ascending).
Return ms[d(1− α)le].

Let the superset of the support D+ be a closed interval with a finite upper bound.

If m is a continuous function,

sup
y∈SD+ (x)

m(y,u) = max
y∈SD+ (x)

m(y,u). (3.36)

Therefore bD+(x,u) is the solution to

max
y(1),...,y(n)

m(y,u) (3.37)
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subject to:

• T (y) ≤ T (x),

• ∀i ∈ {1, . . . , n}, y(i) ∈ D+,

• y(1) ≤ y(2) ≤ · · · ≤ y(n).

When D+ is an interval and T is linear, this is a linear programming problem and can

be solved efficiently.

We can compute the 1− α quantile of a random variable M using Monte Carlo

simulation, sampling M l times. Letting m(1) ≤ ... ≤ m(l) be the sorted values, we

output m(d(1−α)le) as an approximation of the 1− α quantile.

Running time. Note that since the bound only depends on x via the function

T (x), we can precompute a table of the bounds for each value of T (x) to save time.

When T is linear, the algorithm needs to solve a linear programming problem with n

variables and 2n constraints l times. For sample size n = 50, computing the bound for

each sample x ∈ Dn takes just a few seconds using l = 10,000 Monte Carlo samples.

3.4 Relationships with Existing Bounds

In this section, we compare our bound to previous bounds including those of

Clopper and Pearson, Hoeffding, and Anderson. Proofs omitted in this section can be

found in the supplementary material.

3.4.1 Special Case: Bernoulli Distribution

When we know that D = {0, 1}, the distribution is Bernoulli. If we choose T to

be the sample mean, our bound becomes the same as the Clopper-Pearson confidence

bound for binomial distributions (Clopper and Pearson, 1934). See the supplementary

material for details.
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3.4.2 Comparisons with Anderson and Hoeffding

In this section we show that for any sample size n, any confidence level α and

for any sample x, our method produces a bound no larger than Anderson’s bound

(Theorem 9) and Hoeffding’s bound (Theorem 10).

Note that if we only know an upper bound b of the support (1-ended support

setting), we can set D+ = (−∞, b] and our method is equal to Anderson’s and

dominates Hoeffding’s. As the lower support bound increases (2-ended setting), our

bound becomes tighter or remains constant, whereas Anderson’s remains constant,

as it does not incorporate information about a lower support. Thus, in some cases

where our bound can benefit from a lower support, we are tighter than Anderson’s.

We discuss the details in Appendix C.5.3 (Theorem 14).

Anderson’s bound constructs an upper bound for the mean by constructing a lower

bound for the CDF. We defined a lower bound for the CDF as follows.

Definition 4 (Lower confidence bound for the CDF). Let X = (X1, · · · , Xn) be a

sample of size n from the distribution on D+ with unknown CDF F . Let α ∈ (0, 1).

Let HX : R → [0, 1] be a function computed from the sample X such that for any CDF

F ,

PX( ∀x ∈ R,F (x) ≥ HX(x)) ≥ 1− α. (3.38)

Then HX is called a (1− α) lower confidence bound for the CDF.

If there exists a CDF F such that

PX( ∀x ∈ R,F (x) ≥ HX(x)) = 1− α, (3.39)

then HX is called an exact (1− α) lower confidence bound for the CDF.
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In Figs. 3.1a and 3.1b, it is easy to see that if the stairstep function GX,` is a lower

confidence bound for the CDF then its induced mean m(X, `) is an upper confidence

bound for µ.

Lemma 14. Let X = (X1, · · · , Xn) be a sample of size n from a distribution with

mean µ. Let ` ∈ [0, 1]n. If GX,` is a (1− α) lower confidence bound for the CDF then

PX(m(X, `) ≥ µ) ≥ 1− α. (3.40)

Let U(i), 1 ≤ i ≤ n be the order statistics of the uniform distribution. Note that

for any CDF F :

PX( ∀x ∈ R, F (x) ≥ GX,`(x)) = PX(∀i : 1 ≤ i ≤ n, F (X(i)) ≥ `(i)) (3.41)

≥ PU(∀i : 1 ≤ i ≤ n, U(i) ≥ `(i)) by Lemma 9, (3.42)

where Eq. 3.42 is an equality if F is the CDF of a continuous random variable.

Therefore GX,` is an exact (1− α) lower confidence bound for the CDF is equivalent

to ` satisfying:

PU(∀i : 1 ≤ i ≤ n, U(i) ≥ `(i)) = 1− α. (3.43)

Anderson (1969a) presents bα,Anderson` (x) = mD+(x, `) as a UCB for µ where

` ∈ [0, 1]n is a vector such that GX,` is an exact (1− α) lower confidence bound for

the CDF.

In one instance of Anderson’s bound, ` = uAnd ∈ [0, 1]n is defined as

uAndi
def
= max {0, i/n− β(n)} . (3.44)

60



Anderson identifies β(n) as the one-sided Kolmogorov-Smirnov statistic such that

GX,` is an exact (1− α) lower confidence bound for the CDF when ` = uAnd. β(n)

can be computed by Monte Carlo simulation (Appendix C.1).

Learned-Miller and Thomas (2019) show that for any sample x, a looser version of

Anderson’s bound is better than Hoeffding’s:

Lemma 15 (from Theorem 2 from (Learned-Miller and Thomas, 2019)). For any

sample size n, for any sample value x ∈ Dn, for all α ∈ (0, 0.5]:

bα,Anderson` (x) ≤ bα,Hoeffding(x), (3.45)

where ` is defined7 as

`i
def
= max

{
0, i/n−

√
ln(1/α)/(2n)

}
. (3.46)

When α ≤ 0.5, this definition of ` satisfies GX,` is a (1− α) lower confidence bound

for the CDF.

The inequality in Eq. 3.45 is strict for n ≥ 3.

We show below that our bound is always equal to or tighter than Anderson’s

bound. Appendix C.5.3 provides a more detailed analysis showing that our bound

is equal to Anderson’s when the lower bound of the support is too small and can be

tighter than Anderson’s when the lower bound of the support is large enough.

Theorem 9. Let ` ∈ [0, 1]n be a vector satisfying GX,` is an exact (1 − α) lower

confidence bound for the CDF.

7Although Anderson’s bound bα,Anderson
` (x) is only defined when GX,` is an exact (1− α) lower

confidence bound for the CDF, here we re-use the same notation for the case when GX,` is a (1− α)
lower confidence bound for the CDF.
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Let D+ = (−∞, b]. For any sample size n, for any sample value x ∈ Dn, for all

α ∈ (0, 1), using T (x) = bα,Anderson` (x) yields

bαD+,T (x) ≤ bα,Anderson` (x). (3.47)

We explain briefly why this is true. First, from Figure 3.1b, we can see that if

GX,` is a lower confidence bound then ∀i, F (X(i)) ≥ `(i). Note that GX,` must be a

lower bound for all unknown CDFs F , so we can pick a continuous F where, according

to Lemma 9, U def
= F (X) is uniformly distributed on [0, 1]. Therefore ` satisfies for

any CDF F ′:

PX(∀i, F ′(X(i)) ≥ `(i)) ≥ (PU(∀i, U(i) ≥ `(i)) by Lemma 9 (3.48)

≥ 1− α, (3.49)

where the U(i)’s are the order statistics of the uniform distribution. Since b(x,U) is

defined from linear functions of U with negative coefficients (Eq. 3.6), if ∀i, U(i) ≥ `(i)

then b(x,U) ≤ b(x, `). Therefore with probability at least 1 − α, b(x,U) ≤ b(x, `).

So b(x, `) is at least the 1− α quantile of b(x,U), which is the value of our bound.

Therefore b(x, `) is at least the value of our bound.

Finally, if T is Anderson’s bound, through some calculations we can show that

bD+,T (x, `) = mD+(x, `), which is Anderson’s bound. The result follows.

The comparison with Hoeffding’s bound follows directly from Lemma 15 and

Theorem 9:

Theorem 10. Let D+ = (−∞, b]. For any sample size n, for any sample value

x ∈ Dn, for all α ∈ (0, 0.5], using T (x) = bα,Anderson` (x) where ` = uAnd yields:

bαD+,T (x) ≤ bα,Hoeffding(x), (3.50)

where the inequality is strict when n ≥ 3.
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Figure 3.3: The expected value of the bounds for α = 0.05 and D+ = [0, 1]. For each
sample size, we sample X 10,000 times, compute the bound for each sample, and take
the average. Our new bound with T being Anderson’s bound consistently has lower
expected value than Anderson’s (Theorem 9), Hoeffding’s (Theorem 10) and Maurer
and Pontil’s. With T being the l2-norm, the bound is substantially tighter in these
examples, and also has guaranteed coverage.

Figure 3.4: The α-quantile of the bound distribution for α = 0.05 and D+ = [0, 1].
For each sample size, we sample X 10,000 times, compute the bound for each sample,
and take the α quantile. If the α-quantile is below the true mean, the bound does not
have guaranteed coverage. For the uniform(0, 1) and beta(1, 5) distribution, when
the sample size is small, Student-t does not have guarantee.

Diouf and Dufour (2005) present several instances of Anderson’s bound with

different ` computed from the Anderson-Darling or the Eicker statistics (Theorem 4,

5 and Theorem 6 with constant ε).

Note that the result from Theorem 9 can be generalized for bounds m(X, `)

constructed from a (1− α) confidence lower bound GX,` using Lemma 14. We show

the general case in the supplementary material.
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3.5 Simulations

We perform simulations to compare our bounds to Hoeffding’s inequality, Ander-

son’s bound, Maurer and Pontil’s, and Student-t’s bound (Student, 1908), the latter

being

bα,Student(X)
def
= X̄n +

√
σ̂2

n
t1−α,n−1. (3.51)

We compute Anderson’s bound with ` = uAnd defined in Eq. 3.44 through Monte

Carlo simulation (described in Appendix C.1). We use α = 0.05, D+ = [0, 1] and

l = 10,000 Monte Carlo samples. We consider two functions T :

1. Anderson: T (x) = bα,Anderson` (x), again with ` = uAnd. Because this T is linear

in x, it can be computed with the linear program in Eq. 3.36.

2. l2 norm: T (x) = (
∑n

i=1 x
2
i )/n. In this case, T requires the optimization of a linear

functional over a convex region, which results in a simple convex optimization

problem.

We perform experiments on three distributions: beta(1, 5) (skewed right), uniform(0, 1)

and beta(5, 1) (skewed left). Their PDFs are included in the supplementary material

for reference. Additional experiments are in the supplementary material.

In Figure 3.3 and Figure 3.4 we plot the expected value and the α-quantile value of

the bounds as the sample size increases. Consistent with Theorem 9, our bound with

T being Anderson’s bound outperforms Anderson’s bound. Our new bound performs

better than Anderson’s in distributions that are skewed right, and becomes similar

to Anderson’s in left-skewed distributions. Our bound outperforms Hoeffding and

Maurer and Pontil’s for all three distributions. Student-t fails (the error rate exceeds

α) for beta(1, 5) and uniform(0, 1) when the sample size is small (Figure 3.4).
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APPENDIX A

SUPPLEMENTARY MATERIAL: THOMPSON SAMPLING
WITH APPROXIMATE INFERENCE

A.1 Proof of Theorem 1 and Corollary 1

First we will prove Theorem 1. Let Ωi ⊆ Ω denote the region where arm i is the

best arm. Let Πt,i denote Πt(Ωi), the posterior probability that arm i is the best arm.

For r > 1, We construct the pdf of Qt’s as follows:

qt(m) =



1
r
πt(m), if m1 > m2

(1− Πt,1/r)
πt(m)
1−Πt,1

, if m1 ≤ m2 and Πt,1 < 1.

(1− 1/r)2, if m1 ≤ m2 and Πt,1 = 1.

(A.1)

We will prove the theorem by the following steps:

• In Lemma 16 we show that Qt’s are valid distributions.

• In Lemma 17 we show that when α > 0 the α-divergence between Qt and Πt

can be arbitrarily small.

• In Lemma 18 we show that sampling from Qt for Θ(T ) time-steps will generate

linear frequentist regret, and lower bound the regret.

Since the regret is linear, in Appendix A.1.4 we discuss the constant average regret

per time-step as a function of ε and α. In Appendix A.1.5 we provide the Bayesian

regret proof for Corollary 1.

65



Lemma 16. Qt defined in Eq. A.1 satisfies:

∫
qt(m)dm = 1. (A.2)

Lemma 17. When α > 0, for all ε > 0, for all Πt, there exists r > 1 such that when

Qt’s are constructed from r as shown in Eq. A.1, Dα(Πt, Qt) < ε.

Lemma 18. The expected frequentist regret of the policy that constructs Qt’s as in

Eq. A.1 and sample from Qt for T ′ = Θ(T ) time-steps is linear and the lower bound

of the average regret per time-step is

L =


c∆(1− (1− εα(1− α))

1
1−α ), when α > 1 and 0 < ε

c∆(1− 1
eε

), when α = 1 and 0 < ε

c∆(1− (1− εα(1− α))
1

1−α ), when 0 < α < 1 and 0 < ε ≤ 1
α(1−α)

.

, (A.3)

where c = T ′

T
is Θ(1).

A.1.1 Proof of Lemma 16

Proof. If Πt,1 < 1:

∫
qt(m)dm =

∫
Ω1

qt(m)dm+

∫
Ω2

qt(m)dm (A.4)

=

∫
Ω1

1

r
πt(m)dm+

∫
Ω2

1− Πt,1/r

1− Πt,1

πt(m)dm (A.5)

=
1

r
Πt,1 +

1− Πt,1/r

1− Πt,1

Πt,2 (A.6)

=
1

r
Πt,1 +

1− Πt,1/r

1− Πt,1

(1− Πt,1) (A.7)

= 1 . (A.8)
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If Πt,1 = 1:

∫
qt(m)dm =

∫
Ω1

qt(m)dm+

∫
Ω2

qt(m)dm (A.9)

=

∫
Ω1

1

r
πt(m)dm+

∫
Ω2

2(1− 1/r)dm (A.10)

=
1

r
Πt,1 + (1− 1/r) (A.11)

= 1 . (A.12)

A.1.2 Proof of Lemma 17

Proof. First we calculate the α-divergence between Πt and Qt constructed in Eq. A.1.

We now upper bound Dα(Πt, Qt) when Πt,1 < 1 and Πt,1 = 1.

• Πt,1 < 1.

Case 1: α > 0, α 6= 1. The following inequality is true by simple calculations

when 0 < α < 1 or α > 1:

(
1−Πt,1

1−
Πt,1
r

)α−1

α(α− 1)
≤ rα−1

α(α− 1)
. (A.13)

We have:
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Dα(Πt, Qt) =
1−

∫ (πt(m)
qt(m)

)α
qt(m)dm

α(1− α)
(A.14)

=
1−

∫
Ω1

(
πt(m)
qt(m)

)α
qt(m)dm−

∫
Ω2

(
πt(m)
qt(m)

)α
qt(m)dm

α(1− α)
(A.15)

=
1−

∫
Ω1
rαqt(m)dm−

∫
Ω2

(
1−Πt,1

1−Πt,1/r

)α
qt(m)dm

α(1− α)
(A.16)

=
1−Qt(Ω1)rα −Qt(Ω2)

(
1−Πt,1

1−Πt,1/r

)α
α(1− α)

(A.17)

=
1− Πt,1

r
rα − (1− Πt,1

r
)
(

1−Πt,1
1−Πt,1/r

)α
α(1− α)

(A.18)

=
1

α(1− α)

(
1− Πt,1r

−1+α − (1− Πt,1)α(1− Πt,1

r
)1−α

)
(A.19)

=

Πt,1r
α−1 + (1− Πt,1)

(
1−Πt,1

1−
Πt,1
r

)α−1

− 1

α(α− 1)
(A.20)

≤ 1

α(α− 1)

(
Πt,1r

α−1 + (1− Πt,1)rα−1 − 1
)
by Eq. A.13 (A.21)

=
1

α(α− 1)

(
r−1+α − 1

)
. (A.22)

Case 2: α = 1.

Dα(Πt, Qt) =

∫
πt(m) log

(
πt(m)

qt(m)

)
dm (A.23)

=

∫
Ω1

πt(m) log
πt(m)

qt(m)
dm+

∫
Ω2

πt(m) log
πt(m)

qt(m)
dm (A.24)

=

∫
Ω1

πt(m) log(r)dm+

∫
Ω2

πt(m) log
1− Πt,1

1− Πt,1/r
dm (A.25)

=Πt,1 log(r) + (1− Πt,1) log
1− Πt,1

1− Πt,1/r
. (A.26)

≤ Πt,1 log(r) + (1− Πt,1) log(r) because r > 1 (A.27)

≤ log(r) . (A.28)
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• Πt,1 = 1. Since Πt,2 = 0,
∫

Ω2
πt(m)dm = 0 and therefore πt(m) = 0 almost

everywhere on Ω2 (Royden, 2010).

Case 1: α > 0, α 6= 1.

Dα(Πt, Qt) =
1−

∫ (πt(m)
qt(m)

)α
qt(m)dm

α(1− α)
(A.29)

=
1−

∫
Ω1

(
πt(m)
qt(m)

)α
qt(m)dm−

∫
Ω2

(
πt(m)
qt(m)

)α
qt(m)dm

α(1− α)
(A.30)

=
1−

∫
Ω1
rαqt(m)dm− 0

α(1− α)
(A.31)

=
1−Qt(Ω1)rα

α(1− α)
(A.32)

=
1− 1

r
rα

α(1− α)
(A.33)

=
1− rα−1

α(1− α)
. (A.34)

(A.35)

Case 2: α = 1.

Dα(Πt, Qt) =

∫
πt(m) log

(
πt(m)

qt(m)

)
dm (A.36)

=

∫
Ω1

πt(m) log
πt(m)

qt(m)
dm+

∫
Ω2

πt(m) log
πt(m)

qt(m)
dm (A.37)

=

∫
Ω1

πt(m) log(r)dm+ 0 (A.38)

= log(r) . (A.39)

For both cases when Πt,1 = 1 and Πt,1 < 1, Dα(Πt, Qt) is upper bounded by:


1−rα−1

α(1−α)
, if 0 < α < 1 or α > 1

log(r), if α = 1 .

(A.40)
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Since limr→1 log(r) = 0 and limr→1
1−r−1+α

α(1−α)
= 0, for any ε > 0, there exists r > 1 such

that

Dα(Πt, Qt) ≤ ε . (A.41)

A.1.3 Proof of Lemma 18

Proof. We will now lower bound the regret as a function of ε.

For any posterior Πt, since the approximate algorithm sampling from Qt picks the

optimal arm with probability at most 1/r it then picks arm 2 with probability at least

1− 1/r.

Since we sample from Qt for T ′ time steps, the lower bound of the average expected

regret per time step is :

L =
T ′

T
(m∗1 −m∗2)(1− 1/r) = c∆(1− 1/r) . (A.42)

where ∆ = m∗1 −m∗2 and c = T ′

T
is Θ(1).

We calculate ε as a function of r from Eq. A.40:

ε =


1−r−1+α

α(1−α)
, if α 6= 1

log(r), if α = 1 .

(A.43)

The functions are continuous and increasing when r > 1. Then by direct calculations

when r →∞ and r → 1, the domain of ε is:

0 < ε when α ≥ 1 . (A.44)

0 < ε <
1

α(1− α)
when 0 < α < 1 . (A.45)
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Then

r =


(1− εα(1− α))

1
−1+α when α > 1 and 0 < ε

eε when α = 1 and 0 < ε

(1− εα(1− α))
1

−1+α when 0 < α < 1 and 0 < ε ≤ 1
α(1−α)

.

(A.46)

Therefore we can calculate the lower bound of the regret per time-step as:

L =


c∆(1− (1− εα(1− α))

1
1−α ), when α > 1 and 0 < ε

c∆(1− 1
eε

), when α = 1 and 0 < ε

c∆(1− (1− εα(1− α))
1

1−α ), when 0 < α < 1 and 0 < ε ≤ 1
α(1−α)

.

. (A.47)

We plot the lower bound of the average regret per time step when ∆ = 0.1 as a

function of ε in Fig A.1.

A.1.4 The Average Regret per Time-step

To understand how the constant average regret per time-step depends on ε and α,

we plot in Figure A.1 the lower bound of the average regret per time-step in Lemma 18

as a function of ε in the following setting of the example constructed in the proof of

Theorem 1. The algorithm samples from Qt at T/2 time-steps and ∆ = 0.1. In this

case the average regret per time step is upper bounded by ∆/2 = 0.05. The formula

and proof are detailed in Lemma 18 in Appendix A.1. When α is around 1, the lower

bound, and therefore the average regret per time-step, converges the fastest to ∆/2

as ε increases. When α is very large or close to 0, the lower bound grows slowly as ε

increases.
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Figure A.1: Lower bound of regret per time-step as a function of ε when m∗1−m∗2 = 0.1
and we sample from the approximation for T/2 time-steps in the example construted
in the proof of Theorem 1. When α is around 1, the lower bound converges quickly as
ε increases.

A.1.5 Proof of Corollary 1

Since P(M1 > M2) > 0, there exist constants ∆ > 0, γ > 0 such that P(M1−M2 ≥

∆) = γ. The probability that the assumption m∗1 > m∗2 in Theorem 1 is satisfied is

at least γ > 0. Therefore the expected regret over the prior is at least γ times the

frequentist regret in Theorem 1, which is linear.

A.2 Proof of Theorem 2 and Corollary 2

First we will prove Theorem 2. Let Πt,i denote Πt(Ωi). Suppose that Πt,2 > 0 for

all t ≥ 0, we construct the pdf of Qt’s as follows:

qt(m) =


0, if m1 > m2

1
Πt,2

πt(m), if m1 ≤ m2

(A.48)

We will prove the theorem by the following steps:

• In Lemma 19 we show that Qt’s are valid distributions.

• In Lemma 20 we show that Qt has linear frequentist regret, and calculate the

constant average regret per time-step.
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• In Lemma 21 we show that there exists a bad prior such that the α-divergence

between Qt and Πt can be arbitrarily small.

In Appendix A.2.4 we discuss the prior-dependent error threshold ε that will cause

linear regret. In Appendix A.2.5 we provide the Bayesian regret proof for Corollary 2.

Lemma 19. Qt constructed in Eq. A.48 satisfies:

∫
qt(m)dm = 1. (A.49)

Lemma 20. Qt constructed in Eq. A.48 chooses arm 2 at all time-steps. The average

frequentist regret per time-step is ∆ = m∗1 −m∗2.

Lemma 21. Let α < 1, M1 −M2 and M2 be independent and arm 2 be chosen at all

time-steps before t.

For any ε > 0, there exists 0 < z < 1 such that if Π0,2 = z then Dα(Πt, Qt) < ε

where Qt is constructed in Eq. A.48.

For any 0 < z < 1, there exists ε > 0 such that if Π0,2 = z then Dα(Πt, Qt) < ε

where Qt is constructed in Eq. A.48.

A.2.1 Proof of Lemma 19

Proof. Let D = M1 −M2 which is independent of M2 by the assumption. Since the

algorithm always picks arm 2, Ht−1 only depends on M2, and therefore Ht−1 and D

are independent.

Since D and Ht−1 are independent, at all times t the posterior does not concentrate:

Πt,2 = P(M1 −M2 < 0|Ht−1) = P(M1 < M2) . (A.50)
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Since Πt,2 > 0 for all t,qt(m) is well-defined. We have:

∫
qt(m)dm =

∫
Ω1

qt(m)dm+

∫
Ω2

qt(m)dm (A.51)

= 0 +

∫
Ω2

1

Πt,2

πt(m)dm (A.52)

=
1

Πt,2

∫
Ω2

πt(m)dm (A.53)

= 1 . (A.54)

A.2.2 Proof of Lemma 20

Proof. Under the approximate distribution, arm 2 is chosen with probability 1 at all

times. Clearly this approximate distribution has linear regret, with ∆ = m∗1 −m∗2

being the average regret per time-step.

A.2.3 Proof of Lemma 21

Proof. From the proof of Lemma 19:

Πt,2 = P(M1 −M2 < 0|Ht−1) = P(M1 < M2) . (A.55)

For simplicity let

z := P(M1 < M2) . (A.56)

First we calculate the α-divergence between Πt and Qt constructed in Eq A.48.
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• When α < 1, α 6= 0:

Dα(Πt, Qt) =
1−

∫ ( qt(m)
πt(m)

)1−α
πt(m)dm

α(1− α)
(A.57)

=
1−

∫
Ω1

(
qt(m)
πt(m)

)1−α
πt(m)dm−

∫
Ω2

(
qt(m)
πt(m)

)1−α
πt(m)dm

α(1− α)
(A.58)

=
1− 0−

∫
Ω2

(
1

Πt,2

)1−α
πt(m)dm

α(1− α)
since α < 1 (A.59)

=
1−

(
1

Πt,2

)1−α ∫
Ω2
πt(m)dm

α(1− α)
(A.60)

=
1−

(
1

Πt,2

)1−α
Πt,2

α(1− α)
(A.61)

=
1− (Πt,2)α

α(1− α)
(A.62)

=
1− zα

α(1− α)
. (A.63)

Since limz→1
1−zα
α(1−α)

= 0, for any ε > 0 there exists 0 < z < 1 such that

Dα(Πt, Qt) < ε.

For any 0 < z < 1 there exists ε = 1−zα
α(1−α)

> 0 such that Dα(Πt, Qt) < ε.

• When α = 0:

Dα(Πt, Qt) =

∫
qt(m) log

qt(m)

πt(m)
dm (A.64)

=

∫
Ω1

qt(m) log
qt(m)

πt(m)
dm+

∫
Ω2

qt(m) log
qt(m)

πt(m)
dm (A.65)

=

∫
Ω1

0 log(0)dm+

∫
Ω2

qt(m) log
1

Πt,2

dm (A.66)

=0 + 1 log
1

Πt,2

= log
1

Πt,2

= log
1

z
. (A.67)

Since limz→1 log(1/z) = 0, for any ε > 0 there exists 0 < z < 1 such that

D0(Πt, Qt) < ε.
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For any z, 0 < z < 1 there exists ε = log 1
z
≥ 0 such that Dα(Πt, Qt) < ε.

A.2.4 Prior-dependent Error Threshold for Linear Frequentist Regret

In the example constructed in the previous sections, the α-divergence between Πt

and Qt can be calculated as: ε =


1−zα
α(1−α)

, if 0 < α < 1 or α < 0

log 1
z
, if α = 0

.

(a) Dα(Πt, Qt) = ε as a function of z that
can cause linear regret for some α ≤ 0.

(b) ε as a function of z that can cause
linear regret for some α ∈ [0, 1).

Figure A.2: ε as a function z that makes the regret linear for different values of α for
the example constructed in the proof of Theorem 2.

In Figure A.2, we show the values of ε as a function of z that will make the

regret linear for different values of α. We can see that for both cases when α ≤ 0

and 0 ≤ α < 1, and z is not too small, there is a threshold of ε for each value of

z that makes the regret linear. For each value of z, if the error is smaller than the

threshold we hypothesize that the regret might become sub-linear. However even if

that is the case, it is not possible to calculate the exact threshold for more complicated

priors. Therefore in Section 1.5.1 we propose an algorithm that is guaranteed to have

sub-linear regret for any ε and any z when α ≤ 0.
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A.2.5 Proof of Corollary 2

Since P(M1 > M2) > 0, there exist constants ∆ > 0, γ > 0 such that the

P(M1 −M2 ≥ ∆) = γ. The probability that the assumption m∗1 > m∗2 in Theorem 2

is satisfied is at least γ > 0. Therefore the expected regret over the prior is at least γ

times the frequentist regret in Theorem 2, which is linear.

A.3 Proof of Lemma 2

To convert between Dα(Πt, Qt) and Dα(Πt, Qt) we first prove the following lemma:

Lemma 22 (Jensen’s Inequality). 1 Let f : R2 → R be a convex function. Let

P : Rk → R and Q : Rk → R be 2 functions. Let S is a subset of Rk, the domain of

x and |S| denote the volume of S. Then

1

|S|

∫
S

f(P (x), Q(x))dx ≥ f

(
1

|S|

∫
S

P (x)dx,
1

|S|

∫
S

Q(x)dx

)
. (A.68)

Proof. The multivariate Jensen’s Inequality states that if X is a n-dimensional random

vector and f : Rn → R is a convex function then

E(f(X)) ≥ f(E(X)) . (A.69)

To use the multivariate Jensen’s Inequality we define the 2-dimensional random vector

X : S → R2 by X(x) := (P (x), Q(x)) and a probability distribution over S with the

density d(x) = 1
|S| for all x ∈ S:

Then the left-hand side of Eq. A.68 becomes E(f(X)), while the right-hand side

becomes f(E(X)), and Eq. A.68 follows from the multivariate Jensen’s Inequality.

Now we will prove Lemma 2.

1We thank Huy Le for providing the proof of Lemma 22.
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Proof of Lemma 2. Since Dα(p, q) is convex (Cichocki and Amari, 2010), the following

functions:

f(p, q) = q log
q

p
, (A.70)

f(p, q) = p log
p

q
, (A.71)

f(p, q) =
pαq1−α

α(α− 1)
(A.72)

are convex, and we can apply Lemma 22:

• When α = 0:

Dα(Πt, Qt) =

∫
qt(m) log

qt(m)

πt(m)
dm (A.73)

=
∑
i

∫
Ωi

qt(m) log
qt(m)

πt(m)
dm (A.74)

≥
∑
i

|Ωi|
1

|Ωi|

∫
Ωi

qt(m)dm log

1
|Ωi|

∫
Ωi
qt(m)dm

1
|Ωi|

∫
Ωi
πt(m)dm

by Lemma 22

(A.75)

=
∑
i

Qt,i log
Qt,i

Πt,i

(A.76)

=Dα(Πt, Qt) . (A.77)

• When α = 1:
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Dα(Πt, Qt) =

∫
πt(m) log

πt(m)

qt(m)
dm (A.78)

=
∑
i

∫
Ωi

πt(m) log
πt(m)

qt(m)
dm (A.79)

≥
∑
i

|Ωi|
1

|Ωi|

∫
Ωi

πt(m)dm log

1
|Ωi|

∫
Ωi
πt(m)dm

1
|Ωi|

∫
Ωi
qt(m)dm

by Lemma 22

(A.80)

=
∑
i

Πt,i log
Πt,i

Qt,i

(A.81)

=Dα(Πt, Qt) . (A.82)

• When α 6= 0, α 6= 1:

Dα(Πt, Qt) =

∫
π(x)αq(x)1−α − 1

−α(1− α)
dx (A.83)

=
−1

α(α− 1)
+
∑
i

∫
Ωi

π(x)αq(x)1−α

α(α− 1)
dx (A.84)

≥ −1

α(α− 1)
+
∑
i

|Ωi|
(

Πt,i
|Ωi| )

α(
Qt,i
|Ωi| )

1−α

α(α− 1)
by Lemma 22 (A.85)

=
−1

α(α− 1)
+
∑
i

Πα
t,iQ

1−α
t,i

α(α− 1)
(A.86)

=Dα(Πt, Qt) . (A.87)

A.4 Proof of Theorem 3

We will prove that the frequentist regret is sub-linear for any m∗. If the algorithm

has sub-linear frequentist regret for all values M = m∗, the Bayesian regret (which is

the expected value over M) will also be sub-linear.
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Without loss of generalization, let arm 1 be the best arm. From Lemma 1, since∑∞
t=1 pt = ∞, we have for all arms i,

∑∞
t=1 P (At = i|Ht−1) = ∞ and therefore with

probability 1:

lim
t→∞

Πt,1 = lim
t→∞

P(A∗ = 1|Ht−1) = 1 , (A.88)

which means that the posterior probability that arm 1 is the best arm converges to 1.

We will prove the theorem by proving the following steps:

• In Lemma 23 we show that if the probability that the posterior chooses the best

arm tends to 1, then the probability that the approximation chooses the best

arm also tends to 1

• In Lemma 24 and Lemma 25 we show that if the probability that the approxi-

mation chooses the best arm also tends to 1 almost surely, then it has sub-linear

regret with probability 1. Therefore it has sub-linear regret in expectation over

the history.

Lemma 23. Let α ≤ 0 and arm 1 be the true best arm. Let Ωi = {m|mi =

max(m1, ...,mk)} be the region where arm i is the best arm. If the posterior probability

that arm 1 is the best arm converges to 1:

lim
t→∞

Πt,1 = 1 (A.89)

and for all t ≥ 0:

Dα(Πt, Qt) < ε, (A.90)

then the sequence {Qt,1}t where Qt,1 =
∫

Ω1
qt(m)dm converges and

lim
t→∞

Qt,1 = 1 . (A.91)
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Next we show that if the approximate distribution concentrates, then the probability

that it chooses the wrong arm decreases as T goes to infinity.

Lemma 24. If

lim
t→∞

Qt,1 = 1 (A.92)

then

lim
T→∞

∑T
t=1(1−Qt,1)

T
= 0 . (A.93)

From Lemma 23 and Lemma 24, since limt→∞Πt,1 = 1 with probability 1, we

have limT→∞

∑T
t=1(1−Qt,1)

T
= 0 with probability 1. We will now show that the expected

regret is sub-linear:

Lemma 25. Let pt = o(1) be such that
∑∞

t=1 pt = ∞. For any number of arms k,

any prior Π0 and any error threshold ε > 0, the following algorithm has o(T ) regret:

at every time-step t,

• with probability 1 − pt, sample from an approximate posterior Qt such that

limT→∞

∑T
t=1(1−Qt,1)

T
= 0 with probability 1, and

• with probability pt, sample an arm uniformly at random.

A.4.1 Proof of Lemma 23

Proof. Let Qt,i =
∫

Ωi
qt(m)dm and Πt,i =

∫
Ωi
πt(m)dm . Then

lim
t→∞

Πt,1 = 1 (A.94)

and we want to show that {Qt,1}t converges and

lim
t→∞

Qt,1 = 1 . (A.95)
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Since Dα(Πt, Qt) < ε and lim Πt,1 = 1 we want to show that lim supQt,1 = 1. By

contradiction, assume that:

lim supQt,1 = c < 1 . (A.96)

Then there exists a sub-sequence of {Qt,1}t, denoting Qt1,1, Qt2,1, ..., Qtn,1, .. such that

lim
n→∞

Qtn,1 = c . (A.97)

which implies

0 < 1− c = lim
n→∞

k∑
i=2

Qtn,i ≤
k∑
i=2

lim sup
n→∞

Qtn,i. (A.98)

Therefore there exists j ∈ [2, k] such that:

lim sup
n→∞

Qtn,j = d > 0 . (A.99)

Then there exists a sub-sequence of {Qtn,j}n, denoting Qtn1 ,j
, Qtn2 ,j

, ..., Qtnm ,j, .. such

that

lim
m→∞

Qtnm ,j = d . (A.100)

We consider the 2 cases:

• When α = 0:

Dα(Πt, Qt) =
k∑
i=1

Qt,i log
Qt,i

Πt,i

. (A.101)
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By Jensen’s inequality we have:

∑
i

ai log
bi
ai
≤ (
∑
i

ai) log

(∑
i ai

bi
ai∑

i ai

)
⇐⇒

∑
i

ai log
ai
bi
≥ (
∑
i

ai) log

(∑
i ai∑
i bi

)
.

(A.102)

Then we have:

ε = lim
m→∞

Dα(Πtnm , Qtnm
) (A.103)

= lim
m→∞

∑
i:i 6=j,1≤i≤k

Qtnm ,i log
Qtnm ,i

Πtnm ,i

+ lim
m→∞

Qtnm ,j log
Qtnm ,j

Πtnm ,j

(A.104)

≥ lim
m→∞

(
∑

i:i 6=j,1≤i≤k

Qtnm ,i) log

∑
i:i 6=j,1≤i≤kQtnm ,i∑
i:i 6=j,1≤i≤k Πtnm ,i

+ lim
m→∞

Qtnm ,j log
Qtnm ,j

Πtnm ,j

by Eq. A.102 (A.105)

= lim
m→∞

(1−Qtnm ,j) log
1−Qtnm ,j

1− Πtnm ,j

+ lim
m→∞

Qtnm ,j log
Qtnm ,j

Πtnm ,j

(A.106)

=(1− d) log
1− d

1
+ d log

d

0
(A.107)

=∞ since d > 0, (A.108)

which is a contradiction. Therefore c = 1.

• When α < 0:

Dα(Πt, Qt) =

∑k
i=1 Πα

t,iQ
1−α
t,i − 1

α(α− 1)
. (A.109)

Then we have:
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ε = lim
m→∞

Dα(Πtnm , Qtnm
) (A.110)

=
limm→∞

∑
i:i 6=j,1≤i≤k Πα

tnm ,i
Q1−α
tnm ,i

+ limm→∞Πα
tnm ,j

Q1−α
tnm ,j

− 1

α(α− 1)
(A.111)

≥
0 + d1−α

(0)−α
− 1

α(α− 1)
(A.112)

=∞, since d > 0 and α < 0, (A.113)

which is a contradiction. Therefore c = 1.

Similarly we will show that:

lim inf Qt,1 = 1 . (A.114)

By contradiction, assume that:

lim inf Qt,1 = c′ < 1 . (A.115)

Then there exists a sub-sequence of {Qt,1}t, denoting Qt1,1, Qt2,1, ..., Qtn′ ,1
, .. such that

lim
n→∞

Qtn′ ,1
= c′ . (A.116)

Using the same argument following Eq. A.97 we will have c′ = 1. Since lim inf Qt,1 =

lim supQt,1 = 1, we have that {Qt,1}t converges and

limQt,1 = 1 . (A.117)
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A.4.2 Proof for Lemma 24

For simplicity let xt denote 1 − Qt,1. We want to show that if a sequence {xt}

satisfies xt ≥ 0 ∀t and:

lim
t→∞

xt = 0, (A.118)

then

lim
T→∞

ST = 0, (A.119)

where ST =
∑T
t=1 xt
T

.

Since limt→∞ xt = 0 and xt ≥ 0 ∀t, for any ε > 0 there exists T0 such that for all

t > T0:

xt <
ε

2
. (A.120)

Then for all T > T0:

ST =
x1 + ...+ xT0

T
+
xT0+1 + ...+ xT

T
(A.121)

≤ x1 + ...+ xT0

T
+

ε
2
T

T
(A.122)

≤ x1 + ...+ xT0

T
+
ε

2
. (A.123)

Choose T1 large enough such that x1+...+xT0

T1
< ε

2
. Let T2 = max(T0, T1). Then for all

T > T2:

ST =
x1 + ...+ xT0

T
+
ε

2
<
ε

2
+
ε

2
= ε . (A.124)
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Therefore for any ε > 0, there exists T2 such that for all T > T2, ST < ε. Since

ST ≥ 0 ∀T , we have:

lim
T→∞

ST = 0 . (A.125)

A.4.3 Proof of Lemma 25

Without loss of generalization, let arm 1 be the true best arm. Let ∆ = m∗1 −

max(m∗2, ...,m
∗
k) be the gap between the highest mean m∗1 and the next highest mean

of the arms.

Since pt = o(1),
∑T

t=1 pt is o(T ). Therefore the regret from the uniform sampling

steps is o(T ).

Since 1−Qt,1 is the probability of choosing a sub-optimal arm by sampling from

Qt, the regret of sampling from Qt is upper bounded by:

E
T∑
t=1

∆(1−Qt,1) . (A.126)

Since limT→∞

∑T
t=1(1−Qt,1)

T
= 0 with probability 1, we have

lim
T→∞

∑T
t=1 ∆(1−Qt,1)

T
= 0 (A.127)

with probability 1. Therefore

lim
T→∞

E
∑T

t=1 ∆(1−Qt,1)

T
= 0, (A.128)

which means that the regret of sampling from Qt is sub-linear. Since both the expected

regrets of the uniform sampling steps and of sampling from Qt are sub-linear, the

total expected regret is sub-linear.
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A.5 Ensemble Sampling and Uniform Exploration

To the best of our knowledge, (Lu and Van Roy, 2017) is the only work that

provides a theoretical analysis of Thompson sampling when the sampling step is

approximate. Lu and Van Roy (2017) propose an approximate sampling method

called Ensemble sampling where they maintain a set ofM models to approximate the

posterior, and analyze its regret for linear contextual bandits. When the model is a

k-armed bandit, the regret bound is as follow:

Lemma 26 (implied by Lu and Van Roy (2017)). Let πTS and πES denote the exact

Thompson sampling and Ensemble sampling policies. Let ∆ = max(m∗1, ...,m
∗
k) −

min(m∗1, ...,m
∗
k). For all ε > 0, if

M≥ 2k

ε2
log

2kT

ε2δ
, (A.129)

then

Regret(T, πES) ≤ Regret(T, πTS) + ε∆T + δ∆T. (A.130)

(Lu and Van Roy, 2017) prove the regret bound by only using the following property

of the Ensemble sampling method: at time t, with probability 1−δ, Ensemble sampling

satisfies the following constraint:

KL(Qt,Πt) < ε2, (A.131)

where ε is a constant ifM is Θ(log(T )). If ε is a constant the regret will be linear

because of the term ε∆T .

At time t, with probability 1− δ, KL(Qt,Πt) < ε2. The first 2 terms in the right

hand side of Eq. A.130 comes from the time-steps when KL(Qt,Πt) < ε2, and the last

term comes from the other case with probability δ.
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Theorem 3 shows that applying an uniform sampling step will make the posterior

concentrate and the regret sub-linear.

So if we want to maintain a small number of models M = Θ(log(T )) and achieve

sub-linear regret, we can apply Theorem 3 as follow. First we choose δ to be small such

that the last term in Eq. A.130 δ∆T is o(T ). Then we apply the uniform sampling step

as shown in Theorem 3, so that the first 2 terms in the right hand side of Eq. A.130

become sub-linear. We can then achieve sub-linear regret with Ensemble sampling

with a Θ(log T ) number of models.

A.6 Posterior Calculation

In our simulations, when both the prior and the reward distributions are Gaussian,

we calculate the true posterior using the following closed-form solution.

Let the posterior at time t be multivariate Gaussian distribution Norm(µt,Σt)

where µt is a k × 1 vector and Σt is a k × k covariance matrix. Let the reward

distribution of arm i be Norm(m∗i , σ
2) where σ is known and m∗i ’s are unknown.

Let At ∈ {0, 1}k be a 0/1 vector where At(i) = 1 if arm i is chosen at time t, and

0 otherwise. Let rt ∈ R be the reward of the arm chosen at time t.

Then the posterior at time t+ 1 is Norm(µt+1,Σt+1) where:

Σt+1 = (Σ−1
t + AtA

T
t /σ

2)−1 (A.132)

µt+1 = Σt+1(Σ−1
t µt + Atrt/σ

2) . (A.133)
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APPENDIX B

SUPPLEMENTARY MATERIAL: DESIGNING
TRANSPORTABLE EXPERIMENTS UNDER

S-ADMISSABILITY

In Section B.1 we discuss the variance reduction for d ≥ 1 when the sample size

is finite. In Section B.2 we show the proofs of Section 2.5.1. In Section B.3 we show

the proofs of Section 2.5.2.1. In Section B.4 we show the proofs of Section 2.5.2.2. In

Section B.5 we show the proofs of Appendix B.1.

For a random variable R with value r, we write the expectation, variance and

covariance conditioning on r as a short-hand for conditioning on R = r. On the other

hand, the expectation, variance and covariance conditioning on R are functions of R

and therefore are random variables. For example,E[τ̂TY |X,Y] is a function of X and Y,

E[τ̂TY |X,y] = E[τ̂TY |X,Y = y] is a function of X, while E[τ̂TY |x,y] = E[τ̂TY |X = x,Y =

y] is a value.

Conditioning on x and y, the randomness only comes from Z. Therefore varZρ(.|x,y),

CovZρ(.|x,y) and EZρ(.|x,y) can be written as varZ(.|x,y, ρ = 1), CovZ(.|x,y, ρ = 1)

and EZ(.|x,y, ρ = 1) respectively. We use both notations in the proofs.

For a random variable R, we use Cov(R)−1/2 to denote the Cholesky square root

of Cov(R)−1.

We restate the model and some notations here for convenience. Let the model be:

Y 1
i = XT

i β1 + E1
i . Y 0

i = XT
i β0 + E0

i . (B.1)
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Let ε1i and ε0i be the values taken by random variables E1
i and E0

i . Let Ci =
Y 0
i +Y 1

i

2
,

C̃i = WiCi, C
def
= (C1, · · · , Cn) and C̃ = (C̃1, · · · , C̃n). Let ci, c̃i, c and c̃ be the values

taken by Ci, C̃i,C and C̃. Then

Ci = XT
i β + Ei ci = xTi β + εi, (B.2)

C̃i = X̃T
i β + Ẽi c̃i = x̃Ti β + ε̃i, (B.3)

where β = β1+β0

2
, Ei =

E1
i +E0

i

2
, X̃i = WiXi and Ẽi = WiEi. Let εi and ε̃i = wiεi be the

value taken by Ei and Ẽi. Let Ẽ = (Ẽ1, · · · , Ẽn).

B.1 Additional Results: Finite Sample Size Variance Reduc-

tion for d ≥ 1

In this section we discuss the finite sample case when X is a multivariate random

variable, which is a generalization of the result in Section 2.5.2.1 when d = 1. We show

that when the sample size is finite, if β points to all directions with equal probability,

then a balance condition which also consider the target population and is similar to

Target Balance achieves the optimal variance reduction in expectation over β. The

proofs are in Appendix B.5.

We will use the variance decomposition in the matrix form similar to (Harshaw

et al., 2019) and provide intuition about the effect of balancing on the variance. The

following lemma is the general case when d ≥ 1 of Lemma 5 in Section 2.5.2.1.

Lemma 27. For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) = ρ(x,−Z):

varSY,Zρ(τ̂
T
Y |x) = βTCovZρ(V |x)β +

6

n2
σ2
E

n∑
i=1

w2
i , (B.4)

for V def
= 2

n
(w · x)TZ = 2

n
x̃TZ.
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Since the design affects only the first term in the above expression, we focus on

the the random variable V . V is now a d-dimensional vector and β is unknown.

To understand the first term, we use the same decomposition of βTCovZρ(V |x)β

as in (Harshaw et al., 2019), which we restate for completeness here. Let e1, ..., en

and λ1, .., λn be the normalized eigenvectors and corresponding eigenvalues of matrix

CovZρ(V |x). Since CovZρ(V |x) is symmetric, the eigenvectors form an orthonormal

basis so we can write β as a linear combination of e1, .., en and get:

β = ‖β‖
n∑
i=1

ηiei, (B.5)

where ηi = 〈β, ei〉/ ‖β‖ is the coefficient that captures the alignment of the weighted

outcome β with respect to the eigenvector ei. Therefore:

βTCovZρ(V |x)β = ‖β‖2
n∑
i=1

η2
i λi. (B.6)

In the worst case, β can align with the eigenvector of CovZρ(V |x) with the largest

eigenvalue. Therefore a good design is one with ρ that minimize the largest eigenvalue

of CovZρ(V |x). We leave this for future works. In this work we consider the average

case direction - when β with norm ‖β‖ = l can point in any direction with equal

probability. In that case, we have

Lemma 28.

E‖β‖=lβTCovZρ(V |x)β =
l2

2
πTrace(CovZρ(V |x)). (B.7)

We can then ask for the balance event Ω which results in minimizing the trace of

CovZ(V |x,Ω), which is shown in the following lemma. Note that when d = 1, the

trace of CovZ(V |x,Ω) is the variance varZ(V |x,Ω), and this result is the general case

of minimizing the variance of a 1-dimensional random variable in Section 2.5.2.1.

91



Lemma 29. Let U ∈ Rd be a discrete random variable such that E[U ] = 0. Let

uα
def
= min{u ∈ R : P(‖U‖2 < u) ≥ 1− α.

Let Ω be an event such that P(Ω) ≥ 1− α and E[U |Ω] = 0. Then:

Trace(Cov(U |‖U‖2 < uα) ≤ Trace(Cov(U |Ω)) (B.8)

It follows from Lemma 27, Lemma 28 and Lemma 29 that we can minimize

EβvarSY,Z(τ̂TY |x,Ω) by defining the following balance condition:

Definition 5 (Alternate Target Balance). With a rejection threshold α, define the

balance condition

φ′αT =


1, if ‖V ‖2 < a,

0, otherwise.

where a be such that P(φ′αT = 1|x) = 1− α.

Recall that Target Balance use the condition ‖B‖2 < a where B = V CovZ(V )−1/2

is the normalized random variable of V . Note since that V = 2
n
x̃TZ, Alternate Target

Balance also considers the target population in the design phase. However Alternate

Target Balance is not invariant under linear transformations of the covariates xi’s

while Target Balance is.

We have the following Theorem which is a generalization of Theorem 5 in Sec-

tion 2.5.2.1.

Theorem 11. Let ‖β‖ = l and β points in any direction with equal probability and

n0 = n1 = n/2.

Let ρ(X,Z) be a function satisfying ρ(X,Z) = ρ(X,−Z) and P(ρ = 1|x) ≥ 1− α.

Then

EβvarSY,Zφ′α
T

(τ̂TY |x) ≤ EβvarSY,Zρ(τ̂
T
Y |x). (B.9)
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Similar to Section 2.5.2.1, applying Theorem 5 with ρ being the constant function

ρ(x,Z) = 1 for all x,Z, we have:

Corollary 4. Let ‖β‖ = l and β points in any direction with equal probability. When

n0 = n1 = n/2, using Alternate Target Balance reduces the variance compared to

complete randomization in expectation over β.

EβvarSZφ′
T
,Y(τ̂TY |x) ≤ EβvarSZ,Y(τ̂TY |x) (B.10)

Recall that the first term in the decomposition in Lemma 27 is equal to:

βTCovZρ(V |x)β = γTCovZρ(B|x)γ = γTCovZ(B|x, ρ = 1)γ. (B.11)

where γ = βTCovZ(V )1/2 and B = V CovZ(V )−1/2.

When the sample size is large, B converges to a standard normal distribution.

Recall that Target Balance is equal to truncating ‖B‖2 < a. So CovZφT (B|x) is the

covariance of a standard normal random variable B truncated by ‖B‖2 < a. From

Theorem 3.1 in Morgan et al. (2012) when B is a standard normal distribution,

Cov(B|x, φT = 1) = vCov(B|x) for some v < 1, so the variance is reduced. However

we do not need to go through this analysis because Li et al. (2018) already has variance

reduction results for the case when the sample size is large. In Section 2.5.2.2 we use

the result from Li et al. (2018) directly to show that Target Balance achieves a smaller

variance than Source Balance.

B.2 Proofs of Section 2.5.1

In this section we prove Theorem 4. We made use of the following lemma from Mor-

gan et al. (2012):
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Lemma 30 (from the proof of Theorem 2.1 in Morgan et al. (2012)). Let A
def
=

(A1, ..., An)T ∈ Rn. Let n1 = n0 = n/2. For any function ρ(x,A) ∈ {0, 1} satisfying

ρ(x,A) = ρ(x, 1−A):

ESA[Ai|x,y, ρ = 1] =
1

2
. (B.12)

We also prove the following lemma in order to prove Theorem 4:

Lemma 31. For any function ρ(x,A) ∈ {0, 1} satisfying ρ(x,A) = ρ(x, 1−A):

EA|ρ=1[τ̂TY |X,Y] =
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i ). (B.13)

ESY,A|ρ=1[τ̂TY |X] =
1

n

n∑
i=1

Wi(β1 − β0)TXi. (B.14)

Proof. From Lemma 30, E[Ai|X,Y, ρ = 1] = E[Ai|X, ρ = 1] = 1
2
. Therefore:

EA|ρ=1[τ̂TY |X,Y] (B.15)

=
1

n1

n∑
i=1

EA

[
WiAiY

1
i

∣∣∣∣X,Y, ρ = 1

]
− 1

n0

n∑
i=1

EA

[
Wi(1− Ai)Y 0

i

∣∣∣∣X,Y, ρ = 1

]
(B.16)

=
1

n1

n∑
i=1

WiY
1
i EA

[
Ai
∣∣X,Y, ρ = 1

]
− 1

n0

n∑
i=1

WiY
0
i EA

[
1− Ai

∣∣X,Y, ρ = 1
]

(B.17)

=
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i ) . (B.18)

ESA|ρ=1,Y[τ̂TY |X] (B.19)

= ESY
[
EA[τ̂TY |X,Y, ρ = 1]|X

]
(B.20)

= ESY

[
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )|X

]
(B.21)

=
1

n

n∑
i=1

Wi(β1 − β0)TXi . (B.22)
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Proof of Theorem 4. Let DS and DT be the supports of the source and target distri-

butions. Since pT (X) > 0→ pS(X) > 0 and pT (Y |X) = pS(Y |X), we have DT ⊆ DS.

Using Lemma 31:

ESX,Y,ZφT
[
τ̂TY
]

(B.23)

=ESX,YEAφT
[τ̂TY |X,Y] (B.24)

=
1

n

n∑
i=1

ESX,Y
[
Wi(Y

1
i − Y 0

i )
]

(B.25)

=
1

n

n∑
i=1

∫
(x,y)∈DS

(
pT (x)

pS(x)
(y1 − y0)

)
pS(x, y)dxy (B.26)

=
1

n

n∑
i=1

∫
(x,y)∈DS

(
pT (y|x)pT (x)

pS(y|x)pS(x)
(y1 − y0)

)
pS(x, y)dxy because pT (y|x) = pS(y|x)

(B.27)

=
1

n

n∑
i=1

∫
(x,y)∈DS

(
pT (y, x)

pS(y, x)
(y1 − y0)

)
pS(x, y)dxy (B.28)

=
1

n

n∑
i=1

∫
(x,y)∈DS

pT (x, y)(y1 − y0)dxy (B.29)

=
1

n

n∑
i=1

∫
(x,y)∈DT

pT (x, y)(y1 − y0)dxy because DT ⊆ DS (B.30)

=τTY . (B.31)

B.3 Proofs of Section 2.5.2.1

In this section we prove Lemma 3, Lemma 4, Lemma 5, Theorem 5 and Corollary 3.

Note that the results in this section are the special case when d = 1 of the results

in Section B.1. Lemma 4 is a special case when d = 1 of Lemma 37. Lemma 5 is a

special case of Lemma 27 and Theorem 5 is a special case of Theorem 11. However in

this section we state the full proofs for the case d = 1 so that the readers do not need
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to read the proofs of Section B.1 in order to understand Section 2.5.2.1 in the main

paper.

Proof of Lemma 3. By law of total variance:

varSZρ,X,Y(τ̂TY ) = ESXvarSY,Zρ(τ̂
T
Y |X) + varSX

(
ESY,Zρ [τ̂

T
Y |X]

)
. (B.32)

Since ρ(x,Z) = ρ(x,−Z), from Lemma 31:

ESY,Zρ [τ̂
T
Y |X] =

1

n

n∑
i=1

Wi(β1 − β0)TXi. (B.33)

Therefore:

varSX
(
ESY,Zρ [τ̂

T
Y |X]

)
= varSX

(
1

n

n∑
i=1

Wi(β1 − β0)TXi)

)
. (B.34)

Proof of Lemma 4. By definition:

varZ(τ̂TY |x,y, ρ = 1) = EZ

[
(τ̂TY − EZ[τ̂TY |x,y, ρ = 1])2|x,y, ρ = 1

]
. (B.35)

From Lemma 31

EZ[τ̂TY |x,y, ρ = 1] =
1

n

(
n∑
i=1

wiy
1
i −

n∑
i=1

wiy
0
i

)
. (B.36)

On the other hand conditioning on X = x and Y = y and let y∗i denote the observed

outcome of sample i:

τ̂TY =
2

n
(
∑
Zi=1

wiy
∗
i −

∑
Zi=−1

wiy
∗
i ) (B.37)

=
2

n

n∑
i=1

wiAiy
1
i −

2

n

n∑
i=1

wi(1− Ai)y0
i . (B.38)
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Therefore:

varZ(τ̂TY |x,y, ρ = 1) (B.39)

= EZ

( 2

n
(
n∑
i=1

wiAiy
1
i −

n∑
i=1

wi(1− Ai)y0
i )−

1

n

n∑
i=1

wi(y
1
i − y0

i )

)2 ∣∣∣∣x,y, ρ = 1


(B.40)

= EZ

( 1

n
(
n∑
i=1

wi(2Ai − 1)y1
i +

1

n

n∑
i=1

wi(2Ai − 1)y0
i )

)2 ∣∣∣∣x,y, ρ = 1

 (B.41)

=
4

n2
EZ

( n∑
i=1

wiZi
y1
i + y0

i

2

)2 ∣∣∣∣x,y, ρ = 1

 (B.42)

=
4

n2
EZ

( n∑
i=1

Ziwici

)2 ∣∣∣∣x,y, ρ = 1

 , (B.43)

where ci =
y1
i+y0

i

2
.

Proof of Lemma 5. By law of total variance:

varSY,Zρ(τ̂
T
Y |x) = ESY

[
varZρ(τ̂

T
Y |x,Y)|x

]
+ varSY(EZρ [τ̂

T
Y |x,Y]|x) (B.44)

= ESY
[
varZρ(τ̂

T
Y |x,Y)|x

]
+ varSY

(
1

n

n∑
i=1

wi(Y
1
i − Y 0

i )|x

)
(B.45)

= ESY
[
varZρ(τ̂

T
Y |x,Y)|x

]
+

1

n2

n∑
i=1

w2
i var(E1

i − E0
i ) (B.46)

= ESY
[
varZρ(τ̂

T
Y |x,Y)|x

]
+

2

n2
σ2
E

n∑
i=1

w2
i . (B.47)

Recall that C̃i = βX̃i + Ẽi. From Lemma 4:
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varZ(τ̂TY |x,Y, ρ = 1)

=
4

n2
EZ

( n∑
i=1

ZiC̃i

)2 ∣∣∣∣x,Y, ρ = 1


=

4

n2
EZ

[(
ZT C̃

)2
∣∣∣∣x,Y, ρ = 1

]
=

4

n2
EZ

[(
ZTβx̃ + ZT Ẽ

)2
∣∣∣∣x,Y, ρ = 1

]
=

4

n2
β2EZ

[(
ZT x̃

)2

∣∣∣∣x, ρ = 1

]
+

4

n2
EZ

[(
ZT Ẽ

)2
∣∣∣∣x,Y, ρ = 1

]
+

4

n2
2EZ

[
x̃TZZT Ẽ

∣∣∣∣x,Y, ρ = 1 .

]
(B.48)

Now we consider ESY
[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
. The third term in Eq. B.48 becomes:

4

n2
2ESY

[
EZ

[
x̃TZZT Ẽ

∣∣∣∣x,Y, ρ = 1

] ∣∣∣∣x] =
8

n2
EZ

[
x̃TZZT

∣∣∣∣x, ρ = 1

]
ESY[Ẽ|x] (B.49)

= 0 because ESY[Ẽ|x] = 0. (B.50)

The second term in Eq. B.48 becomes:
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4

n2
ESY
[
EZ

[(
ZT Ẽ

)2
∣∣∣∣x,Y, ρ = 1

] ∣∣∣∣x] (B.51)

=
4

n2
ESY

EZ

( n∑
i=1

ZiwiEi

)2 ∣∣x,Y, ρ = 1

 ∣∣∣∣x
 (B.52)

=
4

n2
ESY

[
EZ

[
n∑
i=1

(ZiwiEi)2
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]

(B.53)

+
4

n2
ESY

[
EZ

[∑
i 6=j

(ZiwiEi)(ZjwjEj)
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]

(B.54)

=
4

n2
ESY

[
EZ

[
n∑
i=1

(ZiwiEi)2
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]

(B.55)

+
4

n2

∑
i 6=j

EZ[ZiZj|x, ρ = 1]wiwjESY [EiEj|x] (B.56)

=
4

n2
ESY

[
EZ

[
n∑
i=1

(ZiwiEi)2
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]

+ 0 (B.57)

because ESY[EiEj|x] = ESY[Ei|x]ESY[Ej|x] = 0 (B.58)

=
4

n2
ESY

[
n∑
i=1

(wiEi)2]
∣∣x] because Z2

i = 1 (B.59)

=
4

n2
σ2
E

n∑
i=1

w2
i (B.60)

The first term in Eq. B.48 becomes:

4

n2
ESY
[
β2EZ

[(
ZT x̃

)2

∣∣∣∣x, ρ = 1

] ∣∣∣∣x] =
4

n2
β2EZ

[(
ZT x̃

)2

∣∣∣∣x, ρ = 1

]
(B.61)

=
4

n2
β2EZ

[
(
n∑
i=1

Ziwixi)
2
∣∣x, ρ = 1

]
. (B.62)

Putting all 3 terms together:

ESY
[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
=

4

n2
β2EZ

[
(
n∑
i=1

Ziwixi)
2
∣∣x, ρ = 1

]
+

4

n2
σ2
E

n∑
i=1

w2
i .

(B.63)
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Therefore:

varSY,Zρ(τ̂
T
Y |x) = ESY

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+

2

n2
σ2
E

n∑
i=1

w2
i (B.64)

=
4

n2
β2EZ

[
(
n∑
i=1

Ziwixi)
2
∣∣x, ρ = 1

]
+

6

n2
σ2
E

n∑
i=1

w2
i . (B.65)

In order to prove Theorem 5, we will show that for a random variable U with

E[U ] = 0, among events Ω preserve the expectation E[U |Ω] = 0, truncating the

tail results in the smallest variance. Note that if ρ(x,Z) = ρ(x,−Z) it follows from

Lemma 30 that E[ 2
n
x̃TZ|ρ = 1] = E[ 2

n
x̃TZ] = 0.

In order to prove Theorem 5 we show how to minimize the variance of a random

variable:

Lemma 32. Let U ∈ R be a discrete random variable such that E[U ] = 0. Let

uα
def
= min{u ∈ R : P(U2 < u) ≥ 1 − α}. Let Ω be an event such that P(Ω) ≥ 1 − α

and E[U |Ω] = 0. Then:

E(U2|U2 < uα) ≤ E(U2|Ω) (B.66)

Proof. Let p(u) be the pmf of U . Define f(u) as follow:

f(u) = p(u)1(u ∈ Ω). (B.67)

then:

p(u|Ω) =
p(u)1(u ∈ Ω)

P(Ω)
=

f(u)

1− α
. (B.68)
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Therefore:

E[U2|Ω] =
∑
u

u2 f(u)

1− α
. (B.69)

We want to minimize E(U2|Ω):

∑
u

u2 f(u)

1− α
(B.70)

subject to:

f(u) ∈ {0, p(u)} ∀u (B.71)

P(Ω) =
∑
u

f(u) ≥ 1− α. (B.72)

This can be done by maximize f(u) so that f(u) = p(u) for the smallest u2, which is

equal to set Ω to be the event U2 < uα.

Proof of Theorem 5. Let V := 2
n

∑
iwixiZi and B = V var(V )−1/2. From Lemma 5:

varSY,Zρ(τ̂
T
Y |x) = β2EZ

[
V 2

∣∣∣∣x, ρ = 1

]
+

6

n2
σ2
E

n∑
i=1

w2
i . (B.73)

= β2var(V )EZ

[
B2

∣∣∣∣x, ρ = 1

]
+

6

n2
σ2
E

n∑
i=1

w2
i . (B.74)

Since ρ(x,Z) = ρ(x,−Z), from Lemma 30 we have EZ[B|x, ρ = 1] = 0, which satisfies

the criteria in Lemma 32.

Let η := 1− P(ρ = 1|x). Then η ≤ α. Let bη be such that P(B2 < bη|x) = 1− η

and bα be such that P(B2 < bα|x) = 1− α. From Lemma 32:

EZ

[
B2
∣∣x, ρ = 1

]
≥ EZ

[
B2
∣∣x, B2 < bη

]
(B.75)

≥ EZ

[
B2
∣∣x, B2 < bα

]
because bη ≥ bα (B.76)

≥ EZ

[
B2
∣∣x, φαT = 1

]
(B.77)
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Proof of Corollary 3. Let ρ being the constant function ρ(x,Z) = 1 for all x,Z. Then:

varSY,Zρ(τ̂
T
Y |x) = varSY,Z(τ̂TY |x). (B.78)

From Theorem 5 we have:

varSY,Zφα
T

(τ̂TY |x) ≤ varSY,Zρ(τ̂
T
Y |x) = varSY,Z(τ̂TY |x) (B.79)

B.4 Discussion on Section 2.5.2.2

Proof of Lemma 6. By law of total variance:

varSX,Y,Zρ(τ̂
T
Y ) = ESX,Y

[
varZρ(τ̂

T
Y |X,Y)

]
+ varSX,Y

(
EZρ [τ̂

T
Y |X,Y]

)
(B.80)

Since ρ(x,Z) = ρ(x,−Z), from Lemma 31:

EZ[τ̂TY |X,Y, ρ = 1] =
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i ) (B.81)

Therefore:

varSX,Y
(
EZ[τ̂TY |X,Y, ρ = 1]

)
= varSX,Y

(
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )

)
(B.82)

We now prove Lemma 7. We use the following result in Harshaw et al. (2019) to

prove Lemma 7.
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Lemma 33 (Lemma A1 in Harshaw et al. (2019)). Let y∗i denote the observed outcome

of sample i:

2

n
(
∑
i:zi=1

y∗i −
∑

i:zi=−1

y∗i )−
1

n

n∑
i=1

(y1
i − y0

i ) =
2

n
cTz (B.83)

where ci =
y1
i+y0

i

2
and c

def
= (c1, · · · , cn).

We will also use the following lemmas:

Lemma 34. Let Q def
= n−1

n
E[ZZT ]. Let In denote the n × n identity matrix and 1

denote the n dimensional vector of 1. Then:

Q = In −
1

n
11T . (B.84)

Q = QT (B.85)

Q = Q2 = QTQ = QQT . (B.86)

Let s ∈ Rn×d be a matrix. Then

Qs = s− avg(s)

where avg(s) ∈ Rd is the average of rows of s.

Proof. First we will show that:

E[ZZT ] =
n

n− 1

(
In −

1

n
11T

)
(B.87)

by showing that E[Z2
i ] = 1 and E[ZiZj] = − 1

n−1
when i 6= j. First we have that

E[Z2
i ] = 1 because Z2

i = 1. Since there are exactly n/2 samples with value Zi = 1 and

n/2 samples with values Zi = −1, note that (
∑n

i=1 Zi)
2 = 0 and:

E[(
n∑
i=1

Zi)
2] = E[

n∑
i=1

Z2
i ] +

∑
i 6=j

E[ZiZj] . (B.88)
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Since all pairs (i, j) where i 6= j have equal roles and there are n(n− 1) such pairs:

E[ZiZj] =
E[(
∑n

i=1 Zi)
2]− E[

∑n
i=1 Z

2
i ]

n(n− 1)
(B.89)

=
0− n

n(n− 1)
(B.90)

=
−1

n− 1
(B.91)

Since Q is symmetric, Q = QT . We will show that Q = Q2:

Q2 = (In −
1

n
11T )(In −

1

n
11T ) (B.92)

= In −
1

n
11T In −

1

n
In11

T +
1

n2
11T11T (B.93)

= In −
1

n
11T = Q (B.94)

Since Q = QT , we have Q = Q2 = QQT = QTQ. For the last property:

Qs = Ins−
1

n
11T s = s− avg(s)

because Ins = s and 1
n
11T s = avg(s)

Lemma 35. For any 2 random variable X = (X(1), · · · , X(d)) ∈ Rd and Y =

(Y (1), · · · , Y (d′) ∈ Rd′ such that X(j) and Y (k) have finite 4th moment for any

j, 1 ≤ j ≤ d and for any k, 1 ≤ k ≤ d′:

1

n
lim
n→∞

(QX)TQY = cov(X, Y ). (B.95)

As a result, if Assumption 8 is satisfied then Assumption 7 is satisfied.
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Proof.

1

n
lim
n→∞

(QX)TQY (B.96)

=
1

n
lim
n→∞

n∑
i=1

(Xi −
1

n
XT1)(Yi −

1

n
YT1)T (B.97)

=
1

n
lim
n→∞

n∑
i=1

(XiY
T
i −

1

n
XT1Y T

i −
1

n
Xi1

TY +
1

n2
XT11TY) (B.98)

=
1

n
lim
n→∞

n∑
i=1

XiY
T
i − lim

n→∞

1

n
XT1(

n∑
i=1

Y T
i )− lim

n→∞

1

n
(
n∑
i=1

Xi)1
TY (B.99)

+ lim
n→∞

1

n

n∑
i=1

XT11TY (B.100)

=
1

n
lim
n→∞

n∑
i=1

XiY
T
i − lim

n→∞

1

n2
(
n∑
i=1

Xi)(
n∑
i=1

Y T
i ) (B.101)

= E[XiY
T
i ]− E[Xi]E[Yi]

T almost surely. (B.102)

The last equality is true if X(j)Y (k), X(j) and Y (k) have finite mean and variances,

so we can apply strong LLN. E[X(i)Y (k)] ≤
√

E[X(i)2]E[Y (k)2], E[X(j)2Y (K)2] ≤√
E[X(j)4]E[Y (k)4], so X(j)Y (k) has finite mean and variance if X(j) and Y (k) have

finite 4th moment.

We now show that Assumption 7 is satisfied. Since Y a, a ∈ {0, 1}, X(j), 1 ≤ j ≤ d

and W have finite 8th moment, Ỹ a, a ∈ {0, 1} and X̃(j), 1 ≤ j ≤ d have finite 4th

moment using Cauchy-Schwartz inequality.

The first condition in Assumption 7 is satisfied with probability 1 since the sam-

ple covariances converge to the distributions’ covariance. In the second condition,

max1≤i≤n |Ỹ a
i −avg(Ỹ)a|2/n, max1≤i≤n ‖Xi − avg(X)‖2

2 /n, max1≤i≤n

∥∥∥X̃i − avg(X̃)
∥∥∥2

2
/n

can be upper bounded by
∑n

i=1 |Ỹ a
i − avg(Ỹ)a|2/n,

∑n
i=1 ‖Xi − avg(X)‖2

2 /n and∑n
i=1

∥∥∥X̃i − avg(X̃)
∥∥∥2

2
/n, which converge almost surely.

cov(x) and cov(x̃) converges almost surely to CovS(X) and CovS(X̃), which are

non-singular by assumption.
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Lemma 36. For any 2 random variable X = (X(1), · · · , X(d)) ∈ Rd and Y ∈ R such

that X(j) and Y have finite 4th moment for any j, 1 ≤ j ≤ d, with probability 1:

1

n
lim
n→∞

min
β̃

∥∥∥QY −QXβ̃∥∥∥2

=
1

n
min
β̃

var
[∥∥∥Yi −Xiβ̃

∥∥∥] (B.103)

Proof. Let β̂n = (XTQX)−1(XTQY). Then β̂n is the solution to:

min
β̃

∥∥∥QY −QXβ̃∥∥∥2

(B.104)

Let β = (var[Xi])
−1cov[Xi, Yi]. Then β is the solution to:

min
β̃

var
[∥∥∥Yi −Xiβ̃

∥∥∥] (B.105)

We have:

lim
n→∞

β̂n = lim
n→∞

(XTQX)−1(XTQY) (B.106)

= (var[Xi])
−1cov[Xi, Yi]by Lemma 35 (B.107)

= β (B.108)

We have:

1

n
lim
n→∞

∥∥∥QY −QXβ̂n∥∥∥2

(B.109)

=
1

n
lim
n→∞

‖QY −QXβ‖2 + 2
1

n
lim
n→∞

(QY −QXβ)T (QXβ −QXβ̂n) (B.110)

+
1

n
lim
n→∞

∥∥∥QXβ −QXβ̂n∥∥∥2

(B.111)

We consider the 1st term in Eq. B.111. By strong LLN,

1

n
lim
n→∞

‖QY −QXβ‖2 (B.112)

= var ‖Yi −Xiβ‖ by Lemma 35 if Yi −Xiβ̃ have finite 4th moment (B.113)
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Yi −Xiβ have finite 4th moment if E[(Yi −Xiβ)4] is finite, which is true since X(j)

and Y have finite 4th moment.

We will show that the 2nd term in Eq. B.111 is 0. Since 1
n

limn→∞(QY −

QXβ)TQX = cov(Yi − βTXT
i , Xi) almost surely from Lemma 35, which is finite

and limn→∞(β − β̂n) = 0 is finite,

1

n
lim
n→∞

(QY −QXβ)T (QXβ −QXβ̂n) (B.114)

=
1

n
lim
n→∞

(QY −QXβ)TQX(β − β̂n) (B.115)

=
1

n
lim
n→∞

(QY −QXβ)TQX lim
n→∞

(β − β̂n) almost surely (B.116)

= 0 (B.117)

We will show that the 3rd term in Eq. B.111 is 0:

1

n
lim
n→∞

∥∥∥QXβ −QXβ̂n∥∥∥2

(B.118)

=
1

n
lim
n→∞

(β − β̂n)T lim
n→∞

XTQX lim
n→∞

(β − β̂n) because lim
n→∞

XTQX is finite (B.119)

= 0. (B.120)

Therefore:

1

n
lim
n→∞

∥∥∥QY −QXβ̂n∥∥∥2

= var ‖Yi −Xiβ‖2 (B.121)

= min
β̃

var
[∥∥∥Yi −Xiβ̃

∥∥∥] . (B.122)

Now we show the proofs of the main results.
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Proof of Lemma 7. For any matrix s ∈ Rn×d we will compute R2
s

def
= Corr(τ̂TY ,

2
n
ZT s)

where for any Y ∈ R, X ∈ Rd, Corr(Y,X) is defined as:

Corr(Y,X) = Corr(Y,XTβ∗) (B.123)

=
Cov(Y,XTβ∗)√

var(Y )
√

var(XTβ∗)
(B.124)

where β∗ = arg minβ̂ E‖Y − XT β̂‖2. Substituting s = x and s = x̃ will give us R2
x

and R2
x̃.

Recall that τTY (x,y)
def
= EZ[τ̂TY |x,y] = 1

n

∑n
i=1(y1

i − y0
i ). From Lemma 33, we have:

τ̂TY =
2

n
ZT c̃ + τTY (x,y)

.

We note that conditioning on y, τTY (x,y) is a constant independent of Z. Let

Q
def
= n−1

n
E[ZZT ] and note that Q = QT and Q = Q2. First, let us compute β∗ =

arg minβ̂ EZ‖τ̂TY − 2
n
ZT sβ̂‖2. We have
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β∗ = arg min
β̂

EZ‖τ̂TY −
2

n
ZT sβ̂‖2 (B.125)

= arg min
β̂

EZ‖
2

n
ZT c̃ +

1

n
τTY (x,y)− 2

n
ZT sβ̂‖2 (B.126)

= arg min
β̂

EZ‖
2

n
ZT c̃− 2

n
ZT sβ̂‖2 (B.127)

+ 2
1

n
τTY (x,y)E

[
2

n
ZT c̃− 2

n
ZT sβ̂

]
+

(
1

n
τTY (x,y)

)2

(B.128)

= arg min
β̂

EZ‖ZT c̃− ZT sβ̂‖2 because E[Z|x,y] = 0 from Lemma 30 (B.129)

= arg min
β̂

(c̃− sβ̂)TE[ZZT ](c̃− sβ̂) (B.130)

= arg min
β̂

(c̃− sβ̂)TQ(c̃− sβ̂) (B.131)

= arg min
β̂

(c̃− sβ̂)TQTQ(c̃− sβ̂) (B.132)

= arg min
β̂
‖Qc̃−Qsβ̂‖2. (B.133)

Using the fact that Q = QTQ, we have β∗ = (sTQs)−1sTQc̃. By definition, we have

Corr(τ̂TY ,
2

n
ZT s) =

EZ

[
τ̂TY

2
n
ZT sβ∗

]
− EZ

[
τ̂TY
]
EZ

[
2
n
ZT sβ∗

]√
varZ(τ̂TY )varZ( 2

n
ZT sβ∗)

(B.134)

=
EZ

[
τ̂TY Z

T sβ∗
]√

varZ(τ̂TY )varZ(ZT sβ∗)
because E[Z] = 0 (B.135)

=
EZ

[(
2
n
c̃TZ + τTY (x,y)

)
ZT sβ∗

]√
varZ

(
2
n
ZT c̃ + τTY (x,y)

)
varZ(ZT sβ∗)

(B.136)

=
EZ

[(
2
n
c̃TZ

)
ZT sβ∗

]√
varZ

(
2
n
ZT c̃

)
varZ(ZT sβ∗)

(B.137)

=
EZ

[
c̃TZZT sβ∗

]√
varZ (ZT c̃) varZ(ZT sβ∗)

(B.138)

For the numerator we have:
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EZ

[
c̃TZZT sβ∗

]
= c̃TQsβ∗ (B.139)

=
n

n− 1
c̃TQs(sTQs)−1sTQc̃ (B.140)

=
n

n− 1
c̃TQs(sTQs)−1sTQs(sTQs)−1sTQc̃ (B.141)

=
n

n− 1

(
c̃TQs(sTQs)−1sTQ

) (
Qs(sTQs)−1sTQc̃

)
(B.142)

=
n

n− 1
(β∗T sTQ)(Qsβ∗) (B.143)

=
n

n− 1
‖Qsβ∗‖2 (B.144)

Since β∗ = arg minβ̂ ‖Qc̃−Qsβ̂‖2, Qc̃−Qsβ∗ and Qsβ∗ are orthogonal, and therefore

‖Qsβ∗‖2 = ‖Qc̃‖2 − ‖Qc̃−Qsβ∗‖2.

For the denominator, since E[Z] = 0 we have:

varZ
(
ZT c̃

)
varZ(ZT sβ∗) = EZ[c̃TZZT c̃]EZ[β∗T sTZZT sβ∗] (B.145)

=
n2

(n− 1)2
(c̃TQc̃)(β∗T sTQsβ∗) (B.146)

=
n2

(n− 1)2
(c̃TQTQc̃)(β∗T sTQTQsβ∗) (B.147)

=
n2

(n− 1)2
‖Qc̃‖2‖Qsβ∗‖2 (B.148)

Putting the numerator and denominator together we have:

R2
s = Corr(τ̂TY ,

2

n
ZT s) (B.149)

=
‖Qsβ∗‖2

‖Qc̃‖‖Qsβ∗‖
(B.150)

=
‖Qsβ∗‖
‖Qc̃‖

(B.151)

=

√
‖Qc̃‖2 − ‖Qc̃−Qsβ∗‖2

‖Qc̃‖
(B.152)

Substituting s = x and s = x̃ gives us the expression for R2
x and R2

x̃.
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Proof of Theorem 7. We have

C̃ = X̃Tβ + Ẽ (B.153)

where C = Y 0+Y 1

2
, E = E0+E1

2
, β = β0+β1

2
, C̃ = pT (X)

pS(X)
C, X̃ = pT (X)

pS(X)
X and Ẽ = pT (X)

pS(X)
E .

Since Y a, a ∈ {0, 1}, X(j), 1 ≤ j ≤ d and W have finite 8th moment, C̃ and X̃ have

finite 4th moment using Cauchy-Schwartz inequality. Let S ∈ Rd be a random variable

independent of Ei and S(j), 1 ≤ j ≤ d have finite 4th moment. Let S ∈ Rn×d be n

samples S1, · · · , Sn of S. By the definition of R2,

R2
S =
‖QC̃‖2 −minβ̂ ‖QC̃−QSβ̂‖2

‖QC̃‖2
. (B.154)

We will show that limn→∞R
2
X̃
≥ limn→∞R

2
S almost surely for any S. We have:

1

n
lim
n→∞

min
β̂
‖QC̃−QSβ̂‖2 (B.155)

= min
β̂

var(C̃ − ST β̂) almost surely by Lemma 36 (B.156)

= min
β̂

E[(C̃ − ST β̂)2]−
(
E[C̃ − ST β̂]

)2

(B.157)

= min
β̂

E[X̃Tβ − ST β̂]2 + E[Ẽ2]−
(
E[X̃Tβ − ST β̂]

)2

(B.158)

because E[Ẽ ] = 0 and E is independent of X̃ and S

(B.159)

= min
β̂

var(X̃Tβ − ST β̂) + E[Ẽ2] (B.160)

≥ E[Ẽ2]. (B.161)

When S = X̃, this is minimized, therefore:

lim
n→∞

R2
X̃
≥ lim

n→∞
R2

S almost surely. (B.162)
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Substituting S = X:

lim
n→∞

R2
X̃
≥ lim

n→∞
R2

X almost surely. (B.163)

Recall that when Assumption 7 is satisfied,

as-varZ
(√

n(τ̂TY − τx,y)|x,y,M
(

2

n
ZT s

)
≤ a

)
(B.164)

= as-varZ(
√
n(τ̂TY − τx,y)|x,y)(1− (1− vd,a) lim

n→∞
R2

s), (B.165)

where as-var is the variance of the asymptotic sampling distribution.

We have:

as-varZ
(√

n(τ̂TY − τx,y)|X,Y, φaS = 1
)

(B.166)

= as-varZ
(√

n(τ̂TY − τx,y)|X,Y,M
(

2

n
ZTX

)
≤ a

)
(B.167)

= as-varZ(
√
n(τ̂TY − τx,y)|X,Y)(1− (1− vd,a) lim

n→∞
R2

X) (B.168)

≥ as-varZ(
√
n(τ̂TY − τx,y)|X,Y)(1− (1− vd,a) lim

n→∞
R2

X̃
) almost surely (B.169)

= as-varZ
(√

n(τ̂TY − τx,y)|X,Y,M
(

2

n
ZT X̃

)
≤ a

)
(B.170)

= as-varZ
(√

n(τ̂TY − τx,y)|X,Y, φaT = 1
)
. (B.171)

And therefore:

as-varZ
(
τ̂TY |X,Y, φaS = 1

)
≥ as-varZ

(
τ̂TY |X,Y, φaT = 1

)
. (B.172)

Now we analyze the rejection probability. Let U ∈ Rd be a standard multivariate

random variable. We have:
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lim
n→∞

P(φaS = 0|x) = lim
n→∞

P(M

(
2

n
ZTx

)
≤ a) (B.173)

= lim
n→∞

P(‖BS‖2 < a) where BS =
2

n
ZTxCov(

2

n
ZTx)−1/2 (B.174)

= P(‖U‖2 < a), (B.175)

because BS converges in distribution to U by finite central limit theorem. Similarly

we have:

lim
n→∞

P(φaT = 0|x) = lim
n→∞

P(M

(
2

n
ZT x̃

)
≤ a) (B.176)

= lim
n→∞

P(‖BT‖2 < a) where BT
def
=

2

n
ZT x̃Cov(

2

n
ZT x̃)−1/2 (B.177)

= P(‖U‖2 < a), (B.178)

because BT converges in distribution to U by finite central limit theorem.

Therefore limn→∞P(φaS = 0|x) = limn→∞ P(φaT = 0|x). Asymptotically, with the

same rejection probability, using Target Balance results in a smaller variance than

Source Balance .

B.5 Proofs of Section B.1

In this Section we present the proof of Lemma 27, Lemma 28, Lemma 29, Theo-

rem 11 and Corollary 4.

In order to prove Lemma 27, we first prove the following lemma.

Lemma 37 (minor changes to Lemma 1 in Harshaw et al. (2019)). Let ε̃i = c̃i− βT x̃i

and ε̃ = (ε̃1, · · · , ε̃n). For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) = ρ(x,−Z):

n2

4
varZ(τ̂TY |x,y, ρ = 1) (B.179)

= Cov(c̃TZ|ρ = 1) (B.180)

= βTCov(x̃TZ|ρ = 1]β + Cov(ε̃TZ|ρ = 1) + 2βTCov(x̃TZ, ε̃TZ|ρ = 1) (B.181)
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Proof of Lemma 37. By definition:

varZ(τ̂TY |x,y, ρ = 1) = EZ

[
(τ̂TY − EZ[τ̂TY |x,y, ρ = 1])2|x,y, ρ = 1

]
(B.182)

We have:

EZ[τ̂TY |x,y, ρ = 1] (B.183)

=
2

n
EZ

[∑
Zi=1

wiy
∗
i −

∑
Zi=−1

wiy
∗
i

∣∣∣∣ρ = 1

]
(B.184)

=
2

n
E

[
n∑
i=1

Aiwiy
1
i −

n∑
i=1

(1− Ai)wiy0
i

∣∣∣∣ρ = 1

]
(B.185)

=
2

n

(
n∑
i=1

E[Ai|ρ = 1]wiy
1
i −

n∑
i=1

E[1− Ai|ρ = 1]wiy
0
i

)
(B.186)

=
1

n

(
n∑
i=1

wiy
1
i −

n∑
i=1

wiy
0
i

)
because E[Ai|ρ = 1] = 1/2 by Lemma 30. (B.187)

Therefore using Lemma 33:

varZ(τ̂TY |x,y, ρ = 1) (B.188)

= EZ

( 2

n
(
∑
Zi=1

wiy
∗
i −

∑
Zi=−1

wiy
∗
i )−

1

n

n∑
i=1

wi(y
1
i − y0

i )

)2 ∣∣∣∣x,y, ρ = 1

 (B.189)

=
4

n2
E[c̃TZZT c̃|x,y, ρ = 1] (B.190)

=
4

n2
Cov(c̃TZ|x,y, ρ = 1) because E[c̃TZ|x,y, ρ = 1] = 0 from Lemma 30 (B.191)

=
4

n2
Cov((x̃β + ε̃)TZ|x,y, ρ = 1) (B.192)

= βTCov(x̃TZ|x,y, ρ = 1)β (B.193)

+ Cov(ε̃TZ|x,y, ρ = 1) + 2βTCov(x̃TZ, ε̃TZ|x,y, ρ = 1). (B.194)
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Proof of Lemma 27. By law of total variance:

varSY,Zρ(τ̂
T
Y |x) = ESY

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+ varSY(EZ[τ̂TY |x,Y, ρ = 1]|x) (B.195)

= ESY
[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+ varSY

(
1

n

n∑
i=1

wi(Y
1
i − Y 0

i )|x

)
(B.196)

= ESY
[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+

1

n2

n∑
i=1

w2
i var(E1 − E0) (B.197)

= ESY
[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+

2

n2
σ2
E

n∑
i=1

w2
i . (B.198)

From Lemma 37 we can analyze the term inside the expectation in the first term of

Eq. B.198:

n2

4
varZ(τ̂TY |x,y, ρ = 1) (B.199)

= βTCov(x̃TZ|x,y, ρ = 1]β + Cov(ε̃TZ|x,y, ρ = 1) + 2βTCov(x̃TZ, ε̃TZ|x,y, ρ = 1)

(B.200)

= βTCov(x̃TZ|x,y, ρ = 1]β + ε̃TCov(Z|x,y, ρ = 1)ε̃+ 2βTCov(x̃TZ,Z|x,y, ρ = 1)ε̃.

(B.201)

Recall that Y 1
i = βT1 Xi+E1

i and Y 0
i = βT1 Xi+E0

i . Let Ei =
E1
i +E0

i

2
and Ẽ = (E1, · · · , En).

Since ε̃ is the value of Ẽ we can analyze the first term of Eq. B.198:

n2

4
ESY
[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
(B.202)

= βTCov(x̃TZ|x,y, ρ = 1]β + ESY[ẼTCov(Z|x,Y, ρ = 1)Ẽ|x] (B.203)

+ 2βTCov(x̃TZ,Z|x,y, ρ = 1)E[Ẽ|x] (B.204)

= βTCov(x̃TZ|x, ρ = 1]β + ESY[Cov(ẼTZ|x, ρ = 1)|x] because E[Ẽ|x] = 0. (B.205)
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Now we analyze the second term of Eq. B.198:

ESY[Cov(ẼTZ|x, ρ = 1)|x] (B.206)

= EẼ [EZ[ẼTZZT Ẽ|x, ρ = 1]|x] (B.207)

= EẼ

[
n∑
i=1

n∑
j=1

EZ[wiEiZiZjEjwj|ρ = 1]|x

]
(B.208)

= EẼ

[
n∑
i=1

E[w2
i E2

i Z
2
i |ρ = 1] +

∑
i 6=j

E[wiEiZiZjEjwj|ρ = 1]|x

]
(B.209)

= EẼ

[
n∑
i=1

E[w2
i E2

i 1|ρ = 1] +
∑
i 6=j

E[wiZiZjEjwj|ρ = 1]E[Ei|ρ = 1]|x

]
because Z2

i = 1

(B.210)

=
n∑
i=1

E[w2
i E2

i ] because E[Ei|ρ = 1] = 0 (B.211)

=
n∑
i=1

w2
i σ

2
E . (B.212)

Putting all together Eq. B.198 becomes:

varSY,Zρ(τ̂
T
Y |x) =

4

n2

(
βTCov(x̃TZ|x, ρ = 1]β +

n∑
i=1

w2
i σ

2
E

)
+ +

2

n2
σ2
E

n∑
i=1

w2
i (B.213)

=
4

n2
βTCovZ(x̃TZ|x, ρ = 1]β +

6

n2
σ2
E

n∑
i=1

w2
i . (B.214)

Proof of Lemma 28. We use the same decomposition of βTCovZ(V |x,Ω)β as in Har-

shaw et al. (2019). Let e1, ..., en and λ1, .., λn be the normalized eigenvectors and

corresponding eigenvalues of matrix CovZ(V |x,Ω). Since CovZ(V |x,Ω) is symmetric,

the eigenvectors form an orthonormal basis so we can write β as a linear combination

of e1, .., en and get:

β = ‖β‖
n∑
i=1

ηiei, (B.215)
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where ηi = 〈β, ei〉/ ‖β‖ is the coefficient that captures the alignment of the weighted

outcome β with respect to the eigenvector ei. Therefore:

βTCovZ(V |x,Ω)β = ‖β‖2
n∑
i=1

η2
i λi. (B.216)

Then:

Eβ
[
βTCovZ(V |x,Ω)β

]
(B.217)

= Eβ

[
‖β‖2

n∑
i=1

η2
i λi

]
(B.218)

= l2
n∑
i=1

λiEβ[η2
i ] (B.219)

= l2
n∑
i=1

λiEθcos2(θ)

where θ is the angle between β and ei. Since β

points to any direction with equal probability,

θ is uniformly distributed in [0, 2π].

(B.220)

=
l2

2
π

n∑
i=1

λi (B.221)

=
l2

2
πTrace(CovZ(V |x,Ω)). (B.222)

Proof of Lemma 29. Let p(u) be the pmf of U . Define f(u) as follow:

f(u) = p(u)1(u ∈ Ω). (B.223)

Then:

p(u|Ω) =
p(u)1(u ∈ Ω)

P(Ω)
=

f(u)

1− α
. (B.224)
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Since P(Ω) ≥ 1− α we have:

∑
u

f(u) ≥ 1− α (B.225)

We have:

Trace(Cov(U |Ω)) = Trace(E[UUT |Ω]) (B.226)

= Trace(E[UUT |Ω] (B.227)

= Trace(E[UTU |Ω] (B.228)

=
∑
u

uTu
f(u)

1− α
. (B.229)

We want to minimize Trace(Cov(U |Ω)):

∑
u

uTu
f(u)

1− α
. (B.230)

subject to:

f(u) ∈ {0, p(u)} ∀u, (B.231)∑
u

f(u) ≥ 1− α . (B.232)

This can be done by maximize f(u) so that f(u) = p(u) for the smallest uTu, which

is equal to set Ω to be the event ‖U‖2 < uα.

Proof of Theorem 11. Since ρ(x,Z) = ρ(x,−Z), from Lemma 30 we have EZ[V |x, ρ =

1] = 0, which satisfies the criteria in Lemma 29. From Lemma 27:
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EβvarSY,Zρ(τ̂
T
Y |x) (B.233)

=
4

n2
EββTCov(V |x, ρ = 1)β +

6

n2
σ2

n∑
i=1

w2
i (B.234)

=
4

n2

l2

2
πTrace(Cov(V |x, ρ = 1)) +

6

n2
σ2

n∑
i=1

w2
i by Lemma 28 (B.235)

≥ 4

n2

l2

2
πTrace(Cov(V |x, ‖V ‖2 < vα)) +

6

n2
σ2

n∑
i=1

w2
i by Lemma 29 (B.236)

=
4

n2

l2

2
πTrace(Cov(V |x, φαT

′ = 1)) +
6

n2
σ2

n∑
i=1

w2
i (B.237)

=
4

n2
EββTCov(V |x, φαT

′ = 1)β +
6

n2
σ2

n∑
i=1

w2
i by Lemma 28 (B.238)

= EβvarSY,Zφα
T
′ (τ̂

T
Y |x). (B.239)

Proof of Corollary 4. Let ρ being the constant function ρ(x,Z) = 1 for all x,Z. Then:

varSZρ,Y(τ̂TY |x) = varSZ,Y(τ̂TY |x). (B.240)

From Theorem 11 we have:

EβvarSZφ′
T
,Y(τ̂TY |x) ≤ EβvarSZρ,Y(τ̂TY |x) = EβvarSZ,Y(τ̂TY |x). (B.241)
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APPENDIX C

SUPPLEMENTARY MATERIAL: TOWARDS PRACTICAL
MEAN BOUNDS FOR SMALL SAMPLES

• In Section C.1 we describe the computation of Anderson’s bound and present

more experiments.

• In Section C.2, as noted in Section 3.1, we show a log-normal distribution where

the sample mean distribution is visibly skewed when n = 80.

• In Section C.3 we present the proofs of Section 3.2.1.2.

• In Section C.4 we discuss the Monte Carlo convergence result of our approxima-

tion in Section 3.3.

• In Section C.5.1 we show that our bound reduces to the Clopper-Pearson bound

for binomial distributions as mentioned in Section 3.4.1. In Section C.5.2 we

present the proofs of Section 3.4.2. In Section C.5.3 we showed that our bound

reduces to Anderson’s bound when the lower bound of the support is too small.

C.1 Other Experiments

In this section we perform experiments to find an upper bound of the mean of

distributions given a finite upper bound of the support, or to a lower bound of the

mean of distributions given a finite lower bound of the support. We find the lower

bound of the mean of a random variable X by finding the upper mean bound of −X

and negating it to obtain the lower mean bound of X.
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First we describe the computation of Anderson’s bound with uAnd defined in

Eq. 3.44. We compute β(n) through Monte Carlo simulations. β(n) is the value such

that:

PU( ∀i : 1 ≤ i ≤ n, U(i) ≥ i/n− β(n)) = 1− α. (C.1)

Therefore

PU(β(n) ≥ max
i:1≤i≤n

(i/n− U(i))) = 1− α. (C.2)

For each sample size n, we generate L = 1,000,000 samples Uj ∈ [0, 1]n, 1 ≤ j ≤ L.

For each sample Uj ∈ [0, 1]n we compute

β(n)j = max
i:1≤i≤n

i/n− U j
(i).

Let β(n)1 ≤ · · · ≤ β(n)L be the sorted values from L samples. We output β̂(n) =

β(n)(d(1−α)Le) as an approximation of β(n).

For each experiment, we used α = 0.05 unless specified otherwise. We plot the

following:

• The expected value of the bounds versus the sample size. For each sample size,

we draw 10,000 samples of x, compute the bound for each x and compute the

average.

• For the upper bound of the mean, we plot the α-quantile of the bound distribution

versus the sample size. For each sample size, we draw 10,000 samples of x,

compute the bound for each x and take the α quantile. If the α-quantile is below

the true mean, the bound does not have guaranteed coverage.
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For the lower bound of the mean, we plot the 1 − α-quantile of the bound

distribution versus the sample size. For each sample size, we draw 10,000

samples of x, compute the bound for each x and take the 1 − α quantile. If

the 1− α-quantile is above the true mean, the bound does not have guaranteed

coverage.

• Coverage of the bounds. For each value of α from 0.02 to 1 with a step size

of 0.02, we draw 10,000 samples of x, compute the bound for each x and plot

the percentage of the bounds that are greater than or equal to the true mean

(denoted coverage). If this percentage is larger than 1 − α, the bound has

guaranteed coverage.

We perform the following experiments:

• For the case in which we know a superset D+ of the distribution’s support with

a finite lower bound and a finite upper bound (the 2-ended support setting), we

compare the following bounds:

– Anderson’s bound.

– New bound with the function T being Anderson’s bound.

– Student’s t.

– Hoeffding’s bound.

– Maurer and Pontil’s bound.

We find an upper bound of the mean for the following distributions:

– β(1, 5), uniform(0, 1) and β(5, 1). The known superset of the support is

[0, 1]. The result is in Figure C.1.

– β(0.5, 0.5), β(1, 1) and β(2, 2). The known superset of the support is [0, 1].

The result is in Figure C.2.
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– binomial(10, 0.1), binomial(10, 0.5) and binomial(10, 0.9). The known

superset of the support is the interval [0, 10]. The result is in Figure C.3.

• We also consider the case in which we want an upper bound of the mean without

knowing the lower bound of the support (or to find a lower bound without

knowing an upper bound of the support). In the main paper we referred to

this as the 1-ended support setting. Since Hoeffding’s and Maurer and Pontil’s

bounds require knowing both a finite lower bound and upper bound, they are

not applicable in this setting. We compare the following bounds:

– Anderson’s bound.

– New bound with T being Anderson’s bound.

– Student’s t

We address the following distributions:

– β(1, 5), uniform(0, 1) and β(5, 1). The known superset of the support is

(−∞, 1]. We find the upper bound of the mean. The result is in Figure C.4.

– binomial(10, 0.1), binomial(10, 0.5) and binomial(10, 0.9). The known

superset of the support is (−∞, 10]. We find the upper bound of the mean.

The result is in Figure C.5.

– poisson(2), poisson(10) and poisson(50). The known superset of the

support is [0,∞). We find the lower bound of the mean. The result is in

Figure C.6.

All the experiments confirm that our bound has guaranteed coverage and is equal

to or tighter than Anderson’s and Hoeffding’s.

From the experiments, our upper bound performs the best in distributions that are

skewed right (respectively, our lower bound will perform the best in distributions that

are skewed left), when we know a tight lower bound and upper bound of the support.
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(a) The PDFs of the test distributions.

(b) Expected values of the bounds versus sample size.

(c) The α-quantiles of bound distributions. If the α-quantile is below the true mean, the
bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not
have guaranteed coverage.

Figure C.1: Finding the upper bound of the mean with D+ = [0, 1]
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(a) The PDFs of the test distributions.

(b) Expected values of bounds versus sample size.

(c) The α-quantiles of bound distributions. If the α-quantile is below the true mean, the
bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not
have guaranteed coverage.

Figure C.2: Finding the upper bound of the mean with D+ = [0, 1]
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(a) The PMFs of the test distributions.

(b) Expected values of bounds versus sample size.

(c) The α-quantiles of bound distributions. If the α-quantile is below the true mean, the
bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not
have guaranteed coverage.

Figure C.3: Finding the upper bound of the mean with D+ = [0, 10]
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(a) The PDFs of the test distributions.

(b) The expected value of the bounds.

(c) The α-quantile of the bound distribution. If the α-quantile is below the true mean, the
bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not
have guaranteed coverage.

Figure C.4: Finding the upper bound of the mean with D+ = (−∞, 1]
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(a) The PMF of the test distributions.

(b) The expected value of the bounds.

(c) The α-quantile of the bound distribution. If the α-quantile is below the true mean, the
bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not
have guaranteed coverage.

Figure C.5: Finding the upper bound of the mean with D+ = (−∞, 10]
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(a) The PMF of the test distributions.

(b) The expected value of the bounds.

(c) The 1 − α-quantile of the bound distribution. If the 1 − α-quantile is above the true
mean, the bound does not have guaranteed coverage.

(d) The coverage of the bound. If the coverage is below the line 1− α, the bound does not
have guaranteed coverage.

Figure C.6: Finding the lower bound of the mean with D+ = [0,∞)
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C.2 Discussion on Section 3.1: Skewed Sample Mean Distri-

bution with n = 80

In this section, as noted in Section 3.1, we show a log-normal distribution where

the sample mean distribution is visibly skewed when n = 80 (Figure C.7). Student’s

t is not a good candidate in this case because the sample mean distribution is not

approximately normal. This example is a variation on the one provided by Frost

(2021).

While the log-normal distribution is an extreme example of skew, this example

illustrates the danger of assuming the validity of arbitrary thresholds on the sample

size, such as the traditional threshold of n = 30, for using the Student’s t method.

Clearly there are cases where such a threshold, and even much larger thresholds, are

not adequate.

Figure C.7: The PDFs of lognorm(0, 1) and the sample mean distribution of
lognorm(0, 1). The sample mean distribution of lognorm(0, 1) is visibly skewed
when the sample size n = 80.

C.3 Proof of Section 3.2.1.2

Proof of Lemma 9. Let F−1(y) = inf{x : F (x) ≥ y} for 0 < y < 1 and U be an

uniform random variable on (0, 1). Since F is non-decreasing and right-continuous,

F (F−1(y)) ≥ y . By Angus (1994), F−1(U) has CDF F . For 0 < y < 1, then:
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P(Y ≤ y) = P(F (X) ≤ y) (C.3)

= P(F (F−1(U)) ≤ y) (C.4)

≤ P(U ≤ y) (C.5)

= y. (C.6)

If F is continuous, Angus (1994) shows that Y is uniformly distributed on (0, 1).

Proof of Lemma 10. Let x(0)
def
= −∞ and x(n+1)

def
= sD. Then:

µF =

∫
x dF (x) (C.7)

=
n+1∑
i=1

∫ x(i)

x(i−1)

x dF (x) (C.8)

≤
n+1∑
i=1

∫ x(i)

x(i−1)

x(i) dF (x) (C.9)

=
n+1∑
i=1

x(i)(F (x(i))− F (x(i−1))) (C.10)

= sD −
n∑
i=1

F (x(i))(x(i+1) − x(i)) (C.11)

≤ sD −
n∑
i=1

G(x(i))(x(i+1) − x(i)) (C.12)

= µG. (C.13)

Proof of Lemma 11. Let ∪ denote the union of events and {} denote an event. Let Z

be a sample from F . Then for any sample x:
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PZ(T (Z) ≤ T (x)) = PZ(Z ∈ S(x)) (C.14)

= PZ(∪y∈S(x){Z = y}) (C.15)

≤ PZ(∪y∈S(x)Z � y) because Z = y implies Z � y (C.16)

≤ PZ(∪y∈S(x){F (Z) � F (y)}) (C.17)

because F is non-decreasing, so Z(i) ≤ y(i) implies F (Z(i)) ≤ F (y(i)). Let U1, · · · , Un be

n samples from the uniform distribution on (0, 1). From Lemma 9, for any u ∈ (0, 1),

P(F (Zi) ≤ u) ≤ P(Ui ≤ u). Therefore

PZ(∪y∈S(x){F (Z) � F (y)}) ≤ PU(∪y∈S(x){U � F (y)}). (C.18)

Recall thatmD(y,U) = sD−
∑n

i=1 U(i)(y(i+1)−y(i)) where ∀i, y(i+1)−y(i) ≥ 0. Therefore

if ∀i, U(i) ≤ F (y(i)) then mD(y,U) ≥ mD(y, F (y)):

PU(∪y∈S(x){U � F (y)}) (C.19)

≤ PU(∪y∈S(x){mD(y,U) ≥ mD(y, F (y))}), by Lemma 10 (C.20)

≤ PU(∪y∈S(x){mD(y,U) ≥ µ}), by Lemma 10 (C.21)

≤ PU( sup
y∈S(x)

mD(y,U) ≥ µ) (C.22)

= PU(b(x,U) ≥ µ). (C.23)

The inequality in Eq. C.22 is because if there exists y ∈ S(x) such that mD(y,U) ≥ µ,

then supy∈S(x) mD(y,U) ≥ µ. Therefore the event ∪y∈S(x){mD(y,U) ≥ µ} is a subset

of the event supy∈S(x) mD(y,U) ≥ µ, and Eq. C.22 follows.

From Eqs. C.17, C.18 and Eq. C.23:

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (C.24)
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C.4 Discussion on Section 3.3: Monte Carlo Convergence

In Section 3.3, we discussed the use of Monte Carlo sampling of the induced mean

function b(x,U) via sampling of the uniform random variable U , to approximate the

1 − α quantile of b(x,U). Let q̂` denote the output of the Monte Carlo algorithm

(Algorithm 1) using ` Monte Carlo samples. In this section we show that our estimator

converges to the true quantile as the number of Monte Carlo samples grows, and, given

a desired threshold ε, we can compute an upper bound at most Q(1− α, b(x,U)) + ε

with guaranteed coverage.

Theorem 12. Let ε > 0.

If supz∈S(x) z(1) = sD, then we can output sD as an estimate and with probability

at least 1− α:

µ ≤ sD ≤ Q(1− α, b(x,U)) + ε. (C.25)

If supz∈S(x) z(1) < sD, let γ =
(

ε
3(sD−supz∈S(x)) z(1))

)n
. Suppose γ < α. Use ` =⌈

− ln(γ/2)
2

(
3(sD−supz∈S(x) z(1))

ε

)n⌉
Monte Carlo samples to compute Q(1− α+ γ, b(x,U))

using Algorithm 1. Let q̂` be the output of the algorithm. We output q̂` + ε/3 as the

final estimator. Then with probability at least 1− α:

µ ≤ q̂` + ε/3 ≤ Q(1− α, b(x,U)) + ε. (C.26)

To prove Theorem 12, we first show some lemmas.

The Monte Carlo approximation error is quantified in the following lemma due to

Serfling (1980). Let F (m−)
def
= limx→m− F (x).
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Lemma 38 (Theorem 2.3.2 in Serfling (1980)). Let 0 < p < 1. If Q(p,M) is the

unique solution m of F (m−) ≤ p ≤ F (m), then for every ε > 0,

P(|Mdple −Q(p,M)| > ε) ≤ 2e−2lδ, (C.27)

where Mk denotes the k-th order statistic of the sample M and

δ = min (p− F (Q(p,M)− ε), F (Q(p,M) + ε)− p) .

Note that when the condition that Q(p,M) is the unique solution m of F (m−) ≤

p ≤ F (m) is satisfied, δ > 0. Let M def
= bD,T (x,U) ∈ [0, 1]. In Lemma 39 we will show

that the CDF of M satisfies the condition in Lemma 38. Therefore the error incurred

by computing the bound via Monte Carlo sampling can be decreased to an arbitrarily

small value by choosing a large enough number of Monte Carlo samples l. The Monte

Carlo estimation of bαD+,T (x) where D+ = [0, 1] is presented in Algorithm 1.

We will show that for any x, for any T , for any p ∈ (0, 1), FM (m−) ≤ p ≤ FM (m)

has a unique solution by showing that for any x and T , FM is strictly increasing on

its support. To do so, for any c1, c2 in the support such that c1 < c2 we will show that

FM(c2)− FM(c1) > 0. (C.28)

Lemma 39. Let M def
= b(x,U). Let FM be the CDF of M .

For any x, for any scalar function T ,

• If supz∈S(x) z(1) = sD, then for any ε > 0, M ∈ [sD − ε, sD], or

• If supz∈S(x) z(1) < sD, then for any c1, c2 such that 0 ≤ c1 < c2 ≤ 1,

FM(c2)− FM(c1) ≥

(
c2 − c1

sD − supz∈S(x) z(1)

)n

> 0. (C.29)
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Proof. Recall the definition of the induced mean as

b(x, `) = sup
z∈S(x)

n+1∑
i=1

z(i)(`(i) − `(i−1)), (C.30)

= sup
z∈S(x)

sD −
n∑
i=1

`(i)(z(i+1) − z(i)), (C.31)

where `(0)
def
= 0, `(n+1)

def
= 1 and z(n+1)

def
= sD.

We now find the support of M . Let φ def
= supz∈S(x) z(1). We will show that for any

u where 0 ≤ ui ≤ 1, we have φ ≤ b(x,u) ≤ sD, and therefore the support of M is a

subset of [φ, sD]. We have

b(x,u) = sup
z∈S(x)

sD −
n∑
i=1

u(i)(z(i+1) − z(i)) (C.32)

≤ sup
z∈S(x)

sD −
n∑
i=1

0(z(i+1) − z(i)) (C.33)

= sD. (C.34)

Similarly we have

b(x,u) = sup
z∈S(x)

sD −
n∑
i=1

u(i)(z(i+1) − z(i)) (C.35)

≥ sup
z∈S(x)

sD −
n∑
i=1

1(z(i+1) − z(i)) (C.36)

= sup
z∈S(x)

sD − (z(n+1) − z(1)) (C.37)

= sup
z∈S(x)

z(1) (C.38)

= φ. (C.39)

Therefore M = b(x,U) ∈ [φ, sD]. We consider two cases: where φ = sD and where

φ < sD.
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Case 1: φ = sD.

We have supz∈S(x) z(1) = sD. Then for any ε > 0, there exists z∗ such that

z∗(1) ≥ sD − ε, and therefore z∗(i) ≥ sD − ε for all i, 1 ≤ i ≤ n. Therefore:

b(x, `) = sup
z∈S(x)

n+1∑
i=1

z(i)(`(i) − `(i−1)) (C.40)

≥
n+1∑
i=1

(sD − ε)(`(i) − `(i−1)) (C.41)

= sD − ε. (C.42)

Therefore sD − ε ≤M = b(x,U) ≤ sD, and the 1− α quantile of M is in [sD − ε, sD].

Case 2: φ < sD.

Let c1, c2 ∈ R be such that φ ≤ c1 < c2 ≤ sD. We will now show that

FM(c2)− FM(c1) > 0. (C.43)

Let v def
= sD−c2

sD−φ
and w def

= sD−c1
sD−φ

. If φ ≤ c1 < c2 ≤ sD then v < w and v, w ∈ [0, 1].

Let v def
= (v1, · · · , vn) and w

def
= (w1, · · · , wn) where ∀i, vi = v and wi = w. Then

b(x,v) = sup
z∈S(x)

n+1∑
i=1

z(i)(v(i) − v(i−1)) (C.44)

= sup
z∈S(x)

z(n+1)(v(n+1) − v(n)) + z(1)(v(1) − v(0)) (C.45)

= sup
z∈S(x)

sD(1− v) + z(1)(v − 0) (C.46)

= sup
z∈S(x)

sD − (sD − z(1))
sD − c2

sD − φ
(C.47)

= sD − (sD − φ)
sD − c2

sD − φ
because

sD − c2

sD − φ
≥ 0 (C.48)

= c2. (C.49)
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Similarly,

b(x,w) = sup
z∈S(x)

n+1∑
i=1

z(i)(w(i) − w(i−1)) (C.50)

= sup
z∈S(x)

z(n+1)(w(n+1) − w(n)) + z(1)(w(1) − w(0)) (C.51)

= sup
z∈S(x)

sD(1− w) + z(1)(w − 0) (C.52)

= sup
z∈S(x)

sD − (sD − z(1))
sD − c1

sD − φ
(C.53)

= sD − (sD − φ)
sD − c1

sD − φ
because

sD − c1

sD − φ
≥ 0 (C.54)

= c1. (C.55)

Since b(x,u) is constructed from a linear function of u with non-positive coefficients,

for any u such that v ≤ u(1) ≤ · · · ≤ u(n) < w we have:

b(x,w) < b(x,u) ≤ b(x,v), (C.56)

which is equivalent to:

c1 < b(x,u) ≤ c2. (C.57)

So we have v ≤ u(1) ≤ · · · ≤ u(n) < w implies c1 < b(x,u) ≤ c2. Therefore for any

c1, c2 such that φ ≤ c1 < c2 ≤ sD:
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FM(c2)− FM(c1) = P(c1 < M ≤ c2) (C.58)

= PU(c1 < b(x,U) ≤ c2) (C.59)

≥ PU(v ≤ U(1) ≤ · · · ≤ U(n) < w) (C.60)

= PU( ∀i, 1 ≤ i ≤ n : v ≤ Ui < w) (C.61)

= (w − v)n (C.62)

=

(
c2 − c1

sD − φ

)n
(C.63)

> 0 because c1 < c2. (C.64)

Since the support of M is in [φ, sD] we have that FM is strictly increasing on the

support.

In summary, the Monte Carlo estimate of our bound will converge to the correct

value as the number of samples grows.

Now we prove Theorem 12.

Proof of Theorem 12. To simplify the notation, we use Q(α) to denote Q(α,M). From

Lemma 39, consider 2 cases:

• If supz∈S(x) z(1) = sD, then for any ε > 0, sD − ε ≤ M ≤ sD. So sD − ε ≤

Q(1− α,M) ≤ sD which is equivalent to Q(1− α,M) ≤ sD ≤ Q(1− α,M) + ε.

Since with probability at least 1−α, Q(1−α,M) ≥ µ, we have with probability

at least 1− α, sD ≥ µ. Therefore with probability at least 1− α,

µ ≤ sD ≤ Q(1− α,M) + ε. (C.65)

• If supz∈S(x) z(1) < sD: since FM is strictly increasing on the support, for γ such

that 0 < γ < α, Q(1− α) < Q(1− α + γ) and:
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γ = F (Q(1− α), Q(1− α + γ)) ≥

(
Q(1− α + γ)−Q(1− α)

sD − supz∈S(x) z(1)

)n

. (C.66)

Therefore, letting γ =
(

ε
3(sD−supz∈S(x)) z(1))

)n
we have that

Q(1− α + γ) ≤ Q(1− α) + γ1/n(sD − sup
z∈S(x)

z(1)) (C.67)

≤ Q(1− α) + ε/3. (C.68)

Let p def
= 1− α + γ. From Lemma 38 and Lemma 39,

P(|q̂` −Q(p)| > ε/3) ≤ 2e−2lδ, (C.69)

where

δ = min (p− F (Q(p)− ε/3), F (Q(p) + ε/3)− p) (C.70)

= min (F (Q(p)− ε/3, Q(p)), F (Q(p), Q(p) + ε/3)) (C.71)

≥

(
ε

3(sD − supz∈S(x) z(1))

)n

. (C.72)

Therefore letting ` =
⌈
− ln(γ/2)

2

(
3(sD−supz∈S(x) z(1))

ε

)n⌉
,

P(|q̂` −Q(1− α + γ)| > ε/3) ≤ 2e
−2l

(
ε

3(sD−supz∈S(x) z(1))

)n
(C.73)

≤ γ. (C.74)

Since P(Q(1− α + γ) < µ) ≤ α− γ, using the union bound we have

P(|q̂` −Q(1− α + γ)| > ε/3 OR Q(1− α + γ) < µ) ≤ γ + α− γ (C.75)

= α. (C.76)
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And therefore,

1− α ≤ P(|q̂` −Q(1− α + γ)| ≤ ε/3 AND Q(1− α + γ) ≥ µ) (C.77)

≤ P(Q(1− α + γ) ≤ q̂` + ε/3 ≤ Q(1− α + γ) + 2ε/3 AND Q(1− α + γ) ≥ µ)

(C.78)

≤ P(µ ≤ q̂` + ε/3 ≤ Q(1− α + γ) + 2ε/3) (C.79)

≤ P(µ ≤ q̂` + ε/3 ≤ Q(1− α) + ε) from Eq. C.68. (C.80)

C.5 Discussion on Section 3.4

We discuss the case when the distribution is Bernoulli in Section C.5.1, and present

the proofs of Section 3.4.2 in Section C.5.2. In Section C.5.3 we show that our bound is

equal to Anderson’s when T is Anderson’s bound and the lower bound of the support

is −∞, and could be better than Anderson’s when T is Anderson’s bound and the

lower bound of the support is finite and tight.

C.5.1 Special Case: Bernoulli Distribution

When we know that D = {0, 1}, the distribution is Bernoulli. If we choose T

to be the sample mean, we will show that our bound becomes the same as the

Clopper-Pearson confidence bound for binomial distributions (Clopper and Pearson,

1934).

If x, z ∈ {0, 1}n and T (z) ≤ T (x) then m(z,u) ≤ m(x,u). Therefore for any

u ∈ [0, 1]n,

bD,T (x,u) = sup
z∈{0,1}n:T (z)≤T (x)

mD(z,u) = mD(x,u). (C.81)
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Let px be the number of 0’s in x. Therefore the bound becomes the 1− α quantile of

mD(x,U) where

mD(x,U) = 1−
n∑
i=1

U(i)(x(i+1) − x(i)) = 1− U(px). (C.82)

Therefore the bound is the 1− α quantile of 1− U(px). Then

P(U(px) ≤ 1− bα(x)) = P(1− U(px) ≥ bα(x)) = α. (C.83)

Let β(i, j) denote a beta distribution with parameters i and j. We use the fact that

the order statistics of a uniform distribution are beta-distributed. Since U(px) ∼

β(px, n+ 1− px), we have 1− U(px) ∼ β(n− px + 1, px)

bα(x) = Q(1− α, β(n− px + 1, px)). (C.84)

This is the same as the Clopper-Pearson upper confidence bound for binomial distri-

butions.

C.5.2 Proof of Section 3.4.2

Proof of Lemma 14. 1 If ∀y ∈ R, F (y) ≥ GX,`(y) then

∀i : 1 ≤ i ≤ n, F (X(i)) ≥ `(i). (C.85)

Recall that mD(X, `) = sD −
∑n

i=1 `(i)(z(i+1) − z(i)). Therefore if ∀i : 1 ≤ i ≤

n, F (X(i)) ≥ `(i) then m(X, `) ≥ m(X, F (X)).

1The proof is implied in Anderson (1969b) but we provide it here for completeness
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From Lemma 10, m(X, F (X)) ≥ µ. Therefore m(X, `) ≥ µ. And hence, finally,

P(m(X, `) ≥ µ) ≥ PX (∀y ∈ R, F (y) ≥ GX,`(y)) (C.86)

= 1− α. (C.87)

We now show that if GX,` (Figure 3.1a) is a lower confidence bound, then the

order statistics of ` are element-wise smaller than the order statistics of a sample of

size n from the uniform distribution with high probability:

Lemma 40. Let U = U1, ..., Un be a sample of size n from the continuous uniform

distribution on [0, 1]. Let ` ∈ [0, 1]n and α ∈ (0, 1). If D+ is continous and GX,` is a

(1− α) lower confidence bound for the CDF then:

PU( ∀i : 1 ≤ i ≤ n, U(i) ≥ `(i)) ≥ 1− α. (C.88)

Proof. Let K be the CDF of a distribution such that K is continuous and strictly

increasing on D+ (since D+ is continuous, K exists). Let X = (X1, · · · , Xn) be a

sample of size n from the distribution with CDF K. By Lemma 9, K(X) is uniformly

distributed on [0, 1].

By the definition of GX,`, if ∀x ∈ C,K(y) ≥ GX,`(y) then:

K(y) ≥ 0, if y < X(1) (C.89)

K(y) ≥ `(i), if X(i) ≤ y < X(i+1) (C.90)

K(y) ≥ 1, if y ≥ sD+ . (C.91)

which is equivalent to:

∀i : 1 ≤ i ≤ n,K(y) ≥ `(i), if X(i) ≤ y < X(i+1). (C.92)
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Since K(y) is non-decreasing, this is equivalent to:

∀i : 1 ≤ i ≤ n,K(X(i)) ≥ `(i). (C.93)

Since GX,` is a lower confidence bound,

1− α ≤ PX( ∀y ∈ R, K(y) ≥ GX,`(y)) (C.94)

= PX(∀i : 1 ≤ i ≤ n,K(X(i)) ≥ `(i)) (C.95)

= PU(∀i : 1 ≤ i ≤ n, U(i) ≥ `(i)) by Lemma 9. (C.96)

To prove Theorem 9, we prove the more general version where GX,` is a (possibly

not exact) lower confidence bound for the CDF.

Theorem 13. Let ` ∈ [0, 1]n. Let D+ = [−∞, b]. If GX,` is a 1− α lower confidence

bound for the CDF, then for any sample size n, for all sample values x ∈ Dn and all

α ∈ (0, 1), using T (x) = mD+(x, `) to compute bαD+,T (x) yields:

bαD+,T (x) ≤ mD+(x, `). (C.97)

Proof. Since GX,` is a lower confidence bound for the CDF F , from Lemma 40,

P(∀i, U(i) ≥ `(i)) ≥ 1− α. (C.98)

First we note that

bD+,T (x, `) = sup
y:y∈SD+,T (x)

mD+(y, `) (C.99)

= sup
mD+ (y,`)≤mD+ (x,`)

mD+(y, `) (C.100)

= mD+(x, `). (C.101)
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Recall that bαD+,T (x) is the 1 − α quantile of bD+,T (x,U). In order to show that

bαD+,T (x) ≤ bD+,T (x, `), we will show that

P(bD+,T (x,U) ≤ bD+,T (x, `)) ≥ 1− α. (C.102)

Recall that bD+,T (x,U) = supy∈ST (x) sD+ −
∑n

i=1 U(i)(y(i+1) − y(i)). Then if ∀i, U(i) ≥

`(i) then bD+,T (x,U) ≤ bD+,T (x, `). Therefore,

P(bD+,T (x,U) ≤ bD+,T (x, `)) ≥ P(∀i, U(i) ≥ `(i)) (C.103)

≥ 1− α, by Lemma 40. (C.104)

We can now show the comparison with Anderson’s bound and Hoeffding’s bound.

Proof of Theorem 9. We have bα,Anderson` (x) = mD+(x, `) where ` satisfies GX,` is a

1− α lower confidence bound for the CDF. Therefore applying Theorem 13 yields the

result.

Proof of Theorem 10. The proof follows directly from Lemma 15 and Theorem 9.

Recall that GX,uAnd is an exact (1− α) lower confidence bound for the CDF and

therefore:

PU(∀i : 1 ≤ i ≤ n, U(i) ≥ uAnd(i) ) = 1− α. (C.105)

From Theorem 9, using T (x) = bα,Anderson
uAnd (x) yields

bαD+,T (x) ≤ bα,Anderson
uAnd (x). (C.106)
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Let ` ∈ [0, 1]n be defined such that

`i
def
= max

{
0, i/n−

√
ln(1/α)/(2n)

}
. (C.107)

Since GX,`(x) is an 1− α lower confidence bound, from Lemma 40:

PU(∀i : 1 ≤ i ≤ n, U(i) ≥ `(i)) ≥ 1− α (C.108)

= PU(∀i : 1 ≤ i ≤ n, U(i) ≥ uAnd(i) ). (C.109)

Since uAndi = max {0, i/n− β(n)} and `i = max
{

0, i/n−
√

ln(1/α)/(2n)
}
, we have

β(n) ≤
√

ln(1/α)/(2n), and therefore uAndi ≥ `i for all i. Therefore m(x, `) ≥

m(x,uAnd), i.e.

bα,Anderson
uAnd (x) ≤ bα,Anderson` (x). (C.110)

From Eq. C.106, Eq. C.110 and Lemma 15 we have the result.

C.5.3 Special Case: Reduction to Anderson’s Bound

In this section we present a more detailed comparison to Anderson’s. We show

that our bound is equal to Anderson’s when T is Anderson’s bound and the lower

bound of the support is −∞, and can be better than Anderson’s when T is Anderson’s

bound and the lower bound of the support is tight.

Lemma 41. Let ` ∈ [0, 1]n be such that `i ≥ 0 ∀i, 1 ≤ i ≤ n and 0 < `(n) < 1.

Let D+ = [a, b]. Let i0
def
= min{i : 1 ≤ i ≤ n, `(i) > 0}. If GX,` is an exact 1 − α
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lower confidence bound for the CDF, then for any sample size n, for all sample values

x ∈ Dn and all α ∈ (0, 1), using T (x) = mD+(x, `) to compute bαD+,T (x) yields:

bαD+,T (x) = mD+(x, `) if a ≤ b− b−m(x, `)

`(i0)

, (C.111)

bαD+,T (x) < mD+(x, `) if a > b− b−m(x, `)

`(i0)

and n > i0. (C.112)

In particular, if xi < b− (b−a)`(i0)

`(n)
∀i, 1 ≤ i ≤ n and n > i0 then bαD+,T (x) < mD+(x, `).

Proof. From the proof of Theorem 13, if U(i) ≥ `(i) for all i, then bD+,T (x,U) ≤

mD+,T (x, `) and therefore:

P(bD+,T (x,U) ≤ mD+,T (x, `)) ≥ P
(
∩i:1≤i≤n{U(i) ≥ `(i)}

)
(C.113)

= 1− α. (C.114)

We will show that:

P(bD+,T (x,U) ≤ mD+,T (x, `)) ≤ 1− α if a ≤
b`(i0) − b+m(x, `)

`(i0)

(C.115)

P(bD+,T (x,U) ≤ mD+,T (x, `)) > 1− α otherwise, (C.116)

which implies:

P(bD+,T (x,U) ≤ mD+,T (x, `)) = 1− α if a ≤
b`(i0) − b+m(x, `)

`(i0)

(C.117)

P(bD+,T (x,U) ≤ mD+,T (x, `)) > 1− α otherwise, (C.118)

• First we will show that P(bD+,T (x,U) ≤ mD+,T (x, `)) ≤ 1−α if a ≤ b`(i0)−b+m(x,`)

`(i0)
.

Recall that bD+,T (x,U) = supy∈SD+,T (x) mD+,T (x,U). We have:
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P(bD+,T (x,U) ≤ mD+,T (x, `)) = P

(
sup

y∈SD+,T (x)

mD+,T (y,U) ≤ mD+,T (x, `)

)
.

(C.119)

Consider the set of points vi of the form

vi = (γi, · · · , γi︸ ︷︷ ︸
i times

, b, · · · , b), (C.120)

where γi satisfy a ≤ γi ≤ b and
∑n+1

i=1 vi(`(i) − `(i−1)) = m(x, `), which is

equivalent to:

a ≤ γi ≤ b, (C.121)

`(i) > 0, (C.122)

γi = b− b−m(x, `)

`(i)

. (C.123)

Therefore if a ≤ b− b−m(x,`)
`(i)

for all i such that `(i) > 0 then vi ∈ SD+,T (x) for

all i and:

P(bD+,T (x,U) ≤ mD+,T (x, `)) (C.124)

≤ P
(
∩i:`(i)>0{mD+,T (vi,U) ≤ mD+,T (x, `)}

)
(C.125)

= P
(
∩i:`(i)>0{b− U(i)(b− γi) ≤ mD+,T (x, `)}

)
(C.126)

= P
(
∩i:`(i)>0{b− U(i)(b− (b− b−m(x, `)

`(i)

)) ≤ mD+,T (x, `)}
)

(C.127)

= P
(
∩i:`(i)>0{U(i) ≥ `(i)}

)
(C.128)

= 1− α. (C.129)

Since `(1) ≤ · · · ≤ `(n), if a ≤ b − b−m(x,`)
`(i0)

then a ≤ b − b−m(x,`)
`(i)

for all i.

Therefore if a ≤ b − b−m(x,`)
`(i0)

, then P(bD+,T (x,U) ≤ mD+,T (x, `)) = 1 − α and

bαD+,T (x) = mD+(x, `).

147



• Now we will show that if a > b − b−m(x,`)
`(i0)

and n > i0 then P(bD+,T (x,U) ≤

mD+,T (x, `)) > 1− α.

Let ε = min
(

infy∈SD+,T (x)
(b−y(i0+1))(1−`(n))

b−a , `(i0)

)
.

We will show that if a = b− b−m(x,`)
`(i0)

+ δ where δ > 0 then `(n) > `(i0) and b ≥

y(i0+1)+
δ`(i0)

`(n)−`(i0)
for all y ∈ SD+,T (x) and therefore ε ≥ min

(
δ`(i0)

`(n)−`(i0)

1−`(n)

b−a , `(i0)

)
>

0. Given y, construct y′ of the form:

y′ = (a, · · · , a︸ ︷︷ ︸
i0 times

, y(i0+1), · · · , y(i0+1)︸ ︷︷ ︸
n− i0 times

). (C.130)

Since y′ is component-wise smaller than y and m(y, `) ≤ m(x, `) we have:

m(y′, `) ≤ m(y, `) ≤ m(x, `). (C.131)

And therefore:

m(y′, `) ≤ m(x, `) (C.132)

⇐⇒ b(1− `(n)) + y(i0+1)(`n − `(i0)) + (b− b−m(x, `)

`(i0)

+ δ)`(i0) ≤ m(x, `)

(C.133)

⇐⇒ b(1− `(n)) + y(i0+1)(`n − `(i0)) + (b`(i0) + δ`(i0) − b+m(x, `)) ≤ m(x, `)

(C.134)

⇐⇒ δ`(i0) ≤ (b− y(i0+1))(`(n) − `(i0)). (C.135)

Therefore `(n) − `(i0) > 0 and b ≥ y(i0+1) +
δ`(i0)

`(n)−`(i0)
, and ε > 0.
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Let Uε = {U : 0 ≤ Uj ≤ ε ∀j : 1 ≤ j < i0, `(i0) − ε ≤ Ui0 < `(i0), 1 − ε ≤

Uj ≤ 1 ∀j : i0 < j ≤ n}. Since ε > 0, P(Uε) > 0. We will show that

P(bD+,T (x,U) ≤ mD+,T (x, `)) ≥ P
(
∩i:1≤i≤n{U(i) ≥ `(i)}

)
+P(Uε), which implies:

P(bD+,T (x,U) ≤ mD+,T (x, `)) ≥ P
(
∩i:1≤i≤n{U(i) ≥ `(i)}

)
+ P(Uε) (C.136)

= 1− α + P(Uε) (C.137)

> 1− α. (C.138)

We will show that if `(i0) − ε ≤ U(i0) ≤ `(i0), 1− ε ≤ Uj ≤ 1 ∀j : i0 < j ≤ n then

bD+,T (x,U) ≤ mD+,T (x, `). Then the setU satisfying bD+,T (x,U) ≤ mD+,T (x, `)

contains 2 disjoint sets Uε and the set U satisfying Ui ≥ `i for all i, which implies

Eq. C.136.

Let U′ be the component-wise smallest element in Uε: U ′j = 0 when 1 ≤ j < i0,

U ′(i0) = `(i0) − ε ≥ 0 (because ε ≤ `(i0)) and U ′(j) = 1 − ε when i0 < j ≤ n. We

will show that mD+,T (y,U′) ≤ mD+,T (x, `) for all y ∈ SD+,T (x).

We have:
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mD+,T (y,U′) = b(1− U ′(n)) +
n∑
i=1

y(i)(U
′
(i) − U ′(i−1)) (C.139)

= bε+ y(i0+1)(1− ε− (`(i0) − ε)) + y(i0)(`(i0) − ε) (C.140)

= bε+ y(i0+1)(1− `(i0)) + y(i0)(`(i0) − ε) (C.141)

= (b− y(i0))ε+ y(i0+1)(1− `(i0)) + y(i0)`(i0) (C.142)

≤ (b− y(i0))
(b− y(i0+1))(1− `(n))

b− a
+ y(i0+1)(1− `(i0)) + y(i0)`(i0)

(C.143)

≤ (b− y(i0))
(b− y(i0+1))(1− `(n))

b− y(i0)

+ y(i0+1)(1− `(i0)) + y(i0)`(i0)

(C.144)

= (b− y(i0+1))(1− `(n)) + y(i0+1)(1− `(i0)) + y(i0)`(i0) (C.145)

= b(1− `(n)) + y(i0+1)(`(n) − `(i0)) + y(i0)`(i0) (C.146)

= b(1− `(n)) + y(i0+1)

n∑
i=i0+1

(`(i) − `(i−1)) + y(i0)`(i0) (C.147)

≤ b(1− `(n)) +
n∑

i=i0+1

y(i)(`(i) − `(i−1)) + y(i0)`(i0) (C.148)

≤ m(y, `) (C.149)

≤ m(x, `). (C.150)

Since U′ is the component-wise smallest element in Uε and m(x,U) is a linear

function of U with negative coefficient, we have mD+,T (y,U) ≤ mD+,T (y,U′) ≤

m(x, `), and therefore bD+,T (x,U) ≤ m(x, `) for all U ∈ Uε.

Note that if xi < b− (b−a)`(i0)

`(n)
∀i, 1 ≤ i ≤ n then a > b− b−m(x,`)

`(i0)
and therefore

if n > i0 then bαD+,T (x) < mD+(x, `).

For the specific case where ` = uAnd we have the following result.
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Theorem 14. Let D+ = [a, b]. Let i0
def
= min{i : 1 ≤ i ≤ n, uAnd(i) > 0}. For any sample

value x ∈ Dn, for any sample size n and for all α ∈ (0, 1), using T (x) = bα,Anderson
uAnd

(x)

yields:

bαD+,T (x) = bα,Anderson
uAnd

(x) if a ≤
buAnd(i0) − b+m(x, `)

uAnd(i0)

(C.151)

For any sample value x ∈ Dn, for any sample size n and for all α ∈ (0, 1) satisfying
(n−1)2

n
> ln(1/α)

2
2, using T (x) = bα,Anderson

uAnd
(x) yields:

bαD+,T (x) < bα,Anderson
uAnd

(x) if a >
buAnd(i0) − b+m(x, `)

uAnd(i0)

(C.152)

Proof. The proof follows from Lemma 41.

First we note that uAnd satisfies:

PX( ∀x ∈ R,F (x) ≥ GX,uAnd(x)) = 1− α, (C.153)

and that uAnd(n) < 1 by definition. We will now show that if (n−1)2

n
> ln(1/α)

2
, then

uAnd(n−1) > 0 and therefore i0 ≤ n− 1, which implies n > i0.

Using the Dvoretsky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956) to define

the 1 − α CDF lower bound via β(n) =
√

ln(1/α)/(2n), we can compute a lower

bound for uAndi as follows:

uAndi ≥ max

(
0, i/n−

√
ln(1/α)

2n

)
. (C.154)

Therefore if n−1
n
−
√

ln(1/α)
2n

) > 0 then uAnd(n−1) > 0. The condition n−1
n
−
√

ln(1/α)
2n

> 0 is

equivalent to (n−1)2

n
> ln(1/α)

2
.

2To satisfy this condition, when α = 0.01, n ≥ 5. When α = 0.05, n ≥ 4. When α = 0.1, n ≥ 3.
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