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ABSTRACT

LANGUAGES AND COMPILERS FORWRITING EFFICIENT

HIGH-PERFORMANCE COMPUTING APPLICATIONS

SEPTEMBER 2022

ABHINAV JANGDA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Arjun Guha

Many everyday applications, such as web search, speech recognition, and weather predic-

tion, are executed on high-performance systems containing thousands of Central Processing Units

(CPUs) and Graphics Processing Units (GPUs). These applications can be written in either low-

level programming languages, such as NVIDIA CUDA, or domain speci�c languages, like Halide

for image processing and PyTorch for machine learning programs.

Despite the popularity of these languages, there are several challenges that programmers face

when developing e�cient high-performance computing applications. First, since every hardware

support a di�erent low-level programming model, to utilize new hardware programmers need

to rewrite their applications in another programming language. Second, writing e�cient code

involves restructuring the computation to ensure (i) regular memory access patterns, (ii) non-

divergent control �ow, and (iii) complete utilization of di�erent programmer managed caches.

Furthermore, since these low-level optimizations are known only to hardware experts, it is di�-

cult for a domain expert to write optimized code for new computations. Third, existing domain

speci�c languages su�er from optimization barriers in the language constructs that prevent new

optimizations and hence, these languages provide sub-optimal performance.

To address these challenges this thesis presents the following novel abstractions and compiler

techniques for writing image processing and machine learning applications that can run e�ciently

vi



on a variety of high-performance systems. First, this thesis presents techniques to optimize image

processing programs on GPUs using the features of modern GPUs. These techniques improve

the concurrency and register usage of generated code to provide better performance than the

state-of-the-art. Second, this thesis presents NextDoor, which is the �rst system to provide an

abstraction for writing graph sampling applications and e�ciently executing these applications on

GPUs. Third, this thesis presents CoCoNet, which is a domain speci�c language to co-optimize

communication and computation in distributed machine learning workloads. By breaking the

optimization barriers in existing domain speci�c languages, these techniques help programmers

write correct and e�cient code for diverse high-performance computing workloads.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 An Introduction to NVIDIA GPUs and CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Characteristics of an E�cient GPU Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Distributed Neural Network Training and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Communication Collectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. EFFICIENT IMAGE PROCESSING ON MODERN GPUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 PolyMage DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Dependence Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Dynamic Programming Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 PolyMage-GPU Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Overlap Tile per Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Hybrid Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Automatic Fusion for GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.1 Automatic Fusion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



4. ACCELERATING GRAPH SAMPLING ON GPUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 An Abstraction for Graph Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Graph Sampling using NextDoor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Programming API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Paradigms for Graph Sampling on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Sample-Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Transit-Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 E�cient Transit Parallelism on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Sampling in Individual Transit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1.1 Leveraging Warp-Level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1.2 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Transit-Parallel Collective Transit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Graph Sampling Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 End-to-End Integration in GNN Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. CO-OPTIMIZING COMPUTATION AND COMMUNICATION FOR

DISTRIBUTED MACHINE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 The CoCoNet DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Tensor Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 CoCoNet’s Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.3 Fused Collective Communication Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.4 Overlapping Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 CoCoNet Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Splitting Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Reordering Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.3 Fusing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.4 Overlapping Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.5 Automatic Exploration of Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Distributed Workloads in CoCoNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 The CoCoNet Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 NCCL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



5.4.2 Fused Collective Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.3 Overlapping of Communication and Computation . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.4 Operations on Scattered Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1 Data Parallel Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1.1 Standalone Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.1.2 Integeration with BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.2 Model Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.2.1 Standalone Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.2.2 Integration with Megatron-LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.3 Pipeline Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.3.1 Standalone Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5.3.2 Integration with Megatron-LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6. FUTURE OF HARDWARE AND DOMAIN SPECIFIC LANGUAGES . . . . . . . . . . . . . . . . 64

6.1 Machine Learning Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Programming ML Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Domain Specialized Accelerators for Other Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7. RELATEDWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Execution of Stencil Computations on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Graph Processing on GPUs and CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Optimizing Communication and Computation in Distributed Systems . . . . . . . . . . . . . . 70

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



LIST OF TABLES

Table Page

3.1 Speci�cations of the GPUs used in experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Image Processing benchmarks details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Value of weights obtained for both GPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Speedup of PolyMage-GPU over Halide’s manually written schedules . . . . . . . . . . . . . . 24

4.1 Fraction of time spent in graph sampling in training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Graph used in our evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 End-to-end speedups from integration of NextDoor in GNNs . . . . . . . . . . . . . . . . . . . . . 40

5.1 Time to perform parameter update of all 360 tensors of BERT. . . . . . . . . . . . . . . . . . . . . . 56

5.2 CoCoNet schedules for data parallel parameter update . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Speedup of CoCoNet over PyTorch when training BERT models . . . . . . . . . . . . . . . . . . 59

5.4 CoCoNet schedules for model parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 CoCoNet schedules of pipeline parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



LIST OF FIGURES

Figure Page

1.1 Compilation Pipeline of DSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Using warp shu�e for parallel reduction in CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 PolyMage DSL speci�cation for blur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Equivalent CUDA code generated by Halide for blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Hybrid Tiling work�ow for blur program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Hybrid Tiling CUDA code for blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Work�ow of PolyMage-GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Code generation cases for Hybrid Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Overview of NextDoor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Example execution of a 2-hop Neighborhood sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 NextDoor abstraction to implement a graph sampling application . . . . . . . . . . . . . . . . 30

4.4 Use Cases of NextDoor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 An example work�ow of Sample Parallelism and Transit Parallelism . . . . . . . . . . . . . . . 33

4.6 Speedup of NextDoor on random walk applications and real world graphs over

KnightKing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Speedup of NextDoor on graph sampling applications and real world graphs

over GNN systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Overview of CoCoNet’s work�ow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 An example program in CoCoNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Equivalent programs using AllReduce or using ReduceScatter + AllGather . . . . . . . . . . 47

xii



5.4 Optimizer parameter update using Adam in CoCoNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Two di�erent schedules of pipeline parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Optimizing pipeline parallelism of Megatron-LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Work�ow of CoCoNet’s overlapping of MatMul with AllReduce . . . . . . . . . . . . . . . . . . 54

5.8 Speedup of CoCoNet schedules for parameter update over NVIDIA Apex. . . . . . . . . . 58

5.9 Performance of CoCoNet schedules for model parallelism . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 Performance of CoCoNet schedules for pipeline parallelism . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Pipeline of ML frameworks to Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii



CHAPTER 1

INTRODUCTION

In the last decade, there has been an exponential increase in computationally intensive ap-

plications, such as web search, speech recognition, and face recognition. These applications run

on high performance systems that contain several Central Processing Units (CPUs) and Graphics

Processing Units (GPUs). For instance, speech recognition utilizes large neural networks that are

trained on thousands on GPUs. These large systems can be programmed using low-level languages

and APIs, such as NVIDIA CUDA [2] and AMD HIP [1] to program each GPU, and Message Pass-

ing Interface(MPI) [40] to program distributed systems. Since these low-level languages and APIs

provide access to all features of GPUs and distributed systems, it is possible to write an e�cient

GPU programs in these low-level languages.

However, e�ciently programming these large scale systems in low-level languages for a vari-

ety of tasks is hard for even expert programmers because of three reasons. First, there are di�erent

programming models for programming di�erent hardware. For example, NVIDIA CUDA can be

used to program only NVIDIA GPUs, and AMD HIP for AMD GPUs. Futhermore, to utilize a

distributed cluster, programmers have to reconstruct the application around the Message Passing

Interface(MPI) [40]. Rewriting a program for di�erent hardware is both unproductive and time

consuming. Second, these languages exposes all low level features of the underlying hardware,

hence, to maximize performance, the computation must be programmed using these low level

features. For example, unlike on CPUs, the cache on GPUs is not hardware managed. Hence, to

utilize the cache on GPUs, programmer needs to restructure the computation that enables explicit

reads and writes in cache. Third, programmers need to deal with several parallel and distributed

programming issues, like synchronization, data locality, and load balancing. Since the cache on

GPUs must be programmed explicitly, the programmer is responsible for adding explicit synchro-

nization between threads of a GPU to avoid data races. Furthermore, since these programming
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PolyMage-GPU NextDoor CoCoNet

Loop Fusion and Tiling Reorder, Fusion, Slicing, and Overlapping 
of Communication-Computation
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Automatic Fusion
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AMD HIPGenerated Code

Transit Parallel Sampling

OpenMP

Figure 1.1: Overview of DSLs presented in this thesis. Each DSL performs both domain speci�c and

hardware speci�c optimizations. Using DSLs alleviate the programmer burden and makes GPUs

programming accessible to domain experts.

models and optimizations are known only to hardware experts, it is di�cult for a domain expert

to write new computations for which existing optimized implementations are not available.

This thesis presents novel compiler based approaches to write e�cient GPU applications in

the domains of image processing, graph machine learning, and distributed machine learning. This

thesis presents the design of three new domain speci�c languages (DSLs), optimizations, and com-

pilation techniques. These DSLs enables domain experts to write e�cient and correct code for

high performance systems from a single GPU to a cluster of GPUs. Figure 1.1 shows compilation

pipelines for three DSLs for writing image processing, graph machine learning, and distributed

machine learning applications. Each DSL enables domain experts to express applications in a nat-

ural manner and also performs domain speci�c static type checking to catch errors at the compile

time. Hence, a DSL enables writing correct applications quickly. Then, each DSL compiler per-

forms several domain speci�c optimizations. These optimizations restructure the application to

generate equivalent and e�cient algorithms. Furthermore, each DSL compiler performs several

GPU speci�c optimizations that are applicable only for that domain. New optimizations can be

added to the compiler to use new features in the latest hardware. Finally, each DSL compiler gen-

erates a binary executable for each application. Now, I will brie�y explain all three DSLs and their

compilation techniques.
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PolyMage-GPU is a domain speci�c language for writing image processing applications and

contains new tiling techniques for executing image processing applications e�ciently on modern

GPUs [54]. These techniques utilizes features of modern GPUs, such as warp synchronization

and warp shu�es. These techniques obtained signi�cant performance improvement over existing

techniques [68, 90, 94] to execute image processing programs on GPUs.

NextDoor is a system for describing graph sampling applications and executing these appli-

cations e�ciently on GPUs [55]. NextDoor provides a simple API to describe graph sampling

applications in a few lines of code. NextDoor uses various load balancing and caching strategies

to �nd and exploit reuse in these applications, which helps in achieving regular control �ow and

regular memory access pattern.

CoCoNet is a domain speci�c language for expressing and optimizing distributed computations

on a cluster of GPUs [56]. CoCoNet separates a program into (i) an algorithm that speci�es the

computation and communication and (ii) a schedule that speci�es the transformations to be done

on the algorithm. CoCoNet provides several constructs for optimizing collective communication

operations between GPUs of a cluster. CoCoNet enables optimizing the implementations of model

parallel,data parallel, and pipeline parallel neural network training and inference in few lines of

code and provides signi�cant improvements over the state-of-the-art techniques.

The rest of this thesis is structured as follows. Chapter 2 provides background on NVIDIA

GPUs, CUDA, and distributed machine learning. Chapter 3 describes warp overlapped tiling, hy-

brid tiling techniques, and a cost model of GPUs to choose loop fusion choices. Chapter 4 de-

scribes NextDoor, which is a system for expressing graph sampling applications and executing

them e�ciently on GPUs. Chapter 5 describes the CoCoNet language for describing and optimiz-

ing distributed programs that involves collective communication operations for Machine Learn-

ing workloads. Chapter 6 describes domain specialized architectures and discusses the process of

adapting languages to domain specialized architectures. Chapter 7 describes the related work and

shows di�erences between our work and existing work.
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CHAPTER 2

BACKGROUND

This chapter �rst presents the essentials of NVIDIA Graphics Processing Units (GPU) hard-

ware architecture. Then the chapter brie�y describes distributed machine learning training and

inference approaches.

2.1 An Introduction to NVIDIA GPUs and CUDA

The fundamental unit of computation in an NVIDIA GPU is a thread. Threads are statically

grouped into thread blocks and assigned a unique ID within a block. An NVIDIA GPU contains

multiple streamingmultiprocessors (SMs), each of which executes one or more thread blocks. Rather

than scheduling each individual thread, an SM schedules a subset of threads from the thread block

known as a warp. On NVIDIA GPUs, a warp is set of 32 threads with consecutive thread IDs.

NVIDIA GPUs employ a Single Instruction Multiple Threads (SIMT) execution model, i.e., all

threads in a warp run the same instruction in lock-step. One consequence of this execution model

is that two threads of a warp cannot execute both sides of a branch concurrently. Therefore, when

the threads in a warp encounter a branch, the subset of threads that do not take the branch must

wait for other threads to complete the branch. This phenomenon is known as warp divergence and

can lead to poor performance.

NVIDIA GPUs have a deep memory hierarchy. Two major types of memory are: (i) global

memory, which is accessible to all threads running on all SMs and (ii) shared memory, which is a

memory private to a SM and is only available to thread blocks assigned to that SM. Furthermore,

modern NVIDIA GPUs allow threads of a warp to read values stored in another thread’s registers

of the same warp using warp shu�e instructions. The amount of global memory on each GPU is

in the order of Gigabytes but has higher latency and lower bandwidth than shared memory and

registers. Each thread block can access up to 48KB of shared memory and each thread can have
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1 int val = rand ();
2 for (int offset = 16; offset > 0; offset /= 2)
3 val += __shfl_sync(0xffffffff, val, threadIdx.x+offset, warpSize);

Figure 2.1: CUDA kernel summing variable val of all threads of a warp using __shfl_sync.

up to 256 registers. Programmers need to explicitly use shared memory and registers to cache

intermediate data.

Since caching the intermediate data can lead to data races without synchronization, NVIDIA

GPUs provide two kinds of synchronization: (i) Thread block synchronization synchronizes all

threads in a block: until all warps in the block reach the same __syncthreads statement, no

warp is allowed to proceed, and (ii)warp synchronization synchronizes all threads in a warp, and no

thread can proceed until all threads in the warp reach the synchronization point (__syncwarp).

A consequence of thread block synchronization is that it decrease SM utilization when all warps

of other thread blocks on the SM are stalled on a global memory access while warps of current

thread block are waiting for synchronization. However, in warp synchronization other warps can

make progress because the warp synchronization only synchronizes all threads of a warp. Hence,

thread block synchronization is costlier than warp synchronization.

Since all resources of an SM like shared memory and registers are of �xed size, there is a

maximum limit on the number of warps it can concurrently execute. This limit is represented by

a value known as occupancy, which is the ratio of number of concurrent warps executed by each

SM for a given GPU program to the maximum number of warps an SM can execute concurrently.

The value of occupancy of a GPU program depends on the number of thread blocks, the number

of threads per thread block, the shared memory used by each thread block, and the registers used

by each thread.

The warp shu�e instructions [2, Chapter B.16] available in recent NVIDIA GPUs allow threads

to read register values from other threads in the same warp. The __shfl_sync instruction

takes four arguments: a 32-bit mask of threads participating in the shu�e, the variable stored

in the register to read, the index of the source thread containing the register, and the warp size.

Similarly, __shfl_down_sync and __shfl_up_sync read registers from a thread with

an index immediately before or after the calling thread. Figure 2.1 shows an example from [3]
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of reduction using __shfl_sync. In this example, CUDA kernel invoked with 32 threads in

x-dimension. At each iteration, each thread add next offset thread’s val to its val. At the

end of loop, val of the �rst thread contains the sum. For a shu�e to succeed both the calling

thread and source thread must execute the instruction.

2.1.1 Characteristics of an E�cient GPU Program

A GPU program should have following characteristics to ensure complete use of all GPU re-

sources.

Minimimum Warp Divergence Warp divergence happens when the threads in a warp en-

counter a branch and a subset of threads that do not take a branch must wait for other threads to

complete their branch. Hence, warp divergence can decrease GPU utilization, thereby, decreasing

the performance. Thus, minimum warp divergence is a characteristic of a high-performant GPU

program.

Balanced Load An e�cient GPU program should balance its load across all threads in a thread

block to ensure that all execution resources of a GPU are utilized. Futhermore, the load must be

balanced among all thread blocks because a thread block can have a maximum number of threads,

and if some thread blocks have higher load than others, then other thread blocks will remain idle.

Coalesced Memory Accesses When threads in a warp accesses global memory, then these

accesses are combined into one or more transactions of a �xed size (32 Bytes for NVIDIA GPUs).

Minimizing the number of transactions is a key characteristic of an e�cient GPU program. A GPU

program can achieve minimum transactions only if threads performs coalesced memory accesses,

i.e., consecutive threads accesses consecutive memory locations.

MaximumCache Usage GPUs provide two fast memories that can be utilized as cache: shared

memory and registers. Since both caches have signi�cantly lower latency and higher bandwidth

than global memory, maximizing the cache usage can signi�cantly improve the performance.

Maximum Warps per SM Since each SM on a GPU have a �xed amount of shared memory

and registers, the number of threads that can concurrently run on an SM (known as occupancy) is
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dependent on the amount of shared memory allocated to each threadblock and registers assigned

to each thread. However, we cannot always decrease the usage of shared memory and registers

signi�cantly to increase occupancy because it will decrease the amount of cached data and lead to

poor performance. Hence, an e�cient GPU program runs at a sweet spot between occupancy and

usage of shared memory and registers that leads to high-performance.

Utilize all Resources Simultaneously A GPU’s resources can be divided into three groups

computation, memory, and network resources. Even though a GPU’s hardware thread scheduler

tries to utilize all resources completely by overlapping computation with memory and network

accesses, if a GPU program does not utilize any of these resource then these resources can be

under utilized. Hence, a GPU program must overlap di�erent GPU programs in a �ne-grained

manner where each kernel might utilize only some of the resources.

2.2 Distributed Neural Network Training and Inference

Machine learning at scale requires distributed hardware. For example, training large models

such as BERT [38] with 340 million parameters, GPT-2 [88] with 1.5 billion parameters, and GPT-

3 [26] with 175 billion parameters, requires thousands of machines. Training and inference for

these large models on multiple GPUs exploit three forms of parallelism:

Data Parallelism In data parallelism, the dataset is divided among GPUs. Each GPU perform

the forward pass and backward pass based on the input dataset. After the backward pass, each GPU

now hold di�erent values of gradient for same parameter because each GPU has di�erent dataset.

Hence, all GPUs obtains the average value of gradient of each parameter. After computing the

average, each parameter is updated using optimizers, such as Adam [62] and LAMB [115]. This

process ensures that value of each parameter on all GPUs are same.

Model Parallelism In model parallelism [101], the model is divided among the GPUs. Each

GPU perform a part of the layer computation and then all GPUs sums the part to obtain all values

of layer on each GPU.

Pipeline Parallelism In pipeline parallelism [51] each layer (or a batch of contiguous layers) is

assigned to a group of GPUs. When computation of one layer (or the batch of contiguous layers)
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is completed, the output of the computation is send to the next group of GPUs that contains next

layers (or next batch of contiguous layers).

2.2.1 Communication Collectives

Distributed training and inference utilizes several communication primitives de�ned by the

the MPI Standard [40] and implemented in libraries, such as, NVIDIA Collective Communication

Library (NCCL) [15] and OpenMP. A key class of communication primivites used in distributed

training and inference are collective communication primitives, where all nodes collectively per-

forms several sends and receives to obtain the output. This section gives an overview of important

communication collectives.

This thesis follow the MPI terminology to represent the process ID of a distributed process as

rank and the set of all processes as WORLD, such that, ranks ranges from 0 to |WORLD| − 1. All

communication collectives takes an input bu�er bi of size Ni and writes to an output bu�er bo of

size No. Below are some common communication collective primitives supported by NCCL and

OpenMPI:

• AllReduce performs a reduction operation on bi and leaves identical copies of bo on all ranks.

• AllGather gathers all Ni values of bi from all ranks to bo, such that, No = Ni × |WORLD|.

• ReduceScatter performs a reduction operation on bi and scatter the result among all ranks

in bo, such that, No = Ni ÷ |WORLD|.

• Reduce takes a root rank r, performs reduction on bi and only writes the result to bo of r.

• Broadcast takes a root rank r. It copies Ni values using Sendof bi of rank r and leaves

identical copies in bo of all ranks.

• Send takes a destination rank r. It copies Ni values of bi from current rank to rank r.
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CHAPTER 3

EFFICIENT IMAGE PROCESSING ON MODERN GPUS

Image processing programs are essential in several domains, including computer vision, em-

bedded vision, computational photography, and medical imaging. These programs run on a variety

of platforms, from embedded systems to high-performance clusters that process large amounts of

image data.

An image processing program is logically structured as a directed acyclic graph of connected

stages, where each stage performs per-pixel data parallel operations on its input image and pro-

duces an output image for dependent stages. There are several domain-speci�c languages (DSLs)

for writing image processing programs, including Halide [90], PolyMage [75], and Forma [92].

These DSLs allow the programmer to write independent stages in a natural way, but still get high-

performance code by applying key optimizations, including loop fusion and overlapped tiling. After

loop fusion, overlapped tiling [75, 90, 92] splits each stage into overlapping regions (known as tiles)

that can be processed in parallel without synchronization with other tiles. Existing approaches to

execute image processing programs on a GPU [22, 49, 86, 90, 92, 93, 94, 107, 117] maps each tile to

a thread block and stores intermediate results (scratchpad arrays) in the shared memory associated

with a thread block. However, these techniques give suboptimal performance on modern GPUs

for three reasons. 1) Processing an overlapped tile per thread block has a high synchronization

cost across stages. 2) Smaller tiles have more overlapped regions (and thus require more redundant

computation), but larger tiles require more shared memory accesses (and thus lower occupancy).

3) State-of-the-art autoscheduling algorithms for loop fusion and tile-size selection do not employ

a rich cost model for GPUs. For example, cost models in [68, 94] do not consider the number of

global memory transactions, the ability to hide latency of global memory accesses, and occupancy.

This chapter introduces, PolyMage-GPU (based on PolyMage [75]), a compiler for image pro-

cessing programs that leverages the architecture of modern GPUs to generate high performance

code. PolyMage-GPU exploits the fact that all threads in a warp can synchronize using warp syn-
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chronization, which has signi�cantly lower overhead than thread block synchronization. In addi-

tion, modern GPUs have warp shu�e [2, Chapter B.16] instructions that allow threads in a warp

to read each others’ register values. PolyMage-GPU uses warp shu�es to lower shared memory

usage and support larger overlapped tiles. PolyMage-GPU contains a cost model for GPUs that

accounts for several factors, including the number of global memory transactions, occupancy, and

resource utilization. This cost model is used to determine the optimal tile, thread block sizes and

loops to fuse, using Dynamic Programming Fusion [53].

The rest of this chapter is organized as follows. Section 3.2 presents an overview of the ap-

proach. Section 3.3 presents the technique for running one overlapped tile per warp. Section 3.4

presents hybrid tiling. Section 3.5 presents the automatic fusion algorithm. Section 3.6 evaluates

this work over state-of-the-arts. Finally, Section 3.7 concludes this chapter.

3.1 PolyMage DSL

PolyMage [75] is a DSL embedded in Python for writing image processing pipelines. The Poly-

Mage compiler transforms programs in the DSL into high-performance code for CPUs. Figure 3.1

shows an image blurring program (blur) with two stages (blurx and blury). The parameters to

the pipeline are the number of rows and columns in the image (line 1). The program �rst feeds the

input image (img on line 9) to blurx, and then the output of blurx to blury. Each stage is a

function mapping a multi-dimensional integer domain to values representing intensities of image

pixels (lines 20 and 22). The domain of the function is de�ned at lines 12–14. blurx takes the

image as input and blurs it in the x-direction (lines 20–21). blury blurs the output of blurx

in the y-direction and produces �nal output (lines 22–23). The PolyMage compiler performs loop

fusion on producer-consumer stages to improve locality and provide parallel execution. When

fusing two stages, PolyMage performs overlapped tiling using polyhedral transformations. Two

adjacent tiles perform redundant computations to ensure that all the data required to compute the

output of a tile (known as liveouts) is available within that tile, providing parallel execution of

all tiles. Within a tile, the output of a producer stage is transferred to its consumer using small

bu�ers, known as scratchpads. A scratchpad is small enough to �t in a CPU cache, or in the work

presented in this thesis, in GPU shared memory or registers.
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1 R,C = Parameter(Int,"R"),Parameter(Int,"C")
2

3 # Vars
4 x = Variable(Int,"x")
5 y = Variable(Int,"y")
6 c = Variable(Int,"c")
7

8 # Input Image
9 img = Image(Float,"img",[3,R+2,C+2])

10

11 # Intervals
12 cr = Interval(Int,0,2)
13 xrow,xcol = Interval(Int,1,R),Interval(Int,0,C+1)
14 yrow,ycol = Interval(Int,1,R),Interval(Int,1,C)
15

16 # Functions
17 cond = Condition(x,’>=’,1) & Condition(x,’<=’,R) &
18 Condition(y,’<=’,C) & Condition(y,’>=’,1)
19

20 blurx = Function(([c,x,y],[cr,xrow,xcol]), Float,"blurx")
21 blurx.defn = [Case(cond,(img(c,x-1,y) + img(c,x,y) + img(c,x+1,y))/3)]
22 blury = Function(([c,x,y],[cr,yrow,ycol]), Float,"blury")
23 blury.defn = [Case(cond,(blurx(c,x,y-1) + blurx(c,x,y) + blurx(c,x,y+1))/3)]

Figure 3.1: PolyMage DSL speci�cation for blur.

3.1.1 Dependence Vectors

PolyMage uses dependence vectors to encode the dependencies between consumer and pro-

ducer stages. A dependence vector [112] is the di�erence of the time stamps when a value is

consumed and when it is produced. For example, in the blur program, the blury stage, at

(2,c,x,y), consumes values that theblurx stage produces at(1,c,x,y-1),(1,c,x,y),

and (1,c,x,y+1). This is captured by the dependence vectors (1,0,0,-1), (1,0,0,0), and (1,0,0,1).

3.1.2 Dynamic Programming Fusion

Dynamic Programming Fusion (DP-Fusion) [53] is an algorithm that performs automatic fu-

sion of image processing pipelines in a few seconds. DP-Fusion �nds schedules that are compet-

itive with schedules generated by autotuner over a few days, and are better than a greedy CPU

autoscheduler [76]. Instead of using a greedy algorithm and a simple cost function, DP-Fusion

enumerates all valid fusion possibilities and uses dynamic programming combined with an ana-

lytic cost function to signi�cantly decrease the runtime of a combinatorial algorithm. Among all

fusion possibilities, DP-Fusion �nds the best fusion choices on the basis of the cost of candidate
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1 blur_otptb(img[3][R][C], blury[3][R-2][C-2])
2 shared blurx[blockDim.y][tile*blockDim.x+2];
3 c = threadIdx.z;
4 y = blockIdx.y*blockDim.y + threadIdx.y;
5 for (tx = 0; tx < tile+1; tx++)
6 xx = tx * blockDim.x + threadIdx.x;
7 x = (blockIdx.x*blockDim.x)*tx + xx;
8 if (xx < tile*blockDim.x+2)
9 blurx[y][xx] = (img[c][y-1][x]+img[c][y][x]+img[c][y+1][x])/3;

10 __syncthreads ();
11 for (tx = 0; tx < tile; tx++)
12 xx = tx * blockDim.x + threadIdx.x;
13 x = (blockIdx.x*blockDim.x)*tx + xx;
14 blury[c][y][x] = (blurx[y][xx-1]+blurx[y][xx]+blurx[y][xx+1])/3;

Figure 3.2: Equivalent CUDA code generated by Halide for blur, where both blurx and blury are

fused in an overlapped tile of size tile in x and 1 in y.

Functions

Computation on pixels (x)

blurx

blury

Shared Memory
Tile 1a Tile 1b Tile 1c Tile 1d

Register

t1 t2 t3 t4 t1 t2 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

Figure 3.3: Hybrid Tiling for blur program with tile of 2 in x and warp size of 4. The overlapped

tile is split into four tiles. Red tiles are stored in shared memory and green tiles in registers.

fused loops. The cost of fused loops is calculated using a cost function that also uses a model to

determine tile sizes. PolyMage uses DP-Fusion to �nd the best schedules for image processing

programs executing on multi-core CPUs [53].

3.2 PolyMage-GPU Overview

This section provides an overview of PolyMage-GPU’s warp tiling and hybrid tiling by gener-

ating optimized code for the blur program in Figure 3.1.

Figure 3.2 shows CUDA code that is equivalent to the code that Halide produces for blur

pipeline in Figure 3.1. The code fuses both blurx and blury together and uses overlapped tiles
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1 blur_otpw_ht(img[3][R][C],
2 blury[3][R-2][C-2])
3 shared blurx[blockDim.y]
4 [blockDim.x/warpSz]
5 [tile/2*warpSz+2];
6 y = blockIdx.y * blockDim.y+threadIdx.y;
7 c = threadIdx.z;
8 warpSz = warpSize;
9 warp = threadIdx.x/warpSz;

10

11 for(tx = 0; tx < 2; tx++)
12 for(txx = tx*tile/4;
13 txx<(tx+1)*tile/4+1;txx++)
14 xx = tile*warpSz+threadIdx.x%warpSz;
15 x = (blockIdx.x+1)*blockDim.x*tx+
16 threadIdx.x;
17 if(xx < tile*warpSz+2)
18 blurx[y][warp][xx]=(img[c][y-1][x]+
19 img[c][y][x]+img[c][y+1][x])/3;
20 x = warp+8*warpSz+lane_x;
21 blurx_8 = (img[c][y-1][x]+img[c][y][x]+
22 img[c][y+1][x])/3;
23 x = warp+9*warpSz+lane_x;
24 blurx_9 = (img[c][y-1][x]+img[c][y][x]+
25 img[c][y+1][x])/3;
26 /*for all iterations till 15*/
27 syncwarp();
28 for(tx = 0; tx < 2; tx++)
29 for(txx = tx*tile/4;
30 txx <(tx+1)*tile/4; txx++)
31 xx = tile*warpSz+threadIdx.x%warpSz;
32 x = (blockIdx.x+1)*blockDim.x*tx+
33 threadIdx.x;
34 if(xx > 0 and xx < tile/2*warpSz+2)
35 blury[c][y][x] =
36 (blurx[y][warp][xx-1]+
37 blurx[y][warp][xx]+
38 blurx[y][warp][xx+1])/3;
39 blurx_l_2_8 = shfl_up(blurx_8, 2);

40 /*for all iterations till 15*/
41 syncwarp();
42 for(tx = 0; tx < 2; tx++)
43 for(txx = tx*tile/4;
44 txx <(tx+1)*tile/4; txx++)
45 xx = tile*warpSz+threadIdx.x%warpSz;
46 x = (blockIdx.x+1)*blockDim.x*tx+
47 threadIdx.x;
48 if(xx > 0 and xx < tile/2*warpSz+2)
49 blury[c][y][x] =
50 (blurx[y][warp][xx-1]+
51 blurx[y][warp][xx]+
52 blurx[y][warp][xx+1])/3;
53 blurx_l_2_8 = shfl_up(blurx_8, 2);
54 blurx_l_1_8 = shfl_up(blurx_8, 1);
55 int rt = 7*warpSz+warpSz;
56 if(lane_x == 0)
57 blurx_l_2_8=blurx[y][warp][rt-2];
58 blurx_l_1_8=blurx[y][warp][rt-1];
59 if(lane_x == 1)
60 blurx_l_2_8=blurx[y][warp][rt-1];
61 x = warp+8*warpSz+lane_x;
62 blury[c][y][x] = (blurx_l_2_8+
63 blurx_l_1_8+
64 blurx_8)/3;
65 blurx_l_2_9 = shfl_up(blurx_9, 2);
66 blurx_l_1_9 = shfl_up(blurx_9, 1);
67 _blurx_l_2_9=shfl(blurx_8,warpSz-2);
68 _blurx_l_1_9=shfl(blurx_8,warpSz-1);
69 if(lane_x == 0)
70 blurx_l_1_9 = _blurx_l_1_9;
71 blurx_l_2_9 = _blurx_l_2_9;
72 if(lane_x == 1)
73 blurx_l_2_9 = _blurx_l_1_9;
74 x = warp+9*warpSz+lane_x;
75 blury[c][y][x] = (blurx_l_2_9+
76 blurx_l_1_9+
77 blurx_9)/3;
78 /*for all iterations till 15*/

Figure 3.4: Hybrid Tiling CUDA code for blur, with blurx and blury fused in an overlapped tile of

size tile in the x-dimension, which is computed by one warp.

of length tile in the x-dimension and unit length in y-dimension. During the execution, all

threads in a thread block 1) compute blurx in parallel by looping over all points in the tile (lines 5–

9), 2) store the result of blurx in a scratchpad (which is in shared memory), 3) use thread-block

synchronization to ensure that all blurx values are ready (line 10), and 4) calculates blury in par-

allel, which depends on blurx (line 11– 14). On an NVIDIA GTX 1080Ti, this code exhibits its best

performance (1.40ms) on a 4096×4096×3 input with 8 tiles and block sizes of 64×4×1. However,

thread block synchronization requires to warp switching that can lead to decrease in performance,

so there is room for improvement.
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Overlap Tile perWarp (OTPW) The program can be modi�ed to assign each overlapped tile to

a warp, instead of a thread block, so that, the program uses warp synchronization (__syncwarp),

which allows the SM to execute a warp even if another warp is waiting for a memory access. This

code exhibits its best performance (1.35ms) with 8 tiles and block sizes of 64×4×1. This is a 1.04×

speedup over the prior approach. This choice of tile size produces 0.8% redundant computations

per warp. Although, using tile size 16 leads to fewer redundant computations (0.4%), it increases

the running time (1.45ms) because of far more shared memory usage (over 16KB). This limits the

number of warps that the GPU can run concurrently, i.e., occupancy is only 62.5%.

Hybrid Tiling To further improve performance, we propose hybrid tiling, which is a technique

that decreases the size of the scratchpad bu�er in shared memory, by storing some parts of the

overlapped tile in registers. Since each tile is assigned to a warp, warp shu�e instructions can

be used to enable threads in a warp to read register values from other threads in the same warp.

This eliminates the need for per thread redundant computation that arise in register blocking.

Figure 3.3 sketches the structure of the computation, assuming four tiles: the �rst two tiles are

stored in shared memory, whereas the latter two tiles are stored in registers. When a blury value

depends on a blurx-value in a register, it can read it directly, using warp shu�es to read across

threads if needed.

On a GTX 1080Ti, the code so far only uses 24 registers. With a tile size of 16, half of the tile

is stored in registers, which halves the shared memory usage, and leads to 100% occupancy. With

hybrid tiling, the code runs in 1.2ms which is 1.13× faster than the OTPW approach, and 1.16×

faster than the original program.

Figure 3.4 sketches the CUDA code for blur that uses overlap tile per warp and hybrid tiling. In

this code shfl* refers to __shfl*_sync. In the �gure, the data points of blurx for �rst two

tiles are stored in shared memory while the later tiles are stored in the registers. Lines 11–19 pro-

cesses blurx on the �rst two tiles stored in shared memory using a warp by assigning consecutive

data points to consecutive threads in a warp and looping over all points in both tiles. Lines 20–40

unroll the loop and store each data point in registers for two register tiles. Lines 42–52 compute

the values of blury for �rst two tiles that are stored in shared memory. Lines 53–54 retrieve the

values of blurx from other threads using warp shu�e. Since the �rst two values for the �rst thread
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Figure 3.5: Compilation pipeline of image processing program written in PolyMage-GPU, which

is based on PolyMage [75].

in a warp are the values produced and stored in shared memory by last two threads of that warp,

lines 56–60 retrieve the last two values of shared memory for that warp. Line 64 computes each

blury point for the eighth iteration of the larger overlapped tile. Similarly, for the ninth iteration,

lines 65–73 retrieve the values of blurx_9 from previous threads and for �rst two threads of

warp values of blurx_8 are retrieved from last two threads of the warp.

Loop Fusion The �nal problem involves choosing best performing tile and block sizes. I present

an automatic fusion algorithm that considers key factors a�ecting the performance of GPU kernels

which are not considered in previous works [18, 68, 76]: 1) number of global memory transactions,

2) achieved and theoretical occupancy, 3) GPU resource usage, and 4) fraction of overlapping com-

putations.

All techniques described in the paper, i.e., OTPW, hybrid tiling, and the fusion algorithm are

implemented in PolyMage-GPU. Figure 3.5 shows the structure of the compilation pipeline.

3.3 Overlap Tile per Warp

This section describes the how to generate a warp overlapped tile for any loop.

Let (bx, by, bz) be the coordinates of a thread block and (Bx, By, Bz) be the thread block size.

Consider a group of fused stages with tile sizes (Tx, Ty, Tz) that consumes a three-dimensional

input of size (Nx, Ny, Nz), where each dimension is labelled i ∈ {x, y, z}. The linear thread ID

for a three-dimensional coordinates of a thread (tx, ty, tz) is: tx + Bx × ty + Bx × By × tz . The

Warp ID of a thread is the thread ID divided by WarpSize and the index of a thread in a warp

(known as its lane ID) is the remainder. Warp sizes, Wx, Wy , Wz , are de�ned as:
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Wx = minimum(Bx,WarpSize)

Wy = minimum(By,WarpSize÷Wx)

Wz = minimum(Bz,WarpSize÷ (Wx ×Wy))

These warp sizes are the number of threads with distinct IDs of that dimension in a warp. The

number of warps in dimension i in a thread block is equal to the ratio of block size to the warp

size of that dimension (dBi/Wie). The warp ID of a thread in a dimension is the �oor of division

of the thread’s ID in that dimension to the warp size of that dimension, i.e.(b(bi ×Bi + ti)/Wic).

Moreover, the lane ID is the remainder ((bi × Bi + ti) modWi). Note that the product of all the

warp sizes obtained using these equations is equal to WarpSize. For given overlapped tile sizes,

we create a warp overlapped tile by extending the tile sizes of each dimension to cover exactly one

warp. The total number of points in a warp overlapped tile excluding the redundant computations

is the product of the number of points in the given overlapped tile sizes and WarpSize. For the

given overlapped tile size, the size of the warp overlapped tile is (Tx ×Wx, Ty ×Wy, Tz ×Wz).

The size of each scratchpad for a stage is exactly the number of data points computed by the

thread block for that stage. For the nth
stage, each warp computes two types of data points in the

ith dimension: 1) Ti ×Wi computations for the tile, and 2) On
i overlapping computations. The

number of data points computed (and the size of the scratchpad) for nth
stage is represented as∏

i∈{x,y,z} dBi/Wie × (Ti ×Wi +On
i ).

3.4 Hybrid Tiling

This section presents hybrid tiling, which divides a tile between shared memory and registers.

Hybrid tiling relies on the fact that each overlapped tile �ts in a single wrap. Hybrid tiling use

warp shu�e instructions to allow each thread to access data from other threads in a warp, which

eliminates the need for certain redundant computations per thread. Hybrid tiling solves the is-

sues of shared memory only tiling by 1) storing a part of a tile in registers to decrease allocated

shared memory, 2) providing extra storage for larger tile sizes, which results in fewer redundant

computations, and in turn, fewer global memory loads and total computations; and 3) storing tiles

partially in registers, which leads to faster access to data points.
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The warp overlapped tile is split over a split dimension, into several parallelogram tiles with

left tiles stored in shared memory and right tiles stored in registers (Figure 3.3). These smaller

parallelogram tiles are of warp size in the split dimension, and the same size as the warp overlapped

tile in other dimensions. The slope of the parallelogram tiles are parallel to the right hyperplane

of the warp overlapped tile in the split dimension, which ensures there is no cyclic dependence

between two adjacent tiles.

Since all producer loads by OTPW are in the shared memory, these loads have to be converted

to access data stored in registers if necessary. Figure 3.3 shows that there are four types of producer

loads: (i) the producer loads in red are from the registers of current thread, if the load index is

same as the iteration in the split dimension (Type 1©); (ii) the producer loads in black are from

shared memory (Type 2©), if the load index is less than the lower bound of the register tile in the

split dimension; (iii) the producer loads in green are from the registers of another thread in same

parallelogram tile (Type 3©), if the load index in the split dimension is less than the iteration in

the split dimension; and (iv) the producer loads in brown are from registers of another thread in

previous parallelogram tile (Type 4©), if the di�erence between the lane ID of the current thread in

the split dimension and the di�erence between the iteration and load index in the split dimension

is less than zero.

Algorithm 1 is the hybrid tiling algorithm that uses dependence vectors between producer

and consumer stages. The arguments to the 2-D-HybridTiling function are the group of stages

(G), tile sizes (Tx × Ty), warp sizes (Wx × Wy), and register tile size (fracReg) as a fraction of

the tile size in the split dimension. The result of the function is the CUDA code that does hybrid

tiling. First, the algorithm �nds a split dimension with tile size greater than 1 (line 16). If no

such dimension is found, then tiles must be stored entirely in the shared memory. The rest of

the algorithm assumes that the x-dimension is the split dimension. Let φrx and φry be the right

hyperplanes of warp overlapped tiles of G in the x and y dimensions respectively. The algorithm

�rst generates the shared memory tile using the PolyMage compiler, and then generate register

tiles using the GenRegTile function that takes a stage of the group (H), the hyperplanes (φrx,

φry), the register tile size (Rx ×Ry), and the warp sizes (Wx ×Wy) as arguments (lines 24–25).

For all the iterations in the register tile, including the overlapping computations, the algorithm

stores each computed value of stageH in a distinct variable, instead of shared memory (line 5). The
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1 val = Reg_P[x][c*y + d]

(a) Code for a register access from same thread is generated when the source lane ID is the current lane ID,

i.e. φx = φrx (Type 1©).

1 currTileSrcLane = (laneId.x + phi.x) + (laneId.y + diffPhi.y)*warpSize.x;
2 /*Type 3:*/ val = __shfl_sync(getMask(), Reg_P[x][c*y+d], currTileSrcLane);
3 /*Type 2:*/ if (laneId.x + diffPhi.x < 0) val = ShMem_P[a*x+b][c*y+d];

(b) Code generated when current iteration is the �rst iteration of register tile and φx − φrx 6= 0. When the

sum of lane index and φx−φrx is less than zero, then value is accessed from shared memory tile (Type 2©),

otherwise value is accessed from register of thread in the same parallelogram tile (Type 3©). diffPhi.x
is the value of φx − φrx. diffPhi.y is the value of φy − φry

1 prevTileSrcLane = (warpSize.x - 1 + diffPhi.x) +
2 (warpSize.y - 1 + diffPhi.y)*warpSize.x;
3 currTileSrcLane = (laneId.x + diffPhi.x) + (laneId.y + diffPhi.y)*warpSize.x;
4 /*Type 3:*/ val = __shfl_sync(getMask(), Reg_P[x][c*y+d], currTileSrcLane);
5 /*Type 4:*/ if (laneId.x + diffPhi.x < 0)
6 val = __shfl_sync(getMask(), Reg_P[x-1][c*y+d], prevTileSrcLane);

(c) Code generated when current iteration is not the �rst iteration of register tile and φx − φrx 6= 0. When

the sum of lane index and φx − φrx is less than zero, then value is accessed from register of last |φx − φrx|
threads of previous parallelogram tile (Type 4©) otherwise value is accessed from register of thread in the

same parallelogram tile (Type 3©). diffPhi.x is the value of φx − φrx. diffPhi.y is the value of

φy − φry

Figure 3.6: Code generation cases for a producer p[a*x+b][c*y+d] at iteration {x, y} of

register tile that generates all four load types of Figure 3.3.

algorithm replaces each producer load in the loop with either a shared memory read or a warp shuf-

�e (lines 6–14). Then the algorithm computes the dependence vector between the producer and

consumer (line 7) as φx and φy . Figure 3.6 shows the code generated for three cases that arise when

generating code for a load P[a*x+b][c*y+d]. The �gure shows two types of source lane IDs

that contain the register, which stores the value of the producer load: 1) currTileSrcLane is

the lane ID for a source thread in the current parallelogram tile and 2) prevTileSrcLane is

the lane ID for a source thread in the previous parallelogram tile. Value of both IDs in x-dimension

depends on φx − φrx and in y-dimension depends on φy − φry . I now explain each of the three

cases in detail. 1) If φx = φrx, then the value needed for this load is stored by the current thread’s

register and the algorithm generates the code for Type 1© (line 9). 2) When φx − φrx 6= 0 and

the iteration in split dimension, i.e., x-dimension is �rst iteration of the register tile, then �rst |φx
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Algorithm 1 Hybrid Tiling

1: function GenRegTile(H, φrx, φry , Rx× Ry , Wx×Wy)

2: for all {x, y} ∈ [1, . . . Rx] × [1, . . . Ry] do

3: Let iteration {x, y} be

4: H[x][y] = f(P[a*x+b][c*y+d], . . .)
5: Store H[x][y] in a register array Reg_H[x][y]
6: for all loads P[a*x+b][c*y+d] ∈ f do

7: φx, φy = dependence vectors between P[a*x+b][c*y+d] and H[x][y]
8: if φx == φrx then

9: Generate Type 1© code in Figure 3.6a

10: else if x == 1 then

11: Generate Type 2© and 3© code from Figure 3.6b

12: else

13: Generate Type 3© and 4© code from Figure 3.6c

14: Replace P[a*x+b][c*y+d] with val in generated code

15: function 2-D-HybridTiling(G, fracReg, Tx× Ty , Wx×Wy)

16: splitDim = a dimension with tile size greater than 1
17: If no split dimension exists then return

18: Let φrx and φry be right hyperplanes of G in x and y
19: Let splitDim is the x-dimension.
20: Create parallelogram tiles in x-dim of size Wx parallel to φrx
21: Rx← Tx× fracReg, Sx← Tx× (1 - fracReg)

22: Ry ← Sy ← Ty

23: for all H ∈ G do

24: Gen. Shared Mem Tile with tile size Sx×Sy
25: GenRegTile(H, φrx, φry , Rx× Ry , Wx×Wy)

- φrx| threads of warp loads from shared memory (Type 2©) and remaining threads loads from

registers of threads in same parallelogram tile (Type 3©). Figure 3.6b shows the code generated

for this case. The conditional determines whether to load from shared memory or from another

thread’s register. The __shfl_sync function loads the value from the source thread’s register.

The function getMask retrieves the mask of threads that can participate in the warp shu�e.

3) Otherwise, if a thread needs to load from another thread’s register that stores value of either

the current parallelogram tile (Type 3©) or the previous parallelogram tile (Type 4©), then the al-

gorithm generates the code in Figure 3.6c. Two warp shu�es are generated that are executed by

all threads and a conditional expression selects which loaded value to use.
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Model GTX 1080Ti Tesla V100

Simultaneous Multiprocessors 28 80

CUDA Cores per SM 128 64

Global Memory Bandwidth 484 GBps 898 GBps

Maximum Shared Memory Per Thread Block 48 KB 96 KB

Shared Memory per SM 96 KB

Maximum Warps per SM 64

Maximum Thread Blocks per SM 16 32

Registers per SM 65536

Maximum Registers Per Thread 256

Warp Size 32

Global Memory Transaction Size

32 B for L2 Cache

128 B for L1 Cache

Table 3.1: Speci�cations of the GPUs used in experiments.

3.5 Automatic Fusion for GPUs

This section presents an automatic fusion algorithm that selects 1) sets of stages to fuse, 2) their

tile sizes, and 3) their thread block sizes. This approach leverages DP-Fusion [53], which is an

algorithm that e�ciently enumerates all fusion possibilities, given a cost function. I introduce a

cost function that calculates the minimum cost of a sequence of fused loops, along with optimal

tile sizes and thread block sizes.

The algorithm takes two types of information about each stage as input. First, the register

usage of the stage, which is determined using nvcc. Second, the running time per iteration of the

stage, which is obtained by generating code for each individual stage, where global memory loads

are replaced by shared memory loads.

The function Cost takes four arguments: 1) a group of stages to fuse, G, 2) tile sizes, 3) thread

block sizes, 4) fraction of tile stored in registers, and returns the cost. The function refers to the

the hardware con�guration of a GPU (Table 3.1). The expression below calls the Cost function for

all tile sizes, thread block sizes, and fraction of tile stored in registers including 0.0 (hybrid tiling

disabled) and 1.0 (except the overlap in split dimension the complete tile is stored in registers),

and global memory transaction size for both L1 and L2 global memory cache, and returns the

minimum cost with the appropriate global memory cache enabled, tile sizes, thread block sizes,

and the fraction of tile stored in registers:
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argmin
tileSize∈Tile Sizes,

tbSize∈Thread Block Sizes,
fracRegTile∈{0.0,0.1,...,1.0},
GLMemTxSize∈{32,128}

Cost (G, tileSize, tbSize, fracRegTile)

The Cost function determines the cost based on 1) the number of global memory transactions

per warp, 2) theoretical maximum occupancy, 3) achieved occupancy, 4) shared memory usage,

5) register usage, 6) the fraction of redundant computations, and 7) the load imbalance. Cost is

the weighted sum of these factors. The function also ensures the dependence vectors between all

stages of a group are constants after alignment and scaling of dependencies. The function deter-

mines the dimension sizes of the group, total threads created, threads per thread block, number of

warps per thread block, and warp overlapped tile sizes. The function distribute all thread blocks

equally across all SMs. Then the function retrieve the volume of each tile, the number of inter-

mediate bu�ers, and multiply them with the number of warps per thread block to determine the

shared memory usage per thread block.

If hybrid tiling is used, the function splits the shared memory tile into two parts and updates

the register tile. The function checks if the shared memory used per thread block is more than the

maximum shared memory.

Below I explain how value of each component of cost are calculated:

• Number of Global Memory Transactions: The function estimates the number of global

memory transactions that either load input images or inputs to the group by retrieving the

global memory addresses based on the input accesses and coalescing these accesses to min-

imum number of transactions.

• Theoretical Occupancy: The function estimates theoretical occupancy based on the shared

memory and register utilization by calculating minimum of two occupancies. First occu-

pancy is obtained from shared memory usage per thread block and second is occupancy

obtained from register usage per thread.

• Achieved Occupancy: The function estimates the number of warps ready to execute at

runtime as the ratio of time spent in global memory loads to the time spent in computations.
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• Shared Memory and Register Usage: The function calculates per thread block shared

memory usage and register usage when all thread blocks are executing concurrently based

on the occupancy.

• Fraction of Redundant Computations: The function determines the fraction of overlap

in each tile.

• Load imbalance: The function minimizes the load imbalance due to when the number

of thread blocks per SMs are not always a multiple of number of thread blocks executing

concurrently per SM based on the occupancy.

3.6 Evaluation

I implemented above techniques in PolyMage-GPU, which is available athttps://bitbucket.

com/abhjangda/polymage-gpu. In this section, I investigate the following questions:

1) How fast is PolyMage-GPU’s automatic loop fusion algorithm? 2) How does the OTPW execu-

tion model compare to the state-of-the-art? Full details of performance analysis can be found at

[54].

Experimental Setup All experiments are performed on a system containing a 3.4 GHz, quad-

core Intel i5-4670 CPU with 16GB RAM and two GPUs (each experiment uses a single GPU): an

NVIDIA GTX 1080Ti and an NVIDIA Tesla V100 (Table 3.1 lists their key speci�cations). I use

six canonical image processing applications that have appeared in prior work [18, 53, 75, 76, 90].

Table 3.2 reports the number of stages and the size of the input image for each benchmark. I

compare our work to the manually-written schedules present in Halide repository [4]. The exe-

cution time that reported for each benchmark is the sum of execution time of all generated CUDA

kernels (obtained using nvprof), and does not include host and device memory transfer time.

Each benchmark is executed for three samples with each sample containing 100 runs. I report the

minimum of the average running time for each sample.

Cost FunctionWeights The cost function in automatic fusion requires several weights that are

GPU-dependent. I determine the best weights empirically using leave-one-out cross validation,

since, there are small number of benchmarks. Table 3.3 shows the weights.
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Benchmark Stages Image size (W×H×c) Fusion

Unsharp Mask 4 4256×2832×3 0.05s

Harris Corner 11 4256×2832 0.15s

Bilateral Grid 7 2560×1536 0.02s

Multiscale Interpolate 49 2560×1536×3 10s

Camera Pipeline 32 2592×1968 17s

Pyramid Blend 44 3840×2160×3 28s

Table 3.2: For each benchmark, the number of stages, size of input, and time taken for loop fusion.

w1 w2 w3 w4 w5 w6 w7

GTX 1080Ti 50 0.5 45 20 2 100 1

Tesla V100 50 0.5 60 10 2 100 1

Table 3.3: Value of weights obtained for both GPUs.

3.6.1 Automatic Fusion Time

I �rst measure the time it takes for automatic fusion to process each benchmark program to

�nd an optimal schedule. PolyMage-GPU uses Bounded DP Fusion [53] to search for (i) thread

block sizes (as a multiple of WarpSize), and (ii) tile sizes from 1 to 32 in each dimension. The

Fusion column in Table 3.2 shows the time taken, which ranges from less than a second to up to

30 seconds for benchmarks with a few dozen stages.

3.6.2 Performance Evaluation

I now evaluate the performance of code generated by PolyMage-GPU after applying both

OTPW with hybrid tiling and the loop fusion algorithm
1
. I compare code generated by PolyMage-

GPU is against the manually-written schedules present in the Halide repository [4]. However, I

wrote the schedule for Pyramid Blend, since it was not available.

Table 3.4 shows the absolute execution times of PolyMage-GPU and Halide and the speedup of

PolyMage-GPU over Halide on both GPUs. On every benchmark, PolyMage-GPU is at least as fast

as Halide, and in many cases, signi�cantly faster. PolyMage-GPU is faster than manually written

schedules in Halide with a geomean speedup of 1.65× and 1.33× on the GTX 1080Ti and Tesla

V100 respectively. In general, PolyMage-GPU outperforms Halide because its fusion algorithm

1

The generated CUDA 10.0 is compiled usingnvcc -O3 -arch=compute_61 -code=sm_61 on the GTX

1080Ti and nvcc -O3 -arch=compute_70 -code=sm_70 on the Tesla V100.
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Benchmark Halide PolyMage-GPU Speedup

1080Ti V100 1080Ti V100 1080Ti V100

Unsharp Mask 1.50× 0.45× 1.00× 0.39× 1.50× 1.15×
Harris Corner 1.80× 0.45× 0.80× 0.29× 2.25× 1.55×
Bilateral Grid 0.40× 0.20× 0.32× 0.20× 1.25× 1.00×
Multiple Interpolate 1.65× 0.60× 1.26× 0.54× 1.31× 1.11×
Camera Pipeline 1.90× 0.36× 1.04× 0.30× 1.83× 1.23×
Pyramid Blend 5.80× 2.90× 2.90× 1.30× 2.00× 2.23×
Geomean 1.65× 1.33×

Table 3.4: Execution times (in ms) of benchmarks and speedup of PolyMage-GPU over Halide’s

manually written schedules.

chooses better thread block and tile sizes, and the runtime technique has lower synchronization

cost, decreased shared memory usage, and improved occupancy. The only exception is the Bilateral

Grid benchmark on V100, where Halide’s manual schedules are competitive with PolyMage-GPU

because Halide can fuse the histogram stage, which performs a reduction, with subsequent blurring

stages [105], whereas PolyMage-GPU cannot.

3.7 Conclusion

This chapter presented new techniques for executing image processing programs e�ciently

on GPUs and a compiler from PolyMage DSL to generate e�cient GPU code using these tech-

niques. I show that PolyMage-GPU generated code outperforms state-of-the-art. PolyMage-GPU

is is available at http://bitbucket.com/abhijangda/polymage-gpu.
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CHAPTER 4

ACCELERATING GRAPH SAMPLING ON GPUS

Graph representation learning learn features of data instead of hand-engineering them. Graph

representation learning is a fundamental step in domains such as social network analysis, recom-

mendations, epidemiology, and more. Several algorithms for graph representation learning �rst

sample the input graph to obtain mini-batches and then train a deep neural network (DNN) based

on the samples. For example, DeepWalk [84] and node2vec [44] use variants of random walks.

GraphSAGE [47], which Pinterest uses for recommendation [114], samples the k-hop neighbor-

hood of a vertex and uses their attributes to learn an embedding for each vertex.

Although several systems e�ectively leverage GPUs for the DNN training step, the same is

not true for the sampling step. Graph sampling takes a signi�cant portion of total training time

in real-world applications. Table 4.1 shows that graph sampling can take up to 62% of an epoch’s

time.
1

Hence, accelerating graph sampling is important to improve the end-to-end training time.

Input Graphs PPI Reddit

GraphSAGE [47] 51% 45%

FastGCN [29] 26% 52%

LADIES [122] 40% 62%

ClusterGCN [33] 4.1% 24%

GraphSAINT [116] 25% 30%

MVS [34] 24% 25%

Table 4.1: Fraction of time spent in graph sampling in training.

Since samples are drawn independently, graph sampling is an “embarrassingly parallel” prob-

lem that seems ideal for exploiting the parallelism of GPUs. However, for a GPU to provide peak

performance, the algorithm must be carefully designed to ensure regular computation and mem-

ory accesses, which is challenging on irregular graphs. Several systems have been designed for

1

Experiments performed on two 16-core Intel Xeon Silver CPUs and an NVIDIA Tesla V100 GPU.
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random walks [113], graph mining [32, 52, 74, 106], and graph analytics [69, 80, 97, 111]. These

systems consider samples (or subgraphs) as the fundamental unit of parallelism: they grow all

samples in parallel by looking up the neighbors of the vertices of each sample. However, such an

approach has two issues: (i) irregular memory accesses and divergent control �ow because con-

secutive threads can access the neighbors of di�erent vertices, and (ii) lower parallelism because

computation on all vertices in a sample is performed serially by the thread responsible for growing

the sample.

This chapter presents NextDoor, the �rst system to perform e�cient graph sampling on

GPUs. Figure 4.1 shows the architecture of NextDoor. NextDoor provides a high-level API

that abstracts away the low-level details of implementing sampling on GPUs and enables ML ex-

perts to write e�cient graph sampling algorithms with few lines of code. NextDoor introduces a

new approach for parallel graph sampling I call transit-parallelism. In transit-parallelism, the fun-

damental unit of parallelism is a transit vertex, which is a vertex whose neighbors may be added

to one or more samples of the graph. In transit-parallelism, each transit vertex is assigned to a

group of threads such that each thread adds one neighbor of the transit vertex to one sample. This

technique provides better GPU execution e�ciency due to low warp divergence, coalesced global

memory accesses, and caching of the transit vertex edges in low-latency shared memory. Thus

the irregular computation on the graph is transformed to a regular computation. NextDoor ef-

fectively balances load across transit vertices. NextDoor achieves signi�cant speedups over state-

of-the-art systems for graph sampling and improves training time of existing GNN systems by upto

4.75×. NextDoor is available at https://github.com/plasma-umass/NextDoor.

The rest of this chapter is organized as follows. Section 4.1 presents the �rst abstraction to rep-

resent graph sampling applications. Section 4.2 presents the NextDoor API based on the abstrac-

tion of Section 4.1. Section 4.3 discusses the shortcomings of existing approaches for graph compu-

tations and presents a novel transit parallel approach to graph sampling. Section 4.4 presents the

details of NextDoor. Section 4.5 evaluates NextDoor against existing systems using ten graph

sampling applications and four graphs. Section 4.6 concludes this chapter.
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Load Balancer Transit-Parallel 
GPU Kernels

Vertex next(s, trn, trnEdges)
{return trnEdges[randInt(0, 10)];}
int steps() {return 3;}
int sampleSize(int step){return 1;}

Input Graph

NextDoor Samples of Input Graph

Random Walk in NextDoor’s API

Figure 4.1: Overview of NextDoor. A user can de�ne a sampling application, such as a ran-

dom walk, in NextDoor’s API. NextDoor will execute the application on an input graph using

transit-parallelism based GPU kernels and improve the execution e�ciency using load balancing

techniques. NextDoor outputs the samples of input graph.

4.1 An Abstraction for Graph Sampling

This section introduces a general-purpose abstraction for graph sampling and uses it to express

common sampling algorithms. The input to a graph sampling algorithm is a graph and an initial

set of samples, where each sample is a subset of vertices (and optionally edges) of the graph. The

algorithm iteratively grows each sample to include additional vertices in a series of steps, and

its output is the �nal set of expanded samples. At each step, a sampling algorithm performs the

following operations for each sample:

1. Iteratively sample one vertex at a time and add it to the sample. This operation can access

the neighborhood of some vertices, which are referred as transit vertices in this thesis.

2. Determine the set of transit vertices for the next step.

A graph sampling application can be expressed by providing user-de�ned functions that describe

how to perform these operations. Namely, the next function describes how to sample one new

vertex. The samplingType function describes the granularity to sample new vertices based on two

sampling types:

1. Individual Transit Sampling: the next function is executed for each transit a �xed number of

times. It has access to the neighborhood of that transit.

2. Collective Transit Sampling: the next function is executed for each sample a �xed number of

times. It has access to the combined neighborhood of all transit vertices
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(b) 2-hop Neighborhood sampling

Figure 4.2: Execution of a 2-hop Neighborhood sampling on graph in Figure 4.2a for samples S1 to

S3. Initially each sample contain a single vertex. Output of sampling for each sample contains all

vertices sampled at all steps.

Finally, the stepTransits function selects the vertices of the sample that will act as transit vertices

in the next step. Other user-de�ned parameters are the number of steps k, which could be set

to∞ if it varies from sample to sample, and the maximum number mi of new vertices sampled

per transit vertex (for individual transit sampling) or per sample (for collective transit sampling)

at step i. I below show that using these user-de�ned functions and parameters we can express a

wide variety of sampling algorithms.

Random walks [44, 82, 84] A random walk application produces a set of random walks through

the graph that start from some initial set of root vertices. In a static random walk, the probability

of picking an edge is known beforehand, whereas in a dynamic random walk, the probability

of picking an edge depends on properties of vertices that were previously visited on that walk.

DeepWalk [84] performs �xed-size biased static random walks, where the probability of following

an edge is proportional to the edge weight. Personalized Page Rank [48] performs a variable-size

biased static random walk, where the probability of ending the random walk is de�ned by the user.

In contrast, node2vec [44] is a dynamic random walk, which can be biased to stay closer to the

starting vertex or to sample vertices that are further away.

This abstraction supports random walks as follows. Random walks are individual transit sam-

pling applications because they sample a single neighbor of each transit vertex of the sample at

each step and thus, every elementmi is 1. Since the transit vertex is the previously sampled vertex,

stepTransits function returns the previously sampled vertex in the sample. The root vertices are

the initial samples, such that each sample is assigned one root vertex. The number of steps k de-

scribes the length of �xed-size random walks in algorithms like DeepWalk and node2vec. In these
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algorithms, next always returns a vertex. However, for applications that perform a variable-size

walk, such as Personalized Page Rank, k is set to∞. For termination, next can decide to not add

a new vertex to the sample. The walk for a sample ends when the sample has no more new transit

vertices.

k-hop Neighborhood Sampling [47] A k-hop neighborhood sampling algorithm employed in

GraphSAGE [47] adds one or more neighbors of a transit vertex at each step. Figure 4.2b shows the

execution of a 2-hop Neighborhood sampler that samples two neighbors of each transit at every

step. This sampling is individual transit sampling and can be represented in above abstraction by

setting k = 2, m1 = m2 = 2, having stepTransits return all the vertices added in the previous

step as transit, and having next uniformly choose neighbors of each transit vertex and add them

to the sample. S
i
j denotes the vertices obtained after step i for sample Sj . Initially, S1, S2, and

S3 contains a single vertex. In the �rst step, the neighbors of transit vertices, i.e., 2©, 3©, and 1©

are added to the sample by both applications. In the second step, vertices sampled in �rst step

becomes the transit vertices. Output of k-hop neighborhood sampling for each sample contains

all vertices sampled at all steps.

4.2 Graph Sampling using NextDoor

This section presents NextDoor’s API, which is based on the graph sampling abstraction

presented in the previous section. The API allows users to write a variety of graph sampling

algorithms in just a few lines of code.

4.2.1 Programming API

The inputs to NextDoor are a graph, an initial set of samples, and several user-de�ned func-

tions (Figure 4.3), which we detail below. The output is an expanded set of samples. If desired,

NextDoor can pick the initial set of samples automatically (e.g., select one random vertex per

sample).

The user selects either collective transit or individual transit sampling usingsamplingType.

The stepTransits function returns the transit vertices for a sample at a given step. In the

individual transit sampling, number of transit vertices for each sample at step j are

∏j
i=0mi. In

the collective transit sampling, number of transit vertices for each sample aremi−1. This function
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1 Vertex next(Sample s, Vertex* transits, Edge* edges, int step);
2 int steps();
3 int sampleSize(int step);
4 bool unique(int step);
5 Vertex stepTransits(int step, Sample s, int transitIdx);
6 SamplingType samplingType();

Figure 4.3: User de�ned functions required to implement a graph sampling application in

NextDoor

takes three arguments: 1) the step (step), 2) the sample (s), and 3) the index of transit out of all

transits to return (transitIdx). The user must also de�ne a sampling function to use at each

step of the computation (next). This function receives four arguments: 1) the sample (s), 2) the

source edge set to sample neighbors from (edges), 3) transit vertices (transits) forming the

source edge set, and 4) the current step (step). If the sampling is individual transit sampling then

transits contains only a single transit vertex and edges contains the edges of this transit

vertex. Otherwise, transits contains all transit vertices of the sample and edges contains

edges of all transit vertices. The result of next must be a vertex to add to s (or a constant NULL

that indicates not to add a neighbor). The function s.prevVertex(i, pos) returns the

vertex added at position pos of the last ith step, and the function s.prevEdges(i, pos)

returns the edges of that vertex. This information is necessary for applications, such as node2vec.

The steps function de�nes the number of computational steps in the application (k). For ap-

plications that do not run for a �xed number of steps, such as Personalized Page Rank and Layer

Sampling, they can return a special constant INF and the sampling process for a sample is stopped

when no new transit vertices are added to the sample. The value returned by the sampleSize

function determines how many times the next function is invoked on each individual or collec-

tive neighborhood for each sample at each step. The unique function speci�es if at a step the

sample should contain only unique vertices. The Vertex class has utility methods for computing

the vertex degree, the maximum weight of all edges (maxEdgeWeight), and the pre�x sum of

all edges’ weights. Users can extend the class to include application-speci�c vertex attributes to

be added to the samples.
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1 Vertex next(s, trns, edges, step) {
2 Vertex t = s.prevVertex(2,0);
3 float p = 2.0, q = 0.5;
4 float maxW = trns[0].maxEdgeWeight();
5 return rejection-smpl (trns[0],
6 edges, maxW, t, t.edges, p, q);}
7 int steps()
8 {return 100;}
9 int sampleSize(step)

10 {return 1;}
11 bool unique(step)
12 {return false;}
13 Vertex stepTransits(step, s, transitIdx)
14 {return s.prevVertex(1, transitIdx);}
15 SamplingType samplingType()
16 {return Individual;}

(a) node2vec random walk of length 100

1 Vertex next(s, trns, edges, step) {
2 int idx = randInt(0, edges.size());
3 return srcEdges[idx];}
4

5

6

7 int steps()
8 {return 2;}
9 int sampleSize(step)

10 {return (step == 0) ? 25 : 10;}
11 bool unique(step)
12 {return false;}
13 Vertex stepTransits(step, s, transitIdx)
14 {return s.prevVertex(1, transitIdx);}
15 SamplingType samplingType()
16 {return SamplingType::Individual;}

(b) GrapSAGE’s 2-hop neighbors

Figure 4.4: Use Cases of NextDoor

Output format NextDoor supports two output formats based on the application. 1) NextDoor

can return an array of samples, such that each sample contains all transit vertices sampled at all

steps. This format is required by GNNs that use random walks and layer sampling. 2) NextDoor

can return vertices sampled at each step in an individual array. This format is required by GNNs

that uses k-hop neighborhood sampling. The arrays are stored in the GPU in both cases.

4.2.2 Use Cases

I now present the implementation of node2vec and k-Neighborhood graph sampling algo-

rithms using NextDoor.

node2vec The node2vec algorithm is a second-order random walk. Let v is transit vertex and t be

the transit vertex of last step. The probability of picking edge (v, u) depends on hyperparameters

p and q, and is determined using three cases: (i) if u = t then the probability is p, (ii) if u 6= t

and u is a neighbor of t then the probability is 1/q, or (iii) if u 6= t and u is not a neighbor of t

then the probability is 1. The next vertex is sampled using rejection sampling, which takes these

parameters as input [113].

Figure 4.4a presents node2vec in NextDoor. The argument transits of next contains

one transit vertex, since random walk is individual transit sampling. Parameters p and q can be

31



returned by a user-de�ned function or added as constants. next performs rejection sampling

(rejection-smpl), the details of which are discussed in [113]. stepTransits returns

the vertex added at previous step. sampleSize returns 1 because we add only one neighbor of

transit at each step. steps returns the length of walk, i.e., 100.

k-hopneighbors Figure 4.4b implements GraphSAGE’s 2-hop neighborhood sampler inNextDoor.

stepTransits returns the vertices added at previous step as transits. next retrieves the tran-

sit vertex for this sample in transit variable, and choose a neighbor of the transit vertex. Since

this is a 2-hop sampling, steps returns 2. GraphSAGE [47] sets the number of neighbors as

m1 = 10 and m2 = 25, as re�ected in sampleSize. MVS [34] is implemented in a similar way

as it obtains 1-hop neighbors of all initial vertices in the sample.

4.3 Paradigms for Graph Sampling on GPUs

This section presents two paradigms for parallel graph sampling: sample-parallelism, which is

used by existing systems for graph sampling [29, 33, 34, 47, 113, 116, 122], and transit-parallelism,

which solves shortcomings of sample-parallelism.

4.3.1 Sample-Parallelism

Graph sampling is an “embarrassingly parallel” problem and the natural approach to paral-

lelization is to process each sample in parallel, which we call the sample parallel paradigm. I now

discuss the details of this approach for performing both individual and collective transit sampling.

Individual Transit Sampling The NextDoor API enables a new, �ne-grained approach to sam-

ple parallelism. At each step i, we assign consecutive mi threads to a pair of sample and transit.

Each thread then calls the user-de�ned function (next) on its transit. The algorithm visits sam-

ples and their transits in parallel. Figure 4.5a shows an example of sample parallel execution for

the second step of Figure 4.2b. In this example, each sample is assigned to a thread block contain-

ing four threads. Each thread samples one vertex for the assigned transit and writes this vertex to

the output.

Collective Transit Sampling For collective transit sampling, before calling the next function

on the combined neighborhood of all transits, this neighborhood must be completed. In a sam-
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Figure 4.5: Execution of second step for 2-hop neighbor sampling of Figure 4.2b using Sample

Parallelism and Transit Parallelism.

ple parallel approach, the combined neighborhood is computed in the same way as the individual

transit sampling is performed, where threads copy the neighbors of one transit to the combined

neighborhood, which is stored in global memory. After computing the combined neighborhood,

each pair of sample and transit is assigned tomi consecutive threads and call next on this neigh-

borhood.

Limitations Sample parallelism makes poor use of the GPU for the following reasons. 1) In an

individual transit sampling, for each sample, the algorithm calls next on the neighbors of several

transit vertices in parallel. However, if two threads in a warp are assigned to process two dis-

tinct transit vertices with di�erent numbers of neighbors, the thread processing the smaller set of

neighbors may stall until the other thread completes. Thus the algorithm su�ers from warp diver-

gence. Similarly, there is warp divergence when computing the combined neighborhood. 2) The

algorithm also su�ers from poor load balancing. The amount of work done by next is likely to

depend on the number of neighbors of the transit vertex. For example, while computing combined
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neighborhood in collective transit sampling, di�erent number of neighbors of each transit vertex

leads to load imbalance within a thread block. 3) The graph must be stored in global memory, so

accessing neighbors of transit vertex incurs high latency. Moreover, threads in a block may ac-

cess the neighbors of di�erent transit vertices, which leads to no locality. Hence, the GPU cannot

coalesce the reads and cannot cache neighbors in its shared memory.

For example, the execution in Figure 4.5a su�ers from two of the above issues. Since all four

threads do not process same transit, there is divergent control �ow and the adjacency list must be

stored in global memory, leading to lack of locality among all threads of a thread block.

4.3.2 Transit-Parallelism

To overcome the limitations of sample parallelism, I present the transit parallel paradigm. Tran-

sit parallelism groups all samples with same transit vertex and process all samples for one transit

vertex by assigning these samples to consecutive threads. This approach exposes regularity in

sampling.

At each step the transit parallel paradigm works as follows. Before running sampling on the

GPU, the paradigm create a map of transit vertices to their samples by grouping all samples asso-

ciated with same transit vertex. The paradigm assigns each transit vertex to a group of threads,

which may be organized as a grid, thread block, or warp. In individual transit sampling, each

sample is assigned to consecutive threads in the group, and each thread calls next to add one

neighbor of the transit to its sample. Similarly, in collective transit sampling, the paradigm create

the combined neighborhood of the transits by assigning each sample to consecutive threads in the

transit group (grid, thread block, or warp), and consecutive threads in the group add neighbors of

the transit to the combined neighborhood of the sample. Building the combined neighborhood in

a sample-parallel manner takes a signi�cant portion of execution time. NextDoor speeds up this

step by using the transit parallel approach. In this case, instead of sampling new vertices from the

neighborhood of each transit of the sample using next, the system adds the entire neighborhood

to the combined neighborhood. Collective sampling applications then select new vertices from the

combined neighborhood per sample.

Figure 4.5b shows the execution of the second step of 2-hop neighbor sampling of Figure 4.2a

in NextDoor using the transit parallel paradigm. According to its load balancing approach (Sec-
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tion 4.4), NextDoor assigns transit 4© to a grid, such that all thread blocks in that grid are assigned

samples of 4© and each thread adds one neighbor of 4© to one sample of 4©, i.e., either S1, S2, or

S3. Similarly, it assigns vertex 1© to a thread block and each thread adds one neighbor of 1© to one

of the samples associated with 1©.

Advantages The transit parallel paradigm has two advantages for both individual and collective

transit sampling: 1) contiguous threads perform a similar amount of work, because each thread

calls the next function with same neighbors, and 2) contiguous threads accesses the neighbors of

same transit. Both advantages ensure non-divergent control �ow, and locality of memory accesses.

This eliminates warp divergence and addresses load balancing
2
. Moreover, since all threads work

with same neighbors, caching the neighbors in the shared memory will speed up later accesses.

For example, in the execution shown in Figure 4.5b each transit is assigned to one group of

threads and this group caches the neighbors of each transit vertex in either shared memory or

registers. Furthermore, each thread calls the next function on the same set of neighbors, which

ensures non-divergent control �ow among contiguous threads.

4.4 E�cient Transit Parallelism on GPUs

NextDoor implements transit parallelism on a GPU, with CPU-based coordination. This sec-

tion �rst describe the techniques that allow NextDoor to execute individual transit sampling

applications e�ciently and then describe how NextDoor uses same techniques for executing col-

lective transit sampling applications.

4.4.1 Sampling in Individual Transit Sampling

This section describes how NextDoor executes individual transit applications using transit

parallelism.

4.4.1.1 Leveraging Warp-Level Parallelism

A GPU can coalesce several global memory accesses together into one memory transaction

only if threads in a warp access consecutive addresses. The transit parallel paradigm lends itself

2

A badly-written user-de�ned function may have these issues, but NextDoor avoids them in the core algorithm.
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to a GPU implementation that supports coalescing reads to global memory, by having consecutive

threads read the same adjacency list (i.e., of the shared transit vertex).

However, coalescing writes of new vertices to samples requires extra care. A two-level transit

parallel approach maps di�erent transit vertices to thread blocks and di�erent samples to threads.

This does not result in coalesced writes, since threads in the same warp add vertices to di�erent

samples. Instead, NextDoor uses three levels of parallelism: transits to thread blocks, samples

to warps, and a single execution of the next function to a thread. Thus each thread writes one

vertex to its sample and all threads in the warp issue one coalesced write to the same sample.

Figure 4.5b shows this mapping as follows. First, transits 4©, 1©, and 6© are mapped to a group of

threads. Then, samples (S1, S2, S3) are mapped to subwarps and each thread executes next.

Sub-warps In an ideal scenario, there would be a one-to-one relationship between warps and

samples, which would ensure that each thread in a warp writes to the same sample, using a single

coalesced transaction to the global memory. However, there is a �xed number of threads per warp

(usually 32) and this number can sometimes be larger than the required number of executions of

the next function. Instead of letting threads be idle, NextDoor shares same warp among several

samples. This yields some advantages. Suppose a warp of 32 threads is shared among 4 samples

with each sampling having 8 contiguous threads. Then writes to the samples only generate 4

memory transactions rather than the 32 that we would obtain by assigning each thread to di�erent

sample. This also does not lead to warp divergence because all threads in a warp sample neighbors

of the same transit vertex.

The term sub-warp here refers to a set of contiguous threads of same warp assigned to same

sample. NextDoor uses sub warps as a fundamental unit of resource scheduling. All sub warps

have the same size, which is determined using sampleSize function for the current step.

Threads of the same sub-warp share the information of their registers using warp shu�es, and

coordinate using syncwarp.

4.4.1.2 Load Balancing

In the transit parallel paradigm, each transit vertex is associated with a set of samples, which

varies among transit vertices and steps. With three levels of parallelism, a transit vertex requires

as many threads in a step as the total number of neighbors that will be added to its samples. Since
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each transit can require di�erent number of threads, there is load imbalance if same number of

threads are assigned to all transits. To address this problem, NextDoor uses three types of GPU

kernel:

1. The sub-warp kernel processes several transit vertices in a single warp. It is only applicable

to transit vertices that require fewer threads than the maximum warp size (32).

2. The thread block kernel dedicates a thread block to a single transit vertex. It is only applicable

to transit vertices that require more threads than in a warp, but less than the maximum

thread block size (1,024).

3. The grid kernel processes a single transit vertex in several thread blocks. It is only applicable

to transit vertices that requires more than 1,024 threads.

Scheduling To assign transits to kernels, NextDoor creates a scheduling index for each transit

vertex. Creating a scheduling index involves three stages. First, NextDoor creates a transit-

to-sample map based on the transits obtained from stepTransits function (Figure 4.5b). Then,

NextDoor partitions all transit vertices into three sets based on the number of samples associated

with each transit vertex using parallel scan operations. Finally, the scheduling index of a transit

vertex is set to the index of the transit vertex in its set. After picking a kernel type for a transit

vertex, NextDoor assigns each sample of the transit vertex to a sub-warp in the kernel based on

the thread index.

Caching NextDoor uses di�erent caching strategies for di�erent kernels to minimize memory

access costs. When sampling neighbors of transit vertices in the grid and thread block kernels, the

thread blocks for these kernels load the neighbors of transit vertices into the shared memory. How-

ever, when the neighbors do not �t in shared memory, NextDoor transparently loads neighbors

from global memory. For transit vertices assigned to a sub-warp, NextDoor utilizes both shared

memory and thread local registers to store neighbors. In this case, NextDoor transparently man-

ages accesses to the neighbor list using warp shu�e instructions that allows consecutive threads

to read neighbors from each others’ registers. In summary, NextDoor uses the fastest caching

mechanisms available for each kernel.
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4.4.2 Transit-Parallel Collective Transit Sampling

Collective transit sampling applications require computing the combined neighborhood of all

the transits of each sample. This is a potential performance bottleneck, so NextDoor uses transit

parallelism to speed up the process. It constructs the combined neighborhood as if it were an in-

dividual transit sampling application that runs for only one step. Instead of sampling new vertices

from the neighborhood of one transit, NextDoor adds all the vertices in the neighborhood to the

combined neighborhood of the sample. After building a single combined transit neighborhood per

sample, one could in principle detect which samples have the same combined neighborhoods and

expand all these samples in a transit-parallel manner. The likelihood of two combined neighbor-

hood being equal, however, is generally low, and detecting which samples have the same combined

neighborhood is expensive. Therefore, NextDoor adds new vertices to the sample using a sample-

parallel approach.

4.5 Evaluation

Benchmarks The graph sampling applications mentioned in Section 4.2 are used as benchmarks

for the experiments. Applications’ parameters are set as follows. For PPR the termination proba-

bility is set to 1/100, i.e., mean length is 100. For all other random walks, the walk length is set to

100. For node2vec p and q are set to 2.0 and 0.5 respectively. For these random walks, initially there

is one vertex per sample. For MultiDimensional Random Walk (MultiRW), each sample contains

100 root vertices. GraphSAGE [47]’s hyperparameters are used for k-hop Neighborhood Sampling,

i.e., k = 2, m1 = 25, and m2 = 10. For Layer Sampling �nal sample size is set to 2000 and step

size for all steps is set to 1000. For FastGCN, LADIES, and MVS Sampling batch size and step size

are set to 64. For ClusterGCN Sampling vertices are randomly assigned in clusters and each sample

contains 20 clusters.

Datasets Table 4.2 lists the details of real world graphs used in the evaluation obtained from Stan-

ford Network Analysis Project [65]. Weighted version of these graphs is generated by assigning

weights to each edge randomly from [1, 5).

Experimental setup The experimental system contains two 16-core Intel Xeon(R) Silver 4216

CPU, 128 GB RAM, and an NVIDIA Tesla V100 GPU with 16GB memory running Ubuntu 18.04. I
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Name Abrv # of Nodes # of Edges Avg Degree

Protein-Protein Interactions PPI 50K 1.4M 28.0

com-Orkut Orkut 3M 117M 39.0

cit-Patents Patents 3.77M 16.5M 4.37

soc-LiveJournal1 LiveJ 4.8M 68.9M 14.3

Table 4.2: Graph used in our evaluation.

report the average time of 10 executions. The execution time contains time spent on GPU, which

includes the time spent in sampling and creating the scheduling index.

4.5.1 Graph Sampling Performance

This section presents the results of comparison of NextDoor with the following baselines.

SP is the optimized sample-parallel graph sampling system based on the NextDoor API.

KnightKing [113] is a state of the art system for doing random walks using CPUs. It uses re-

jection sampling as a technique to select new vertices of a random walk and supports sampling

using distributed systems. Its API restricts expressing only random walks, hence, KnightKing is a

baseline only for random walks.

Existing GNN Samplers I compare NextDoor against the samplers of existing GNNs. These

samplers are written for TensorFlow or numpy and are designed to run only on multi-core CPUs,

not GPUs. This is because sampling is an irregular computation that is more easily implemented

on CPUs. For k-hop neighborhood, I compare against GraphSAGE’s sampler [47]. For MultiRW,

I compare against GraphSAINT’s sampler [116]. For sampling algorithms in FastGCN [29], Clus-

terGCN [33], MVS [34], and LADIES [122], I compare against samplers in their reference imple-

mentations.

Performance ResultsNextDoor provides an order of magnitude speedup over KnightKing (Fig-

ure 4.6a) for all random walk applications, with speedups ranging from 26.1× to 50×. NextDoor

provides an order of magnitude speedup over the implementations of existing GNNs (Figure 4.7a).

These large speedups are possible due to the massive parallelism and memory access latency hid-

ing capabilities of the GPU. Furthermore, SP is signi�cantly faster than all baselines.

NextDoor provides signi�cant speedups over SP on all graph sampling applications, with

speedups ranging from 1.09× to 5.1×. The speedup depends signi�cantly on the application. For
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Figure 4.6: Speedup of NextDoor on random walk applications and real world graphs over

KnightKing.

GNNs PPI Reddit Orkut Patents LiveJ

GraphSAGE 1.30× 1.21× OOM 1.20× 1.22×
FastGCN 1.25× 1.52× 4.75× 2.3× 4.31×
LADIES 1.07× 1.37× 2.27× 2.1× 2.34×

ClusterGCN 1.03× 1.20× OOM 1.4× 1.51×

Table 4.3: End-to-end speedups after integrating NextDoor in GNNs over vanilla GNNs.

example, NextDoor obtains more speedup in DeepWalk and PPR than in node2vec because in

node2vec at each step, for an edge from current transit vertex v to a vertex u, the algorithm might

do a search over the edges of the previous transit vertex t to check if u is a neighbor of t, lead-

ing to memory accesses and warp divergence. Nevertheless, NextDoor still obtains speedup due

to its transit-parallel paradigm. NextDoor achieves speedup over SP in all applications because

NextDoor uses three levels of parallelism while SP can use only two levels of parallelism. More-

over, with FastGCN and LADIES, NextDoor is faster because it speeds up the computation of the

combined neighborhood.

4.5.2 End-to-End Integration in GNN Systems

I performed an end-to-end evaluation of existing GNNs by replacing their sampler with the

sampling implementation in NextDoor. Table 4.3 shows the performance improvement of our

integration. The speedup for GraphSAGE is less than the maximum possible improvement in
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Figure 4.7: Speedup of NextDoor on graph sampling applications and real world graphs over

GNN systems.

Table 4.1 due to a limitation of Tensor�ow, which does not allow creating a tensor on the GPU

memory. Therefore, samples are copied to the CPU and then again to the GPU for training. For

FastGCN and LADIES, the speedup increases with larger graphs because the sampling time de-

pends on the number of vertices in the graph, while the training time per batch remains constant.

4.6 Conclusion

This chapter presented NextDoor, the �rst system to express graph sampling applications

and execute them e�ciently on multiple GPUs. I show that NextDoor can signi�cantly improves

training times of several Graph Neural Networks. NextDoor is available at http://github.

com/plasma-umass/nextdoor.
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CHAPTER 5

CO-OPTIMIZING COMPUTATION AND COMMUNICATION FOR

DISTRIBUTED MACHINE LEARNING

As the trend towards larger machine-learning models continue, from BERT [38] with 340 mil-

lion parameters, GPT-2 [88] with 1.5 billion parameters, to GPT-3 [26] with 175 billion parameters,

model training and inferencing have to be distributed. Moreover, as the computations become re-

source hungry, optimizing for even the last percentage can have huge bene�ts in terms of time,

energy, and money savings [10, 103].

In machine learning systems today, such as PyTorch [83], computation and communication are

treated as independent abstractions implemented in di�erent libraries. For instance, computation

libraries, such as cuBLAS [7] and cuDNN [8], provide optimized tensor algebra operations, while

communication libraries, like NVIDIA Collective Communications Library [15], provide high-

performance collective communication operations, such as AllReduce. Thus, in machine learning

applications built atop of such frameworks, the computation and communication operations are

invoked separately.

While this separation allows independent optimization of computation and communication

kernels, breaking this abstraction boundary can unlock new optimizations that are otherwise not

feasible. However, manually writing these optimizations for each scenario is unproductive. Thus,

this thesis presents CoCoNet
1
, which is a DSL for writing optimized distributed machine learning

programs. Figure 5.1 presents the overview of CoCoNet. CoCoNet includes a domain speci�c

language (DSL) to express programs containing both computation and communication operations.

Then, the autotuner applies transformations to optimize the program while keeping the algorithm

unchanged, such as fusing AllReduce and Dropout into FusedAllReduce and overlapping this with

MatMul. Inspired by Halide [89], CoCoNet includes a scheduling language to specify an execu-

1

CoCoNet stands for "Communication and Computation optimization for neural Networks.
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DSL

Computation

torch.

coconetFunc()

CodeGen

PyTorch Library

Communication

Fused Kernels
Call

Schedule

fuseOut = fuse(drop, 
out)
(sumRS, sumAG) = 
split(sum)
outAG,scOut = 
reorder(sumAG,fuseOut)
fusedAR = fuse(sumRS, 
scOut,outAG) 

overlapOut = overlap(
layer,fusedAR)

MatMul

Overlapped
Tensor w, b;
Var layer = MatMul
(w, b);
Var sum = AllReduce 
("+", layer);
Var drop = 
Dropout(sum);
Var out = drop + r

Autotuner CUDA code

fuse, split, 
reorder, overlap...

Transformations

DSL

Schedules

Best

DSL
Program

Best 
Schedule

Model Parallel 
Self Attention

Machine Learning 
Algorithm

Figure 5.1: Overview of CoCoNet’s work�ow.

tion schedule of the program using a set of transformations. CoCoNet’s autotuner automatically

applies these transformations to optimize a program by breaking the communication and compu-

tation boundary. Hence, CoCoNet enables users to quickly generate optimized implementations

for speci�c hardware, topology, and data sizes. CoCoNet’s code generator automatically gener-

ates high-performance computation and communication kernels from a program and its schedule.

CoCoNet generated optimized code is available through PyTorch. I used CoCoNet to optimize

data-parallel training, model-parallel inference, and pipeline-parallel inference. CoCoNet gener-

ated kernels for the Adam [62] and LAMB [115] optimizers speeds up the training time of BERT

models by upto 1.68×. CoCoNet’s kernels for model parallelism speeds up the inference in BERT

3.9 Billion and GPT-2 8.2 Billion parameter models by upto 1.51×. CoCoNet’s optimized pipeline

parallelism kernels speeds up inference times in GPT-3 175 Billion parameter models by 1.33×.

CoCoNet is available at https://github.com/parasailteam/coconet.

The rest of this chapter is organized as follows. Section 5.1 presents the syntax and seman-

tics of CoCoNet. Section 5.2 presents several transformations provided by CoCoNet to opti-

mize programs. Section 5.3 shows how to optimize data parallelism and pipeline parallelism us-

ing CoCoNet. Section 5.4 provides key details about the code generation process in CoCoNet.

Section 5.5 evaluates CoCoNet against the state-of-the-arts over data-, model-, and pipeline-

parallelism. Finally, Section 5.6 concludes this chapter.

5.1 The CoCoNet DSL

The CoCoNet DSL extends the data representation in existing machine learning frameworks

and provides constructs to express both computation and communication. The CoCoNet DSL is

embedded in C++. This chapter follows the MPI [40] terminology: RANK is the process ID of a
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1 Tensor w (FP16, [H, H] , Sliced(0) , WORLD, RANK);
2 Tensor b (FP16, [H] , Replicated, WORLD);
3 Tensor in(FP16, [B, S, H], Sliced(2) , WORLD, RANK);
4 Tensor r (FP16, [B, S, H], Replicated, WORLD);
5

6 // layer(FP16, [B,S,H], Local, WORLD, RANK)
7 Var layer = MatMul(in, w);
8 // sum(FP16, [B,S,H], Replicated, WORLD)
9 Var sum = AllReduce("+", layer);

10 // dropout(FP16, [B,S,H], Replicated, WORLD)
11 Var dropout = Dropout(sum + b, 0.1);
12 // out(FP16, [B,S,H], Replicated, WORLD)
13 Var out = dropout + r;
14

15 Execute self_attention({w, in, b, r}, {out});

Figure 5.2: An example program in CoCoNet. (B: batch size, S: sequence length, H: hidden di-

mension size)

distributed process, GROUP is a set of concurrent distributed processes, and WORLD is the GROUP

that includes all processes.

5.1.1 Tensor Layout

CoCoNet extends the concept of a tensor in machine learning frameworks from a single device

data into distributed forms. Besides item datatype, like FP32 and FP16, and shape, a CoCoNet

tensor also includes a layout that describes the distributed allocation of tensor’s data across a set

of ranks. There are three layouts for a tensor: sliced, replicated, and local. A sliced tensor is equally

distributed among all nodes in a group along a speci�ed dimension with RANK identifying the

slice for that process. For example, in Figure 5.2, which describes the Megatron-LM [101] model

parallel logic of Self-Attention layer in CoCoNet, w is sliced among all ranks in WORLD in the

�rst dimension and in is sliced in the third dimension. A tensor can also be replicated across all

ranks in a group where it has the same value on each rank and it does not have a rank identi�er.

For example, the bias b and the residual connection r are replicated as shown in Figure 5.2. A

local tensor has same shape on all ranks but di�erent values on all ranks. A local tensor requires

RANK to identify the values. For example, in Figure 5.2, layer is a local tensor that represents

the result of MatMul operation. A Scalar is a zero-dimensional tensor that represents a variable

available on all ranks. The next section presents the layout of intermediate tensors.
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5.1.2 CoCoNet’s Operations

A CoCoNet program is represented as a data-�ow graph (DFG) with operations as vertices

and data dependencies as edges. Operations in CoCoNet can be classi�ed as (i) local computa-

tions, such as pointwise computations, matrix multiplication, and convolution, and (ii) cross rank

communication operations, such as AllReduce, AllGather, and P2P Send-Recv. CoCoNet supports

all common communication and computation operations.

A Var represents the intermediate tensor obtained after performing an operation. A Var’s

shape and distribution layout are inferred based on the operation and inputs to the operation. For

example, in Figure 5.2 line 7 performs a MatMul operation on the input (in) and weights (w). Since

MatMul between two sliced tensors produces a local tensor, layer represents the partial result

with local layout. At line 9, AllReduce computes the sum of layer of all ranks and returns a

replicated tensor with the same values on each rank. The computations at lines 11–13 add the bias,

use dropout as an activation, and add the residual. At line 11, the addition of sum and b follows

PyTorch’s broadcast semantics
2

by replicating b in all dimensions of sum. Thus, the shape and

layout of output of these operations are same as sum. Finally, Execute de�nes the name, inputs,

and outputs of the program.

5.1.3 Fused Collective Communication Operations

CoCoNet enables e�cient computations on the output of communication by providing fused

collective communication operations, such as FusedAllReduce. Consider the AllReduce in Fig-

ure 5.2 followed by a Dropout (lines 9–11). The abstraction in existing machine learning frame-

works requires the output of AllReduce to be stored in memory and then re-loaded by Dropout.

FusedAllReduce avoids such stores and loads by directly passing the output of communication to

following computations through registers. In addition to the argument of AllReduce, a FusedAllRe-

duce takes computations as extra arguments. Section 5.4.2 discusses the implementation of Fused

Collective Communication Operations.

2

https://pytorch.org/docs/stable/notes/broadcasting.html
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5.1.4 Overlapping Operations

CoCoNet supports overlapping multiple dependent computation and communication oper-

ations using the Overlap construct. For example, consecutive MatMul and AllReduce in Fig-

ure 5.2 (lines 7–9) can be overlapped to fully utilize both network and computation resources.

Section 5.4.3 discusses the implementation of this construct.

5.2 CoCoNet Transformations

CoCoNet provides four semantics preserving transformations to optimize a program written

in the DSL. All transformations are valid based on rules described in the sections below. CoCoNet

automatically checks the validity of each transformation based on these rules and throws an error

for an invalid transformation.

An order of transformations is refer as a schedule. A user can manually specify the schedule

to optimize the program. Additionally, a user can invoke the autotuner to automatically �nd the

best performing schedule for the given problem sizes and the underlying architecture. I present

each transformation by applying them on the program from Figure 5.2.

5.2.1 Splitting Communication

The split transformation breaks a collective communication operation into two communi-

cation operations. One of the two split policies supported by CoCoNet is

AllReduce Split RS-AG splits an AllReduce into a ReduceScatter to produce a sliced tensor

and an AllGather on the sliced tensor to return a replicated tensor.

Running Example The AllReduce in Figure 5.2 is split into rsSum that does a ReduceScatter on

layer and agSum that does an AllGather on rsSum.

(rsSum, agSum) = split(layer, ARSplitRSAG);

Validity Since an AllReduce can always be split to a ReduceScatter and an AllGather, this trans-

formation is always valid.

5.2.2 Reordering Operations

The reorder transformation swaps operations with an AllGather or a Broadcast in the DFG

of a program. I explain this transformation for AllGather below:
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Figure 5.3: Equivalent programs (from Figure 5.2) using AllReduce (on left) or using ReduceScatter

+ AllGather (on right).

AllGather Reorder reorders an AllGather with communication and computation operations.

This transformation changes the layout of the operations, the input and output of operations, and

the input and output of the AllGather. I explain this transformation below using the running

example.

Running Example In the program obtained from previous example, we can reorder the AllGather

(agSum) with computations d and out. The reorder transformation replaces these operations in

the DFG with three new operations: scD and scOut, both of which performs sliced computa-

tions, and agOut, which gathers the �nal result of computations.

(scD, scOut, agOut) = reorder(d, out, agSum, AGReorder);

The new sliced computations perform the same operations as original computations with two

di�erences: (i) the output of AllGather used in the computation is replaced by the input of All-

Gather, and (ii) since the input of AllGather is sliced, all tensors input to the computations are

also sliced along the same dimension as the input of AllGather. After reorder, scD performs the

same computation as d but scD takes rsSum and Slice(r) as input. Therefore, the layout of

scOut is also sliced while the computation is same as out. Furthermore, the new AllGather is
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performed on the outputs of the computations, for example, after reorder, the AllGather (agOut)

is performed on scOut. Figure 5.3 shows the work�ow of this schedule.

Validity The reorder transformation is valid only if operations being reordered with an All-

Gather can be sliced along the dimension the AllGather is performed. The rules of slicing an

operation depend on the type of operation and the dimensions of inputs to the operations. For ex-

ample, d and out can be sliced because the computations have the same dimensions as agOut.

Section 5.3 shows how P2P Send can be reordered with an AllGather.

5.2.3 Fusing Operations

Fusing multiple computations is a common technique used by existing compilers [31, 37, 46, 89?

]. CoCoNet extends this concept to fuse multiple computations and communications in a single

operation and provides this capability using the fuse transformation. Below I explain two fuse

policies supported by CoCoNet:

Computation Fuse fuses a series of computations in a single operation that performs all these

operations.

AllReduce Fuse fuses a series of ReduceScatter, sliced computations, and AllGather opera-

tions in a single FusedAllReduce that performs all these operations.

Running Example The fuse transformations enables fusing ReduceScatter (rsSum), computa-

tions (scD and scOut), and AllGather (agOut) into a FusedAllReduce.

fuseAR = fuse(rsSum, scOut, agOut, ARFuse);

The comp method of fusedAR speci�es the computation to be fused with FusedAllReduce and

returned out is the output.

Validity Fusing multiple operations into one operation is valid only if the dependencies in the

DFG after fusion are preserved.

5.2.4 Overlapping Operations

CoCoNet provides the overlap transformation to overlap a series of producer-consumer

operations to utilize multiple resources of hardware simultaneously.

Running Example Finally, the overlap transformation allows overlapping the matrix multiplica-

tion (layer) with FusedAllReduce (fuseAR).
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1 Var avg = AllReduce("+", g);
2 Var m_ = Update(m, (m*beta1+(1-beta1)*avg));
3 Var v_ = Update(v, (v*beta2+(1-beta1)*avg*avg));
4 Var m1 = m_/(1-Pow(beta1, t));
5 Var v1 = v_/(1-Pow(beta2, t));
6 Var p_ = Update(p, (p - lr * m1/(Sqrt(v1))));
7

8 Execute adam({g,p,v,m,lr}, {p_});

(a) Traditional implementation where tensors g is local to each rank and p,m, and v are replicated on all

ranks.

1 comps = fuse(m_, v_, m1, v1, p_, ComputationFuse);
2 (rsG, agG) = split(avg, ARSplitRSAG);
3 (scComp, agP, agM, agV) = reorder(agG, comps, AGReorder);
4 asSlice(m); asSlice(v); dead(agM); dead(agV);
5 fuseAR = fuse(rsG, scComp, agP, AllReduceFuse);

(b) An Optimized Schedule. Tensors g is local, p is replicated on all ranks, while m and v are sliced among

all ranks.

Figure 5.4: Optimizer parameter update using Adam in CoCoNet. The implementation takes four

input tensors: parameters (p), gradients (g), momentum (m), and velocity (v).

layerWithAR = overlap(layer, fusedAR);

Validity Overlapping multiple operations is valid only when all operations have a producer-

consumer relationship between them.

5.2.5 Automatic Exploration of Schedules

CoCoNet provides an autotuner to automatically explore the space of all schedules of a pro-

gram and return the schedule that provides the best performance for the underlying architecture

and input sizes. First, the autotuner fuses all pointwise computations up to a pre-de�ned threshold

to decrease the search space and then exhaustively explores the schedule space in a breadth �rst

search manner. Finally, the autotuner generates code for all schedules in its search space, executes

all programs, and returns the schedule with minimum execution time. Table 5.2 shows that the

autotuner takes only a few seconds to explore the schedule space for all workloads.
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Figure 5.5: Two di�erent schedules of pipeline parallelism.

5.3 Distributed Workloads in CoCoNet

This section presents how to optimize two distributed machine learning workloads using Co-

CoNet: (i) parameter update using Adam [62], and (ii) point-to-point communication in pipeline

parallelism.

Adam in Data Parallel Training: Figure 5.4a shows the traditional implementation of parame-

ter update using Adam. First, all ranks average the gradients using AllReduce and then perform

computations to update the optimizer state and model parameters. Update updates the values

of a tensor and re�ects the new values in that position in the DFG (lines 2–3). Figure 5.4b presents

a schedule that optimizes this by distributing the computation on all ranks in a single kernel.

Line 1 fuses all computations in comps. Line 2 splits the AllReduce into a ReduceScatter and

an AllGather, such that computations take output of AllGather (agG) as input. Line 3 reorders

AllGather with computations, such that, each rank performs computations on a slice of tensors.

Line 4 slices optimizer states on all ranks to decrease memory usage and removes corresponding

AllGather. Finally, line 5 fuses all operations in a single kernel.

Point-to-Point Communication in Pipeline Parallelism: Figure 5.5a shows a scenario of

pipeline parallelism in Megatron-LM with two transformer layers assigned to two groups each

with two ranks. Rank i in group j is shown by (j, i). Each group uses model parallelism within

its transformer layer. Pipeline parallelism in Megatron-LM works as follows. First, all ranks in the

�rst group reduce their input using AllReduce to get replicated output. Then each rank performs

pointwise computations over the replicated output. Finally, the �rst group sends the result of com-

putations to the corresponding rank in the second group using point-to-point (P2P) sends. (Line 2

in Figure 5.6a shows these computations but are omitted in Figure 5.5 for simplicity). Since the
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1 Var sum = AllReduce("+", in);
2 Var send = Dropout(recv+b,0.1) + r;
3 Var output = Send(send, GroupRank(GROUP+1, RANK));
4

5 Execute transformer({in}, {output});

(a) Traditional implementation. Each rank of a group sends same data to next group.

1 fuseSend = fuse(send, output, SendFuse);
2 (rsSum, agSum) = split(sum, ARSplitRSAG);
3 (scSend, agOut) = reorder(fuseSend, agSum, AGReorder);
4 overlapOut = overlap(rsSum, scSend, agOut);

(b) An Optimized Schedule. Each rank sends only a slice of data to ranks in next group and all operations

are overlapped.

Figure 5.6: Optimizing pipeline parallelism of Megatron-LM. Input tensors: layer output in, bias

b, and residual r.

output of AllReduce in Figure 5.5a is replicated, redundant data is sent using P2P. We can avoid

this redundant communication by splitting the AllReduce to ReduceScatter and AllGather and re-

ordering the P2Ps with the AllGather. Hence, the inter-group communication is reduced by the

group size. This workload can be further optimized by overlapping all communication operations.

Figure 5.5b shows that if the bu�ers are split into multiple tiles (T0–T2 in the �gure), intra-group

and inter-group communications can be overlapped.

Figure 5.6a is the original program, while Figure 5.6b optimizes it by applying transformations.

Line 1 fuses the P2P send with computations. Line 2 splits the AllReduce and reorders the returned

AllGather with the fused P2P send at line 3. Hence, P2P send and computations are performed on

only a slice of data on the next group where the AllGather is also performed. Finally, all three new

operations are overlapped in line 4.

5.4 The CoCoNet Code Generator

CoCoNet generates CUDA kernels for computation and communication operations for run-

ning on a distributed system with NVIDIA GPUs. For each operation, CoCoNet either generates

(i) a call to a collective communication operation, (ii) a CUDA kernel for fused computations,

(iii) a CUDA kernel for fused-collective communications (Section 5.4.2), or (iv) CUDA kernels for
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overlapping of communication and computation operations (Section 5.4.3). Moreover, CoCoNet

generates code for performing operations on multiple non-contiguous tensors (Section 5.4.4). Af-

ter generating CUDA kernels, CoCoNet traverses the program’s DFG to generate kernel calls.

CoCoNet wraps generated programs as custom operators and integrates them into PyTorch, so

that, applications like Megatron-LM can invoke them directly. I now discuss how CoCoNet adapts

NVIDIA Collective Communication Library (NCCL), a widely-used hand-optimized high perfor-

mance communication library, into a runtime to execute above CUDA kernels.

5.4.1 NCCL Architecture

NCCL communicates data stored in the global memory of one GPU to a memory location on

another GPU using CUDA kernels. NCCL’s CUDA kernels perform communication by directly

copying data from memory of one GPU to another GPU using GPUDirect Remote Data Mem-

ory Access [11]. NCCL’s architecture de�nes four key properties: (i) topology, (ii) protocols, (iii)

channels, and (iv) threads in a thread block of the CUDA kernel. NCCL automatically sets key con-

�guration values for these properties based on the size of the input bu�er, network architecture,

and the size of WORLD. To ensure good performance, CoCoNet’s code generation must carefully

recon�gure these properties when extending NCCL to custom communication and computation.

We now provide a high level overview of these properties.

TopologyNCCL creates logical topologies, such as ring and tree, over the underlying interconnect

network.

Channels NCCL maps copies of a logical topology on the underlying interconnect network. Each

copy is called a channel and is assigned to one CUDA thread block.

Protocols NCCL sends data using one of the three protocols: LL, LL128, and Simple. These

protocols make di�erent tradeo�s between latency and bandwidth based on the type of inter-node

synchronization used: LL has the lowest latency and Simple provides the highest bandwidth.

Number of Threads NCCL sets a �xed number of threads for each channel (and thread block).

NCCL’s kernels have high register usage, which limits the number of thread blocks per SM to one.

NCCL Work�ow After determining the topology, protocol, number of channels, and number of

threads, NCCL calls its CUDA kernel for communication. Each collective communication has three
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levels of tiling to fully utilize the massive parallelism of GPUs. Data is �rst divided into bu�er tiles

equal to the size of the communication bu�er. Each bu�er tile is further divided among all ranks

and channels to obtain chunks. Each channel communicates a chunk of data at a time. The threads

in channels copy elements in and out of the bu�ers and apply reduction operations (sum, min,

max) if needed.

5.4.2 Fused Collective Communications

Fused Collective Communication extends NCCL’s existing kernels to enable arbitrary point-

wise computations and reductions. I inspected more than 10K lines of code in NCCL to identify

where computations can be added to pass intermediate values from communication to fused com-

putations directly through registers. CoCoNet supports fusion of both pointwise operations and

reductions into NCCL collectives.

Each NCCL protocol utilizes a di�erent mechanism for communication and CoCoNet gener-

ates code for all of them. The important features of a protocol are the pack type (64-bit for LL,

128-bit for LL128 and Simple) and the load/store access pattern (shared memory for LL128,

global memory for LL and Simple). CoCoNet generates template code for all element types in

NCCL, and dispatches accordingly at runtime. There are some subtleties in the code generation

worth discussing:

Mixed Precision When the element types of computations and the input tensors are di�erent,

CoCoNet �nds the largest element type and based on the pack type of the protocol calculates

how many elements can be loaded at once. CUDA code is generated to operate on these many

elements.

Sliced Tensor When a sliced tensor is used by a fused collective communication, all memory

accesses performed need to be mapped to elements of the sliced tensor. CoCoNet generates code

that produces this mapping. To perform an AllGather on sliced tensors, the inverse of this mapping

is produced.

Tensor Reduction To reduce a sliced tensor, each rank reduces locally and do an AllReduce. This

AllReduce reuses already established connections among ranks in the surrounding communication

kernel to avoid extra startup latency.
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Figure 5.7: Work�ow of CoCoNet’s overlapping of MatMul with AllReduce for a Float 16 matrix

[8192, 3072] on 8 ranks (R0 to R7) with 1 channel (C0) and 16 MB bu�er size. Size of each 2-D

chunk (B0 to B15) is [1024, 1024].

5.4.3 Overlapping of Communication and Computation

Overlapping of computation and communication has been studied in the context of executing

stencil computations in a distributed system [21, 23, 25, 36, 37, 63, 71, 73, 96, 104, 108]. These works

use non-blocking MPI operations to communicate data and simultaneously perform computations

on CPUs. A similar approach for overlapping of computation and communication operations for a

GPU workload would involve dividing all operations into sub-operations and ensuring dependency

between sub-operations using CUDA streams. However, this approach would provide sub-optimal

performance because each sub-operation is performed on only a part of data, which leads to in-

e�cient computation and under-utilization of communication bandwidth.

Figure 5.7 shows how the �ne-grained overlapping of CoCoNet addresses this issue using

the example of a MatMul followed by a ring AllReduce. First, it schedules the MatMul kernel

(based on CUTLASS [9]) to produce chunks in the same order as the AllReduce consumes them.

Here, the nth
rank sends chunks in the order starting from the nth

chunk. Hence, the MatMul

kernel on nth
rank produces chunks in the same order. Second, CoCoNet invokes both kernels

only once on di�erent streams and synchronizes the AllReduce with the MatMul using an e�cient

�ne-grained spin-lock on a memory bu�er to ensure that the AllReduce wakes up as soon as the

MatMul produces a chunk. Third, to provide opportunities to tune the 2-D tile sizes of the MatMul

kernel, CoCoNet generates a 2-D AllReduce kernel that communicates 2-D chunks, while NCCL

AllReduce only supports 1-D continuous chunk.
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The example in Figure 5.7 works as follows. At T = 1 , all ranks invoke MatMul and AllReduce

kernels. On rank 0, after computing chunk 0, the MatMul kernel wakes the AllReduce kernel at T

= 2 , which starts communicating chunk 0. While on rank 1, at T = 2 the MatMul kernel wakes

the AllReduce kernel to communicate chunk 1. Concurrently, both MatMul kernels compute their

corresponding next chunk. At T = 3 , MatMul kernels �nished computing chunk 1 on rank 0 and

chunk 2 on rank 1 and wakes up corresponding AllReduce kernels to communicate these chunks.

This process continues until all chunks are processed.

This process allows the MatMul kernel and AllReduce to be overlapped in a �ne-grained man-

ner, which reduces the startup latency of AllReduce. Since AllReduce communicates on the same

chunk sizes, it achieves maximum communication bandwidth. Furthermore, the MatMul kernel

achieves maximum e�ciency because the kernel is invoked on the full matrix size.

5.4.4 Operations on Scattered Tensors

In data parallelism, communication and computation occur on di�erent layers of widely dif-

ferent sizes. Since machine learning frameworks allocate parameters and gradients of layers in

non-contiguous bu�ers, gradients are copied to a large bu�er to avoid launching multiple AllRe-

duce operations.

CoCoNet supports generating a single kernel for both computation and communication oper-

ations acting on non-contiguous tensors. In this section, we show how CoCoNet modi�es NCCL

to generate a single communication kernel for scattered tensors. This code generation is non-

trivial because NCCL has several design decisions based on the assumption that it is communi-

cating a single contiguous bu�er. For example, each thread of a NCCL channel copies only a few

elements in each iteration, and hence indexing the correct tensor at a particular o�set requires a lin-

ear search through all non-contiguous tensors, which can lead to signi�cant overhead. CoCoNet

solves this problem by �rst dividing each tensor into buckets of size at most 2
10

elements and

then assigning buckets to warps in a round-robin manner. This mechanism allows each thread to

quickly �nd the o�set in a tensor, since a warp can directly index in its assigned bucket. CoCoNet

pre-calculates the number of buckets that belong to the same contiguous bu�er and calculates the

o�set for all of them only once.
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Optimizer Scattered Tensor Single Tensor

Adam 33.89 ms 33.21 ms

LAMB 37.04 ms 36.71 ms

Table 5.1: Time to perform parameter update of all 360 tensors of BERT.

The process of breaking each tensor to buckets has computation overhead and extra memory

requirements. Since this bucketing is done only once on the CPU and training tasks run for thou-

sands of iterations on the same tensors, the computation overhead is negligible. Each bucket is

represented by a pair of 64-bit tensor address and a 32-bit o�set into the associated tensor, lead-

ing to 12 ×
⌈

N
210

⌉
bytes of extra memory for a tensor with N elements. However, this memory

overhead is negligible for large models. For example, for BERT model with 334M elements, the

memory requirement is 0.6%. Table 5.1 shows that the time to perform parameter update of all 360

tensors of BERT on 256 Tesla V100 with scattered tensors implementation and a single contiguous

tensor of size equal to the sum of size of all tensors. These results shows that the overhead of

scattered tensors is insigni�cant over contiguous tensors.

5.5 Evaluation

This section evaluates the e�ectiveness of CoCoNet through standalone experiments and end-

to-end distributed machine learning scenarios of data, model, and pipeline parallelism.

All experiments are performed on a cluster of 16 NVIDIA DGX-2 nodes where each node con-

tains dual 24-core Intel Xeon CPUs and 16 NVIDIA Tesla V100 (32GB) GPUs. Each GPU within

a node is connected to six NVSwitches with six NVLinks (25 GBps per NVLink). Nodes are con-

nected with 8 non-blocking EDR In�niBand (100 Gbps) network. All nodes run Ubuntu 20.04,

CUDA 11.3, cuDNN 8.2 and PyTorch 1.10.

5.5.1 Data Parallel Training

In data parallelism, communication involves an AllReduce of gradients among all ranks. The

output is used by the optimizer to update the model parameters. We evaluate CoCoNet gener-

ated code for two widely-used optimizers, Adam and LAMB. All experiments in this section were

performed on all 16 DGX-2 nodes in our cluster.
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5.5.1.1 Standalone Experiments

We �rst perform standalone experiments to explore di�erent CoCoNet schedules over a range

of input tensors from 210 to 230 elements. The autotuner generates and executes implementations

with di�erent con�gurations, including all NCCL protocols and all channels from 2 to 64. For each

tensor, the autotuner reports the best average result of 1000 iterations.

Baselines The baselines perform parameter update by �rst doing AllReduce over gradients and

then call FusedAdam or FusedLAMB from NVIDIA Apex [6]. Both FusedAdam and FusedLAMB

fuses all the parameter update computations.

CoCoNet Schedules The autotuner generates following three schedules of Adam and LAMB by

applying di�erent CoCoNet transformations for each input size and reports the best schedule to

the user for each input size:

1. AR-Opt (Opt = Adam/LAMB) refer to the traditional parameter update technique, i.e., an

AllReduce over gradients and then each GPU individually performs the optimizer compu-

tation. These schedules fuse all computations into a single kernel, thereby simulating the

baseline implementations of FusedAdam and FusedLAMB.

2. GShard-Eq or RS-Opt-AG (Opt = Adam/LAMB) are generated from AR-Opt by �rst split-

ting the AllReduce into ReduceScatter and AllGather, and then reordering AllGather with

the fused optimizer computations. Hence, these schedules distribute parameter update across

all ranks, similar to GShard [64] and ZeRO [91].

3. fuse(RS-Opt-AG) (Opt = Adam/LAMB) are generated by fusing all operations of RS-Opt-AG

into FusedAllReduce.

5.5.1.1.1 Results Figure 5.8 shows the speedup of CoCoNet schedules over the baseline for

several tensor sizes. The results are shown for mixed-precision [13] using Float 16, and the results

for Float 32 are qualitatively similar. In these �gures, UB represents the cost of AllReduce alone

without doing any computation, and thus is the upper bound of possible speedups.

Even though the AR-Opt schedules emulate the baseline implementations, they are faster on

smaller tensors. This is because the baseline implementations perform additional preprocessing to

optimize the amount of thread-parallelism and instruction-level parallelism per invocation. While
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Figure 5.8: CoCoNet speedup on 256 GPUs. For each size, CoCoNet runs the best schedules. UB

(upper bound) takes AllReduce-only as max achievable speedup.

this preprocessing cost hurts smaller tensors, its bene�t shows up for larger tensors where AR-Opt

performs worse.

Since GShard-Eq and fuse(RS-Opt-AG) schedules distribute the optimizer computation, they

perform better than the baseline for large tensors. The performance of fuse(RS-Opt-AG) shows

the advantage of fusing computation and communication kernels as these schedules achieve near

optimal speedups for large tensors. These schedules are respectively 13% and 14% faster than

GShard-Eq for Adam and LAMB.

For smaller tensor sizes, multiple kernel calls are required for GShard-Eq schedules signi�-

cantly hurt performance. Interestingly, fuse(RS-Opt-AG) schedules are slower than AR-Opt sched-

ules for smaller tensor sizes though they require one less kernel call because the fused kernels

have a higher register usage, thereby restricting the thread-level parallelism. This demonstrates

that the fusion of communication and computation is not always a good idea.

Table 5.2 shows that the lines of generated code for each schedule are signi�cantly more than

the implementation in CoCoNet and the autotuner explored all schedules in 10 seconds. In sum-

mary, CoCoNet provides performance improvements over baselines with fewer lines of code. The

AR-Opt and the fuse(RS-Opt-AG) reach close to optimal performance for smaller and larger ten-

sors respectively. This amounts to a speedup of 1.2× to 1.7× for Adam and 1.35× to 2.0× for

LAMB. There is no schedule that performs best for all sizes, which demonstrates the need for the

autotuner.

58



Schedule Generated CUDA Program in CoCoNet Autotuner Time

AR-Adam 16 lines 12 lines

9 secsRS-Adam-AG 24 lines 16 lines

fuse(RS-Adam-AG) 150 lines 17 lines

AR-LAMB 80 lines 15 lines

10 secsRS-LAMB-AG 140 lines 17 lines

fuse(RS-LAMB-AG) 220 lines 18 lines

Table 5.2: Lines of code of implementation of schedules of data parallel parameter update in CUDA

and CoCoNet, and time taken by the autotuner to �nd the best schedule.

Optimizer # of Parameters MaximumMicro Batch Size Speedup

PyTorchDDP CoCoNet

Adam

336 M 32 32 1.22×
1.2 B 8 32 1.52×
3.9 B OOM 8 –

LAMB

336M 64 128 1.20×
1.2B 8 64 1.68×
3.9B OOM 8 –

Table 5.3: Maximum Micro Batch Size of implementations and speedup of CoCoNet over the Py-

TorchDDP when training BERT models using Adam and LAMB. OOM represents Out of Memory.

5.5.1.2 Integeration with BERT

I use CoCoNet generated optimizers to train three large BERT models from NVIDIA [16].

We integrated the scattered tensors implementation of fuse(RS-Opt-AG) schedule for both Adam

and LAMB in PyTorch. PyTorch Distributed Data Parallel (PyTorchDDP) is the baseline for this

experiment. PyTorch DDP [67] stores all gradients in buckets of 25MB and overlaps the AllReduce

on each gradient bucket with computations during training. After reducing all gradients it calls

FusedAdam or FusedLAMB. I use mixed precision training with both Adam with 8192 global batch

size and LAMB with 65536 global batch size.

Results Table 5.3 shows the speedup provided by CoCoNet in training three BERT models over

PyTorchDDP. For Adam optimizer, CoCoNet provides speedup over PyTorchDDP in training

BERT 336M because CoCoNet’s fused schedules perform better than FusedAdam. CoCoNet pro-

vides even higher speedup on BERT 1.2B models because the fused schedules decrease memory

usage by distributing Adam’s state over all GPUs, which improves the e�ciency of matrix mul-

tiplication GPU kernels by enabling higher batch size per iteration. On 3.9B parameter model,
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PyTorchDDP go Out of Memory, while CoCoNet’s fused schedules can train the model. Results

for LAMB are similar. CoCoNet provides up to 1.68× speedup over PyTorchDDP for LAMB.

5.5.2 Model Parallelism

Megatron-LM [101] uses a model parallel approach for inference and training of transformer

models, such as BERT [38] and GPT-2 [88]. A transformer layer contains a self-attention block and

a multi-layer perceptron (MLP) block. Last few operations of a self-attention block are the same

computations as shown in Figure 5.2. An MLP block’s last operations are similar to Figure 5.2

with the input tensor and weight sizes as [B,S, 4 × H] and [4 × H,H] (B, S, and H are batch

size, sequence length, and hidden size, respectively). Since model parallelism is applied within one

node, all experiments in this section are performed on a single NVIDIA DGX-2 node.

5.5.2.1 Standalone Experiments

I �rst perform standalone experiments to evaluate di�erent schedules generated by the au-

totuner. I compare following schedules for model parallel self-attention code of Figure 5.2 and

similar operations of multi-layer perceptron:

1. MM-AR-C is the baseline schedule of Figure 5.2. This schedule improves the Megatron-LM

implementation by fusing all pointwise computations into one kernel.

2. MM-RS-C-AG This schedule is generated from MM-AR-C by splitting the AllReduce into a

ReduceScatter and an AllGather, and reorders AllGather with computations.

3. ol(MM,fuse(RS-C-AG) is generated from the previous schedule by fusing the ReduceScat-

ter, computation, and AllGather into a FusedAllReduce and then overlapping it with the

MatMul. The autotuner returned this as the best schedule and hence represents CoCoNet

in our results.

Results I evaluate these schedules with sizes of GPT-2 8.3 Billion parameter model (i.e., S = 1024,

H = 3072) for 8 and 16 batch sizes. Figure 5.9 shows the times of all schedules normalized

to the time of MM-AR-C schedule. CoCoNet’s best schedule (ol(MM,fuse(RS-C-AG))) provides

1.38× to 1.62× speedup over MM-AR-C and 1.21× to 1.34× over MM-RS-C-AG because it over-

laps FusedAllReduce with the matrix multiplication. Table 5.4 shows that the lines of generated
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Schedule Generated CUDA Program in CoCoNet Autotuner Time

MM-AR-C 20 lines 10 lines

12 secsMM-RS-C-AG 140 lines 13 lines

ol(MM,fuse(RS-C-AG)) ≈ 2k lines 14 lines

Table 5.4: Lines of code of implementation of schedules of model parallel Self Attention in CUDA

and CoCoNet, and time taken by the autotuner to �nd the best schedule.

CUDA code for each schedule are signi�cantly more than the implementation in CoCoNet and

the autotuner explored all schedules in 12 seconds.

5.5.2.2 Integration with Megatron-LM

After integrating CoCoNet’s overlap schedule in Megatron-LM, we found that CoCoNet im-

proved inference times of BERT 3.9B parameter model by 1.51× and GPT-2 8.3B parameter model

by 1.48×. Hence, overlapping matrix multiplication with fused collective communication signi�-

cantly improves inference times.

5.5.3 Pipeline Parallelism

CoCoNet can decrease inference times in pipeline parallelism by fusing computation and com-

munication and overlapping multiple communication operations. I evaluate CoCoNet on compu-

tations of model and pipeline parallelism in Megatron-LM for GPT-3 175B parameter models. A

transformer layer contains several operations but the operations of interest for this experiment are
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Schedule Generated CUDA Program in CoCoNet Autotuner Time

AR-C-P2P 20 lines 10 lines

11 secsAR-C-P2P-AG 20 lines 13 lines

ol(RS,fuse(C-P2P),AG) ≈ 2k lines 14 lines

Table 5.5: Lines of code of implementation of schedules of pipeline parallel transformer layer in

CUDA and CoCoNet, and time taken by the autotuner to �nd the best schedule.

presented in Figure 5.6a. All experiments in this section are performed on all 16 NVIDIA DGX-2

nodes.

5.5.3.1 Standalone Experiments

I �rst perform standalone experiments to evaluate di�erent schedules generated by the auto-

tuner. I compare the following schedules for pipeline parallelism code of Figure 5.6a:

1. AR-C-P2P is the implementation of Figure 5.6a, which optimizes over Megatron-LM bt

fusing all pointwise computations.

2. AR-C-P2P-AG is generated by slicing the output of AllReduce to perform sliced P2P sends

and computations, and �nally an AllGather to collect the output of computations.

3. ol(RS,fuse(C-P2P),AG) is generated from the previous schedule by splitting the AllReduce

into a ReduceScatter and an AllGather, reordering the AllGather with P2P send and compu-

tations, fusing computations with P2P sends, and �nally, overlapping all three communica-

tion operations (Figure 5.5b). This schedule is returned by the autotuner as the best schedule

and hence, represents CoCoNet in our results.

Results Figure 5.10 shows the breakdown of each operation with one transformer layer assigned

to each node. The sequence length (S = 2048) and the hidden size (H = 12288) are of GPT-3 175B

model. CoCoNet’s best schedule ol(RS,fuse(C-P2P),AG) is 11.75×–12.21× faster than the baseline

schedule AR-C-P2P. The speedups are because: (i) sliced P2P reduces cross node communication

volume, (ii) fusing communication and computation operations improves memory bandwidth uti-

lization, and (iii) overlapping communication using di�erent connections (NVLink within node

and In�niBand across nodes) improves network bandwidth utilization, while other schedules uti-

lize only one stack at a time. Table 5.5 shows that the lines of generated CUDA code for each
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Figure 5.10: Times of three schedules for GPT-3 175B in CoCoNet for pipeline and model paral-

lelism normalized to AR-C-P2P.

schedule are signi�cantly more than the implementation in CoCoNet and the autotuner explored

all schedules in 11 seconds.

5.5.3.2 Integration with Megatron-LM

I evaluated inference throughput of GPT-3 175B parameter models by integrating CoCoNet’s

ol(RS,fuse(C-P2P),AG) schedule in Megatron-LM. CoCoNet improves inference throughput of GPT-

3 by 1.33× due to its fusion and �ne-grained overlapping of multiple communication operations.

5.6 Conclusion

This chapter presented CoCoNet, the �rst language to describe distributed machine learn-

ing workloads and optimize them across computation and communication boundary. I show that

CoCoNet generated code signi�cantly improves several training and inference times of large lan-

guage models. CoCoNet is available athttp://github.com/parasailteam/coconet.
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CHAPTER 6

FUTURE OF HARDWARE AND DOMAIN SPECIFIC LANGUAGES

Increasing computation cost of daily machine learning and computer vision applications has

lead to the development of cost e�ective, fast, and energy e�cient domain specialized architec-

tures. In 2015 Google released the �rst generation Tensor Processing Unit (TPU) [60], which is a

domain specialized architecture designed to improve the training and inference time of machine

learning models. Since machine learning models contains mostly matrix multiplication, a TPU

contains matrix multiplication units (MXUs) that can perform matrix multiplication on diverse

data formats. Today there are several specialized matrix multiplication hardware, such as Cere-

bras WS-2 [27], Tensor Cores [81] in NVIDIA GPUs, and Matrix Cores [20] in AMD GPUs. All

these accelerators provide orders of magnitude Floating Point Operations Per Second (FLOPS)

than a general purpose hardware including GPUs. For example, Tensor Cores in NVIDA Tesla

V100 GPUs provide 128 Tera FLOPs for 16-bit �oating point type, while using CUDA cores in the

same GPU provide 28 TFLOPs on 16-bit �oats.

However, since these domain specialized accelerators (DSAs) are not general purpose hard-

ware, to use these DSAs for other applications there is a need to develop new algorithms that

utilizes matrix multiplications. This chapter discusses state-of-the-art in domain specialized accel-

erators and how DSLs presented in this thesis can be extended to support these domain specialized

accelerators.

6.1 Machine Learning Accelerators

In this section I present a background on machine learning accelerators.

Google Tensor Processing Unit A Tensor Processing Units (TPU) [60] contains Matrix Multi-

plication Units (MXU) that generates the result matrix of size 128×128. Variable matrix sizes are

supported by tiling the matrix multiplication into 128×128 blocks. A TPU support several sizes
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including 16-bit and 32-bit IEEE �oating points and 8-bit integers. Additionally, a TPU support

16-bit brain �oats, which is a datatype for fast machine learning training without loss in accuracy.

Brain �oat provides the same range as 32-bit �oats because brain �oat contains 8-bit of exponent,

which is same as the exponent in 32-bit. Since ML models also contains various vector and scalar

operations, a TPU also contains vector and scalar processing units with several megabytes of on-

chip memory that can be utilized as a programmer de�ned cache. Third generation TPU provides

123 TFLOPs for 16-bit �oating point computations and 4 TFLOPs for 32-bit �oating pointer com-

putations.

Cerebras WS-2 Matrix multiplications in a machine learning model are mostly sparse, i.e., ele-

ments of weights and intermediate matrices contains zeros. Hence, multiplying only non-zeros el-

ements rather than all elements can give signi�cant performance improvements. Therefore, Cere-

bras designed Wafer Scale Engine (WSE) [27], which is a specialized architecture to perform sparse

matrix multiplications. A WSE-2 wafer contains 850,000 cores and 40 GB of on-chip memory that

can serve as a software handled cache.

NVIDIA Tensor Cores Recent NVIDIA GPUs, such as Tesla V100 and Tesla A100, also contains

dedicated matrix multiplication hardware known as Tensor Cores [81]. Tensor Cores provides both

dense and sparse matrix multiplications for a variety of data types including 8-byte integers, 16-bit

IEEE �oat, and 16-bit brain �oat. Tensor cores provide orders of magnitude higher tera�ops than

the general purpose CUDA cores. For example, Tensor Cores in Tesla V100 provides 125 TFLOPS

on 16-bit �oating point, which are signi�cantly higher than 28 TFLOPS provided by CUDA cores.

Similarly, AMD GPUs contains dedicated matrix multiplication referred to as Matrix Cores [20].

6.1.1 Programming ML Accelerators

ML accelerators are connected to the host CPU through a PCI-e bus. Therefore, a CPU program

needs to transfer the input data through the PCI-e bus to the accelerator’s DRAM, and obtain

the output data stored on accelerator’s DRAM after the accelerator has performed computations.

Machine learning frameworks follow the same pattern to utilize accelerators.

Figure 6.1 shows the code-generation pipeline of machine learning frameworks when utilizing

the accelerators. PyTorch and Tensor�ow supports these accelerators while providing the same
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Figure 6.1: Pipeline of ML frameworks to Accelerators

abstraction. After a machine learning model is compiled to matrix multiplications, convolutions,

and vector arithmetic operations, both frameworks convert these operators in the instructions

supported by the accelerator. For example, vector and matrix multiplication maps directly to vector

and matrix multiplication instructions. If an operator is not directly supported by the accelerator,

like convolution, the operator is converted to a matrix multiplication with extra vector operations.

Finally, the generated instruction are executed by the relevant accelerator.

«««< HEAD

6.2 Domain Specialized Accelerators for Other Tasks

Since a domain specialized accelerators are designed for computing speci�c task, is it possible

to use a domain specialized accelerator for tasks out of its domain? In this section, I describe how

DSLs presented in this thesis can be adapted for utilizing machine learning accelerators.

The DSLs presented in this thesis (Figure 1.1) has four components: abstraction, domain spe-

ci�c optimizations, architecture speci�c optimizations, and code generation. Since one of the goals

of a DSL is to present a common abstraction across di�erent architectures, the abstraction of a DSL

should be same for all architectures. Similarly, the domain speci�c optimizations that optimizes

a program written in high-level abstraction will be applicable irrespective of the target architec-

ture. For example, the transit parallelism in NextDoor is valid for all domain speci�c accelerators

that contains a fast on-chip memory because transit parallelism allows loading edges of common
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transit in the fast on-chip memory. Similarly, loop fusion in PolyMage can be applied to image pro-

cessing programs when executing on domain specialized architectures by storing intermediates in

the on-chip memory.

However, the architecture speci�c optimizations and code generation is speci�c to the under-

lying architecture. For instance, NextDoor’s load balancing is valid for GPUs and CPUs but not

for the domain specialized accelerators because they might have di�erent computation hierarchy.

Hence, there is a need to develop new algorithms for executing other tasks using matrix multipli-

cation on domain specialized architectures. For example, since graph processing algorithms like

Breadth First Search can be implemented using matrix operations, it is possible to implement graph

sampling algorithms using matrix operations. Similarly, image processing programs will need to

be implemented as tiled matrix multiplication. After designing the algorithm, the architecture

speci�c code generation will generate architecture speci�c instruction.

6.3 Conclusion

Domain specialized accelerators for machine learning applications are widely used and are

here to stay. These accelerators provide fast implementation of matrix multiplication, which is

a key operator in machine learning applications. «««< HEAD With a large availability of these

accelerators, there is a need to develop new algorithms to use these accelerators for a variety of

tasks. ======= With a large availability of these accelerators, there is a need to develop new

algorithms to use these accelerators for a variety of tasks. As an example, this chapter presents a

sketch of graph sampling algorithm that uses matrix multiplication. »»»> 5f76c5b (u)
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CHAPTER 7

RELATEDWORK

This chapter discusses the related work on executing image processing, graph computations,

and distributed machine learning programs on multiple GPUs.

7.1 Execution of Stencil Computations on GPUs

State-of-the-art DSLs for image processing programs all employ loop fusion and overlapped

tiling to increase locality between stages [75, 90, 92]. Halide and Forma use GPUs and execute

one overlapped tile per thread block. Halide’s original CPU autoscheduler [76] uses a greedy

algorithm, whereas Dynamic Programming Fusion [53] e�ciently enumerates all possible fusion

choices for a CPU. Halide has a newer autoscheduler [18] that uses beam search with a learned

cost model for CPUs. Halide’s Gradient GPU autoscheduler [68] is a GPU autoscheduler for Halide

that performs greedy function inlining and loop fusion with hard-coded thread block sizes for each

tile. In contrast to these PolyMage-GPU’s automatic fusion algorithm (Section 3.5) explores all

possible fusion choices using dynamic programming and search over all thread block sizes using

a cost function that considers several important factors, such as, global memory transactions and

occupancy.

Several techniques support parallel execution of stencil computations on GPUs, using theOver-

lap tile per thread block (OTPTB) model [49, 93, 94, 95, 117]. Rawat et al. [94] use a sliding window

on one spatial dimension and overlap tiling on the others to eliminate some redundant computa-

tions in Overtile [49]. Hybrid hexagonal classic tiling [43] also executes one tile per thread block.

Flextended Tiles [117] uses rectangle trapezoid tiling to obtain tighter overlapped tile bounds.

Artemis [93] is a DSL that allows an expert to guide challenging code optimizations using bot-

tleneck analysis and tunable code parameters. Artemis and Flextended tiles are complementary

to our work. These approach supports expression inlining, which pass the value of producer to
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consumer through a register within the same thread. However, none of these employ PolyMage-

GPU’s overlapped tile per warp (OTPW) model and hybrid tiling, which stores portions of tiles in

registers that is shared among threads of a warp.

In 2009, Hong and Kim [50] presented a general analytical model to predict the performance of

GPU kernels. However, recent advances in GPU architectures, including changes to their memory

hierarchy, have made their model out of date. Prajapati et al. [86] present an analytical model for

predicting the runtime of stencil computations on GPUs (tiled using [43]). That model considers

shared memory usage, theoretical occupancy, and warp switching. However, it omits several key

factors, including register usage, the number of global memory transactions, achieved occupancy,

and thread block sizes, which PolyMage-GPU’s model considers.

Halide exposes warp shu�e instructions, which makes it possible to store portions of a tile in

registers [5]. However, Halide restricts the size of the innermost dimension to be less than warp

size, and cannot store tiles in both registers and shared memory. Other systems employ in-register

storage and warp shu�es to improve the performance of GPU kernels [19, 24, 35, 66, 85, 109].

PolyMage-GPU allows multiple warps per thread block, allows the innermost dimension to have

an arbitrary size, and is a hybrid technique that stores tiles in both registers and shared memory.

7.2 Graph Processing on GPUs and CPUs

There are two types of graph processing systems based on their abstraction: message passing

and frontier centric. The �rst type of graph processing systems provide message-passing abstrac-

tion. These systems can run on CPUs [42, 70, 72, 79, 102, 120, 121] and GPUs [41, 61, 80, 97, 119].

Medusa [119] was the �rst GPU-based graph processing framework to provide a message pass-

ing abstraction. CuSha [61] and MapGraph [41] provide a Gather And Scatter (GAS) abstraction.

CuSha uses a parallel sliding-window graph representation (“G-Shards”) to avoid irregular mem-

ory accesses. Subway [97] splits the large graphs that do not �t in GPU memory into sub-graphs

and optimizes memory transfers between CPU and GPU. Shi et al [100] present an extensive re-

view of systems for graph processing on GPUs. PowerLyra [30] uses di�erent computations on

vertices based on their degree.

The second type of graph processing systems provide frontier-centric abstraction. Gunrock [111]

was the �rst system to provide a frontier-centric abstraction. Gunrock exploits the property that
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after any step of a graph computation, a set of frontier vertices are produced for the next step of the

computation. The Advance operator in this abstraction de�nes the computation and generates a

new frontier by assigning one thread to each neighbor of each vertex in the input frontier. SIMD-

X [69] extends the frontier abstraction of Gunrock [111], but these extensions are not relevant

for graph sampling. NextDoor performs better than both message passing and frontier centric

systems because these systems can only assign transit to di�erent threads but each thread needs

to process all samples sequentially.

There are graph processing systems speci�cally designed for graph sampling and graph sam-

pling. Graph mining systems follow a subgraph-parallel paradigm that is analogous to sample-

parallelism [28, 32, 39, 52, 74, 87, 106, 110]. However, even the sample-parallel sampling algorithm

of Section 4.3 introduces optimizations that are speci�c to the graph sampling abstraction of Sec-

tion 4.1 and do not generalize to graph mining problems. 1) In graph sampling the number of

samples is �xed, whereas graph mining problem may involve exploring an exponential number of

subgraphs. 2) sampling adds a constant number of new vertices to each sample at each step. This

makes it possible to associate new vertices to threads at scheduling time, before visiting the graph.

3) Sampling has a notion of transit vertices. NextDoor leverages all these features.

There are several CPU based graph sampling systems [33, 34, 47, 113, 116]. KnightKing [113]

is a CPU based system to express random walks and e�ciently execute them on a distributed

system. KnightKing uses rejection sampling to execute random walks. Existing Graph Neural

Networks, such as, GraphSAGE [47], ClusterGCN [33], MVS [34], and GraphSAINT [116] performs

sampling on input graph using CPUs. In contrast to these systems, NextDoor provides a general

abstraction for graph sampling and executes graph sampling e�ciently on GPU using its transit

parallel paradigm.

7.3 Optimizing Communication and Computation in Distributed Systems

DistributedMachine LearningAbstractions Existing machine learning frameworks [14, 17, 57,

83, 98] and DSLs [31, 37] provide abstractions for writing distributed machine learning workloads.

Similar to CoCoNet, in these abstractions, a distributed machine learning program takes input

tensors, performs operations on tensors, and returns tensors as the output. However, unlike these
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abstractions, CoCoNet preserves the layout information for each tensor. The layout information

enables CoCoNet to perform static type checking of each operation, and automatically perform

transformations on the program, which is not possible with existing abstractions.

DistributedNeuralNetworkTraining Several works have improved data-, model-, and pipeline-

parallel techniques for both training and inference. Mesh-Tensor�ow [99] and GShard [64] create

shards of weights and model state that can be split among ranks. Horovod [98] introduced the

Tensor Fusion optimization that copies all gradients to a single bu�er of 64MB, calls AllReduce

on the bu�er, and then copies the updated value to original gradients. ZeRO [91] splits weights

and model state among ranks and uses ReduceScatter and AllGather to distribute computation.

FlexFlow [58] performs operator splitting as a way to represent both data-parallelism and model-

parallelism, but does not optimize computation with communication. CoCoNet provides several

optimizations over these works that are possible only by breaking the abstraction: (i) scattered

tensors that remove extra storage and memory copy operations, (ii) fusion communication collec-

tives, and (iii) novel communication and computation overlapping techniques. PyTorch’s DDP [67]

overlaps AllReduce of gradients with the forward and backward pass. However, unlike CoCoNet,

PyTorch’s DDP requires extra memory for overlapping, which can increase training time for very

large models [12] and do not support slicing of optimizer parameter update that signi�cantly de-

crease memory usage. GPipe [51], Pipedream [77], and Narayanan et al. [78] proposed pipeline

training to improve model parallelism, by dividing the forward and backward pass into several

mini-batches, which are then pipelined across devices. vPipe [118] improves these works by pro-

viding higher GPU utilization. CoCoNet improves on these works by overlapping inter and intra-

node communication operations. BytePS [59] utilizes CPU in heterogenous clusters to improve

training, which is complementary to CoCoNet.

Overlapping Computation and Communication State-of-the-art works on overlapping [21,

63, 71, 73, 104] use either pipelined execution to overlap communication and computation or non-

blocking MPI operations. Pencil [108] improves upon these works by performing pipelining within

a process and supports computations in multiple connected iteration spaces. Several techniques

distribute tiles and automatically generate communication [25, 37, 96]. Basu et. al. [23] uses over-

lapped tiling in each process to remove communication between processes. Denis and Trahay [36]
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studied the e�ciency of overlap. dCUDA [45] provides hardware supported overlap. These works

for MPI+OpenMP are valid for CPU based stencil computations that require sends and receives

to share the halo regions. However, unlike CoCoNet, these works do not support overlapping

between collectives communication and complex computations like convolutions and matrix mul-

tiplications. CoCoNet supports overlapping multiple computation and communication operations

on GPUs without an accelerator.
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